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Nam Geometriae vis & laus omnis in certitudine rerum, certitudo in
demonstrationibus luculenter compositis constabat.

For the force of geometry and its every merit laid in the utter cer-
tainty of its matters, and that certainty in its splendidly composed
demonstrations.

—Isaac Newton, late 1710s (MP, 8, pp. 452–3)
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Preface

There is no doubt that Isaac Newton is one of the most researched giants of the
scientific revolution. It is triviality to say that he was a towering mathematician,
comparable to Archimedes and Carl Friedrich Gauss. Historians of mathematics
have devoted great attention to his work on algebra, series, fluxions, quadratures,
and geometry. Most notably, after the publication of the eight volumes of Mathe-
matical Papers (1967–1981), edited by D. T. Whiteside, any interested reader can
have access to Newton’s multifaceted contributions to mathematics. This book
has not been written with the purpose of challenging such a treasure of scholar-
ship and information.1 Rather, I focus on one aspect of Newton’s mathemati-
cal work that has so far been overlooked, namely, what one could call Newton’s
philosophy of mathematics.2 The basic questions that motivate this book are
What was mathematics for Newton? and What did being a mathematician mean
to him?

It is well known that Newton aimed at injecting certainty into natural philos-
ophy by deploying mathematical reasoning. It seems probable that he entitled his
main work The Mathematical Principles of Natural Philosophy (1687) in order to
state concisely and openly what constituted the superiority of his approach over the
Cartesian Principles of Philosophy (1644). The role of this program in Newton’s
philosophical agenda cannot be overestimated. Little research has been devoted,
however, to Newton’s views on mathematical certainty and method, views that are
obviously relevant to his program, for if mathematics is to endow philosophy with
certainty, it must be practiced according to criteria that guarantee the certainty
of its methods. But the new algebraic methods that Newton mastered so well,
and that are the salient characteristic of seventeenth-century mathematical devel-
opment, appeared to many far from rigorous. Newton participated in the debate
on the certainty of mathematical method and elaborated his own answer. However,
his views on mathematical method have attracted scant attention from historians,

1 So writes Whiteside, the doyen of Newtonian studies, about his edition of Newton’s mathematical
papers: “Let it be enough that the autograph manuscripts now reproduced are no mere resurrected
historical curiosities fit only once more to gather dust in some forgotten corner, but will require
the rewriting of more than one page in the historical textbook.” MP, 7, pp. vii–viii. I dare to
hope that my book will in part answer Whiteside’s desideratum; it would have been impossible to
write without a many-years-long full immersion in his eight green volumes.
2 This is a term that Newton would not have understood.



xiv Preface

whereas we know a great deal about, say, René Descartes’ or Gottfried Wilhelm
Leibniz’s philosophies of mathematics.3

In order to implement and divulge his innovative approach to a mathematized
natural philosophy, Newton tackled a series of questions that have been overlooked
or misunderstood by historians, such as When are mathematical methods endowed
with certainty? How can one relate the common and new algebraic analyses of
the moderns to the venerated methods of the ancients?4 When is a geometrical
construction exact and elegant? What guarantees the applicability of geometry to
mechanics? In tackling these issues Newton mobilized deeply felt convictions con-
cerning his role as a philosopher and as a mathematician. He positioned himself
against the probabilism endorsed as a moral value by most of the virtuosi of the
Royal Society, such as Robert Hooke and Robert Boyle, but he also held a polemical
position against two great giants in the common and new analyses, Descartes and
Leibniz. On the other hand, Newton found affinities with the thought of Isaac Bar-
row, Christiaan Huygens, and more obliquely Thomas Hobbes. He reconstructed
the development of mathematics from ancient times so as to depict himself as a
legitimate heir of the Greek tradition while distancing himself from the moderns.
Newton’s antimodernism had important consequences for his policy of publication,
for the general outlook of his foundational thought, for the mathematical structure
of his Principia, and for the negotiations he set afoot in order to trade his mathe-
matics in the milieu of British mathematicians and to affirm the superiority of his
method over Leibniz’s.

In this book I depart from a tendency that has prevailed in the literature devoted
to the history of seventeenth-century mathematical methodology. Generally speak-
ing, historians of mathematics have tended to concentrate on questions related to
the definitions of basic terms such as fluxion, infinitesimal, limit, and moment, that
is, on questions concerning rigor. These questions, which relate to the “labyrinth of
the continuum,” certainly had a great importance for a deep thinker like Leibniz.
Not so for Newton, who was more concerned with questions about the legitimacy,
elegance, and exactness of procedures for solving geometrical problems, that is, with
questions about method. Leibniz’s concerns appear much closer to modern founda-
tional issues in the philosophy of mathematics. Newton’s discourse on method is
much more opaque to modern readers trained in contemporary foundational litera-
ture. This is a natural consequence of scientific training in an era of mathematical

3 Just to take a telling example, in Mancosu, Philosophy of Mathematics and Mathematical Prac-
tice in the Seventeenth Century (1996), an informed and thorough study of the philosophy of
mathematics in the seventeenth century, Newton’s name occurs only three times and in passing
references.
4 The terms common analysis and new analysis referred to Cartesian algebra carried on via poly-
nomial equations and to a more general algorithm where infinitesimals, infinite series, and infinite
products could be deployed.
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practice shaped by the exigencies that emerged after the early-nineteenth-century
rigorization of the calculus, axiomatization of geometry, and development of ab-
stract algebra. Since then, definitions of basic terms have become a prominent
feature of the foundations of mathematics. Newton did devote attention to, say,
the nature of infinitesimals, but he was much more concerned with methodological
issues related to the analysis (or resolution) and synthesis (or composition) of ge-
ometrical problems. In this he showed himself to be influenced by Descartes, who
was deeply involved in the program of redefining his algebraic method of analysis as
an alternative to the analysis of the ancients (“Analysis Veterum”).5 Descartes also
traced the boundaries between legitimate (exact) and illegitimate (not exact) means
of geometrical construction and classed them on the basis of criteria of simplicity
that broke with the ancient tradition conveyed by Pappus’s Collectio. Newton
fiercely rejected Descartes’ canon of problem resolution and composition, and pro-
posed an alternative that looked to ancient exemplars as models superior to the
mathematics practiced by the “men of recent times.” But Newton’s admiration for
the ancients—arguably intertwined with many facets of his philosophy of nature
and religion—opened a gap between his views on mathematical method and his
mathematical practice.

Several hitherto unexplained aspects of Newton’s mathematical work are related
to this condition of stress and strain characterizing his thoughts on mathematical
method. Why did Newton fail to print his method of series and fluxions before
the inception of the priority dispute with Leibniz? Did he use his new analysis in
the Principia, as he claimed in retrospect? And if so, why did he hide his com-
petence in his new methods of quadrature when writing the Principia? Why does
his Arithmetica Universalis, a work devoted to algebra, end with pointed criticisms
of the use of algebraic criteria in the construction of geometrical problems? Why
did Newton, a master of symbolic manipulation, express deep disparagement of the
algebraists (whom he, according to hearsay, labeled the “bunglers of mathemat-
ics”)?6 Which strategies did he adopt in order to maintain the superiority of his
method compared to Leibniz’s extraordinarily efficient algorithm? Why did he engi-
neer Commercium Epistolicum (1713), which was meant to prove his priority in the
discovery of the calculus, using documents that proved everything he had achieved
on series and quadrature but revealing nothing about the rules of the calculus?
Why did he—contra Leibniz—attribute these rules to Isaac Barrow rather than
to himself? Was not therefore his policy during the priority dispute lacunose and
contradictory?

Historians have found these questions embarrassing. It is not unusual to en-
counter attempts to formulate answers in terms of psychological motivations, a

5 Bos, Redefining Geometrical Exactness (2001).
6 Hiscock, David Gregory, Isaac Newton and Their Circle (1937), p. 42.
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sign—in my view—of the difficulty of making sense of Newton’s policy and convic-
tions. So, we often read that it was Newton’s neurotic shyness, or a lack of interest
in mathematics that suddenly crept into his mind, that prevented him from printing
his method. Further, we are told that in the Principia he studiously tried to be
obscure in order to avoid dispute and criticisms because of his obsessive feeling of
being persecuted. We even encounter the thesis according to which, in the polemic
against algebra and calculus, he was trying to hide his indebtedness toward an in-
tellectual father (Descartes) whose image he found oppressive. When we move to
consider the polemic with Leibniz, we find studies that highlight Newton’s obses-
sive approach to the priority dispute, his lack of fairness, his egotism, and even his
political motivations related to the Hanoverian succession. Little effort is made to
try to discern in such a muddied context (and muddied and political it certainly
was!) coherent methodological positions held by Newton and by his opponents.

I believe we should be able to find better answers by studying more carefully
Newton’s writings on the nature of mathematics, which are so abundant in his man-
uscripts. True, the search for Newton the philosopher of mathematics is at times
frustrating. What we find is a disconnected, sometimes contradictory, constella-
tion of pronouncements scattered in the margins of mathematical manuscripts, in
aborted prefaces and appendices, in letters and personal notes. They serve their
purpose in a dialogical context, providing defensive grounds for mathematical prac-
tices, orienting aims, and establishing hierarchies. However, in these writings New-
ton reveals himself as a mathematician who—even when shattered by psychological
disturbances, stymied by academic rivalries, and motivated by political interests—
is able to endorse a fairly clear view of method and certainty. It is this view that
prompted him to articulate his mathematical work according to codes of communi-
cation that were understood by his contemporaries, especially by his close acolytes,
but that turn out to be so puzzling for modern readers. In short, even in the heated
context of the priority dispute Newton has something to tell us about mathematical
method. We should consider his theses, even though his stature as a philosopher of
mathematics is inferior to a Leibniz or a Descartes.

In this book I study Newton’s methodology of mathematics by analyzing his
main works, from the early treatises on series and fluxions to the writings addressed
against Leibniz. Even though my book is not devoted to Newton’s mathematical
results, it is important to try to understand his mathematics, because his views on
mathematical method interacted with his mathematical practice in a complex way.
Therefore, the reader will find some pages in which I analyze Newton’s mathematics
at work. I have been extremely selective, and the examples I have chosen are not
meant to offer an exhaustive view of Newton’s mathematics; he was simply too
prolific to allow condensing the wealth of his results in a single book. I have tried,
however, to choose examples that are simple enough to be followed by a reader
equipped with a modicum of mathematical expertise and that are representative
of a method or an approach that Newton developed. The expert mathematician
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will find most of the examples far too simple. Newton was indeed a great problem
solver, and his best mathematics can be admired by reading Mathematical Papers
and its editor’s profound commentary.

In matters of notation I have avoided translating Newton’s mathematics into
modern terms.7 The mathematician not trained in history will find Newton’s math-
ematical language and practice somewhat puzzling. For instance, Newton and his
contemporaries did not talk about functions, but about continuously varying mag-
nitudes. Newton did not use an equivalent of Leibniz’s integral sign consistently;
most often he used connected prose and referred to “the area under the curve” or
“the fluent of.” He was also somewhat confused about the distinction between def-
inite and indefinite integral, and never rendered constants of integration explicit.
Therefore, he often used the singular (“the fluent of”), but he was of course aware
that the indefinite integral identifies a class of functions. Further, he dealt with the
convergence of infinite series in very intuitive terms; their convergence was tested in
cavalier terms. We have to wait for Augustin Louis Cauchy at the beginning of the
nineteenth century for a modern theory of convergence. The list of oddities could
continue. I have made no effort (with the exception of a few explanatory footnotes)
to avoid the distinctive character of Newton’s mathematics compared to modern
usage.

The book is divided into six parts. Part I provides some preliminaries: a survey
of Newton’s mathematical work and of the development of his ideas on mathemati-
cal method that began to mature just after the creative burst of the anni mirabiles
(chapter 1); a comparison between his youthful program in natural philosophy with
the one endorsed by influential contemporaries like Descartes, Hooke, and Boyle
(chapter 2); a presentation of Descartes’ ideas on analysis and synthesis as Newton
found them in the Géométrie (chapter 3). In fact, Newton, who was in his mathe-
matical practice so much a Cartesian, stood in opposition to Descartes with respect
to method.

Part II considers the first period of Newton’s methodological thought. He be-
gan distancing himself from Cartesian method in writings that date from the 1670s
in which he compared common analysis (i.e., Cartesian algebra) to ancient anal-
ysis. The occasion for these reflections was Newton’s involvement in the project
of revising a textbook on algebra by the Dutchman Gerard Kinckhuysen and his
commitment to prepare lectures on algebra (chapter 4). It is in this context that
Newton began reading Pappus with the purpose of recovering the ancient analysis
(chapter 5). In this period Newton also worked on cubic curves (chapter 6); and
it is in this research that the tensions between his mathematical practice and his
views on method surfaced.

7 So, for instance, I avoid the integral sign and prefer to talk about the “quadrature of a curve”
rather than the “integral of a function.”
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Part III is devoted to Newton’s attempts to provide a synthetic version of what
he labeled “method of series and fluxions.” Newton’s early researches on series
(chapter 7) and fluxions (chapter 8) were carried on in terms unacceptable to his
more mature standards of validation. Consequently, he aimed at developing a syn-
thetic method of fluxions—a “more natural approach,” as he says—consonant with
the practice of the ancient geometers. These researches culminated in the early
1680s in a treatise entitled “Geometria Curvilinea,” in which Newton elaborated
his method of first and ultimate ratios, a method that informs the most mature
presentation of his method of series and fluxions offered in the Principia and De
Quadratura (chapter 9).

Part IV considers the mathematical methods employed by Newton in the Prin-
cipia (chapter 10). I devote particular attention to the strategies he chose in order
to accommodate his analytical methods in common analysis (chapter 11) and new
analysis (chapter 12) in the body of a text that he presented as written according
to the “ancient and good geometry.”

Part V concerns perhaps the most philosophically freighted texts that Newton
wrote in the 1690s and early 1710s. In these decades his belief in the myth about
a prisca sapientia of the ancients prospered and determined his self-portraiture as
an heir to the mathematics of Euclid and Apollonius. Consequently, he wrote at
length on the relations among analysis, synthesis, algebra, natural philosophy, and
mechanics (chapters 13 and 14).

Newton’s views concerning mathematical method emerge again in the polemic
with Leibniz, which occupied him especially from 1710 (chapter 15). In order to
trace the rationale for Newton’s polemical strategy, Part VI devotes attention to his
policy of publication adopted in circulating manuscripts, in correspondence (chap-
ter 16), and later in printing some of his tracts on the new analysis that he had
composed years before (chapter 17).
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Abbreviations and Conventions

All dates are old style (O.S.) unless otherwise specified (N.S.). When necessary, I
use January 17/27, 1712/13 for January 17, 1712 (O.S.) = January 27, 1713 (N.S.).

The following abbreviations are employed:

§ refers to section numbers in this book.
∝ = “is proportional to.”
“Account” = “An Account of the Book Entituled Commercium Epistolicum Collinii

& Aliorum de Analysi Promota; Published by Order of the Royal Society, in Re-
lation to the Dispute Between Mr. Leibnitz and Dr. Keill, About the Right
Invention of the Method of Fluxions, by Some Call’d the Differential Method.”
Philosophical Transactions 29, no. 342 (1715): 173–224. Author: Isaac New-
ton. Published anonymously. Facsimile in Hall, Philosophers at War (1980), pp.
263–314.

Add. = Additional manuscript in the Cambridge University Library.
AT = Descartes, René. Oeuvres de Descartes. Edited by C. Adam and P. Tannery.

11 vols. New ed. Paris: Vrin, 1964–67.
Commercium Epistolicum = Commercium Epistolicum D. Johannis Collins, et

Aliorum De Analysi Promota: Jussu Societatis Regiae In Lucem Editum. Lon-
don: typis Pearsonianis, 1712 (printed late 1712, distributed January–February
1713 (N.S.)).

Correspondence = Newton, Isaac. The Correspondence of Isaac Newton. Edited
by H. W. Turnbull, J. F. Scott, A. R. Hall, and L. Tilling. 7 vols. Cambridge:
Cambridge University Press, 1959–77.

De Analysi = MS LXXXI, no. 2 (Royal Society of London). Author: Isaac
Newton. Title: De Analysi per Aequationes Numero Terminorum Infinitas. Date
of composition: 1669. Edited in MP, 2, pp. 206–47. First printed in Newton,
Analysis per Quantitatum (1711), pp. 1–21.

De Methodis = MS Add. 3960.14 (Cambridge University Library). Author: Isaac
Newton. Title: untitled since the first folio is lacking, known as Tractatus de
Methodis Serierum et Fluxionum. Date of composition: 1670–1671. Edited in
MP, 3, pp. 38–328 (on pp. 32–7 the first missing leaf is from a transcript
by William Jones). First printed in English translation as Newton, Method of
Fluxions (1736).

De Quadratura = Tractatus de Quadratura Curvarum. First printed in Newton,
Opticks (1704), pp. 165–211. Excerpts were communicated to Wallis for inclu-
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sion in volume 2 of his Opera (1693), pp. 390–6. Date of composition: early
versions in 1691–1692, revised for publication in 1703. The numerous early ver-
sions and the revisions (mostly in MSS Add. 3960.7–13, 3962.1–3, and 3965.6
(Cambridge University Library)) are edited in MP, 7, pp. 24–182, and MP, 8,
pp. 92–167.

Enumeratio = MS Add. 3961.2, ff.1r–14r (Cambridge University Library). Author:
Isaac Newton. Title: Enumeratio Linearum Tertii Ordinis. Date of composition:
1695. Edited in MP, 7, pp. 588–645. First printed in Newton, Opticks (1704),
pp. 139–62 (+ 6 Tables).

Geometria = Descartes, René. Geometria, à Renato Des Cartes Anno 1637 Gallicè
Edita. Amsterdam: Apud Ludovicum & Danielem Elzevirios, 1659–61.

“Geometriae Libri Duo” = Edited by D. T. Whiteside mostly from Add. 3962.1,
3962.3, 3963.2, and 4004 (Cambridge University Library). Author: Isaac New-
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Cohen, assisted by A. Whitman. Cambridge: Cambridge University Press, 1972.



Abbreviations and Conventions xxiii

Principles = Newton, Isaac. The Principia: Mathematical Principles of Natural
Philosophy . . . Preceded by a Guide to Newton’s Principia by I. Bernard Cohen.
Translated by I. B. Cohen and A. Whitman, assisted by J. Budenz. Berkeley:
University of California Press, 1999.





Isaac Newton on Mathematical Certainty and Method





I Preliminaries

It is useful to have a general scheme of Newton’s mathematical work at the outset,
before delving into the details of his works on algebra (part II), fluxions (part III),
natural philosophy (part IV), geometry (part V), and the more philosophical is-
sues that emerged in the context of the polemic with Leibniz (part VI). Therefore,
in chapter 1, I give a general overview of the development of Newton’s ideas on
mathematical method, from his anni mirabiles down to his maturity.

Chapter 2 considers a program that Newton stated as a very young Lucasian
Professor in his Optical Lectures. According to this program, which never ceased to
inform Newton’s agenda, mathematics is the vehicle that can guarantee certainty
in natural philosophy. This—he was adamant—had escaped Descartes and his
followers, who had remained trapped in a qualitative and hypothetical mode of
explanation of natural phenomena. When considering the ideas that Newton later
developed concerning mathematical method, this agenda should always be kept in
mind.

Chapter 3 considers the great antagonist against whom Newton positioned him-
self: Descartes. What Descartes had to say in the Géométrie (1637) concerning
method and certainty was rejected by Newton for reasons which become the object
of study for the rest of the book. We cannot understand Newton’s methodology
unless we are aware of the antagonist that he always had in mind, and appreciate
that his polemic against Cartesian method engendered a deep tension between his
mathematical practice, which was indebted to Cartesian ideas, and his methodolog-
ical views, which were at odds with it. Therefore, chapter 3 considers the basic
elements of the Cartesian mathematical canon.





1 Newton on Mathematical Method: A Survey

For in those days I was in the prime of my age for invention & minded Mathematicks
& Philosophy more then at any time since.

— Isaac Newton, 1718

1.1 Early Influences

Mathematics played a prominent role in Newton’s intellectual career. This was not,
of course, his only concern. A polymath and polyhistor, Newton devoted years of
intense research to the reading of the Books of Nature and Scripture, deploying the
tools of the accomplished “chymist” (at the furnace and at the desk), instrument
maker (he made his own instruments, among them the first reflecting telescope),
experimentalist, astronomer, biblical interpreter, and chronologist. In all these fields
mathematics entered as one of the most powerful and reliable tools for prediction
and problem solving, and as the language that guaranteed accuracy and certainty of
deduction. Newton would not have achieved most of his results without it.1 It is no
coincidence that the adjective mathematical enters into the title of his masterpiece.

When Newton matriculated at Cambridge in 1661, he possessed only a modicum
of mathematical training. Two years later the first Lucasian Chair of Mathematics
was conferred on Isaac Barrow, a scholar of broad culture who would play an impor-
tant role in Newton’s intellectual life. The existence of such chairs, which provided
mathematical teaching at the universities, was something of a novelty in England.2

Barrow therefore had to defend his discipline and lectured on the usefulness of
mathematical learning. He did so in verbose and scholarly lectures, which Newton
probably attended. Barrow patterned his peroration following the agenda set by
Proclus, and he had in mind a late-sixteenth-century debate over the certainty of
mathematics, which was sparked in 1547 by Alessandro Piccolomini’s commentary

Epigraph from MS Add. 3968.41, f. 85r. For a discussion of this memorandum see Westfall, Never
at Rest (1980), p. 143, and “Newton’s Marvelous Years of Discovery and Their Aftermath” (1980);
Hall, Philosophers at War (1980), pp. 10–23. See also Whiteside, “Newton’s Marvellous Year”
(1966). The best guide to Newton’s mathematical work is to be found in Whiteside’s commentary
to Mathematical Papers.
1 Jed Buchwald and Mordechai Feingold are currently examining Newton’s work on chronology.
Their research reveals the importance of new mathematical techniques in treating astronomical
and historical data.
2 For the antecedents, see Feingold, The Mathematicians’ Apprenticeship (1984).
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Table 1.1 Mathematical Books Annotated by Newton in the 1660s

René Descartes Geometria, à Renato des Cartes, Amsterdam, 1659–61

François Viète Opera Mathematica, Leiden, 1646

Frans van Schooten Exercitationum Mathematicarum, Leiden, 1657

William Oughtred Clavis Mathematicae, 3d ed., Oxford, 1652

John Wallis Operum Mathematicorum Pars Altera, Oxford, 1656

John Wallis Commercium Epistolicum, Oxford, 1658

on pseudo-Aristotle’s Problemata Mechanica.3 The rising status of mathematics
was opposed by some Aristotelian philosophers like Piccolomini, who maintained
that mathematics did not possess the deductive purity of syllogistic logic and was
not a science because it did not reveal causal relationships. Barrow’s defense of
geometry as a model of reasoning and his idea that since geometrical magnitudes
are generated by motion, a causal relationship can be captured in such mechanically
based geometry must have impressed the young scholar. These typically Barrovian
ideas remained the backbone of Newton’s views about mathematics.

Newton soon began to read advanced mathematical texts, possibly borrowing
them from the Lucasian Professor. The mathematical books he had on his desk,
which he annotated extensively, are listed in table 1.1. As is often repeated in later
memoranda and hagiographic biographies, he devoted little attention to ancient
geometry, which is at odds with his mature predilection for the ancients, which
began to flourish in the 1670s. As far as we know, of the ancient corpus he stud-
ied only Euclid’s Elements in Barrow’s algebraized edition.4 He learned algebraic
notation from Oughtred’s Clavis Mathematicae in the third 1652 edition, and from
Viète’s Opera Mathematica (1646). These last two works were based on the idea
that algebra is not a deductive theory, like the Elements, but rather an analytical,
heuristic tool that can extend the possibility of finding solutions to problems, es-
pecially geometrical problems. The annotations to Oughtred and Viète show how
interested Newton was in this promising method of discovery.5 Algebra was still
a novel language in England. Oughtred had been a pioneer (his Clavis had first
appeared in 1631), but in the 1660s there was still need for an updated text on
algebra. In 1669, Newton became involved in the project of producing such a text-

3 Piccolomini, In Mechanicas Quaestiones Aristotelis (1547). On Barrow’s reading of Proclus,
see Stewart, “Mathematics as Philosophy: Proclus and Barrow” (2000). On the debate initiated
by Piccolomini, there is a vast literature; see Jardine, “Keeping Order in the School of Padua”
(1997).
4 Euclidis Elementorum Libri XV Breviter Demonstrati (1655).
5 MP, 1, pp. 25–88.
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book (see chapter 4). Algebra was interesting as a tool for practical applications (it
answered the needs of cartographers, instrument makers, mechanics, accountants,
land surveyors) but it was also promising for more theoretical purposes. The latter
motivation was the stimulus for Newton.

The seminal text in Newton’s mathematical formation is a highly abstract essay:
Descartes’ Géométrie. He borrowed and annotated the second Latin edition (1659–
1661) by Frans van Schooten.6 Here Descartes had proposed a novel method for the
solution—he claimed in the opening sentence—of all the problems of geometry. It
was on this text that Newton concentrated his attention. Descartes taught how ge-
ometrical problems could be expressed in terms of algebraic equations (this process
was termed the resolution or analysis of the problem). He maintained that finding
the equation and determining its roots, either by finite formulas or approximations,
is not the solution of the problem (see chapter 3). It was not a surprise for the con-
temporaries of Descartes and Newton to read that in order to reach the solution,
one had to geometrically construct the required geometrical object. A geometrical
problem called for a geometrical construction (a composition or synthesis), not an
algebraic result. Traditionally, such constructions were carried out by means of
intersecting curves. Thus, Descartes provided prescriptions to construct segments
that geometrically represent the roots and are therefore the solution of the problem.

By Newton’s day the heuristic method proposed by Descartes was labeled com-
mon analysis. It was contrasted with a more powerful new analysis, which tackled
problems about tangents and curvature of curves and about the determination of
areas and volumes that cannot be reached by the finitist means envisaged by Des-
cartes. Common analysis proceeds by “finite” equations (algebraic equations, we
would say) in which the symbols are combined by a finite number of elementary op-
erations. The new analysis instead goes beyond these limitations because it makes
use of the infinite and infinitesimal.

Basically, Newton and his contemporaries understood both the common analysis
and the new analysis, where respectively “finite” and “infinite equations” (infinite
series and infinite products) were deployed, as heuristic tools useful in discovering
a solution. Analysis, however, had to be followed by synthesis, which alone, in
their opinion, could provide a certain demonstration. Barrow much concerned him-
self with synthesis and, in his lectures defending mathematical certainty, aimed to
provide synthetic demonstrations of the results reached by the heuristic techniques
characteristic of the new analysis. His young protégé was making inventive forays
into the new analysis. Newton was aware, however, that a synthetic construction
was needed, and he later turned to Barrow for inspiration.

6 Newton worked on the second Latin edition, but he might also have encountered the smaller
first Latin edition prepared by van Schooten, which appeared in 1649. A copy of the first edition
(University Library (Cambridge) Adv.d.39.1) might have been in Newton’s possession, but “its
brief manuscript annotations are not in Newton’s hand.” MP, 1, p. 21.
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1.2 First Steps

Newton’s early notes on Descartes’ Géométrie reveal how quick he was in mastering
algebra applied to geometry. In 1665 he began to think about how the equation
could reveal properties of the curve associated to it via a coordinate system. Ac-
tually, he began to experiment with alternative coordinate systems to orthogonal
or oblique axes. He tried, for instance, what we call polar, bipolar, or pedal co-
ordinates. He also began to work with transformation of coordinates. One line of
research consisted in trying to extend algebraic treatment beyond the conic sections.
In De Sectionibus Conicis, Nova Methodo Expositis Tractatus, which Newton read
in the Operum Mathematicorum Pars Altera (1656), Wallis had developed an al-
gebraic treatment of conics as graphs of second-degree equations in two unknowns.
Newton began to extend the definitions of diameter, chord, axis, vertex, center,
and asymptote to higher-order algebraic curves. In the late 1660s he made his first
attempts to graph and classify cubic curves.7

Another line of research concerned the so-called organic description (or gener-
ation) of curves.8 This was an important topic, since in order to determine the
point of intersection of curves in the construction of geometrical solutions, it was
natural to think of the curves as generated by a continuous motion driven by some
instrument (an oργανoν). It is the continuity of the motion generating the curves
that guarantees a point of intersection can be located exactly. Descartes had devised
several mechanisms for generating curves. In De Organica Conicarum Sectionum in
Plano Descriptione Tractatus (1646), which Newton read in Exercitationum Math-
ematicarum (1657), van Schooten had presented several mechanisms for generating
conic sections. This research field was connected with practical applications, for
instance, lens grinding and sundial design, but it was also sanctioned by classical
tradition and motivated the highly abstract needs underlined by Descartes. Newton
was able to devise a mechanism for generating conics and to extend it to higher-order
curves (§5.4).

In 1665, Newton deployed organic descriptions in order to determine tangents
to mechanical lines, that is, plane curves such as the spiral, the cycloid, and the
quadratrix that Descartes had banned from his Géométrie (see chapter 3). The
study of mechanical lines, curves that do not have an algebraic defining equation,
was indeed a new, important research field. How to deal with them was unclear.
Newton was able to determine the tangent to any curve generated by some tracing
mechanism. He decomposed the motion of the tracing point P , which generates the
curve, into two components and applied the parallelogram law to the instantaneous
component velocities of P (see the parallelogram law on the top of the left margin

7 MP, 1, pp. 155–244.
8 MP, 2, pp. 134–42 and 152–5.
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in figure 1.1). For instance, the point of intersection of two moving curves will
generate a new curve whose tangent Newton was able to determine. Such a method
for determining tangents without calculation pleased Newton as much as did his new
techniques for the organic description of conics. This was an approach to the study
of curves—alternative to the Cartesian algebraic—that Barrow had promoted and
that in the 1670s Newton began to couple with ideas in projective geometry. Already
in 1665 the master in the common and new algebraic analyses was experimenting
with non algebraic approaches to geometrical problems.

In these early researches one encounters a characteristic of Newton’s mathemat-
ical practice, a deep intertwining between algebra and geometry, that eventually
led to unresolved tensions in his views on mathematical certainty and method.
Indeed, it is often the case that in tackling a problem Newton made recourse
to a baroque repertoire of methods: one encounters in the same folios algebraic
equations, geometrical infinitesimals, infinite series, diagrams constructed accord-
ing to Euclidean techniques, insights in projective geometry, quadratures techniques
equivalent to sophisticated integrations, curves traced via mechanical instruments,
numerical approximations. Newton’s mathematical toolbox was rich and fragmen-
tary; its owner mastered every instrument it contained with versatility. But he
was also a natural philosopher who envisaged a role for mathematics that did not
allow him to leave the toolbox messy, albeit efficient, and open for unauthorized
inspection.

1.3 Plane Curves

How did the young Newton tackle a problem that was quite difficult in his day: the
drawing of tangents to plane curves? Figure 1.1 shows the first folio of a manuscript
dated by Newton (in retrospect?) November 8th, 1665, and entitled “How to Draw
Tangents to Mechanicall Lines.” In the left margin there are an Archimedean spiral,
a trochoid, and a quadratrix.9

Tracing the tangent to the spiral was particularly handy. To a point b of a spiral
with pole a (see figure 1.2) Newton associated a parallelogram having a vertex in
b whose sides, the former bc directed along the radius vector ab and the latter bf
orthogonal to it, are proportional to the radial speed and to the transverse speed
of b. The diagonal bg determines the tangent at b. In other cases, the method
was more difficult to implement, and Newton made a couple of blunders, which
he soon corrected, in tracing the tangent to the quadratrix and to the ellipse.10

9 In modern symbols these three curves have equations r = c0θ (r, θ polar coordinates, c0 con-
stant), x = c1t − c2 sin t, y = c1 − c2 cos t (parametric equations, c2 < c1), and x = y cot(πy/2c3)
(x, y, Cartesian coordinates).
10 MP, 1, pp. 379–80.
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Figure 1.1

Newton’s kinematic method for drawing tangents to mechanical curves. From top to
bottom of the left margin, below the illustration of the parallelogram, are the following
curves. (i) The Archimedean spiral is traced by a point that slides with constant speed
along a straight line that rotates with constant angular speed. (ii) The trochoid (sometimes
called curtate cycloid) is traced by a point on a disk that rolls without sliding along a
straight line. (iii) The quadratrix is a curve traced by the intersection of a radius and a
line segment moving at corresponding rates. A square and a circle are drawn so that one
corner of the square is the center of the circle, and the side of the square is the radius of
the circle. A radius rotates clockwise from the side of the square to the base at a constant
angular speed. At the same time, a line segment falls from the top of the square at
constant vertical speed and remains parallel to the base of the square. Both start moving
at the same time, and both hit the bottom at the same time. Newton also considers two
“Geometricall lines,” namely (iv) the ellipse, and (v) the hyperbola. Source: Add. 4004,
f. 50v. Reproduced by kind permission of the Syndics of Cambridge University Library.
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Figure 1.2

Tracing the tangent to the Archimedean spiral. Source: Add. 4004, f. 50v. Reproduced
by kind permission of the Syndics of Cambridge University Library.

Newton applied his method for drawing tangents not only to mechanical but also
to geometrical lines: the ellipse and the hyperbola.11

In his early papers, Newton intertwined the geometrical approach to tangents
with the development of a new algorithm, which he called the method of series and
fluxions. This method allowed the calculation of the tangent and curvature to all
plane curves known in Newton’s day. Later, I describe Newton’s algorithm for the
determination of tangents (§8.3.6) and its application to the conchoid (Cartesian
equation x2y2 = (c1 + y)2(c2

2 − y2)). Undoubtedly, this algorithm, referred to in
modern textbooks as the calculus, is the most celebrated discovery that Newton
made in the years 1664–1666. This highly symbolic and algebraized tool of problem
solving is discussed in part III. It should be stressed, however, that what appears,
with the benefit of hindsight, to be Newton’s greatest achievement was perceived
as just one among many alternative approaches to problem solving by its inventor.

Infinite series allowed Newton to study the properties of mechanical curves,
such as the cycloid (the curve traced by a point on the circumference of a circle
that rolls along a straight line: the parametric equation of the cycloid generated by
a circle with radius a is x = a(t − sin t), y = a(1 − cos t)).12 Most notably, they

11 MP, 1, pp. 369–99. See also the beginning of the “October 1666 Tract on Fluxions.” MP,
1, pp. 400–1. Kirsti Andersen studied this technique and presented her analysis at a meeting in
Oberwolfach (Germany) in December 2005; see Andersen, “Newton’s Inventive Use of Kinematics
in Developing His Method of Fluxions” (2005).
12 As Newton wrote in 1684, “To be sure, convergent equations can be found for the curved lines
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allowed him to calculate curvilinear areas, curvilinear volumes, and arc lengths;
these calculations were generally called “quadrature problems.” So, squaring a
curve meant calculating the area of the surface bounded by it. Nowadays we would
use Leibnizian terminology and speak about problems in integration. Sections §7.4
and in §8.4.5 take up Newton’s calculation of the area of the surface subtended by
the cycloid and by the cissoid (Cartesian equation y2(a − x) = x3). The fact that
Newton’s method allowed him to tackle mechanical curves and quadratures is due
to a mathematical fact of which he was well aware. Using Leibnizian jargon, we can
say that while differentiation of algebraic functions (accepted by Descartes) leads to
algebraic functions, integration can lead to new transcendental functions. Newton
referred to what are now called transcendental functions as quantities “which cannot
be determined and expressed by any geometrical technique, such as the areas and
lengths of curves.”13 Infinite power series—in some cases fractional power series—
were the tool that young Newton deployed in order to deal with these mechanical
(transcendental) curves.

1.4 Fluxions

A Newtonian memorandum, written more than fifty years after the momentous
intellectual revolution it describes, gives an account, basically confirmed by manu-
script evidence, of his early mathematical discoveries:

In the beginning of the year 1665 I found the Method of approximating series & the
Rule for reducing any dignity of any Binomial into such a series. The same year in
May I found the method of Tangents of Gregory & Slusius, & in November had the
direct method of fluxions & the next year in January had the theory of Colours &
in May following I had entrance into ye inverse method of fluxions. And the same
year I began to think of gravity extending to ye orb of the Moon . . . . All this
was in the two plague years of 1665–1666. For in those days I was in the prime of
my age for invention & minded Mathematicks & Philosophy more then at any time
since.14

There would be much to say to decipher Newton’s words and place them in context.
For instance, the task of commenting on the meaning of the term philosophy would
require space and learning not at my disposal.

commonly dubbed ‘mechanical,’ and with their assistance problems on these curves are solved no
differently than in simpler curves.” MP, 4, p. 559. “Quinetiam ad curvas lineas vulgo dictas
Mechanicas inveniri possunt aequationes convergetes et earum beneficio problemata in his curvis
non aliter solvi quam in curvis simplicioribus.” MP, 4, p. 558.
13 MP, 3, p. 79. “quantitates . . . quae nullâ ratione geometricâ determinari et exprimi possunt,
quales sunt areae vel longitudines curvarum.” MP, 3, p. 78.
14 Add. 3968.41, f. 85r. This passage is contained in a draft (August 1718) of a letter that Newton
intended for Pierre Des Maizeaux. It is discussed in Westfall, Never at Rest (1980), p. 143.
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Note three things about this memorandum. (i) The “method of approximat-
ing series” is the method of series expansion via long division and root extrac-
tion. Newton achieved also other methods for expanding y as a fractional power
series in x, when the two variables are related by an algebraic equation. These
methods, later generalized by Victor-Alexandre Puiseux, allowed Newton to go
beyond the limitations of the common analysis, where finite equations were de-
ployed, and express certain curves locally in terms of infinite fractional power se-
ries, which Newton called infinite equations.15 (ii) The “rule for reducing any
dignity of any binomial” is now called the binomial theorem for fractional pow-
ers, which Newton attained in winter 1664 by interpolating results contained in
Wallis’s Arithmetica Infinitorum (included in Operum Mathematicorum Pars Al-
tera (1656)).16 Such methods of series expansion were crucial for attaining two
goals: the calculation of areas of curvilinear surfaces and the rectification of curves.
(iii) Newton does not talk about discovering theorems, but rather methods and a
rule. This last fact is of utmost importance because it reveals that, in his view,
his results belonged to the analytical, heuristic stage of the method of problem
solving.

In October 1666, Newton gathered his early results in a tract whose incipit
reads “To resolve Problems by Motion these following Propositions are sufficient.”17

He conceived this tract as devoted to a method of resolution (i.e., “analysis”) of
geometrical problems, which makes use of the concept of geometrical magnitudes
as generated by motion. This method, referred to in Newton’s memorandum as
the “direct and inverse method of fluxions,” is discussed in part III. Note that the
inverse method was always conceived by Newton as deeply intertwined with the
method of approximating series and with the binomial rule.18

1.5 In the Wake of the Anni Mirabiles

In 1669 the first challenge arrived for the young mathematician. A slim book
entitled Logarithmotechnia, printed in 1668, the work of the German Nicolaus Mer-
cator, came to his attention. What Newton saw was worrying. Mercator had used
an infinite equation (in our terms, a power series expansion of y = 1/(1 + x)) in
order to square the hyperbola (i.e., calculate the area of the surface subtended
by the hyperbola). This result belongs both to pure mathematics and to practi-

15 These techniques are discussed in many treatises on algebraic curves: e.g., Brieskorn and
Knörrer, Plane Algebraic Curves (1986), pp. 370ff.
16 MP, 1, pp. 89–142.
17 The “October 1666 Tract on Fluxions” is Add. 3958.3, ff. 48v–63v, and is edited in MP, 1, pp.
400–48.
18 For a recent evaluation of Newton’s early work on series and fluxions in the period 1664–1666,
see Panza, Newton et les Origines de l’Analyse: 1664–1666 (2005).
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cal applications. It is, in fact, useful in facilitating the calculation of logarithms,
a need deeply felt by seventeenth-century practitioners in all fields from naviga-
tion to astronomy. This was one of the results that Newton had achieved via
binomial expansion or long division. He was able to do much more than this
and therefore summarized his results regarding infinite series applied to quadra-
ture in a small tract entitled De Analysi per Aequationes Numero Terminorum
Infinitas (1669).19

Barrow, who was well informed about Newton’s discoveries, immediately sent
De Analysi to a mathematical practitioner called John Collins. The choice could
not have been happier. Collins was at the center of a network of British and Con-
tinental mathematicians whom he kept up to date with an intense and competent
correspondence. After taking copies of De Analysi, Collins informed a number
of his correspondents about Newton’s discoveries. He also made Newton aware
of the Scotsman James Gregory (or Gregorie), who was pursuing researches on
series expansions at a level comparable to what could be found in De Analysi.
Collins’s correspondence was the vehicle that allowed Newton to establish his rep-
utation as a mathematician. Collins’s network overlapped with that of the Royal
Society; its president, William Brouncker, the secretary, Henry Oldenburg, and
Wallis were certainly interested in Newton’s mathematical researches on infinite
series.

In 1672, Newton was elected a Fellow of the Royal Society because of the con-
struction of the reflecting telescope, not because of his mathematics. And it was
because of his ideas concerning the role of mathematics in natural philosophy that
he initially found himself in a difficult relationship with the Royal Society. When
he presented his 1672 paper on the nature of light, Newton made it clear that the
undisputable certainty of his “new theory about light and colors” was guaranteed
by mathematical reasoning. This thesis displeased the secretary, Henry Oldenburg,
and the curator of experiments, Robert Hooke, who refrained from subscribing to
what they perceived as a dogmatic position (see chapter 2). Newton found himself
embroiled in a dispute that led him, after some years of tiresome correspondence
with critics, to be reluctant about printing his philosophical ideas. Famously, in a
different context, he was to complain about philosophy as an “impertinently liti-
gious Lady.”20 What is relevant here is that, in the mid-1670s, much to Collins’s
frustration, he withdrew from any project of printing his mathematical discoveries
on series and fluxions.

As I argue in Part VI, Newton’s policy of publication is consistent with his self-
portraiture as a natural philosopher who—contrary to the skeptical probabilism
endorsed by many virtuosi of the Royal Society—could attain certainty thanks to

19 See chapter 7 for further information.
20 Newton to Halley (June 20, 1686) in Correspondence, 2, p. 437.
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mathematics. Printing the algebraic, heuristic method would have exposed him
to further criticisms; what he aimed at was certainty, and this was guaranteed by
geometry. The algebraic analysis—as he later said to David Gregory—was “entirely
unfit to consign to writing and commit to posterity.”21 To appreciate Newton’s
views on mathematics, one should not underestimate how sharp a boundary he
drew in contrast with his mathematical practice between algebra and geometry, and
how strongly he believed that only geometry could provide a certain and therefore
publishable demonstration.

Newton’s perception of the two layers of algebraic analysis and geometrical syn-
thesis is already evident in his Tractatus de Methodis Serierum et Fluxionum, com-
posed in 1670–1671.22 The beginning of this long treatise is occupied by a revision
and expansion of De Analysi. In the remaining twelve sections (labeled as prob-
lems) Newton “methodized” his researches into fluxions that he had first laid down
in the October 1666 tract.23 Here he developed the analytical method of fluxions,
which was divided into two parts: (i) the direct method (mainly calculations of
tangents and curvatures) and the inverse method (mainly calculations of areas and
rectifications of curves). De Methodis ends with extensive tabulations of areas of
surfaces subtended to curves. Newton soon developed (in an “Addendum” written
in 1671) the idea that a synthetic form of the method of fluxions was required (see
chapter 9). This more rigorous version, where no infinitesimals occur, was based
on limit concepts and geometrical-kinematical conceptions and was systematized
in a tract entitled “Geometria Curvilinea,” written about 1680. The synthetic
method of fluxions—the method of first and ultimate ratios—informs most of the
Principia (1687).

Thus, in 1671—just after the completion of De Methodis, a summa of his ana-
lytical researches on series and fluxions—Newton began to rethink the status of
his early researches, which are based on heuristic analogies and the use of in-
finitesimals, namely, on techniques that are far from the standards of exactness
that he aimed at as a natural philosopher. In the 1670s he spent great effort in
systematizing them, in rethinking their foundation, and in attempting alternative
approaches. Several factors contributed to the more mature phase of Newton’s
mathematical production that followed the creative burst of the anni mirabiles. I
note a few of these factors in the next section and elaborate on them in subsequent
chapters.

21 “Algebram nostram speciosam esse ad inveniendum aptam satis at literis posterisque consignan-
dum prorsus ineptam.” University Library Edinburgh MS Gregory C42, translated by D. T.
Whiteside in MP, 7, p. 196. See also Correspondence, 3, p. 385.
22 See chapter 8 for further information.
23 “partly upon Dr Barrows instigation I began to new methodiz ye discourse of infinite series.”
Newton to Collins (July 20, 1670) in Correspondence, 1, p. 68.
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1.6 Maturity

Young men should prove theorems, old men should write books.24

In 1669, Newton was elected Lucasian Professor, in succession to and thanks
to the patronage of Barrow. He began preparing a first set of lectures on op-
tics in which he claimed that certainty in natural philosophy can be guaranteed
by the use of geometry (see chapter 2). A concern with certainty in mathe-
matical method thus emerged in the context of Newton’s early optical researches
and remained anchored to them until maturity when, in the last Query 23/31
(1706/1717) of the Opticks, he wrote a famous peroration in favor of the use of
the method of analysis and synthesis in natural philosophy. The investigation of
difficult things, he claimed, could be pursued in natural philosophy only by fol-
lowing the steps of the mathematicians’ method of enquiry. Newton wished to
validate his natural philosophy mathematically, outstripping the skeptical proba-
bilism that was rampant in his day, as he complained. Synthesis, not analysis,
was the method that could guarantee the level of accuracy and certainty required
for such an ambitious task. Further, as a successor of Barrow in the Lucasian
Chair, Newton probably felt that his new status implied delivering mathematics
in rigorous and systematic form. He began writing mathematical treatises char-
acterized by length, maturity, and apparent uselessness (they seldom went to the
press).25

Newton’s involvement in preparing his next set of lectures on algebra led him
to conceive the idea that analysis could also be approached differently from the
way promoted by the moderns: in short, there could be a geometrical analysis, a
geometrical rather than an algebraic method of discovery. Up to this point in this
chapter, I have somewhat incorrectly equated analysis with algebra, and synthesis
with geometry. But it is necessary to avoid such equivalences because they were
not accepted by Newton and by many of his contemporaries. Not only synthesis
but also analysis could be geometrical.

Lucasian Lectures on Algebra stemmed from a project on which Newton had
embarked since the fall of 1669, thanks to the enthusiasm of John Collins: the re-
vision of Mercator’s Latin translation of Gerard Kinckhuysen’s Dutch textbook on
algebra. Newton’s involvement in this enterprise was an occasion to rethink the
status of common analysis. He began experimenting with what he understood as
ancient analysis, a geometrical method of analysis or resolution that, in his opin-
ion, the ancients had kept hidden. In his Lucasian Lectures on Algebra, which he
deposited in the University Library of Cambridge in 1684 and from which William

24 Godfrey H. Hardy, quoted by Freeman Dyson, in Albers, “Freeman Dyson: Mathematician,
Physicist, and Writer” (1994), p. 2.
25 But on Newton’s attitude toward print publication versus manuscript circulation, see chapter 16.
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Whiston edited the Arithmetica Universalis (1707), Newton extended Cartesian
common analysis and arrived at new results in this field. But even in this em-
inently Cartesian text one can find traces of his fascination with the method of
discovery of the ancients. The ancients, rather than using algebraic tools, were
supposed to have a geometrical analysis that Newton wished to restore. This was
a program shared by many in the seventeenth century. He also made it clear that
synthesis, or composition, of geometrical problems had to be carried on—contra
Descartes—in terms wholly independent of algebraic considerations (see chapter 4).
The fascination with ancient analysis and synthesis, a better substitute, he strongly
opined, for Cartesian common analysis (algebra) and synthesis (the techniques on
the construction of equations prescribed by Descartes), prompted Newton to read
the seventh book of Pappus’s Collectio (composed in the fourth Century a.d. and
printed alongside a Latin translation in 1588). He became convinced that the lost
books of Euclid’s Porisms, described incompletely in Pappus’s synopsis, were the
heart of the concealed ancient, analytical but entirely geometrical method of dis-
covery (see chapter 5).26

Newton intertwined this myth of the ancient geometers with his growing anti-
Cartesianism. In the 1670s he elaborated a profoundly anti-Cartesian position,
motivated also by theological reasons. He began looking to the ancient past in
search for a philosophy that would have been closer to divine revelation. The
moderns, he was convinced, were defending a corrupt philosophy, especially those
who were under Descartes’ spell. Newton’s opposition to Cartesian mathematics
was strengthened by his dislike for Cartesian philosophy. Descartes in the Géométrie
had proposed algebra as a tool that could supersede the means at the disposal of
Euclid and Apollonius. Newton worked on Pappus’s Collectio in order to prove
that Descartes was wrong. He claimed that the geometrical analysis of the ancients
was superior to the algebraic of the moderns in terms of elegance and simplicity. In
this context, Newton developed many results in projective geometry and concerning
the organic description of curves. His great success, achieved in a treatise entitled
“Solutio Problematis Veterum de Loco Solido” (late 1670s) on the “restoration of
the solid loci of the ancients,” was the solution by purely geometrical means of the
Pappus four-lines locus. This result, much more than the new analysis of infinite
series and fluxions, pleased Newton because it was in line with his philosophical
agenda (see chapter 5).

The importance of projective geometry emerged also in the study of cubics, when
Newton found that these algebraic curves can be subdivided into five projective
classes. His interest in the classification of cubic curves dates to the 1660s, but it
was only in the late 1670s that, by deploying advanced algebraic tools, he achieved

26 It seems that Newton did not know that Descartes expressed similar views in the “Responsio
ad Secundas Obiectiones” in Meditationes de Prima Philosophia (1641) (AT, 7, pp. 155–6).
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the array of results that later, in the mid-1690s, were systematized in Enumeratio
Linearum Tertii Ordinis, a work that first appeared in print as an appendix to the
Opticks (1704) (see chapter 6).

One should not forget another factor that determined Newton’s option for ge-
ometry in the 1670s: the encounter with Huygens’s Horologium Oscillatorium. In
his masterpiece, printed in 1673, Huygens had employed proportion theory and
ad absurdum limit arguments (method of exhaustion) and had spurned as far as
possible the use of equations and infinitesimals (in his private papers he did em-
ploy symbolic infinitesimalist tools, but he avoided them in print).27 Huygens
offered an example to Newton of how modern cutting-edge mathematization of
natural philosophy could be presented in a form consonant with ancient exem-
plars. The Lucasian Professor immediately acknowledged the importance of Huy-
gens’s work, and one might surmise that his methodological turn of the 1670s—
which in part led him to cool his relationship with Collins and avoid print pub-
lication of his youthful algebraic researches—was related not only to a reaction
against Cartesianism, but also to an attraction toward Huygens’s mathematical
style.

When Newton composed the Principia, in 1684–1686, he had a panoply of math-
ematical methods in his toolbox, methods that he could deploy in the study of force
and motion. He gave pride of place to the synthetic method of fluxions (first elab-
orated in a treatise composed about 1680 and entitled “Geometria Curvilinea”),
claiming in Section 1, Book 1, that this was the foundation on which the mag-
num opus was based. But in several instances, as a close reading of the text of
the Principia makes clear, he appealed to quadrature techniques that belong to his
algebraized new analysis. These quadratures were not, however, made explicit to
the reader. Newton chose instead to insert in the body of the text a treatment of
ancient analysis and its application to the solution of the so-called Pappus problem.
In Part IV I discuss the policy of publication that led Newton to structure the text
and the subtext of the Principia in ways consonant with his views on mathematical
method.28

After the publication of the Principia, Newton ceased to be an isolated Cam-
bridge professor. He had to defend and establish his rising position in the political
and cultural world of the capital, where he moved in 1696 as Warden of the Mint.
A first challenge, in 1691, from David Gregory (§8.5.1) on quadrature techniques
induced him to work hard in the early 1690s on the composition of a treatise, Trac-
tatus de Quadratura Curvarum, which appeared in 1704 as an appendix to the
Opticks. De Quadratura opens with an introduction in which Newton claims that
the method of fluxions is based on a conception of magnitudes generated by motion

27 Yoder, Unrolling Time (1988).
28 See also Guicciardini, Reading the Principia (1999).
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and on limiting procedures that are consonant with the methods of the ancients
(see chapter 9).29

Newton’s growing fascination with the myth about the prisca sapientia, a pris-
tine superior wisdom of the ancients, that characterizes his thought after the pub-
lication of the Principia resonates with his extensive researches on the ancient
analysis that he carried on in the 1690s and early 1700s. His aim was to show that
the youthful analytical method of fluxions could be reformulated in terms accept-
able by ancient standards. He even explored a totally new method of discovery and
proof. Newton left hundreds of manuscript pages, which culminated in an unfinished
“Geometriae Libri Duo,” devoted to his attempts to write a treatise on projective
geometry written in a style reconstructed following the authority of Pappus (see
part V). These aborted attempts are the more philosophy-laden texts belonging to
Newton’s mathematical Nachlass, since he made a deep effort to clarify the rela-
tions among the various sectors of his mathematical method: analysis, synthesis,
algebra, geometry, mechanics, and natural philosophy. These terms have been used
in this first chapter in an improperly ambiguous way. But commenting on Newton’s
works on method in subsequent chapters will allow me to clarify this terminology
and decode Newton’s somewhat arcane mode of expression.

Newton encouraged his acolytes to pursue researches in ancient analysis and
never missed the opportunity for praising those, such as Huygens, who resisted
the prevailing taste for the symbolism of the moderns, the “bunglers in mathemat-
ics.”30 When the polemic with Leibniz exploded, he could deploy his classicizing
and anti-Cartesian theses against the German (see part VI). Thus, Newton’s last
mathematical productions, publications, and (often anonymous) polemical pieces
were driven by a philosophical agenda difficult to reconcile with his mathematical
practice.

29 The other appendix, Enumeratio Linearum Tertii Ordinis, was also written in the 1690s,
deploying notes on cubics dating from the 1670s. See chapter 6.
30 Hiscock, David Gregory, Isaac Newton and Their Circle (1937), p. 42.





2 Newton on Certainty in Optical Lectures

Newton then does stand somewhat apart not only in accomplishment but also in
his philosophy of science.

—Barbara Shapiro, 1983

The appointment to the Lucasian Chair (1669) led Newton to ponder over his role as
a mathematician. Now he was not just a young creative protégé of Barrow but rather
a professor who would soon address the Royal Society with new theories concerning
the nature of light. That Newton began investigating the role of mathematics
in natural philosophy is evident in his first set of lectures on optics, which he
supposedly delivered between January 1670 and the end of Michaelmas term in
1672. As Lucasian Professor, Newton had to deliver one lecture each week during
term and to deposit at least ten lectures every year. There thus exist a set of his
lectures on optics and a set on algebra (§4.1).1

In his third lecture Newton stated a program that remained a leitmotif all his life:

Thus although colors may belong to physics, the science of them must nevertheless
be considered mathematical, insofar as they are treated by mathematical reasoning.
Indeed, since an exact science of them seems to be one of the most difficult that
philosophy is in need of, I hope to show—as it were, by example—how valuable
is mathematics in natural philosophy. I therefore urge geometers to investigate
nature more rigorously, and those devoted to natural science to learn geometry
first. Hence the former shall not entirely spend their time in speculations of no
value to human life, nor shall the latter, while working assiduously with an absurd

Epigraph from Barbara Shapiro, Probability and Certainty in Seventeenth-Century England
(1983), p. 58.
1 An early version of the Principia was also deposited by Newton. One should not assume that
Newton actually delivered these lectures to his students (if he had any). Further, the dates on the
deposited manuscripts were added in retrospect. The critical edition is in Newton, The Optical
Papers of Isaac Newton: Vol.1. The Optical Lectures 1670–1672 (1984), pp. 46–279, which
includes both an earlier version of the lectures and the Opticae, pars 1 and 2, which Newton
deposited in October 1674 in compliance with the statutes of the Lucasian Chair. The deposited
lectures appeared posthumously, first in an English translation of pars 1 as Optical Lectures: Read
in the Publick Schools of the University of Cambridge (1728) and then the complete Latin text as
Lectiones Opticae (1729). Both these posthumous publications (based on a collation of a transcript
and the original) have a complicated story, which is discussed in Alan Shapiro’s commentary in
Newton, The Optical Papers (1984), pp. 20–5. A facsimile of the first version of the lectures
(MS Add. 4002 (Cambridge University Library)) can be found in Newton, The Unpublished First
Version of Isaac Newton’s Cambridge Lectures on Optics (1973).
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method, perpetually fail to reach their goal. But truly with the help of philosophical
geometers and geometrical philosophers, instead of the conjectures and probabilities
that are being blazoned about everywhere, we shall finally achieve a science of
nature supported by the highest evidence.2

Ideas very similar to these were to occur in the Preface to the second edition of
the Principia (1713), written by Roger Cotes some forty years later. Alan Shapiro
has emphasized the pervasive role of the quest for certainty in Newton’s thought
and has demonstrated that Newton, very early in his intellectual career, conceded
that natural philosophy, even when approached mathematically, cannot reach the
absolute certainty of geometry. But Newton made it clear that geometers who
practice natural philosophy are able to go a long way beyond the modest aim of
the experimental naturalists, namely, conjectures and probabilities. Shapiro wrote
that in the last years of his life Newton changed his mind about the possibility
of philosophical geometers and geometrical philosophers being able to approach
absolute certainty:

Although he [Newton] soon modified his excessive claims and more carefully distin-
guished mathematical demonstrations from less than certain experimental conclu-
sions, he continued to prize mathematical theories and seek “truth” and “certainty,”
words that appear frequently in his writings. Only in the last decades of his life
did he accept the probabilism of his contemporaries.3

2 Newton, The Optical Papers (1984), pp. 87, 89, and 437, 439. “Sic etiamsi colores ad Physicam
pertineant, eorum tamen scientia pro Mathematica habenda est, quatenus ratione mathematica
tractantur. Imo vero cum horum accurata scientia videatur ex difficillimis esse quae Philosophus
desideret; spero me quasi exemplo monstraturum quantum Mathesis in Philosophia naturali valeat;
et exinde ut homines Geometras ad examen Naturae strictius aggrediendum & avidos scientiae
naturalis ad Geometriam prius addiscendam horter: ut ne priores suum omnino tempus in specu-
lationibus humanae vitae nequaquam profuturis absumant, neque posteriores operam praepostera
methodo usque navantes, a spe sua perpetuo decidant: Verum ut Geometris philosophantibus &
Philosophis exercentibus Geometriam, pro conjecturis et probabilibus quae venditantur ubique,
scientiam Naturae summis tandem evidentijs firmatam nanciscamur.” Newton, The Optical Pa-
pers (1984), pp. 86, 88, and 436, 438. It should be noted that Galileo in the Dialogo, which
Newton knew in Thomas Salusbury’s translation (see Newton, Certain Philosophical Questions:
Newton’s Trinity Notebook (1983), p. 202, and Salusbury, Mathematical Collections and Transla-
tions in Two Tomes (1661–65)), referred to a “filosofo geometra” who is able to apply mathematics
to the study of nature: “cos̀i, quando il filosofo geometra vuol riconoscere in concreto gli effetti
dimostrati in astratto, bisogna che difalchi gli impedimenti della materia; che se ciò saprà fare,
io vi assicuro che le cose si riscontreranno non meno aggiustamente che i computi aritmetici. Gli
errori dunque non consistono né nell’astratto né nel concreto, né nella geometria né nella fisica,
ma nel calcolatore, che non sa fare i conti giusti.” Galilei, Dialogo Sopra i Due Massimi Sistemi
del Mondo (1998), 2, pp. 511.3–5. Similarly in Auctoris Praefatio to the Principia, Newton stated
that errors are not due to the imperfections of geometry and mechanics but rather to the artificer
who applies them. See chapter 13.
3 Alan Shapiro, Fits, Passions, and Paroxysms (1993), p. 14. See also Alan Shapiro, “Newton’s
‘Experimental Philosophy’” (2004).
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It is difficult to assess the reasons and influences behind the rather extremist
methodological position that Newton endorsed in his youth. Barrow might have
instilled in the young Newton the conviction that mathematics not only possesses
certainty but can also transfer it to the fields to which it is applied. But Newton’s
position is passionate and idiosyncratic and goes beyond anything that Barrow
might have envisaged. Newton’s claims concerning mathematical certainty were
perceived as alien by most of his contemporaries. In order to defend his somewhat
isolated position Newton had to clarify two issues: (i) why mathematics could
be considered a source of certainty, and (ii) how mathematics could transfer its
certainty to natural philosophy.

In this chapter I do not deal with Newton’s approach to these issues. It is hard
to find a justification for his program in the writings of the early 1670s. Actually,
Newton’s critics often complained about his lack of justification and explanation,
and the dogmatism with which he defended his method. But Newton soon faced
these issues in the context of his researches contra Cartesian mathematics (see part
II). It is only at the end of this book that one will be in a position to appreciate the
negotiations and strategies that Newton had to engineer during his long intellectual
career to assess the certainty of mathematics and mathematized natural philosophy
vis à vis his mathematical practices, which were based on innovative, bold, heuristic,
and far from well-settled methods.

In this chapter I describe whom the young Lucasian Professor was criticizing,
what his models were, and the aims he set himself when proposing to inject geometry
into natural philosophy in his search for “highest evidence.” My aim is to locate
Newton’s early program in a dialogical context. His idiosyncratic philomathematism
is, I believe, a critical response, still lacking elaboration and justification, against
a position that was “being blazoned about” in the influential circle of the natural
philosophers gathered at the Royal Society.

One of Newton’s polemical targets might be identified as Descartes; indeed, anti-
Cartesian feelings pervade Newton’s work. In his natural philosophy Descartes had
adopted what is often called a hypothetical physics whereby hypothetical mechan-
ical models are introduced a priori in order to deduce the observed phenomena.
Descartes’ explanation of the magnet has become an icon of this sort of hypo-
thetical mechanicism (figure 2.1). Descartes conceived of the magnet as emitting
screw-shaped particles that penetrate the pores of matter and thus exert a circula-
tory motion ultimately accounting for the attraction between magnet and iron in
terms of contact action between corpuscles. This model was proposed as a hypothe-
sis based on local mechanical interactions that, although plausible, might not occur
in nature. Indeed, in Cartesian physics more than one model could be invoked in
order to reach a mechanical explanation of the same phenomenon. According to
Newton, Descartes’ hypothetical models were not derived from observation; they
were assumed from first principles. Newton disliked these characteristics of Car-
tesian hypotheticism because, in his opinion, Descartes’ models were not derived
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Figure 2.1

The earth as a giant magnet, according to Descartes. The screw-shaped particles are
emitted from the North Pole and travel toward the South Pole, generating magnetic effects
by direct contact with other bodies. Source: Descartes, Principia Philosophiae (1644), p.
271. Courtesy of the Biblioteca Angelo Mai (Bergamo).

from experiments (“deduced from the phenomena”)4 but proposed as instances of
one of many plausible causal explanations of phenomena.

Newton’s critical reading of Descartes can appear reductive to Cartesian schol-
ars. Indeed, Descartes had much to say about the role of mathematics, especially
geometry, in natural philosophy. Geometry was the model of certain knowledge
for Descartes. Further, reference to geometry was crucial in grounding Descar-
tes’ conception of matter as extension, his rejection of atomism, his view of the
phenomena of nature as understandable in terms of matter and motion. It is by
starting from a geometrized natural philosophy that Descartes drew such crucial
consequences as the nonexistence of a vacuum. As in the case of Descartes the
mathematician, Newton approached Descartes the natural philosopher from a very
restrictive and biased point of view. What Newton kept in critical view was the
genre of hypothetical-deductive modeling that informs so much of Descartes’ Prin-
cipia Philosophiae (1644), a book that was to be read, according to its author, as

4 See, e.g., the famous passage in the Scholium generale in Newton, Principles, p. 943. See also
§14.3.2.
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a “romance.”5 Indeed, Descartes made clear that the corpuscular models that he
proposed as explanations of a wide variety of phenomena were to be received as
plausible mechanical accounts of their functioning and genesis. Each one of these
explanations, taken separately, was neither unique nor certain, but their cumula-
tive effect, according to Descartes, delivered a powerful defense of the viability of a
mechanistic view of nature.6

But when expressing his dissatisfaction towards “conjectures and probabilities”
Newton might well have had in mind his contemporaries: the virtuosi of the Royal
Society associated with the experimental researches of Robert Hooke and Robert
Boyle. As Barbara Shapiro has argued, most of the English intellectuals associated
with the Royal Society “were deeply concerned with matters empirical, and they
concluded that neither syllogism nor mathematical reasoning was an appropriate ve-
hicle for ordering the data they were collecting.”7 The certainty of Aristotelian logic
and Euclidean geometry was deemed by them to be extraneous to experimental phi-
losophy, where the best one could reach was probability through a patient collection
of facts. The language that Hooke and Boyle promoted was one of avoiding both
dogmatic certainty and extreme skepticism. Their position can be characterized as
a form of mitigated skepticism according to which it is accepted that in natural phi-
losophy one can attain probability but not absolute certainty.8 It is also true that
Boyle praised mathematics and recognized that mathematical demonstration can
yield certainty.9 He valued quantitative reports of experimental results when they
could be attained. Mathematics occupies a prominent place in Boyle’s thought, but
he expressly delimited its sphere of influence. Typically, in Hydrostatical Paradoxes
(1666) and Medicina Hydrostatica (1690), he defended the idea that the “exactness”
and “preciseness” of mathematics cannot be attained in “experiments where we are
dealing with gross matter.”10

5 As Descartes famously stated in a letter to the abbé Claude Picot (translator of the first French
edition of Principia Philosophiae) that Newton might have read in Descartes, Opera Philosophica
(1656), which he possessed. See Harrison, The Library of Isaac Newton (1978), no. 506.
6 The literature concerning Descartes is as vast as the one concerning Newton. Two scholarly
introductions are Garber, Descartes’ Metaphysical Physics (1992) and Gaukroger, Descartes’ Sys-
tem of Natural Philosophy (2002). For a recent examination of Descartes’ experimental method,
see Buchwald “Descartes’s Experimental Journey” (2008).
7 Barbara Shapiro, Probability and Certainty in Seventeenth-Century England (1983), p. 5.
8 On constructive or mitigated skepticism, see Popkin, The History of Scepticism (2003), pp.
112ff.
9 Boyle, Of the Usefulness of Mathematicks to Natural Philosophy (1671). This was part of
Some Considerations Touching the Usefulnesse of Experimental Natural Philosophy (1671) and
was reprinted in Boyle, The Works of the Honourable Robert Boyle in Five Volumes (1744), 3,
pp. 392–456.
10 “[Some readers] will not like that I should offer for proofs such physical experiments, as do not
always demonstrate the things, they would evince, with a mathematical certainty and accurateness.
. . . In physical enquiries it is often sufficient, that our determinations come very near the matter,
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Newton positioned himself against the Baconian inductivist program in vogue at
the Royal Society as much as against the Cartesian rationalist hypotheticism. From
his many pronouncements on method one can infer that he considered both Bacon’s
bottom-up experimental procedure and Descartes’ top-down method doomed to
yield only probability. Bacon’s proposed patient collection of numerous experiments
was not sufficient to guarantee certainty. Descartes alignment of clear and distinct
ideas could only deliver, as Newton wrote in his maturity, “little better then a
romance.”11

Newton proposed to overcome the probabilistic outcomes of both Cartesianism
and Baconianism by “proceeding alternately from experiments to conclusions &
from conclusions to experiments”12 (see chapter 14). As far as possible, general
principles of philosophy had to be deduced, not induced, from experiments. A single
well-chosen experiment (the experimentum crucis) or phenomenon (the planetary
laws) could allow the geometrical philosopher to deduce the truth of a principle, or
better, to initiate a process of approximation to the truth grounded on successive
deductions of conclusions from experiments and experiments from conclusions.

Much of the polemic between Hooke and Newton over the 1672 paper on light
(in which Newton proposed his two prisms experimentum crucis) can be viewed as
a clash between two different conceptions of method.13 On the one hand, Newton
claimed that through a single experiment he had been able to mathematically de-
duce a property of light beyond doubt (white light is composite; its components
exhibit different refraction coefficients). On the other hand, Hooke denied New-
ton’s claims to necessity and certainty, and advocated a methodology based on the
evaluation of a plurality of experimental tests. In a passage that Henry Oldenburg,
the secretary of the Royal Society, cautiously censored, Newton went so far as to
state,

A naturalist would scearce expect to see ye science of those [colors] become math-
ematicall, & yet I dare affirm that there is as much certainty in it as in any other
part of Opticks. For what I shall tell concerning them is not an Hypothesis but
most rigid consequence, not conjectured by barely inferring ‘tis thus because not

though they fall short of a mathematical exactness.” Boyle, Works (1744), 2, p. 741. “[I do not]
pretend (and indeed it is not necessary) that the proportion, obtainable by our method, should
have a mathematical preciseness. For in experiments where we are to deal with gross matter,
and to employ about it mathematical instruments, it is sufficient to have a physical, and almost
impossible to obtain (unless sometimes by accident) a mathematical exactness.” Boyle, Works
(1744), 5, p. 480. Also available in The Works of Robert Boyle (1999–2000).
11 “But if without deriving the properties of things from Phaenomena you feign Hypotheses &
think by them to explain all nature you may make a plausible systeme of Philosophy for getting
your self a name, but your systeme will be little better then a Romance.” Add. 3970, f. 480v.
Discussed in Alan Shapiro, “Newton’s ‘Experimental Philosophy’” (2004), pp. 195–6.
12 Ibid.
13 Bechler, “Newton’s 1672 Optical Controversies” (1974).
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otherwise or because it satisfies all phaenomena (the Philosophers universall Top-
ick,) but evinced by ye mediation of experiments concluding directly & wthout any
suspicion of doubt.14

Hooke, who could read this passage canceled from the paper printed in the Philo-
sophical Transactions, remarked,

Nor would I be understood to have said all this against his [Newton’s] theory as
it is an hypothesis, for I doe most Readily agree with him in every part thereof,
and esteem it very subtill and ingenious, and capable of salving all the phaenomena
of colours; but I cannot think it to be the only hypothesis; not soe certain as
mathematicall Demonstrations.15

Hooke was hitting upon themes that were part of the ideology of the Royal Society,
defended by influential members such as Boyle, Joseph Glanvill, and Thomas Sprat.
Newton’s quest for mathematical certainty could appear to them as mere arrogance
and as a departure from the Baconian program that informed their agenda. Hooke
explicitly invoked Bacon’s authority against Newton in his letter of June 1672 to
Lord Brouncker, the president of the Royal Society:

I see noe reason why Mr. N. should make soe confident a conclusion that he to
whome he writ did see how much it was besides the business in hand to Dispute
about hypotheses. For I judge there is noething conduces soe much to the advance-
ment of Philosophy as the examining of hypotheses by experiments & the inquiry
into Experiments by hypotheses, and I have the Authority of the Incomparable
Verulam to warrant me.16

There was a moral dimension to the Royal Society’s initial rejection of New-
ton’s self-enrollment in the camp of geometrical philosophers: such a program was
against the precept that “true knowledge is modest and wary ; ’tis ignorance that is
so bold and presuming.” From this viewpoint the certainty of geometry should not
be traded for the experimental practice that was promoted as a cooperative effort,
where different explanations could and should be confronted without any dogmatic
emphasis. The probabilism and moderate skepticism that were widespread in New-
ton’s England were part of a much larger movement toward tolerance endorsed by
the Fellows of the Royal Society. Newton’s geometrical philosopher could seem too
much akin to what Glanvill termed a “dogmatist [who] betrays a poverty and a
narrowness of spirit [and, being] too confident in opinions, [shows] ill manners and
immodesty.”17

14 Correspondence, 1, pp. 96–7.
15 Correspondence, 1, p. 113.
16 Correspondence, 1, p. 202.
17 Glanvill, Scepsis Scientifica (1665), p. 195.
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Feingold showed that Newton’s approach, consisting in an “uncompromising
conviction concerning the primacy of mathematics in the domain of natural philos-
ophy . . . and his condescending view of the natural history tradition,” was shared
by only a fraction of the Royal Society’s Fellows for many years to come.18 Dur-
ing Newton’s presidency, many of the Fellows defined themselves as naturalists and
opposed the Newtonian philomaths. Feingold brought new insight into the dis-
pute that was fought between the two camps, and he documented the tension that
existed among the Fellows of the Royal Society. The quarrel over Newton’s 1672
paper on the experimentum crucis can be seen as the beginning of this struggle,
which was still raging the year of Newton’s death (1726), in the battle between
Martin Folkes and Hans Sloane for the presidency of the Royal Society. Feingold
opposed the idea that the distinction between the two groups could be defined
in terms of scientists versus amateurs. He warned that “by the early eighteenth
century the cleavage between a group comprised primarily of mathematicians, as-
tronomers, and physicists, on the one hand, and naturalists, physicians, and general
scholars, on the other, was indicative of taste, not competence.”19 A towering fig-
ure in English natural philosophy such as Boyle showed a marked disinclination
to merge mechanicism and mathematization, even when he recognized that his
corpuscular view of matter allowed the description of the natural processes in geo-
metrical terms. Both Boas Hall and Shapin showed that Boyle did so not because
of mathematical illiteracy but because the language he promoted had to avoid un-
warranted expectations of certainty and accuracy, and had to be accessible to the
scrutiny of the largest number of inquirers. Modesty in theoretical assessment and
accessibility were values deeply embedded in Boyle’s moral depiction of the natural
philosopher.20

It would be, however, narrow-minded to portray Newton as an outsider fight-
ing single-handedly in favor of mathematized natural philosophy against a compact
group of Baconian naturalists. It is true that Boyle sanitized experimental work
from interference by mathematics, but alternative views emerged as well, for in-
stance, in the works of Hooke, Christopher Wren, John Wallis, Isaac Barrow, and
later Edmond Halley.

In most of his works Hooke displayed due reverence toward Boyle’s mitigated
skepticism. For instance, in the Preface to the Micrographia (1665) he made clear
that his hypotheses, while “grounded and confirm’d” by experiment, should be taken
“only as Conjectures and Quaeries” whose epistemological status was far from the
mathematical certainty attained through “any Infallible Deductions or certainty

18 Feingold, “Mathematicians and Naturalists” (2001), p. 78.
19 Ibid., p. 94.
20 Boas, Robert Boyle and Seventeenth-Century Chemistry (1958); Shapin, “Robert Boyle and
Mathematics” (1988).
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of Axioms.” It is evident from the Preface of the Micrographia that Hooke paid
attention to deeply felt values shared by his patrons:

If therefore the reader expects from me any infallible deductions, or certainty of
axioms, I am to say for myself, that those stronger works of wit and imagination
are above my weak abilities; or if they had not been so, I would not have made use
of them in this present subject before me: Wherever he finds that I have ventur’d
at any small conjectures, as the causes of things that I have observed, I beseech
him to look upon them only as doubtful problems, and uncertain guesses, and not
as unquestionable conclusions, or matters of unconfutable science.21

The message delivered by Hooke, in a work that has been aptly described as a Royal
Society venture,22 could not be more at odds with Newton’s defense of the role of
geometrical philosophers. It should also be noted that in his magnum opus Hooke
lost no occasion to praise Bacon for his empiricism and Descartes for his corpuscular
hypothetical models.

However, Hooke was also interested in mathematical modeling, especially when
it came to planetary motions. Recent research illuminates the extent of Hooke’s
mathematization in this field.23 His employment of mathematics, however, was
quite different from Newton’s, both in content and role. Hooke’s mathematiza-
tion of the planetary orbits was preeminently graphic. It can be understood as
a graphic simulation of the mechanical devices (the compound pendulum and a
ball rolling on an inverted cone) that he devised in order to test his theories on
central force motion. In Hooke’s graphic mathematics is instantiated a character-
istic of his work highlighted by both Bennett and Bertoloni Meli: an entangle-
ment between art and nature, so that mechanical devices work as cognitive tools.24

Hooke’s mathematization was extraneous to Newton’s much more abstract meth-
ods. However, some of the mathematical techniques that Newton deployed, es-
pecially those related to the organic description of curves, implied the use of me-
chanical devices that Newton described graphically and that he might have even
constructed (§5.4.3).

The young Lucasian Professor found more consonance with the views held by
Wren, Wallis, and especially Barrow, who in Lectiones Mathematicae (delivered in
1664–1666) rejected the distinction between sensible and intelligible, between pure
and mixed (or concrete) mathematics, by stating that since continuous magnitude
is the “affection” of all things, there is no part of “physics” that is not reducible to

21 Hooke, Micrographia (1665), Preface [fifth page].
22 Hunter, “Hooke the Natural Philosopher” (2003), p. 124.
23 Nauenberg, “Hooke, Orbital Motion, and Newton’s Principia” (1994); “Robert Hooke’s Seminal
Contributions to Orbital Dynamics” (2005).
24 Bennett, “The Mechanics’ Philosophy and the Mechanical Philosophy” (1986); Bertoloni Meli,
Thinking with Objects (2006).
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geometry. Barrow went so far as to claim that mathematics is “co-extended with
physics”25 (see chapter 8).

Newton’s quest for certainty in a geometrized natural philosophy, while in the
minority and oriented toward “immoral” dogmatism, found resonances in the works
of a group of mathematicians interested in promoting mixed mathematics. Had
Newton heard one of Wren’s lectures at Gresham College, he could not but have
agreed with the following:

Mathematical Demonstrations being built upon the impregnable Foundations of
Geometry and Arithmetick, are the only Truths, that can sink into the Mind of
Man, void of all Uncertainty; and all other Discourses participate more or less
of Truth, according as their Subjects are more or less capable of Mathematical
Demonstration. Therefore, this rather than Logick is the great Organ Organωn of
all infallible Science.26

Wren was aiming at “a real Science of Nature, not an Hypothesis of what Nature
might be” by “a geometrical Way of reasoning from ocular Experiment.”27 Simi-
larly, Barrow stated:

Mathematicians . . . only meddle with such things as are certain, passing by those
that are doubtful and unknown. They profess not to know all Things, neither do
they affect to speak of all Things. What they know to be true, and can make good by
invincible Arguments, that they publish and insert among their Theorems. Of other
Things they are silent and pass no Judgement at all, chusing rather to acknowledge
their Ignorance, than affirm any Thing rashly. They affirm nothing among their
arguments or Assertions which is not most manifestly known and examined with
utmost Rigour, rejecting all probable Conjectures and little Witticism.28

Thus, in his Optical Lectures and in writings surrounding the 1672 paper on the
new theory of light and colors, Newton aggressively took sides in favor of math-
ematicians like Wren and Barrow and against naturalists like Boyle. Why he en-
dorsed this stance so passionately is difficult to fathom. Newton’s main biographer,
Richard Westfall, has done much to clarify why a “sober, silent, thinking lad” from
Lincolnshire was consumed with searching for stability, truth, and certainty.29 To
Westfall’s psychological analysis I would like to add an observation. The young

25 “For magnitude is the common affection of all physical things, it is interwoven in the Nature
of Bodies, blended with all corporeal Accidents”; “I say there is no part of this [Physics] which
does not imply Quantity . . . and consequently which is not in some way dependant on Geome-
try”; “Mathematics . . . is adequate and co-extended with physics.” Barrow, The Usefulness of
Mathematical Learning Explained and Demonstrated (1734), pp. 21, 22, 26.
26 Wren, Parentalia (1750), pp. 200–1.
27 Ibid. On Wren, see Bennett, The Mathematical Science of Christopher Wren (1982), esp. pp.
118–20.
28 Barrow, The Usefulness of Mathematical Learning (1734), p. 64.
29 Westfall, Never at Rest (1980), pp. 40–65.
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Newton perceived himself preeminently as a mathematician. The advances that he
had achieved in the anni mirabiles told him that mathematics was his métier. The
equally important advances in the theory of colors, he was convinced, had been
possible only thanks to the application of mathematical method to experimental
enquiry. He elaborated at length on this last point until the end of his life (see
part V).

But if certainty was to be sought in mathematics, what was its method and
what role did it have in natural philosophy? Or rather, which among the available
alternative mathematical methods were exact and legitimate, and how could they
be injected successfully into experimental discourse? Neither in Optical Lectures
nor in the polemical writings addressed against the critics of the new theory of light
did Newton elaborate an answer. In trying his way out of these challenging ques-
tions he found himself in a complex position. Most notably, the new methods that
were developed in Newton’s times, and to whose progress he contributed massively,
departed from the standards of rigor set forth both by Greek tradition and by the
new canon advanced by Descartes.

Because it is from Cartesian common analysis that Newton took inspiration as
a young mathematician, and because it is against this tradition that he turned in
later years, it is appropriate to provide in the next chapter a brief characterization
of what Descartes had to say about exactness, demarcation between legitimate and
illegitimate tools of construction, and simplicity, in an essay pamphlet printed as
one of the appendices to Discours de la Méthode (1637) that fell into Newton’s
hands in 1664: the Géométrie.





3 Descartes on Method and Certainty in the Géométrie

If, then, we wish to resolve any problem, we first suppose the solution already
effected, and give names to all the lines that seem needful for its construction,
to those that are unknown as well as to those that are known. Then, making no
distinction between known and unknown lines, we must unravel the difficulty in any
way that shows most naturally the relations between these lines, until we find it
possible to express a single quantity in two ways. This will constitute an equation.
. . . This is one thing which I believe the ancient mathematicians did not observe,
for otherwise they would not have put so much labor into writing so many books
in which the very sequence of the propositions shows that they did not have a sure
method of finding all, but rather gathered together those propositions on which
they had happened by accident.

