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Preface

Mathematical knowledge is increasing at a dizzy rate. In the course of the last

50 years more theorems have been proven that in the preceding thousand years of

human history: to give an idea of the order of magnitude, every year in specialized

journals alone tens of thousands of research articles are published, and just as

many more are made available on the Internet. Even given that the great part of

these results are understandable and interesting only to specialists, others represent

fundamental intellectual conquests, solving irksome problems or famous conjec-

tures, establishing unexpected connections between various theories or discovering

new horizons for research. Furthermore, in many cases these steps forward in

mathematics, even those of seemingly limited importance, reverberate in other

scientific disciplines, giving rise to innovative conceptual developments or finding

surprising technological applications.

Only weak echoes of this fervid intellectual activity reach the general public.

The newspapers might carry the news of Andrew Wiles’s proof of Fermat’s last

theorem, or the contorted events surrounding the solution of Poincarè’s conjecture

by Grisha Perelman, but aside from the sporadic cases mathematics remains more

or less ignored. Thus, ironically, in precisely the period of its most florid growth

mathematics appears at once extremely fragile, almost a victim of its own excesses

of specialisation, relegated to a secondary role in the science of our culture, indeed –

in the opinion of the most pessimistic – at risk of extinction as a science in its own

right. A few years ago, Gian Carlo Rota commented, “at the end of the second

millennium, mathematics seriously risks dying. Among the many threats to its

survival, those that loom the largest seem to me to be the crass ignorance of its

results, and the widespread hostility towards its practitioners. Both of these are

facilitated by the reluctance of mathematicians to push themselves beyond the

restricted confines of their own discipline and by their reluctance to translate the

esoteric contents into exoteric slogans, which is instead imperative in the age of

means of mass communication and public relations”.

Whether or not one agrees with these gloomy prophecies, the fact remains that it

is not at all easy to coin “exoteric slogans” in order to render the hard-to-digest
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abstractions of mathematics appetizing to the largest possible number of palates.

Physics, biology, and even chemistry can take advantage of concepts that are

certain to be attractive – the “secrets of the universe”, the “wonders of life”, the

“mysteries of the molecule” – which, no matter how many times they are served up,

still have a grip on the collective imagination (if we can use that expression) and can

be used as a point of departure even for works of serious and rigorous popular

science. But what are the secrets, the wonders, the mysteries unveiled by mathe-

matics, if not those that appear as such, in all their fascination, only to the eyes of

those trained in this discipline?

In an attempt to illustrate the richness of the mathematics of the twentieth

century without resorting to slogans or propaganda, the present volume has a new

approach: to bring to the forefront some of the protagonists of this extraordinary

intellectual adventure, who have put at our disposal new and powerful instruments

for investigating the reality around us. There are at least two distinct reasons for

making this choice. Above all, the desire to give credit where credit is due. Little

has been written on the people – men and women – whose ideas have made possible

such deep scientific changes, and they run the risk of remaining in the shadows

along with their results. Although many have heard of Russell, Gödel, von

Neumann or Nash, how many know about Emmy Nöther, Schwartz, Grothendieck

or Atiyah? Secondly, the desire to demonstrate the falsity of a widespread and

deeply-rooted belief. It is often held that mathematicians are in every way similar

to the extravagant personalities that populate the flying island of Laputa in the

Swift’s Gulliver’s Travels. You’ll recall that the inhabitants of this land are so lost

in mathematical and musical thoughts and concoctions that they can neither talk

nor follow anyone else’s discussion, and constantly risk falling off some cliff or

banging their heads against some obstacle. For this reason they are always accom-

panied by servants to rescue them, who capture their Masters’ attention by touching

them on the lips, ears or their eyes with a kind of rattle tied to the end of a stick.

Nothing could be further from the truth: mathematicians, bizarre as their behaviour

might sometimes appear, have no need at all of solicitous servants to bring them

back to reality, because in general their curiosity is vigilant and open to the multi-

plicities of the world. Many of the portraits contained in this volume present people

with strongly charisma, with wide ranging cultural interests, impassioned about

defending the importance of their own research, sensitive to beauty, attentive to the

social and political problems of their times.

In spite of the inevitable omissions (which we openly knowledge, but as Marcel

Schwob observed in the preface to his Imaginary Lives, “the art of biography

consists precisely in choice”), what we have sought to document is mathematics’

central position in the culture – and not only scientific – of our day, in a continuous

play of exchanges and references, and correspondences and suggestions. For this

reason, in the pages that follow we have made space for not only biographical

portraits of the great mathematicians but also for literary texts, which allow us to

glimpse this subterranean contiguity. We have even included two intruders (or so

they appear, at least at first glance) – Robert Musil and Raymond Queneau –, authors

for whom mathematical concepts represented a valuable auxiliary for investigating
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the modalities of the “new relationship between the phantasmatic lightness of ideas

and the weight of the world” (to quote Calvino), to resolve the disagreement between

“soul and precision”.

Genova, Italy C. Bartocci

Milano, Italy R. Betti and A. Guerraggio

April 2010 R. Lucchetti
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Editors’ Note

The present volume is based on number 50–51 (December 2003–March 2004) of

the journal Lettera matematica PRISTEM, with modifications, amplifications and

significant additions.

We are grateful to Maria Poggi and Geraldine d’Alessandris for their nice and

expressive drawings.
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Hilbert’s Problems

A Research Program for “Future Generations”

Umberto Bottazzini

In an isosceles triangle, if the ratio between the base angle and the vertex angle is an

algebraic but irrational number, is the ratio between the base and the side always

transcendent?

The simplicity of this question is deceiving. This is not an exercise in Euclidean

geometry that can be solved by a bright student, but is instead a translation into

geometric terms of the fact that the exponential function exp(ipz) must always be a

transcendental number for irrational algebraic values of z. David Hilbert thought

that this was “highly probable”, although providing a proof of it seemed to be an

“extremely difficult” undertaking. Thus he added it to the list of problems for

“future generations” that he presented in Paris on 8 August 1900 during the second

International Congress of Mathematicians.

“Who of us would not be glad to lift the veil behind which the future lies hidden;

to cast a glance at the next advances of our science and at the secrets of its

development during future centuries?”, exclaimed Hilbert at the beginning of his

talk. “What particular goals will there be toward which the leading mathematical

spirits of coming generations will strive? What new methods and new facts in the

wide and rich field of mathematical thought will the new centuries disclose?”

It was a unique moment. The Congress, on the cusp of two centuries, offered the

mathematician from Göttingen a chance to “look over the problems which the

science of today sets”, and invite the mathematicians of “future generations” to put

themselves to the test. His talk defined an epoch. However, for those who imagine

Hilbert reading his talk, soon to be become legend, to a hall filled with the most

authoritative mathematicians of the times, reports about the congress contain some

surprises. According to Gino Fano, the audience was not actually very large. Many

of the participants didn’t attend. There were about ten Italians: Peano and his

followers (Amodeo, Padoa, Vailati), a couple of high school teachers, and then

Levi-Civita and Volterra, who gave the opening address. Of the Germans, neither

Klein nor Nöther were present, nor were any of the mathematicians from Berlin.

Even among the French, leading mathematicians such as Hermite, Picard, Jordan,

Goursat, Humbert and Appell failed to attend the Congress sessions. Hilbert’s talk

was one of those in the section entitled Bibliographie et Histoire. Enseignement et

C. Bartocci et al. (eds.), Mathematical Lives,
DOI 10.1007/978-3-642-13606-1_1, # Springer-Verlag Berlin Heidelberg 2011
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methodes with historian Moritz Cantor presiding. Hilbert limited himself to

presenting about 10 of the 23 problems that appeared in the text prepared for

publication. Thus, the volume of the acts of the Congress contains a note saying

that “an enlarged version of the talk of Mr Hilbert, because of its great importance,

has been included among the lectures”.

Hilbert’s observations regarding methodology in the introduction to the pro-

blems shed light on his conception of mathematics and its development. “The deep

significance of certain problems for the advance of mathematical science in general

and the important role which they play in the work of the individual investigator

are not to be denied”, he said, and continued, “An old French mathematician said:

‘A mathematical theory is not to be considered complete until you have made it so

clear that you can explain it to the first man whom you meet on the street’. This

clearness and ease of comprehension, here insisted on for a mathematical theory,

I should still more demand for a mathematical problem . . . [it] should be difficult in
order to entice us, yet not completely inaccessible, lest it mock at our efforts”. The

failure to solve a problem often depends on “our failure to recognize the more

general standpoint from which the problem before us appears only as a single link in

a chain of related problems”. Once the right level of generality is found, not only

does the problem show itself to be more accessible, but often the right methods

to solve problems related to it also appear. An unlimited faith in the capacity of

human reason led Hilbert to formulate a kind of “general law” for our thinking,

to establish a kind of axiom that it was possible to find a solution for any
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mathematical problem whatsoever. “In mathematics there is no ignorabimus”, he
stated optimistically – perhaps too optimistically – in defiance the notorious state-

ments by Emil Du Bois-Reymond.

Among the classic problems, Hilbert noted Johann Bernoulli’s brachistochrone

problem, which had led to the birth of the calculus of variations, and Fermat’s last

theorem, which gave rise to Kummer’s theory of ideal numbers and their general-

isations to all algebraic fields through the work of Dedekind and Kronecker. The

three body problem, which in recent times had led Poincaré to the discovery of

“fruitful methods and far-reaching principles”, was of an entirely different nature.

For Hilbert, as mathematical problems Fermat’s theorem and the three body prob-

lem were situated at “opposite poles”: “the former a free invention of pure reason,

belonging to the region of abstract number theory, the latter forced upon us by

astronomy and necessary to an understanding of the simplest fundamental phenom-

ena of nature”. Like the three body problem, Hilbert observed: “Surely the first and

oldest problems in every branch of mathematics spring from experience and are

suggested by the world of external phenomena”. This was the case for the operations

of counting or the classic problems of geometry, the duplication of the cube or the

quadrature of the circle. However, “in the further development of a branch of

mathematics, the human mind, encouraged by the success of its solutions, becomes

conscious of its independence. It evolves from itself alone, often without apprecia-

ble influence from without, by means of logical combination, generalization, spe-

cialization, by separating and collecting ideas in fortunate ways, new and fruitful

problems, and appears then itself as the real questioner”. Thus Hilbert explained the

origins of the problem of the distribution of prime numbers, Galois’s theory of

algebraic invariants, and the theories of Abelian and automorphic functions. In

short, “almost all the nicer questions of modern arithmetic and function theory”.

He goes on, “In the meantime, while the creative power of pure reason is at

work, the outer world again comes into play, forces upon us new questions from

actual experience, opens up new branches of mathematics, and while we seek to

conquer these new fields of knowledge for the realm of pure thought, we often find

the answers to old unsolved problems and thus at the same time advance most

successfully the old theories. And it seems to me that the numerous and surprising

analogies and that apparently prearranged harmony which the mathematician so

often perceives in the questions, methods and ideas of the various branches of his

science, have their origin in this ever-recurring interplay between thought and

experience”.

Thus, in the continual interaction between unfettered creations of the mind and

knowledge of the phenomena of the external world, Hilbert finds the fundamental

dynamic of mathematical development, along with the driving force behind the

process of the mathematisation of the other sciences. The rigour of the proofs, a

particular characteristic of mathematics – considered by Hilbert to be “a universal

philosophical necessity of our understanding” – was also required in the treatment

of the most delicate problems of analysis and those questions that originate in the

external world, in the world of empirical experience.
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The text of Hilbert’s Paris talk belies the caricature often used to portray

the Hilbertian concept of mathematics, reducing it to a purely formal game with

meaningless symbols. To be sure, “to new concepts correspond, necessarily, new

signs”, observed Hilbert. But these signs are chosen so as to recall the phenomena

that generated them. Thus, for example, “the arithmetical symbols are written

diagrams and the geometrical figures are graphic formulas; and no mathematician

could spare these graphic formulas”. On the other hand, he continued, “we do not

habitually follow the chain of reasoning back to the axioms in arithmetical, any

more than in geometrical discussions”. When addressing a new problem, “we

apply, especially in first attacking a problem, a rapid, unconscious, not absolutely

sure combination, trusting to a certain arithmetical feeling for the behaviour of the

arithmetical symbols, which we could dispense with as little in arithmetic as with

the geometrical imagination in geometry”. He had put this vision to the test in his

own research on the foundations of geometry, the subject of a course he taught and

of the volume entitled Grundlagen der Geometrie, which appeared in 1899 as a

Festschrift on the occasion of the inauguration of the monument to Gauss and

Weber in Göttingen.

In the introductory explanation to the Grundlagen, Hilbert declared that he

considered “three different systems of objects”, called respectively points, lines

and planes. He added that “the exact and complete description” of the relations

between the three were entrusted to the axioms. The logician Gottlob Frege

objected that in so doing, the axioms were given the task usually assigned to the

definitions. Frege was convinced that the axioms of geometry were true statements,

the knowledge of which “grows out of a cognitive source that is of an extra-logical

nature, which we might call spatial intuition”.

For Hilbert, in contrast, the axioms were not statements that were true in

themselves. The criteria for establishing the truth and existence of mathematical

objects was entrusted to the proof of the non-contradictoriness of the axioms (and of

their consequences). He retorted to Frege’s criticism, saying, “All theories are only

a frame, a layout of concepts that are together with their necessary mutual relation-

ships”, which can be applied to “infinite systems of fundamental entities”. These

fundamental entities can be thought of arbitrarily. In order to obtain all of the

propositions of the theory it was sufficient that the relationships between the

fundamental entities be established by the axioms. The axiomatic method shed

light on the deductive weave, the way in which axioms and theories depend on each

other. In Hilbert’s eyes, this was its essential value. Of course, if we want to apply a

theory to the world of phenomena, then “a certain amount of good intention and

certain sense of measure” was necessary. Instead, applying an axiomatic theory to

phenomena other than those for which the theory was ideated required “an enor-

mous amount of bad intention”.

The problems proposed by Hilbert touched on a variety of questions: in the first

place, the foundations of analysis (problems 1 and 2), geometry (problems 3, 4 and 5),

and the axiomatisation of physical theories (problem 6). The first problem

concerned the nature of continuum: “every infinite system of real numbers, that

is, every infinite set of numbers (or points) is either equivalent to the set of all
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natural numbers 1, 2, 3, . . . or equivalent to the set of all real numbers, and as a

consequence, of the continuum”. From the proof would have followed the proof of

Cantor’s continuum hypothesis, according to which ‘the number of real numbers is

the level of infinity immediately above countable infinity’. According to Hilbert,

the “key to the proof” might perhaps lie in Cantor’s statement that every infinite set

could be well ordered. The set of real numbers, in natural order, was certainly not a

well-ordered set. However, Hilbert asked, was it possible to find for that set a

different order such that each of its subsets had a prime element? In other words,

was it possible to find a well-ordered sequence for the continuum?

Before any mathematician could respond to that question, Bertrand Russell

pointed out an antinomy that posed a serious threat to the foundations of the entire

construction of Cantor’s set theory. The question posed by Hilbert thus came to be

entwined with the more general question of the basic principles of Cantor’s set

theory and gave rise to an enormous mass of studies both logical and foundational,

in which many of Hilbert’s students and collaborators were involved, beginning

with Ernst Zermelo who, in 1904, provided a first axiomatisation of set theory and

shed light on the role of the so-called “axiom of choice”. With particular regard to

Cantor’s continuum hypothesis, a first significant result was obtained by Kurt Gödel

who, in 1938, proved that the (generalised) continuum hypothesis could not be

disproved from the axiom of choice and other axioms of set theory. However, it was

not until 1963 that Paul Cohen demonstrated that it couldn’t be proven by those

axioms either.

The second problem proposed by Hilbert was intimately related to the first. In

the Grundlagen he had shown that the non-contradictoriness of the axioms of

Euclidean geometry was related to the axioms of the arithmetic of real numbers,

in the sense that, as he explained, “every contradiction in the deductions of the

axioms of geometry must be traced back to arithmetic” of real numbers. Thus, he

continued, “this makes a direct method for the proof of non-contradictoriness of the

axioms of arithmetic necessary”, essentially the axioms for the usual rules of

calculation with the addition of an axiom of continuity (that is, the axiom of
Archimedes and a new completeness axiom stated by Hilbert in a then recent

work which established the impossibility of an Archimedean extension of the line

of real numbers and modified an essential point of the system of axioms established

in the first edition of the Grundlagen).
Hilbert attributed a decisive role to the proof of non-contradictoriness as a

criterion for the existence of mathematical objects. A few months earlier, in reply

to Frege’s criticism of the axiomatic formulation of the Grundlagen, he had written,
“If arbitrarily established axioms are not contradictory in any of their consequences,

then they are true, and then defined entities exist by means of those axioms.

I consider this to be the criterion for truth and existence”. He now declared publicly,

“If contradictory attributes are assigned to a concept, I say that mathematically that

concept does not exist”. Hilbert had amazed the world with proofs of an existential

nature some 10 years earlier (the 1888 basis theorem and the 1890 theorem of
zeroes). The hoped-for proof of the non-contradictoriness of the axioms of

Hilbert’s Problems 5



arithmetic would have proven the existence of both the real numbers and the

continuum. Because the consistency of geometry and of analysis could be traced

back to that of arithmetic, the direct proof of the non-contradictoriness of the

axioms of arithmetic would have guaranteed the consistency of the whole of

mathematics. The second problem was in fact a statement of this ambitious

program, which Hilbert and his students would pursue through the 1920s, before

Gödel’s incompleteness theorem of 1931 proved that the task was an impossible

one in terms of how it had been formulated by Hilbert, which led to its being

drastically revised.

The next three problems were inspired by Hilbert’s own research on the founda-

tions of geometry. In the Grundlagen Hilbert had shown that in plane geometry the

axioms of congruence (without resorting to the axiom of continuity) were sufficient

to prove the congruence of straight line figures. Gauss had already noted that,

instead, the proof of theorems of solid geometry such as that of Euclid – prisms

of equal height and triangular bases are proportional to their bases – depends on the

method of exhaustion, that is, in the final analysis, to an axiom of continuity. In

problem three, Hilbert asked to be shown “two tetrahedra of equal bases and equal

heights that cannot be subdivided into congruent tetrahedra”. The proof was

produced 2 years later by Hilbert’s student Max Dehn (1878–1952).

Another of Hilbert’s students, Georg Hamel (1877–1954) had successfully

taken on the fourth problem. Hilbert had drawn attention to the geometry devel-

oped by Minkowski in the 1896 Geometrie der Zahlen, in which all of the axioms

of ordinary geometry were valid (including the axiom of parallels) with the

exception of the axiom of congruence of triangles, which was replaced by the

axiom of triangular inequality. Hilbert himself, in 1895, had studied a geometry in

which all of the axioms of Minkowski’s geometry were valid, except the axiom of

parallels. Convinced of their importance for number theory, theory of surfaces and

the calculus of variations, Hilbert now called for a systematic study of the

geometries in which all of the axioms of Euclidean geometry were valid except

for the axiom of triangular congruence (axiom III, 5 of Grundlagen), which was

substituted by triangular inequality, taken as a particular axiom. Hamel proved that

the only possible geometries were elliptic (in the case of an integer plane) or

hyperbolic such as the kind studied by Minkowski and Hilbert. The problem was

in any case formulated by Hilbert in terms that were quite vague, and in the

decades that followed this gave rise to numerous studies on particular classes of

geometries.

In his work on continuous transformation groups, Lie had established a system

of axioms for geometry and resolved the problem of how to determine all the

n-dimensional manifolds that admit a group of rigid motions, in other words, the

problem posed by Riemann and Helmholtz as to the characterisation of the rigid

motions of bodies. Lie had assumed that the transformations of his groups would be

differentiable functions. In 1898 Klein had expressed doubts as to whether this

hypothesis was necessary, and now, in problem five, Hilbert took up the question

once more, asking himself if, as far as the axioms of geometry were concerned, the
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hypothesis of differentiability was inevitable or if instead this was a consequence of

other geometric axioms.

More than an actual problem, Hilbert’s sixth problem provided a guideline for

research. Using as a model the studies on the principles of arithmetic and geometry,

Hilbert invited mathematicians “to treat in the same manner, by means of axioms,

those physical sciences in which mathematics plays an important part”. What he

had in mind was the kind of probabilistic concepts introduced by Clausius and

Boltzmann in the kinetic theory of gas, and Mach’s and Boltzmann’s research on

the foundations of mechanics. Starting at the beginning of the twentieth century,

first with Minkowski and then, after his friend’s premature death in 1909, with his

assistants, Hilbert studied problems of theoretical physics with growing interest for

a couple of decades. He taught courses and gave lectures on particular topics; he

published important works, such as his 1915 paper, which appeared just a few

weeks after that of Einstein, in which he obtained the equations for general relativ-

ity and exhorted his students and collaborators to engage in this kind of research.

Also situated in that field was Emmy Nöther’s 1918 theorem – regarding the

calculus of variations – of fundamental importance in modern mathematical

physics, which put the number of parameters of a subgroup of invariants for

lagrangian systems in relation to number of laws of conservation that could be

derived for those systems. With Richard Courant he wrote the treatiseMatematische
Methoden der Physik (1924), which became a classic. Books by his students,

such as Gruppentheorie und Quantenmechanik (1928) by Hermann Weyl, and

Mathematische Gundlagen der Quantenmechanik (1932) by John von Neumann

are considered to be among the most significant results produced in the spirit of

Hilbert’s sixth problem. However, as Weyl himself admitted, in spite of the great

results achieved, “Hilbert’s plans in physics never matured”.

As far as probability theory is concerned, the axiomatisation hoped for by

Hilbert took shape in the Russian school of Bernstein and Kolmogorov, in the

context of modern measure theory.

After the problems concerning foundations, Hilbert passed to a consideration of

specific problems, beginning with number theory, the discipline around which his

research in recent decades had focussed, culminating in the publication of the

Zahlbericht (1897). This is reflected above all in problem seven, which we men-

tioned earlier and other problems correlated to it (which were solved in the 1930s by

Gelfond), and in problem eight regarding the distribution of the prime numbers and

the Riemann hypothesis, which is perhaps the most important conjecture still open

in mathematics today.

These two problems are among those that Hilbert presented during his talk in

Paris. The others he mentioned were the first, second, sixth, thirteenth, sixteenth,

nineteenth and twenty-second. With the complex problems comprised between the

ninth and the eighteenth, he passed from number theory to problems of algebra or

algebraic geometry. The tenth problem, for example, asked for a procedure that

would be able to determine by means of a finite number of operations whether or

not a given Diophantine equation with n unknowns has integer solutions. Instead,
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the 13th asked for a proof showing that the generalised seventh-degree equation can

be solved with functions of only two parameters. Establishing rigorous foundations

for Schubert’s enumerative calculus in geometry was the aim of the 15th problem,

while problem 16 regarded the topology of algebraic curves and surfaces. The next

two problems were also geometric in nature. Extending a theorem established in the

final chapter of the Grundlagen, which was dedicated to the possibility of construc-
tions with compass and straightedge, problem 17 asked if for any definite form (that

is, a rational integer function of n variables that takes only non-negative values over
the reals) could be expressed as a quotient of the sum of squares. Problem 18 asked

for an extension of Poincaré’s (and Klein’s) results regarding Lobachevsky’s plane

(and space) groups of motions to n-dimensional Euclidean space. To this was

correlated a question that was “important to number theory and perhaps sometimes

useful to physics and chemistry: How can one arrange most densely in space an

infinite number of equal solids of given form, e.g., spheres with given radii or

regular tetrahedra with given edges. . .?”
In the final group of problems, Hilbert took topics in analysis into consideration.

In the 19th problem, he questioned “whether all solutions of regular variation

problems must necessarily be analytic functions”, while the 20th problem regarded

whether or not there exist solutions to partial differential equations with certain

boundary conditions.

In the 21st problem, inspired by Riemann’s and Fuchs’s results, Hilbert asked for

proof of the existence of a linear differential equation with given singular points and

monodromic group. The next to last problem regards an extension of Poincaré’s

uniformisation in the theory of automorphic functions. Last but not least, with the

23rd problem Hilbert calls for “further development of the calculus of variations”.

Looking at the 23 problems as a whole, it is possible to see that the original

studies outline the scheme of development for some of the most important branches

of twentieth-century mathematics. While some of the problems were stated

clearly and precisely, in other cases Hilbert instead urged young mathematicians

to create new theories or research programs. From this point of view, the more than

60 doctoral theses written under his direction between 1898 and 1915 are revealing.

Eleven of his students wrote a thesis on questions of number theory, and three of

their topics were related to the 12th problem – Hilbert was inspired by Kronecker’s

Jugendtraum, or youthful dream – which regarded the development of the parallels

between fields of algebraic numbers and fields of algebraic functions. Ten of the

theses dealt with the foundations of geometry and problems of algebraic geometry

in strict correlation to the16th problem. However, almost half of his doctoral

students deal with the topics in analysis that Hilbert was predominantly interested

in up to the First World War, above all the calculus of variations (in particular with

Dirichlet’s principle) and the theory of integral equations. In the 1920s, five of the

nine theses overseen by Hilbert dealt with the foundations of mathematics and proof

theory. These concerned the development of ideas outlined in the second problem,

to which Hilbert dedicated the final phase of his work, tying his name to the so-

called formalist program of the foundations of mathematics.
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Hilbert’s 23 Problems

At the second International Congress of Mathematicians, which took place in Paris

in 1900, David Hilbert presented 23 problems that were unsolved at the time in

various areas of mathematics. In his opinion, these were the problems to which the

attention of the researchers of the new century would be drawn.

1. Cantor’s problem of the cardinal number of the continuum (the continuum
hypothesis): Is there set whose size is strictly between that of the integers and

that of the continuum? In 1938 Gödel proved that the continuum hypothesis is

consistent with Zermelo–Fraenkel set theory; in 1963 Cohen proved that its

negation is as well.

2. The compatibility of the arithmetical axioms: Gödel showed in 1931 that no

proof of its consistency can be carried out within a system as rich as arithmetic.

3. The equality of two volumes of two tetrahedra of equal bases and equal
altitudes: Max Dehn found a counterexample in 1902.

4. Problem of the straight line as the shortest distance between two points:
Construct all the metric geometries in which the lines are geodesics. Solved

in 1901 by Georg Hamel.

5. Lie’s concept of a continuous group of transformations without the assumption
of the differentiability of the functions defining the group: Is it possible to avoid
the hypothesis that the transformations are differentiable to introduce the

concept of continuous transformation groups according to Lie? Solved for

particular transformation groups by John von Neumann in 1933 and, in the

general case, by Andrew Gleason and independently by Deane Montgomery

and Leo Zippin in 1952.

6. Mathematical treatment of the axioms of physics: In particular, the axiomatisa-

tion of those areas, such as mechanics and probability theory, in which mathe-

matics is essential. Results were produced by Caratheodory (1909) in

thermodynamics; von Mises (1919) and Kolmogorov (1933) in probability

theory; John von Neumann (1930) in quantum theory; Georg Hamel (1927)

in mechanics.

7. Irrationality and transcendence of certain numbers: In particular, if ab is

transcendent when base a is algebraic and exponent b is irrational. An affirma-

tive answer was given by Gelfond in 1934 and (independently) by Schneider in

1935.

8. Problems of prime numbers: In particular Riemann’s hypothesis on the zeroes

of Riemann’s “zeta function” relative to the distribution of primes.

9. Proof of the most general law of reciprocity in any number field: Resolved for a
special case by Teiji Takagi in 1920, and more generally by Emil Artin in 1927.

10. Determination of the solvability of a Diophantine equation: Is there a univeral
algorithm for their solution? A negative answer was provided by Yuri

Matiyasevich in 1970.

11. Quadratic forms with any algebraic numerical coefficients: Solved by Helmut

Hasse in 1923.
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12. Extension of Kroneker’s theorem on abelian fields to any algebraic realm of
rationality: Solved by Shimura and Taniyama in 1959.

13. Impossibility of the solution of the general equation of the seventh degree by
means of functions of only two arguments: Generalises the impossibility of

solving a fifth-degree equation by roots. Answered in the negative by

Kolmogorov and Arnol’d in 1961: a solution is possible.

14. Proof of the finiteness of certain complete systems of functions: A first counter-

example was provided by Nagata in 1958.

15. Rigorous foundation of Schubert’s enumerative calculus: precisely determine

the limits of the validity of the numbers that Hermann Schubert had determined

on the basis of the principle of special position, by means of his enumerative

calculus. Solved.

16. Problem of the topology of algebraic curves and surfaces: In particular,

developing Harnack’s methods and Poincaré’s theory of limited cycles.

17. Expression of definite forms by squares: In 1927 Emil Artin proved that a

positive definite rational function is the sum of squares.

18. Building up of space from congruent polyhedra: Solved (but Penrose found

non-periodic solutions).

19. Are the solutions of regular problems in the calculus of variations always
necessarily analytic? Partially solved in 1902 by G. Lötkeyeyer and more

generally in 1904 by S. Bernstein. General solution by De Giorgi in 1955 and

by J.F. Nash Jr. independently some months later.

20. The general problem of boundary values: do variational problems with partic-

ular boundary conditions have solutions? Resolved.

21. Proof of the existence of linear differential equations having a prescribed
monodromic group: Partially resolved by Hilbert in 1905, and by Deligne for

other special cases in 1970. A negative solution was found by Andrej Bolibruch

in 1989.

22. Uniformization of analytic relations by means of automorphic functions:
Solved in 1907 by Paul Koebe.

23. Further development of the methods of the calculus of variations.
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The Way We Were

The Protagonists of the “Italian Spring” in the First
Decades of the Twentieth Century

Giorgio Bolondi, Angelo Guerraggio, and Pietro Nastasi

After the trial run in Z€urich (1897), the International congresses of mathematicians
officially began with Paris (1900) and Heidelberg (1904). The third was held in

Rome (1908). This order was not random, nor was it dictated only by contingencies.

The fact is, at the beginning of the twentieth century Italian mathematics was

considered the third world “power”, immediately after the great and traditional

French and German schools. The same classification holds, almost completely

unchanged, at the beginning of the 1920s. American mathematician G. D. Birkhoff,

particularly attentive to the situations of European research centres (and interested

in consolidating collaborations with them for the definitive launch of the mathe-

matics of the United States) does not hesitate to place Rome immediately after

Paris, even before Göttingen.

But who was in Rome in those years? Who were the mathematicians who made

it possible for Italian mathematics to compete with the more famous schools of

Europe (and therefore, for the moment, of the world)?

After the Italian Unification and the successive transfer of the capital to Rome,

the political leaders had made it part of their policy to bring the most vivacious

aspects of culture to the city. This also included the scientific culture. The first to

arrive among the mathematicians referred to by Birkhoff was Guido Castelnuovo,

who transferred to Rome in 1891. In truth a little more than 30 years would have to

pass before the Italian school of algebraic geometry would regroup in the capital,

but in the end – though with a bit more effort and ill will that foreseen – it made it.

In 1923, Federigo Enriques and Francesco Severi came to Rome as well. Vito

Volterra arrived to the capital from Turin in 1900 and was immediately charged

with giving the inaugural address at the beginning of the academic year. The choice

of argument was not a given: Volterra chose to speak “On the attempts to apply
mathematics to the biological and social sciences”. Tullio Levi-Civita would arrive
in Rome shortly after Volterra, in 1909, but for the time being he didn’t want to

leave the tranquillity of Padua. He transferred only after World War I (1918), after

he had married, and after a first period spent in Rome, following the defeat at

Caporetto.
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Great mathematicians all – Castelnuovo, Enriques, Severi, Volterra, Levi-Civita –

but as we shall see, with something extra.

The most spectacular phase of the development of the Italian school of algebraic

geometry is identified with Castelnuovo, Enriques and Severi in the last decade of

the nineteenth century and the first two of the twentieth. They are the ones who

ensured for Italian mathematics the pre-eminence that A. Brill publicly recognized

in the preface to Severi’s Vorlesungen €uber algebraische Geometrie (1921),

inviting young German scholars to take note in order to accept the challenge and

return to the top of research. Nor was other international recognition lacking. The

Bordin Prize of the Paris Academy of Sciences was awarded in 1907 to Enriques

and Severi (and in 1909 to G. Bagnera and M. de Franchis), for research in what was

to become “Italian geometry”. In 1908, a commission made up of M. Nöther,

E. Picard and C. Segre had awarded the Guccia Medal to Severi. The publication

of a long article by Castelnuovo and Enriques in the Encyklop€adie der Mathema-
tischen Wissenschaften of 1914 was the crown of all the research undertaken by the
school up to that moment, an official recognition of its significance on the part of

the international mathematical community.

The Italian school deserves credit for the definitive re-elaboration of that theory

of curves that had been developed above all by German mathematicians, the

creation of the theory of surfaces and their complete classification, and the begin-

ning of an analogous construction for algebraic manifolds.
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In particular, the theory of surfaces can be considered the point of pride of the

Italian school. The first results came from Castelnuovo, beginning in 1891, with the

example of a non-ruled irregular algebraic surface, the extension to surfaces of the

Riemann–Roch theorem relative to curves and the determination of criteria of

rationality. This is where the collaboration with Enriques comes in. The two

personalities appear complementary: the volcanic Enriques, who proceeds with

extraordinary intuitive power, already almost certain of the outcome which will

be reached by successive approximations, less interested in proofs and rigor, an

impatient and often distracted reader of the articles of his colleagues, is flanked by

Castelnuovo, perhaps less brilliant but who takes it upon himself to state precisely

the ingenious intuitions of his brother-in-law and to channel them more correctly

and productively. Over the course of 20 years, their collaboration would give birth

to a new way of framing the theory of algebraic surfaces that would lead to a

sufficiently simple classification, eliminating all special cases. The study of an

algebraic surface is reduced to that of a family of curves lying on the surface.

Among these, particular attention was devoted to linear systems and continuous

nonlinear systems (which exist only on irregular surfaces). In 1914, Enriques set out

results that were almost definitive as far as classification is concerned. The surfaces

are subdivided into birationally equivalent classes as a function of values assumed

from “plurigenera” and from “numeric genus”; in fact, the value of P12 alone is

sufficient to divide all surfaces into four classes: “the chief problem of the theory of

algebraic surfaces is their classification, that is, the effective identification of

families of surfaces that are distinguished by birational transformations, each

family being characterized by a group of invariant internal characteristics and

containing within itself a continuous infinity of classes depending on a certain

number of parameters (modules)”.

After the war, Castelnuovo devoted himself almost exclusively to probability. In

the meantime, Enriques’s “star” was equalled – and surpassed, at least at the level

of politics – by that of Severi, who also recuperates transcendent methods, with a

more marked attention for topological and functional aspects. This is how – in

1928, by then a “grand old man” – Castelnuovo reconstructed the procedures of the

Italian school (which, not long after, would be accused of a lack of rigor and

excessive condescendence to merely intuitive comprehension):

Perhaps it is worthwhile to mention what method of work we followed at the time to retrace

our steps out of the darkness in which we found ourselves. We had constructed, in an

abstract sense of course, a great number of models of surfaces of our space or of higher

spaces; and we had arranged these models, if you will, into display cases. One contained the

regular surfaces for which everything proceeded as in the best of all possible worlds; the

analogy made it possible to transfer to them the most salient properties of the plane curves.

But when we tried to verify these properties on the surfaces in the other cases, the irregular

ones, the troubles began, and we found exceptions of every kind. In the end the assiduous

study of our models had led us to predict some of the properties that had to exist, with

appropriate modifications, for the surfaces in both cases; we then put these properties to the

test with the construction of new models. If they passed the test, then as the last phase we

looked for the logical justification. With this procedure, which is similar to that followed in
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the experimental sciences, we were able to establish some traits that distinguished the two

families of surfaces.

During the same period, the Italian school of analysis is less monolithic. Here

were Dini, Ascoli, Arzelà, Peano and – with the beginning of the new century –

Tonelli, Fubini, Vitali, E. E. Levi . . . all “great” mathematicians, great names still

today known to researchers the world over (and to students as well, thanks to some

special results).

Vito Volterra (1860–1940) earned his degree in 1882 and immediately published

a paper with the famous example, in the context of the so-called “fundamental

theorems of calculus”, of a function derivable in an interval whose derivative is

limited but not integrable (according to Riemann). He can thus be considered one of

the “founding fathers” of functional analysis, with the concept of line function – to

indicate a functional (that is, a real number that depends on all values assigned by a

function y(x) defined for a given interval or by the configuration of the curve) – and

the institution of the relative calculus, up to the development with a Taylor

polynomial. He would remind those – Hadamard, and above all Fréchet – who

criticized him for a too specific definition of the derivative of a functional (with

respect to the subsequent concept of “differential according to Fréchet”) that he was

not so much concerned with finding the greatest generalization as he was with

finding the generalization most adequate for the problem that he was dealing with, a

tenet that Enriques emphatically declared had to be followed at all levels of

teaching.

Integral equations are the other significant contribution of the beginning of the

century, but Volterra was also a mathematical physicist; indeed he would be elected

president of the Italian Society for Physics. Actually it is difficult to define Volterra

as appertaining strictly to one discipline or another. As a mathematical physicist his

principal research regarded the propagation of light in birefringent media, the

movements of the earth’s poles (today called “the theory of dislocations”, but

called distortions by Volterra), and systems with memory, those which conserve

a memory of their history and of which their future state depends on their present as

well as past states.

And how can we forget – we’ve now passed into the 1920s – the pioneering

studies in population dynamics? One of these began when Volterra’s son-in-law –

zoologist Umberto D’Ancona – asked him for a theoretical explanation of a fact that

stood out in the statistics regarding fishing in Italian ports of the North Adriatic Sea

in the years 1905–1923: that of the total number of fish caught in the years

1915–1918 and the years immediately after, the percentage of large predatory fish

caught increased significantly. The exogenous explanation – mainly based on the

fact that there had been less fishing during the war – was not able to explain

convincingly the different behaviour of prey and predators. Not knowing the con-

tributions of Alfred Lotka, Volterra began studying the problem posed by his son-in-

law at the end of 1925. With these words he opened his Leçons sur la lutte pour la
vie: “I began my research on this topic at the end of 1925, after having spoken with

Mr D’Ancona, who asked me if it was possible to find a mathematical way to study
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the variations in the composition of biological associations”. The model analyzed

led him to write the system of first-order ordinary differential equations:

x0 ¼ ax� bxy
y0 ¼ �cyþ dxy

�
;

where x ¼ x(t) and y ¼ y(t) represent respectively the evolution over time of the

populations of the prey and the predators, and a, b, c, d are positive constants. The

model is constructed on the hypothesis, first of all, that an isolated evolution of two

species (in terms of the constant percentage rates of their growth x0 x= and y0 y= ) to

which is then added the behavioural hypothesis based on the principle of encoun-

ters, according to which the effects of predation depend on possible encounters xy in
the unit of time. The solution of the system (with the appropriate initial conditions)

is set out in explicit form by means of an ingenious method that uses a system of

reference to four axes:

ya � e�by ¼ kx�c � edx:

From this solution Volterra derives his three laws that regulate the biological

fluctuation in the model: the law of the periodic cycle (which proves the endoge-

nous nature of the fluctuations), the law of conservation of averages, and finally,

that of their perturbations, which answers the initial problem. A perturbation due to

external causes – for example, the activity of fishing or a change in its intensity –

can lead to new average values, and the comparison with the previous values

justifies the experimental observation by which a decrease in the activity of fishing

in some way favours the smaller species.

Tullio Levi-Civita (1873–1941) was younger than Volterra, but only by 13 years.

Those few years, however, were sufficient to project him “wholly” into the twentieth

century. Italian mathematical physics is identified with Levi-Civita, above all during

the period between the two World Wars. Levi-Civita would become one of

the Italian mathematician’s most well-known in international circles because of

both the importance of his scientific contributions and his extraordinary human

and professional qualities.

The son of a civil lawyer who fought with Garibaldi in his youth and later became

a politician and senator, by the age of 23 Levi-Civita was already a professor of

rational mechanics, and at 25 was given a chair. He taught first in Padua (where he

would marry one of his students, Libera Trevisani) and then, from 1918, in Rome.

He would become a member of all the Italian academies as well as of the leading

academies abroad. Among his principal honours are the Gold Medal of the Acca-

demia dei XL (today the National Academy of Sciences) and the “Royal Prize” of

the Accademia dei Lincei awarded in 1907 (together with Federigo Enriques) for his

writings as a whole. He was also awarded the Sylvester Medal in London and the

Gold Medal of the University of Lima, as well as honorary doctorate degrees from

the universities of Amsterdam, Cambridge (USA), La Plata, Lima, Paris, Toulouse

and Aachen. In the 1920s and 1930s he was a true ambassador for Italian science.
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The dominant figure – along with Volterra – of an entire epoch, he inspired research

in every field of rational mechanics and mathematical physics, and was, in the true

sense of the word, the Maestro of a great number of students.

His early works brought him to the attention of the scientific world for the

solution to the problem of the transformation of the equations of dynamics, which

led to the geodesic representation of Riemannian manifolds. Celestial mechanics

owes to him the canonical regularization of the differential equations of the three

body problem, in proximity to a binary shock. In hydrodynamics – an area of

research that would occupy him throughout his scientific life – it is sufficient to

mention two groups of work that are particularly important. The first regards the

theory of drag, begun by Helmholtz to explain the serious contradictions raised by

the classic theory of motion of a perfect liquid in which a solid is emerged. The

second group is relative to the research of irrotational periodic waves of finite

amplitude which propagate without changing form. Stokes and Lord Rayleigh had

already grappled with the problemwithout success (Lord Rayleigh had even come to

doubt the existence of this kind of wave); Levi-Civita was instead able to resolve it

completely and once again his works on the subject gave rise to numerous

other studies (by Struik, Jacotin-Dubreil, Weinstein and others). In mathematical

physics we must content ourselves with citing a paper of 1897, in which Levi-

Civita deduces Maxwell’s equations of the laws of Coulomb, Biot-Savart and

F. Neumann, simply substituting retarded potentials in place of ordinary potentials.
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These works would already have been sufficient to assure Levi-Civita an impor-

tant place among Italian mathematicians. But what allowed him to go beyond the

restricted circle of specialists was the role he played in the development of absolute

differential calculus, which provided numerous applications of various kinds. Set

out by Gregorio Ricci-Curbastro starting in 1884, Levi-Civita’s professor in Padua,

tensor calculus is essentially an analytic theory of differential quadratic forms and

their invariants. Levi-Civita was one of the first to understand and show that the

new calculus was a powerful instrument for discovery. At the request of Felix

Klein, he drafted the celebrated paper published in Mathematische Annalen, enti-
tled “Méthodes de calcul différentiel absolu et leurs applications”, which made its

importance evident. A few years later, Albert Einstein would adopt tensor calculus

as the most appropriate instrument for solving the mathematical problems posed by

the theory of general relativity.

Immediately after, it was again Levi-Civita who made an ulterior refinement to

tensor calculus, with the discovery (in 1917) of the notion of parallel transport:

. . .making the fundamental notions of absolute differential calculus has permitted a theory –

up until that time purely analytical – entrance into the realm of geometry. This had profound

repercussions in the development of geometry itself, to which Levi-Civita’s discovery gave

new impetus (comparable to that of 50 years ago with Klein’s “Erlangen Programme”).

Levi-Civita’s paper marks the beginning of a new general theory of connections

(elaborated by H. Weyl, J. A. Schouten, O. Veblen, L. Eisenhart and É. Cartan),

capable of providing physics with new geometric schemes.

In short, another great mathematician – internationally known – like Castelnuovo,

Enriques, Severi and Volterra. But the springtime of Italian mathematics is some-

thing more. Something that should be contained – by definition – in the word

mathematics but which in fact identifies a minor trend, at least looking at the cultural

tradition (recent and less recent) of Italy.

Let’s go back to Enriques. The decisive turn about in his intellectual and human

life occurred in 1906 when he published Problemi della Scienza, a fundamental

work still quite readable today. A book perhaps a bit “naı̈ve” from the philosophical

point of view, it was nevertheless vibrant, and was immediately translated into

English, French and German. Enriques (who was 35-years old at the time) had an

extremely ambitious project: he tried to construct a general theory of knowledge.

Knowledge of the truth, of objective reality, which could be reached above all

thanks to scientific research. Essentially, this is reasoning about scientific knowl-

edge. The book immediately became a topic of debate, and enjoyed a wide

distribution thanks to the rigor of the arguments, the clarity of the writing, and

the variety and vastness of the themes dealt with. During the same years, Benedetto

Croce wrote his Logica, a most rigorous work at the level of theory, which

explicitly negated the value of science on the plane of truth: the value of science

is strictly instrumental. Enriques and Severi cannot agree with that; they wrote

some political articles about Croce’s book and so were castigated in a sarcastic

paper entitled “Se parlassero di matematica. . .” (“If they want to talk about

mathematics. . .”).
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Aside from the polemics, one fact is evident: Enriques’s scientific and cultural

project goes beyond mathematics. In the effort to realize it, he moved on all fronts:

he participated in the association “Mathesis”, he became president of the Italian

Philosophical Society, he founded the journal Scientia (which would enjoy the

collaboration of figures such as Ostwald, Mach, Bergson, Poincaré, Tannery and

Pareto), he concerned himself in the National Italian Federation of Teachers, he

intervened in the debate concerning the reform of middle schools, he published

textbooks for schools in the guise of instruments for a new form of education, he

spoke on “the philosophical renaissance of contemporary science” and on “Hegel’s

metaphysics” considered from a scientific point of view, etc. Even the organization

in Bologna of the “International Congress of Philosophy” of 1911 was a very

natural fact for Enriques: philosophy is a summit which can be reached (and must

be reached) by many routes and in primis via scientific knowledge. Philosophy

without science is empty, as Einstein more or less said some years later. It is

possible then to imagine a faculty of philosophy as the crown of all university

studies, with the exception of those that are decidedly professional, such as medical

or engineering schools.

The Italian neo-idealists also considered philosophy as the apex of human

activity, but it is a discipline for professionals, not for dilettantes such as scientists.

The debate between Enriques and Severi on the one hand and Croce and Gentile on

the other is not therefore merely academic. It is a struggle between different cultural

projects that refer to decidedly different civil projects (which school, which univer-

sity, which education for young people). Enriques occupied spaces that were

academic, cultural and institutional. He looked for channels of communication

between the world of scientific research and that of the “other” culture, civil society,
and his effort inevitably clashed with the project of Italian neo-idealism. The

cultural history of Italy and the scholastic experience of all Italians still suffers

from his defeat.

Volterra’s personality and planning skills are different, but there’s no lack of

analogies. Volterra never toys with philosophy. Above all he was a man of power,

who began his public career with the nomination to senator in 1905. Even his

project – that of an outstanding mathematician – goes beyond mathematics. He

sees as vital to the mathematical and scientific world the need to project himself

beyond his own limits, in order to “export” his own reasoning. The interest is

reciprocal: mathematics needs such projections for its development; the other

cultures, and even society and the nation’s government, need the originality and

rigor of the mathematicians. The founding in 1907 of the “Società Italiana per il

Progresso delle Scienze” (SIPS, Italian Society for the Progress of the Sciences), of

which Volterra is also the first president, likewise pursues a similar dual objective.

The internal one regards the scientific community, which must become conscious

of the intellectual role proper to it. The specialization of studies is a necessity, but

one that should not, however, lead to complete breaks and isolation within closed

worlds propelled by a merely technical dimension. This awareness is the necessary

premise for putting strong pressure on political powers to overcome their immo-

bility, recognize the social usefulness of science and understand how to find the
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right collocation for the scientific world. This is the second objective of the SIPS:

to participate in the development of the modern nation, one that recognizes the

social function of science, as was already the case in more evolved European

countries.

The experience of World War I reinforced Volterra’s project. From the experi-

ence of the war and its outcomes came the idea of a National Centre for Research

(CNR) and the Italian Mathematical Union (UMI) to coordinate and direct research

and facilitate its use for the nation’s progress, including economic progress.

Volterra was also the first president of the CNR (in the same years in which he

was also president of the “Accademia dei Lincei”). Then Fascism arrived, and

Volterra paid for his opposition as an “old” liberal and his support of Croce’s 1925

“Manifesto of the Anti-Fascist Intellectuals” by not being reconfirmed as president

of the CNR. He was succeeded by Guglielmo Marconi.

Fascism swept away the liberal Italy of Giolitti. It also brought an end to

the springtime of Italian mathematics: it is as if the end of the war brought with it

the awakening of mathematics from a long, passionate dream and a return to

adulthood (?) and sober-minded dedication to its theorems.

Of our protagonists, there are those – like Enriques – who carried on as a

mathematician, philosopher, and historian of science, even accepting Gentile’s

invitation to collaborate on the Enciclopedia Treccani, one of the great cultural

initiatives of the Fascist regime.

There are those – like Severi – who officially supported Fascism, and emphati-

cally so. At the beginning a Socialist in Padua, and still an anti-Fascist in Rome at

the period of Matteotti’s assassination and the Croce manifesto, Severi made the

“great leap” on the occasion of the founding of the “Accademia d’Italia”. It was

Severi – not Enriques, the expected favourite – who would be the only mathemati-

cian to have the honour of bearing the title “Italian academic” (and the accompany-

ing stipend). It was Severi who was one of the great “prompters” of the pledge of

allegiance to Fascism in 1931, with a dual aim of ending the disagreements between

Fascist and anti-Fascist intellectuals, putting all of them in the same boat, and of

identifying the diehard opponents of the regime. Severi was a strong figure.

Certainly not a nice one. Think of his responsibility in leading the Italian school

of algebraic geometry towards isolation, almost to the point of being completely

unaware of what was happening outside; think of his political career: socialist, later

Fascist, and later still, after the liberation, no stranger to the “salons” and encoun-

ters with exponents of the Communist world. However, we must recognize his

attempts – often successful, as for example the founding of the INDAM (the

National Institute for Advanced Mathematics) – to live mathematics as a protago-

nist, and to make mathematics itself a protagonist, not reducing it to a purely

instrumental role external to every cultural sphere where the nation’s future was

designed.

There are those instead who opposed Fascism and its politics in the fields of

education and culture. One was Castelnuovo, who presided over a commission of

the Accademia dei Lincei on the educational reform proposed by Gentile and which

sounded the alarm as to the dangers this posed to scientific education in Italy.
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Castelnuovo sought all possible ways to modify the reform, cultural as well as

operational (such as the knotty question of the unification of the chairs of mathe-

matics and physics). During World War II, concerned about the young Jewish

men and women who could not attend university because of the racial laws and

would be forced to miss years that were critical to their education, by now almost

80-years old, he organized University courses to be held in the Hebrew school (and

taught by professors of great prestige, including Enriques), obtaining recognition

from the University of Fribourg in Switzerland. The moment Rome was liberated,

Castelnuovo immediately concerned himself with obtaining from the Minister,

philosopher Guido De Ruggero, Italian recognition for the exams taken by the

students at the clandestine university.

We’ve already spoken of Volterra and his opposition to Fascism. In 1931 he was

one of the very few – only about ten! – university professors who refused to swear

allegiance to the new regime. The dignity, coherence, and sobriety of his gesture –

the last fruit of the springtime of the beginning of the century – are still moving

even today, almost 80 years later.

Levi-Civita lived through great difficulties before deciding to swear allegiance.

In the end family questions and guardianship of the “school” prevailed, though he

would never swallow that bitter pill. Levi-Civita had a different nature. A socialist,

a consistent and uncompromising pacifist during the war of 1915–1918, anti-Fascist

and, in the eyes and words of the police of the regime, “communist”, he never

wanted to mix the world of politics with that of scientific research or of his work

relationships. For more than 40 years he was one of the most illustrious professors

of Italy, attracting students from the world over, helping and encouraging them with

inexhaustible patience and generosity. Many received special proof of his kindness.

Many enjoyed his hospitality and would never forget his extraordinary personality.

A commemoration of Levi-Civita in the 7 March 1942 issue of Nature said: “with
his death has disappeared a scientist and an Italian who is painful to lose, and not

easy to replace”.
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Guido Castelnuovo

Guido Castelnuovo was born in Venice on 14 August 1865. He studied with

Aureliano Faifofer, who directed him towards mathematical studies. He graduated

in Padua in 1886 with Veronese and, after having spent a year in Rome with

Cremona, he transferred to Turin where – under the influence of Corrado Segre –

he published several fundamental works on the theory of algebraic curves. In 1891

he transferred to Rome, where in 1903 he took over the teaching of advanced

geometry. After having contributed, along with Enriques (whose sister he married,

a fact that led Severi to nickname them “the two brothers-in-law”), to the founding

of the theory of algebraic surfaces and the completion of their classification, his

scientific interests turned to the calculus of probability, concerning which he

published a paper in 1918 that was very important for the development of that

field in Italy. Retiring from teaching in 1935, and emarginated by the race laws of

1938, beginning in 1941 he organised the clandestine Jewish University in

Rome (where Enriques also taught), thanks to which Jewish students, excluding

from Italian universities, were able to earn credits at the University of Fribourg in

Switzerland. After the liberation of Italy, Castelnuovo was responsible for the

reorganisation of Italian scientific institutions, beginning with the “National

Research Centre” (CNR) and the “Accademia dei Lincei”, of which he was

president until his death, on 27 April 1952. He was nominated Senator for life

in 1949.
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Federigo Enriques

Federigo Enriques was born in Livorno on 5 January 1871. He completed his

university studies in Pisa, earning his degree at the “Scuola Normale Superiore”

in 1891. In 1892 he came into contact with Guido Castelnuovo, starting to work on

algebraic surfaces. After a period spent in Turin with Corrado Segre, he began to

teach in Bologna, where he stayed until 1922, when he transferred to Rome. He was

president of the “Italian Philosophical Society” and the “Mathesis Association”,

founder of the journal Scientia, and was for a long time director of the Periodico di
Matematica. He published books for teacher training and scholastic manuals that

were used throughout the century (the famous Enriques-Amaldi). He was a section

director of the Enciclopedia Italiana. Removed from teaching and from all posi-

tions by the race laws, he continued to publish abroad, using the pseudonym

Adriano Giovannini. He died in Rome on 14 June 1946.

Francesco Severi

Francesco Severi was born in Arezzo on 13 April 1879. Thanks to a scholarship

awarded to him by an institution in Arezzo, he was able to study mathematics in

Turin with Corrado Segre. He was assistant first to Enriques and then to Bertini in

Pisa. In 1922 he transferred to the University of Rome, rising to the position of

rector. He wrote more than 400 articles and books, mainly on algebraic geometry, a

field in which he introduced new concepts and techniques: among all of those he is
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credited with, it is sufficient to mention the notion of algebraic equivalence and the

theory of series of linear equivalences.

He was considered to be a brilliant speaker and an extraordinary teacher.

After a period in which he first came out against the Fascist regime, he began to

grow progressively nearer to Fascism, finally becoming a leading figure. He created

the “National Institute for Advanced Mathematics” and was its first president. After

the liberation of Italy, he was increasingly excluded by the international mathemat-

ics community and some of his results were harshly criticised for lack of rigour. He

died in Rome on 8 December 1961.
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Verlaine and Poincaré

Something invincible kept me from ever making Verlaine’s acquaintance.

I lived very near the Jardin du Luxembourg; it would have taken me only a few

steps to reach the marble table where he would sit from eleven to midday, in the

back room of a café which took the form, I don’t know why, of a rocky grotto.

Verlaine, never alone, could be glimpsed through the windows. The glasses atop

the marble table were filled with a green wave that might have been drawn from the

cloth of the billiard table, the emerald pool in that nymph’s lair.

Neither the allure of fame that was then at its peak, nor my curiosity about a poet

whose thousands of musical inventions, delicacies and depths had been so precious

to me, not even the appeal of a frightfully uneven career and of a soul both so

powerful and mean, ever triumphed over my obscure struggle with myself and a

kind of holy terror.

But I watched him go by almost every day, when, upon leaving his grotesque

cavern, he would head, gesturing, toward some cheap tavern near the École Poly-

technique. That damned man, that blessed man, limping along, would beat the

ground with the heavy staff of wanderers and cripples. Pitiable, with flaming eyes

under bushy eyebrows, he awed everyone on the street with his brutal majesty and

the brilliance of his resonant words. Flanked by his friends, leaning on a woman’s

arm, he would speak, pounding on the pavement, to his small, devoted retinue. He

was given to brusque stops, dedicated to the fury of his raging invective. Then the

dispute would move off. Verlaine, along with his followers, would move away,

with a painful clattering of his clogs and cudgel, unleashing his magnificent wrath

that would sometimes be transformed, as if by a miracle, into a laugh almost as

fresh as that of a child.

A few minutes before Verlaine, I rarely missed seeing another passer-by of a

completely different nature. He had a curved back, a short beard, clothing that was

sensible and serious, a rosette from the Legion of Honor. His gaze, through the

trembling crystal of a pince-nez, was empty and fixed. He would walk, vaguely led

by his heavy, slanting brow. His uncertain steps seemed to be at the mercy of the

most inferior powers of his being. The finger of this illustrious passer-by absent-

mindedly drew along the walls that fled away behind him – unconscious arcs that
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belied the profound psychological state of a geometer’s brain; and the body of his

spirit moved as well as it could in our world, which is only one world from among

the many possible. The endless internal labor that leads thinkers to enlightenment,

fame, and sometimes, with equal indifference, to their death beneath the wheels of a

cart, possessed Henri Poincaré.

Regularly moved, like Verlaine, by the law of his table, Poincaré, returning

home, would precede Verlaine over the same route. He seemed to me to presage the

poet’s appearance – by nearly 10 min. I was amused by these meridian transits of

stars so dissimilar... I pondered the immensity of the spiritual distance between

them. What different images lodged inside those two heads! What incomparably

different effects the sight of even the same street could produce in those two

systems that followed so quickly one upon the other. In order to conceive of it, I

had to choose between two admirable orders of things that were mutually exclusive

in appearance, but that resembled one another in the purity and the depth of their

purpose. . ..
As for the two passers-by, however, I found they had in common only a similar

obedience to the secret summons of midday.

From: P. Valéry, “Passage de Verlaine”, from Études littéraires.
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Bertrand Russell

Paradoxes and Other Enigmas

Gianni Rigamonti

Bertrand Russell lived for almost a hundred years (1872–1970), and was a prolific

writer for more than seventy of them, ranging from the foundations of mathematics

to logic, from consciousness theory to the history of philosophy, from moral

philosophy to political debates. But he is perhaps better known for his pacifism

and his militant laicism than for his theoretical work. In 1916, as World War I raged

on, his hostility towards the war cost him his position at the university and a period

of time in prison; in the last 20 years of his life, he was an active supporter of the

anti-nuclear movement.

It was in fact during a protest against nuclear rearmament that I chanced to hear

his voice. In 1961 in England, at Easter time (I was 21), there was a wonderful,

colourful, cheerful anti-nuclear protest march that wound up at London’s Marble

Arch, after covering about 70 km, as I recall, in 1 or 2 days. We came from all over

Europe. In the final bit we were joined by Russell, then almost 90-years old, who

gave one of the speeches at the closing ceremony. To tell the truth, I have to say that

I understood all of the speakers except Russell, in spite of the fact that my English

was good. I had never before heard, nor have I since, a voice as cavernous as his.

Whether it had come to be like that with age, or had always been like that by

constitution, I can’t say, but I remember that it rained down – along with a copious,

warm tepid spring shower – on thousands of wet, reverent and happy young people

who didn’t understand a word of it (at least, those who were not English).

But here, of course, we are interested in Russell the philosopher of mathematics,

not Russell the militant pacifist.

Russell dealt with Grundlagenforschung (research on foundations) for a little

over 10 years, and after the publication of volume three of Principia Mathematica
in 1913, he turned his attention to other fields that were less technical and abstract.

During that period, brief though it was, he achieved significant results, which I will

try to summarise.

In reconstructing the work of a thinker, it is necessary to begin with the state of

the art facing the thinker at the moment he began working. In Russell’s case, the

state of the art was characterised by Frege’s logicism.
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Gottlob Frege (1848–1925), the father of modern logic, was convinced that the

whole of Arithmetic1 could be constructed with purely logical structures, and that it had

no sui generis principles that were irreducible by pure logic. More precisely, Frege

believed that it was possible to define both 0 and, beginning with any natural number

n, n + 1, and thus all natural numbers, by the sole means of the identity (¼),2

the negation (not), the implication (if), the universal quantifier (in ordinary lan-

guage, “each” and “all”) and the so-called “axiom of comprehension”, according to

which for every clearly defined predicate P there exists a set of all and only the

things that are P; here “clearly defined” means that for every object x, either x is P or

x is not P, without any ambiguity. Let’s give a couple of examples. If we take

human beings as the domain in question, we can see right away that the predicate

“only child” is clearly defined (for each of us, having or not having brothers and

sisters is absolutely non-ambiguous),3 while the predicate “nice” is not (when asked

if someone “is nice”, we can’t always give an answer with certainty, and not all of

us give the same answer). Consequently, the axiom of comprehension guarantees

the existence of the set of only children, but not that of the set of nice people.

This having been established, the natural numbers can be defined (simplifying

Frege’s meticulous and rigorous procedure for the sake of brevity):

1But not geometry, and thus, not all of mathematics.
2Intended not as a numerical equality but as an ontological coincidence, as unum et idem esse.
3Knowing whether or not we have brothers or sisters may be more problematic, but here we’re not

talking about those who know that they don’t have brothers or sisters, but only about those who

don’t have any.
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1. 0 is the empty set.4

2. Consider the set 0 [ 0f g obtained by adding to 0 the set 0f g whose only member

is 0. The only member of this set is the empty set 0. We define 1 as the set of the

sets that are in one-to-one correspondence to 0 [ 0f g.
3. Let x be a member of 1, and consider the set x [ xf g obtained by adding to x the

set xf g whose only member is x: each member of x [ xf g is equal to the only

member of x, that is, to x itself. We define 2 as the set of the sets that are in one-

to-one correspondence to x [ xf g.
4. Let’s suppose that we have already constructed the natural number n, let x be a

member of n, and consider the set x [ xf g. Each member of x [ xf g is either

equal to a member of x or equal to x itself. We define n þ 1 as the set of sets that

are in one-to-one correspondence to x [ xf g.
The intuitive idea behind this construction is that a natural number is a set of

equipotent sets. More precisely, n is the set of sets of n members: 2 is the set of

doubles, 3 is the set of triples, etc. Except that, set out in this way, the idea is

circular. If instead we move by means of the definitions 1–4 stated above, the

circularity disappears.5

What does all of this have to do with the axiom of comprehension? Each natural

number n is the set of all (and only) the equipotent sets of a given set constructed

according the procedure described above. Thus, in order for there to be a given n,
the totality of the sets must be given, and in order for the totality of the sets to be

given, it is indispensable that there be a principle that establishes the sufficient and

necessary conditions for the set’s existence. This principle is precisely the axiom of

comprehension, and thus it is an essential part of Frege’s logicism.

But the axiom of comprehension is untenable, and Russell became aware of this

in 1902. This is his best known, and perhaps most important, discovery.

The discovery lay in the fact that a contradiction arises from the axiom. In order

to see how, let’s first define the notions of “abnormal set” and “normal set”:

x is an abnormal set if and only if it is a set and is a member of itself.

x is an normal set if and only if it is a set and is not a member of itself.

For example, the set of poetry is not a poem, and so it is normal; the set of natural

numbers is not a natural number, and so it is normal; the set of men is not a man, and

so it too is normal. However, the set of infinite sets is infinite, and thus it is abnormal.

The notions of abnormal and normal sets are well defined. In fact, given a set

M and an object x, it is self-evident whether or not x is a member of M; thus it is

self-evident whether or not M is a member of itself; but this is like saying that it is

self-evident whether M is an abnormal or normal set.

4According to the axiom of comprehension, there will also be the set corresponding to predicates

that do not appertain to any objects; for example, the set “grandfathers who never had children”

will naturally be empty.
5In definitions 1–4 we have also used the set operation of union and the notion of one-to-one

correspondence. But it can easily be proven that both are reducible to the basic logical operators

mentioned at the beginning of this section.
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Thus, being an abnormal (or normal) set is not like being a nice person, but more

like being an only child, and the two sets – of abnormal sets and normal sets – exist.

Call y the set of normal sets. Now, is y normal or no? For starters, let’s try to reason

out the hypothesis:

A. y is abnormal.

But “y is abnormal” is equivalent to “is a member of itself”: that is, it is a

member of y (since it’s y), that is, it is a member of the set of sets that are not

members of themselves. It follows that it does not belong to itself, or in other words,

that it is normal. Hypothesis A is self-destructing. Let’s try then with another

hypothesis:

B. y is normal.

Now, if y is normal then it is not a member of itself, that is, it is not a member of y,
the set of sets that are not members of themselves. Thus it is a set, but it is a member

of itself – that is, it is abnormal. Thus, hypothesis B is self-destructing as well. So we

find ourselves faced with a contradiction that we can’t escape from if we admit that y
exists – but it has to exist, because of the axiom of comprehension. In other words,

the axiom of comprehension inevitably leads to a contradiction, but that which leads

to the contradiction is false. It is not true that every well-defined predicate P

corresponds to a set of the things that are P. The axiom of comprehension, however,

is the axis supporting all of Frege’s logicism, and once it is removed, the reduction

of arithmetic to logic, at least in the way Frege attempted to do it, collapses. The

discovery of this paradox made Russell famous, but it was tragic for Frege.

Still, Russell himself was a logician who was in some ways even more extreme

than Frege, because he didn’t consider geometry as descending from an a priori

intuition à la Kant, irreducible to pure logic. He was convinced that the whole of

mathematics could be constructed starting from logic alone; that the two disci-

plines, traditionally separated, in reality formed a single system; that, if it were truly

necessary to distinguish between the two, then logic might be called the first chapter

and mathematics the chapters which followed, of one unified treatise. For Russell,

however, this was just a useful subdivision, without any deeper significance.

This unified system was a program to be carried out, and certainly not an existing

doctrine. Nor could it be carried out by proceeding along the simplest route, that of

the axiom of comprehension. It was necessary to follow another path, which Russell

believed he had found in type theory. This made it possible for him to surmount the

difficulty – which in his opinion absolutely had to be avoided in laying out possible

foundation of mathematics – of impredicative definitions.

The notion of impredicativity is so important that it warrants a digression that

goes well beyond Bertrand Russell and his theories.

A definition is said to be impredicative when it refers to a multiplicity of which

the defined object is part. For example, an impredicative definition is one that

defines object y as a set of the sets that are not members of themselves, or to put it

another way, defines object y as the set of normal sets; in both variants the definition

refers to the totality of sets to identify one particular set.
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Not all definitions are impredicative. If, for example, I say,

the electoral body of a democratic nation is the set of its citizens who are adult, without a

criminal record, and without mental deficiencies or serious psychological disturbances

then I am defining a certain totality, placing conditions on its members and

certainly without making reference to a totality of a superior level of which the

definiendum, the set being defined, is a member.

In everyday language, we constantly use impredicative definitions, but these

don’t cause any particular problems, nor in general is there any good reason not to

do so. We can see this from an example. Let’s take a concept such as:

The oldest Italian
This is certainly impredicative, because the person in question is defined on the

basis of a larger totality, in this case, of all the Italians. What comes out of this

however, is a notion that we can handle just as well as that (undoubtedly predica-

tive, in the sense that it refers to only certain properties of its members) of the

electoral body. Just like we don’t have any problems stating:

the electoral body is less numerous than the overall population,
we don’t have any problems stating that:

the oldest Italian is more than a 100-years old
or that:

no one stays the oldest Italian for long
or again, that:

the oldest Italian is probably a woman.
But while at the level of everyday language no one ever proposed doing away

with impredicative definitions, without which we would have to give up many

concepts that are clear and certain, in mathematics several scholars – the most

illustrious of whom was perhaps Henri Poincaré – recommended abandoning them,

in order to abide by the principle that a set must always and only be defined on the

basis of some property of its members. The set of even numbers is admissible, and

so is that of prime numbers, and that of rectangular trapezoids, but the set y of

normal sets is not, because the property of being a normal set immediately poses the

question of whether set y, given that it exists,6 possesses that property or not, while
this problem doesn’t even arise for the “normal” predicative sets (such as that of

prime numbers, or even numbers). And according to Poincaré – among others – this

is inadmissible. It is the illegitimate creation of a new member with a given property

starting from a previously given totality of things that are P and, at the same time,

extend beyond this totality, which is thus no longer defined unequivocally.7 In order

to avoid this kind of mess – say those who think like Poincaré – there has to be a

total asymmetry between definiendum and definiens. What is defined and what does

6We have already discovered by other means that this is impossible; but here we have to forget

that, because we are discussing the notion of impredicativity independent of Russell’s paradox.
7To clarify further: from Poincaré’s point of view, defining a set means introducing a new object as

the collection of objects already existing. If being a member of that collection is equivalent to
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the defining have to be radically distinct entities, or else the resulting confusion will

lead to paradox.

Without a doubt, at this point the situation appears to us to be highly controver-

sial. On the one hand, we have the continuous use of impredicative concepts not

only in everyday language but in many mathematical proofs as well; on the other,

there is the fact that the idea of a rigorous separation and asymmetry of what is

being defined (definiendum) and what we use to define it (definiens) seems plausible

intuitively.

But if we try to go into the problem more deeply, we see that our attitude

towards the impredicative is tied to our way of interpreting existence in mathe-

matics. Why, at the level of everyday language, do we unquestioningly accept

statements that are clearly impredicative, such as “the oldest Italian”? The reason

is, in all likelihood, that we take such a statement as a simple description of an

entity that already exists, mediated by a set whose elements are all already given

(including the definiendum) and which is thus itself completely given. An expres-

sion such as “the oldest Italian” does not constitute the object in question. The

object in any case exists, on its own, and we use the expression “the oldest Italian”

only as a way of saying oh look, this thing here is thus and so, where this thing
exists independent of the fact of its being thus and so, and so any trace of

circularity is removed.

But while everyone, apart from a few fringe radical philosophers, takes it for

granted that things are this way in the material world, this is not at all the case in

mathematics where there is a division which has existed for less than 500 years but

whose roots go back more than two thousand, between those who think that

mathematical objects exist independent of our knowledge of them – so that we

are limited to discovering them only – and those who instead believe that in

defining them, we constitute them, and that their existence is reduced fundamen-

tally to being defined. For the former group – that is (to introduce a term that is

perhaps illicit but convenient), for the realists – a mathematical object however

defined, even impredicatively, can in any case exist as long as its attributes are not

contradictory and the impredicativity of the definition does not destroy its exis-

tence, in the way, for instance, saying that a certain Mr X is the oldest Italian does

not destroy Mr X. But if defining means constituting, then it’s another story: for

example, the set of normal sets is just what this expression says; however, it refers

to another totality, the set of all sets, and on the other hand, the totality of the sets

refers, as all sets do, to its members, including the set of normal sets. And we can’t

even say, “okay, the set refers to the member and the member to the set but this only

regards the definition, not the objects themselves”, because objects exist apart from

the definitions only for realists, but not (again, a term that is perhaps illicit but

convenient) for the idealists.

possessing a certain property, which regards, as we said, objects that already exist, then it is not a

new object, and defining impredicatively means violating this distinction.
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And now something singular happens. Russell is not at all an idealist in mathe-

matics; he doesn’t reduce mathematical objects to the knowledge we have of them,

indeed, he’s convinced that we don’t create them, but discover them. Nevertheless,

he rejects impredicativity.

There are two steps in his thinking. The first, more general, is to abandon the

axiom of comprehension, indispensable for avoiding paradoxes like the one dis-

cussed above and others which were coming to light in those years (around

1895–1905). The second, more specific, was the elimination of impredicative

definitions.

That elimination took place bymeans of so-called type theory, which consists in –
reducing it to bare bones – a stratification of objects. At level 0 are those objects (we

can call them individuals8) that are not sets. At level 1 are the sets of individuals; at
level 2 the sets of objects of level 1; at level 3 the sets of objects at level 2 and so

forth. (In truth, Russell not only takes into consideration the level of ontological

complexity of his objects, but also the level of complexity that defines them. Let’s

say we take any two objects from level 1, or the sets of individuals: the definitions of

both objects express the necessary and sufficient conditions for each individual to be

considered a member, but they can be quite different in terms of complexity, one

being extremely long and the other extremely short, for instance.)

Language as well can be stratified correlatively, introducing infinite kinds of

variables: for individuals, which we can write using the exponent 0 (x0, y0, etc.), for
sets of individuals, which we can write using the exponent 1 (x1, y1, etc.), and
so forth. An atomic formula is well-formed if and only if it is of the form xi2 xi + 1

(xi is a member of xi + 1)9 since each set contains only objects of the ontological

level immediately below it. Formulae such as xi2 xi, or such as xi2 xj with j < i or
j > i þ 1, are meaningless.

Once this is established, the paradox of the set of normal sets immediately

vanishes. It hinges on the expression y as a member of y, or y 2 y, but in type

theory we have to attribute to y an ontological level, and regardless of which

level this is, we in any case come up with an expression of the form yi 2 yi,
which, as we have just seen, is meaningless. Russell’s paradox no longer

exists, because the formula that leads to it can no longer be expressed. The same

is true, mutatis mutandis, for the other paradoxes that came to be discovered

in those years.

But the central idea of type theory necessitated an enormous amount of work

before it could transformed into a detailed foundation of mathematics, still retaining

8In Principia at least, Russell doesn’t worry about establishing which objects are individuals. It

suffices him – for reasons that we will see right away – to introduce a stratification.
9It is still true that each set is an extension of a property and each property generates a set, even if

now the only sets allowed are sets of objects that are homogenous from the point of view of the

stratification in types (and this is sufficient, as we shall see, to avoid the paradox). Thus there is no

loss of generality in the statement that each atomic formula is of this form: in fact, saying that

“such-and-such object has such-and-such property” is, by dint of one-to-one correspondence of

property to set, like saying “such-and-such object is a member of such-and-such set”.
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its logical structure but immune to the weakness that proved to be fatal to Frege.

Russell, with the help of Alfred North Whitehead, developed this foundation in the

three volumes of the Principia Mathematica published between 1910 and 1913.10

The Principia exerted an enormous influence for more than 30 years; then, they

were gradually forgotten and today are read by only a small number of scholars.

However, the ideas contained in them continue to circulate.

Intuitively, the ontological stratification of type theory appears plausible, but

while we have seen that it resolves the paradoxes, is also creates other difficulties.

The first difficulty is a proliferation of objects that are unusable and embarras-

sing. In fact, Frege’s definition of the “natural number” n þ 1 (n þ 1 is the set of

sets that are equipotent to x [ xf g, where x is any member of n) breaks down into an
infinite number of definitions of “numbers” of different ontological levels: there

will be the (level 2) set of the set of level 1 of n þ 1 members of level 0, the (level

3) set of the sets of level 2 of n þ 1 members of level 1, and so forth; nor can this be

otherwise, because in type theory there are no sets that are not homogenous from

the point of view of the ontological level of their members. Thus, for example, we

will never have the 4 sic et simpliciter but the 4 of level 2 (with members of level 1),

the 4 of level 3 (with members of level 2), and so forth. And we have no idea what to

do with this proliferation.

A second difficulty is that once the impredicative definitions have been done

away with, many theorems of fundamental importance can no longer be proved, and

a foundation of mathematics that eliminates a large part of what it wishes to

establish is not acceptable. Russell tried to remedy this situation by introducing

three new axioms. The first two are plausible, but the third is much less so. The first

of the three, the axiom of infinity, says in essence that infinite sets exist; the second,
the axiom of choice, says that for every family F of non-empty sets F there exists a

choice-set S whose members are in one-to-one correspondence to those of F (and

further, that every member of S belongs to that of F to which it corresponds).11 The

third, the axiom of reducibility, states that given any theorem in type theory

regarding objects of any ontological level, there exists an equivalent theorem

formulated exclusively in terms of individuals (objects of level 0) and properties

of individuals (objects of level 1).

Of the three axioms, the least tenable and most debated is that of reducibility,

which is not only without any intuitive evidence to support it, but is tied to an

assumption that is openly empiricist-nominalist: that everything that we say, even

the most extreme abstractions, can be transformed into a statement about certain

basic objects that we consider concrete or simple or immediate; objects, in short,

10After the publication of Principia Russell would no longer deal with logic and the foundations of
mathematics. The reason he gave was that the effort had exhausted him, so much so, he claimed,

that his capacity to address complicated extractions had been clearly diminished, but it is natural to

suspect that by now he was more interested in other questions that were remote from mathematics.
11In simple terms, and putting aside the difficulties that arise when we deal with the infinite: we can

construct S by taking exactly one element from each member of F, and different elements from

different members of F.
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that are respectable from the empiricist-nominalist point of view. But this option is

philosophically biased, and its insertion into a theory about the foundations of

mathematics must inevitably lead to controversy.

In any case, the Principia had the immense merit of presenting for the first time a

systematic logical foundation of mathematics, detailed and immune to paradox,

offering factual proof that this kind of foundation was possible. They diffused

optimism among those who were doing research in the foundations. They stimu-

lated many to broaden – possibly even correcting Russell himself – this field of

research. They marked – like many other great syntheses, starting with Euclid’s

Elements – the end of an epoch (that of pioneers such as Cantor, Frege, Dedekind or
Peano, but also the “crisis of paradoxes”) and at the same time, the beginning of

another, already more shrewd in terms of methodology than the brilliant but “naı̈ve”

research of 20 or 30 years before.

The synthesis was superseded in the space of a generation, partly for the reasons

I mentioned above, and partly for two other reasons: the great results of the 1930s

regarding undecidability, which opened completely new horizons; and the discov-

ery, again in the 1930s,12 of formal systems of logic that were much simpler and

more intuitive than those of Russell and Whitehead, which were extremely dry and

ponderous. In the final analysis, however, the Principia provided a very strong

impetus to studies that would give rise, some 20 years later, to the “miracle decade”

of modern logic.

12Initially in Germany, the work of Gerhard Gentzen.
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Godfrey H. Hardy

A Brilliant Mind

Roberto Lucchetti

Godfrey H. Hardy was born on 7 February 1877 into a family of teachers in

Cranleigh, in Surrey. Right away he showed a great intellectual capacity, particu-

larly regarding mathematics: as a small boy he was already “playing” with num-

bers. He studied in local schools, where he distinguished himself in all subjects,

winning numerous prizes, much to his embarrassment, so much so in fact that he

said he sometimes gave the wrong answers in order not to have to undergo the

torture of the award ceremonies. However, as he says in his book A Mathemati-
cian’s Apology, written in 1940, he also had a strong spirit of competition, and

mathematics became his most effective way of outdoing his schoolmates. At the

age of 12 he won a scholarship to Winchester College, the best institution in

England, at least as far as mathematics is concerned. If there is such a thing as a

stereotypical English college of the beginning of the twentieth century, Winchester

is the perfect example. A first class education, but probably full of many rigours that

must have been difficult to take for a nature as sensitive as Hardy’s. One of the

things that made him the angriest about Winchester, he later recalled, was that it

was forbidden to dedicate any time to practicing the sports he loved, and for which

he had a notable talent, especially tennis and cricket.1 He left Winchester for Trinity

College in Cambridge. He was ranked fourth Wrangler in the first part of the

famous and infamous Tipos, final examinations so difficult that they were almost

cruel. Hardy detested the very idea of the mathematics on which this exam was

based: a rigid, extenuating training to solve problems one of whose main conse-

quences was that of stifling any form of imagination that might be used to grapple

with problems. But he didn’t refuse to take the exams; not only that, he was

annoyed at not having been ranked first. In fact, 2 years later, during the second

part, perhaps because he had studied even more aggressively, he achieved first

place, a fact that earned him a position at the college.

1At the age of 50, he could still easily beat the tennis player ranked second at Trinity College.
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In 1900 he published the first of his more than 300 articles. From 1906 to 1919 he

was a lecturer at Trinity College. In 1912 he began to collaborate with John Edensor

Littlewood (1885–1977). Hardy and Littlewood would write almost a hundred

papers together. It just might be that their collaboration is the most famous and

most fruitful in all of mathematics. In spite of this, there appears to be no testimony

to how they worked together: Hardy never spoke of it (in contrast to his descriptions

of his relationship to Ramanujan).

One morning, at the beginning of 1913, among the numerous letters that he

received each morning, he found an envelope covered with Indian postage stamps,

hardly the kind he was used to. Opening it, he found a cover letter, which was written

in a broken English, and a mixed up mess of theorems: it was the first letter that he

received fromSrinivasa Ramanujan (1887–1920). Hardy’s first reaction was above all

annoyance: a list of the stated theorems, none of which came with a proof, a couple of

which were well known to specialists but “passed off” as original. Little by little, he

must have begun to harbour some doubts, because, after a day spent following his

usual unchanging routine, he went to see Littlewood to show him what he had

received. Thus began the collaboration between Hardy and a man considered to be

one of the greatest geniuses ever to have appeared on the stage ofmathematics, limited

only by a total lack of education in the field, the fault of his humble origins.
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Ramanujan was a simple clerk who lived with his wife on his meagre salary in

the city of Madras. He was also a Brahmin, who followed equally closely the rigid

religious precepts of his caste, and the advice of his mother. It would then seem

impossible that he would accept an invitation to England, but after having discussed

the manuscripts he had received with Littlewood, Hardy immediately decided to

invite him. But it was Ramanujan’s mother who made it possible for him to accept

the invitation, saying that in a dream she had seen her son surrounded by Europeans

while a goddess warned her not to interfere with his intentions.

Ramanujan arrived in England in 1914, and he and Hardy immediately began a

collaboration that was as rich in results as it was anomalous: it should not be forgotten

that not only did Ramanujan know little or nothing of modern mathematics, but he

had very little use for the kind of rigour that modern mathematicians believe to be

indispensable. Although Hardy was aware that he was dealing with genius, he

nevertheless was often forced to teach him elementary mathematical rules.

Their collaboration resulted in five works of the highest calibre, but was brought

to halt because Ramanujan became seriously ill after about 4 years in England.

After having spent some time in hospital, he returned to Madras, where he died of

tuberculosis in 1920.

But let’s go back to Hardy. In 1914 he publicly sided with those, including

Bertrand Russell, who were against the war. However, his was not a position of

ideological pacifism; on the contrary, he was convinced that it was wrong to fight

Germany because it was a nation whose culture and organisation he admired.

Among other things, this made his relations with other colleagues difficult, a fact

which drove him to leave Cambridge for Oxford in 1919. In 1926–1928 he was

president of the London Mathematical Society. He spent 1928 and 1929 in the

United States, in particular in Princeton and at the California Institute of Technol-

ogy. In 1940 he published A Mathematician’s Apology; in 1942 he left teaching,

which he in any case claimed to hate. He died in 1947.

His obituary in the Times, among other things, noted that,

He personified the idea of the absent-minded professor. But those who formed the idea that

he was merely an absent-minded professor would receive a shock in conversation, where he

displayed amazing vitality on almost every subject under the sun. . . . Outside the schools
Hardy was an expert tennis player. He also had a passionate devotion to cricket. Every year

he had all the averages at his finger tips. He was interested in the game of chess but was

frankly puzzled by something in its nature which seemed to come into contact with his

mathematical principles.

Hardy was first of all a brilliant mind, and then a mathematician of notable fame.

He had a life that was, all told, a rather fortunate and happy one: he enjoyed a

certain economic freedom, due to an adequate stipend, at least for meeting the needs

of a single person; he taught only few classes, and had a lot of time free to do with as

he pleased; he received immediate recognition for his skills; he had a rich and

stimulating circle of friends. Only towards the end of his life, as his strength began

to fail him, did he begin to feel a strong sense of sadness.

Hardy also had his quirks. For example, although he was active and fit and was

considered to be quite handsome, he allowed practically no one to photograph him,
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and often covered the mirrors in hotel rooms. But everyone, or almost, is prey to

some such idiosyncrasy. The most obvious characteristics that one finds mentioned

when reading the memoirs of those who knew him, or even the Apology, is perhaps
his extreme competitiveness, his extreme need to judge his work and the work of

others, who was competent and who was less, which theorems were beautiful, and

which were not.

Here, for example, is an oft-quoted phrase that typifies his thinking:

I still say to myself when I am depressed and find myself forced to listen to pompous and

tiresome people, “Well, I have done thing you could never have done, and that is to have

collaborated with Littlewood and Ramanujan on something like equal terms”.

There is nothing so very strange in this: people are competitive; they love to

judge, and even more, they love to argue. Mathematicians are no different in this

regard. None of this is very rational, but it is probably inevitable. Charles P. Snow,2

who wrote a long introduction to the Apology, said that “. . . his precise ranking

must be left to the historians of mathematics (though it will be an impossible job

since so much of his best work was done in collaboration). . .”, as though establish-
ing who came up with a fine theorem was more important than the theorem itself.

For that matter, I think a much more interesting problem is to try to establish who is

the best soccer player in the world3: it has the same degree of uselessness as the

other one, but at least it’s more fun and more popular.

The fact is that exasperated competitiveness leads ultimately to defeat in any

case, because sooner or later it leads to unhappiness. Obviously, Hardy was no

exception, and this perfectly explains Snow’s fine characterisation of the Apology:

That is why A Mathematician’s Apology is, if read with the textual attention it deserves, a

book of haunting sadness. Yes, it is witty and sharp with intellectual high spirits: yes, the

crystalline clarity and candour are still there: yes, it is the testament of a creative artist. But

it is also, in an understated stoical fashion, a passionate lament for creative powers that used

to be and that will never come again.

This brings to mind Graham Greene’s review of the Apology, in which he says

that, alongside Henry James’s notebooks, it was “the best account of what it was

like to be a creative artist”.

One thing in any case I think is beyond doubt: Hardy was certainly one of the

mathematicians who best wrote mathematics.

2Physicist, author, politician.
3Or perhaps cricket, as Hardy did.
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Hardy: From A Mathematician’s Apology

It will probably be plain by now to what conclusions I am coming; so I will state

them at once dogmatically and then elaborate them a little. It is undeniable that a

good deal of elementary mathematics – and I use the word “elementary” in the

sense in which professional mathematicians use it, in which it includes, for exam-

ple, a fair working knowledge of the differential and integral calculus – has

considerable practical utility. These parts of mathematics are, on the whole, rather

dull; they are just the parts which have least aesthetic value. The “real” mathematics

of the “real” mathematicians, the mathematics of Fermat and Euler and Gauss and

Abel and Riemann, is almost wholly “useless” (and this is as true of “applied” as of

“pure” mathematics). It is not possible to justify the life of any genuine professional

mathematician on the ground of the “utility” of his work.

But here I must deal with a misconception. It is sometimes suggested that pure

mathematicians glory in the uselessness of their work, and make it a boast that it has

no practical applications. The imputation is usually based on an incautious saying

attributed to Gauss, to the effect that, if mathematics is the queen of the sciences,

then the theory of numbers is, because of its supreme uselessness, the queen of

mathematics – I have never been able to find an exact quotation. I am sure that

Gauss’s saying (if indeed it be his) has been rather crudely misinterpreted. If the

theory of numbers could be employed for any practical and obviously honourable

purpose, if it could be turned directly to the furtherance of human happiness of the

relief of human suffering, as physiology and even chemistry can, then surely neither

Gauss nor any other mathematician would have been so foolish as to decry or regret

such applications. But science works for evil as well as for good (and particularly, of

course, in time of war); and both Gauss and lesser mathematicians may be justified

in rejoicing that there is one science at any rate, and that their own, whose very

remoteness from ordinary human activities should keep it gentle and clean.
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Emmy Noether

The Mother of Algebra

Aldo Brigaglia

On 9 September 1932, just a few months after her 50th birthday (on 23 March of

that year), in the course of the ninth International Congress of Mathematicians

(ICM IX), Emmy Noether danced with Francesco Severi, a Tuscan colleague who

was only 3 years her senior.

Although she certainly didn’t arouse any particular physical attraction on the

part of her dancing partner, who judged her to be “scarcely possessing any feminine

attractions; a small and squat figure”, Emmy had ample reason to be happy with

herself.

If the 26-year-old André Weil would always consider the Zurich congress the

most beautiful he had ever attended, highlighted by the magnificent weather at the

time and, in addition to evenings of dancing like the one on 9 September, fabulous

trips on the lake, this must have been particularly true for Emmy as well, who in that

fantastic 1932 seemed finally to have received the recognition she deserved as a

great mathematician, the leader of a new school of algebra. Only 2 days before, on

7 September, she had delivered a plenary lecture to a general assembly (“Hyper-

complex Systems in Their Relationship to Commutative Algebra and to Number

Theory”1), perhaps the highest official recognition that she had ever received, a

genuine consecration.

A fervid atmosphere of international collaboration reigned over the congress,

that is, a strange international atmosphere. The mathematicians were only vaguely

aware of what was already being called at the time a “crisis”, and the scientists’

world seemed to be hanging on to a raft of old-fashioned values that was destined to

disappear in a sea that was increasingly storm-tossed. In just a few months, Emmy,

like others of her colleagues, would receive an icy letter from the minister for the

Wissenschaften, Kunst und Volksbindung of the Prussian government notifying her

of her dismissal: Auf Grunde des } 3 des Berufsbeamtentums vom 7 April 1933
entziehe ich ihnen hiermit di Lehrbefugnis an der Universit€at Göttingen. A few

1“Hyperkomplexe Systeme in ihren Bezichungen zur kommutativen Algebra and zur Zahlenthe-

orie”, Verhandl. Intern. Mah. – Kongress Z€urich I, 1932, 189–194.
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months after that – exactly a year after the Zurich congress, in October 1933 –

Emmy would board the steamship Bremen, headed for the United States.

But during the Zurich congress all the gathering clouds still seemed very far

away. After the painful breach of World War I, international relationships were

slowly healing and stabilising once again. After two congresses (those of 1920 in

Strasbourg and of 1924 in Toronto) excluding German mathematicians, it had only

been 4 years (from the Bologna congress of 1928) since the International Congress

of Mathematicians had been truly international once more: there were 247 official

delegates in Zurich, and 420 participants, for a total of almost 700 people from all

over the world, from all political systems, and of all races. In spite of this, André

Weil recalled that “he didn’t have that unpleasant sensation of being lost in the

crowd that would later ruin many conferences”. Who would have thought that all of

this, achieved through such painstaking effort, would have been destroyed in just a

short time?Who would have imagined that many official representatives of German

science – Hermann Weyl, representative of the mythical Vereinigung, the German

mathematical society, or Landau of the Göttingen Academy, or Courant of the

University of Göttingen – would soon lose their teaching positions and their

countries, and in the case of Landau, probably a suicide, his very life?

No, as Emmy danced with her fascinating Italian colleague she was certainly not

oppressed by dark premonitions of her not so distant future. And if Severi wasn’t
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particularly appreciative of her company, even from a mathematical point of view,

both of them knew that at that particular congress – unlike that of Bologna just

4 years before – the centre of attention was neither Severi, nor Italian algebraic

geometry, but Emmy Noether, her “new” algebra, and her students (the “Noether

boys”). Already a large part of German mathematics could be considered as having

been taken over by the “new algebraic Word”. Both directly through those who had

been Emmy’s students themselves, and indirectly, the hegemony of the new

mathematics certainly went beyond the strict confines of algebra (Artin, Hasse,

Brauer, Deuring, Krull, Witt, van der Waerden, who had just published, in 1931, his

Moderne Algebra, one of the most influential textbooks of the twentieth century).

Its influence extended to number theory, to topology (Hopf), to algebraic geometry

(van der Waerden again, and Deuring) and, although in a way that was more

complex and less direct, to Hermann Weyl, who recalled his mathematical con-

versations with Emmy in the cold, dirty and damp streets of Göttingen during the

winter of 1927–1928. It is perhaps worthwhile also to note that it was precisely

through the theory of group representation that the “new” mathematics of Göttingen

profoundly influenced the theoretical physicists such as Born and Heisenberg, who

also taught at that university.

Emmy’s influence rapidly spread throughout the world. In the Soviet Union,

Noether had significant contact with and a profound influence on the great topolo-

gist Pavel Alexandrov, who had been in Göttingen in 1923. Emmy had then been in

Moscow to teach during the cold winter of 1928–1929 and had forged ties with and

influenced the Soviet school of algebra of Pontrjagin, Schmidt and above all

Kurosh, who can be considered one of her students. In France, all the attention of

the young students was focussed on Emmy’s German school. Only 2 years later, in

1934, the Bourbaki group was born, the true apostle of the mathematics of struc-

tures, “Noetherian mathematics”.

But it was above all in the United States that the spread of Emmy’s influence was

increasingly evident. In Chicago, Albert followed her and developed his studies on

algebra; Mac Lane was a doctoral student in Göttingen; Lefschetz had passed

through some years earlier; Zariski was immersed in the study of Emmy’s algebra

through the books by van der Waerden. By training Zariski was an “Italian”

algebraic geometer but once he transferred to the United States he finally grasped

the importance and meaning of the new methods: “It was a pity that my Italian

teachers never told me there was such a tremendous development of the algebra that

is connected with algebraic geometry. I only discovered this much later, when I

came to the United States”. Shortly afterwards, his book Algebraic Surfaces would
come out, the first to indicate the need to reformulate algebraic geometry through

the systematic use of the new algebraic and topological methods.

In spite of Severi’s detached and slightly ironic way of recalling that dance in

1932, the star of the congress was Emmy herself, and the geometer from Arezzo

was well aware of it.

Indeed, at that very time Severi was engaged in a serious conflict with the most

well known of the Noether boys, Bartel Leendert van der Waerden, who has already

been mentioned several times, and who since 1926 had been working on revising
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the foundations of algebraic geometry according to a new point of view, with a

work that he would finish only much later, in 1938, and which would lead to a great

number of new papers (14 of which were entitled Zur algebraischen Geometrie).
The young van der Waerden, only 29, took advantage of the Zurich congress to

press the mature Severi for answers to questions and requests for explanations about

key points, particularly with regard to the concept of the multiplicity of intersec-

tions. Severi, pressured by the young student of his unattractive dancing partner,

reacted by producing “an impressive quantity of work” throughout the 1930s.2

At that time, during the 1932 congress of mathematicians in Zurich, Emmy

Noether was seen by many of those present as representing the future of “Mathe-

matics”, while Francesco Severi was seen as representing the past. Emmy had

delivered her lecture to almost 800 mathematicians from all over the world,

describing her latest research to an audience that was largely unprepared to under-

stand it. Describing the lecture, Fröhlich said, “this outlook puts Noether well ahead

of her time”. She posed questions that paved the way for the use of the methods of

cohomology in algebraic number theory, methods that would be properly developed

only in the 1950s and 1960s (by Tate, for example).

On this occasion, Emmy adopted the style most appropriate for the great meet-

ings of the international mathematics community: she outlined the essence of the

methods which had made Göttingen the centre of the “new algebra” for more than

20 years and which had just the year before been translated for the first time in a

book that was internationally acknowledged as being suitable for teaching (that is,

van der Waerden’s Moderne Algebra). She didn’t stop there, however; she also

outlined a program for future work which, in later years, would prove how far-

sighted she had been.

But let’s allow Emmy to speak for herself:

Today I would like to comment on the meaning of the non-commutative for the commuta-

tive: in effect, I want to do this in regard to two classic problems that originated in the work

of Gauss . . . The statement of these problems has continually changed . . . and finally take

the form of theorems about homomorphisms and the decomposition of algebras, and at the

same time, this last formulation makes it possible to extend the theorems to arbitrary Galois

fields. At the same time . . . I would like to illustrate the principle of the application of non-
commutative to the commutative: by means of algebraic theory simple and invariant

formulations are sought for what is known about quadratic forms or on cyclic fields, that

is, those formulations that depend solely on the structural properties of the algebras. Once

these invariant formulations have been obtained – as in the case of the examples mentioned

earlier – these facts are applied automatically to arbitrary Galois fields.

It is certainly not our intention within these few lines to provide an in-depth

discussion of these topics but behind these words lies hidden an entire new world,

at that time completely unexplored, in mathematics: the world of structures.

2In particular, I cite the article that appeared in the Seminar of the University of Hamburg in 1933,

obviously aimed at clarifying the point of view of the Italian school on critical points brought to

light by the new German school. Cf. “€Uber die Grundlagen der algebraische Geometrie”, Abhand.
Aus dem math. Sem. der Hamburgischen Universit€at, 9, 1933, 335–364.
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The structural method and the reasons for its effectiveness are outlined with

great clarity and great efficacy (at least for those of us who have been acquainted

with these methods since the first years of university): it begins with the historical

roots of the great problems that have characterised the history of classical mathe-

matics; there is no desire for change per se. What is being sought is a statement of

the problems that is reduced to the essential (one which depends only on the

structural properties of the mathematical object in question). If the essence of the

problem has truly been grasped and the correct formulation has been chosen, then

automatically the structural theory makes it possible to move from the known facts

to generalisations, from the known to the unknown.

After this grand research program, which fascinated not only her “boys” but

young mathematicians the world over, there followed several pages outlining the

first steps already taken in that direction. It takes us into a forest of “ideals”, “cross

products”, “splitting fields”, a whole sea of new and unusual terminology in which

probably 90% of her listeners were drowning (Weil himself, some years later, spoke

of “constructions full of rings, ideals and valuations, in which some of us feel in

constant danger of getting lost”).

It comes as no surprise then that Severi considered his dancing partner an

advocate of the most rigid formalism, in opposition to the intuition of the algebraic

geometers, and in particular to Emmy’s father, Max Noether.

I beg to disagree with Severi. All during her scientific life, and in her lecture at

the Zurich congress as well, Emmy Noether showed herself to be one of the

mathematicians of her times most gifted with intuition. Of course, this was not a

visual or geometric intuition; but what if not intuition could have allowed Emmy to

perceive the outlines of that vast edifice that is modern algebra whose construction

had at that time only just begun? It was evident that she had already clearly

identified that edifice in 1921, when she published her first work on “ideal theory”.

It was extraordinary mathematical intuition that guided Noether through the

labyrinth of structures and their properties, enabling her to identify those that were

essential and lent themselves to generalisations, those that were mathematically

“significant”.

Thework of classifying the structures (for example, that of classifying the algebras

in which she was working, together with Hasse, Brauer and Albert in 1932) went

forward in a way that was not unlike that used by the Italian geometers to orient

themselves in the jungle of surfaces and algebraic varieties so that these could be

classified according to their birational invariants. In order to overcome this complex-

ity, the mathematicians opened the way with what Weil called éclair d’intuition, a
flash of intuition, and then – only then – painstakingly reconstructed the details of the

course taken, subjecting it to a more accurate logical–rational critique.

Emmy did not disdain publishing works in which her capacity to prove had not

kept up with the pace of her intuition. Indeed, in that very year, 1932, she had

published an erroneous proof of an exact statement. The correct proof would be

published only a few months later by her student Deuring.

On the other hand, it had been thanks to an extraordinary kind of intuition that

Dedekind (in a paper that came out in the year that Emmy was born, 1882) was able
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to see clearly that, given the analogous structures of their respective objects of

study, that is, integral and polynomial rings, number theory and algebraic geometry

had to have a common foundation.

Emmy, who liked to say Er steht alles schon bei Dedekind (it’s already all in

Dedekind), knew this better than anyone, and was developing it, had already

connected it to other underlying algebraic structures (the algebras), had indicated

how their structural properties, intimately non commutative, could shed light on

problems of commutative algebra as well as on those of number theory.

It was a very substantial message to communicate, but in September 1932 only

few were able to grasp its profound significance and incorporate it into a project that

aimed at rewriting almost all of mathematics, redefining objectives and methods

according to Hilbert’s indications and the axiomatic method.

Of course, it would be an exaggeration to characterise the mathematics of the

twentieth century exclusively as the creation of the course set by the group in

Göttingen, and in particular by Hilbert and Noether, and would lead to the under-

rating of other, fundamental areas, often only touched on by the mathematics of

structure outlined in the 1932 lecture. But even so, that doesn’t diminish the

grandiosity and effectiveness of the project that was outlined. The “mother of

modern algebra” had undoubtedly formed a family whose impact on the develop-

ment of mathematics is certainly not one that is going to fade into oblivion.

If Emmy’s message wasn’t understood, this might in small part be due to her

skills as a communicator, which were excellent when it came to a small group of

followers, but ineffective on occasions such as this one. Severi, certainly referring

to her lecture, found her speaking “messy, awkward, a little lispy”. Mac Lane also

described Emmy’s lectures, saying that they were “excellent, both in themselves

and because they bear an entirely different character in their excellence. Prof.

Noether thinks fast and talks faster. As one listens, one must also think fast – and

that is always excellent training”.

In short, she had an expository style that was not very suitable to a learned

audience, but which was capable of capturing the attention of those who already had

some idea of the importance and meaning of what she was talking about. A style

that made it necessary that the evident enthusiasm of the speaker be followed by

ongoing discussions later in small groups outside the lecture hall.

André Weil was more drastic, saying that her lectures would have been more

useful if they had been less disorganised. Some years later, Zariski, after participat-

ing in one of Emmy’s seminars at Princeton, said,

She spoke about ideal theory in algebraic number theory . . . and a good deal of it was like

Chinese to me . . . But she was very enthusiastic and I was trying to learn ideal theory so I

went faithfully even if I didn’t understand everything. Just watching her was fun, and of

course, I felt that here is a person who get enthusiastic about algebra, so there is probably a

good deal to get enthusiastic about.

In spite of this lack of understanding, the year that was drawing to a close had

been full of achievements for Emmy: a truly magical year. Of course, she was not

yet a full professor at Göttingen, but only an associate and not even that officially.
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According to Kimberling, Emmy was only an “unofficial associate professor”, but

since at least 1923 she had been assigned to teach algebra and it was possible for her

to direct work on doctoral theses. To be sure, Emmy had not succeeded in becoming

a member of the local academy of sciences, but that mattered little (the first

scientific society that accepted Emmy Noether as a member was the Circolo

Matematico of Palermo in 1908).

In 1932, as had been the case by then for at least a decade, all those who wanted

to learn about the latest developments in the axiomatic method and made the

pilgrimage to Göttingen, made famous by Hilbert, were above all attracted by

Emmy’s lectures. And in 1932 Emmy, together with her colleague and in part

student Emil Artin, had been awarded the Alfred Ackermann–Teubner Memorial

Award for the Promotion of Mathematical Sciences. Moreover, her fiftieth birthday

had been the occasion for warm-hearted festivities given by the mathematicians of

Göttingen. Hasse had dedicated a paper to her in which he provided proofs of many

of her intuitive deductions.

But above all, 1932 was the year in which Noether’s methods and teachings

received definitive affirmation outside of Germany. In 1932 she had undertaken the

task, happy and at the same time sad, of preparing the last, unfinished writings of

the 23-year-old French logician and algebraist Jacques Herbrand for publication.

Herbrand, closely tied to those who would later form the Bourbaki group, died in a

mountaineering accident on 27 July 1931. He had spent his last year in Göttingen

with Noether. His death meant the loss of one of the greatest mathematical talents at

the very moment when his work was reaching its zenith, when he was full of ideas

for future research.

Emmy knew that, although only a few years before, in 1928, her ideas had been

almost entirely unknown, they by now were rapidly spreading among the young

French mathematicians. In her Zurich lecture she mentioned a still unpublished

work by Claude Chevalley on which she had had a strong influence, almost as

though she were giving a benediction in advance on the future Bourbaki group.

Perhaps her greatest reason to feel satisfied came from the rapid acceptance of

van der Waerden’s Moderne Algebra, much of which had been the fruit of her

lectures, as the author himself generously acknowledged. Van der Waerden can

perhaps be considered the most promising of the Noether boys, and had followed

her since the winter of 1924. The book produced a ripple effect mainly among the

young algebraists. Consider, for instance, its effect on mathematicians as presti-

gious as Garret Birkhoff,

. . .even in 1929 its concepts and methods [of modern algebra] were still considered to have

marginal interest as compared with those of analysis in most universities, including

Harvard. By exhibiting their mathematical and philosophical unity, and by showing their

power as developed by Emmy Noether and her other students (most notably, E. Artin,

R. Bruaer and H. Hasse) van der Waerden made “modern algebra” suddenly seem central in

mathematics. It is not too much to say that the freshness and enthusiasm of this exposition

electrified the mathematical world – especially mathematicians under 30 like myself.

It is worthwhile to note his use of the phrase “freshness and enthusiasm”,

because the careless or unprepared reader of this book might get the impression
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that he is reading a cold, formal textbook. This is not the case: the excitement it

created lay in the continual discovery of new worlds, in the apparently natural way

in which these new worlds shed fresh light on and give new order to problems that

appear to be the most disparate and difficult to approach. This excitement might

only have been felt by those who were initiated, but it was real nevertheless.

In 1932 Emmy conquered Japan as well: in contemporary with the publication

by van der Waerden, Abstract Algebrawas published in Japan by another one of her
boys, Kenjiro Shoda, who had studied with Emma in Göttingen – not the only

Japanese to do so – and who went on to become one of the founders of the

Mathematical Society of Japan and rector of the University of Osaka for almost

30 years.

On the train for Zurich, Emmy had met up again with her former student Jacob

Levitski, by then 28-years old, who had begun teaching algebra at the Hebrew

University in Jerusalem in 1931. His lectures gave rise to the flowering of the Israeli

school of algebra, which included Amitsur among others.

But 1932 was above all important for the spread of Emmy’s ideas throughout the

United States. I have already mentioned the effect ofModerne Algebra on Birkhoff,
but it didn’t stop there. At the beginning of 1932, an article by Hasse had appeared

in the Transactions of the American Mathematical Society summarising the new

ideas. Hasse wrote:

The theory of linear algebras has been greatly extended through the work of American

mathematicians. Of late, German mathematicians have become active in this theory. In

particular, they have succeeded in obtaining some apparently remarkable results by using

the theory of algebraic numbers, ideals and abstract algebra, highly developed in Germany

in recent decades. These results do not seem to be as well known in America as they should

be on account of their importance. This fact is due, perhaps, to the language difference or to

the unavailability of the widely scattered sources.

A significant effort towards unification of languages (by which, of course, we

mean not only German and English, but also the various mathematical languages

used by the two different schools) which, a few months later, would turn out to be

extremely useful, a kind of groundwork in preparation for Artin’s, Brauer’s and

Noether’s arrival in America the following year. This paper would be followed by

one co-authored by Hasse and Albert some months later introducing a theorem with

an unusually long name – the Albert–Hasse–Brauer–Noether theorem – one central

to the theory of algebras.

Thus 1932 marked the arrival not only of “Mother Emmy” but also of her

beloved brainchild, abstract algebra.

As we know, the following year would be very bitter indeed for Emmy and for

the flowering of German mathematics. The loss of her chair, a summer full of

doubts and uncertainties, dotted with unpleasant and humiliating episodes (it is

said, for example, that at one informal meeting where there was to be a talk by

Hasse, someone (Teichm€uller?) came dressed in a SA uniform), then the departure

in October for the United States, where she was assigned to a university which was

below the level she deserved, the women’s college of Bryn Mawr. Even in that

situation, in which Emmy had the great satisfaction of instructing one of her best
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American students at Göttingen, Olga Taussky (to whose memoirs we owe much),

she exerted a new and significant influence, becoming one of the points of reference

of the new generation of women mathematicians, who found in the great “mother of

algebra” a precise and meaningful model.

In the twentieth century, Emmy Noether epitomised not only algebra but

“women’s mathematics” as well. We could just easily have spoken about

“Emmy’s girls” as Emmy’s boys. Unfortunately, there was no time to found a

genuine American school: on 10 April 1935 Emmy died following an operation to

remove a tumour.

We are coming to the end of the story, and yet we have only talked about our

subject’s final years. So in reverse order I’d like to mention the first 50 years of

Emmy’s life.

Emmy was the eldest daughter of Max Noether, one of the pre-eminent figures of

algebraic geometry in the world, who developed (in keeping with the viewpoint of

Rudolf Clebsch) the ideas of Riemann concerning geometry. Max was always

considered to be a leader in the field of algebraic geometry by the Italian school.

Her brother Fritz was also an excellent mathematician (like his sister, he was forced

into exile, but went the opposite direction, to the University of Tomsk in the Soviet

Union).

Emmy had studied and earned her degree in Erlangen, where she was born,

under the direction of Paul Gordan (the “king of invariants”). Even her enrolment in

the university was an exceptional event: it may be that without the influence of her

father, Emmy wouldn’t even have been allowed to enrol. She was the only woman

enrolled in mathematics.

As Emiliana Pasca Noether and her husband Gottfried, Emmy’s nephew, said,

“Hermann Weyl underlined that Emmy was never in her life a rebel. But who can

know what her deepest thoughts were in the early years of the 1900s? We will never

know for sure and we can only guess. What matters is that she faced the difficulties

and persevered in spite of all the silly ideas about women, to become one of the

most important mathematicians of her century”.

She had stubbornly pursued her studies in Göttingen with Hilbert, and was

finally allowed there to obtain her habilitation there only in 1919, after endless

discussions in the department and thanks to the decisive influence of Hilbert

himself, who had expressed in terms as colourful as they were effective his

opposition to discrimination against women: Meine Herren, der Senat ist doch
keine Badeanstalt (the faculty is not a pool changing room). The topic of her

doctoral thesis was the “theory of invariants” which, at the turn of the century,

constituted a significant point of contrast between the old way of doing algebra –

essentially algorithmically – and the new way – axiomatically, after Hilbert. The

theory of invariants was thus her main area, leading almost naturally to the theory of

algebras and its applications in arithmetic and theory of group representation.

Of all of her results, I would like to mention only one, presented in the famous

1921 article entitled “Idealtheorie in Ringhereichen”: the structural conditions that

make factorisation possible in algebraic number fields, thus making possible the

extension to any kind of ring that possesses the condition that each ascending chain
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of ideals is always finite (called in fact “Noetherian rings”). Her techniques also

made it possible to construct, by means of the so-called cross products, a large

number of central and simple algebras, and the so-called Brauer group, of funda-

mental importance for the development of group cohomology.

But while this is the area in which Emmy gave wide range to her methods and

became the leader of a school, she also left the mark of her genius in every topic that

she dealt with. I will only mention the famous Noether’s theorem, born in the

context of the calculus of variations, which connects the differentiable symmetry of

the action of a physical system to a corresponding conservation law. This theorem is

fundamental for analytical mechanics and is widely used in quantum physics.

In the same area, Noether’s definition of the theory of invariants led her to deal

with relativity as well. Regarding invariants, Einstein’s statement of 1918 says it

loud and clear: “I’m impressed that such things can be understood in such a general

way”. Yet again, as in all of her efforts, it was her extraordinary capacity to

generalise that was so striking.

I will close by mentioning Solomon Lefschetz’s recommendation for Emmy’s

being hired by an American university:

As the leader of the modern algebra school, she developed in recent Germany the only

school worthy of note in the sense, not only of isolated work, but of very distinguished

group scientific work. In fact, it is no exaggeration to say that without exception all the

better young German mathematicians are her pupils.

He went on to say that if it hadn’t been for her race, gender and leftist political

opinions (which were actually moderate), she would have been a high-ranking

professor in Germany. But Emmy represented everything that the Nazi regime

hated. It is no surprise that she was driven out of Germany, but perhaps this makes

her all the more likeable.
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Carciopholus Romanus

Of all my childhood companions, one figure still remains shadowy, a figure that I

have always tried to grasp among the many recollections that have surrendered

themselves so sweetly to being entrapped in my pages.

It is Giuseppe, the little monster, son of Rosa Mangialupini (the lupini bean

eater). Who ever would have thought that one day I would find Gauss’s dream in the

shape of a giant lupini bean? The dream of a non-Euclidean geometry, or as I like to

think of it, a baroque geometry, a geometry with a horror of the infinite? But just the

other day, during one of my weekly visits to Professor Fantappié, holder of the chair

of analysis in the Seminar for Higher Mathematics, I came to know a simulacrum

much more complex than the shape of a lupini bean: Steiner’s Roman surface. This

is a fourth-order closed surface of complex variables. It is as curious a shape as I’ve

ever seen, a tuber the size of a stone, with three navels. The German mathematician

Steiner was meditating at the Pincian Hill one morning in 1912 [sic], sitting right on

one of the benches where, as a lad, I used to read Les Chants de Maldoror. Even the
geometers left the name the way it was, with the adjective Roman. T.S. Eliot, in the

“Song for Simeon”, evoked Roman hyacinths, “Lord, thy Roman hyacinths are

blooming in bowls”. And who knows how these two images came to be married in

my mind: the hyacinths and this strange mathematical fruit, a fruit from the gardens

of the Mediterranean, a kind of odd tomato, a tomato – let it be understood – with

three hooks. Think of the mess the fruit growers make today, when they plant one

seed inside another, or three seeds tied in one, or when they marry the lily or the

rose; imagine a citron with lemon or orange segments inside, or the bizarre things

that Redi wrote about to Prince Leopold. Well then, this shape brings to mind

Siamese twins, brothers or sisters with a triple knot, triplets of Siamese tomatoes.

Professor Conforto, Professor Severi, Professor Fantappié, three luminaries –

Severi tall and curly-haired, Fantappié round and short, Conforto thin and medium

height – who were all close to me, looking at that shape, seemed moved, as moved

as when Linnaeus found out about the Lacerta faraglionensis, the blue lizard that

only lives on the Faraglioni of Capri, in the smallest habitat on the face of the earth.

“This surface”, I said, “is as Roman a fruit as the artichoke”. But Severi, Conforto

and Fantappié instead enumerated all its marvelous properties: four generating
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circles, three triple poles, an area that could be calculated using rational integrals,

and I don’t know what other devilry. It felt like I was hearing Linnaeus talk about

artichokes: carciopholus picassianus, carciopholus guttusii, carciopholus piper-
nensis aut romanus. . . . But Steiner’s Roman surface, more than having been raised

in the humus of the Testaccio and the gardens of the Janiculan, more than having

been grown in the fertile ferrous earth of the suburbs, seemed to have been worked

from the air and light of Rome, like a fine travertine bowl: it was a limestone sponge

with three holes, three bashes, three cavities. A form with three humps, a work of

Borromini, that’s what it looked like. Imagine an elastic sphere squashed by the

points of three cones. It was bound to have special acoustic properties, because it

really seemed like it was all ears, it looked like an acoustic hunchback that came

down from outer space. Even hunchbacks can have really sensitive hearing. . . .
Like my friend Giuseppe Mangialupini. He used to run to tell the priest everything

that we said. . . .

From: L. Sinisgalli, Furor mathematicus, Ponte alle Grazie, Florence, 1995 (first
edition, Mondadori, Milan, 1950).
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Paul Adrien Maurice Dirac

The Search for Mathematical Beauty

Francesco La Teana

In a 1963 article in Scientific American, Dirac said, “It is more important to have

beauty in one’s equations than to have them fit experiment”.1 In effect, the search

for mathematical beauty is the distinctive mark of his work, and led to results that

can be compared to those of Newton and Einstein, even though they have also led

him into friendless battles within the scientific community. On the other hand,

working alone was another dominant characteristic of his life. In his vast scientific

output – comprising more than 190 works between articles and books – his name is

associated with that of a collaborator in only four cases.

Paul Adrien Maurice Dirac was born on 8 August 1902 in Bristol. Dirac’s

childhood, with his two brothers and a sister, was marked by the severity of his

father, who isolated his family from all social contact and imposed ironclad rules

of behaviour. The children, obliged to speak to him only in French, became

increasingly reticent. Speaking of his brother, Paul recalled that “if we passed

each other on the street, we didn’t exchange a word”.2 The father made the

brothers attend the Technical College and the Engineering College, even though

Paul’s brother wanted to study medicine. His brother committed suicide in 1924,

and Paul buried himself in problems of physics and mathematics, becoming so

taciturn that he never spoke unless he was asked a question, and even then

responding in monosyllables. He distanced himself forever from his father. In

1933 he went to receive the Nobel Prize (won together with Schrödinger) accom-

panied only by his mother, and when his father died in 1935, he wrote to his future

wife, “I feel much freer now”.3

1P. A. M. Dirac, “The Evolution of the Physicist’s Picture of Nature”, Scientific American, vol.
208, 1963, no. 5, p. 47.
2J. Mehra and H. Rechenberg, The Historical Development of Quantum Theory, Springer-Verlag,
New York, 1982, vol. 4, p. 11
3Margit Dirac, “Thinking of my Darling Paul”, in B. N. Kursunoglu and E. P.Wigner, eds., P. A. M.
Dirac. Reminiscences about a Great Physicist, Cambridge, Cambridge University Press, 1987, p. 5.
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Dirac enjoyed the kind of study he was forced to undertake, personally going

into the theory of relativity, and in 1921 he graduated with excellent grades. He

wasn’t able to find a job, but he was offered the opportunity to further his studies in

“applied mathematics” in Bristol from 1921 to 1923, and later to collaborate, or in

any case to interact with, Niels Bohr, Robert Oppenheimer, Max Born and others,

before becoming a student researcher at Cambridge in the area of quantum studies.

Dirac adopted a lifestyle that was very reserved, made up of 6 days a week of

studying and long solitary walks on Sundays in the countryside nearby. For his

whole life he was passionate about travel and more than once went round the world.

The majority of his contributions to physics were made during the 8 years from

1925 to 1933: the formalisation and clarification of quantummechanics, Fermi–Dirac

statistics, the relativistic theory of electrons, the quantisation of the electromagnetic

field. In 1932 he was named Lucasian Professor of Mathematics at Cambridge, the

chair held by Newton. In 1937 he married Margit Wigner, sister of the physicist

Eugene Wigner, with whom he had two children. In 1971 the family moved to

Florida, where he died on 20 October 1984.

Dirac was without a doubt the greatest English theoretical physicist of the

twentieth century. In 1995, on the occasion of the celebration of his activities in
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London, a commemorative plaque was placed in Westminster Abbey (near those of

Newton and Maxwell).

Dirac was involved almost exclusively with physics and mathematics, and had

no interest in art, music, politics or social activities; he carefully avoided any

problems from the outside world that might have led to a change in his lifestyle.

When the Manhattan Project for construction of the atomic bomb got underway and

a talented group of physicists from all over the world moved to Los Alamos, Dirac

refused to take part, even if, in his own way – that is, without changing any of his

personal habits – he participated in the effort with some works on a centrifuge

capable of separating mixtures of isotopes.

Quantum Mechanics

In 1925 Heisenberg published his famous article on what would become matrix

mechanics, noting how the multiplication of two quantum magnitudes x � y was

generally different from y � x. In a very short time Dirac became convinced that this

was the most interesting and important aspect. He translated Heisenberg’s theory

into a Hamiltonian scheme (which he favoured over all others), reformulating it

with Poisson brackets, and thus derived the fundamental equation of motion.

Dirac called his method the “algebra of q-numbers” (where q stands for quan-

tum), that is, the algebra of numbers that don’t obey common laws of multiplica-

tion, and of c-numbers (where c stands for classic) which make up the q numbers

and obey the commutative law. The scheme was analogous to that developed by

Heisenberg, Born and Jordan in which the matrices (q-numbers) represented the

position and impulse of the electron and were composed of c-numbers (the ampli-

tudes and frequencies in Fourier series). At the time, Dirac was convinced that the

algebra of q-numbers would more general and powerful than that of matrices, but

with the exception of van Vleck, no other physicist adopted Dirac’s scheme, which

was judged to be too difficult, preferring instead that of Schrödinger, which

appeared in 1926. Dirac himself, on the other hand, carefully studied wave mechan-

ics, applying it (in August 1926) to electrons, proving that these had to obey the so-

called Fermi–Dirac statistics, while photons followed Bose–Einstein statistics.

In December 1926, Dirac set out a general quantum description – known as the

“theory of transformations” – unifying the three separate formulation of matrices,

waves and operators, thanks to the introduction of the famous “Dirac delta func-

tion”. The delta function “has proved to be of extreme importance in virtually all

branches of physics. In the realm of pure mathematics it may be seen as a

predecessor of the theory of distributions created in 1945 by the Swiss mathemati-

cian Laurent Schwartz”.4

4H. Kragh, Dirac. A Scientific Biography. Cambridge, Cambridge University Press, 1990, p. 41.
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The theory, along with its unified formalism, was published in the volume The
Principles of Quantum Mechanics, the first edition of which appeared in summer

1930. The work reflected Dirac’s taste for the abstract and elegant, as well as his

dry, uncluttered style and became universally considered to be the classic text on

quantum mechanics, an essential component of the library of all students and

researchers. The final touches to the theory’s formal elegance were introduced by

Dirac with vector notations bra and ket, which he invented and inserted in the third

edition of 1947.