—René Descartes, Géométrie, 1637

What the ancients have taught is so scanty and for the most part so lacking in
credibility that I may not hope for any kind of approach toward truth except by
rejecting all the paths which they have followed.

—René Descartes, Les Passions de l’Âme, 1649

3.1 Analysis and Synthesis in Pappus

Few works in the history of mathematics have been more influential than Descartes’
Géométrie (1637). The canon defined in this revolutionary essay was to dominate
the scene for many generations, and its influence on the young Newton cannot be
overestimated. Indeed, most of Newton’s mathematical work can be understood as
a development of and a response to the Géométrie, which he came to know in its
Latin translation (1659–1661) due to Frans van Schooten. It is thus essential to
recall some salient aspects of this pivotal text.1

Epigraph sources: (1) Descartes, Géométrie, pp. 300 [6–9], 304 [17]. The first page number
indicates the French text of La Géométrie, which appeared in Descartes, Discours de la Méthode
(1637), pp. 297–413. The bracketed numbers indicate the pages in the English translation provided
in the Dover facsimile edition. (2) “ce que les anciens en ont enseigné est si peu de chose, et pour
la plupart si peu croyable, que je ne puis avoir aucune espérance d’approcher de la vérité qu’en
m’éloignant des chemins qu’ils ont suivis.” Descartes, Les Passions de l’Âme (1649), p. 207.
1 Bos, Redefining Geometrical Exactness (2001) is an authoritative guide to the Géométrie. For
different approaches, see also Molland, “Shifting the Foundations” (1976); Giusti, “La Géométrie
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The difficulties that one encounters in historically evaluating the Géométrie are,
in fact, momentous, and this preliminary chapter does not attempt to overcome
them. First, the historian should place Descartes’ mathematics in the context of his
philosophical ideas. Newton’s initial response to Cartesian epistemology and ontol-
ogy has been documented most notably by James E. McGuire and Martin Tamny.2

It does not seem to me, however, that Newton’s reading of the Géométrie inter-
acted with those philosophical concerns, which were certainly vital for Descartes.
Therefore, I disregard this complex and deep issue. Second, the relation between
tradition and innovation in Descartes’ mathematical work is hard to define. From
one point of view, the Géométrie marks a turning point in the elaboration of a
theory of algebraic equations applied to the study of curves. From another point of
view, its structure and language can be understood only by taking into consideration
agendas that polarized the attention of early-seventeenth-century mathematicians.
Newton was quick to exploit the innovative abstract algebraic theory elaborated by
Descartes. But he manifested also a passionate interest in confronting himself with,
and ultimately criticizing, the canon of problem solving proposed in the Géométrie,
the canon that constitutes Descartes’ response to debates on the nature of anal-
ysis and synthesis that were ignited by the publication of Pappus’s Collectio in
1588. Paradoxically, when Newton devoted attention to this obsolescent facet of
the Géométrie, he proved to be more conservative than Descartes.

Contrary to what one might believe, the Géométrie displays few elements of
what is nowadays identified as analytic geometry, a theory that certainly would
be unthinkable without Descartes’ contribution, but that is still only in nuce in
Cartesian geometry as Newton met in the Géométrie as a young student at Trinity
College.3 Most notably, in the Géométrie one can find neither Cartesian coordinate
axes nor new curves plotted from their equations. Rather (oblique) coordinates are
introduced by choosing certain directions embedded in the given figure, and curves
are most often posited by geometrical definitions (e.g., when an ellipse is defined as
a section of a plane with a cone) or introduced as traced by motion.4 Equations are
subsequently derived from the given figure and serve as symbolic devices useful for

di Descartes tra Numeri e Grandezze” (1990); Israel, “Dalle Regulae alla Géométrie” (1990);
and Mancosu, Philosophy of Mathematics and Mathematical Practice in the Seventeenth Cen-
tury (1996), pp. 65–91. Among the numerous French scholars who, continuing the tradition
of Pierre Boutroux, Léon Brunschvigc, Pierre Costabel, Jules Vuillemin, Gilles-Gaston Granger,
have contributed important works on the Géométrie are Serfati, “Les Compas Cartésiens” (1993),
Rashed, “La Géométrie de Descartes et la Distinction Entre Courbes Géométriques et Courbes
Mécaniques” (1997), Jullien, Descartes: La Géométrie de 1637.
2 Newton, Certain Philosophical Questions (1983), pp. 127–94.
3 Newton worked on the second Latin edition, but he might have encountered also the first Latin
edition. In this book I cite from the second Latin edition, Geometria (Amsterdam: apud Lu-
dovicum & Danielem Elzevirios, 1659–1661).
4 For Descartes’ conceptions concerning curves, their construction, and classification, see §3.2.3.
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abbreviating geometrical relations. It should be stressed that the relation between
equations and curves in Descartes has been much discussed in the literature, and is
the object of much disagreement among Cartesian scholars.

It has been suggested by scholars such as Bos that in order to understand the lan-
guage and the structure of the Géométrie, one must place it in the context of the
problem-solving techniques elaborated by the early-seventeenth-century represen-
tatives of what Mahoney termed the analytical school: a group of mathematicians
who united their competence in algebra with an innovative reading of the heuristic
techniques of the ancient geometers.5 Most notably, they referred to the Alexan-
drian mathematician Pappus (fl. a.d. 320) whose Collectio Mathematica appeared
in Pesaro in 1588 thanks to the edition of the Greek text and Latin translation by
Federico Commandino. The seventh book of the Collectio consisted in an incom-
plete presentation of works (mostly lost and no longer available to the readers of
Commandino’s translation) which, according to Pappus, had to do with a method
followed by the ancient geometers: the method of analysis. In treating these works,
Pappus assumed that his readers had access to them, his aim being that of intro-
ducing, commenting, and filling the gaps. For early-modern mathematicians it was
an arduous and challenging task to divine the lost ancient works on analysis. The
opening of the seventh book is often quoted. It is a passage, obscure to early-modern
readers, whose decoding was at the top of the agenda of those numerous enthusiasts
who were convinced that here lay hidden the key to the method of discovery of the
ancients. Given the importance this passage had for Descartes, and for Newton, it
is worth quoting at length:

That which is called the Domain of Analysis, my son Hermodorus, is, taken as a
whole, a special resource that was prepared, after the composition of the Common
Elements, for those who want to acquire a power in geometry that is capable of
solving problems set to them; and it is useful for this alone. It was written by three
men: Euclid the Elementarist, Apollonius of Perge, and Aristaeus the Elder, and
its approach is by analysis and synthesis.

Now analysis is the path from what one is seeking, as if it were established, by way
of its consequences, to something that is established by synthesis. That is to say,
in analysis we assume what is sought as if it has been achieved, and look for the
thing from which it follows, and again what comes before that, until by regressing
in this way we come upon some one of the things that are already known, or that
occupy the rank of a first principle. We call this kind of method “analysis,” as if to
say anapalin lysis (reduction backward). In synthesis, by reversal, we assume what
was obtained last in the analysis to have been achieved already, and, setting now in
natural order, as precedents, what before were following, and fitting them to each
other, we attain the end of the construction of what was sought. This is what we
call “synthesis.”

5 Bos, Redefining Geometrical Exactness (2001); Mahoney, The Mathematical Career of Pierre de
Fermat (1601–1665) (1973), pp. 1–14.
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There are two kinds of analysis: one of them seeks after truth, and is called “theo-
rematic”: while the other tries to find what was demanded, and is called “problem-
atic.” In the case of the theorematic kind, we assume what is sought as a fact and
true, then, advancing through its consequences, as if they are true facts according
to the hypothesis, to something established, if this thing that has been established
is a truth, then that which was sought will also be true, and its proof the reverse
of the analysis; but if we should meet with something established to be false, then
the thing that was sought too will be false. In the case of the problematic kind, we
assume the proposition as something we know, then, proceeding through its con-
sequences, as if true, to something established, if the established thing is possible
and obtainable, which is what mathematicians call “given,” the required thing will
also be possible, and again the proof will be the reverse of the analysis; but should
we meet with something established to be impossible, then the problem too will
be impossible. Diorism is the preliminary distinction of when, how, and in how
many ways the problem will be possible. So much, then, concerning analysis and
synthesis.6

Pappus here makes a distinction between analysis and synthesis. Analysis (reso-
lutio) was often conceived of as a method of discovery or problem solving that, work-
ing step by step backward from what is sought as if it had already been achieved,
eventually arrives at what is known. Synthesis (compositio) goes the other way
round: it starts from what is known and, working through the consequences, ar-
rives at what is sought. On the basis of Pappus’s authority it was often stated that
synthesis reverses the steps of analysis. It was synthesis that provided the rigor-
ous proof. Thus the widespread belief that the ancients had kept the method of
analysis hidden and had published only the rigorous synthesis, either because they
considered the former not wholly demonstrative, or because they wanted to hide
the method of discovery. Such ideas concerning the ancients were shared by many,
including François Viète and Descartes. The historian, of course, has to be careful
in distinguishing approaches to the ancient tradition, which were considerably dif-
ferent. Viète, Descartes, and Newton mused on the classical tradition with different
agendas in mind.

One should note that the Greek terms analysis and synthesis were interchange-
able with the Latin resolutio and compositio, which were rendered in English as
resolution and composition, and sometimes, especially in geometrical practice, with
resolution and construction. These mathematical terms interacted in a complex way
with the technical vocabulary pertaining to the philosophical, logical, chemical, and
medical traditions.7

Pappus’s description of the methods of analysis and synthesis has many ambigui-
ties. In explaining what consequence means in the second paragraph of the foregoing

6 Pappus, Book 7 of the Collection (1986), pp. 82–4.
7 These interactions are particularly important when studying the logical tradition, exemplified
by the work of Jacopo Zabarella (1533–1589).
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quotation, Pappus tells that in searching for the consequences of something that is
assumed, one should look for “the thing from which it follows.” Apparently, conse-
quence means a neighboring term in a deductive sequence, something that follows
from a term but also something from which the term follows. In the second mean-
ing, analysis is a regression whereby one posits what is sought, say, A, and tries to
find a B1 that implies A, and then a B2 that implies B1, until one attains a final
Bf that is a “thing that is already known or occupies the rank of a principle.” The
synthesis would be a deduction of A from Bf .

The third paragraph, however, suggests that also the first meaning is to be taken
into account: the analysis would be a deduction of Bf from A (say, if A then B1,
if B1 then B2, if B2 then Bf ). If Bf is “something established to be false” or
“impossible,” by modus tollens, one deduces that A is false or impossible, too. If,
instead, Bf is “something established to be true” or “possible,” one needs to reverse
the steps of the analysis in order to achieve a deduction of A from Bf . Reversing
the steps is, of course, possible only if the analytical deduction is constituted of
biconditionals (of the form “if and only if”): this requirement is often satisfied in
geometrical constructions.

The ambiguity in Pappus’s characterization of the method of analysis went hand
in hand with the ambiguities that one encountered when inspecting examples of its
application in the Collectio. It was very difficult to extract clear indications from
Pappus’s mathematical practice. Early-modern mathematicians had to confront a
mathematical methodology that eluded a clear definition.

Another distinction of momentous importance for early-modern mathematicians
is that between problems and theorems. A problem calls for a construction, achieved
via permitted means, for its solution. It starts from certain elements considered as
already constructed either by postulate or by previous constructions. A problem
ends with a Q.E.I. (quod erat inveniendum, what was to be found) or with a Q.E.F.
(quod erat faciendum, what was to be done). A theorem asks for a deductive proof, a
sequence of propositions one following from the previous one by permitted inference
rules. The starting point of the deductive chain can be either axioms or previously
proved theorems. A theorem ends with Q.E.D. (quod erat demonstrandum, what
was to be demonstrated). According to Pappus, therefore, there are two kinds
of analysis, the former referring to theorems, the latter to problems. But it is
clear that early-modern mathematicians were mainly concerned with the analysis
of geometrical problems.

The nature of the method of analysis and synthesis (or resolution and composi-
tion) in ancient Greek mathematics was not, and still is not, completely clear. As
Pappus was the main source of inspiration both for Descartes and for Newton, it
is appropriate to look at one of the demonstrations from the Collectio— Proposi-
tion 48, Book 4—which can be taken as an example of application of problematic
analysis and synthesis (figure 3.1):
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Proposition 48, Book 4. Source: Pappus, Collectionis Quae Supersunt (1876–78), 1, p. 291.
Courtesy of the Biblioteca Angelo Mai (Bergamo).

Prop. 48. To construct an isosceles triangle having each of the angles at the base
with a given ratio to the remaining angle.

[analysis] Let it have happened, and let αβγ be constructed, and let circle αδγ be
drawn about center β and through points α, γ, and let αβ be extended to δ, and
let δγ be joined. Since, then, the ratio of angle γαβ to angle αβγ is given, and the
angle at δ is half the angle αβγ, the ratio of angle γαδ to angle αδγ is therefore
given, in such a way that so is the ratio of arc δγ to arc αγ. And so, since arc
αγδ of the semicircle is cut in a given ratio, γ is given, and triangle αβγ is given in
species.

[synthesis] It will be synthesized as follows. For let the given ratio that each of the
angles at the base must have to the other angle be the ratio of εζ to ζη, and let
ζη be bisected at θ, and let a circle αδγ be set out with center β and diameter αδ,
and let arc αγδ be cut at γ, in such a way that as arc δγ is to arc γα, so is εζ to
ζη (for this was previously described, i.e., how generally a given arc may be cut in
a given ratio), and let βγ, γα, γδ be joined. Thus, since arc δγ is to arc γα, i.e., as
angle δαγ to αδγ, so is εζ to ζθ; and twice the consequents, therefore, as angle γαβ
is to angle αβγ, so is εζ to ζη. Therefore an isosceles triangle, αβγ, is constructed
having each of the angles at the base having a given ratio to the remaining angle.8

The analysis begins with the supposition that the isosceles triangle has been
constructed. The deduction leads to the discovery of certain identities between
ratios that must hold under the supposition that the required construction has

8 Pappus, Collectionis Quae Supersunt (1876–78), 1, pp. 288.15–290.23. I thank Henry Mendell
for providing this translation from the Greek, and Fabio Acerbi for further assistance.
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been achieved. These identities allow us to determine the triangle “in species,”
that is, they determine a class of similar isosceles triangles that answer the con-
ditions of the problem. In the synthesis, the triangle that answers the problem is
instead constructed starting from the identities between ratios that are assumed
in the statement of the problem, or that have already been achieved in previous
constructions.

It should be noted that one of the previously proved presuppositions deployed
in the analysis and synthesis of Proposition 48 falls outside the canon of ruler and
compass constructions, which was often identified with the canon allowed in Euclid’s
Elements, namely, Pappus assumes as a “thing which is already established” that
any arc can be cut in two arcs standing in have a given ratio. The proof is in
Propositions 45 and 46, Book 4, and is achieved by the use of the “symptoms” (the
characteristic properties) of the quadratrix and the spiral, respectively.9

A powerful idea that began to circulate at the turn of the seventeenth century
was that modern symbolic algebra captured some aspects of the analysis of the
Greeks. The evidence that a method analogous to symbolic algebra was within
reach of the ancients was provided by the work of Diophantus and especially by
an ahistorical reading of Euclid’s Elements and Data. The approach of Renais-
sance culture toward the classics, in sculpture, architecture, music, philosophy,
and other fields, was characterized by admiration together with a desire to re-
store the forgotten conquests of the ancients. This approach, often bordering on
worship, carried with it the idea that there had been a decay after a glorious,
golden past. The works of Euclid, Apollonius, and Archimedes were considered
by many Renaissance mathematicians to be unsurpassable models. The question
that often emerged was, How could the Greeks have achieved such a wealth of
results?

In the decades following the publication of the Collectio the belief in the existence
of a lost or hidden “Treasure of Analysis” promoted many efforts aimed at restoring
the ancients’ method of discovery. Not everybody trod in the steps of the classi-
cists. Typically, some promoters of the new symbolic algebra were proud to define
themselves as innovators rather than as restorers. It was common, however, even
among creative algebraists such as François Viète, John Wallis, and Isaac Newton,
to relate symbolic algebra to the ancient analysis, to the hidden problem-solving
techniques of the ancients. Viète’s main work, significantly entitled In Artem An-
alyticem Isagoge (an introduction to the analytical art), published in 1591, opens
with reference to the ancients’ knowledge of analysis.

Reference to the remote past has often been used (e.g., by Copernicus in De
Revolutionibus (1543)) to validate theories that appear to us extremely innovative.
It is always a difficult historiographic matter to evaluate the rhetorical role of such

9 Pappus, Collectionis Quae Supersunt (1876–78), 1, pp. 285–9.
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declarations, for instance, was Viète really convinced that he was a rediscoverer of
past methods, or was he merely using the authority of the ancients in order to render
new ideas acceptable? It is often the case that references to the lost ancient tradition
played different roles in an author’s several works. The identification of algebra with
the analytical methods of discovery of the ancients became a rather common theme
such that it could be found in a widely circulated seventeenth-century mathematical
dictionary by Jacques Ozanam (1691).10 However, as the seventeenth century pro-
gressed, the tumultuous advance of mathematical techniques rendered references to
the ancients more and more strained. What mathematicians could obtain appeared
to many obviously not within the grasp of the ancient geometers. Thus, Newton
found himself trapped in this tension between ancient and modern.

3.2 Analysis and Synthesis in Descartes’ Mathematical Canon

3.2.1 Algebra as analysis

How did Descartes define his canon of problem solving and the role of algebra in
the analysis and synthesis of geometrical problems? The historian who has done
the most to clarify this question is Bos.11

In Book 1 of the Géométrie, Descartes explained how one can translate a ge-
ometrical problem into an equation.12 He was able to do so by a revolutionary
departure from tradition. Indeed, he interpreted algebraic operations as closed op-
erations on segments. For instance, if a and b are segments, the product ab was
not conceived by Descartes as representing an area but rather another segment: “It
must be observed that by a2, b3, and similar expressions, I ordinarily mean any
simple lines.” Before the Géométrie the multiplication of two segments of lengths
a and b would have been taken as a representation for the area of a rectangle with
sides measuring a and b.13

Descartes’ interpretation of algebraic operations was a gigantic innovation (fig-
ure 3.2),14 but he proceeded wholly in line with Pappus’s method of analysis and
synthesis, which starts from the assumption that the problem is solved. Indeed,
according to Descartes, one has to “start by assuming that the problem was solved

10 Ozanam, Dictionaire Mathématique (1691).
11 Bos’s reading of Descartes is recognized as a seminal contribution. Nonetheless, objections
have been raised to the close association that he establishes in Redefining Geometrical Exactness
(2001) between Descartes’ mathematical work and the exigencies emerging from the tradition of
the analysis and synthesis of geometrical problems.
12 Descartes did so in the sixth section of Book 1, entitled “Comment il faut venir aux Equations
qui servent a resoudre les problesmes” [How one should arrive at the equations that serve for
solving the problems]. Géométrie, p. 300 [8].
13 Géométrie, p. 298 [5].
14 Were his contemporaries and indeed Descartes himself aware of this?
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Figure 3.2

Descartes’ geometrical interpretation of algebraic operations. He wrote: “For example, let
AB be taken as unity, and let it be required to multiply BD by BC. I have only to join
the points A and C, and draw DE parallel to CA; and then BE is the product of BD and
BC.” So, given a unit segment, the product of two segments is represented by another
segment, not by a surface. The second diagram is the construction of the square root of
GH. Given GH and a unit segment FG, one draws the circle of diameter FG + GH and
erects GI, the required root. Source: Descartes, Géométrie (1637), p. 298. Courtesy of
the Biblioteca Angelo Mai (Bergamo).

and consider a figure incorporating the solution.”15 The line segments in the figure
are denoted by letters, a, b, c, . . . for segments that are given, and z, y, x, . . . for
segments that are unknown. Geometrical relations holding between the segments
(which in general take the form of identities between ratios of lengths but can also
be more complicated relations such as cross-ratio identities) are then translated
into corresponding equations.16 Here we are at the very beginning of the analytical
process: the unknown segments are treated as if they were known and manipulated
in the equations on a par with the givens of the problem. This is why Descartes
and the others of the analytical school associated algebra with the method of anal-
ysis. Algebra was not associated with the method of analysis because of the use of
symbolism (we are accustomed nowadays to equate analytical with symbolical, a

15 Bos, Redefining Geometrical Exactness (2001), p. 303.
16 The concept of cross-ratio is defined in §5.2.2.
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linguistic convention that began to surface in the middle of the eighteenth century)
but rather because algebra was perceived as patterned on the method of analysis
described by Pappus. This is a very important point. A quotation from Descartes
will clarify it:

If, then, we wish to resolve any problem, we first suppose the solution already
effected, and give names to all the lines that seem needful for its construction,
to those that are unknown as well as to those that are known. Then, making no
distinction between known and unknown lines, we must unravel the difficulty in any
way that shows most naturally the relations between these lines, until we find it
possible to express a single quantity in two ways. This will constitute an equation.
. . . This is one thing which I believe the ancient mathematicians did not observe,
for otherwise they would not have put so much labor into writing so many books
in which the very sequence of the propositions shows that they did not have a sure
method of finding all, but rather gathered together those propositions on which
they had happened by accident.17

As is apparent from this quotation, the algebraic symbolism and the formulation
of equations are, according to Descartes, the tools to be applied in the analysis of
geometrical problems. He proposed a great number of examples that displayed how
successful this analytical procedure could be. He taught how geometrical problems
that had given trouble to Greek mathematicians could be easily translated into
algebra. Algebra was the new analytical tool that, in his opinion, allowed one to
surpass the boundaries of ancient Greek geometry. It is difficult for us to appreciate
how irreverent such a position would have seemed to the heirs of the Renaissance.

The geometrical problems that Descartes considered can be divided into two
classes: determinate and indeterminate.

3.2.2 Analysis and Synthesis of Determinate Problems

As Bos has explained, Descartes’ method of problem solving was, according to the
Pappusian canon, divided into an analytical and a synthetic part.18 The analytical
part was algebraic and consisted in reducing the problem to a polynomial equation.

17 “Ainsi voulant resoudre quelque problesme, on doit d’abord le considerer comme desia fait, &
donner des noms a toutes les lignes, qui semblent necessaires pour le construire, aussy bien a celles
qui sont inconnües, qu’aux autres. Puis sans considerer aucune difference entre ces lignes connües,
& inconnües, on doit parcourir la difficulté, selon l’ordre qui monstre le plus naturellement de tous
en qu’elle sorte elles dependent mutuellement les unes des autres, iusques a ce qu’on ait trouvé
moyen d’exprimer une mesme quantité en deux façons: ce qui se nomme une Equation . . . . Ce
que ie ne croy pas que les anciens ayent remarqué. Car autrement ils n’eussent pas pris la peine
d’en escrire tant des gros livres, ou le seul ordre de leurs propositions nous fait connoistre qu’ils
n’ont point eu la vraye methode pour les trouver toutes, mais qu’ils ont seulement ramassé celles
qu’ils ont rencontrées.” Géométrie, pp. 300 [6–9], 304 [17].
18 Bos, Redefining Geometrical Exactness (2001), pp. 287–9.
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Table 3.1 Descartes on Analysis and Synthesis of Determinate Problems

Required object Line segments

Analysis Express algebraically ratios of known and unknown
segments until an equation is achieved

Equation Algebraic in one unknown

Synthesis “Construction of the equation”: determine line segments
representing the roots of the equation by intersection of
algebraic curves of lowest possible degree

If the equation was in one unknown, the problem was determinate. The equation’s
real roots would correspond to the finitely many solutions of the problem. Methods
for the calculation of the roots of algebraic equations up to the fourth degree had
been achieved in the sixteenth century. No general formulas for equations of degree
greater than 4 were known, however. At the beginning of the nineteenth century, it
was Évariste Galois (and Niels H. Abel) who proved that they do not exist. But even
when formulas were available, they did not provide indications about how one could
achieve what was sought: a geometrical construction. In some cases, the formulas,
such as those of Girolamo Cardano and Ludovico Ferrari, involved square roots of
negative quantities, which at the time did not possess a geometrical interpretation.
Strange as it might appear to us, algebra could do only half of the business required
by early-modern mathematicians; a geometrical construction was needed.

The analysis, or resolution, was not, according to early-modern standards, the
solution of the problem. The solution of the problem must be a geometrical con-
struction of what is sought in terms of legitimate geometrical operations (Q.E.F.).
The resolution belongs to the analytical stage of the problem-solving canon. Des-
cartes employed algebra as the tool for problematic analysis. But analysis must
be followed by synthesis; the resolution must be followed by composition (note the
double Greek and Latin terminology). We now have to move back from algebra to
geometry. After Descartes, the synthetic process was known as the construction of
the equation (table 3.1). Descartes accepted from the tradition the idea that such
constructions must be performed by intersection of curves.

The construction of the equation presented the geometer with a new problem,
not always an easy one. One had to choose two curves such that their intersections
determine segments that are the solutions of the problem. These segments are the
construction required by the problem. The fact that their lengths geometrically
represent the finitely many real roots of the equation can be noted, but it played a
secondary role in Descartes’ canon. Generally such a construction by intersection
of curves was followed by a geometrical proof that the problem had been solved as
required.
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The synthetic part of the process of problem solving opened up a series of ques-
tions. Which curves are admissible in the solution of problems? When can they
be considered as known or given? Which curves, among the admissible and con-
structible, are to be preferred in terms of simplicity? In asking himself these ques-
tions Descartes was continuing, albeit on a different plane of abstraction and gen-
erality, a long debate concerning the role and classification of curves in the solution
of problems, an ancient tradition that was transmitted to early-modern mathemati-
cians such as Viète, Marino Ghetaldi (Getaldić), Johannes Kepler, and Fermat by
way of Pappus.19 Descartes prescribed that in the construction of the equation one
had to use algebraic curves of lowest possible degree.

3.2.3 Demarcation and Simplicity

The demarcation between admissible and nonadmissible curves, and the classifica-
tion of the admissible ones in Descartes’ Géométrie, are well-known topics in the
history of seventeenth-century mathematics.20 Descartes began Book 2, devoted
to the nature of curved lines, by excluding mechanical curves from the scope of
geometry: they could not be used as means of constructions. Mechanical curves are
what we would nowadays call transcendental curves.21 Descartes mentions only two
examples: the (Archimedean) spiral and the quadratrix (in his commentary to the
Latin translation of the Géométrie, van Schooten added the cycloid). All the other
plane curves about which he knew were geometrical (we would call them algebraic)
and could be admitted into geometry.

Descartes continued by criticizing the classification of problems into planar, solid,
and linear, a classification that, according to Pappus, was adopted by the ancients.22

Planar problems are those that can be constructed by using circles and straight
lines, whereas solid problems cannot be solved by ruler and compass but can be
constructed by means of conic sections. Linear problems require the use of more
complex (plus composées) curves. This classification does not fit with Descartes’
innovative program. To put it briefly (perhaps too simplistically): he accepted only
curves defined by a polynomial equation in two unknowns (an algebraic equation)
and classified them in terms of the degree of their defining equation.23 In any case,

19 Bos, Redefining Geometrical Exactness (2001), pp. 287–9.
20 Rashed, “La Géométrie de Descartes et la Distinction Entre Courbes Géométriques et Courbes
Mécaniques” (1997).
21 The two concepts are extensionally equivalent, but a historian should nevertheless be careful
not to conflate them.
22 It is unclear from Pappus’s text whether he approved this classification.
23 It seems that Descartes as well as other seventeenth-century mathematicians assumed as a
matter of course that radicals can always be removed from an equation by reordering the terms
and raising to a suitable power. Bos, “Arguments on Motivation in the Rise and Decline of a
Mathematical Theory” (1984), p. 339.
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this is the message that Newton derived from the Géométrie and that he repeatedly
attributed to Descartes. Thus, the conic sections belong to the same class since,
given a system of rectangular coordinates, they are the loci of points satisfying
second-degree algebraic equations.24 By contrast, according to Descartes’ reading
of Pappus, the ancients classified the spiral, the quadratrix, the conchoid, and the
cissoid as more complex curves. The cissoid was often used for finding two mean
proportionals (and thus, for instance, for solving the problem of the duplication
of the cube), the conchoid for neusis constructions (classic applications were the
trisection of the angle and the duplication of the cube); all these were solid problems
that could be solved by intersection of conics. The spiral and the quadratrix could
be used for linear problems (such as general angular sections or the quadrature of
the circle). However, the conchoid and the cissoid are loci of algebraic equations;
thus, according to Descartes, they may be admitted into geometry, being placed
in a higher-order class relative to the conics because their equations have degree
greater than 2. The spiral and the quadratrix, on the other hand, have no algebraic
defining equation.

The category of exactness enters prominently into Descartes’ characterization of
geometry as opposed to mechanics: “[W]e make the usual assumption that geometry
is precise and exact, while mechanics is not.”25

The spiral and quadratrix cannot be admitted into geometry because they lack
exactness, they are mechanical curves. Why do they lack exactness? Descartes’
answer is that these curves are described by two motions whose relation (raport)
cannot be measured exactly:

[T]he spiral, the quadratrix, and similar curves, which really do belong only to me-
chanics, are not among those curves that I think should be included here, since
they must be conceived of as described by two separate movements whose relation
does not admit of exact determination.26

24 There is some ambiguity in Descartes concerning the relation between the circle and the other
conic sections. Algebraically speaking, the circle would be classified with the conics. However,
Descartes was aware that the circle had constructionally less power. Newton seized the opportunity
of criticizing Descartes on this point (see chapter 4).
25 “prenant comme on fait pour Geometrique ce qui est precis & exact, & pour Mechanique ce
qui ne l’est pas.” Géométrie, p. 316 [43]. I quote from van Schooten’s Latin translation of the
Géométrie because this is the edition that Newton used: “Geometricum censeamus illud, (ut fieri
solet) quod omnino perfectum atque exactum est, & Mechanicum quod ejusmodi non existit.”
Geometria, p. 18. This was commonplace in the seventeenth century. For example, Wallis in his
Mechanica (1670–1) wrote, “In re Geometrica; Mechanice quid factum, non Geometrice, dici solet;
quando rudi χειρυργια, vel materialis instrumenti applicatione, aliisve mediis non absimilibus,
aliquid metimur: non απoδεικτικως.” Wallis, Opera, 1, p. 575.
26 “la Spirale, la Quadratrice, & semblables, qui n’appartienent veritablement qu’aux Mecha-
niques, & ne sont point du nombre de celles que je pense devoir icy estre recevues, a cause qu’on
les imagine descrites par deux mouvemens separés, & qui n’ont entre eux aucun raport qu’on
puisse mesurer exactement.” Géométrie, p. 317 [44] = “Spiralis, Quadratrix, atque similes; quae
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This and similar passages of the Géométrie devoted to the characterization of
mechanical curves are far from clear. In these lines, Descartes affirms that mechan-
ical curves are generated by two separate motions that have no exact measurable
relation. For instance, the Archimedean spiral can be generated by two motions:
the rotary motion of a ruler that turns with constant angular speed around a pivot;
and the rectilinear motion of a point P that slides with constant speed along the
ruler. Point P traces a spiral. By tuning the rates of increase of the two separate
motions, one generates different spirals. Descartes does not admit curves gener-
ated by such constructions into the framework of the Géométrie, since they are
“described by two separate movements, between which there is no relation that
can be measured exactly.” As Bos has argued, this statement can be understood
to mean that “[i]n view of the methods of tracing . . . the spiral, we may con-
clude that when Descartes spoke about the measures of the motions, he meant
their velocities. Indeed, these measures have no exact measurable raport, as the
comparison of the velocities involves the comparison of the lengths of straight and
curved lines.”27

The example of the spiral can clarify this matter. As noted, one can generate
any Archimedean spiral by imparting suitably chosen radial and angular motions to
a point. For instance, one can require that the angular motion make one complete
revolution in the time required for the rectilinear motion to traverse a given distance.
The ratio of the two component velocities involves the ratio of the lengths of straight
and curved lines. But according to Descartes, this ratio can be known only in an
approximate way, and one cannot count it as an exactly measurable raport. As
Descartes remarks later in the Géométrie, “[T]he ratios between straight and curved
lines are not known, and I believe cannot be discovered by human minds.”28

In this respect, Bos argues, Descartes could not simply define geometrical curves
as those that have a defining algebraic equation and mechanical curves as those
that do not have such a defining equation. Bos wrote, “[B]ecause Descartes did not
consider the equation a sufficient representation of the curve, he could not establish
any distinction between geometrical and non-geometrical [mechanical] curves on the
basis of their equations; he had to reason about it on the basis of representations
of curves which he did find acceptable.”29 Descartes devoted much of Book 2 to
very complex and fascinating reasoning concerning curves, their representations (by
point-wise construction and by tracing machinery involving linked rulers or strings),

revera non nisi ad Mechanicas pertinent, nec ex illarum numero sunt, quas hic recipiendas autumo:
quandoquidem illas duobus motibus describi imaginamur, qui a se invicem sunt diversi, nec ullam
inter se relationem habent, quae exacte mensurari possit.” Geometria, pp. 18–9.
27 Bos, Redefining Geometrical Exactness (2001), p. 314.
28 “la proportion, qui est entre les droites & les courbes, n’estant pas connuë, & mesme ie croy ne
le pouvant estre par les hommes.” Géométrie, p. 340 [91].
29 Bos, Redefining Geometrical Exactness (2001), p. 297.
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Figure 3.3

Descartes’ mesolabum. The arrangements of sliding rulers is such that the points D, F , and
H, when the angle XY Z increases from 0, describe the dotted curves. If Y A = Y B = a,
AC = x, CD = y, then x4 = a2(x2 + y2). The curves traced by F , H, etc. have equations
x8 = a2(x2 + y2)3, x12 = a2(x2 + y2)5, etc. Source: Descartes, Géométrie (1637), p. 318.
Courtesy of the Biblioteca Angelo Mai (Bergamo).

and the conditions that guarantee the existence of an algebraic equation defining
them. His effort was to isolate those constructions that give rise to curves defined
by algebraic equations. A famous example is his mesolabum (figure 3.3).

Before proceeding with this brief presentation of Descartes’ canon of problem
solving, it seems necessary to ask why Descartes had to define curves by tracing
mechanisms rather than by relying on their defining equations. In order to answer
this question, one must remember that curves enter the Géométrie not only as loci
that answer a problem but also as devices for constructing points by intersection.
Now, algebra did provide Descartes with a method for constructing curves, but
not a method that yielded exact results. From an algebraic equation f(x, y) = 0,
Descartes could obtain a point-wise construction of the curve. That is, he indicated
that one could choose a sequence of values of one variable, say x1, x2, x3, . . . .,
and determine via the equation the corresponding values of the other variable y1,
y2, y3, . . . .30 In general, one will obtain a representation of the curve as a set of

30 Note that this procedure is not without problems because the equations for the separate yis
are equations in one unknown, but with probably any degree, and their coefficients are different
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points in the plane, not the result one would desire when looking this way for the
intersection of two curves. If, on the other hand, one has a tracing mechanism that
generates the curves by continuous motion, points of intersection can be thought of
as determined exactly. Since antiquity, devices for tracing curves by instruments,
moving rulers or strings, were known; this was a chapter of geometry that went
under the rubric organic [from oργανoν, instrument] description of curves. Organic
descriptions were known for the straight line and circle (ruler and compass), for the
conic sections, for the conchoid, for the spiral, and for the quadratrix. The cissoid
was defined point-wise.31

What counts here is that Descartes, while requiring organic descriptions of geo-
metrical curves in order to determine their intersections exactly, rejected a number
of curves as mechanical. He claimed that they are not certain and exact, that they
are not the loci of a finite algebraic equation in two unknowns, that they are de-
scribed by two motions (velocities) with no relation that can be measured exactly,
since this relation implies the determination of π.32 As van Schooten wrote, sim-
plifying slightly in his commentary to Book 2 of the Géométrie, the curves to be
rejected from geometry are defined as follows:

It is then moreover easy to understand, which are those [curves] that are to be
repudiated from Geometry, and to be put amongst the Mechanical: . . . these are
all the curves which cannot be described by a continuous motion, but which can be
conceived of as described by two motions, which are separate one from the other,
and which have no relationship, which can be measured exactly; or those whose
points have no relation, expressible by means of an equation common to all, to the
points of a straight line.33

At the time of the publication of the Géométrie, the rejection of inexact mechani-
cal curves implied a very limited loss; in 1637 mathematicians could reckon amongst
the plane curves only the quadratrix, the Archimedean spiral, the logarithmic curve,
and the cycloid as mechanical.34

for different xis.
31 Newton devised an organic description of the cissoid (§4.5).
32 That is why, in the Principia, Newton calls geometrical curves “geometrically rational” and
mechanical curves “geometrically irrational” (§13.3).
33 “Ubi porro facile est intelligere, quaenam sint, quae ex Geometria sint rejiciendae & inter Me-
chanicas ponendae: . . . sunt illae omnes, quae per motus continuos describi nequeunt, . . . sed per
duos motus describi concipiuntur, qui sunt a se invicem distincti, nullamque relationem habentes,
quae possit exacte mensurari, sive quarum omnia puncta ad omnia lineae rectae puncta relationem
non habent, quae per aliquam aequationem omnibus communem exprimi possit.” Geometria, p.
167.
34 In his correspondence Descartes showed an interest in mechanical curves that is not evident in
the Géométrie.
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By contrast, a geometric curve, in Descartes’ terminology, can be conceived of
as described by two motions whose relation is measured exactly. Descartes claimed
that such curves are expressed by a finite algebraic equation:

[All] points of those curves which we may call geometric, that is, those which admit
of precise and exact measurement, must bear a definite relation to all points of a
straight line, and that this relation must be expressed by means of a single equation.
If this equation contains no term of higher degree than the rectangle of two unknown
quantities, or the square of one, the curve belongs to the first and the simplest class,
which contains only the circle, the parabola, the hyperbola and the ellipse.35

One can recognize here the definition of a conic as a curve defined by an equation
of the form x2 + ay2 + bxy + cx + dy + e = 0.36

Note an important point concerning Descartes’ methodology. Descartes devoted
many pages of the Géométrie to various constructions of curves by tracing appara-
tuses. One of his purposes was to exclude illegitimate constructions that generate
mechanical curves. However, he carried out the classification of legitimate, geometri-
cal curves exclusively in terms of their algebraic equations. According to Descartes,
it is indeed the degree of the equation that defines the simplicity of a geometrical
curve. Thus, in the end, Descartes prescribed his golden rule for the solution of
determinate problems: in constructing the equation one must choose from among
the admissible (i.e., geometrical) curves those that are loci of polynomial equations
of lowest degree.

3.2.4 Analysis and Synthesis of Indeterminate Problems

In some cases, the algebraic analysis of a problem does not lead to an equation in
one unknown (as when the problem is determinate) but to an equation in two or
more unknowns. In this case, the problem is indeterminate because it admits an
infinity of solutions. Typically, Descartes considered problems that were reduced

35 “tous les poins, de celles qu’on peut nommer Geometriques, c’est a dire qui tombent sous
quelque mesure précise & exacte, ont necessairement quelque rapport a tous les poins d’une ligne
droite, qui peut estre exprimé par quelque equation, en tous par une mesme, Et que lorsque cete
equation ne monte que iusques au rectangle de deux quantités indeterminées, oubien au quarré
d’une mesme, la ligne courbe est du premier & plus simple genre, dans lequel il ny a que le cercle,
la parabole, l’hyperbole, & l’Ellipse qui soient comprises.” Géométrie, p. 319 [48] = “puncta
omnia illarum [of the curves], quae Geometricae appellari possunt, hoc est quae sub mensuram
aliquam certam & exactam cadunt, necessario ad puncta omnia lineae rectae, certam quandam
relationem habeant, quae per aequationem aliquam, omnia puncta respicientem, exprimi possit.
Et quod, cum aequatio haec non ultra ractangulum duarum quantitatum indeterminatarum, aut
non ultra quadratum unius ex illis ascendit, linea curva tunc primi & simplicissimi sit generis; (sub
quo tantum Circulus, Parabola, Hyperbola, & Ellipsis sunt comprehensae:)” Geometria, p. 21.
36 Descartes was aware of the fact that all conics are expressed by second-degree equations. He
was also aware of cases when the conic degenerates into a pair of straight lines.
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Table 3.2 Descartes on analysis and synthesis of indeterminate problems

Required object Curve

Analysis Express algebraically ratios of known and unknown
segments until an equation is achieved

Equation Algebraic in two unknowns

Synthesis “Construction of the curve”: (i) point-wise,
(ii) (if second degree) use Apollonius’s Conics,
(iii) motion of curves, (iv) organic

to polynomial equations in two unknowns. Their infinitely many solutions form
a one-dimensional locus in a plane: a curve or a straight line.37 These so-called
locus problems (problems whose solution is achieved with the construction of a
geometrical locus, often a plane curve) formed an important part—indeed, the
higher, more complex part—of the ancient tradition of problem solving. Descartes
proposed algebra as the analytical tool for locus problems; he reduced them to
equations. The equation, however, did not constitute the solution of the problem;
a geometrical construction was required.

But how one should construct a curve? Descartes’ answer was less straightfor-
ward compared with the canon of synthesis for determinate problems (see table
3.2). In Book 1 of the Géométrie he intimated that curves should be constructed
point-wise by choosing arbitrary values for one unknown. In this way, one could
obtain a succession of arbitrarily many points on the curve. As noted in §3.2.3,
this procedure does not allow one to use curves as a means of construction, since
in this case one cannot determine the intersection of two curves exactly. Further,
point-wise constructions, for instance, Christoph Clavius’s proposed construction of
the quadratrix, were often criticized as lacking in exactness.

The Géométrie contains other approaches to curve construction. One is based
on the theory of conics. In Book 2, Descartes showed how the coefficients of a
second-degree equation could be used to determine geometrical parameters that
define a conic according to the theory developed by Apollonius. The Apollonian
construction is preferable to a point-wise construction because the conic is given in
its entirety and not at isolated points, but it postulates the possibility of cutting a
cone in a prescribed inclination with a plane, a postulate that appeared to many
far too complex.

Another alternative was intended to generate the curve by motion. Descartes
conceived cases in which curves intersect and move in prescribed ways such that

37 Bos, Redefining Geometrical Exactness (2001), pp. 310–11.
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their intersection traces a new curve. He devised also tracing mechanisms involving
linked rulers (figure 3.3) and threads (figure 3.4).

Descartes devoted great efforts to evaluating and relating these different methods
of curve construction one to the other, and to studying their relation to the algebraic
representation of curves. His purpose was to isolate constructions that generate
loci of algebraic equations in two unknowns. It is beyond my present purposes to
discuss Descartes’ ideas on this topic, and I refer the reader to Bos’s work, to which
I am deeply indebted in this chapter.38 Newton rejected all the means of curve
construction proposed by Descartes (see chapter 5).

3.3 An Example of Analysis and Synthesis of a Determinate Problem

Having discussed Descartes’ canon in broad outlines, I now present some examples
that show the canon at work: first a determinate problem that Descartes proposed in
the Géométrie, the classic problem of angle trisection; and then, in the next section,
an indeterminate problem, the Pappus problem, which was to play an important
role in Newton’s confrontation with the Cartesian canon (see chapter 5).

Figure 3.4

Construction of a Cartesian oval with ruler, pencil, and thread. The oval reproduced is
the curve consisting of all those points C for which the sum of the distance to one focus
G plus twice the distance to a second focus K is a constant. Descartes constructed this
oval using two pins, a thread, a pencil, and a ruler. The thread “being attached at E to
the end of the ruler, passes from C to K and then back to C and from C to G, where
its other end is fastened.” Source: Descartes, Géométrie (1637), p. 356. Courtesy of the
Biblioteca Angelo Mai (Bergamo).

38 See especially Bos, Redefining Geometrical Exactness (2001), pp. 225 ff.
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Figure 3.5

Construction of a third-degree equation in Descartes’ Géométrie. The problem of trisecting
the angle NOP is resolved (resolutio is the Latin translation of the Greek analysis) by
a third-degree equation. Descartes constructed the equation (constructio or compositio
translate synthesis) via intersection of circle and parabola. The segments kg, KG, and
LF represent two positive and one negative root. The smaller of the two positive roots
kg must be “taken as the length of the required line NQ.” Source: Descartes, Géométrie
(1637), p. 396. Courtesy of the Biblioteca Angelo Mai (Bergamo).

3.3.1 Statement of the Problem

Let it be required to divide the angle NOP (figure 3.5), or rather, the circular arc
NQTP, into three equal parts.39

3.3.2 Analysis: Invention of the Equation

The first steps of the canon constitute the analysis of the problem, and algebra is
the tool for geometrical analysis.

1. Given a geometrical problem, start by assuming that the required geometrical
construction has been already effected, and draw a corresponding figure.

2. Name all segments in the figure by letters: those known by a, b, c, etc., and
those unknown by z, y, x, etc.

3. Obtain relations between the letters and manipulate them until some standard
form (in this case a third-degree equation in one unknown) is reached.

39 Géométrie, p. [207].
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This is how Descartes proceeded:
Let NO = 1 be the radius of the circle, NP = q be the chord subtending the

given arc, and NQ = z be the chord subtending one-third of that arc; then the
equation is z3 = 3z − q.

For, drawing NQ, OQ and OT , and drawing QS parallel to TO, it is obvious
that NO is to NQ as NQ is to QR as QR is to RS. Since NO = 1 and NQ = z,
then QR = z2 and RS = z3; and since NP or q lacks only RS or z3 of being three
times NQ or z, we have q = 3z − z3.40

3.3.3 Synthesis: Construction of the Equation

Descartes employed a general method that he had explained earlier for constructing
third- and fourth-degree equations.41 Given the equation x4 = Px2 + Qx + R, it is
required to construct it (figure 3.6).42

1. Describe a parabola with latus rectum equal to 1 and vertex A (its equation is
y = x2).

2. Mark D on the y-axis so that AD = (P + 1)/2.
3. Draw DE = Q/2 horizontally from D in the direction corresponding to its sign.

4. Construct a line segment equal to
√

1
4 (1 + P )2 + 1

4Q2 + R and draw a circle
around E with its radius equal to this line segment.

5. The circle intersects (or touches) the parabola in at most four points G, F, . . . ;
draw perpendiculars GK, FL, . . . to the axis from each of these points.

6. The segments GK, FL, . . . , with signs as indicated by their directions, have
lengths corresponding to the roots of the equation.

As Bos made clear,

Descartes proved the correctness of the construction by setting GK = x and cal-
culating the value of the distance EG in two ways, one using that G was on the
parabola, the other that G was on the circle; equating both expressions he arrived
at the original equation. . . . the proof comes down to the following: Put GK = x
and AK = y, then y = x2 because G is on the parabola. G is also on the circle
with center E whose coordinates are yE = (P + 1)/2, xE = Q/2; the equation of
the circle is x2 −Qx + y2 − (P + 1)y = R. Inserting y = x2 one finds from this the
equation x4 = Px2 + Qx + R.43

40 Géométrie, p. [207].
41 This is streamlined following Bos, Redefining Geometrical Exactness (2001), pp. 365–6.
42 Descartes had previously shown how to reduce the equation so that the term in x3 is removed.
43 Bos, Redefining Geometrical Exactness (2001), p. 366. Descartes did not refer to the equation
of the circle here but rather used the Pythagorean theorem.
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Figure 3.6

Descartes’ construction of fourth-degree equations. In this case, the circle cuts the parabola
in four points. The ordinates of these points represent two positive and two negative real
roots. Source: Descartes, Géométrie (1637), p. 392. Courtesy of the Biblioteca Angelo
Mai (Bergamo).

These prescriptions apply to a third-degree equation by setting R = 0. In this
case (figure 3.7), it is easy to show that the circle passes through the vertex A. In
the case of angle trisection, Descartes wrote,

Describe [see figure 3.5] the parabola FAG so that CA, one-half its latus rectum,
shall be equal to 1/2; take CD = 3/2 and the perpendicular DE = q/2; then
describe the circle FAgG about E as center, passing through A. The circle cuts
the parabola at three points F , g, and G, besides the vertex A. This shows that
the given equation has three roots, namely the two true roots, GK and gk, and one
false root, FL.44

The smaller segment gk is the geometrical construction (required by the problem) of
the line NQ. The problem has now been solved because a geometrical construction
of the required chord, which trisects the angle, has been achieved.

44 A false root is, in Descartes’ terminology, a negative root. The other two segments have the
following meaning: GK is the chord NV , and (mind the sign) FL = −(KG+kg). Géométrie, pp.
[207–8].
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Figure 3.7

Descartes’ diagram for the construction of a third-degree equation. Note that Descartes’
general construction for third-degree equations requires that the circle cut the parabola’s
vertex A. Source: Descartes, Géométrie (1637), p. 395. Courtesy of the Biblioteca Angelo
Mai (Bergamo).

Note that the analytical process (the invention and manipulation of the equation)
does not generally give much of a hint about how the constructions can be achieved.
The passage from analysis to synthesis is far from being an easy reversal of steps
(as Pappus seems to suggest is the case with geometrical analysis and synthesis).
As a matter of fact, the synthesis posed a new and often complicated problem for
Descartes.45

3.4 An Example of Analysis and Synthesis of an Indeterminate Problem

The indeterminate problem that occupies center stage in the Géométrie is the so-
called Pappus problem of three or four lines. This problem calls for the construction
of a plane curve that satisfies certain conditions. When translated into algebra, as
Descartes found, it is reduced to a second-degree algebraic equation in two un-
knowns. This is the end result of the analytical part of Descartes’ problem-solving
procedure applied to this problem.

45 It is highly probable that the constructions were found by the method of indeterminate coeffi-
cients.



54 Chapter 3

In the synthetic part Descartes was able to show—a considerable result in his
times— that because the equation is second-degree, the locus sought is a conic
section.46

The solution of the problem of Pappus played an important rhetorical role in
the Géométrie because Descartes, on the basis of Pappus’s account in the seventh
book of the Collectio that he cited, quite rightly claimed that the ancients could
not tackle its generalization to n lines. This boastful statement was challenged by
Newton (see chapter 5), who was able to provide a geometrical solution of the four-
lines locus “as required by the ancients” and claimed that his solution was simpler
and more elegant than Descartes’. The generalization to n lines remained beyond
the scope of Newton’s geometrical methods, however.

The Pappus problem of three or four lines was generally worded as follows (fig-
ure 3.8):

Having three or four lines given in position, it is required to find the locus of points
C from which drawing three or four lines to the three or four lines given in position
and making given angles with each one of the given lines the following condition
holds: the rectangle of two of the lines so drawn shall bear a given ratio to the
square of the third (if there be only three), or to the rectangle of the other two (if
there be four).47

In short, the Pappus problem of (three) four lines requires, given (three) four lines
Li (i = 1, 2, 3, 4) in the plane, to determine the locus of points C in the plane such
that the (positive) oblique “distances” di, defined as the lengths of segments drawn
from C to Li at a given angle θi, are such that

d1d2 = kd3d4, (3.1)

where k is a constant.48

In the Géométrie, Descartes introduced a system of oblique coordinates x and
y and, by working with similar triangles, achieved the following result: the locus
defined by the problem is a plane curve that is the locus of points satisfying a second-
degree algebraic equation in two unknowns. In a greatly streamlined rendering of
Descartes’ reasoning, one can note that he concluded that the lengths di are given
by expressions of the form di = αix + βiy + γi (where α, β, and γ are constants).
Therefore, equation (3.1), which defines the Pappus (three-) four-lines locus, is

46 Descartes’ solution of the Pappus problem has received considerable attention in the literature.
See Bos, Redefining Geometrical Exactness (2001), pp. 271-83, 313–34.
47 I paraphrase from Géométrie, p. 307 [22]. Descartes could tackle the general problem for any
number of lines.
48 d2

1 = k(d2d3) if only three lines are given.
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Figure 3.8

Diagram for the Pappus problem. The four straight lines given in position are indicated
by solid lines. The oblique distances CD, CF , etc. are dotted lines. The sought locus of
points C satisfying equation (3.1) is, in this case, a circle. Source: Descartes, Géométrie
(1637), p. 327. Courtesy of the Biblioteca Angelo Mai (Bergamo).

second-degree. The algebraic approach easily allowed Descartes to generalize the
Pappus problem for any number of lines.49

After this analytical stage, Descartes turned to the synthesis, the construction of
the locus. His procedure, which occupies center stage in Book 2, can be summarized
as follows.50 Descartes began by constructing a conic section whose position and
parameters depend upon the coefficients of the second-degree equation. For the

49 Géométrie, pp. [26-32], [60-3]. Actually, Descartes’ algebraic calculation requires a great deal
of attention to the signs of the constants and variables that he handled. See Bos’s clarification
in Redefining Geometrical Exactness (2001), pp. 215–6, note 8. Since, in modern terms, the
distance of a point P = (x0, y0) from a straight line with equation ax + by + c = 0 is given by
±(ax0 + by0 + c)/

√
a2 + b2, the Pappus problem of four lines should be reduced to an equation

of the form (α1x + β1y + γ1)(α2x + β2y + γ2) = ±k(α3x + β3y + γ3)(α4x + β4y + γ4). The
solution, in fact, consists of two curves. Descartes’ conventions on signs led him to consider one
curve only. The criticisms addressed by Descartes’ contemporaries are discussed in Galuzzi and
Rovelli, Nouveauté et Modernité dans les Mathématiques de Descartes (forthcoming), which I was
kindly allowed to see in manuscript.
50 Géométrie, pp. [67–79]. See Bos, Redefining Geometrical Exactness (2001), pp. 320–4, for
details.
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actual construction, Descartes referred to the theory of conics as developed by
Apollonius. He then proved that the constructed conic is a solution of the problem
by showing that its equation coincided with the equation of the locus.

In this pivotal example, Descartes relied on the classic conic construction con-
sisting in cutting a cone with a plane. He did not use a point-wise construction, a
strategy he had previously proposed in Book 1. Examples of constructions of curves
by motion appear in the Géométrie, too. In some instances, Descartes showed how
curves could be generated by the motion of the point of intersections of curves that
move according to prescribed rules (the prototype of this method of generation is
the quadratrix); in other cases, he referred to motions generated by instruments
such as the mesolabum (see figure 3.3) or linked threads (see figure 3.4).

Readers of the Géométrie could admire Descartes’ success in solving the Pappus
problem of three or four lines. Descartes’ algebraic approach in principle allowed
generalizations to more than four lines, even though Descartes did not work out
these generalizations in detail. Moreover, in the Géométrie there are no clear indi-
cations about how constructions of curves should be performed.

3.5 The Limitations of Descartes’ Mathematical Canon

The Géométrie made a profound impact, especially after the appearance of its Latin
editions. When Newton began his studies in Cambridge, all active mathematicians
were referring to it as a seminal text. Descartes had shown how fruitful the ap-
plication of algebra to geometry could be. This innovative abstract aspect of the
Géométrie was to change the course of mathematics forever. In his work Descartes
also confronted moribund questions stemming from the practices of mathemati-
cians of previous generations, and attempted to answer the many problems raised
by Pappus’s Collectio, which so deeply fascinated early-seventeenth-century math-
ematicians. Descartes questioned the division into planar, solid, and line-like prob-
lems, proposing a much wider class of curves beside the conic sections as possible
means for the construction of problems. All geometrical curves were admissible,
they were all exact means for constructions. They could be further classified in
algebraic terms; their simplicity was defined by the degree of the equation.

There were tensions and open issues in the Géométrie, however. Descartes’ crite-
ria of demarcation between what is geometrical and exact and what is not, as well as
his criteria of simplicity, were problematic. Further, the relation between admissi-
ble constructions and polynomial equations was basically unproven. Nowhere in the
Géométrie was Descartes able to explain which tracing mechanisms were legitimate
in generating all and only those curves that are loci of a polynomial equation.

Many doubted that the simplicity of a curve could be reduced to the degree of
its equation; simplicity, they claimed, is a geometrical feature that is not obviously
captured by the degree of the equation. Criticisms were leveled at Descartes’ as-
sumption that all constructions should be carried out in terms of the intersection of



Descartes on Method and Certainty in the Géométrie 57

a circle and another curve (a straight line, a parabola, a Cartesian parabola, etc.).51

For example, it was maintained by Guillaume F. A. de L’ Hospital that equations
of degree 8 should be constructed by two curves of degree 3 rather than by a circle
and a curve of degree 4, as Descartes required.52

Further, locus problems became more interesting. Most notably, problems whose
solutions were curves emerged from all quarters. Curves, more interestingly, were
approached as objects of study rather than as means for constructing points by
intersection. The determination of tangents to curves and the determination of
curvilinear areas were two problems that were becoming ever more prominent in
the literature.

At a deeper level, Descartes’ insistence that algebra could be applied to geometry
when variables and constants occurring in equations are interpreted as finite seg-
ments, and the fact that he deployed only finite algebraic equations, seemed to bar
the way to the development of techniques that were vital for seventeenth-century
mathematicians, especially those interested in the application of mathematics to
natural philosophy. As Grosholz wrote:

Among the most mathematically inventive of Descartes’ contemporaries (Cavalieri,
Galileo, and Torricelli in Italy, Wallis in England), experimentation with the pos-
sibilities of ratios and proportions involving lines and areas, straight and curved
lines, and finite and infinitesimal magnitudes (of various dimensions) were already
at the forefront of mathematical research that will lead to calculus.53

In this passage we find a compact list of aspects of seventeenth-century mathemat-
ical research that are not captured by the Géométrie. Descartes had prohibited
comparisons between straight and curved lines. Further, in the Géométrie infini-
tary techniques and infinitesimals, essential to many seventeenth-century innovative
works, were noticeably absent (or perhaps visible only somewhat obliquely in Des-
cartes’ method of tangents). Consequently, Descartes had little to say about the
rectification of curves; calculation of areas, surfaces, and volumes; or calculations
of centers of gravity. One of Descartes’ prescriptions that proved to be a serious
limitation was his banishment of mechanical curves. As the century progressed, the
importance of mechanical curves became more and more evident. They emerged
naturally as solutions of what nowadays we identify as problems in integration and
the solution of differential equations. They proved useful in mechanics, optics, and
astronomy.

In his youth Newton took the Géométrie as his starting point. In his maturity
he continued to be deeply indebted to this work, which defined his language and
his mathematical practice. But he also became its fiercest critic.

51 The Cartesian parabola axy = (x + a)(x − a)(x − 2a) is used in the Géométrie to construct
fifth- and sixth-degree equations.
52 Bos, Redefining Geometrical Exactness (2001), p. 374.
53 Grosholz, Cartesian Method and the Problem of Reduction (1991), p. 53.





II Against Cartesian Analysis and Synthesis

Just after the creative burst of his anni mirabiles, when the tumultuous experience
of discovery left very little energy for considerations on exactness and rigor, New-
ton began posing questions concerning mathematical method, and he did so very
seriously. Part II considers a time span from the late 1660s to the early 1680s. This
period was a turning point in Newton’s intellectual career. His new status as Lu-
casian Professor (1669) required an approach different from the unsystematic forays
into new territory permitted the young protégé of Barrow. The encounter in 1673
with Huygens’s Horologium Oscillatorium was probably another factor that induced
Newton to think about the importance and beauty of geometry when compared with
the Cartesian symbolic analysis. Huygens showed how natural philosophy could be
mathematized in terms consonant with the standards of certainty that Newton at-
tributed to the methods of the ancient geometers. Thus, Part II begins to probe
the conflict that Newton faced when he compared the mathematical practices of
the moderns, in which he excelled, with the role he attributed to geometry in his
philosophical agenda. Newton never ceased to praise Huygens and to indicate the
Horologium as a model in mathematical method. More generally, he began elabo-
rating a deep distaste for all things Cartesian, and he did so for reasons surpassing
mathematical enquiry. In this period he might also have begun to mature his ven-
eration for the ancients that pervades his alchemical and theological work. It seems
that almost everything in Newton’s mind was pointing against Cartesianism.

Chapter 4 describes Newton’s deep criticisms against the Cartesian approach
to determinate problems. In particular, in Lucasian Lectures on Algebra, which
Newton completed in 1684, he rejected the Cartesian canon for the construction of
equations via the intersection of curves. Contra Descartes, algebraic criteria have no
place in composition, Newton argued. Therefore, Descartes’ demarcation between
legitimate and illegitimate curves could not be accepted because it was ultimately
based, according to Newton, on the equations associated with them.

Chapter 5 devotes attention to what Newton had to say against Descartes’ ap-
proach to indeterminate problems. It considers “Errores Cartesij Geometriae” and
“Solutio Problematis Veterum de Loco Solido.” In this context Newton came to
believe that the ancients possessed a method of discovery based on projective ge-
ometry that allowed them to deal with locus problems in a way more satisfactory
than Descartes’.

In the 1670s, Newton also worked on cubic curves. His enumeration of third-
degree curves is an exercise in Cartesian algebra; indeed, in his work on cubics
Newton deployed tools, such as infinite series, which he perceived as more advanced
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and modern than those contemplated in the Géométrie. Chapter 6 describes how
Newton dealt with this tension between his methodological views and his mathe-
matical practice. In analyzing Enumeratio Linearum Tertii Ordinis, a work written
in the mid-1690s in which Newton systematized his researches on cubics carried out
in the 1670s, I identify a typical characteristic of his policy of publication, namely,
the reluctance to reveal the algebraic analysis that allowed some of his greatest
advancements in mathematics.



4 Against Descartes on Determinate Problems

Composition is perfect in itself and shrinks from any admixture with analytical
speculations.

—Isaac Newton, early 1680s

[The Ancients] distinguished resolution from solution from one another as dual
converses . . . regarding a problem as resolved when a geometer had in his own
view completed its analysis, and as solved once he had without analysis learned
how to compose it.

—Isaac Newton, 1690s

4.1 Lucasian Lectures on Algebra

Sometime between the autumn of 1683 and early winter of 1684, Newton, according
to the statutes of the Lucasian Chair, deposited his Lucasian Lectures on Algebra.1

The lectures bear dates from 1673 to 1683, but these were added in retrospect, and
it is highly unlikely that they were ever delivered to Cambridge students. From
several points of view, and notwithstanding Newton’s professed anti-Cartesianism,
these lectures can be described as a fulfillment of Descartes’ program because alge-
bra is here extensively presented as the tool to be used in the analysis (or resolu-
tion) of problems. Indeed, the lectures were printed in 1707 with a revealing title:
Arithmetica Universalis: Sive de Compositione et Resolutione Arithmetica Liber.2

The title page leaves little doubt as to the content of this widely read book; it

Epigraph sources: (1) MP, 5, p. 477. “Compositio in se perfecta est et a mixtura speculationum
Analyticarum abhorret.” MP, 5, p. 476. (2) MP, 7, p. 251. “[Veteres] Resolutionem et Solutionem
ut contraria duo ad invicem distinguebant . . . existimantes Problema resolutum esse quando
Geometra apud se absolverat Analysin, solutum quando sine Analysi componere didicerat.” MP, 7,
p. 250.
1 Cambridge University Library, Dd.9.68. The manuscript (probably written in 1683–4) bears no
title: it is here referred to as Lucasian Lectures on Algebra. The edition of this 251-folios long
manuscript is in MP, 5, pp. 54–491.
2 The title was chosen by the editor, William Whiston, but was retained by Newton in his revised
edition (1722). The title “Arithmeticae Universalis Liber Primus” occurs in a partial revised
version, Add. 3993, f. 1 (see MP, 5, p. 538). Note the inversion in the title between compositio
and resolutio, one would expect resolutio first. It seems that compositio (which Newton conceived
of as being purely geometrical) is given pride of place. Further, the adjective arithmetica is meant
to be associated with resolutio, not compositio.
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was meant to be a work devoted both to algebraic analysis (arithmetica resolutio),
which translates problems into equations, and to synthesis (compositio), by means
of which problems are geometrically constructed.3

Newton began working on Cartesian algebra quite early. His interest in the field
is shown by the extraordinary array of results that he soon achieved.4 Most notably,
Newton extended Descartes’ rule of signs by developing a rule for enumerating the
imaginary roots that was proven by James J. Sylvester in the nineteenth century.5

Newton’s next work on algebra contained the observations on Gerard Kinck-
huysen’s textbook that he prepared in 1670 for Collins.6 Kinckhuysen’s algebra—
Mercator’s Latin translation of the Dutch elementary treatise—with Newton’s com-
mentary was never published, but Newton nevertheless employed it for his Lucasian
lectures.7

In his lectures Newton extended his observations on Kinckhuysen by adding two
new sections: “How Geometrical Questions are to Be Reduced to an Equation,”
and “The Linear Construction of Equations.”8 These two sections reveal Newton’s
concern with the status and role of algebra, a matter that occupied him in the
1670s. For this reason, I discuss them in some detail.

Stedall, in her useful commentary on the reception of Arithmetica Universalis,
summarizes the theoretical results pertinent to the theory of equations as follows:

1. A method for finding factors of polynomials, under the heading “De Inventio
Divisorum” (42–51).

2. Rules for finding roots of quantities of the form A +
√

B (58–61).
3. Rules for transforming two or more equations into one. Almost all of this short

section is devoted to the case of two equations in two unknowns (69–76).
4. Descartes’ “rule of signs” already gave an upper bound for the number of positive

roots of an equation by examining changes of sign. Newton added a new rule
for determining the number of “impossible” or imaginary roots (242–245).

3 Note that Newton employed the term universal arithmetic for algebra because it is concerned
with the doctrine of operations, applied not to numbers but to general symbols.
4 In May 1665, Newton wrote about the geometrical construction of equations; in 1666 he wrote
about the theory of equations. MP, 1, pp. 489–502, 506–39.
5 Pycior, Symbols, Impossible Numbers, and Geometric Entanglements (1997), pp. 172–4; Barto-
lazzi and Franci, “Un Frammento di Storia dell’Algebra” (1990); Parshall, James Joseph Sylvester
(2006).
6 See Whiteside’s commentary in MP, 2, pp. 277–94 and Newton’s observations (Add.3959.1, ff.
2r–21r) in MP, 2, pp. 364–445.
7 Mercator’s translation (interleaved in a copy of Kinckhuysen’s book held at the Bodleian Library,
Oxford (Savile G.20 (4))) is transcribed in MP, 2, pp. 295–364.
8 “Quomodo Quaestiones Geometricae ad Aequationem Redigantur.” MP, 5, pp. 158–337. “Ae-
quationum constructio linearis.” MP, 5, pp. 420–91, derived from an earlier manuscript edited in
MP, 2, pp. 450–517 with the editor’s title “Problems for constructing equations.”
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5. The rules for expressing coefficients of equations as symmetric functions of the
roots were well known by now. Newton used these functions to find formulae for
sums of powers of the roots (251–252).

6. Rules for finding the “limits” or bounds between which the roots of an equation
must lie (252–257).

7. Techniques for solving equations whose factors might contain surd quantities
(257–272).9

This is an impressive list. However, Arithmetica Universalis contains much more.
When, in 1707, the lectures appeared under the title of Arithmetica Universa-

lis, readers were somewhat puzzled. Indeed, since then, historians of Newtoniana
have had a hard time trying to pigeonhole the work as being either algebraic or
geometric. Pycior, one of the best historians of the subject, has spoken of a “mixed
mathematical legacy” left by Newton to his disciples.10 From one point of view
Arithmetica Universalis can be seen as a fulfillment of the program outlined by
Descartes in the Géométrie because it teaches how problems, especially geometrical
problems (but also arithmetical and mechanical ones), can be translated into the
language of algebra, which is here seen as the tool for problematic analysis; on the
other hand, Arithmetica Universalis contains two criticisms directed at Descartes.

First, in a long section devoted to the reduction of geometrical problems to an
equation, Newton distanced himself from Descartes. He maintained that, at least
in some cases, Apollonian geometry is to be preferred to Cartesian algebra in the
analysis of indeterminate problems.11

Second, in the last section of the work (edited by Whiston in 1707 as an Ap-
pendix), a section devoted to the construction of equations, Newton argued that
the demarcation between acceptable and nonacceptable means of construction of
determinate problems, as well as the characterization of the relative simplicity of
such means proposed by Descartes, were far too dependent upon algebraic criteria
(namely, the existence of a polynomial equation defining such means, and the degree
of the equation).

This chapter examines Newton’s critical approach to the Cartesian construc-
tion of equations. Newton’s approach to indeterminate problems is the subject of
chapter 5.

9 Stedall, “Newton’s Algebra” (forthcoming). Page numbers refer to Newton, Arithmetica Uni-
versalis (1707).
10 Pycior, Symbols, Impossible Numbers, and Geometric Entanglements (1997), p. 167.
11 MP, 5:, p. 314 passim; see also chapter 5. Newton also explored the algebraic way with
great flexibility and creativity. Indeed, Arithmetica Universalis is a rich repertoire of alternative
algebraic approaches to geometrical and mechanical problems.
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4.2 Demarcation and Simplicity in the Construction of Equations

Lucasian Lectures on Algebra ends with a section (the final Appendix of Arithmetica
Universalis) devoted to the linear construction of equations, which abounds with
statements in favor of geometry and is directed against the moderns, who have lost
the “elegance of geometry”:

[F]or anyone who examines the constructions of problems by the straight line and
circle devised by the first geometers will readily perceive that geometry was con-
trived as a means of escaping the tediousness of calculation by the ready drawing
of lines. Consequently these two sciences [arithmetical computation and geometry]
ought not to be confused. The Ancients so assiduously distinguished them one
from the other that they never introduced arithmetical terms into geometry; while
recent people, by confusing both, have lost the simplicity in which all elegance of
geometry consists.12

Such statements have often puzzled commentators because they occur in a work
devoted to algebra that illustrates the advantage of algebraic analysis in a long
section on the reduction of geometrical problems to equations. Why was Newton
turning his back on universal arithmetic now by arguing that algebra and geometry
should be kept separate? In order to understand Newton’s seemingly paradoxical
position, it is useful to briefly review the stages in the analytical and synthetic
processes for the solution of determinate problems endorsed by the Cartesian school.

Descartes’ canon was divided, in accordance with Pappusian tradition as well as
with early-seventeenth-century mathematical practice, into analytical and synthetic
stages. The analytical stage was to be carried on through algebra. The end result
of the analysis of determinate problems (such as angle trisection) was an algebraic
equation in one unknown. One of the elements in the synthetic stage of Descartes’
canon to which Newton devoted great attention, was the construction of equations.
These constructions had to be carried on in terms of intersections of admissible
curves, and among the admissible curves one had to choose the simplest. Ultimately,
Descartes was forced to employ algebraic criteria of demarcation and simplicity. The
demarcation between admissible and inadmissible curves as means of construction
was that between geometrical (algebraic) and mechanical (transcendental) curves.
Geometrical curves coincided with the loci of polynomial equations; the degree of
the equation allowed the ranking of geometrical curves in terms of their simplicity.
As Bos has remarked, Descartes, in discussing means of construction, was forced to

12 MP, 5, p. 429. “Nam qui constructiones Problematum per rectam et circulum a primis Ge-
ometris adinventas considerabit facile sentiet Geometriam excogitatam esse ut expedito linearum
ductu effugeremus computandi taedium. Proinde hae duae scientiae confundi non debent. Veteres
tam sedulo distinguebant eas ab invicem ut in Geometriam terminos Arithmeticos nunquam intro-
duxerint. Et recentes utramque confundendo amiserunt simplicitatem in qua Geometriae elegantia
omnis consistit.” MP, 5, p. 428. Compare with Fermat’s criticism of Wallis (§7.2).
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rely on algebra because his attempts to define curve-tracing methods that give rise
to geometrical curves led to a result that in the eyes of his critics, including Newton,
appeared to be a failure, concealed with some difficulty in the complex structure of
the Géométrie.13

As far as demarcation is concerned, in Lucasian Lectures on Algebra, Newton
maintained that it would be wrong to think that a curve can be accepted or rejected
on the basis of its defining equation:

[I]t is not the equation but its description which produces a geometrical curve. A
circle is a geometrical line not because it is expressible by means of an equation but
because its description (as such) is postulated.14

Moreover, Newton claimed, Descartes’ classification of geometrical curves ac-
cording to the degree of the equation is not relevant for the geometrician, who
should choose curves on the basis of the simplicity of their description. Newton, for
instance, observed that the equation of a parabola is simpler than the equation of
a circle. However, it is the circle that proves simpler and is to be preferred in the
construction of problems:

It is not the simplicity of its equation, but the ease of its description, which primarily
indicates that a line is to be admitted into the construction of problems. . . . On
the simplicity, indeed, of a construction the algebraic representation has no bearing.
Here the descriptions of curves alone come into the reckoning.15

Newton observed that, from his point of view, the conchoid, a fourth-degree curve,
is quite simple. Aside from any considerations about its equation, its mechanical
description, he claimed, is one of the simplest and most elegant; only that of the
circle is simpler. Descartes’ algebraic criterion of simplicity was thus regarded as
alien to the constructive, synthetic stage of problem solving.

The weakness of Newton’s position is that the concepts of simplicity of tracing
or of elegance, to which he continually referred, are qualitative and subjective. No
compelling reason is given in support of Newton’s evaluations of the simplicity of his
preferred constructions; his criteria are largely aesthetic. It is nevertheless crucial
to take them into account in order to understand Newton’s methodology. In what
follows, therefore, the themes of demarcation and simplicity presented by Newton
in the final section of Lucasian Lectures on Algebra are explored in more detail.

13 See Bos, Redefining Geometrical Exactness (2001), p. 402.
14 MP, 5, p. 424. “At aequatio non est sed descriptio quae curvam Geometricam efficit. Cir-
culus linea Geometrica est non quod per aequationem exprimi potest sed quod descriptio ejus
postulatur.” MP, 5, p. 425.
15 MP, 5, pp. 425, 427. “Aequationis simplicitas non est sed descriptionis facilitas quae lineam
ad constructiones Problematum prius admittendam esse indicat. . . . Ad simplicitatem vero
constructionis expressiones Algebraicae nil conferunt. Solae descriptiones linearum hic in censum
veniunt.” MP, 5, p. 424.
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The title of the final section of Newton’s work, “The Linear Construction of
Equations,” is programmatically anti-Cartesian.16 Newton here dealt exclusively
with a very particular example: the construction of third-degree equations that
Descartes performed via intersection of circle and parabola (§3.3). Newton proposed
instead to use a curve of degree higher than the conics as a means of construction:
the conchoid (a fourth-degree curve). Here is where the term linear comes from.
According to Pappus’s terminology, plane constructions are carried out by means
of circles and straight lines; solid ones by means of circles, straight lines, and conic
sections; and linear ones by means of more complex curves.17 Newton defended
the legitimacy of transgressing Descartes’ criteria of simplicity by admitting the
construction of third-degree equations carried out through curves of higher degree
than the conic sections. These constructions are none other than the classic neusis
(§4.3). Basing his position on the authority of the ancients, notably Archimedes,
and citing Pappus, Newton wrote:

So, after the Ancients had achieved the accomplishment of these problems [the clas-
sic problems of angle trisection and cube duplication] by compounding solid loci,
feeling that constructions of this sort are, because of the difficulty of describing
conics, of no practical use, they looked for easier constructions by means of the
conchoid and the cissoid, the extending of threads and any kind of mechanical ap-
plication of figures: as we learn from Pappus, mechanical usefulness was preferred
to useless geometrical speculation. Thus the mighty Archimedes ignored the tri-
section of the angle by means of conics expounded by his predecessors in geometry,
and in his Lemmas taught how to cut an angle into three by the method we just
now exhibited. If the Ancients preferred to construct problems by means of figures
not at that period received into geometry, how much greater should our preference
now be for those figures when by most they are received into geometry on an equal
footing with conics themselves?18

The “method just now exhibited,” taken from Archimedes’ Lemmata or Liber As-
sumptorum, which Newton probably knew from Barrow’s edition,19 is a construction
of the angle trisection problem obtained via the tracing of a conchoid (§4.3).

Newton even defended the use of mechanical curves in the construction of prob-
lems. It is in this context that he defended the use of the trochoid (cycloid), a

16 As Whiteside points out, Newton deleted this title in his private copy of Arithmetica Universalis.
He also deleted most of the Appendix, with the exception of two neusis constructions. These
changes, however, were not implemented in the 1722 Latin edition that Newton supervised. The
title of the published Arithmetica Universalis was chosen by Whiston, perhaps after consulting
Newton. See Whiteside’s comments in MP, 5, pp. 14, 421 (615n).
17 Pappus, Collectionis Quae Supersunt (1876–78), 3, pp. 38–9. The reader should carefully
distinguish between the meaning of the term linear as used by Newton and its meaning in twenty-
first-century mathematics.
18 MP, 5, pp. 469–71.
19 Barrow, Archimedis Opera (1675), pp. 265–76.
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mechanical curve excluded from geometry by Descartes’ criteria, in the construc-
tion of the general angle section:

Were the cycloid to be accepted into geometry, it would be allowable by its aid to
cut up an angle in a given ratio. Could you then, if someone were to use this line to
divide an angle in an integral ratio, see anything reprehensible in this and contend
that this line is not defined by an [algebraic] equation, but that lines defined by
equations need to be employed? . . . a curve which is exceedingly well known and
very easily described through the motion of a wheel or a circle. How absurd this
is, any one may see. Either, then, the cycloid is not to be admitted into geometry;
or in the construction of problems it is to be preferred to all curves having a more
difficult description.20

Newton’s disagreement with Descartes’ criteria of demarcation could not be any
stronger. According to Newton, mechanical curves are quite acceptable in geomet-
rical constructions provided that their mechanical generation is simple. This is the
case with the cycloid, which can be used as a means of geometrical construction (in
this case, in constructing a section of a circular arc in any given ratio), even when
it has no defining polynomial algebraic equation in Cartesian coordinates.

The existence and nature, or degree, of defining equations is something totally
alien to geometry. Descartes dealt with the problem of angle trisection by reduc-
ing the problem to a third-degree equation and constructing it via intersection of
circle and parabola (§3.3.3). Newton observed that if mechanical curves such as
the cycloid, the quadratrix, or the Archimedean spiral are accepted as means of
construction, then it is possible to divide an angle into any ratio.21

Before continuing the discussion on Newton’s methodology for the construction
of algebraic equations, I briefly consider which constructions Newton prescribed.
In his treatment of the construction of third-degree equations, Newton considered
two approaches: the first implies the use of the conchoid (§4.3), the second the
use of the circle and the ellipse (§4.4). In both cases the curves are conceived
of as being traced by motion. Newton stressed that in dealing with construc-
tions he conceived of curves as being mechanically generated by tracing devices
and paid no attention to their algebraic definition. In this context he also pro-
vided a mechanical construction of the cissoid, a curve employed by the ancients to
find two mean proportionals (see figure 4.5). It is interesting to see how Newton
defended the use of these curves as means of construction as well as the reason
he gave for preferring mechanical constructions in which curves are generated by
motion.

20 MP, 5, p. 427.
21 As Pappus had shown in the case of the spiral and the quadratrix in Propositions 45 and 46,
Book 4. Pappus, Collectionis Quae Supersunt (1876–78), 1, pp. 284.21–288.14.
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4.3 Neusis Constructions

Descartes admitted all geometrical (algebraic) curves as means of construction. Yet
geometrical curves, even third-degree ones, can be quite complicated to trace (see
chapter 6); not all third-degree curves possess the aesthetic simplicity of tracing that
is required in geometrical constructions. So Newton proposed to base all means of
construction on curves generated by continuous motions that are easy to perform.
One of the best choices is the conchoid, according to Newton the simplest curve after
the circle. Admitting the conchoid as a means of construction allowed Newton to
construct third-degree equations. He first showed in a Lemmatical Problem that if
the conchoid is given, all neusis constructions are possible.22 Here Newton referred
to the fourth book of Pappus’s Collectio, but he probably also had in mind Viète’s
Supplementum Geometriae.23

Pappus introduced the conchoid as a means for the construction of two prob-
lems: the finding of two mean proportionals and the trisection of the angle.24 The
conchoid is defined as follows (figure 4.1):

Definition of the conchoid: Given a line l, a point O at distance d from l, and a
segment a of length k. Let A be an arbitrary point on l, and P , P ′ the points on the
line OA at distance k from A. The locus of all these points P , P ′ is a conchoid.25

P

P′

A l

O

Figure 4.1

Conchoid for k < d, where k is the length of AP = AP ′ and d is the distance of O from l.
The equation of the conchoid, for an orthogonal coordinate system where the line l is the
x-axis, and the y-axis passes through O, is x2y2 = (d + y)2(k2 − y2). Source: Brieskorn
and Knörrer, Plane Algebraic Curves (1986), p. 14. c©1981 Birkhäuser Boston Inc. With
kind permission of Springer Science and Business Media.

22 MP, 5, pp. 429–30.
23 In Viète, Opera Mathematica in Unum Volumen Congesta ac Recognita (1646), pp. 240–57.
24 Bos, Redefining Geometrical Exactness (2001), pp. 33, 55.
25 Brieskorn and Knörrer, Plane Algebraic Curves (1986), p. 13.
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The conchoid could be used, as Pappus showed, to solve the neusis problem (fig-
ure 4.2):

Definition of neusis problem: Given two straight lines L and M , a point O and
a segment a of length k; it is required to find a line through O, intersecting L and
M in A and B such that AB = a.26

Neusis means verging: the given segment a is placed between the two given lines so
that it verges toward the given pole.

Mechanical constructions of the conchoid were known. The conchoid is a curve
that can be traced by the continuous movement of a linked ruler like the one shown
in figure 4.3.

Interest in neusis construction was stirred by the publication of Pappus’s Collec-
tio in 1588, which proved that both the problem of finding two mean proportionals
(equivalent to the duplication of the cube) and that of angle trisection could be con-
structed if one admits a neusis construction. Most notably, among early-modern
mathematicians, Viète assumed neusis as a new postulate: he argued that construc-
tions carried on by means of neusis should be postulated alongside those carried
on by ruler and compass. Viète also showed that any geometrical problem leading
to a third- or fourth-degree algebraic equation could be reduced either to finding
two mean proportionals between two given lines or to trisecting a given angle and
therefore could be constructed by neusis.

L

M

O

A

a

B

a

Figure 4.2

Neusis by means of the conchoid. Source: Bos, Redefining Geometrical Exactness (2001),
p. 32. c©2001 Springer-Verlag New York Inc. With kind permission of Springer Science
and Business Media.

26 Bos, Redefining Geometrical Exactness (2001), p. 31.
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Figure 4.3

Organic construction of the conchoid. A horizontal ruler is fixed in position; it has a slot
parallel to its length and a vertical ruler mounted at right angles with it. A peg at O
is fixed on the vertical ruler. A peg at F is fixed on the movable ruler. Peg F slides
in the horizontal slot while peg O slides in the slot cut into the movable ruler. Point G
organically describes the conchoid. Source: Bos, Redefining Geometrical Exactness (2001),
p. 31. c©2001 Springer-Verlag New York Inc. With kind permission of Springer Science
and Business Media.

It is this tradition that Newton referred to in his work. Whereas Descartes had
preferred construction of third- and fourth-degree algebraic equations by means of
conic sections (parabola and circle), curves of second degree (§3.3), Newton pro-
posed to construct them by means of the conchoid, a fourth-degree curve. Reading
Pappus through the eyes of Viète, Newton took a critical position toward Descartes:
he argued that the tracing of a higher-degree curve can be admitted as a postu-
late, which enables constructions that are more elegant and simple than those of
Descartes.

Descartes reduced the problem of angle trisection (§3.3.2) to an equation of the
form:

x3 = qx + r. (4.1)

The construction of a third-degree equation is achieved by Newton through neusis
construction (figure 4.4):

Let there be proposed the cubic equation x3 + qx + r = 0, whose second term is
lacking, but [the coefficient of] the third is denoted under its proper sign by +q and
the fourth by +r.
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Figure 4.4

Construction of x3 + qx − r = 0 by means of the conchoid in Arithmetica Universalis.
The construction implies that KA = n, KB = q/n, CX = r/n2. Newton distinguished
several cases according to the number and sign of the real roots, which correspond to the
lengths of segments XY . This figure illustrates the case in which there are three real roots.
Accordingly, three insertions of EY verging towards K are possible. They are labeled by
subscripts. Source: Newton, Universal Arithmetick (1720), Tab. VII. Courtesy of the
Biblioteca Angelo Mai (Bergamo).

Draw any [straight line] KA you please and call n [the length of segment KA]. In
KA extended in either direction take KB = q/n: the same way as KA if +q be
had, but otherwise the opposite way. Bisect BA in C and with center K, radius
KC construct the circle CX and in it inscribe the straight line CX equal to r/n2,
producing it each way. Next, join AX and extend it each way.27 Finally, between
the lines CX and AX inscribe [by neusis] EY of the same length as CA such that,
when produced, it shall pass through the point K, and XY will be a root of the
equation. Of these roots the ones falling on the side of X towards C will be positive
and those falling on the opposite side negative if +r be had, but the converse if −r
be supposed.28

This construction was to be followed by a geometrical demonstration; namely, a
geometrical proof that the construction answers the problem. No hint is given,
however, about how the geometrical construction was found.29

27 Until this stage all constructions can be performed by ruler and compass.
28 MP, 5, pp. 433, 435. I have interpolated Whiteside’s translation with some explanations in
square brackets.
29 In his study of this aspect of Newton’s work, Bos has identified the way in which the construction
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Newton’s demonstration is based on three geometrical lemmas.30 From the first
and third the following relation ensues:

KA2 × CX − KA × KB × XY = XY 3, (4.2)

which is immediately translated into the language of algebra as

n2 r

n2
− n

q

n
x = r − qx = x3. (4.3)

4.4 Conic Constructions

The other method of construction of third-degree equations proposed by Newton
is by the intersection of circle and ellipse. One might think that Newton ought
to have considered constructions by circle and ellipse as preferable to those per-
formed by conchoid. In fact, the conchoid, one could argue, is less exact than the
circle and the ellipse, since its definition is mechanical rather than geometrical.
The circle is given by postulate, and the ellipse can be described in purely geo-
metrical terms as the section of a cone. Mechanical descriptions of curves (organic
descriptions) were often regarded with some suspicion. But Newton did not reason
like that; for him, all curves, even the circle, were primarily given by mechanical
descriptions. In a treatise on geometry that Newton composed in the 1690s, he
wrote:

[I]n definitions [of curves] it is allowable to posit the reason for a mechanical gen-
esis, in that the species of magnitude is best understood from the reason for its
genesis.31

Curves that are posited mechanically are better understood because one knows the
“reason for their genesis.” Newton, for his own idiosyncratic purposes, is here de-
ploying terminology familiar to readers of the fourth book of Pappus’s Collectio,
where the properties (symptomata) of mechanical lines such as the Archimedean
spiral, the conchoid of Nicomedes, the quadratrix of Dinostratus and Nicomedes,

was found. His very plausible guess is that Newton used the algebraic method of undetermined
coefficients. Bos, “Arguments on Motivation in the Rise and Decline of a Mathematical Theory”
(1984), p. 361.
30 The first two lemmas are (i) XY/KA = CX/KE, (ii) XY/KA = CY/(KA + KE). In fact,
the second lemma is an easy consequence of the first. From the second lemma and Elements, II,
12, a third lemma follows: (iii) XY/KA = (KE − KB)/XY .
31 MP, 7, p. 291. “In definitionibus ponere licet rationem geneseos Mechanicae, eo quod species
magnitudinum ex ratione geneseos optime intelligitur.” MP, 7, p. 290.
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and a spiral on the surface of a sphere were proven by means of the defining me-
chanical genesis of the line. Newton thus provided a mechanical description of the
ellipse by the trammel and constructed third-degree equations by intersections of
circle and ellipse.

Descartes had proposed a canon for the construction of third-degree equations
in terms of intersections between a circle and a parabola. Such intersections could
not be performed via algebraic means in a general way. The intersection could
exactly be determined only by means of geometrical constructions. Descartes, how-
ever, did not introduce the parabola and the circle via a tracing mechanism. In
his discussion of the geometrical construction of conics he chose rather to con-
sider the conic sections as given in terms of the sections of a plane with a cone.32

Newton disagreed on this point. In Newton’s terminology, curves could be de-
scribed either geometrically (via a geometrical relation, e.g., that between a plane
and a cone) or organically (via a mechanical description). In the construction of
problems, according to Newton, one is bound to employ mechanical definitions
of curves; these alone ensure that the point of intersection between the curves is
really given, something ensured by the continuity of tracing. Thus, in order to
construct third-degree equations by means of conic sections rather than a con-
choid, one needs (i) a mechanical description of conics, and (ii) a criterion of
simplicity based on this mechanical description. Curves defined geometrically (in
this case as sections of the cone) are, in Newton’s words, “useless speculation”;
curves are useful for constructions when a mechanical, or organic generation is
known.

Naturally, Newton’s construction by ellipse and circle is not that different from
Descartes’ construction by parabola and circle. Indeed, Newton showed how Des-
cartes’ construction could be derived from his own. He also emphasized, however,
that his construction was carried on in terms of conics, which are generated me-
chanically, whereas Descartes relied on a geometrical definition of conics as sections
of a cone.

But why choose the ellipse rather than the parabola? This question points to
Newton’s last attack against the Cartesian canon:

So far I have expounded the construction of a cubic equation by an ellipse only: but
by its very nature the rule is more general, extending to all conics indifferently. . . .
Thus, constructions by a parabola [namely, the ones proposed by Descartes] are, if
you regard their analytical simplicity, simplest of all; those by the hyperbola hold
next place; and the last place is retained by those accomplished by an ellipse. But
if regard be had for the simplicity of their manual procedure in describing figures,
that order must be inverted.33

32 Bos, Redefining Geometrical Exactness (2001), p. 320.
33 MP, 5, pp. 485–7.
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4.5 Against Cartesian Synthesis

The message that Newton wished to deliver in the final section of Lucasian Lectures
on Algebra, devoted to the linear construction of equations, is that in geometrical
constructions algebraic criteria are misleading. Descartes had admitted all geo-
metric curves as means of construction. Most of these, however, were hopelessly
complex. On the other hand, some mechanical curves, such as the cycloid, were
simple means of construction. Further, the hierarchy of simplicity given in terms of
the degree of algebraic equations is foreign to geometry. Circle and ellipse are of the
same degree, but the former is simpler. The conchoid is a curve of fourth degree, but
admitting it as a postulate is equivalent to admitting neusis constructions, which,
in the construction of third-degree equations, prove to be better than conic sec-
tions. When practicing geometry, Newton insisted, curves (even the cissoid, which
was traditionally constructed point-wise) must be seen as being traced by motion
(figure 4.5).

Newton’s argument has several weak points; his criteria for geometrical con-
struction are vague and essentially based on aesthetic preferences, whereas Descar-
tes was able to provide a canon that is defined in clear mathematical terms. Why,
for instance, should one consider a neusis construction any more elegant than one
achieved via intersection of circle and parabola? Further, Newton’s idea that one
should accept such mechanical curves as the spiral and the cycloid in the construc-
tion of problems such as angle sections trivializes Descartes’ effort to distinguish
between acceptable and unacceptable means of construction in such a way that in
constructing a problem one should never use means as difficult to construct as the
problem itself. For Descartes admitting the cycloid or the spiral for angle section
would have meant using a means of construction that presupposes the construction
of the problem at hand.

Notwithstanding such weaknesses, Newton’s fiery invectives against the Carte-
sian method, which abound in the final section of Lucasian Lectures on Algebra,
are not paradoxical, as is often claimed. Newton made it clear that in the sec-
tion on the linear construction of equations he was talking about the synthetic,
constructive phase of the problem-solving process; he was “treating of composi-
tion.” The analytical stage, discussed in the section devoted to the reduction of
geometrical questions to equations (see chapter 5), can be carried on in algebraic
terms. Indeed, in the Lectures, algebra is proposed as one of the admissible ana-
lytical tools. In the synthetic, constructive stage, however, algebra must not play
any role:

Present-day geometers indulge too much in speculation from equations. The sim-
plicity of these is a consideration belonging to analysis: we are here [in the final
section of Lucasian Lectures on Algebra] occupied with composition, and laws are
not to be laid down for composition from an analytical standpoint. Analysis guides
us to the composition, but true composition is not achieved before it is freed from
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Figure 4.5

Newton highly valued organic descriptions of curves. He invented a mechanical description
of the cissoid. The original in MP, 5, pp. 465–7 (see also MP, 7, pp. 390–1) was emended
in the printed Arithmetica Universalis). A right angle with arm of fixed length 2r is moved
in the plane in such a way that its end point E moves on a line and the other arm always
goes through a fixed point F at distance 2r from the line. The midpoint P of the arm SE
then describes the cissoid. See §6.1 and §8.4.5 for the properties and defining third-degree
equation of the cissoid. Source: Brieskorn and Knörrer, Plane Algebraic Curves (1986), p.
12. c©1981 Birkhäuser Boston Inc. With kind permission of Springer Science and Business
Media.

analysis. Let even the slightest trace of analysis be present in the composition and
you will not yet have attained true composition. Composition is perfect in itself
and shrinks from an admixture with analytical speculations.34

Again, this position does not exclude the use of algebra in the stage of analysis;
however it rules out algebraic criteria of demarcation and simplicity from the syn-
thesis. Newton formulated a clear partition between discovery of the equation, its

34 “Aequationum speculationi nimium indulgent hodierni Geometrae. Harum simplicitas est con-
siderationis Analyticae. Nos in compositione versamur et Compositioni leges dandae non sunt
ex Analysi. Manuducit Analysis ad Compositionem: sed Compositio non prius vera confit quam
liberatur ab omni Analysi. Insit Compositioni vel minimum Analyseos et Compositionem veram
nondum assecutus es. Compositio in se perfecta est et a mixtura speculationum Analyticarum
abhorret.” MP, 4, p. 477.



76 Chapter 4

construction, and a complete demonstration in a manuscript dating from the early
1690s:

[I]f a question be answered by the construction of some equation, that question is
resolved by the discovery of the equation and composed by its construction, but it
is not solved before the construction’s enunciation and its complete demonstration
is, afrom beginning to end excluding analysis perfectlya with the equation now
neglected, composed. Hence it is that resolution so rarely occurs in the ancients’
writings outside Pappus’s Collection.35

4.6 Against Cartesian Analysis

Newton not only criticized the Cartesian synthesis of determinate problems, but
also expressed some reservations with regard to Cartesian analysis. He positioned
himself against the Cartesian canon of geometrical problem construction via the
intersection of geometrical curves, and he also disliked algebra as an analytical
means of discovery. When Newton turned to indeterminate (or locus) problems,
he embarked on a sustained campaign against Cartesian algebraic methods. As
for determinate problems, his position was more nuanced. While recognizing the
usefulness of the Cartesian algebraic approach, even in the case of determinate
problems he showed a predilection for geometrical analysis.

In Descartes’ Géométrie, Newton encountered the thesis that algebra is the
tool to be employed in the analysis of geometric problems. The largest part of
Lucasian Lectures on Algebra is devoted to developing this kind of Cartesian prob-
lematic analysis. However, already while preparing his notes on Kinckhuysen, New-
ton had begun to compare geometrical and algebraic analyses. Newton’s anno-
tations on this topic reveal that he progressively deepened his dislike for the lat-
ter. The main criticism that he leveled is that algebraic analysis does not reveal
how the geometrical synthesis can be performed. After the geometrical analysis
of a problem it is possible to reach a construction by reverting the steps of the
analysis, but after an algebraic analysis one is left with an additional and artifi-
cial problem: Descartes’ problem of the construction of the equation.36 Newton
concluded that such constructions were largely a Cartesian contrivance with no
roots in the ancient geometrical tradition. Further, these constructions were un-

35 aa canceled. Newton, MP, 7, p. 307. “si quaestioni per constructionem aequationis alicu-
jus respondeatur, quaestio illa resolvitur per inventionem aequationis, componitur per con-
structionem ejusdem, sed non prius solvitur quam constructionis enunciatio ac demonstra-
tio tota aa principio ad finem exclusa omni analysi perfectea componitur, aequatione ne-
glecta. Hinc est quod resolutio in veterum scriptis extra Pappi collectanea tam raro occurrat.”
MP, 7, p. 306.
36 Brigaglia, “La Riscoperta dell’Analisi e i Problemi Apolloniani” (1995).
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naturally complicated and less elegant than those of the ancients. In the 1690s,
Newton wrote,

[The ancients regarded] a problem as resolved when a geometer had in his own
view completed its analysis, and as solved once he had without analysis learnt
how to compose it. Whence the solution of problems by the construction of an
equation would, to the ancients’ mind, seem to be excluded from pure geometry,
unless perhaps insofar as an algebraist who is less cognizant of geometry should
propose this particular problem: To denote the root of a proposed equation geomet-
rically, or insofar as a geometer should gather from the construction of an equation
a solution of a kind propoundable and demonstrable without knowledge of the
equation.37

Newton often insisted on the fact that geometry solves problems in a simpler and
more economical way. For instance, in a treatise written in the early 1680s and
entitled “Geometria Curvilinea,” Newton wrote,

Men of recent times, eager to add to the discoveries of the ancients, have united
specious arithmetic [i.e., algebra] with geometry. Benefiting from that, progress
has been broad and far-reaching if your eye is on the profuseness of output but the
advance is less of a blessing if you look at the complexity of its conclusions. For
these computations, progressing by means of arithmetical operations alone, very
often express in an intolerably roundabout way quantities which in geometry are
designated by the drawing of a single line.38

In the late 1690s, Newton restated these claims when commenting upon Antonio
Hugo de Omerique’s Analysis Geometrica (1698), a work devoted to a laborious
geometrical approach to determinate problems (§14.1). Newton became all the
more resolute in his classical anti-algebraic approach with the passing of the years.
In 1694 he is reported to have stated, “Algebra is the Analysis of the Bunglers in
Mathematics.”39

In sum, according to Newton, Cartesian analysis is often less elegant than geom-
etry; does not reveal an easy way to achieve the synthesis; and leads to the “con-
struction of the equation: a solution excluded from pure geometry to the ancients’

37 MP, 7, p. 251. “[Veteres] existimantes Problema resolutum esse quando Geometra apud se
absolverat Analysin, solutum quando sine Analysi componere didicerat. Unde solutio problema-
tum per constructionem aequationis e Geometria pura, ex veterum sententia, excludenda videtur:
nisi forte quatenus Algebraista qui Geometriam minus intelligit proponat hoc ipsum problema,
Radicem propositae aequationis Geometrice designare; aut quatenus Geometra ex constructione
aequationis colligat ejusmodi solutionem quae sine aequationis notitia proponi ac demonstrari
potest.” MP, 7, p. 250.
38 MP, 4, p. 421. “Nuperi veterum inventis addere studentes, Arithmeticam speciosam con-
junxerunt cum Geometria. Ejus beneficio longe lateque progressum est, si copiam rerum spectes,
sed minus commode si perplexitatem conclusionum. Nam haec computa per operationes Arith-
meticas solummodo progressa, saepissime per ambages haud ferendas exprimunt quantitates quae
in Geometriâ ductu unius lineae designantur.” MP, 4, pp. 420, 423.
39 Hiscock, David Gregory, Isaac Newton and Their Circle (1937), p. 42.
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mind.” He criticized Cartesian synthesis for introducing algebraic considerations
into composition.

For analysis, Newton believed, geometry is often preferable to algebra. The
equation, if used in the analysis, should be neglected in the synthesis; mechanical
curves should be accepted in geometrical constructions; and third-degree equations
should be constructed by neusis or by intersection of conics different in detail from
those of Descartes.

What were Newton’s motivations for criticizing a tool, algebra, that he was
able to handle so well? Newton’s mathematical classicism resonated both with
anti-Cartesianism, developed rather early in his career, and later with an admi-
ration for the ancients, which led him to endorse the myth of a prisca sapientia
he saw himself as having rediscovered. In the eyes of his acolytes, Newton was
a “great Restorer and Improver.”40 While Newton’s endorsement of the prisca is
well attested in manuscripts dating to the 1690s, what prevails in the 1670s is a
marked anti-Cartesian attitude, an attitude that spans from optics to matter the-
ory and mathematics. It is in this anti-Cartesian context that Newton developed
a great admiration for the geometrical writings of the ancients, while he bitterly
criticized the symbolic mathematics pursued by the moderns.41 Newton’s admira-
tion for the ancients deepened as he began searching for a systematic approach to
indeterminate problems (see chapter 5).

40 John Colson to William Jones (September 20, 1737): “I could rather wish that the Geometers
of our Age, who certainly do not want Genius, would employ their Talents in cultivating these
parts of Science, upon the same principles, and the same foundation upon which they have been
so happily settled by our great Restorer and Improver Sir. I. N.” Cambridge University Library,
Macclesfield Collection, MS Add. 9597.9.19, ff. 96r–96v.
41 For further information, see Guicciardini, Reading the Principia (1999).
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Whence it comes that a resolution which proceeds by means of appropriate porisms
is more suited to composing demonstrations than is common algebra. Through
algebra you easily arrive at equations, but always to pass therefrom to the elegant
constructions and demonstrations which usually result by means of the method of
porisms is not so easy, nor is one’s ingenuity and power of invention so greatly
exercised and refined in this analysis.

— Isaac Newton, 1693?

5.1 In Search of Ancient Analysis

This chapter considers Newton’s criticisms of the Cartesian approach to indeter-
minate problems. These are problems that, when reduced to algebraic symbolism,
typically lead to a polynomial equation in two unknowns x and y. Their solution
is a curve whose points with coordinates (x, y) in a Cartesian coordinate system
satisfy the equation. Of course, equations in more than two unknowns can also
occur. Recall that the process that leads from the statement of the problem to
the equation is the analysis (or resolution) of the problem, and the process that
leads from the equation to the construction of the solution curve is the synthesis
(or composition) of the problem.

In the 1670s, Newton developed a strong conviction that Descartes’ canon for
indeterminate problems (§3.2.4) was to be rejected. In his opinion, not only was
the synthesis of indeterminate problems proposed in the Géométrie unsatisfactory,
but Cartesian analysis was also inferior to the method of analysis of the ancient
geometers.1

When comparing the analysis of the moderns to that of the ancients, Newton
often referred to aesthetic values, such as elegance and conciseness, which proved
the excellence of classical geometry over modern algebra. Newton further claimed
that ancient analysis leads to the synthesis, the construction of the curve, in a more
straightforward way.

Epigraph from MP, 7, p. 261. “Unde fit ut Resolutio quae per debita Porismata procedit sit
aptior componendis demonstrationibus quam Algebra vulgi. Per Algebram facile pervenitur ad
aequationes sed inde saepe ad elegantes illas constructiones ac demonstrationes pergere quae per
methodum Porismatum prodire solent, non est adeo facile, sed nec ingenium et inventionis vis in
hac Analysi tantopere exercetur & excolitur.” MP, 7, p. 260.
1 The ancient analysis had to be reconstructed from the scanty available sources, most notably
Pappus’s Collectio (§3.1).
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It is in this context that the Pappus problem became a priority for Newton.
This problem was central to Descartes’ Géométrie. Descartes had presented his
algebraic analysis as superior to the ancients’ method, succinctly described in the
seventh book of Pappus’s Collectio (§3.1). In the Géométrie he proposed a solution
to the Pappus problem of three or four lines as a paradigm of the superiority of his
method over that of the ancients (§3.4). His method, he claimed, was preferable
to the ancient one. Indeed, according to Descartes, neither Euclid nor Apollonius
had been able to thoroughly tackle its generalization to n lines. Newton was of a
different opinion. In the late 1670s, commenting upon Descartes’ solution of the
Pappus problem, he stated with vehemence,

To be sure, their [the Ancients’] method is more elegant by far than the Cartesian
one. For he [Descartes] achieved the result [the solution of the Pappus problem] by
an algebraic calculus which, when transposed into words (following the practice of
the Ancients in their writings), would prove to be so tedious and entangled as to
provoke nausea, nor might it be understood. But they accomplished it by certain
simple proportions, judging that nothing written in a different style was worthy to
be read, and in consequence they were concealing the analysis by which they found
their constructions.2

The reader of this book, with the benefit of hindsight and training in twenty-first-
century mathematics, might consider this Newtonian statement a misunderstanding
of the role and strength of Cartesian algebra. Of course, when algebraic symbols are
translated into connected prose, they often lead to a rather opaque mathematical
demonstration. It might be said that the introduction of symbolism at the beginning
of the seventeenth century was proposed by its defenders as a vehicle for freeing
mathematical demonstrations from cumbersome verbal formulations. Further, only
algebra could allow generalizations unthinkable in geometry—in the case at hand,
a streamlined generalization of the Pappus problem to n lines.

2 This statement occurs at the beginning of the manuscript entitled “Veterum Loca Solida Resti-
tuta” (§5.3). MP, 4, p. 277. “Imo vero eorum methodus longe elegantior est Cartesiana. Ille
rem peregit per calculum Algebraicum qui in verba (pro more Veterum scriptorum) resolutus adeo
prolixus et perplexus evaderet ut nauseam crearet nec posset intelligi. At illi rem peregerunt per
simplices quasdam Analogias, nihil judicantes lectu dignum quod aliter scriberetur, & proinde
celantes Analysin per quam constructiones invenerunt.” MP, 4, p. 276. I have slightly altered
Whiteside’s translation. Newton was not alone in his battle against the algebraists. Similar state-
ments can be found in the polemical works of Thomas Hobbes. For instance, Hobbes criticized
the algebraist Wallis with the following words: “[Y]ou show me how you could demonstrate the
. . . articles a shorter way. But though there be your symbols, yet no man is obliged to take
them for demonstration. And though they be granted to be dumb demonstrations, yet when they
are taught to speak as they ought to do, they will be longer demonstrations than these of mine.”
Hobbes, The English Works (1839–45), 7, pp. 281–2. Probably the person who had the greatest
influence on Newton in this respect was Barrow (§8.1).
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However, one should not underestimate the values that informed Newton’s op-
position to Cartesian algebra. The invectives against the use of algebraic symbols
that express Newton’s opposition to the Leibnizian calculus must be viewed as part
of a larger project that Newton had in mind: restoring the geometrical analysis of
the ancients.3 This project led Newton to develop important ideas in projective
geometry. I believe that Newton was pursuing this program with the conviction
that he was both a follower of the ancients and an innovator, that is, he con-
ceived himself to be a creative mathematician who, following the practice of the
ancients, was able to contribute new results in that venerated tradition. Read-
ing Newton’s defense of geometry as a backward move and identifying algebraiza-
tion as a progressive element in seventeenth-century mathematics does not capture
the values that underlay the confrontation between mathematicians such as Huy-
gens, Barrow, and Newton on the one hand and Descartes, Wallis, and Leibniz
on the other.

5.2 Porisms

5.2.1 Reading Pappus’s Collectio

In the late 1670s, Newton turned to Pappus for instructions: he began reading espe-
cially the seventh and eighth books of the Collectio.4 What Newton discovered was
a complex text, to which he applied the hermeneutical techniques he had mastered
as a biblicist. From this exegetical work he derived a series of suggestions concern-
ing the ancient method of analysis as well as a geometrical solution to the Pappus
problem of three or four lines. Historians of Greek mathematics will certainly find
Newton’s conclusions to be unfamiliar, despite the fact that he was convinced of
having penetrated the mysteries behind the ancient method of discovery.

Several aspects of Pappus’s Collectio must have fascinated Newton. As previ-
ously discussed (§3.1), in his seventh book Pappus had introduced the method of
analysis and synthesis. Early-modern mathematicians knew many examples of the
ancient synthesis epitomized by Euclid’s Elements: a procedure where one conclu-
sively deduces a consequence (a theorem or a geometrical construction) from given
premises. However, from Pappus’s text it was difficult to discern what the method

3 Newton did not note that Descartes had maintained similar ideas on the concealed analysis of
the ancients in “Responsio ad Secundas Obiectiones” in Meditationes de Prima Philosophia (1641)
(AT, 7, pp. 155–6).
4 MP, 4, pp. 274–55. Whiteside cautiously surmised that Newton might have been influenced
by Fermat’s “Porismatum Euclidaeorum Renovata Doctrina & Sub Formâ Isagoges Recentioribus
Geometris Exhibita,” which appeared in Varia Opera Mathématica (1679), pp. 116–9. MP, 4, pp.
224, 284, 316, 318, and MP, 7, p. 243. Newton’s early acquaintance with Greek analysis might
have been derived from reading Frans van Schooten’s “Apollonii Pergaei Loca Plana Restituta”
in Exercitationum Mathematicarum Libri Quinque (1657).
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of analysis might have been. After providing a definition of analysis as a path that
leads from what one is seeking as if it were already established to something that
has already been established by synthesis; and after drawing a distinction between
theorematic and problematic analysis, Pappus described a series of works by Apol-
lonius, Euclid, Eratosthenes, and Aristaeus where this method—useful for those
“who want to acquire a power in geometry that is capable of solving problems set
to them”—was fully explained. Pappus devoted most of Book 7 to a series of lem-
mas whose purpose was to facilitate the understanding of the works belonging to
the “domain of analysis.” These included Euclid’s Data and Apollonius’s Conics.
In Newton’s time only the former was accessible in its entirety; of the latter only the
first four books were known.5 The other works referred to by Pappus were not ex-
tant: one could try to understand their content through Pappus’s brief descriptions
and lemmas.

According to the Collectio, the highest parts of the method of analysis—under-
stood by Newton and by most of his contemporaries as the “lost method of discov-
ery” of the ancients—were contained in the three lost books of Euclid’s Porisms,
which were described as a “very clever collection for the analysis of more weighty
problems.”6 But what is a porism? What are these supposedly heuristic tools
which, according to Pappus, “have a delicate and natural aspect, cogent and quite
universal, and pleasant for people who know how to see, and how to find?”7 This is
still considered an open question by some historians of Greek mathematics. Robert
Simson in the eighteenth century and Michel Chasles in the nineteenth provided de-
tailed reconstructions of Euclid’s lost work.8 From Newton’s manuscripts it emerges
that he anticipated some of their results. Indeed, Whiteside’s edition of Mathemat-
ical Papers has shown that from the 1670s to the 1690s Newton embarked on a
research program aimed at restoring the Porisms.

5 Latin compendia of Books 5–7 were produced by Giovanni Alfonso Borelli and Abraham de
l’Echelle in 1661 (Bologna), and by Christian Rau in 1667 (Kiel). Both Borelli’s and Rau’s works
were based on Arabic paraphrases. It was only in 1710 that Halley produced a reliable edition of
the Conics, 1–7; he based Books 1–4 on a Greek manuscript, and 5–7 on manuscripts in Arabic
now held at the Bodleian. Halley’s restoration of Book 8 was based on Pappus’s lemmas. As for
the first four books of the Conics, Newton employed Barrow’s “edition.” In Harrison, The Library
of Isaac Newton (1978), we find the following works: the first four books of Apollonius’s Conics in
Barrow, Archimedis Opera (1675); Halley’s edition of Apollonius, De Sectione Rationis Libri Duo
(1706) and Apollonii Pergaei Conicorum Libri Octo et Sereni Antissensis De Sectione Cylindri
& Coni Libri Duo (1710).
6 Pappus, Book 7 of the Collection (1986), p. 94.
7 Ibid.
8 Simson, Opera Quaedam Reliqua (1776). Chasles, Les Trois Livres de Porismes d’Euclide (1860).
The two enterprises cannot be equated. Simson’s work is a genuine attempt to recover Euclid’s
Porisms; Chasles produced a much more theoretical work, which nonetheless is enlightening for
historians.
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Newton was struck by the idea that porisms were akin to locus problems. As
previously mentioned (chapter 3), early-modern mathematicians understood that
these problems require the construction of a locus in function of some set of given
conditions.9 Most notably, Newton defined the Pappus problem as a porism.10

Newton envisaged a close connection between Euclid’s Data and Porisms.11 The
propositions of the Data are concerned with determinate problems and have the
form if A is given, then A′ is given. Newton conceived of porisms as propositions
similar, but much more advanced, than the ones occurring in the Data, which in
some instances state that if a straight line or a curve C is given, then another
straight line or curve C ′ related to the former is also given. Some of Newton’s
examples of porisms actually have to do with transformations from curve to curve.

Newton also speculated on the possibility that by porisms the ancients might
have meant theorems related to the projective properties of conic sections. For him,
it was plausible to assume that the ancients were able to discover new theorems and
solve new problems on conic sections by identifying properties invariant by central
projection. Perspective (and, more generally, projective) transformations are, of
course, a tool for associating a given curve to another curve.

Several results presented by Pappus as related to porisms are nowadays best read
in terms of cross-ratios of segments in certain configurations of intersecting lines.12

By using these results, Pappus was able to prove the theorem that still bears his
name.13 Whether the ancients conceived of porisms in the context of some form
of prototypal projective geometry is a question that is best addressed in a book
devoted to Greek mathematics.14

9 See MP, 7, pp. 301, 329. The ancient understanding of the locus problem might have been
very different. See Acerbi, “Introduzione” in Euclide, Tutte le Opere (2007), pp. 463–82. One of
Pappus’s definitions of a porism refers to locus problems. It is a definition from which Pappus
distanced himself, arguing that it was adopted by moderns on the basis of an accidental trait.
This definition nevertheless clearly reveals one property, albeit not an essential one, of porisms:
“[A] porism is what is short by a hypothesis of (being) a theorem of a locus. The form of this class
of porisms is the loci, and these abound in the Domain of Analysis. This kind, separated from
the porisms, has been accumulated and handed down because of its being more diffusible than the
other forms.” See Jones’s commentary in Pappus, Book 7 of the Collection (1986), pp. 391–2.
10 MP, 7, p. 399.
11 “Sunt igitur Euclidis data nihil aliud quam Porismata sed his of simplicitatem inventionis nomen
Datorum potius impositum est.” MP, 7, p. 262.
12 Pappus, Book 7 of the Collection (1986), pp. 560–2,
13 Namely, “If A, B, and C are three points on one line, D, E, and F are three points on another
line, and AE meets BD at X, AF meets CD at Y , and BF meets CE at Z, then the three points
X, Y , and Z are collinear.”
14 See Knorr, The Ancient Tradition of Geometric Problems (1993), pp. 108–120 (esp. pp. 116–
120). A thorough discussion of porisms is provided in Jones’s commentary in Pappus, Book 7 of
the Collection (1986), pp. 66–70 and 547–72. See also the very interesting Acerbi, “Introduzione”
(2007), pp. 733–44.
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Newton certainly interpreted porisms in projective terms and thus contributed
to a mathematical program thriving in the seventeenth century thanks to the works
of Gérard Desargues, Blaise Pascal, and Philippe de La Hire.15 In his classification
of cubic curves Newton relied on perspective transformations in order to go beyond
the algebraic boundaries of Cartesian mathematics (see chapter 6). The available
evidence indicates that Newton was aware of the fact that the cross-ratio of any
four elements of a form is equal to the cross-ratio of the corresponding four elements
in any form projectively related to it.16 Therefore, he studied the Collectio and
began systematizing Pappus’s theorems concerning the invariance of cross-ratios.
These researches culminated in the manuscript treatises on the “composition and
resolution of the ancient geometers,” which Newton wrote in the 1690s (see part
V).17

In the first pages of Book 7 of the Collectio, Pappus presented two porisms
(see figures 5.1 and 5.2) that, he claimed, occurred at the beginning of Euclid’s lost
work.18 Newton’s attention was, of course, caught by these two porisms, which bear
some resemblance to his organic method for the construction of conics and higher-
order curves. I first consider the so-called hyptios porism proposed by Pappus,
which, we are told, summarizes the content of ten propositions in Euclid’s first
book (§5.2.3). I then turn to the other porism, here referred to as the main porism
(§5.2.4). As a preliminary to this discussion of Pappus’s porisms it will be useful to
recall the definition of cross-ratio.

5.2.2 Cross-ratios

The cross-ratio of four points on a line (in that order) A, B, C, D is defined as

(ABCD) = CA/CB : DA/DB, (5.1)

where all the segments are thought to be signed (that is, CA is the length of the
segment from C to A, etc.). The cross-ratio clearly does not depend on the selected

15 Newton knew La Hire, Nouvelle Methode en Geometrie pour les Sections des Superficies
Coniques et Cylindriques (1673). Whiteside wrote (MP, 6, p. 271) that the book was bought
soon after its publication by the Cambridge University Library; it was reviewed in the Philosoph-
ical Transactions for March 1676, and was referred to by Hooke in his letter to Newton dated
November 24, 1679 (Correspondence, 2, p. 298). The extent of Newton’s indebtedness to La Hire
is, however, unclear.
16 The invariance of the cross-ratio under a central perspectivity is self-evident and can be extended
to a projectivity conceived of as the composition of perspectivities.
17 See MP, 7, pp. 185–561, and especially “Inventio Porismatum” (pp. 230–47), “Proemium”
to “Geometriae Libri Tres” (esp. pp. 260–77), “De Compositione et Resolutione Veterum Ge-
ometrarum” (pp. 304–39), where Newton elaborated long lists of porisms taken from Pappus’s
Collectio.
18 Pappus, Book 7 of the Collection (1986), pp. 99–101.
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direction of the line ABCD but does depend on the relative position of the points
and the order in which they are listed. Although central projection does not preserve
distance and ratio between two distances, it does preserve the cross-ratio. That is
why this concept is so important in projective geometry.19

One can also define the cross-ratio (a, b, c, d) of a pencil of four coplanar straight
lines a, b, c, d (the rays) which meet at a point P (called the vertex of the pencil).
It is defined as another double ratio, now of sines:

(a, b, c, d) = sin(cPa)/ sin(cPb) : sin(dPa)/ sin(dPb), (5.2)

where angles are also considered signed (in a natural way).
The notation (P : P1, P2, P3, P4) is also used, where Pi denote four coplanar

points, for the cross-ratio of the pencil of four coplanar straight lines PP1, PP2,
PP3, PP4 meeting at P .

It can be proven that if a pencil of four straight lines a, b, c, d meeting at a point
P is intersected by any transverse straight line in four points A, B, C, D, then

(ABCD) = (a, b, c, d). (5.3)

Therefore, the cross-ratio (ABCD) is a constant no matter how the transverse
straight line is drawn.

The projective invariance of the cross-ratio of four collinear points leads to con-
sideration of its form when one of the four points lies at infinity. So if D = ∞,
then

(ABC∞) = CA/CB. (5.4)

5.2.3 The Hyptios Porism

The enunciation of this porism (figure 5.1), according to Jones’s edition of Pappus,
is as follows:

If the intersections A, B, Γ of three variable straight lines l1, l2, l3 with a straight
line l4 are given, while the intersection of l2 and l3 (Δ) lies on a given straight line
m1 and the intersection of l1 and l3 (Z) lies on a given straight line m2, then it is
possible to construct a straight line m3 on which the intersection of l1 and l2 (E)
lies.20

19 Alternative (but equivalent) definitions of cross-ratio can also be found. In fairly old books
the term used is anharmonic ratio. Here I follow Casey, A Treatise on the Analytical Geometry
of the Point, Line, Circle, and Conic Sections (1893), pp. 55, 343. See also Salmon, A Treatise
on Conic Sections (1896), p. 55. For an accessible presentation, see A. Bogomolny, Cross-Ratio,
http://www.cuttheknot.org/pythagoras/Cross-Ratio.shtml, accessed March 17, 2008.
20 Pappus, Book 7 of the Collection (1986), p. 549. The original formulation is in Pappus, Book
7 of the Collection (1986), pp. 98–9.

http://www.cuttheknot.org/pythagoras/Cross-Ratio.shtml
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Figure 5.1

Diagram for the hyptios porism, one of the two propositions from Porisms reported by
Pappus in Book 7 of the Collectio. Source: Courtesy of Fabio Acerbi.

So there are four lines that intersect in six points. Three points (A, B, and Γ)
are fixed and collinear, two (Δ and Z) are constrained on given straight lines (bro-
ken lines in figure 5.1). It is stated that under these conditions a straight line
can be constructed such that the other intersection point E will lie on it. Spe-
cial cases (paryptios cases) arise when two lines are parallel, that is, when one of
the intersections is projected to infinity. As Jones observed, this porism is pro-
jective in character because it concerns only incidence and collinearity.21 Jones
further made the point that “Euclid did not have the mathematical equipment
to treat parallel cases as equivalent to the general case (the “hyptios” porism),
and this fact partly explains how there could be several variations (ten proposi-
tions) of this porism.”22 Newton, however was quick to embed porisms within
the framework of projective geometry. For instance, in the 1690s he studied the
hyptios porism in terms of cross-ratios.23 He further approached it in terms of
his kinematic conception of geometrical magnitudes, so that he seemed to suggest
that if the points Δ and Z slide on two (broken) straight lines, the correspond-
ing point E describes a (dotted) straight line as well.24 Projective geometry and

21 “It is nearly equivalent to the dual of Desargues’s theorem, namely that if the corresponding
sides of two triangles meet in three collinear points, the lines joining corresponding vertices will
intersect in one point.” Pappus, Book 7 of the Collection (1986), p. 556.
22 Pappus, Book 7 of the Collection (1986), p. 556.
23 Newton considered the hyptios porism in the “Proemium” to “Geometriae Libri Tres.” MP, 7,
pp. 268–9.
24 Newton, however, employed the traditional verbs tangere or contingere, which do not convey
the kinematic meaning of the verb to trace, employed in Whiteside’s translation. See, e.g., MP, 7,
pp. 268, 328.
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organic constructions of curves were closely connected in Newton’s mathematical
practice (§5.4).

5.2.4 The Main Porism

The main porism is as follows (figure 5.2).

The straight lines ΔE and KZ are given in position. The three points A, B and
Z are given too. A ratio a/b is given. The two straight lines AΓ and BΓ are
variable but subject to the following restrictions: (i) each passes through a point
(respectively A and B), and (ii) they intersect in a point Γ which lies on ΔE.

One has to construct a straight line HΛ and a point H lying on it such that, if Λ
is the intersection of this straight line with BΓ, the segments ΛH and KZ are to
each other in the given ratio: ΛH/KZ = a/b.

The Newtonian manuscript devoted to this porism dates from 1690s.25 Newton’s
approach can be summarized as follows. If one considers four different configurations
of the variable lines so that they meet in four points Γ1, Γ2, Γ3, Γ4 on ΔE (and
meet the lines in corresponding points K1, K2, K3, K4 and Λ1, Λ2, Λ3, Λ4), the
cross-ratios of the line pencils with vertices A and B and sides AKi and BΛi are
equal.

Newton knew that (A: Γ1, Γ2, Γ3, Γ4) = (A: K1, K2, K3, K4 ), since the same
pencil cut by two different transversals generates sequences of points with the same
cross-ratio. Similarly, (B: Γ1, Γ2, Γ3, Γ4) = (B: Λ1, Λ2, Λ3, Λ4). Further, (A:
Γ1, Γ2, Γ3, Γ4)= (B: Γ1, Γ2, Γ3, Γ4), since the points Γi lie on a straight line.
Therefore, (A: K1, K2, K3, K4)= (B: Λ1, Λ2, Λ3, Λ4).26

As Newton observed, the equivalence (A: K1, K2, K3, K4)= (B: Λ1, Λ2, Λ3, Λ4)
still holds when Γ, instead of lying on a straight line, lies on a conic passing through
A and B.27 Indeed, also for four points Γi on such a conic section, the cross-ratios

25 Entitled “Inventio Porismatum.” MP, 7, pp. 242–5.
26 Given all these equivalences of cross-ratios, in order to solve the main porism Newton chose the
straight line HΛ so that the intersections K and Λ pass simultaneously to infinity. This condition
identifies a direction of HΛ and therefore a set of parallel lines. Which line belonging to this
set answers the porism? And how to find point H? Consider one of these parallel lines, and
mark the points on it with an asterisk. Let the point H∗ = Λ∗

1 correspond to the configuration
in which K coincides with K1 = Z; denote this configuration by Γ1, K1, Λ∗

1. The equality
of cross-ratios just demonstrated can be stated as (K1, K2, K3, ∞)= (Λ∗

1, Λ∗
2, Λ∗

3, ∞), that
is, K3K1/K3K2 = Λ∗

3Λ∗
1/Λ∗

3Λ∗
2. Therefore a sequence of points Λ∗

1, Λ∗
2, Λ∗

3 on any one of the
parallel lines just identified, and K1, K2, K3 on the given straight line KZ, is such that the
ratios K3K1/Λ∗

3Λ∗
1 = K3K2/Λ∗

3Λ∗
2 are equal to some constant. In order to solve the porism, this

constant must be equal to the given ratio a/b. Of all the parallel lines, the one that satisfies the
condition K3K2/Λ∗

3Λ∗
2 = a/b must be chosen.

27 MP, 7, p. 244.
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Figure 5.2

Diagram for the main porism reported by Pappus in Book 7 of the Collectio. Courtesy of
Fabio Acerbi.

(A: Γ1, Γ2, Γ3, Γ4 ) and (B: Γ1, Γ2, Γ3, Γ4) are equal, since the following property
is valid.

The anharmonic property of conics: If Γ1, Γ2, Γ3, Γ4 are four fixed points of
a conic, and A is a variable point of the conic, then the cross-ratio (A: Γ1, Γ2, Γ3,
Γ4) is constant.28

This property has an important converse:

Steiner’s theorem If p and p′ describe pencils of lines, with vertices A and B
respectively, and if the rays of the two pencils are associated in pairs in such a way
that the cross-ratio of any four rays p is equal to the cross-ratio of the corresponding
rays p′, then the locus of the point of intersection of corresponding rays is a conic
through A and B.29

28 Casey, A Treatise on the Analytical Geometry of the Point, Line, Circle, and Conic Sections
(1893), p. 343; Salmon, A Treatise on Conic Sections (1896), p. 252.
29 Kneebone and Semple, Algebraic Projective Geometry (1998), p. 27.
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The extension of the main porism to conics, rendered possible by these properties,
was probably exploited by Newton in discovering the technique of the organic de-
scription of conics (§5.4). The organic generation of conics played an important role
in Newton’s anti-Cartesian geometrical approach to the Pappus problem of three
or four lines.

5.3 Newton’s Two-Step Approach to the Pappus Problem

5.3.1 Errors in Descartes’ Géométrie

A manuscript that according to Whiteside was composed in the late 1670s contains
some interesting criticisms aimed against Descartes’ pronouncements on the role
of the Pappus problem in providing a classification of geometrical curves. The
title of this manuscript is “Errores Cartesij Geometriae.”30 After several critiques
of Descartes’ conceptions of simplicity, Newton considered an idea that is voiced
several times in the Géométrie, namely, that every geometrical curve is the solution
of a Pappus problem of n lines. Descartes hoped that every acceptable (geometric)
curve could thus equally be classified according to either the degree of the equation
or the number of lines in the pertaining Pappus problem.31 Indeed, as the number
of lines increases, so does the degree of the pertaining equation: for three or four
lines the equation is second-degree, for five or six lines the equation is third-degree,
and so on.

Newton observed that a sixth-degree curve is defined by

(6 + 1)(6 + 2)
2

− 1 =
6(6 + 3)

2
= 27 (5.5)

constants. One has simply to consider the number (27) of coefficients occurring in
the general polynomial of sixth degree. The Pappus eleven- or twelve–lines locus (a
sixth-degree curve) is defined by 25 constants. Indeed, a generalization of equation
(3.1) for twelve lines is

d1d2d3d4d5d6 = kd7d8d9d10d11d12. (5.6)

30 Add. 3961.4, ff. 23r–24r in MP, 4, pp. 336–45. Newton’s criticisms relate to the second Latin
edition of Descartes’ work. A copy signed by Newton and with marginalia in Newton’s hand
consisting of a few occurrences of catchwords such as error and non Geom was found in 1971 in
the Wren Library. MP, 7, p. 194. Some of these marginalia are closely related to “Errores Cartesij
Geometriae.”
31 “il n’y a pas une ligne courbe qui tombe sous le calcul & puisse estre receüe en Geometrie,
qui n’y soit utile pour quelque nombre de lignes.” Géométrie, p. 324 [58]. Newton observed:
“Erravit praeterea Cartesius in eo quod asseruit omnes curvas quas geometricas vocat utiles esse
in Problemate Pappi.” MP, 4, p. 340. On Descartes, see Bos, Redefining Geometrical Exactness
(2001), pp. 281–3, 352–4.
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Thus the locus is defined by twelve lines given in position (24 constants) plus a con-
stant k. Newton concluded that there are geometrical curves that are not solutions
of a Pappus problem.32 Therefore, the Pappus problem could not play the role
attributed to it by Descartes. It is again the confounding of algebra and geometry
that, according to Newton, led Descartes and his followers astray. The Pappus prob-
lem was not, in Newton’s opinion, subservient to algebraic classification; it was an
interesting geometrical problem, and Newton devoted his efforts to its geometrical
analysis and synthesis.

5.3.2 Newton’s Strategy

Newton’s researches on the Pappus problem of three or four lines can be found in
two manuscripts dating from the late 1670s and early 1680s: “Veterum Loca Solida
Restituta” and “Solutio Problematis Veterum de Loco Solido.”33 The second one is
definitely a greater accomplishment, its most important achievements are considered
here.

The opening of “Solutio Problematis Veterum de Loco Solido” is particularly
interesting because it was incorporated almost verbatim into Section 5, Book 1, of
the Principia. The solution to the Pappus problem is reached in Corollary 2 to
Lemma 19 of the Principia, where Newton added a triumphant conclusion:

And thus there is exhibited in this corollary not a computation but a geometrical
synthesis, such as the ancients required, of the classic problem of four lines, which
was begun by Euclid and carried on by Apollonius.34

Recall that Descartes saw his ability to solve the Pappus problem of three or four
lines and extend it to n lines as a clear indication that his own analysis was superior
to that of the ancients. Newton aimed to disprove this.

Newton’s approach to the Pappus problem of three or four lines in “Solutio
Problematis Veterum de Loco Solido” can be divided into two steps:

32 “Latior est itaque natura curvarum hujus ordinis quam quae per Problema Pappi omnimodo
designentur.” MP, 4, pp. 342–4. A slight error in Newton’s reasoning was noted by Whiteside
in his commentary, namely, Newton wrote that the twelve lines are determined by 22 constants
instead of 24. The best study of “Errores Cartesij Geometriae” and the marginalia pertaining to
the Géométrie is Galuzzi, “I Marginalia di Newton alla Seconda Edizione Latina della Geometria
di Descartes e i Problemi ad Essi Collegati” (1990).
33 MP, 4, pp. 274–82, 282–321. The critical apparatus provided by Whiteside (see esp. MP, 4,
p. 284, note 2) allows the reader to consider the difficult collation necessary to reconstruct these
manuscripts. See also “Tractatus de Compositione Locorum Solidorum,” which consists of variant
drafts to the “Solutio.” MP, 4, pp. 322–35.
34 Newton, Principles, p. 485. “Atque ita problematis veterum de quatuor lineis ab Euclide in-
coepti & ab Apollonio continuati non calculus, sed compositio geometrica, qualem veteres quaere-
bant, in hoc corollario exhibetur.” Principia, p. 150.
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1. Newton proved that the loci defined by the Pappus problem of three or four lines
are conic sections.

2. Newton showed how a conic could be constructed via a mechanism involving
rotating rulers (see §5.4). In this step one actually identifies a conic that is the
sought solution to the Pappus problem for a particular configuration of three or
four lines and a constant k (see equation (3.1)).

5.3.3 First Step

I look briefly here at the first propositions of “Solutio Problematis Veterum de Loco
Solido,” which allowed Newton to achieve the first step of his solution of the Pappus
problem.

Newton made use of a property proved in Propositions 17, 19, 21, and 23 of the
third Book of Apollonius’s Conics, which he explicitly cited.35 The property states
that “if two chords AB and DE of a conic intersect in C, the rectangles contained
by their segments are proportional to the squares on the parallel diameters,” that
is, the ratio (AC × CB) : (DC × CE) does not change when the chords AB and
DE are moved parallel to themselves (figure 5.3).36

In Proposition 1, Newton proved on the basis of this property that if ABDC is
a quadrilateral inscribed in a conic (figure 5.4) and from any point P on the conic
straight lines PQ, PR, PS, PT are drawn making given angles with the sides AB,
CD, AC, BD, then PQ× PR will be to PS × PT in a given ratio. 37 This proves
that for any point P belonging to a conic Pappus’s condition (equation (3.1)) holds.

Figure 5.3

Diagram for Proposition 11 in Stirling, Lineae Tertii Ordinis Neutonianae (1717), p. 77.
Courtesy of the Biblioteca Angelo Mai (Bergamo).

35 Principia, p. 144. It is well known that the proof that conics are solutions of the three lines
locus problem can be deduced from Propositions, 54, 55, and 56, Book 3, of the Conics.
36 For a discussion of Newton’s use of this property in the demonstration of the initial Lemmas 17
and 18, Section 5, Book 1, of the Principia, see Milne, “Newton’s Contribution to the Geometry
of Conics” (1927), p. 102.
37 This proposition appears in the Principia as Lemma 17, Book 1.
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Figure 5.4

Diagram for Lemma 17, Section 5, Book 1, of the Principia. Source: Newton, Philosophiae
Naturalis Principia Mathematica (1726), p. 74. Courtesy of the Biblioteca Angelo Mai
(Bergamo).

Proposition 2 proves the converse: if point P moves in such a manner that
PQ × PR is to PS × PT in a given ratio, then the locus of P is a conic passing
through A, B, C, and D.38

5.3.4 Second Step

The first step is achieved via rather elementary geometrical methods. Notwith-
standing its classical façade, Newton’s approach to the second step was guided by
an understanding of the fact that conic sections can be defined as those curves that
satisfy the “anharmonic property.”39

From the condition of the Pappus problem of three or four lines (equation (3.1))
it is clear that the required conic will pass through four intersections of the four
given lines. It therefore belongs to the sheaf of conics that pass through the vertices
of a quadrilateral. Further, a fifth point can be constructed (as Newton showed in
Proposition 3). Hence, the problem is reduced to the construction of a conic that
will pass through five given points.40

In the eighth book of the Collectio, Pappus had provided a method for construct-
ing an ellipse that passes through five given points. Newton saw this as positive

38 This is Lemma 18, Book 1, in the Principia.
39 For a discussion of Newton’s solution, see Whiteside’s commentary in MP, 4, pp. 275–6, and
Di Sieno and Galuzzi, “La Quinta Sezione del Primo Libro dei Principia” (1989).
40 MP, 4, pp. 294ff. Cases in which three points are collinear degenerate into two straight lines.
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proof that the ancients could tackle the second step required for a solution of the
Pappus problem. In “Veterum Loca Solida Restituta” he wrote,

Descartes in regard to his accomplishment of this problem makes a great show as if
he had achieved something so earnestly sought after by the Ancients and for whose
sake he considers that Apollonius wrote his books on conics. With all respect to so
great a man I should have believed that this topic remained not at all a mystery to
the Ancients. For Pappus informs us of a method for drawing an ellipse through
five given points and the reasoning is the same in the case the other conics. And
if the Ancients knew how to draw a conic through five given points, does any one
not see that they found out the composition of the solid locus? . . . To reveal that
this topic was no mystery to them, I shall attempt to restore their discovery by
following in the steps of Pappus’ problem.41

As a matter of fact, Descartes never claimed that the ancients could not solve the
three or four lines locus. From what he wrote in the Géométrie and from the
passages of the Collectio he discussed, it is clear that Descartes credited Apollonius
with a solution to the problem of three or four lines.42 What Descartes claimed
was that his algebraic solution was more satisfactory and that it could pave the
way to a systematic generalization of the problem of n lines. Newton seems to have
misinterpreted Descartes’ statements.

To summarize: Once it is known (first step) that the locus defined by the Pappus
problem of three or four lines is a conic, the next step is to construct the conic.
The conic is known to pass through five given points. The question then is, How
can a conic passing through five given points be constructed? It is by thinking
about this problem that Newton came up with several interesting ideas concerning
the relations between algebra and geometry, and between the ancient and modern
methods of analysis and synthesis.

5.4 Organic Description of Conics

5.4.1 Proposition 7

In Proposition 7 of “Solutio Problematis Veterum de Loco Solido,” Newton con-
structed a conic that passes through five given points, thanks to an organic descrip-
tion that he had obtained in the late 1660s, probably inspired by de Witt and van

41 MP, 4, pp. 275, 277. “Cartesius de hujus Problematis confectione se jactitat quasi aliquid
praestitisset a Veteribus tantopere quaesitum, cujus gratia putat Apollonium libros suos de Conicis
sectionibus scripsisse. Sed cum tanti viri pace rem Veteres neutiquam latuisse crediderim. Docet
enim Pappus modum ducendi Ellipsin per quinque data puncta et eadem est ratio in caeteris Con.
sect. Et si Veteres norint ducere Conicam sectionem per quinque data puncta, quis non videt eos
cognovisse compositionem loci solidi. . . . Ut pateat hanc rem eos non latuisse, conabor inventum
restituere insistendo vestigijs Problematis Pappiani.” MP, 4, pp. 274, 276.
42 Descartes, Géométrie, pp. 304–8.
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Schooten.43 As mentioned, this construction is very similar to the main porism,
which (as Newton was well aware) can be extended to conic sections (§5.2.4). The
organic description was incorporated in the Principia as Lemma 21 and Proposi-
tion 22, Book 1.

Briefly stated, Newton’s organic description can be presented by noting that
if two angles of given magnitudes turn about their respective vertices (the poles)
in such a way that the point of intersection of one pair of arms always lies on a
straight line (the describing line), the point of intersection of the other pair of arms
will describe a conic (the describend curve). The proof is discussed in §5.4.4. First,
I turn to Newton’s early presentation of this technique to John Collins. Newton
showed Collins how a conic passing through five given points can be constructed by
appropriately choosing the poles, the two angles, and the describing line.

5.4.2 Newton to Collins, August 20, 1672

In a letter dated August 20, 1672, addressed to John Collins, Newton explained his
construction (see figure 5.5):

Let the five points be A, B, C, D, & E any three of wch as A, B & C join to make
a rectilinear triangle ABC, to any two angles of wch as A & B apply two sectors,
their poles as ye angular points, & their leggs to the sides of ye triangle. And so
dispose them that they may turne freely about their poles A & B without varying
the angles they are thus set at. Which done, apply to ye other two points D &
E successively the two leggs PQ & RS wch were before applyed to C (wch leggs
for distinction sake may be called their describing leggs & the other to MN & TV
wch were applyed to AB, their directing leggs,) & marke the intersections of their
directing leggs, wch intersection suppose to be F when ye application was made
to D & G when made to E. Draw the right line FG & produce it infinitely both
ways. And then if you move the rulers in such manner that their directing leggs
doe continually intersect one another at the line GF, the intersection of their other
leggs shall describe the conic section wch will pass through all the said five given
points. If three of the given points lye in the same straight line tis impossible far
any conick section to pass through them all, And in that case you shall have instead
thereof two streight lines.44

Most probably Newton conceived of this organic technique as being consonant with
several prescriptions about porisms given by Pappus. Indeed, Newton deployed his

43 See MP, 2, pp. 106–59, for Newton’s early researches on organic descriptions, esp. “De Modo
Describendi Conicas Sectiones et Curvas Trium Dimensionum Quando Sint Primi Gradus,” (pp.
134–51) and MP, 4, pp. 298–303. As Whiteside noted, similar constructions were published
by Torricellii and Fermat. MP, 4, pp. 292–3n. Newton, however, according to Whiteside, de-
rived inspiration from Jan de Witt, “Elementa Curvarum Linearum” in appendix to the second
Latin edition of Descartes’ Geometria, pp. 229–38, and van Schooten, De Organica Conicarum
Sectionum in Plano Descriptione Tractatus (1646), which Newton read in the Exercitationum
Mathematicarum (1657), pp. 293–368. MP, 1, pp. 34, 40.
44 Correspondence, 2, pp. 230–1.
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organic description of conics in the manuscripts concerned with the restoration of
ancient Greek porismatic analysis.

The projective character of Newton’s organic description is spelled out in Propo-
sitions 5 and 6 of “Solutio Problematis Veterum de Loco Solido.”45 These proposi-
tions form the theoretical basis of Newton’s organic description, that is, they prove,
by invoking the anharmonic property, that the locus traced by the intersection of
the describing legs is a conic.

5.4.3 From Paper-Tools to Mechanical Tools

The drawing accompanying the letter to Collins (see figure 5.5) is quite realistic
and suggests that Newton actually made use of real instruments to trace curves.46

Figure 5.5

Organic construction of a conic through five given points. Note that the conic, in this
case a hyperbola, passes through the five given points A, B, C, D, E. From a letter of
Newton to John Collins (August 20, 1672). Source: Add. 3977.10, f.1v. Reproduced by
kind permission of the Syndics of Cambridge University Library.

45 MP, 4, pp. 294–305. These propositions correspond to Lemma 20 and Proposition 22, Book 1,
of the Principia.
46 On the use of mechanical instruments as cognitive devices in the seventeenth century, see
Bertoloni Meli, Thinking with Objects (2006).
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This rather irreverent hypothesis is supported by evidence taken from the man-
uscripts on organics that Newton probably wrote in the late 1660s:

Two rules . . . are to be manufactured so that their legs . . . can be inclined to
each other, at will, in any given angle . . . . And at the junctures there should be
a steel pin-point around which the rules may be rotated while the pin is fixed on
some given point as its centre. To be sure, the steel nail by which the legs of the
sector are joined might be finely sharpened at one end, and on he other threaded
to take a nut more or less tightly (as the need arises) which will clamp the legs of
the sector in the given angle.47

The manuscript continues with a long list of unproven results in which Newton
considered the transformation of several describing curves into corresponding de-
scribend curves. All these results were merely stated, not demonstrated. Newton’s
theorems on organic transformations would nowadays be expressed in terms of the
theory of birational correspondences of second degree, deploying algebraic tools that
Newton did not have at his disposal.

In the Enumeratio, Newton summarized some of his results.48 He stated that if
the intersection of the directing legs moves along a conic through A (the describing
curve), the intersection of the other legs will trace a cubic through B with a node
at A (the describend curve). If the intersection of the directing legs moves along a
conic in general, then the intersection of the other legs will trace a cubic or a quartic,
in the latter case with nodes at B and A. In the Enumeratio, Newton showed how
his organic generation can be used to construct a nodal cubic that passes through
seven given points.49

Commentators, like Whiteside and Shkolenok have asked how Newton could have
achieved such extraordinary results on curve transformations via the organic corre-
spondence between the describing and describend curves. Both scholars conclude
that Newton’s technique must have been graphical.50 By tracing the describend
curve for a given describing curve, Newton could identify the singularities and es-
timate the curve degree by the maximum number of its meets with a straight line.

47 MP, 2, p. 135.
48 Newton’s work on the classification of cubic curves is discussed in chapter 6.
49 The organic description of conics was published by Newton in Arithmetica Universalis, in the
Enumeratio, and in the Principia; he was clearly quite pleased with it. See Newton, Mathematical
Works (1967), 2, pp. 95–6; Principles, pp. 486–90; MP, 5, pp. 304–5; Turnbull, The Mathematical
Discoveries of Newton (1945), p. 54.
50 “A natural question arising after close investigation of Newton’s manuscripts on the organic
description is, how did he obtain such a great number of correct results at a time when algebraic
geometry was practically non-existent?” Shkolenok, “Geometrical Constructions Equivalent to
Non-Linear Algebraic Transformations of the Plane in Newton’s Early Papers” (1972), p. 36, and
Whiteside’s note 8 in MP, 2, pp. 107–8.
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I would like to surmise that Newton actually made use of a real instrument, as
several passages in his manuscripts suggest.51

The Pappian tradition in the geometrical theory of organic descriptions does not
rule out the possibility that its proponents might have been in contact with instru-
ment makers who actually built real curve-tracing devices. Frans van Schooten, from
whose De Organica Conicarum Sectionum in Plano Descriptione Tractatus (1646)
Newton drew inspiration, explicitly referred, in the subtitle of his work, to the use-
fulness of this theory to opticians, mechanics, and land surveyors.52 Even Descartes
did not shrink from providing a detailed description of curve-tracing devices and
lens-grinding machinery based on his theory of ovals, topics that he extensively
discussed with high-ranking men of letters like Constantijn Huygens and humble
artisans like Jean Ferrier.

5.4.4 Newton’s Proof of the Organic Description of Conics

As stated, Newton did not provide proof for most of his statements on the or-
ganic description of curves. However, he did have a proof of the fact that if the
describing curve is a straight line, then the describend curve is a conic section,
that is, he could prove the organic description that in 1672 he communicated to
Collins.

Newton provided such a demonstration in Proposition 7 of “Solutio Problematis
Veterum de Loco Solido” (= Lemma 21, Book 1, of the Principia) (figure 5.6).
The similarities with the techniques of Pappus’s main porism are evident. Newton
actually conceived of his organic generation of conics as a technique belonging to
the ancient porismatic analysis, an interpretation that might strike historians of
Greek mathematics as rather strange.

Newton wrote,

If two movable and infinite straight lines BM and CM , drawn through given points
B and C as poles, describe by their meeting-point M a third straight line MN given
in position, and if two other infinite straight lines BD and CD are drawn making
given angles MBD and MCD with the first two lines at those given points B and
C; then I say that the point D, where these two lines BD and CD meet, will
describe a conic passing through points B and C. And conversely, if the point D,
where the straight lines BD and CD meet, describes a conic passing through the
given points B, C and A, and the angle DBM is always equal to the given angle

51 For instance, Newton provided very concrete directions such as, “After you have described the
curve one way, you may test in others whether the description is accurate: precisely by fixing the
rule in other angles or by taking other points for the poles of the rulers.” MP, 2, p. 121.
52 The full title is De Organica Conicarum Sectionum in Plano Descriptione Tractatus: Ge-
ometris, Opticis, Praesertim Vero Gnomonicis & Mechanicis Utilis (1646).
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Figure 5.6

Diagram for Lemma 21, Book 1, of the Principia. Source: Newton, Philosophiae Naturalis
Principia Mathematica (1726), p. 80. Courtesy of the Biblioteca Angelo Mai (Bergamo).

ABC, and the angle DCM is always equal to the given angle ACB; then the point
M will lie in a straight line given in position.53

Note that Proposition 7 (= Lemma 21) affirms not only that this mechanism gen-
erates a conic but that all conics can be generated by such a mechanism.

First, Newton noted that when the directing legs intersect in M , the describing
legs intersect in D. Second, when the intersection moves along the straight line
from M to N , the other point of intersection will move from D to P . Therefore
̂MBD = ̂NBP and ̂MCD = ̂NCP . Let the points R on the straight line CD and
T on the straight line BD be such that ̂BPT = ̂BNM and ̂CPR = ̂CNM . The
following equation immediately follows:

̂MBD − ̂NBD = ̂NBP − ̂NBD; (5.7)

therefore
̂MBN = ̂PBD = ̂PBT . (5.8)

Also,
̂MCD − ̂NCD = ̂NCP − ̂NCD; (5.9)

53 Principles, pp. 486–7. For the reader’s convenience I cite Cohen and Whitman’s English trans-
lation of the Principia. This is taken almost verbatim from Proposition 7 of “Solutio Problematis
Veterum de Loco Solido.” MP, 4, p. 298.
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therefore
̂NCM = ̂PCR. (5.10)

Since ̂BTP = ̂BNM and ̂MBN = ̂PBT , the triangles MBN and PBT are similar.
Also, the triangles NCM and PCR are similar. These similarities allow us to state
that

PT

NM
=

PB

NB
(5.11)

and
PR

NM
=

PC

NC
. (5.12)

But points B, C, N , and P are “stationary”; therefore “PT and PR have a given
ratio to each other,” or using somewhat more modern algebraic notation,

PT

PR
=

PB × NC

NB × PC
= k, (5.13)

k constant. The constancy of the ratio PT/PR is the “symptom” that allowed
Newton to state that the locus traced by the describing legs is a conic. Indeed,
in Proposition 5 (= Lemma 20) Newton proved that equation (5.13) holds for all
and only for conic sections. He showed that Pappus’s condition (equation (3.1)) is
equivalent to equation (5.13).

A nineteenth-century proof of Newton’s organic description of conics is provided
by Salmon (figure 5.7).

5.4.5 Organic Descriptions and Projective Geometry

Several commentators have interpreted the result achieved in Propositions 5 and 7
as a proof of Steiner’s theorem. Recall that the anharmonic property states that
the pencils from B and C to four points on a conic have the same cross-ratio. In
order to examine this I now turn to Proposition 6.54

In this proposition Newton showed that if five points are considered on a given
conic A, B, C, P , D, a sixth point d can be constructed (figure 5.8).

After tracing AB and AC a parallelogram ASPQ is drawn by tracing PQ parallel
to AC and PS parallel to AB. Projecting D from B on PS one obtains point T .
Projecting D from C on PQ one obtains point R. If tr is traced parallel to TR one
obtains the two segments Pt and Pr, so that

PR

PT
=

Pr

Pt
. (5.14)

54 This corresponds to Proposition 22, Book 1, of the Principia.
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V ′

V ′′

V ′′′

A′′ A′′′

Q
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Figure 5.7

A nineteenth-century proof by Salmon of Newton’s organic description of conics. Two
angles of fixed magnitude rotate about the fixed points P and Q. The intersection of
two of their sides traverses the straight line AA′. The construction implies that the in-
tersection of the other two sides traces a curve passing through P and Q. Salmon con-
sidered four positions of the angles and four corresponding points, V ′, V ′′, V ′′′, V ′′′′, on
the curve. He proved that the pencils from P and Q to the four points V ′, V ′′, V ′′′, V ′′′′

have the same cross-ratio. Taking four positions of the legs, (i) (P : A′, A′′, A′′′, A′′′′) =
(Q : A′, A′′, A′′′, A′′′′), where, as usual, the notation (P : A′, A′′, A′′′, A′′′′) means the
cross-ratio of the line pencil with vertex P and sides PA′, PA′′, PA′′′, PA′′′′. Equa-
tion (i) holds because the two pencils intersect in four collinear points. Further, (ii)
(P : A′, A′′, A′′′, A′′′′) = (P : V ′, V ′′, V ′′′, V ′′′′), and (iii) (Q : A′, A′′, A′′′, A′′′′) =
(Q : V ′, V ′′, V ′′′, V ′′′′) because the angles of the pencils are the same. Therefore, (iv)
(P : V ′, V ′′, V ′′′, V ′′′′) = (Q : V ′, V ′′, V ′′′, V ′′′′). Salmon, A Treatise on Conic Sections
(1896), p. 300. Source: By Compomat, s.r.l. c©Niccolò Guicciardini.

This implies that
PR

Pr
=

PT

Pt
(5.15)

and
PR

rR
=

PT

tT
. (5.16)

The intersection of Cr and Bt determines a new point d which, as Newton stated in
Proposition 6, will also be on the conic because of the “symptom” (equation 5.13).
Di Sieno and Galuzzi observed that the pencils from the vertices B and C to the
four points P , d, D, A have equal cross-ratios,55 since

(B : P, d, D, A) = (P, t, T,∞) =
PT

tT
=

PR

rR
= (P, r, R,∞) = (C : P, d, D, A). (5.17)

55 Indeed, according to equation (5.4), (P, t, T,∞) = TP/Tt = PT/tT and (P, r, R,∞) =
RP/Rr = PR/rR.
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Figure 5.8

Diagram for Proposition 22, Book 1, of the Principia. Source: Newton, Philosophiae
Naturalis Principia Mathematica (1726), p. 82. Courtesy of the Biblioteca Angelo Mai
(Bergamo).

This interpretation, which is shared by Whiteside, attributes to Newton an un-
derstanding of Steiner’s theorem as the foundation of the propositions and organic
descriptions presented in “Solutio Problematis Veterum de Loco Solido” and in
Section 5, Book 1, of the Principia.56

5.4.6 Newton’s Evaluation of Organic Descriptions

It is interesting to note why the organic description of conics was understood by
Newton as part of an analytical method alternative to the Cartesian one.

It is a method alternative to Descartes’ because it does not involve any calcula-
tion. As Newton wrote,

These and the following descriptions are of greatest use in determining solid loci
[conics] and so on. Precisely, given merely five points aand that the curve be a
conica without any preparatory calculation or knowing the vertex, axis, diameters,
center and species of the curve, provided only that its kind is given (that it is a
conic) you should even so be able to describe it.57

56 See Whiteside’s commentary in MP, 4, pp. 275–6, and Di Sieno and Galuzzi, “La Quinta Sezione
del Primo Libro dei Principia” (1989). See also Shkolenok, “Geometrical Constructions Equivalent
to Non-Linear Algebraic Transformations of the Plane in Newton’s Early Papers” (1972).
57 MP, 2, p. 121. aa canceled. Italics supplied. “Haec et sequentes descriptiones plurimum habent
usum in locis solidis determinandis, & c. Nemque ex datis tantum 5 punctis a& quod curva sit
Con secta sine aliquo calculo praemisso, licet ignorantur vertex, axis, Diamteri, centrum et species
curvae modo datur genus quod sit conica sectio possis tamen curvam describere.” MP, 2, p. 120.
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This quotation is taken from a manuscript written, according to Whiteside, in 1667
or 1668. From the very beginning of his research Newton was greatly interested in
the possibility of tackling problems “without calculation.” Work on curves conceived
of as generated by motion was an important aspect of Newton’s effort to study curves
without the use of symbols.

Newton’s method is analytical because it resolves the locus problem by beginning
with the assumption that the sought conic passing through the points A, B, C, D,
and E has been constructed (see figure 5.5).58 The elements assumed as given
in the problem, namely, the five given points, determine the poles A and B, the
angles CBA and CAB, and the straight line GF . This deduction thus provides
all the elements that are necessary for the synthesis or composition, namely, the
construction of the curve.

The synthesis, the composition of the locus, now simply consists in turning the
rulers so that the intersection of the directing legs slides along GF . As Newton
wrote in the 1690s,

Whence it comes that a resolution which proceeds by means of appropriate porisms
is more suited to composing demonstrations than is common algebra. Through
algebra you easily arrive at equations, but always to pass therefrom to the elegant
constructions and demonstrations which usually result by means of the method of
porisms is not so easy, nor is one’s ingenuity and power of invention so greatly
exercised and refined in this analysis.59

In this passage, Newton expressed one of his favorite ideas: the notion that it is
geometrical analysis that reveals the ingenuity and power of invention of a mathe-
matician, whereas algebra is within the reach of anyone (even a bungler, as Newton
is claimed to have said) who is able to manipulate symbols mechanically. Further,
while Cartesian analysis leads to an equation in two unknowns from which it is
difficult to geometrically construct the curve, porismatic analysis opens the way for
an elegant organic description of the solution curve.

Newton highly valued the fact that geometrical analysis can lead to synthesis in a
very “easy” and “elegant” way, by simple inversion of the “sequence of argument.”60

But how should curves be constructed? What were Newton’s ideas concerning the

58 Newton’s understanding of the analysis of locus problems might greatly have differed from the
one adopted in antiquity. See Acerbi, “Introduzione,” pp. 463–82.
59 MP, 7, p. 261. “Unde fit ut Resolutio quae per debita Porismata procedit sit aptior componendis
demonstrationibus quam Algebra vulgi. Per Algebram facile pervenitur ad aequationes sed inde
saepe ad elegantes illas constructiones ac demonstrationes pergere quae per methodum Porismatum
prodire solent, non est adeo facile, sed nec ingenium et inventionis vis in hac Analysi tantopere
exercetur & excolitur.” MP, 7, p. 260.
60 “Where, however, the things sought would not easily ensue from the givens, they [the Ancients]
either looked for lemmas or porisms through which some new given might be gatherable, or
assumed unknowns as givens so that thereby they might gather some given as though it were
unknown, and at length by inverting the sequence of argument deduce the things sought from



Against Descartes on Indeterminate Problems 103

legitimate techniques for the construction of curves? Newton rejected not only the
Cartesian analysis of locus problems but also the Cartesian synthesis. Newton found
all means for curve construction proposed in the Géométrie to be unacceptable.

5.4.7 Postulates on the Construction of Curves

Newton wrote at length on the construction of curves. What he has to say about
this topic is invariably anti-Cartesian. When in the 1690s he reconsidered and
systematized his geometrical researches into a multipartite treatise, “Geometriae
Libri Duo,” he attempted (in a draft of the second book) to define postulates for
the organic description of curves. His aim was to distinguish between admissible
and “spurious” postulates: “The ancients received into geometry those lines alone
which are describable by means of geometric postulates.”61

The postulates of Euclid’s Elements allow constructions by straight-edge and
compass. Next, Newton notes that more recent authors had added another postu-
late, which allows the section of a cone by a plane and therefore the generation of
conic sections. This postulate does not win the favor of Newton, who believed it
had been introduced by later authors who corrupted the style of the ancients:

But those who afterwards added the postulate on the generating of a line by the
section of a cone were not so mindful of human utility; for, because of its difficult
mechanical accomplishment, that section is a barren speculation having nothing in
joint with the uses of men.62

It would be desirable, he thought, to have another postulate “easier in its mechanical
execution” which could allow the generation of conic sections and “further curves.”
But he warned, “Lest we postulates anything which is not legitimate, we need first
to exclude spurious postulates.”63

Which are the “spurious” postulates? Newton, always the arch anti-Cartesian,
enumerated and rejected all the curve-tracing methods contemplated in the
Géométrie. Cone sections had been already excluded. Point-wise constructions
were to be rejected (because one has to complete the curve by “a chance of the

whatever relationship between the given and the sought.” MP, 8, p. 445. “Ubi vero Quaesitum ex
datis non facile consequeretur, vel quaerebant Lemmata aut Porismata per quae Datum aliquod
novum colligere possent vel assumebant ignota tanquam data ut inde datum aliquod tanquam
ignotum colligerent, ac tandem ex relatione quacumque inter data et quaesitum invertendo ordinem
argumentationis quaesitum deducerent.” MP, 8, p. 444.
61 MP, 7, p. 383. “Veteres in Geometriam lineas solas receperunt quae per Postulata Geometrica
descibi possunt.” MP, 7, p. 382. “Geometriae Libri Duo” is discussed in §14.1.
62 MP, 7, p. 383. “Attamen qui postea postulatum addiderunt de generatione lineae per sectionem
Coni haud usibus humanis consulerunt. Nam sectio illa ob difficilem praxin mechanicam nuda est
speculatio, nihil habens cum usibus humanis conjunctum.” MP, 7, p. 382.
63 MP, 7, p. 385. “Se ne quid non legitimum postulemus, prius excludenda sunt postulata spuria.”
MP, 7, p. 384.
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hand”), as well as those that “allude to stretched threads” (Newton took the ex-
ample of the Cartesian oval (figure 3.4).) Finally, he did not accept constructions
based on the postulate according to which “given curves” may move in any assigned
manner so that “by their intersection fresh curves are described,” another Carte-
sian technique yet one that looks very similar to the organic generation of curves
promoted by Newton. There is often something illogical in Newton’s anti-Cartesian
invectives.

Newton continued the introduction of the second book of his treatise on geometry
by proposing those mechanical constructions that employ moving rulers as legiti-
mate. He characterized his organic description of conics by intersection of rotating
legs (as well as the organic description of the cissoid; see figure 4.5) and surmised
that this is the only legitimate construction of curves. Other organic generations
involving rulers, like the Cartesian mesolabum (see figure 3.3), lack generality be-
cause not all algebraic curves can be generated by them.64 Newton surmised that
his organic descriptions, by contrast, allow the generation not only of conic sections
but also of all curves of higher degree. He observed that if the directing legs move
along a conic, the generating legs will describe a higher-order curve (a cubic or a
quartic). He stated that by moving the intersection of the directing legs along curves
of higher degree the describing legs could generate curves of still higher degree.65

Recall that the ancient method of porisms was seen by Newton as a technique al-
lowing transformation of one curve into another, so that if one curve is given, the
other is given as well. He added the following observation:

But these descriptions, insofar as they are achieved by manufactured instruments,
are mechanical; insofar, however, as they are understood to be accomplished by the
geometrical lines which the rulers in the instruments represent, they are exactly
those which we embrace . . . as geometrical.66

Part V goes into further detail on Newton’s view of the relation between geometry
and mechanics.

5.4.8 Comparing Methods

An interesting comparison between the algebraic and the geometrical approaches to
locus problems can be found in Lucasian Lectures on Algebra, at the end of the long
section entitled “How Geometrical Questions are to be Reduced to an Equation.”
Clearly, Newton gave great importance to this section, as is shown by its length

64 See figure 3.3 caption.
65 For a proof, see Miller, “Newton, Aufzählung der Linien dritter Ordnung” (1953), pp. 30–1.
66 MP, 7, p. 393. “Hae autem descriptiones quatenus per Organa manufacta perficiuntur mechan-
icae sunt: quatenus vero per lineas geometricas quas organorum regulae representant subintelli-
guntur fieri, eae ipsae sunt quas . . . ut geometricas amplectimur.” MP, 7, p. 392.
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and originality. What is interesting here is that at the end Newton advances some
critical remarks on the use of algebra in the analysis of indeterminate problems.
Such statements have been somewhat of a puzzle until recently, when thanks to the
publication of Newton’s Mathematical Papers, the extent of Newton’s involvement
in a program alternative to the Cartesian one has emerged.

In Problem 53 of Lucasian Lectures on Algebra (= Problem 57 of Arithmetica
Universalis) Newton provided a proof, framed in Cartesian algebraic terms, of his
organic description of conics. He proved that the locus traced by the describing legs
is a conic section, since it is defined by a second-degree equation. The calculation
is heavy compared with the proof in terms of projective geometry.67

In the final problems considered by Newton in his Lectures, namely, the problems
numbered 59, 60, and 61 in the printed Arithmetica, we find a comparison between
algebraic and geometrical analyses of indeterminate problems. Newton provided
two resolutions of these problems: one geometrical, “by means of certain theorems
by Apollonius,” the other “by algebra alone,” according to “Descartes’ method.”68

He wrote,

[C]ertain things which came to me as I wrote I have also intermixed without alge-
braic solution in order to convey the point that in problems which at first glance
seem difficult there is no need always to have recourse to algebra.69

Problem 59 in Arithmetica Universalis is the one just considered. It requires to
find a conic passing through five given points.70 The geometrical solution of this
problem, achieved in Proposition 7 of “Solutio Problematis Veterum de Loco Solido”
in terms of the organic description of conics, was highly significant from Newton’s
point of view; it was the culmination of research he had pursued in order to restore
the geometrical analysis of the ancients. As noted, the solution of Problem 59 was
a component in the approach to the Pappus problem that Newton had devised in
order to demonstrate the superiority of ancient analysis over that of Descartes.