By the end of 1926, Dirac’s international reputation was firmly established. His

works – although superior in terms of the capacity for generalisation, formal beauty

and mathematical creativity – were however stigmatised by their having been

obtained in concomitance with or following those of other scientists (Born and

Jordan regarding the fundamental equation of motion, Fermi regarding statistics,

Jordan regarding the theory of transformations). In particular, Dirac “felt that he

lived in the shadow of Heisenberg and the other German theorists”,5 even though

those were in constant contact and collaboration with each other, while Dirac

worked alone.

The Foundations of Quantum Field Theory

In quantum field theory, Dirac was the founder and font of inspiration for funda-

mental developments which took place at the end of the 1940s, though, strangely,

he never accepted that attribution.

The problem was that of the interaction between radiation and matter. The old

theory of Bohr explained the emission and absorption of radiation by means of the

image – little beloved – of the electron that jumped from one level of energy to

another, but which left the phase of interaction unexplained. The use of perturbation

methods in quantum mechanics made it possible to deal with the transitions induced

by an external field, but did not provide any description of the disappearance of a

photon, nor of spontaneous emission. In order to obtain this, it was necessary to

develop a quantum theory of electrodynamics in which the forces were propagated

with the finite speed of light rather than instantaneously. Dirac addressed the

problem in February 1927, with one of his most brilliant ideas. He wrote the

radiation field in Fourier series, dealing with the components of the electric field

and the corresponding phases – up to that time considered to be c-numbers – as

q-numbers. In this way even the vector potential became a quantised q-number

(“second quantisation”).

All the same, the significant problem of some divergent integrals soon mani-

fested itself in connection with both the energy and the charge of the electron as

well as with its formulation as a point-like object. In 1932, in collaboration with

5Ibid., p. 48.
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Fock and Podolsky, Dirac then formulated an invariant relativistic theory which,

however, left the problem of infinites unaltered.

Quantum electrodynamics faced a crisis that would be overcome only at the end

of the 1940s, thanks to the so-called “renormalisation techniques”. Schwinger,

Tomonaga and Feynman openly declared Dirac’s importance and influence on

their work, but Dirac never accepted the developments of the theory, maintaining

that rules of renormalisation “is just a set of working rules, and not a complete

dynamical theory at all”.6

Electron Theory

In January 1928, Dirac made his most important contribution to physics, that of the

quantum-relativistic electron theory, aimed at explaining the behaviour of electrons

that moved at speeds that were relativistically relevant. Before Dirac, in 1926,

Oscar Klein had published the so-called Klein–Gordon equation – which Dirac

never accepted because it was second-degree (while quantum mechanics required a

linear equation) – which furnished negative results regarding the probability of

finding an electron in a given place and did not take into account the existence of the

electron’s spin.

Dirac thus attempted to find a method for making the equation linear. Everything

depended on the linearisation of a quadratic expression placed under the radical

symbol. Dirac obtained the solution thanks to the insertion of four 4 � 4 matrices

(“Dirac matrices”), arriving at the famous “Dirac equation”. From a methodological

point of view, “Dirac reduced a mathematical problem to a physical one, and the

mathematics forced him to accept the use of 4 � 4 matrices as coefficients. This

again forced him to accept a four-component wave function c ¼ c1;c2;c3;c4ð Þ...
Though logical enough, this was a bold proposal since there was no physical

justification for the two extra components”.7

Dirac’s theory proved Sommerfeld’s formula for the fine structure of hydrogen

and predicted the existence of spin, which up to that time had always been

introduced by means of hypotheses that were more or less ad hoc. The magnitude

c turned out to be a new mathematical object called a spinor, and was later studied

by von Neumann, Weyl and others.

Controversy broke out concerning the physical interpretation of the four com-

ponents ci. Two of the components had been associated with states of positive

energy (related to the two values of “spin up” and “spin down”), while the other two

represented states of negative energy. Classically, these would have been discarded

since they are physically impossible. In terms of quantum theory, such a solution

6P.A.M. Dirac, “The inadequacies of Quantum Theory”, in B. N. Kursunoglu and E. P. Wigner, op.

cit., p. 196.
7H. Kragh, Op. Cit., p. 59.
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could not be adopted because there was the probability of quantum leaps from states

of positive energy to states of negative energy. In 1930 Dirac proposed this

interpretation: in normal conditions, all of the states of negative energy are occu-

pied by elections and there is no tangible physical manifestation; when radiation is

absorbed, an electron can pass from a state of negative energy to one of positive

energy. This leap has the effect of creating a free electron, and a gap in negative

energy, which manifests itself as a particle that is positively charged, identified as a

proton. Since the theory arrived at a contrast between the mass of the electron and

that of the proton, Dirac was soon convinced that the gap was a new kind of particle,

one that was unknown in experimental physics, which had the same mass and a

charge opposite to that of the electron,8 which he called an “anti-electron”. Two

years later American physicist Carl Anderson discovered traces of the anti-electron

(the positron) in cosmic radiation.

From the point of view of his research methodology, this was Dirac’s greatest

success: that he had seen in advance on the basis of theory the existence of an

elementary component, one that is now there for all to see in today’s techniques of

positron emission tomography (PET).

The Method of Mathematical Beauty

In the 1963 Scientific American article cited earlier, in which Dirac discussed

possible future developments in physics, he proposed improving the capacity for

investigation by raising the “method of mathematical beauty” to the status of a

guiding principle, as it had always been in his own research:

A great deal of my work is just playing with equations and seeing what they give. Second

quantization I know came out from playing with equations. I don’t suppose that applies so

much to other physicists; I think it’s a peculiarity of myself that I like to play about with

equations, just looking for beautiful mathematical relations which maybe don’t have any

physical meaning at all.9

According to Dirac, there are two strategies for studying nature: the experimen-
tal method, which, beginning with observed facts, looks for the relationships that

exist between them; and the method of mathematical reasoning, which only

involves the search for mathematical beauty, the physical significance of which is

investigated only later. The first was the method used by Heisenberg in 1925; the

second, that of Schrödinger, who he said had found his equation simply by looking

for one that was mathematically beautiful.10 For Dirac, the second method was the

8See P. A. M. Dirac, “Quantized Singularities in the Electromagnetic Field”, Proc. of the Royal
Soc. of London, A133, 1931, p. 61.
9T. S. Kuhn, “Interview with P. A. M. Dirac, Session III”, 7 May 1963, in Archive for the History
of Quantum Physics, p. 15.
10P. A. M. Dirac, “The Evolution of the Physicist’s Picture of Nature”, Scientific American, vol.
208, no. 5, 1963, p. 45.
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more profitable because nature manifests itself in terms of beautiful mathematical

equations. He said that one of the fundamental characteristics of nature appeared to

be the fact that fundamental physical laws are described by mathematical theories

of great beauty and power, and that a high level of mathematics is required to

understand them.11

If we try to understand exactly what Dirac meant by “mathematically beautiful”,

we find that the concept was never adequately clarified, because mathematical

beauty “is a quality which cannot be defined, any more than beauty in art can be

defined, but which people who study mathematics usually have no difficulty in

appreciating”.12 In addition to that of Schrödinger, examples of beautiful theories

were those of Hamiltonian formalism and the theory of relativity.

In any case, for Dirac mathematical beauty was not linked to simplicity, nor to

complexity, nor to formal rigour.

According to him, simplicity was subordinate to beauty: it often happens that

simplicity and beauty are equally necessary, but when they oppose each other, then

beauty must prevail.13 As far as complexity is concerned, to quote Kragh, “if a

physical theory, such as the Heisenberg–Pauli quantum electrodynamics, was only

expressible with a very complicated mathematical scheme, this was reason enough

to distrust the theory”.14 Finally, with regard to mathematical rigour, Dirac main-

tained that the correct course for future progress went in the direction of not putting

excessive effort into the search for mathematical rigour, but rather to find methods

that function in practical examples.15

This last expresses his pragmatic outlook. Dirac was one of the founding fathers

of the physics of the infinitely small and one of the greatest physicists of the

twentieth century. His great skill was that of introducing and creating new mathe-

matical methods capable of solving his problems: from q-numbers to readapted

Poisson brackets, to the delta function, to the bra and ket vectors. He was often

criticised by purists for the excessive formal liberty he took, but his aim was that of

creating, time after time, the mathematics he needed in order to solve specific

problems. He didn’t hesitate unduly if he had to sacrifice formal rigour, because his

goal was to achieve a result that was mathematically beautiful.

11Cf. “The Evolution of the Physicist’s Picture of Nature”, Scientific American, vol. 208, no. 5,
1963, p. 45.
12P. A. M. Dirac, “The Relation between Mathematics and Physics”, Proc. of the Royal Soc. of
Edinburgh, 59, 1939, p. 123.
13Ibid.
14H. Kragh, op. cit., p. 279.
15P. A. M. Dirac, “The Relation of Classical to Quantum Mechanics”, in Proc. of the Second
Canadian Mathematical Congress, Vancouver 1949, University of Toronto Press, 1951, p. 12.
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A Monosyllabic Interview

Here is an interview that Dirac gave to a playful journalist of the newspaper

Wisconsin State Journal, during his first visit to the United States in 1929.

Then we sat down and the interview began.

“Professor,” says I, “I notice you have quite a few letters in front of your last name. Do they

stand for anything in particular?”

“No,” says he.

“You mean I can write my own ticket?”

“Yes,” says he.

“Will it be all right if I say that P.A.M. stands for Poincaré Aloysius Mussolini?”

“Yes,” says he.

“Fine,” says I, “We are getting along great! Now doctor will you give me in a few words

the low-down on all your investigations?”

“No,” says he.

“Good,” says I. “Will it be all right if I put it this way: ‘Professor Dirac solves all the

problems of mathematical physics, but is unable to find a better way of figuring out Babe

Ruth’s batting average’?”

“Yes,” says he.

“What do you like best in America?”, says I.

“Potatoes,” says he.

“Same here,” says I. “What is your favorite sport?”

“Chinese chess,” says he.

That knocked me cold! It was sure a new one on me! Then I went on: “Do you go to the

movies?”

“Yes,” says he.

“When?”, says I.

“In 1920 – perhaps also in 1930,” says he.

“Do you like to read the Sunday comics?”

“Yes,” says he, warming up a bit more than usual.

“This is the most important thing yet, doctor,” says I. “It shows that me and you are

more alike than I thought. And now I want to ask you something more: They tell me that

you and Einstein are the only two real sure-enough high-brows and the only ones who can

really understand each other. I won’t ask you if this is straight stuff for I know you are too

modest to admit it. But I want to know this: Do you ever run across a fellow that even you

can’t understand?”

“Yes,” says he.

“This well make a great reading for the boys down at the office,” says I. “Do you mind

releasing to me who he is?”

“Weyl,” says he.

The interview came rapidly to a halt. Dirac had said twenty words in all, eight of

them monosyllables.16

16H. Kragh, Dirac. A Scientific Biography. Cambridge, Cambridge University Press, 1990,

p. 72–73.
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The Theoretical Intelligence and the Practical
Vision of John von Neumann

Roberto Lucchetti

János Lájos Neumann was born in Budapest on 28 December 1903, firstborn of

Miksa and Margit, important members of Budapest’s Jewish community. His

mother’s family was well-to-do; his father, a lawyer, was the director of one of

the most important banks of the capital. The family’s position was similar to that

many other wealthy Jewish families in the city, and promised János a life free from

economic problems in a cultural environment rich in stimuli. In 1913 his father was

even granted a title of nobility, which though he never used, was constantly vaunted

by his son.

From the time he was a small boy János lived in an environment that was very

effervescent culturally, and he received a first-class education. At first he was

privately tutored, then entered one of the best high schools in the city, but his

mathematical education continued at the hands of private tutors. The world of

Hungarian mathematics was particularly vivacious, sustained by leading lights

such as Fejér, Haar and Riesz. Although he had an evident gift for mathematics,

his education was also rich in philosophical and scientific-technological subjects.

At home his father often spoke of his professional activities, extending the conver-

sation to theories of economics and finance: without a doubt, the environment and

atmosphere of his home profoundly influenced young von Neumann’s leanings.

Throughout his life he was interested in a wide variety of topics, leading to his being

not only a talented mathematician who concentrated on its own discipline, but a

man of multifaceted scientific interests.

At the beginning of the 1920s, the destruction of World War I weighed heavily

on the world of mathematics, and more in general, on all aspects, cultural or not, of

life in Budapest and all of Hungary. This led to the migration of almost all the

famous, established mathematicians, as well as the youngest emerging talents. Von

Neumann was no exception.

In 1921 he enrolled in the University of Budapest, but at the same time he also

attended that of Berlin, where he took courses in chemistry and statistical mechan-

ics. In 1922, at only 18, he published his first article in mathematics in collaboration

with Fekete, one of his professors. Then he studied chemical engineering at the

Z€urich Polytechnic, perhaps more to please his father than out of genuine interest.

C. Bartocci et al. (eds.), Mathematical Lives,
DOI 10.1007/978-3-642-13606-1_9, # Springer-Verlag Berlin Heidelberg 2011

63



In any case, these studies likely influenced his lasting interest in mathematical

applications. In 1925 he defended his doctorate thesis at the University of Budapest,

on the topic of the axiomatisation of set theory, which he had discussed several

times with Fraenkel.

While still quite young von Neumann took a precise position in the debate that

animated the mathematics of these times: on one side the logicians, represented by

B. Russell and aiming at perfecting classical logic; on the other side the intuition-

ists, with Brouwer; on a third front the champions of the axiomatic method, with

Hilbert. Von Neumann would side with these last, holding that logicians and

intuitionists, in spite of their having obtained significant results, had a vision that

was destructive for mathematics. The question of axiomatics would interest him for

the rest of his life, and would be brought into all the various branches, including the

most applied, worked on by John (as he was called by now).

He began to travel to Göttingen, home to perhaps the most prestigious school of

mathematics in the world, founded and animated by F. Klein and D. Hilbert. It was

here that von Neumann came to know Hilbert, and immediately became a member

of his group. He won a grant from the Rockefeller Foundation and was named

Privatdozent at the University of Berlin. He collaborated with Hilbert on the

question of the axiomatic foundations of quantum mechanics, developing among

others a general theory of the inner product (or pre-Hilbert) linear operators. His

researches would later be gathered in the volume Mathematical Foundations of
Quantum Mechanics published in 1932.
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The beginning of his career was made possible by his family’s economic

support, since those holding the title of Privatdozent did not receive a salary,

although they did receive proceeds from the taxes paid by the students. Perhaps

partly for this reason, in 1930 he accepted the position of invited Professor in

mathematical physics at Princeton, where he taught quantum statistics, mathemati-

cal physics and hydrodynamics. Thus began his experience in the United States,

although until 1933 he returned regularly to Germany. In September 1930 he

participated at the Congress on the epistemology of the exact sciences held in

Königsberg, presenting a paper in favour of the Hilbertian method. But that

Congress today is remembered for another lecture of no small significance:

K. Gödel announced the first version of his celebrated incompleteness theorem,

which he would perfect over the next few years. It appears that the significance of

Gödel’s result was not immediately grasped by those present, with the exception of

von Neumann, who discussed it with Gödel himself, and then shortly later wrote to

him that he had proven – as a consequence of the incompleteness theorem – that the

coherence of arithmetic was impossible to demonstrate.

Gödel’s theorem has a strong emotional impact on von Neumann, who from that

moment abandoned his research in mathematical logic. Here is how he described, in

an article of 1947, his reaction at the time:

I have told the story of this controversy [about the foundations of mathematics] in such

detail, because I think that it constitutes the best caution against taking the immovable rigor

of mathematics too much for granted. This happened in our lifetime, and I know myself

how humiliatingly easily my own views regarding the absolute mathematical truth changed

during this episode, and how they changed three times in succession!

In any case, although the dream of giving mathematics indisputable and coherent

foundations vanished, von Neumann believed that the classic way of doing mathe-

matics should not be abandoned (to follow, for example, logical intuitionism) and

that the axiomatic method would be a core instrument: even his most applied work

would reveal this thinking.

In 1933 Hitler came to power. The experience of Göttingen came to an end

because of the numerous dismissals and resignations, and thus began von Neumann’s

detachment from Europe.

In 1930 he had married Marietta Kovesi, converting to Catholicism on the

occasion. In 1935 their daughter Marina was born, but they divorced in 1936. In

the meantime, he was named professor at Princeton’s Institute for Advanced Study,

where over the years he would teach courses in measure theory, operator theory,

and lattice theory. He took American citizenship and began his collaboration with

the Ballistic Research Laboratory, a laboratory of the American armed forces.

Von Neumann was, however, interested in other important areas. Intrigued since

his youth by questions of economics, he had no qualms about harshly criticizing the

Walrasian model of equilibrium and began to think about a new approach to

economic theory. More generally, his conviction that social behaviour should be

guided by rational analysis and studied with mathematical methods led him to game

theory, which will be discussed in a later chapter. Here we will only mention the
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fact that von Neumann was the first to develop the theory of zero sum games,

arriving at the formulation of the minimax theorem, and later published – in

collaboration with the Austrian economist Oskar Morgenstern – the book Theory
of Games and Economic Behaviour, today considered the official birth of game

theory.

The relatively quiet period at Princeton came to an end on the eve of World

War II; the year 1938 signalled a radical turnabout in von Neumann’s scientific

activity. Military research began to absorb increasing amounts of his time. He

worked on detonation waves, the impact effects of explosives, and the impact of

projectiles, and spent a semester in an English laboratory where he worked on gas

dynamics. It was during this period that he began to take an active interest in

problems of automatic calculation. In September 1943 he began to collaborate with

the laboratory in Los Alamos, where the top-secret Manhattan Project was devel-

oping, its objective the construction of the atomic bomb.

After the end of the war, scientists were divided about the morality of continuing

research on nuclear weapons. There were those, such as Oppenheimer, who actively

participated in the formulation of an American nuclear policy; others, such as

Einstein, sided with the pacifists. Von Neumann repeatedly claimed that his skills

were exclusively technical, but he clearly distanced himself from the pacifist

movement. His attitudes left no doubt about the fact that he was in favour of the

ulterior development of nuclear technology. Whether that was due to his strong

hostility first towards Nazism, and later towards communism, or to a kind of

patriotism for his adopted country, is still not clear today. In any case, his responsi-

bility in various political and military projects grew, as did his consulting work with

different laboratories and research institutes. He reached the apex of his career

when he was named a member of the AEC, the Atomic Energy Commission.

His frequenting the most important military laboratories, his defence of the

legitimacy of nuclear testing, and his ideas about preventative war have lent

credence to the image of von Neumann as a hawk. Many were inclined to see

a portrait of von Neumann himself in the mad scientist of the famous film

Dr. Strangelove. It’s difficult to form a thoughtful judgment about his positions.

Certainly, his personal life, the tragedy of Nazism, and his conviction that the

weaknesses shown by Western democracies had led to World War II, profoundly

influenced his thinking. But then, the image of a man thirsty for power and at the

same time submissive to the powers that be, addicted to high-speed driving, and

obsessed with sex – sex enters into everything, even in mathematics – reveals a kind

of ideological intolerance. Perhaps closer to the truth is the image of a man

accustomed to being interested and involved in social, political, and economic

questions since his youth, which led to his thinking of the scientist as a man, not

closed in an ivory tower, but on the contrary, at the centre of problems – of all

problems, political and social. And as a scientist, he carried out his work in a

manner coherent with this idea.

But let’s go back to his scientific interests in order to mention briefly another

field in which his genius expressed itself. It is clear that the complex problems that

von Neumann always dealt with, from questions of game theory to those more
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properly military, had brought to his attention the problem of performing long and

difficult calculations, which could not be tackled by the human mind in acceptably

short amounts of time. On the other hand, the first machines for fast calculation had

just begun to be built, so it is not surprising to discover that von Neumann took

particular interest in this field as well. And as always, on the other hand, his interest

was not focussed on only one aspect of the question. In fact, he worked as much on

technical questions regarding the actual construction of powerful calculating

machines, as he did on the theoretical foundations of the structure of those

machines. Thus he worked, especially with Goldstine, on developing a theory on

the principles of the computer. Above all the machine he had in mind had to be

designed for applications in scientific research. Thanks to his influence, the Institute

for Advanced Study decided to realise his project, with von Neumann following

even in the most practical phases of construction (from the search for funding to the

building of the hardware). With Goldstine and Burks, von Neumann worked out the

logical design for the computer, producing a report in which they described what we

would today call “von Neumann architecture”. His contributions to the develop-

ment of numerical analysis were also fundamental, specifically in connection with

the use of the computer to resolve complex problems.

The program for the realisation of the project required much more time than had

been foreseen and by the time the computer was donated to the University of

Princeton in 1957, it was already technologically obsolete. Be that as it may,

today von Neumann’s contribution is recognized as fundamental for the beginning

of computer studies in the United States, even if the directions taken later by

computer science may not be those that he had in mind. One of the first, spectacular,

applications that von Neumann expected from such a machine was in the field of

meteorological forecasts. Perhaps – in his daughter’s opinion – he would have

expected greater applications in the area of game theory. His daughter also believes

that an application which her father never dreamed of, but which he would have

enjoyed immensely, was the videogame!

In parallel to his projects in computer science, von Neumann also dealt specifi-

cally with the theory of information and the theory of automata. The basic idea was

that in some way the computer had to mimic the characteristics of the human brain.

And to be able to design such a machine, it is necessary to understand better how the

brain functions and to provide a logical-mathematical basis – not only descriptive –

for its functions. Von Neumann therefore entered the world of biomedical engineers

and neurophysiologists, participating in numerous conferences and explaining his

ideas on various occasions. His most celebrated contribution in this field is the

book, published posthumously and unfinished, entitled The Computer and the
Brain, containing the text of some lectures that he had been invited to give at

Yale University.

Although he held an important list of offices in public and private institutes, and

consultancy contracts with various companies, more than once von Neumann made

clear his intention to return to a more academic life. However, his projects would be

brutally brought to a halt by the disease that began to afflict him: he was diagnosed

with bone cancer. Although he was ill, he continued to work feverishly. But by the
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end of 1955 lesions to his spinal cord made it difficult for him to walk. In spite of

this, in March 1956 he signed a contract with the University of California as

consultant to the various departments. But the cancer was by then out of control,

and von Neumann died in Washington on 8 February 1957, at the age of 53.

It is out of the question to try to sum up von Neumann’s contributions to science

in general and to mathematics in particular. This would take much more space and a

different kind of competence; it is not a task for the simply curious. What we can

say to conclude this brief account of some of the aspects of his life, is that von

Neumann was certainly a true giant of the twentieth century, a figure more unique

than rare in his astonishing capacity to join a theoretical intelligence of extraordi-

nary depth to a very concrete view of science, to a concept of life that led him to be

an extremely important figure in political and social spheres, perhaps a unique

example – at least at this level – among mathematicians.
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Kurt Gödel

Completeness and Incompleteness

Piergiorgio Odifreddi

On 22 June 1936, while he was going up the steps of the University of Vienna,

Moritz Schlick was accosted by a student who first rebuked him for having written

an essay that he disagreed with, and then shot him to death with a pistol. At the trial

the assassin was declared insane, but after the Nazis annexed Austria in 1938, he

was cleared of the charges because he had made himself useful to the system by

eliminating a Jewish professor.

In the eyes of the insane and the Nazis, the real crime committed by Schlick –

who, for what it is worth, was not Jewish, but was rather a descendant of Prussian

nobility – was that he had founded, in 1924, and been the driving force behind the

Vienna Circle, that famous congregation of philosophers and epistemologists who

met every Friday evening, were inspired by Wittgenstein’s Tractatus and wor-

shipped logic as much as they loathed metaphysics.

In particular, the members of the Circle believed not only that metaphysics was

false, but that it was literally foolish. This opinion of theirs was expressed in 1931

by the Circle’s most famous member – Rudolf Carnap – in a manifesto entitled

“The Elimination of Metaphysics Through Logical Analysis of Languages”, in

which he showed that illusory pseudo-problems of a certain kind of philosophy,

for example, Heidigger’s “nothing”, can in reality be reduced to meaningless words

games or nonsensical statements. Or, in Carnap’s words, “a music played by

musicians without talent”.

Among the young people who frequented the Circle was Kurt Gödel, who

entered the University of Vienna in 1924 and immediately gravitated into

Schlick’s orbit. Schlick initiated him by having read Russell’s Introduction to
Mathematical Philosophy. At the university, Gödel also attended Carnap’s classes,

out of which came Carnap’s 1928 Logical Construction of the World and the 1934

Logical Syntax of Language. As the titles imply, these are two works in which

logic was applied to the physical world on one hand, and to human language on

the other.

Gödel, who was so curious as a child that he earned the nickname Herr Warum,

Mr Why, did not allow himself to be distracted by this kind of secondary problem,

and addressed head-on the main questions about the foundations of logic and
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mathematics raised by Leibniz, Kant, Frege, Russell, Wittgenstein, Hilbert, Poin-

caré and Brouwer. It is precisely because he chose to focus on these questions

definitively, making evident all their weaknesses, that his work is considered to be

the most important contribution ever made to mathematical logic.

The first problem that Gödel grappled with was that stated by Hilbert at the

International Congress of Mathematicians in Bologna in 1928. He gave the solution

the following year, at only 23-years old, in his degree thesis, which contained his

first great result: the incompleteness theorem for predicative logic, which is analo-

gous to that for propositional logic proven by Post in 1921. To be more precise:

analogous to the tautologies are the formulas that are true in all possible worlds

which turn out to be exactly the theorems of the predicative system Frege’s

Begriffsschrift, or – if you will – Russell and Whitehead’s Principia.

Once he had proven the completeness of logic, first propositional and then

predicative, the natural thing to do was to extend the results to mathematics,

beginning for example by proving that the theorems of the arithmetical system of

the Principia are precisely the true formulas of arithmetic. Gödel devoted himself to

this task in his degree thesis of 1931, but to his surprise he discovered that instead

there existed true formulas of arithmetic that were not theorems of the Principia.
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Even more surprising, however, was that the problem was unsolvable: it was

certainly possible to add axioms to the Principia in order to render them less

incomplete, but there were no possible additions that could have made them

complete! For this reason, the title of Gödel’s work spoke of “undecidable proposi-

tions of Principia Mathematica and related systems”, because the problem was

common to all mathematical systems past, present and future, and not only that

constructed by Russell and Whitehead.

As fate would have it, Gödel made the first official announcement of his theorem

on 7 September 1930 in Königsberg, on the occasion in honour of Hilbert, who the

next day, unawares, pronounced his motto “We must know, and we will know”,

unaware that by now it was known that not everything can be known.

The idea of Gödel’s proof was a variation on the theme of the liar paradox,

suitably modified so that it became a theorem. Where Eubulides had considered a

sentence (“this sentence is false”), Gödel considered a formula (“this formula

cannot be proved”). Naturally, since there is only one truth – or there is only one

if there are any at all – Eubulides’ sentence is paradoxical but not ambiguous.

However, there are many proofs: one for each system of axioms and rules. Gödel’s

formula is thus ambiguous and must be restated in light of a particular system, for

example, that of the Principia, and saying, “This formula cannot be proved in the

given system”.

Eubulides asked if his sentence were true or false, and discovered that neither

case was possible. Analogously, Gödel asked if his formula could be proved or

disproved, and he too discovered that neither of the two cases is possible, at least if

the system proved only truth. Because, in this case, if the formula could be proved it

would be true and thus not provable. So it cannot be proved, and thus is true: that is,

in the system there are truths that cannot be proved, exactly like in the best criminal

trials of the Mafia.

But Gödel’s formula cannot only not be proved in the system, but it also cannot

be disproved, because not even its negation can be proved: it is in fact false, and the

system only proves truth. So, the system includes formulas that can be neither

proved nor disproved. Such formulas are examples of those perennially undecidable

statements whose existence was intuited by Brouwer. Of, if you prefer, we might

say that the principle of the excluded third is not valid for provability, because

Gödel’s formulas are in fact examples of the third party in a disagreement between

two parties, “can be proved” and “cannot be proved”.

Naturally, in order for this reasoning to work, it is not sufficient that the system

considered does not prove falseness: it must also make it possible to express

formulas that say that they cannot be proved in the system. But Gödel discovered

that just one small thing was needed to make this possible. When the system has a

minimum capacity for expression, its syntax can be reduced to arithmetic in a way

that was analogous to that prefigured by Leibniz, that is, assigning simple numbers

to simple terms and composite numbers to composite terms.

Leibniz had assigned products to composite terms, without taking into account

the fact that in multiplication the factors are lost and it becomes impossible to find

them again unequivocally. Gödel got around the problem by taking advantage of
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Euclid’s theorem, according to which the decomposition of a number into prime

factors is unique, and he thus assigned to composite terms products of prime

numbers having as exponents the numbers of the components. He was therefore

also able to prove, in passing, that Wittgenstein was mistaken in the Tractatus when
he said that language could not speak about its own logical form, at least if by

logical form what is meant is syntactic structure.

In addition to making it possible to reduce its own syntax to arithmetic, the given

system must also make it possible to construct formulas that speak about them-

selves. In natural language the problem doesn’t arise, because pronouns such as “I”,

or adjectives such as “this” immediately make the construction of the sentence self-

referential, such as “I lie” or “this sentence is false”. In mathematics, the situation is

more complicated, but not impossible. For example, any equation in which a

variable appears both to the right and the left of the equal sign constitutes a self-

referential definition of the solution of the equation. And it is precisely thanks to the

fact that numbers are assigned to the formulas that Gödel is able to prove that

formulas such as “this formula cannot be proved” can be obtained by solving

appropriate equations.

Once we are aware of these circularities, however, it is not difficult to spot them

in many other areas. For example, in computer science the arrows in flow

diagrams and the command “go to” make it possible to construct a loop in the

program. In cybernetics, feedback takes account of the system’s homeostasis, that

is, its capacity to maintain equilibrium by strengthening internal connections or

weakening external agents. In biology, autopoiesis, or self-creation, describes an

organism’s capacity to reproduce itself. In chemistry, catalytic cycles or loops, in

which the product of a reaction is involved in its own synthesis, are responsible for

a system’s instability, and thus, in the final analysis, for the instability of life.

Finally, in physics, the entire universe can be interpreted in terms of a self-excited

circuit, one which generates the observer who generates that which is being

observed.

It is precisely because Gödel’s proof uses instruments that are so pervasive that

the theorem of incompleteness became a paradigm of an entire school of thought.

As a consequence, it has become one of the few – not to say only – results in

mathematics to be referred to in a musical composition, such as Hans Werner

Henze’s second violin concerto; or in poetry, as in Hans Magnus Enzensberger’s

“Homage to Gödel”; or in film, as in Fred Schepisi’s 1994 “I.Q.”; or in science

fiction novels, such as Stanislaw Lem’s Golem XVI, Rudy Rucker’s Software,
William Gibson and Bruce Sterling’s The Difference Engine, and Samuel Dela-

ney’s The Einstein Intersection, in addition to many others.

In any case, a theorem that deals with the impossibility of proving theorems is a

typical cultural expression of the twentieth century, a century that has seen all

kinds of artists describe the limits of expressions of their particular medium

through the medium itself. For example, prime example are is Luigi Pirandello’s

Six Characters in Search of an Author in literature, Federico Fellini’s film “8 and

½” in cinema, John Cage’s “403300” in music, and the monochromes by Yves Klein

in painting.
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Of course, the impossibility of completely describing a sufficiently complex

reality had already been largely anticipated. Example are found in Poetica by

Artistotle in literature, in Kant’s Critique of Pure Reason in philosophy. Indeed,

the incompleteness theorem can be considered as a reformulation and

a formalisation of the assumed principle of Kant’s The Transcendental Dialect:
that is, the fact that in order for reason to be complete and make it possible to

consider transcendental ideas, it has to be inconsistent and fall into the antimonies

of pure reason.

A strengthened version of the incompleteness theorem, proved by John Barkley

Rosser in 1936 with an argument that was analogous to that of Gödel, although

slightly more complicated due to its being based on the formula, “this formula

cannot be proved before its negation”, shows that, if a mathematical system with a

minimum expressive capacity wants to be consistent and not lapse into contradic-

tion, then it must be incomplete.

On the other hand, as far as Kant is concerned, the incompleteness theorems

prove that mathematics cannot be reduced to logic, for which instead a complete-

ness theorem holds. One of the philosophical consequences of Gödel’s theorems is

thus the definitive proof that the logic dreamed of by Frege and Russell cannot

become reality, and that instead Kant and his followers, from Poincaré to Brouwer,

were right: arithmetic is not a priori analytic but synthetic. There is no more

discussion about this.

At least for us, that is, because neither Russell nor Wittgenstein understood

antiphony and even less, the psalm. His whole life long Russell believed that Gödel

had proved that arithmetic was inconsistent, while Wittgenstein thought that there

was something the matter with the whole business, because you couldn’t prove that

something couldn’t be proved. At which point Gödel was forced to respond that

both men were pretending to be stupid, unless they actually were.

As far as Gödel himself was concerned, not a man to slight anyone, he destroyed

Hilbert’s program on consistency, showing that it too was impossible to realise: no

mathematical program that is consistent and has a minimum expressive capacity can

prove its own consistency. In fact, the theorem of incompleteness is based on the

hypothesis which says that if a system is consistent, then no given formula can be

proved: thus, if the hypothesis could be proved, then the thesis (that the formula

could be proved) could also be proved. But that formula states precisely that it

cannot be proved; therefore the formula itself could be proved, and instead it cannot.

But if a system cannot prove its own consistency, this means that it cannot justify

itself, and thus that its own justification lies outside itself: that is, there are no Baron

von M€unschausens in mathematics (academics, yes, after 1968). In particular, there

is no hope of stopping the game of passing the buck that Hilbert had tried to put a

stop to when he proposed, at the International Congress of Mathematicians in Paris,

proving the consistency of arithmetic or analysis directly and with elementary

instruments. In other words, in a single blow Gödel had also solved Hilbert’s

second problem by proving that it could not be solved.

Of course, these arguments are so subtle that they certainly caused headaches for

this author, and probably for the reader as well. Just imagine what happened to the

Kurt Gödel 73



one who worked to discover and prove them, that is, Gödel himself. Gödel, at the

age of six, had already shown evidence of some mental problems when, following

rheumatic fever that the doctors said he had recovered from completely, he was

convinced instead that he had been left with a permanent lesion to his heart.

This was the beginning of the hypochondria and mistrust of doctors that he

harboured throughout the rest of his life, and of a mental fragility that led to his

being more than once admitted to a psychiatric hospital, starting right from the early

years of the 1930s, when the effort he made to concentrate on his first theorems led

to a mental collapse. When he recovered, the only thing that one who had already

solved Hilbert’s second problem could do was solve the first, that is, that of the

continuum hypothesis.

Gödel tried, but this time he was only halfway successful: that is, he proved that

the continuum hypothesis could not be disproved in the axiomatic system for set

theory, which had been developed starting in 1908 by Ernst Zermelo, a student of

Hilbert’s, and which from that time on had been the usual point of reference for

mathematicians working on these things.

To be more precise, Gödel constructed a world of sets that satisfied both the

axioms of Zermelo and the continuum hypothesis; that is, one in which there are no

infinities whose cardinality is between those of integers and real numbers. This

world is inspired by the seventh point of Wittgenstein’s Tractatus, because this

contains only sets which can be spoken about only in the language of sets: in other

words, there are sets that must be found in all possible worlds of sets, but nothing

else.

If in this minimal world there already were infinities between those of integers

and real numbers, then the discussion would have ended there, and the continuum

hypothesis would have been disproved. But instead Gödel proved that there weren’t

any, leaving open two possibilities: either that the hypothesis could be proved – and

thus that it was true not only in its own, but in all possible worlds – or that it could

be neither proved nor disproved, because it was true in its own world but false in

another.

In 1963 Paul Cohen proved that the second possibility was the correct one,

constructing various alternatives to the minimal world of Gödel, alternatives in

which there were any number of infinities between those of integers and real

numbers. The problem that Hilbert considered to be the most difficult one of

modern mathematics was thus solved in the same way as the second had been:

that is, by discovering that it could not be solved within the usual theory of sets;

so much for “non ignorabimus”.
The possibility that the continuum hypothesis might be undecidable had actually

already been suspected by the Norwegian Thorald Skolem in 1922, when he noted

an interesting phenomenon: that one of the possible worlds of set theory contained

exactly as many elements as the set of integers and nomore. Now, a world of sets has

to contain a lot of things, among them the real numbers. Real numbers, however,

already on their own have a greater infinity than integers. Where is the catch?

At first a new paradox was feared, but then Skolem came to understand that,

simply, the real numbers of that world were not the “true” real numbers but only a
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set whose properties were the same as the set of real numbers. Analogously, the

“infinities” of that world were not the “true” ones, and the fact that there appeared to

be more “real numbers” than integers only meant that in that world there was no

bijection, or one-to-one correspondence between them.

In fact, from within that world, the infinity of infinities whose existence had been

proven by Cantor appear to be different from one another, but from outside they are
all equal to the infinity of integers. And since Skolem’s world of sets is just as valid

as any other, it is quite possible to think that there is actually only one infinity, that

of the integers known since antiquity, and that the “superinfinities” introduced by

Cantor are fictional. Or better, that we might say they come down to signalling not

the presence of many objects, but the absence of many one-to-one correspondences.

So, once again logic took its anti-metaphysical stand and was able to deconstruct

Cantor’s theory of infinities, a theory which had even caused discern in the Catholic

church. To be more precise, it was no longer necessary to interpret the theory,

which asserted that there were many infinities, in an ontological-positivistic way,

and it was possible to consider it in an epistemologically negative way: that is, as

one of the many products of the limits of mathematical thought, that is, in line with

incompleteness proved by Gödel’s.

When in 1938 Hitler invaded Austria, Gödel found himself under German rule.

To his surprise, the military doctors did not agree with his self diagnosis of a heart

condition and he was deemed to be fit for the draft, with the risk that he would have

to serve in the trenches. When he finally decided to flee, as many other members of

the Vienna Circle had already done, war had already broken out, and in order to

reach Princeton he had to cross the Soviet Union by train, the Pacific Ocean by ship,

and the United States, again by train.

That journey having completely satisfied any need he might have had for

adventure, Gödel never returned to Europe and steadfastly refused any award

offered to him by Austria, although not for the reasons that appear obvious: when

Gödel arrived in Princeton, he was met by the economist Morgenstern, another

emigrant from Austria, who asked him how the situation in Austria was. Gödel’s

answer was that the coffee was awful.

Having settled in 1939 at Princeton’s Institute for Advanced Study, he inter-

preted the rules in his own way and devoted himself to philosophy. By reading Kant

he was stimulated to discovery of one of his most surprising results, which led to his

winning the Einstein medal: the possibility of travelling through the past in keeping

with the general theory of relativity, which proved that Kant was right in consider-

ing time not as a physical reality, but rather as an a priori form of our senses. On the

other hand, in Leibniz, who Gödel considered to be an extremely gifted philosopher

because “he had gotten it all wrong”, he found the inspiration for a mathematical

proof of the existence of God. According to his wife, however, one of the things he

was most deeply interested in was demonology.

This wife was a divorced dancer, older than Gödel, with whom he had fallen in

love when still a student but was able to marry only in 1938 because his parents had

opposed the marriage. She must have had a good sense of irony, since once she said

to him at a meeting, “Kurtele, if I compare your lecture with the others, there is no
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comparison”. To be sure, her presence contributed to Gödel’s emotional stability,

and when she was admitted to hospital in the 1970s, his depression and paranoia

were given free rein. He got it into his head that someone was trying to poison him,

and died in 1978 of “malnutrition caused by personality disturbances”.

As shown by the fact that today his name is too often taken in vain, Gödel was a

god of logic; it is also true that his name is can be read as “God” and “El”, which

means God in English and Hebrew. If we want to compare him to some great god of

the past, the first who springs to mind is that prince of mathematicians, Gauss: both

published very few papers, in keeping with the motto pauca sed matura, few but

good, and both kept results in the drawer that anyone else would have boasted

about. If the most obvious parallel is Aristotle, the more appropriate one is

Archimedes: neither of the two created his own discipline, but both changed his

chosen discipline forever with his results, thus achieving a depth that is apparently

unfathomable.
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Hommage À Gödel

Hommage à Gödel

Hans Magnus Enzensberger

Homage to Gödel

tr. the poet and Michael Hamburger

M€unchhausens Theorem, Pferd, Sumpf

und Schopf,

ist bezaubernd, aber vergiß nicht:

M€unchhausen war ein L€ugner.

Gödels Theorem wirkt auf den ersten

Blick

etwas unscheinbar, doch bedenk:

Gödel hat recht.

“In jedem gen€ugend reichhaltigen System

lassen sich S€atze formulieren,

die innerhalb des Systems

weder beweis- noch widerlegbar sind,

es sei denn das System

w€are selber inkonsistent.”

Du kannst deine eigene Sprache

in deiner eigenen Sprache beschreiben:

aber nicht ganz.

Du kannst dein eignes Gehirn

mit deinem eignen Gehirn erforschen:

aber nicht ganz.

Usw.

Um sich zu rechtfertigen

muß jedes denkbare System

sich transzendieren,

d.h. zerstören.

“Gen€ugend reichhaltig” oder nicht:

Widerspruchsfreiheit

ist eine Mangelerscheinung

“Pull yourself out of the mire

by your own hair”: M€unchhausen’s
theorem is charming, but do not forget:

the Baron was a great liar.

Gödel’s theorem may seem, at first sight,

rather nondescript,

but please keep in mind:

Gödel is right.

“In any sufficiently rich system

statements are possible

which can neither be proved

nor refuted within the system,

unless the system itself

is inconsistent.”

You can describe your own language

in your own language:

but not quite.

You can investigate your own brain

by means of your own brain:

but not quite.

Etc.

In order to be vindicated

any conceivable system

must transcend, and that means,

destroy itself.

“Sufficiently rich” or not:

Freedom from contradiction

is either a deficiency symptom,

(continued)

C. Bartocci et al. (eds.), Mathematical Lives,
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Hommage à Gödel

Hans Magnus Enzensberger

Homage to Gödel

tr. the poet and Michael Hamburger

oder ein Widerspruch.

(Gewißheit ¼ Inkonsistenz.)

Jeder denkbare Reiter,

also auch M€unchhausen,
also auch du bist ein Subsystem

eines gen€ugend reichhaltigen Sumpfes.

Und ein Subsystem dieses Subsystems

ist der eigene Schopf,

dieses Hebezeug

f€ur Reformisten und L€ugner.

In jedem gen€ugend reichhaltigen System,

also auch in diesem Sumpf hier,

lassen sich S€atze formulieren,

die innerhalb des Systems

weder beweis- noch widerlegbar sind.

Diese S€atze nimm in die Hand

und zieh!

or it amounts to a contradiction.

(Certainty ¼ Inconsistency.)

Any conceivable horseman,

including M€unchhausen,
including yourself, is a subsystem

of a sufficiently rich mire.

And a subsystem of this subsystem

is your own hair,

favourite tackle

of reformists and liars.

In any sufficiently rich system

including the present mire

statements are possible

which can neither be proved

nor refuted within the system.

These are the statements

to grasp, and pull!

English translation by Hans Magnus Enzensberger and Michael Hamburger. From: Selected
Poems, Sheep Meadow Press, 1999.

# Suhrkamp Verlag; Trans. # the poet & Michael Hamburger.

Reprinted with kind permission of Suhrkamp Verlag.

(Michael Hamburger died on 7 June 2007 at his home in Suffolk. Hans Enzensberger is still

living.)
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Robert Musil

The Audacity of Intelligence

Claudio Bartocci

The Country that Went to Ruin Because of a Linguistic Gap

“Kakania was, after all, a country for geniuses; which is probably what brought it to

its ruin”.1 In the pages of The Man without Qualities, Kakania (a neologism coined

by Musil from the abbreviation “k.k.” for kaiserlich-königlich, imperial and royal)

is the ironic and scatological name used to indicate the waning Austro-Hungarian

monarchy.

The new century, the twentieth, by many too hastily hailed as the era of the

definitive triumph of Western civilization and technological progress, appeared to

have been left in ruins almost as soon as it had started by the appalling bloodbath of

the First World War. Karl Kraus entitled his hypertrophic satirical–apocalyptical

drama The Last Days of Mankind, while Stefan Zweig evoked the twilight of the old
Austria in The World of Yesterday. In spite of this, from many points of view the

Great War did not represent a clean break or essential discontinuity in Austrian

culture as much as a difficult moment of transition, a painful passage that left its

basic nature unchanged. This is not merely the persistence (at least in the context of

literature, but not only) of a “Habsburgian myth” as a fantastic and poetical

transfiguration of the era of Franz Josef,2 but of the perpetuation – in an intellectual

class that was not decimated by the war as was the case, for example, in France – of

ideas, concepts, and visions of the world: not a single Weltschauung, but a

variegated complex of Weltschauungen, in which it is nevertheless possible to

identify some common themes.

1R. Musil, The Man without Qualities, transl. by Sophie Wilkins and Burton Pike, 2 vols., Vintage

Books, New York, 1996, vol. I, p. 31. From this point on the work will be cited with the

abbreviation MWQ followed by the volume and page number (the second volume comprises the

section From The Posthumous papers, translated by Burton Pike).
2C. Magris, Il mito absburgico nella letteratura austriaca moderna (rev. ed), Einaudi, Torino,

1988.
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The leitmotifs that characterize the disordered polyphony of the culture of the

German language in the first 30 years of the twentieth century can all be traced back

(with some in evitable generalizations) to the problem of the identity of the subject

and – in strict connection to that – to limits of language, that is, the ability to express

the world through words and formulas, of the basis of the discourses that are uttered

to describe things.3 An evident red line connects Hugo von Hoffmannsthal’s The
Lord Chandos Letter (“. . .the abstract terms of which the tongue must avail itself as

a matter of course in order to voice a judgment – these terms crumbled in my mouth

like mouldy fungi”4) to Wittgenstein’s Tractatus (“The limits of my language mean

3The bibliography on this topic is enormous. We will cite only as an example A. Janik and

S. Toulmin, Wittgenstein’s Vienna, Simon and Schuster, New York, 1973, J. Le Rider, Modernity
and Crises of Identity: Culture and Society in Fin-de-siècle Vienna, transl. by R. Morris, Contin-

uum, New York, 1993 and Carl E. Schorske, Fin-de-siècle Vienna : politics and culture, Vintage
Books, New York, 1980.
4H. von Hofmannsthal, “The Letter of Lord Chandos”, in Selected Prose, trans. by Mary Hollinger

and Tania and James Stern, Routledge and Kegan Paul, London 1952, pp. 133–134. In a letter to

Edgar Karg von Bebenburg, Hofmannsthal wrote, “Words are not of this world, they are a world of

their own, a world completely independent, like the world of sounds” (H. von Hofmannsthal, Le
parole non sono di questo mondo, ed. by M. Rispoli, Quodlibet, Macerata, 2004, cf. endnote 40,
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the limits of my world”5), by way of Fritz Mauthner’s6 Sprachkritik and the

dazzling aphorisms of Karl Kraus: “once a word has entered into relationship

with the world, the end is endless”.7 Kurt Gödel observed, “The more I think

about language, the more it amazes me that people ever understand each other”.8

These motifs – at the root of which are found the reflections of such diverse

thinkers as Frege, Mach and Nietzsche – permeate all of Musil’s works – from The
Confusions of Young Törless, to the Posthumous Papers of a Living Author, to
The Man without Qualities. In the pages of this labyrinthine novel, this “work-

world”,9 Ulrich – the man who is without qualities because he possesses a sense of

the possible even in his own regard – finds himself having to deal with the elusive

evanescence of words: “Words leap like monkeys from tree to tree, but in that dark

place where a man has his roots he is deprived of their kind mediation” (MWQ, vol.
I, p. 164). Musil’s irony, using the allegory of the linguistic Babel that reigned in

Franz Josef’s empire, even identifies the main reason for its dissolution in the

checkerboard of languages:

Since the world began, no creature has as yet died of a language defect, and yet the Austrian

and Hungarian Austro-Hungarian Dual Monarchy can nevertheless be said to have perished

from its inexpressibility (MWQ, vol. I, p. 491).

Precision and Soul

For 37 uninterrupted years, from 1899 until his death in 1936, Karl Kraus never

ceased to shoot arrows at all the idées reçues of Austrian society and culture from

the pages of Die Fackel (The Torch), a small brick-red magazine in which he was

the sole author starting in 1911. 1899 was an important year, in which were

inaugurated the Karlsplatz station of the underground designed by the architect

Otto Wagner, the publication of Freud’s Die Traumdeutung (Interpretation of
Dreams) and Hilbert’s Grundlagen der Geometrie (Foundations of Geometry).
1936 – when Nazism celebrated itself at the Olympics in Berlin and grim clouds

pp. 99–100); it seems that these words would echo some observations contained in Novalis’s

Monologue.
5L. Wittgenstein, Tractatus Logico-Philosophicus 5.6.
6On Mauthner see A. Janik and S. Toulmin, Wittgenstein’s Vienna, op. cit, Chap. 5. We also note

the polemic remark of Wittgenstein: “All philosophy is a ‘critique of language’ (though not in

Mauthner’s sense). It was Russell who performed the service of showing that the apparent logical

form of a proposition need not be its real one” (Tractatus Logico-Philosophicus 4.0031).
7K. Kraus, Detti e contraddetti [Spr€uche und Widerspr€uche], Adelphi, Milano, 1987, p. 256

(cf. Dicta and Contradicta, transl. by J. McVity, University Of Illinois Press, 2001).
8Cited in R. Goldstein, Incompleteness: The Proof and Paradox of Kurt Gödel, W.W. Norton, New

York, 2005.
9See F. Moretti, Modern Epic: The World-System from Goethe to Garcı́a Marquez, transl. by
Q. Hoare, Verso, 1996, especially Chap. 7, Sect. 5.
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gathered over Europe’s future – was the year in which the philosopher Moritz

Schlick, the founder of the Vienna Circle, was assassinated on the steps of the

university by a student who was tied ideologically to the Austro-Fascist movement.

It was in this long and contradictory period that Vienna came to the fore as one of

the most vital driving forces of European culture,10 which is even more surprising

given that it was a city that was generally provincial, first the centre of a rapidly

declining empire and then the capital of a nation without political ambitions. The

cultural scene was dominated by figures who left their mark on modernity: musi-

cians such as Gustav Mahler, Arnold Schönberg, Anton Webern, Alban Berg,

Richard Strauss; architects such as Otto Wagner and Adolf Loos; writers such as

Hugo von Hofmannstahl, Joseph Roth, Kraus, Arthur Schnitzler, Heimito von

Doderer, Hermann Broch, Franz Werfel; artists such as Gustav Klimt, Oskar

Kokoschka, Egon Schiele, and then Ernst Mach and Ludwig Boltzmann, the

mathematician Hans Hahn, Schlick, Freud, Wittgenstein, Rudolf Carnap, Otto

Neurath.

The tables of famous cafés (Café Griensteidl, Café Central, the Herrenhof) or
the meeting places of the innumerable circles, dinner clubs and cultural associations

were home to interwoven discussions, often centred around opposite points of

views. The Viennese intellectual milieu was anything but monolithic; it was like

a crucible in which material extracted from various cultures was melded, a mosaic,

a chorus of voices that were sometimes dissonant. In Kraus’s words, Vienna was

“the research laboratory for the destruction of the world”. Mystics and neo-positi-

vists, symbolists and expressionists, “classical physicists” and creators of new ideas

regarding the quantum, supporters and denigrators of psychoanalysis. In this kind of

cultural climate, literature and science don’t necessarily go hand in hand, as is

sometimes claimed: they are opposing and often quite distant universes. To be sure,

Mach – with his “analysis of sensations”, with his concept of “the unsavable I” (das
unrettabare Ich) – had a profound influence on writers like Hofmannstahl and Bahr.

To be sure, Schnitzler was trained in medicine; Leo Perutz flanked his literary work

with his profession as a mathematician in the insurance business for many years;

Elias Canetti had a degree in chemistry; Broch, abandoning at 40 the management

of his father’s textile firm, dedicated himself to serious study of philosophy and

mathematics (the leading character of his novel Die Unbekannte Größe (The
Unknown Quantity) is a mathematician). But only Musil, we believe, attempts

with lucid awareness to fill the gap betweenDichtung and Erkenntnis,11 to reconcile
the disagreement between “precision and soul”. The fundamental tension between

literature and science could be overcome and reshaped as a model for novel writing,

freed from the narrative conventions of the nineteenth century, if one only knew

how to describe the facts, not as they are, but as they could be, knew how to capture

10In spite of this, as E. Gombrich writes, “The thesis that most of the intellectual life of this century

[the 1900s] was invented in Vienna is, of course, not worth discussing” (The Visual Arts in Vienna
circa 1900, “Occasions”, vol. 1, The Austrian Cultural Institute, London, 1997).
11Cf. L. Dahan-Gaida, Musil. Savoir et fiction, Presses Universitaires de Vincennes, Saint-Denis,
1994, p. 17.
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“the mystery of what happens”.12 The ideal archetype of this new form of novel –

which would become that of Man without Qualities – is shown in the following

passage:

The goal of scientific thought is the unambiguous expression and correlation of facts. It is

most admirable where it permits one to travel nakedly through its splendid hardness.

Essayistic thought can give no contrast to this but should rather be a continuation,

authorized to go where scientific thoroughness finds no foundation that will hold firm

with the strength essential for its application. . .13

Too Intelligent To Be a Poet

In 1901 Musil earned a degree in mechanical engineering at the Brno Polytechnic.14

His basic scientific training – mathematical analysis, rational mechanics, physics –

was probably not very different from that given to Einstein, more or less in the same

years, at the Zurich Polytechnic, or to Wittgenstein, some years later, at the Berlin

Technisches Hochschule. After a brief, unsatisfying stint as an unpaid assistant at

the Technical University of Stuttgart (to while away the time he began writing his

novel The Confusions of Young Törless), in 1903 he enrolled at Humboldt Univer-

sity in Berlin, where he attended courses in philosophy and psychology under the

guidance of Carl Stumpf. Stumpf (1848–1936), who was one of the greatest experts

in experimental psychology, and author of works on spatial representation and the

physiological and psychological aspects of musical phenomena (his Tonpsycholo-
gie is fundamental), also undertook important research regarding the structuring of

cognitive processes, in close relation to the investigations carried out by Alexius

von Meinong and by a group of other scholars including Christian von Ehrenfels, in

which it is possible to find traces of the origin for many motifs that would become

part of Gestaltpsycologie, the “psychology of shape”.

The Berlin years were crucial for Musil. In 1905 he completed Törless, which
was published the following year to good critical acclaim; the same year he also met

Martha Marcovaldi, née Heimann (1874–1949), mother of two children from a

previous marriage, who became his wife in 1911. Even though the academic world

had left him unsatisfied, Musil left off the literary activities that he had planned in

order to finish his studies: in 1907 he designed a refined model of a chromatograph

(a device used to study the laws of perception of colours) and in 1908 he received

12Musil in a 1926 interview, quoted in C. Magris, Il mito absburgico, op. cit., p. 303.
13R. Musil, Saggistica (1913), in Saggi e Lettere, ed. and with an introduction by B. Cetti

Marinoni, 2 vols., Einaudi, Torino 1995, vol. 1, pp. 193–194.
14The biographical information regarding Musil is mainly drawn from the Cronologia della vita
e delle opere in R. Musil, Diari 1899–1941, edition by A. Frisé, ed. and with an introduction by

E. De Angelis, 2 vols. Einaudi, Torino, 1980, vol. 1, pp. XLI-LVI, and from Wilfried Berghahn,

Robert Musil, Rowohlt, Reinbek, 2004. The most extensive biography is Karl Corino, Robert
Musil. Eine Biographie, Rowohlt, Reinbek, 2003.
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his doctorate in philosophy with a thesis entitled Beitrag zur Beurteilung der
Lehren Machs (On Mach’s Theories). In the meantime, a falling out had occurred

with Stumpf, who – perhaps in resentment of the timing of the publication of

Törless – judged Musil’s thesis to be insufficiently critical of Mach and out of

line with Stumpf’s own rigidly dualistic psychology.15 In December 1908 Musil

was invited by von Meinong, a professor of philosophy in Graz, to become his

assistant. Anguishing over the decision, Musil finally declined, deciding instead to

pursue a career as a writer: “my love for the literary arts is no less than that for

science”.16 In 1910, Musil, by now almost 30, settled in Vienna, accepting a

position as assistant librarian at the Polytechnic.

Musil’s store of knowledge of philosophy and science went beyond what he had

learned during his time at university, which was undoubtedly already even broader

in scope than that of the majority of his fellow writers. His Diaries, as well as his
letters, lectures, essays and The Man without Qualities, testify to the wide scope of

his interests and his insatiable curiosity. As far as philosophy is concerned, he read

Plotinus and the German mystics (don’t forget that in the negative theology of

Meister Eckhart the supreme being is said to be ohne Eigenschaften, “without
qualities”), he studied Boltzmann, Husserl and Cassirer, he pored over Aristotle,

Leibniz and Nietzsche. He was surely up to date on the studies carried out by the

Vienna Circle, although he didn’t always share the positions they took. For exam-

ple, in 1920 in his diary he disdained Otto Neurath (“an academic brawler”17), and

in 1937 he was harshly critical of the ingenuity of “physicalism” applied to

psychology by one of Schlick’s students (“how much more precisely things were

carried out in Stumpf’s school”,18 he noted). Greater affinity is likely to be found

with Rudolf Carnap, for example, with his ideas regarding the process through

which the knowing subject represents the external world beginning with elementary

information. In a letter dated 29 October 1935 Musil wrote: “Among all the books

that I have read this year, the one that made the ‘biggest impression’ was undoubt-

edly The Logical Syntax of Language by Rudolf Carnap”.19 In this book, published
in 1934, Carnap formulated his principle of tolerance (also known as the principle

of conventionality of language forms), which states that there exist a multiplicity of

logical structures or frameworks that can be used to express the various discourses

of the empirical sciences, and that it is possible to choose conventions freely among

them. Statements of the principle of tolerance that are substantially equivalent (and

certainly independent because of the differences in dates) are scattered throughout

Man without Qualities, especially in the second volume: “What happens doesn’t

15Cf. M. Montinari, “Introduction” to R. Musil, Sulle theorie di Mach, Adelphi, Milano, 1981,

p. ix.
16Saggi e lettere, op. cit., vol. II, p. 537.
17Diari, cit., vol. I, p. 653.
18Saggi e lettere, op. cit., vol. II, p. 1369 (‘Tagebuch 33’, ca. 1937). In 1934 he noted, “Unity of the
sciences, where was this dogma come from?” (Ibid., vol. II, p. 1312).
19Ibid., vol. II, p. 804.
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really matter?” Ulrich tells Agatha, “Waht counts is the system of ideas by which

we understand it, and the way it fits into our personal outlook” (MWQ, vol. II,
p. 743). Both Carnap and Musil claimed that “It is not our business to set up

prohibitions’ (Wir wollen nicht Verbote Aufstellen), but to arrive at conventions”.20

Profound and determinant were the influences exerted by Gestaltpsychologie on
the works of Musil, especially as it has been formulated in the work of Wolfgang

Köhler (another of Stumpf’s students), Kurt Koffka and Max Wertheimer, the three

most authoritative scholars of the Berlin school as opposed to the Graz school,

whose members were students of Meinong. In 1920 Musil read Köhler’s book Die
physischen Gestalten in Ruhe un im Station€aren Zustand (Physical Gestalt in Rest
and Stationary State), defining it as “extraordinary”,21 in which can be detected an

echo of the teaching of a theoretical physicist such as Max Planck. In the long essay

of 1921 entitledWege zur Kunstbetrachtung (How to Approach Art), Musil gave the

work with the same title by Johannes von Allesch (Musil’s schoolmate in Berlin and

one of his closest friends as a youth) a very positive review, recognising “its

incomparable merit . . . of having founded for the first time a method that is flexible

yet resistant for aesthetic evaluation”.22 As Claudio Magris writes, “. . . from

Gestalt theory Musil takes the idea that everything is given as wholes before

parts, as totalities that are perceived individually, as an immediate relation on the

part of all and not as a sum of parts”.23

As far as the exact sciences are concerned, Musil kept himself up to date.

“Robert is presently very busy with Einstein’s theories, but he is looking for another

way”, wrote his wife Martha to her daughter Annina Marcovaldi on 17 May 1923.24

But even in his essay “The Mathematical Man”, written 10 years earlier, there is

explicit mention of the new ideas of relativity, cited as an example of the “confi-

dence and pride in the devilish riskiness of his intellect” with which the scientist

addresses the scandals of reason:

I could adduce still other examples, for instance when mathematical physicists were

suddenly wildly bent on denying the existence of space and time. But they did not do this

in a dreamy haze, the way philosophers sometimes do (which everyone then immediately

excuses by saying: Look at their profession), but with reasons that rose up before us quite

suddenly as palpably as an automobile, and became terribly credible.25

In May 1923 Musil sent a “note on quantum theory” (unfortunately not pre-

served in the Nachlass) to Annina: “it certainly won’t serve to explain it to you, and

20R. Carnap, The Logical Syntax of Language, transl. by Ametha Smeaton, Open Court Publishing,

Chicago, 2002, p. 51.
21Saggi e lettere, op. cit., vol. II, p. 604.
22Ibid., vol. II, p. 268.
23C. Magris, L’anello di Clarisse. Grande stile e nichilismo nella letteratura moderna, Einaudi,
Torino, 1999, p. 233.
24Saggi e lettere, op. cit., vol. II, p. 635.
25R. Musil, Precision and Soul: Essays and Addresses, ed. and transl. by Burton Pike and David

S. Luft, University of Chicago Press, Chicago, 1995, p. 39.
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at the moment not even I know more about quanta then is written here, but perhaps,

when you will have read it, it will give you a first sense of familiarity with the

subject”.26

With regard to mathematics – described figuratively as “the bold luxury of pure

reason”27 – Musil was undoubtedly aware of the new studies in set theory and the

research in the foundations of mathematics, and his awareness was not superficial:

And suddenly, after everything had been brought into the most beautiful kind of existence,

the mathematicians – the ones who brood entirely within themselves – came upon some-

thing wrong in the fundamentals of the whole thing that absolutely could not be put right.

They actually looked all the way to the bottom and found that the whole building was

standing in mid-air. But the machines worked! We must assume from this that our existence

is a pale ghost; we live it, but actually only on the basis of an error without which it could

not have arisen. Today there is no other possibility of having such fantastic, visionary

feelings as mathematicians do.28

Musil’s reflections on notions of chance and probability29 are very important and

essential to understanding that concept of the “sense of the possible” that is central

to Man without Qualities. Beginning with Boltzmann’s kinetic theory of gas, and

taking a critical look at the works of Neurath, Carnap and von Mises (whose circle

he frequented during his stay in Berlin in the years 1931–1933), Musil arrives at a

statistical concept of the notion of probability based on the “law of large num-

bers”30 and in clear contrast with the subjective concept (epistemic) as well as the

objective concept (ontological).31

The scientific concepts, and in particular those drawn from mathematics and

physics, don’t figure merely as accessories in Musil’s work, but are fundamental,

providing a program for the process of literary creation itself:

But all intellectual daring today lies in the natural sciences. We shall not learn from Goethe,

Hebbel or Hölderlin, but from Mach, Lorentz, Einstein, Minkowski, from Couturat,

Russell, Peano. . .
And from within the program of this art the program of an individual work of art might

be this:

Mathematical daring, dissolving souls into their elements and unlimited permutation of

these elements; here everything is related to everything else and can be built up from these

elements.32

26Saggi e lettere, op. cit., vol. II, p. 634 (the note was attached to the same letter fromMartha cited

in note 24).
27R. Musil, “The Mathematical Man”, in Precision and Soul: Essays and Addresses, op. cit., p. 41.
28R. Musil, “The Mathematical Man”, in Precision and Soul: Essays and Addresses, op. cit., p. 42.
29An essential treatment of these notions is found in the essay by J. Bouveresse, L’homme
probable. Robert Musil, le hasard, la moyenne et l’escargot de l’histoire, Éditions de l’Éclat,

Combas, 1993.
30In the play The Fanatics [Die Schw€armer, 1921], Stader sets out to found ‘the scientific

organisation of the universe’ based on the law of large numbers.
31Cf. “Tagebuch 10” in Diari, op. cit, pp. 694–708.
32R. Musil, “Profile of a Program”, in Precision and Soul: Essays and Addresses, op. cit., p. 13.
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It is however also true that Musil often did not take kindly to being considered an

“essayist” imbued with scientific ideas, or still worse, a philosopher; he shielded

himself, defending the specifically poetic nature of his work. In a letter thanking

Einstein written in 1941, for example, he defined himself with Nietzsche’s words,

Nur Narr! Nur Dichter! (only a jester, only a poet!).33 However, this seems to imply

that this and similar declarations conceal a truth that is the opposite of their literal

meaning, and perhaps they should be taken as a kind of ironic (and vaguely self-

complacent) reply to the judgment of the German academy of poets, which had

rejected his candidacy for membership on grounds that he was “too intelligent to be

a poet”.34

Integrals To Grow Lean Again

Already in Törless, mathematics is the main tool for critical investigation, and at the

same time, a metaphor for a knowledge that is other, almost a bridge without any

visible means of support suspended over an abyss, like in the famous passage on the

strange “stuff about imaginary numbers”:

Just think about it for a moment: in that kind of calculation you have very solid figures at the

beginning which can represent metres or weights or other measures. And there are real

numbers at the end of the calculation as well. But they’re connected to one another by

something that doesn’t exist. Isn’t it like a bridge consisting only of the first and last pillars,

and yet you walk over it as securely as though it was all there? . . . For me there’s something

dizzying about a calculation like that, but the really uncanny thing about it is the strength

that exists in such a calculation, holding you so firmly that you land safely in the end.35

This is the “audacity” that is proper to mathematics, and it includes activities

which, although at first sight don’t appear to be of any use at all, are actually some

of the “most entertaining and intense adventures of human existence”.36 Thus, the

work of the mathematician – whose specific nature Musil is able to capture perhaps

better than any other writer – is rather like that of an acrobat:

Ulrich, meanwhile, was at home, sitting at his desk, working. He had got out the research

paper that he had interrupted in the middle weeks ago [. . .] He had drawn the curtains and

was working in the subdued light like an acrobat in a dimly lit circus arena rehearsing

dangerous new somersaults for a panel of experts before the public has been let in. The

precision, vigour, and sureness of this mode of thinking, which has no equal anywhere in

life, filled him with something like melancholy (MWQ, vol. I, p. 115).

33Saggi e lettere, op. cit., vol. II, p. 970.
34A judgment similar to this was expressed by Benjamin, who, in a letter to Scholem, definedMusil

as “more intelligent than necessary” (cited in E. De Angelis, Robert Musil. Biografia e profilo
critico, Einaudi, Torino, 1982, p. 45, n. 1).
35R. Musil, The Confusions of Young Törless, transl. by Shaun Whiteside, Penguin Books, New

York, 2001, p. 82.
36R. Musil, “The Mathematical Man”, in Precision and Soul: Essays and Addresses, op. cit., p. 41.
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But mathematics does not only reflect the fact that “thinking itself is a vast an

undependable affair”,37 it also constitutes an antidote to the sterile nihilsim of

thinking, a healthy way of protecting oneself against the spreading Kitsch of bad

literature:

We beat the drum for feeling against intellect and forget that without intellect – apart from

exceptional cases – feeling is as dense as a blockhead [dick wie ein Mops]. In this way we

have ruined our imaginative literature to such an extent that, whenever one reads two

German novels in a row, one must solve an integral equation to grow lean again.38

In the formalist conception of mathematics, theorised by David Hilbert in order

to find a way out of the so-called “foundational crisis”, the binomial of syntax/

semantics of ancient tradition was demolished, and the central problems became

those relative to the coherence and completeness of the axiomatic system: the

axioms establish a set of relationships between entities that are abstract, primitive,

indefinite, genuine ontological unknowns that correspond to neither things or facts.

As Hilbert himself wrote, “[I]t is surely obvious that every theory is only a

scaffolding or schema of concepts together with their necessary relations to one

another, and that the basic elements can be thought of in any way one likes. If in

speaking of my points I think of some system of things, e.g. the system: love, law,

chimney-sweep . . . and then assume all my axioms as relations between these

things, then my propositions, e.g. Pythagoras’ theorem, are also valid for these

things”.39 Because of the arbitrariness intrinsic to mathematics (it was no coinci-

dence that Valéry observed in his Cahiers that “les mathématiques sont le modèle

de l’arbitraire”, mathematics is the model of arbitrariness) it is a discipline that is

indissolubly linked to that “sense of the possible” that is the linchpin of Musil’s

novels: it is in fact “a construction of possible orders, a priori to any thought

considerations regarding applications and any ‘natural’ foundations”.40 The free-

dom of mathematics to create its own theories, limited only by the obligation to

respect the coherence of the axioms, suggests that this is the case in real life as well,

given that the premises have never been necessary but are rather accidental:

It might even be fair to say that they were tricked, since nowhere is a sufficient reason to be

found why everything should have turned out the way it did; it could just as well have

turned out differently (MWQ, vol. I, pp. 136–137).

The principle of “sufficient reason” that Ulrich states in his conversation with

director Leo Fischel (MWQ, vol. I, p. 140) is thus not only a sneer at Leibniz, but

37Ibid., p. 40.
38Ibid., p. 42.
39Letter from Hilbert to Frege dated 29 December 1899, as excerpted by Frege in G. Frege,

Philosophical and Mathematical Correspondence, ed. by G. Gabriel, et al., Basil Blackwell

Publisher, Oxford, 1980, p. 40.
40M. Cacciari, “L’uomo senza qualità” in Il romanzo. Volume quinto. Lezioni, ed. by F. Moretti,

Einaudi, Torino, 2003, p. 503.

88 C. Bartocci



also an indispensable philosophical instrument for measuring himself against a

reality which conceals “a senseless craving for unreality” (MWQ, vol. 1, p. 311).
Ulrich cultivates two rather different branches of mathematics. He is described

to us both as a mathematical physicist interested in fluid mechanics (cf.MWQ, vol. I,
p. 115 and vol. II, p. 746: “his eyes immediately alighted on the equations in

hydrodynamics where he had stopped”), and as “one of those mathematicians called

logicians, for whom nothing was ever ‘correct’ and who were working out new

theoretical principles” (MWQ, vol. II, p. 939).41 It might seem curious that such

disparate interests co-exist in the same person, but on careful reflection it can be

seen that both of these areas of mathematics provide clues to something specific

regarding the problem mentioned earlier, of the impossibility of expressing the

world through language. The aim of mathematical physics – as Heinrich Hertz

points out in the introduction to his Principles of Mechanics – is to construct

“models” (Bilder or Darstellungen) rather than “representations” (Vorstellungen)
of phenomena, thus it constitutes the necessary technical premise for Ulrich’s

“distinctly statistical” nature, which is reflected, for example, in what he says to

Gerda when he tries to seduce her:

Suppose the moral sphere works more or less like the physical, as suggested by the kinetic

theory of gases: everything whirling around at random, each element doing what it will, but

as soon you work rationally what is least likely to result from all this, that’s precisely the

result you get! Such correspondences, strange as they are, do exist. So suppose we also

assume that there is a certain number of ideas circulating in our day, resulting in some

average value that keeps shifting, very slowly and automatically – it’s what we call

progress, or the historical situation (MWQ, vol. I, p. 535).

In addition to this, mathematical physical reasoning helps in becoming familiar

with those “mathematical problems that do not admit of a general solution but do

allow for particular solutions, which one could combine to come nearer to a general

solution” (MWQ, vol. I, p. 388). When “the problem of human life” is also

addressed in these terms, Ulrich – who, like his sister Agathe, is “hal-integrated

with himself, a person of ‘piecemeal passions’” (MWQ, vol. II, p. 766) – is able to

recompose the jumbled tesserae of the mosaic of reality, overcoming the intrinsic

limits of language, and is able to “look at the world with the eyes of the world”, so

that these are not “meaningless single things, individual elements, that are as sadly

separated from one another as the stars in the night”.42

On the other hand, “logistics” – emblematic of the “spiritual daring” – opens the

way to the “utopia of precise life”, teaching how, by means of the inflexible rigour

of reason, “to be demanding with ourselves” and shows, through the indissoluble

unity of a “sense of reality” and “sense of possibility”, that the world cannot be

taken literally sic et simpliciter:

41However, Musil adds that Ulrich “he was not entirely satisfied with the logic of the logicians

either. Had he continued his work, he would have gone back to Aristotle; he had his own views of

all that” (MWQ, vol. II, p. 939).
42R. Musil, “Tonka”, in Tonka and Other Stories, transl. by E. Wilkins and E. Kaiser, Picador,

London, 1988, p. 298.
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God does not really mean the world literally; it is a metaphor, an analogy, a figure of speech

that He has to resort to for some reason or other, and it never satisfies Him, of course. We

are not supposed to take Him at his word, it is we ourselves who must come up with the

answer for the riddle He sets us (MWQ, vol. I, p. 388).

It’s a dilemma: “. . . every word demands to be taken literally, otherwise it

decays into a lie: but one can’t take words literally, or the world would turn into

a madhouse!” (MWQ, vol. II, p. 813). Not only that, but it’s a dangerous dilemma,

as shown by the character of Moosbrugger, a mad criminal who calls a squirrel a

“fox” or a “hare”, in the literal sense of the animal’s name in the German dialect,

and that of Clarisse, who is destined to go mad, because of the “wretched streak of

genius” in her, “the secret cavern where something calamitous was tearing at chains

that might one day give away” (MWQ, vol. I, p. 155). In the dense network of dis-

onthologized relationships that make up the world, only metaphor – “the gliding

logic of the soul” (MWQ, vol. I, p. 647) – appears capable of providing a solution,

but this is a fallacy that fails to untie the knotty relationships between “precision

and soul”:

A metaphor holds a truth and an untruth, felt as inextricably bound up with each other. If

one takes it as it is and gives it some sensual form, in the shape of reality, one gets dreams

and art; but between these two and real, full-scale life there is a glass partition. If one

analyzes it for its rational content and separates the unverifiable from the verifiable, one

gets truth and knowledge but kills the feeling (MWQ, vol. I, pp. 634–635).

Perhaps there is no solution, “die Welt, wie sie ist, allenthalben gebrochen

erscheint durch eine Welt, wie sie sein könnte”.43 It is useless to wield the blade

of irony; useless to string together reasonings:

[Ulrich] had no illusions about the value of his philosophical experimentation;

even if he observed the strictest logical consistency in linking thought to thought,

the effect was still one of piling one ladder upon another, so that the topmost rungs

teetered far above the level of natural life. He contemplated this with revulsion

(MWQ, vol. I, pp. 648–649).
Musil’s novel remains open, not unfinished but in-completed; but it is also true

that the great narrative machine of The Man without Qualities, like the mathemati-

cal method described by Wittgenstein, “is not a vehicle for getting anywhere”.44

Ulrich and Agathe are the “unseparated and not united” (MWQ, vol. II, p. 1391);
their “journey to paradise” is an immobile permanence, in silence, suspended in the

atemporality of the “other state” (der andere Zustand). “The truth is not a crystal

that can be slipped into one’s pocket, but an endless current into which one falls

headlong” (MWQ, vol. I, p. 582).

43R.Musil,DerMann ohne Eigenschaften, ed. by Adolf Frisé, 2 vols., Rowohlt, Reibek, 1992, vol. 2,
p. 1337: “the world as it appears is everywhere shattered by the world as it could be”.
44Friedrich Waismann, Ludwig Wittgenstein and the Vienna Circle, Brian McGuinness, ed., Basil

Blackwell Publisher, Oxford, 2003, p. 33.

90 C. Bartocci



The Life, Death and Miracles of Alan
Mathison Turing

Settimo Termini

The life of Alan Turing is described in many biographies. The best and most

encyclopaedic of these is that of Andrew Hodges; quite pleasant is the agile volume

by Gianni Rigamonti, Turing, il genio e lo scandalo (Flaccovio editore, Palermo,

1991). Both of these also make mention of his tragic end, which certainly casts a

shadow on the mores English society at the time; but of course, who knows how

other societies might have behaved?

And the miracles? Well, yes, he worked those too, or at least – if we want to give

credit to Kurt Gödel – he worked hand in glove with the other logicians of the first

half of the twentieth century, and as far as we know even a single miracle is enough

to merit beautification.

In the introduction to one of his books on the theory of computer science, Martin

Davis wrote that:

It is truly remarkable (Gödel. . .speaks of a kind of miracle) that it has proved possible to

give a precise mathematical characterization of the class of processes that can be carried out

by purely mechanical means. It is in fact the possibility of such a characterization that

underlies the ubiquitous applicability of digital computers.

Davis – a great American logician and computer scientist to whom are owing

many important results, making it possible for Yuri Matiyasevich to take the final

step towards solving Hilbert’s tenth problem – was a student of Emil Post, another

great mathematician and logician who (between one depression and the next)

contributed to the development of the admirable symphony that is the theory of

computability. Post, like Turing, had some very unhappy moments, but perhaps we

just can’t understand how the creation of such high constructions can make any

kind of difficult moment fade into the background.

But what part does Turing play in any of this? He plays a part because he was one

of the creators and founders of this theory, along with Alonzo Church, Stephen Cole

Kleene and Gödel. Of all of these, Turing was the one who, from the very

beginning, most firmly believed in the generality of this theory and its revolutionary

C. Bartocci et al. (eds.), Mathematical Lives,
DOI 10.1007/978-3-642-13606-1_13, # Springer-Verlag Berlin Heidelberg 2011
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importance. By analysing the way in which a human being proceeds when he has to

perform an arbitrary computation, he extracted some basic, essential elements and,

idealising them, created an abstract model of a machine, called the Turing machine.

Not content with this, he also stated a thesis, known as the Church-Turing thesis,

which states that any function that is intuitively computable – that is, a function

such that we have the impression or the conviction of its being solvable in one way

or another, using whatever ideas or techniques that spring to mind at the moment –

is also computable with a Turin machine.

In that very same period, Alonzo Church had proposed a different model of

calculus (the so-called lambda calculus), which was more formal and less intuitive.

Turing, in an appendix to his article, proved that the two models were equivalent.

Gödel, besides being timid and introverted, was also more cautious than the

other members of this bunch. When they began to talk to him about these things and

of the possibility of constructing a theory that would grasp the intuitive notion of

computable in a completely general way, he was sceptical. In those years, logic had

taken many steps forward, some quite disconcerting. Of some of those steps –

crucial ones – he himself had been the greatest and sole artificer. But the results

were always tied to a particular formalism, to a specific formal system. This had

been the case with the notion of definable and with that of provable. Why was it

necessarily different for that of computable? But reflective and honest as he always
was, Gödel thought and rethought and in the end, he became convinced that the

opposite was true. Once convinced, he was the one who most forcefully underlined

the importance of these results every time he returned to the subject.
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In 1946 Gödel wrote:

This importance [of Turing’s computability] is largely due to the fact that with this concept

one has for the first time succeeded in giving an absolute definition of an interesting

epistemological notion, i.e. one not depending on the formalism chosen. . . . For the concept
of computability, however, although it is merely a special kind of demonstrability or

decidability, the situation is different. By a kind of miracle it is not necessary to distinguish

orders, and the diagonal procedure does not lead outside the defined notion.

Here is the miracle that we can present to the petitioner in the case for beatifica-

tion. It is worthwhile noting that Gödel, in presenting his results, had never before

spoken of a miracle.

Again, in 1965 he wrote:

The concept of “computable” is in a certain sense “absolute”, while practically all other

familiar meta-mathematical concepts (e.g. provable, definable, etc.) depend quite essen-

tially on the system with respect to which they are defined.

The miracle, then, consists in having formulated a theory that catches hold in an

integral way of an intuitive notion – that of computable – as well as in the fact that

in this theory we are also able to demonstrate several interesting things. Let’s

mention only two. One positive result and one negative.

The positive result tells us that there exists a UNIVERSAL Turing machine, that

is, a unique model capable of doing the work of any other particular or specific

Turing machine. This is what we are accustomed to today: any computer whatso-

ever, even our own laptop that weighs less than 2 kg, can do everything (everything,

that is, that can be done on a computer; let’s not exaggerate!). It’s not that my

computer can do, in principle, different things than what my friend’s computer can

do, not taking into consideration concrete limitations such as memory and the like.

That is, our computers are – in certain sense – universal Turing machines. Now we

can better understand what Martin Davis meant in the passage quoted earlier.

The negative result tells us that there are problems that are undecidable, that is –
roughly speaking – there exist well posed questions to which it is not possible to

give “algorithmic” answers. One example is given by the theory known as the

“halting problem”: there is no algorithm that can tell us whether a generic program

which we have given input certain initial values for the variables will – sooner or

later – finish running, providing us with the result of the finished computation, or if

it will continue to run forever (as might happen if we ask the computer to give us a

value for a function at a point where it is not defined). An example that is

mathematically filled with this kind of problem is Hilbert’s tenth problem.

The theory of computability came out of Turing’s head (and other great heads

like his). One strange coincidence is that everyone came together in order to find

these results independently in the mid-1930s (the works appeared in 1936). With

respect to his companions, Turing did something more. We have already mentioned

that his model – his machine – could be visualised, in contrast to other proposals,

though these were mathematically equivalent. We have also mentioned the deter-

mination with which he sustained his ideas. During the war, he was successful in

deciphering the secret codes of the German navy and, after the war, he concerned

The Life, Death and Miracles of Alan Mathison Turing 93



himself with constructing computers while contemporaneously delineating the

fundamental mathematical elements of a theory of morphogenesis.

In 1950 he then wrote an article provocatively entitled “Computing Machinery

and Intelligence” for the English philosophy journal Mind. He jokingly described

what computers would be able to do, introducing a game (the imitation game) as an

empirical test to establish a machine’s intelligence. The day when we can no longer

distinguish – from the answers given by a human being and a machine – which is

the human and which the machine, will be the day that machines have achieved an

“acceptable” level of intelligence (Fig. 1).

In a word, in his free time, he also invented artificial intelligence, 5 years before
its name was invented. His student, Robin Gandy, who passed away some years

ago, recalled that Turing had a lot of fun writing this article, and roared with

laughter as he read bits of it to him. More signs of his greatness – the ability to

laugh even about his own work, and to have fun while doing important things –

absolute greatness.

Gandy, in reconstructing the birth of the theory of computability, noted that the

existence of a profound theory is helpful for the development of the technologies

related to it. This was the case with electricity, whichwas based onMaxwell’s theory.

This has also been the case for computer science, which was based on the theory of

computability. But this was not the case for internal-combustion engines, which

contributed to the development of thermodynamics instead of finding it already ready

and waiting. It is no coincidence that they developed much more slowly.

Up to now we have been lucky with computer science, but the new develop-

ments, Internet and distributed systems, have not had a true theory to base them-

selves on. For the essential problems in these sectors, the theory of computability as

a point of reference is too remote or generic to play a significant role. If we want the

continued development of our technologies to be carried out quickly, as it has been

so far (and not totally alien, as technological development not based on general and

profound theory threatens to be), we would do well to invest in fundamental

research, inviting everyone to reflect on the important fundamental problems,

hoping that sooner or later one of Turing’s heirs will lend a hand in providing us

with a theoretical point of reference for what is happening.

“Who Is” A. M. Turing

Alan Mathison Turing was born near London on 23 June 1912. Son of an officer in

the Indian Civil Service who spent long periods abroad with his wife, Alan was

fostered by family friends and attended English Public School, showing talent and a

specific interest in following his own ideas, independent of the teaching he

received. In spite of this (or perhaps thanks to it) Turing won every single scholastic

competition in mathematics.

His first interests and extra-curricular readings concerned Einstein’s articles on

relativity, then recently published, and the newborn field of quantum mechanics. In

1931 he won a scholarship and entered King’s College in Cambridge, where he
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Fig. 1 The “Enigma” machine
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turned his attention to logic and the philosophy of mathematics, under the influence

of Bertrand Russell. He was a sympathiser with the pacifist movement, but he never

joined an organisation.

In 1934 he completed his studies and the next year attended an advanced course

in the foundations of mathematics taught by Max Newman, with whom he was to

remain in contact. During the course he came to know Gödels’s theory of incom-

pleteness and Hilbert’s problems of decidability, and began to work on his own

original approach to them.

He became a fellow of King’s College in 1935 with a thesis on the calculus of

probability, but he also continued to work on decidability. In 1936 he published the

fundamental article “On Computable Numbers with an Application to the Entschei-

dungsproblem”, where he introduced an ideal machine (today called the Turing

machine) which formalised the intuitive idea of algorithm beginning with the

elementary operations that are characteristic of all calculations.

His work in decidability brought him into contact with Alonzo Church, who at

that time was working on the same problems. From 1936 to 1938 Turing studied

under Church at the Institute for Advanced Study in Princeton.

Back in England, he was invited to Bletchley Park by the Government Code and

Cipher School (GCCS) to participate in the project of deciphering the German

Enigma code. Here he was able to put to use all of his skills in logic and statistics

joined with his talent for constructing computer machinery. The result was a

remarkable contribution to the construction of some “bombes”, electromechanical

devices for calculating, named for their characteristic ticking. As early as 1941 they

were able to decipher the secret messages sent by the German navy. In 1945 Turing

received the OBE for his wartime service.

After the war, he took part in a project to construct a computer for the National

Physical Laboratory, and returned to academic life in Cambridge and to mathematics.

In 1948 he was invited by his former teacher Newman to transfer to the University

of Manchester. In 1950 he published another memorable article, “Computing

Machinery and Intelligence” in the journal Mind, introducing the topic of artificial

intelligence. He was also something of an athlete. He participated in marathons and

decathlons, achieving world-class standards.

He was elected a fellow of London’s Royal Society in 1951, mainly for his work

on decidability of 1936, but his curiosity also drove him to investigate the mathe-

matical structures in biology. In 1952 he published a study on the evolution of

living organisms. In the meantime, this being the Cold War period, he had secretly

begun to work again for the GCCS.

In 1952 he was convicted of gross indecency for homosexual acts, and as an

alternative to prison was sentenced to undergo oestrogen treatment. Because of the

conviction, he lost his security clearance and could no longer work on deciphering

codes. He and his colleagues and scientific correspondents, both British and

foreign, were kept under constant surveillance.

Turing died on 7 June 1954, apparently from eating an apple containing cyanide.

The conclusion of the official inquest was that he had committed suicide, but his

mother always claimed his death an accident due to carelessness while conducting

chemical experiments.
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Renato Caccioppoli

Naples: Fascism and the Post-War Period

Angelo Guerraggio

Renato Caccioppoli is probably the most “storied” Italian mathematician, the one

who has been most been talked and written about, even beyond the circle of

specialists. He has been made familiar as a personage to a vast public (though his

research topics have just been touched on) in an attempt to accomplish the difficult

task of communicating how complex and fascinating mathematical thinking is.

(Although is still hard to do, we can no longer complain about the unfavourable

conditions or lack of opportunity for popularising mathematical methods and ideas.)

Much has been said about a whole series of meetings and conferences organised

by his mathematical colleagues in Naples, but in other cities as well, which just

goes to show that the memories and affection that tie Caccioppoli to his native city

find echoes of interest and generosity in other research communities as well. There

was the congress in 1968, that of Pisa in 1987, and then the “days” in Naples in

February 2004, and then that of the following April in Rome (organised by the

Institute for the Applications of Calculation (IAC) and the National Research
Council (CNR)). And of course we can’t not cite the 1992 film “Morte di

un matematico napoletano” directed by Mario Martone, with all of the discussion

and debates that it gave rise to: television programs, books, biographies, com-

memorations, interviews that spoke about Caccioppoli and Naples in the 1950s.

And then there was the novel Mistero napoletano by Ermanno Rea. There are no

end of anecdotes, always charming, always told with affection.

We have reason to celebrate the life of Caccioppoli – even more than his tragic

death –, and the life of a great mathematician is found above all in his research.

Trying to summarise 30 years of work in just a short space inevitably leads to some

arbitrary choices, but there are some points that are sufficiently “stable” to give a

first, brief idea of Caccioppoli’s contributions:

l The first papers, around 1926, on the extension of the definition set of a linear

functional using the technique of extrapolation that would characterise later

works as well, and would find an immediate application in integral theory.
l Studies on a geometric theory of measure for a surface defined parametrically,

which took into account the work of Lebesgue (as well as the more recent papers

C. Bartocci et al. (eds.), Mathematical Lives,
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by Banach and Vitali) and which led him in the years 1927–1930 to consider

oriented surfaces and of the dual attributes – of extension and of orientation – to
the area element; these studies would be taken up again in 1952, with the baton

being passed to Ennio De Giorgi.
l The studies beginning in the 1930s on ordinary differential equations (including

the generalisation of an existence theorem of Bernstein concerning among others

a limit problem of a second degree equation) and partial differential equations,
particularly elliptic: an existence theorem within the class of functions whose

second derivatives are Hölder; various a priori upper bounds; the proof that

C2-class solutions of analytical elliptic equations are analytical, with the first

answer to the nineteenth problem posed by Hilbert at the 1900 International

Congress of Mathematicians, etc.
l The “discovery” of functional analysis and the fixed-point theorems at the

beginning of the 1930s; the limited applicability of the theorems concerning

the solutions of the equation x¼S[x] to differential and integral equations would
then lead to the formulation of the principle of functional correspondence
inversion, the result of considering the transformation T[x]¼ x – S[x]

l Studies on the functions of more than one complex variable, and on analytical

and pseudo-analytical functions.
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Thanks to these studies and others, Caccioppoli undoubtedly deserves credit for

having carried Italian analysis to the most advanced fronts of research. Carlo

Miranda wrote, “it is above all thanks to the courses he charted that Italian analysts

were able to overcome the isolation they experienced during the war years and

those immediately after without too much harm having been done”. Caccioppoli’s

“modernity” – with respect to what was going on in the international arena at that

time – could also be evaluated indirectly, by means of the disputes and controver-

sies over priority posed by his papers. The names Dubrovskij (for functions with

limited uniform variation or uniformly additive), Radó (for controversies over

measure theory), Stepanoff (for asymptotically differentiable functions), Petrovsky,

Perron and Weyl (for the lemma on the harmonicity of functions orthogonal to any

Laplacian) testify to Caccioppoli’s activity in the research of the day, destined to

leave profound marks on the history of analysis in the twentieth century.

The process of reorientation towards the most promising research contents

particularly holds for functional analysis.

As a discipline, functional analysis was born during the final decades of the

nineteenth century, a development of the driving ambition, which would reach

maturity over the course of the following century, to address not only numeric or

geometric problems, but problems of any nature whatsoever – whatever their

content, and whatever kind of object involved – by means of the set of such objects

and their structure. This project was of immediate interest to mathematicians of the

like of Salvatore Pincherle, and above all, Vito Volterra. It was Volterra who

formulated the precise definition of the concept of a functional, or line function.
He also developed a calculus of functionals, analogous to ordinary calculus, starting

with the definition of a directional derivative which would later take the name

Gâteaux-Lévy derivative. Fréchet’s 1906 thesis, entitled “Sur quelques points du

calcul fonctionnel”, marked a turning point in the development of the discipline.

Volterra’s contributions to it were motivated by the need for new, more refined

instruments that could be applied to problems of mathematical physics or to other

questions which had progressively become part of the mathematical research itself

(such as in the case of integral equations).

Starting with Fréchet, functional analysis increasingly became a discipline in its

own right, scarcely needing to justify its developments for possible applications.

It usually happens that it is the successive generation – the first students of the

“founders” – who, finding themselves with new instruments, formulated as such,

study their natures and transform them into the central objects of an autonomous

theory. This didn’t happen in Volterra’s case. His choices – in mathematics, as well

as in life – prevented him from creating a genuine school, and he continued to think

of functional analysis as a field of research that was to be developed in a climate of

“relative” freedom, always with an eye towards the so-called applications. As
evidence of this we need only recall his gentlemanly but obstinate quarrel with

Fréchet regarding the definition of the derivative of a functional. In Volterra’s case

it is perhaps more correct to speak of non-linear analysis; or perhaps, of an Italian

way of doing functional analysis, at a time when Fréchet and Moore were decidedly

oriented towards a more general way of doing it. The fact is that at the 1928
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International Congress of Mathematicians in Bologna, Fréchet promptly gave a

snapshot of the then current situation: si, en Italie, l’Analyse générale proprement
dite n’a pas encore trouvé d’adeptes, n’oublions pas que cette science nouvelle est
née de l’Analyse fonctionnelle, merveilleuse création du génie italien (if in Italy,

general analysis proper has not yet found any supporters, let’s not forget that this

new science was born of functional analysis, a marvellous creation of Italian

genius).

It was to a large extent Caccioppoli who filled the gap, in the 1930s. In the period

between the two world wars, hardly anyone else published articles about functional

analysis à la Banach, if you will; perhaps the only other one is only a 1932 article

by Guido Ascoli on metric linear spaces. As we said, Caccioppoli worked on fixed
point theorems. He published a series of three articles on this subject: “Un teorema

generale sull’esistenza di elementi uniti in una trasformazione funzionale” (1930);

“Sugli elementi uniti delle trasformazioni funzionali: un’osservazione sul problemi

di valori ai limiti” (1931); “Sugli elementi uniti delle trasformazioni funzionali: un

teorema di esistenza e di unicità e alcune sue applicazioni” (1932). In the first he

proved an existence theorem “of a topological nature” for the fixed points of a

continuous transformation on C[a,b] even when their domain could be given

equivalently – Caccioppoli added – by either Cn[a,b] or L2[a,b]. He then states

the theorem of existence and uniqueness for a contractive function in a complete

metric space (including the algorithm of convergence, simply remarking that “the

proof is obvious”). This was the theorem proven by Banach in normed vector

spaces in his 1920 thesis and then published in Fundamenta mathematica in

1922, just as the first applications of the fixed point theorem “to the study of

functional equations” were due to Birkhoff and Kellogg. In the second of his

three articles (the third one marks the passage to the inversion principle of func-

tional transformations), Caccioppoli candidly admits that he “takes advantage of

the occasion to acknowledge the priority of the authors”. This timely admission –

Schauder had published his work on fixed point theorems just shortly before –

would confirm Caccioppoli’s importance for the history of analysis in Italy: some

credit for priority is due to him, and some should be taken away, but on the whole,

these show that Caccioppoli was sailing in high seas and did not restrict himself to

the safer “territorial waters” of a national tradition.

Caccioppoli’s contributions were remarkable. It’s not only a question of the

“number” of theorems proven, but is the constant attempt to “think big”. Carlo

Miranda wrote that Caccioppoli “didn’t love honing and polishing”. Using other

words but with an analogous meaning, the commission of the competition of

Cagliari (which designated him as the winner) wrote that “the orientation of his

research is predominantly critical”. Caccioppoli did not limit himself to manipulat-

ing notions that had already been defined, but tried to develop general theories. The

metaphor of Grothendieck comes immediately to mind, when he said that thought

can choose to live in a house that is already constructed by preceding generations,

perhaps moving some walls and adding a porch, and that this search for comfort –

this more or less painstaking do-it-yourself work – constitutes the heart of a certain

kind of academic mathematics. But thought can also choose to live in unexplored
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territory, where it slowly constructs its own house. In Caccioppoli we see the latter

choice, where he is always trying to find the right concept, with an optimum degree

of generality. In his articles, which perhaps report on a given study but still express a

general orientation – we find passages that speak of the “naturalness” of a formula-

tion or of a “natural field of existence of the functional”: “the generality of the

hypotheses often assure not only the generality but also the simplicity and the

coherence of the results obtained”; or, “the problem of squaring surfaces has to be

solved with the same degree of generality as that of the rectification of curves”. He is

instead critical of other generalisations; though correct, they turn out to be “laborious

and seem to march towards ever greater complication”, or “they break up the

primitive unity of the theory”, or they are “fragmentary and reciprocally unrelated”.

Obviously, this “thinking big” also means taking bigger risks, even for Cacciop-

poli. If you read the two volumes of his collected works, Opere, published by the

Unione Matematica Italiana in 1963, you will find that there often appear – on

the part of the editors – phrases such as, “the function should be substituted by. . .”,
“the proof of this theorem is not exact”, “the hypothesis is not always explicitly

stated”. In one case, Caccioppoli himself spoke of an “oversight” of his that Tonelli

had noticed, and added somewhat ironically, in regard to his first papers on the

geometric measure theory, “if some of the ideas (but not all) that inspired my work

are today rather widely known, some of the errors contained in them have either

been ignored or quoted . . . This carelessness is certainly deplorable but might be

said to be felix culpa, if it hasn’t prevented the discovery of essential facts or more

suitable methods”.

To describe Caccioppoli’s mathematical personality, it should be noted that he

was part of a generation that believed deeply in research. Mathematics is not just a

profession. It is a cumbersome and tyrannical taskmaster. Working 24 h a day and

mixing up days and nights – as Laurent Schwartz described Grothendieck’s life – is

not simply the result of a “career” choice. It is the expression of the awareness that

one is in possession of privileged instruments that make it possible to understand,

know and transform. It is possible to dedicate one’s very life – not just professional

life, but one’s whole existence – to such concepts and instruments.

Those who knew Caccioppoli easily recognised his status as an outstanding

researcher. In the world of mathematics, where the term genius is not lightly tossed
around, it was soon attached to Caccioppoli. But the life of the mathematician
Caccioppoli, who strongly believed in the value of mathematical culture, was never

one of only scientific research.

Caccioppoli always lived in Naples, with the only exception being the period

from 1931 to 1934 when he taught in Padua, substituting Giuseppe Vitali, who had

transferred to Bologna. In the cultural circles of Naples, he was know for his

passion for music and his bravura as a pianist (and also as a violinist). Also

legendary were his love and comprehension of contemporary French literature,

with a special passion for Rimbaud and Gide. After the war, his love for cinema led

him to organise a group called Circolo del cinema in Naples; the Sunday morning

films and Caccioppoli’s presentation of them were a standing appointment for many

fans of cinema.
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But before we get to the post-war years, we should take a look at the years of

Fascism. Caccioppoli was a firm opponent of the regime. His ironic dissent using

the “rooster on a leash” is well known: when the Fascist party advised men not to

walk dogs because it was considered not very masculine, Caccioppoli walked down

Via Caracciolo with a rooster on a leash. Much more serious was the episode

involving the “Marseillaise”, which Ermanno Rea described so well in Mistero
napoletano. At the beginning of May 1938, Hitler was about to arrive for a visit to

Naples. Caccioppoli and his future wife, Sara, went into a beer hall late one evening

and, annoyed by a group of Fascists singing “Giovinezza”, the official anthem of

the Italian National Fascist Party, he sat down at the piano and sang the French

national anthem, the “Marseillaise”, at the top of his lungs. He was immediately

arrested. Punishment was really severe for pranks like this. In order to save him

from being thrown into prison, his family claimed that he was mentally ill, and he

was admitted to an insane asylum rather than prison.

Although this is how the story is told, the official police reports actually paint a

grimmer picture. First of all, they record the episode as having taken place on 23

October 1938, so Hitler doesn’t have anything to do with it. Then, rather than a beer

hall, they say that it took place in a local pub “frequented by persons of modest

extraction”, “a tavern located in Naples on the Riviera di Chiaia”, where a man –

Renato Caccioppoli – “of decent aspect” is however described in another report as

“shabbily dressed” or “badly dressed” and a woman – elegant, spirited, lively and

who spoke French to her companion (who pretended to be Russian) “of an easy

nature and with quite liberal manners” – “after having drunk some wine, offered

another round to a group of labourers who were in the tavern. The two individuals

fraternised with the labourers, and then left with them after they had finished

dancing”. There is no mention of the Marseillaise in the police report. The sub-

stance, however, remains: “offered wine in return for pizzas . . ., political conversa-
tions with the labourers . . ., slurs about Italian politics (in comparison to the French)

that continued on the funicular bound for the Vomero”. Then the arrest, described by

the federal secretary of the Fascist party: “by virtue of the authority of Public

Security their arrest was immediately effected. Caccioppoli, during the final inter-

rogation, showed signs of mental imbalance and thus, after having been examined

by a psychiatrist and diagnosed as insane, he was admitted to an insane asylum”. The

police report uses the same tone, “said person having shown signs of mental

imbalance during the course of interrogation. . . he was diagnosed as demented”.

Caccioppoli’s anti-Fascism was well known. Earlier the police in Padua had put

him under “suitable political observation”, even though in a document dated August

1933 it was admitted that “given the subject that he teaches he certainly cannot use

it to make his ideas known, but with his close friends he expresses himself violently

against anything that has to do with Fascism”. In Naples, there is no doubt among

those in the police force: “Caccioppoli, aside from his unassailable value as a

scientist, because of his immoderate use of alcohol in his private life, shows himself

to be abnormal and without any social values”. After the episode of the “Marseillaise”

– if indeed there ever was such an episode – the newspaper of Italian expatriates in

Paris, La voce degli italiani, ran an article under the headline “Prof. Caccioppoli
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arrested, tortured, driven mad” in which it was reported that the mathematician was

“tortured so severely that he is currently in a mental hospital”. On 25 April 1939,

the rector of the University of Naples, requesting an extension of Caccioppoli’s

leave of absence from the Ministry for Education, wrote,

Prof. Caccioppoli is considered to be affected by an imbalance (which we hope is quite

temporary) and thus does not possess full control of his faculties and cannot adequately

perceive and evaluate the various contingencies and occasions of social life, a condition

often found in those whose intelligence has taken over and who, completely absorbed in the

study of arduous disciplines that require intellectual polarisation and particular dedication,

are almost completely estranged from the rest of life’s circumstances. With regard to this,

the recent case of Prof. Maiorana naturally comes to mind. And it is neither out of turn nor

beside the point to recall that these are young men, indeed almost lads, who were given

university chairs at an age in which other young men are only in the middle of their

education, and thus they found themselves in positions of responsibility as university

professors, completely unprepared to face the studies and the requirements of an environ-

ment from which they had been completely estranged during the period of relentless and

all-absorbing studies which led to their being given the chair.

The episode of 1938–1939 was not the only time that Caccioppoli was arrested.

A similar thing happened in 1952, this time the work of the police of the Italian

Republic. It was during the post-war period. Caccioppoli had worked in favour of

the Republic during the 1946 Referendum. Later, he formed closer relations with

the communists in Naples, the only viable alternative to the crudeness and superfi-

ciality of the supporters of Achille Lauro. He was a faithful supporter of the Italy’s

Internationalist Communist Party, although he never officially joined. He was

involved in the events of the Gramsci group. He joined the “peace partisans”. It

was as a pacifist and firm opponent of American intervention in Korea that he was

arrested on 16 June 1952. The official report this time says:

On 16 June 1952, the day before the arrival in Naples of Gen. Ridgway, Prof. Caccioppoli

. . . having gathered about 200 students from his course and others led them to the central

building of the university, where he gave a speech protesting against the aforementioned

general’s visit to Italy and in favour of peace. This speech gave rise to a vehemently hostile

protest in the form of invectives thrown in the direction the American seamen who were

housed in the hotel in front of the university and against American automobiles passing by.

The reaction of the Minister for Public Instruction, Antonio Segni, lead to

Caccioppoli’s being severely reprimanded for having incited the disturbances that

followed his speech, and for behaviour that constituted an obvious “infringement of

the disciplinary rules of the University”.

Traces of Caccioppoli’s political and pacifist leanings can be found in his

correspondence with Mauro Picone, housed in the archive of the IAC, the Institute
for Applications of Calculation founded by Picone in Rome, and recently published

in PRISTEM/Storia (no. 8/9, 2004).

In a letter dated 11 August 1953, Caccioppoli wrote that,

. . . idiotic problems with the police have forced me to renounce going to Poland. Can you

believe that after weeks of stalling, they gave me back a . . . passport that had been annulled
for all countries (even France!) but . . . extended for Poland and “countries of transit” (?)
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until 6 September, the opening day of the congress. This after having transcribed all of the

information from the telegram inviting me. With this kind of “passport” it would be hard to

get past Tarvisio. To add insult to injury, it permits “one trip only”!!

In a letter dated 20 August 1958 he mentions a demonstration that took place in

Naples:

In effect, I didn’t take part in the peaceful demonstration in Via Roma that provoked the

usual hail of blows by riot police with batons, unannounced and equitably distributed

between demonstrators and simple passers-by. I followed the trial because it interested

me politically and because among the principle defendants were some of my best friends.

The correspondence is interesting for more than this, however, primarily because

of the fact that it sheds light on the relationships between the two mathematicians.

Picone (1885–1977) is known in the history of Italian mathematics for some

valuable works dealing with partial differential equations, but above all because

he founded a school that produced some of the greatest Italian analysts of the

second half of the twentieth century. The instrument that led to the founding of this

school was the INAC, the National Institute for Applications of Calculation, later
renamed simply IAC, or Institute for Applications of Calculation.

Founded in Naples in 1927, and then transferred to Rome a few years later as a

part of the National Research Council, the IAC soon became a significant new

presence on the horizon of Italian (and not only) mathematics. It represented a new

numerical mentality. It was no longer sufficient to prove an existence theorem, or

even one of uniqueness, but it was necessary to outline the procedure for effectively

calculating the solutions. In other words, it required that the same attention and the

same rigour be applied for determining the numerical algorithm, the proof of its

convergence and the upper bound of the error of approximation. The objective was

the synergy with applications for experimental disciplines, for the study of “their”

mathematical problems, and the numerical determination of the solutions. It was the

first time that mathematical research had been organised outside of the closed

academic circuit. It was the first time that young people could be started on a

path that led to a considerable number of possible jobs. It was the first time that

mathematics became a subject and object of consulting, opening new professional

relations and giving rise to team research. It was the beginning of a road that would

culminate in the UNESCO conference in Paris in 1951, which nominated Rome and

the IAC as the headquarters of the European Centre for Calculation.
That Picone was sympathetic towards Fascism is a known fact, and was evident

long before the need to support and manage the INAC led him to curry favour with

political authorities. He himself said that he was “a black shirt from the very

beginning”. On 5 June 1923 he wrote to Giovanni Gentile, who had just joined

the Fascist party,

Your illustrious and venerable Excellence, permit me to express my most heartfelt pleasure

at Your Excellence’s joining the National Fascist Party, of which I too am a member. This

newest member of the fascist party – so prominent – and the considered statements

contained in that letter, will overcome the hesitancy of many Colleagues and bring new,

pure blood into the robust veins of the party that will reconstruct and renovate the Nation!
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Not even later would Picone deny his enthusiasm for the Fascists, not would he

express any self-criticism or try to distance himself from the two decades of Fascist

policies, except for one brief exception, when, years later commemorating Terra-

cini, he spoke of his “painful exile in Argentina”.

Given this situation, the correspondence between Caccioppoli and Picone brings

quite a few surprises. Caccioppoli – “communist” and deeply committed to a

democratic system – had no problem in continuing to correspond with the “fascist”

Picone, in a post-war period that in any case was characterised by opposing sides in

strong contrast. Indeed, his letters to Picone are quite sincere and infused with a

deep affection and heartfelt esteem. He never refers to previous – and embarrassing –

political positions supported by Picone. On the contrary, in some way he wants to

help to put them in a proper perspective, reducing them to a pragmatism that is

inevitable “pro-government”: “you don’t get involved in politics, I know, and

maybe, devoted as you are only to your work, you may be willing to tie the donkey

up where the owner wants you to; but not me” (letter dated 19 July 1954).

The first element that emerges from a reading of the letters is the almost filial

affection that Caccioppoli shows towards Picone – expressed, naturally, given his

temperament, without any sugariness or fawning. And Picone surely returned both

the affection and esteem. He writes of “a great mathematician who, alone in Italy, is

master, by dint of critical sense as well as invention, of the foundations and the

advances, of all three of areas of analysis, topological, real and complex, as well as

of their applications and concrete problems”. He doesn’t hesitate to declare more

than once that the student had surpassed the teacher. And what lengths he went to in

the effort to make sure that the merits of that student were acknowledged by the

scientific community! There was the time in 1951 that he tried to ensure that

Caccioppoli was awarded the International Feltrinelli Prize, followed by a second

attempt in 1956, as well as the campaign to have him elected a national member of
the famed Accademia dei Lincei: “instead of receiving honours, he has for some

time now been persistently subjected to the most vulgar and unjustifiable slur

campaign on the part of some quite reputable mathematicians. Here . . . the Acca-
demia dei Lincei has the obligation to intercede, since they are above all the fervid

upholders of the nation’s values, disavowing those vulgar denigrators”. And how

furious he became with Gianfranco Cimmino, another one of his favourite students,

when in a first draft of the preface to the collected works of Caccioppoli his role in

the formation of the mathematician was neglected:

I must however complain about the complete absence in your preface of any mention

whatsoever of the influence that I undoubtedly had in orienting Renato early on towards

studies of functional analysis and the modern foundations of the theory of functions of real

variables that it is based on. This influence is undeniable and can be proven. When in long

ago 1925 I arrived at the University of Naples I found Renato in his third year of university

in the throes of his thesis on Pfaffian systems, disgusted with mathematics and undecided as

to whether to continue studying it or to change to a career as an orchestra director. He

attended my classes in higher analysis in which I discussed Lebesgue’s integration theory

and I remember quite well that he showed me what he had in him during a lesson in which I

assigned my students the task of finding an example by virtue of which a hypothesis

formulated about a certain theorem was shown to be essential. When I finished the lesson
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I was chased by a shaggy young man, shabbily dressed, who stuttered out that he had found

the example I had asked for. I invited him to come into my office and he showed me a very

elegant example that completely fulfilled the conditions I had set. This was Renato, and we

had a long conversation. I sensed his powerful genius right away and from then on I was

tied to him by a friendship that was never to dim. We began to see each other almost every

day and I talked to him about modern functional analysis and its applications to problems of

the integration of differential equations. His mother learned about this friendship and came

to see me one day to tell me how grateful she was for the interest I had shown towards her

son, who, to her great relief, appeared to have given up the idea of abandoning mathematics

to become an orchestra director. She also told me that Renato called me the “Stravinski of

mathematics”. Naturally, when Renato set out on the new path that I had opened for him, he

made giant strides, and I have to admit that within a short time our roles were reversed, that

is, he became the master and I the disciple. But by God, I swear this is the truth: I was the

one who saved dear and much mourned Renato’s formidable genius for mathematics.

Another element that explains why the relationship between Caccioppoli and

Picone continued uninterrupted and cordial in spite of their many differences is that

they both belonged to the mathematics community. Perhaps in this case, for this

generation and for Caccioppoli in particular, the term community is not unfitting. It
is not rhetorical, nor does it refer to a merely sociological fact. It means a common

rationality, a common sensitivity, and common values – to be sure, not shared by all

mathematicians. Caccioppoli was quite far from an indiscriminate appreciation of

his colleagues; in fact, these values came to count almost more than did political

leanings (to which even Caccioppoli was quite tied). On the other hand, this was the

very stance that he had taken during the time of the dismissals in the convulsive

stages that followed the events of 25 September. The steps taken by the rector

Adolfo Omodeo, president of the Commissione per l’epurazione, the Commission

for Purification, affected – among the mathematicians – only Giulio Andreoli. The

letter notifying him of his dismissal, dated 7 October 1943 (all of the professors in

question were reinstated during the summer of 1945) contains an implicit reference

to the case of Gaetano Scorza: “You were always an accomplice of the Fascists. . . .
For years you have taken aim at students and colleagues for political reasons, and

sometimes so harassed some famous professors of the department of mathematics

of the University of Naples that they were forced to request transfer to other

universities”. Caccioppoli was naturally on the side of Omodeo and the Commis-

sion, but his letter dated 15 March 1944 betrays a certain lack of enthusiasm for acts

that will inevitably strike some colleagues: “It would seem a refusal on my part to

recognise your efforts aimed at restoring the liberty and dignity of our university if I

were to deny my concurrence in a part of it that is as necessary as it is painful”.

What Caccioppoli could not bear – be it in the case of the supporters of Fascism,

or the case of the supporters of Achille Lauro, although he is more indulgent

towards his mathematical colleagues – is the arrogance of ignorance, that is, the

union of the two. I don’t think that we can speak of snobbery in Caccioppoli’s case:

he was an intellectual who, through nearness to and keeping company with the

Italian communist party, is still legendary with the working class and who – in

actual fact, during the war years – gave his all to organising a strike of transporta-

tion workers. His is rather the decided aversion to what Gerardo Marotta identified
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as the lower middle class’s most aggressive and vulgar instincts and its pettiness.

He simply could not live with a milieu that is so apathetic and intellectually lazy.

This is the theme that provides the key to his solitude. Genius or immoderation?

The mad mathematician? Beyond some consequences for his temperament and of a

tendency – this too, in any case, not at all natural – towards isolation and solitude

are the aspects that progressively emerge in his life. And too, these explain his

“attachment” to Picone. Just think for a moment of the outcome of his marriage to

Sara who, we recall, shared in the experience of the “Marseillaise” (and also shared

pizza and wine with a group of workers). These are feelings that emerge in the letter

to Picone dated 19 July 1954 that was quoted from earlier:

I wrote you some months ago that I would not be going to Amsterdam, explaining why. You

answered me, saying that you “don’t accept”, which I took as a impulsive show of your

generous temperament which, believe me, no one appreciates more than I do. But if

anything your “don’t accept” should have been said to the Scelbas, or the Fanfanis, or to

any of the many Italians we can recognise them in, and not to me, who, like so many, if not

actually an “enemy of the nation”, are at least among those citizens who are discriminated

against, that is, those who don’t enjoy the full rights guaranteed by the constitution. The

borders of our “liberal” nation can be crossed by a [word missing] acknowledged drug

smuggler but not by Prof. Renato Caccioppoli, suspected rightly or wrongly of smuggling

ideas.

These feelings of solitude and others were his unhappy companions up to the

tragic event of 8 May 1959.

Renato Caccioppoli 107





Bruno de Finetti

The Foundations of Probability

D. Michele Cifarelli

It is impossible to try to describe Bruno de Finetti’s work within the limits of a few

pages, so numerous and significant are the contributions he made to diverse areas of

mathematics (applied and non), as well as other branches of knowledge such as

economics and biology, to mention only two.

Bruno de Finetti was born in Innsbruck on 13 June 1906 to Italian parents.

In 1923, at the age of 17, he enrolled in the Politecnico di Milano but by the time he

reached his third year, he changed directions and enrolled in mathematics at the

University of Milan, where he earned his degree in 1927 with a thesis on geometry

with Giulio Vivanti as his thesis adviser.

But even before his transformation into a mathematician, inspired by a work by

the biologist Carlo Foà, de Finetti delved into some research in population genetics,

which was the subject of the first of his numerous works published in 1926 [1]. This

was the first example in the literature of a model which took into account several

superimposed generations, thus anticipating research in population genetics by

some decades.

Immediately after receiving his degree in applied mathematics, de Finetti

accepted a position at the Central Institute for Statistics, at the time directed by

Corrado Gini, the institute’s founder.

De Finetti remained with the institute until 1931. These were the years in which

the foundations were laid for his primary contributions to probability theory and

statistics. With the subjective approach, probability appears as a measure of the

observer’s belief that a given random event will occur. De Finetti was not himself

aware that the same approach had been conceived by F. P. Ramsey in 1926; but in

any case his own emphasis was placed on a coherent assignment of probability,

instead of on rational decisions as Ramsey had.

As a consequence of subjectivism, statistic inference was no longer seen as an

empirical process that arose only from the available data, but rather as a logical

process capable of producing “opinions” about the predictions that were compatible

with the available data (see his works [2–6]).

It was during these same years that de Finetti introduced the notion of

“exchangeable sequences of events” and refined his analysis to arrive at the
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celebrated representation theorem, which says that any law of probability relative to

(infinite) sequences of exchangeable events can be represented by a mixture of laws

of probability of independent events with the same probability of success.

It was the introduction of this fundamental notion (which was, to be truthful,

only defined by the mathematician J. Haag at the International Congress of Mathe-

maticians in Toronto in 1924 and published in 1928) that made it possible for de

Finetti to justify the determination of a (subjective) probability by means of a

frequency and to reconstruct the Bayes–Laplace paradigm, eliminating from it

equivocal statements such as that, common up to that point, of “independent events

of constant but unknown probability”.

In 1929, de Finetti also began a study of independent increment processes. The

crisis of determinism and the principle of causality had constituted fundamental

innovations in scientific method, with probabilistic reasoning replacing classical

logic. De Finetti’s pioneering research in random functions served the precise

purpose of translating deterministic laws into laws with elements of probability

(see [7–9]). It was no coincidence that he deduced, from the general results that had

been established, the laws of probability of some functionals of the well known

process of Wiener–Levy, as well as (in [10]), the description of the laws of

probability that are infinitely divisible, which then became the point of departure

for Kolmogorov’s and Levy’s research regarding these laws, culminating in the so-

called representation theorems of infinitely divisible laws.

It’s nice to think that de Finetti came back to the theme of independent increment

processes in a paper of 1938 [11], in which he assumed a position that was critical
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of his own work, and in particular regarding the considerations of propositions that

are “transcendent”, or infinite. For de Finetti, only “objective” propositions lend

themselves to probabilistic evaluation.

As is well known, de Finetti believed that probability is equivalent to a wager

that a random event will occur. In this sense, probability is in many ways analogous

to the functional approach to the mean: both are based on the primary notion of

there being no difference between certain and uncertain results and a set of rational

requirements. The notion of means was addressed in a work by de Finetti in 1931

[12], where he took as a point of departure the definition of mean that had been

given by Oscar Chisini 2 years previously, generalising it for the case of distribu-

tions (of probabilities, frequencies, or other) and arrived at a description of an

associative mean (as far as we know, the first appearance of the adjective in the

literature), thus establishing what has come to be known as the representation theorem
of associative means, and which goes by the name de Finetti–Kolmogorov–Nagumo.

Andrey Kolmogorov and M. Nagumo came to be associated with this important

result because in 1930 each of them proved, independently, a particular case of

this theorem.

In 1931 de Finetti moved to Trieste, where he had accepted a position in

actuarial work with the large insurance firm Assicurazioni Generali. During his

time in Trieste he developed the research he had begun in Rome and achieved

significant results in financial and actuarial mathematics as well as in mathematical

economics. He was also very active in the mechanisation of some actuarial services,

which led – in all probability – to his becoming one of the first mathematicians in

Italy who was able to solve analytical problems by means of a computer.

In three papers presented to the Accademia dei Lincei [8–10], and especially in a

very famous work of 1937 [13], de Finetti extended the representation theorem of

exchangeable events to the case of exchangeable random variables, which he stated

without having a complete hypothesis of additivity at his disposal. In the modern

formulation the theorem appears in the literature with the hypothesis of s-additivity
and goes like this: the succession of random variables xnð Þn�1 is exchangeable if

and only if there exists a measure of random probability p such that, given p, the
random variables of the sequence are conditionally independent according to that

law of probability p. This was the result that paved the way for the solution to

problems that are today on the cutting edge of statistics, called “non-parametrical

inferential problems”.

De Finetti devoted one of his papers [14] to the “player’s ruin”, following

Lundberg’s point of view. This contribution, in addition to introducing some

notions typical of the world of insurance (such as the level of risk for initial capital),
contains connections to an interesting identity discovered some years later byWald.

De Finetti was an authoritative participant in the discussions that followed the

formalisation of the expected utility theory (Daniel Bernoulli’s principle) by von

Neumann and Morgenstern. However, the attention it deserved was not given to his

important contribution of 1952 [15] in which he presented the measurement of risk

aversion, later known by the name Arrow–Pratt. This measure, introduced by de

Finetti as well as by Kenneth Arrow and John Pratt (1964) arose out of a
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consideration of lotteries whose possible outcomes are only slightly different from

each other, and thus with a local analysis of risk aversion, and defining risk aversion

as the deciding factor so that the value of the lottery is less than its average value.