Newton’s Cartesian solution of Problem 59 is as follows. He chose the coordinate
axes so that the general equation of the conic has the form a+bx+dy+cx2 +exy+

67 See MP, 5, p. 305. Newton attempted to prove this result algebraically in the late 1660s but
with no success. See MP, 2, pp. 152–5. An elegant proof can be found in Miller, “Newton,
Aufzählung der Linien dritter Ordnung” (1953), pp. 30–1.
68 MP, 5, pp. 315, 317.
69 MP, 5, p. 337. “aliqua quae inter scribendum occurebant immiscui sine Algebra soluta, ut insin-
uarem in problematis quae prima fronte difficilia videantur non semper ad Algebram recurrendum
esse.” MP, 5, p. 336.
70 Problem 59 corresponds to Problem 55 of Lucasian Lectures on Algebra. The following two
problems, 60 and 61, are generalizations, namely, “To describe a conick section which shall pass
through four given points, and in one of those points shall touch a right line given in position” and
“To describe a conick section which shall pass through three given points, and touch right lines
given in position in two of those points.” MP, 5, pp. 308–15.
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y2 = 0. The five conditions of the problem (i.e., the fact that the conic must pass
through five given points) translate into a system of five equations, which, when
resolved, determine the coefficients. This is the end point of the analysis: “And from
its equation the conic section will—by Descartes’ method—itself be determined.”71

The determination, or construction, of the conic constitutes the synthesis and
is achieved, Newton’s suggested, by Descartes’ method; by determining the param-
eters of the conic in function of the coefficients of its equation and by using the
classic Apollonian construction via the section of a cone with a plane. In Newton’s
opinion, this was a very complicated procedure compared to the organic description
he had communicated to Collins in 1672.

The text of the Lectures does not reveal the extent of Newton’s opposition to
this Cartesian solution. From the many manuscript pages considered here, it can
be surmised that Newton deemed algebraic analysis unsatisfactory because it did
not lead to synthesis through a simple reversal of steps.

5.5 Tensions

The section on the resolution of geometrical problems in Lucasian Lectures on Alge-
bra ends with a comparison between algebraic and geometrical analyses. The whole
purpose of this comparison was to “convey the point that in problems which at first
glance seem difficult there is no need always to have recourse to algebra.”72 Such
a comparison was the result of the extensive research on porisms that Newton had
undertaken in the late 1670s, convinced as he was of the superiority of the ancient
method.

Newton had serious, even passionate, reservations about the algebraic analysis
of locus problems. This struck him as more cumbersome and less elegant than
geometry. But the main criticism that he leveled at the algebraic analysis of locus
problems proposed by Descartes was that it did not lead to synthesis in a simple
way. The analysis of Problem 59 in terms of projective geometry was considered
by Newton as preferable both in terms of economy and elegance, and because it led
immediately to a well-grounded synthesis: to a construction of the conic based on
acceptable postulates.

In sum, Newton criticized the lack of elegance and ease in Cartesian analysis of
indeterminate problems and believed Cartesian synthesis was based on “spurious”
postulates: point-wise constructions, motion of curves, construction with threads,
and intersection of cone and plane (barren speculation). He favored expressing the
contents of known and unknown segments that have a given ratio to one another,

71 MP, 5, p. 317. “Et ex ea aequatione per methodum Cartesij determinabitur Conica sectio.”
MP, 5, p. 316.
72 MP, 5, p. 337.
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and using projective properties to compose the locus by organic descriptions based
on acceptable postulates, namely, rotating rulers.

Nevertheless, Newton was a master in Cartesian algebra, the “common analysis
of the moderns,” and when he had to deal with a challenging problem, the classifi-
cation of cubic curves, he made use of algebraic techniques that were at odds with
his program of restoration of ancient analysis. Chapter 6 explores the tensions that
this divide between practice and methodology engendered.





6 Beyond the Cartesian Canon: The Enumeration of Cubics

. . . it’s plain to me by ye fountain I draw it from, though I will not undertake to
prove it to others.

— Isaac Newton, 1676

[Newton] has often spoken in the manner of prophets, who speak of that which one
cannot see.

— Jean S. Bailly, 1785

6.1 Studies on Cubics

6.1.1 Early Work

Newton’s first attempts to enumerate cubic curves date from the late 1660s or early
1670s.1 In these early works he was able to reduce, via a change of coordinate axes,
the general form of a third-degree polynomial to four cases.2 He reconsidered the
classification of cubic curves in the late 1670s,3 reaching most of the results that
he later, in 1695, systematized in a slim treatise that was to appear in 1704 as an
appendix to the Opticks under the title Enumeratio Linearum Tertii Ordinis.4

It is interesting first to consider the text of the printed Enumeratio and then
step back to the extant manuscripts on cubics that were written in the 1670s and
1690s. The direction this chapter takes is from printed source to manuscript. A

Epigraph sources: (1) Newton to Collins (November 8, 1676). Correspondence, 2, p. 180. (2)
“[Newton] avoit souvent parlé à la manière des Prophetes, qui disent ce qu’on ne peut voir.” Bailly,
Histoire de l’Astronomie Moderne (1785), 3, p. 150.
1 There is disagreement between Whiteside and Westfall. Whiteside (MP, 2, p. 11) tentatively
dates the early “Enumeratio Curvarum Trium Dimensionum” (Add. 3961.1, ff. 2r–3r, 10r–13r,,
6r–9r, 14r–16r, 22r–30r) in 1667-8, whereas Westfall indicates 1670 (Never at Rest (1980), p. 197).
The critical edition can be found in MP, 2, pp. 10–89.
2 The coordinate transformation (a translation plus a rotation of the axes) led Newton to a
fantastic equation with 84 terms, which can be admired in MP, 2, p. 12.
3 In a group of rather scattered annotations both in the Portsmouth and in the Macclesfield
Collections that Whiteside edited in MP, 4, pp. 346–401. The dating is particularly uncertain.
4 Newton dealt with the central projection of cubics in the first book of “Geometriae Libri Duo”
(MP, 7, pp. 410–35). Preliminary notes to the Enumeratio are in MP, 7, pp. 579–87. The final
manuscript of the Enumeratio as sent to the printer (MS Add. 3961.2, ff. 1r–14r) is in MP, 7, pp.
588–645, with variants in MP, 7, pp. 646–53. The Enumeratio first appeared in Newton, Opticks
(1704), pp. 139–62 (+ 6 Tables).
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similar perspective reveals an interesting aspect of Newton’s mathematical work:
his publication policy. The printed text of the Enumeratio presents a number of
obscurities, since many demonstrations are omitted. Consequently, revealing the
hidden subtext of the Enumeratio became a highly esteemed exercise in Newton’s
circle: an exercise in which James Stirling, Colin Maclaurin, and Patrick Murdoch
all engaged.5 The exegesis of Newton’s enigmatic text was facilitated by enjoyment
of the confidence of the “illustrious author” and by the possibility of perusing his
manuscripts, privileges that were only accorded to a few lucky acolytes (§16.2).
Now Whiteside’s edition of Mathematical Papers makes possible a similar modern
exercise. It is possible to argue on the basis of the extant manuscripts that most of
the results of the Enumeratio were achieved via the employment of algebraic rather
than geometrical analysis.

6.1.2 Enumeratio Linearum Tertii Ordinis

The Enumeratio can be divided into seven sections.6

In the first section Newton dealt with the definitions of order and genus. Accord-
ing to his terminology, conics are lines of second order and curves of first genus (he
did not consider the straight line a curve). Cubics are thus lines of third order and
curves of second genus. The order is equal to the degree of the defining algebraic
equation. Newton also observed that lines of nth order could be cut in n points at
the most by a straight line: a conic could be cut in two points at the most, a cubic
in three points at the most, and so on. Newton also defined mechanical curves as
“lines of infinitesimal order.” He stated that similar curves—the spiral, the cycloid,
the quadratrix—could be cut by a straight line in an infinite number of points.

In the second section Newton introduced the principal properties of cubics, such
as those pertaining to diameters, vertices, centers, axes, and asymptotes. He ba-
sically extended some well-known definitions and properties of conic sections to
curves of a higher order.

In the third section Newton reduced the general equation of a cubic to four
canonical forms, namely,

xy2 + ey = ax3 + bx2 + cx + d (6.1)
xy = ax3 + bx2 + cx + d (6.2)
y2 = ax3 + bx2 + cx + d (6.3)
y = ax3 + bx2 + cx + d. (6.4)

5 Stirling, Lineae Tertii Ordinis Neutonianae (1717); Maclaurin, Geometria Organica (1720);
Murdoch, Neutoni Genesis Curvarum per Umbras (1746).
6 The original version, published in 1704 in Newton, Opticks (1704), is not divided into sections.
This useful subdivision appears in 1711 in William Jones’s edition of Newton’s mathematical
tracts.
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This by no means trivial result allowed Newton to divide cubics into four cases.7

Each case is subsequently subdivided into classes, genera, and species (fig-
ure 6.1).

In the fourth section Newton classified 72 different species of cubics in total. It
is well known that six cubics are missing from Newton’s printed Enumeratio: four
were added by Stirling in 1717, one by François Nicole in 1731, and one by Nicolaus
Bernoulli in 1733.8

Canonical form or Case

I. xy2+cy = ax3 + bx2 + cx + d

II. xy = ax3 + bx2 + cx + d

III. y2 = ax3 + bx2 + cx + d

IV. y = ax3 + bx2 + cx + d

Redundant Hyperbolas
(a positive)

Defective Hyperbolas
(a negative)

Parabolic Hyperbolas
(a = 0)

Hyperbolism of Conics
(a = 0, b=0)

(The trident)

Diverging Parabolas

(The Cubic Parabola)

adiametral
monodiametral
tridiametral
[asymptotes concurrent]

adiametral
monodiametral

adiametral
monodiametral

hyperbolic
elliptic
parabolic

9

9

6
7

7
4 + 2

4
3
2

1

5

1

12 +2
2 +2

Figure 6.1

Newton’s classification of nondegenerate cubics (completed with the six cubics missing
from the Enumeratio). The degenerate forms of a conic and a straight line and of three
straight lines are excluded. After: Rouse Ball, “On Newton’s Classification of Cubic
Curves” (1891), p. 114. By Compomat, s.r.l. c©Niccolò Guicciardini.

7 In Newton’s mathematical manuscripts it is possible to find different proofs of this statement.
One is based on an algebraic change of coordinate system. The other is based on reasoning assisted
by geometrical intuition. This second process surfaces in the printed text of the Enumeratio. Both
these processes are analyzed in detail by Rouse Ball, “On Newton’s Classification of Cubic Curves”
(1891), pp. 107–113. See MP, 4, pp. 358–68.
8 It is interesting to note that, as Whiteside discovered by analyzing a manuscript dating from the
1690s, Newton had identified all the six missing cubics. Why he did not take notice of these in the
printed Enumeratio is unknown. See Whiteside’s comments in MP, 7, p. 426 (n. 54) and p. 431
(n. 65). David Gregory, after being shown some mathematical manuscripts by Newton himself,
noted: “sunt 16 genera Curvarum secundi generis, et 76 Curvae Newtonus conscripsit tractatum
de illis quem mihi impertietur ut eum edam.” Correspondence, 4, p. 277.
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The second, third, and fourth cases give y as an explicit function of x. The first
case is more difficult. However, if e = 0, then y is an explicit function of x; when
e �= 0, Newton studied the equation (6.1) in the form(

xy +
1
2
e

)2

= ax4 + bx3 + cx2 + dx +
1
4
e2. (6.5)

In order to classify cubics, Newton first considered the value of the coefficients and
then the number and position of roots of the right-hand sides of equations (6.2)–
(6.5).

In the fifth section of the Enumeratio, Newton stated that “if onto an infi-
nite plane lit by a point-source of light there should be projected the shadows of
figures,” then all cubic curves could be generated by projecting one of the five di-
vergent parabolas (i.e., a curve belonging to one of the five species into which case
3 is subdivided), just as all conic sections can be obtained as projections of the
circle.

In the sixth and seventh sections, which conclude the Enumeratio, Newton dealt
with the organic description of curves (§5.4) and with the use of curves in the
construction of the roots of equations (§4.3).

The novelty of Newton’s approach to cubic curves compared to the ancient
tradition of problem solving, to which he often referred as his supposed model,
should not escape notice. In the Greek tradition curves are mainly seen as means
of construction, not objects of study. It is clear that in the Enumeratio, Newton
drew inspiration from Descartes, Jan de Witt, and especially Wallis.9 Wallis had
studied conics as loci of points satisfying second-degree algebraic equations in two
unknowns; he had reduced second-degree polynomials to normal form and shown
how the usual classification into hyperbola, parabola, and ellipse depends upon
the coefficients. As far as third-degree curves, only a handful were known before
Newton.10 It was a natural step to examine the whole family of cubics. These,
according to Descartes’ canon, were the simplest curves after the conics. In his study
of cubic curves, however, Newton found himself facing a wild variety of shapes: their
complex graphs fascinated him but also reinforced his conviction that Descartes’
criteria of simplicity were foreign to geometry.

9 De Witt, Elementa Curvarum Linearum, in Descartes, Geometria (1659–61), pp. 153–340;
Wallis, De Sectionibus Conicis, Nova Methodo Expositis Tractatus in Operum Mathematicorum
Pars Altera (1656).
10 The cissoid (y2(a − x) = x3), the Cartesian “parabola” (axy = x3 − 2ax2 − a2x + 2a3), the
Cartesian folium (x3 − axy + y3 = 0), Wallis’s cubic parabola (y = ax3), and Neil’s semicubic
parabola (y2 = ax3), where a∈�.
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6.2 Absence of Demonstrations in the Enumeratio

The Enumeratio provides a first illustration of some of the peculiarities in Newton’s
publication strategy that also emerge in the case of the Principia (see part IV). A
tension is apparent between Newton’s methodology, which gives pride of place to an-
cient geometry, and his mathematical practice, which is based on algebraic methods.
Newton had developed most of his results on cubics by the early 1670s, just before
the inception of his research on porisms and Apollonian geometry (§5.2); he sys-
tematized them in the 1690s, when his fascination with the ancient mathematicians
and philosophers was at its peak. Newton’s anti-Cartesianism notwithstanding, he
achieved most of his results on cubics via application of Cartesian common analy-
sis, and, I surmise, via the use of a newer analysis, namely, infinite series. In the
mid 1670s a tension thus emerged between Newton’s mathematical practice and
the views on method that he developed when considering the use of analysis and
synthesis in writings such as Lucasian Lectures on Algebra (§4.5, §4.6) and “Solutio
Problematis Veterum de Loco Solido” (§5.4).

The tension between method and practice led Newton to structure his printed
work on cubics, Enumeratio Linearum Tertii Ordinis, in such a way that the use of
the common and new analyses is not made entirely explicit. While this notable char-
acteristic of Newton’s printed mathematical writings, their opacity, is well known,
I believe it is little understood. In many cases Newton provided just a hint, or
no trace at all, of a demonstration of his statements. Newton’s way of presenting
his results was often declaratory rather than argumentative; his readers often com-
plained about this fact and tried to clarify obscure points by means of manuscript
sources or oral communication. Yet even the study of Newton’s mathematical man-
uscripts, a vantage point made possible by the publication of Whiteside’s edition, is
not always of great help. In many cases one can just conjecture how Newton might
have obtained some of his deepest results.

The list of unproven mathematical statements in Newton’s writings is long. For
instance, his rule for enumerating imaginary roots (§4.1) was merely stated in Lu-
casian Lectures on Algebra. The Principia (see part IV) is a rich repertoire of such
mysteries, which can be resolved in only a few cases by the study of extant manu-
script sources. For the extraordinary statement about the projective classification
of cubics as shadows of the five divergent parabolas (§6.4.1) Newton provided no
proof whatsoever in the printed edition of the Enumeratio. Could it be that he only
personally revealed it to his faithful acolytes? Newton’s strategies of communication
in mathematics require further clarification (see parts IV and VI).

One of the most disconcerting aspects of the Enumeratio is that it provides no
proof of most of its propositions. Most notably, nowhere does one find proofs of
the basic properties of diameters, asymptotes, and chords, stated in Section 2; or
of the fact that every cubic can be generated by centrally projecting one of the
five divergent parabolas, stated in Section 5. These are fundamental statements,
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astonishingly simple in their enunciation, yet they are not proven anywhere in the
Enumeratio. Sections 3 and 4, devoted to a long classification of cubics, are perhaps
less mysterious; here too, however, Newton limited himself to providing a classifi-
cation and gave few clues about how such a classification might be achieved. Each
cubic is carefully plotted in the beautiful figures that adorn the text: a world of
strange objects, with ovals and branches extending to infinity (figure 6.2). But few
instructions are given on how to plot the curves.

James Stirling commented on the Enumeratio in Lineae Tertii Ordinis Neuto-
nianae (1717), where the algebraic character of Newton’s work, most notably the

Figure 6.2

Newton’s detailed drawing of cubic curves. When such diagrams appeared in the Enumer-
atio (1704), it was not easy to divine Newton’s methods for plotting curves from equations
in such fine detail. Source: Newton, Opuscula Mathematica, Philosophica et Philologica
(1744), 1, Tab. II. Courtesy of the Biblioteca Angelo Mai (Bergamo).
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use of infinite series, is spelled out (§6.5). Stirling’s work to reveal the analysis
behind Newton’s published proofs was highly appreciated.

Generally speaking, several of Newton’s mathematical printed works (most no-
tably the Enumeratio, the Principia, and De Quadratura) are difficult to read be-
cause most of the proofs are either incomplete or completely lacking. This aspect of
Newton’s printed mathematical work is related to his conceptions concerning math-
ematical method. The case of the Enumeratio, from this point of view, is rather
extreme, since in the work almost all traces of an algebraic demonstrative structure
are concealed.

Such an elliptical style soon became the object of comments and complaints,
which oscillated between frustration and reverence toward a man who flew so high
yet was so immersed in his own thoughts that he did not even care to bow down to
the level of common mortals who, after all, needed to be told how problems could
be constructed and theorems proven.

Leibniz’s anonymous review of William Jones’s edition of the Enumeratio11 in
Acta Eruditorum contains one of the first critical reactions to the work:

The illustrious Editor [William Jones] would have acquired a distinguished merit
amongst the geometers, if he had, at least once, exhibited a demonstration of the
number of lines of third order, which upon request Newton would not have denied:
further indeed he would deserve merit if he were to publish it as an appendix or on
another occasion.12

Similar complaints were not unusual. For instance, a typical critical evaluation
of the Enumeratio can be found in the historical Preface to Vincenzo Riccati and
Girolamo Saladini’s Institutiones Analyticae (Bologna, 1765):

Isaac Newton brought an enumeration of the lines of third degree to light, even
though without any published demonstration, being the rules which have been em-
ployed just lightly touched upon, since he was more desirous to establish admiration
for himself, rather than to instruct others.13

11 Jones included the Enumeratio in his edition of Newton’s mathematical tracts and excerpts of
letters published in 1711. Newton, Analysis per Quantitatum (1711), pp. 67–92.
12 “Sed egregie de Geometris meritus fuisset Cl. Editor, si demonstrationem numeri linearum
tertii ordinis, quam petenti non denegaturus erat Newtonus, una exhibuisset: immo adhuc bene
mereri poterit, si per modum appendicis aut alia occasione edat.” [G.W. Leibniz], “Analysis per
Quantitatum, Series, Fluxiones, ac Differentias” (1712), in part reproduced in MP, 2, pp. 259–62.
13 “Isaacus Newtonus enumerationem linearum tertii gradus in lucem protulit, licet nulla edita
demonstratione, regulisque quibus usus erat, minime attactis, quippe qui magis sibi ipsi admira-
tionem comparare, quam alios edocere cupiebat.” Riccati and Saladini, Institutiones Analyticae
(1765–67), 1, p. x.
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But Jean Paul de Gua de Malves wrote with veneration:

This geometer, whose works are characterized by a unique sublimity, especially
in this one seems to have elevated himself to an immense height, to which all
other minds less penetrating and strong would have attempted in vain to attain.
But the path he has followed in such a difficult enterprise escapes the sight of
those who marvel at the degree of elevation to which he has arrived. The ex-
ception are a few light traces that he cared to leave in places which would have
deserved that he would have stopped there for a much longer interval of time.
These places, moreover, are almost always very far one from the other. If one de-
sires to follow the same route, one is compelled to guide oneself along such distant
intervals.14

Gabriel Cramer openly displayed a critical attitude, not devoid of moral reproach:

It is deplorable that Newton was satisfied in displaying his discoveries without
adding the demonstrations, and that he has preferred the pleasure of being admired
to that of providing instructions.15

Talbot, who translated and commented upon the Enumeratio in the nineteenth
century, came to Newton’s defense. But although Talbot found “the criticisms of
the French mathematicians [De Gua and Cramer] ill founded,” he had to admit
that “some explanation and illustration is wanted.” Rouse Ball, who wrote about
the Enumeratio in the 1890s, more bluntly observed that in Newton’s treatise “no
proofs of the propositions are given.” Talbot went on to claim that the conciseness
of Newton’s treatise was due to the fact it had been hastily published in order “to
vindicate the priority of his own [Newton’s] discoveries.” Rouse Ball refers to the
“Advertisement” featured in the preface to the Opticks, where one can read that
the author was concerned with “things being copied out” of a manuscript that “had
been lent out.”16 However, in the “Advertisement,” Newton was referring to his
discoveries on the quadrature of curves: the manuscript tract that was circulating

14 “Ce géomètre dont tous les ouvrages portent un caratctère singulier de sublimité, paroit en
particulier dans celui-ci s’être élevé à une hauteur immense, à laquelle toute autre génie moins
pénétrant et moins fort que le sien, auroit tenté vainemment d’atteindre: mais la route qu’il a tenue
dans une enterprise si difficile, se dérobe aux yeux de ceux qui apperçoivent avec étonnement le
degré d’élévation auquel il est parvenu. On doit en excepter quelques legères traces qu’il a eu soin
de laisser sur son passage, aux endroits qui avoient mérité qu’il s’y arrétât plus long tems. Ces
endroits, au reste, sont presque toujours assez distants les uns des autres. Si l’on se propose donc
de suivre la même carrière, on est obligé se guider soi-même dans de long intervalles.” Gua de
Malves, Usages de l’Analyse de Descartes (1740), pp. xi–xii.
15 “Il est facheux que M. Newton se soit contenté d’étaler ses découvertes sans y joindre les
Démonstrations, et qu’il ait préféré le plaisir de se faire admirer à celui d’instruire.” Cramer,
Introduction à l’Analyse des Lignes Courbes Algébriques (1750), pp. viii–ix.
16 Newton, Opticks (1704), Advertisement [n.p.]. See Talbot’s preface in Newton, Enumeration
of Lines of the Third Order (1861), p. vii, and Rouse Ball, “On Newton’s Classification of Cubic
Curves” (1891), p. 105.
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was De Quadratura, not the Enumeratio. Newton’s concern about priority was
related to quadratures, not to the enumeration of cubics, a topic that aroused little
interest during his own lifetime.

What one encounters here is the typical Newtonian attitude toward the pub-
lication of mathematical works. Most of Newton’s mathematical works aroused
astonishment for their results but criticisms for their lack of adequate fully spelled-
out proofs. These reactions are evident even among Newton’s contemporaries; they
are a sign that Newton was following a strategy that seemed peculiar to the actors
of his times. The idea that Newton’s “conciseness” was due to haste or the neces-
sity to secure priority is also often mentioned in the literature, especially after the
nineteenth century.

In order to understand this aspect of Newton’s publication policy, one must place
the printing of his mathematical works in the context of the publication practices
adopted in his time. One must also consider the role of other means of publication
that Newton deployed, such as correspondence and the circulation of manuscripts.
Similar considerations enable a focus on important aspects of Newton’s ideas on
mathematical method (see part VI).

Here the printed text of the Enumeratio is taken as a starting point to propose
some conjectures about the mathematical proofs it implies.17 It is most likely
that Newton deployed both common Cartesian analysis and advanced algebraic
techniques that go far beyond the methods of Descartes.

6.3 Common Analysis in the Enumeratio

6.3.1 A Puzzle in Section 2

In Section 2 of the Enumeratio the definitions of diameter, chord, center, axes,
and so on, which since antiquity had been applied to conic sections, are extended to
cubics. Newton also extended some of the properties valid for conics to cubic curves.
It can be shown that all the properties of cubics that Newton listed in Section 2,
which are rather difficult to visualize geometrically, can in fact be deduced from
simple properties of the roots of their defining equations.18

Newton gave no indication of how a proof of these properties might be achieved.
For instance, he wrote,

17 Quotations are taken from Whiteside’s translation of Add. 3961.2, ff. 1r–14r, the definitive
version that was printed with minimal variations as an appendix to the Opticks in 1704. MP, 7,
pp. 588–645.
18 See the commentary by Antonio J. Durán Guardeño in Newton, Análisis de Cantidades, Me-
diante Series, Fluxiones y Differencias. Con una Enumeración de las Líneas de Tercer Orden
(2003), pp. 148–56.
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The ratio of the products contained under segments of parallels. Just as in conics,
when two parallels terminating on either side at the curve are cut by two parallels
terminating on either side at the curve, the first by the third and the second by the
fourth, the rectangle of the parts of the first is to that of the parts of the third as
the rectangle of the parts of the second to that of the parts of the fourth; so when
four such straight lines meet a curve of second kind [a cubic], each individually in
three points, the parallelepiped of the parts of the first line will be to that of the
parts of the third as the parallelepiped of the parts of the second line will be to
that of the parts of the fourth.19

This is a generalization to cubics of a property of conics that Newton used in his
solution of the Pappus problem (§5.3.3). The property is proven by Apollonius in
the Conics, Book 3, Propositions 17–23. It can be formulated as follows.

The property of intersecting chords of a conic:20 If two parallel chords A1A2

and B1B2 of a conic are cut by two other parallel chords C1C2 and D1D2 meeting
in O1 and O2 (see figure 6.3), the following equation holds:

O1A1 × O1A2

O1C1 × O1C2
=

O2B1 × O2B2

O2D1 × O2D2
. (6.6)

In the case of conic sections a geometrical proof is possible following Apollonius.
In the case of a general cubic, however, no such geometrical proof is available for
Newton.

6.3.2 Algebraic Generalizations

From the manuscript works on cubics that Newton composed in the 1670s it is
possible to surmise that he adopted the algebraic procedure spelled out by Stirling
in Lineae Tertii Ordinis Neutonianae.21 First Newton must have considered an
algebraic proof for conics, which he then generalized to cubic curves. Stirling’s
approach can be summarized as follows.

19 MP, 7, p. 593.
20 This is the property that Apollonius described in the opening lines of the Conics as essential
to the construction of the Pappus problem. Another way of stating this property is by saying
that if two chords A1A2 and C1C2 of a conic intersect in O1, the ratio of the rectangles contained
by their segments (O1A1 × O1A2)/(O1C1 × O1C2) is proportional to the ratio of the squares on
parallel diameters. Of course, this ratio does not change when the chords are moved parallel to
one another. Therefore equation (6.6) holds.
21 On pp. 78–9. The evidence for Newton’s algebraic approach to this theorem is provided in
manuscripts edited in MP, 2, pp. 90–104, and MP, 4, pp. 354–60. See esp. MP, 4, pp. 358–60,
where Newton expressed the general equation of a cubic curve. See also the equivalent algebraic
proof in Miller, “Newton, Aufzählung der Linien dritter Ordnung” (1953), p. 20, which I follow
here.
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Figure 6.3

Diagram for Apollonius, III. 17–23. Source: By Compomat, s.r.l. c©Niccolò Guicciardini.

Figure 6.3 shows a conic, and two parallel chords cut by two other parallel chords.
Now write the equation for a conic (with the typographic help of subindices, not
employed by Stirling, and the notation f(x, y) for a function, which is, in fact, an
even more serious anachronism),

f(x, y) = a20x
2 + a11xy + a02y

2 + a10x + a01y + a00 = 0, (6.7)

using a system of oblique coordinates with x-axis O1A2, and y-axis O1C2, so that
O1 is the origin.

For y = 0 Viète’s property of the roots x1 and x2 of f(x, 0) = 0 yields

x1 · x2 = O1A1 × O1A2 =
a00

a20
, (6.8)

and for x = 0 and the roots y1 and y2 of f(0, y) = 0,

y1 · y2 = O1C1 × O1C2 =
a00

a02
. (6.9)

Now translate the coordinate system so that the origin becomes O2 (that is, after
a coordinate transformation x = ξ + α and y = η + β) the equation is changed so
that the absolute term becomes f(α, β).22 For η = 0 Viète’s property of the roots

22 In the new coordinate system the equation is

f(ξ, η) = a20ξ2 + a11ξη + a02η2 +

(2a20α + a11β + a10)ξ + (2a02β + a11α + a01)η +

a20α2 + a11αβ + a02β2 + a10α + a01β + a00 = 0.
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ξ1 and ξ2 of f(ξ, 0) = 0 yields

ξ1 · ξ2 = O2B1 × O2B2 =
f(α, β)

a20
, (6.10)

and for ξ = 0 Viète’s property of the roots η1 and η2 of f(0, η) = 0 yields

η1 · η2 = O2D1 × O2D2 =
f(α, β)

a02
. (6.11)

This completes the algebraic proof of Apollonius’s theorem (equation 6.6).
An algebraic generalization to n-degree curves is immediately available. Let the

equation be
f(x, y) = an0x

n . . . + a0nyn . . . + a00 (6.12)

Assume that two parallel chords cut the curve in n points, A1, A2, . . . , An, and
B1, B2, . . . , Bn, respectively. Two other parallel chords cut the curve in C1, C2,
. . . , Cn, and D1, D2, . . . , Dn. Further, the first chord meets the third in O1, and
the second meets the fourth in O2.

Following the same steps, Viète’s property applied to the roots of f(x, 0) and
f(0, y) yields

x1 · x2 . . . xn = O1A1 × O1A2 . . . O1An = (−1)n a00

an0
(6.13)

and
y1 · y2 . . . yn = O1C1 × O1C2 . . . O1Cn = (−1)n a00

a0n
. (6.14)

After the transformation of coordinates, x = ξ + α and y = η + β, one obtains

ξ1 · ξ2 . . . ξn = O2B1 × O2B2 . . . O2Bn = (−1)n f(α, β)
an0

(6.15)

and

η1 · η2 . . . ηn = O2D1 × O2D2 . . . O2Dn =
f(α, β)

a0n
. (6.16)

Thus,
O1A1 × O1A2 . . . O1An

O1C1 × O1C2 . . . O1Cn
=

O2B1 × O2B2 . . . O2Bn

O2D1 × O2D2 . . . O2Dn
. (6.17)

The property of cubic chords enunciated by Newton,

O1A1 × O1A2 × O1A3

O1C1 × O1C2 × O1C3
=

O2B1 × O2B2 × O2B3

O2D1 × O2D2 × O2D3
, (6.18)

is a particular case of equation (6.17).
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Figure 6.4

Diagram for Stirling’s proof of equation (6.18). Two chords cut a cubic curve in F , H,
G and A, B, D, respectively. The chords meet in C. Stirling proved that the ratio
(AC × BC × DC)/(FC × HC × GC) does not change when the chords are translated
without changing their direction. Source: Stirling, Lineae Tertii Ordinis Neutonianae
(1717), p. 78. Courtesy of the Biblioteca Angelo Mai (Bergamo).

In the Enumeratio, Newton never hinted at any proof of this generalization; he
simply provided a geometrical property valid for the intersecting parallel chords of
cubics. It is clear, however, that Newton must have followed a generalization of the
preceding algebraic proof to third-degree polynomials. As Stirling remarked after
providing the algebraic proof of equation (6.18) (figure 6.4),

It suffices here incidentally to note that, proceeding with this universal method,
that is by reasoning on the basis of equations, are manifest not only the properties
of conic sections—to which the ancients arrived with so much labor, and which
could be demonstrated with so much obscurities, by a method which cannot be
extended to other curves—but also the properties of curves of superior order.23

Stirling was praising the advantages offered by modern algebra, something implied
but never explicitly stated in the Enumeratio.

6.4 Projective Geometry in the Enumeratio

6.4.1 A Puzzle in Section 5

Section 5, devoted to the “Genesis of Curves by Shadows,” is so concise that it can
be quoted in full:

23 “Sufficiat hic obiter annotare, quod hâc methodo universali procedendo, scilicet argumentando
a naturis aequationum, patescunt non solum sectionum Coni proprietates, quas tanto labore ad-
invenerunt veteres, & tot ambagibus demonstratas dederunt, idque methodo quae ad alias curvas
extendi nequit; sed & proprietates curvarum omnium ordinum superiorum.” Stirling, Lineae Tertii
Ordinis Neutonianae (1717), p. 79.
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If onto an infinite plane lit by a point-source of light [a puncto lucido] there should
be projected the shadows of figures, the shadows of conics will always be conics,
those of curves of second kind [cubics] will always be curves of second kind, those
of curves of third kind will always be curves of third kind, and so on without end.

And just as the circle by projecting its shadow generates all conics, so the five
divergent parabolas [figure 6.5] by their shadows generate and exhibit all other
curves of second kind; while in this manner certain simpler curves of other kinds
can be found which by their shadows cast by a point-source of light onto a plane
shall delineate all other curves of the same kinds.24

This is all Newton had to say about the genesis of curves by shadows.

Figure 6.5

The five divergent parabolas. Equation y2 = ax3 + bx2 + cx + d. If the three real roots
of the right-hand-side third-degree polynomial are equal, one has the semicubic parabola
(e.g., y2 = x3; number 75); three real unequal roots, a bell with an oval (e.g., y2 =
(x+1)(x+2)(x− 1); numbers 70 and 71); two of three real roots equal, parabola nodated
by touching an oval (e.g., y2 = (x − 1)2(x + 1); number 72) or punctuated by having the
oval infinitely small (e.g., y2 = x2(x − 1); number 73); two imaginary roots and one real
root, bell-like (e.g., y2 = (x + 1)(x2 + 4); number 74). Source: Newton, Opticks (1704),
Tab. VI. Courtesy of the Biblioteca Angelo Mai (Bergamo).

24 MP, 7, p. 635.
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How and when did Newton achieve this profound result? The question was certainly
in the readers’s mind. Before the publication of Newton’s Mathematical Papers it
was unclear how an answer might be found. Even Whiteside admitted this:

How and when Newton first achieved this insight that the numerous species of cubic
curve fall into one or other of five projectively distinct “kinds” his extant papers
do not reveal. We would guess that it came to him as an unexpected bonus while
mulling over the series of sketches of the main individual species of cubic which he
had prepared long before for his Enumeratio.25

Two nineteenth-century commentators, Talbot and Rouse Ball, provide different
explanations. Rouse Ball believed that Newton relied on a transmutation of
curves of the “same analytical order one into another,” as expressed in Lemma 22,
Book 1, of the Principia:

I have little doubt that Newton had arrived at this remarkable result, which proved
a puzzle to most of his contemporaries, by the method of projection indicated in
the Principia, Bk. I, sect. 5, lemma xxii.26

Talbot, by contrast, surmised that Newton might have followed a geometrical
procedure. An inspection of the extant manuscript does not allow a final answer.
It seems that both algebra and geometry contributed to Newton’s understanding.27

6.4.2 Rouse Ball’s Interpretation

I first consider Rouse Ball’s interpretation by turning to Lemma 22.
Right from the start, it must be stated that the transformation of curves de-

scribed in Lemma 22 does not occur in any of Newton’s mathematical manuscripts
written before the Principia. Following Rouse Ball, then, one can only speculate

25 MP, 7, p. 413, n. 27.
26 Rouse Ball, “On Newton’s Classification of Cubic Curves” (1891), p. 123. Note that Whiteside
disagrees with Rouse Ball: “[W]e can place little faith in Rouse Ball’s confident surmise.” MP, 7,
p. 414, n. 30.
27 It is highly unlikely that Newton first achieved his result by algebraic means. In this case
he should have had an algebraic expression for the section of a cone, which has one of the five
divergent parabolas as base, and a plane. Newton dealt with the easier problem of algebraically
determining the section of a circular cone with a plane in Lucasian Lectures on Algebra (= Problem
32 of Arithmetica Universalis). See MP, 5, p. 214. This is basically what François Nicole and
Alexis Claude Clairaut did in 1731. See Talbot in Newton, Enumeration of Lines of the Third
Order (1861), p. 83, and MP, 7, p. 414, n. 30. Clairaut’s result was communicated to the
French Académie des Sciences a few days later than a paper by Nicole on the same subject. A
demonstration given by Patrick Murdoch in Neutoni Genesis Curvarum per Umbras (1746) is
instead similar to the geometrical one elaborated by Newton in a long manuscript on geometry,
which was not, so it seems, available to his contemporaries with the exception of a few acolytes;
the manuscript is reproduced in MP, 7 (the pages pertinent to the generation of cubics by central
projection of the five divergent parabolas are pp. 410–33).
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Figure 6.6

Diagram for Lemma 22, Book 1, of the Principia. Source: Newton, Philosophiae Naturalis
Principia Mathematica (1726), p. 87. Courtesy of the Biblioteca Angelo Mai (Bergamo).

whether Newton had something similar to Lemma 22 in mind before writing the
Principia.28

This lemma teaches how “To change figures into other figures of the same class.”
The figure to be transmuted is curve HG (figure 6.6). Draw the parallel straight
lines AO and BL cutting any given third line AB in A and B, respectively. Then
from some point O in the line AO draw the straight line OD. Let d be the point of
intersection between OD and BL. From the point d erect the ordinate dg (one can
choose any angle between the new ordinate dg and the new abscissa ad). The new
ordinate and abscissa must satisfy the following conditions:

AD =
AO × AB

ad
(6.19)

DG =
AO × dg

ad
. (6.20)

Now suppose that point G “be running through all the points in the first figure
[HGI ] with a continual motion; then point g—also with a continual motion—will
run through all the points in the new figure [hgi ].”

Newton was clearly trying to conceive the most general transmutation between
figures that preserved the order. Indeed, if one has an “equation which gives the

28 Whiteside cautiously surmised (MP, 6, p. 271) that Newton might have found inspiration in the
method of plani-coniques appended in La Hire, Nouvelle Methode en Geometrie pour les Sections
des Superficies Coniques et Cylindriques (1673), pp. 75–94. According to Whiteside, the book was
bought soon after its publication by the Cambridge University Library, reviewed in Philosophical
Transactions for March 1676, and referred to by Hooke in his letter to Newton dated November
24, 1679 (Correspondence, 2, p. 298).
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relation between the abscissa AD and the ordinate DG,” the transformed equation
relating the new abscissa ad and the new ordinate dg will be of the same degree.29

Conics will be transformed into conics, cubics into cubics, and so on. This is an
important point: the degree is invariant under central projective transformation;
that is why the classification of curves by degree is meaningful and well-founded
for Newton. It is an algebraic classification that captures an important geometrical
invariant property, one of those properties that Newton speculated the ancients
might have studied in their heuristic researches on the hidden field of geometrical
analysis (§5.2).

This last points clearly emerges in what Newton said about projective classifi-
cation of lines in the manuscript “Geometriae Libri Duo,” dating from the 1690s:

And hence, according to the number of points in which any line can be cut by
a straight line, there arises the distinction of lines into degrees [or orders30]. . . .
If some line be looked at through a translucent plane by an eye situated outside
its plane, and in that plane its apparent place or . . . projection be marked, the
projected line will be of the same order as the projecting one. . . . In this way the
ancients derived from the circle all figures of the second order and thence named
them conic sections.31

Note that any point in the figure HGI that belongs to the line AO [the horizon
line] will be sent to infinity because of equation (6.20). Moreover, the projection of
a tangent or an asymptote of HGI is always either a tangent or an asymptote of
the new figure hgi.

It is appropriate here to recall Newton’s definition of horizon line (figure 6.7):

Definition of horizon line. Let us name the “horizon” that plane which passes
through a point-source of light and is parallel to the plane of the projected line, and
the “horizon line” that line in which the horizon cuts the plane of the projecting
line.32

We note here, in passing (we shall get back to this point when dealing with fluxions
in §8.3), that Newton defined the transformation in kinematic terms: the projected
curve hgi is generated by a motion of point g that is regulated by the motion of
point G along HGI.

29 Principles, p. 494.
30 Here Newton conflates the terms degree and order.
31 MP, 7, p. 411. At times, Newton conceives of central projection as an eye looking through a
translucent plane; at other times, as a shadow projected by a point source of light. For more on the
“Geometriae Libri Duo,” see part V. See also Lucasian Lectures on Algebra: “In contemplating
curves and deriving their properties I commend their [the mathematicians of more recent times]
distinction into classes in line with the dimensions of the equations by which they are defined.”
MP, 5, p. 425.
32 Adapted from MP, 7, p. 417. The term vanishing line is also employed.
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Figure 6.7

Central projection. The line V X is the horizon line (ligne horizontale), often called the
vanishing line. Points belonging to the horizon line are projected at an infinite distance by
a light-source placed at E. Source: Ozanam, La Perspective Theorique et Pratique (1711),
Planche I. Courtesy of the Biblioteca Comunale dell’Archiginnasio (Bologna).

In the Principia, Newton stated that this lemma is “useful for solving more difficult
problems by transmuting the figures into simpler ones.” Indeed, any converging
lines are transformed into parallels by positioning the horizon line AO in such a
way that it passes through the intersection S of the converging lines (S is sent to
infinity). Further, this lemma is useful for solving solid problems, that is, problems
whose construction is given by the intersection of conic sections. For instance, a
straight line and a conic can be “turned into a straight line and a circle.”33

33 Principles, pp. 494–5.
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It is Rouse Ball’s guess that Newton was assisted by algebraic transformations
(equations (6.19) and (6.20)) in proving that all the cubics can be generated by
projecting the five divergent parabolas.34

6.4.3 Talbot’s Interpretation

It might be contended, contra Rouse Ball, that Newton, while writing on cubics in
the 1670s—i.e., before the Principia—was guided by geometrical intuition rather
than by algebra. This is Talbot’s opinion. It is interesting to note that Patrick
Murdoch in his commentary on the Enumeratio, published in 1746, adopted a similar
geometrical approach.35

In support of Talbot’s interpretation one can refer to a manuscript written by
Newton in the mid-1690s. In an interpolation of Book 1 of “Geometriae Libri
Duo” (§14.1), Newton generated all the cubic curves (even the famous six cubics
missing from the printed Enumeratio) by projection of the five divergent parabolas,
following a procedure very close to the one divined by Talbot.36 This was all rather
difficult to discern, however, for readers of the printed Enumeratio, and it may be
that only a few lucky ones were allowed to see the manuscript during Newton’s
lifetime.

Newton began by noting that the position of the horizon line determines the
nature of the asymptotes of the projected line (or curve, as we would say):

[E]very projecting line will yield as many species of projections as there are cases of
position of the horizon line. Should the horizon line cut the projecting line some-
where, that intersection will generate in the projection two legs of hyperbolic kind
stretching round the same asymptote in opposite direction to infinity, this on the
same side of the asymptote if the intersection be a point of inflection, but otherwise
on opposite sides, while the asymptote will be the projection of the straight line

34 Of course, the transformations of coordinates (6.19) and (6.20) are exactly those occurring
between figures centrally projected from one plane to another. As Turnbull observed, Newton’s
formulas are easily rewritten in algebraic notation on taking AD = x and DG = y, referred to
AB and AO as axes, and ad = x′ and dg = y′, referred to aB and the parallel to dg through a as
new axes. One gets x = m/x′ and y = ly′/x′ (l and m constants). Turnbull, The Mathematical
Discoveries of Newton (1945), pp. 55–6. These algebraic transformations should have allowed
Newton to verify how some of the simplest cubic curves can be obtained by projection of one
of the divergent parabolas. For instance, it is easy to show how the semicubic parabola can be
projected into the cubic parabola. Miller, “Newton, Aufzählung der Linien dritter Ordnung”
(1953), p. 29; Talbot in Newton, Enumeration of Lines of the Third Order (1861), p. 82.
35 Murdoch, Neutoni Genesis Curvarum per Umbras (1746), pp. 74–126. Whiteside noted small
lacunae in Talbot’s enumeration. Talbot’s procedure is, however, perfectly cogent. See MP, 7, p.
420, n. 37.
36 See MP, 7, pp. 411–35. Talbot and possibly Rouse Ball could base their conjectures on a
manuscript (Add. 3961.3, ff. 17r–18r; see MP, 7, p. 418) that provides only a sketch of the much
more detailed treatment of cubics found in MP, 7, pp. 411–35.



128 Chapter 6

touching the projecting curve at the point of intersection; and there will be as many
pairs of legs of this sort in the projection as there are intersection of the horizon
line with the projecting curve.37

Newton considered other positions of the horizon line, which can either “touch” the
projecting curve or be an asymptote of the projecting curve.

The basic fact when considering the central projection of a curve on a plane of
projection is that all points of the curve will be projected on the plane of projection,
except for those that belong to the horizon line AO; these points are projected to
an infinite distance.38

As in the case considered in §6.3, it is useful to start with conic sections and
attempt a generalization to cubics. In “Geometriae Libri Duo,” Newton began his
treatment of cubics by making the elementary observation that when the projecting
line is a circle, the horizon line will either cut the circle in two points and the
projected line will be a hyperbola, or in one point and the projected line will be a
parabola; instead, if the horizon line is outside the circle, the projected line will be
an ellipse.39

Extending this procedure to cubics, as Newton did in the subsequent folios, is
a rather difficult exercise of geometrical intuition. So, while the algebraic general-
ization of results proven for conics to cubics is straightforward (§6.3), generalizing
geometrical reasoning from conics to cubics proves extremely difficult.

Consider one particular case: a divergent parabola whose graph has a bell with
an oval. The horizon line can be either parallel or oblique to the ordinates. When it
is parallel one must distinguish eleven different positions of the horizon line: each of
these positions generates a different cubic curve by central projection (figure 6.8).
For each of the divergent parabolas one has to consider the projections obtained by
placing the horizon line in different positions, parallel and oblique to the ordinates.40

Newton ultimately showed that as the projection of the circle generates all conic
sections, so the projections of the five divergent parabolas generate all the 72+6
cubics. The treatment of conic sections is instead much simpler. Only one projecting
curve (the circle) has to be considered, and only three positions of the horizon line
are to be studied.

It is at this juncture that I would like to advance a hypothesis concerning New-
ton’s procedures in projective geometry. As previously noted, Newton’s algebraic
insights into projective invariant properties might have been aided by geometrical

37 MP, 7, p. 417. I slightly alter Whiteside’s translation by rendering “linea horizontalis” as
horizon line rather than horizontal, and “crus” as leg rather than branch.
38 Newton, Enumeration of Lines of the Third Order (1861), p. 76.
39 MP, 7, p. 419.
40 One can can verify, for instance, that “if the horizontal line passes through the cusped vertex
of a [semicubical] parabola [y2 = ax3] and this at an angle of contact, the projection will be a
Wallisian parabola [y = ax3].” MP, 7, p. 421.
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Figure 6.8

Talbot’s study of the central projections of the divergent parabola (“bell with an oval”; see
figure 6.5, numbers 70 and 71) when the horizon line is parallel to the ordinates. Talbot
considered 11 positions of the horizon line and showed how 11 different cubics could be
generated by central projection. After: Newton, Enumeration of Lines of the Third Order
(1861), p. 77. By Compomat, s.r.l. c©Niccolò Guicciardini.

intuition. One might surmise that Newton was also aided by some sort of real ap-
paratus that enabled him to actually project the divergent parabolas, perhaps by
means of a thin paper sheet and a point-like light source. The point-source of light
he referred to in Section 5 (§6.4.1) might not have been metaphorical but rather a
real light source. I have already surmised that in the case of organic curve descrip-
tions Newton might have used real instruments (§5.4.3). Newton’s mathematical
tool kit probably included real devices that allowed simulations to take the place
of abstract mathematical proofs. This conjecture might account for the assertive
style and lack of demonstrations that one encounters in certain sectors of New-
ton’s mathematical Nachlass, most notably in his work on organic constructions of
higher-order curves and projective classification of cubics.

6.4.4 Newton’s Interpretation

The lesson that Newton learned from his projective classification of cubic curves
is again at odds with Descartes’ defense of algebra as problematic analysis. First,
contrary to what Descartes had stated, the curves defined by third-degree algebraic
equations are far from simple: they show bewilderingly complex shapes. Second,
Newton cultivated projective geometry as a means for attacking geometrical prob-
lems from a point of view alternative to Cartesian algebra. Most notably, it is the
projective invariance of degree and tangency that allowed him to simplify prob-
lems by transmuting curves one into another. It is likely that Newton conceived of
projective geometry as related to porisms, that is, one of the basic ingredients of
ancient geometrical analysis that he polemically compared with Cartesian analysis.
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Finally, when considering points projected at infinity, Newton was moving beyond
the mathematical finitism that he believed Cartesian methodology implied.

6.5 New Analysis in the Enumeratio

6.5.1 A Puzzle in Section 4

How could Newton plot cubic curves? On this issue, too, the text of the Enumeratio
is somewhat mysterious. In Section 4, Newton classified cubics and plotted their
graphs; he also related the graphs to the coefficients and roots of polynomials in x
and y. However, the reader is not informed of the methods that Newton deployed
in order to study the shapes of cubics in such fine detail. Newton’s manuscripts,
however, provide some clues: his techniques, it is possible to surmise, were largely
algebraic. I believe Newton had to rely on techniques that included advanced alge-
braic tools not contemplated in Descartes’ canon, that is, the use of infinite series.

When Stirling published his commentary on the Enumeratio in 1717, he deployed
infinite series in order to provide the demonstrations lacking from Newton’s work.
In order to understand Newton’s printed text, one must often turn either to his
manuscripts or to the works of his close followers, who rendered public what the
master had left concealed. Of course, it is not certain that Stirling’s methods
coincide with those employed by Newton.

Commenting on Newton’s classification of cubic curves in any detail would re-
quire too much space. The following sections first examine a cubic curve (parabolic
hyperbola) by applying an approximation technique that Newton most probably
deployed, and a cubic (redundant hyperbola), treated at the end of Section 3 of
the Enumeratio, where Newton began his classification. For this second example,
Newton most probably employed infinite series expansions.

6.5.2 The Parabolic Hyperbola

A technique that Newton might have used in the Enumeratio consists of making
recourse to an algorithm often called the analytical parallelogram. This algorithm
allows one to obtain qualitative information on the behavior of the curve near the
origin or at infinity by discarding from its defining equation those terms that are
negligible for small or large values of x and y. Newton’s parallelogram is discussed
further in chapter 7 because its main use was to allow infinite series expansion.41

41 This method is described by Talbot in Newton, Enumeration of Lines of the Third Order
(1861), pp. 88ff, and in Frost, An Elementary Treatise on Curve Tracing (2004), pp. 117–32.
I use notations for a function in two variables f(x, y) and for a polynomial p(x) that were not
employed by Newton.
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A simple application of the analytical parallelogram to the parabolic hyperbola
is the following (figure 6.9):

f(x, y) = x2y + 3y2 − 9x = 0. (6.21)

One easily verifies that the graph touches the axes only at the origin (where f(0, 0) =
0) and that the equation is not defined for y > 3

√
27/4 and for x ∈ (− 3

√
108, 0).42

For large x and small y, equation (6.21) is approximated by

x2y − 9x = 0, (6.22)

which gives two hyperbolic legs. For x and y large, equation (6.21) is approxi-
mated by

x2y + 3y2 = 0, (6.23)
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Figure 6.9

Graph of a parabolic hyperbola with equation x2y+3y2−9x = 0 (solid line). Approximated
(dotted lines) for x and y large by x2y + 3y2 = 0, for x large and y small by x2y − 9x = 0,
near the origin by 3y2 − 9x = 0. c©Niccolò Guicciardini.

42 Indeed, solving for x, the discriminant is 81 − 12y3, and solving for y, the discriminant is
x4 + 108x.
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which indicates two parabolic legs in the direction of the negative ordinates. At the
origin the equation is approximated by

3y2 − 9x = 0. (6.24)

Newton’s parallelogram offers a simple means of ascertaining which terms in an
algebraic equation can be neglected in order to approximate the graph at the origin
or at infinity.

6.5.3 The Redundant Hyperbola

An example of the redundant hyperbola has equation

xy2 − ey = ax3 + bx2 + cx + d, (6.25)

where, as usual, x is the abscissa AB, and y the ordinate BC (figure 6.10). This
is the first cubic considered in the Enumeratio.43 Without providing any trace of
demonstration, Newton wrote,

In the first case, if the term ax3 is positive the figure will be a triple hyperbola with
six hyperbolic legs which proceed to infinity in line with three asymptotes (none of
which are parallel), a pair along one each in opposite directions. And if the term
bx2 is not lacking these asymptotes will mutually intersect one another in three
points, so containing between themselves a triangle (Ddδ) . . . take AD = −b/(2a)
and Ad = Aδ = b/(2

√
a), and join Dd, Dδ, and Ad, and then Dd, Dδ will be the

three asymptotes.44

It was Stirling who provided a demonstration of this statement, which he promoted
to the status of a Proposition 16 in his Lineae Tertii Ordinis Neutonianae (1717).
By solving equation (6.25) for y, Stirling obtained:

y=
e

2x
±

√
ax2 + bx + c +

d

x
+

e2

4x2
=

1
2e ± √

ax4 + bx3 + cx2 + dx + e2/4
x

. (6.26)

Equation (6.26) is also featured in Newton’s early studies on the redundant hyper-
bolas a clear sign that Stirling read through the text of the Enumeratio with much

43 Note the minus sign in the left term: this is because Newton assumed that all the coefficients a,
b, c, etc., are positive: “designant quantitates datas signis suis + et − affectas.” Newton, Opticks
(1704), p. 142. Today we would say that in equation (6.1), e < 0.
44 MP, 7, p. 599. “In casu primo si terminus ax3 affirmativus est Figura erit Hyperbola triplex cum
sex cruribus hyperbolicis quae juxta tres Asymptotos (quarum nullae sunt parallelae) in infinitum
progrediuntur, binae juxta unamquamque in plagas contrarias. Et hae Asymptoti si terminus bxx
non deest se mutuo secabunt in tribus punctis triangulum (Ddδ) inter se continentes . . . cape
AD = −b/(2a) et Ad = Aδ = b/(2

√
a), ac junge Dd, Dδ, et erunt Ad, Dd, Dδ tres Asymptoti.”

Newton, Opticks, p. 145 = MP, 7:, p. 598. I have slightly altered Whiteside’s translation. Most
notably, I render “crus” as leg rather than as branch.
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Figure 6.10

Graph of a redundant hyperbola from Newton’s Enumeratio. The equation of the curve,
(6.25), is xy2 − ey = ax3 + bx2 + cx + d. This is the first cubic in Newton’s classification.
The position of the asymptotes and legs is determined in Proposition 16 of Stirling’s
Lineae Tertii Ordinis Neutonianae (1717). In the case of this cubic there are several
assumptions to be taken into account concerning the coefficients of equation (6.25) (e.g.,
the fact that a is positive and b �= 0). Newton further assumed that the roots of p(x) =
ax4 + bx3 + cx2 + dx + e2/4 (which is under the radical in equation (6.26)) are all “real,

unequal and of the same sign.” One example might be xy2−√
4 · 24y = x3+10x2+35x+50,

which is obtained when p(x) = (x + 1)(x + 2)(x + 3)(x + 4) = x4 + 10x3 + 35x2 +
50x + 24 (see figure 6.11). Let the four roots be represented by the segments AP , Aω,
Aπ, and Ap. The axis of the abscissae can be divided into intervals where the curve
is not defined, since p(x) is negative and therefore y is imaginary. It turns out that
the curve is not defined in the intervals Pω and πp. In Corollary 2, Proposition 16,
Stirling noted that in correspondence of the interval ωπ there must be an oval contained
in the triangle Ddδ because for any other shape it would be possible to cut the curve
with a straight line in four points (which is, of course, impossible in case of a third-
degree curve). Both Newton and Stirling based similar reasoning on intuitive assumptions
about the meaning of terms such as oval and the fact that the curve must be smooth.
Source: Newton, Opticks (1704), Tab. I. Courtesy of the Biblioteca Angelo Mai (Bergamo).

insight.45 By applying Newton’s theorem (namely, the binomial theorem; see §7.3),
Stirling expanded the square root into a power series that converges for x “small.”46

45 See in “Enumeratio Curvarum Trium Dimensionum” the equation occurring at MP, 2, p. 18.
46 “reducatur (per Theor. Neutoni) pars irrationalis in seriem eo citius convergentem, quo minor
est x.” Stirling, Lineae Tertii Ordinis Neutonianae (1717), p. 87.
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Figure 6.11

Detail of xy2 −√
4 · 24y = x3 + 10x2 + 35x + 50 (solid line), and p(x) = (x + 1)(x + 2)(x +

3)(x + 4) = x4 + 10x3 + 35x2 + 50x + 24 (dotted line). c©Niccolò Guicciardini.

Stirling obtained two values for the ordinate:

y =
e

x
+

d

e
+ Ax + Bx3 + · · · (6.27)

y = −d

e
− Ax − Bx2 − · · · . (6.28)

From equation (6.27) one immediately deduces that the axis of the ordinates is an
asymptote. Of course, the axis of the ordinates is cut by the curve at y = −d/e. In
correspondence with this asymptote, there are “two infinite legs of the curve, one
on each side in contrary directions.”47

If x is made to continue infinitely in a positive direction, there will always be
a positive and a negative value for y “increasing without limit.” Hence, Stirling
inferred the existence of two more infinite legs.48

47 “indicat ordinatam primam esse Asymptoton, & habere duo crura ad diversas ejus partes posita,
& in plagas oppositas tendentia.” Ibid., p. 89.
48 “augebuntur simul ordinatae valores sine limite.” Ibid., p. 88.
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If x is negative, the equation becomes

−xy2 − ey = −ax3 + bx2 − cx + d. (6.29)

In this case, too, when x is made to continue infinitely, there will always be a
positive and a negative infinitely increasing values for y. The number of infinite
legs, therefore, will be six.

In order to study the behavior of the curve at infinity, Stirling expanded y into
a series that converges for large values of x. He obtained49

y = x
√

a +
b

2
√

a
+

4ac − b2 + 4ae
√

a

8ax
√

a
+ · · · (6.30)

y = −x
√

a − b

2
√

a
− 4ac − b2 − 4ae

√
a

8ax
√

a
+ · · · . (6.31)

The first two terms of these series indicate the existence of two rectilinear asymp-
totes

y = ±√
a

(
x +

b

2a

)
, (6.32)

cutting the axis of the abscissae at x = −b/(2a), having inclinations equal to
√

a
and −√

a, and cutting the axis of the ordinates at y = ±b/(2
√

a).
Therefore, Stirling prescribed (i) to set AD = b/(2a), and Ad = Aδ = b/(2

√
a);

(ii) to join Dd, Dδ; and (iii) to produce Ad, Dd, Dδ, tracing the three asymptotes,
which form a triangle Ddδ.

Stirling’s Proposition 16 is fundamental to the study of redundant hyperbolas.
This class of cubics is further subdivided into genera and species in function of
the values of the coefficients and the number and disposition of the roots of the
polynomial p(x) = ax4 + bx3 + cx2 + dx + e2/4. One can only conjecture that

49 Guardeño observed in his detailed commentary on the Enumeratio (Newton, Análisis de Can-
tidades (2003), p. 163),

√
ax4 + bx3 + cx2 + dx + e2/4

x
=

√
ax

√
1 +

b

a

1

x
+

c

a

1

x2
+ O(x−3) =

√
ax

(
1 +

b

2a

1

x
+

(
c

2a
− b2

8a2

)
1

x2
+ O(x−3)

)
=

√
a

(
x+

b

2a

)
+

√
a

(
4ac − b2

8a2

)
1

x
+ O(x−2).

Note that(
1 +

b

a

1

x
+

c

a

1

x2

)1/2

= 1 +
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a

1

x
+
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1
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+

(1/2)(−1/2)

2

(
b2
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1

x2
+ O(x−3)

)
.
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Newton had already followed the algebraic procedure that Stirling reconstructed in
his commentary.50

6.5.4 Publication Strategy

From a cursory look at Newton’s study of cubic curves one can surmise that Newton
probably applied the analytical parallelogram (§6.5.2) and power series expansions
(§6.5.3).

Evidence that Newton used infinite series (and fluxions) in the study of cubics
is scarce in his printed work. In De Analysi (1669), Newton studied the cubic
y3 +axy+x2y−a3−2x3 = 0: after expanding y as a power series in x, he explained
how this series can be used to determine the asymptotes of the cubic.51

In the surviving manuscripts related to the Enumeratio, proofs of most state-
ments concerning cubics are missing. In order to reconstruct Newton’s arguments
one has to rely on the evidence available in very rare drafts of calculations that
have survived, where the evidence is that he used series and fluxions. The messy
appearance of one of these calculations dating from the late 1670s, which from a
modern point of view would be quite important, when compared to the careful
hand in which Newton wrote his demonstrations on porisms in the contemporary
“Veterum Loca Solida Restituta,” now considered a geometrical backwater, reveals
the value that he attributed to algorithm at this moment in his career.52 Infinite
series were deployed on scraps of paper in order to reach results that were later
geometrically laid down in carefully drafted manuscripts.

Even though the algebraic objects Newton was considering—third-degree poly-
nomials—were very much part of the Cartesian canon, he manipulated them with
tools—infinite series—that stretched far beyond Cartesian methods. Newton sur-
passed Cartesian methodology by freely manipulating the infinite (both in his pro-
jective geometry and his algebraic calculations). It is to these innovative algebraic
tools that part III is devoted.

50 Stirling’s demonstration is in Lineae Tertii Ordinis Neutonianae (1717), pp. 87–9, and is
reproduced by Talbot in his commentary to Newton, Enumeration of Lines of the Third Order
(1861), pp. 49–51.
51 MP, 2, pp. 226–8.
52 See the rough draft calculations for the determination of the root x of a cubic equation by an
infinite series in powers of y−1. As Whiteside noted in his commentary, here Newton deployed the
method of “resolution of affected equations” that he had elaborated in De Methodis (1671) (see
§7.5). Add. 3961.1, f. 22v. MP, 4, p. 389



III New Analysis and the Synthetic Method

Part III shifts from common analysis to new analysis, namely, Newton’s method of
series and fluxions. The new analysis was understood by Newton’s contemporaries
as an algebraic method that implied the use of infinite series and infinitesimally
small magnitudes, whereas common analysis coincided with methods confined to
algebraic equations. The time span is from 1669 (date of composition of De Analysi)
to the early 1690s (date of composition of De Quadratura). In his youth Newton
enthusiastically endorsed the new analysis of the moderns. However, around 1670
he began to seek some firmer ground on which to establish his analytical method of
series and fluxions. Newton thus developed a synthetic method of fluxions, which
he saw as consonant with ancient mathematical practice.

Chapter 7 considers the method of series developed in De Analysi, in which New-
ton presented himself to Collins as a creative analyst capable of manipulating infinite
series very much in accordance with the program delineated by Wallis. Chapter 8
focuses on the analytical method of fluxions, both direct and inverse, elaborated
in De Methodis, and in a more advanced form in De Quadratura. Chapter 9 turns
to Newton’s synthetic version of the method of fluxions as provided in “Geome-
tria Curvilinea,” the Principia, and the introduction to De Quadratura. With this
mature version of the method Newton distanced himself from new analysis.

The synthetic version of the method of fluxions is based on postulates or lemmas
concerning the limits of ratios and sums of “vanishing magnitudes”; its purpose is to
allow the determination of tangents to curves and the calculation of curvilinear areas
by geometrical arguments based on limiting procedures. A tension is apparent be-
tween Newton’s desiderata and his mathematical practice. In particular, Newton’s
methods of quadrature, systematized in what nowadays (in Leibnizian terminol-
ogy) would be called integral tables, are carried on in terms that are essentially
algorithmic and difficult to reduce to synthetic form.





7 The Method of Series

From all this it is to be seen how much the limits of analysis are enlarged by such
infinite equations: in fact by their help analysis reaches, I might almost say, to all
problems.

— Isaac Newton, 1676

The paradox remains that such Wallisian interpolation procedures, however plau-
sible, are in no way a proof, and that a central tenet of Newton’s mathematical
method lacked any sort of rigorous justification.

—Derek T. Whiteside, 1961

7.1 Wallis’s Arithmetica Infinitorum (1656)

One of the key elements of Newton’s new analysis is the use of infinite series, or
infinite equations. The binomial theorem that Newton formulated in the winter
of 1664–1665 is only the first step in the new analytical method that allowed him
to handle mechanical curves and calculate the areas of curvilinear figures. These
techniques are based on the kind of “inductive” generalizations that Newton found
in the work of Wallis, most notably in Arithmetica Infinitorum (1656).1 I turn to
some salient features of this work before dealing with the method of series that
Newton codified in De Analysi (completed in 1669) and the first pages of the De
Methodis (completed in 1671).2

Wallis was Savilian Professor of Geometry in Oxford. His appointment in 1649
had been determined more by politics than by any mathematical achievement on
his part. Wallis had served as secretary of the Assembly of Divines and as cryptog-
rapher had been of great help to Parliamentarians during the Civil War. As Scriba
remarked, “[F]ew people in 1649 could have foreseen that within a few years the
thirty-two-years-old theologian would become one of the leading mathematicians of
his time.”3

Epigraph sources: (1) Newton to Oldenburg for Leibniz (June 13, 1676), Correspondence, 2, p. 39.
“Ex his videre est quantum fines Analyseos per hujusmodi infinitas aequationes ampliantur: quippe
quae earum beneficio, ad omnia, pene dixerim, problemata . . . sese extendit.” Correspondence,
2, p. 29. (2) Whiteside, “Newton’s Discovery of the General Binomial Theorem” (1961), p. 180.
1 Printed by July 1655, published in Wallis, Operum Mathematicorum, Pars Altera (1656), pp.
1–199.
2 See Abbreviations and Conventions for bibliographical details on De Analysi and De Methodis.
3 Scriba, “John Wallis” (1976), p. 147.
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Armed with a solid background in theology, metaphysics, and logic, Wallis began
to enter cutting-edge mathematical research when, in 1647–1648, he came across
William Oughtred’s Clavis, which proved to be an important source for the young
Newton, too. The pronounced symbolism of Oughtred’s work fascinated Wallis, who
remained a defender of the heuristic power of algebraic notation all his life. Most
notably, in De Sectionibus Conicis (1655), he defined the conic sections in algebraic
terms, strongly supporting the approach to geometry that stemmed from Descartes’
Géométrie.4 Jan de Witt, one of the Cartesian mathematicians in van Schooten’s
circle, did very much the same thing in Elementa Curvarum Linearum (completed in
1649), a treatise that appeared in the second Latin edition of Descartes’ Geometria
(1659–1661).5

Arithmetica Infinitorum (1656) instead deals with a topic that had remained un-
touched by Descartes: “the quadrature of curvilinear figures.” This expression was
used by seventeenth-century mathematicians to denote methods for the determina-
tion of either the area of a surface bound by a curve or the volume of a solid bound
by curvilinear surfaces. This was a very important subject in the mid-seventeenth
century, not least because of its applications to natural philosophy.

Wallis drew from Evangelista Torricelli’s Opera Geometrica (1644), a work that
expounded and extended Bonaventura Cavalieri’s “geometry of indivisibles.”6 But
while the Italians had developed a geometry of indivisibles, Wallis wished to propose
an “arithmetic of indivisibles.” Following Kepler, Torricelli, Pascal, and other early-
seventeenth-century pioneers of quadrature methods, it was customary to conceive
of a surface as an aggregate of lines or of infinitesimal parallelograms. The language
employed to deal with such infinities was varied and posed enormous conceptual
problems.7 Wallis would have said that any plane surface can be seen as being
composed of an infinite number of parallelograms of equal altitude, the altitude itself
being denoted by a bewildering 1/∞.8 Similar parlance was often accompanied by
claims that the new nonrigorous methods could be reframed in terms of the more
conventional exhaustion techniques illustrated in the works of Archimedes.

Wallis pointed out that it was possible, for instance, to envisage the parabolic
surface (figure 7.1) as being composed of infinitely many infinitesimal parallelo-

4 Wallis, De Sectionibus Conicis, Nova Methodo Expositis Tractatus in Operum Mathematicorum
Pars Altera (1656).
5 de Witt, Elementa Curvarum Linearum, in R. Descartes, Geometria (1659–61), pp. 153–340.
6 Cavalieri’s method was fundamentally changed by Torricelli into a different theory; Cavalieri
studiously avoided considering the continuum as composed of infinitesimals. On the relationships
between Cavalieri and Torricelli, see Andersen, “Cavalieri’s Method of Indivisibles” (1985); Giusti,
Bonaventura Cavalieri and the Theory of Indivisibles (1980); De Gandt, Force and Geometry in
Newton’s Principia (1995), pp. 185–202.
7 Blay, Reasoning with the Infinite (1998); Mancosu, Philosophy of Mathematics and Mathematical
Practice in the Seventeenth Century (1996); Malet, From Indivisibles to Infinitesimals (1996).
8 Stedall, “John Wallis, Arithmetica Infinitorum’’ ( 2005), p. 25.
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Figure 7.1

Parabolic surface in Wallis’s Arithmetica Infinitorum. Source: Wallis, Opera (1695), 1, p.
383. Courtesy of the Biblioteca Angelo Mai (Bergamo).

grams. If a is the small distance between the ordinates, and TO = (DO)2, then the
ratio of the area of the curvilinear surface ATO to the area of the rectangle ATOD
is approximated by the arithmetical ratio

02 + a2 + (2a)2 + (3a)2 + . . . + (na)2

(na)2 + (na)2 + (na)2 + (na)2 + . . . + (na)2
, (7.1)

calculated for large values of n (where n is a positive integer).9 Wallis maintained
that one could obtain the exact value of the ratio between the areas by letting a be
equal to 1/∞, thus letting the number of terms in the numerator and denominator
of ratio (7.1) be infinite (note that na is kept fixed).

Wallis calculated the exact value by what he termed an induction, whereby one
considers the pattern that emerges from the ratio

02 + 12 + 22 + 32 + . . . n2

n2 + n2 + n2 + n2 + . . . + n2
, (7.2)

for increasing values of n. In this example one obtains

0 + 1
1 + 1

=
1
3

+
1
6

9 Wallis would express the area of the parabolic surface ATO as being approximated by 02 + a ·
a2 + a · (2a)2 + a · (3a)2 + . . . a · (na)2, and the area of the rectangle ATOD as (na)2 · na.
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0 + 1 + 4
4 + 4 + 4

=
1
3

+
1
12

0 + 1 + 4 + 9
9 + 9 + 9 + 9

=
1
3

+
1
18

0 + 1 + 4 + 9 + 16
16 + 16 + 16 + 16 + 16

=
1
3

+
1
24

. . . = . . .

For all n considered so far, the result is 1/3 plus a fraction whose value becomes
smaller as n increases. Wallis stated,

The simplest way of investigating this and other problems is to set forth a certain
number of cases and observe the resulting ratios, and then compare them with one
another in order that the universal proposition can then be known by induction.10

Following his method of induction, Wallis concluded that the ratio (7.2) is equal to
1/3 + 1/6n, for every positive integer n.11

Further, a limit argument allowed Wallis to state that the area of the parabolic
surface ATO, conceived of as composed of an infinite number of rectangles of alti-
tude 1/∞, is one-third of the area of the rectangular surface ATOD. This was a
very well-known result, of course, but it was achieved according to an innovative
method. It is interesting to consider how Wallis justified the limiting procedure:

Since, moreover, as the number of terms increases, the excess over one third is con-
tinually decreased, in such a way that at length it becomes less than any assignable
quantity (as is clear); if one continues to infinity, it will vanish completely.12

Newton was to justify similar limit procedures by mobilizing different conceptual
resources, while employing a terminology analogous to that of Wallis (see chapter 9).

Wallis soon realized that this method could be applied to the squaring of higher-
order parabolas. Thus he applied induction and limit arguments to ratios of the
form

0r + ar + (2a)r + (3a)r + . . . + (na)r

(na)r + (na)r + (na)r + (na)r + . . . + (na)r
, (7.3)

where r = 3, 4, etc. Again, Wallis obtained well-known results. When r = 3, the
area under the parabola of equation y = x3 calculated between 0 and b is b4/4; when

10 Wallis, Opera, 1, p. 365. Translation in Jesseph, Squaring the Circle (1999), p. 176.
11 Wallis’s method should be distinguished from the modern principle of mathematical induction
formalized in the Dedekind-Peano axioms.
12 Wallis, The Arithmetic of Infinitesimals (2004), p. 27. “Cum autem crescente numero termino-
rum, excessus ille supra ratione subtriplam ita continuo minuatur, ut tandem quolibet assignabili
minor evadat, (ut patet;) si in infinitum procedatur, prorsus evaniturus est.” Wallis, Arithmetica
Infinitorum (1656), p. 16.
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r = 4, the area is b5/5. This pattern was extended to all positive r by appealing to
the principle of induction.

Wallis further extended this result to r fractional. He was the first to extend the
rule apaq = ap+q “by analogy” to negative and fractional exponents, even though he
did not explicitly use the notation for fractional powers. Wallis began to extend the
pattern emerging for positive integers to some fractional exponents by interpolating
numerical tables. He convinced himself that the pattern was still valid and extended
it by induction to all fractional powers or even real exponents. In modern terms,
what Wallis achieved was a result that we would express as∫ b

0

xrdx =
br+1

r + 1
, (7.4)

for r real and �= −1.
The fact that Wallis’s result breaks down for r = −1 means that he could not

solve an important geometrical problem: the squaring of the hyperbola xy = 1. But
it is on the squaring of the circle that Wallis spent all his energy: indeed, Arith-
metica Infinitorum was written with the purpose of solving this problem. Wallis
began by subdividing the quadrant of a circle of radius R into an infinite number
of parallelograms with equal bases a = R/∞ and heights equal to

√
R2 − (ka)2

(figure 7.2). Without the aid of the binomial series, the attempt to determine and
sum the areas of the parallelograms proved to be a tour de force. Wallis’s tech-
nique of interpolation (as he called it) has often been described. One of the most
accurate analyses is provided by Stedall, whose lead I follow in this section.13 For
convenience, I here employ modern notation. What Wallis did, essentially, was to

Figure 7.2

Quadrant of the circle subdivided into an infinite number of parallelograms in Wallis’s
Arithmetica Infinitorum. Source: Wallis, Opera (1695), 1, p. 417. Courtesy of the Bib-
lioteca Angelo Mai (Bergamo).

13 Stedall, “A Discourse Concerning Algebra” (2002), pp. 159–65.
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tabulate the reciprocals of certain integrals:

f(p, q) =
1∫ 1

0
(1 − x1/p)qdx

. (7.5)

Wallis could calculate this for positive integer values of q and for fractional p. Of
course, f(1/2, 1/2) = 4/π is the value that Wallis tried to catch by interpolation.
This proved to be terribly difficult, yet Wallis was able to identify two sequences
of lower and upper bounds for 4/π. In the end Wallis could state his celebrated
continued product (returning here to his notation):

4
π

=
3 × 3 × 5 × 5 × 7 × 7 × &c.

2 × 4 × 4 × 6 × 6 × 8 × &c.
(7.6)

Wallis handled infinitesimals, infinite series, and infinite products with bewildering
prowess. One of Newton’s most decisive starting points as a creative mathematician
was Arithmetica Infinitorum. Before turning to Newton’s use of series in represent-
ing curves, areas, and arclengths—a technique he understood as a means to cross
the boundaries set by the Cartesian canon—it is worth turning to the reception of
the Wallisian proof methods. Wallis had to withstand considerable criticism. Simi-
lar criticism would have been quite embarrassing for Newton, since he was defending
mathematics as a means capable of injecting certainty into natural philosophy.

7.2 Criticism Leveled at Wallis

Wallis’s mathematical work, most notably his Arithmetica Infinitorum, was the
polemic target of Pierre de Fermat and Thomas Hobbes. We do not know how
much Newton knew about the controversy between Hobbes and Wallis. He certainly
knew about Fermat, since the letters of the French mathematician were reproduced
in Wallis’s Commercium Epistolicum (1658), which Newton read in his early days
as a mathematician.

One of the criticisms leveled at Wallis concerned the validity of induction. The
fact that a proposition is proven true for a few numbers belonging to a class does
not imply that it is valid for all the members of the class, as Fermat, a master of
number theory, knew too well.14 In order to reject similar criticism, Wallis devised
a well-structured reply. First, he claimed that induction methods were not his
invention but had been employed both recently by Henry Briggs and Viète and in
the ancient world by Euclid. So, Wallis claimed (and this part of his reasoning is less

14 Fermat invited Wallis to devote himself to number theory, but Wallis found it of little interest.
Number theory struck him as something of limited use in applications, in other words, as a useless
inquiry.
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convincing), even Euclid assumed that what has been proven for a single equilateral
triangle can apply to all equilateral triangles. Second, Wallis insisted on the fact
that in Arithmetica Infinitorum he wanted to provide a method of discovery, not
proof. Wallis’s strategy was to claim that his mathematical inductions were part
of the analytical process of discovery. Further, he insisted that he had the highest
regard for the rigorous methods of proof of the ancients and that his heuristic
methods could be reframed in classical terms.

Hobbes, with whom Wallis had a notorious squabble,15 and Fermat complained
about Wallis’s excessive reliance upon symbols. For instance, in 1657, Fermat
stated,

It is not that I do not approve it, but all his propositions could be proved in the
usual, regular Archimedean way in many fewer words than his book contains. I do
not know why he has preferred this method with algebraic notation to the older
way which is both more convincing and more elegant.16

In 1658 Fermat addressed Wallis as follows:

[W]e advise that you would lay aside (for some time at least) the Notes, Symbols,
or Analytick Species (now since Vieta’s time, in frequent use,) in the construction
and demonstration of Geometrick Problems, and perform them in such method
as Euclide and Apollonius were wont to do; that the neatness and elegance of
Construction and Demonstration, by them so much affected, do not by any degrees
grow into disuse.17

Note how Fermat praised the elegance, conciseness, and neatness of the geometrical
constructions and demonstrations of Euclid, Apollonius, and Archimedes. By the
1670s, Newton had come to share Fermat’s position (see chapters 4 and 5).

Fermat’s criticisms have been often misinterpreted by historians puzzled by the
fact that a leading figure of the analytical school (who employed algebra in the anal-
ysis of geometrical problems and made use of infinitesimal techniques) could attack
Wallis because of his reliance on symbols. A similar bewilderment followed the
publication of Newton’s Arithmetica Universalis. How could Newton end a treatise
devoted to algebra with an appendix that argued so strongly in favor of the auton-
omy and superiority of geometry? My answer, already suggested (§4.5 and §4.6), is

15 The best account is Jesseph, Squaring the Circle (1999).
16 Fermat to Kenelm Digby (August 15, 1657): “Ce n’est pas que je ne l’approuve, mais toutes ses
propositions pouvant estre demonstrées via ordinaria legitima et Archimedea en beaucoup moins
de parolles, que n’en contient son livre. Je ne sçay pas, pourquoy il à preferé cette maniere par notes
Algebriques à l’ancienne, qui est & plus convainquante, & plus elegante.” Wallis, Commercium
Epistolicum (1658), letter 12. Translation in Stedall, “A Discourse Concerning Algebra” (2002),
p. 170.
17 Fermat to Digby (June 1658), in Wallis, Commercium Epistolicum, letter 46. Translated in
Wallis, A Treatise of Algebra (1685), p. 305, and discussed in Stedall, “A Discourse Concerning
Algebra” (2002), p. 171.
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that one has to place these statements in the context of the canon of problem solving
adopted by seventeenth-century mathematicians. It is in this context that Newton
could maintain that symbolic algebra had no role to play in the constructive (syn-
thetic) part of the canon, whereas it could be deployed in the resolutive (analytical)
part. Similarly, Fermat urged Wallis to use geometry in constructions and demon-
strations. That is why Wallis could frame a reply that both expressed admiration
for the ancient synthetic methods and articulated a defense of the heuristic power of
symbolism. Wallis emphasized that he valued the ancient method of construction,
but that his work was about analysis, not synthesis. To criticize his work, as Fermat
did, was to miss the point. Heavily relying on the widespread topos that attributed
no heuristic power to the synthesis in which the ancients published their works,
as well as on the myth that they had kept their methods of discovery concealed,
Wallis wrote,

To the Elegance and neatness of the Ancients way of Construction and Demonstra-
tion, I am not Enemy. And that these Propositions might be so demonstrated, I
was far from being ignorant . . . .[Fermat] doth wholly mistake the design of that
Treatise; which was not so much to shew a Method of Demonstrating things already
known (which the Method that he commends, doth chiefly aim at,) as to shew a
way of Investigation or finding out of things yet unknown: (Which the Ancients did
studiously conceal). . . . And that therefore I rather deserve thanks, than blame,
when I did not only prove to be true what I had found out; but shewed also, how
I found it, and how others might (by those Methods) find the like.18

Wallis was so enthusiastic in his endorsement of arithmetic and algebra as the
analytical tools the ancients were familiar with but had chosen to conceal, that he
was criticized by many, most notably by Hobbes, with whom Wallis had a protracted
quarrel adumbrated by political overtones. Wallis has often been portrayed as a
defender of modernity against the reactionary nostalgia of geometrical purity. Yet,
as Neal has shown, the cleavage between modernity and classicism cannot be drawn
so simplistically, not only because many first-rank mathematicians who greatly
contributed to the scientific revolution, such as Huygens, Barrow, and Newton,
were critical of the use of symbols but also because Wallis defended symbolism on
the basis of values that he located in the classical tradition.19

When Wallis was attacked because of his use of infinite products and infinites-
imal magnitudes, he replied, as was customary in the middle of the seventeenth
century, that his arithmetic of infinities was only an abbreviated, more direct ver-
sion of the method of exhaustion. Wallis’s position on the matter was spelled out

18 Wallis, A Treatise of Algebra (1685), pp. 305–6. See Stedall, “A Discourse Concerning Algebra”
(2002), p. 172.
19 As Neal observed, Wallis was following the classical Aristotelian tradition when he distinguished
pure (arithmetic and geometry) from mixed mathematics, and when he attributed his preference
for arithmetic over geometry to the fact that the former is more abstract and universal than the
latter. Neal, From Discrete to Continuous (2002), p. 153.
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in detail in Treatise of Algebra (1685), a lengthy historical presentation of specious
arithmetic (as treated by Oughtred) and of the quadrature methods of Arithmetica
Infinitorum, written in the historicist style of Gerardus Joannes Voss’s De Universae
Matheseos Natura et Constitutione (1660) and Claude François Milliet Deschales’
Cursus seu Mundum Mathematicus (1674).20 In the historical reconstruction pro-
vided in A Treatise of Algebra, Wallis carefully presented results first according
to Archimedean exhaustion, then according to what he identified as “Cavalieri’s
geometry of indivisibles,”21 and finally according to his own arithmetic of indivis-
ibles. Wallis stressed the continuity, rather than discontinuity, between the Greek
tradition and Arithmetica Infinitorum. While in Arithmetica Infinitorum and in
De Sectionibus Conicis, Wallis used infinities quite freely, in later works, such as A
Treatise of Algebra and A Defense of the Treatise of the Angle of Contact (1684),22

his defense of the use of infinitesimal magnitudes emphasized the continuity with
exhaustion techniques.

The method of exhaustion, Wallis claimed in his Treatise of Algebra, is certainly
rigorous. However, it is too cumbersome to be “parcelled out into several lemmas
and preparatory Propositions. Which though it might look more August [is] less
edifying.”23 Rather, Wallis argued, the arithmetic of infinities is more direct and
simple. Yet, the principles on which it rests, Wallis continued, are the same as
those assumed in Archimedean proofs. According to Wallis, one has to understand
infinitesimals as variable magnitudes that can be made less than any assignable
finite magnitude:

[A]ll continual approaches, in which the Distance comes to be less than any assignable,
must be supposed, if infinitely continued, to determine in a Coincidence or Con-
currence. The Difference thus coming to nothing or (what Geometry accounts as
such,) less than any assignable.24

Clearly, Wallis was trying to justify his limit arguments, which he had employed in
the quadrature of curvilinear figures, in terms of a process of continual approach.
Newton’s method of first and ultimate ratios was expressed in a language reminis-
cent of Wallis’s (see chapter 9).

Similarities with Newton also emerge in A Defense of the Treatise of the Angle
of Contact (1684), particularly where Wallis talked about inchoative or inceptive

20 On Wallis as a historian of mathematics, see Stedall, “Of Our Own Nation” (2001), and Scott,
“John Wallis as Historian of Mathematics” (1936).
21 Note, however, that this was Torricelli’s version of Cavalieri’s indivisibles.
22 This tract was also appended to A Treatise of Algebra (1685), pp. 69–105. It is a defense
against Vincent Leotaud of De Angulo Contactus et Semicirculi Tractatus, a work printed in 1656
together with Arithmetica Infinitorum in Operum Mathematicorum Pars Altera.
23 Wallis, A Treatise of Algebra (1685), p. 305.
24 Ibid., p. 284.
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quantities. By this, Wallis meant that his indivisibles must be understood as gen-
erative of finite magnitudes. So a point is inceptive of a line conceived as generated
by the motion of a point, a line is inceptive of a surface generated by the motion of
a line, and acceleration is inceptive of velocity:

There are some things, which tho’ as to some kind of Magnitude, they are nothing;
yet are in the next possibility of being somewhat. They are not it, but tantum
non; they are in the next possibility to it; and the Beginning of it: Tho’ not as
primum quod sit (as the Schools speak) yet as ultimum quod non. And may very
well be called Inchoatives or Inceptives, of that somewhat to which they are in
such possibility.25

In a different context, Newton similarly attempted to defend the legitimacy of the
use of moments (§9.4). Certainly, Newton proved extremely susceptible to the crit-
icisms addressed against Wallisian techniques, since these techniques formed the
backbone of his early mathematical discoveries. It is the use of the Wallisian tech-
niques of induction and interpolation that in the mid-1660s led a young Newton
to the discovery of the binomial series, a tool that allowed him to deal with me-
chanical curves and solve quadrature problems that lay beyond the boundaries of
the Cartesian canon. However, his commitment to a program, spelled out in the
early 1670s (see chapter 2), which invested mathematics with the role of injecting
certainty into natural philosophy rendered Newton much more cautious than Wallis
in the use and publication of the new analysis.26

7.3 The Binomial Series

Newton in one stroke liberated mathematics from the concept of ratio and propor-
tion that had pervaded all Greek and early European mathematical thinking and
opened the way to perceiving areas (and associated logarithmic and trigonometrical
quantities) as functions of a free variable.27

The young Newton enthusiastically endorsed the new analysis. It is thanks to a
Wallisian interpolation technique that he began his creative mathematical career.
In the winter of 1665, Newton came up with his first mathematical discovery: the
binomial series for fractional powers. He began by attempting to calculate the areas
of curvilinear surfaces subtended by the series of curves whose common base or axis

25 Wallis, A Defense of the Treatise of the Angle of Contact (1684), cited in A Treatise of Algebra
(1685), p. 96. See the commentary in Sellés, “Infinitesimals in the Foundations of Newton’s
Mechanics” (2006).
26 For more information on Wallis’s ideas concerning the philosophy of mathematics, see Malet,
From Indivisibles to Infinitesimals (1996). A somewhat dated account of Wallis’s mathematical
work is in Scott, The Mathematical Work of John Wallis (1981). I recommend the cited works by
Stedall. The Italian reader is now served by Maierù, John Wallis (2007).
27 Stedall, “A Discourse Concerning Algebra” (2002), p. 177.
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Figure 7.3

Attempted interpolations of Oughtred’s Analyticall Table. Autumn 1665? Source:
Add.3958.3, f. 72r. Reproduced by kind permission of the Syndics of Cambridge Uni-
versity Library.
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is x and ordinates y are equal to (1 − x2)0/2, (1 − x2)1/2, (1 − x2)2/2, (1 − x2)3/2,
(1− x2)4/2, (1− x2)5/2, and so on. Newton did not seek to calculate areas between
fixed limits but left the upper bound as a free variable x. The area associated with
the second curve in the preceding list would, of course, give the area of a circular
segment, a much harder problem than the one tackled by Wallis, who sought to
calculate the area of the circular quadrant. But it is exactly this generalization that
allowed Newton to perceive an interesting pattern. By applying well-known results
on quadrature of higher-order parabolas, Newton noted that the first, third, fifth,
seventh, etc., curves subtend surfaces whose areas, calculated from 0 to x, are

x,
1

x − x3,
3
2 1

x − x3 + x5,
3 5
3

x − x3 3
+ x5 1

x7,
3 5

−
7

. . .

Newton noted that it is possible to rewrite these coefficients in terms of what he
called Oughtred’s Analyticall Table (figure 7.3), that is, the Pascal triangle. Newton
tabulated this finding as follows:

n= 0 2 4 6 8 . . . times
1 1 1 1 1 . . . x
0 1 2 3 4 . . . −x3/3
0 0 1 3 6 . . . x5/5
0 0 0 1 4 . . . −x7/7
0 0 0 0 1 . . . x9/9...

...

This table gives the area of the surface subtended by y = (1 − x2)n/2 for n =
0, 2, 4, 6, . . . . The law of formation of the coefficients can immediately yield the
coefficients for n even negative. This extrapolation, based on a typically Wallisian
technique, whereby a pattern valid for a certain domain of numbers is extended by
analogy to other domains, produces the following table:

n= . . . −4 −2 0 2 4 6 8 . . . times
. . . 1 1 1 1 1 1 1 . . . x
. . . −2 −1 0 1 2 3 4 . . . −x3/3
. . . 3 1 0 0 1 3 6 . . . x5/5
. . . −4 −1 0 0 0 1 4 . . . −x7/7
. . . 5 1 0 0 0 0 1 . . . x9/9...

...
...
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This was a remarkable result, which was of great importance for Newton and his
contemporaries. Newton then attempted to extend his table to n odd.

The process of discovery of the coefficient for n odd was rather intricate. After
much effort, Newton was able to discern a pattern valid for n even, and he extended
it by analogy, to n odd. He noted that the “intermediate termes . . . are of this
nature”:28

a a a a a . . .
b b+c b+2c b+3c b+4c . . .
d d+e d+2e+f d +3e+3f d+4e+6f . . .
g g+h g+2h+i g+3h+3i+k g+4h+6i+4k . . .
. . . . . . . . . . . . . . . . . .

When Newton explained this to Leibniz in 1676, he provided a simpler account.
The two procedures are nevertheless equivalent.29 One can express Newton’s ac-
count in modern notation by saying that when n is even, say, n = 2m, the nth
column is such that its kth entry (k = 0, 1, 2, 3, . . . ) is

m!/k!(m − k)!. (7.7)

By means of Wallisian analogy Newton extended this relation to the odd columns.
The result is the following table:30

n= −4 −3 −2 −1 0 1 2 3 4 . . . times
. . . 1 1 1 1 1 1 1 1 1 . . . x
. . . −2 −3/2 −1 −1/2 0 1/2 1 3/2 2 . . . −x3/3
. . . 3 15/8 1 3/8 0 −1/8 0 3/8 1 . . . x5/5
. . . −4 −35/16 −1 −5/16 0 1/16 0 −1/16 0 . . . −x7/7
. . . 5 315/128 1 35/128 0 −5/128 0 3/128 0 . . . x9/9
...

...
...

Newton could now write the area subtended to the curve y = (1 − x2)1/2 as

x + 1/2(−x3/3) − 1/8(x5/5) + 1/16(−x7/7) − 5/128(x9/9) + . . . . (7.8)

28 MP, 1, p. 130.
29 “I found that on putting m for the second figure, the rest would be produced by continual
multiplication of the terms of this series: m−0

1
× m−1

2
× m−2

3
× m−3

4
× m−4

5
, etc.” Newton,

Correspondence, 2, p. 130. English translation by Turnbull.
30 MP, 1, p. 132. A clear analysis is provided in Whiteside, “Newton’s Discovery of the General
Binomial Theorem” (1961).
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This is the result Newton needed to square the circle segment (figure 7.4). By
subtracting the area of the triangle OPQ from the area of the segment ORQP , he
could calculate the area of the circular sector OQR and therefore obtain an estimate
of π (e.g., when x = 1/2, θ = π/6).

Newton further noted that, since the area under y = xn and over the interval
[0, x] is xn+1/(n + 1), one could extend the result valid for the area to the curve
itself and state

(1 − x2)1/2 = 1 − 1
2
x2 − 1

8
x4 − 1

16
x6 − 5

128
x8 − · · · . (7.9)

Here he relied upon the intuition that the area of a curve represented by an infinite
series is equal to the sum of the areas of each term. He was to formalize this as
Rule 2 of De Analysi (§7.4).

A research on the circle quadrature based on Wallisian techniques thus led New-
ton to the binomial series that using modern notation we would express as

(a + x)m/n = am/n +
m

n
am/n−1x +

1
1.2

m

n
(
m

n
− 1)am/n−2x2 + · · · . (7.10)

y

x x

Q

R

θ

1

√
1−x2

PO

Figure 7.4

Newton was interested in calculating the area of the circle’s segment ORQP from 0 to
x. The circle has radius 1 and equation y = ±√

1 − x2. Source: Edwards, The Historical
Development of the Calculus (1979), p. 206. c©1979 Springer-Verlag New York Inc. With
kind permission of Springer Science and Business Media.
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Application of the binomial series to negative exponents leads to interesting
results that had escaped Wallis.31 Most notably, Newton wrote,

(1 + x)−1 = 1 − x + x2 − x3 + x4 − · · · , (7.11)

a result that he considered valid when x is small. Newton studied the hyperbola
y = (1 + x)−1 for x > −1. He knew that the area under the hyperbola and over
the interval [0, x] for x > 0 (and the negative of this area when −1 < x < 0) is
ln(1 + x).32 Applying Rule 2 (term-wise integration, in Leibnizian terminology) to
series (7.11), Newton could express ln(1 + x) as a power series:

x − x2/2 + x3/3 − x4/4 + x5/5 − · · · . (7.12)

Newton somewhat intuitively understood that this series converges for |x| < 1
and x = 1. In this period questions regarding the convergence of infinite series
were approached without any general theory of convergence. Mathematicians were
simply happy to verify by application to numerical examples that the series (7.12)
converged when the absolute value of x was smaller than 1. These series allowed
Newton to calculate logarithms: he extended his numerical calculations to over fifty
decimal places!

Since the proof of the binomial series rested on shaky inductive Wallisian pro-
cedures, Newton felt the need to verify the agreement of the series obtained by
applying the binomial series with algebraic and numerical procedures. For instance,
to (1 − x2)1/2 he applied standard techniques of root extraction, and to (1 + x)−1

standard techniques of long division, and was happy to see that he obtained the
first terms of series (7.9) and (7.11).

Three aspects of Newton’s work on the binomial series are worth noting. First,
Newton, following Wallis’s suggestion, introduced negative and fractional expo-
nents. Without this innovative notation (xa/b for b

√
xa) no interpolation or extrap-

olation of the binomial series from positive integers to rationals would have been

31 MP, 1, pp. 112–5; 134–42.
32 It is difficult to determine how and when Newton came to realize this fact, which was first
published by Grégoire de Saint Vincent in 1647 and more explicitly by Alphonse Antonio de
Sarasa in 1649. Even though explicit reference to logarithms is absent in the early calculations (c.
1665), it is likely that Newton carried them out in order to calculate logarithms. Wallis, in the
dedicatio of his Arithmetica Infinitorum (1656), which Newton knew, mentions Grégoire’s Opus
Geometricum (1647), a book that is listed in Isaac Barrow’s library, to which Newton had regular
access. See Feingold, “Isaac Barrow’s Library” (1990). Perhaps Newton read Grégoire’s or Sarasa’s
works, or independently discovered the relation between hyperbolic areas and logarithms. This
fact was deployed by Mercator in Logarithmotechnia (1668), p. 34, which Newton most probably
read in late 1668 or early 1669 (see Correspondence, 2, p. 114). See also Add. 4004, ff. 80r–81v
in MP, 2, pp. 184–9, the dating of which, however, is uncertain (1667? according to Whiteside).
For a discussion, see Panza, Newton et les Origines de l’Analyse: 1664–1666 (2005), pp. 166–70.
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possible, as Serfati argued in La Révolution Symbolique (2005). Second, Newton
obtained a method for representing a large class of curves by means of power series.
According to Newton, curves are thus expressed not only by finite algebraic equa-
tions (as Descartes maintained) but also by infinite series (even fractional power
series), understood by Newton and by his contemporaries as infinite equations. In
1665 mathematicians had just begun to appreciate the usefulness of infinite series
as representations of difficult curves. Contrary to what Descartes had stated, me-
chanical curves, such as the logarithmic curve, can therefore receive an algebraic
representation to which the rules of algebra can be applied. Before the advent of
infinite series such curves had no algebraic representation but were generally defined
in geometrical terms. Finally, it should be noted that Newton had a rather intuitive
concept of convergence. For instance, while he realized that the series (7.12) can be
applied when x is small, he developed no rigorous treatment of convergence.33

7.4 Infinite Series and Quadratures

The binomial series allowed Newton to access what according to Cartesian standards
was forbidden territory.34 Through a simple application of the binomial series
Newton could express trigonometric relations and calculate the area subtended to
a mechanical curve, the cycloid. These calculations are found in De Analysi (1669),
the small treatise in which Newton systematized his results on the resolution of
quadrature problems via infinite series. Barrow was so impressed by this tract that
he immediately sent it to John Collins (§1.1).

Newton began De Analysi by enunciating three rules:

Rule 1 If C is a curve with Cartesian equation y = axm/n , then the area subtended
under C and calculated from 0 to x is an/(m + n)x(m+n)/n.

Rule 2 If y is equal to the sum of more terms (also an infinite number of terms),
y = y1 + y2 + · · · , then the area of the surface subtended under y is equal to the
sum of the areas calculated for the terms y1, y2, . . . .

Rule 3 In order to calculate the area of the surface subtended under a curve whose
equation is f(x, y) = 0, one should expand y as a sum of terms of the form
axm/n and apply Rule 1 and Rule 2.35

33 Note, however, that at the very end of De Analysi, Newton referred to Elements, X, 1, that is,
to the basic proposition for the method of exhaustion, in order to provide a proof that “when x
is small enough, the more the quotient is extracted the more it approaches to the truth, to the
end that its difference from the exact value of y shall come to be less than any given quantity you
please and that the quotient extended to infinity shall be equal to y.” MP, 2, p. 245.
34 In this section I am indebted to Edwards’s clear presentation in The Historical Development
of the Calculus (1979), pp. 189–230.
35 See MP, 2, pp. 206–32. Most of these pages are occupied by Rule 3, the so-called resolution of
affected equations (§7.5).
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Rule 1 is a generalization—as previously noted, the upper bound is variable for
Newton (§7.3)—of results stated by Wallis. Newton provided a proof of this rule
based on fundamental concepts of the method of fluxions (§8.2.6). The binomial
theorem proved to be an important tool for the implementation of Rule 3. In
several cases, however, the binomial series cannot be applied. Newton therefore
devised several clever techniques for “resolving affected equations” (§7.5), that is,
expanding y as a fractional power series in x.

In De Analysi, Newton applied these rules to several quadrature problems, for
instance, the following: Given a circle ADLE, determine the arclength AD (figure
7.5). First, Newton set AB = x, and considered the semicircle with diameter
AE = 1 defined by equation y =

√
x − x2. He considered the “moment of the base”

GH and the “moment of the arc” HD.
As discussed in chapter 8, moments are the infinitesimal increments of a variable

quantity. GHD is thus a triangle with infinitely small sides. From the similarity of
triangles GHD, BTD, and BDC it follows that the ratio of the moment of the arc

Figure 7.5

A quadrature from De Analysi (1669) reproduced in Commercium Epistolicum. One of
its footnotes states, “Here the method of fluents and their moments is described. Subse-
quently these moments have been called differences by Leibniz: and therefore the name
differential method,” and that [this arclength calculation is] “[a]n example of calculation
by the moments of fluents.” Source: Commercium Epistolicum (1722), p. 84. Courtesy
of the Biblioteca Nazionale Braidense (Milan).
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AD to the moment of the base AB (that is, HD/GH) is equal to
√

x − x2/(2x −
2x2).36 By expanding

√
x − x2/(2x−2x2) via the binomial theorem into an infinite

power series and applying Rule 3 (integrating term-wise), Newton obtained the
arclength AD of the circle as x1/2(1 + x/6 + 3x2/40 + 5x3/112 + . . . ). Next, he
observed that, by choosing the coordinates so that CB = x and setting the radius
CA = 1, the arc LD = z of the semicircle of equation y =

√
1 − x2 is given by

z = x +
1
6
x3 +

3
40

x5 +
5

112
x7 . . . . (7.13)

This is the series for z = arcsin x. Note that the interval of convergence was verified
by hand rather than by theory. Newton could obtain the series for x = sin z by
what he called the method of the reversion of series.37

Newton applied the series for arcsin to the quadrature of the cycloid as follows.
In De Analysi, he considered the cycloid generated by a circle with diameter AH = 1
(figures 7.6 and 7.7). The cycloid satisfies the well-known geometrical relation

BD = BK + ÂK, (7.14)

so that the length of the rectilinear segment DK is equal to the length of the circular
arc ÂK.

If one sets AB = x, the ordinate BK =
√

x − x2 can be calculated by expanding
the square root via the binomial theorem:

BK = x1/2 − 1
2
x3/2 − 1

8
x5/2 − 1

16
x7/2 . . . . (7.15)

The circular arc ÂK can be calculated by means of the series for arcsin, since
ÂK = θ/2 = arcsin AK = arcsin

√
x. Thus,

ÂK = x1/2 +
1
6
x3/2 +

3
40

x5/2 +
5

112
x7/2 . . . . (7.16)

Thus, the ordinate BD of the cycloid, a mechanical curve excluded by Descartes,
can symbolically be expressed as

BD = BK + ÂK = 2x1/2 − 1
3
x3/2 − 1

20
x5/2 − 1

56
x7/2 . . . . (7.17)

36 Indeed, HD : GH = TD : BT = DC : BD = 1
2

:
√

x − x2 =
√

x − x2 : (2x − 2x2).
37 The reversion of series was an application of the method of resolution of affected equations
(§7.5).
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θ

Figure 7.6

Cycloid. Note that the chord AK =
√

x, since AK2 = AB2 + BK2 = x. Further,
AK = sin(θ/2). Source: Edwards, The Historical Development of the Calculus (1979),
p. 207. c©1979 Springer-Verlag New York Inc. With kind permission of Springer Science
and Business Media.

By applying term-wise Wallis’s results for the area under the curve y = xm/n (in
Leibnizian terms,

∫
xm/ndx = n/(m + n)x(m+n)/n + C), one finds that the area

ABD subtended by the cycloid is

ABD =
4
3
x3/2 − 2

15
x5/2 − 1

70
x7/2 − 1

252
x9/2 . . . . (7.18)

All this is rather magical and must have impressed the young Newton, still an ad-
vocate of the new analysis of the moderns. Newton realized that mechanical curves
and the calculation of their areas and arclengths could be dealt with by means of
a symbolic calculation that only implied expansion into power series and term-wise
integration (in Leibnizian terms). But infinite series proved to be an indispensable
tool for studying algebraic curves, too (see chapter 6). The next section is devoted
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Figure 7.7

Cycloid in De Analysi (1669). Source: Newton, Analysis per Quantitatum (1711), p. 18.
Courtesy of the Biblioteca Universitaria di Bologna.

to what Newton called the resolution of affected equations, namely, polynomial
equations in two variables.

7.5 Resolution of Affected Equations

I make a preliminary observation here using modern notation. In order to implement
Rule 3, Newton, given an algebraic equation f(x, y) =

∑
i,j ai,jx

iyj = 0, sought to
express y as a series such that y =

∑∞
k=0 bkxαk , where αk is a rational number.

Newton called this procedure the resolution of affected equations.
The method for the resolution of affected equations can be found at the begin-

ning of De Analysi (1669) and De Methodis (1671).38 It was also printed by Wallis
in Chapter 94 of his Algebra after a transcript made by John Collins. This alge-
braic method is related to an iterative algorithm for approximating the real roots of
algebraic equations in one unknown, a well-known procedure that was further devel-
oped by Joseph Raphson and by Thomas Simpson and amounts to what nowadays
is called the Newton-Raphson method of approximation (see figure 7.10).39

The method for the resolution of affected equations was later systematized and
generalized by Victor Puiseux and is often described in textbooks on algebraic

38 See MP, 2, pp. 218–32 and MP, 3, pp. 48–71.
39 Kollerstrom, “Thomas Simpson and ‘Newton’s Method of Approximation’” (1992).
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geometry.40 Compared to modern presentations, Newton’s is far more based on
concrete examples. His algebraic methods are a craft more than a theory, as is
often evident in what follows.

The following example from De Methodis was also proposed in a famous letter
that Newton addressed to Leibniz in 1676.41

The problem is that of studying a curve defined by the equation

y6 − 5xy5 + (x3/a)y4 − 7a2x2y2 + 6a3x3 + b2x4 = 0, (7.19)

in the vicinity of the origin, where the curve has a branching behavior. Hence, the
need to expand y into a fractional power series in x.42

Which terms of equation (7.19) can be neglected in the vicinity of the origin?
Recall that in section §6.5 I surmised that Newton knew how to answer this question
when tracing the graphs of cubic curves.

In De Methodis and in his letter to Leibniz, Newton drew a grid where he lo-
cated each monomial xmyn (figure 7.8). If two monomials are connected on the
grid, sometimes called Newton’s analytical parallelogram, with a straight line, all
the monomials intercepted by that straight line will be in geometrical progression.

Figure 7.8

Newton’s analytical parallelogram from the epistola posterior, which was sent on October
24, 1676, to Oldenburg for Leibniz. Source: Newton, Analysis per Quantitatum (1711), p.
31. Courtesy of the Biblioteca Universitaria di Bologna.

40 See, e.g., Brieskorn and Knörrer, Plane Algebraic Curves (1986), pp. 370ff. Puiseux,
“Recherches sur les Fonctions Algébriques” (1850). A detailed historical presentation can be
found in Barbin, A History of Algorithms (1999), pp. 169–77.
41 MP, 3, pp. 52–3. This example occurs in the epistola posterior to Leibniz (see chapter 16). See
Coolidge, A History of Geometrical Methods (2003), p. 198, for further details. Correspondence,
2, pp. 126–7.
42 It is interesting to note that Newton introduced the constants a and b with the purpose of
maintaining dimensional homogeneity between the terms of the equation.
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This fact leads to a simple rule for obtaining simpler equations that approximate a
polynomial equation either close to the origin or at infinity.43

Mark the squares in the grid occupied by the monomials occurring in equation
(7.19) to obtain a scheme like the one shown in figure 7.9. Newton called it a
polygon, as he imagined to connect the asterisks with segments so as to obtain a
convex polygon outside of which no asterisk lies.

Figure 7.9

The polygon for equation (7.19): y6 − 5xy5 + (x3/a)y4 − 7a2x2y2 + 6a3x3 + b2x4 = 0.
One marks the squares corresponding to the terms of the equation with asterisks. Next,
one joins the asterisks so as to obtain a convex polygon outside of which no asterisk lies.
The dotted line is the prolongation of one of the sides of the polygon and identifies the
terms of equation (7.20), y6−7a2x2y2 +6a3x3 = 0, which approximates the curve near the
origin. The other sides of the polygon are also interesting. The side connecting the asterisks
associated with the monomials x4 and x3y4 identifies the terms (x3/a)y4 and b2x4. Setting
y4/x = k, for some constant k, all the terms associated with the other asterisks are of lower
degree when one expresses all the terms of the analytical parallelogram as powers of either
x or of y. For instance, 7a2x2y2 = 7a2x2

√
kx = 7a2(y8/k2)y2 is of lower degree than

(x3/a)y4 = (x3/a)kx = (y12/(ak3))y4. The side connecting the asterisks associated with
the monomials x3y4 and y6 identifies the terms (x3/a)y4 and y6. Setting x3/y2 = k, all
the terms associated with the other asterisks are again of lower degree. The two equations
(x3/a)y4 +b2x4 = 0 and x3y4 +y6 = 0 approximate the curve asymptotically, for x → −∞
and y → ±∞. Finally, the side connecting the asterisks associated with the positions x3

and x4 of the analytical parallelogram identifies the terms of equation (7.19) when one sets
y = 0. The equation corresponding to this last simple case is 6a3x3+b2x4 = 0; its roots are
the points of intersection with the x-axis (in this case, x = 0 and x = −6a3/b2). Source:
Newton, Analysis per Quantitatum (1711), p. 32. Courtesy of the Biblioteca Universitaria
di Bologna.

43 This method is described by Talbot in Newton, Enumeration of Lines of the Third Order
(1861), pp. 88ff, and in Frost, An Elementary Treatise on Curve Tracing (2004), pp. 117–32.
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Consider the dotted line connecting y6 to x3. If one sets y = v
√

ax and sub-
stitutes all the occurrences of y in the parallelogram, all the marked terms blocked
off from the point corresponding to x0y0 by this line will be of a higher degree in
x compared to the terms intercepted by the line. For instance, xy5 = v5a5x7/2 is
of higher degree in x compared to y6 = v6a3x3. This procedure can be repeated,
substituting all occurrences of x with y2/(v2a). All the terms marked by asterisks
that are not intercepted by the dotted line will be of higher degree in y. These terms
can be discarded in the vicinity of the origin. One obtains the following fictitious
equation, which approximates (7.19) near the origin:

y6 − 7a2x2y2 + 6a3x3 = 0. (7.20)

This equation for y = v
√

ax is reduced to

v6 − 7v2 + 6 = (v2 − 1)(v2 − 2)(v2 + 3) = 0. (7.21)

The real roots of (7.21) yield four representations for the curve in the vicinity of
the origin:

y =
√

ax + . . . , y = −√
ax + . . . , y =

√
2ax + . . . , y = −

√
2ax + . . . . (7.22)

As Newton remarked: “[A]ny of these may be acceptable as an initial term . . .
depending on whether the decision is made to extract one or other of the roots.”44

Say that the first approximation is y ≈ (ax)1/2. In order to find the other terms
of the series, Newton developed a procedure of successive approximations inspired
by a method that he had devised for approximating the roots of algebraic equations
in one unknown (see figures 7.10 and 7.11 for a comparison of the two methods).
Newton replaced y = (ax)1/2 + p in the original equation (7.19), thus obtaining an
equation in x and p.45 By iterating the procedure with the analytical parallelogram,
he obtained a new fictitious equation yielding an approximate solution for p in the
vicinity of the origin. Step by step, a solution for y is obtained as a fractional power
series in x which converges for x small.

It was natural for Newton to apply methods valid for polynomials to infinite
series. Indeed, he called series infinite equations. Application of the method of

44 MP, 3, p. 53. I note here that y = ±√−3ax approximates equation (7.19) near the origin for
x � 0. Newton discarded imaginary roots of (7.21) because he sought a development of y as a
fractional power series for positive values of x.
45 Generally speaking, this equation will have fractional powers. If these cannot be eliminated by
usual methods, a convention for placing the asterisks for fractional powers at intermediate points
in Newton’s parallelogram will be necessary.
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Figure 7.10

Table for approximating the roots of an algebraic equation in one unknown (a) y3−2y−5 =
0. This table and the table shown in figure 7.11 were printed in the De Analysi (1669).
Newton discussed these two methods as deeply interrelated. In the case of the algebraic
equation (a), Newton began with y = 2 as an approximation for the root. Then 2 + p is
substituted into (a) and the equation (b) −1 + 10p + 6p2 + p3 = 0 is obtained. Discarding
nonlinear terms in p, this is reduced to the fictitious equation −1 + 10p = 0; thus, p = 0.1
is an approximate root for equation (b). Next, one sets p = 0.1 + q and substitutes into
(b), obtaining (c) 0.061 + 11.23q + 6.3q2 + q3 = 0. Discarding nonlinear terms in q, this is
reduced to the fictitious equation 0.061 + 11.23q = 0; therefore q = −0.0054. Proceeding
along similar lines, the value r = −0.00004852 + s is obtained. By summing, Newton
obtained the approximate value 2 + 0.1 − 0.0054 − 0.00004852. Nowadays this method is
presented using recurrence relations, which are geometrically interpreted by referring to
the graph of z = y3 − 2y − 5. Source: Newton, Analysis per Quantitatum (1711), p. 9.
Courtesy of the Biblioteca Universitaria di Bologna.

resolution of affected equations to the arcsin series (7.13) yields a series for x in
terms of z, namely,

x = z − z3/6 + z5/120 − z7/5040 − · · · . (7.23)

This is, of course, the sin z series. Such a method of reversion of series, as Newton
called it, allowed him to express the other trigonometric functions as well as the
logarithm and the exponential. All these series were obtained and applied to a
variety of quadrature problems in De Analysi.

I conclude this section by referring to the following concise explanation, which
presents Newton’s parallelogram method in modern form. In substituting the series
y =

∑∞
k=0 bkxk for y in the polynomial equation f(x, y) =

∑
i,j ai,jx

iyj = 0, the
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Figure 7.11

Table for the resolution affected equations in De Analysi (1669). The example taken into
consideration by Newton is (i) y3+a2y−2a3+axy−x3 = 0. First, when x ≈ 0, the equation
is reduced to a fictitious equation y3+a2y−2a3 = 0, leading to a first approximation y = a.
Then one substitutes y = a + p into the original equation (i), and obtains an equation
in x and p: (ii) p3 + 3ap2 + axp + 4a2p + a2x − x3 = 0. Application of the analytical
parallelogram arranged in terms of monomials xmpn allows one to reduce equation (ii) to
a new fictitious equation a2x + 4a2p = 0, so that one gets an approximation p = − 1

4
x.

Then one sets p = − 1
4
x + q and substitutes it into (ii). By iterating this procedure, the

series expansion, for x ≈ 0, y = a − x/4 + x2/(64a) + (131x3)/(512a2) + · · · is obtained.
Note a sign error (−131x3/512a2) in the table. This mistake does not appear in Newton’s
manuscript. See MP, 2, p. 224. Source: Newton, Analysis per Quantitatum (1711), p. 11.
Courtesy of the Biblioteca Universitaria di Bologna.

goal is to obtain 0; it is essential, therefore, that the terms of lower degree should
cancel each other out. After substitution, the exponents of x are of the form i+kj.
In order that the terms of lower degree might cancel each other out, there must be
at least two of them; hence, at least two pairs (i1, j1) and (i2, j2) must exist in the
expression F (x, y), so that i1 + kj1 = i2 + kj2. Newton’s parallelogram serves the
purpose of graphically identifying such terms.46

46 This is how Newton’s method is explained in Barbin, A History of Algorithms (1999), p. 194.
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Such modern translations of Newton’s method of resolution risk investing it
with a power and generality that it lacked. Newton did not use a notation for
functions or summations. The generality of the modern presentation of his method
was not accessible to him. Most notably, the iterative, recursive character of New-
ton’s approximation techniques, as Kollerstrom has emphasized in his study of the
Newton-Raphson method, was spelled out only in presentations achieved by math-
ematicians of later generations.47 This fact has two implications. First, Newton
had to present his method by showing concrete examples of its application. He
had to guide his student by illustrating the craft of problem solving, presenting
variations of the examples taken into consideration and teaching how to overcome
difficulties. As Cantor observed, “[T]he parallelogram [method] is just described,
not proven.”48 Second, some of the difficulties that Newton experienced in printing
his mathematics (see part VI) might be related to the fact that some of his methods
were best suited for oral or scribal communication, like recipes that could be tested
by means of persistent attempts.

What about the convergence of series? There are, indeed, several problems with
Newton’s method—such as the determination of the initial term and the conver-
gence of the iterative procedure—that attracted the attention of mathematicians,
including Joseph Raphson, Thomas Simpson, and Joseph-Louis Lagrange. I have
not addressed this issue so far because Newton did not pay much attention to it. It
is only much later that convergence became a central problem for mathematicians.
In the 1680s, however, Newton developed a theory of limits that, at least to some
extent, formalized his intuitive notions of convergence (chapter 9).49

7.6 New and Common Analyses

I divine great enlargement of the bounds of the mathematical empire will ensue.
(Oughtred to Robert Keylway, October 1645)50

In these lines Oughtred enthusiastically endorsed the idea that symbolic algebra,
which he promoted in England, would lead to great improvements. The approach
that Oughtred pioneered was continued in England by mathematicians such as John
Pell, John Kersey, and John Collins.51 The young Newton proudly saw himself as
part of this tradition but went a step further by promoting a new analysis, which

47 Kollerstrom, “Thomas Simpson and ‘Newton’s Method of Approximation’” (1992).
48 “in der Methodus Fluxionum ist das Parallelogramm nur beschrieben, nicht bewiesen.” Cantor,
Vorlesungen (1901), p. 104.
49 As mentioned, at the very end of De Analysi, Newton referred to Elements, X, 1, that is, to
the basic proposition for the method of exhaustion, in order to develop an elementary, and too
restrictive, convergence test. MP, 2, p. 245.
50 Rigaud, Correspondence of Scientific Men of the Seventeenth Century (1841), 1, p. 65.
51 Pycior, Symbols, Impossible Numbers, and Geometric Entanglements (1997), pp. 70–102.
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surpassed the “vulgar” or common analysis typically found in works adopting the
Cartesian method. While Descartes confined himself to finite equations, Newton
intended to follow the lead of Wallis and Mercator and use infinite equations, viz.,
power series. It was this move that, Newton claimed, opened the doors to a new
analysis, one much more powerful than the Cartesian. Still in 1676, in a letter
addressed to Leibniz that summarized most of the results of De Analysi, Newton
wrote,

From all this it is to be seen how much the limits of analysis are enlarged by such
infinite equations: in fact by their help analysis reaches, I might almost say, to all
problems.52

In De Analysi Newton had noted,

And whatever common analysis performs by equations made up of a finite number
of terms (whenever it may be possible), this method may always perform by infinite
equations: in consequence, I have never hesitated to bestow on it also the name of
analysis.53

Later, Newton was to distance himself from such enthusiastic endorsement of the
new analysis of the moderns (see chapter 9).

In his early works on series, such as De Analysi,54 Newton made it clear that
he was providing a “method for the resolution of problems,”55 an analytical tool of
discovery, and that he was addressing mathematicians whom he qualified as “an-
alysts.”56 His method, Newton himself admitted, was “rather briefly explained
than narrowly demonstrated.”57 This pragmatic approach is strongly reminiscent
of Wallis’s. Much like Wallis before him, Newton described his method as an ana-
lytical tool based on infinite procedures of summation; he explained it via successful
problem solving rather than by rigorous demonstrations. The young Newton’s en-
dorsement of modern analytics is also evident in the opening lines of De Methodis:

Observing that the majority of geometers, with an almost complete neglect of the
ancients’ synthetic method, now for the most part apply themselves to the cultiva-
tion of analysis and with its aid have overcome so many formidable difficulties that

52 Newton to Oldenburg for Leibniz (June 13, 1676), Correspondence, 2, p. 39. “Ex his videre
est quantum fines Analyseos per hujusmodi infinitas aequationes ampliantur: quippe quae earum
beneficio, ad omnia, pene dixerim, problemata . . . sese extendit.” Correspondence, 2, p. 29.
53 MP, 2, p. 241. “Et quicquid Vulgaris Analysis per aequationes ex finito terminorum numero
constantes (quando id sit possibile) perficit, haec per aequationes infinitas semper perficiat: Ut
nil dubitaverim nomen Analysis etiam huic tribuere.” MP, 2, p. 240.
54 And in the opening sections of De Methodis.
55 For instance, Newton stated that his method provides an “analysin ad solutionem problema-
tum.” MP, 3, p. 35.
56 MP, 2, p. 222.
57 MP, 2, p. 207.
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they seem to have exhausted virtually everything apart from the squaring of curves
and certain topics of like nature not yet fully elucidated: I found not amiss, for
the satisfaction of learners, to draw up the following short tract in which I might
at once widen the boundaries of the field of analysis and advance the doctrine of
curves.58

Newton’s method of discovery, based on series, was aimed at solving two related
problems that had been avoided by Cartesian analysis: the squaring of curves and
the study of mechanical curves.59 The two problems, of course, are related, because
the squaring of geometrical curves could define mechanical curves.60 This was
also the main topic of Wallis’s Arithmetica Infinitorum. Like Wallis, Newton was
deployed the “conformity between the operation in species and numbers.”61 As
decimal numbers allow the approximation of roots of numerical equations, so infinite
series allow approximation techniques for algebraic affected equations: a similarity
that nobody, Newton observed with amazement, with the exception of Mercator
had noted.62

Newton could obtain infinite series expansions by methods that were Wallisian in
character. Indeed, he obtained his binomial series thanks to inductive and interpo-
lation techniques. Further, Newton continued series at infinity relying on analogy;
he stated that when a rule emerges after the formation of the first terms, this rule
can be extended to higher-order terms without hesitation.63

The overall impression that Newton conveyed in De Analysi and in the opening
sections of De Methodis was that he was delivering a new method of discovery
addressed to those mathematicians, such as Collins and Wallis, able to appreciate
advancements over common finite analysis, a method applied to the squaring of
curves and based on analogies, Wallisian inductions, and interpolations. In De
Analysi Newton showed little interest in framing his method in any systematic
form; he rather proceeded on the basis of concrete examples. An isolated attempt
to defend the foundation of such techniques can be found toward the end of De
Analysi :

[D]eductions in [this method, ato be judged analyticala] are not less certain than
in the other [common analysis], nor its equations less exact, even though we, mere

58 MP, 3, p. 33. Translation by Whiteside.
59 See also MP, 2, pp. 207, 233.
60 For instance, the squaring of the hyperbola yields a logarithmic relation. Newton referred to
the fact that the squaring of geometrical curves yields mechanical curves by referring to the latter
as “quantities which cannot be determined and expressed by any geometrical technique, such as
the areas and length of curves.” MP, 3, p. 79.
61 MP, 2, p. 213.
62 MP, 3, p. 33.
63 “After the roots [of affected equations] have been extracted to a suitable period, they may
sometimes be extended at pleasure by observing the analogy of the series.” MP, 3, p. 61. Cfr.
MP, 2, p. 237.
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men possessed only with finite intelligence, can neither designate all their terms nor
so grasp them as to ascertain exactly the quantities we desire from them.64

Newton defended infinite series as something certain, against Descartes’ finitist
standards of certainty, on the grounds that only the limits of human intelligence
do not allow us to grasp all the series’ terms. Here, too, Newton was behaving like
a typical practitioner of the new analysis. His was a defensive strategy frequently
adopted by the seventeenth-century promoters of infinite products and series.

Infinite fractional power series (whether obtained by binomial expansions, long
divisions, root extractions, or the more elaborate iterative techniques for the res-
olution of affected equations) allowed Newton to deal with mechanical curves and
quadrature problems with incredible ease. The quadrature of the cycloid or quadra-
trix are two examples of this.65 Quadratures were carried out by what in modern
terms would be called term-wise integration. Newton, however, soon realized that
a much more powerful approach to quadrature was provided by the fundamental
relation between area-problems and tangent-problems (nowadays identified as the
fundamental theorem of the calculus). Newton developed this approach in the Oc-
tober 1666 tract on fluxions66 and systematized it in detail in De Methodis, which
we turn to in the following chapter.

64 MP, 2, pp. 240–3. aa = “Conclusio quod haec methodus Analytica censenda est” added in
margin. MP, 2, p. 240. Translation by Whiteside.
65 “If the curve is mechanical it yet by no means spurns our method.” MP, 2, p. 239. Translation
by Whiteside.
66 Add. 3958.3, ff. 48v–63v in MP, 1, pp. 400–48.





8 The Analytical Method of Fluxions

The chief Principle, upon which the Method of Fluxions is here built, is this very
simple one, taken from Rational Mechanicks; which is, That Mathematical Quan-
tity, particularly Extension, may be conceived as generated by continued local Mo-
tion; and that all Quantities whatever, at least by analogy and accommodation,
may be conceived as generated after a like manner.

— John Colson, 1736

8.1 Barrow

8.1.1 Barrow as Newton’s Mentor

Newton’s first attempts to codify the method of fluxions date from the October 1666
tract.1 This chapter, however, deals with the analytical version that Newton fully
developed in De Methodis (1671) and in De Quadratura (1691–1692).2 The method
is divided into a direct and an inverse part. Newton considered the techniques of
the direct method as having been brought to perfection in his 1671 treatise. After
1671 he sought both to improve the algorithm of the inverse method and reach a
better conceptual foundation for the direct method. Newton kept on working on
these issues until the early 1690s, when he composed De Quadratura, a work that
provides the most advanced refinement of the method of fluxions.

According to Newton’s standards, analysis had to be followed by synthesis.
Therefore, from the early 1670s he attempted to develop a synthetic method of
fluxions (see chapter 9).

While the method of series was developed by Newton by deriving inspiration
from Wallis’s work, in the method of fluxions he followed the steps of Barrow, even
though the influence of Barrow is less manifest. Thus, some features of Barrow’s
work that most probably were important for Newton are considered first.

In 1663, when Newton was a young student in Cambridge, Isaac Barrow, a the-
ologian and a mathematician highly esteemed by his contemporaries, was appointed

Epigraph from the Preface by John Colson to Newton, The Method of Fluxions and Infinite Series
(1736), p. xi.
1 Add. 3958.3, ff. 48v–63v in MP, 1, pp. 400–48 (see chapter 1).
2 See Abbreviations and Conventions for bibliographical details on De Methodis and De Quadra-
tura.
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to the newly instituted Lucasian Chair of Mathematics.3 The value and nature of
Barrow’s mathematical research has been the object of much debate since the in-
ception of the Newton-Leibniz controversy. It is evident that some of his results are
related to what is identified in the literature as the infinitesimal calculus, a term
that neither Barrow nor Newton ever used. The extent to which all this can be
taken as proof of Barrow’s contribution to the calculus, however, is unclear. Bar-
row proved some geometrical results concerning the drawing of tangents and the
squaring of curves that were later identified as equivalent to the so-called funda-
mental theorem of the calculus, that is, as the statement of the inverse relation
between differentiation and integration.

In 1916, Child defended the thesis according to which Barrow was the first
inventor of the calculus:

Barrow was the first inventor of the Infinitesimal Calculus; Newton got the main
idea of it from Barrow by personal communication; and Leibniz also was in some
measure indebted to Barrow’s work, obtaining confirmation of his own original
ideas, and suggestions for their further development, from the copy of Barrow’s
Lectiones Geometricae that he purchased in 1673.4

Child’s claim, however, cannot withstand the careful reconstruction of Newton’s and
Leibniz’s independent paths to discovery—respectively, of the method of series and
fluxions and of the differential and integral calculus—which most notably emerges
in the seminal studies of Hall, Hofmann, and Whiteside.5 It is now clear that neither
Newton nor Leibniz was exclusively indebted to Barrow, since both drew from a
large body of mathematical literature; besides, their original contributions proved
momentous.

Even though the question of Barrow’s priority often proves misleading, it is dif-
ficult to deny that Barrow’s presence in Cambridge must have shaped Newton’s
mathematical ideas to some extent. As Feingold has shown, Barrow and Newton
might have been in contact to exchange ideas on mathematics during Newton’s for-
mative years. In his retrospective memoranda Newton always attributed a major
role to Barrow as his mathematical mentor. Further, it is through Barrow that New-
ton got in touch with John Collins in London; the Lucasian Chair was conferred to
Newton thanks to Barrow’s recommendation; and in 1670, Barrow asked Newton to
edit his Lectiones Geometricae.6 All these factors substantiate the hypothesis that

3 For an intellectual biography of Barrow, see Feingold, “Isaac Barrow: Divine, Scholar, Mathe-
matician” (1990).
4 From Child’s Preface to Barrow, Geometrical Lectures (1916), p. vii.
5 Hofmann, Leibniz in Paris (1974); Hall, Philosophers at War (1980); Whiteside’s commentary
in MP, 1 and 8.
6 Feingold, “Newton, Leibniz, and Barrow Too” (1993). I do not have space here to present the
details of Feingold’s argument. It seems to me that he has convincingly shown untenable the
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between Barrow and Newton a close relationship existed at some time. Arthur has
pointed to notable similarities in language between Newton and Barrow on themes
such as absolute time and space, and the generation of magnitudes by motion.7

After all, Newton himself, in 1712, recognized that “it is from him [Barrow] that
I had the language of momenta & incrementa momentanea & this language I have
always used & still use.”8 It is not my purpose to explore the matter of Barrow’s
early influence on Newton and Newton’s indebtedness to Barrow any further. In
the years 1664–1669, Barrow and Newton lived close to one another; if the two men
were ever in contact with one another (as seems most likely), they did not leave any
traces for future historians. Certainly, from 1669 onward Newton became deeply
acquainted with Barrow and his mathematical work: from this date at least, New-
ton’s own work shows signs of Barrow’s influence. My aim in the following pages is
to highlight certain aspects of Barrow’s mathematics that bear some resemblance
to Newton’s early method of fluxions as expounded in De Methodis.9

8.1.2 Generation of Magnitudes by Motion

Both Lectiones Mathematicae and Lectiones Geometricae, which Barrow delivered
during his tenure at Cambridge from 1663 to 1669, clearly state that the object
of mathematics is geometrical magnitudes generated by motion.10 This was to
become a basic tenet of Newton’s fluxional method as well. The continuous motion
of a point generates a line, the motion of a line generates a surface, and the motion
of a surface generates a solid.11

Conceiving objects as generated by continuous motion presented two advantages
that Newton appreciated. The first is that the limiting procedures deployed in
calculating tangents and areas can be grounded on the continuity of motion, that is,
it is possible to claim that the limits determined by such procedures exist because
of the continuity of the generating motion. Further, the continuity observed in
physical motions allows mathematics to be envisaged as a language applicable to
the study of the natural world.

thesis that Newton could not derive any idea from a Professor of Mathematics who belonged to
his College and who later did everything he could in order to secure Newton’s academic position.
7 Arthur, “Newton’s fluxions and equably flowing time” (1995). See also Whiteside in MP, 3, pp.
70–2.
8 Correspondence, 5, p. 213.
9 For a detailed analysis of Barrow’s mathematics, see Mahoney, “Barrow’s mathematics” (1990).
See also Malet, “Barrow, Wallis, and the Remaking of Seventeenth Century Indivisibles” (1997);
Pycior, “Mathematics and Philosophy” (1987); Sasaki, “The Acceptance of the Theory of Propor-
tion” (1985).
10 Barrow, Lectiones Geometricae (1670), Lectiones Mathematicae (1683). Both reprinted in
Barrow, Mathematical Works (1860).
11 Barrow, Mathematical Works (1860), p. 188.
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In this context, Barrow, proving himself an innovator rather than a conservative,
did away in Lectiones Mathematicae with the traditional distinction between pure
and mixed (or concrete) mathematics, by stating that since continuous magnitude
is the affection of all things, there is no part of “physics” that is not reducible to
geometry. In conclusion Barrow went so far as to claim that “Mathematics is . . .
co-extended with physics,”12 a statement that paved the way for the legitimation
of Newton’s “geometrical philosophers” (see chapter 2). By stating the generality
of his kinematic geometry, Barrow broke both with the limitations of the Cartesian
canon and with the traditional Aristotelian disciplinary taxonomies.13

8.1.3 Symptomata of Curves Deduced from their Generation

Barrow’s aim in Lectiones Geometricae was to “study and display the affections
of curves which emerge from the composition of motions.”14 In the first lectures
Barrow explained in detail how curves can be generated by composition of motions
in many different ways. One could think, for instance, of a point sliding along a line
which itself has a translational or a rotational motion (think about the generation
of a Galilean parabola through the composition of uniform and accelerated motion,
or the generation of an Archimedean spiral through the composition of uniform
rotation and uniform rectilinear motion in (§1.3)). Another way of generating curves
is by the concurrent motion of two lines so that their intersection traces a curve
(think about the generation of the quadratrix in (§1.3)). As Mahoney observed
about Barrow’s mathematics, “[T]he properties of concern to Barrow follow directly
from the curves’ mode of generation.”15 Most notably, in the sixth lecture Barrow
studied how the subtangent to a curve generated by motion could be determined
“without the trouble or wearisomeness of calculation” in function of the generating
motions.16 In 1665, Newton devised a kinematic method for determining tangents

12 “those which are called mixed or concrete mathematical sciences, are rather so many examples
only of Geometry, than so many sciences separate from it: for once they are disrobed of partic-
ular Circumstances, and their own fundamental and principal Hypotheses come to be admitted
(whether sustained by a probable Reason, or assumed gratis) they become purely Geometrical.”
“For magnitude is the common affection of all physical things, it is interwoven in the Nature of
Bodies, blended with all corporeal Accidents.” “I say there is no part of this [Physics] which
does not imply Quantity . . . and consequently which is not in some way dependent on Geome-
try.” “Mathematics . . . is adequate and co-extended with physics.” Barrow, The Usefulness of
Mathematical Learning (1734), pp. 27, 21, 22, 26.
13 Hill, “Neither Ancient nor Modern” (1996).
14 “Propositum est nobis e compositione motuum . . . emergentes linearum affectiones indagare
ac exponere.” Barrow, Lectiones Geometricae (1670), p. 29 = Mathematical Works (1860), p.
191.
15 Mahoney, “Barrow’s Mathematics” (1990), p. 207.
16 Barrow, Mathematical Works (1860), p. 208. Translation by Mahoney in “Barrow’s Mathe-
matics” (1990), p. 214.
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to “mechanicall lines” (§1.3). It is therefore possible to discern Barrow’s influence
here.

8.1.4 Subtangents ex calculo

Barrow also had a method for finding subtangents ex calculo.17 He discussed it at
the close of Lecture 10 following the advice of a “friend”: the young Newton, who
was then rather enthusiastic about algorithmic methods. Barrow’s method is based
on the limitative assumption that there is an equation relating the abscissa and the
ordinate of the curve. Barrow proceeded as follows (see figure 8.1):

Let AP , PM be straight lines given in position (of which PM cuts the proposed
curve at M), and suppose MT to be tangent to the curve at M and to cut the line
AP at T . Now, to find out the quantity of this line PT , I posit the arc MN as
indefinitely small. Then I draw lines NQ parallel to MP and NR [parallel] to AP .
I call MP = m, PT = t, MR = a, NR = e; the remaining lines determined by
the special nature of the curve and useful to the proposition I designate by names.
But MR and NR (and by means of them MP and PT ) I compare to one another
by an equation expressed in terms of calculation [ex calculo]. In doing so I observe
these rules:

1. In the computation I reject all terms in which a power of a or e occurs or in
which these are multiplied by one another (because these terms will count for
nothing).

Figure 8.1

Diagram for Barrow’s method of tangents. Source: Barrow, Geometrical Lectures (1916),
p. 120. Courtesy of the Biblioteca Angelo Mai (Bergamo).

17 The subtangent is defined as the segment of the x-axis lying between the x-coordinate of the
point at which a tangent is drawn to a curve and the intercept of the tangent with the x-axis (see
note 52).
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2. After the equation has been set up, I reject all terms consisting of letters des-
ignating known or determinate quantities, or in which a or e does not occur
(because these terms, when brought to one side of the equation, will equal noth-
ing).

3. I substitute m (or MP ) for a, and t (or PT ) for e. From this finally the quantity
PT [the subtangent] itself is determined.

And if an indefinitely small part of any curve should enter the calculation, substitute
in its place a suitably chosen small part of the tangent, or any line equivalent to it
(by virtue of the indefinite smallness of the curve).18

As Mahoney noted, there is nothing radically new in this method. Pierre de Fermat
and many others after him had deployed similar techniques to calculate subtangents.
Barrow’s technique depended upon the assumption that an equation relating the
abscissa and the ordinate is available. Newton adopted techniques for drawing
tangents that resemble both Barrow’s kinematic and algorithmic methods. What
remained unclear in Barrow’s formulation was how to deal with equations in which
radicals occur and, more important, how to deal with mechanical curves generally.
There is no doubt that Barrow found these two cases burdened by “wearisome
calculation” and that he gave preference to the kinematic method, similar to the
one already developed by Gilles Personne de Roberval, over the algorithmic one
precisely because it was unclear how the latter might be extended to nonalgebraic
curves.19

8.1.5 Problem Reduction

Another aspect of Lectiones Geometricae that shows resemblances with Newton’s
fluxional method is the fact that Barrow organized his work around two related
problems: the finding of tangents and the finding of curvilinear areas. At the open-
ing of Lecture 6, Barrow stated that he would pursue two goals: “the finding of
tangents without the trouble or wearisomeness of calculation” and the “ready de-
termination of the dimension of many magnitudes by the help of tangents which
have been drawn.”20 Here Barrow showed clear awareness of the fact that the de-
termination of the dimensions (i.e., the areas and volumes) of curvilinear figures
can be achieved thanks to theorems that concern the finding of tangents. A funda-
mental relation between two apparently disconnected problems was thus identified

18 Barrow, Mathematical Works (1860), pp. 246–7. Translation by Mahoney in “Barrow’s Math-
ematics” (1990), pp. 225–6.
19 Barrow, however, was able to calculate the subtangent to the quadratrix and to some trigono-
metric curves. See the close of Lecture 10.
20 “Versantur autem praecipue quae proferemus, partim circa tangentium absque calculi molestiam
vel fastidio investigationem simul ac demonstrationem expeditam . . . partim circa multarum
magnitudinum dimensiones, tangentium designatarum ope, quam promptissime determinandas.”
Barrow, Mathematical Works (1860), p. 209.
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in Lectiones Geometricae. This lesson is likely to have polarized the attention of
Barrow’s gifted student, who broached these two problems in the direct and the
inverse method of fluxions, respectively.

8.1.6 Transmutation of Areas

How tangents and quadrature problems are related is explained by Barrow in a
number of propositions. One can cite Proposition 11 from Lecture 10 (figure 8.2)
and Proposition 19 from Lecture 11 (figure 8.3):

Proposition 11, Lecture 10. Let ZGE be any curve [see figure 8.2] of which
the axis is AD; and let ordinates applied to this axis, AZ, PG, DE, continually
increase from the initial ordinate AZ; and also let AIF be a line such that, if any
straight line EDF is drawn perpendicular to AD, cutting the curves in the points
E, F , and AD in D, the rectangle contained by DF and a given length R is equal
to the intercepted space ADEZ; also let DE : DF = R = OT , and join DT . Then
TF will touch the curve AIF .

For, if any point I is taken in the line AIF (first on the side of F towards A), and
if through it IG is drawn parallel to AZ, and KL is parallel to AD, cutting the
given line as shown in the figure; then

LF : LK = DF : DT = DE : R,

or
R × LF = LK × DE.

Figure 8.2

Diagram for Proposition 11 from Lecture 10. Source: Barrow, Geometrical Lectures (1916),
p. 117. Courtesy of the Biblioteca Angelo Mai (Bergamo).
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Figure 8.3

Diagrams for Proposition 19 from Lecture 11. Source: Barrow, Geometrical Lectures
(1916), p. 135. Courtesy of the Biblioteca Angelo Mai (Bergamo).

But, from the stated nature of the lines DF , PK, we have R×LF = area PDEG;
therefore LK × DE = area PDEG < PD × DE; hence LK < DP < LI.

Again, if the point I is taken on the other side of F , and the same construction is
made as before, plainly it can be easily shown that LK > DP > LI.

From which it it is quite clear that the whole of the line TKFK lies within or below
the curve AIFI.

Other things remaining the same, if the ordinates, AZ, PG, DE continually de-
crease, the same conclusion is attained by similar argument.

Proposition 19, Lecture 11. Again, let AMB [see figure 8.3] be a curve of which
the axis is AD and the BD be perpendicular to AD; also let KZL be another line
such that, when any point M is taken in the curve AB, and through it are drawn
MT a tangent to the curve AB, and MFZ parallel to DB, cutting KZ in Z and
AD in F , and R is a line of given length, TF : FM = R : FZ. Then the space
ADLK is equal to the rectangle contained by R and DB.

For, if DH = R and the rectangle BDHI is completed, and MN is taken to be an
indefinitely small arc of the curve AB, and MEX, NOS are drawn parallel to AD;
then we have

NO : MO = TF : FM = R : FZ;

therefore NO × FZ = MO × R =, and FG × FZ = ES × EX.

Hence, since the sum of such rectangles as FG×FZ differs only in the least degree
from the space ADLK, and the rectangles ES × EX from the rectangle DHIB,
the theorem is quite obvious.21

21 Child’s translation in Barrow, Geometrical Lectures (1916), pp. 116–9, 135.
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These propositions can be immediately understood (perhaps too optimistically)
as a statement of the fundamental theorem of the calculus. Child’s claims about
Barrow’s priority over Leibniz and Newton are mainly based on these propositions.
I do not wish to enter this discussion here, but I refer the reader to Mahoney’s study,
which concluded that “what in substance becomes part of the fundamental theorem
of the calculus is clearly not fundamental for Barrow.”22 Indeed, as Mahoney
observed, Barrow did not give particular emphasis to these two propositions and
did not relate them to one another; they occur in two separate lectures and seem
to play independent roles. Further, Barrow did not translate these propositions
into an algorithm for determining areas in function of antiderivatives. There is
much wisdom and historical sensitivity in these cautionary remarks. But I fear
that in subjecting Barrow’s Lectiones Geometricae to evaluations that are polarized
by the purpose of refuting Child’s wild claims one risks failing to understand his
mathematics in its own terms.

Barrow was not interested in developing an algorithm for broaching the prob-
lems concerning curves to which he devoted Lectiones Geometricae, since he was
convinced of the superior generality of geometry over algebra, an altogether justi-
fied position given the fact that algebraic techniques for dealing with mechanical
curves had yet to be invented by his young protégé. What Barrow wished to do, it
seems to me, was to demonstrate general relations between propositions concerning
curvilinear areas and propositions concerning tangents. Such relations had already
appeared in the literature on specific curves. For Barrow, geometry was the means
to prove that such relations are quite general and hold for any curve independently
of its algebraic representability. Geometry offered Barrow a language appropriate
for expressing general theorems concerning the tangents and areas of curves.

Whatever Barrow’s awareness of the centrality of his theorems on areas and
tangents, it is a fact that in 1665 Newton based his first demonstration of the in-
verse relation between area-problems and tangent-problems on a proposition that
is strikingly similar to Barrow’s Proposition 11 from Lecture 10 (§8.2.6 and fig-
ure 8.7).23 Further, in 1670 he turned to Barrow’s theorems on quadratures (as
those surrounding Proposition 19 from Lecture 11) to find a synthetic construction
of his analytical algebraic method of quadratures (§9.1).

8.1.7 Apagogical Proofs

Barrow employed infinitesimal magnitudes in his proofs. He often stated that such
proofs could be reframed by means of more “apagogical” procedures. The term
apagogical was used in scholastic logic to designate a reasoning that demonstrates a

22 Mahoney, “Barrow’s Mathematics” (1990), p. 236.
23 MP, 1, pp. 302–5, 313–5.
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proposition A by proving the impossibility of the negation of A. These ad absurdum
proofs were generally lengthy, and Barrow claimed that it was only for the sake
of brevity and perspicuity that he used less rigorous proofs where infinitesimals
occurred. In the second appendix to Lecture 12 of Lectiones Geometricae, he wrote,

Having regard for brevity and perspicuity (mainly the latter), the preceding results
were proven by direct arguments, by which not only the truth is cogently enough
confirmed, but also their origins most neatly appear. But for fear anyone less used
to this sort of arguments had difficulty, we shall add the following short notes. With
them the said arguments are secured and with their help apagogical proofs of the
preceding results will be easily worked out.24

In the appendix Barrow developed an apagogical demonstration of the assump-
tion that a curvilinear area can be equated with the summation of an infinite
number of areas of infinitesimal parallelograms. He did so by means of ad ab-
surdum reductions reminiscent of the Archimedean method of exhaustion. Barrow
considered the curvilinear surface shown in figure 8.4 and conceived it as being
subdivided into an infinity of parallelograms, whose bases ZZ are infinitesimal.

Figure 8.4

Diagram for Barrow’s apagogical proof. Source: Barrow, Geometrical Lectures (1916), p.
172. Courtesy of the Biblioteca Angelo Mai (Bergamo).

24 “Brevitati simul ac perspicuitati (huic autem praecipue) consulentes recto discursu compro-
bata dedimus; quali non modo veritas, opinor, satis firmatur, at ejusdem origo limpidius apparet.
Verum ne quis, minus hujusmodi ratiociniis adsuetus, haereat, ista paucula subdemus, quibus tales
discursus communiantur, quorumque subsidio non difficile conficiantur Propositorum demonstra-
tiones apagogicae.” Barrow, Mathematical Works (1860), p. 284. Translation in Malet, From
Indivisibles to Infinitesimals (1996), p. 49.



The Analytical Method of Fluxions 179

Barrow aimed to prove that the assumption that rectilinear circumscribed and in-
scribed figures are greater or smaller than the curvilinear surface leads to contra-
diction. The gist of his argument consists in showing that their difference (which is
equal to rectangle ADLK) is infinitesimal, that is, its area is “less than any given
magnitude.”

As Malet observed in his careful study on infinitesimal techniques in the seven-
teenth century, Barrow

was not concerned about the use of infinitesimals and did not make an attempt to
get rid of them. What did concern him was to show that the difference between
an aggregate of infinitesimals each one being not truly identical with a part of the
whole surface, and the surface is less than any finite magnitude.25

Newton also offered proofs based on infinitesimals “for the sake of brevity” and
attempted a more rigorous foundation of them along the lines of exhaustion tech-
niques (see chapter 9). While Newton’s approach to similar demonstrations was dif-
ferent from Barrow’s (based as it was on limiting procedures), he retained Barrow’s
diagram (see figure 8.4) and the idea that the difference between the circumscribed
and inscribed figures is equal to the rectangle ADLK (see figure 9.3).

8.2 Preliminaries to the Method of Fluxions

8.2.1 An Analytical Art

After this brief introduction to Barrow’s Lectiones Geometricae, I now turn to New-
ton’s De Methodis Serierum et Fluxionum. Several features of Barrow’s Lectiones
surface in Newton’s method of series and fluxions.

While De Analysi (see chapter 7) is a short tract mainly devoted to series ex-
pansions and their use in quadratures, De Methodis (written in 1670–1671) is a long
treatise whose aim is to deliver the applications of an “analytical art” useful to the
study of the “nature of curves.” In this masterpiece Newton systematized his early
work on tangents and quadratures by reworking and greatly extending the October
1666 tract on fluxions.

Newton’s method of fluxions is deeply intertwined with his method of series.
Indeed, in the opening lines of De Methodis Newton incorporated and expanded De
Analysi by presenting his methods of series via long division, root extraction, and
the resolution of affected equations (§7.5). Then he wrote,

So much for computational methods of which in the sequel I shall make frequent
use. It now remains, in illustration of this analytical art, to deliver some typical
problems and such especially as the nature of curves will present.26

25 Malet, From Indivisibles to Infinitesimals (1996), p. 49.
26 MP, 3, p. 71. “Hactenus de modis computandi quorum post hac frequens erit usus. Jam
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This statement defines Newton’s object of study and method: De Methodis is a
work on analysis applied to the resolution of problems concerning curves. Syn-
thesis, with its constructions and demonstrations is given little space. Newton,
however, retained the structure of the analytical/synthetic canon. He always began
from analysis: he considered a geometrical problem, translated it into algebra, and
manipulated symbols until he achieved a resolution of the problem. He then briefly
turned to synthesis, that is, he provided a geometrical construction and a geomet-
rical demonstration that this construction is what is required in order to reach a
solution of the problem considered. The last stage, however, which was Barrow’s
main concern in Lectiones Geometricae, is only briefly touched upon. Newton devel-
oped the synthesis more fully in an Addendum composed in 1671 and in a treatise
entitled “Geometria Curvilinea,” written around 1680 (see chapter 9).

8.2.2 Basic Definitions

In De Methodis, Newton made it clear that the objects to which his analytical
method applied are geometrical quantities generated by a process of flow in time.
For instance, the motion of a point generates a line, and the motion of a line
generates a surface:

1. The quantities generated by flow are called fluents.
2. Their instantaneous speeds are called fluxions.
3. The moments of the fluent quantities are “the infinitely small additions by which

those quantities increase during each infinitely small interval of time.”27

Therefore, consider a point that flows with variable speed along a straight line
(figure 8.5). The distance covered at time t is the fluent, and the instantaneous
speed is the fluxion. The indefinitely or infinitely small parts by means of which
the fluent increases after indefinitely or infinitely small intervals of time are the
moments of the fluent quantity.28 Newton further observed that the moments are
“as the speed of flow” (i.e., the fluxions).29 His reasoning was based on the idea
that during an infinitely small period of time the fluxion remains constant, and
hence the moment is proportional to the fluxion.

restat ut in illustrationem hujus Artis Analiticae tradam aliquot Problematum specimina qualia
praesertim natura curvarum ministrabit.” MP, 3, p. 70.
27 MP, 3, p. 81. “additamenta infinite parva quibus illae quantitates per singula temporis infinite
parva intervalla augentur.” MP, 3, p. 80.
28 See the definitions given at MP, 3, pp. 78, 80. Newton referred to infinitesimal increments
employing the term infinitely as well as indefinitely.
29 MP, 3, p. 79. “sunt ut fluendi celeritates.” MP, 3, p. 78.
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x xo
.

Figure 8.5

Relations between fluent, fluxion, and moment. c©Niccolò Guicciardini.

Newton warned the reader not to identify the time of the fluxional method with
real time. Any fluent quantity whose fluxion is assumed constant (ẋ = 1) plays the
role of fluxional time (x = t + C). The choice of x as the time variable is arbitrary
(and further if y = kx also ẏ is constant) and in general dictated by computational
convenience. His language here is reminiscent of Barrow’s Lectiones Geometricae
(§8.1.2).30

8.2.3 Notation

Contrary to Barrow, Newton developed in De Methodis an algorithmic approach
extensively. His notation, however, is not particularly handy. For instance, he might
employ a, b, c, d for constants, v, x, y, z for fluents, and l, m, n, r for the respective
fluxions, so that, for instance, m is the fluxion of x, and n is the fluxion of y, etc.
The indefinitely (or infinitely) small interval of time is always denoted by o, so that
the moment of y is no. This notation is very confusing; in what follows, I always
employ a notation that Newton invented much later.

In fact, it was only in the 1690s that Newton introduced the now standard
notation according to which the fluxion of x is denoted by ẋ, and the moment of x by
ẋo. Fluxions themselves can be considered fluent quantities. In the 1690s, Newton
denoted the second fluxion of x with ẍ (whereas he had previously employed letters,
so that, for instance, q was the second fluxion of y). Multiple points or numbers
placed over the fluent symbols can denote higher-order fluxions.

Newton did not use a consistent notation for the area of the surface under a curve.

30 Cfr., for instance: “To every instant of time, or to every indefinitely small particle of time; (I say
‘instant’ or ‘indefinite particle’ because, just as it matters nothing at all whether we understand
a line to be composed of innumerable points or of indefinitely small linelets [lineolae], so it is all
the same whether we suppose time to be composed of instants or of innumerable minute timelets
[tempusculis]; at least for the sake of brevity we shall not fear to use instants in place of times
however small, or points in place of the linelets representing timelets); to each moment of time, I
say, there corresponds some degree of velocity which the moving body should be thought to have
then; to that degree corresponds some length of space traversed (for here we consider the moving
body as a point and thus the space only as length).” From Lecture 1 of Lectiones Geometricae
(1670). See Barrow, Mathematical Works (1860), pp. 167–8. Translation by Mahoney in “The
Mathematical Realm of Nature” (1998), p. 743.



182 Chapter 8

Most often, he used words such as “the area of” or (as recorded in one instance)
a capital Q before the analytical expression of the curve.31 In some cases he used
“ a/x2 ” for “the area of the surface under the curve of equation y = a/x2.”32 In
the 1690s Newton also employed x́ to denote a fluent quantity whose fluxion is x.
The limits of integration were either evident from the context or explained in words,
not symbols.

8.2.4 Problem Reduction

In the De Methodis, Newton applied the method of series and fluxions to several
problems. The main ones were how to find maxima and minima of varying mag-
nitudes, how to determine tangents and curvatures of plane curves, and how to
calculate curvilinear areas and arclengths. Thanks to the representation of quan-
tities as generated by a continuous flow, all these problems can be reduced to the
following two:

Problem 1. Given the length of the space continuously (that is, at every time), to
find the speed of motion at any time proposed.

Problem 2. Given the speed of motion continuously, to find the length of the space
described at any time proposed.33

The problems of finding tangents, maxima and minima, and curvatures are related
to Problem 1, the problems of finding curvilinear areas and arc lengths are related
to Problem 2.

8.2.5 The Role of the Fundamental Theorem

Newton demonstrated the fundamental theorem in some of his early manuscripts
and in De Analysi. Nowadays the fundamental theorem is understood as a state-
ment that the two central operations of calculus, differentiation and integration, are
inverse operations. An important consequence of this is the possibility of computing
integrals by using an antiderivative of the function to be integrated, a consequence
that Newton fully appreciated and deployed in De Methodis (§8.4.3).

The fact that the calculation of curvilinear areas (in Newton’s terms, the problem
of quadrature) can be reduced to Problem 2 is implied by Newton’s proof of the
fundamental theorem. Newton demonstrated that if z is the area generated by the

31 Notes to the De Quadratura (early 1690s). Add. 3960.8, f. 155. MP, 7, p. 156.
32 In Leibnizian terms, one would have

∫
(a/x2)dx.

33 MP, 3, p. 71. “1. Spatij longitudine continuo (sive ad omne tempus) data, celeritatem motus
ad tempus propositum invenire. 2. Celeritate motus continuo data longitudinem descripti spatij
ad tempus propositum invenire.” MP, 3, p. 70.
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Figure 8.6

Relations between area z, abscissa x, and ordinate y. c©Niccolò Guicciardini.

continuous uniform flow (ẋ = 1) of ordinate y, then y = ż (figure 8.6). Note that
the conception of quantities as generated by continuous flow allowed Newton to
conceive the problem of determining the area under a curve as a special case of
Problem 2.

The reduction of arclength problems to Problem 2 depends on the application of
the Pythagorean theorem to the triangle formed by the moment of arclength s, the
moment of the abscissa x, and the moment of the ordinate y: ṡo =

√
(ẋo)2 + (ẏo)2.

Therefore, s =
√

ẋ2 + ẏ2 .

8.2.6 Proofs of the Fundamental Theorem

Proof (1665) Newton discovered the fundamental theorem in 1665.34 His reason-
ing, which strongly resembles Barrow’s Proposition 19 from Lecture 11 (§8.1.6),
refers to two particular curves z = x3/a and y = 3x2/a. However, it is completely
general; the only property that matters is that y be equal to the slope of z (see
figure 8.7, where z is drawn above the x-axis, and y is drawn below the x-axis).35

More precisely, y is defined as

bg = dh
βm

Ωβ
, (8.1)

34 Add. 4000, ff. 120r–133v. “A Method Whereby to Square Those Crooked Lines Wch May Be
Squared.” MP, 1, pp. 302–13.
35 In a second draft Newton employed z = a3/x and y = −a3/x2. MP, 1, pp. 314–21.
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Figure 8.7

Newton on the relation between area-problems and tangent-problems (c. 1665). Source:
Add. 4000, f. 120v. Reproduced by kind permission of the Syndics of Cambridge Univer-
sity Library.

where bg is an ordinate of the curve y, βm and Ωβ are infinitesimal increments of
z and x, and dh is a unit length segment. It immediately follows that the area
bpsg (= Ωβ · bg) and the area μκλν (= βm · dh) are equal. It was commonplace
in seventeenth-century mathematics to consider the surface subtended by a curve
to be equal to the juxtaposition of infinitely many infinitesimal rectangles such as
bpsg. It follows that the curvilinear area subtended by y, for instance, dψn, is equal
to the rectangular area dhσρ. A knowledge of z then makes it possible to “square”
y, since the area under y (the derivative curve) is proportional to the difference
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between corresponding ordinates of z.36 In Leibnizian terms, Newton proved that
the integral of the differential of z is equal to z, namely,

∫
dz = z. A proof of the

fact that d
∫

z = z can be found in De Analysi.

Proof in De Analysi (1669) A proof of the inverse relation of area-problems and
tangent-problems is given at the end of De Analysi. Newton proceeded as follows.
He considered a curve ADδ (figure 8.8), where AB = x, BD = y, and the area
ABD = z. He defined Bβ = o and BK = v, so that “the rectangle BβHK (= ov)
is equal to the space BβδD.”37 Further, Newton assumed that Bβ is infinitely
small (infinite parvam).

Given these definitions, Aβ = x+ o and the area Aδβ is equal to z + ov. At this
point Newton wrote, “[F]rom any arbitrarily assumed relationship between x and z
I seek y.”38 He noted that the increment of the area ov divided by the increment of
the abscissa o is equal to v. But since one can assume “Bβ to be infinitely small,
that is, o to be zero, v and y will be equal.”39 Therefore, the rate of increase of
the area is equal to the ordinate. The mathematically trained reader will notice
that several assumptions that tacitly operate in this reasoning (most notably, the
existence of v) only received attention and were systematized in the nineteenth
century.

Figure 8.8

Newton on the relations between area-problems and tangent-problems, from De Analysi
(1669). Source: Newton, Analysis per Quantitatum (1711), p. 19. Courtesy of the Bib-
lioteca Universitaria di Bologna.

36 As Westfall states in Never at Rest (1980), p. 127.
37 MP, 2, p. 243. “rectangulum BβHK (= ov) aequale spatio BβδD.” MP, 2, p. 242.
38 MP, 2, p. 243. “ex relatione inter x & z ad arbitrium assumpta quaero y.” MP, 2, p. 242.
39 MP, 2, p. 243. “Bβ esse infinite parvam, sive o esse nihil, erunt v & y aequales.” MP, 2, p.
242.
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8.3 The Direct Method of Fluxions

8.3.1 Problem 1 in De Methodis

I now turn to the two problems into which Newton’s method is subdivided, in this
section the direct Problem 1, and in subsequent sections the more difficult inverse
Problem 2.

Problem 1 is stated as follows:

Given the relation of the flowing quantities to one another, to determine the relation
of the fluxions.40

Newton presented the basic algorithm for Problem 1 by providing some exam-
ples.41 First he dealt with polynomial equations. Then he considered equations in
which “fractions and surd quantities are present.”42 Last, he considered the case
of “quantities which cannot be determined and expressed by any geometrical ratio
[nulla ratione geometrica], such as the areas and lengths of curves.”43

8.3.2 Fluxions of Polynomial Equations in De Methodis

In De Methodis Newton dealt with the equation of a cubic curve:

x3 − ax2 + axy − y3 = 0. (8.2)

His (inaccurate) prescription is as follows:

Arrange the equation by which the given relation is expressed according to the
dimensions of some fluent quantity, say x, and multiply its terms by any arithmetical
progression and then by ẋ/x. Carry out this operation separately for each one of
the fluent quantities and then put the sum of all the products equal to nothing,
and you have the desired equation.44

This is basically the rule explained in one of the appendices to Descartes’ Géométrie
by Johan Hudde. The application that follows illustrates what Newton meant far
more clearly. He obtained:

3ẋx2 − 2aẋx + aẋy + aẏx − 3ẏy2 = 0. (8.3)

40 MP, 3, p. 75.
41 MP, 3, pp. 75–9.
42 MP, 3, p. 77.
43 MP, 3, p. 79. Newton was aware of the fact that while the direct algorithm applied to
geometrical curves generates well-known and easier geometrical curves, the inverse algorithm can
lead to mechanical curves. So, for instance, the area subtended to the hyperbola is expressed by
logarithms, and the arclength or the sector of a circle by trigonometric magnitudes.
44 MP, 3, p. 75. In applying the rule, Newton chose the simplest arithmetical progression 3, 2, 1, 0.
The same results obtain, for instance, for 6, 4, 2, 0. With the latter choice one would obtain
6ẋx2 − 4aẋx + 2aẋy + 2aẏx − 6ẏy2 = 0.
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This equation gives the ratio of the fluxions of, ẋ to ẏ, as

3y2 − ax

3x2 − 2ax + ay
. (8.4)

Note that in the example the rules for the calculation of the fluxions of the sum
x+ y, the product xy, and the integer positive power xn are simultaneously stated,
respectively, as ẋ + ẏ, xẏ + yẋ, and nxn−1ẋ. Naturally, the fluxion of a constant
quantity is equal to zero.45 It was unclear how to extend this rule to nonpolynomial
equations until Newton provided an answer.

8.3.3 Fluxions of Complex Fractions and Surd Quantities in De Methodis

In De Methodis, Newton wrote,

Whenever complex fractions or surd quantities are present in the proposed equation,
in place of each I put a corresponding letter and, supposing these to designate fluent
quantities, I work as before. Then I suppress and exterminate the letters ascribed.46

Take y2−a2−x
√

a2 − x2 = 0. Newton set z = x
√

a2 − x2 and so obtained y2−a2−
z = 0 and a2x2 − x4 − z2 = 0. Applying the direct algorithm for polynomial equa-
tions, he determined 2ẏy − ż = 0 and 2a2ẋx− 4ẋx3 − 2żz = 0. He then eliminated
ż, restored z = x

√
a2 − x2, and thus obtained 2ẏy + (−a2ẋ + 2ẋx2)/

√
a2 − x2 = 0

as the sought relation between ẏ and ẋ. In this first example proposed by Newton,
of course, the radical could easily be eliminated. But Newton’s procedure is a very
effective method for the calculation of fluxions in more complicated cases. In prac-
tice, by substitution of a variable it is possible to eliminate radicals (and quotients,
of course) and thus apply Hudde’s rule, which is valid for polynomial equations.

Another example will help to illustrate Newton’s procedure. Let the relation
between the fluents be

y =
√

a + bx + cx2 +
1√

dx + ex2
. (8.5)

Set
y = y1 + y2 =

√
z +

1√
w

, (8.6)

with
z = a + bx + cx2 (8.7)

45 Leibniz, some fifteen years later, was able to state and formulate these rules in a much clearer
form (see chapter 17).
46 MP, 3, p. 77.
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and
w = dx + ex2. (8.8)

Applying Hudde’s rule to these polynomial equations,

ż = bẋ + 2cxẋ (8.9)

and
ẇ = dẋ + 2exẋ. (8.10)

Of course,
ẏ = ẏ1 + ẏ2, (8.11)

as Newton stated (§8.3.2). By applying Hudde’s rule to y2
1 = z and wy2

2 = 1,

ẏ = ẏ1 + ẏ2 =
ż

2
√

z
− ẇ

2w3/2
. (8.12)

Substitution for z, w, ż, and ẇ delivers the sought ratio of the fluxions (ẏ to ẋ):

b + 2cx

2
√

a + bx + cx2
− d + 2ex

2
√

(dx + ex2)3
. (8.13)

8.3.4 Fluxions of Nongeometrical Equations in De Methodis

I have shown how Newton dealt with the calculation of the relation between the
fluxions when the relation between the fluents is expressed by an equation involving
quotients and radicals. In De Methodis he considered a more difficult case:

To be sure, even if quantities be involved in an equation which cannot be determined
and expressed by any geometrical technique, such as the areas and lengths of curves,
the relations of the fluxions are still to be investigated the same way.47

The relation of the fluxions can in fact immediately be calculated by applying the
fundamental theorem.48

One of Newton’s examples in the De Methodis is

z2 + axz − y4 = 0, (8.14)

47 MP, 3, p. 79.
48 In Leibnizian terminology, it is possible to say that it was customary in Newton’s time to think
about transcendental curves as obtained by integrating algebraic curves, so that if y(x) is algebraic,
the integral z =

∫ x
a ydx can lead to a new class of transcendental curves. The prototypic example

can be the logarithm obtained by integrating y = 1/x.
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where z is the area of the segment ABD of a circle whose diameter is a, abscissa
AB = x, and ordinate BD =

√
ax − x2 (see figure 7.5). From equation (8.14) one

gets
2żz + ażx + aẋz − 4ẏy3 = 0. (8.15)

From the fundamental theorem, the fluxion of the area ABD is equal to the length
of the ordinate BD times the fluxion of the abscissa:

ż = ẋ
√

ax − x2. (8.16)

Thus, for the relation of the fluxions ẋ and ẏ,

(2ẋz + aẋx)
√

ax − x2 + aẋz − 4ẏy3 = 0. (8.17)

Note that in (8.17) binomial expansion is necessary in order to determine z. One
must expand

√
ax − x2 in the right-hand term of (8.16) and integrate (in Leibnizian

terms) term-wise.