This then involves conceiving an index of concavity of the utility function aimed at

measuring risk aversion. De Finetti indicated it with the ratio �u00/2u0, where u is

the utility function, and his justification of it was much more detailed than that later

given by Arrow and Pratt. Yet again de Finetti had anticipated future analysis and

results!

It was also in Trieste that de Finetti began his academic career, teaching courses

in financial mathematics, probability, and mathematical analysis. Only in 1947 was

he given the chair in financial mathematics at the University of Trieste, although he

had won the competition for that position in 1939. In 1954 he transferred to the

Faculty of Economics at the University of Rome, and in 1961 he moved to the

Faculty of Sciences, where he remained a professor of probability theory until 1976.

He had scientific contacts with a great number of other scholars in Italy and abroad.

In particular, he had the opportunity to meet many eminent mathematicians work-

ing in probability and statistics, among them F. P. Cantelli, G. Castelnuovo, M.

Fréchet, A. Khinchin, P. Levy, J. Neyman, R. A. Fisher, G. Pólya and J. Savage. With

Fréchet, even before his main publications on the foundations of probability, he

carried on an important correspondence, which had grown out of his paper [6]. For a

discussion of this and other elements of de Finetti’s work, the reader can read the

paper by D. M. Cifarelli and E. Regazzini, “De Finetti’s contribution to Probability

and Statistics” in Statistical Science (1996). For a complete bibliography of de

Finetti’s work, see “Bruno di Finetti” by L. Daboni (Bollettino dell’Unione Mate-
matica Italiana, 1987).

De Finetti’s innovative ideas regarding probability were thoroughly and master-

fully presented in the two-volume Theory of Probability translated into English in

1975 from the original 1970 publication in Italian by Einaudi.

At the time of his death, on 20 July 1985, de Finetti was an honourary member of

the Royal Statistical Society, a member of the International Statistical Institute and

of the Institute of Mathematical Statistics. In 1974 he was elected corresponding

member (later became a full member) of the Accademia dei Lincei.
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A Committed Mathematician

Gian Italo Bischi

De Finetti’s commitment to mathematics education was always concrete and

vigorous, as shown by his publications of treatises, textbooks, educational papers,

and articles for non-specialists, as well by intense organisational activities.

He was the president of the Associazione Mathesis from 1970 to 1981, and

during that same period he was the director of the Periodico di Matematica, where
he published numerous contributions in which he strongly supported the need to

make mathematics intuitive, a position opposite to that of the Bourbaki group

regarding mathematics education. In 1962 in Rome he began the first mathematical

competitions among students, in the wake of similar earlier experiments already

undertaken by Giovanni Prodi in Trieste, later developed under the auspices of the

Club Matematico, founded by Giandomenico Majone in 1964 to promote seminars

on problems of mathematics education.

He came out numerous times against the situation facing mathematics teaching

in Italy, sometimes even in ways that were provocative and ironic, as can be seen by

this following extract, referring to the written examination in mathematics at the

high school for scientific studies:

What is involved is an example of unsurpassed pathology of an aberration intended to foster

the systematic and total stultification of young people . . . Since time immemorial (at least

for some decades) it has been the case that in this notorious written examination the very

same stereotypical problem was repeated precisely, with only a few variations (second-

degree equation, or trinomial, with a parameter; hence we could use the term “trinomitis” to

indicate the excessive insistence on this particular argument alone): a problem that above

all has the misfortune of being reducible to a scheme that is mechanical, formal and

pedestrian, and which carries the name of a certain Tartinville. As for myself, I came

only lately to learn about and despise Trinomites and Tartinvillites: I didn’t take seriously

the remarks, negative but expressed to me in general terms, about mathematics in the high

schools for scientific studies expressed by some colleagues at the time I chose it for my

daughter.
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Another example is the following remark at the C.I.I.M. congress held in

Viareggio in October 1974:

Any appropriate and considered choice on the part of the teacher is rendered impossible and

inconceivable by the whole supporting structure of rules inflicted, in Italy, on the University

(as in all Schools and on Public Administration in general), rules which can aptly be called

bureauphrenic (in France they also use an even cruder term “bureausadistic”) and juridi-

culous (a synthesis of the two terms overlapping by three-fourths, juridical and ridiculous).

Finally, mention must be made of de Finetti’s commitment to questions of
politics and economics. He was ever an attentive and critical observer of social
facts, which he analysed with the scientist’s purity of reason, often making evident
how twisted and unjust things were, and upholding the importance of individual
liberties and democracy. In the context of university life, he believed it was in our
best interest to allow foreign citizens to hold chairs in Italian universities, some-
thing that was impossible until the 1970s. Further, many of his writings show
evidence to his scornful and lucid criticism of the contradictions inherent in
present-day economic and social systems, expressed without mincing words, and
often quite provocative. For example, in Dall’utopia all’alternativa, he states that
the aim of mathematical economics is to search for “situations favourable for the

quality of life of populations” but instead “the only questions that are raised are at

the level of businesses, and have as their objectives not the best and least costly

service for the consumer, but rather the maximum profit to the business”. He also
decries the fact that “every freedom, beginning with that of the press, is in fact only

effective for those who have the means to distort it”; to make his criticisms more
effective he often makes up his own words, such as the terms “bureauphrenic” and
“juridiculous” that we saw earlier, or “deformation press” (instead of information);
he calls money “the devil’s shit”, an allusion to the proverb of Trieste “the devil

shits on the largest pile”.
His commitment to problems of the environment was noteworthy and farsighted,

leading him to remark that “to the traditional commandments there needs to be

added – in recognition of the danger of future damage – ‘thou shalt not pollute’,

‘thou shalt not waste’, ‘thou shalt not destroy’, ‘thou shalt not alter the ecological

equilibrium’”.

In the late 1970s de Finetti became a supporter of Marco Pannella’s Radical

Party and accepted the role of the managing director of the newspaper Notizie

radicali. This also led to his being arrested for having published an article in that

newspaper in defence of conscientious objectors. His entrance into the prison of

Regina Coeli caused an uproar, but he was freed even before he entered his cell, the

arrest warrant having been immediately revoked.
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Andrey Nikolaevich Kolmogorov

The Foundations of Probability. And More. . .

Guido Boffetta and Angelo Vulpiani

April 25, 2003, marked the centennial of the birth of Andrey Nikolaevich Kolmo-

gorov, probably the greatest Soviet mathematician of the twentieth century. He was

born out of wedlock – his surname is that of his maternal grandfather – and his

mother died in childbirth, so he was raised by a maternal aunt who instilled in him a

strong sense of personal responsibility and intellectual independence. After finish-

ing school, he worked for a time as a railway conductor before entering Moscow

State University in 1920. These were hard years in the fledgling USSR: when he

learned that second-year students, in addition to a meagre stipend, also received an

additional monthly ration of 16 kg of bread and 1 kg of lard, he immediately stood

for the examinations to pass to second year.

Andrey Nikolaevich had shown himself to be precocious from the start. By the

time he earned his degree in mathematics, in 1925, he already had several scientific

publications to his credit, including a fundamental work of 1922 in which he

constructed a function that could be integrated with a Fourier series that diverges

almost everywhere, which led to his becoming known worldwide.

By the time he finished graduate school, at 26-years old, he had already laid the

foundations of modern probability theory. 1933 saw the publication of his mono-

graph Grundbegriffe der Wahrscheinlichkeitsrechnung (Foundations of the Theory

of Probability), which is probably the most important work of the first phase of

Kolmogorov’s career. Here he set out the theory of probability on an axiomatic

basis, thus surmounting the historic dispute between those who adhered to fre-

quency interpretations and those who supported subjective probability. It is no

exaggeration to say that Kolmogorov’s Grundbegriffe was as significant for the

calculus of probability as Euclid’s Elements were for geometry.

After earning his doctorate, Andrey Nikolaevich took off for a vacation boating

and camping along the Volga (with equipment made available to him by the Soviet

Society for Tourism and Proletariat Excursions), passing through the Caucasus

Mountains to the Caspian Sea, in the company of his friend, the mathematician

Pavel Sergeevich Aleksandrov. They spent months on rivers, lakes and in the

mountains, but they also worked on Markov processes. The friendship between

the two would turn out to be lifelong. In 1931 Kolmogorov was named professor at
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Moscow State University. This is where he carried out all of his scientific work,

except for brief stints in France and Germany.

His scientific work is so vast and diverse that it is almost impossible to sum it up

in the space of a few pages. His research in mathematics went from logic to

stochastic processes, to analysis and to the theory of automata. In his contributions –

even in the briefest of these – Kolmogorov never dealt with isolated problems, but

rather shed light on fundamental aspects and new fields of research. It was precisely

because of the broad panorama of his research, various scholars – even experts in

mathematics – are familiar with only particular aspects of his multifaceted activity.

His student V. I. Arnold recalled, somewhat ironically, “In 1965 Fréchet said to me,

‘Kolmogorov, isn’t he the brilliant young man who constructed a function that

could be integrated with Fourier series that were divergent almost everywhere?’.

All of the later contributions of Andrey Nikolaevich – in theory of probability,

topology, functional analysis, turbulence theory, theory of dynamic systems – were

of lesser value in Fréchet’s eyes”.

Here, then, we will limit ourselves to touching on some aspects of Kolmogorov’s

influence on modern (and not only strictly mathematical) areas of research: chaos,

turbulence, complexity, and the mathematical description of biological and chemi-

cal phenomena.

Kolmogorov’s interest in the theory of probability was not restricted to the

merely technical and formal levels: he would in fact lay the foundations for the

theory of stochastic processes, leading him, in the 1940s and 1950s, to deal with
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various problems in physics and biology. In many of these works his contribution

went so far as to revolutionise the way the problem is seen. One example of this is

found in his studies of turbulence, where his works are still, 60 years later, one of

the few fixed points of reference for our comprehension; even today this complex

phenomenon is not entirely understood.

The problem of fully developed turbulence (that is, of the irregular motion of

fluids at large Reynolds numbers) gives an idea of Kolmogorov’s extraordinary

versatility. He alternates a formally mathematical study of the problem with a

statistical analysis of the experimental data regarding atmospheric turbulence. In

his preface to a recent book, Ya. G. Sinai writes, “When Kolmogorov was about 80-

years old, I asked him about his discovery of the scaling law. He gave me an

astonishing answer, saying that he had studied the results of experimental measure-

ments for about a half a year”.

His theoretical description of fully developed turbulence was of the broadest

generality: the introduction of the concept of invariance of scale is in fact the root of

the method of the renormalisation group developed in the 1970s. A second funda-

mental contribution to turbulence, in the early 1970s, stimulated by precise experi-

mental measurements and by the observations of the great theoretical physicist Lev

D. Landau regarding intermittent fluctuations of dissipated energy, was the starting

point for studies (still ongoing) on anomalous fluctuations at a small scale. Kolmo-

gorov’s log-normal theory of turbulence, even though today partly superseded,

forms the basis for intermittent stochastic processes (multi-affine or multifractal)

which are used today in applications ranging from economics to geophysics.

At the end of the 1930s Kolmogorov – in collaboration with Petrovsky and

Piskunov – studied the spatial evolution of biological species, introducing a system

of mathematical equations that became the starting point for modern studies of

reaction-diffusion systems. From this pioneering study was born the sector of

systems of partial differential equations of reaction-diffusion, which finds applica-

tions that range from the spread of epidemics to the evolution of complex chemical

processes such as ozone equilibrium and combustion. While dealing with biological

problems in Stalinist Soviet Union, Kolmogorov courageously went up against the

powerful academic Lysenko (who undertook a vehement campaign against Men-

del’s genetics, which in his opinion did not conform to dialectic materialism): this

was a dispute that several eminent Soviet biologists would pay dearly for.

Another modern field of research indissolubly tied to the name of Kolmogorov is

that of theory of nearly-integrable Hamiltonian systems. Already at the end of the

nineteenth century Poincaré, studying the so-called three body problem in celestial

mechanics (that is, the motion of the planets around the sun or the sun–earth–moon

systems) had shown that when a small perturbation is added to an integrable

Hamiltonian system, in general the motion is no longer integrable, and its behaviour

can be chaotic. In dealing with this problem, Kolmogorov formulated a fundamen-

tal theory, later refined by V. I. Arnold and J. Moser (the KAM theory), which led to

a reconsideration of some well-established (but erroneous) convictions (for example,

on the generic ergodicity of Hamiltonian systems). In spite of the fact that non-

trivial prime integrals do not exist, if the turbulence is small – in suitable hypotheses –
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there are invariant tori (which are deformations of those that are unperturbed) in a

set whose dimension tends to 1 in the integrable limit. KAM theory is now

a flourishing area of mathematical physics, with applications ranging from celestial

mechanics, to instability in planetary physics and to the foundations of statistical

mechanics.

Other contributions by Kolmogorov to the development of twentieth-century

science regard information theory and the definition of complexity.

Kolmogorov was one of the few mathematicians who immediately grasped the

conceptual and not only practical relevance of Shannon’s theory: “I recall that as far

back as the ICM in Amsterdam (1954) my American colleagues, specialists in

probability theory, regarded my interest in Shannon’s work as somewhat exaggerated,

since this was more technology than mathematics”. Today such opinions carry no

weight at all. The mathematical systemisation of information theory took place in

the second half of the 1950s, primarily the work of Khinchin, Gel’fand and Yaglom,

as well as Kolmogorov himself. Of particular significance is the use of concepts of

information theory in the context of dynamic systems, with the introduction of what

is known today as Kolmogorov-Sinai entropy. This intrinsic quantity (that is, a

quantity that is independent of the variable used) measures the information gener-

ated per unit of time in chaotic systems.

In 1965 Kolmogorov proposed a measure (unambiguous and mathematically

well founded) for the complexity of an object (for example, a string of bits) as the

length of the shortest computer program required to reproduce the string. This topic,

initially linked to a very particular context (an apparent “defect” of probability

theory which assigns the same probability to whether the successive fair coin tosses

will result in 0 or 1), has then developed, giving rise to a prolific area of research:

algorithmic complexity. This sector has turned out to be extremely general and

important due to its connections to chaos, Gödel’s theorem and the application to

problems of the most diverse natures, from linguistics, to the study of DNA

sequences, to the analysis of financial trends.

These few pages are certainly not adequate to give a true picture of Kolmogorov

either as a scientist or a man. As a great theorist, he was able to deal in a profound

way with “practical” problems (such as turbulence and biological phenomena),

opening new lines of mathematical research. Similarly, beginning with fundamen-

tal themes (such as complexity), he made contributions to the development of an

area of research that today finds practical applications in computer science. His

work is perhaps the best proof of the fact that fundamental science and applied

science are not distinct; rather, we have one science and its application.

Kolmogorov was also extremely active in spreading notions of science, both as

an author, writing more than a hundred entries for the Great Soviet Encyclopedia,
and as a teacher. He was particularly interested in mathematics education for

teenagers, an age when, in his opinion, the scholastic system had not yet succeeded

in convincing them that science was useless. More than 60 of his students earned

their doctorate degrees (including many who would become important scientists).

He loved to spend at least a couple of days a week at his dacha in Kamarovka,

near Moscow, discussing mathematics and competing with them in skiing and
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running: “Especially did we love swimming in the river just as it began to melt . . . I
swam only short distances, but Aleksandrov swam much further”.

In addition to mathematics, Kolmogorov was particularly interested in history,

linguistics and literature (especially in the forms and structures of the poetry of

Pushkin), and published articles in specialised journals.

His enthusiasm for all aspects of science led him (at almost 70) to take part in

two oceanographic campaigns lasting several months (the Baltic, the Atlantic, the

Panama Canal, the Pacific, and then back to Moscow on the Trans-Siberian). He

died in Moscow in 1987. He had been the recipient of numerous prizes and honours,

but above all, he left behind a scientific legacy that will survive for a long while.
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Bourbaki

A Mathematician from Poldavia

Giorgio Bolondi

France, 1930s. In spite of the fact that many years had passed, France was still in

shock over the horrendous massacre that bloodied Europe between 1914 and

1918. One million three hundred thousand dead, three million maimed and

wounded, eight hundred thousand widows, almost a million orphans. This kind

of tragedy couldn’t help but affect all aspects of a nation’s life. Of course, the

handing down from generation to generation of mathematics (as of all sciences

in general) was of course drastically disrupted as well by the great war. In the

halls of the Grandes Écoles hung enormous plaques with endless lists of students

and professors who had died in the trenches. An entire generation had been

swept away: of 211 students enrolled in the École Normale in 1914, 107 died in

the war.

As things stood in 1930, there was little left of the great mathematics of

France of the beginning of the century – the mathematics of Poincaré, Lebesgue,

Fatou – even the great names still living had lost the majority of their students.

Teaching stagnated, and the textbooks then in use mostly dated from before

the war.

Two young, brilliant university professors, just named to their chairs, expressed

their dissatisfaction with the text used everywhere for teaching analysis, Edouard

Goursat’s Cours d’Analyse, which they criticised as by then obsolete, and above all,
lacking in rigour. They decided to compile a new text, one that would be as rigorous

as possible.
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Thus began the Bourbaki adventure, a revolution destined to leave its mark on

twentieth-century mathematics; a revolution which, like all revolutions, soon

aspired to expand beyond the French border and which, in the course of a few

decades, would become “establishment”.

The two young professors, André Weil and Henri Cartan, organised meetings in a

restaurant on the Boulevard Saint-Michel in Paris with a group of former classmates

at the École Normal, with the aim of compiling a new, collective text for analysis.

After the first meetings, it soon became evident that the work was going to require

collaboration and plenty of time. The first Bourbaki “congress” took place during the

summer holidays, in July 1935, in Besse-en-Chandesse, a small town about 50 km

from Clermont-Ferrand. Participating were Henri Cartan, Claude Chevalley, Jean

Dieudonné, Jean Delsarte, Szolem Mandelbrojt, René de Possel and André Weil

(some name Charles Ehresmann as well). Almost right away it was decided to adopt

the name of Nicholas Bourbaki as a pseudonym, and almost as immediately the

founders began to delight in leaving false clues as to their true identity, wrapping the

group’s history in a cloak of anecdotes and mystery. Élie Cartan was also accomplice

to this. When a paper was submitted for the Comptes Rendus of the Académie des

Sciences in Paris, the author had to of course be named, and even more importantly,

the paper and the author’s biography had to be presented by member of the Acadé-

mie. The presenter was Élie Cartan, Henri’s father, and he convinced the members of

the Académie of the importance of this unknown mathematician from “Poldavia”

(the imaginary country where most of the group’s farcical tales were set). It was

partly due to this that Élie Cartan is considered Bourbaki’s godfather.

The second congress, which was to have taken place in Spain, was instead held

at Chevalley’s mother’s house in Chancais, because of the outbreak of the Spanish

Civil War. It marked a turning point in the group’s project. In order to write the text
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for analysis in a rigorous manner, it was first necessary to write a treatise which was

a systematic treatment of the theorems and results preliminary to the treatment of

all existing (and future) mathematical theories. Thus was born the project of

the Eléments de Mathématique, which, as the title implies (in French, as in English,

the word “mathematics” is used in the plural) presages an overarching treatment

of the subject.

When all is said and done, this unifying treatment of mathematics was the great

objective of the Bourbaki group. To construct the whole beginning from a common

root, a root that had to be searched for in the structural hierarchy (algebraic, of

orders, topological), starting from the most general and abstract and proceeding to an

axiomatic explanation. Hilbert is often referred to as Bourbaki’s spiritual father. To

be sure, there was no lack of reference to exponents of the German school: Emmy

Nöther, for example, but also the Dutch mathematician van der Waerden (and his

way of structuring his Moderne Algebra). The 1947 article “L’architecture des

mathématiques” signed by Bourbaki himself was the group’s ideological manifesto.

Jean-Pierre Kahane has written that the history of mathematics has shown that the

unity of the discipline has to be looked for in the way its branches interweave, not in

the unity of its roots; but the fact remains that the project undertaken by Bourbaki

profoundly changed the way that mathematics was done (and written about).

The group’s working method was truly collective: a theme was chosen, and

lively discussions ensued about how the work was to be set up (minutes were taken

by a “scribe”, usually Dieudonné, and later Cartier). Someone was charged with

laying out a first draft which was then sent to all members. At the next congress, it

was decided what was to be done with the material, whether to accept it, rework it,

or trash it. The Paris archives of the Bourbaki group contain thousands of pages of

mathematics that have never been published.

One rule that was decided on during the second congress was that of an age limit:

members agreed to leave the group completely when they reached 50 (in fact,

Bourbaki himself published just one thing, in 1998, after his 50th birthday: the tenth

chapter of the “Algébre Commutative”, a book began in 1964).

Thanks partly to the age limit, and thus the continual turnover generation after

generation, there were never more than a dozen members of the group at any given

time. Between the rules established, the enthusiasm of the members, and great

ambition, the first generation of Bourbaki accomplished the writing of a certain

number of volumes of the Eléments, aimed at professional mathematicians rather

than students. As the Bourbakis themselves said repeatedly, the Eléments had to be
thought of as an encyclopaedia because, taken as a textbook, it was a disaster.

The mathematical merit of Bourbaki members (including some of the greatest

mathematicians of the twentieth century: Laurent Schwartz, Jean-Pierre Serre,

Alexander Grothendieck, Alain Connes, Jean-Christophe Yoccoz, all members of

Bourbaki, and all Fields Medal laureates), and the added merit of their “collective”

weight, was such that in the end the group influenced mathematics throughout the

world. Bourbaki can in fact be considered the mathematician who had the greatest

influence on the training, working methods, and writing style of the majority of

today’s mathematicians. It was Bourbaki who introduced the symbol ø to indicate
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an empty set. It was again Bourbaki who spoke for the first time of injective,

surjective and bijective correspondences; of filters and ultrafilters, of germs, of

separated spaces and paracompact spaces, and so forth. From the 1950s on,

Bourbakism was the dominant formulation (or ideology, according to your point

of view) of mathematics in many countries, especially (and obviously) in France.

For instance, the late development of applied mathematics in France is usually

attributed to Bourbaki’s lack of interest in applications.

It was thanks above all to the work of Jean Dieudonné that there was an attempt

to transform mathematics teaching in a Bourbakian sense. His famous cry of “Down

with Euclid!” still today indicates the desire to do away with the teaching of

geometry, of figures, and of intuition (although the reaction against this of many

mathematicians, starting with René Thom, in support of the educational importance

of geometric teaching, is equally famous). The introduction of set theory in schools

was the offspring of Bourbaki. Legitimate offspring? Some have spoken of a

degeneration, which has led many to believe that the essence of mathematics

consists in the “vocabulary” and definitions. Others believe that the Bourbaki

group is directly responsible for this “reform” of teaching, even though it then

tried to “draw back its hand”.

Starting at the end of the 1960s, with the dawn of a new generation, Bourbaki’s

actions were less cohesive. It became increasingly difficult to find shared objectives

once the “founding” period of the group had passed. Figures such as Grothendieck

left the group in a huff. Other mathematicians (great and not so great) learned to

write like Bourbaki, but the gaps (mathematical logic, numerical analysis, combi-

natorics, mathematical physics, probability theory) became ever more evident.

Further, Bourbaki found itself caught up in a neverending lawsuit with its publisher,

and in the end its members could not agree on what direction to take. In fact, after

1983 no more publications appeared, except from the above mentioned tenth

chapter of the “Algébre Commutative”.

Thus we see how Bourbaki was born, and how he lived. But can we say he is still

alive, seeing as how nothing has been published for more than 20 years?

Already in 1968 Jacques Roubaud, a mathematician and author who was a

member of Oulipo (Ouvroir de littérature potentielle, which translates roughly as

“workshop of potential literature”), had announced the death of Bourbaki, saying

that he had been buried in the cemetery of random functions, alongside the Markov

number and the Gödel number, and that the funeral mass had been said in the church

of Our Lady of Universal Problems.

According to Pierre Cartier, who had been a pillar of the Bourbaki group for

about 30 years, the group had reached its own physiological limit. Even the

mathematics project had exhausted its reason for being, without having even

achieved its own aims. It had been a dogmatic vision of mathematics, child of the

century of ideology (to quote Cartier), self referential (there were no citations

except for internal references): a great mathematical enterprise, the greatest of the

twentieth century, but perhaps not great enough to become – as its members had

aspired – the new Euclid, the fundamental textbook for the coming millennium.

There were other surprises, other revolutions in store for mathematics, which not

even Bourbaki could have imagined (Fig. 1).
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Books Published by Bourbaki

Here is the list of volumes published up to the present in the Eléments de Mathé-
matique:

1. Set theory (Théorie des ensembles)
2. Algebra (Algèbre)

Fig. 1 Bourbaki’s “obituary”

Bourbaki 127



3. Topology (Topologie générale)
4. Functions of one real variable (Fonctions d’une variable réelle)
5. Topological vector spaces (Espaces vectoriels topologiques)
6. Integration (Intégration)
7. Commutative algebra (Algèbre commutative)
8. Differential and analytic manifolds (Variétés différentielles et analytiques)
9. Lie groups (Groupes et algèbres de Lie)

10. Spectral theory (Théories spectrales)

The Generations

Here are the first four generations of Bourbaki, according to Pierre Cartier:

Founding fathers: Henri Cartan, Claude Chevalley, Jean Delsarte, Jean Dieudonné,

André Weil (who were soon joined by Jean Coulomb, Charles Ehresmann, Szolem

Mandelbrojt and René de Possel).

The war generation: Jacques Dixmier, Samuel Eilenberg, Roger Godement,

Jean-Louis Koszul, Pierre Sameul, Laurent Schwartz, Jean-Pierre Serre.

The third generation: Armand Borel, François Bruhat, Pierre Cartier, Alexander

Grothendieck, Serge Lang, John Tate.

The fourth generation: Michael Atiyah, Louis Boutet de Monvel, Michel Dema-

zure, Adrien Demazure, Bernard Malgrange, Jean-Louis Verdier, . . .
A question: Was there ever a female Bourbaki?

The “Real” Bourbaki

A French general of Greek origin, Charles-Denis Sauter Bourbaki lived from 1816

to 1897. He took part in the Crimean war (where he led his troops to victory in

several battles) and in the French–Prussian war of 1870 (where he was defeated).

His name began to be used in jokes in the Ecole Normal as early as 1880, when a

student gave the name Bourbaki while posing as an official who had come to inspect

the school.

According to Andre Weil’s autobiography, in 1948 a Greek diplomat named

Nicolaides Bourbaki introduced himself to Henri Cartan as a member of General

Charles-Denis’s family. There had never been a mathematician in that family, but

from then on this one was invited to all the closing dinners of the Bourbaki

congresses. A true story?

The Founding Fathers

Jean Dieudonne, the scribe of the first generation of Bourbakis and a strong,

domineering personality, was born in Lille in 1906. He entered the École Normale
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in 1924, and in 1928 he went to Princeton on a scholarship. Even before completing

his thesis, which he wrote when he was 25, he had been given the opportunity to

work around the world with mathematicians of the calibre of Bierberbach and

Pólya. In the 1960s, in a surprise move, he left the Paris Institut des Hautes Etudes

Scientifiques (IHES) and transferred to the newly established Faculty of Sciences in

Nice, as yet completely without mathematicians. This had the effect of shifting the

barycentre of French mathematics towards the Cote d’Azur. The last years of his

life were dedicated to the history of mathematics (as seen by the Bourbakis), and he

published one of the most successful mathematics books in recent years, Pour
l’honneur de l’esprit humain. He died in 1992. His work mainly concerned topo-

logical vector space, topology (the notion of paracompact space is due to him), and

the theory of Lie groups.

Jean Delsarte, of all the founding fathers perhaps the least well known, was born
in 1903. He first came into contact with Cartan andWeil (at that time in Strasbourg)

in the 1930s. Delsarte spent a good part of his professional life in Nancy, which

thanks to him became an important centre for mathematical research (this is where

Dieudonne, Schwartz and Godement “grew up”). Of a very fragile constitution, the

events of 1968 took a heavy toll on him, and he died of a heart attack in November

of that year.

Claude Chevalley, the youngest of the founders, was born in 1909 in Johannesburg,
the son of a diplomat. His whole life was a weave of his interest in philosophy, of

which he made a way of life, with his interest in mathematics. He was in agreement

with the epistemology of Meyerson, and was connected to Arnaud Dandieu in

activities of the 1930s movement called “Ordre nouveau”, a nonconformist move-

ment that verged on anarchism. Also in the 1960s he founded, together with

Alexander Grothendieck and Roger Godement, also Bourbakis, the ecological

movement “Survivre et vivre”. His most important mathematical contributions

were in number theory (the class field theory), and in algebraic geometry. It was

Chevalley who introduced the terms “injective” and “surjective”. Some of his

writings have become classics. He died in 1984.

André Weil, born in 1906, went to Rome to study with Vito Volterra when only

19-years old. He then went to Berlin, Göttingen and Stockholm (coming into

contact with Emrny Nother and Gösta Mittag-Leffler along the way). At 22 he

completed his doctoral thesis, and in 1937 he married Eveline, former wife of Rene

de Possel, (another member of the first generation of Bourbakis). His personal

actions during the Second World War were the subject of controversy: he was

accused first of desertion (a choice influenced by his ties to Oriental philosophy),

and then of spying for the Soviet Union (which would be more difficult to connect

to his dharma). Saved from execution thanks to Rolf Nevanlinna, he still had to face

the resentment and incomprehension of colleagues –notably, Jean Leray – who had

experienced the drama of war and prison first-hand. Weil was able to take refuge in

the United States, thanks to a program established by the Rockefeller Foundation to

provide safe haven for French scientists. After the war, Leray’s opposition kept him

from going back to the Sorbonne, and he remained in Princeton until his death on 6

August 1998.
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His works in number theory and algebraic geometry are fundamental and

foundational. From results regarding the Riemann hypothesis to studies of the

arithmetic of elliptical curves, his contributions made new in-roads in mathematics.

The Shimura–Taniyama–Weil conjecture was the crucial point in Andrew Wiles’s

proof of Fermat’s Last Theorem. André’s sister, Simone Weil, took part in the first

meetings of the Bourbaki group and is the only woman to appear in the group’s first

photograph. She was awarded the Wolf Prize in 1979 (along with Jean Leray!).

Henri Cartan was born in 1904 in Nancy, and followed in the footsteps of his

father, mathematician Élie Cartan, one of the founders of modem differential

geometry. Like all founders of the Bourbaki group, he studied at the École Normale,

and after having started his career in Caen, Lille and Strasbourg, he soon returned

there, staying until 1965. In 1935 he married Nicole Weiss, daughter of physicist

Pierre Weiss. In 1980 he shared the Wolf Prize with Andrey Kolmogorov. His

works on functions of several complex variables are fundamental: he introduced the

notion of “sheaf” into the geometry of analytical space (a notion which had been

created in algebraic topology by Jean Leray). Also owing to Henri Cartan is the

concept of “filter” in topology.

He was a pioneer in the efforts to harmonise mathematical studies in Europe. His

objective was to facilitate programs for student exchange between countries. He

also worked intensely to mend the fissure created by the SecondWorld War (similar

to that created by the first world war) between German and English mathematicians.

His tolerance is remarkable in light of the fact that his own brother, Louis Cartan,

was executed by the Nazis in 1943 for being a member of the resistance.
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Writing and Mathematics in the Work
of Raymond Queneau

Alessandra Ferraro

Just a few years ago was celebrated the centennial of the birth of Raymond

Queneau, who was born in Le Havre in 1903 and who became, after earning a

degree in philosophy at the Sorbonne, a writer and essayist as well as general

secretary of the prestigious Paris publishing house Gallimard, a position that he

held until his death in 1976. Author of the amusing Zazie dans le métro, a novel

written using a phonetic writing to illustrate how the French language had changed,

his works were translated into Italian, with translations done by none other than

Italo Calvino for Petite cosmogonie portative, and Umberto Eco for Exercices de
style, both published by Einaudi. An unflagging reader with a vast store of knowl-

edge, Queneau came into contact with the principle literary and cultural movements

in the Paris scene, from Breton’s surrealism to Sartre’s existentialism, without ever

adhering to any of them unconditionally. This intellectual independence gave rise

to a multifaceted output, including novels, poetry, short stories and screenplays, all

original and unclassifiable. Only recently have critics begun to discover the pro-

found unity of the poetic concept that underlies them all, from the first novel, Le
Chiendent of 1933, to the works composed in the context of Oulipo (derived from

Ouvroir de littérature potentielle), the workshop for potential literature, a working

group that Queneau founded in 1960 with his friend, the mathematician Françoise

Le Lionnais. But that this was more than an amusement can be understood from

reading his diary from his years in high school and at university. At 17 he wrote,

“I went with Leroux to the Museum. I am furiously studying mathematics”.1 We

find traces of this passion in Roland Travy, the main character in the autobiograph-

ical Odile (1937). In 1921 the young Queneau remarked again, “Leafing through

my papers I realise that at 13 I discovered the algebra of logic”.2 A voracious reader

of scientific works and a follower of the latest scientific theories since he was a

teenager, he enrolled in the Faculty of Philosophy, where he attended courses in

logic and mathematics, with particular attention to philosophical literature related

1RaymondQueneau, Journaux 1914-1965, Anne Isabelle Queneau, ed. Gallimard, Paris, 1996, p. 51.
2Ibid., p. 73.
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to mathematics. Already in 1919, at 16, he remarked in his diary on the importance

of Einstein’s discovery: “A certain Einstein seems to have made sensational

discoveries (see the newspaper of the 10th). Rutherford is supposed to have

decomposed nitrogen into hydrogen. Tried to read Proust: soporific”.3 In the

years that followed he pored over Cantor’s Contributions to the Founding of the
Theory of Transfinite Numbers, Einstein’s Theory of Relativity, Poincaré’s La
science et l’hypothèse, to name only a few of the many scientific works he read.

During those years he also attended the courses of Pierre-Lèon Boutroux, professor

of history of science at the Collège de France. This interest, probably coupled with
his failure to pass some exams in philosophy, led him to enrol in the Faculty of

Sciences with a major in mathematics. But his academic performance was disap-

pointing. This is how Raymond Queneau commented many years later on the

collapse of his university career in mathematics: “Where I made my mistake was

in believing that I could fill the gaps. . . . I became perfectly aware when I enrolled

in my first year of mathematics. After failing two or three exams I understood that I

would never pass. For example, for me mechanics was opaque. And so were the

conics (the delight, the non plus ultra of mathematics for specialists. . .)”.4

However, Queneau continued his whole life through to nourish a passion for

mathematics. This expressed itself not only through specific readings and constant

practice, but also through his attending the seminars of the most important math-

ematicians then working in Paris. In 1948 he joined the Société mathématique de
France and in 1963 the American Mathematical Society. From that year he also

attended the seminars in operation research and graphs theory, and consulted with

A. Kaufmann and R. Faure on their book Invitation à la recherche opérationnelle.
From his diary we know that in the 1950s he attended the meetings of Bourbaki and

that he regularly went to dinner with Georg Kreisel, with whom he discussed the

main mathematical innovations. This was not just pure curiosity, because he

collaborated on the Elements de logique mathématique published by Kreisel and

J.-L. Krivine in 1967.5

But above all, evidence of his research in the field is given by the presentation of

the results of his work in number theory at the Académie des sciences in Paris in

April 1968.6 This was followed by a work on s-additives series, with commentary

by another great mathematician, Gian Carlo Rota, published in the Journal of
Combinatory Theory.7

3Ibid., p. 44.
4Anne Isabelle Queneau, ed. Album Raymond Queneau, Gallimard, Paris, 2002, pp. 43–44.
5Georg Kreisel, Jean Louis Krivine, Éléments de logique mathématique, théorie des modèles,
Dunod, Paris, 1967 (Monographies de la Société mathématique de France 3).
6As is customary, the report on the results was given by a mathematician, André Lichnerowicz, a

member of the Académie des sciences, followed by a publication in the Bulletin de l’Académie des
sciences.
7Raymond Queneau, “Sur les suites s-additives”, Journal of Combinatory Theory, 12, 1972,
pp. 331–371.
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This is a significant result for someone who professed to approach mathematics

as a dilettante, with occasional peripheral forays into the subject, as indicated by the

title of the 1963 book Bords (Borders),8 a collection of Queneau’s essays on people
such as Hilbert, Bourbaki and Léopold Hugo, nephew of Victor Hugo, a geometer

but mad. This is similar to what had been done in other branches of the sciences –

philosophy, history, medicine – as can be clearly seen in the summaries of the

literature that can be found in the Italian collection of Queneau’s essays edited by

Italo Calvino entitled Segni, cifre e lettere,9 and which follow along the same lines

as the monumental Encyclopédie de la Pléiade which Queneau worked on for

several years. Beyond the poetic works such as Petite cosmogonie portative,
which is a kind of hymn in praise of science, or the Le chant du styrène, which
tells about the adventure in chemistry when plastic was created, this mastery of

scientific subjects, which was genuinely exceptional for a literary man in the

modern age, underlie – though often in ways that are hidden, encrypted or dis-

simulated – the majority of Queneau’s works.

Beyond the judgments of the critics regarding the merits of individual novels or

collections of poetry, it seems to us that the element that renders Queneau’s work

unique in the contemporary panorama in France and beyond lies in his having

constructed an “amalgam” of science and literature without its having weighed down

the narration, which remains light and amusing, as in Les fleurs bleues or Zazie dans le
métro. Queneau was able to experiment with new literary structures and innovative

linguistic forms without leaving traces in the writing of the kind of uncertainties that

often accompany creative efforts when they depart from the beaten path.

The image chosen by Raymond Queneau to characterise his poetry is that of an

onion: every ring of the onion corresponds to a level of possible interpretation of the

work, each as valid as the next. And the mathematical ring was a constant in the

construction of his works from the beginning: in theoretical writings and in inter-

views the writer underlined how each novel was based on complicated calculations

and rigorous constructions: “Even for linear novels . . . I’ve always forced myself to

follow certain rules that had no other reason for being than to satisfy my taste for

numbers or other strictly personal fancies”.10 Referring to his first novels, Queneau

says, “I found it intolerable to leave the number of chapters in these novels to

chance. For this reason The Bark Tree is composed of 91 (7 � 13) sections, 91

being the sum of the first thirteen numbers and its own “sum” being 1; it is thus the

number of the death of living things and of their return to existence, a return that at

the time I conceived as the irremediable perpetuity of hopeless suffering”.11

8Raymond Queneau, Bords – Mathématiciens Précurseurs Encyclopédistes, Hermann, Paris,

1963.
9Raymond Queneau, Segni, cifre e lettere e altri saggi, Italo Calvino, ed., Einaudi, Torino, 1981.
10Raymond Queneau, “Conversation avec Georges Ribemont-Dessaignes”, in Bâtons, chiffres et
lettres, Gallimard, Paris, 1965, p. 42. English translation from Letters, Numbers, Forms: Essays
1928-70, trans. Jordan Stump, University of Illinois Press, 2007, p. 177.
11Raymond Queneau, “Technique du roman”, in “Conversation avec Georges Ribemont-

Dessaignes”, in Bâtons, chiffres et lettres, Gallimard, Paris, 1965, p. 29. English translation
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However, the work of Queneau that is most obviously influenced by mathemat-

ics is an essay written in 1942 entitled “Brouillon projet d’un atteinte à une science
absolute de l’histoire” (Draft of a project to attempt to arrive at an absolute science

of history), published in incomplete form in 1966 with the title “Une histoire
modèle” (A Model History). Here Queneau bases himself on Vito Volterra’s

biomathematics12 in the attempt to formulate a model that can be applied to the

evolution of human history.

Among the works of creative literature we can cite the 1947 Exercices de style,
which recounts the same banal incident in 99 different ways. The publication of

Cent mille millards de poèmes dates to 1961, a singular book composed of ten

sonnets, where each of their respective 14 lines of verse, all of the same rhyme

scheme and the same syntactic construction, appears on a separate strip of paper.

The verses can therefore be combined so as to produce, as the title suggests, a

hundred thousand billion poems.

While we certainly find the presence of a certain “arithmania” forming the

basis of these works, as Queneau himself acknowledged, in reality this serves a

from Letters, Numbers, Forms: Essays 1928-70, trans. Jordan Stump, University of Illinois Press,

2007, p. 27.
12Vito Volterra, Leçons sur la théorie mathématique de la lutte pour la vie, Paris, Cahiers
Scientifiques, 1931.
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precise poetic intention which favours the formal aesthetic. The first literary

experience related to the group embracing surrealism, which Queneau began to

take part in starting in 1924, only to remove himself stormily 5 years later along

with some other well-known deserters, had led him to develop a concept of

literature that was in opposition to the surrealistic one based on a romantic

matrix. Queneau thus refuted the idea that, in creating, the poet was guided by

the unconscious, by automatism, by inspiration: for him, the authentic creator is

the one who consciously imposes rules. As is clear, these considerations, which

date back to the 1930s, constituted the prelude to the program of the Oulipo,

which aimed at offering writers artificial literary structures in order to foster the

task of creating.

From Exercises in Style by Raymond Queneau

Original Version

In the S bus, in the rush hour. A chap of about 26, felt hat with a cord instead of a

ribbon, neck too long, as if someone’s been having a tug of war with it. People

getting off. The chap in question gets annoyed with one of the men standing next

to him. He accuses him of jostling him anytime anyone goes past. A snivelling

tone which is meant to be aggressive. When he sees a vacant seat he throws himself

onto it.

Numerical Version

In a bus of the S-line, 10 m long, 3 m wide, 6 m high, at 3 km 600 m from its starting

point, loaded with 48 people, at 12.17 p.m., a person of the masculine sex aged 27

years 3 months and 8 days, 1 m 72 cm tall and weighing 65 kg and wearing a hat

35 cm in height round the crown of which was a ribbon 60 cm long, interpellated a

man 48 years 4 months and 3 days, 1 m 68 cm tall and weighing 77 kg, by means of

14 words whose enunciation lasted 5 s and which alluded to some voluntary

displacements of about 15–20 mm. Then he went and sat down about 1 m 10 cm

away.

Geometrical Version

In a parallelepiped rectangle moving along a straight line of equation 84x þ S ¼ y,
ovoid A wearing a spherical calotte encircled by two sinusoidal waves of length
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1> n immediately below its crowning hemisphere manifests a point of contact with

ovoid B. Prove that this point of contact is a cusp.
If ovoid A meets a similar ovoid C, then the point of contact is a disc of radius

R > 1. Determine the height h of the point of contact in relation to the vertical axis

of ovoid A.

Set Theory Version

In bus S, consider the set of seated passengers A, and the set of standing passengers B.
At a certain stop, is the set P of people waiting. Let C be the set of passengers

boarding; it is a subset of P, and is itself the union of set C0 of passengers who
remain on the platform and set C00 of the passengers who are going to sit down.

Demonstrate that set C00 is empty.

Let Z be the set of the rude passengers, and {z} the intersection of Z and C0,
containing a single member. As a consequence of the surjection of z’s feet on those
of y (an arbitrary but distinct member of Z), it is possible to determine a set M
containing words spoken by z. Since set C00 has now become non-empty, prove that

it contains only z. . .
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John F. Nash Jr.

The Myth of Icarus

Roberto Lucchetti

John F. Nash Jr. was probably one of the most brilliant mathematicians of the

twentieth century. His results are unanimously considered to be of the highest

calibre, and have produced solutions to problems that were classified among the

most difficult. His activity as a researcher lasted for just a short time, less than 10

years, before, as we will see, being forced to a halt. In this chapter, we first want to

recount some details about Nash’s life in a simple and clear way. The source for this

is Nash himself, that is, his autobiography written on the occasion of the awards

ceremony for the Nobel Prize in economics, which he won together with Harsanyi

and Selten in 1994. Then I’ll make some comments about the character of this

genius, which has fascinated me since I read Sylvia Nasar’s biography of Nash

(A Beautiful Mind: The Life of Mathematical Genius and Nobel Laureate John
Nash, 1998). Finally, I’ll try to explain in simple language what game theory is, and

will look at some of its first fundamental results, above all those in connection to

von Neumann and Nash.

Nash’s Life

Life “legally” began for John F. Nash Jr. on 13 June 1928 in Bluefield, West

Virginia. His father was an electrical engineer, originally from Texas, a veteran

of the First World War, who moved to Virginia to work for a local electric

company. His mother was born in Bluefield, and was an English teacher who

sometimes taught Latin as well. When Nash was 2-years old, his sister Marta was

born. Nash had been an avid reader since he was a very young boy, and he felt pretty

isolated in that community, which was mostly made up of businessmen, lawyers

and salesmen. After finishing high school, he entered Carnegie Mellon University

(then known as Carnegie Tech.) in Pittsburgh, where he majored in chemical

engineering. He very soon left that, however, saying that the courses were too

regimented, and turned instead to chemistry. But he came to discover that here too

quantitative analysis was required, and that creative thought counted for less than

C. Bartocci et al. (eds.), Mathematical Lives,
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certain skills in laboratory work. In the meantime, the math department managed to

convince him that sometimes even a mathematician could make a good career. He

switched majors again, and his undeniable talent became immediately evident, so

much so that he graduated simultaneously with a bachelor’s and a master’s in

mathematics. The letter of recommendation that he took away with him said

unequivocally, “This man is a genius”. This earned him several invitations for

doctoral studies, in particular from Harvard and Princeton. In the end, after some

hesitation, he settled on Princeton, which not only made him a more generous offer,

but was closer to home. After some initial uncertainty about what to focus his

research on, Nash earned his doctorate with a thesis on game theory, which brought

him immediate fame, at least in academic circles. In the autobiography I mentioned

earlier Nash tells of his position at MIT, the Massachusetts Institute of Technology,

of the courses he taught at Harvard, and of his academic work. But there are other

important aspects of his life that he does not mention: his work for the Rand

Corporation, a small but active think-tank located in California. Under contract to

the US government and the Marine to hire the best minds in game theory, Rand

snatched up Nash, the most promising young mathematician of his generation. But

his relationship with Rand was stormy, and by that time Nash was more interested

in so-called pure mathematics than in game theory. He was let go after a few years.

Rand also accused him of immoral behaviour following an incident that has never

been entirely made clear, and this led to suspicions that he was homosexual. He also

had a passing relationship with a woman who bore him a child, and though he never

recognised him as his son, he continued to see the boy on and off and is still close to

him today. In 1956 he married Alicia, a former student of his at MIT. In 1959 he

resigned from MIT, because the mental illness that he had suffered from for some

time became too obvious to hide. Nash suffers from paranoid schizophrenia, a

mental illness that makes it impossible to work, and almost impossible to have any

social life. There is no sense dwelling on the next 30 years, when John spent time in

mental hospitals and clinics against his will, interspersed with periods of greater

serenity, during which he travelled and even did some writing. What matters is that

in the early 1990s, Nash, who had been called “the phantom”, began to attend some

seminars, to write some letters, to talk to colleagues. His long-time friends gra-

dually tried to help him with his reintegration into society, and worked to see that he

was given awards as publicly visible as the Nobel Prize, with a dual intent: on the

one hand, it was thought that an award he had always aspired to would help him

recover; on the other, more mundane, the award was accompanied by a handsome

check, and it shouldn’t be forgotten that for 30 years Nash had not had a job, much

less a salary. The rest is recent history: first the Nobel, then articles about Nash,

followed by Nasar’s biography and the film based on Nash’s story, “A Beautiful

Mind” starring Russell Crowe, a somewhat romanticised version of his life that

made Nash internationally famous. Today he lives in Princeton and from time to

time travels, with frequent visits to Italy.
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The Myth of Icarus

This section takes its name from something that Sylvia Nasar said at the literary

festival called Festivaletteratura in Mantua in September 2002, during a masterly

talk that she gave on the occasion. The myth of Icarus is of course a daring flight up

towards the light followed by a ruinous fall. Nash’s life adds a new twist on the

myth: after an overpowering ascent, and an apparently irremediable fall, there was a

return to a normal life. We mentioned that at only 20-years-old Nash’s doctoral

thesis made him instantly famous, and not without reason, seeing as how more than

40 years later the results earned him the highest honour a scientist can hope for. And

yet his restless mind led him to work on other problems. He wanted to grapple with

more abstract ideas, and was obsessed with the idea of solving complicated ques-

tions, so complicated that their solutions would bring him global acclaim (at least

among mathematicians). He was not as interested in specialising in one theory,

even a very fashionable one, as he was in attacking problems that were deemed to
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be impossible, or almost. He even went around asking experts in the field for

suggestions as to what problems to look into, and insisted on knowing whether or

not they were sufficiently difficult. In a short time he solved three problems that

earned him the lasting respect and admiration of the mathematics community. He

was famous even outside that community, and a magazine once put his picture on

the cover as one of the most promising scientists of his generation. He married a

beautiful and very intelligent girl, one of the three (!) female students at MIT at the

time. Like everyone, Nash too had periods that were dark or frustrating. He was

very disappointed by the fact that one of his most prestigious results had in fact

already been proven, although in a slightly less general way, and above all using

different techniques, by Ennio De Giorgi, a great mathematician who will be

discussed in a separate chapter. Earlier I mentioned his difficult relationship with

the Rand Corporation, and the son that he never recognised. It is not only difficult

but futile to determine exactly what brought on his illness, an illness that would

have exploded one way or another. Paranoid schizophrenia is still not well under-

stood even today. In Nash’s case – but this is probably quite common, especially

when schizophrenia is accompanied by paranoia – one symptom of the illness

manifests itself when the person suffering from it begins to be obsessed with things

that to everyone else seem obvious or unimportant: thus Nash saw conspiracies

everywhere; he found messages where there were none, such as in random numbers

on the pages of newspapers, messages that he claimed had come from strange and

mysterious beings; he heard voices. Above all, and this is the paranoid aspect of the

illness, he suffered from delusions of grandeur: he sometimes claimed to be the

emperor of the universe. This is why when he was in Europe he caused a turmoil in

various embassies, because he insisted on giving back his US passport. Other times

he believed he was God’s left foot. All of this went on, as he said, for about 30

years. Then something changed. Why, and more especially, how did he undergo

this change? Reading his autobiography is illuminating. He began by deciding

intellectually to push away some of the delusions that were basic to his way of

thinking. And then he goes on to say, “However this is not entirely a matter of joy as

if someone returned from physical disability to good physical health. One aspect of

this is that rationality of thought imposes a limit on a person’s concept of his

relation to the cosmos”. This gives the impression of someone would say who

misses a significant part of the emotions, if not the thoughts, that he had had during

his illness. It is certainly not like the story recently told by Marguerite Sechehaye in

Autobiography of a Schizophrenic Girl, in which the main character, who had

believed herself to be the queen of the Andes, was wonderfully happy to have

returned to normalcy, and looked back with horror at the periods when she was ill.

Nash insisted, “For example, a non-Zoroastrian could think of Zarathustra as simply

a madman who led millions of naive followers to adopt a cult of ritual fire worship.

But without his “madness” Zarathustra would necessarily have been only another of

the millions or billions of human individuals who have lived and then been

forgotten”. This, written on the solemn occasion of the award of a Nobel! It is

clear that Nash has always been obsessed with the idea of leaving something
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behind, just as it is clear that his hallucinations were tied to this dream, and that

giving up the delusions also meant giving up the dream.

On 19 March 2003, the Federico II University in Naples awarded Nash an

honorary degree, his first in economics, as strange as it may seem, seeing as how

he had already won a Nobel in this field. On that occasion, he agreed to answer

some questions. I was struck by two of his answers in particular:

They say you are a genius. What do you think?

It’s difficult to talk about this.1 If you ask someone who might be a genius if he really is

one, you’ll put him on the spot. If you were to ask Mozart why he is a genius and Haydn

isn’t, he might say that he’s not at all sure that Hayden isn’t a genius.

In your life have you met many John Nashes?

I knew another J. F. Nash, but he’s no longer with us. He was my father. I know another

J. Nash, but not J. F. Nash. He’s J. C. Nash. He’s my son. I can’t think of any others. Of

course, J. Nash isn’t a common name like J. Smith is.

I think that in these answers, which seem a little evasive (Nash never answers a

question directly), we can see the myth he has always believed in: to be unique, and
to be recognised as such in the eyes of the world. In the epilogue to the book The
Essential John Nash, edited by Sylvia Nasar and Harold Kuhn, Nash wrote that the
point of view of a person whose personal experience has become the subject of a

book is different from that of the book’s readers, and that in the overall experience

of a person there is no “essential” and “non essential”. According to Nash, the most

beautiful thing is that a human being has the possibility to live and to experience,

and that he can hope to be reincarnated or go to heaven when he has really come to

the end and he is by now a part of history. It seems to me highly unusual that a

person who defined a mathematical concept of rationality that is regularly used in

the sciences should talk about reincarnation and heaven in the closing pages of

a book that discusses his life and his Nobel Prize, and which contains the scientific

works that made his famous the world over.

In closing, I believe that Nash in some sense rationally chose to get well. Of

course, it may well have been that the passing years (even these bring some

advantages) might have slowed down the chemical processes, as his long-time

friend Harold Kuhn once defined them, that caused his illness in the first place, and

it may be that the increasingly sophisticated and advanced treatments also did their

part. However, the fact remains that there are many clues that suggest that there is a

profound connection between his illness and the dreams, aspirations and objectives

that he strived for. Not only, in spite of his having achieved great fame and received

many honours late though they came, do we sense a kind of regret in Nash that he

wasn’t who he would have liked to have been, but we hear the kind of tragic

desperation of a person who longs for immortal fame with all his might, and who,

even though gifted with exceptional intellectual powers, has never lived up to his

own expectations. To be sure, Nash’s life was a particularly hard one, not only for

1Nash is right, it is always difficult to talk about one’s self, especially in response to a question that

is not overly acute like this one and the next.
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himself but for those close to him as well, such as his wife, who, even though she

had asked for a divorce, especially as a way to protect her child, never abandoned

him, and today are married again. Nash is an exceptional person, but unfortunately

in his own eyes, he was not and is not good enough.

Game Theory

In this book we talk about von Neumann and Nash, two giants of twentieth-century

mathematics with two different kinds of temperament, two different stories, two

completely different lives, but who nevertheless have many things in common. Not

only, obviously, that for a certain time they were both at the Institute for Advanced

Study in Princeton, one of America’s temples to science, but also the fact that their

contributions to mathematics, which developed in different areas, have one funda-

mental thing in common: both were considered fathers of a new theory, called

Game Theory, a part of mathematics that is so new that it can’t be taken for granted

that even those who are interested in and up to date about the sciences know exactly

what it is. Of course, we can reasonably guess that it deals in an intelligent way with

how to play games that are popular all over the world, from chess to poker, to name

only two. It is no coincidence that the first famous result refers to chess, and that

Nash’s doctoral thesis, the work for which he was awarded the Nobel Prize,

contains the study of a simplified model for poker. It would be, however, an obvious

mistake to think that this can be used only for analysing games. In reality, the best

way to understand what game theory is about is to ask ourselves why games are so

important. The answer is simple: games are important because they are a symbolic

but very effective way of describing situations that life presents us with on a daily

basis. In a game there are various people (players or agents) who have to make

choices in accordance with certain rules. The set of their joint choices generates

an outcome of the game itself, and the agents prefer certain outcomes over others.

If a game is described in this way, then you can see that our lives are like games, and

that we make decisions to obtain results that depend not only on our behaviour but

on others as well. Studying these mechanisms means trying to shed light on the

significance of rational behaviour, and trying to understand economic mechanisms,

political theory, and psychology. Not only this, but if we hypothesise that there is

also a kind of rationality in interactive behaviour even on the part of beings who

can’t be defined as intelligent, at least from the point of view of human intelligence,

then we naturally see that this theory has applications in other areas as well, such as

biology, genetics and computer science. I said earlier that the initial hypothesis is

that there are agents who have to make choices, and that the combination of the

choices determines the possible outcomes of the game, some of which will be

preferred by the players. We presume that the players are egotists, that is, that they

will be exclusively interested in obtaining their own maximum benefit, and that

they are rational, that is, that they can in some way understand the best way to

behave. It is this last assumption, apparently innocent, which obscures the many
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problems of interpretation and which is probably the reason why game theory is so

fascinating, because the problem of correctly defining rationality has always per-

meated human thought. Now that we have given this rapid introduction, in what

follows I will briefly talk about the earliest developments in the theory, with

emphasis above all on the contributions of von Neumann and Nash.

The first noteworthy result is attributed to Zermelo, who in 1913 published a

theorem about chess, in which he essentially says, or they say he says,2 that games

that have a structure like that of chess are determinate.3 This means that at least in

situations that can be modelled, like chess, we have an unequivocal idea of what it

means to be rational, since the result of the game is predictable a priori. Chess is a

zero-sum game. In simple terms this means that the players have opposing interests,

and this is by far the easiest situation to model. It is no coincidence that successive

contributions always involved this kind of situation, but with more complicated

hypotheses. For example, we can understand that a game like rock-scissors-paper is

of a different nature than chess: in chess the moves are in succession, and both

players know how the whole game is played out; in rock-scissors-paper, the moves

are made at the same time, so that when a player makes a move he doesn’t know

what his opponent will do, and vice versa. And in effect, even with two perfectly

rational players, it is difficult to say that the outcome of any individual game will

always be the same. However, it is pretty easy to intuit, especially in the case of a

game that is played repeatedly, that there are more or less effective and intelligent

ways of playing: for example, if I consistently make the next higher move over that

of the previous stage, then my opponent will soon come to understand this strategy

and can use it to his advantage. So von Neumann introduced the concept of mixed

strategies, and used the concept of expected utility to extend the idea of equilibrium

to these games as well. Finally, he stated a fundamental result, the so-called

minimax theorem, which states that every finite two-person zero-sum game admits

equilibrium, in mixed strategies. Thus even a game without apparent equilibrium

shouldn’t be played randomly or by trying to understand the opponent’s psychology

(this was E. Borel’s idea, who was in any case sceptical about the possibility of

achieving a minimax theorem). As the theorem says, there exists an “optimal” way

for both players to assign a probability to each pure strategy (that is, a mixed

strategy). Not only that, but since the players are rational, they both know the

situation and thus such a game turns out to be determinate: its outcome is always

and inevitably the same. Naturally this should be understood in a probabilistic way:

if I play rock-scissors-paper against another player a sufficiently high number of

times, then I know that at the end we will be substantially tied, and the only

intelligent way to play is to trust in random choice, that is, random as understood

in terms of certain probabilities. In the case of rock-scissors-paper, for instance, this

2Curiously, very curiously, the theorem published by Zermelo, although it does deal with chess,

absolutely does not say what the experts say it says, even the most expert of experts.
3It isn’t easy to explain in a few lines what this means and what the implications are. One way to

say it is that any game played by two perfectly rational players would always end up the same way,

meaning that either the two colours always tie, or that the same colour always wins.
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means that I take a die and if it comes up as one or two, I play paper, three or four I

play scissors, and five or six and I play rock.4 Games that are strictly competitive

have two fundamental characteristics. The first is that the players can calculate their

equilibrium strategies independently: they must certainly bear in mind that the

other player exists, but they don’t need to know what he will do in order to achieve

their best result. As a consequence, the second fundamental characteristic is that

when there are various equilibrium configurations, even if they have two equilib-

rium points in mind, the results of their actions is an equilibrium, different from

both the previous ones, but still assigning the same quantity to both. To explain this

better, consider the following game, where on the contrary coordination between

the players is essential to reach an equilibrium: if two friends want to spend an

evening together but one wants to go to the opera and the other to the cinema, then it

is obvious that while going together to the opera or going together to the cinema are

both equilibria, if the two friends act independently without agreeing, they run the

risk of finding themselves alone. Von Neumann’s theorem is thus a great step

forward in the theory of interactive decisions, perhaps the first systematic result in

this sense. Clearly, the strictly competitive situation does not cover all the possible

situations; on the contrary, we are much more likely to run across situations where

the players can both benefit or both lose by making certain combined moves.5 For

this reason von Neumann thought about extending the theory that led to

the publication of the book – co-authored with the Austrian economist Oskar

Morgenstern – entitled Theory of Games and Economic Behaviour, which many

consider to be the work that marked the birth of game theory, and which, along with

the systematic presentation of the results of strictly competitive games, takes on the

study of games that are not (necessarily) zero-sum using a totally new approach.