8.3.5 Demonstration of the Direct Method in De Methodis

Newton’s procedure for Problem 1 is algebraic. In De Methodis he presented his
method as a series of algorithmic procedures that are explained by particular ex-
amples. The style is didactic, heuristic, and algebraic. This is perfectly in line with
the seventeenth-century tradition of the analytical school embodied by Oughtred
and Wallis. However, in a section of De Methodis, Newton included a demonstra-
tion of these rules based on a reasoning that was strongly reminiscent of Barrow’s
determination of tangents ex calculo (§8.1.4). Newton wrote,

The moments of fluent quantities (that is, their indefinitely small parts, by addition
of which they increase during each infinitely small period of time) are as their speeds
of flow. Wherefore if the moment of any particular one, say x, be expressed by the
product of its speed ẋ and an infinitely small quantity o (that is, by ẋo), then the
moment of the others v, y, z, will be expressed by v̇o, ẏo, żo . . . . Consequently, an
equation which expresses a relationship of fluent quantities without variance at all
times will express that relationship equally between x+ ẋo and y+ ẏo as between x
and y; and so x+ ẋo and y+ ẏo may be substituted in place of the latter quantities,
x and y, in the said equation.49

Let us reconsider equation (8.2). From what has been said, it is permissible to
substitute x + ẋo in place of x, and y + ẏo in place of y. Next, Newton deleted
x3−ax2 +axy−y3 as equal to zero, and after division by o he obtained an equation
from which he canceled the terms with o as a factor. These terms “will be equivalent

49 MP, 3, pp. 79, 81.
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to nothing in respect of the others” since “o is supposed to be infinitely small.”50

This procedure leads straight to Hudde’s rule.
This demonstration is achieved through two steps. The first step assumes that it

is possible to substitute x+ ẋo in place of x, and y + ẏo in place of y. Here Newton
meant that the relation valid for the fluents x and y, expressed by an equation,
continues to be valid for the values x + ẋo and y + ẏo obtained after momentary
increases. In geometrical terms, if the point (x, y) is on the curve, then the infinitely
close point (x + ẋo, y + ẏo) will also be on the curve. The latter step is a rule of
cancellation of higher-order infinitesimals (equivalent to Leibniz’s x + dx = x).
According to this rule, if x is finite and o is an infinitesimal interval of time, then
x + ẋo = x. Newton set out to justify the use of infinitesimals in an Addendum to
De Methodis that he drafted in 1671 (see chapter 9).

8.3.6 Determination of Tangents in De Methodis

Determination of tangents: The method The algorithm for Problem 1 allows
the resolution of several geometrical problems: the determination of maxima and
minima (Problem 3), the determination of tangents (Problem 4), the determination
of curvature (Problems 5 and 6).

How does the algorithm work for tangents? Newton assumed that ED is a
given curve and that an equation relating the abscissa x = AB to the oblique
ordinate y = BD is given (figure 8.9). Let the ordinate BD “move through an
indefinitely small space to the position b∂ so that it increases by the moment c∂
while AB increases by the moment Bb equal to Dc.”51 The momentary increases
Bb = Dc and c∂ are indicated in the figure. Newton stated that the straight
line that prolongs the momentary increase D∂ of the arc ED cuts the axis of the
abscissae in T and that this straight line (namely, the tangent) will touch the curve
in D and ∂. Without further explanation, Newton stated that the triangle Dc∂ is
similar to the triangle TBD, where TB is the subtangent.52 Therefore, he deduced
that

TB

BD
=

Bb

c∂
. (8.18)

Given this premise, the subtangent will be found by application of the algorithm
for Problem 1 to the equation that defines the curve ED. Indeed, the algorithm

50 MP, 3, p. 81. “respectu caeterorum nihil valebunt,” “o supponitur esse infinite parvum.” MP,
3, p. 80.
51 MP, 3, p. 123.
52 The subtangent is defined as the segment of the x-axis lying between the x-coordinate of the
point at which a tangent is drawn to a curve (in figure 8.9, B) and the intercept of the tangent
with the x-axis (in figure 8.9, T ).
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Figure 8.9

Momentary increases for the method of tangents, from De Methodis (1671). Source: New-
ton, Opuscula Mathematica, Philosophica et Philologica (1744), 1, Tab. I. Courtesy of the
Biblioteca Angelo Mai (Bergamo).

allows the determination of the ratio between the fluxions of x and y. Since the
momentary increases are as the fluxions (§8.2.2), it is possible to conclude that the
sought subtangent TB is given by53

TB = y
ẋ

ẏ
. (8.19)

Note that Newton was deployed well-established practices in handling infinitely
or indefinitely small quantities. His use of the indefinitely small triangle Dc∂ is
very similar to Barrow’s (§8.1.4). This calculation of tangents is like Barrow’s in
character, as is the notion that magnitudes are generated by motion.

Already while composing De Methodis, Newton was aware that some firmer
foundation for infinitesimal techniques had to be sought. He found it in a theory of
limits that he termed the “method of first and ultimate ratios.” Newton developed
this method in the 1680s, but its roots were already discernible in the Addendum
to De Methodis.

Determination of tangents: An example I now consider an example of Newton’s
method for tangents: the conchoid. Let ED be the conchoid. G is the pole, AT the
asymptote. Recall that given a line AT and a line bundle passing through the pole
G, the curve is constructed by placing at both sides of AT a distance LD = L∂ on all
lines. The two branches of the conchoid are the loci of points D and ∂ (figure 8.10).

Let GA = b, LD = c, AB = x, and BD = y. Because the triangles DBL and
GDM are similar, LB/BD = DM/MG, that is,

√
c2 − y2 : y = x : (b+y). Newton

wrote,
yx = (b + y)

√
c2 − y2. (8.20)

53 I alter Newton’s notation that expresses a proportionality: n.m :: BD.TB. MP, 3, p. 122.
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Figure 8.10

Tangent to the conchoid, from De Methodis (1671). Source: Newton, Opuscula Mathemat-
ica, Philosophica et Philologica (1744), 1, Tab. I. Courtesy of the Biblioteca Angelo Mai
(Bergamo).

Now he applied his algorithm for “surd” quantities (§8.3.3) and set z =
√

c2 − y2.
This leads to the following system:

yx = bz + yz (8.21)
z2 = c2 − y2. (8.22)

By application of the algorithm for Problem 1, one obtains

ẋy + ẏx = bż + ẏz + ży (8.23)
żz = −ẏy. (8.24)

Elimination of ż leads to

ẋy + ẏx = −bẏy

z
− ẏy2

z
+ ẏz; (8.25)

therefore the ratio between the fluxions can be expressed as

ẋ

ẏ
=

z − x − (by + y2)/z

y
. (8.26)

From equation (8.19) one gets

TB = y
ẋ

ẏ
= z − x − y(b + y)

z
. (8.27)

As previously noted (§3.2.2), for Newton’s contemporaries a geometrical problem
was solved by a geometrical construction, not by an algebraic formulation. Accord-
ingly Newton interpreted this result in geometrical terms:

−TB = AL +
BD × GM

BL
. (8.28)
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Newton applied the direct algorithm for Problem 1 to other problems concerning
tangency and curvature, as he continued De Methodis by considering different co-
ordinate systems (e.g., polar and bipolar coordinates) and developed the theory of
curvature in great detail. The determination of the radius of curvature of plane
curves was of great importance for Newton in his study of trajectories in the Prin-
cipia, since he made use of the fact that the normal component of the force [FN ]
acting on a mass point is proportional to the square of speed [v] and inversely
proportional to the radius of curvature [FN ∝ v2/ρ].

8.4 The Inverse Method of Fluxions

8.4.1 Problem 2

Problem 2 is worded as the inverse of Problem 1:

When an equation involving the fluxions of quantities is exhibited, to determine
the relation of the quantities one to another.54

Problem 2 was often referred to by Newton as the problem of the quadrature of
curves or squaring of curves (§8.2.5). In Leibnizian terms, Newton posed the prob-
lem of integration.

Problem 2 is of course much more difficult than Problem 1. Here Newton stopped
teaching his method to discentes (learners) and addressed the artifices (skilled prac-
titioners). The distinction between the parts of his method within reach of the
learners and those accessible only to skilled practitioners was quite clear in New-
ton’s mind.55 As with his treatment of Problem 1, Newton explained how to deal
with Problem 2 via examples. His strategy was fragmentary and his style that of
the craftsman seeking to make a novice become used to increasingly complex cases.
Newton’s main techniques for Problem 2 are the following three methods.

8.4.2 Method 1: Squaring of Curves by Series Expansions

The first method was discussed in chapter 7. In Leibnizian terms, it consists in
expanding the integrand into a power series. Newton deployed his algorithmic
techniques of series expansion by long division, root extraction, and resolution of
affected equations.

In a simpler case (Case 1) one has an equation in which “two fluxions together
with one only of their fluent quantities are involved.” In Leibnizian terms, Newton

54 MP, 3, p. 83.
55 MP, 3, p. 85. Newton began De Methodis by addressing himself to discentes, MP, 3, p. 32.
From Problem 2 on, he addressed himself to artifices. MP, 3, p. 84.
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was here considering ordinary differential equations.56 From Newton’s examples,57

one takes
(ẏ/ẋ)3 + ax(ẏ/ẋ) + a2(ẏ/ẋ) − x3 − 2a3 = 0. (8.29)

Applying his technique for the resolution of affected equations (figure 7.11), Newton
obtained

ẏ

ẋ
= a − x

4
+

x2

64a
+

131x3

512a2
+

509x4

16384a3
+ · · · , (8.30)

which can be squared term-wise, thus obtaining the relation between the fluents:

y = ax − x2

8
+

x3

192a
+

131x4

2048a2
+ · · · . (8.31)

This is one of the basic techniques of series expansion employed in De Analysi. It
should be noted that the approximation is valid for x ≈ 0: Newton, that is, obtained
a local approximation of the fluent (the integral, in Leibnizian terms).

In slightly more complex cases, an equation is given in which either two fluxions
ẋ and ẏ together with both the fluent quantities x and y (Case 2) occur, or more
than two fluxions are present (Case 3). Newton here implemented an algorithm of
successive approximations (figure 8.11), where again the aim was to express ẏ/ẋ as
an infinite series.

8.4.3 Method 2: Squaring of Curves by Means of Finite Equations

Two further approaches to Problem 2 were at Newton’s disposal:

Hitherto we have exposed the quadrature of curves defined by less simple equations
by the technique of reducing them to equations consisting of infinitely many simple
terms [Method 1]. However, curves of this kind may sometimes be squared by
means of finite equations also [Method 2], or at least compared with other curves
(such as conics) whose area may, after a fashion, be accepted as known [Method 3].
For this reason I have now decided to add the two following catalogues of theorems
constructed . . . for this use with help of Problems 7 and 8.58

56 MP, 3, p. 91.
57 MP, 3, pp. 89–91.
58 MP, 3, p. 237. “Hactenus Curvarum quae per aequationes minus simplices definiuntur Quadrat-
uram mediante reducione in aequationes ex infinite multis terminis simplicibus constantes os-
tendimus. Cum vero ejusmodi curvae per finitas etiam aequationes nonnunquam quadrari possint
vel saltem comparari cum alijs curvis quarum areae quodammodo pro cognitis habeantur, quales
sunt sectiones conicae: eapropter sequentes duos Theorematum catalogos in illum usum ope Propo-
sitionis 7æ & 8æ ut promisimus constructos, jam visum est adjungere.” MP, 3, p. 236.
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Figure 8.11

Term-wise solution of Problem 2, Case 2, from De Methodis (1671). The fluxional equation
is ẏ/ẋ = 1+ y/a + xy/a2 + x2y/a3 + x3y/a4 + · · · . Source: Newton, Opuscula Mathemat-
ica, Philosophica et Philologica (1744), 1, p. 73. Courtesy of the Biblioteca Angelo Mai
(Bergamo).

Newton therefore distinguished between three quadrature techniques:

1. Squaring by reduction to equations consisting of infinitely many simple terms.
2. Squaring by means of finite equations.59

3. Squaring by comparison with other curves (such as conics).

The first technique is treated in De Analysi (§7.4) and further developed in
Problem 2 (Cases 1, 2, and 3) of De Methodis (§8.4.2).

The second approach is studied in Problem 7 of De Methodis, and its application
translated into a first catalogue of curves.

The third approach is studied in Problem 8 of De Methodis, and its application
translated into a second catalogue of curves.

The second approach consists in applying the algorithm of Problem 1 to “any
equation at will defining the relationship of t [the area] to z [the abscissa]” (fig-
ure 8.12). One thus obtains an equation relating ṫ and ż, and so “two equations
will be had, the latter of which will define the curve [whose ordinate is y], the former
its area.”60 Following this strategy, Newton constructed a first “catalogue of curves

59 MP, 3, p. 237. This method is hinted at in De Analysi under the rubric “inventio curvarum
quae possunt quadrari.” MP, 2, p. 244.
60 MP, 3, p. 197.
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Figure 8.12

Relations between abscissa z (= AB), ordinate y (= BD), and area t (= ADB) in Problem
7, from De Methodis (1671). The flow of the ordinate BD generates the surface ADB.
Newton proved that ṫ/ż = y/1. This becomes ṫ = y for ż = 1. Source: Newton, Opuscula
Mathematica, Philosophica et Philologica (1744), 1, Tab. I. Courtesy of the Biblioteca
Angelo Mai (Bergamo).

Figure 8.13

Newton’s first catalogue of curves (beginning). d, e, f, g, h are positive constants, η is a
“positive or negative, integral or fractional number.” Variables z, y, and t denote the
curve’s abscissa, ordinate, and area, respectively. The first column tabulates the curves’
equations, the second column their corresponding areas. It is easy to show that the fluxion
of the area t is equal to the ordinate y (assuming that the abscissa flows with constant
speed ż = 1). This catalogue was reproduced in De Quadratura (1704). Note that in the
first species η �= 0, since in this case the curve is not quadrable in finite terms. Further,
the second species must be set equal to (i) dzη−1/(e + fzη)2 or (multiplying numerator
and denominator of (i) by z−2η) to (ii) dz−η−1/(ez−η + f)2; thus in the second column
we find two different values of the area t. Source: Newton, Analysis per Quantitatum
(1711), p. 62. Courtesy of the Biblioteca Universitaria di Bologna.

which can be squared by means of finite equations” (figure 8.13). In modern terms,
one might say that Newton was aware of the fact that antiderivatives are related
to definite integrals through the fundamental theorem of calculus and provide a
convenient means for tabulating the integrals of many functions.

8.4.4 Method 3: Squaring of Curves by Comparison with Conic Sections

Curves “which can be squared by means of finite equations” are an exception: in-
finite series remain an essential tool for calculating many curvilinear areas. Most
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often these series are difficult to interpret geometrically and provide only a local
and algorithmic approximation. Recall that for Newton the result of an analytical
process is best interpreted geometrically. This is why, in Method 3, Newton consid-
ered transformations of variables to reduce the calculation of a curvilinear surface
to the calculation of the area of a conic surface. Conic areas can be evaluated by
binomial expansion and term-wise quadrature, as Newton explained in De Analysi.
Therefore, series are still necessary. However, the areas of the conic sections can
be considered to be accepted as known, not only because their areas are given by
well-known logarithmic and trigonometric tables but also because the conics are
geometrically constructible following methods already established in Antiquity.

In Problem 8, Newton took two curves FDH and GEI, in which variables x, v,
s and z, y, t denote the abscissa, ordinate, and area of the two curves (figure 8.14).
Suppose one knows how to square the curve FDH. The problem here will be to
square GEI. Newton introduced two equations, the first relating the abscissae x
and z, and the second relating areas s and t. Newton proceeded by examples where
the curve FDH is a conic section (which can be squared following the procedures
of De Analysi). A few simple examples follow.

Let the curve FDH be a circle whose equation is v2 = ax − x2. Assume that
areas s and t are related by

cx + s = t, (8.32)

Figure 8.14

Relations between variables x = AB, v = BD, s = AFDB, and z = AC, y = CE,
t = AGEC in Problem 8, from De Methodis (1671). Newton proved that s = t when
v/y = ż/ẋ. As stated in Proposition 9, Theorem 7, of De Quadratura, “The Areas of those
curves are equal among themselves, whose Ordinates are reciprocally as the Fluxions of
their Abscisses. For the Rectangles contain’d under the Ordinates, and the Fluxions of the
Abscisses will be equal and the Fluxions of the Areas are as these Rectangles.” In symbols
ṡ = vẋ and ṫ = yż. Source: Newton, Opuscula Mathematica, Philosophica et Philologica
(1744), 1, Tab. V. Courtesy of the Biblioteca Angelo Mai (Bergamo).
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and that the ordinates are related by

ax = z2. (8.33)

By means of the algorithm of Problem 1, under the assumption that ẋ = 1, one
gets

c + ṡ = ṫ (8.34)

and
a = 2żz. (8.35)

Therefore

y =
ṫ

ż
=

2
a
z(c + ṡ), (8.36)

and “this when
√

ax − x2 is substituted in place of ṡ and z2/a in place of x” becomes

y =
2cz

a
+

2z2

a2

√
a2 − z2. (8.37)

One begins then with a curve (in this case, a circle) whose area is assumed as
known and by suitable transformations of variables obtains equation (8.37) of a
curve whose area t is related to the area s of the circle by equation (8.32).61

Thanks to this technique Newton could develop a “second catalogue of curves
related to conic sections” (figure 8.15). The first row states that the area t under

y =
dzη−1

e + fzη
(8.38)

is equal to

t =
1
η
s, (8.39)

where s is the area under
v = d/(e + fx).

The second column prescribes a substitution of variables:

zη = x; (8.40)

61 MP, 3, p. 199. It might be helpful to translate this procedure into familiar Leibnizian notation.
Calculate t =

∫
ydz =

∫
(2cz/a + 2z2/a2

√
a2 − z2)dz. Substitution of variables ax = z2 leads to

t =
∫

cdx +
∫ √

ax − x2dx = cx + s + C.
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assuming ẋ = 1, one gets

ż =
1

ηzη−1
. (8.41)

From the third column

ṡ = v =
d

e + fx
=

d

e + fzη
. (8.42)

Therefore, from the first column62

ṫ=yż=
dzη−1

e+fzη

1
ηzη−1

=
1
η
ṡ. (8.43)

8.4.5 The Analytical Quadrature of the Cissoid

Newton applied the second catalogue of curves to several examples. Example 3
concerns the quadrature of the cissoid. The problem is how to square the cissoid
AeE, that is, how to determine the area of the surface ACEeA, where ADQ is a
circle (figure 8.16).

Figure 8.16

Cissoid AeE, from De Methodis (1671). Source: Newton, Opuscula Mathematica, Philo-
sophica et Philologica (1744), 1, Tab. VII. Courtesy of the Biblioteca Angelo Mai (Ber-
gamo).

62 I translate Newton’s calculation in Leibnizian notation as follows, but note that d is a constant.
Eliminate d by setting d = 1. Then t=

∫
ydz =

∫
(zη−1/(e+fzη))dz. Substitution of zη =x leads

to t=(1/η)
∫
(1/(e+fx))dx=(1/η)

∫
vdx=s/η+C.
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Figure 8.17

Third species of the seventh order of the second catalogue of curves in the manuscript of
De Methodis (1671). Note that ∂ is a constant, not a partial derivative. Also, Newton
did not use the modern symbol for the absolute value |3s − 2xv| but rather one that he
found in Barrow’s works. Newton wrote ÷ for “the Difference of two Quantities, when
it is uncertain whether the latter should be subtracted from the former, or the former
from the latter” (Newton, Two Treatises (1745), p. 25). Thus, Newton wrote 3s ÷ 2xv.
Source: Add. 3960.14, f. 81. Reproduced by kind permission of the Syndics of Cambridge
University Library.

Set the abscissa AC = z, the ordinate CE = y, the circle’s diameter AQ = a.
Because of the defining property of the cissoid, CD, AC, and CE are in continued
proportion.63 Thus, the equation of the cissoid is

y =
z2

√
az − z2

=
z√

az−1 − 1
. (8.44)

In order to square the cissoid, reference must be made to the third species of the
seventh order of the second catalogue of curves (figure 8.17).

On setting ∂ = 1, ε = −1, and f = a, the curve listed in the first column is

y =
z−2η−1

√
azη − 1

, (8.45)

which is the equation of the cissoid for η = −1.
The transformation of the abscissae (second column) is z = z−η = x (therefore
x = AC).
The conic ordinate (third column) is v =

√
ax − x2 (therefore v = CD), and s is

the area of the segment ACDH of the circle.
From the fourth column one gets that the area t under the cissoid is

t = 3s − 2xv, (8.46)

consequently, the area ACEeA of the cissoid is 3(ACDH) − 4	ADC.64

Newton added some equivalent formulations: “Or what is the same, 3× segment
ADHA = area ADEA, that is, 4× segment ADHA = area AHDEeA.”65

63 Namely, CD/AC = AC/CE, where AC = z, CE = y, and CD =
√

az − z2.
64 Indeed, since z = x, verify by differentiation that

dt/dz = dt/dx dx/dz = d/dx
(
3

∫ √
ax − x2dx − 2x

√
ax − x2 + C

)
= 3

√
ax − x2 − 2

√
ax − x2 −

2x(a − 2x)/(2
√

ax − x2) = x2/
√

ax − x2 = y.
65 MP, 3, p. 271.
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To conclude, the calculation of the area t of the cissoid is reduced to the calcu-
lation of the area s of the circle, which can be evaluated through the power series
expansion of ṡ/ẋ = v =

√
ax − x2 and term-wise quadrature.

8.5 The Inverse Method in De Quadratura

8.5.1 Toward De Quadratura

Until the publication of the Principia, Newton circulated his mathematical ideas
via manuscript exchange and correspondence. This publication practice exposed
him to the risk of not having his discoveries recognized (see part VI). In 1685,
John Craig published a short treatise on the quadrature of curvilinear figures in
which Newton’s contributions were just mentioned in passing.66 More dangerously,
David Gregory was claiming for himself a theorem on quadratures that Newton
had privately communicated to Leibniz in the epistola posterior, dated October
24, 1676, and to Craig, who had visited Newton in his rooms at Trinity in 1685.
Through Craig the theorem had passed into Gregory’s hands. In 1688, Gregory’s
associate Archibald Pitcairn had published the theorem attributing it to Gregory.67

In 1691, after having being elected Savilian Professor of Astronomy at Oxford,
Gregory wrote a letter to Newton in which, rather obliquely, he tried to secure the
authorship of this important result.68 Newton reacted by writing a short account
of his discoveries on quadratures. He soon changed his mind and set out to write
a full-fledged treatise, whose composition probably occupied him in the winter of
1691–1692. This was to become Tractatus de Quadratura Qurvarum, eventually
printed in 1704 as an appendix to the Opticks.

It is worth considering Newton’s method of quadrature, as communicated to
Leibniz in 1676 and to Craig in 1685. In the epistola posterior, he wrote,

For any curve let dzθ × (e + fzη)λ be the ordinate, standing normal at the end of
z of the abscissa or the base, where the letters d, e, f denote any given quantities
[N.B d is a constant!], and θ, η, λ are the indices of the powers of the quantities to
which they are attached.

Put

(θ + 1)/η = r, λ + r = s, (d/(ηf)) × (e + fzη)λ+1 = Q, rη − η = π,

then the area of the curve will be

Q ×
{

zπ

s
− r − 1

s − 1
× eA

fzη
+

r − 2

s − 2
× eB

fzη
− r − 3

s − 3
× eC

fzη
+

r − 4

s − 4
× eD

fzη
, etc.

}

66 Craig, Methodus Figurarum (1685).
67 Pitcairne, Solutio Problematis (1688). “Gregory’s” method of quadrature was also printed in
Wallis, Opera, 2, pp. 337–80. On this episode, see the commentary by Whiteside in MP, 7, pp.
3–13. On the circumstances surrounding Newton’s exchange of letters with Leibniz, see chapter 15.
68 Gregory to Newton (November 7, 1691). Correspondence, 3, pp. 172–6.
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the letters A, B, C, D, etc., denoting the terms immediately preceding; that is A
the term zπ/s, B the term −(r − 1)/(s− 1)× (eA)/(fzη), etc. This series, when r
is a fraction or a negative number, is continued to infinity; but when r is positive
and integral it is continued only to as many terms as there are units in r itself; and
so it exhibits the geometrical squaring of the curve.69

This method of quadrature was proposed to Leibniz as the first of a series of theo-
rems devised in order to simplify the “speculations concerning the squaring curves”;
it is thus known in the literature as the prime theorem on quadratures. The prime
theorem is a generalization of results contained in the first catalogue of curves of
De Methodis (§8.4.3).70

More generally, Newton was interested in squaring curves of the form y = zθ ×
(e + fzη)λ, y = zθ × (e + fzη + gz2η)λ, y = zθ × (e + fzη + gz2η + hz3η . . . )λ, or
even y = zθRλSμT ν , where R, S, T denote expressions of the form

∑∞
i=0 aiz

in (to
use modern notation). These theorems were systematized in the De Quadratura
(§8.5.2).

There is little doubt that Newton was keenly aware of the significance of quadra-
ture problems. In the October 1666 tract on fluxions, he had already stated the
importance of the inverse problem of fluxions:

If two Bodys A & B, by their velocitys p & q describe ye lines x & y. & an
Equation bee given expressing ye relation twixt one of ye lines x, & ye ratio q/p of
their motions p & q; To find the other line y. Could this ever bee done all problems
whatever might bee resolved.71

Further, in De Methodis, he had underlined the importance of quadrature problems:

Observing that the majority of geometers, with an almost complete neglect of the
ancients’ synthetic method, now for the most part apply themselves to the cultiva-
tion of analysis and with its aid have overcome so many formidable difficulties that
they seem to have exhausted virtually everything apart from the squaring of curves
and certain topics of like nature not yet fully elucidated.72

When Newton’s polemic with Leibniz broke out, the exchange of accusations be-
tween the two was obfuscated by a different perception of what was of primary
significance in the discovery of the new method. While Leibniz focused on the
enunciation of the rules concerning the direct method of differentiation and—not
without reason—claimed that he was the inventor of a simple and concise algorithm

69 Correspondence, 2, p. 134. Translation by Turnbull. Note that here geometrical is opposed to
mechanical: the former means “exactly determined in finite terms,” the latter “by approximation
via infinite series.”
70 See the discussion in MP, 3, p. 237 (n. 540).
71 MP, 1, p. 403.
72 MP, 3, p. 33. Translation by Whiteside. Italics supplied.
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for differentiation, Newton insisted on his superior command of series in quadra-
ture techniques (integration, in Leibnizian terms). Newton—never very receptive
toward the importance of advances in algorithmic techniques—saw Leibniz’s rules
for differentiation as mere trivialities. The true, difficult problem, Newton reiter-
ated, was the inverse problem of quadrature: it is on this battleground that— again,
not without reason—Newton claimed supremacy over Leibniz. Part 6 expands on
these themes.

The problem of squaring ample classes of curves had been beautifully solved by
Newton in his anni mirabiles by the use of infinite series (Method 1), the funda-
mental theorem (Method 2), and substitutions of variables (Method 3).

These techniques, didactically presented in De Methodis, constitute a method of
solution, an heuristic patchwork of algorithmic instructions. In the 1670s, Newton
began a research program on quadratures aimed at transforming his early method
into a tractatus, his early rules into theorems. As he explained to Leibniz in the
epistola posterior of 1676,

I have tried also to render the speculations concerning [the method of] squaring
curves simpler, and have attained certain general theorems.73

This program culminated into Tractatus de Quadratura Curvarum, which Newton
wrote in 1691–1692.74 It is De Quadratura that Newton chose to print in 1704,
not De Methodis, which appeared posthumously, in an English translation, only in
1736.

8.5.2 Theorems in De Quadratura

Preliminaries De Quadratura is a notable work not just for the theorems on the
quadrature of curves. In the introductory pages of the work Newton presented a
theory of limits that provides a foundation for the method of fluxions, a theory that
makes it possible to avoid—so the author claimed—the use of infinitesimals. (The
“method of first and ultimate ratios” is discussed in §9.5).

It is in these preliminary pages that Newton also introduced the dotted notation
for fluxions (ẋ, ẏ) and slashed notation for fluents (x́, ý). I have adopted this
notation here.

73 “Hoc fundamento conatus sum etiam reddere speculationes de Quadratura curvarum simpli-
ciores, pervenique ad Theoremata quaedam generalia.” Correspondence, 2, p. 115. Later in 1691,
Newton transcribed these lines by changing speculationes to methodum. MP, 7, p. 24.
74 The version composed in the early 1690s was revised for publication in 1703 and appeared
under the title of Tractatus de Quadratura Curvarum in Newton, Opticks (1704), pp. 165–211.
The numerous early versions and the revisions (mostly in MSS Add. 3960.7–13, 3962.1–3, and
3965.6 (Cambridge University Library)) are edited in MP, 7, pp. 24–182 and MP, 8, pp. 92–167.
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After these important introductory pages devoted to foundations and notation,
two themes indicative of Newton’s high expectations with regard to this treatise,
one finds the treatment of two problems.

The first is Problem 1, on the direct method of fluxions (“having given an equa-
tion involving any number of fluents to find their fluxions”). It is essentially a
reformulation of Problem 1 of De Methodis (§8.3.1). Here, however, terms multi-
plied by o are discarded not because they are “indefinitely little” but because they
are “evanescent.” Newton took the limit assuming that “the quantity o is lessened
indefinitely” and therefore cancels terms multiplied by it (§9.5).75

Problem 2 (“to find curves that are quadrable”) is equivalent to Method 2 of
De Methodis (§8.4.3). One finds here a statement of the fundamental theorem of
the calculus. Newton’s early proof, based on infinitesimals, of this fundamental
relation between a flowing surface and the ordinate that generates it was discussed
in section 8.2.6. For the reader’s convenience, I present it again by quoting from
De Quadratura:

Problem 2: To find the Curves that are Quadrable
Let ABC be the Figure [8.18] whose Area [t] is to be found; BC [y] an Ordi-
nate apply’d at Right Angles, and AB [z] the Abscissa. Produce CB to E that BE
may be = 1, and compleat the Parallelogram ABED; and the Fluxions of the Areas

Figure 8.18

Relations between abscissa (z = AB), ordinate (y = BC), and curvilinear area (t = ABC)
in Problem 2, from De Quadratura (1704). The flow of the ordinate BC generates the
surface ABC. Newton proved that ṫ/ż = y/1. This becomes ṫ = y for ż = 1. Source:
Newton, Analysis per Quantitatum (1711), p. 48. Courtesy of the Biblioteca Universitaria
di Bologna.

75 Newton, Mathematical Works (1964), 1, p. 144. See Newton, Analysis per Quantitatum (1711),
p. 44.
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ABC, ABED will be as BC to BE: Therefore take any Equation by which the
Relation of the Areas may be determined, and thence will be given the Relation of
the Ordinates BC and BE.76

As in De Methodis, Newton’s strategy consisted in applying the direct method to
equations involving z and t in order to determine the relation between z and y, that
is, in order to determine the curves that are “exactly quadrable.” In Leibnizian
terms, the foundation of this quadrature technique is the inverse relation between
differentiation and integration.

A simple example Consider:

t = zθ(1 + z)λ, (8.47)

where θ and λ are integer or fractional.77 Assuming that the ordinate EBC flows
uniformly, that is, ż = 1, one has

ṫ

ż
=

y

1
= [θ + (θ + λ)z]zθ−1(1 + z)λ−1. (8.48)

Now suppose that one must find the area t of the surface under the curve of equation

y = (3 +
7
2
z)z2(1 + z)−1/2. (8.49)

Equation (8.49) can be reduced to the form of equation (8.48) by setting θ − 1 = 2
and λ − 1 = −1/2, that is, θ = 3 and λ = 1/2. A lucky coincidence results:

θ + (θ + λ)z = 3 +
7
2
z. (8.50)

Thus one can state that

t = z3(1 + z)1/2. (8.51)

This curve is indeed “exactly, or geometrically, quadrable.”

76 Note that Newton considered the parallelogram of side AD = 1 in order to state a proportion
in which ratios are established between geometrical magnitudes of equal dimensionality. Newton,
Mathematical Works (1964), 1, p. 144. See Newton, Analysis per Quantitatum (1711), p. 48.
77 We take it from Dupont, Appunti di Storia di Analisi Infinitesimale (1981–82), 2, p. 539.
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Theorem 1 More generally, in Theorem 1, Newton considers curves whose area t
is78

t = zθRλ, (8.52)

where R = e + fzη + gz2η + hz3η + · · · . Therefore,

ṫ = θżzθ−1Rλ + λzθṘRλ−1 = zθ−1Rλ−1(θżR + λzṘ). (8.53)

But Ṙ = ηfżzη−1 + 2ηgżz2η−1 + 3ηhżz3η−1 + · · · . Therefore, the curve whose area
is equal to equation (8.52) has ordinate y equal to

y =
ṫ

ż
= zθ−1Rλ−1[θe+ f(θ +λη)zη + g(θ +2λη)z2η +h(θ +3λη)z3η + · · · ]. (8.54)

Theorem 3 An important result is offered in Theorem 3, a generalization of the
prime theorem (§8.5.1).79 Let

R = e + fzη + gz2η + hz3η + · · · . (8.55)

Further, set r = θ/η, s = r + λ, t = s + λ, v = t + λ, . . . . Then the area t under
the curve

y = zθ−1Rλ−1(a + bzη + cz2η + dz3η + · · ·) (8.56)

is

t = zθRλ

(
a/η

re
+

b/η − sfA

(r + 1)e
zη +

c/η − (s + 1)fB − tgA

(r + 2)e
z2η +

d/η − (s + 2)fC − (t + 1)gB − vhA

(r + 3)e
z3η + · · ·

)
,

where each A, B, C . . . is the coefficient of the preceding power of z, namely,
A = (a/η)/(re), B = (b/η − sfA)/((r + 1)e), etc.80

The procedure followed in order to prove Theorem 3 is the method of undeter-
mined coefficients (figure 8.19). Newton sought the area of the curve with ordinate
(8.56) in the form

t = zθRλ(A + Bzη + Cz2η + Dz3η + · · ·). (8.57)

78 Newton, Analysis per Quantitatum (1711), p. 48.
79 Newton, Analysis per Quantitatum (1711), pp. 49–50.
80 Newton, Analysis per Quantitatum (1711), p. 49 = Mathematical Works (1964), 1, p. 145.
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Figure 8.19

Demonstration of Theorem 3 of De Quadratura. Newton tabulated the partial areas (on the
right) and calculated their ordinates as their first fluxions (on the left). The series on the
left must be equal to series (8.56). By equating the coefficients one gets θeA = a. The next
step consists in substituting A = (a/η)/(re), equating the coefficients, and determining
B. Source: Newton, Analysis per Quantitatum (1711), p. 50. Courtesy of the Biblioteca
Universitaria di Bologna.

Newton next considered the partial areas AzθRλ, Bzθ+ηRλ, Czθ+2ηRλ, Dzθ+3ηRλ,
etc. From the partial areas (by means of the direct method of fluxions) he calculated
their respective ordinates, whose sum must be equal to the given expression (8.56)
zθ−1Rλ−1(a+ bzη + cz2η + dz3η + · · ·). In other words, Newton obtained two power
series that must be equal and equated the coefficients of the equal powers in η (see
figure 8.19). He thus obtained a system of equations in e, f , g, . . . (the coefficients
of R), a, b, c, . . . , and A, B, C, . . . , which can be solved in order to determine A, B,
C, . . . . Note that it is the inverse relation between differentiation and integration
demonstrated in Problem 2 that justifies this procedure.81

A more advanced example In most cases the application of Theorem 3 leads to a
calculation of the area as an infinite series. In a few instances, however, the series
terminates. Newton gave the following application of Theorem 3.82 Let

y =
3k − lz2

z2
√

kz − lz3 + mz4
; (8.58)

81 The reader interested in the details of the calculation necessary to prove Theorem 3 can consult
John Stewart’s commentary in Newton, Two Treatises (1745), pp. 91–7.
82 Newton, Analysis per Quantitatum (1711), pp. 50–1.
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this may be written as

y = (3k − lz2)z−5/2(k − lz2 + mz3)−1/2. (8.59)

In this case one reduce to (8.56) by setting, for the coefficients of S, a = 3k, b = 0,
c = −l, d = e = f = · · · = 0; for the coefficients of R, e = k, f = 0, g = −l, h = m,
i = l = m = · · · = 0; and finally θ = −3/2, λ = 1/2, η = 1. The area will be given
in finite terms by

t = −2

√
k − lz2 + mz3

z3
. (8.60)

As was often the case, Newton assumed that the initial conditions were such that the
constant of integration is zero.83 He also noted that the area is negative because it
is “adjacent to the absciss produced beyond the ordinate.”84 Yet, finite quadratures
are by no means the rule. In general, the quadrature will be given by an infinite
series.

8.5.3 The Style of De Quadratura

In concluding this section, I would like to emphasize how general the results on
quadratures (namely, integration) reached by Newton in De Quadratura actually
are. Newton was clearly aiming at expressing results on quadratures in general
symbolical terms. Particularly notable is the use of symbols like R for infinite
power series. Newton did not illustrate his rules by means of examples, as in
De Methodis, but rather provided general quadrature theorems concerning ample
classes of fluents. Newton’s methods allow the integration of all rational functions.
It seems to me that in writing De Quadratura, Newton was deliberately aiming to
achieve a level of generality and deductive order that went beyond the heuristic level
of his previous writings on the subject. While De Quadratura was published as an
appendix to the Opticks, the more heuristic De Methodis was left in manuscript
form during Newton’s lifetime. Newton preferred to present to the public at large
his more general and abstract treatise on quadratures, rather than his rich but
unsystematic method of fluxions.

This said, it should be added that the theorems of De Quadratura are statements
achieved via Wallisian induction. Newton made this point clear:

[A]t the start of my mathematical studies I first derived particular quadratures and
then by induction arrived at general cases.85

83 Newton considered also the case y = z−2(−l + 3kz−2)(m − lz−1 + kz−3)−1/2.
84 Newton, Two Treatises (1745), p. 11.
85 MP, 7, p. 67.
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Newton’s project to transform the method of quadratures into a theory was stillborn.
This should not be seen as a failure: the integral calculus was, and still is to a
certain extent, a matter of art rather than science, a matter of guesswork rather
than of algorithmic deduction. One might wonder whether Newton, always careful
to meet the high standards of certainty of the ancient synthesis, would have printed
his treatise on quadratures had he not been involved in priorities disputes with
Gregory and especially with Leibniz (see part VI).

8.6 Methodus Differentialis

Since I am dealing with methods for the squaring of curves, a brief mention should
be made of the method for the approximation of areas that Newton developed in
the mid-1690s in a short treatise entitled “Of Quadrature by Ordinates” in the
context of his studies on interpolation.86 The idea behind this method is that by
calculating the n + 1 values yi acquired by a fluent [y = f(x)] at n + 1 isolated
points corresponding to abscissae xi (i = 1, 2, . . . , n + 1), it is possible to construct
“a curve of parabolic kind” [p(x) = a0 +a1x+a2x

2 + . . . +anxn ] which interpolates
the fluent [y(xi) = p(xi) for i = 1, 2, . . . , n+ 1]. The area will subsequently be easy
to calculate by approximation as the area of the surface subtended by the curve of
parabolic kind (figure 8.20).

In Newton’s words:

To square to a close approximation any curvilinear figure whatever, some number
of whose ordinates can be ascertained.

Through the end-points of the ordinates draw a curve of parabolic kind with the aid
of the preceding problems [the interpolation formulas of Methodus Differentialis].
For this will bound a figure which can always be squared, and whose area will be
equal to the area of the figure proposed with close approximation.87

The Newton-Cotes formula originates from this research. Newton’s work on inter-
polation dates from 1676 and was partly published in Lemma 5, Book 3, of the
Principia; a full version appeared as Methodus Differentialis in the collection of
mathematical essays edited by William Jones in 1711.88

86 Add. 3964.4, f. 21r, and Add. 3965.14, ff. 611r–612v, in MP, 7, pp. 690–9 and 700–2.
87 MP, 8, p. 253. “Figuram quamcunque Curvilineam quadrare quamproxime cujus Ordinatae
aliquot inveniri possunt. Per terminos Ordinatarum ducatur linea Curva generis Parabolici ope
Propositionum praecedentium. Haec enim figuram terminabit quae semper quadrari potest, et cu-
jus Area aequabitur Areae figurae propositae quamproxime.” Newton, Analysis per Quantitatum
(1711), p. 100 = MP, 8, p. 252.
88 Newton, Analysis per Quantitatum (1711), pp. 93–101. On Methodus Differentialis, see Fraser,
Newton’s Interpolation Formulas (1927) and Whiteside’s commentary in MP, 4, pp. 36–51.
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Figure 8.20

Proposition 4 from Methodus Differentialis (1711). Here Newton sought a “geometrical
curve of parabolic kind” passing through a finite (either even or odd) number n of points
B, B2, B3, . . . Bn. In the previous propositions the abscissae A, A2, A3, . . . An were
assumed to be equally spaced, a condition that is now done away with. In Propositions
5 and 6 Newton deployed interpolations in order to achieve approximate quadratures.
Source: Newton, Analysis per Quantitatum (1711), p. 97. Courtesy of the Biblioteca
Universitaria di Bologna.

8.7 A Question of Style

Here I consider some general characteristics of the early treatises on the analytical
method that were discussed in chapters 7 and 8.

In the time span from 1666 to 1671, Newton produced some well-structured
and carefully written treatises on the new analysis. The October 1666 tract on
fluxions and even more so De Analysi and De Methodis have the form of publishable
texts: they are addressed to readers. In these very early years Newton not only
jotted down personal notes or results to be briefly communicated to peers. In
the case of these treatises, he rather didactically and systematically elaborated
very comprehensive treatments on series and fluxions. He did not assume that
readers were particularly advanced in mathematics. Such a mature and didactic
style is quite extraordinary for a young man and might be revealing of Newton’s
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academic ambitions to become a suitable substitute for Barrow, the first Lucasian
Professor.

Newton explicitly conceived his treatises as part of a genre that can broadly be
associated with the British analytical school of Oughtred and Wallis. The analytical
method was presented through a series of specific and increasingly difficult examples.
In these early works Newton’s method was not yet a theory but rather a panoply
of techniques ultimately justified by their success in resolving problems concerning
curvilinear figures. Most of these techniques had no firm foundation. The attempts
to provide demonstrations that surfaced from time to time in Newton’s work were
far outnumbered by the folios in which the desire to show their effectiveness was
given pride of place. An example is the use of power series, which is so important in
the analytical method. Neither the binomial series nor the more elaborate methods
for the resolution of affected equations were given a proper demonstration. These
results were achieved via inductions, analogies, and extrapolations of Wallisian ori-
gin. The analytical parallelogram was nothing more than a paper tool explained by
testing its successful functioning, that is, by placing asterisks and rulers associated
with increasingly difficult polynomial equations. It was a graphic aid that allowed
achieving fractional power series expansions whose convergence was to be verified
by hand. The same algorithmic approach characterized the extraordinary variety
of methods for squaring curves that Newton proposed in the long catalogues of De
Methodis.

The man who so carefully and extensively elaborated such heuristic, pragmat-
ically successful, yet ungrounded methods was the same natural philosopher who
in 1670 wished to inject certainty into natural philosophy via the use of geometry.
Early on in his career, roughly from the mid-1670s, he began to portray himself
as an erudite Church historian and chronologist, a theologian and polyhistor whose
style was modeled on late-Renaissance philology. Probably in a later period Newton
began to mix his anti-Cartesianism with a strong conviction about the superiority
of the pre-Aristotelian ancients over the moderns. These cultural orientations, des-
tined to shape Newton’s personality for years to come, increasingly distanced him
from the analytical genre of his early treatises on the method of series and fluxions.
This divergence between the style of Newton’s early treatises on the new analysis
and the style of his nonmathematical researches helps explain his interest in the
analysis of the ancient geometers (see chapter 5) as well as his attempts to develop
a synthetic version of the method of fluxions (see chapter 9).



9 The Synthetic Method of Fluxions

[The method] based on the genesis of surfaces by their motion of flow appears a more
natural approach . . . which will come to be still more perspicuous and resplendent
if certain foundations are, as is customary with the synthetic method, first laid.

—Isaac Newton, 1671

The method of first and ultimate ratios which is set out near the beginning of
the first book [of the Principia] in eleven lemmas is nothing other than a part of
the method of fluxions ad moments synthetically demonstrated; and these lemmas
are premised in order that with their benefit the following propositions found by
means of the analytical method of fluxions and moments could be synthetically
demonstrated. The elements of the method of fluxions and moments are given
synthetic proof in Lemma II of Book 2.

—Isaac Newton, late 1710s

9.1 Synthetic Quadratures in De Methodis

9.1.1 Demonstrations with No Algebraic Calculation

The procedures considered in chapter 8 are analytical. But recall that, from New-
ton’s point of view, analysis (resolution) did not provide a solution. After the res-
olutive, analytical stage, a geometrical construction or synthetic stage must follow.
Thus, Newton developed a synthetic method of fluxions.

At the beginning of De Methodis, Newton somewhat parenthetically mentioned
the need to provide a synthetic demonstration “from proper foundations” for the
inverse method of fluxions. In a section devoted to the inverse problem (Problem 2),
he wrote,

Epigraph sources: (1) MP, 3, pp. 283, 331. “sed magis naturalis videtur quae genesi superficierum
ex fluendi motu innititur. . . . quae magis perspicua et ornata evadet si fundamenta quaedam pro
more methodi syntheticae praesternantur.” MP, 3, pp. 282, 530. (2) MP, 8, p. 447. “Methodus
rationum primarum et ultimarum quae sub initio libri primi in Lemmatibus XI exhibetur, nihil
aliud est quam pars methodi fluxionum et momentorum synthetice demonstrata, & praemittuntur
haec Lemmata ut eorum beneficio Propositiones sequentes per methodum analyticam fluxionum
et momentorum inventae synthetice demonstrari possent. Elementa methodi fluxionum & momen-
torum demonstrantur synthetice in Lem. II Lib, II.” MP, 8, p. 446.
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We have at last done with the problem [Problem 2] but its demonstration still
remains. Not (in such mass of material) to digress too much in deriving one syn-
thetically from proper foundations, it should be sufficient to indicate it briefly by
analysis.1

Recall that the resolution of Problem 2 allows the determination of the areas of
curvilinear figures, that is, the resolution of the problem of the quadrature of curves.
In De Methodis, Newton developed several algebraic analytical methods of quadra-
ture (§8.4).

After such a long and detailed analytical treatment of the problem of quadrature
Newton proposed some synthetic constructions. He wrote,

After the area of some curve has thus been found, careful consideration should be
given to fabricating a demonstration of the construction which as far as permissible
has no algebraic calculation, so that the theorem embellished with it may turn out
worthy of public utterance. A general method of demonstration exists, indeed, and
this I shall attempt to illustrate by the following examples.2

Newton’s synthetic constructions and demonstrations from first principles are Bar-
rovian in character: they resemble the theorems on quadratures found in Barrow’s
Lectiones Geometricae.

9.1.2 The Synthetic Quadrature of the Cissoid

Here I consider Newton’s synthetic quadrature of the cissoid (Problem 9, Example 3,
of De Methodis), whose analytical resolution was discussed in section 8.4.5, in order
to provide a direct comparison with Barrow’s procedures (§8.1.6). The problem is
how to square the cissoid AeE, that is, how to determine the area of the surface
ACEeA (figure 9.1). Because of the defining property of the cissoid, CD, AC,
and CE are in continued proportion, where ADQ is a circle. Newton proceeded as
follows:

Proof of the construction of Example 3. Let DEe∂ be a moment of the surface
AHDEeA with AD∂A the contemporaneous moment of the segment ADHA. Draw

1 MP, 3, p. 113. “Problema tandem confecimus sed demonstratio superest. Et in tanta rerum
copia ne per nimias ambages e proprjis fundamentis Synthetice derivetur, sufficiat per Analysin
sic breviter indicare.” MP, 3, p. 112.
2 MP, 3, p. 279. “Postquam Curvae alicujus area sic inventa fuerit; de constructionis demon-
stratione consulendum est, quacum sine Computo Algebraico quantum liceat contexta ornetur
Theorema ut evadat publicae notitiae dignum. Estque demonstrandi methodus generalis quam
sequentibus exemplis illustrare conabor.” MP, 3, p. 278. I have slightly altered Whiteside’s
translation.
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Figure 9.1

Cissoid AeE, from De Methodis (1671). Source: Newton, Opuscula Mathematica, Philo-
sophica et Philologica (1744), 1, Tab. VII. Courtesy of the Biblioteca Angelo Mai (Ber-
gamo).

the radius DK and let ∂e meet AQ in c, and there is3

Cc : D∂ = DC : DK.

Further, DC : QA (or 2DK) = AC : DE, so that4

Cc : 2D∂ (= DC : 2DK) = AC : DE,

and Cc×DE = 2D∂×AC. Now to the moment D∂ of the circumference extended
in a straight line (that is, to the circle tangent) let fall the perpendicular AI, and
AI will then be equal to AC, so that5

2D∂ × AC (= 2D∂ × AI) = 4 triangle AD∂.

3 Here Newton deployed the similarity between the triangle DCK and the infinitesimal triangle
whose sides are the “moment D∂ of the circumference AD,” the moment Cc of the abscissa AC,
and the moment of the ordinate DC.
4 This proportionality is a consequence of the defining property of the cissoid. In symbols: DE =
DC + CE =

√
az − z2 + z2/

√
az − z2 = az/

√
az − z2 = QA × AC : DC, where (§8.4.5) AQ = a

and AC = z.
5 The right triangles IDA and CDA are congruous; therefore AI = AC. Further, twice the area
of the infinitesimal triangle AD∂ is equal to its base D∂ times its height AI.
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Hence 4 triangle AD∂ = Cc × DE = moment DEe∂. Therefore each moment of
the space AHDEeA is four times the contemporaneous one of the segment ADHA,
and consequently the total space is four times the total segment [i.e., 4× segment
ADHA = area AHDEeA]. Q.E.D.6

The result coincides with the one achieved via algebraic fluxional analysis, yet it is
only after such a geometrical construction, free of algebraic calculation, that Newton
felt justified in writing “Q.E.D.”

A few comments are in order. First, Newton here followed the canon of analysis
and synthesis. In the synthesis he delivered a geometrical demonstration of a result
that he had previously achieved via fluxional analysis. Second, Newton made it
clear that such constructions and their demonstrations must be given by avoiding
algebraic calculations. Third, only these geometrical constructions and demonstra-
tions were, in his opinion, worthy of public utterance. Fourth, Newton’s synthetic
approach to quadratures was modeled upon Barrovian exemplars. Finally, in the
synthetic quadratures Newton deployed moments (infinitesimal magnitudes).

On this last point, the equivalence between the area AHDEeA and four times
the area of segment ADHA is proven by showing that the moment of AHDEeA is
four times the contemporary moment of ADHA, where a moment is the increase
of the surface generated by the flow of the ordinates DE and AD acquired in an
infinitesimal interval of time as the point on the circumference flows from D to ∂.
In Newton’s demonstration it was essential to regard the ratio of the rectilinear
area Cc × DE to the curvilinear area DEe∂ as a “ratio of equality,” since “their
difference . . . is infinitely less than they.” Newton wrote,

In demonstrations of this sort it should be observed that I take quantities as equal
whose ratio is one of equality. And a ratio of equality is to be regarded as one
which differs less from equality than any ratio of inequality [which] can possibly be
assigned. Thus . . . I set the rectangle [Cc × DE] equal to the space [DEe∂] since
(because their difference is infinitely less than they and so, in regard to them, zero)
they have no ratio of inequality.7

Infinitesimals also occur when the moment D∂ of the circumference is equated with
a portion of the tangent.

As this example clearly shows, in writing De Methodis, Newton found himself in
an uncomfortable position when seeking to abandon the heuristic analytical stage, in
favor of demonstrative and “resplendent” constructions. The new analysis seemed
to require a geometrical synthesis that was not contemplated by tradition, since
infinitesimals occurred in its demonstrations. How could this new synthesis be
justified? Newton gave this question serious attention.

6 MP, 3, p. 281.
7 MP, 3, p. 283. I have adapted this statement to Example 3.
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Already in De Methodis there is a first attempt to formulate a reply:

I have here used this method of proving that curves are equal or have a given ratio
by means of the equality or given ratio of their moments since it has an affinity to
the ones usually employed in these cases. However, that based on the genesis of
surfaces by their motion of flow appears a more natural approach . . . one which
will come to be still more perspicuous and resplendent if certain foundations are,
as is customary with the synthetic method, first laid.8

This “more natural approach” was first attempted in an Addendum to De Methodis,
which Newton probably wrote in 1671; it was further elaborated in “Geometria
Curvilinea,” in Section 1, Book 1, of the Principia, and in De Quadratura.9 In his
mature years, Newton sometimes referred to this approach as the synthetic method
of fluxions, as opposed to the analytical method of fluxions.10

9.2 “Geometria Curvilinea”

Newton perfected his attempts to formulate a synthetic method of fluxions in a
treatise entitled “Geometria Curvilinea,” which he composed in about 1680. In the
Addendum to De Methodis he had already begun to develop definitions, axioms,

8 MP, 3, pp. 283, 331. “Hac methodo probandi curvas per aequalitatem vel datam rationem
momentorum aequales esse vel datam relationem habere hic usus sum quod cum methodis in his
rebus usitatis affinitatem habeat; sed magis naturalis videtur quae genesi superficierum ex fluendi
motu innititur. . . . quae magis perspicua et ornata evadet si fundamenta quaedam pro more
methodi syntheticae praesternantur.” MP, 3, pp. 328, 329.
9 The manuscript entitled by its editor “Addendum on the Theory of Geometrical Fluxions” is
Add. 3960.4, ff. 33–46 = MP, 3, pp. 328–53. The “Geometria Curvilinea” is Add. 3963.7, f.
46r/3960.5, ff. 49–52/3963.7, ff. 48v–61v = MP, 4, pp. 420–85.
10 Newton introduced this distinction when discussing the occurrence in the Principia of the ana-
lytical and synthetic methods of fluxions: “The synthetic method of fluxions occurs widespread in
the following treatise [the Principia], and I have set its elements in the first eleven lemmas of the
first book and in Lemma II of the second. Specimens of the analytical method occur in Proposition
XLV and the Scholium to Proposition XCIII of Book 1, and in Propositions X and XIV of Book
2. It is, furthermore, described in the scholium to lemma II of Book 2. And from their composed
demonstrations, also, the analysis by which the propositions were found out can be learnt by go-
ing backwards.” MP, 8, pp. 455–7. Translation by Whiteside. Another interesting document is a
loose catalogue entitled “De methodo fluxionum” inserted in a copy of the Principia that was in
Newton’s possession. “De methodo fluxionum. Lib. I. Sect. I. est de methodo rationum primarum
et ultimarum . . . haec est methodus momentorum synthetica. Eadem si Analytice tractetur eva-
dit methodus momentorum Analytica, quam etiam methodum fluxionum voco. Lib. I. sect XIII
Prop. 93. Schol. pag 202. Methodus solvendi Problemata per serie & momenta conjunctim ex-
ponitur. Lib. II. Lem. II. pag. 224. ostendo quomodo fluentium ex lateribus per multiplicatonem
divisionem vel extractionem radicum genitarum momenta et fluxiones inveniri possunt. Lib. II.
Prop. 19 [for 14]. pag 251 argumentum procedit per differentiam momentorum, ideoque ideam
tunc habui momentorum secondorum, et primus hanc ideam in lucem edidi.” Newton, Principia,
pp. 793–4. See part IV for discussion of Newton’s use of fluxions in the Principia.
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and postulates concerning geometrical magnitudes varying by continuous flow.11 As
Newton observed in “Geometria Curvilinea” (where the axiomatization attempted
in the Addendum was further elaborated), Euclid’s Elements are “scarcely adequate
for a work dealing with curves,” his being the “foundations of the geometry of
straight lines.”12 The Elements were not enough for Newton’s purposes.

Newton observed that the moderns had attempted to trespass the boundaries of
Euclidean geometry by adopting a new approach: in dealing with curvilinear figures
they had introduced infinitesimals. Newton no longer wished to follow the moderns.
In the opening of “Geometria Curvilinea,” he chastised the “men of recent times”
who, by uniting geometry and arithmetic, express themselves in an “intolerably
roundabout way”:

Those who have taken the measure of curvilinear figures have usually viewed them
as made up of infinitely many infinitely small parts; I, in fact, shall consider them
as generated by growing, arguing that they are greater, equal or less according
as they grow more swiftly, equally swiftly or more slowly from their beginning.
And this swiftness of growth I shall call the fluxion of a quantity. So when a line is
described by the movement of a point, the speed of the point—that is, the swiftness
of the line’s generation—will be its fluxion. I should have believed that this is the
natural source for measuring quantities generated by continuous flow according to
a precise law, both on account of the clarity and brevity of the reasoning involved
and because of the simplicity of the conclusions and the illustrations required.13

The demonstrations in “Geometria Curvilinea” are not based on infinitesimals;
rather, they depend on the determination of the limits of ratios and sums of vanish-
ing magnitudes. Typically, Newton needed to evaluate the limit to which the ratio
between two geometrical magnitudes tends when they vanish simultaneously. He
therefore distanced himself from the use of infinitesimals that had surfaced in pre-
vious works of his like De Analysis and De Methodis (§8.3.5). After 1680, Newton
consistently followed an approach based on limits rather than on infinitesimals, an
approach that was nevertheless implicit in many of his early procedures, especially
in the Addendum to De Methodis.

Newton systematically developed the limit approach, the method of first and
ultimate ratios, in the Principia and De Quadratura. The following sections discuss

11 For Newton’s attempts at axiomatization of the geometry of flowing magnitudes, see MP, 3, p.
330, and MP, 4, pp. 424–8.
12 MP, 4, p. 423.
13 MP, 4, p. 423. “Qui curvilineas figuras dimensi sunt, eas tamquam ex partibus infinite parvis
& multis constantes contemplari solent. Ego vero eas considerabo tanquam crescendo generatas,
argumentatus eas majores, aequales, vel minores esse prout ab initio celerius, aeque celeriter,
vel tardius crescunt. Et hanc crescendi celeritatem vocabo fluxionem quantitatis. Sic ubi linea
describitur per motum puncti, velocitas puncti hoc est celeritas generationis lineae erit fluxio ejus.
Genuinum hunc fontem esse mensurandi quantitates continuo fluxu juxta certam legem generatas
crediderim, tum ob perspicuitatem, & brevitatem ratiocinij, tum ob simplicitatem conclusionum
& schematum quae requiruntur.” MP, 4, p. 422.
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the first section of the Principia, where the method of first and ultimate ratios is
presented (§9.3); Lemma 2, Book 2, of the Principia, where Newton published some
propositions of “Geometria Curvilinea” (§9.4); and the beginning of De Quadratura,
implementing first and ultimate ratios (§9.5).

9.3 First and Ultimate Ratios in the Principia

Section 1, Book 1, of the Principia is devoted to the method of first and ultimate
ratios sketched in portions of De Methodis and in “Geometria Curvilinea.”14 In
that Section, consisting of eleven Lemmas and a Scholium, there is a clear state-
ment about the use of infinitesimals that resonates with “Geometria Curvilinea.”
Infinitesimals, Newton stated, are to be understood as a shorthand for “evanescent
divisibles” (finite magnitudes tending to zero, as one would say today):

[W]henever in what follows I consider quantities as consisting of particles or when-
ever I use curved line-elements in place of straight lines, I wish it always to be
understood that I have in mind not indivisibles but evanescent divisibles, and not
sums and ratios of definite parts but the limits of such sums and ratios, and that
the force of such proofs always rests on the method of the preceding lemmas.15

Newton pointed out that the method of first and ultimate ratios rests on the fol-
lowing Lemma 1:

Quantities, and also ratios of quantities, which in any finite time constantly tend
to equality, and which before the end of that time approach so close to one another
that their difference is less than any given quantity, become ultimately equal.

Newton’s ad absurdum proof runs as follows:

If you deny this, let them become ultimately unequal, and let their ultimate differ-
ence be D. Then they cannot approach so close to equality that their difference is
less than the given difference D, contrary to the hypothesis.16

14 On the method of first and ultimate ratios, see De Gandt, “Le Style Mathématique des Principia
de Newton” (1986); Pourciau, “The Preliminary Mathematical Lemmas of Newton’s Principia”
(1998).
15 Newton, Principles, pp. 441–2. “Proinde in sequentibus, si quando quantitates tanquam ex
particulis constantes consideravero, vel si pro rectis usurpavero lineolas curvas; nolim indivisibilis,
sed evanescentia divisibilis, non summas et rationes partium determinatarum, sed summarum et
rationum limites semper intelligi; vimque talium demonstrationum ad methodum praecedentium
lemmatum semper revocari.” Principia, p. 87.
16 Newton, Principles, p. 433. “Quantitates, ut et quantitatum rationes, quae ad aequalitatem
tempore quovis finito constanter tendunt, et ante finem temporis illius propius ad invicem accedunt
quam pro data quavis differentia, fiunt ultimo aequales. Si negas; fiunt ultimo inaequales, et sit
earum ultima differentia D. Ergo nequeunt propius ad aequalitatem accedere quam pro data
differentia D: contra hypothesin.” Principia, p. 73.
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To regard this principle as an anticipation of Cauchy’s theory of limits would cer-
tainly be a mistake, since Newton’s theory of limits is referred to a geometrical
rather than a numerical model. The objects to which Newton applied his synthetic
method of fluxions or method of first and ultimate ratios are geometrical quantities
generated by continuous flow. A typical mathematical problem occurring in the
Principia is the study of the limit to which the ratio of two geometrical fluents
tends when they simultaneously vanish (Newton used the expression the “limit of
the ratio of two vanishing quantities”).

For instance, in Lemma 7, Newton proved that in a given curve (figure 9.2)

the ultimate ratios of the arc [ACB], the chord [AB], and the tangent [AD] to one
another are ratios of equality.17

To convey an idea of Newton’s method of first and ultimate ratios, I consider his
demonstration of Lemma 7 in detail.

This demonstration has the following structure. Consider two geometrical quan-
tities X and Y that vanish simultaneously when points A and B come together.
When the two quantities are finite, the ratio can in principle be determined by
standard geometrical techniques. The problem is how to determine the limit of the
ratio when B approaches point A. Newton constructed two other quantities, x and
y, which always remain finite, so that X/Y = x/y. As B tends to A, the ratio X/Y
tends to 0/0, but the ratio x/y tends to a finite value, which is to be taken as the
first or ultimate ratio of the vanishing quantities X and Y .

Here is Newton’s proof of Lemma 7:

For while point B approaches point A, let AB and AD be understood always to be
produced to the distant points b and d; and let bd be drawn parallel to secant BD.

Figure 9.2

Limiting ratio of chord, tangent, and arc. Source: Newton, Philosophiae Naturalis Prin-
cipia Mathematica (1726), p. 31. Courtesy of the Biblioteca Angelo Mai (Bergamo).

17 Newton, Principles, p. 436.
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And let arc Acb be always similar to arc ACB. Then as points A and B come
together, the angle dAb will vanish, by the preceding Lemma, and thus the straight
lines Ab and Ad (which are always finite) and the intermediate arc Acb will coincide
and therefore will be equal. Hence, the straight lines AB and AD and the interme-
diate arc ACB (which are always proportional to the lines Ab and Ad and the arc
Acb respectively) will also vanish and will have to one another an ultimate ratio of
equality.18

Further, in Lemma 2, Newton showed that the area of a curvilinear surface
AabcdE (figure 9.3) can be approached as the limit of the areas of rectilinear sur-
faces, inscribed AKbLcMdD or circumscribed AalbmcndoE, as the number of com-
ponent rectangles tends to infinity. Each rectilinear surface is composed of a finite
number of rectangles with equal bases AB, BC, CD, etc. The proof—patterned
on Barrow’s example (§8.1.7)—is magisterial in its simplicity. Its structure can still
be found in present-day calculus textbooks in the more general and abstract defi-
nition of the Riemann integral. It consists in showing that the difference between
the areas of the circumscribed and inscribed figures tends to zero, as the number
of rectangles is increased indefinitely. Indeed, this difference is equal to the area of
rectangle ABla, which “because its width AB is diminished indefinitely, becomes
less than any given rectangle.”19

Figure 9.3

Approximating curvilinear areas. Source: Newton, Philosophiae Naturalis Principia Math-
ematica (1726), p. 28. Courtesy of the Biblioteca Angelo Mai (Bergamo).

18 Newton, Principles, p. 436.
19 Newton, Principles, p. 433.
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In Lemma 2 and Lemma 7, Newton provided proofs of two assumptions that
were customary in seventeenth-century geometrical practice, for it was often as-
sumed that a curve can be conceived as a polygonal consisting of infinitely many
infinitesimal sides (the tangent to a point being the prolongation of one of the in-
finitesimal sides) and that a curvilinear surface can be conceived as composed of
infinitely many infinitesimal components. These assumptions can be seen at work
in Newton’s synthetic quadrature of the cissoid (§9.1). According to Newton, the
method of first and ultimate ratios provided a foundation for such infinitesimal
procedures. In “Geometria Curvilinea,” the Principia, and De Quadratura, curves
are smooth, and curvilinear surfaces are not seen as constituted by infinitesimal
elemental surfaces.

The mathematical practice of the synthetic method, however, allowed the use
of infinitesimals, since, Newton claimed, one could always reframe infinitesimalist
proofs in terms of sums and ratios of vanishing quantities. The quadrature of the
cissoid can stand as it is in De Methodis. The important thing here is that Newton’s
discourse in terms of moments has to be understood as being grounded on the theory
of limits.

Since Newton downgraded infinitesimals, or moments, as heuristic tools that
have to be grounded on limits, he needed to justify the limits themselves. In order
to do so, Newton made use of geometrical and kinematical intuition. It is interesting
to quote a pronouncement from Section 1 at some length:

It may be objected that there is no such thing as an ultimate proportion of vanishing
quantities, inasmuch as before vanishing the proportion is not ultimate, and after
vanishing it does not exist at all. But by the same argument it could equally be
contended that there is no ultimate velocity of a body reaching a certain place at
which the motion ceases; for before the body arrives at this place, the velocity is
not the ultimate velocity, and when it arrives there, there is no velocity at all. But
the answer is easy; to understand the ultimate velocity as that with which a body
is moving, neither before it arrives at its ultimate place and the motion ceases,
nor after it has arrived there, but at the very instant when it arrives, that is, the
very velocity with which the body arrives at its ultimate place and with which
the motion ceases. And similarly the ultimate ratio of vanishing quantities is to
be understood not as the ratio of quantities before they vanish or after they have
vanished, but the ratio with which they vanish.20

20 Newton, Principles, p. 442. “Objectio est quod quantitatum evanescentium nulla sit ultima
proportio; quippe quae, antequam evanuerunt, non est ultima; ubi evanuerunt, nulla est. Sed et
eodem argumento aeque contendi posset nullam esse corporis ad certum locum, ubi motus finiatur,
pervenientis velocitatem ultimam: hand enim, antequam corpus attingit locum, non esse ultimam;
ubi attingit, nullam esse. Et responsio facilis est: per velocitatem ultimam intelligi eam, quam
corpus movetur, neque antequam attingit locum ultimum et motus cessat, neque postea, sed tunc
cum attingit; id est, illam ipsam velocitatem quâcum corpus attingit locum ultimum et quâcum
motus cessat. Et similiter per ultimam rationem quantitatum evanescentium, intelligendam esse
rationem quantitatum, non antequam evanescunt, non postea, sed quâcum evanescunt.” Principia,
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As has been observed, the notion of mathematical magnitudes as generated by
continuous flow in time provided two advantages that Newton greatly appreciated.
The first is that the limiting procedures that are deployed in determining tangents
and areas can be grounded on the continuity of motion, that is, it is possible to claim
that the limits determined by such procedures exist and are unique because of the
continuity of the generating motion. Further, the continuity observed in physical
motions makes it possible to conceive of mathematics as a language applicable to
the study of the natural world.

9.4 Lemma 2, Book 2, of the Principia

A more algorithmic approach to the direct method of fluxions can be found in
Lemma 2, Book 2, of the Principia. This lemma, as Whiteside observed, occupies
a somewhat incongruous position in the midst of Newton’s treatment of projectile
motion in resisting media. Its statement is used in the immediately subsequent
Propositions 8 and 9, where the calculation of the moment of a square AP 2 is needed.
This simple result was already deployed in Book 1. Whiteside documented the
dependence of Lemma 2 upon “Geometria Curvilinea,” some initial propositions of
which it reproduced (Propositions 3–10), as well as the Addendum to De Methodis.
Whiteside also surmised that Newton probably introduced this lemma as a reaction
to Leibniz’s recent publication (1684) of the differential calculus.21 In the Scholium
to Lemma 2, Newton mentioned his correspondence with Leibniz and the fact that
the latter had developed a method “which hardly differed from mine except in the
form of words and notations aand the concept of the generation of quantitiesa.”22

In Lemma 2 Newton wrote,

The moment of a generated quantity [genitum] is equal to the moments of each of
the generating roots multiplied continually by the exponents of the powers of those
roots and by their coefficients.23

The term genitum is here used to designate a fluent quantity increasing or de-
creasing by continual flux. It is a term that applies both to arithmetical and to
geometrical quantities. As in De Quadratura, Newton aimed at a formulation that
would encompass both algebraic and geometrical interpretation. A genitum, as one
knows from “Geometria Curvilinea,” should not be conceived as constituted by the
addition of infinitesimal parts but as generated by motion:

p. 87.
21 MP, 4, pp. 522–3, note 1.
22 aaAdded in the second edition of the Principia (1713). See Newton, Principles, p. 649.
23 Newton, Principles, p. 646. “Momentum genitae aequatur momentis laterum singulorum
generantium in eorundem laterum indices dignitatum & coefficientia continue ductis.” Principia,
p. 364.
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I call a Genitum every quantity that is, without addition or subtraction, generated
from any roots or terms: in arithmetic by multiplication multiplication, division, or
extraction of the root; in geometry by the finding either of products and roots or of
extreme and mean proportionals. Quantities of this sorts are products, quotients,
roots, rectangles, squares, cubes, square roots, cube roots, and the like. I here
consider these quantities as indeterminate and variable, and increasing or decreas-
ing as if by a continual motion or flux; and it is their instantaneous increments or
decrements that I mean by the word “moments,” in such a way that increments are
considered as added or positive moments, and decrements as subtracted and nega-
tive moments. But take care: do not understand them as finite particles! aFinite
particles are not moments, but the very quantity generated from the moments.a

They must be understood to be the just-now nascent beginning of finite magni-
tudes. For in this lemma the magnitude of moments is not regarded, but only their
first proportion when nascent.24

In his definition of moment Newton seems to echo what Wallis had written in A
Defense of the Treatise of the Angle of Contact, where one finds indivisibles defined
as inchoative or inceptive quantities, generative of finite magnitudes (§7.2).

Newton next stated several rules for the direct algorithm of fluxions. Whiteside’s
guess that Lemma 2 was a response to Leibniz seems confirmed not only by Newton’s
guarded criticism of the use of infinitesimals (which seems to characterize Leibniz’s
first publication on the differential calculus) but also by the algorithmic character
of these rules. In works like De Analysi and De Methodis, Newton had presented
the direct algorithm via application to a number of chosen, increasingly difficult
examples of fluents (§8.3). Here he aimed at generalizing the rules of the direct
method of fluxions in a way reminiscent of what Leibniz had achieved in “Nova
Methodus”:

Therefore the meaning of this Lemma is that if the moments of any quantities A, B,
C, . . . increasing or decreasing by a continual motion, or the velocities of mutation
which are proportional to these moments are called a, b, c, . . . then the moment
or mutation of the generated rectangle AB would be aB + bA, and the moment
of the generated solid ABC would be aBC + bAC + cAB, and the moments of

24 Newton, Principles, p. 647. aa is a variant introduced in the second (1713) edition. “Genitam
voco quantitatem omnem, quae ex lateribus vel terminis quibuscunque in arithmetica per multipli-
cationem, divisionem & extractionem radicum; in geometria per inventionem vel contentorum &
laterum, vel extremarum & mediarum proportionalium, sine additione & subductione generatur.
Ejusmodi quantitates sunt facti, quoti, radices, rectangula, quadrata, cubi, latera quadrata, latera
cubica, & similes. Has quantitates, ut indeterminatas & instabiles, & quasi motu fluxuve per-
petuo crescentes vel decrescentes, hic considero; & earum incrementa vel decrementa momentanea
sum nomine momentorum intelligo: ita ut incrementa pro momentis addititiis seu affirmativis,
ac decrementa pro subductitiis seu negativis habeantur. Cave tamen intellexeris particulas fini-
tas. Particulae finitae non sunt momenta, sed quantitates ipsæ ex momentis genitae. Intelligenda
sunt principia jamjam nascentia finitarum magnitudinum. Neque enim spectatur in hoc lemmate
magnitudo momentorum, sed prima nascentium proportio.” Principia, pp. 364–5.
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the generated powers A2, A3, A4, A
1
2 , A

3
2 , A

1
3 , A

2
3 , A−1, A−2, and A− 1

2 would be

2aA, 3aA2, 4aA3, 1
2
aA− 1

2 , 3
2
aA

1
2 , 1

3
aA− 2

3 , 2
3
aA− 1

3 , −aA−2, −2aA−3, and − 1
2
aA− 3

2

respectively. And generally, the moment of any power A
n
m would be

n

m
aA

n−m
m .

Likewise, the moment of the generated quantity A2B would be 2aAB + bA2, and
the moment of the generated quantity A3B4C2 would be 3aA2B4C2 +4bA3B3C2 +

2cA3B4C, and the moment of the generated quantity
A3

B2
or A3B−2 would be

3aA2B−2 − 2bA3B−3, and so on.25

In the following demonstration of Case 1 of Lemma 2, Newton made a famous
blunder. In his attempt to prove the rule for the product AB he stumbled into a
“momentous” mistake. It is interesting to note that neither in “Geometria Curvi-
linea” nor in the Addendum to De Methodis had he made this mistake (the faulty
reasoning had actually been crossed out).26 He wrote,

Case 1. Any rectangle as AB increased by a continual motion, when the halves
of the moments 1

2
a and 1

2
b, were lacking from the sides A and B, was A − 1

2
a

multiplied by B − 1
2
b, or AB − 1

2
aB − 1

2
bA + 1

4
ab, and as soon as the sides A and

B have been increased by the other halves of the moments; it comes out A + 1
2
a

multiplied by B + 1
2
b, or AB + 1

2
aB + 1

2
bA + 1

4
ab. Subtract the former rectangle

from this rectangle, and there will remain the excess aB + bA. Therefore by the
total increments a and b of the sides, there is generated the increment aB + bA of
the rectangle. Q.E.D.27

In the remaining Cases 2–6, Newton proved that the moment of An is naAn−1,

that of A−n is
−na

An+1
, that of A

m
n is

m

n
aA

m−n
n , and that of AmBn is maAm−1Bn +

nbBn−1Am. All these results are algorithmic and stated with a generality that
cannot be found in the treatment of Problem 1 of De Methodis.

In one of the interleaved copies of the Principia that Newton kept in his later
years he referred to Lemma 2 as “the foundation of a general method of which I
wrote [in 1671]”; he also argued that Lemma 2 “demonstrates synthetically” what
was “explained analytically” in De Methodis.28 But since the demonstrations of all
the cases considered in Lemma 2 depend upon the faulty demonstration of Case
1, Newton’s achievement cannot be said to have been satisfactory. Lemma 2 is
nevertheless a notable attempt to summarize the rules of the direct method of
fluxions in a compact and general form.

25 Newton, Principles, pp. 647–8.
26 MP, 3, pp. 330–5.
27 Newton, Principles, p. 648.
28 This note was probably written in 1714. MP, 3, pp. 525–6.
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Lemma 2 is completed by a Scholium, in which Newton referred to Leibniz’s
differential calculus. This Scholium played a significant role in Newton’s dispute
with Leibniz (see part VI).

9.5 Limits in De Quadratura

The method of first and ultimate ratios developed in “Geometria Curvilinea” and
in Section 1, Book 1, of the Principia, was also adopted in De Quadratura. When
Newton was preparing De Quadratura for publication as an appendix to the Opticks
(1704), he prefaced it with an introduction in which he gave a mature statement
of the method of first and ultimate ratios. These lines are often quoted in the
literature, particularly the pompous opening:

Mathematical quantities I here consider not as consisting of least possible parts, but
as described by a continuous motion. . . . These geneses take place in the reality of
physical nature and are daily witnessed in the motion of bodies. And in much this
manner the ancients, by drawing mobile straight lines into the length of stationary
ones, taught the genesis of rectangles.29

Here are summarized a few of Newton’s preferred ideas concerning the foundations
of the method of fluxions. Newton stated that he was not using infinitesimals
but rather conceiving magnitudes (fluents) as generated by continuous motion. He
added that mathematical fluents are analogous to real motions occurring in rerum
natura and that his method was akin to the ones employed by ancient authorities.
But while the ancients had used ad absurdum reasoning in order to prove proposi-
tions concerning curvilinear areas or volumes, Newton adopted his handier method
of limits.

De Quadratura is a highly symbolic work. Newton, however, claimed that al-
gebraic symbols should be understood, whenever possible, in terms of finite mag-
nitudes “visible to the eye” rather than in terms of infinitesimals. Indeed, in the
method of first and ultimate ratios, finite geometrical magnitudes are associated
with vanishing magnitudes:

For fluxions are finite quantities and real, and consequently ought to have their own
symbols; and each time it can conveniently so be done, it is preferable to express
them by finite lines visible to the eye rather than by infinitely small ones.30

29 MP, 8, p. 123. “Quantitates Mathematicas non ut ex partibus quam minimis constantes sed
ut motu continuo descriptas hic considero . . . Hae Geneses in rerum natura locum vere habent
& in motu corporum quotidie cernuntur. Et ad hunc modum Veteres ducendo rectas mobiles in
longitudinem rectaurum immobilium genesin docuerunt rectangulorum.” MP, 8, p. 122.
30 MP, 8, pp. 113, 115. “Nam fluxiones sunt quantitates finitae et verae ideoque symbola sua
habere debent, et quoties commode fieri potest praestat ipsas per lineas finitas coram oculis ex-
ponere quam per infinite parvas.” MP, 8, pp. 112, 114.
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In illustrating his method of limits Newton presented an algebraic case, after
having discussed some geometrical limit procedures similar to the ones he had em-
ployed in “Geometria Curvilinea” and the Principia. Newton’s (strikingly modern)
algebraic case is as follows:

Let the quantity x flow uniformly and the fluxion of the quantity xn needs to be
found [Note that in Newton’s notation n can be fractional]. In the time that the
quantity x comes in its flux to be x + o, the quantity xn will come to be (x + o)n,
that is [when expanded] by the method of infinite series

xn + noxn−1 +
1

2
(n2 − n)o2xn−2 + · · · ; (9.1)

and so the augments o and noxn−1 + 1
2
(n2 − n)o2xn−2 + · · · are one to the other

as 1 and nxn−1 + 1
2
(n2 − n)oxn−2 + · · ·. Now let those augments come to vanish

and their last ratio will be 1 to nxn−1; consequently the fluxion of the quantity x
is to the fluxion of the quantity xn as 1 to nxn−1.31

Note that the increment o is finite and that the calculation aims at determining
the limit of the ratio o/((x + o)n − xn) as o tends to zero. The limit is the one
attained precisely when the two quantities vanish simultaneously; it is not a limit
calculated when the two quantities differ from zero by an infinitesimal quantity.
Such reasoning, according to Newton, would be faulty because it would introduce
errors in mathematics: “The most minute errors are not in mathematical matters
to be scorned.”32

In the lines immediately following this demonstration, Newton stated that such
limit procedures are in harmony with the geometry of the ancients:

In finite quantities, however, to institute analysis in this way and to investigate the
first or last ratios of nascent or vanishing finites is in harmony with the geometry
of the ancients, and I wanted to show that in the method of fluxions there should
be no need to introduce infinitely small figures into geometry.33

It is instructive to consider the geometrical limit procedures that Newton proposed
besides the algebraic one. The first has to do with the determination of tangents
to plane curves; it is a limit procedure that expresses the argument in terms of
the momentary increases found in De Methodis (§8.3.6). The second is reminiscent
of many geometrical limit procedures characteristic of “Geometria Curvilinea” and
the Principia.