The idea that is developed begins with the observation that a game can often be

described by means of the behaviour of the coalitions that can be formed between

players. Many examples illustrate this: a labour union, a political party, an associa-

tion formed with the aim of obtaining advantages for its members. Once the game

has been formalised by defining it as a function that associates to every possible

coalition a set of utilities that the players of the coalition itself can obtain by

coalescing, then a concept of a solution is formulated, that is, of a distribution of

utilities among the individual players. In this case we speak of a cooperative

approach to the theory, although we should clarify right away that the cooperation

does not occur because of any decrease in the players’ egotism. The hypothesis is

simply that agreements which are somehow binding are stipulated because they are

in everyone’s best interests. The solution concept proposed by von Neumann and

4According to Einstein, God does not play dice. According to those working in game theory, God

plays dice, but he plays intelligently.
5If this is not completely clear in terms of a board game, at least one with two players, it should be

evident in the many examples we can find in economics, starting with the example of the only two

coffeehouses in town which have to decide on the cost of a cup of coffee: it is in the best interests

of each to keep the cost high, but if one lowers the price he earns more because he steals the

customers of the other.
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Morgenstern for this model of game is quite involved: there are many instances in

which the solution is a set (not reducible to a single utility distribution vector) and

that there are several solutions (making it difficult to interpret the concept itself a

posteriori), nor were the authors able to establish whether or not there exist games

without any solutions (the affirmative response would arrive years later). We are in

the early 1950s now, when Nash bursts onto the scene as a student at Princeton’s

Institute for Advanced Study, in search of a good topic for his doctoral thesis and

certainly fascinated by von Neumann’s charisma. Nash doesn’t hesitate to propose

an alternative model to von Neumann’s, which he himself defines as non-coopera-

tive, in which the primitive data are the spaces for the players’ strategies, each of

which is assigned a utility function, which depend on all the players’ choices. At the

same time, Nash proposes a new solution concept, either of equilibrium, or of the

idea of rationality, which today is called Nash equilibrium: a multistrategy – that is,

a combination of strategies among the various players – is in equilibrium if no

player, informed that the others intend to go along with the proposed multistrategy,

has any interest in deviating from his own proposed strategy. In other words, if a

referee says, “Claire, you choose strategy A and Camille, you choose strategy B”,

assuming that Claire effectively plays strategy A, then Camille has nothing to gain

from changing strategy B (and vice versa, of course). On the other hand, Camilla

can consistently assume that Claire will not deviate from strategy A, since she does

not have interest in not following the recommendation, and conversely. In the same

paper, Nash then proved an existence theorem. On the other hand, Nash says clearly

in his thesis that his idea of equilibrium is not entirely new, since it was used much

earlier and in a special case by Cournot. Be that as it may, the exceptional nature of

Nash’s contribution consists in his having formulated a model and formalised the

equilibrium concept within it. After having published his thesis and the results

contained in it, and after having developed almost at the same time a bargaining

model between two agents, Nash essentially lost interest in game theory. It should

also be mentioned that von Neumann did not accept Nash’s model: his comment,

not very generous by any account, is that it is only a new fixed point theorem.

The later development of the theory would fully justify Nash: there is no doubt that

the non-cooperative approach is today overwhelmingly prevalent, above all in the

classic sectors where game theory is applied, economics first among them. From

that time to the present, game theory has made giant strides forward. Not only that,

but it has become one of the elite sciences, a fact demonstrated by the Nobel Prizes

(1994, 2005 and 2008) awarded to those working in the field. Even more important,

there is a more mature awareness of its values and its limits. It may be that there is

no longer space for the enthusiasm with which the first results were met, or for the

excessive optimism about what could be achieved by the systematic application of

this discipline, but that is not necessarily bad. Game theory, like any good scientific

theory, explains something, and often opens roads for research that are deeper and

more interesting than the problems it actually solves. Today other theories which

perhaps wouldn’t have even been born had there been no game theory, have become

very important, and the debates about their relative plusses and minuses are quite

useful. One example is so-called behavioural economics. It is evident that the initial
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hypothesis – that of the players’ perfect rationality – is a significant abstraction: for

some this might pose a serious limit on the applicability of the theory as a whole. In

reality, it isn’t like that. Today the philosophers of science are inclined to think that

the most valuable contribution of game theory is that of constituting a reference for

determining how much the behaviour of agents can deviate from an optimal

behaviour.

Without this reference it would be difficult to perform in-depth analysis that goes

beyond the confines of purely qualitative considerations. I will close by noting that

the paradigm of rationality defined by Nash’s equilibrium concept raises more than

a few questions, and a number of logical and philosophical dilemmas. I see this as a

good sign. The most fertile ideas are not the ones that solve certain problems, even

complicated ones, but those that raise new questions and open new horizons.
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Ennio De Giorgi

Intuition and Rigour

Gianni Dal Maso

Ennio De Giorgi was born in Lecce on 8 February 1928. His father, Nicola, taught

literature at the high school in Lecce, and was an expert in Arabic, history and

geography; his mother, Stefania Scopinich, came from a family of seafarers from

Lošinj in Croatia. His father died prematurely in 1930, but his mother, to whom

Ennio was especially close, lived until 1988.

After graduating from the classical high school, in 1946 Ennio enrolled in

engineering at the University of Rome. The next year, he switched to mathematics,

receiving his degree in 1950 with Mauro Picone as his thesis advisor. Immediately

afterwards, he was given a research grant to work at Picone’s Istituto per le

Applicazione del Calcolo (Institute for Applications of Calculation), and in 1951

he became Picone’s assistant at the Mathematics Institute at the University

of Rome.

Perimeter Theory and Hilbert’s 19th Problem

In the years 1953–1955, De Giorgi obtained his first significant mathematical

results in the theory of perimeters, a notion of a (n�1)-dimensional measure for

oriented boundaries of n-dimensional sets introduced by Renato Caccioppoli. These

results led to the proof of a isoperimetric inequality, published by De Giorgi in

1958: of all the sets of given perimeter, the hypersphere has the maximum

n-dimensional volume.

In 1955, De Giorgi published a counterexample that showed the nonuniqueness

of regular solutions of Cauchy’s problem for linear partial differential equations

with regular coefficients, a problem that had been unsolved for more than half a

century. This brief article, lacking any bibliographic references, echoed throughout

the mathematical world, arousing in particular the interest of Torsten Carleman and

the admiration of Jean Leray. In 1966 Leray would construct some further “contre-
examples du type De Giorgi”.
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The most important result obtained by De Giorgi was the proof of Hölder

continuity of the solutions of elliptic equations with measurable and limited coeffi-

cients (even when there is discontinuity in the coefficients). This result, obtained in

1955 and published in complete form in 1957, was the final – and perhaps most

difficult – step towards solving the 19th problem posed by Hilbert in 1900: whether

the solutions of regular minimum problems in calculus of variations for multiple

integrals are regular, and even analytic in the case of analytic data.

The events leading up to the regularity theorem, recounted by Enrico Magenes

during the commemoration of De Giorgi at the Accademia dei Lincei, unfolded in a

blaze. In August 1955, while hiking near the Pordoi Pass, Guido Stampacchia told

De Giorgi about the partial solution to Hilbert’s 19th problem. De Giorgi must have

immediately seen that it was possible to apply the results of his research on

perimeters, particularly the isoperimetric property of the hypersphere, because in

less than 2 months he was ready to present his proof of the theorem of regularity

based on these tools at the Congress of the Unione Matematica Italiana.
This story sheds light on one aspect of the scientific personality of De Giorgi:

lightening fast intuition joined by an exceptional ability to follow up with a proof

formulated carefully down to the smallest details. The other aspect of his personality

made evident by this story is his capacity to work on very difficult problems in almost

total isolation.

The results regarding Hölder regularity had a significant influence on the theory

of non-linear elliptic equations. The identical result for parabolic equations was

148 G. Dal Maso



proven in those same years by John F. Nash, Jr., using methods that were entirely

different.

Some years later, in 1968, De Giorgi returned to the subject once again, using a

counterexample to show that the same result does not apply to uniformly elliptic

systems with discontinuous coefficients. Thus, if the question raised by Hilbert in

the 19th problem is extended to vector functions, the answer is negative.

Minimal Surfaces

In 1958 De Giorgi became professor of mathematical analysis at the University of

Messina. The next year, on the recommendation of Alessandro Faedo, he was called

to the Scuola Normale Superiore in Pisa, where he held the chair in mathematical,

algebraic and infinitesimal analysis for more than 40 years. Each year De Giorgi

taught two courses, which usually met on Tuesdays and Thursdays from 11:00 until

1:00. The tone of the classes was very relaxed, with frequent interruptions for

questions from those attending. Sometimes there was a 20 min break, and the whole

class adjourned to a nearby café. Although somewhat fuzzy in the details, the

classes were fascinating.

In 1960 the Unione Matematica Italiana awarded De Giorgi the newly estab-

lished Premio Caccioppoli. During the 1960s his scientific work mainly regarded

the theory of minimal surfaces. His main result was the proof of the analyticity

almost everywhere of minimal boundaries in Euclidean spaces of an arbitrary

dimension. This is a remarkable example of the great possibilities offered by the

theory of perimeters in the calculus of variations. De Giorgi considered the result

regarding the regularity of the minimal boundary to be a victory achieved in one of

his most daunting scientific challenges.

The technique used in his proofs was immediately adopted by William K. Allard

and Frederick J. Almgren to study the partial regularity of more general geometric

objects and is today commonly used in contexts that are quite remote from those

where it originated: non-linear elliptic and parabolic systems and equations,

harmonic maps, problems of geometric evolution, etc.

In 1965 De Giorgi obtained an extension of Bernstein’s theorem to dimension 3:

all solutions of the equation for minimal surfaces defined for the entire three-

dimensional Euclidean space are necessarily affine. This result was immediately

extended up to dimension 7 by James Simons, who also constructed a locally

minimal cone in dimension 8. De Giorgi then proved, in 1969, along with Enrico

Bombieri and Enrico Giusti, that Simons’ cone is also globally minimal. Further,

using this cone, they constructed a non-affine solution to the equation of minimal

surfaces defined on the entire Euclidean space of dimension 8. This surprising result

showed that Bernstein’s theorem could not be extended to spaces of a dimension

higher than 7. In the same year, De Giorgi, along with Enrico Bombieri and Mario

Miranda, proved the analyticity of the solutions to the equations of minimal

surfaces in all spatial dimensions.
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Between 1966 and 1973 De Giorgi enthusiastically accepted Giovanni Prodi’s

invitation to spend a month a year teaching at a the small university in Asmara run

by Italian nuns.

In 1971, together with Lamberto Cattabriga, De Giorgi proved that, in dimension

2, every partial differential equation with constant coefficients and whose known

term is real analytical has a real analytical solution, while in higher dimensions

there are examples of even quite simple equations, such as that for heat, for which

this property does not hold.

In 1973, the Accademia dei Lincei awarded De Giorgi the Prize of the President

of the Republic.

G-Convergence

During the period from 1973 to 1985 De Giorgi developed the theory of

G-convergence, conceived in order to provide a unified answer to the following

question, which is present in many problems, both theoretical and applied: given a

sequence Fk of functionals, defined in a suitable function space, does there exist a

functional F such that the solutions to problems of minima for Fk converge towards

the solutions of corresponding problems for F?
The starting point was the notion of the G-convergence of elliptic operators,

introduced by Sergio Spagnolo in 1967–1968 and originally defined in terms of the

convergence of solutions or corresponding equations. In 1973 De Giorgi and

Spagnolo, reconsidered this notion from a variational point of view, making evident

its connection to the convergence of the functionals of energy.

In an important paper published in 1975, De Giorgi went from the “operational”

notion ofG-convergence to one that was purely “variational”. Instead of a sequence
of differential equations, he considered a sequence of minimum problems for

functionals in the calculus of variations. Without writing the corresponding Euler

operators, De Giorgi established what could be considered as the variational limit of

this sequence of problems, and at the same time obtained a result of compactness.

This was the beginning of G-convergence.
The formal definition of this idea, together with the proof of its main properties,

appeared a few months later in a paper co-authored with Tullio Franzoni. In the 10

years that followed, De Giorgi dedicated himself to developing the techniques of

G-convergence and promoting its use in various asymptotic problems of the

calculus of variation, such as the problems of homogenisation, of the reduction of

dimension, of transition of phases, etc. De Giorgi himself, usually quite restrained

when talking about his achievements, was very proud of this one, considering it to

be a conceptual tool of great importance.

One characteristic of his work in this period was that it was the driving force

behind a lively research group, introducing fruitful ideas and original techniques,

and often leaving to others the task of developing them independently in various

specific problems.
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In 1983 De Giorgi gave a plenary lecture at the International Congress of
Mathematicians in Warsaw. This was the era of Jaruzelski and Solidarność, and
the congress, which had already been postponed by a year, was oppressed by a

sense of pessimism. De Giorgi began his talk onG-convergence by expressing great
admiration for Poland. On this same occasion he publicly expressed one of his most

deeply held convictions, saying that in his opinion, man’s thirst for knowledge was

“a sign of the secret desire to see some ray of God’s glory”.

Equations of Evolution and Problems of Free Discontinuity

At the beginning of the 1980s, in a series of works with Antonio Marino and Mario

Tosques, De Giorgi proposed a new method based on the idea of gradients for the

study of equations of evolution of the gradient flow type. This method was applied

to many problems of evolution with constraints that were non-convex and non-

differentiable.

In 1983, during a solemn ceremony at the Sorbonne, De Giorgi was awarded an

honorary degree in mathematics from the University of Paris.

In 1987 De Giorgi proposed, in a paper written with Luigi Ambrosio, a very

general theory for the study of a new class of variational problems characterised by

minimising volume and surface energies. In a later work he called this class

“problems with free discontinuity”, alluding to the fact that the set where the

surface energies are concentrated is not fixed a priori and can often be represented

by means of the set of points of discontinuity of a suitable auxiliary function.

Surprisingly, in those same years David Mumford and Jayant Shah proposed, in the

context of a variational approach to image recognition, a problem which was

perfectly suited to De Giorgi’s theory. The existence of solutions to this problem

was proven by De Giorgi in 1989, in collaboration with Michele Carriero and

Antonio Leaci.

Beginning at the end of the 1980s, De Giorgi was occupied with various

problems of geometric evolution such as those of evolution by mean curvature,

which require that the velocity normal to a surface must be proportional to its mean

curvature at each point, and proposed various methods for defining weak solutions

to the problem and calculating approximate solutions; his ideas would later be

developed by various mathematicians.

In 1990 De Giorgi was awarded the prestigious Wolf Prize in Tel Aviv.

Foundations of Mathematics

Starting in the mid-1970s De Giorgi devoted his Wednesday classes to the foundations

of mathematics, while his other classes continued to be dedicated to the calculus of

variations or the geometric theory of measure. His approach to the foundations,
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which was non-reductionist in nature, required the identifying and analysing some

concepts that were to be taken as foundations, without however forgetting that the

infinite variety of the real can never be completely grasped, in much the same way

as Hamlet warned Horatio, “There are more things between heaven and earth than

are dreamt of in your philosophy”, a reflection that De Giorgio adopted as a

philosophy of his own. For his work on the foundations, the University of Lecce

gave him, in 1992, an honorary degree in philosophy, of which he was particularly

proud.

Social Commitment and Relations with Other
Italian Mathematicians

Among De Giorgi’s various social commitments, the one he felt most deeply about

was undoubtedly that of human rights. This commitment, which he would work for

until the very last days of his life, began in 1973 with the campaign to free Ukraine

dissident Leonid Pliushch, unfairly imprisoned in a state mental hospital in Dnie-

propetrovsk. Thanks to the efforts of many scientists the world over, including

Lipman Bers, Laurent Schwartz and De Giorgi, Pliushch became a symbol of the

struggle for freedom of opinion. Finally, in 1976, Pliushch was freed. De Giorgi

was able to involve hundreds of people with differing political opinions in this fight.

Later he carried on with his work in defence of quite a number of people who were

persecuted for political or religious reasons, becoming an active member of

Amnesty International and never missing an opportunity to talk about and distribute

the Universal Declaration of Human Rights.

In Italy De Giorgi had friends and students just about everywhere. He often

travelled for seminars and conferences, especially to Pavia, Perugia, Naples, Trento,

obviously in addition to Rome and Lecce. He was an assiduous participant in the

congresses for the calculus of variations on Elba and at Villa Madruzzo in Trento,

where he felt especially at home. He seemed tireless on these occasions, encourag-

ing endless scientific discussions and throwing out new ideas or conjectures.

In spite of his being surrounded by colleagues, friends and students who admired

him deeply, he remained quite modest. His office door was always open to anyone

who wanted to discuss a mathematical problem with him. When this happened, he

could sometimes appear a distracted listener, but he was always able to grasp the

heart of the question and suggest new ways to address it, suggestions that always

turned out to be effective.

He was a member of the most important scientific institutions, in particular the

Accademia dei Lincei and the Accademia Pontificia, in which he was active until

the end of his life. In 1995 he was called to be a member of the Académie des
Sciences in Paris and the National Academy of Sciences in the United States.

De Giorgi was deeply religious. His attitude of being on an ongoing quest, his

natural curiosity, his open-mindedness with respect to all ideas, even those farthest
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away from his own, led him to speak easily and constructively with others about

religious topics.

Starting in 1988, when his first health problems appeared, De Giorgi spent long

periods of time in Lecce, especially during the summers, with his sister Rosa, his

brother Mario and their children and grandchildren, rediscovering the joys of family

life. In September 1996 he was admitted to the hospital in Pisa where, in spite of

several operations, he died on 25 October.

A Personal Recollection

I began to work on my degree thesis under the direction of Ennio De Giorgi in 1976.

I had the extraordinary privilege of taking my first steps in scientific research under

the guidance of the Maestro at exactly the time when he was developing his ideas

on G-convergence. Thus I found myself in the enviable position of one who,

without having done anything to deserve it and still wet behind the ears, is able to

observe first hand an undertaking as exciting as the development of a new branch of

the calculus of variations.

This is even truer in light of the fact that De Giorgi’s habit was to let his students,

even the youngest, in on the short and long term objectives of his research, going

into them with us in great depth, patiently explaining when we had a hard time

following him the reasons behind a conjecture or what techniques he thought were

most suitable for proving it.

De Giorgi’s style of working gave pride of place to opportunities for discussion,

and not only as amethod for judging the reasoning behind a problem, or for weighing

the validity of a conjecture. In his conception of the work of a mathematician,

informal discussion between friends of results achieved constituted an important

part of scientific activity.

For De Giorgi, writing was something lifeless, though necessary of course, for

giving results a definitive form and making them accessible through publication,

but not as effective for spreading them as informal discussion between those who

shared a lively interest in a given scientific problem.

Working in close contact with De Giorgi, I was able to experience directly the

highest meaning of the expression “scientific school”: a community of researchers

bound together by common scientific interests, ready to discuss among themselves

the results they had obtained and to exchange ideas as to which techniques to use to

address the open questions; a community in which the knowledge and experience of

the eldest members were transmitted to the youngest not only by means of formal

occasions of classes and seminars, but above all through informal discussions and

collaborative work.

At the time I was a student, and then later while perfecting my studies in Pisa, De

Giorgi’s school comprised, in addition of us students, various instructors at the

University of Pisa, and a large number of collaborators from other universities who

Ennio De Giorgi 153



carried out their research in close contact with De Giorgi and visited frequently to

discuss their results with him.

I recall that, for those of us who made up what you might call the Pisan nucleus

of his school, the fundamental appointment was the Tuesday class, during which

each year he taught a different subject, always dealing with stimulating unsolved

problems; in those years he often dealt withG-convergence. These were classes of a
very particular kind, in which the explanation of known results was the least

important part, and always a function of acquiring the techniques to solve the

open questions. These questions constituted the fundamental nucleus of the course.

The most stimulating parts were De Giorgi’s conjectures, usually quite detailed, as

to the steps required to solve the open problems.

You might say that, while we attended the other classes to obtain information

about the most important results of the past, we attended De Giorgi’s class to obtain

suggestions regarding the future. The problems raised during his classes were often

taken up again during the discussions he had with small groups of people in his

office. There he was able, in a less formal way, to explain the details of his

conjectures, and to clarify, broadly speaking, the ways of reasoning about them

that he thought were plausible. I remember that he never once excluded the

possibility that a conjecture of his might be false, limiting himself to observing

that one of the most important aspects of the mathematician’s work lay precisely in

identifying the propositions that were meaningful, and whose truth, or possibly

falsehood, was of significant consequence for a certain theory.

In reality the majority of De Giorgi’s conjectures which grew out of definitive

results proved to be true. These conjectures were the most invaluable suggestions

that De Giorgi used to give to all those in his school. Very often he preferred not to

occupy himself personally with the proofs, leaving this task to others, both because

materially he did not have enough time for all the proofs of his many ideas, which

were sometimes quite complicated, and because he believed that it was much more

important for him to indicate the directions that scientific research should follow.

De Giorgi was always open and available to listen to other mathematicians, both

students and the older members of his school who came to tell him about their

results and projects, as well as the many visitors who wanted to speak with him,

from the most famous mathematicians in the world to those who had merely won a

scholarship and wanted to ask his advice. I never remember him refusing to speak to

anyone.

In reality these discussions with other mathematicians were a way to keeping

himself up to date with the progress of others, without having to spend hours and

hours in the library reading mathematics journals. Frequently only a mention of a

new result that he had never read the proof of was enough to allow him to rapidly

reconstruct it in his own personal way, sometimes shedding light on aspects of the

research that had gone unnoticed by the author himself.

Quite often it appeared that he only listened distractedly to the explanation of a

result of someone else, but in reality the significant details never escaped him. The

interesting part of a discussion with him usually began only after you had finished

telling him about the results obtained up to that time. At that point, even if he had
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seemed distracted at first, De Giorgi would suddenly become animated and began

right away to provide interesting suggestions about possible new results that could

be further deduced from those just obtained. If you didn’t know his habits, you

might think that he but little appreciated the work done. In fact, this wasn’t the case,

and De Giorgi’s attitude towards his own work was just the same: once he had

obtained a result, it continued to be interesting to him only in so far as it could be

used as a point of departure for studying new problems that were still unsolved.

De Giorgi had an enormous influence on the training of several generations of

students, who learned from his teaching and his example a special way of “doing

mathematics”, one which takes its cues from meaningful model problems, often

(but not always) suggested by questions of applications, and in any case from

stimulating mathematical difficulties, and resolves them by situating them within

a broader theoretical context without, however, ever losing sight of the concrete

problem, and thus makes it possible to explain its mathematical aspects in a

satisfying way.
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Laurent Schwartz

Political Commitment and Mathematical Rigour

Angelo Guerraggio

Mathematics, politics and butterflies were the three great loves of Laurent

Schwartz, “father” of distributions, political militant unfailingly committed to the

elimination of all oppression, and extraordinary butterfly “hunter” (with a collec-

tion of over 20,000 specimens).

Mathematics is passion and rigour; politics is justice; a world without butterflies

would be very sad indeed.

From a strictly mathematical point of view, Laurent Schwartz’s reputation is tied

to the theory of distributions. He is also known, however, as an intellectual who

lived through many of the great events of the second half of the twentieth century.

All eras have a beginning and an end. Schwartz is one of the most luminous

symbols of the era – very European, and very French – of the committed intellec-

tual. Jean-Paul Sartre, Simone de Beauvoir, Luc Montagnier, Pierre Vidal-Naquet,

François Mauriac, Yves Montand, Simone Signoret and others were all figures

whose work was meaningful within the context of arenas that were much broader

than their own particular field. What was important was politics, belonging (to the

progressive front) and the commitment to “à lutter pour les opprimeés, pour les
droits de l’homme and les droits des peuples” (“struggling for the oppressed, for

human rights, and the rights of peoples”).

It is not by chance that Schwartz’s autobiography – from which all the quotations

in this article are taken – is entitled Un mathématicien aux prises avec le siècle
(English translation, A Mathematician Grappling with his Century, Birkh€auser,
2001). He begins by saying: “I am a mathematician. Mathematics has filled my

life. . . . I have thought about the role of mathematics, research and teaching, in my

life and the lives of others; I have pondered on the mental processes of research”.

He goes on to say, “In journalistic circles, which are always about two centuries

late, it is still the custom to use the word “intellectuals” only for people in literature

and the arts. When they talk about “the intellectuals” they refer only to them. It is

true that literature and social sciences are essential to today’s society, but scientific

intelligence also has a fundamental function. It is not merely a series of automatic

operations, but a grand discipline of the spirit, a culture and a form of thought which

constantly transforms knowledge and society”. And he concludes, “Mathematicians
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transport their rigorous reasoning into situations of daily life. Mathematical discovery

is subversive and always ready to overthrow taboos, and it depends very little on

established power”.

Schwartz was trained at the École Normale Supérieure – where almost all

French winners of the Fields Medal were trained, with the notable exception of

A. Grothendieck – and he had the opportunity to attend lectures and seminars by

mathematicians of the calibre of Fréchet, Montel, Borel, Denjoy, Julia, Élie Cartan,

and others. But the years between the two World Wars were a special time. The

young students were aware that – if they succeeded in passing 2 or 3 years of classes
préparatoires and an extremely selective entrance examination – they were enter-

ing a grand école (instituted by the French National Convention in 1974) and a

national elite destined for advanced research and management. However, many

were dissatisfied with the way subjects were taught, especially mathematics. French

mathematics came out of the First World War in tatters. Now, in the 1930s, the old

Masters were even older. There was no intermediate level of “eggheads” who were

“full of fight”, open to new ideas and capable of speaking directly to young people.

Schwartz repeatedly complains about a teaching that was fragmentary and lacking

in great ideas: “Mathematics appeared to be a finished subject. . . . It seemed there

wasn’t much left to do. And we didn’t even have an idea of that little bit. . . . I
clearly perceived something lacking in everything we learned; the absence of some

unifying thread”. His criticism extended to the textbooks and monographs used by
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the normaliens. The romans – as the new generation called the volumes of the

Collection Borel – on the one hand said too much and went on at length about

details that were of trifling interest, while on the other hand they lacked the

necessary rigour and shed no light on the important ideas.

For Schwartz, the encounter with Bourbaki was determinant: “. . .what was

lacking for me was Bourbaki. I needed their inspiration to really become a mathe-

matician”. He became aware that there is no fundamental difference between the

abstract and the concrete: a concrete object is only an abstract object that we have

become accustomed to. He found the right space for his need for rigour, finally

arriving at the conclusion – following on the heels of André Weil – that the Italian

school of algebraic geometry was one of the most significant examples of the lack

of rigour of the previous generations.

The encounter with the Bourbaki group took place in 1940. Schwartz had

finished his studies at the École Normale Supérieure in 1937; he had married

Marie-Hélène Lévy, daughter of Paul Lévy, one of the founding fathers of modern

calculus of probability; he had started a long period of service in the military, made

longer by the eruption of the Second World War. Schwartz’s generation was one

which, right in the best days of their lives, was forced to come to terms with tragic

events all concentrated in a few short months: the annexation of Austria, the

Munich agreement, the occupation of Czechoslovakia, the agreement between

Hitler and the Soviets, the Spanish civil war and the victory of Franco, the Nazi

invasion of Poland, the outbreak of World War II, the Vichy government, and more.

It was in fact years after his apprenticeship at the École Normale Supérieure,
only after the liberation of France in October 1944, that Schwartz was able to turn

his attentions once again to mathematics. Dieudonné and Delsarte called him to

Nancy, where his students would include J. L. Lions, B. Malgrange and

A. Grothendieck. After that, Choquet and Denjoy convinced him to move to

Paris, where he had the chance to create an even stronger “school”. Schwartz taught

at the university, and then later, starting in 1969, at the École Polytechnique.
The distributions date from 1944, with the name chosen for their physical

significance, in that they can be interpreted as distributions of electrical or magnetic

charges. Schwartz speaks about the night of discovery as “a marvellous night, the

most beautiful night of my life”:

In my youth I used to have insomnias lasting several hours and never took sleeping pills.

I remained in my bed, the light off and without writing, did mathematics. My inventive

energy was redoubled and I advanced rapidly without tiring. I felt entirely free, without any

of the brakes imposed by my daily life and writing. After some hours . . . especially if an

unexpected difficulty came up . . . I would stop and sleep until morning. I would be tired but

happy for the whole of the following day. . . . On this particular night I felt sure of myself

and filled with a sense of exaltation. I lost no time in rushing to explain everything to Cartan

who . . . lived next door. He was enthusiastic: “There you are. You’ve just resolved all the

difficulties of differentiation. Now we’ll never again have functions without derivatives”.

In essence, distributions constitute a generalisation of the concept of function,

which in fact resolves the problem of derivation (extending its calculation and

conserving its principle rules). A distribution is always derivable, sometimes an
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infinite number of times, and its derivatives also represent distributions. Precisely

because there are no exceptions to the process of derivation, the theory of distribu-

tion forms the most natural context in which to situate any differential problem;

once the solution is found, it is equally natural to ask whether the distribution found

is, in particular, a function.

This procedure is not new in mathematics. For example, the search for the real

solutions to an equation can be collocated in the field of complex numbers, checking

later to see if the solutions found are real or not, that is, if the complex numbers were

used to express real solutions.

The theory of distributions itself has numerous precursors, which Schwartz took

pains to list, recalling the constant need to give meaning to the operation of

derivation, or precise contributions in this direction – perhaps at first with insuffi-

cient rigour – or specific “technical” contributions: Heaviside’s symbolic calculus,

a 1912 paper by Peano, Dirac’s function, Bochner’s generalised solutions and

Leray’s weak solutions, Sobolev’s functions, de Rham currents, etc. Schwartz’s

distributions was heir to all these attempts, which now appeared to be individual

aspects of an organic and rigorous theory that Schwartz himself unhesitatingly

claimed had “deeply changed the whole nature of analysis”.

In recognition of Schwartz’s contribution, in 1950 he was awarded the Fields

Medal. But there was one, not insignificant problem. The Fields Medal was

presented during the opening ceremonies of the International Congress of Mathe-

maticians, which was to be held that year in the United States. Schwartz’s political

activity was well-known on that side of the Atlantic, perhaps even more so than his

mathematics, not least because of the McCarthyism that pervaded America in those

years. Schwartz ran a serious risk of not being issued a visa. This led the French

mathematicians, whose spokesman was Henri Cartan, then president of the Société
mathématique de France, to threaten to boycott the international congress, followed
by many American mathematicians who were equally intransigent. The conflict

was a hard one, in part because the French nominated as head of their delegation the

elderly Jacques Hadamard, a relative of Schwartz, one of the most esteemed

mathematicians, but also a communist sympathiser. In the end, not even the US

State Department was enough; President Truman himself had to intervene (the

Korean war was in full swing): Schwartz and Hadamard were issued visas,

the international congress was salvaged, and Schwartz could personally receive

the Fields Medal. (In 1972 he was elected to the Académie des Sciences.)
We have touched on the public and political dimension of Schwartz’s life, which

would soon become the dominant one (with the inevitable repercussions on his

research). Schwartz would in any case always remain a mathematician, one with a

great love for his discipline: “. . .mathematics are – not the queen of sciences as has

been said too often; there is no queen of the sciences – but a very great, true and

magnificent science”. He feels the same way about research and teaching. Thus

regarding research, he writes,

Every time I try to read mathematics or listen to a talk I feel as though it is an assault. It’s as

though they were trying to destroy my castle. . . . It almost seems as though my castle is an
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obstacle to development. But I don’t believe so . . . I feel a kind of imperialist desire for total

knowledge, not only for mathematics but also for sciences and everything to do with life

and society. For me everything ought to be perfectly logical. I can’t tolerate fuzziness. If I

don’t know a theory well, I feel as though I don’t know it at all. I have difficulty accepting

half-measures.

Regarding teaching, he says, “when I’ve had the joy of teaching my students a

beautiful theorem, I often prolong this pleasure by saying the lesson over to myself,

maybe even out loud, on the way home. Quelle sensualité”. Schwartz doesn’t even
hesitate to introduce the topics and styles most dear to the Bourbakis in the courses

for engineers, agreeing to transfer to the École Polytechnique only after he had

received ample assurance that he would be allowed to introduce radical reforms in

the engineering program. Whatever the underlying cause, whether the novelty of

“modern” teaching or the fascination of rigorous and strict logic, or perhaps the

charm of a great instructor, the fact remains that the “new” way of teaching analysis

was hugely popular among the students of the École Polytechnique.

The students’ appreciation is even more impressive if we bear in mind that

Schwartz was light-years away from being easy going or demagogic. He constantly

ranted against the impoverishment of mathematical education and the destructive

tendencies towards a sham egalitarianism: “Over the past 30 years there has been a

real improvement in education thanks to the fact that schooling has become

mandatory until 16, yet the renewal of the elite seems to me to be less effective

than it used to be”. We find him reiterating these ideas in many of his works, such as

the article entitled “L’Enseignement et le développement scientifique” written in

1981, as part of an overall “snapshot” of the French social system sponsored by

Prime Minister Pierre Mauroy or the 1984 book Pour sauver l’Université, or the by-
laws of an association – QSF, “Qualité de la science française” – for the protection

of the values of scientific culture and its transmission. But now it is time to speak in

particular of Schwartz as “politician”.

Schwartz’s militancy began very early: “I had become a Trotskyist in 1936 and

remained very militant until 1947”. He took his militancy very seriously, both

during the year of Germany occupancy – with all the risks inherent in that stand,

including deportation – and in the years immediately after the war, vehemently

objecting to the Stalinist orthodoxy of the French communist party. Schwartz was a

“grass roots militant”, distributing door-to-door La Veritè, the newsletter of the

“Internationalist Workers Party, French Section of the IV International”, happiest

when he succeeded in selling his 50 copies each Sunday morning. In the final

2 years, he was even elected to the party’s Central Committee, and had good

prospects of being elected National Secretary (providing, of course, that he give

up his work as a mathematician): “The idea of becoming an apparatchik was not

exalting, but even though this may seem surprising today, I did not radically reject it

until after a couple of weeks of reflection. At that time I was a firmly convinced

political militant”.

Schwartz left the Trotskyite party because he saw it was becoming sclerotic.

It was a party that was outside reality, one that made no progress in spreading its

political creed, and was torn apart by internal bickering.
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The experience, however, brief though it was, left lasting marks on both his

personality and his future political choices; Schwartz was repeated mocked as an

“old Trotskyite”. In later years, he would join various political–cultural groups

sponsored by Sartre, and finally the Socialist party. In any case he remained a man

of the left (even the far and radical left), with a strongly ethical conception of

politics, never losing sight of two particular points of reference: “There are two

subjects on which my Trotskyite ideas have not changed at all: internationalism and

anticolonialism”.

The two points would become immediate evident when the serious crisis in

Algeria broke out. It was 1954. Algeria, a French colony, began its struggle for

independence, as did many other third world countries at the time. Schwartz had no

doubts about what was right – among the French leftists, the position was a given –

and he at once took a position in favour of the autonomy of the Algerian people.

His commitment became ardent when the Audin scandal erupted. Maurice

Audin was a young Frenchman, a mathematics student, and communist, who

Schwartz had met during the preparation of Audin’s thesis – thanks to an introduc-

tion by René de Possel, one of the “elders” of the Bourbaki group. On 11 August

1957 Audin was arrested in Algiers by French parachute forces, and was tortured

and beaten to death. For the whole month of June, even though Audin had died on

21 June, the French authorities continued to provide assurances that he was being

held in a safe place; then, confronted with insistence by his wife and friends, they

invented a tragic accident to justify his death. Schwartz was one of those who

received a telegram from Audin’s wife asking for help in bringing her husband’s

fate to light. Thus was born the Audin Committee, with Schwartz himself as

president (the committee would later become a point of reference in the fight

against torture in general). This was the start of a long and hard struggle to raise

public awareness and put pressure on the French government and on General de

Gaulle. With de Possel and the support of the academic authorities, Schwartz

decided that Audin was to defend his thesis – in absentia – at the Faculty of

Sciences in Paris, with de Possel undertaking the defence and a deliberation

following. The impact on public opinion was remarkable. The weekly L’Express
put Schwartz on the cover. The tension and protests reached their climax in 1960, at

the time of the Manifesto of the 121: Schwartz was one of the signers of a manifesto

that exhorted young people in France to an act of insubordination, to become

conscientious objectors and refuse to support the war in Algeria. Again a shock-

wave echoed through France; there were no lack of consequences. Schwartz was

suspended from the École Polytechnique and from the honour of teaching there,

because the École had a long military tradition. His response and his indignation,

even though many years have passed, are still moving, “If I signed the declaration

of the 121 it was partly because for years I have seen torture go unpunished and

torturers rewarded. My student Maurice Audin was tortured and assassinated in

June 1957, and you, Mr. Minister, signed the exceptional promotion of Captain

Charbonnier to the grade of officer in the Legion of Honor and the promotion of

Captain Faulques to the grade of commander in the Legion of Honor. I repeat:

162 A. Guerraggio



“Honor”. Coming from a Minister who has accepted these responsibilities, con-

siderations on the subject of “honor” cannot but leave me cold”.

Schwartz’s commitment to the struggle in Algeria would have other repercus-

sions on his personal life as well in addition to the “simple” temporary removal

from the École Polytechnique. In February 1962 his son Marc-André, not yet 20-

years old at the time, was kidnapped by a group of commandos of “French Algeria”

and spent 2 days in captivity. It was a terrible shock for the boy, made worse by

rumours that started to spread immediately after his release that the “fake” kidnapping

had been ideated and orchestrated by the victim himself. Marc-André never

completely got over it, and finally, in 1971, after several failed attempts, shot

himself in the temple.

To “disintoxicate” himself from the Algeria experience, in 1962 Schwartz

accepted an invitation to spend a year in the United States, along with his family.

But his civil and political commitment went with him. In the mid-1960s the

Vietnam war broke out, and once again Schwartz did not hesitate to side against

imperialism, this time American imperialism. It all began when he organised “Six

Hours” of solidarity with the Vietnamese people, which was successful beyond all

expectations. Then there was the Russell Tribunal, and Schwartz’s acceptance of

Bertrand Russell’s invitation to be one of the twenty notables who comprised the

jury of this tribunal against war crimes. Schwartz visited Vietnam several times,

and even met with Ho Chi Minh, “My fight for the freedom of Vietnam was the

longest fight of my existence. I love and will always love Vietnam, its landscapes,

its extraordinary people, its bicycles. I am a little bit Vietnamese. Meeting a

Vietnamese person or hearing Vietnamese spoken in the bus (even though I don’t

know the language) makes me inexplicably happy. My sentimental fiber vibrates

for the country . . . The Vietnamese do not forget me and many students write to me,

calling me ‘the godfather of all Vietnamese’”.

This commitment to human rights and the rights of peoples was one to which

Schwartz dedicated a large part of his life. But he still takes a certain ironic tone

when he lists the infinite series of committees, associations and groups that invited

him to be president. Algeria, Vietnam, Afghanistan and so on, up to the Committee

of Mathematicians in defence of human rights.

The story of the Committee of Mathematicians began with the case of Leonid

Pliushch, a Soviet dissident, mathematician, and translator into Russian of the first

volume of Bourbaki’s Théorie des ensembles. Pliushch was arrested by Soviet

police in September 1972 and then forcefully committed to a psychiatric hospital.

Schwartz called on the whole mathematics community to bring pressure to bear in

support of Pliushch, with the active help of Henri Cartan, Claude Chevalley and

Jean-Pierre Serra. Mathematicians the world over mobilised. Lucio Lombardo

Radice, a member of the Central Committee of the communist party and Ennio

De Giorgi were among those most active in Italy. Finally, in February 1976,

Pliushch was freed.

Following Pliushch, there was Massera, a mathematician and communist from

Uruguay who was imprisoned by his country’s army. Joining in the fight to

free Massera was Jean Dieudonné, a member of the right, who was vehemently
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anti-communist but who personally assisted in the negotiations to free his South

American colleague, and who wrote an article on Massera’s mathematical work.

Still another case was Sakharov – a case in which René Thom intervened – and

many other cases in which the Committee of Mathematicians intervened to defend

mathematicians all over the world who were accused and arrested because their

political opinions were illegal.

What more can we say? There remains only the butterflies . . . Schwartz had

learned to love and collect them in the “garden of Eden” that was his summer

vacation home when he was a child. “Pesticides have caused the disappearance of

butterflies in the countryside. Ecologists have never become interested in the

disappearance of the butterflies. But a world without butterflies would be a sad

place”.

“Who Is” Laurent Schwartz

Laurent Schwartz (1915–2002) attended the École Normale Supérieure, where he

finished his studies in 1937. The following year he married Marie-Hélène, daughter

of Paul Lévy (one of the founders of the modern calculus of probabilities), with

whom he had two children, a son Marc-André and a daughter Claudine. His son

committed suicide in 1971, the result of the life-long trauma following his kidnap-

ping at the hands of French nationalists seeking revenge on his father for his

commitment to anti-colonialism and support of the Algerians seeking indepen-

dence.

His academic life took Schwartz to Grenoble, Nancy and Paris. In Paris in 1969

he left the university to teach fulltime at the École Polytechnique, where he was

personally involved in the reform of the engineering curriculum and where he

remained until his retirement. The École Polytechnique honoured his memory

with an important conference that took place in Palaiseau in July 2003.

His mathematical research was strongly influenced by his encounter with the

Bourbaki group in 1940. The theory of distributions was born in Paris, in early

November 1944. He was awarded the Fields Medal in 1950.

Noteworthy among Schwartz’s many civic and political commitments was his

devotion to scientific education and culture. In 1981 he was charged by Prime

Minister Pierre Mauroy to oversee – as part of the project aimed at providing an

overview of the situation in France – the fourth volume dedicated to scientific

teaching and development. Schwartz fought relentlessly against egalitarianism and

laxity in education, concepts which he defined as destructive. He always believed

that the acknowledgment of the existence of differing levels of merit was a driving

force that tended to push everything to a higher level, while egalitarianism tended to

a lowering of levels.
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René Thom

The Conflict and Genesis of Forms

Renato Betti

Born in 1923 in Monbéliard, France, René Thom, an interdisciplinary mathemati-

cian by vocation and perhaps by training, which took place within the great French

school of mathematics, was also remarkably adept at developing the inherent

technical aspects of the great specialisations. With the results achieved while still

a young man he won the Fields Medal, the highest international recognition for

mathematicians. By laying out the general concepts, he paved the way to an original

attempt to apply mathematics to natural phenomena, today known as “catastrophe

theory”.

After earning his degree in mathematics at the Paris Ėcole Normale Supérieure

in 1946, he became a researcher in Strasbourg and continued his studies with Henri

Cartan, earning his Ph.D. in 1951 with Cartan as his thesis advisor. The thesis,

entitled “Fibre spaces in spheres and Steenrod squares” concerned the topological

invariance of certain classes of manifolds and formed the basis for the “theory of

cobordism”, that is, a general theory of forms and of their stable “singularities”:

here there already appear the first notions that, when later developed, led him to the

Fields Medal, presented to him at the International Congress in Edinburgh in 1958.

Following the award of the prestigious prize was the move in 1963 to the Institut

des Hautes Ėtudes Scientifiques in Bur-sur-Yvette, and the opportunity to leave the

world of specialized mathematics to address more general notions, such as the

theory of morphogenesis, a subject that would lead him to a very general form of

“philosophical” biology and the search for “a common grammar of the most

disparate phenomena”, to use Thom’s own expression.

“Catastrophe theory” was the fruit of his reflections. Going beyond the axiom of

permanence of effects on continua, and arriving at the consequent acceptance of the

fact that marginal causal variations can lead to tangible effects, led to the notion of

“catastrophe”: a sudden shift that occurs in a system – whether physical, biological,

social, or even linguistic – that is also subject to regularly variable conditions. From

here the search for non-equivalent canonical forms, and then to the theorem of

classification that identifies seven elementary catastrophes.

The theory, along with its reasoning, models and general concepts, would be

developed in two major works, Structural Stability and Morphogenesis (1972), and

C. Bartocci et al. (eds.), Mathematical Lives,
DOI 10.1007/978-3-642-13606-1_23, # Springer-Verlag Berlin Heidelberg 2011

165



Mathematical Models of Morphogenesis (1983), which led to further studies and

applications by mathematicians as well as nonmathematicians.

There was no lack of controversy, often fueled by Thom himself, who had

admittedly left the Bourbaki group he had belonged to by training and by culture,

proclaiming, above all at the level of education, the importance of intuition and of

mathematics “that can be seen and touched”, but at the same time he was highly

critical of those who wanted to move immediately to the applications of his theory –

to numerical and quantitative predictions, from an interpretation that he considered

hermeneutic and qualitative. For Thom, promising results from catastrophe theory

also arrived from “metaphorical” considerations, when it is thought of as a rigorous

theory of analogy in which the richness of language is no less important than the

classification of forms.

The scientific aspects of Thom’s career, in which catastrophe theory led him to

examine more broadly the topics of the stability of organized systems and their

classification, was closely connected with its more philosophical aspect, where he

tended to broaden the vision of the world made possible by mathematics – in this
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case, and particularly in the case of differential topology, which Thom himself had

helped to found. The morphogenesis of structures concerns their creation, growth

and end. It is a subject that has famous precedents, beginning with Aristotle.

Thom’s work was considered a continuation of that of D’Arcy Thompson, who,

at the turn of the twentieth century, had begun to apply principles of mathematics –

especially geometry – to biological systems, thus offering to theory a very solid

mathematical apparatus.

In the natural world of living beings, as well as in the artificial world of man-

made systems, there are recurring structural forms that are the result of necessity,

not chance. In Thom’s “a priori metaphysics” there is a conviction that the world is

not chaos, but rather and ordered cosmos. Its forms are distinct and separate from

each other. What is attempted is finding in a rigorous way the general schemes that

make it possible to explain the genesis, in the belief that the world is intrinsically

rational, and with a view of occurrences that is substantially determinist.
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J.L. Borges, The Dream (El sueño)

Night sets on us its magic task:

to ravel out the world, the endless branchings

of cause and effect, which lose themselves in time’s

unfathomed vertigo. Night demands that every night

you forget your name, your blood, and those who bore you,

each human word, each tear, and everything

that being awake has ever taught you – geometry’s

imaginary point, the line, the plane, the cube,

the pyramid, the cylinder, the sea and waves,

the coolness of clean sheets, gardens, empires,

the Caesars, Shakespeare, and, what’s hardest of all,

the one you love. Strange to think that a pill

blotting the cosmos out, lets chaos in.

(translated from the Spanish by Norman Thomas di Giovanni; http://www.

digiovanni.co.uk/index.php)
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Alexander Grothendieck: Enthusiasm
and Creativity

Luca Barbieri Viale

C’est à celui en toi qui sait être seul, à l’enfant, que je voudrai parler et à personne
d’autre.1

Alexander Grothendieck was born in Berlin on 28 March 1928. His father, Sascha

Shapiro, an anarchist originally from Russia, took an active part in the revolutionary

movements first in Russia, and then in Germany, during the 1920s, where he met

Hanka Grothendieck, Alexander’s mother. After the Nazis came to power in

Germany it was too dangerous for a Jewish revolutionary to stay there, and the

couple moved to France, leaving Alexander in the care of a family near Hamburg.

In 1936, during the Spanish Civil War, Sascha joined the anarchists in the resistance

against Franco. In 1939 Alexander joined his parents in France, but Sascha was

arrested and – partly as a consequence of the race laws enacted by the Vichy

government in 1940 – sent to Auschwitz, where he died in 1942. Hanka and

Alexander Grothendieck were also deported, but they escaped the holocaust.

Alexander, separated from his mother, was able to attend high school at the Collège

Cévenol in Chambon-sur-Lignon, lodging at the Secours Suisse, a hostel for

refugee children, but he had to flee into the woods every time there was a Gestapo

raid. He then enrolled at the University of Montpellier and in autumn 1948 he

arrived in Paris with a letter of introduction to Élie Cartan. This led to his being

accepted at the École Normale Supérieure as an auditeur libre for the 1948–1949

academic year, where he assisted in the debut of algebraic topology in the seminar

taught by Henri Cartan (Élie’s son). His earliest interests, however, were in

functional analysis, and following Cartan’s advice, he moved to Nancy. Under

the guidance of J. Dieudonné and L. Schwartz, he earned his doctorate in 1953.

During his years in high school and university, Grothendieck never much

enjoyed the courses and programs he attended, nor can it be said that he was a

model student. His curiosity, coupled with a sense of dissatisfaction, drove him, not

quite 20-years old, to develop on his own a theory of measurement and integration.

1It is to the one inside you who knows he is alone, to the child, that I wish to speak and to nobody

else. Récoltes et Semailles, “Promenade, à travers une œuvre”, p. 7.
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When he arrived in Paris, he found it had already been written by Lebesgue. He

said, “I learned then in solitude the thing that is essential in the art of mathematics –

that which no master can really teach”.2 The “official” productive period of

Grothendieck’s life, as testified by an impressive mass of writings, is 1950 to

1970. While the research topics of the early 1950s were those of functional analysis,

the great themes of algebraic geometry, its foundations, such as the redefinition of

the concept of space itself, occupied the years 1957–1970.

In 1959, by now a professor at the newly created Institut des Hautes Études

Scientifiques (IHES) in Bures, near Paris, Grothendieck taught a lively seminar in

which he – in a magnificent display of generosity – shared and gave away his

research ideas to students and colleagues, developing them with boundless enthu-

siasm and creativity. In these early years his frequent and intense contacts with

Jean-Pierre Serre, traces of which are left to us in their correspondence, were a

source of inspiration and mutual exchange of ideas. In the decade between 1959 and

1969 Grothendieck’s ideas were mainly spread, on the one hand, through publica-

tions such as Éléments de Géometrie Algébrique (EGA) – edited in collaboration

with Dieudonné – and with the help of the participants in the Séminaire de
Géométrie Algébrique (SGA), and on the other hand, through Exposés at the

Bourbaki seminars. According to Grothendieck’s original idea, the Séminaire was
considered as a preliminary form of the Éléments and was destined to be

incorporated into it. The Éléments were initially published by the IHES in various

weighty tomes. In 1966, Grothendieck was awarded the Fields Medal (the highest

recognition a mathematician can receive).

In 1970 Grothendieck, then 42-years old, officially abandoned the scene. There

were many reasons that led him to withdraw from the academic world, but certainly

his radical anti-war stance was one that he declared openly. It had come to his

attention that the IHES received funding from the defence ministry – and had

received it for more than 30 years without his being aware of it – and his response

was to desert the Institut, also taking away with him the publication of the EGA and

the SGA, signing a contract for the new edition with Springer-Verlag. Knowing

what it is like to live as a refugee, with a United Nations passport – his own original

documents disappeared during the Nazi holocaust – he gave life to the pacifist and

environmental movement named Survivre. Seen against the background of the

major issues of those years, the Vietnam war and the proliferation of nuclear

weapons – war and the stockpiling of weapons of mass destruction are still issues

still quite pertinent today – Grothendieck’s pacifism shows a significant shoulder-

ing of responsibility, not the kind that the institutions involved could ignore (even

though these still today receive the same kind of funding). Following this decision,

Grothendieck spent a couple of years at the Collège de France and then in Orsay

before finally returning to the University of Montpellier in 1973. He refused the

Crafoord Prize in 1988, the year of his retirement. In these last years, retiring to

private life in the country near Mormoiron, having given up travelling, he dedicated

2Récoltes et Semailles, p. 5.
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himself to correspondence and to the Récoltes et Semailles, a long diary-like

narrative about his past as a mathematician, or as he says, a long meditation on

“the internal adventure that was and is my life”.3

I received portions of the Récoltes et Semailles in 1991, along with a letter from

Grothendieck in which he told me that Aldo Andreotti was “a good friend and a

truly valuable person: I came to appreciate his peculiar qualities much more now

than he has passed away than I did during the 1950s and 1960s when he was still

alive”. I don’t know which Italian mathematicians worked with Grothendieck in

those years; the Italian schools were slow to assimilate his methods in algebraic

geometry, even though these were partly rooted in the work of Italians such as

Severi and Barsotti.

The Présentation des Thèmes of the Récoltes et Semailles provided the valuable

information – along with the letter I have just mentioned – for the sketch of his life

given up to now, and for an outline for an overview of his mathematical thinking, to

which we will now turn.

Grothendieck’s excellence, his mathematical genius, is quite evident in his

innate tendency to bring to the fore themes that are obviously crucial but which

no one before him had made evident or acknowledged. His productivity had deep

roots and expressed itself by means of language that was ever new, emerging like a

flowing river of new notions–abstractions and statements–formulations. Quite

frequently statements that sprang perfectly formulated from his fervid and

3Récoltes et Semailles, p. 8.
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implacable imagination turned out to be the foundation of an entire theory that

Grothendieck himself outlined, developed and followed through with; in other

cases they are only sketched out.

If by mathematical dexterity we mean man’s capacity to solve problems, then

this tendency of his not just to find solutions to mathematical problems but to create
mathematics, makes Grothendieck an extremely special and extravagant mathe-

matician. The layman who approaches Grothendieck’s mathematical work has to get

past the usual concept of a mathematician as a problem solver and try instead to see

mathematics as an art and the mathematician as an artist. Of course, mathematics is

a very special kind of art, one in which inventions borrow from the proofs, that is,

imagination has to harmonise with reason. The mathematician’ works are theories

in a weave, a design, that always make it possible to grasp a oneness in multiplicity.

As Grothendieck himself wrote, “it is in this act of going beyond, not in remaining

closed within a mandatory circle that we ourselves create, it is above all else in this

solitary act that creation is found”.4

For Grothendieck, mathematical theories are also opportunities for reflection in a

lateral sense, and meditative exercises, a kind of contemplation that accompanies us

on our internal adventure. Mathematics is thus a yoga that diversifies and multiplies

into different theories but whose foundations are firmly united. The differentiation

of these old and new themes is also interwoven with the history of the ideas that

inspired them. According to Grothendieck, there are traditionally three aspects of

things that are the objects of mathematical reflections: number, or the arithmetic

aspect; measure, or the metric (or analytic) aspect; and shape, or the geometric

aspect. “In the most part of the cases studied in mathematics, these three aspects are

either present simultaneously or in intimate interaction”.5

Let’s look at some of the topics that algebraic geometry involves from

Grothendieck’s point of view. His was a perspective that favoured shape and

structure and thus the geometric and arithmetic aspects, in a unifying vision that

gave birth to a new geometry: arithmetic geometry.

We can state that number is aimed at grasping the structure of the disparate or discrete parts:

the systems, sometimes finite, formed of elements or objects that are isolated, if you will, in

relation to each other, without any principle of continuous passage from one to the other.

Magnitude, on the other hand, is the quality par excellence, susceptible to continuous

variation; for this reason it is aimed at grasping structure and continuous phenomena:

motions, spaces, variations of all kinds, force fields, etc. Thus arithmetic appears (more or

less) as the science of discrete structures, and analysis as the science of continuous structures.

As far as geometry is concerned, we can state that after more than 2,000 years it exists as

a form of science in the modern sense of that term, it straddles the two kinds of structure,

discrete and continuous. On the other hand, for a long time there was no real “divorce”

between the two different kinds of geometries, one discrete and the other continuous.

Instead, there were two different points of view about the investigation of the same

geometric figures: one placed an emphasis on the discrete properties . . . the other on the

continuous properties. . . .

4Récoltes et Semailles, p. 6.
5Récoltes et Semailles, p. 26.
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At the end of the 1800s there was a divorce, with the birth and the development of what

was sometimes known as abstract (algebraic) geometry. Roughly speaking, its aim was to

introduce, for every prime number p, an (algebraic) geometry of characteristic p, based on

the (continuous) model of the (algebraic) geometry inherited from earlier centuries, but in a

context that appeared, however, to be irreducibly discontinuous, discrete. These new

geometrical objects became increasingly important at the beginning of the 1900s, and

this in particular, given the close connection with arithmetic . . . would seem to be one of

the guiding ideas in the work of André Weil. . . . It is in this spirit that he formulated, in

1949, his celebrated Weil conjectures. Conjectures that are absolutely astounding, if truth

be told, making it possible for us to see, by means of these new discrete kinds of varieties

(or spaces), the possibility of certain kinds of constructions and topics that up to that time

had seems conceivable only in the context of those spaces that the analysts deemed worthy

of being called by that name. . . .
It is possible to believe that the new geometry is above all a synthesis of these two

worlds . . . the arithmetic world . . . and the world of continuous magnitudes. In this new

vision, the two worlds that were once separate, now form a single world.6

This unifying vision is embodied in the concepts of scheme and topos, revealing
hidden structures: the geometrical richness of the discrete world is brought to light

in all of its beauty and detail, thus making possible for Grothendieck himself and his

student, Pierre Deligne, to prove the so-called Weil conjectures.

The concept of scheme constitutes an enlargement or generalisation of the

concept of algebraic variety as it had been studied by the Italian and German

schools in the early years of the 1900s. Grothendieck’s idea of scheme and the

basic ideas of a scheme theory, by means of the concept of maps, that is, by a

suitable transformation (or morphism) of schemes, goes back to the years

1957–1958 and were briefly illustrated at the International Congress of Mathema-

ticians in Edinburgh in 1958. It was precisely the concept of sheaf – already

introduced and studied by Leray, Henri Cartan and Serre – that turned out to be

essential because it made it possible to reconstruct a global datum starting from an

open set of locally defined data, and thus making it possible to apply continuous

reasoning in a discrete context.

While algebraic geometry is the study of polynomial equations and the geometric

loci that they define, sheaf theory and scheme theory are the language for expres-

sing it faithfully, a language that is easy to use and natural, and aimed at explicitly

describing the details of the inner structure of these geometric entities.

Classically, each affine variety has a corresponding coordinate ring that

describes it algebraically by means of polynomial equations in an ambient space:

affine variety , coordinate ring

The fundamental idea of scheme theory is that this correspondence can be

extended by associating each ring A with its spectrum Spec(A). We can see that

the set of all the primes p of A gives rise to a collection of local rings Ap (germs).

Vice versa, we want it to be possible to reconstruct A from this collection taken as a

6Récoltes et Semailles, pp. 28–30.
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whole. This collection is actually the local reflection of an object – a sheaf – that is

also topological in nature, so that A embodies the global aspect. The affine scheme

Spec(A) results precisely from the synergy of topology (called Zariski topology)

and the set of primes and the ranges of the corresponding local rings.

A scheme will thus admit a covering by affine schemes, that is, it is a topological

space X and a structure sheaf Ox such that for every point of X there exists an open

neighbourhood of the type Spec(A). The range now embodied by the structure sheaf

follows and faithfully reflects the shape of the space underlying the scheme.

One advantage of this definition of shape consists mainly in the fact that it

intrinsically describes geometric entities, schematically speaking, as a network of

primary entities, omitting any reference to an ambient space. A further advantage of

the scheme concept is its relative versatility, which makes it possible to conceive a

scheme defined by a morphism based on what can even be a family of schemes.

A morphism of schemes X ! S is simply a continuous application of the

underlying spaces compatible with the structure sheafs. If S¼Spec(A), such a

scheme on S is equivalent to the fact that the structure sheaf OX is a sheaf of

A-algebras. For example, every scheme X can be considered as a scheme over

S¼Spec(Z).
Further, there exists a fibered product X�sS

0 ! S0 for schemes X! S and S0 ! S

that effects the base change from S to S0. This product corresponds to the operation
of extension or reduction of the scalars of the hypothetical equations for X.

For example, every scheme is reduced modulo a prime number p2Z by means

of the product with S0¼Spec(Z/p), producing in this way a family of schemes

corresponding to the reduction modulo p of its hypothetical equations. Further,

the product of X with S¼Spec(C) produces a scheme in zero characteristic (an

analytical space corresponding to the prime p¼1). By isolating properties of “good

behaviour” of the family by means of the concept of flat morphism, and rediscover-

ing the concept of compactness by means of proper morphism, it is also possible to

develop concepts of a differential nature in a purely algebraic context via the

concept of smooth morphism.

These considerations led Grothendieck to develop systematically an algebraic

geometry relative to the basis that makes it possible to “join together the various

geometries associated with the various prime numbers”.7

Seen in this way, a point of a scheme over a base will be simply a morphism of

the base towards the scheme, and scheme may fail to have any point, that is, that it

has points only when its base is changed.

An S-point of a scheme X!S is a morphism S!X that leaves S fixed. If k is a

field S¼Spec(k) it reduces topologically to a true point and the schemes of finite

type over k, with their relative points, play the role of the new algebraic varieties,

making it possible to visualise infinitesimal concepts by means of nilpoint elements.

For example, the morphisms from Spec(k[e/e2]) to a scheme X correspond to

S-points of X over S¼Spec(k) together with their tangent vectors.

7Récoltes et Semailles, p. 33.
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In this sense the scheme X!S itself can be seen as a collection of fibres (Xs) as

the points s2 S of the base vary, but also as the collection of all of its points relative

to the base, that is, as all the schemes T!S and morphisms T!X that leave S fixed.

This vision of a scheme leads to the concept of representability that makes it

possible to construct schemes by representing them by means of their hypothetical

(relative) points.

Just as the concept of scheme constitutes a broadening of the concept of algebraic

variety, the concept of topos constitutes a metamorphosis of the concept of topologi-

cal space.8 The étale topos and the crystalline topos associated with a scheme

constitute the fundamental step for visualising the structure, that is, for the construct-

ing the cohomology invariants of the scheme. With the concept of site already

developed in 1958 – “the most fertile year of my whole life”9 – Grothendieck

similarly developed a relative topology in which some morphisms serve the role of

open sets. The topos corresponding to such a site makes the arithmetic nature of the

schemes completely clear. To put it briefly,

scheme ) topos ) cohomology:

. . .consider the set of all sheaves on a given topological space or, if you like, the prodigious
arsenal of all the “meter sticks” that measure it. We consider this “set” or “arsenal” as

equipped with its most evident structure, the way it appears so to speak “right in front of

your nose”; that is what we call the structure of a “category”. . . From here on, this kind of

“measuring superstructure” called the “category of sheaves” will be taken as “incarnating”

what is most essential to that space. . . .We can by now “forget” the initial space, keep and

use the category (or arsenal) associated to it, which will be considered to be the most

adequate incarnation of the topological (or spatial) structure that we intend to express.

As often happens in mathematics, we have succeeded here (thanks to the crucial idea of

sheafs and cohomological measuring stick) to express a given notion (that of a certain

space) in terms of another (that of category). As always, the discovery of this kind of

translation of one notion (which expresses a certain kind of situation) into the terms

of another (corresponding to another kind of situation) enriches our understanding of

both of them through the unexpected confluence of specific intuitions in relationship to

each other. Thus, a “topological” situation (incarnated in the given space) or, if you will, the

incarnated “continuum” of the space is translated or expressed by the structure of the

category, which is “algebraic”.10

According to Grothendieck, a cohomology theory naturally follows from the six

operations associated to the category derived from the topos.

Grothendieck’s six operations are functors between derived categories. They are
the derived tensor product

 

, the RHom (which produces the values of Exti) and,

for any scheme morphism f: X!S, the direct image functors Rf* and Rf! and the

8Récoltes et Semailles, p. 40.
9Récoltes et Semailles, p. 24.
10Récoltes et Semailles, pp. 38–39.
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inverse image functors Lf* and Rf
!. A theory of relative duality is expressed here by

the adjunction between Rf! and Rf!.

Grothendieck associates each geometry of characteristic p to an ‘-adic cohomol-

ogy corresponding to every prime ‘ 6¼ p by means of the étale topos, and a

crystalline cohomology by means of the crystalline topos.

This arsenal of structures and operations is supposed to arrive at the same result.

“It is in order to arrive and express this intuition of kinship between different

cohomology theories that I have formulated the notion of motive associated to an

algebraic variety”.11 This theme suggests that there is a common motive underlying
the multitude of possible cohomology theories.

Grothendieck went on to suggest new conjectures, enhancing the unifying vision

of the new geometry, the so-called “standard conjectures” that point to and predict

the laws of a new yoga mediating between form and structure. While the Weil

conjectures predicted the existence of a cohomology called, naturally enough, the

Weil cohomology, later constructed by Grothendieck by means of the topos étale,

that is, a structure associated to the form capable of grasping both the geometric and

the arithmetic aspects, in the context of the dawning abstract (algebraic) geometry

described above, Grothendieck’s standard conjectures predict the existence of a

motivic cohomology capable of synthesising in a single “invariant of the form” all

of the structures that can be associated to it. Their formulation – obtained indepen-

dently by Bombieri as well – appeared in a brief paper entitled “Standard con-

jectures on algebraic cycles” in the proceedings of the 1968 colloquium on

algebraic geometry that took place in Bombay (Tata Institute of Fundamental

Research, Mumbai).

The geometric construction of Grothendieck’s motives is performed through the

algebraic cycles that had already been introduced by Severi in the 1930s and then

studied by Chow in the 1950s; these cycles are formal linear combinations of

subvarieties and the correspondences from X to Y are defined by means of the

cycles on the product X� Y.

For a Weil cohomology X ! H�
‘ (X) there is a cycle map ZJ Xð Þ ! H‘

2J Xð Þ
which associates a cohomology class to every algebraic cycle of codimension j on

X. The algebraic part of H‘
2� Xð Þ is that generated by classes of algebraic cycles. By

means of K€unneth’s formula, we can also consider

H�
‘ ðX� YÞ ¼ H�

‘ ðXÞ � H�
‘ ðYÞ ¼ Hom (H�

‘ (X), H
�
‘ (X))

since H�
‘ �ð Þ are vector spaces of finite dimension. The principle suggested by this

identification is that cohomology operators of an algebraic kind have to be defined

algebraically by means of a class associated to a cycle on the product, and thus by a

correspondence.

11Récoltes et Semailles, p. 46.
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The two standard conjectures can be briefly summarised like this: the first, called

the Lefschetz standard conjecture, states that a given operator L:H�
‘ Xð Þ ! H�

‘ Xð Þ
which is the quasi-inverse of the Lefschetz operator L is induced by an algebraic

cycle, that is, that the operator induced – by iteration – from the Lefschetz operator

restricted to the algebraic part is an isomorphism. The second conjecture, called the

Hodge standard conjecture, states that a given definite bilinear form on the primitive

algebraic cohomology class is positive definite.

One simple consequence of the standard conjectures is the validity of Riemann

geometric hypothesis as stated in the famous Weil conjectures, as well as the

coincidence of the cohomological and numerical equivalence for algebraic cycles:

an open question even in zero characteristic.

This mediating yoga based on the concept of motive and the corresponding

theory of motives should provide the most refined structures associated with

forms like invariants:

form ) motive ) structure:

Just as a musical motive has various thematic incarnations, so the motive can

have various incarnations, or avatars, such that the familial structures of the

(cohomological) invariants of the forms will be “simply the faithful reflection of

properties and structures internal to the motive”.12

The first congress entirely dedicated to motives took place in Seattle in 1991.

Noteworthy advances in this area were achieved by Vladimir Voevodsky – winner

of the Fields Medal in 2002 – who constructed a triangulated category of motives,

by using methods from algebraic homotopy that had also been partly presaged by

Grothendieck as “motivic homotopy types”.13 Voevodsky’s construction makes it

possible to obtain an “incarnation” of the motivic cohomology but it does not,

however, find a solution to the standard conjectures, which are still today – along

with the Hodge conjecture – the fundamental open question in modern algebraic

geometry.

To close, Grothendieck and Einstein, through a “mutation of the conception that

we have of space, in a mathematical sense on one hand and a physical sense on the

other”,14 and an innovation in the way we look at the world via a unifying vision

drawn from mathematics on the one hand and physics on the other, have turned out

to be the mathematician and the physicist who revolutionised scientific thought

through the concept of relativity.

12Récoltes et Semailles, p. 46.
13Récoltes et Semailles, p. 47.
14Récoltes et Semailles, p. 59.
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Gian-Carlo Rota

Mathematician and Philosopher

Domenico Senato

The first lesson I learned from Gian-Carlo Rota is expressed quite effectively by the

three lines quoted in the preface to Discrete Thoughts of the poem by Antonio

Machado, “Meditaciones del Quijote de José Ortega y Gasset”:

Se miente más de la cuenta
por falta de fantasia :
también la verdad se inventa.
(The reason people so often lie is that they lack imagination: they don’t realize that truth,

too, is a matter of invention.)

Lies are told when fantasy is lacking, and we don’t understand that even

truth is invented. This idea permeated the intellectual and scientific life of Gian-

Carlo Rota who, teaching and exploring mathematics and philosophy as a non-

conformist, courageously and energetically re-examined current thinking of

the time, revealing new, fascinating scenarios and touching profound levels of

consciousness.

Rota was born in Vigevano on 27 April 1932 into a family seeped in culture. His

father, an engineer and architect, owned an immense collection of books that

included, in addition to works on architecture and engineering (today housed in

the History Library of Vigevano’s Technical Offices) volumes dedicated to mathe-

matics, art, literature and philosophy. As a teenager Gian-Carlo sated his voracious

curiosity with the books from his father’s library, which quite soon led him not only

to become interested in mathematics and philosophy, but to prepare himself

unawares for the use of a computer, studying typing from a manual found among

the other books. I still remember how impressed I was the first time I saw him at

work in his home in Boston: his gaze glued to the monitor as he wrote a document in

TEX, typing at an amazing speed, all ten fingers flying.

In addition to his father, young Gian-Carlo was deeply influenced by his aunt,

Rosetta Rota, a mathematician educated in Rome under the guidance of Vito

Volterra, later collaborator with the group of physicists in Via Panisperna, and

wife of Ennio Flaiano. The well-known writer and set designer fascinated Rota. I

have fond memories – from a stay in Rome in the summer of 1990 – of long evening

C. Bartocci et al. (eds.), Mathematical Lives,
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walks that ended late at night, after having wandered through the streets in the

centre of the city and visited all the sites of Flaiano’s scenes and characters.

Gian-Carlo thus came to take part in the lively essences of Flaiano’s condensed

narratives, and was led to translate them into English, the language in which he felt

most at home. Herbert S. Wilf, winner of the American Mathematical Society’s

Steele Prize in 1988, wrote, “Gian-Carlo Rota’s ability to express himself in English,

as opposed to his native Italian, was matchless. Listening to him we heard the Italian

origins in his intonations and pronunciation, but he was rapier sharp in his use of

English, and was never at a loss for exactly the right word. His sentences, both

written and spoken, prepared and impromptu, were perfectly formed and featured a

rainfall of extremely precise adjectives, colloquialisms, and so forth”. Unfortu-

nately, Rota’s translations of Flaiano have never been published.

Rota began his studies in his home town, where, from 1939 to 1945 he attended

middle school on a irregular basis because of the war and the vicissitudes of his

family, which were the inspiration for his sister Ester’s story “Orange sur le lac”,

published in France in 1995. In 1947, at 15-years old, Gian-Carlo followed his

family to Equador, where his father moved in order to carry out his professional

activities. In Quito Rota attended the American School; at 18 he moved to the

United States and enrolled at Princeton, which was home in those years to some of

the most brilliant mathematical minds, including Hermann Weyl, Kurt Gödel, Emil

Artin, Solomon Lefschetz and Alonzo Church. The senior advisor for his thesis was

William Feller. Rota paints a lively portrait in his essay “Fine Hall in its Golden

Age” in the book Discrete Thoughts. About Feller, he wrote, “During a Feller
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lecture the hearer was made to feel privy to some wondrous secret, one that often

vanished by magic as he walked out of the classroom at the end of the period”. It is

curious to note that a thoroughly similar sensation was often felt when one left the

classroom after one of Rota’s lectures.

At Princeton Gian-Carlo attended the classes in philosophy taught by Artur

Szathmary and John Rawls, which led him to the study of phenomenology. Activ-

ities of philosophy absorbed a good part of his energy, and starting in 1972 he also

held the chair in philosophy at MIT. An in-depth examination of this aspect of his

intellectual activity is found in the well-documented book La stella e l’intero by

Fabrizio Palombi, one of Rota’s students and his collaborator in numerous works of

philosophy. Here we will only mention two themes: the polemics with the analyti-

cal philosophers and the broadening of Husserl’s concept of Fundierung, one of the
cornerstones of his philosophical thinking.

The first criticism that Rota directed towards the analytical philosophers

concerned the loss of speculative independence. The search for objectivity and

rigour led many philosophers to use, in their investigations, axiomatic methods

analogous to those used in mathematics, forgetting that mathematical results, even

though checked and stated by an axiomatic method, cannot be achieved solely

through their use. Rota maintained that confounding mathematics with axiomatics

is like confounding Vivaldi’s music with Baroque counterpoint. Traditional philo-

sophical thought is quite distinct from mathematical thought. The only field in

which a program of mathematicisation was successful was logic, and it was in any

case for this reason that logic is today considered to be a branch of mathematics on a

par with probability or algebra. According to Rota, many twentieth-century philo-

sophers had submitted to the dictatorship of the incontrovertible, taking refuge in a

slavish imitation of mathematics, considering the incapacity of giving definitive

answers to be a failure of the philosophy of the past. At the base of this attitude lies a

faulty judgment according to which the concepts – in order to make sense – have to

be precisely defined. Even Wittgenstein was a prisoner of this way of thinking, later

revising his youthful positions. Naturally, Rota is not against rigour, but he is

opposed to the idea that the kind of rigour proposed by mathematics is the only

one, and that philosophy should simply imitate it. In reality, even behind the

fascinating steps forward in mathematics are found procedures analogous to those

that give rise to thought, and Rota imagined that concepts that are today considered

vague – such as motivation and purpose – could soon be formalised and accepted as

constitutive elements of a new logic, in which they will be accorded a status, along

with the notions of theorems or axioms, formalised over time.

In the concept of Fundierung, Rota identified one of the ideas capable of putting
formal logic on equal footing with classic connectives, and perhaps capable of

altering and enriching the structure of logic more than even Husserl himself had

ever hoped. Rota – in keeping with his beliefs – never gave a definition of Fundier-
ung, because there are no canons of definition in philosophy, but he clarified its

meaning by a procedure of eiditic variations. For example, he examined the process

of reading a text. The reading can take place as a physical procedure, if it is limited to

merely factual observations. However, what matters most in reading is not the text

Gian-Carlo Rota 183



but rather its meaning, and thus it is necessary to distinguish between the text and the

meaning of the text. This is confirmed by the simple observation that the same

meaning can be gleaned from the reading of different texts; so, the relationship

between a text and its meaning is called Fundierung. Rota maintained that this

relationship is constituted of two terms: function and facticity. The meaning of the

text is a function correlated to the text by a relationship of Fundierung and, as such,
cannot be traced back to questions of a physiological nature. According to Rota,

sciences such as artificial intelligence which ignore difficulties of this sort are

destined to fail. The distinction between function and facticity, which are made

evident in the examples, becomes more difficult to delineate in the study of mental

and psychological phenomena. Here, Rota suggested, is where a carefully compiled

catalogue of Fundierung relations could turn out to be quite useful.

In 1954, Rota met Jacob T. Schwartz at the seminar in functional analysis

organised at Yale by Nelson Dunford, and became his first doctoral student. Two

years later he earned his Ph. D. with a thesis entitled “Extension Theory of

Differential Operator I”; between 1958 and 1961, he published a series of papers

in which he developed the idea of theory of Reynolds operators. Reynolds operators
can be thought of as generalisations of the conditional mean operators and are a

formidable tool for the unified treatment of ergodic theorems or martingale conver-
gence theorems. Gian-Carlo’s interest shifted to ergodic theory, which was at that

time littered with difficult and sporadic combinatorial problems. Right away Rota

sensed combinatorics’ potential to develop into a mature and important field of

mathematics. A few years later he would describe his impressions of that period,

saying that rarely has a branch of mathematics, with perhaps the exception of

number theory, been so rich in relevant problems and so poor in general ideas

adequate for addressing them. On the other hand, every time the apparatus of

technical instruments began to weigh heavily on the quality and the readability of

the results in a mathematical subject, Rota, by shifting his point of view, was able

to open a new and broader horizon for research.

In his essay entitled “Combinatorics, Representation Theory and Invariant

Theory: the Story of a Ménage à Trois” in Indiscrete Thoughts, Rota separated

the mathematicians into two broad categories: problem solvers and theorists. Even

though he admitted that in general mathematicians possess a little of both qualities,

he said that it is not unusual to find extreme cases in each of the two classes. Alfred

Young, for example, was mostly a problem solver, while Hermann Grassmann was

most certainly a theorist. His most important contribution was the definition of

exterior algebra, which he developed and refined throughout his life, anticipating

the calculus of exterior differential forms that would be developed by Élie Cartan in

the next century. For a problem solver, what counts is getting to the heart of a

problem, even better one that is considered to be unsolvable, no matter how

complex, difficult, or difficult to interpret it may be. What matters is to have

found it and be sure of its correctness. A problem solver is essentially a conserva-

tive, so the conceptual background to which he refers has to remain unchanged over

time; new theories or generalisations are regarded with suspicion. For a theorist, on

the other hand, the greatest contribution to mathematics is not the solution to a
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problem, but rather the elaboration of a new theory in which the problem finds a

natural solution. The theorist is a revolutionary, convinced that his own theories

will still be vital when the fashionable problems of the moment have made it clear

how bulky all of the by-now obsolete techniques used to solve them were. There is

not doubt that Rota felt closer to the theorists than to the problem solvers. In the

preface to Joseph Kung’s A source book in matroid theory, Rota proposed a

criterion for distinguishing between the three ages of a mathematical subject. The

oldest ones are covered with awards and honours, whose most important problems

were solved long ago and whose applications are a copious harvest for engineers

and entrepreneurs: their ponderous treatises are stacked on dusty shelves in library

basements, until the day when a new generation yet unborn shall rediscover with

awe that paradise lost. To give an idea of the middle aged subjects, we need only

browse the corridors of the Ivy League universities or the Institute for Advanced
Study, their high priests haughtily refusing the fabulous offers from anxious

provincial universities, knowing all the while that burden of technicality has

already reached a critical mass that threatened to submerge their theorems in the

dust of oblivion. Finally, the youngest subjects. They are born thanks to individuals

who are a little eccentric, who energetically hack away at a mountain of impossible

problems, naively stuttering out the first words of what will become a new

language. The infancy is over with the first Bourbaki seminar. Rota showed an

extraordinary capacity for transforming disjointed heaps of combinatorial problems

that characterised the mathematical panorama of the 1960s, into a young subject

based on the solid foundations of algebra: algebraic combinatorics.

In the years from 1959 to 1965, Rota was first assistant professor and then

associate professor at MIT, where he would return after a 2-year parenthesis at

Rockefeller University. At MIT he met Norbert Wiener and John Nash. Rota would

never again abandon MIT, Cambridge and the city of Boston.

In 1964 he published “On the Foundation of Combinatorial Theory I. Theory

of Möbius Functions”, the first of ten papers published between 1964 and 1992

which profoundly influenced the directions taken by research in contemporary

combinatorial theories. For this first paper, which marked the beginning of modern

algebraic combinatorics, he was awarded the 1988 Steele Prize from the American
Mathematical Society, which had this to say:

Only 25 years ago the subject of combinatorics was regarded with disdain by “mainstream”

mathematicians, who considered it as little more than a bag of ad hoc tricks. Now, however,

the new subject of “algebraic combinatorics” is a highly active and universally accepted

discipline. Two of its most prominent features are its unifying techniques which bring

together a host of previously disparate topics, and its deep connections with other branches

of mathematics, such as algebraic topology, algebraic geometry, commutative algebra, and

representation theory. The single paper most responsible for bringing on this revolution is

the paper of Rota cited above. It showed how the theory of Möbius functions of a partially

ordered set, as developed earlier by L. Weisner, P. Hall, and others, could be used to unify

and generalize a wide selection of combinatorial results. Moreover, it hinted at connections

with algebra, topology, and geometry which were later to be extensively developed by Rota

and his followers. Today the theory of Möbius functions occupies a central position within

algebraic combinatorics and has found many applications outside combinatorics. Perhaps
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more importantly, Rota’s paper has inspired many mathematicians to develop systematic

techniques for solving combinatorial problems and to apply them to problems outside

combinatorics.

This first paper, like the others in the series on the foundations of combinatorics,

produced a abundant crop of further research. For example, Rota’s intuition that the

Möbius function of a lattice can be interpreted in different ways as a Euler

characteristic, paved the way for the study in innumerable problems related to

topology, leading to the birth of a new subject: topological combinatorics. Today

this theory has achieved an elevated degree of conceptual refinement. Again, the

relationships between the Möbius function and geometric lattices have revitalised

matroid theory – objects based on a generalisation of the concept of linear indepen-

dence – and revealed the profound connections of these objects with topology and

algebraic geometry.

Rota’s return to MIT in 1967 marks the beginning of the Cambridge school of

combinatorics. Gian-Carlo gathered around him those who would soon become

some of the major leading figures in the skyrocketing growth of combinatorics. The

seminars that took place weekly at MIT hosted figures of great renown, such as

Marcel-Paul Sch€utzenberger, and were attended by scholars of the calibre of Danny
Kleitman, Henry Crapo, Jay Goldman and by graduate students or junior faculty

members whose names would soon become famous, such as Richard Stanley, Peter

Doubilet and Curtis Green. During those same years, Rota was intensely engaged in

activities of publication as well, founding the Journal of Combinatorial Theory and
Advances in Mathematics, two journals which would rapidly achieve great prestige
internationally. Edwin F. Beschler, at that time the acquisitions editor for mathe-

matics at Academic Press, wrote:

It was Gian-Carlo’s particular genius that he could transform an intractable set of dynamics

sheerly by force of his ability to recognize superior work and his willingness to “break the

rules” in the interests of publishing it expeditiously, thus furthering mathematics. He was a

communicator of the highest degree, and he believed in the power of the written word and

the necessity – even to proliferation – of publishing thoughts, ideas, and information.

In addition to the two journals mentioned, Rota was one of the promoters of the

birth of the Journal of Functional Analysis and founder in 1979 of Advances in
Applied Mathematics, which, in just a few years, achieved a prestige of its sister

journal. His activities in promoting publications were unending. Among the innu-

merable initiatives, also deserving of mention are the series Contemporary Math-
ematicians, published by Birkh€auser, and The Encyclopaedia of Mathematics,
published by Cambridge University Press, comprising more than 80 volumes.

The year 1964 was crucial for Gian-Carlo, not only because of the publication of

“On the Foundations of Combinatorial Theory” but also because it was the year he

met Stanislaw Ulam, one of the greatest exponents of the Polish school of mathe-

matics, and a collaborator of von Neumann’s. Between Ulam and Rota sprang up an

intense intellectual relationship as well as a friendship, which led the Polish

mathematician to suggest Gian-Carlo as consultant in the management of the

celebrated Los Alamos Scientific Laboratory, a collaboration that Rota would

carry on continuously until his death. Ulam wrote,
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Rota impressed me by his knowledge of some half-forgotten fields, the work of Sylvester,

Cayley and others on classical invariant theory, and by the way he managed to connect the

work of Italian geometers to Grassmannian geometry and modernize much of this research

which dates to the last century.

In truth, many of Rota’s most elegant and profound contributions were born of

his passion for the works in combinatorics by the mathematicians of the nineteenth

century. Conscious of mathematics’ unhistoric nature, he conceived development

as a complex pathway, with motions of reflux that show that progress is decisive

only when it filters its heritage, reinterprets its roots and deepens its foundations.

This is the case of the prodigious undertaking that he began in the early years of the

1970s, which led to the rebirth of the classic invariant theory. It is no coincidence

that the first mathematicians to deal with theories of combinatorics were also

“invariantists”. Hammond, MacMahon and Petersen are known today for their

work in combinatorics, but the motivation underlying their research was invariant

theory. In a similar way, the names of Cayley, Clifford and Sylvester are firmly tied

to the theory of invariants, but their contributions to combinatorics were quite

significant. In his 1999 article entitled “Two Turning Points in Invariant Theory”,

Rota wrote,

The program of invariant theory, from Boole to our day, is precisely the translation of

geometric facts into invariant algebraic functions expressed in terms of tensors. This

program of translation of geometry into algebra was to be carried out in two steps. The

first step consisted in decomposing tensor algebra into irreducible components under

changes of coordinates. The second step consisted in devising an efficient notation for

the expression of invariants for each irreducible component.

It was precisely Rota’s search for an efficient notation that led Rota to follow in

the footsteps of Gordan, Capelli and Young and their symbolic techniques. How-

ever, for Gian-Carlo, the symbolic method gave rise to more than only an efficient

notation; in the same article, he goes on to say,

The hidden purpose of the symbolic method in invariant theory was not simply that of

finding easy expression for invariants. A deeper faith was guiding this method. It was the

expectation that the expression of invariants by the symbolic method would eventually

guide us to single out the “relevant” or “important” invariants among an infinite variety.

The method worked out by Rota took as its point of departure an idea of Richard

Feynman’s. The physicist represented monomials of noncommutative algebra,

substituting for each variable a pair of variables, the first of which indicated the

original variable, while the second “marked” the place that the variable occupied in

the noncommutative monomial. By means of this expedient, a pair of variables can

be interpreted as a single variable that generates a commutative ring, and many

problems of noncommutative algebra can be traced back to problems of commuta-

tive algebra. Rota understood that the same idea could be used to deal with

problems in combinatorics that arose from invariant theory. He gave the name

letter-place algebra to the algebra of pairs of variables constructed in this way.

Gian-Carlo told me about his last meeting with Feynman, at the inauguration of

the first Connection Machine at the “Thinking Machines Corporation”. He told
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Feynman that he had used the idea of the pairs of variables, successfully, in many

articles. The physicist immediately left the crowd of journalists that surrounded

him, took Gian-Carlo aside, and confided to him with satisfaction that he considered

the temporal ordering – that was the term he used for letter-place algebra – to be the

best idea he’d ever had. He was convinced that it was even better than the Feynman

integral. He then went on to explain to Rota another idea that he had never

published, making a sketch of it that was no larger than a postage stamp. Gian-

Carlo put it in his pocket, with the idea of pulling it out later. To his great

disappointment, he later discovered he had lost it. He had asked himself ever

since what Feynman’s last idea had been.

Letter-place algebra also made it possible to construct the fundamental straight-

ening algorithms used by Rota and his collaborators not only to reformulate in

modern terms the classic themes of invariant theory of Hermann Weyl and the

results in positive characteristic of Jun-ichi Igusa, but also provided a unifying

approach for use in different contexts, such as the ordinary representation theory of

the symmetry group and the representation theory of the general linear group and

the symmetry group of the space of homogeneous tensors. Gian-Carlo believed that

in order to understand the difference in style as well as in content between

representation theory and invariant theory it was helpful to consider the analogous

differences between probability theory and measure theory: “A functional analyst

could spend a lifetime with measurable functions without ever suspecting the

existence of the normal distribution. Similarly, an algebraist could spend a lifetime

constructing representations of his favorite group without ever suspecting the

existence of perpetuants”.

Thanks in part to the contribution of Rota, representation theory today is a very

active area in contemporary combinatorics. Central to it is the most explicit and

efficient construction possible of the irreducible representations both of the classic

groups as well as of the Coxeter groups and the algebras associated to them. The

main combinatorial tools are symmetric functions and their generalisations, such as

Schubert’s polynomials and the various versions of Schensted’s classic algorithm.

In multilinear algebra, Rota’s fundamental straightening algorithms can be consid-

ered as analogous to Schensted’s combinatorial algorithm. With the introduction of

supersymmetric variables, that is, substituting external algebras with suitable tensor

products of fields, the straightening algorithms of letter-place algebras were made

considerably more powerful. The union of commutative variables and noncom-

muntative variables was used for a long time by physicists and only later by

mathematicians. The contributions of Rota, Brini, Grosshans, Stein and others

enriched the tool kit with instruments that were highly effective. In particular, the

concept of the polarisation of variables and the definition of an umbral operator

led to the solution of numerous classic problems and an extraordinary simplification

in the representation theory of Lie algebras. The adjective “umbral” opened an

important chapter in the scientific life of Gian-Carlo Rota. Alain Lascoux, one of

Marcel-Paul Sch€utzenberger’s best known students, wrote that Rota thought of

himself as a writer of epigraphs of the richness of the past and an advocate of the

algebraic structures that make it possible to integrate that richness into
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contemporary research. The development and spread of umbral calculus, whose

applications are rapidly being developed today, effectively confirm this judgment.

Extensive use has been made of the so-called “umbral calculus” since the nine-

teenth century, even though it had no rigorous foundations. It was born of observa-

tions of analogies between various sequences pn of polynomials and the sequence of

powers xn. For example, as xn provides the number of applications between a set of

n elements and a set of x elements, so the decreasing factorial sequence

xð Þn ¼ x x� 1ð Þ::: x� nþ 1ð Þ provides the number of injective applications

between the same sets. Thus the index n, in the polynomial sequence, can be

considered as an “umbra”, or shadow, of the exponent of x. In the nineteenth

century many identities were first established using the trick of substituting the

exponents with the index and then verifying the results a posteriori. This technique

was developed by Rev. John Blissard in a series of papers starting in 1861.

Blissard’s calculus grew out of the symbolic methods for successive derivatives

of a product with two or more factors invented by Leibniz, which was later

developed by Laplace, Vandermonde, Herschel, and enriched by the contributions

of Cayley and Sylvester in the theory of forms. In 1940 Eric Temple Bell tried to

provide a rigorous foundation for these techniques, although he was not completely

successful. In 1958, Riordan (in his book An Introduction to Combinatorial Analy-
sis, which can be considered the first modern text in combinatorics) made wide use

of umbral techniques, without providing any proofs of the method’s correctness.

Just 6 years later, in 1964, Rota published “The Number of Partitions of a Set”,

where he revealed “umbral magic” that made it possible to obtain identities by

substituting indexes for exponents, defining the linear functional that legitimises the

method.

This article would pave the way to an elegant theory, set out in the articles

“Foundation III” and “Foundation VIII”, which would give rise to an incredibly

vast number of applications in different fields of mathematics. In 1978 Rota and

Roman provided a definitive formal structure for the whole subject in the language

of Hopf algebras. Sixteen years later, Rota returned to umbral calculus, carrying out

Bell’s dream of providing it with a solid base in algebra while maintaining as far as

possible the spirit of its founders Sylvester and Blissard. The new approach opened

innovative perspectives and restored to it the intuitive power and simplicity which

the translation into the language of Hopf algebras had partially obscured. The most

recent developments confirm what a powerful tool for calculation and simplifica-

tion it is in contexts as diverse and significant as wavelet theory and probability.

At the end of his life, Gian-Carlo came full circle, sowing new seeds in the field

in which he had first been Feller’s student at Princeton. He died, still in his

intellectual prime, in his house in Cambridge, in April 1999. MIT dedicated a

hall to his memory, the Gian-Carlo Rota Reading Room, which contains an ample

collection of books related to his intellectual itinerary, a testament to the scope and

depth of his thinking.
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Stephen Smale

Mathematics and Civil Protest

Angelo Guerraggio

Moscow, August 1966: in the course of the International Congress of Mathemati-

cians, or ICM, held every 4 years, the Fields Medal is awarded. Whether or not it is

actually the equivalent of the Nobel prize, it is in any case the most prestigious

international prize. The year in Moscow the winners are the English Michael

Atiyah, the American Paul Cohen, the French Alexander Grothendieck, and the

American Steve Smale.

It was Smale who managed, with a few fine strokes, to turn the mathematical–

scientific event into a political event as well, one with which the newspapers

(beginning with the New York Times) were forced to cover.

In 1966, Smale was 36-year old, but – as his winning the Fields Medal testifies –

he was naturally no freshman as a mathematician. He had studied at the University

of Michigan, where he had chosen as the advisor for his doctorate thesis, a

mathematician – Raoul Bott – who had taught a course in algebraic topology

(building on some ideas of J. P. Serre). Bott was not particularly famous, but he

had set Smale on the trail of a “good problem”. The thesis dealt with the regular

closed curves on Riemann manifolds, with the aim of classifying them in the

absence of a regular homotopy, and generalising the results obtained in the plane

by H. Whitney in 1937.

After his thesis, Smale began to travel, partly because his credentials weren’t

excellent, and it was difficult to get a foot in the door of the academic world.

Saunders MacLane, for example, had a good impression of him, but still harboured

doubts. At a congress in Mexico City, Smale had the good fortune to meet John

Milnor – he sat in on his seminars on the new differential topology – and especially

René Thom, who “introduced” Smale to tranversality. He also came to know

Marston Morse personally, and Morse theory was to become of the main “ingre-

dients” in Smale’s mathematics. But in this case, this personal connection didn’t

lead to anything great. However, Smale’s well-known (and counter-intuitive) result

regarding the eversion of the sphere, appeared in 1959 in the Transactions of
the American Mathematical Society as “A Classification of Immersions of the

Two-Sphere”.
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Smale then went to Brazil, and while on the beaches of Rio he successfully

solved Poincaré’s conjecture – the most famous problem then still unsolved in

topology – setting the stage for his winning the Fields Medal. For a certain period of

time, he even thought he might win it in 1962, during the Stockholm congress,

but he had to reconcile himself with its being awarded to Milnor (and to Lars

Hörmander). The generalised conjecture of Poincaré states that an n-dimensional

manifold, closed and homotopically equivalent to an n-dimensional sphere, is

homeomorphic to it. Smale proved this for nr5, disproving along the way the

idea that an increase in the dimension creates greater difficulties; the higher

dimensions can even turn out to be easier to deal with, because there is more

“space” to move around in. The positive answer to Poincaré’s conjecture, for n¼4,

wouldn’t be given until 1982, thanks to Steve Friedman. That relative to the case of

n¼3 was more recently given by the Russian mathematician Grigorij Perelman. The

generalised conjecture was actually proven for nr5 independently and just a few

months later by John Stallings and by Christeroper Zeeman; in fact, some surveys

(including Morris Kline’s history) rank the contributions of Smale, Stallings and

Zeeman equally. Smale wasn’t very pleased about this, and already smarting from

some earlier experiences (including missing the 1962 Fields Medal award by a

hair), struck back with an obstinate vindication of priority in 1989, on the occasion

of the annual meeting of the American Mathematical Society. The title of his talk –
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in itself anomalous and provocative – is “The Story of the Higher Dimensional

Poincaré Conjecture. (What Actually Happened on the Beaches of Rio)”.

In 1966 in Moscow, Smale was already a well-known figure from a political

point of view. He had been brought up by his father with a mentality that was very

anticlerical and leftist. At the University of Michigan, he embraced Marxist ideas

and joined the Communist Party, attending meetings of its youth organisation – the

Labor Youth League – and also acting as its representative at a Peace Festival in

East Berlin. His political activities were genuinely militant – not to mention secret –

and would lead him to neglect his studies to some extent. He only began to speak

openly about this in the 1980s:

But still to accept the Communist Party?

Consider my frame of reference at that time. I was sufficiently skeptical of the country’s

institutions to the point that I couldn’t accept the negative reports about the Soviet Union.

I so believed in the goal of a utopian society that brutal means to achieve it could be

justified. I was unsure of myself on social ground, and the developing social network of

leftists around me gave me security.

After his militancy at university, Smale – as we have seen – returned to his

mathematical studies in earnest. His political sympathies were, however, still

decidedly leftist. This is why he didn’t hesitate to side with Castro’s revolution

(even getting in touch with an organisation named “Fair Play for Cuba”, with which

Lee Harvey Oswald, Kennedy’s assassin, was also involved for a period of time).

But he returned to more active politics when he accepted a position as associate

professor at Berkeley, following stints in Chicago, and at Princeton’s Institute for

Advanced Study (1960). He then transferred to Columbia University, only to return

to Berkeley in 1964 as full professor. The University’s administration was trying

out a more strict approach on campus towards both the freedoms and political

activities of students. As a result, the Free Speech Movement was born on campus

to counter the new policies. This movement’s golden period lasted a mere 3 months

– from September to December 1964 – but those 3 months, if they didn’t exactly

change the world, certainly changed that particular generation, along with the habits

and culture of Western society. The confrontation between the movement and the

president and administration of the university was violent. The number of sit-ins

grew. Joan Baez sang “We Shall Overcome”. But there was also the police, and

their attitude towards the situation was not exactly comforting. Smale came out

strongly on the side of the students, without any of the doubts that his so-called

liberal colleagues expressed. He gave them concrete help and support. And in the

end, they won. A small group of students was able to defeat the powerful university

administration, overturning the roles traditional assigned to students, faculty, admin-

istration. It all started in Berkeley, then it spread to Europe. Then there was 1968.

But now we are still in the winter of 1964, and in American cities in 1964 the

protest movement against the war in Vietnam was practically non-existent. Once

again, it all began in the universities, and Smale was on the front line. As early as

1965 we find him side by side with the students protesting against militarism in the

United States. He was one of six faculty members who participated in a teach-in.
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As chair of Berkeley’s Political Affairs Committee, he obtained approval for a

motion condemning the air attacks on Vietnam “which notably increased the risk of

a world war”. He then founded, along with his wife Clara, a student and a colleague,

the Vietnam Day Committee, whose purpose was to organise a day of protest

against the war in Vietnam. The event turned out to be a huge success. The 24 h

of the sit-in were extended to 30, in order to give everyone a chance to speak. Even

the noted paediatrician Benjamin Spock took part. The newspaper only gave

minimal coverage to the event, but Secretary of State Dean Rusk began to be

worried: “I continue to hear and see nonsense about the nature of the struggle. I

sometimes wonder at the gullibility of educated men and the stubborn disregard of

plain facts by men who are supposed to be helping our young to learn”. There

appeared the first instances of civil disobedience, and the first invitations to desert

the military. Smale didn’t hesitate to recall how the Germans remained ignorant for

a long time about the atrocities committed by the Nazis during the second world

war. Then there was the march in Oakland. It was now October 1965, and Amer-

icans had by this time become aware of the horrors and futility of the war. In April

1967 there was the great march in Washington. Robert Kennedy and Martin Luther

King would make their voices heard. In the Pentagon, McNamara began to think

that the war was by this time a lost cause, and President Johnson “found” him a new

job as president of the World Bank. But even Johnson was forced to surrender to the

truth, and soon announced to the nation that he would not campaign for another

term as president.

Now we can get back to Moscow and the summer of 1966. Smale was in Europe,

on his way to the Soviet capital, and while in Paris he took part in one of the “Six

Hour” events in support of Vietnam organised by Laurent Schwartz. His speech –

that of an American citizen protesting against his own country’s militarism – was

particularly looked forward to, and actually turned out to be quite moving. In his

autobiography, Schwartz recalled that the most emotional moment of the meeting

was the handshake between the American Steve Smale and the Vietnamese Mai

Van Bo. Then, in the company of René Thom, he headed for a conference in

Geneva. It was during that trip that Thom, a member of the Fields Medal commit-

tee, told him about his “victory”. From Geneva, Smale went to Greece for a short

vacation with his family. It was here, at the airport, on 15 August, the ICM’s

opening day, that Smale was stopped for an irregularity in his passport. He risked

missing everything (seeing Moscow, attending the ICM, receiving the Fields Medal

during the opening ceremony). As it turns out, he was somehow permitted to leave,

and arrived some hours late. Not having his ICM badge – he had not had time to

register and pick it up – he was stopped again, and lost more time. When he was

finally allowed in, the medals had already been awarded, and he was just in time to

hear René Thom read the official motivation for the award: “If Smale’s works

perhaps do not possess the formal perfection of definitive work, it is because Smale

is a pioneer who takes risks with a tranquil courage”.

Smale also wanted to take advantage of the Moscow congress – in agreement

with Schwartz and a few other mathematicians – to launch an appeal for signatures
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condemning American aggression and in support of Vietnam. But in 1966, the

Soviet bureaucratic apparatus was strict, even when the contents of the appeal

were in line with the politics of the communist bloc! One of prime objectives of

hosting the ICM in Moscow – at a time when Moscow saw very few international

events – was to show that the USSR was a friendly, peaceful country. In the

meantime, Smale was approached by a Vietnamese journalist asking for an inter-

view. He decided to organise a press conference, inviting the Vietnamese journalist

as well as members of the Soviet and American press. This is where he made his

statement:

I believe that American military intervention in Vietnam is horrible and becomes more

horrible everyday. I have great sympathy for the victims of this intervention, the Vietnamese

people. However, in Moscow today, one cannot help but remember that it was only ten

years ago that Russian troops were brutally intervening in Hungary and that many coura-

geous Hungarians died fighting for their independence. Never could I see justification for

military intervention, 10 years ago in Hungary or now in the much more dangerous and

brutal American intervention in Vietnam. ... I feel I must add that what I have seen here in

the discontent of the intellectuals on the Sinyavsky-Daniel trial and their lack of means of

expressing this discontent, shows indeed a sad state of affairs. Even the most basic means of

protest are lacking here. In all countries it is important to defend and expand the freedoms

of speech and the press.

The organisation of a press conference by an American in Moscow in 1966 was

considered to be a subversive act. But the Soviets could not take drastic steps,

because they would lose face in the eyes of international public opinion. Smale was

saying that Vietnam (and its communist allies) were right! Thus, they decided to

limit the damage. They detained Smale in order to prevent his having other contacts

– treating him with all the respect due to a diplomat, and extending many a privilege

to him – but they sent him away from Moscow under pretext of a long sight-seeing

tour, which only came to an end when Smale had had enough and demanded to be

let out of accepting other similar “courtesies”. The trip had been a long one: it was

late night before he was able to return to his hotel. The morning after, at 7:00, a

plane was waiting to fly him back to Athens.

But his troubles weren’t over. Now it was the Americans turn. The New York
Times came out with a front-page story about what had taken place in Moscow,

including the press conference. The day after, the National Science Foundation

(NSF) opened an investigation into Smale’s case. As a precaution, all of his funding

was suspended. The main accusations were of having attacked the government of

the United States while abroad, having travelled to Europe using government funds

intended for research – demanding that he prove that he actually had worked on

mathematics over the summer – and having taken a non-American ship (French) to

return home. Smale had to explain himself, guaranteeing in writing that he

had worked on research even while camping, in a hotel, and on the ship. Thus,

“On the S.S. France, for example, I discussed problems with top mathematicians

and worked on mathematics in the lounge of the boat. (My best known work was

done on the beaches of Rio de Janeiro, 1960!)”. This is how the story of the beaches

in Rio came to light. Smale was supported by colleagues and some members of
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Congress. A compromise was proposed, but Smale refused it, declaring that

the “NSF has dishonored itself”. A compromise would have meant capitulating,

which would have made it difficult – for other researchers – to choose to public

disassociate themselves from “Johnson’s brutal policies in Vietnam”. It would take

until the end of September, but in the end Smale’s hard line was rewarded.

After Moscow, of course, Smale’s life and mathematics carried on. Research in

algebraic geometry, differential topology and the theory of h-cobordism were

flanked by work in dynamic systems, which had already begun during his first

stay in Brazil (again on the beaches?). Then – by now we have reached the 1970s –

he developed an interest in mathematical economics. It was Nobel Prize laureate

Gerard Debreu who, in Berkeley, involved him in the problem of general economic

equilibrium. Smale’s approach was completely original, and consisted in trying to

make it into a dynamic system – the “mathematics of time” with the reintroduction

of the classic hypothesis of differentiability, in place of that of convexity (which

had been stated starting in the 1930s). He also dealt with vector optimisation and

critical points. He then turned his attention to linear programming and analysis of

algorithms. His most recent interests are their study, the calculability, and some

problems of theoretical computer science. In 1998 he published Complexity and
Real Computation.

The Moscow press conference meant that there was no celebration of his having

received the Fields Medal in the United States, but he received his due in 1996

(30 years later) when he was awarded the National Medal of Science by then

president Bill Clinton.

Today Smale is still active as a mathematician. He studies, writes, takes part in

international congresses, speaking above all about themes related to human and

artificial intelligence. He still collects minerals, and has been ranked as one of the

first five collectors worldwide in his category. A brilliant mathematical mind and a

passionate defender of civil rights, he has still been able to find time to appreciate

nature.

Smale however no longer lives in Berkeley. Once he retired, he decided to

accept one of the many offers that he received and became professor emeritus at

a university in Hong Kong. A final (for now) provocative gesture by an old “sixties

radical”. The mathematician who succeeded in condemning, at a single stroke, two

superpowers and two economic systems in Moscow, now lives in the postmodern

hybrid of communist capitalism!
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Michael F. Atiyah

Mathematics’ Deep Reasons

Claudio Bartocci

The Age of Unification

How will the mathematics of the last 50 years appear to the eyes of future

historians? As difficult as it is to make predictions that depend in large part on

developments to come (Lakatos docet), we can hazard a guess that the second half

of the twentieth century will probably be considered a period of extraordinary

proliferation of new ideas, and at the same time, of the rediscovery of the funda-

mental unity of mathematics. In the first half of the century, marked by the triumphant

of Hilbert’s program culminating in the great undertaking of the Bourbaki group,

there was a widespread tendency – we might say – towards specialization and

therefore towards the parcelling out of mathematical knowledge: doubtless, it was

this tendency that made possible the rapid development of disciplines such as

general topology, group theory, mathematical logic, differential geometry, func-

tional analysis, algebraic and differential topology, commutative algebra and

algebraic geometry (even if this last was destined to change its face in later

years). On the contrary, the second 50 years are characterized above all as an

“era of unification, where borders are crossed over, techniques have been moved

from one field into the other, and things have become hybridised to an enormous

extent”1: cross-fertilization has prevailed as the dominant paradigm. There are

many examples that lend support to this thesis: the admirable theoretical edifice

constructed by Grothendieck; the development of research areas such as global

analysis; the omnipresence of category theory methods; arithmetic geometry or

Alain Connes’s non-commutative geometry; the formidable results obtained by

mathematicians such as Vladimir Arnol’d, Yuri I. Manin, Shing Tung Yau,

Simon K. Donaldson, Vaughan Jones, Edward Witten, Richard Borcherds, Robert

The author warmly thanks Sir Michael Atiyah for reading a preliminary version of this article and

for pointing out a few inaccuracies.
1M. F. Atiyah, “Mathematics in the twentieth Century”, Bulletin of the London Mathematical
Society, 34 (2002), pp. 1–15.
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Langlands and Andrew Wiles. But perhaps more than anyone else, the person who

demonstrated how fruitful it can be to delve into different disciplinary contexts in

order to arrive at fundamental discoveries, to dig down to the roots of problems that

are apparently distinct in order to identify the profound reason that unites them, is

Michael Francis Atiyah, without a doubt one of the most prolific and influential

mathematicians of the past century.

From Algebraic Geometry to K-Theory

Born in London on 22 April 1929 to a Lebanese father and Scottish mother, Atiyah

spent the years of his boyhood in Khartoum, Sudan and Cairo.2 In 1945, at the end

of World War II, his family moved to England; the young Michael was sent to

Manchester Grammar School, because it was reputed to be the best school for

mathematics in England. After having spent 2-years in the National Service, he

enrolled at Trinity College in Cambridge: his first article, written in 1952 under the

2Atiyah himself provided detailed information about his life and his research activities in a series

of talks, recorded in March of 1997, available (along with their transcripts) on the website http://

peoplesarchives.com. See also M. F. Atiyah, Siamo tutti matematici, Di Renzo, Rome, 2007.
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guidance of J. A. Todd, regarded a question of projective geometry. Having begun

his doctoral studies, still at Cambridge, Atiyah chose as his supervisor one of the

greatest English mathematicians, William V. D. Hodge, who in 1941 had published

his famous treatise on harmonic integrals. Hodge directed him to the work of Chern

on characteristic classes; Atiyah went to discover the new ideas – developed above

all by the French school (André Weil, Henri Cartan, Jean-Pierre Serre) – which

were emerging in those years in algebraic geometry.3 He got acquainted with vector

bundles, coherent sheaves and their cohomology, and became a voracious reader of

the Comptes rendus. In 1955–1956 Atiyah spent a long period Institute of

Advanced Study in Princeton, where he came to know Raoul Bott, Friedrich

Hirzebruch and Isadore M. Singer and Serre, and would broaden his horizons in

an atmosphere that was very stimulating intellectually.

Until 1959 the most part of Atiyah’s works were in algebraic geometry: of

particular note, for example, is the 1957 article on the classification of vector bundles

on an elliptic curve. In later years – after his return to Europe – his interests would

turn above all to topology. This reorientation was principally due to the influence

of the German mathematician Friedrich Hirzebruch, organizer of the famous

Arbeitstagung in Bonn, in which Atiyah was a faithful participant. Hirzebruch

had extended (and reinterpreted in a topological key) the classic Riemann–Roch

theorem to algebraic manifolds of higher dimensions and, making use of Thom’s

cobordism theory, had defined particular combinations of “characteristic numbers”

that assume integer values not only for algebraic manifolds, but for all differentiable

manifolds as well. Hirzebruch’s results, united to Grothendieck’s profound general-

ization of the theorem of Hirzebruch–Riemann–Roch and to Bott’s theorem of

periodicity,4 are the ingredients at the base of topological K-theory, which Atiyah

(in collaboration with Hirzebruch) set out between 1959 and 1962.5 Atiyah himself

recalls: “. . . I saw that by mixing all these things together you ended up with some

interesting topological consequences, and because of that we then thought it would

be useful to introduce the topological K-group as a formal apparatus in which to

carry this out”.6

K-theory – which can be thought of as a kind of generalized cohomology theory

constructed beginning with the isomorphism classes of vector bundles – immedi-

ately showed itself to be a useful and versatile tool for tackling problems of various

natures: one of the most remarkable example was the solution by Frank Adams in

1962 of the problem of the maximum number of nowhere vanishing and (pointwise)

linearly independent tangent vector fields on an odd-dimensional sphere (by the

3Cf. Jean Dieudonné, History of algebraic geometry, Wadsworth, Monterey 1985, Chap. VIII.
4Bott’s theorem of periodicity regards the homotopy groups of the groups U(n) as n ! 1.
5For mathematical details not included here, see M. F. Atiyah, “K-theory past and present”

in Sitzungsberichte der Berliner Mathematischen Gesellschaft, Berliner Mathematischen

Gesellschaft, Berlin 2001, pp. 411–417 and M. F. Atiyah, “Papers on K-theory”, in Collected
Works, vol. 2, Oxford University Press, New York, 1988, pp. 1–3.
6M. F. Atiyah, http://www.peoplesarchives.com (Part 7, 36).
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famous “hairy ball theorem”, the 2n-sphere has no non-vanishing vector field for n
� 1).

At the International Congress of Mathematicians in Stockholm in 1962, Atiyah

presented the numerous, and in large part unexpected, applications of K-theory,

and in conclusion, mentioned the new interpretation which admits the notion

of “symbol of an elliptic operator” into this theory. In the unifying framework

of “K-theory” converged methods and ideas coming from algebraic geometry,

topology and functional analysis: the “index theorem” – already clearly stated in

the summer of 1962 but still awaiting proof – will be the culmination of a long

series of researches.

The Index Theorem

Atiyah spent the years from 1957 to 1961 in Cambridge as a lecturer and tutorial

fellow at Pembroke College, overburdened with many hours of teaching. In 1960

the topologist Henry Whitehead died at 55, and his chair in Oxford remained

vacant: Atiyah applied for the chair unsuccessfully (the favorite was one of

Whitehead’s students, Graham Higman) and as makeshift solution, which in any

case freed him from excessive teaching duties, he accepted a position as a reader.

Less than 2 years later, with the death of Titchmarsh, the prestigious chair of

Savilian Professor would become free, and Atiyah was called to hold it.7

In the attempt to extend results valid in the case of algebraic manifolds to

differentiable manifolds, Hirzebruch had proven that a certain combination of

characteristic classes – the so-called Â-genus – which is in general a rational

number, turns out to be an integer in the case of spin manifolds (that is, manifolds

whose second Stiefel–Whitney class is null). This result naturally falls in the

context of K-theory, but its explanation appeared a real mystery at the time.

In January 1962 Isadore Singer decided to spend (at his own expense) a period of

time in Oxford. Two days after his arrival, Atiyah and Singer had this exchange:

Atiyah: Why is the genus an integer for spin manifolds?

Singer: What’s up, Michael? You know the answer much better than I.

Atiyah: There’s a deeper reason.8

Singer has a thorough knowledge of differential geometry and analysis, disci-

plines in which Atiyah was instead less well-versed. The key to the problem was

found in a few months: the answer lay in the Dirac operator. As Atiyah tells it:

7See N. Hitchin, “Geometria a Oxford: 1960–1990”, in La matematica. Tempi e luoghi, vol. 1, ed.
by C. Bartocci and P. Odifreddi, Einaudi, Torino, 2007, pp. 711–734; much information about the

genesis of the index theorem was drawn from this essay.
8N. Hitchin, “Geometria a Oxford: 1960–1990”, cit., p. 715, quoted from I. M. Singer, “Letter to

Michael”, in The Founders of Index Theory. Reminiscences of Atiyah, Bott, Hirzebruch, and
Singer, ed. by S.-T. Yau, International Press, Sommerville 2003, pp. 296–297.
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I knew the formula, Hirzebruch’s work, I knew what the answer was; what I had to guess

was the problem. We had to find out what was this object. We knew from algebraic

geometry, what it should look like in algebraic cases. We knew that it had to do with

spinors because of Hirzebruch’s formula. So the question was, there should be some

differential equation which would play the role of the Cauchy–Riemann equations in the

spinor case which ought to fit the left-hand side of the equation.9

The differential operator “rediscovered” by Atiyah and Singer, whose construc-

tion is based on an in-depth study of the geometric properties of spin manifolds, is

closely related to the operator, well known to physicists for about 30 years, that

appears in Dirac’s equations. Atiyah writes:

My knowledge of physics was very slim, despite having attended a course on Quantum

Mechanics by Dirac himself, Singer had a better background in the area but in any case we

were dealing with Riemannian manifolds and not Minkowski space, so that physics seemed

far away. In a sense history was repeating itself because Hodge, in developing his theory of

harmonic forms, had been strongly motivated by Maxwell’s equations. Singer and I were

just going one step further in pursuing the Riemannian version of the Dirac equation. Also,

as with Hodge, our starting point was really algebraic geometry.10

The result Atiyah and Singer arrived at was admirably simple: on compact spin

manifolds, the Â-genus is equal to the index of the Dirac Operator. This not only

solves the particular problem, but also defines a unitary framework in which to

interpret theorems already known. To clarify this important point, a brief digression

is necessary.

A bounded linear operator between Hilbert spaces L: H1 ! H2 is said to be a

Fredholm operator if its kernel and cokernel (which coincide, we recall, with the

kernel of the adjoint operator) both have finite dimensions. The index of the

operator is by definition the difference of these dimensions: ind(L) ¼ ker(L) –

coker(L). If we consider a continuous family of Fredholm operators, even if the

dimensions of the kernels and cokernels vary, their difference remains constant: the

index is thus a topological invariant. The Dirac Operator D constructed by Atiyah

and Singer for a spin manifold M is the elliptic differential operator between spaces

of spinor fields, D: G(S+) ! G(S�). If the manifold is compact, D extends to a

Fredholm operator between Hilbert spaces, D: L2(S
+) ! L2(S

�); then,

ind(D)¼ Â(M).

This formula is the prototype of many other analogous formulas: if P is an

elliptic operator on a differential manifold M that is compact and oriented, then

ind(P) ¼ topological index(P), where the topological index is calculated in terms of

appropriate characteristic classes of M (that is, topological data) and of the symbol

of P (which is an element in the K-theory of M). The simplest example of this

formula is found in the case of a compact Riemann manifold M and operator d+d*,

where d is the usual Cartan exterior differential and d* its (formal) adjoint. The

9M. F. Atiyah, http://www.peoplesarchives.com, cit. (Part 8, 43).
10M. F. Atiyah, “Papers on Index Theorem 56–93a”, in Collected Works, vol. 4, Oxford University
Press, New York, 1988, p. 1.
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self-adjoint elliptic operator d+d* maps the differential forms of even degree to the

differential forms of odd degree: its kernel is the space of the harmonic even forms

and its cokernel the space of the harmonic odd forms. Applying Hodge’s theorem,

we thus find that the index ind(d+d*) is the Euler characteristic of the manifold M;

since the topological index d+d* is given by the Euler class of the bundle tangent to

M, which is expressed in terms of the curvature of M, the formula ind(d+d*) ¼
topological index (d+d*) is nothing but a re-formulation of the classic Gauss–Bonnet

theorem. On manifolds of dimension 4m, the differential forms can be decomposed

into two spaces using the Hodge star operator; the same operator d+d* maps one

space into another and yields the Hirzebruch signature theorem. In the case of a

complex manifold M with a Hermitian metric, one considers the operator �@ þ �@�,
where �@ is the Cauchy–Riemann operator (the kernel of �@ as an operator on

the space of differentiable functions is the space of holomorphic functions).

The operator �@ þ �@� is elliptic: its index is the holomorphic Euler–Poincaré

characteristic of M, and the formula ind( �@ þ �@�) ¼ topological index( �@ þ �@�)
exactly reproduces the formula of Hirzebruch–Riemann–Roch.

In the spring of 1962 Atiyah and Singer were therefore able to state the index

theorem for spin manifolds. The task of proving it, however, was very difficult. It

was just at that time that Stephen Smale, returning from a period spent in Moscow,

passed through Oxford, bringing valuable information: in 1959 I. M. Gel’fand had

written a fundamental article on the index of elliptic operators,11 and several

Russian mathematicians – for example, M. S. Agranovič and A.S. Dynin – were

working on the problem from a very general point of view. As Hitchin observed:

The advantage [Atiyah and Singer] had over the Russians was that they were concentrating

on a particular operator, the Dirac operator, and they knew what the answer should be. They

also knew the answer for related operators such as the signature operator and the Dolbeault

operators on a complex manifold. The index theorem for each of these cases would give

new proofs of the Hirzebruch signature theorem and the Riemann–Roch theorem respec-

tively. Perhaps more importantly, they had seen the problem in the context of K-theory, and

that was where the link really lay – the index of an elliptic operator only depends on its

highest order term, the principal symbol, and this immediately defines a K-theory class.12

Atiyah broadened his own knowledge of analysis, immersing himself in the

study of the treatise by Dunford and Schwartz (Linear Operators) and other books:

They were the first books I’d actually tried to read since I was a student. After you’ve

ceased being a student you don’t usually read textbooks; you learn what you need to on the

hoof.13

After the theorem had been announced in the summer at the Arbeitstagung in

Bonn and at the Stockholm Congress, Atiyah and Singer – calling on the help of

friends as well as distinguished mathematicians working in analysis, such as L.

Horm€ander and L. Nirenberg – achieved the first proof in autumn of 1962, while

11I. M. Gel’fand, “On elliptic equations”, Russian Math. Surveys, 15, 3 (1960), pp. 113–123.
12N. Hitchin, “Geometria a Oxford: 1960–1990”, cit., p. 716.
13M. F. Atiyah, http://www.peoplesarchives.com, cit. (Part 8, 45).
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spending a period at Harvard. The proof follows one formulated in 1953 by

Hirzebruch for his signature theorem, and is therefore based on the theory of

cobordism and on (appropriately extended) techniques used in boundary value

problems.14 In spite of the importance of the result, Atiyah was not completely

satisfied:

What was wrong with the first proof, besides being sort of conceptually a bit unattractive

. . .was that it didn’t include some generalisations that we had in mind.15

In the coming years Atiyah and Singer would formulate a different proof,

based on Grothendieck’s proof of the generalised Hirzebruch–Riemann–Roch

theorem. In the monumental series of five articles published between 1968 and

1971 in the Annals of Mathematics – four in collaboration with Singer, and one with
G. B. Segal16 – Atiyah then went on to formulate various generalizations of the

index theorem. These included the equivariant version of the index theorem (in the

case of a compact group that acts preserving the elliptic operator) and the version

for families of elliptic operators. Together with R. Bott, Atiyah further proved the

index theorem for a manifold with boundary and obtained a fixed point formula,

which from a certain point of view generalised that of Lefschetz, and from which is

obtained as a particular case of Hermann Weyl’s celebrated character formula

describing the characters of irreducible representations of compact Lie groups in

terms of their highest weights.