31 MP, 8, pp. 126–9.
32 MP, 8, p. 125.
33 MP, 8, p. 129. “In finitis autem qantitatibus Analysin sic instituere, et finitarum nascentium
vel evanescentium rationes primas vel ultimas investigare, consonum est Geometriae Veterum: et
volui ostendere quod in Methodo Fluxionum non opus sit figuras infinite parvas in Geometriam
introducere.” MP, 8, p. 128.
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In his first example Newton justifies the basic formula for the subtangent (V B =
yẋ/ẏ) that was widely employed in De Methodis in terms of limits (figure 9.4):34

Draw the straight line Cc and produce it to K. Let the ordinate bc go back into its
former place BC and, as the points c and C come together, the straight line CK
will coincide with the tangent CH, and so the vanishingly small triangle CEc will
as it attains its last form end up akin to the triangle CET and its vanishing sides
CE, Ec and Cc will ultimately be to one another as the sides CE, ET and CT of
the other triangle CET : in this proportion in consequence are the fluxions of the
lines AB, BC and AC. If the points C and c are at any small distance apart from
each other, the straight line CK will be a small distance away from the tangent
CH; in order that the line CK shall coincide with the tangent CH and so the last
ratios of the lines CE, Ec and Cc be discovered, the points C and c must come
together and entirely coincide. The most minute errors are not in mathematical
matters to be scorned.35

Figure 9.4

Determination of tangents in De Quadratura. Source: Newton, Analysis per Quantitatum
(1711), p. 42. Courtesy of the Biblioteca Universitaria di Bologna.

34 The subtangent is defined as the segment of the axis of abscissae lying between the abscissa of
the point at which a tangent is drawn to a curve (in figure 9.4, B) and the intercept of the tangent
with the axis of abscissae (in figure 9.4, V ).
35 MP, 8, p. 125. “Agatur recta Cc & producatur eadem at K. Redeat ordinata bc in locum suum
priorem BC, & coeuntibus puctis C & c, recta CK coincidet cum tangente CH, & triangulum
evanescens CEc in ultima sua forma evadet simile triangulo CET , & ejus latera evanescentia CE,
Ec & Cc erunt inter se ut sunt trianguli alterius CET latera CE, ET & CT , & propterea in
hac ratione sunt fluxiones linearum AB, BC & AC. Si puncta C & c parvo quovis intervallo ab
invicem distant recta CK parvo intervallo a tangente CH distabit. Ut recta CK cum tangente
CH coincidat & rationes ultimae linearum CE, Ec & Cc inveniantur, debent puncta C & c coire
& omnino coincidere. Errores quam minimi in rebus Mathematicis non sunt contemnendi.” MP,
8, p. 124.
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Note that the increments of the abscissa and ordinate are finite and that Newton’s
procedure aims at the determination of the limit of the ratio of the vanishing in-
crements as the points C and c coincide. His claim is that by following this limit
procedure no errors are introduced in mathematics.

Newton’s other example is equally instructive (figure 9.5):

The straight line PB revolving round the given pole P shall intersect another straight
line AB given in position: there is required the ratio of the fluxions of those lines
AB and PB.

Let the line PB advance from its place PB into the new position Pb; in Pb take

PC equal to PB, and to AB draw PD such that the angle ̂bPD is equal to ̂bBC:
then, because the triangles bBC and bPD are similar, the augment Bb will be to
the augment Cb as Pb to Db.36 Now let Pb return to its former place PB so that
those [finite] augments shall come to vanish, and their last [ultimate] ratio as they
do so—the last ratio of Pb to Db, that is—will be that had by PB to DB where

the angle ̂PDB is right; and in this ratio, accordingly, is the fluxion of AB to the
fluxion of PB.37

This is a simple example of a Newtonian geometrical limit procedure typical of
“Geometria Curvilinea” and the Principia, whereby the ratio of the finite lines
“visible to the eye” (PB/DB) represents the limit of the ratio of the vanishing
augments (Bb/Cb).38

Figure 9.5

Geometrical limits in De Quadratura. Source: Newton, Analysis per Quantitatum (1711),
p. 43. Courtesy of the Biblioteca Universitaria di Bologna.

36 Newton established an identity between the variable ratio (Bb/Cb) of the two finite augments,
Bb and Cb, which simultaneously tend to zero when Pb returns to its former place PB, and a
variable ratio (Pb/Db) between two magnitudes, Pb and Db, which remain finite throughout the
limiting process.
37 MP, 8, p. 127.
38 The limit procedure is based on the method that De Gandt has termed the “method of finite
witnesses.” De Gandt, “Le Style Mathématique des Principia de Newton” (1986).
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9.6 A Method Worthy of Public Utterance

After having developed his new analysis (the analytical method of series and flux-
ions) Newton turned to synthesis: the geometrical construction of the resolutions
attained by fluxional analysis. He first performed these constructions in Barrovian
terms by deploying moments, the infinitely small augments by which fluent quan-
tities increase during each infinitely small interval of time. Dissatisfied with this
technique of the moderns, Newton justified the use of moments as a shorthand for
limiting procedures codified by the method of first and ultimate ratios. He explicitly
drew a comparison between these limiting procedures and the ancient geometers’
method of exhaustion. The latter, however, was based on long and cumbersome
indirect ad absurdum proofs. Newton proposed his method of limits as a more di-
rect way of avoiding infinitesimals. In his mathematical practice, he seldom used
limit arguments but rather handled infinitesimal magnitudes. Newton nevertheless
warned the reader that infinitesimals should always be understood as finite vanish-
ing magnitudes, and that some of the typical assumptions of geometrical reasoning
based on infinitesimals were grounded in basic lemmas such as those occurring in the
opening section of the Principia.39 In doing so, Newton endorsed a well-established
pattern of justification of infinitesimal techniques, a pattern followed by mathe-
maticians like Wallis. While Wallis had often affirmed the equivalence between his
arithmetic of infinities and exhaustion techniques, he was eager to divulge his new
heuristic method and attributed little importance to any attempt to fully refor-
mulate new analysis according to the ancient style (§7.2). By contrast, Newton’s
reformulation of his analytical method of fluxions in synthetic terms derived from
a profound conviction that only synthetic constructions were “worthy of public ut-
terance,” the modern analysis proving inadequate from the point of view of the
standards of certainty set by ancient tradition and indeed Newton’s program for a
mathematicized natural philosophy.

Newton’s method of limits has aroused a great interest in the secondary litera-
ture. It is possible to identify a first wave of commentaries on the cogency of first and
ultimate ratios in the polemical pamphlets surrounding the publication of George
Berkeley’s Analyst (1734). Recently, there has been a revival of interest in this

39 “I have presented these lemmas before the propositions in order to avoid the tedium of working
out lengthy proofs by reductio ad absurdum in the manner of the ancient geometers. Indeed, proofs
are rendered more concise by the method of indivisibles. But since the hypothesis of infinitesimals
is rather harsh and this method is therefore accounted less geometrical, I have preferred to make
the proofs of what follows depend on the ultimate sums and ratios of vanishing quantities and
the first sums and ratios of nascent quantities, that is, on the limits of such sums and ratios, and
therefore to present proofs of those limits beforehand as briefly as I could. For the same result
is obtained by these as by the method of indivisibles, and we shall be on safer ground by using
principles that have been proved.” Newton, Principles, p. 441.
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topic. In this chapter I did not address the complex and sophisticated issues that
have emerged, especially in this last decade of Newtonian studies. Partly this is due
to my desire to avoid repeating the kind of work carried out by other scholars. On
a more fundamental level, I am reluctant to enter the debate on “the limits of New-
ton’s limits” because I fear it is based on an agenda foreign to that so passionately
endorsed by the author of the Principia. Newton never doubted the logical rigor
or cogency of his mathematical procedures. He showed no doubts about the results
he achieved via the binomial theorem, the resolution of affected equations, the an-
alytical parallelogram, or the catalogues of curves. Newton’s concern with method
was not polarized by questions of definition of basic terms and cogency of deductive
rules, questions that typically emerge when one views mathematics as consisting of
formalized axiomatic theories. Rather than being worried by questions of definition
(concerning, say, continuity, tangency, or curvature) and convergence—which he
introduced in a very intuitive way—Newton took pains to reformulate the results
he had achieved algebraically in a geometrical language more compatible with the
venerated ancient tradition. Newton’s discourse concerning the method of limits
is heavily influenced by his concern with resolutio and compositio, the comparison
between the modern algebraic analytical path and ancient porismatic analysis, and
the style and genre of his own mathematical work. In other words, Newton’s inter-
est in mathematical method was not driven by foundational questions concerning
rigor but by stylistic questions concerning elegance, antimodernism, compatibility
with the ancient tradition, and the visualization of mathematical concepts. As
Newton put it, the synthetic method was preferable because of “clarity and brevity
of the reasoning involved and because of the simplicity of the conclusions and the
illustrations required.”40

When present-day mathematicians, well trained in the study of calculus in terms
of modern convergence theory, devote their critical attention to Newton’s theory of
limits, they often reach different conclusions. Newton’s demonstrations in terms
of limits are always very succinct. To the modern reader they seem in need of
some sort of explication. One can, therefore, attempt to use modern symbolism
and set the original text straight in a cogent algebraic form. In a way, this choice
goes exactly against Newton’s desiderata; it is a choice that generally leads to
a disastrous distortion of the original. A better policy is that of providing the
necessary definitions and convergence arguments in Newton’s own geometrical terms
by making use of Newton’s published works or manuscripts. Those who follow this
strategy attempt to piece several Newtonian ipsissima verba together in the hope of
reconstructing a logically rigorous argument. The results are more interesting in this
case but often so convoluted that I fear Newton himself would have been surprised
by such lengthy detours. Newton’s preference for geometry was determined, one

40 MP, 4, p. 423.
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should recall, by the fact that he believed it excelled in conciseness and elegance
over algebra.

Ultimately, many approaches are possible. Hence, debates and quarrels between
detractors and supporters of Newton are rather frequent. Some admirers of Newton
view his geometrical limit arguments as extraordinary in their simplicity. There are
mathematicians who, somewhat dissatisfied by the algebraic style that is prevalent
in certain calculus textbooks (or, rather, was prevalent in the Bourbakist era),
find the reading of Newtonian limit arguments refreshing and inspiring. Others
have noted that such geometrical elegance is a viable choice for tackling only a
handful of isolated and rather elementary problems. Both viewpoints, that of the
enthusiasts and that of the skeptics, capture a part of truth. Newton’s geometric
limit arguments, epitomized in the Principia, are esthetically rewarding. However,
when Newton tried to use the method of first and ultimate ratios to deal with more
advanced problems, he incurred difficulties mainly due to the lack of a systematic
way of controlling higher-order infinitesimals in geometrical terms. As Newton knew
very well, some geometrical vanishing magnitudes can be discarded in comparison
with other vanishing magnitudes. This happens, of course, when their ultimate ratio
does not tend to a finite value.41 Establishing when ratios of vanishing magnitudes
have a finite value in more complicated geometrical diagrams can become, and did
become in the more advanced propositions of the Principia, a real nightmare.

How successful was Newton in reformulating the analytical method of fluxions
in a synthetic style more attuned to his philosophical agenda? As the discussion in
part IV shows, Newton used the synthetic style in the Principia in a very successful
way indeed. Particularly in the first sections of his magnum opus, Newton either
employed his peculiar geometry of vanishing magnitudes or directly handled geo-
metrical infinitesimal magnitudes. The synthetic method, however, did not allow
Newton to achieve all the results he needed for developing gravitation theory. In
more advanced sections of Book 1, and in most propositions of Book 3, Newton was
forced to use, if somewhat obliquely, highly algebraic methods (most notably the
analytical methods of quadrature treated in De Methodis) that were not rendered
explicit in the printed text.

41 For instance, DB in figure 9.2 vanishes more rapidly than AB, since the ratio DB/AB tends
to zero when points B and A come together. In Lemma 11, Section 1, of the Principia, Newton
proved that the vanishing magnitude DB is as the square of the vanishing magnitude AB, since
the ratio AB2/DB tends to the length of a chord of the osculating circle. Newton, Principles, pp.
439–40.



IV Natural Philosophy

Part VI considers some of the features of the Newtonian mathematization of force
and motion. Its main focus is the Principia. The time span is from 1684 to 1687 (the
period in which the elaboration of Newton’s magnum opus took place), but some
considerations regarding later additions, most notably the second edition (1713),
are also be included.

My aim is to illustrate how the canon of problem resolution and composition
that Newton endorsed in his previous works and his policy of publication shaped
his most famous book.

The mathematical structure of the Principia is rather complex. A variety of
geometrical methods play a prominent role. Newton’s ability to obtain profound
results in natural philosophy by purely geometrical means is astonishing. The Prin-
cipia is still an inspiring book for the practicing mathematical physicist. Yet in
this work Newton also employed algebra and calculus (albeit not systematically).
The attempt to understand how the various components of Newton’s mathematical
methods interact in the Principia proves a difficult historiographic exercise.

In chapter 10, I present a survey of the Principia and address the vexata quaestio
of the extent to which Newton relied on algebra and calculus in composing the work.
An answer is provided in the following two chapters, discussing how Newton used
the common analysis (chapter 11) and new analysis (chapter 12) in order to resolve
three specific problems of fundamental importance for his theory of gravitation.





10 The Principia

The ponderous instrument of synthesis, so effective in [Newton’s] hands, has never
since been grasped by one who could use it for such purposes; and we gaze at it
with admiring curiosity, as on some gigantic implement of war, which stands idle
among the memorials of ancient days, and makes us wonder what manner of man
he was who could wield as a weapon what we can hardly lift as a burden.

—William Whewell, 1837

10.1 Genesis of the Principia

10.1.1 Initial Influences

Newton’s earliest studies on the laws of motions and gravity took place in late 1664
and early 1665.1 As in the case of mathematics, his starting point was Descar-
tes. Newton commented upon Part 2 of Descartes’ Principia Philosophiae (1644)
with particular insight. It is believed that the title of Newton’s magnum opus was
conceived as a criticism of the French philosopher, whose work, Newton thought,
lacked adequate mathematical principles. From Descartes, Newton learned about
the law of inertia, which was to become the first axiom or law of motion of the
Principia: a body is at rest or moves in a straight line with constant speed until a
force is applied to it. Unaccelerated rectilinear motion is the condition in which a
body naturally perseveres; it does not need, as it was thought in the Aristotelian
tradition, a mover.

By the early 1660s natural philosophers had examined two cases of accelerated
motion: rectilinear uniformly accelerated motion and uniform circular motion. The
first case occurs in the study of bodies falling close to the earth’s surface. As Galileo
taught (Newton knew his Dialogo through Salusbury’s translation), these bodies
describe parabolic trajectories by composition of inertial and uniformly accelerated
motions.2

From the very beginning of his studies, Newton tried to subject the motions
of bodies to mathematical laws. His first mathematical law in this field, which
he achieved in work carried out in the years 1664–1668, is nowadays attributed
to Christiaan Huygens, since it was first published in 1673 in the appendix to

Epigraph from Whewell, History of the Inductive Sciences (1837), p. 167.
1 Newton, Certain Philosophical Questions (1983), pp. 275–309.
2 De Gandt, Force and Geometry (1995), pp. 117–39.
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the latter’s Horologium Oscillatorium. In modern terms, the law states that the
centripetal acceleration of a body that moves in a circular trajectory with constant
speed is proportional to the square of the speed and inversely proportional to the
radius.

Early in his youthful studies Newton intuited how to generalize mathematical
results on uniform circular motion to more general cases. In late 1664 or early 1665,
he observed in his Waste Book,

If ye body b moved in an Ellipsis, yn its force in each point (if its motion in yt point
bee given) will bee found by a tangent circle of equall crookednesse wth yt point of
ye Ellipsis.3

This proved an extremely fertile insight. How can one go beyond the simple cases of
uniformly accelerated rectilinear and circular uniform motion? In order to estimate
the acceleration, for instance, in an elliptical trajectory (like planetary orbits) one
can assume that locally the body moves with circular uniform motion along the os-
culating circle. Recall that in those years Newton developed fluxional techniques to
calculate the radius of curvature of plane curves. He later exploited this early intu-
ition. In his Principia, and particularly in the second edition (1713), Newton made
use of the fact that the instantaneous normal acceleration aN in a non circular orbit
can be calculated by locally applying Huygens’s laws for circular uniform motion:
in modern terms, |aN | = v2/ρ (v instantaneous speed, ρ radius of curvature).4

What about Newton’s early thoughts on planetary motions? The few extant
records indicate that for many years he remained trapped in the framework of
Cartesian vortex theory. There are reasons to believe that, in the 1660s, Newton
believed that the planets orbit the sun because they are transferred by a vortex
in nearly circular orbits. It seems likely that at this early stage Newton followed
Descartes in assuming that the circular motion of the planet generates an effort to
recede from the center, a centrifugal conatus that would accelerate the planet away
from the sun. The centrifugal conatus would be counterbalanced by the centripetal
action of the vortex, which thus keeps the planet at an approximately constant
distance from the sun. Assuming that the orbits are perfectly circular, it was
all too easy, by combining Huygens’s law with Kepler’s third law, to verify that
the planets’ radial (centrifugal) acceleration varies inversely as the square of their
distance from the sun. This inverse-square law was thus attained in a context far
removed from gravitation theory.5

3 Add. 4004, f. 1r. MP, 1, p. 456.
4 Brackenridge and Nauenberg, “Curvature in Newton’s Dynamics” (2002).
5 Newton’s early manuscripts on circular motion and planetary motion have been often examined.
The main sources concern the study of uniform circular motion in the Waste Book (Add. 4004),
and more refined analyses (the comparison between gravity and centrifugal force on the earth’s
surface, the use of the laws of Huygens and Kepler to conclude that the planets’ “endevors to recede
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10.1.2 The Role of Hooke

Instrumental to Newton’s shift from these Cartesian views was Robert Hooke.
Hooke in 1679 attempted to revive his correspondence with Newton, which had
been interrupted in the aftermath of the polemic on the experimentum crucis (see
chapter 2). Hooke, recently appointed secretary of the Royal Society, told Newton
of a new hypothesis of his according to which planets, moving in a space void of
resistance, describe orbits around the sun because of a rectilinear inertial motion
by the tangent and an attractive motion toward the sun. Hooke thus disposed both
of the Cartesian endeavor to recede from the center and of the Cartesian vortex.
Only one centripetal force directed toward the sun, he argued, is needed to deviate
the unresisted inertial rectilinear motion of the planets. Newton soon discovered
that Hooke’s hypothesis was mathematically fruitful. The most fruitful insight he
achieved (it is unclear exactly when) was that a body moving in a space void of
resistance and attracted by a central force must obey Kepler’s area law and that,
vice versa, a body that moves in accordance to the area law must be accelerated by
a central force.6

It is difficult to reconstruct the steps that led Newton to conceive of univer-
sal gravitation. Certainly, Hooke’s contribution was momentous; historians are
now reevaluating the role of the Royal Society’s secretary in formulating the new
cosmology. Hooke’s ideas were certainly revolutionary, and the extant records
prove that Newton did not immediately endorse them. Newton continued to be-
lieve that the planetary motions were caused by revolving ether. Contrary to
Descartes, he seems to have interpreted this ethereal medium in nonmechanistic
terms somewhat reminiscent of his alchemical researches. Until 1681, Newton dis-
cussed the motion of comets with John Flamsteed in terms of a fluid that re-
volves around the center of the cosmic system carrying the planets and comets.7

The appearance of the 1682 comet, whose trajectory passed close to the ecliptic
but in the reverse direction of planetary orbits, probably gave the final blow, in
Newton’s mind, to the cosmic vortex. At last, Newton realized that interplane-

from the Sun” are “reciprocally as the squares of the distances from the Sun,” and an attempt
to formulate the “lawes of motion”) that are bound in Add. 3958. All these manuscripts, which
date from late 1664 to late 1668, are reproduced and commented on in Herivel, The Background
to Newton’s Principia (1965). For a discussion, see Herivel, “Newton’s Discovery of the Law of
Centrifugal Force” (1960); Nauenberg, “Newton’s Early Computational Method for Dynamics”
(1994); the texts and commentary in Newton, Unpublished Scientific Papers of Isaac Newton
(1962); Whiteside, “The Prehistory of the Principia” (1991); Westfall, Never at Rest (1980),
pp. 144–54; Brackenridge, The Key to Newton’s Dynamics (1995), pp. 42–66; and Cohen’s
commentary in Principles, pp. 11–22 and 64–70.
6 Nauenberg, “Robert Hooke’s Seminal Contributions to Orbital Dynamics” (2005).
7 Ruffner, “Newton’s Propositions on Comets” (2000).
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tary space is void;8 at any rate, there is no inert matter there. Newton never
abandoned the hypothesis of the existence of a nonmaterial planetary medium
completely.

Hooke’s hypothesis on planetary motions was discussed at the Royal Society by
astronomers interested in alternatives to Cartesian cosmology. Perhaps, as Kepler
suggested, the sun was the cause of a force analogous to that active between lode-
stone and iron; this centripetal force would deviate the planets. Hooke surmised
that the force of the sun was equivalent to terrestrial gravitation. But how could one
relate this force to the observed motions of the planets? More specifically, could
any mathematical implication between the three Keplerian planetary laws and a
specific force law be proven? It seemed likely that this law might be inverse-square.
Christopher Wren posed this problem to Halley and Hooke, asking whether either
one of them, within the context of Hooke’s hypothesis, could provide a mathemati-
cal theory linking the Keplerian laws to a specific force law. The winner would have
been rewarded with a book worth 40 shillings.

Since finding a reply to Wren’s question proved mathematically difficult, Halley
took the wise, if somewhat humiliating, decision of traveling to Cambridge in August
1684 to ask Newton’s advice. This episode is typical of Newton’s interactions with
mathematicians, theologians, chymists, and natural philosophers residing outside
Cambridge. It was often the case that information could be gained from Newton
by visiting him in his rooms rather than through correspondence. To his amaze-
ment, Halley found that the Lucasian Professor had an answer, or at least, so he
claimed. In November 1684, Halley received a short treatise from Newton entitled
“De Motu Corporum in Gyrum,” in which Wren’s desiderata were satisfied.9 This
is how the Principia began to take shape. Thanks to Halley’s encouragement and
insistence, a reluctant Newton was convinced to embark on a project that a couple
of years later—years of hard work and scientific creativity—led to the completion
of the Principia.

10.2 An Overview of the Principia

10.2.1 Definitions and Laws

The Principia opens with a long laudatory ode written by Halley in honor of the
author. This is followed by several prefaces of philosophical content; several pages
providing the basic definitions of terms like mass (“quantity of matter”), momentum
(“quantity of motion”), inherent, impressed, centripetal, absolute, accelerative, and
motive force; a puzzling, yet profound, Scholium on absolute time and space; the
three axioms or laws of motions and their corollaries. These introductory pages have

8 Kollerstrom, “The Path of Halley’s Comet” (1999).
9 For a commentary to De Motu, see De Gandt, Force and Geometry (1995).
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attracted the attention of scholars; in particular, Newton’s conceptions of absolute
time and space and inherent force have been widely discussed.10 The three laws are
as follows:

Law 1. Every body perseveres in its state of being at rest or of moving uniformly
straight forward, except insofar as it is compelled to change its state by forces
impressed.

Law 2. A change in motion is proportional to the motive force impressed and takes
place along the straight line in which that force is impressed.

Law 3. To every action there is always an opposite and equal reaction; in other
words, the action of two bodies upon each other are always equal and always op-
posite in direction.11

Numerous scholars have faced the question of the equivalence between Newton’s
second law and its modern formulation as �F = m�a. Note that Newton’s law is
formulated as a proportion, not as an equation (as in the modern case). Further,
Newton’s law makes no reference to time. According to some scholars, Newton’s
second law is best explained as the statement of a proportionality between the
strength of an instantaneous impulse and a discontinuous change of momentum in
the direction of the impulse. This conception of an impulsive impressed force that
causes discontinuous changes of momentum might be related to Newton’s endorse-
ment of atomism, according to which impacts between hard atoms would cause
instantaneous changes of velocity.

There is no doubt, however, that Newton also used the continuous formulation of
the second law, as is apparent from many propositions (e.g., Proposition 6, Book 1,
on central force motion (§10.2.4), where the force causes a continuous acceleration).
Newton illustrated the meaning of the second axiom in a particularly interesting
way in Proposition 24, Book 2:

For the velocity that a given force can generate in a given time in a given quantity
of matter is as the force and the time directly and the matter inversely. The greater
the force, or the greater the time, or the less the matter, the greater the velocity
that will be generated. This is manifest from the second law of motion.12

It is, of course, difficult to divine how Newton might have rendered such a statement
using symbols. Nevertheless, his reference to both time and the quantity of matter
is clearly explicit.

10 See, for instance, McGuire, “Existence, Actuality and Necessity” (1978) and DiSalle, Under-
standing Spacetime (2006).
11 Principles, pp. 416–417.
12 Principles, p. 700. “Nam velocitas, quam data vis in data materia dato tempore generare
potest, est ut vis & tempus directe, & materia inverse. Quo major est vis vel majus tempus vel
minor materia, eo major generabitur velocitas. Id quod per motus legem secundam manifestum
est.” Principia, p. 432.
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The most compelling evidence that Newton was close to expressing the second
law in symbolic terms comes from manuscripts dating from the early 1690s.13 In
a manuscript in which Newton deals with the elementary problem of a body that
moves rectilinearly in a space void of resistance and attracted by a central force
(figure 10.1), we find a formulation of the second law of motion that is a step
toward the expression of F = ma (in one dimension) in the language of calculus:

[Let y be the height or distance of the body from the centre [of force toward which
it gravitates]. Then if the body ascends or descends straight up or down its speed
will be ẏ and gravity ÿ. For the fluxion of the height is the body’s speed and the
fluxion of the speed is as the body’s gravity.14

In the case considered by Newton, the body moves rectilinearly toward the force
center, and y is the distance from the center. Newton wrote that gravity is ÿ. This
is, I claim, a prototype of F = ma; it is, as it were, a first significant step toward
an approach to the second law in terms of fluxions. Newton, of course, along with
all his contemporaries (from Johann Bernoulli to Leonhard Euler), had to write the
equations of motion in the absence of a notation and calculus for vector quantities.
Therefore, geometrical diagrams were used to express directionality.

Newton was able to apply the method of series and fluxions to far more complex
cases. In manuscripts related to the previous one, Newton applied the use of flux-
ional notation and algorithm not only to the study of rectilinear motion but also to
that of plane orbits traversed by a body under the action of a central force.

Figure 10.1

Newtonian elementary version of F = ma. Newton wrote the second law of motion in
fluxional terms: “Et si corpus recta ascendit vel recta descendit erit velocitas ejus ẏ et
gravitas ÿ.” Source: Add. 3965.6, ff. 38r–39 (after Whiteside’s intervention, now in
Add. 3960.11, ff. 195–6). Reproduced by kind permission of the Syndics of Cambridge
University Library.

13 I have discussed these manuscripts in Reading the Principia (1999), pp. 108–112.
14 Add. 3965.6, ff. 38r–39r. MP, 7, p. 129. “Prob. 2. Si corpora {gravia sunt} gravitent in
centrum positione datum & lex gravitatis [pro ratione distantiarum a centro] habetur, invenire
motum corporis in spatijs non resistentibus de loco dato in plagam datam data cum velocitate
egressi. Exponatur tempus uniformiter fluens per longitudinem quamvis z, & sit y altitudo seu
distantia corporis a centro. Cas.1. Et si corpus recta ascendit vel recta descendit erit velocitas ejus
ẏ et gravitas ÿ. Nam altitudinis fluxio est corporis velocitas et velocitatis fluxio est ut corporis
gravitas. Ideoque ex data gravitatis lege dabitur ÿ et inde eruendae erunt ẏ et y. Cas. 2. Si corpus
oblique moveautur i.” MP, 7, p. 128.
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He was able to solve several problems concerning central force motion in terms of
the analytical method of fluxions. Most notably, he determined the spiral orbits
traversed by a body acted upon by an inverse-cube central force. Newton commu-
nicated this last result to David Gregory in a letter dated 1694 (§10.2.7, §12.2.3,
and figure 12.3). It is interesting that Newton did not pursue these researches any
further and gave little emphasis to them. What is important for us, and what has
turned into a sort of fixation in the historical literature, was probably deemed of
secondary importance by Newton.15

10.2.2 Limits

The first section of Book 1 is devoted to the method of first and ultimate ratios
(see §9.3 for Newton’s theory of limits). Lemmas 9 and 10 are central to Newton’s
mathematization of force. Lemma 9 (figure 10.2) states,

If the straight line AE and the curve ABC, both given in position, intersect each
other at a given angle A, and if BD and CE are drawn as ordinates to the straight
line AE at another given angle and meet the curve in B and C, and if then points
B and C simultaneously approach point A, I say that the areas of the triangles
ABD and ACE will ultimately be to each other as the squares of the sides.16

As in Lemma 7, the essential step in the proof of Lemma 9 consists in local lin-
earization. The curve ABC can be identified in the neighborhood of A with its
tangent AG, that is, the curvilinear figure ABD can be equated with the triangle

Figure 10.2

Lemma 9, Book 1. Source: Newton, Philosophiae Naturalis Principia Mathematica (1726),
p. 33. Courtesy of the Biblioteca Angelo Mai (Bergamo).

15 Manuscripts where Newton applies the fluxional method to central force motion can be found
in MP, 6, pp. 588–93, 598–9, and are discussed in Guicciardini, Reading the Principia (1999), pp.
108–112.
16 Principles, p. 437.
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AFD. Therefore, if one takes point B close to A, the curvilinear area of ABD
subtended by the curve increases, as the point D flows along Ae, very nearly as the
square of “side” AD.

Lemma 9 has very important consequences for Newton’s science of motion.
These consequences are spelled out in Lemma 10. Let the abscissa AD in figure 10.2
represent time, and the ordinate DB velocity. Point D flows with constant velocity
along the straight line AD, and the ordinate DB represents the instantaneous ve-
locity of a body moving in a straight line (such time-velocity diagrams where known
to natural philosophers familiar with the works of Galileo and Huygens). Then,

The spaces which a body describes when urged by any finite force, whether that
force is determinate and immutable or is continually increased or continually de-
creased, are at the very beginning of the motion in the squared ratio of the times.17

From Galileo’s writings it was known that when the force is “determinate and
immutable,” the space traveled by a vertically falling body from rest is proportional
to the square of time (in Newton’s terminology, “the spaces described are in the
squared ratio of the times”). Newton stated that this result is applicable to variable
forces “at the very beginning of the motion.” In the Principia, Newton dealt with
variable forces (§10.2.4). Lemma 10 states that locally the velocity can be considered
as varying linearly with time.

10.2.3 The Area Law

One of the most profound dynamical insights that Newton gained after adopting
Hooke’s hypothesis on planetary motions is that Kepler’s area law is equivalent
to central force motion. This is spelled out in Propositions 1 and 2, Section 2,
Book 1. These propositions are mathematically important because, when central
force motion is considered, they allowed Newton to geometrically represent time as
the area swept by the radius vector, an essential step for achieving a geometrical
representation of central force.

Proposition 1 is as follows:

The areas which bodies made to move in orbits describe by radii drawn to an un-
moving center of forces lie in unmoving planes and are proportional to the times.18

A body is fired at A with given initial velocity in the direction AB (figure 10.3).
The centripetal force acting on the body must be first imagined as consisting of
a series of impulses acting after equal finite intervals of time. The trajectory will
then be a polygonal ABCDEF . The body moves, during the first interval of time,
from A to B with uniform rectilinear inertial motion. If the impulse did not act

17 Principles, pp. 437–8. The statement of this lemma considerably differs in the first edition.
18 Principles, p. 444.
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Figure 10.3

Polygonal trajectory in Proposition 1, Book 1. Source: Newton, Philosophiae Naturalis
Principia Mathematica (1726), p. 39. Courtesy of the Biblioteca Angelo Mai (Bergamo).

at B, the body would continue its rectilinear uniform motion; it would reach c
at the end of the second interval of time, so that AB = Bc. But because of the
first impulse the body is instantaneously deflected; it reaches C at the end of the
second interval of time. By applying the first two laws of motion and elementary
geometry, it is possible to show that triangles SAB and SBC have the same area
and lie on the same plane. Similarly, all the triangular areas SCD, SDE, SEF ,
etc. spanned by the radius vector in equal times are equal and coplanar. In order
to prove Proposition 1, Newton took a limit. When the time interval tends to zero,
the impulsive force approaches a continuous centripetal force and the trajectory
approaches a smooth plane curve. The result (equal planar areas spanned in equal
times by the radius vector) obtained for the polygonal trajectory generated by the
impulsive force is extrapolated to the limiting smooth trajectory generated by the
continuous force.

Following a similar procedure, Newton proved Proposition 2, which states the
inverse of Proposition 1. In Propositions 1 and 2, Newton showed that a force is
central if and only if the area law holds; the plane of orbital motion is constant and
the radius vector sweeps equal areas in equal times.

Note that in his proof of Propositions 1 and 2, Newton made use of geometrical
limit arguments, in line with the method of first and ultimate ratios. Indeed, it is
possible to claim that Newton would not have been able to translate his demon-
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stration of Propositions 1 and 2 into symbolic form. In certain respects, geometry
was more powerful than algebra in Newton’s times.

The limit argument employed in Proposition 1 did not spark any criticism in
Newton’s time. More recently, however, the deceptively straightforward character
of this proposition has been the object of discussion.19

10.2.4 Central Forces

The direct problem of central forces In order to tackle central forces with ge-
ometrical methods, a geometrical representation of such forces is required. This
result is not easy to acquire since the central force applied to an orbiting body
changes continuously, both in strength and direction. In Proposition 6, Section 2,
Book 1, such a representation is provided.

This proposition puts Hooke’s hypothesis into effect. The body is accelerated in
vacuo by a central force, and its motion, as Hooke had suggested, is decomposed
into an inertial motion along the tangent and an accelerated motion toward the
force center.

A body accelerated by a centripetal force directed toward S (the center of force)
describes a trajectory like the one schematically shown in figure 10.4. PQ is the
arc traversed in a finite interval of time. The point Q is fluid in its position on the
orbit, and one has to consider the limiting situation when points Q and P come
together. Line ZPR is the tangent to the orbit at P . QR tends to become parallel
to SP as Q approaches P . QT is normal to SP . From Lemma 10, “at the very

Figure 10.4

Central force motion in Proposition 6, Book 1. Source: Newton, Philosophiae Naturalis
Principia Mathematica (1687), p. 44. Courtesy of the Biblioteca Angelo Mai (Bergamo).

19 The essential aspect to bear in mind is that Newton assumed that a continuous trajectory is
given and used the polygonal trajectories as approximations of a given smooth trajectory. His
limit argument was not meant to generate an unknown continuous trajectory. Nauenberg, “Ke-
pler’s Area Law in the Principia” (2003); Pourciau, “Newton’s Argument for Proposition 1 of the
Principia” (2003).
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beginning of the motion” the force can be considered constant. In the case repre-
sented in figure 10.4, this implies that as Q approaches P , the displacement QR is
proportional to force times the square of time. Indeed, in the limiting situation, QR
can be considered as a small Galilean fall caused by a constant force.

Newton could now obtain the required geometrical representation of force. Since
Kepler’s area law holds (see Proposition 1 in §10.2.3), the area of SPQ is propor-
tional to time. Further, SPQ can be considered a triangle, since the limit of the
ratio between the vanishing chord PQ and arc P̂Q is 1 (see Lemma 7 in §9.3).
The area of triangle SPQ is (SP · QT )/2. Therefore, the geometrical measure of
force is

F ∝ QR

(SP · QT )2
, (10.1)

where the ratio has to be evaluated in the limiting situation when points P and Q
come together and ∝ is used to mean “is proportional to.”

Proposition 6 is a good example of the application of the method of first and
ultimate ratios. The limit to which the ratio QR/(SP ·QT )2 tends is to be evaluated
by purely geometrical means. Note that SP remains constant as Q tends to P ;
therefore one has to consider the limit of the ratio QR/QT 2.

When the trajectory O is an equiangular spiral (in polar coordinates ln r = aθ)
and S is placed at the center (Proposition 9, Section 2), as Q tends to P ,

QR/QT 2 ∝ 1/SP, (10.2)

and thus the force varies inversely with the cube of distance.
When the trajectory O is an ellipse and the center of force lies at its center

(Proposition 10, Section 2), QR/QT 2 ∝ SP 3, that is, the force varies directly with
distance.

Note that forces varying with the inverse of the cube of the distance later found
an application, in Book 3, in the study of tidal forces, and forces that vary directly
with distance occurred in the study of elastic vibrations.

In Section 3, Newton considered Keplerian orbits. In Proposition 11, Newton
proved that if the body describes a trajectory O, O is an ellipse and the force is
directed toward a focus S, then the force varies inversely with the square of the
distance. In Propositions 12 and 13, Newton showed that the force is also inverse-
square if O is a hyperbola or parabola. To conclude: when the orbit is a conic
section and S is placed at one focus,

QR/QT 2 ∝ 1/L, (10.3)

where L is a constant (the latus rectum), and the ratio QR/QT 2 is evaluated,
as always, as the first or last ratio with the points Q and P coming together.
Therefore, the strength of a force that accelerates a body obeying the first two
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Keplerian laws varies inversely with the square of distance. This is often considered
to be the birth of gravitation theory, even though, as experts know, Propositions
11–13, Book 1, played a limited role in Newton’s deduction of universal gravitation
from astronomical phenomena.20

The inverse problem of inverse-square central forces In Corollary 1 to Propo-
sitions 11–13, Section 2, Newton stated that if the central force is inverse-square,
then the orbits of a body accelerated by such a force are conic sections such that a
focus coincides with the force center. Corollary 1 is as follows:

From the last three propositions [Propositions 11–13] it follows that if any body P
departs from the place P along any straight line PR with any velocity whatever and
is at the same time acted upon by a centripetal force that is inversely proportional
to the square of the distance of places from the center, this body will move in some
one of the conics having a focus in the center of forces; and conversely.21

This Corollary is an example of what was called an inverse problem of central forces.
The central force F (force law and force center S) is known. What is required is the
orbit (“the orbit” is a singular, assuming uniqueness) corresponding to any initial
position and velocity of a body with a given mass acted upon by such force.

Quite understandably, this terse statement was subject to criticism. Newton
himself, while preparing the second edition of the Principia, emended Corollary
1 by adding the sketch of what he considered to be a valid proof. In a letter,
dated October 1709, he instructed Roger Cotes to complete Corollary 1 with the
following lines:

For if the focus and the point of contact and the position of the tangent are given, a
conic can be described that will have a given curvature at that point. But the cur-
vature is given from the given centripetal force [and velocity of the body]; and two
different orbits touching each other cannot be described with the same centripetal
force [and the same velocity].22

What Newton cryptically stated in Corollary 1, Book 1, can perhaps be elucidated
as follows:23

1. Given a body whose mass is m fired from a given point P and with a given veloc-
ity �v (assumed as not directed toward the force center) in a central inverse-square

20 For Newton’s deduction of universal gravitation, see Harper, “Newton’s Argument for Universal
Gravitation” (2002) and Smith, “The Methodology of the Principia” (2002). For more elementary
analyses of Newton’s mathematization of central force motion in the first three sections of Book 1 of
the Principia, see Brackenridge, The Key to Newton’s Dynamics (1995) and Densmore, Newton’s
Principia, the Central Argument (1995).
21 Principles, p. 467.
22 Principles, p. 467. The text in square brackets was added in the third (1726) edition.
23 Pourciau, “On Newton’s Proof That Inverse-Square Orbits Must Be Conics” (1991) and “New-
ton’s Solution of the One-Body Problem” (1992).
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force field (F force strength, S center of force), Newton sought a geometrical
technique for the construction of the orbit traversed by the body.

2. Initial position and velocity determine a point P belonging to the trajectory and
the trajectory’s tangent at P .

3. Since the strength and direction of the force at P are given, also the curvature
at P is uniquely determined from initial conditions (FN = mv2/ρ, FN normal
component of force at P , ρ radius of curvature at P ).

4. In Proposition 17, Book 1, Newton showed how to construct a unique conic, with
known tangent and curvature at P (determined in steps 2 and 3) and a focus
located at the force center S.

5. Initial conditions also determine the areal velocity, which, since the force is
central, must be a constant of motion (Propositions 1 and 2, Book 1).24

6. Because of Propositions 11–13, Book 1, the Keplerian orbit determined in step
5 satisfies the equations of motions.

7. Since for every initial condition—position and velocity—a Keplerian orbit that
satisfies the equations of motions can be constructed, one derives (assuming that
for every initial condition only one orbit is possible) that Keplerian orbits are
necessary in a central inverse-square force field.

Newton expressed the assumption of uniqueness (implicit in point 7) in the final
lines of the revised corollary (“[T]wo different orbits touching each other cannot
be described with the same centripetal force and the same velocity”). It seems
that for Newton it was intuitively legitimate to state that, given initial position
and velocity, only one orbit is possible. Further, he might have deduced uniqueness
from Proposition 41, Book 1, where the inverse problem is reduced to quadratures
(§10.2.7).25

Corollary 1 never ceased to be an object of criticisms and debates. But Newton
outlined a more general approach to the inverse problem of central forces (§10.2.7),
an approach that inspired research in the mathematization of central force motion
in terms of differential equations.

10.2.5 Projective Geometry

In Sections 4 and 5, Book 1, several propositions are devoted to the geometry of
conic sections. It is here that Newton presented his results on projective geometry.

24 In Section 6, Book 1, Newton showed how a motion satisfying Kepler’s area law along a given
conic can be approximated (§10.2.6).
25 For a recent discussion of the uniqueness assumption in Corollary 1, see Pourciau, “Proposition
II (Book I) of Newton’s Principia” (2009), p. 164–166. On page 166, Pourciau expresses the
uniqueness assumption as follows: “[T]wo different motions, urged by the same centripetal force
throughout, cannot pass through the same given point P at the same time and with the same
speed and direction.”
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Lemma 19 is a solution of the Pappus problem attained not by a “computation
[as Descartes had done] but a geometrical synthesis, such as the ancients required”
(§5.3).26 Also notable are Lemma 21, on the organic construction of conics (§5.4),
and Lemma 22, on the projective “transmutations” of figures (§6.4.2).

10.2.6 Algebraic Nonintegrability of Ovals

Section 6, Book 1, of the Principia is devoted to the solution of the so-called Kepler
problem. The problem consists in finding the area of a focal sector of the ellipse
and is equivalent to the solution for x of the equation x − e sinx = z (e and z
given). Johannes Kepler found that planets move in ellipses having the sun placed
at one focus. He also discovered that each planet moves in such a way that the
radius vector joining it to the sun sweeps equal areas in equal times. When the
elliptic orbit is known, the position of the planet in function of time can thus be
found by calculating the area of the focal sector. In Lemma 28, Section 6, Newton
demonstrated that this problem cannot be resolved in finite algebraic terms (§13.3).
In Proposition 30, Section 6, he showed that the determination of the position of
a body orbiting in a parabolic trajectory (such that the area law is valid for the
focus) is instead algebraic (see chapter 11). But to deal with the Kepler problem
for elliptic trajectories, polynomial equations are not enough. In Section 6, Newton
therefore illustrated how the roots of the Kepler’s equation can be determined via
his method of successive approximations, which is to say, via infinite series (see §7.5,
figure 7.10).27 Infinite series occur throughout the Principia (especially in the final
Scholium to Section 13, Book 1; Proposition 45, Book 1; and Proposition 10, Book
2), and Newton might well have had this in mind when he stated that his work
was based on new analysis. He also employed quadrature techniques, another key
element of his new analysis.

10.2.7 The General Inverse Problem of Central Forces

In Sections 7 and 8, Book 1, Newton faces the general inverse problem of central
forces: that is, the problem of determining the orbit, given initial position and veloc-
ity, of a body accelerated by a known central force. He first dealt with “rectilinear
ascent and descent” and then with curvilinear motion.

The inverse problem for inverse-square central forces had already been dealt
with by Newton in Corollary 1 to Propositions 11–13 and in Proposition 17, Book 1
(§10.2.4). But in Proposition 41, Book 1, a general solution to the inverse problem
is provided:

26 Corollary 2, Lemma 19, Section 5, Book 1, in Newton, Principles, p. 485.
27 See Adams, “On Newton’s Solution of Kepler’s Problem” (1882); Kollerstrom, “Thomas Simp-
son and Newton’s Method of Approximation” (1992).
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Supposing a centripetal force of any kind and granting the quadratures of curvilinear
figures, it is required to find the trajectories in which bodies will move and also the
times of their motions in the trajectories so found.28

This proposition is based on the assumption that a method for the “quadrature of
curvilinear figures” is given. In his youth, Newton had developed several quadrature
techniques (integration) as part of the inverse method of fluxions. However, in the
Principia, Newton chose not to make his mathematical discoveries in this field
entirely explicit.

When in the Principia he reduced a problem to a difficult quadrature, he was
following the practice of giving the composition without the resolution; the syn-
thesis without the analysis. He simply showed that the solution depends upon the
quadrature of a curve (that is, upon the determination of the area bounded by
a curve) and gave no hint on how to perform the required quadrature. Other
examples of these mysterious reductions to quadratures can be found in New-
ton’s treatment of the attraction of extended bodies (Sections 12 and 13, Book
1), of the solid of least resistance (Scholium to Proposition 35, Book 2), and in
most of Book 3, particularly in the study of the inequalities of the moon’s motion
(Propositions 26–35, Book 3). These sections of the Principia puzzled Newton’s
readers; while they were told that a result depends upon the quadrature of a cer-
tain curve, they were not given the method by which this quadrature could be
achieved.29 Chapter 12 examines Newton’s policy on the publication of analytical
quadratures.

As far as Proposition 41 is concerned, the following points should be emphasized:

1. Its statement and demonstration are geometrical, but can easily be translated
into calculus by substituting symbols for infinitesimal geometrical moments.
One can choose to employ either the Newtonian notation (ẋo) or the Leibnizian
one (dx).30

2. The final result, as printed in the Principia, is easily translatable into a couple
of fluxional (or differential) equations.

3. Newton was aware that a translation into the analytical method of fluxions was
feasible. Overwhelming evidence is there to prove it.

a. In the statement of the proposition Newton wrote that the demonstration
of Proposition 41 depends upon the quadrature of curvilinear figures, a ref-
erence to his inverse method of fluxions. A number of propositions in the
Principia actually begin by stating that the demonstration presupposes an

28 Principles, p. 529.
29 Guicciardini, Reading the Principia (1999).
30 Such a translation is provided in Cohen, “A Guide to Newton’s Principia” (1999), pp. 334–45.
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available method for the squaring of curves (concessis curvilinearum figu-
rarum quadraturis).

b. In Corollary 3, Newton applied the general result of Proposition 41 to the case
of an inverse-cube force. The question was, Which orbits are described by a
body accelerated by an inverse-cube force? In Corollary 3, Newton printed
only the solution in the form of a geometrical construction. Following his
usual publication policy, he did not reveal the new analysis; rather, he gave
the construction (synthesis). Newton thus constructed some trajectories that
answered the problem. He could have obtained this result only by applying
his catalogues of curves (in Leibnizian terms, integral tables) (§12.2). The
general result achieved in Proposition 41, when applied to an inverse-cube
force, leads to the quadrature of a curve included in the catalogues of De
Methodis (1671). In Corollary 3, Newton did not perform this quadrature
explicitly but simply stated the result. He then added,

All this follows from the foregoing proposition [41], by means of the quadra-
ture of a certain curve, the finding of which, as being easy enough, I omit
for the sake of brevity.31

This is one of the most famous instances of those gaps in the demonstrative
structure of the Principia that aroused the interest and frustration of its
readers.32

c. When David Gregory, during a visit paid to Newton in May 1694, asked
about the mysterious method applied in the construction of Corollary 3, the
Lucasian Professor answered by translating the basic result of Proposition 41
into two fluxional equations (see figure 12.3).33 He applied these equations
to the case of an inverse-cube force and obtained the construction printed
in the Principia as Corollary 3. As Gregory remarked in a memorandum of
this visit,

The second treatise [De Quadratura] will contain his [Newton’s] Method of
Quadratures . . . on these [quadratures] depend certain more abstruse parts
in his philosophy as hitherto published, such as Corollary 3, Proposition 41
and Corollary 2, Proposition 91.34

For an analysis of these corollaries see chapter 12.

31 Principles, p. 532.
32 On Corollary 3, Proposition 41, Book 1, see Whiteside, “The Mathematical Principles Under-
lying Newton’s Principia Mathematica” (1970); Erlichson, “The Visualization of Quadratures in
the Mystery of Corollary 3 to Proposition 41 of Newton’s Principia” (1994); and Brackenridge,
“Newton’s Easy Quadratures” (2003).
33 Correspondence, 6, pp. 435–7.
34 Memorandum, July 1694 (Edinburgh University Library, MS Gregory C42). Translation from
Latin in Correspondence, 3, p. 386. For a discussion of Gregory’s comments to the Principia, see
Guicciardini, Reading the Principia (1999), pp. 179–84.
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10.2.8 Advanced Problems

In order to approach universal gravitation in mathematical terms, Newton had to
advance into unknown territory. Until Section 8, Book 1, he dealt with a body
moving in a central force field in the absence of resisting media. Newton knew
that this mathematical model could be applied only approximately to the plane-
tary system. In practice, if one takes a system composed of two bodies, 1 and 2,
sufficiently far both from other disturbing bodies and one another, where 1 has a
much greater mass than 2, it is possible to approximate 1 as an immovable center
of force and 2 as a point mass. This simplified model is also employed in Section
9, Book 1, devoted to the motion of the line of apsides occurring when the body
is accelerated by a central force that varies as 1/r2+α, for a small α. It is only in
Section 11 that Newton considered the motion of two or more bodies that mutu-
ally attract each other; and only in Sections 12 and 13 that he paid attention to
the shape of the bodies and to the gravitational force exerted by such extended
bodies.

These more advanced sections of Book 1 contain a wealth of results, especially
on perturbation theory.35

Book 2 is devoted to the motion of bodies in resisting media. It is rich in mathe-
matical results, most notably in the Scholium to Proposition 35 (= 34, from 2d ed.)
Newton was a pioneer in variational methods when he tackled the problem of the
solid of least resistance. The concluding Section 9 leads to what Newton conceived
of as a refutation of the vortex theory of planetary motions. Book 2 contains many
pages devoted to experimental results on resisted motion. The mathematical parts
of Book 2 are extremely problematic. Compared with the mathematical methods
of the first Book, those of the second were considered, ever since Newton’s times,
less satisfactory.

In Book 3, Newton applied the mathematical results achieved in his first Book
to astronomy. In a sequence of opening propositions he was able to infer from
astronomical data that planetary motions are caused by a gravitational force. This
force acts instantaneously, in a void, and attracts two given point masses with a
strength proportional to the product of the masses and inversely proportional to
the square of their distance.

In the remaining part of Book 3, Newton, assuming the existence of such a force
between any two masses in the whole universe, was able to provide quantitative
estimates of diverse phenomena such as the motion of tides, the shape of the earth,
some of the inequalities of the moon’s motion, the precession of equinoxes, and
the trajectories of comets. In Lemma 5, in dealing with cometary paths, Newton
presented a method of interpolation that inspired researches by mathematicians such

35 Nauenberg, “Newton’s Perturbation Methods for the Three-Body Problem” (2001) and Wilson,
“Newton on the Moon’s Variation and Apsidal Motion” (2001).
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as James Stirling, Friedrich Wilhelm Bessel, and Carl Friedrich Gauss (see §8.6, figu-
re 8.20).36

Perhaps the most controversial aspect of Book 3 is Newton’s theory on the moon,
especially as regards the motion of the moon’s apse. In 1702, Newton published
a booklet devoted to the “theory” of the moon, a very important problem for the
determination of longitude.37

10.3 Did Newton Use the Calculus in the Principia?

10.3.1 Addressing a Disputed Question

Before considering Newton’s use of common analysis and new analysis in the Prin-
cipia (see chapters 11 and 12), I address a disputed question concerning the use
of the calculus in Newton’s magnum opus. I clarify some general points before
examining the mathematical details.

It is appropriate to begin with a remark by Whiteside, the greatest historian of
Newton’s mathematics:

How often am I still asked: “Did Newton use the calculus to obtain the theorems
in his Principia?” How, without seeming to patronize, do you lay the groundwork
on which you can reply that the question is ill-formed and therefore meaningless.38

Let me clarify why, with Whiteside, I deem the question to be ill-formed.

1. As should be clear from the overview of the Principia provided in section 10.2,
Newton employed a variety of mathematical methods: projective geometry (Sec-
tions 4 and 5, Book 1); geometrical limits of vanishing magnitudes (e.g., in
Propositions 1, 6, and 11–13, Book 1); infinite series expansions (e.g., in Propo-
sition 45, Book 1, and Proposition 10, Book 2); algebraic equations (e.g., in
Proposition 30, Book 1); quadratures of curvilinear figures (e.g., Corollary 3 to
Proposition 41 and Corollary 2 to Proposition 91, Book 1); calculation of the
radii of curvature (e.g., Proposition 28, Book 3).39 Contrary to what one might

36 Newton’s interpolation formulas were published under the title of Methodus Differentialis in
Newton, Analysis per Quantitatum (1711), pp. 93–101. For a treatment of Methodus Differentialis,
see Fraser, Newton’s Interpolation Formulas (1927), and Whiteside’s commentary in MP, 4, pp.
36–51.
37 Reprinted with commentary in Cohen, Isaac Newton’s Theory of the Moon’s Motion (1975).
See also Kollerstrom, Newton’s Forgotten Lunar Theory (2000).
38 Whiteside, “The Prehistory of the Principia” (1991), p. 11.
39 I discuss Propositions 30, 41, and 91, Book 1, in chapters 11 and 12. For Proposition 45,
Book 1, see Valluri, Wilson, and Harper, “Newton’s Apsidal Precession Theorem and Eccentric
Orbits” (1997); for Proposition 28, Book 3, see Nauenberg, “Newton’s Perturbation Methods for
the Three-Body Problem” (2001).
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be led to believe by inspecting the Principia superficially, Newton’s magnum
opus does not rest upon one single overarching mathematical method.

2. So bluntly posing the question of Newton’s use of the calculus in the Principia
is rather problematic, since it is far from clear what calculus meant for his
contemporaries. In order to formulate a question that is historically meaningful,
one must accept the fact that Newton’s method of series and fluxions does not
coincide with Leibniz’s differential and integral calculus; if one searches for the
latter in Newton’s work, the search is bound to fail. Newton and his supporters
defended an approach to mathematics that needs to be understood on its own
terms.40

3. Newton did not present the Principia as the unfolding of a deductive theory
whereby theorems are deduced from axioms. He rather divided his propositions
into theorems and problems. To tackle these problems, Newton made use of
analytical tools of resolution; consequently he employed not the term calculus
but rather method. One therefore should not expect to find “calculus” applied to
the demonstration of Newton’s theorems in the Principia but rather his method
of series and fluxions applied to the resolution and composition of some (but not
all) of the problems.

4. In many demonstrations of the Principia, Newton had recourse to a wide variety
of geometrical methods (which he either found in the works of Apollonius and
Euclid or invented himself by developing results in projective geometry and his
synthetic method of fluxions). Particularly in the first sections of the Principia,
for instance, Proposition 1 (§10.2.3) and Proposition 6 (§10.2.4), Newton inven-
tively and rather effectively proceeded “without calculation.” The necessity of
employing symbolical techniques surfaced in the more advanced sections of Book
1, and especially in Book 3, where Newton tackled very difficult problems with
the purpose of obtaining numerical predictions to test his theory of gravitation.

When the debate surrounding the priority of Newton over Leibniz in the inven-
tion of the calculus had taken off, the use of differential and integral calculus in
the Principia became a hot issue. According to the Leibnizians, and particularly
Johann Bernoulli, the Principia offered positive proof of the fact that Newton did
not know about the calculus in 1687, since any use of it, in Bernoulli’s opinion, was
conspicuously absent in the work. Newton’s reply was to state that he had indeed
used the analytical method of series and fluxions (the new analysis) throughout the
work but had not rendered it explicit for two reasons:

1. In his replies to Leibniz and Johann Bernoulli, Newton made it clear that in the
Principia he was addressing himself to readers who were not prepared to engage
with such a novel mathematical language. To present a new science of motion

40 See Guicciardini, Reading the Principia (1999).
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and a new cosmology in a mathematical language that was almost unknown
would have been prohibitive even for the most numerate of his contemporaries.

2. Newton affirmed that in writing the Principia he had chosen, following the prac-
tice of the ancients, to demonstrate synthetically its propositions in order to con-
vey mathematical certainty to natural philosophy. He also claimed that most of
the propositions had been first found by help of the new analysis, a statement
that can only be defined as excessive.

10.3.2 The Readers of the Principia

It is certainly true that in 1687 adopting geometry was the most natural choice in
writing a work devoted to the mathematization of natural philosophy. The works
of Galileo and Huygens, Newton’s greatest predecessors in the tradition of physico-
mathematical science, were written in geometrical terms. However, in a period of
tumultuous transition like the seventeenth century, geometry was a term as am-
biguous as calculus.

The geometry of the Principia might look familiar at a superficial inspection.
Yet those who tried to read the Principia in depth soon discovered that Newton’s ge-
ometry was far removed from the beaten track. Figures are generated by continuous
motion, and limits of ratios and sums of vanishing magnitudes occur throughout the
work—characteristics that are totally innovative in comparison to ancient geometry
and that depend upon Newton’s desire, manifested in the “Geometria Curvilinea,”
to extend the canon of Euclid’s Elements.

Further, the geometrical demonstrative structure of the Principia could not con-
ceal its gaps: the presence of statements lacking any demonstration. In order to
fill these gaps, the use of algebra, series, higher-order derivatives, and integration
is necessary. Very few details regarding these algorithmic techniques were provided
in the printed text.

Both Newton’s British acolytes and his fierce continental critics were interested
in the missing algorithmic steps. Newton might have easily added some details
on the use of algebraic equations; these were certainly techniques well known to
mathematically trained readers in 1687 (see chapter 11 for an example). Newton
might also have given more indications on the use of higher algorithmic techniques,
such as series and quadratures, for instance, in an Appendix. He actually considered
this option in the 1690s when he began considering a revised second edition. But
even in its second (1713) and third (1726) editions, the Principia was still written
in a geometrical language, a geometrical veil that kept what seemed mathematically
more interesting out of sight.

Continentals such as Leibniz, the Bermoullis, and Pierre Varignon took a com-
pletely different direction, promoting the use of calculus in “dynamics.” But even in
Newton’s circle mathematicians such as David Gregory, Roger Cotes, Brook Taylor,
James Stirling, and Abraham De Moivre were consulting their master about the use
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of fluxions and series in the study of motion. They shared ideas within their close
circle and often competed with the Continentals in the use of fluxional/differential
equations in the study of motion in nonresisting and resisting media.

The competences of mathematicians changed rapidly during Newton’s mature
years. The Principia might have been written with the mathematical background of
its 1687 readers in mind, but, under Newton’s disconcerted gaze, its mathematical
style soon became obsolete. As Newton wrote in the late 1710s,

To the mathematicians of the present century, however, versed almost wholly in
algebra as they are, this [the Principia’s] synthetic style of writing is less pleasing,
whether because it may seem too prolix and too akin to the method of the ancients,
or because it is less revealing of the manner of discovery. And certainly I could
have written analytically what I had found out analytically with less effort than it
took me to compose it. I was writing for Philosophers steeped in the elements of
geometry, and putting down geometrically demonstrated bases for physical science.
And the geometrical findings which did not regard astronomy and physics I either
completely passed by or merely touched lightly upon.41

While the philosophers in 1687 were steeped in geometry, the younger mathemati-
cians, formed at Bernoulli’s school in Paris and Basel, who began their studies
in higher mathematics reading L’Hospital’s Analyse des Infiniment Petits (1696),
found the Principia obscure.

10.3.3 A Method for Making Things Certain

I now turn to the second part of Newton’s reply to the critics of the Principia, who
used his magnum opus to demonstrate his lack of knowledge of calculus. During his
dispute with Leibniz, speaking of himself in the third person, Newton anonymously
stated,

By the help of this new Analysis Mr Newton found out most of the Propositions
in his Principia Philosophiae: but because the Ancients for making things cer-
tain admitted nothing into Geometry before it was demonstrated synthetically, he
demonstrated the Propositions synthetically, that the Systeme of the Heavens might
be founded upon good Geometry. And this makes it now difficult for unskillful men
to see the Analysis by which those Propositions were found out.42

41 MP, 8, p. 451. “Mathematicis autem hujus saeculi, qui fere toti versantur in Algebra, genus
hocce syntheticum scribendi minus placet, seu quod nimis prolixum videatur & methodo veterum
nimis affine, seu quod rationem inveniendi minus patefaciat. Et certe minori cum labore potuis-
sem scribere Analytice quam ea componere quae Analytice inveneram: sed propositum non erat
Analysin docere. Scribebam ad Philosophos Elementis Geometriae imbutos & Philosophiae natu-
ralis fundamenta Geometrice demonstrata ponebam. Et inventa Geometrica quae ad Astronomiam
et Philosophiam non spectabant, vel penitus praeteribam, vel leviter tantum attingebam.” MP, 8,
p. 450. I have slightly altered Whiteside’s translation.
42 Newton, “Account” (1715), which Newton anonymously published in the Philosophical Trans-
actions. Reprinted in Hall, Philosophers at War (1980), p. 296. See also MP, 8, pp. 598–9.
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It would be naive, of course, to take such statements literally. Newton was writing
in the muddied context of the priority dispute; he was far from objective. Yet these
and similar pronouncements should not be dismissed by the historian, and for two
very good reasons.

First, they are precious in revealing some of the values that Newton wished to
defend in his mature years, most notably, the notion that the “good geometry,”
upon whose solid foundations he had developed his natural philosophy, must be
consistent with the synthesis of the ancients.

Second, these pronouncements show that Newton was claiming to be following a
canon of problem solving whereby the analysis that allows one to answer a question
should be neglected in the synthetic, demonstrative composition. As Newton stated,

Solution is, however, the opposite of resolution in that it may not be had till all
trace of resolution be removed from start to finish by means of a full and perfect
composition. For example, if a question be answered by the construction of some
equation, that question is resolved by the discovery of the equation and composed
by its construction, but it is not solved before the construction’s enunciation and
its complete demonstration is, with the equation now neglected, composed.43

This canon was at work in Arithmetica Universalis, where the common (finite) Car-
tesian analysis was to be neglected in the construction of equations (see chapter 4).
It was at work in Enumeratio Linearum Tertii Ordinis, where the algebraic and
fluxional analysis that lies behind many of Newton’s statements was only obliquely
revealed to the reader (see chapter 6). This canon was also at work in De Methodis,
where the analytical solution of quadrature problems was followed by demonstra-
tions of the constructions in which no algebraic calculation occurs, since only such
constructions are worthy of public utterance (§9.1).44 Newton claimed that all
synthetic constructions of quadratures in the Principia (see two examples in chap-
ter 12) were first discovered by analytical means, namely, by highly algorithmic
quadrature techniques (§8.4). A close scrutiny of the Principia shows this claim to
be excessive.45 In some instances, it is nevertheless possible to find internal and
external evidence that the analytical method of quadratures was at work in the
Principia.

Parts V and VI expand on the values that Newton defended in his mature pub-
lished and unpublished mathematical works. Chapters 11 and 12 present some

43 MP, 7, p. 307. “solutionem vero ita contrariam esse resolutioni ut ea non prius habeatur quam
resolutio omnis a principio ad finem per compositionem plenam et perfectam excludatur. Verbi
gratia si quaestioni per constructionem aequationis alicujus respondeatur, quaestio illa resolvitur
per inventionem aequationis, componitur per constructionem ejusdem, sed non prius solvitur quam
constructionis enunciatio ac demonstratio tota componitur, aequatione neglecta.” MP, 7, p. 306.
44 MP, 3, p. 279.
45 See Guicciardini, Reading the Principia.
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examples of hidden analysis in the Principia. Note, however, that use of symbolical
analysis that can be identified in some propositions of the Principia is the exception,
not the rule (as Newton claimed during the priority dispute). Newton made use of
algebraic and fluxional analyses in certain demonstrative passages of the Principia,
yet his work was not systematically written in symbolical terms, as was done by
Continental mathematicians from Varignon to Euler and beyond.46 By the middle
of the eighteenth century mathematicians such as Euler and d’Alembert conceived
analytical mechanics as a discipline entirely written in calculus terms. Their starting
point was the differential equations of motion, which were subsequently solved for
particular boundary and initial conditions. For instance, in tackling the three-body
problem, as Wilson made clear, they “started from differential equations that stated
exactly the conditions of the problem,” and in their mathematical practice “refer-
ence to the differential equations . . . controls the successive approximations.”47 By
contrast, in Newton’s Principia methods equivalent to Leibnizian integrations do
occur but only sporadically in a demonstrative context that is ultimately grounded
on physical and geometrical insights.

46 Blay, La Naissance de la Mécanique Analytique (1992).
47 Wilson, “Newton on the Moon’s Variation and Apsidal Motion” (2001), p. 153.
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As a matter of fact, even though Newton’s Principia in many places offers examples
of the ancient procedure, in general the calculus surfaces behind the concealment
with which Newton keeps it hidden from sight. This is a drawback which is frequent
in those books delivered as writings faithful to the ancient method, but which are,
in fact, just disguised algebra.

—Jean E. Montucla, 1802

11.1 Proposition 30, Book 1, of the Principia

This chapter considers how Newton employed algebraic equations in the Principia.
He did employ algebra, which for several purposes proved to be a useful analytical
tool. But he did not print the Cartesian (or common) analysis but rather the
geometrical synthesis, that is, the compositio but not the resolutio. As explained
in chapter 3, the Cartesian canon of problem solving required that, after having
reduced a problem to an algebraic equation, one had to produce a geometrical
construction followed by a geometrical demonstration that the construction solved
the problem.

The use of algebraic equations was well known to even modestly competent read-
ers in 1687 Britain. Textbooks on the use of algebraic equations, such as Oughtred’s
Clavis (1631), which ran numerous editions, Johann Heinrich Rahn’s An Introduc-
tion to Algebra (1668), and John Kersey’s The Elements of That Mathematical Art
Commonly Called Algebra (1673–1674), were easily available. Newton’s choice to
conceal what was called, because of its well-established status, common analysis
did not depend upon worries about the competences of his readers. It was a choice
dictated by a well-defined publication strategy.

Epigraph from Montucla, Histoire des Mathématiques (1799–1802), 3, p. 6.“En effet, quoique ses
principes [Principia] nous offrent en bien des endroits des exemples de ce tour ancien; en général le
calcul y perce à travers le déguisement dont Newton l’a couvert, espèce de défaut, commun à bien
des livres donnés pour écrits suivant la méthode ancienne, et qui ne sont que de l’algèbre déguisée.”
When Montucla died, pages 1–336 of volume 3 of his new edition of the Histoire had already been
proofread and printed. The rest was revised by J. de Lalande (Lalande availed himself of the help
of several scholars; most notably S. F. Lacroix revised pages 342–352 on integration of partial
differential equations. See footnotes on pages 336, 342, 344, 349 in volume 3). Since volumes 3
and 4 of the Histoire are a cooperative effort, it is improper to attribute them to a single author.
We do not know how heavily Montucla’s text was changed, especially after page 336. It is fair, I
surmise, to attribute to Montucla quotations from pages 1–336 of volume 3.
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An example of hidden common analysis occurs in Proposition 30, Book 1. This
proposition deals with a simple problem, one that can be solved in finite algebraic
terms. A body moves along a given parabola AP , where A is the vertex and S the
focus (figure 11.1). The variable position of the body is indicated by P . The radius
vector SP sweeps equal areas in equal times. Also known are the time when the
body is at A and the initial velocity at A. The problem is how to find the position
P of the body as a function of time. Newton solved this problem by a geometrical
construction that, according to Chandrasekhar, “passes understanding.”1

Newton’s prescriptions were quite simple. One must draw a straight line passing
through G (the midpoint between the vertex A and the focus S) and orthogonal
to the parabola’s axis. A point H flows with constant velocity along the straight
line so that its velocity is three-eighths the initial velocity of the body at the vertex
A. In order to determine the position of H as a function of time, one needs some
initial condition. Newton prescribed that the position of the fluent point H is G,
when the body is at the vertex A. Next, one is required to draw, at any time, a
circle with center H and radius HA = HS. The circle will cut the parabola in the
point P which determines, as required, the position of the body along the parabolic
trajectory.

After providing this geometrical construction, Newton demonstrated that it was
exactly what was required. What Newton did not do is explain how he found
that construction. In other words, the reader of the Principia found a successful
geometrical construction but no hint as to how such construction was achieved by

Figure 11.1

Newton’s diagram for Proposition 30. Source: Newton, Philosophiae Naturalis Principia
Mathematica (1726), p. 105. Courtesy of the Biblioteca Angelo Mai (Bergamo).

1 Chandrasekhar, Newton’s Principia for the Common Reader (1995), p. 131.
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its author. As is typical with synthetic constructions, it “passes understanding.”
However, a reader who has some knowledge of seventeenth-century mathematics will
not spend too much time in recognizing a technique typical of Descartes’ Géométrie
in Newton’s construction. It goes without saying that Newton knew this technique,
since in his youth he had read the Géométrie with avidity. Further, in his Lucasian
Lectures on Algebra, deposited in the University Library in 1684 and published
in 1707 as Arithmetica Universalis, Newton devoted a great deal of space to the
algebraic resolution of problems and to the construction of equations (§4.3, §4.4).2

11.2 Newton’s Synthetic Construction for Proposition 30, Book 1

It is worth quoting Newton at length in order to allow the reader to appreciate his
synthetic procedure:

Proposition 30. Problem 22.
If a body moves in a given parabolic trajectory, to find its position at an assigned
time.

Let S be the focus and A the principal vertex of the parabola [see figure 11.1],
and let 4AS × M be equal to the parabolic area APS to be cut off, which either
was described by the radius SP after the body’s departure from the vertex or is to
be described by that radius before the body’s arrival at the vertex. The quantity
of that area to be cut off can be found from the time, which is proportional to
it. Bisect AS in G, and erect the perpendicular GH equal to 3M , and a circle
described with center H and radius HS will cut the parabola in the required place
P . [Author’s note: this ends the construction of the problem. What follows until
Q.E.D. is the demonstration of the construction.]

For, when the perpendicular PO has been dropped to the axis and PH has been
drawn, then AG2 + GH2 (= HP 2 = (AO −AG)2 + (PO −GH)2) = AO2 + PO2 −
2GA × AO − 2GH × PO + AG2 + GH2. Hence 2GH × PO (= AO2 + PO2 −
2GA × AO) = AO2 + 3

4
PO2. For AO2 write (AO × PO2)/4AS, and if all the

terms are divided by 3PO and multiplied by 2AS, it will result that 4
3
AG × AS

[= 1
6
AO×PO+ 1

2
AS×PO = (AO+3AS)/6×PO = (4AO−3SO)/6×PO = area

(APO−SPO)] = area APS. But GH was 3M , and hence 4
3
GH ×AS is 4AS×M .

Therefore, the area APS that was cut off is equal to the area 4AS × M that was
to be cut off. Q.E.D.

Corollary 1. Hence GH is to AS as the time in which the body described the arc AP
is to the time in which it described the arc between the vertex A and a perpendicular
erected from the focus S to the axis.

2 Newton devised several methods for constructing equations geometrically. He derived Descartes’
construction of third-degree equations in his Lucasian Lectures on Algebra. MP, 5, p. 489. For
his early studies on the construction of third-degree equations, see MP, 2, pp. 484ff.
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Corollary 2. And if a circle ASP continually passes through the moving body P ,
the velocity of point H is to the velocity which the body had at the vertex A as 3
to 8, and thus the line GH is also in this ratio to the straight line which the body
could describe in the time of its motion from A to P with the velocity which it had
at the vertex A.3

11.3 Descartes’ Construction of Third-Degree Equations

The Cartesian construction of third-degree equations via intersection of parabola
and circle (§3.3.3) is as follows:

Given the equation x3 = Px + Q, it is required to construct it (see figure
11.2).4

1. Describe a parabola with latus rectum equal to 1 and vertex A (its equation
is y = x2).
2. Mark C on the y-axis so that AC = (P + 1)/2.
3. Draw CE = Q/2 horizontally from C in the direction corresponding to its
sign.
4. Construct the circle with radius EA.5

5. The circle intersects (or touches) the parabola in at most three points.
Draw perpendicular segments to the axis from each of these points.
6. The segments with signs as indicated by their directions, have lengths
corresponding to the roots of the equation.

These Cartesian prescriptions, which were discussed by Newton in his Lucasian
Lectures on Algebra, were well-known to seventeenth-century mathematicians. Des-
cartes’ construction of a third-degree equation leads to a geometrical diagram iden-
tical with the one employed by Newton in Proposition 30 (compare figure 11.1 with
figure 11.2). Such similarity is not by chance and, I am sure, any numerate con-
temporary of Newton would have seen the connection with Descartes’ procedure.

11.4 The Analysis behind Proposition 30, Book 1

The analysis concealed in Proposition 30 can now be considered. Indeed, Newton
gave the Cartesian construction of a third-degree equation. Using a notation fully
accessible to Newton—actually widely employed by him in his Lucasian Lectures on
Algebra—denote the coordinates of the moving point P with AO = y and OP = x.

3 Newton, Principles, p. 510. See figure 11.3.
4 Descartes had previously shown how to reduce the equation so that the term in x2 is removed.

5 Note that EA is equal to
√

1
4
(1 + P )2 + 1

4
Q2.
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Figure 11.2

Descartes’ diagram for the construction of the roots of a third-degree equation. Source:
Descartes, Géométrie (1637), p. 205. Courtesy of the Biblioteca Angelo Mai (Bergamo).

Use the parabola’s latus rectum as unit, that is, let 4AS = 1. Thus, the parabola’s
equations is

y = x2. (11.1)

The area of the focal sector ASP is

ASP =
2
3
xy − 1

2
x

(
y − 1

4

)
. (11.2)

Since the area law holds,

ASP =
h

2
t, (11.3)

where h is the magnitude of angular momentum per unit mass, determined by the
given initial conditions (in t = 0, the initial velocity v0 at the vertex A is known,
and the distance from the force center S is—in our units—equal to 1/4; therefore
the magnitude of angular momentum is h = v0/4). After some manipulation,

h

2
t =

1
6
xy +

1
8
x =

1
6
x3 +

1
8
x. (11.4)
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Figure 11.3

Proposition 30, Book 1, as it appeared in the first edition of the Principia. The text
of the first edition is marred by mistakes and typos that underwent several corrections.
The numerous variants are edited in Newton, Principia, p. 187. In my analysis I use
the English translation from the third edition. Source: Newton, Philosophiae Naturalis
Principia Mathematica (1687), p. 104. Courtesy of the Biblioteca Angelo Mai (Bergamo).
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Figure 11.4

Corollaries to Proposition 30, Book 1. Source: Newton, Philosophiae Naturalis Principia
Mathematica (1687), p. 105. Courtesy of the Biblioteca Angelo Mai (Bergamo).

Given the time t and v0, one can determine x (hence, the position P of the body)
by solving a third-degree equation. While the Kepler problem for ellipses is nonal-
gebraic (§13.3), in the case of a cometary parabolic path one is confronted with a
much simpler problem. Indeed, the position is given by the solution of a third-degree
algebraic equation.

Applying Descartes’ rules for the construction of third-degree equations (§11.3),
one can recover Newton’s construction.

Rewrite equation (11.4) as

x3 = −3
4
x + 3ht, (11.5)

and obtain x3 = Px + Q, where P = −3/4 and Q = 3ht.
Then,

1. Describe the parabola y = x2 with latus rectum 4AS = 1 and vertex A
(see figure 11.1).
2. Mark G on the y-axis so that AG = (P + 1)/2 = 1/8. Hence, G is the
midpoint of AS.
3. Draw GH = Q/2 = (3/2)ht = (3/2)(v0/4)t = (3/8)v0t horizontally from
G.
4. Construct the circle with radius HA = HS.6

6 The circle employed for the construction of a third-degree equation has to pass through the
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5. The circle intersects the parabola in one point P .
6. The intersection between the circle and the parabola geometrically deter-
mines the real root x = OP of equation (11.5) for any time t and thus, as
required, determines the position of the body.

Thus, Newton’s construction has been achieved by applying Descartes’ rules.

11.5 Concluding Remarks

The demonstration of Proposition 30 (Problem 22) is geometrical. It would be
erroneous, however, to think that algebraic analysis plays no role in it. Indeed,
there is no doubt that Newton provided a standard construction of third-degree
algebraic equations through the intersection of conics (parabola and circle) n the
printed text of the Principia. These constructions were quite familiar to him and
to most of his readers. Newton was also adamant in thinking that the composition
(synthesis) should bear no trace of the resolution (analysis) carried out thanks to
the manipulation of algebraic equations. Equations, he frequently stated, should be
neglected in the compositive stage; they are not worthy of being published. In the
Principia, Newton deliberately followed his own methodological prescriptions.

vertex A; thus the circle’s radius is HA = HS.
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The second treatise [De Quadratura] will contain his [Newton’s] Method of Quadra-
tures . . . on these [quadratures] depend certain more abstruse parts in his philos-
ophy as hitherto published, such as Corollary 3, Proposition 41 and Corollary 2,
Proposition 91.

—David Gregory, 1694

When he had reduced a proposition to the quadrature, for example, of a curve, he
had completed what he considered as strictly belonging to the general Principles
of Natural Philosophy; he had brought his conclusion into a tangible form, and
had attained a resting place for the minds of his readers. To those few, who were
then able to proceed to the numerical determinations, there could be no difficulty
in translating the geometrical results into algebraic formulae.

—Stephen P. Rigaud, 1838

12.1 Concessis curvilinearum figurarum quadraturis

Proposition 30, Book 1, tackles a rather elementary problem, one that can be re-
solved via common analysis. Is there any trace of the use of new analysis in the
Principia? Indeed, there are some occurrences of application of the method of series
and fluxions.1 In this chapter I give two examples from which it will be clear that
Newton deployed rather advanced quadrature techniques. Corollary 3, Proposition
41, Book 1, and Corollary 2, Proposition 91, Book 1, are analyzed in some detail.

As mentioned in section 10.2.7, point 3a, there are a number of propositions that
begin with the statement that a method for squaring curvilinear figures is available.
As Newton wrote in the statement of these propositions, the demonstration rests
upon the conjecture that a method for squaring curves is given (concessis curvilin-
earum figurarum quadraturis). In these propositions Newton reduced the problem
to the calculation of the area bounded by a curve. In subsequent corollaries or
scholia he applied the general solution to particular cases (typically specifying the
force law); one must therefore calculate the quadrature for specific cases. The so-
lutions in the corollaries and scholia depend upon such calculations, but no details

Epigraphs sources: (1) Edinburgh University Library, MS Gregory C42. David Gregory’s mem-
orandum (July 1694) of a May 1694 visit to Newton. Translation in Correspondence, 3, p. 386.
(2) Rigaud, Historical Essay (1838), pp. 24–5.
1 They are analyzed in Guicciardini, Reading the Principia (1999).
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are given on how to perform them. A famous example is the determination of the
solid of least resistance (Scholium to Proposition 34, Book 2).2 Yet this example
is not unique. When Newton’s contemporaries encountered these puzzling gaps in
the demonstrations of the Principia, it was evident to them that the author had
a method for squaring curves, since this method was explicitly referred to in the
propositions and was used in order to reach the results in the corollaries and scho-
lia. Like the readers of the Enumeratio, they often complained about Newton’s
reticence in revealing the analysis; if they could, they approached the master in
order to obtain illumination. There are some documents in which Newton replied
to such queries, giving the analytical details to David Gregory and Roger Cotes.3

But I now turn to some of the examples of the use of new analysis in the Principia.

12.2 The Inverse Problem of Central Forces

The inverse problem of central forces can be stated as follows. When the centripetal
force is known, and the initial position and velocity of a body acted upon by such a
force are given, determine the orbit. The force is known when the force center C and
the spatial dependence of the force’s strength are known. The orbit is determined
when the plane curve along which the body moves (the trajectory) and the position
in function of time of the body are found.

In Proposition 41, Book 1, Newton reduced the inverse problem of central forces
to quadratures (integrations). Proposition 41 delineates a general strategy that can
be followed in order to solve the problem for any central force.

In Corollary 3, Proposition 41, Newton considered the case of an inverse-cube
force. In the printed text of the Principia he geometrically constructed two orbits
that solved the problem for an inverse-cube force. But he did not explain how the
necessary quadratures (required by the general strategy applied to the case of an
inverse-cube force) could be performed. Let us devote some attention to Proposition
41 and its third corollary.

12.2.1 Proposition 41, Book 1

Newton considered (figure 12.1) a body fired at V along a direction perpendicular
to CV and with a given initial speed. The body is acted upon by a centripetal force
directed toward force center C. Proposition 41 states,

Supposing a centripetal force of any kind and granting the quadratures of curvilinear
figures, it is required to find the trajectories in which bodies will move and also the
times of their motions in the trajectories so found.4

2 Proposition 35 in the first edition.
3 See Guicciardini, Reading the Principia (1999), for a discussion of this topic.
4 Principia, p. 218. Principles, p. 529.
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Let V Ik be the curve sought, and let IK be an infinitesimal arc traversed by the
body in an infinitesimal interval of time.5 Further, KN is drawn perpendicularly to
CI. Since Kepler’s area law holds, the infinitesimal interval of time is proportional
to the area of the sector CIK, that is, to (CI × KN)/2. Newton denoted the
constant areal velocity by Q/2, so that the infinitesimal arc IK is traversed in the
infinitesimal interval of time (CI ×KN)/Q. The speed v along IK can be assumed
constant. It is equal to the arc IK divided by the time:

v =
IK × Q

CI × KN
. (12.1)

Note that on the right in figure 12.1 Newton added the curves that must be squared
in order to solve the inverse problem. The curve BFG represents the strength of
force as a function of radial displacement (DF is thus proportional to the force’s
strength at I).