This impressive crop of results earned Atiyah the Fields Medal in 1966 (shared

with P. Cohen, A. Grothendieck and S. Smale17). The index theorem is one of the

high points of the mathematics of the twentieth century, fundamental not only in its

own right, but also because of the multiplicity of its implications and applications,

as the justification for awarding the 2004 Abel Prize to Atiyah and Singer makes

clear:

[They were awarded the prize] for their discovery and proof of the index theorem, bringing

together topology, geometry and analysis, and their outstanding role in building new

bridges between mathematics and theoretical physics The index theorem was proved in

the early 1960s and is one of the most important mathematical results of the twentieth

century. It has had an enormous impact on the further development of topology, differential

geometry and theoretical physics. The theorem also provides us with a glimpse of the

14F. M. Atiyah and I. M. Singer, “The Index of Elliptic Operators on Compact Manifolds”, Bulletin
of the American Mathematical Society 69 (1963): 422–433. The details of this first proof are given
in the volume by R. S. Palais Seminar on the Atiyah–Singer Index Theorem, Annals of Mathemat-

ical Studies 57, Princeton University Press, Princeton, 1965.
15M. F. Atiyah, http://www.peoplesarchives.com, cit. (Part 8, 47).
16F. M. Atiyah and I. M. Singer, “The Index of Elliptic Operators” I: Annals of Mathematics 87
(1968), pp. 484–530; III: Annals of Mathematics, 87 (1968): 546–604; IV: Annals of Mathematics,
93 (1971), pp. 119–138; V: Annals of Mathematics, 93 (1971), pp. 139–149; F. M. Atiyah and

G. B. Segal, “The Index of Elliptic Operators II”, Annals of Mathematics, 87 (1968), pp. 531–545.
17The Fields Medal is awarded to mathematicians who are not yet over 40 years of age: Singer,

born in 1924, was therefore ineligible.
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beauty of mathematical theory in that it explicitly demonstrates a deep connection between

mathematical disciplines that appear to be completely separate.18

Each new proof of the index theorem opened unexpected perspectives for

research. The works of V. K. Patodi, P. B. Gilkey and Atiyah–Patodi–Singer,

going back to the first half of the 1970s, showed that, for a classic elliptic operator

(for example, the Dirac operator), the formula for the index can be derived from the

study of the asymptotic behaviour of the so-called “heat kernel” associated with the

operator. In 1982 Edward Witten, on the basis of physical reasons, discovered a

new approach to the problem founded on ideas of symplectic geometry and

supersymmetry, which would turn out to be fruitful.19 The plurality of points of

view from which it is possible to consider the index theorem is a further proof of the

conceptual depth of this result. In fact, Atiyah says:

Any good theorem should have several proofs, the more the better. For two reasons:

usually, different proofs have different strengths and weaknesses, and they generalize in

different directions – they are not just repetitions of each other. And that is certainly the

case with the proofs that we came up with. There are different reasons for the proofs, they

have different histories and backgrounds. Some of them are good for this application, some

are good for that application. They all shed light on the area. If you cannot look at a problem

from different directions, it is probably not very interesting; the more perspectives, the

better!20

Geometry and Physics

In 1969 Atiyah left Great Britain, accepting a position as professor at the Institute

for Advanced Studies in Princeton, where he would stay 3 years. He returned to

Oxford in 1973 as Royal Society Research Professor and Fellow of St. Catherine’s

College. In 1990 Atiyah – who in 1983 had been knighted and granted the title of

Sir – transferred to Cambridge, becoming Master of Trinity College and director of

the newly-founded Isaac Newton Institute for Mathematical Sciences. From 1990 to

1995 he was president of the Royal Society.

Starting in 1977, Atiyah’s research interests gradually moved towards gauge

theory and, more generally, towards the interaction between geometry and physics.

He was first urged to consider problems of mathematical physics by Roger Penrose,

who had been his fellow Ph.D. student at Cambridge (in those years both did

research in algebraic geometry and for a certain period of time both had Hodge

18As quoted in N. Hitchin, “Geometria a Oxford: 1960–1990”, cit., p. 717.
19Witten’s ideas would be developed by, among others, L. Alvarez-Gaumé, E. Getzler, N. Berline,

M. Vergne and J. P. Bismut. The expert reader can consult N. Berline, E. Getzler and M. Vergne,

Heat Kernels and Dirac Operators, Springer-Verlag, Berlin, 1992.
20M. Raussen and C. Skau, “Interview with Michael Atiyah and Isadore Singer”, Notices of the
American Mathematical Society, 52 (2005), pp. 223–231.
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as supervisor) and in 1973 became Rouse Ball Professor of Mathematics at Oxford.

The two had long discussions about twistor theory – a powerful instrument for

studying some equations in mathematical physics invented by Penrose and, at the

time, thought incomprehensible by many (Freeman Dyson, for example, had said,

“Twistors are a mystery”). Atiyah had no difficulty understanding twistor geome-

try, since this was based on Klein’s classic correspondence for straight lines in the

complex projective space P3, and he explained to Penrose how to use techniques of

sheaf cohomology for computing some complicated contour integrals.21 Together

with Richard Ward, one of Penrose’s Ph.D. students, he sought to the interpret self-

dual Yang–Mills equations22 in terms of twistors: in a joint article of 1977, Atiyah

and Ward defined a correspondence – today called Atiyah–Ward correspondence –

between instantons on the four-dimensional sphere and certain holomorphic bun-

dles on P3.

In that same year Singer was also in Oxford on sabbatical, and helped turn

Atiyah’s interests in the direction of Yang–Mills equations. The fundamental article

“Self-duality in four-dimensional Riemannian geometry”23 by Atiyah, Nigel

Hitchin and Singer, besides developing in detail twistor theory in the context of

Riemannian geometry, introduced the instruments essential for studying the moduli

space of Yang–Mills instantons (the dimension of this space is computed by

applying an appropriate version of the index theorem). Still in 1977, Atiyah and

Hitchin tackled the problem of describing all of the instantons on the S4 sphere in

terms of linear data, using some objects (monads) introduced in algebraic geometry

by Barth and Horrocks to study holomorphic bundles on complex projective spaces.

As Hitchin remembers it:

The pieces of the jigsaw were finally assembled by Atiyah and the writer before going off to

have lunch at St. Catherine’s College on November 22 1977. On our return to the

Mathematical Institute we found a letter from Y. Manin giving essentially the same

construction with V. G. Drinfel´d. A joint paper was published and the method became

known as the ADHM construction of instantons.24

21See M. F. Atiyah, “Papers on gauge theories”, in Collected Works, vol. 5, Oxford University

Press, New York, 1988, p. 1.
22The Yang–Mills theory is a gauge theory, whose Lagrangian is written in terms of the curvature

of a principle bundle of structural group G; the Euler–Lagrange equations of the corresponding

action functional are the Yang–Mills equations. If the base manifold is the Minkowski space

and G¼(U)1, then the Yang–Mills equations are simply Maxwell’s equations. In the case where

G¼SU(2)xU(1), the Yang–Mills equations are classic (that is, not quantum) field equations of

Glashow–Weinberg–Salam’s electroweak theory. In mathematical physics, the Yang–Mills theory

is studied on a generic Riemannian manifold of dimension 4 (therefore not in Lorentzian

signature). The Yang–Mills equations are not linear; the self-dual or anti-self-dual Yang–Mills

equations are a linearization of them, whose solutions are called instantons or anti-instantons

(which correspond to the absolute minima of the action functional).
23Proceedings of the Royal Society of London, series A, 362 (1978), pp. 425–461.
24N. Hitchin, “Geometria a Oxford: 1960–1990”, cit., p. 723. On the ADHM construction, see

M. F. Atiyah, Geometry of Yang–Mills fields, Lezioni Fermiane, Scuola Normale Superiore, Pisa,

1979.
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The first half of the 1980swas a period of an extraordinary flowering in geometry at

Oxford. Atiyah headed a group that included numerous mathematicians – including,

among others, Segal, Hitchin, George Wilson, and later, Simon Salamon and Dan

Quillen – and a large company of Ph.D. students, many of whom were destined to

become first-rank scientists, above all Simon Donaldson (first a student of Hitchin,

and later of Atiyah). The group met each Monday afternoon at 3 o’clock for the

seminar on “geometry and analysis” organized by Atiyah: the lectures of famous

mathematicians from the world over alternated with those of Atiyah himself,

“which were invariably virtuoso performances”.25 The research topics – above

all those carried out by the Ph.D. students – were predominantly determined by

the results obtained by Atiyah in the area of geometry of gauge theories:

besides the articles already mentioned, at least two others were of fundamental

importance. Atiyah’s influential paper with Bott concerning Yang–Mills equations

over a Riemann surface26 – “extraordinarily wide-ranging and many-faceted”27

– introduces a large number of innovative ideas (for example, the interpretation of

the moduli space as a symplectic quotient through the construction of a “moment

map” in an infinite-dimensional setting). In Atiyah’s article in collaboration with

John D. Jones, which studies the topology of the moduli spaces of instantons, is

instead stated the famous conjecture that bears the name of both authors.28 In this

extremely stimulating environment – in which “technical specialisation, as an

algebraic geometer, differential geometer, topologist or whatever, was not parti-

cularly encouraged” and “the great thing was to explore the interaction of these

different areas”29 – Simon Donaldson obtained, using the ideas and methods of

the Yang–Mills theory, the spectacular results on the geometry of the four-

dimensional differentiable manifolds which earned him the Fields Medal in 1986.

What was gradually outlined, at least in regard to its basic characteristics, was

the scheme that would reveal deep and unexpected connections between geometry

and physics. The interaction between the two disciplines brings into play, on one

side, the quantum aspects of field theories, and on the other, the global topological

properties of geometric objects. An example of the effectiveness of this perspective

25S. K. Donaldson, “Geometry in Oxford c. 1980–1985”, Asian Journal of Mathematics 3 (1999),
pp. xliii–xlviii. We have also drawn from this article information regarding the principal lines of

research in geometry at Oxford in those years.
26M. F. Atiyah and R. Bott, “The Yang–Mills equations over Riemann surfaces”, Philosophical
Transactions of the Royal Society of London, series A, 308 (1982), pp. 523–615.
27S. K. Donaldson, “Geometry in Oxford c. 1980–1985”, cit., p. xliv.
28M. F. Atiyah and J. D. S. Jones, “Topological aspects of Yang–Mills theory”, Communications
in Mathematical Physics 61 (1978) 97–118. The Atiyah–Jones conjecture asserts that, given a

principal SU(2) bundle over a 4-manifold X, the inclusion of the moduli space of framed

instantons of charge k into the space of all gauge equivalence classes of connections of the same

charge induces an isomorphism in homotopy and homology through a range that grows with k. The
conjecture was proven for S4 (by Boyer, Hurtubise, Milgram and Mann in 1993) and for various

other classes of 4-manifolds, but not in its generality.
29S. K. Donaldson, “Geometry in Oxford c. 1980–1985”, cit., p. xliv.
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is given by the proof of the Morse inequalities obtained by Witten in 1982, making

use of ideas drawn from supersymmetric field theories.

In effect, quantum field theory provides new and powerful instruments for

investigating the geometry of manifolds in dimensions 2, 3 and 4. The differentiable

invariants of 4-manifolds defined by Donaldson in 1988, and Andreas Floer’s

theory for manifolds of three dimensions, are interpreted by Witten in a unified

framework: the Donaldson–Floer theory can be described as a topological quantum

field theory (TQFT) in 3+1 dimensions. Another case that is just as important is

given by the invariants of knots discovered by Vaughan Jones in 1987.30 “These are

related to physics in various ways but the most fundamental is due to Witten who

[shows] that the Jones invariants have a natural interpretation in terms of a

topological quantum field theory in 2+1 dimensions”.31 Atiyah played a prominent

role in these developments: he not only obtained important results (for example, he

defined an axiomatics for TQFTs that takes up and elaborates on Graeme Segal’s

work), but he also spared no effort to spread the new ideas – especially those of

Witten – contributing to their acceptance by the mathematical community, initially

inclined to consider them hard and unorthodox.

Conclusion

The interaction between mathematics and physics has been one of the principal

driving forces of mathematics in the past 30 years: from gauge theories to string

theories, from supersymmetry to the theory of integrable systems. Atiyah poured all

of his scientific authority, his inexhaustible energy and his contagious enthusiasm

into promoting this interaction. His enormous influence on the international mathe-

matical community goes beyond his scientific work: he has created about him –

tirelessly discussing with mathematicians and physicists, persisting in his search for

“the deepest reasons” that underlie theorems – a movement of ideas that has

strongly directed the research of the last three decades; he has had dozens of Ph.

D. students, some of whom have become top level mathematicians; instantly seeing

their originality and significance, he has increased the prestige of the results of

Andreas Floer, Vaughan Jones, Edward Witten and several others; and he has

disseminated his own conception of mathematics in hundreds of lectures.

In his speech on the conferment of the Feltrinelli Prize of the Accademia dei

Lincei in 1981, Atiyah thus summed up his own course of research and his personal

vision of mathematics as a “social activity”:

30Vaughan Jones and Witten were awarded the Fields Medal in 1990. Andreas Floer, to whom are

owing important results in topology and in symplectic geometry (including the definition of the so-

called Floer homology and the proof, in a special case, of the Arnol’d conjecture on fixed points of

a symplectomorphism), tragically ended his own life in 1991 at 45.
31M. F. Atiyah, The geometry and physics of knots, Lezioni Lincee, Cambridge University Press,

Cambridge, 1990, p. 2.
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[. . .] my mathematical interests have gradually shifted from field to field, starting with

algebraic geometry and ending up with theoretical physics. On the other hand the change

was never a deliberate or discontinuous one. It was simply that the problems I studied

naturally led me in new directions, frequently into quite foreign territory. Moreover the link

between the different areas was an organic one, so that I could not discard the old ideas and

techniques when moving into a new field – they came with me. [. . .] most of my work has

been carried out in close and extended collaboration with mathematical colleagues. I find

this the most congenial and stimulating way of carrying on research. The hard abstruseness

of mathematics is enlivened and mollified by human contact. In addition the very diversity

of the fields in which I have engaged has made it essential to work with others. I have

indeed been fortunate in having had so many excellent mathematicians as my friends and

collaborators.32

32M. F. Atiyah, “Speech on Conferment of Feltrinelli Prize”, in Collected Works, vol. 1, Oxford
University Press, New York, 1988, pp. 315–316.
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Vladimir Igorevich Arnold

Universal Mathematician

Marco Pedroni

The list of fields of mathematics in which Vladimir Igorevich Arnold (born in 1937

in Odessa, passed away in 2010 in Paris) made fundamental contributions is very

long. If, without any attempt at being exhaustive, we limit ourselves to geometry

and mathematical physics, we have algebraic geometry (real and complex), sym-

plectic topology and the geometry of contact varieties on the one hand, and on the

other hydrodynamics, classical mechanics, celestial mechanics, integrable systems

and the theory of dynamical systems. His name is tied to many key concepts in

twentieth-century mathematics and mechanics, such as the Kolmogorov–Arnold–-

Moser (KAM) theory, Arnold diffusion, Arnold-stability (or A-stability, in hydro-

dynamics), and the characteristic classes of Arnold–Maslov, to name only a few.

This belies what he himself calls “Arnold’s law”, according to which only a very

small number of discoveries are attributed to the right person.

The contribution which made him famous throughout the world at only 20-years

old was the solution of Hilbert’s 13th problem, which regards whether it is possible

or not to solve algebraic seventh-degree equations using functions with two argu-

ments. To be more precise, the question was the following: can the real function

z(a,b,c) defined by the equation z7 þ az3 þ bz2 þ cz þ 1 ¼ 0 be represented as a

composition of continuous functions of two variables? In his doctoral thesis, written

with Kolmogorov as his advisor, Arnold gave a positive answer to this question,

proving that every continuous function with three variables can be constructed

starting with functions of only two variables.

Following this he dedicated himself to dynamical systems, making a determinant

contribution to the creation of what would come to be famous as KAM theory.

In this case the starting point was the study of integrable systems, which are

Hamiltonian systems whose behaviour is very regular: given suitable hypotheses,

the motion of this kind of system is quasi-periodic, that is, it is composed of uniform

rotations. From the point of view of geometry, the system’s phase space (2n-
dimensional, where n is the number of degrees of freedom) turns out to be the

union of n-dimensional tori – called invariant tori – and the motion of the system

takes place uniformly on these tori. Many systems of practical interest, above all

that of the solar system, can be seen as mere perturbations of an integral system.

C. Bartocci et al. (eds.), Mathematical Lives,
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This is why Poincarè considered the study of the behaviour of a perturbed integra-

ble system to be the fundamental problem in dynamics. In 1954 Kolmogorov

announced a surprising result: if the perturbation is small and the initial integrable

system is not degenerate, then the majority of the invariant tori remain as such and

the motion on them is quasi-periodic. Arnold not only provided a complete and

rigorous exposition of the proof of Kolmogorov’s theorem; he also generalised it

to a broad class of degenerate systems and presented numerous applications to

classical problems of dynamics.

Another field in which Arnold’s genius can be seen clearly is that of hydrody-

namics. Taking advantage of the analogy with the inertial motions of a rigid body

with a fixed point, he proved that Euler’s equations (which describe the motion of

an ideal fluid) can be interpreted as the geodesic equations – with respect to a metric

defined by kinetic energy – of the group of diffeomorphisms preserved by the

volumes. This provides an explanation of why the motions of atmospheric masses

are instable and thus why it is so difficult to make reliable long-range weather

forecasts: the curvatures of these groups are negative, and thus two geodesics that

are initially close to each other rapidly move away from each other. By using

methods of topology, Arnold then classified the stationary motions of a fluid (in the

plane and in the space) and found the sufficient conditions for their stability.

Arnold also shed light on the symplectic nature of a theory conjectured by

Poincaré and proved by Birkhoff. This says that a diffeomorphism of a circular

corona having the property of preserving the areas and rotating the two borders in
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opposite directions, has at least two fixed points. Arnold hypothesised that this is a

particular case of the fact that a symplectomorphism homologous to the identity has

a number of fixed points that is greater than or equal to the sum of Betti numbers, a

topological invariant of the manifold on which the symplectormorphism acts. This

result was then proved and marked the birth of symplectic topology, as well as

becoming the starting point leading to the discovery of Floer homologies and

quantum cohomologies. We conclude this brief recap of his results with mention

of the fact that Arnold, driving by problems of quantum optics, classified the

(symplectic) singularities of functions with n real variables, showing that these

are related to the Dynkin diagrams that also appear in the classification of simple

Lie algebras.

All across the globe, many university students of mathematics and physics have

had the good fortune of using Arnold’s books, especially Geometrical Methods in
the Theory of Ordinary Differential Equations and Mathematical Methods of
Classical Mechanics. Arnold favoured a presentation in which the ideas, examples,

motivations (often taken from physics) and geometric intuitions play a leading role,

more than that of a rigorous treatise that is cold and arid. His article “On teaching

mathematics” begins with the words, “Mathematics is a part of physics. Physics is an

experimental science, a part of natural science. Mathematics is the part of physics

where experiments are cheap”. This is why he is perennially opposed to the

Bourbakian concept of mathematics teaching and strenuously defends the point

of view of nineteenth-century mathematics (it appears to be thanks to Arnold that

the works of Goursat and Hermite, which were supposed to be eliminated from the

library of one French university, were preserved).

Arnold’s research has been honoured with many international prizes (including

the Lenin Prize in 1965, with Andrey Kolmogorov, the Crafoord Prize in 1982 with

Louis Nirenberg, and the Wolf Prize in Mathematics in 2001). He was a member of

numerous scientific academies (including the Accademia dei Lincei, since 1988).

He was vice-president of the International Mathematical Union from 1995 to 1998

and has received honorary degrees from universities the world over, including

one from the University of Bologna in 1991. He has had an enormous number of

students, many of which have gone on to become first-class mathematicians

and have contributed to the spread of his ideas and his unifying approach to

mathematics (and physics), his problems, and his teachings.
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Enrico Bombieri

The Talent for Mathematics

Enrico Bombieri was born in Milan in 1940. His precocious talent for mathematics

was supported by his family, and while still a boy he came into contact with some

eminent mathematical scholars. One of these was Giovanni Ricci, who worked

in analysis and number theory; his influence would be a determining factor in

Bombieri’s development. During these years Bombieri laid the foundations for his

vast and in-depth knowledge of classical mathematics, which would be one of his

distinguishing traits. He published his first work, concerning the solution to a

Diophantine equation, in 1957, while still in high school; when he enrolled in

mathematics at the University of Milan he already had the maturity of a profes-

sional mathematician. During his years at university, his name began to circulate in

international mathematics circles; before he graduated, under Ricci’s supervision,

he produced numerous results in various areas in number theory and complex

analysis, some of which were of significant importance and made quite an impact

on the mathematical community. One example dealt with the growth of the

remainder term in the elementary proof of the prime number theorem. During

this period Bombieri visited Trinity College in Cambridge to study with Harold

Davenport, a distinguished mathematician and excellent supervisor, another key

figure in his scientific formation.

In 1965 Bombieri published a fundamental result on the distribution of primes in

arithmetic progressions, which can be used in applications in place of Riemann’s

hypothesis. The work was based on a new development of the large sieve intro-

duced by Yuri V. Linnik in 1941, and signalled a turning point in analytical number

theory. In that same year, Bombieri was given the chair in mathematical analysis,

and after a brief stint at the University of Cagliari, was called to the University

of Pisa. This was a very fruitful period for his scientific work: in addition to his

profound contributions in number theory, there were others regarding univalent

functions and Bieberbach’s conjecture, partial differential equations, minimal sur-

faces (in particular, the solution to Bernstein’s problem for higher dimensions),

the algebraic values of meromorphic functions of several variables, and the
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classification of algebraic surfaces. He also collaborated with a number of leading

mathematics such as Harold Davenport, Peter Swinnerton-Dyer, Ennio De Giorgi,

Aldo Andreotti and David Mumford. In 1973 he was called to the Scuola Normale

Superiore in Pisa, and in 1974, first and so far unique Italian mathematician, he was

awarded the Fields Medal. In 1980 he transferred to the United States as a

permanent member of Princeton’s Institute for Advanced Study, where he works

today. That same year he won the Balzan Prize. In 2000 he was given the honoris

causa doctor’s degree from the University of Pisa.

Bombieri still carries on his incessant research activities. On the one hand, he has

broadened his spectrum to include important contributions in Diophantine approxi-

mation, finite group theory, and Diophantine geometry; on the other, he goes

back, especially in collaboration with Henryk Iwaniec, to classic themes in analyti-

cal number theory such as the distribution of primes, the Riemann zeta function,

and the theory of L-functions. In 1996 he was elected a member of the National

Academy of Sciences. In 2000, the centennial of Hilbert’s famous 23 problems,

presented at the International Congress of Mathematicians in Paris in 1900, the

Clay Mathematics Institute established a prize of a million dollars a piece for

solutions to the seven “Millennium Prize Problems”. Bombieri was named to

make the official presentation of Riemann’s hypothesis, which is probably the
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most famous and important open problem in contemporary pure mathematics.1

In 2006 he won the International Pythagoras Prize for mathematical research, which

was instituted by the Municipality of Crotone only in 2004 but whose pedigree is

impeccable (the prize was awarded to Andrew Wiles in 2004, Edward Witten in

2005).

Bombieri’s mathematical talent has been aptly described in the official presenta-

tions of some of the honours he has received. On the occasions of the presentation to

Bombieri of the Fields Medal, Kamaravolu Chandrasekharan wrote,

I hope I have said enough to show that Bombieri’s versatility and strength have combined

to create many original patterns of ideas which are both rich and inspiring. . . . To him

mathematics is a private garden; may it bring forth many new blooms.2

The official text of his nomination to the National Academy of Sciences says,

Bombieri is one of the world’s most versatile and distinguished mathematicians. He has

significantly influenced number theory, algebraic geometry, partial differential equations,

several complex variables, and the theory of finite groups. His remarkable technical

strength is complemented by an unerring instinct for the crucial problems in key areas of

mathematics.3

To this it must be added that Bombieri also had considerable talent as a

presenter; his lectures and writings are always fascinating and offer a knowing

mixture of clarity and synthesis. During an interview he said:

To become a mathematician was for me like to follow a calling full of satisfactions, that

never tires you. It is always a great joy to achieve the understanding of a new theory and

imagine the beauty and usefulness it can give.

Finally, Bombieri has many other interests besides mathematics, from poetry to

cuisine, but above all painting, which he considers his second profession.

In his introduction to the Italian edition of André Weil’s Theory of Numbers
(Teoria dei numeri, Einaudi, Torino, 1993) Enrico Bombieri wrote:

Mathematics is an art that contains its own justification and foundation, in the same way

that Michelangelo’s sculptures live inside the stone until they are liberated by the chisel.

This sense of beauty, which is connected to an extraordinary virtuosity, led

Bombieri to the solution of many of the key problems in today’s mathematics.

1See The Millennium Prize Problems, J. Carlson, A. Jaffe, A. Wiles, eds., Clay Mathematics

Institute and the American Mathematical Society.
2K. Chandrasekharan, The work of Enrico Bombieri, Proceedings of the International Congress of
Mathematicians, Vancouver 1974 1 (Montreal, Que., 1975), 9–10.
3Cf. The National Academy of Sciences website: http://www.nasonline.org.
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Martin Gardner

The Mathematical Jester

Ennio Peres

Martin Gardner, the world’s most authoritative and prolific author of works on

mathematical recreation of all time, was born on 21 October 1914 in Tulsa,

Oklahoma and died on 22 May 2010. From 1956 to 1981 he was editor of a column

in Scientific American dedicated to mathematical puzzles and games which soon

had a fans in every corner of the globe. He has also published hundreds of articles in

various magazines and written more than 70 books dealing with topics ranging from

science to philosophy, from mathematics to literature.

One of Gardner’s main characteristics is that, with a gamer’s lightness of touch,

he is always able to enter into even the most complex branches of mathematics,

starting from points that are curious and intriguing. Contrary to what you might

think, however, his formal training was not in the sciences. His only degree is in

philosophy, which he received from the University of Chicago in 1936. He is

completely self-taught in mathematics. His desire to know grew out of his lifelong

passion for magic tricks, which started when he was just a boy, and an innate

curiosity in transcendent themes. His first book, Fads and Fallacies in the Name of
Science, published in 1952, examines and dismantles more than 50 kinds of

pseudoscientific beliefs concerning the paranormal.

Also in 1952, Gardner began to collaborate with the Humpty Dumpty’s Maga-
zine, a magazine for children, for which, in addition to writing imaginative stories,

he also devised original games with paper, such as that shown below.

Figure 1 shows 11 rabbits. If, however, the two rectangles marked A and B

switch places, one of the rabbits mysteriously disappears, transforming into an egg,

as shown in Fig. 2.

His experience with Humpty Dumpty, which lasted 8 years, honed his skills in

writing fanciful narratives, and even more importantly, it accustomed him to

writing in a style that was clear, simple and direct.

A few years later, in 1956, just before he began collaborating with Scientific
American, Gardner published Mathematics, Magic and Mystery, an original work

that gathers and classifies the most interesting magic tricks on the basis of a

mathematical way of thinking, constituting a kind of manifesto of “Mathemagic”,

a term coined in 1951 by the magician Royal V. Heath.

C. Bartocci et al. (eds.), Mathematical Lives,
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One of the most fascinating problems popularised by Gardner in the course of his

long career is the following:

Jones, a gambler, puts three cards face down on the table. One of the cards is an ace; the two

others are face cards. You place a finger on one of the cards, betting that it is an ace.

Obviously, the probability that it actually is an ace is equal to 1 out of 3. Jones now secretly

peeks at the three cards. Given that there is only one ace, at least one of the cards you didn’t

choose has to be a face card. Jones turns it over and shows it to you. At this point, what is

the probability that you’ve got your finger on the ace?

Solution

Many think that at this point the probability has risen from 1 out of 3 to 1 out of 2.

After all, there are only two cards face down, and one has to be the ace. But actually,

the probability remains 1 out of 3. The probability that you have not picked the ace

remains 2 out of 3, even if Jones seems to have eliminated part of the uncertainty by

showing you that one of the two remaining cards was not the ace. However, the

probability that the other of the two cards remaining is the ace is still 2 out of 3,

because the choice was made before. If Jones were now to give you the chance to

change your bet, you’d do well to accept (as long as you don’t have any aces up

your sleeve!).

Martin Gardner presented this problem for the first time in Scientific American in
October 1959, under a different form (instead of three cards, there were three

prisoners, one of who had received a pardon). In 1990 Marilyn vos Savant, author

of a popular column in Parade magazine, proposed yet another version involving

three doors, behind which were hidden a car and two goats. She gave the correct

answer, but she received thousands of letters from irate readers (including many

sent by mathematics teachers!) accusing her of not knowing anything about proba-

bility theory. The case ended up on the front page of the New York Times, and in a

short time the problem became famous all over the world. It finally came to be

considered the most intriguing probabilistic paradox of the second millennium.
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Le Corbusier’s Door of Miracles

Mathematics is the majestic structure conceived by man to grant him comprehen-

sion of the universe. It holds both the absolute and the infinite, the understandable

and the forever elusive. It has walls before which one may pace up and down

without result; sometimes there is a door: one opens it – enters – one is in another

realm, the realm of the gods, the room which holds the key to the great systems.

These door are the doors of the miracles. Having gone through one, man is no

longer the operative force, but rather it is his contact with the universe. In front of

him unfolds and spreads out the fabulous fabric of numbers without end. He is in the

country of numbers. He may be a modest man and yet have entered just the same.

Let him remain, entranced by so much dazzling, all-pervading light.

The shock of this light is difficult to bear. The young, who bring us the support of

their enthusiasm and that unawareness of responsibility which is the strength and

weakness of their age, envelop us – if we do not resist it – in the mists of their

uncertainties. In the matter with which we are dealing here, it is necessary to

stand firm and know what we are seeking: a precision instrument to be used for

the choice of measures. Once the compasses are in our hands, ploughing the furrow

of numbers, the roads begin to ramify, spread out in all directions, flourish and

multiply . . . and carry us away, veering from the aim we have set ourselves: the

numbers are at play! . . . Architecture is not a synchronic phenomenon but a

successive one, made up of pictures adding themselves one to the other, following

each other in time and space, like music.

“Music is a secret mathematical exercise, and he who engages in it is unaware

that he is manipulating numbers”. (Leibniz.) . . .music rules all things, it dominates;

or, more precisely, harmony does that. Harmony reigning over all things, regulating

all the things of our lives, is the spontaneous, indefatigable and tenacious quest of

man animated by a single force: the sense of the divine, and pursuing one aim: to

make a paradise on earth. In Oriental civilizations, “paradise” meant a garden: a

garden beneath the rays of the sun or in the shade, shimmering with the most

beautiful of flowers, glowing with a wealth of green. Man can only think and act in

terms of man (the measures which serve his body) and integrate himself in the

universe (a rhythm or rhythms which are the breathing of the world).

C. Bartocci et al. (eds.), Mathematical Lives,
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Extracted from: Le Corbusier, The Modulor: A Harmonious Measure to the
Human Scale Universally applicable to Architecture and Mechanics, translated
from the French into English by Peter de Francia and Anna Bostock, Birkh€auser
Publishers, Basel, 2000, pp. 71–74. Reproduced by kind permission of Birkh€auser
Publishers.
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F. William Lawvere

The Unity of Mathematics

Renato Betti

The first lesson learned when approaching Bill Lawvere’s work and intense activity

is that in mathematics there are no facts that are specific, unique and meaningful for

only a few special cases. The traditional dividing lines between geometry, analysis,

mechanics, and so forth are themselves artificial, and while their conventional

limits are easily (for him) crossed, their interconnections should always be borne

in mind.

The search for unity, of a conceptual context that would render the fundamental

notions clear and explicit – of mathematics, but of physics as well, especially

continuum mechanics – was a distinguishing characteristic of his scientific work

from the very beginning, and is still today a strong component of it.

This tendency grows out of careful observation of the facts – not only those of

mathematics – and their organisation according to a precise “guideline” for “under-

standing, learning, and developing mathematics”, as he put it. A conceptual guide

whose presence is easily intuited, and whose lines are often made clearly explicit by

Lawvere in his work and in his discussions.

What are the foundations of mathematics? Right away Lawvere’s thinking took

an original course with respect to the traditional logical conception which, accord-

ing to him, tends in some way to obscure the aspiration to find a conceptual guide

for our actions:

Foundations will mean here the study of what is universal in mathematics. Thus Founda-

tions in this sense cannot be identified with any “starting-point” or “justification” for

mathematics, though partial results in these directions may be among its fruits. But

among the other fruits of Foundations so defined would presumably be guide-lines for

passing from one branch of mathematics to another and for gauging to some extent which

directions of research are likely to be relevant.1

1F. William Lawvere, “Adjointness in Foundations”, Dialectica, no. 23 (1969), pp. 281–296.

C. Bartocci et al. (eds.), Mathematical Lives,
DOI 10.1007/978-3-642-13606-1_33, # Springer-Verlag Berlin Heidelberg 2011

223



Lawvere’s conceptual guide is the rejection of the ideological perspective

according to which theory is more fundamental than practice. Declaring his own

debt to Hegel’s philosophy and Engel’s considerations, Lawvere calls this guide the
logic of mathematics, distinct from and comprising mathematical logic: it is how
our thinking develops, like the science of the shape of space and quantitative

relations, as need arises. Mathematical work is thus linked to the investigation of

the general laws of thinking, applied to the study of particular subjects.

In this vast program, the important role of mathematics and its logic as unifiers

are acknowledged in category theory, a new subject, created in 1945 by S. Eilenberg

and S. Mac Lane to solve concrete problems in analysis and algebraic topology – to

unify and simplify many phenomena that arose in the 1930s – and later developed

above all by A. Grothendieck and his school in the 1950s and 1960s, with a view to

providing the foundations of contemporary algebraic geometry.

F. William Lawvere was born in Indiana in 1937. His training developed along

lines that were in some way “exemplary”. He began in experimental physics, but

went from that to theoretical physics because he was looking for a guide to direct

his practice. The next step was deciding to work actively with mathematics: better,

mathematics connected to physics – more specifically, to rational mechanics –

which at that time at the University of Indiana was taught by Clifford Truesdell.

He finally arrived to the discovery of category theory, which had not yet been put to

the test but which promised to explain mechanics, analysis, geometry, and even

how these were related. This was a subject that would render explicit the philo-

sophical approach which it, like all subjects, contained: at the heart of the investi-

gation lay the relationship between objects.
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Lawvere had completed his mathematical training in 1963 at Columbia Univer-

sity in New York City under the guidance of a mathematician of renown, Samuel

Eilenberg. His doctoral thesis on algebraic theories2 soon became a point of

reference and is by now considered a classic; its fortieth anniversary was celebrated

with a conference which included the participation of the major specialists in

category theory, logic, foundations of mathematics, as well as experts in the

philosophy of science, etc.3

In Lawvere’s thesis, universal algebra was freed from its artificial dependence on

presentations with respect to particular operations, as had been usual with the subject

up to that time. A theory is something more objective than one of its possible

presentations.

The central idea is that an algebraic (or equational) theory is a category with

certain properties (finite products) and that it is useful to describe the models by

means of the functors in the category of sets that have those properties. Thus the

classic algebraic constructions are expressed in universal terms by means of the

properties of adjoint functors.

But this is not just an ad hoc description within a specific area: specificity is not

part of Lawvere’s perspective. As usually occurs in his work, he opens the way for a

unifying comprehension of other areas, of apparently different points of view, of

paths that are entirely new and original. These too – as Lawvere has said quite

clearly – are fruits of the search for what is fundamental in mathematics.

In the 1960s it was discovered that there are theories in other categories as well

that are suited to study in these universal terms: for example, that of first-order (or

elementary) theory, based on Lawvere’s observation that the existential quantifica-

tion and universal quantification can be described with adjoint functors respectively

to the left and to the right of the substitution operator. Further, it makes sense to

consider the models outside of the category of sets as well, and this vast unification

leads to ever greater comprehension: thus is born categorical logic, in which the

main logical theories are carried over to the context of mathematics where they are

subject to manipulation and transformation according to the rules of algebra.4 The

entire apparatus of logic – from syntax as well as from semantics – can be

conceived of and restated in categorical terms.

This also makes it possible to interpret theories in worlds other than those of sets,

developed in parallel because of the need to understand and formalise the intuitive

notion of a “continuously variable set”, to use the brilliant metaphor coined by

2The essential points of this thesis were published in the Proceedings of the National Academy of
Sciences (no. 50, 1963, pp. 869–872) with the title “Functorial Semantics of Algebraic Theories”.
3“Ramifications in Categories”, Florence, 18–22 November 2003.
4See for example, “Some Algebraic Problems in the Context of Functorial Semantics of Algebraic

Theories”, Lecture Notes no. 61, 1968, pp. 41–61, Springer-Verlag.
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Lawvere himself. This led to the birth of elementary topoi at the end of the 1960s,

fruit of Lawvere’s collaboration with the topologist Myles Tierney:

. . . experience with sheaves, permutation representations, algebraic spaces, etc., shows that

a “set theory” for geometry should apply not only to abstract sets divorced from time, space,

ring of definition, etc., but also to more general sets which do in fact develop along such

parameters.5

The inspiration for this came from the ideas and work that Grothendieck and his

school were producing in those same years in the context of algebraic geometry,

with important results regarding complex geometry and sheaf theory: today a

“Grothendieck topos”, a category of sheaves for a Grothendieck topology, is a

new area which provides a unifying formulation for many situations that occur in

algebraic geometry.

However, Lawvere’s work soon morphed into the search for what can be defined

in elementary terms, independent of any set theory, resulting in an unexpected

unification of some aspects of algebraic geometry and corresponding aspects of

geometric logic6: the idea of elementary topos, like that of Grothendieck’s topos

more generally, reflects precisely the possibility of freeing itself from dependence

on sets. This can be traced back to earlier works of Lawvere, for example in an

“elementary” characterisation of the category of sets of 1964, and to an analogous

description of the category of categories.7

This formal notion of “variable set”, besides providing an elementary axiomatic

of the category of sets, also achieves a conceptual interaction between, and often a

genuine unification of, important theories developed independently of one another

in those years: Grothendieck’s topos, Robinson’s non-standard analysis, Kripke

semantics (which would later come to be known as Kripke–Joyal semantics, or

topos semantics). Cohen’s independence theorems would be proven again in set

theory, the theory of metric space would be united to the logic of higher-order

predicates, the project of rediscovering and rewriting a large part of mathematics in

the context of variable sets would begin.

Lawvere also refined and refounded (or founded ex novo) other significant fields

in mathematics as well. Here are just some examples: in 1967 he showed that some

categories with a particular “infinitesimal” object define contexts in which it is

possible to study the models of differential geometry and continuum mechanics in a

flexible way. This appeared to be an inconsequential observation, and so it

remained for a number of years, until its importance was finally understood (in

the 1980s). The idea was developed until it finally gave rise to the important area of

research that is known today as “synthetic differential geometry”, with applications

5F. William Lawvere, “Quantifiers and Sheaves”, Actes, Congrès international des mathemati-
ciens, Nice 1970, Gauthier-Villars (1971), vol. 1, pp. 329–334.
6F. William Lawvere, “Continuously Variable Sets: Algebraic Geometry¼Geometric Logic”,

Proceedings of the Logic Colloquium (Bristol 1973), North Holland, 1975, pp. 135–157.
7“The Category of Categories as a Foundation for Mathematics”, La Jolla Conference on Categor-

ical Algebra (1966), pp. 1–20.
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in the calculus of variations, differential equations, and the calculation of singula-

rities in the applications to varieties. There’s more: some of the concepts that are

fundamental in mathematics are defined in formal terms, like quantity categories
and space categories, which are studied by means of intensive quantities and

extensive quantities. Visualising numerous constructions in terms of “unity or

identity of opposites”, a notion expressed by means of adjunct functors, makes it

possible to see that not only is the development of mathematics not independent of a

general way of thinking and behaving, but in fact cannot be independent of it. What

was important was understanding the particular role played by special objects in

special categories: the object of truth values in elementary topoi, which make it

possible to define the relations and the operations that are partially defined; the

object of natural numbers in the study of the operations of recursion and induction,
whose category characterisation would become known by the name Peano–Lawvere
axiomatisation; the differential object in the category of smooth spaces, and so on.

The search for unity is an important strategy for complex systems, to be pursued

for not only in the development of applications, but also in the study of mathematics.

In this sense, for Lawvere, the study of the foundations of mathematics, is

intimately connected to problems of mathematics education and training. The

unification of mathematics is in large measure the result of collective work with

later additions of individual qualitative results. The concepts that are implicitly

present in collective thought can be revealed and made explicit in the course of

teaching, in their turn accelerating not only the process of learning but also the

process of research.

This idea lies behind the attention that Lawvere devotes to his students who are

grappling with subjects in advanced mathematics such as algebra, analysis and

geometry. Again the central theme is the unity of mathematics: tools useful for

understanding can make clear what it is that the subjects have in common, under-

standing how to extract the universal properties, and knowing how to make a

rigorous formal study evolve from these.

One of the characteristic traits of Lawvere’s explanations is a taste for examples

that are simple yet not banal, in which the fundamental ideas are put into action

without the noisy interference of what is non-essential; this is emblematic of his

refusal to buy into the tacit assumption that certain topics are “too advanced” or

“too complicated” to teach.

Two books capture pretty completely this attitude of Lawvere’s regarding the

freedom and sense of confidence in ultimate success that are acquired when

fundamental concepts are made explicit, no matter how complicated or advanced

they might appear to be.

Conceptual Mathematics: A first introduction to categories (Cambridge Univer-

sity Press, 1997), co-authored with Lawvere’s friend and colleague Steve Schanuel,

is the result of a series of courses taught to first-year students at the University of

Buffalo. The book assumes only a knowledge of high-school algebra and presents

numerous basic examples – for example, of directed graphs or dynamic systems –
for which are developed by means of both general considerations and applications.
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The aim is twofold: on one hand, to introduce fundamental notions to non-

mathematicians or to students facing the study of advanced topics for the first time;

on the other, to provide the basic elements of the theory of categories to researchers

in various fields, such as theoretical computer science, linguistics, logic, physics,

and so forth.

Sets for Mathematics, written in collaboration with Bob Rosebrugh, was pub-

lished in 2003 by Cambridge University Press. The idea is that set theory, seen as

algebra of functions, should be introduced and applied early as a unitary basis for

the study of advanced topics: starting with an intuitive description of the usual

phenomena in physics and mathematics, what is arrived at is a precise specification

of the nature of the category of relevant sets. Formal study proceeds from general

axioms relative to the universal properties, without however neglecting the distinc-

tive aspects of classic sets – the “constant” sets introduced by Cantor – through the

unfolding of a method that often sheds light on Lawvere’s explanation. The variable

sets used in geometry and analysis are therefore given the categorical models

appropriate to them.

Perhaps it is the capacity to produce theories, open new roads and unify –

capacities that are rare and precious in mathematicians of any epoch – joined to

the willingness to develop and present the simplest – and often for this reason the

most fundamental – examples, and to give serious consideration to even the facts

that are apparently the most elementary, that make Lawvere a very important

thinker in today’s mathematics. Perhaps it is his willingness to discuss and explain,

the circulation of his ideas that often takes place in ways that are direct and

personal, the friendship and geniality that he spreads along with mathematics,

that make him the fascinating character that he is.

His prophecies as well have to be taken seriously:

It is my belief that in the next decade and in the next century the technical advances forged

by category theorists will be of value to dialectical philosophy, lending precise form with

disputable mathematical models to ancient philosophical distinctions such as general vs.

particular, objective vs. subjective, being vs. becoming, space vs. quantity, equality vs.

difference, quantitative vs. qualitative etc. In turn the explicit attention by mathematicians

to such philosophical questions is necessary to achieve the goal of making mathematics

(and hence other sciences) more widely learnable and useable.8

Category Theory

The notions of category, functors and natural transformations appear for the first

time in 1945 in an article by Samuel Eilenberg (1913–1998) and Saunders Mac

Lane (1909–2005) entitled “General Theory of Natural Equivalences”. As the title

8F. William Lawvere, “Categories of Space and Quantity”, pp. 14–30 in: Structures in Mathemat-
ical Theories: Reports of the San Sebastian International Symposium, September, 25–29, 1990,
A. Dı́ez, J. Echeverrı́a, A. Ibarra (eds.), De Gruyter, 1992, p. 16.
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of this work indicates, the authors’ attention is mainly focussed on formalising the

notion of “natural transformation”, while the notion of “functor”, a term adopted

from Carnap’s logic, served to explicate the general processes in which transforma-

tions take place. In its turn, the notion of “category”, which redefines in mathemati-

cal terms the categories of the philosophy of Aristotle, Kant and Charles S. Pierce,

served as a support for functors. It was, then, a description of existing mathematical

phenomena, expressed at the required level of generality.

Thus it happened that for a couple of decades after 1945, the notion of category

appeared as a language that was particular useful for describing many results in

mathematics through the use of diagrams with arrows, particularly in algebraic

topology (in the wake of a famous book of 1952 by Eilenberg and Henri Cartan

regarding the fundamental questions of this subject) and homological algebra (in

the wake of another famous book, this time by Eilenberg and Steenrod, of 1956).

Further, as a consequence of the fact that many mathematicians began to use the

language of categories systematically, the conviction began to gain ground that

category theory had to be seen as a “third level of abstraction, the first two levels

being that of quantities and that of structures, and thus it came to embody a special

kind of structuralism of mathematical objects”.

But category theory is not only a language useful for describing various phe-

nomena, or a special mathematical structure. The crucial step forward was taken in

1957 when, in an article entitled “Sur quelques points d’algèbre homologique”,

Alexander Grothendieck incorporated the fundamental and formal aspects of

homological algebra in a special type of category – an Abelian category – showing

how it was possible to carry out the principal constructions and demonstrating the

corresponding results in this general set up. And, in consequence, particular cate-

gories of structures, the categories of sheaves over a generalised topological space,

can take the place of Abelian categories, in order to show that, for example, the

methods of homological algebra can be applied directly to algebraic geometry.

Other developments led to the consideration that the systematic presence of

categories in “mathematical practise” (according to the terminology used in a

fundamental text by Mac Lane) is due to the notion of “adjunct functors”, originally

expressed in terms of categories by Daniel Kan in 1956 (and published in 1958).

Thus the subject became increasingly an independent field of research and grew

rapidly, also in terms of applications. In addition to its original contexts, relative to

algebraic topology and homological algebra (following Lawvere’s thesis of 1964)

and to logic (again thanks to contributions by Lawvere and to Joachim Lambek’s

use of methods of category theory in proof theory).

This phase culminated, at the end of the 1960s, in the notion of “topos” on the

part of Grothendieck and his school. A topos is a category of sheaves of sets on a

generalised topological space: the later elementary characterisation on the part of

Lawvere and Myles Tierney (1972) led to “elementary topoi” and shed light on the

fact that the logical structure of these categories is so rich that it is possible to

develop a large part of mathematics in them, that is, it is possible to define

numerous structures internally, to carry out the necessary constructions, and to

prove the majority of their properties through the use of the internal logic. An
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“elementary topos” can be considered a “categorical theory of sets”, thus acquiring

immediately a foundational value.

After the 1980s, the theory underwent further developments and applications, in

relation to, for example, the birth of new systems of logic and to the semantics of

programming in theoretical computer science, or the use of “higher dimension”

categories (bicategories, tricategories, etc.) in the study of the so-called “quantum

groups” in theoretical physics. This is proof of the fact that category theory not only

makes it possible to conceptualise traditional fields in new ways, often going

beyond borders that had been established for a long time, but, constantly attentive

to the axiomatic method and algebraic kinds of structures, it also contributes to the

coherence, strengthening and stability of particular disciplines, revealing their

universal aspects and the overall conceptual context in which they are found.
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Andrew Wiles

Claudio Bartocci

Andrew Wiles, born in Cambridge in 1953, has been interested in number theory

since he was a child, and in particular, in Fermat’s Last Theorem.

Pierre de Fermat – born in Toulouse, a lawyer by profession, and a great

“mathematical dilettante” – making brief notes in the margins of his copy of

Arithmetica by Diophantus,1 notes that it is impossible to “decompose a cube into

two cubes, or a biquadrate into two biquadrates, nor in general to divide any power

above a square in two other powers of the same degree”. Expressed as a formula,

this means that the equation

xn þ yn ¼ zn

has no integer nontrivial solutions if the exponent n is greater than 2. Fermat wrote

that he had also “discovered a truly remarkable proof which this margin is too small
to contain”.z

In all likelyhood, Fermat – who had provided a proof for the case where n ¼ 4 –

fell into an error that derived from the deceptive application of the method of

infinite descent. The case where n ¼ 3 was solved by Euler in 1753; that where

n ¼ 5 by Dirichlet and Legendre in 1825; and that where n ¼ 7 by Lamé in 1837.

Kummer proved Fermat’s theorem for all regular primes.2

1Observations sur Diophante, published posthumously in 1670 (full text available on the web at

http://fr.wikisource.org/wiki/Œuvres_de_Fermat). For a life of Fermat, see M.S. Mahoney, The
mathematical Career of Pierre de Fermat, 1601-1665, Princeton University Press, Princeton, 1994
and G. Giorello and C. Sinigaglia, Fermat. I sogni di un magistrato all’origine della matematica
moderna, Le Scienze, Milano, 2001.
2See André Weil, Number Theory. An approach through History, Birkh€auser, Boston-Basel-
Stuttgart,1983 and M. Bertolini, L’ultimo teorema di Fermat in La Matematica. Volume secondo.
Problemi e teoremi, C. Bartocci and P. Odifreddi, eds., Einaudi, Torino, 2008, pp 313–334.
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After studying at Oxford, Wiles began work on his doctorate at Cambridge,

studying Iwasawa theory of elliptical curves under the supervision of John Coates.

Having completed his Ph.D., Wiles spent a period of time at the Sonderforschungs-
bereich Theoretisches Mathematik in Bonn before moving to Princeton’s Institute

for Advanced Study, where he was named professor in 1982.

Towards the mid-1980s, Frey and Ribet proved that Fermat’s last theorem is a

consequence of a statement known as the Shimura–Taniyama–Weil conjecture. In

1993, after some 7 years of uninterrupted work, Wiles was able to prove this

conjecture for a broad class of examples, including those necessary to prove

Fermat’s last theorem. He announced his result to a packed crowd of listeners at

a seminar in Cambridge, concluding by simply saying, “I will stop here”, in his

characteristic measured and unrhetorical style. Wiles’s reasoning, however,

contained a small flaw: in 1995, together with Richard Taylor, he finally obtained

the correct proof and brought to an end the conundrum posed by Fermat.3

3Cf. A. Wiles, “Modular Elliptic Curves and Fermat’s Last Theorem”, Annals of Mathematics, 141
(1995), pp. 443–551; A. Wiles and R. Taylor, “Ring-theoretic properties of Hecke Algebras”,

Annals of Mathematics, 141 (1995), pp. 552–572.
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Wiles has been honoured with various prestigious international prizes and

recognitions, including the Wolf Prize in 1996. Today he is the Eugene Higgins

Professor of Mathematics at Princeton University.

Interview with Andrew Wiles (October 2004)

Claudio Bartocci

As tradition has it, Euclid once said that “there is no royal road to geometry”. In

other words, mathematics is intrinsically a difficult subject, there are no short-

cuts to learning it or to doing it. Do you agree with that?

Andrew Wiles

Yes. I would add also that the two parts of learning and of creating mathematics

each require their own training. Some people are more talented at one than the

other but neither comes without a struggle.

CB

When you decided to become a mathematician, were you attracted to mathemat-

ics mainly because of its challenging difficulty, or by some other reasons?

AW

I was captivated by mathematics from a very young age. I do not think that I

understood then how hard it was! As a child a problem that takes half an hour is

hard and one that you can’t do until your teacher explains it is near impossible.

The realization that there are many problems which no one can do comes much

later. I was aware of Fermat’s last theorem as a child but I did not realize just

how many unsolved problems there were in the mathematical world.

CB

Nowadays it is impossible even for the most gifted professional mathematician

to embrace all of mathematical knowledge. There are so many different research

areas, so many specialties, that mathematics appears to be highly fragmented.

Do you think it makes still sense to consider mathematics as a whole?

AW

There are mathematicians who can master a great range of mathematics but it is

hard to actively pursue a very hard problem in one area of mathematics while

keeping up with the rest of the subject. I think it still makes sense to consider it as

one subject so long as the common grounding we have enables us, in a reason-

able period of time, to delve into any particular mathematical theory when the

need or the opportunity arises. The way of thinking of a mathematician is still

common to all branches of our subject.

CB

What are the main challenges of today’s mathematics?

AW

As a number theorist I see my field driven by the desire to solve particular

problems. In the year 2000 the Clay Mathematics Institute listed seven mathe-

matical problems that represented some of the greatest challenges left over from
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the twentieth century. For me old problems such as these are the most exciting

challenges. The greatest three of these seemed to me to be the Riemann hypo-

thesis, the Poincare conjecture and the P-NP problem. Others might prefer the

challenges of unifying different fields or creating new ones.

CB

In your opinion, is the main impulse to the progress of mathematics given by the

solution of classical problems or by the construction of new theories?

AW

It is a case of the chicken and the egg. One uses new theories to solve particular

problems and the solutions of new problems spawn new theories. The validation

of a new theory is usually that it can solve a classical problem that has resisted

the earlier theories. So for me the ultimate test and the greatest pleasure comes

from solving the classical problems.

CB

You spent 7 years, in complete isolation, to prove Fermat’s last theorem.

However, “publish or perish” seems to be the rule of today’s science and

researchers rush to submit their papers to the web archives. Please comment

on that.

AW

I think the speed of mathematics publication is still well below that of the rest of

science. One still has time to struggle for years over the hardest problems.

However there is a psychological price to pay for that as of course one can not

give evidence of this hard struggle and one may end with little to show for it. On

the other hand always tackling the more reasonable problems usually has the

obvious result one only solves the reasonable problems. Each mathematician has

to choose a mode of working that they can live with.

CB

In a letter to Robert Hooke, Isaac Newton wrote, “If I have seen further, it is by

standing on the shoulders of giants”. What’s your personal experience?

AW

I am aware that for the first 300 years no one could have solved the Fermat

problem by the method I used. It is simply built on too much modern mathemat-

ics. Even 20 years before I did it the problem would have been much much

harder. There is a great deal of luck involved in living at the right time! And the

problem is that one does not know whether one is living at the right time. Is it

possible for someone now to prove the Riemann hypothesis? I believe so but I

don’t know for sure. So the answer is that certainly the solution of Fermat

depended on the work of many many others, including perhaps many who

were not giants.

CB

André Weil made the following remark in his short essay De la métaphysique
aux mathématiques: “Rien n’est plus fecond, tous les mathematiciens le savent,
que ces obscures analogies, ces troubles reflets d’une théorie à une autre, ces
furtives caresses, ces brouilleries inexplicables rien aussi ne donne plus de
plaisir au chercheur” (“Nothing is more fruitful, as all mathematicians know,
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than those vague analogies, those obscure reflections that lead from one theory to

another, those furtive caresses, those inexplicable traces: nothing gives more

pleasure to the researcher”). Do you agree that analogy has a key role in

mathematical discovery?

AW

Yes I do and especially in number theory. There is so little natural geometric

intuition to use, so little of the real world, that one is forced to conjure up the

most tenuous analogies. Sometimes when you try to explain them to another

mathematician they almost evaporate.

CB

In most European and American universities the number of math (and more

generally, science) students is constantly decreasing. What would you say to a

young person to convince him or her to study mathematics?

AW

I believe that to lead a satisfying life you have to pursue something that you are

passionate about. It is not enough to be good at mathematics though it certainly

helps. You have to really love doing it. You have to feel an urge, for example

when waiting for a train to move, to pick up a piece of paper and start working on

your latest problem. Only such a passion can keep you going when you get the

inevitable frustrations of being stuck in a difficult part of the problem. As a

mathematician you will be part of a community that has existed for thousands of

years and you will contribute to a creative enterprise that spans the centuries and

civilizations. But life is too short to be wasted pursuing something you do not

care about. So only do it if you love it.
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Mathematical Prizes

The Fields Medal and the Abel Prize

There are prizes that are awarded periodically to honour the best mathematicians,

both the most promising and those who have already enjoyed a remarkable career.

Here we note the two most important of such prizes.

The Fields Medal

The Fields Medal is a prize given every 4 years by the International Mathematical

Union on the occasion of its International Congress. The prize was founded in 1936

and has been awarded regularly since 1950. The prize is named for John Charles

Fields, secretary of the 1924 International Congress of Mathematicians in Toronto,

who provided the funding necessary to mint the special gold medals. The prize is

intended to recognition younger mathematical researchers who have made signifi-

cant contributions, and at the same time provide financial support for future work.

For this reason, the medal is conferred on mathematicians who are not yet 40-years

old at the time of the Congress. In consideration of the rapid expansion of mathe-

matical research, in 1966 it was decided to present the medal to up to four

mathematicians. Here is a list of the winners:

1936 (Oslo): Lars Ahlfors, Jesse Douglas

1950 (Cambridge, USA): Laurent Schwartz, Atle Selberg

1954 (Amsterdam): Kunihiko Kodaira, Jean-Pierre Serre

1958 (Edinburgh): Klaus Roth, René Thom

1962 (Stockholm): Lars Hörmander, John Milnor

1966 (Moscow): Michael Atiyah, Paul Joseph Cohen, Alexander Grothendieck,

Stephen Smale

1970 (Nice): Alan Baker, Heisuke Hironaka, Sergei Novikov, John G. Thompson

1974 (Vancouver): Enrico Bombieri, David Mumford

1978 (Helsinki): Pierre Deligne, Charles Fefferman, Grigory Margulis, Daniel

Quillen

C. Bartocci et al. (eds.), Mathematical Lives,
DOI 10.1007/978-3-642-13606-1_35, # Springer-Verlag Berlin Heidelberg 2011

237



1982 (Warsaw): Alain Connes, William Thurston, Shing-Tung Yau

1986 (Berkeley): Simon Donaldson, Gerd Faltings, Michael Freedman

1990 (Kyoto): Vladimir Drinfel’d, Vaughan F. R. Jones, Shigefumi Mori, Edward

Witten

1994 (Z€urich): Jean Bourgain, Pierre-Louis Lions, Jean-Christophe Yoccoz, Efim

Zelmanov

1998 (Berlin): Richard Borcherds, Timothy Gowers, Maxim Kontsevich, Curtis T.

McMullen

2002 (Beijing): Laurent Lafforgue, Vladimir Voevodsky

2006 (Madrid): Andrei Okounkov, Terence Tao, Wendelin Werner

2010 (Hyderabad): Elon Lindenstrauss, Cédric Villani, Ngô Bao Châu, Stanislav

Smirmov

(In 1998, Andrew Wiles was presented a silver plaque in special recognition; in

2006 Grigorij Perelman declined the prize).

The Abel Prize

The Abel Prize is an international award presented annually as of 2003 by the

Norwegian Academy of Sciences in recognition of excellent scientific work in the

field of mathematics. The prize amounts to six million Norwegian crowns (about

€750,000), and is funded by the Niels Henrik Abel Memorial Fund, an endowment

specially created by the Norwegian government to encourage scientific research

and education. According to the by-laws, in addition to funding the prize, the

endowment is to be used to finance scientific activities aimed at young people.

Here is a list of the Abel Prize Laureates up to 2009, along with the jury’s

comments:

2003 – Jean-Pierre Serre: “for playing a key role in shaping the modern form of

many parts of mathematics, including topology, algebraic geometry and number

theory”

2004 – Michael F. Atiyah and Isadore Singer: “for their discovery and proof of the

index theorem, bringing together topology, geometry and analysis, and their

outstanding role in building new bridges between mathematics and theoretical

physics”

2005 – Peter Lax: “for his groundbreaking contributions to the theory and applica-

tion of partial differential equations and to the computation of their solutions”

2006 – Lennart Carleson: “for his profound and seminal contributions to harmonic

analysis and the theory of smooth dynamical systems”

2007 – S. R. Srinivasa Varadhan: “for his fundamental contributions to probability

theory and in particular for creating a unified theory of large deviation”

2008 – John G. Thompson and Jacques Tits: “for their profound achievements in

algebra and in particular for shaping modern group theory”

2009 – Mikhail Gromov: “for his revolutionary contributions to geometry”

2010 – John Tate: “for his vast and lasting impact on the theory of numbers”
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