In Propositions 39 and 40, Book 1, Newton proved that the square of the speed
at I is proportional to the area of the surface ABFD under the curve that represents
force’s strength as a function of radial displacement CI. Newton’s result, which he

Figure 12.1

Diagram for Proposition 41, Book 1. Source: Newton, Philosophiae Naturalis Principia
Mathematica (1687), p. 128. Courtesy of the Biblioteca Angelo Mai (Bergamo).

5 “Let the points I and K be very close indeed to each other.” Principles, p. 530. “Sint autem
puncta I & K sibi invicem vicinissima.” Principia, p. 219.
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stated in connected prose, can be rendered in a somewhat more algebraicized way6

as
v ∝

√
ABFD. (12.2)

Thus,
IK × Q

CI × KN
∝

√
ABFD. (12.3)

Newton set CI = A and Q/A = Z, and stated7 that

IK

KN
∝

√
ABFD

Z
. (12.4)

The proportion (12.4) is the basic result that allowed Newton to tackle the inverse
problem of central forces in Proposition 41.8

Newton always had in mind the need for geometrical representability and intro-
duced an auxiliary circle V XY R. From (12.4), after some simple manipulations
with ratios, he deduced that

area CV I

[
=

Q

2
t

]
= area under curve abz = V abD, (12.5)

6 Propositions 39 and 40 can be read in modern terms as the expression of the work-energy
theorem. Newton did not have the concepts of work and energy. Recall that I use ∝ for Newton’s
“is proportional to”.
7 I am here using a somewhat more symbolical formulation. What Newton actually wrote is
“
√

ABFD will be to Z as IK to KN .” Principles, p. 530.
8 In order to facilitate the understanding of the geometrical proportionality (12.4), I translate it
into more familiar Leibnizian symbolic terms. Substitute Q = h, IK = ds, IN = −dr, KN = rdθ,
CI = r, CV = r0, and furthermore, following Propositions 39 and 40, put ABFD = v2

0 +
2

∫ r0
r Fdr = v2, where v is the speed at I, v0 the initial speed at V . I assume mass m = 1. From

(12.4),

ds2(= dr2 + r2dθ2)

r2dθ2
=

r2

h2

(
v2
0 + 2

∫ r0

r
Fdr

)
.

By means of simple algebraic manipulations, polar differential equations for the orbit are obtained:

dt =
−dr

√ (
v2
0 + 2

∫ r0
r Fdr − h2/r2

)
and

dθ =
−hdr

r2√ (
v2
0 + 2

∫ r0
r Fdr − h2/r2

) ,

Note that this translation, which is close to what Johann Bernoulli did in 1710, while it is helpful
for the modern reader, does not yield correctly what can be read in the Principia because Newton
always had in mind the need to retranslate algebraic reasoning into geometry.
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where the ordinate of the curve abz is

Db =
Q

2√ (ABFD − Q2/A2)
. (12.6)

Furthermore,

area CV X

[
=

CX2

2
θ

]
= area under curve dcx = V dcD, (12.7)

where the ordinate of the curve dcx is

Dc =
Q × CX2

2A2√ (ABFD − Q2/A2)
. (12.8)

If one squares abz, the functional dependence of time [t] with distance [r] is given.9

If one squares acx, the functional dependence of polar angle [θ] with distance [r]
is given. Note that instead of working directly with polar coordinates, as in the
Leibnizian translation shown in footnote 8 and in square brackets, Newton related
the distance CI to geometrical quantities (areas CV I and CV X) proportional to
time [t] and to polar angle [θ], respectively, which are visualized in figure 12.1.10

12.2.2 Corollary 3, Proposition 41, Book 1: The Synthetic Construction

The inverse problem for inverse-cube forces is faced in Corollary 3, Proposition 41,
Book 1.11 The problem is how to determine the orbit of a body accelerated by a
central force that varies inversely as the cube of the distance. In the Principia, New-
ton gave only the synthetic construction; he identified two orbits that answer the
problem. He restricted his attention to the case in which the body is fired at V along
a direction perpendicular to CV . In modern notation (see the discussion of formula
(12.18)), one can say that Newton’s solution corresponds to 1/r = C sin[γ(θ − θ0)]
(valid for a repulsive force) and 1/r = C cosh[γ(θ − θ0)] (valid for an attractive
force), where r and θ are the polar coordinates of the orbit.

The general strategy delineated in Proposition 41 can be applied to this case
provided one is able to perform the necessary quadratures of the curves abz and dcx
whose ordinates are (12.6) and (12.8). Newton was able to obtain these quadratures.
The quadrature of (12.6) is elementary, and equation (12.8) applied to an inverse-
cube force leads to the problem of squaring a curve contemplated by Newton in

9 In order to facilitate the understanding I have added in square brackets symbolic expressions in
terms of polar coordinate θ and time t that do not appear in the Principia.
10 The role of visualization has been underlined by Erlichson in “The Visualization of Quadratures
in the Mystery of Corollary 3 to Proposition 41 of Newton’s Principia” (1994).
11 On this corollary, see Brackenridge, “Newton’s Easy Quadratures” (2003).
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his catalogues of curves (1671) (§8.4). In the Principia, Newton did not perform
these quadratures explicitly but simply stated the result that follows from them
(figure 12.2). Corollary 3 is as follows:

If with center C and principal vertex V , any conic V RS is described, and from
any point R of it the tangent RT is drawn so as to meet the axis CV , indefinitely
produced, at point T ; and joining CR there is drawn the straight line CP , which
is equal to the abscissa CT and makes an angle V CP proportional to the sector
V CR; then, if a centripetal force inversely proportional to the cube of the distance
of places from the center tends towards the center C, and the body leaves the place
V with the proper velocity along a line perpendicular to the straight line CV , the
body will move forward in the trajectory V PQ, which point P continually traces
out; and therefore, if the conic V RS is a hyperbola, the body will descend to the
center. But if the conic is an ellipse, the body will ascend continually, and will go
off to infinity.

And, conversely, if the body leaves the place V with any velocity and, depending
on whether the body has begun either to descend obliquely to the center or to
ascend obliquely from it, the figure V RS is either a hyperbola or an ellipse, the
trajectory can be found by increasing or diminishing the angle V CP in some given
ratio. But also if the centripetal force is changed into a centrifugal force, the body
will ascend obliquely in the trajectory V PQ, which is found by taking the angle
V CP proportional to the elliptic sector V CR, and by taking the length CP equal
to the length CT , as above. All this follows from the foregoing proposition [41],
by means of the quadrature of a certain curve, the finding of which, as being easy
enough, I omit for the sake of brevity.12

Figure 12.2

Diagram for Corollary 3, Proposition 41, Book 1. Source: Newton, Philosophiae Naturalis
Principia Mathematica (1687), p. 130. Courtesy of the Biblioteca Angelo Mai (Bergamo).

12 Principia, pp. 222–3. Principles, pp. 531–2.
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This is the construction of the two orbits for an inverse-cube force that Newton
proposed in Corollary 3, when the body is fired from V at right angles with CV .
The sought orbit V PQ is a plane curve traced by the point P whose location is
given in terms of two prescriptions:

1. The distance CP from force center is equal to CT .
2. The polar angle V CP is proportional to the area of the conic sector V CR.

These prescriptions refer to an auxiliary conic V RS, with vertex V and center C.
The point R flows along the arc of the conic V RS. Therefore, for instance, in the
diagram to the right in figure 12.2, CP = CT tends to zero as the polar angle
V CP ∝ V CR increases, so that the body spirals toward the force center.

The historian of mathematics cannot avoid a smile while reading Newton’s con-
clusion to Corollary 3. The quadrature required was by no means easy. In what
follows I consider the corollary applied to an attractive inverse-cube force and leave
it to the reader to study the analogous case corresponding to a repulsive force.

12.2.3 The Hidden Analysis in Corollary 3, Proposition 41, Book 1

In 1694, David Gregory asked Newton to explicate the analysis hidden behind the
synthetic construction proposed in Corollary 3. Newton replied as follows (see
figure 12.3).13 In the letter to Gregory he put the distance from force center as
CI = A = x (see figure 12.1), and assumed the force to be

F = a4/x3, (12.9)

where a is a constant. From Propositions 39 and 40 it is known that the square of
speed at distance x is proportional to the area ABFD. For an inverse-cube force
such as (12.9) Newton deduced

ABFD = 2a4/x2 − 2a4/c2. (12.10)

Note that this result has the wrong factor 2 at the numerator.14

Newton then stated that Corollary 3 is solved by squaring the curves abz and dcx,
whose ordinates Db and Dc are given by equations (12.6) and (12.8) for F = a4/x3.
That is,

Db =
Q

2
√

(2a4 − Q2)/x2 − 2a4/c2
=

1
2

Qx√
2a4 − Q2 − 2a4x2/c2

, (12.11)

13 Correspondence, 6, pp. 435–7.
14 In modern notation, note that c is chosen so that −2a4/c2 = −2a4/x2

0 + v2
0 , where x0 and v0

are the initial position and velocity.



274 Chapter 12

Figure 12.3

An example of how information about the analytical subtext of the Principia circulated
among Newton’s acolytes. Manuscript sent by Newton to David Gregory upon his request
in 1694. It contains the analytical details of the quadratures required in Corollary 3,
Proposition 41, Book 1, of the Principia. See Guicciardini, Reading the Principia (1999),
pp. 216–23, and especially Erlichson, “The Visualization of Quadratures in the Mystery
of Corollary 3 to Proposition 41 of Newton’s Principia” (1994) and Brackenridge, “New-
ton’s Easy Quadratures” (2003). Source: Royal Society: Greg.(ory) M.S. Folio 163. By
permission of the Royal Society.

and (figure 12.4)

Dc =
Q × CX2

2x2
√

(2a4 − Q2)/x2 − 2a4/c2
=

Q × CX2

2x
√

2a4 − Q2 − 2a4x2/c2
. (12.12)
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Figure 12.4

Detail of Newton’s reply to Gregory. Here Newton translated one of the basic propor-
tionalities stated in Proposition 41 into symbols (equation 12.12). Source: Royal Society:
Greg.(ory) M.S. Folio 163. By permission of the Royal Society.

The quadrature of (12.11) is elementary. Newton noted that the area V abD,15

which gives the functional dependence of time with distance CI = x from the force
center, is

V abD =
c2Q

4a4

√
2a4 − Q2 − 2a4x2/c2 ± a given constant. (12.13)

The quadrature of (12.12) is more difficult and must have created some problems
for Gregory.

In order to square the curve dcx Newton must have made recourse to his second
catalogue of curves. By inspection of the first column (d/(z

√
e + fzη) = y) in

figure 12.5 we see that the quadrature of (12.12) is reduced to the first case of the
seventh order for z → x, η = 2, d = (Q/2) × CX2, e = 2a4 − Q2, f = −2a4/c2.
Note that the abscissa of the curve to be squared is x in the letter to Gregory and
z in the 1671 table (hence, z → x).16

15 The fact that Newton did not have an integral sign and did not express the limits of integration
creates some problems for the modern reader. Newton here calculated, for x0 > x1,

V abD =
Q

2
t =

Q

2

∫ x1

x0

x dx√
2a4 − Q2 − 2a4x2/c2

and

V dcD =
CX2

2
θ =

CX2

2

∫ x1

x0

Q dx

x
√

2a4 − Q2 − 2a4x2/c2
.

16 It is useful to translate the first case of the seventh order into Leibnizian notation. For η = 2,
Newton evaluated the integral

∫
δ/(z

√
e + fz2) dz (δ, e, f constants). By substitution of variables

z = x−1, he reduced it to the conic area s =
∫

vdx =
∫ √

f + ex2 dx. Namely,∫
δ

z
√

e + fz2
dz =

2δ

f

∣∣∣∣12xv − s

∣∣∣∣ + C =
2δ

f

∣∣∣∣12x
√

f + ex2 −
∫ √

f + ex2 dx

∣∣∣∣ + C = t.

Verify by differentiation that

dt

dz
=

dt

dx

dx

dz
=

2δ

f

(
1

2
v +

1

2
x

dv

dx
− v

)
dx

dz
=

2δ

f

(
−1

2

√
f + ex2 +

ex

2
√

f + ex2

)
dx

dz
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Figure 12.5

First case of the seventh order of the second catalogue of curves in the manuscript of De
Methodis (1671). Note that d is a constant, not a differential. Also, Newton did not use the
modern symbol for the absolute value | 1

2
xv − s| but rather one that he found in Barrow’s

works. Newton wrote ÷ for “the Difference of two Quantities, when it is uncertain whether
the latter should be subtracted from the former, or the former from the latter.” (Newton,
Two Treatises (1745), p. 25). Thus, Newton wrote 1

2
xv ÷ s. Source: Add. 3960.14, f. 81.

Reproduced by kind permission of the Syndics of Cambridge University Library.

The substitution of variables in the second and third columns must be slightly
modified. Further, a complication arises from the fact that the auxiliary conic is
lettered differently (compare figures 12.6 and 12.7). Recall that the polar angle of
the trajectory is proportional to the conic sector CV S.

Newton set

z =
ε2

x
= CR, (12.14)

where ε = CV , and (see third column)

v =
√
−2a4c−2 + (2a4 − Q2)ε−4z2 = RS. (12.15)

The sought area V dcD given in the fourth column is

V dcD =
2d

f

∣∣∣∣12zv − s

∣∣∣∣ = t, (12.16)

where s is the area of the surface subtended under the conic whose ordinate is
RS = v and abscissa CR = z (see figure 12.6).17

Gregory inserted this solution into his manuscript “Notae” in a space that he
had left empty in his running commentary on the Principia.18 Newton had clearly
given him some much-needed assistance. It has often been repeated that Newton

=
−δ√

f + ex2

dx

dz
=

−δz√
fz2 + e

−1

z2
=

δ

z
√

fz2 + e
.

17 The fact that Newton chose this more circuitous substitution of variables instead of putting
d = Qε2/2 reveals his intention of interpreting geometrically x and z as lengths of segments.
Indeed the constant ε corresponds to the length of CV , that is, the distance of the center from
the principal vertex of the conic used in the construction of Corollary 3. Newton deployed algebra
having in mind the necessity of interpreting geometrically the symbols that he manipulated.
18 For Gregory, see Eagles, The Mathematical Work of David Gregory (1977). David Gregory
began to read the Principia carefully in the early autumn of 1687. The result of his careful analysis
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Figure 12.6

Detail of Newton’s reply to Gregory. The conics required in the synthetic construction.
Source: Royal Society: Greg.(ory) M.S. Folio 163. By permission of the Royal Society.

Figure 12.7

The quadrature of the first case of the seventh form is reduced to the quadrature of a conic
area. This figure precedes the second catalogue of curves. This is the conic referred to
in the third column in figure 12.5 and coincides (apart from different lettering) with the
conic in Newton’s reply to Gregory. The sector CV S in the letter to Gregory coincides
with sector APD in De Methodis. Source: Newton, Opuscula Mathematica, Philosophica
et Philologica (1744), 1, Tab. V. Courtesy of the Biblioteca Angelo Mai (Bergamo).

was unable to write the differential equations of motion. The case of Corollary 3 to
Proposition 41 proves that this widely accepted judgment needs to be better qual-
ified.

is a 213-page-long manuscript entitled “Notae in Newtoni Principia Mathematica Philosophiae
Naturalis.” Gregory’s “Notae” are extremely important because they reveal how a well-trained
mathematician could understand Newton’s Principia. Despite this, they have been analyzed only
superficially by historians of science. The original manuscript in Gregory’s hand is kept in the
Royal Society (London), shelved as MS 210. The first 30 pages, a commentary on the first nine
sections of Book 1, are dated from September 1687 to April 1688. The remaining pages are dated
from December 1692 to January 1694. There are also later additions written on slips of paper
affixed by paste or wax. The last addition was made in 1708. There are also three transcripts: in
Christ Church (Oxford), in the University Library (Edinburgh), and in the Gregory Collection of
the University of Aberdeen. Royal Society Library, MS 210. Christ Church Library. University
Library (Edinburgh), MS DC.4.35. University of Aberdeen Library, MS 465.
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12.2.4 The Construction of Corollary 3, Proposition 41

Now the synthetic construction proposed in the Principia in Corollary 3, Proposi-
tion 41, should be clear. The area V dcD (see equation (12.16)), which gives the
functional dependence of polar angle V CP with distance CP , is proportional to
the area obtained by subtracting the area of the hyperbolic sector V SR = s from
the triangular area CRS = zv/2; therefore it is proportional to the area of half the
“hyperbolic angle” CV S (see figure 12.6). In symbols,

V dcD = k × CV S. (12.17)

The polar angle of the sought trajectory is thus geometrically represented by the
area of sector CV S, as stated in the printed Corollary 3.19

It is a simple property of the hyperbola that the tangent in a point S(z, v) cuts
the axis of the abscissae z in a point T such that CT is inversely proportional to
CR = z, that is, CT = CV 2/CR = ε2/z.20 Therefore, CT can be taken as a
geometrical representation of the radial distance x = CP from the force center, as
stated in the printed Corollary 3 (compare figure 12.2 with figure 12.6).21

Newton’s geometrical construction of the orbit for an attractive inverse-cube
force corresponds to what nowadays would be expressed as

1
x

= C cosh[γ(θ − θ0)], (12.18)

where x and θ are the polar coordinates of the orbit. Indeed, CR = ε cosh t, where
t is twice the area of the sector CV S.

19 Note that in his reply to Gregory, Newton made a mistake in writing that the constant of
proportionality is

k =
Qc2(2a4 − Q2)

a4
;

it should be

k =
2d

f
=

Qc2

2a4
.

This mistake is interesting, since it supports a surmise that Newton was using the quadrature
formula of the first case of seventh order of the second catalogue of curves. The origin of this
mistake seems to reside in the fact that Newton, looking back to his catalogues composed in 1671,
must have made the trivial mistake consisting in using 4ed/f instead of 2d/f . The extra term
(2a4 − Q2), indeed, corresponds to the constant e.
20 For a hyperbola with equation z2/ε2 − v2/ε′2 = 1 in Cartesian coordinates, one obtains CT =
z − v(dz/dv) = ε2/z.
21 Note that the printed diagram of Corollary 3 has a slightly different lettering from the one used
in the letter to Gregory.
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12.3 Attraction of Solids of Revolution

Propositions 90 and 91, Book 1, deal with the attraction exerted by homogeneous
solids of revolution on external points situated on the prolongation of the axis of
revolution.

12.3.1 Proposition 90, Book 1

In Proposition 90, Newton determined the attraction exerted by a uniform circular
disk (“a circle”) with center A and radius AD (see figure 12.8) on a point situated
in P (PA is normal to the disk). Let PH be equal to PD, and let the ordinates
of curve IKL be such that, if PF = PE, then FK is as “the force by which that
point [E] attracts body P towards A.”22 Consider the small line Ee and the ring
(the annulus) generated by rotation of Ee about the axis PAH. The strength of
the attraction exerted by the ring is

Fring ∝ FK · AE · Ee · PA

PE
, (12.19)

Figure 12.8

Attraction exerted by a disk. AD is the disk’s radius. P is the position of a point whose
attraction toward the disk must be determined. Source: Newton, Philosophiae Naturalis
Principia Mathematica (1726), p. 214. Courtesy of the Biblioteca Angelo Mai (Bergamo).

22 Principia, p. 329. Principles, p. 614.
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since the surface of the ring is 2 · π · AE · Ee, and the cosine factor (PA/PE) is
introduced by symmetry considerations. Recall that I use the symbol ∝ as short-
hand for Newton’s expression “is proportional to.”

Draw eC such that PC = Pe. Let Pf = Pe and thus CE = Ff . When
the angle ePE tends to zero, one can state that AE/PE = CE/Ee (here, as is
often the case, Newton did not make explicit this limit argument but simply relied
on the fact that Ee is infinitesimal).23 Therefore (taking into consideration that
AE · Ee = PE · CE = PE · Ff),

Fring ∝ FK · PE · Ff · PA

PE
= PA · FK · Ff. (12.20)

That is, the strength of the force exerted on the point situated at P by the ring
generated by the revolution of Ee is proportional to “the [infinitesimal] area FKkf
multiplied by PA.” In conclusion, the force directed toward A exerted on P by the
circular disk is “as the whole area AHIKL multiplied by PA.”24

The problem faced in Proposition 90 is thus reduced to the calculation of the
area of the surface AHIKL. In the next three Corollaries, Newton performed some
exemplary quadratures. For instance, in Corollary 2 he wrote that,

if the forces of the points at the distances D are inversely as any power Dn of the
distances (that is, if FK is as 1/Dn [=1/PEn]), and hence the area AHIKL is as
1/PAn−1 −1/PHn−1, the attraction of the corpuscle P toward the circle [the disk]
will be as 1/PAn−2 − PA/PHn−1 [where PH = PD].25

This simple quadrature is achieved by application of results known in the pre-
calculus period. Indeed, the area of the surface over the interval AH and un-
der the curve whose ordinate is FK = −k/PFn is, applying a well-known law,
(k/(n − 1))(1/PAn−1 − 1/PHn−1).26

12.3.2 Proposition 91, Book 1

In Proposition 91, Newton considered the attraction exerted by a homogeneous solid
of revolution on an external point situated on the axis of revolution. He partitioned
the solid into circular disks and obtained the total attraction by summing the com-
ponent attractions of the disks. In figure 12.9 the solid is generated by the rotation
of the curve DRE around the axis AB. The ordinate FK represents the strength

23 Ee is a “linea quam minima.” From Section 1, Book 1, it is known that infinitesimal arguments
must be translated into the language of the method of first and ultimate ratios (§9.3).
24 Principia, p. 330. Principles, p. 614
25 Principia, pp. 330–1. Principles, p. 615.
26 The law, well-known to Newton’s predecessors such as Wallis (§7.1), can be written as

∫
xn =

xn+1/(n + 1) + C.
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Figure 12.9

Attraction exerted by a solid of revolution on an external point situated on the axis
of revolution. The solid is subdivided into disks. The disk at distance PF from the
point situated at P has diameter RS. Source: Newton, Philosophiae Naturalis Principia
Mathematica (1726), p. 216. Courtesy of the Biblioteca Angelo Mai (Bergamo).

of the attraction exerted by the disk whose diameter is RS on the “corpuscle” at
P . Thus the total attraction exerted by the solid is given by the area of the surface
LABI.

According to Corollary 2, Proposition 90, if the force is as any power of the
distance, that is, as −1/Dn,

Fdisk ∝ FK =
1

PFn−2
− PF

PRn−1
. (12.21)

If the force is inverse-square (n = 2),

Fdisk ∝ FK = 1 − PF

PR
. (12.22)

According to Proposition 91 the attraction on a point situated on the prolon-
gation of the axis AB at P , under the hypothesis that the mass of the solid of
revolution is distributed homogeneously, is proportional to the area of the surface
subtended by the curve IKL whose abscissa is PF and ordinate is FK, calculated
between limits PF = PA and PF = PB.

In Corollary 1 the solid is a cylinder and the force is inverse-square. In this case
the area of the surface subtended by curve IKL is easily calculated (“which can
easily be shown from the quadrature of the curve LKI”).27

27 “id quod ex curvae LKI quadratura facile ostendi potest.” Principia, p. 332. Principles, p. 616.
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12.3.3 Corollary 2, Proposition 91, Book 1: The Synthetic Construction

Corollary 2, Proposition 91, Book 1, concerns an oblate spheroid generated by
rotation of ellipse AGBC around the minor axis AB (figure 12.10). According
to Proposition 91, the attraction on a point situated on the prolongation of the
minor axis at P , under the hypothesis that the mass of the spheroid is distributed
homogeneously and that the attracting force is inverse-square, is proportional to
the area of the surface subtended by the curve whose abscissa is PE and ordinate
is

Fdisk = 1 − PE

PD
, (12.23)

calculated between limits PE = PA and PE = PB. Indeed, (12.23) gives the
strength of the attraction exerted by a disk whose radius is ED. The total attraction
exerted by the ellipsoid is calculated by summing the component attractions of the
disks into which it is sliced.

In the Principia, Newton could not refer the reader to his unpublished discoveries
on quadratures. He thus simply gave the geometrical construction that corresponds
to the quadrature of the above mentioned curve. Corollary 2, without any reference
to Newton’s catalogues of curves, is a complete mystery. It is as follows:

Hence also the force becomes known by which a spheroid AGBC attracts any
body P , situated outside the spheroid in its axis AB. Let NKRM be a conic
whose ordinate ER, perpendicular to PE, is always equal to the length of the

Figure 12.10

Attraction exerted by an ellipsoid on an external point. Source: Newton, Philosophiae
Naturalis Principia Mathematica (1726), p. 217. Courtesy of the Biblioteca Angelo Mai
(Bergamo).
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line PD, which is drawn to the point D in which the ordinate cuts the spheroid.
From the vertices A and B of the spheroid, erect AK and BM perpendicular to
the axis AB of the spheroid and equal respectively to AP and BP , and therefore
meeting the conic in K and M ; and join KM cutting off the segment KMRK
from the conic. Let the center of the spheroid be S, and its greatest semidiameter
SC. Then the force by which the spheroid attracts the body P will be to the
force by which a sphere described with diameter AB attracts the same body as
(AS × CSq − PS × KMRK)/(PSq + CSq − ASq) to AScub./3PSquad. And by
the same mode of computation it is possible to find the forces of the segments of
the spheroid.28

12.3.4 The Hidden Analysis in Corollary 2, Proposition 91, Book 1

Quite understandably, Corollary 2 aroused the interest of competent readers of the
Principia, not least because it played a fundamental role in Newton’s treatment
of the earth’s shape. It was, however, unclear how Newton could find the above
geometrical construction. Some of Newton’s acolytes, such as David Gregory and
Roger Cotes, discussed this corollary with Newton and referred to the second cata-
logue of curves, where Newton had developed his analytical method of quadratures.
Indeed, the construction is achieved by finding the area subtended to a curve (whose
ordinate is equation (12.23)), and the calculation of this area is reduced to the cal-
culation of the area subtended to the conic NKRM . As discussed in chapter 8,
such transmutations of areas of curves to conic areas is the basic ingredient of the
second catalogue of curves of De Methodis (§8.4.4).

There is evidence of how Newton privately discussed the hidden analytical
quadratures from Gregory’s manuscript commentary to the Principia, and from
Gregory’s and Cotes’s correspondence with Newton. Gregory discussed this corol-
lary with Newton in the 1690s, and was able to reproduce the instructions received
from the master in his “Notae in Newtoni Principia Mathematica Philosophiae Nat-
uralis.”29 It is interesting that the first extant letter by Cotes to Newton concerns
Corollary 2, Proposition 91, Book 1. The young Plumian Professor had just been
chosen, thanks to Richard Bentley’s recommendation, as editor of the second edition
of the Principia. In presenting himself to Newton, he chose this difficult Corollary
as proof of his skill in mathematics. On August 18, 1709, he wrote,

Some days ago I was examining the 2d Cor: of Prop. 91 Lib. I & found it to be
true by ye Quadratures of ye 1st & 2d Curves of the 8th Form of ye second Table
in Yr Treatise De Quadrat.30

28 Note that CSq means CS2, AScub. means AS3, etc. Principia, pp. 332–3. Principles, pp.
616–7. Whiteside has shown how the above geometrical construction corresponds to the result
achieved via Newton’s catalogues of curves of De Methodis. See MP, 6, p. 226.
29 See Guicciardini, Reading the Principia (1999) for a discussion of this evidence.
30 Correspondence, 5, p. 3.
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After having circulated among Newton’s acolytes, the analytical quadrature nec-
essary for Corollary 2, Proposition 91, given in terms of the eighth form of the sec-
ond catalogue of curves, was printed in the Appendix to Andrew Motte’s English
translation of the Principia (1729).31

Thus, rather than a reconstruction of what Newton might have done, there
is information on how such technicalities were understood and circulated in the
Newtonian circle. Reading from the Appendix to Motte’s translation, one has the
following.

Let the minor semi-axis SA = r, the major semi-axis SC = c, PS = δ,
PB = PS + SB = δ + r = a, PA = PS − SA = δ − r = α, PE = x (figure 12.11).
By construction the curve NKRM is defined as “a conic whose ordinate ER, per-
pendicular to PE, is always equal to the length of the line PD, which is drawn to
the point D in which the ordinate cuts the spheroid” (§.12.2.3). Equation (12.26)
proves that that NKRM is a conic.

Recall (see equation (12.23)) that the force exerted on a point mass situated at
P by a disk of radius ED is proportional to

Fdisk = 1 − PE

PD
. (12.24)

Figure 12.11

Attraction exerted by an ellipsoid. Source: Newton, The Mathematical Principles of Nat-
ural Philosophy. Translated into English by Andrew Motte (1729), 2: Plate 19. Courtesy
of the Syndics of Cambridge University Library

31 Entitled “Explications, (given by a Friend,) of some Propositions in this Book, not demonstrated
by the Author.”
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Because of a well-known property of the ellipse,32

ED2 =
SC2

SA2
× AE × EB =

c2

r2
(x − α)(a − x) =

c2

r2
(−aα + 2δx − x2). (12.25)

Since PE = x and PD2 = ED2 + PE2, it follows that

PD = ER =
√

ED2 + PE2 =

√
c2

r2
(−aα + 2δx − x2) + x2. (12.26)

Therefore,

Fdisk = 1 − PE

PD
= 1 − y = 1 − x

/√
−aαc2

r2
+

2δc2

r2
x +

r2 − c2

r2
x2. (12.27)

Thus, because of (12.27), the force exerted by the ellipsoid will be given by the area
tell of the surface subtended by the curve whose abscissa is x and whose ordinate is
1 − y.

By inspection of the second case of the eighth order of the second catalogue of
curves of De Methodis (reproduced also in De Quadratura), one can evaluate the
fluent tell (in Leibnizian terms, the integral tell =

∫
(1 − y)dx) as follows (figure

12.12). The curve listed in the first column of the table is reduced to the second
addendum y of the right-hand side of (12.27) for η = 1, z = x, d = 1, e = −aαc2/r2,
f = 2δc2/r2, g = (r2 − c2)/r2. In the fourth column we read the value of the fluent
t of y (t =

∫
ydx). In the second and third columns one finds the substitutions of

variables.
The required fluent, tell, of 1 − y is thus

tell = x − t = x − −4fs + 2fxv + 4ev

4eg − f2
, (12.28)

Figure 12.12

The second case of the eight order of the second catalogue of curves in the manuscript of
De Methodis (1671). Note that d is a constant, not a differential. Source: Add. 3960.14,
f. 82. Reproduced by kind permission of the Syndics of Cambridge University Library.

32 Note that (x − α)(a − x) = xa + αx − x2 − αa, xa + αx = x(a + α), and a + α = PB + PA =
PS + SB + PS − SB = 2PS = 2δ.
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that is,33

tell = x − t

= x −
(
−8δc2

r2
s +

4δc2

r2
xv − 4aαc2

r2
v

)/(
−4aαc2

r2

r2 − c2

r2
− 4δ2c4

r4

)
= x +

δxv − aαv − 2δs

c2 + δ2 − r2
. (12.29)

Note from the second and third columns of Newton’s catalogue that

v =

√
−aαc2

r2
+

2δc2

r2
x +

r2 − c2

r2
x2 = PD = ER, (12.30)

and s is the area under curve with abscissa x and ordinate v (namely, it is the conic
area AKRMB). Recall that the area s is considered by Newton as known, and has
to be evaluated by power series expansion.

This completes the analysis of the problem. Equation (12.29) is the fluent that
allows resolution of the problem when (12.29) is evaluated between limits x = PA =
α and x = PB = a.

When x = a, v = a; and when x = α, v = α. Thus, the force F exerted by the
ellipsoid on P is proportional to

F = a − α +
δ(a2 − α2) − aα(a − α) − 2δs

c2 + δ2 − r2
=

2r +
2δ2r + 2r3 − 2δs

c2 + δ2 − r2
=

2rc2 + 2rδ2 − 2r3 + 2δ2r + 2r3 − 2δs

c2 + δ2 − r2
=

2rc2 + 2δ(2δr − s)
c2 + δ2 − r2

. (12.31)

33 This calculation is somewhat tedious. First, 4c2/r2 is factorized, obtaining

tell = x − t = x − 4c2/r2(−2δs + δxv − αav)

4c2/r2(−αa(r2 − c2)/r2 − δ2c2/r2)
= x − −2δs + δxv − αav

−αa(r2 − c2)/r2 − δ2c2/r2
.

The denominator can be simplified by taking into account that a = δ+r and α = δ−r. Therefore,
αa = (δ + r)(δ − r) = δ2 − r2. Thus,

−αa(r2 − c2)/r2 − δ2c2/r2 = (r2 − δ2)(r2 − c2)/r2 − δ2c2/r2 = r2 − c2 − δ2.
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Note that, since a = δ + r and α = δ − r, one has that δ(a2 − α2) − aα(a − α) =
δ[(δ + r)2 − (δ − r)2] − (δ + r)(δ − r)(δ + r − δ + r) = 2δ2r + 2r3.

Newton did not have a symbol, such as
∫

, for the integral, and when he had
to evaluate what in Leibnizian terms one would call a definite integral he made
the limits of integration explicit in connected prose. This renders his calculations
difficult to follow, especially for a reader trained in contemporary mathematics.34

12.3.5 The Construction of Corollary 2, Proposition 91, Book 1

But Newton needed the construction, and it is only the construction, not the anal-
ysis, that he published in the Principia. Let us interpret (12.31) geometrically.

Note that 2δr is the area of the trapezium ABMK,35 s is the conic area
AKRMB, and 2δr − s is the area of the segment KMRK (see figure 12.11). Con-
sequently (12.31) is interpreted geometrically as

2SA × SC2 − 2PS × KRMK

SC2 + PS2 − SA2
, (12.32)

as is stated in the Principia.
Further, Newton showed by a much simpler quadrature technique that the at-

traction exerted by a sphere AdBg on P is 2SA3/3PS2.36 Thus, the statement
follows:

34 It is helpful to translate this calculation into more familiar Leibnizian notation. In the second
case of the eighth order of the second catalogue of curves, Newton evaluated the following integral
(departing here from Newton’s practice, I render the constant of integration C explicit):∫

z2η−1√
e + fzη + gz2η

dz =
−4f

∫
vdx + 2fxv + 4ev

4eg − f2
+ C = t,

where the substitution of variable is zη = x, v =
√

e + fzη + gz2η , and s =
∫

vdx.
For η = 1, one gets∫

xdx√
e + fx + gx2

=
−4f

∫ √
e + fx + gx2dx+2fx

√
e+fx+gx2+4e

√
e + fx + gx2

4eg−f2
+C = t.

Verify by differentiation that

dt

dx
=

1

4eg−f2

(
−4f

√
e+fx+gx2+2f

√
e+fx+gx2+

2fx(f+2gx)

2
√

e+fx+gx2
+

4e(f + 2gx)

2
√

e+fx+gx2

)

=

(
−2f(e+fx+gx2)+(fx+2e)(f+2gx)

(4eg−f2)
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e+fx + gx2

)
=

(
(4eg−f2)x

(4eg−f2)
√

e+fx + gx2

)
=

x√
e + fx + gx2

.

35 2δ = a + α = BM + AK is the sum of the minor and major bases of the trapezium, and r is
half its height.
36 For a sphere, Newton employed Case 2, Form 4, of the first catalogue.
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Then the force by which the spheroid attracts the body P will be to the force by
which a sphere described with diameter AB attracts the same body as (SA×SCq−
PS × KMRK)/(PSq + SCq − SAq) to SAcub./3PSquad.37

12.4 Concluding Remarks

I wrote at length about these two corollaries to present some examples of how
quadratures occurring in the Principia were discussed by Newton and his acolytes.
These are not a reconstruction of what Newton might have been able to do but
exactly how he analytically resolved certain problems in the Principia. There are,
indeed, a number of problems in the Principia that are resolved “granting the
quadrature of curvilinear figures.” Newton tackled these problems by the squaring
of curves but gave no details in the printed text about how such quadratures could
be performed. Newton’s contemporaries were aware of the fact that Newton was
hiding the analysis of these problems. As Fontenelle stated,

Furthermore, it is a justice due to the learned M. Newton, and that M. Leib-
niz himself accorded to him: That he has also found something similar to the
differential calculus, as it appears in his excellent book entitled Philosophiae natu-
ralis principia mathematica, published in 1687, which is almost entirely about this
calculus.38

In some cases, as with Corollary 3, Proposition 41, Book 1, and Corollary 2, Propo-
sition 91, Book 1, it is possible to recover Newton’s analysis on its own terms.

Newton’s fluxional analysis is not to be conflated either with Leibniz’s calculus or
with later developments achieved by mathematicians such as Euler or Lagrange. It
would be foolish to think that Newton wrote the Principia in symbolic terms, using
perhaps differential equations and starting his work from F = ma, and that only in
retrospect did he translate everything into geometry; he would have been a kind of
crypto-Eulerian ante-litteram. The use of fluxional analysis in the Principia is not
systematic but sporadic and serves the purpose of overcoming difficulties emerging
in some isolated specific passages in a demonstrative structure that is essentially
geometrical.

Further, it must be stressed that many propositions of the Principia are deeply
geometrical in character (e.g., Proposition 1, Book 1); Newton would not have

37 Principles, pp. 616–7.
38 “C’est encore une justice dûë au sçavant M. Newton, & que M. Leibniz lui a renduë lui-même:
Qu’il avoit aussi trouvé quelque chose de semblable au calcul différentiel, comme il parôit par
l’excellent Livre intitulé Philosophiae Naturalis Principia Mathematica, qu’il nous donna en 1687,
lequel est presque tout de ce calcul.” L’Hospital, Analyse des Infiniment Petits (1696), p. xiv.
For Newton’s quotation of these lines, see Cohen, Introduction to Newton’s Principia (1971), p.
294.
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known how to translate them into algebraic symbols. The translation of the Prin-
cipia into the language of the calculus was a laborious process that required the
efforts of three generations of very skilled mathematicians. With the benefit of
hindsight it is always possible to present in symbolic form what Newton did with
his characteristic blend of geometry and algorithm. But such translations obfuscate
both Newton’s style and the momentous stature of the contributions of the mathe-
maticians (very often continental) who set themselves the task of writing analytical
mechanics in terms of differential and integral calculus.39

There is no hidden algebraic Principia to be found in a private collection of lost
Newtoniana. Both those who have maintained and those who have denied this myth,
which Hall quite appropriately calls the “fable of fluxions,”40 have misunderstood
Newton’s pronouncements on the use of analysis in his magnum opus. When Newton
referred to analysis and synthesis, he was not contrasting algebra and geometry, and
this in the first place because he was convinced that there was a geometrical as well
as an algebraic analysis. He was rather referring to a canon of problem solving that
has to be read in its historical context. Indeed, Newton claimed to be a follower
of a canon well established in his time. That is, in some instances he analyzed
problems by translating them into algebraic equations (see Proposition 30, Book 1)
or fluxional equations (see Corollary 3, Proposition 41, and Corollary 2, Proposition
91, Book 1). As far as algebraic equations, after having resolved them he constructed
their solutions geometrically. As he often stated, only constructions are worthy of
being published, the equations have to be neglected. As far as fluxional equations
are concerned, Newton followed the practice of hiding them; he printed only the
geometrical construction of their fluent roots. As he stated in 1670,

After the area of some curve has thus been found, careful considerations should be
given to fabricating a demonstration of the construction which as far as permissible
has no algebraic calculation, so that the theorem embellished with it may turn out
worthy of public utterance.41

Here I finally have to note a failure in Newton’s program. He often repeated
that only geometrical constructions and their demonstrations are compatible with
what the ancient geometers did; the force of geometry and its certainty lay “in its
splendidly composed demonstrations.”42 However, many geometrical constructions
of the Principia only hide the fluxional analysis—most notably Newton’s analytical
quadrature techniques—without replacing it with a geometrical demonstration that

39 Blay, La Naissance de la Mécanique Analytique (1992).
40 Hall, Isaac Newton: Adventurer in Thought (1992), pp. 212–13.
41 MP, 3, p. 279. “Postquam Curvae alicujus area sic inventa fuerit; de constructionis demon-
stratione consulendum est, quacum sine Computo Algebraico quantum liceat contexta ornetur
Theorema ut evadat publicae notitiae dignum.” MP, 3, p. 278.
42 See, for instance, MP, 8, pp. 454–5.
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can stand on its own independently of the analysis. Consider Newton’s geometri-
cal construction of the resolution of Corollary 2, Proposition 91, Book 1. Such a
construction is far from being a splendid demonstration; it is simply a geometri-
cal translation (12.32) of the analytical resolution (12.31) of a quadrature problem.
The fact is that Newton’s new analysis was far more powerful than the geometry
of the ancients that he praised so consistently. Some of the results of the Principia
could be obtained only thanks to the highly symbolical manipulations displayed in
his two catalogues of curves of De Methodis and the new analysis of the method of
series and fluxions, the innovative algorithm Newton devised in his anni mirabiles.
After the publication of the Principia, Newton worried in his private ruminations
about this unresolved tension between ancient solutions and modern resolutions
(see part V).



V Ancients and Moderns

Part 5 covers a period from the publication of the Principia in 1687 to the eruption
of the polemic with Leibniz in late 1711. These are the years in which Newton
became not only the most famous British natural philosopher but also a public figure
when he moved to London as Warden (and then Master) of the Mint and was elected
President of the Royal Society. Now Newton had the status and power to enforce his
program as a natural philosopher, especially at the Royal Society but also beyond
the walls of London by fostering the academic success of his acolytes in the English
and Scottish universities. These are years in which Newton intensely rethought his
previous work, attempting a restructuring of the Principia and bringing to light his
long awaited Opticks (1704).

In this context Newton as a mathematician wrote the most philosophy-laden
texts of his production. He engineered a reconstruction of the history of mathemat-
ics (from its ancient heights to its recent corruption) aimed at supporting his math-
ematical methodology. He did so by stressing continuity between his mathematical
practice and the Pappian method of analysis and synthesis, and by highlighting
discontinuity with Cartesian (and later with Leibnizian) algorithms. He based this
reconstruction mainly on evidence derived from the seventh and eighth books of
Pappus’s Collectio.

This historicist approach had a momentous impact on Newton’s conceptions of
the role of mathematics in natural philosophy. Chapter 13 details what Newton
stated about the relations between mechanics and geometry in his preface to the
Principia and a series of texts related to it.

Chapter 14 focuses on the geometrical works that Newton wrote in the 1690s,
most notably “Geometriae Libri Duo,” and on the pronouncements on the mathe-
matical methods in natural philosophy that he publicized in the first Latin edition
of the Opticks (1706). In this context Newton wrote about the dual method of
analysis and synthesis, about the comparison between the ancients and the mod-
ern mathematicians, and about the superiority of geometry over algebra. These
methodological, idiosyncratic, and verbose writings form the basis of Newton’s re-
action to Leibniz’s calculus, which is studied in part VI.





13 Geometry and Mechanics

Therefore geometry is founded on mechanical practice and is nothing other than
that part of universal mechanics which reduces the art of measuring to exact pro-
portions and demonstrations.

—Isaac Newton, 1687

13.1 The Preface to the Principia

The first edition of Newton’s Principia opens with a “Praefatio ad Lectorem.”1 The
first lines of this Preface have received scant attention from historians, even though
they contain the very first words addressed to the reader of one of the greatest
classics of science. Instead, it is the second half of the Preface to which histori-
ans have often referred in connection with their treatments of Newton’s scientific
methodology.

Roughly in the middle of the Preface, Newton defined the purpose of philoso-
phy as a twofold task: to investigate the forces of the phenomena of nature and,
having established the forces, to demonstrate the remaining phenomena. Newton
then introduced a distinction between the first two books, which deal with general
propositions, and the third, where the propositions are applied in particular in-
stances to celestial phenomena. From these phenomena, Newton claimed, the force
of gravity, thanks to which bodies tend toward the sun, is derived.2 By assuming
this force by means of mathematical propositions, other motions are deduced: the
motions of planets, the comets, the moon, and the sea.3 Newton then declared his
hope that phenomena relative to small particles would also be explained through
the understanding of attractive (or repulsive) forces hitherto unknown to philoso-
phers.4 The Preface ends with a laudatio of Edmond Halley and an apologetic

Epigraph from Principles, p. 382.
1 Principia, pp. 15–7 = Principles, pp. 381–3. In what follows, I refer to the “Praefatio” as the
Preface. In fact, in the first edition (1687) of the Principia, Halley’s ode follows a “Praefatio ad
Lectorem.” In the second (1713) and third (1726) editions, this became the “Auctoris Praefatio
ad Lectorem” following the ode. There are no significant variants in the text of the Preface.
2 On the complex route followed by Newton in the application of the mathematical propositions
of the first two books to the celestial phenomena studied in Book 3, see Cohen, The Newtonian
Revolution (1980) and Smith, “The Methodology of the Principia” (2002).
3 For a good review of Newton’s achievements, see Wilson, “Newton and Celestial Mechanics”
(2002).
4 See McMullin, Newton on Matter and Activity (1978).
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passage concerning certain imperfections in the presentation of advanced subjects,
such as the moon’s motions. It is these lines to which historians have given most
attention. I take them up at the end of the next chapter (§14.3).

The first half of the Preface is devoted to defining rational mechanics, in con-
trast to practical mechanics, and to discussing its relation with geometry and its
use in the investigation of nature. Most notably, Newton claimed that geometry is
founded upon mechanics, whereas one would expect mechanics to be defined as an
application of geometry to the science of motion, as, for instance, in Wallis’s Me-
chanica (1670–1671).5 These lines are somewhat difficult to interpret and are, with
a few notable exceptions,6 ignored in the literature.7 Why this neglect? Perhaps
because, on the one hand, general historians of science often ignore Newton’s math-
ematical studies, in which Newton rooted the language of the Preface, and on the
other, historians of mathematics cannot find exciting new mathematical discoveries
in Newton’s opening address to the reader.

In this chapter I interpret the opening lines of the Preface as a criticism of Des-
cartes’ theories of geometry, mechanics, and certainty as laid out in the Géométrie.
The Principia was written—from its title to the concluding General Scholium—as
a criticism of Cartesian ideas, so it is not surprising to find anti-Cartesianism in its
opening lines. I also show why such criticism was crucial enough for Newton to be
put at the very beginning of his magnum opus (§13.3).

I cite at length from the opening lines of the Preface:

Preface to the Reader
Since the ancients (according to Pappus), considered mechanics to be of greatest im-
portance in the investigation of nature and science and since the moderns—rejecting

5 “eam Geometriae partem . . . quae Motum tractat.” Wallis, Opera, 1, p. 575.
6 The only studies devoted to the opening lines of the Preface that I am aware of, and to which I
am deeply indebted, are Garrison, “Newton and the Relation of Mathematics to Natural Philos-
ophy” (1987); Gabbey, “Newton’s Mathematical Principles of Natural Philosophy” (1992); Dear,
Discipline and Experience (1995), pp. 210ff; and Domski, “The Constructible and the Intelligible
in Newton’s Philosophy of Geometry” (2003). Garrison and Domski are particularly useful for my
purposes because they delve deeply into Newton’s mathematical methodology. Domski’s paper
is an important contribution because, for the first time, Descartes’ Géométrie is identified as a
polemic target motivating Newton’s Preface.
7 For example, Cohen, Guide to Newton’s Principia (in Principles, pp. 1–370), in which every
section of the magnum opus is discussed and elucidated, devotes no space to the Preface. Similarly,
in Newton’s Principia for the Common Reader (1995), a detailed mathematical analysis of all
the propositions of Books 1 and 3, Chandrasekhar skips the Preface altogether. In The Key to
Newton’s Dynamics (1995), a lucid and influential introduction to the grounding propositions of
the Principia, Brackenridge devotes a passing reference to the Preface: “[I]t opens with a reference
to the ancients and closes with an appeal to the reader to look with patience to Newton’s ‘labors
in a field so difficult’” (p. 142). In Newton’s Principia, the Central Argument (1995), Densmore
does not comment on the Preface. The Preface is also ignored in De Gandt, Force and Geometry
in Newton’s Principia (1995).
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substantial forms and occult qualities—have undertaken to reduce the phenomena
of nature to mathematical laws, it has seemed best in this treatise to concentrate
on mathematics as it relates to natural philosophy. The ancients divided mechanics
into two parts: the rational, which proceeds rigorously through demonstrations; and
the practical. Practical mechanics is the subject that comprises all the manual arts,
from which the subject of mechanics as a whole has adopted its name. But since
those who practice an art do not generally work with a high degree of exactness,
the whole subject of mechanics is distinguished from geometry by the attribution
of exactness to geometry; and of anything less than exactness to mechanics. Yet
the errors do not come from the art, but from those who practice the art. Anyone
who works with less exactness is a more imperfect mechanic; and if anyone could
work with greatest exactness, he would be the most perfect mechanic of all. For
the description of straight lines and circles, which is the foundation of geometry,
appertains to mechanics. Geometry does not teach how to describe these straight
lines, but postulates such a description. For geometry postulates that a beginner
has learnt to describe lines and circles exactly before he approaches the threshold
of geometry, and then it teaches how problems are solved by these operations. To
describe straight lines and to describe circles are problems, but not problems in ge-
ometry. Geometry postulates the solution of these problems from mechanics; and
teaches the use of the problems thus solved. And geometry can boast that with so
few principles obtained from other field, it can do so much. Therefore geometry
is founded on mechanical practice and is nothing other than that part of universal
mechanics which reduces the art of measuring to exact proportions and demonstra-
tions. But since the manual arts are applied especially to making bodies move,
geometry is commonly used in reference to magnitude, and mechanics in reference
to motion. In this sense rational mechanics will be the science, expressed in exact
proportions and demonstrations, of the motions that result from any forces what-
ever and of the forces that are required for any motions whatever. The ancients
studied this part of mechanics in terms of the five powers that relate to the manual
arts, and paid hardly any attention to gravity (since it is not a manual power)
except in the moving of weights by these powers. But since we are concerned with
natural philosophy rather then manual arts and are writing about natural rather
than manual powers, we concentrate on aspects of gravity, levity, elastic forces,
resistance of fluids, and forces of this sort, whether attractive or impulsive. And
therefore our present work sets forth mathematical principles of natural philosophy.
For the basic problem [whole difficulty] of philosophy seems to be to discover the
forces of nature from the phenomena of motions and then to demonstrate the other
phenomena from these forces.8

8 Principles, pp. 381–2. I quote the original here with line numbers in square brackets preceding
the lines: “Praefatio ad Lectorem [1] Cum veteres mechanicam (uti auctor est Pappus) in rerum
[2] naturalium investigatione maximi fecerint; & recentiores, missis [3] formis substantialibus &
qualitatibus occultis, phaenomena naturae ad [4] leges mathematicas revocare aggressi sint: Vi-
sum est in hoc tractatu [5] mathesin excolere, quatenus ea ad philosophiam spectat. Mechani-
[6] cam vero duplicem veteres consituerunt: rationalem, quae per demon- [7] strationes accu-
rate procedit, & practicam. Ad practicam spectant [8] artes omnes manuales, a quibus utique
mechanica nomen mutata est. [9] Cum autem artifices parum accurate operari soleant, fit ut
mechanica [10] omnis a geometria ita distinguatur, ut quicquid accuratum sit ad ge- [11] ome-
triam referatur, quicquid minus accuratum ad mechanicam. At- [12] tamen errores non sunt artis,
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Newton began the Preface by defining rational mechanics in contrast to practical
mechanics. It is not hard to find Newton’s source in this work of disciplinary
taxonomy, since it is explicitly cited: Pappus. In the opening lines of Book 8 of the
Collectio, one finds a long laudatory presentation of mechanics in the form of an
address to Hermodorus:

[S]ince the mechanical inquiry, Hermodorus my son, leads to many important ques-
tions in our life, it is rightly held by philosophers to be worthy of the highest esteem,
and all the mathematicians cultivate it with not indifferent attention, and in fact it
is almost the first to deal with physiology, which concerns the matter of the world’s
elements . . . According to Heron the mechanician, in reality one part of mechanics
is rational, while the other part needs the manual work.9

By paraphrasing Pappus in the first lines of the Principia (1–8),10 Newton located
his work within a tradition dating back to those ancients who used mechanics in

sed artificum. Qui minus accurate ope- [13] ratur, imperfectior est mechanicus, & si quis accu-
ratissime operari [14] posset, hic foret mechanicus omnium perfectissimus. Nam & linearum [15]
rectarum & circulorum descriptiones, in quibus geometria fundatur, [16] ad mechanicam perti-
nent. Has lineas describere geometria non docet, [17] sed postulat. Postulat enim ut tyro easdem
accurate describere prius [18] didiceret, quam limen attingat geometriae; dein, quomodo per has
ope- [19] rationes problemata solvantur, docet; rectas & circulos describere [20] problemata sunt,
sed non geometrica. Ex mechanica postulatur horum [21] solutio, in geometria docetur soluto-
rum usus. Ac gloriatur geome- [22] tria quod tam paucis principiis aliunde petitis tam multa
praestet. [23] Fundatur igitur geometria in praxi mechanica, & nihil aliud est quam [24] me-
chanicae universalis pars illa, quae artem mensurandi accurate pro- [25] ponit ac demonstrat.
Cum autem artes manuales in corporibus moven- [26] dis praecipue versentur, fit ut geometria
ad magnitudinem, mechani- [27] ca ad motum vulgo referatur. Quo sensu mechanica rationalis
erit [28] scientia motuum, qui ex viribus quibuscunque resultant, & virium [29] quae ad mo-
tus quoscunque requiruntur, accurate proposita ac demon- [30] strata. Pars haec mechanicae
a veteribus in potentiis quinque ad ar- [31] tes manuales spectantibus exculta fuit, qui gravi-
tatem (cum potentia [32] manualis non sit) vix aliter quam in ponderibus per potentias illas [33]
movendis considerarunt. Nos autem non artibus sed philosophiae con- [34] sulentes, deque poten-
tiis non manualibus sed naturalibus scribentes, ea [35] maxime tractamus, quae ad gravitatem,
levitatem, vim elasticam, re- [36] sistentiam fluidorum & ejusmodi vires eu attractivas seu impul-
sivas [37] spectant: Et ea propter, haec nostra tanquam philosophiae Principia [38] mathematica
proponimus. Omnis enim philosophiae difficultas in eo [39] versari videtur, ut a phaenomenis mo-
tuum investigemus vires naturae, [40] deinde ab his viribus demonstremus phaenomena reliqua.”
Principia, pp. 15–6.
9 Commandino’s Latin: “Cum mechanica contemplatio fili Hermodore multis, & magnis vitae nos-
trae rationibus conducat, iure optimo a philosophis maxima laude digna existimata est: & omnes
mathematici non mediocri studio in eam incumbunt; etenim fere prima physiologiam, quae in ele-
mentorum mundi materia versatur, attingit . . . Mechanicae vero alteram partem rationalem esse,
alteram manuum opera indigere, sentit Hero mechanicus.” Pappus, Mathematicae Collectiones
(1588), p. 305. See Cuomo, Pappus of Alexandria and the Mathematics of Late Antiquity (2000),
p. 91, for an English translation from the Greek.
10 In what follows, I use line numbers in parentheses referring to the Latin Preface as printed in
the third edition (1726) of the Principia, available in facsimile reproduction in Newton, Principia,
pp. 15–6 (see footnote 8).
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the investigation of nature. The moderns were also cited, with approbation, since
they refused Aristotelian substantial forms and occult qualities in order to reduce
natural phenomena to mathematical laws (2–4).

According to Newton, Pappus taught that the ancients further distinguished be-
tween rational and practical mechanics (5–7). The latter did not concern Newton
because it deals with manual arts, machinae constructed by humankind for prac-
tical purposes. Newton was concerned, rather, with philosophia naturalis, with the
mathematical study of natural phenomena (5). The term mechanics, Newton noted,
is often used as shorthand for practical mechanics, the art of mechanics applied for
practical purposes (7–8). He then proceeded in the next two lines (9–11) to say
that “since those who practice an art [artifices] do not generally work with a high
degree of exactness [accurate], the whole subject of mechanics is distinguished from
geometry by the attribution of exactness to geometry ; and of anything less than ex-
actness to mechanics.” In the following lines (11–14), Newton sharply criticized the
characterization of mechanics as lacking in the exactness proper to geometry. The
errors of practical mechanics are caused by “those who practice the art [artifices].”
In the application of mechanics to the construction of machines people necessarily
realize imperfect constructs. On the other hand, the workings of nature are regu-
lated by mathematical laws studied by rational mechanics. Here, no error occurs
and the greatest exactness reigns, since the world is under the rule of a mechanicus
omnium perfectissimus (14).11

Rather than excluding mechanics from the realm of geometrical exactness, New-
ton proposed to subsume geometry under mechanics. Geometry is founded upon
mechanics, since the description (or the construction) of geometrical objects apper-
tains to mechanics. For instance, geometry reasons about straight lines and circles,
but the description of straight lines and circles is the business of mechanics (14–16).
Geometry does not teach how to describe these lines but rather postulates that such
a description is accomplished (16–17). What are generally called problems of ge-
ometry (i.e., “to describe such and such a figure”) are really, according to Newton,
problems of mechanics (17–21):

[F]or geometry postulates [postulat] that a beginner has learnt to describe lines and
circles exactly [accurate] before he approaches the threshold of geometry; and then
it teaches how problems are solved by these operations. . . . To describe straight
lines and to describe circles are problems, but not problems in geometry. Geometry
postulates the solution of these problems from mechanics; and teaches the use of
the problems thus solved.12

11 One might note that in the Praefatio Authoris of Copernicus’ De Revolutionibus (1543), p. 3
the world was described as created by “the best and most systematic Artisan of all” = “ab optimo
et rugularis, omnium Opifice.” One might thus surmise that here Newton is referring to a wise
and providential God.
12 Newton, Principles, p. 382.
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Geometrical figures are generated by motion, and the solution of geometrical prob-
lems is possible if one knows how the figures are kinematically generated. Rational
mechanics is thus not only as exact as geometry but precedes geometry, since it
generates the geometrical objects. Mamiani noted13—I believe correctly—a touch
of irony in the following sentence: “[a]nd geometry can boast that with so few
principles obtained from other fields, it can do so much.”14 Indeed, the rhetoric
of self-sufficiency that pervades so many writings about geometry had no place in
Newton’s conception because geometry is nothing other than a part of universal
mechanics: “[G]eometry is founded on mechanical practice and is nothing other
than that part of universal mechanics which reduces the art of measuring to exact
proportions and demonstrations” (23–25).15

I was unable to locate other places where Newton employed the term mechanica
universalis. This term has some resemblance to “Arithmetica Universalis,” the
title of one of Newton’s major mathematical works. The reason this mathematical
discipline (now called algebra) is defined as universal is that it deals both with
practical arithmetic (the science of “numbers and numerable things”)16 and the
abstract manipulation of letters standing for constants and variables (this discipline
was often called arithmetica speciosa).17 It is tempting to interpret “universal
mechanics” as a discipline that comprises both rational and practical mechanics.
However, the idea conveyed by the lines I have quoted is clear: geometrical objects
are generated by motion, and that is why their description falls within the scope of
mechanics.

The fact that geometry is founded upon mechanical practice yields, according
to Newton, another important consequence. Geometry can be applied to natural
philosophy, that is, to the mathematical study of force and motion (25–30):

[B]ut since the manual arts are applied especially to making bodies move, geometry
is commonly used in reference to magnitude, and mechanics in reference to motion.
In this sense rational mechanics will be the science, expressed in exact proportions
and demonstrations, of the motions that result from any forces whatever and of the
forces that are required for any motions whatever.18

The message is that rational mechanics does not lack in exactness. It is a science of
motion whose demonstrations are accurate (29), and it is the foundation of geome-
try (23). As readers of the Principia know, the double task of deducing forces from

13 Mamiani, “La Rivoluzione Incompiuta” (1998), p. 39.
14 Newton, Principles, p. 382.
15 Ibid. “that accurately sets forth and demonstrates the art of measuring” in Densmore, Newton’s
Principia, the Central Argument (1995), p. 1.
16 MP, 8, p. 173.
17 “Nuperi veterum inventis addere studentes, Arithmeticam speciosam conjunxerunt cum Ge-
ometria.” MP, 4, p. 420.
18 Newton, Principles, p. 382. I have slightly altered Cohen and Whitman’s translation.
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motions, and motions from forces (28–29), is the essence of Newton’s three books
and indeed the essence of analytical mechanics to the present day. Nowadays, the
tools of the differential and integral calculus are used to tackle this double task.
This is different, Newton stated, from what the ancients did, since they concerned
themselves with the “five powers that relate to the manual arts” (30–33).19 New-
ton, of course, was concerned with natural powers: attractive or impulsive forces
occurring in nature such as gravity, levity, elasticity, and fluid resistance (33–38).

From what has been said, it should be clear that Newton, by subsuming geometry
under mechanics and by defending the exactness of mechanics, declared himself
a follower of a mathematical methodology that contrasts sharply with Descartes’
exclusion of mechanical curves from the realm of the exactitude and certainty of
geometry (see chapter 3). My reading of the Preface as a criticism of Cartesian
mathematical method is reinforced by the concordances with some manuscripts that
Newton wrote during the composition and after the publication of the Principia,
namely, an unpublished draft of the Scholium to Proposition 22, Book 1; the opening
of a multipartite treatise on geometry (mid-1690s); and an intended revised Preface
to the Principia (late 1710s), where several of the themes cryptically exposed in
the published Preface are spelled out.

13.2 Mathematical Manuscripts Related to the Preface

The first text of interest comes from a draft of the Principia, in the hand of Newton’s
amanuensis, which was deposited by Newton in the University Library of Cambridge
in accomplishment of his duties as Lucasian Professor.20 In this manuscript, the
Scholium to Proposition 22, Book 1, contains an explicit reference to the Preface.
In the published Scholium these lines were suppressed. Proposition 22 is one of
the basic results of Section 5, Book 1, devoted to the geometry of conics. In this
proposition Newton gave two methods for organically describing a conic passing
through five given points (§5.4.4). This proposition illustrates how geometrical
objects are generated mechanically, and indeed in the suppressed Scholium, Newton
referred back to what he had stated in the Preface:

[B]y this method points on the trajectory are most readily found, unless you prefer,
as in the second case, to describe the curve mechanically. [For the description
of curves by motion is the province of mechanics. Geometry does not teach how
to describe the straight line and circle, but postulates them as drawn; that is, it
postulates that before ever a beginner starts to be a geometer he shall have learned
their descriptions].21

19 The five powers being the simple machines of ancient mechanics.
20 Dd.9.46, fol. 44 (Cambridge University Library). Reproduced in The Preliminary Manuscripts
for Isaac Newton’s 1687 Principia, 1684–1686 (1989), p. 135, and Newton, MP, 6, p. 260.
21 MP, 6, p. 261. “Hac methodo puncta trajectoriae inveniuntur expeditissime, nisi mavis curvam
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The mechanical description of conics presented in Proposition 22 is just one example
of how other geometrical objects can be generated mechanically. Recall that in New-
ton’s Arithmetica Universalis the problem tackled in Proposition 22 is also solved
in terms of Cartesian algebra (§5.4.7).22 But in the Principia, Newton preferred to
present a mechanical solution, rather than an algebraic one.

In the 1690s, Newton attempted to write a long treatise on geometry (“Geome-
triae Libri Duo”) (see chapter 14). In some passages in the incipit of a version of
this geometrical work Newton quoted verbatim from the Preface. This reveals that
the Preface to the Principia must be read as part of Newton’s reflections on the
scope and methods of geometry. Indeed, in defining the scope of geometry, Newton
immediately warned the reader that the “genesis of the subject-matter of geometry”
appertains to mechanics, and he did so in terms very similar to the Preface:

[G]eometry neither teaches how to describe a plane nor postulates its description,
though this is its whole foundation. To be sure, the planes of fields are not formed by
the practitioner [ab artifice] but merely measured. Geometry does not teach how to
describe a straight line and a circle but postulates them; in other words, it postulates
that the practitioner has learnt these operations before he attains the threshold of
geometry. . . . Both the genesis of the subject-matter of geometry, therefore, and
the fabrication of its postulates pertain to mechanics. Any plane figure executed
by God, nature or any technician [a Deo Natura Artifice quovis confectas] you will
are measured by geometry by the hypothesis that they are exactly constructed.23

Note that Newton considered God, nature, and technicians as artifices who can
generate geometrical objects. This reinforces my tentative interpretation of the
mechanicus omnium perfectissimus, referred to in the Preface, as God. I expand on
this theme in the next chapter (§14.2).

Newton continued the opening of “Geometriae Libri Duo” with critical remarks
addressed to Cartesian mathematical methodology. Namely, he criticized Descartes’

ut in casu secundo describere Mechanice. [Nam curvarum descriptio per motum ad Mechanicam
pertinet. Rectam et circulum describere Geometria non docet sed postulat, id est postulat Ty-
ronem antequam is incipit esse Geometra descriptiones eorum didicisse].” MP, 6, p. 260. I have
put in square brackets passages that were suppressed in the printed Principia.
22 Newton chose the coordinate axes so that the general equation of the conic has the form
a + bx + cx2 + dy + exy + y2 = 0. The five conditions of the problem (i.e., the fact that the conic
must pass through five given points) translate into a system of five equations, which, when solved,
determine the coefficients. MP, 5, pp. 305–15.
23 MP, 7, pp. 287, 289. “Planum describere Geometria nec docet nec postulat quamvis hoc sit
Geometriae totius fundamentum. Quippe plana agrorum non formantur ab artifice sed mensu-
rantur tantum. Lineam rectam et circulum describere Geometria non docet sed postulat, hoc est
postulat Artificem has operationes prius didicisse quam attingit limen Geometriae. . . . Pertinet
igitur ad Mechanicam tum genesis subjecti Geometrici tum Postulatorum effectio. Figuras quasvis
planas a Deo Natura Artifice quovis confectas Geometra ex hypothesi quod sunt exacte fabricatae
mensurat.” MP, 7, pp. 286, 288.
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exclusion of mechanical curves from geometry and the definition of mechanics as
lacking exactness:

[A] technician is required and postulated to have learnt how to describe straight
lines and circles before he may begin to be a geometer. And it consequently does
not matter how aby what mechanical meansa they shall be described. Geometry
does not posit modes of description: we are free to describe them [plane figures]
by moving rulers around, using optical rays, taut threads, compasses, the angle
given in a circumference, points separately ascertained, the unfettered motion of
a careful hand, or finally any mechanical means whatever. Geometry makes the
unique demand that they are described exactly.24

Any motion executed by the artifex generates a figure that can be taken as a le-
gitimate object of geometry, provided that the artifex generates it with exactness.
According to Newton, the various mechanical generations of curves listed in the pre-
ceding passage are legitimate (contra Descartes). This makes, for instance, spirals
perfectly legitimate curves, provided that the mechanical means that generate them
are operated with exactness. God and nature (but not the technicians) are certainly
able to operate with the required exactness. According to Newton, this was also well
known to the ancients, who accepted mechanical curves as legitimate. Indeed—as
one reads in the opening lines of Book 2 of “Geometriae Libri Duo”—according to
the ancients, the straight line, the circle, and the conics are also mechanical, since
their generation is conceived in terms of ruler, compass, and cone sections. Further,
the ancients “as Pappus recounts, assuredly did not shrink from admitting further
curves.”25

According to Newton, it is a mistake to attribute to mechanics the imperfection
that is proper to the manual arts exercised by human technicians:

[I]t has now [by the Cartesians?], however, come to be usual to regard as geometrical
everything which is exact, and as mechanical all that proves not to be of the kind,
as though nothing could possibly be mechanical and at same time exact. But this
common belief is a stupid [crassa vulgi opinio] one, and has its origin in nothing
else than that geometry postulates an exact mechanical practice in the description
of a straight line and a circle, and moreover is exact in all its operations, while
mechanics as it is commonly exercised is imperfect and without exact laws. It
is from the ignorance and imperfection of mechanicians that the common opinion
defines mechanics.26

24 Ibid. aa canceled. “Rectas et circulos describere Artifex prius didicisse requiritur et postulatur
quam incipit esse Geometra. Ideo nil refert quomodo aqua ratione mechanicaa describantur.
Geometra modos descriptionum non ponit. Regulis admotis, radijs opticis, funiculis tensis, circino,
angulo dato in perimetro, punctis discretim inventis, manus exquisitae motu libero, ratione denique
quacunque mechanica eas describere permittimur. Id solum postulat Geometria ut describantur
exacte.”
25 MP, 7, p. 385.
26 MP, 7, p. 289. “Usu tamen jam venit Geometricum censere id omne quod exactum est et
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Mechanics thus provides geometry with its subject matter, and it does so with a rich
variety of mechanical constructions. Echoing the Preface to the Principia, Newton
stated that the glory of geometry is “that it should with so few things solved and
granted from outside it by itself perform so many.”27

A few lines later, Newton added an important observation:

[I]n definitions it is allowable to posit the reason for a mechanical genesis, in that
the species of magnitude is best understood from the reason for its genesis.28

When one defines geometrical magnitudes mechanically, one understands the reason
for their genesis. Here is an echo of what had been debated since its inception
with Alessandro Piccolomini of the quaestio de certitudine mathematicarum (1547),
and had been discussed in England by Hobbes and Barrow, who maintained that
a mechanically based geometry is a discipline endowed with scientific character
insofar as it yields knowledge of causes. According to Newton, a mechanically based
geometry achieves exactly this end.29 Newton’s downgrading of Cartesian algebra
and the Leibnizian calculus to mere heuristic tools devoid of scientific character is
thus based on his adoption of the idea that the symbolism of algebra and calculus
do not capture the reasons for the genesis of figures (§14.3.3).

A revised version of the opening lines of Book 1 of “Geometriae Libri Duo” is
even more closely related to the Preface to the Principia.30 It begins with a refer-
ence to Book 8 of Pappus’s Collectio, from which Newton derived the now familiar
distinction between rational, speculative and accurate mechanics and manual and
not accurate mechanics. This version continues by paraphrasing the Preface and
ends in defiance against the modern geometers (namely, the Cartesian mathemati-
cians):

But if the authority of the modern geometers is raised against us, even greater is
the authority of the ancients.31

mechanicum quod ejusmodi non existit, quasi nihil mechanicum et simul exactum esse posset.
Crassa vero est haec vulgi opinio et non aliunde orta quam quod Geometria postulat exactam
praxin mechanicam in descriptione rectae et circluli, et praeterea in omnibus suis operationibus
exacta est, Mechanica vero imperfecte et absque legibus exactis vulgo exercetur. Ex imperitia et
imperfectione Mechanicorum Vulgus definit Mechanicam.” MP, 7, p. 288. Cf. van Schooten’s
annotation in Descartes, Geometria, p. 18.
27 MP, 7, p. 291. “Geometriae . . . gloria quod tam paucis aliunde solutis et concessis tam multa
suo marte praestet.” MP, 7, p. 290.
28 MP, 7, p. 291. “In definitionibus ponere licet rationem geneseos Mechanicae, eo quod species
magnitudinum ex ratione geneseos optime intelligitur.” MP, 7, p. 290.
29 Piccolomini, In Mechanicas Quaestiones Aristotelis (1547). On the Quaestio, see Mancosu,
Philosophy of Mathematics and Mathematical Practice in the Seventeenth Century (1996).
30 MP, 7, pp. 338–43.
31 “Et si authoritas novorum Geometrarum contra nos facit, tamen major est authoritas Veterum.”
MP, 7, p. 342.
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Newton’s predilection for the ancient geometers also emerges explicitly in an in-
tended Preface to the Principia (hereafter, the Intended Preface). In the late
1710s, Newton wrote a new Preface to the Principia that would have replaced the
one published in 1687.32 This project did not materialize, and the Preface remained
unchanged through its second and third editions. However, the Intended Preface
sheds light on the published one. Indeed, Newton planned to unfold several themes
alluded to in the published Principia in a more explicit way. The Intended Preface
would have begun with an explicit praise for the geometry of the ancients:

[T]he ancient geometers investigated things sought through analysis, demonstrated
them when found out through synthesis, and published them when demonstrated so
that they might be received into geometry. Once analyzed they were not straight-
away received into geometry: there was need of their solution through composition
of their demonstrations. For the force of geometry and its every merit laid in the
utter certainty of its matters, and that certainty in its splendidly composed demon-
strations. In this science regard must be paid not only to the conciseness of writing
but also to the certainty of things. And on that account I in the following treatise
synthetically demonstrated the propositions found out through analysis.33

Here Newton justified the geometrical style of the Principia, stating that he wanted
to adhere to the ancients’ way of presenting their theorems by synthesis. Indeed,
he shared with many of his contemporaries (Descartes included) the idea that the
Greek geometers had possessed an analytical method of discovery that they had
kept hidden, for the ancients would rather have published their results according to
a synthetic method. Finally, Newton claimed that the use of the analytical method
of fluxions was not explicit in the Principia because of his desire to adhere to this
ancient practice of publication.

Newton next came to a question of possible discontinuity between his geometry
and classic geometry, a discontinuity that from the point of view of a twenty-first
century historian is apparent. Newton’s geometry in the Principia appears nowa-
days as extremely innovative because it is applied to motion and force, velocity and

32 Whiteside has transcribed the Latin text and translated the opening paragraphs of the Intended
Preface (Add. 3968.9, f. 109) and of three preliminary drafts in private possession (but now, for-
tunately, in the Macclesfield Collection recently acquired by the University Library of Cambridge)
in MP, 8, pp. 442–59; Cohen and Whitman provide an English translation in Newton, Princi-
ples, p. 49–54. I am deeply indebted to Whiteside, and Cohen and Whitman for their extensive
commentaries.
33 MP, 8, pp. 453, 455. “Geometrae Veteres quaesita investigabant per Analysin, inventa demon-
strabant per Synthesin, demonstrata edebant ut in Geometriam reciperentur. Resoluta non sta-
tim recipiebantur in Geometriam: opus erat solutione per compositionem demonstrationum. Nam
Geometriae vis et laus omnis in certitudine rerum, certitudo in demonstrationibus luculenter com-
positis constabat. In hac scientia non tam brevitati scribendi quam certitudini rerum consulendum
est. Ideoque in sequenti Tractatu Propositiones per Analysin inventas demonstravi synthetice.”
MP, 8, pp. 452, 454.
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acceleration. It is viewed as a mathematical practice deeply related to seventeenth-
century kinematic methods, such as those of Roberval and Barrow. In a passage that
recalls the incipit of De Quadratura rather than stressing this element of modernity,
Newton reinforces the argument for continuity:

[T]he geometry of the ancients had, of course, primarily to do with magnitudes,
but propositions on magnitudes were from time to time demonstrated by means of
local motion: as, for instance, when the equality of triangles in Proposition 4 of
Book 1 of Euclid’s Elements were demonstrated by transporting either one of the
triangles into the other’s place. Also, the genesis of magnitudes through continuous
motion was received in geometry: when, for instance, a straight line were drawn
into a straight line so as to generate an area, and an area were drawn into a straight
line to generate a solid. If the straight line which is drawn into another be of given
length, there will be generated a parallelogram area. If its length be continuously
changed according to some fixed law, a curvilinear area will be generated. If the
size of the area drawn into the straight line be continuously changed, there will
be generated a solid terminated by a curved surface. If times, forces, motions and
speeds of motion be expressed by means of lines, areas, solids or angles, then these
quantities too can be treated in geometry. Quantities increasing by continuous
flow we call fluents, the speeds of flowing we call fluxions and the momentary
increments we call moments, and the method whereby we treat quantities of this
sort we call the method of fluxions and moments: this method is either synthetic or
analytical.34

According to Newton, the ancients, too, conceived geometrical objects as generated
by motion, subsuming geometry under mechanics. The practice of demonstrating
propositions by means of local motion is thus not against ancient practice. This is
the message conveyed in these lines from the Intended Preface.

In the 1690s and early 1710s, Newton deepened his interest in the double method
of analysis and synthesis. His search for an ancient geometrical analysis, preferable
for its conciseness and elegance to the Cartesian algebraic one, and his conviction
that only synthesis provides certainty and thus can be uttered publicly pervade

34 MP, 8, p. 455. “Geometria Veterum versabatur quidem circa magnitudines; sed Propositiones
de magnitudinibus nonnunquam demonstrabantur mediante motu locali: ut cum triangulorum
aequalitas in Propositione quarta libri primi Elementorum Euclidis demonstraretur transferendo
triangulum alterutrum in locum alterius. Sed et genesis magnitudinum per motum continuum
recepta fuit in Geometria: ut cum linea recta duceretur in lineam rectam ad generandam aream,
& area duceretur in lineam rectam ad generandum solidum. Si recta quae in aliam ducitur datae
sit longitudinis generabitur area parallelogramma. Si longitudo ejus lege aliqua certa continuo
mutetur, generabitur area curvilinea. Si magnitudo areae in rectam ductae continuo mutetur
generabitur solidum superficie curva terminatum. Si tempora, vires, motus et velocitates motuum
exponantur per lineas areas solida vel angulos, tractari etiam possunt hae quantitates in Geometria.
Quantitates continuo fluxu crescentes vocamus fluentes & velocitates crescendi vocamus fluxiones,
& incrementa momentanea vocamus momenta, et methodum qua tractamus ejusmodi quantitates
vocamus methodum fluxionum et momentorm: estque haec methodus vel synthetica vel analytica.”
MP, 8, p. 454.
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his writings. He came also to the conclusion, somewhat cryptically hinted at in
the second half of the Preface, that the method of analysis and synthesis provides
the correct demonstrative pattern to be followed in the mathematization of natural
philosophy.

In concluding this chapter, I consider a technical and pressing reason that must
have led Newton to accept mechanical curves as necessary tools in the mathemati-
zation of celestial mechanics.

13.3 Mechanical Curves in the Study of Planetary Motion

Johannes Kepler found that planets move in ellipses having the sun placed at one
focus. He also discovered that each planet moves in such a way that the radius
vector joining it to the sun sweeps equal areas in equal times. When the elliptic
orbit is known, the position of the planet in function of time can thus be found by
calculating the area of the focal sector.

Newton devoted Section 6, Book 1, of the Principia, entitled “De Inventione
Motuum in Orbibus Datis,” to the solution of the so-called Kepler problem. The
problem consisted in finding the area of a focal sector of the ellipse and was equiv-
alent to the solution for x of the equation x − e sinx = z (given e and z). When
Newton wrote the Principia, only approximate solutions were known. Could there
be a finite solution? In Lemma 28, Section 6, Newton proved that the answer is
negative:

No oval figure exists whose area, cut off by straight lines at will, can in general be
found by means of equations finite in the number of their terms and dimensions.35

This lemma is quite general. Given a plane oval curve and a point P inside it, one
cuts a sector S via a straight line passing through P . The lemma states that the
sector S is not generally expressible by means of a finite algebraic equation in x and
y. Pesic has paraphrased Newton’s elegant demonstration:

[P]ick any point inside the oval and let it be the pole about which a line revolves
with uniform angular speed. On that line, let a point move away from the pole
with speed proportionate to the square of the distance along the line between the
pole and the line’s intersection with the oval. Then that moving point on the
moving line will move in a gyrating spiral, its distance from the pole recording the
area swept out by the line. The area of the oval is given by the distance moved
by the point over one complete revolution of the line. But as the line continues
to sweep over the oval area again and again, the spiral will continue uncoiling to
infinity [figure 13.1)]. Hence, it will intersect any straight line drawn across it an
infinite number of times, which shows that the degree of the equation of the spiral

35 Principles, p. 511 = “Nulla extat figura ovalis cujus area, rectis pro lubitu abscissa, possit per
aequationes numero terminorum ac dimensionum finitas generaliter inveniri.” Principia, p. 188.
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S

R

Figure 13.1

Diagram for Lemma 28, Book 1, of Newton’s Principia for the simplest case, in which the
“oval” is a circle and point S is at the circle’s center. The line rotates clockwise. Point R
moves along the rotating line so that the length SR is proportional to the area of the circle’s
surface swept by the rotating line. In this case, point R traces an Archimedean spiral.
When point S is not at the circle’s center or the “oval” is not a circle (e.g., is an ellipse),
the spiral traced by R will not have the symmetry that characterizes the Archimedean
spiral. Source: By Compomat, s.r.l. c©Niccolò Guicciardini.

is not finite, since an equation of finite degree can only intersect a given line a finite
number of times. Therefore, since the area is given by the equation of the spiral,
the area of the curve is not given by an equation of finite degree.36

Lemma 28 creates problems of interpretation, since it is unclear what Newton
meant by “an oval figure.”37 However, one can certainly assume that the ellipse is
an oval figure and that the Lemma applies to the focal sector of the ellipse swept
by the radius vector according to Kepler’s first two laws. As Newton stated in the
Corollary to Lemma 28,

[H]ence the area of an ellipse that is described by a radius drawn from a focus to a
moving body cannot be found, from a time that has been given, by means of a finite
equation, and therefore cannot be determined by describing geometrically rational
curves. I call curves ‘geometrically rational’ when all their points can be determined
by lengths defined by equations, that is, by involved ratios of lengths, and I call the
other curves (such as spirals, quadratrices, and cycloids) “geometrically irrational.”
For lengths that are or are not as integer to integer (as in Book 10 of the Elements)

36 Pesic, “The Validity of Newton’s Lemma 28” ((2001), p. 215.
37 Pourciau, “The Integrability of Ovals” (2001).
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are arithmetically rational or irrational. Therefore I cut off an area of an ellipse
proportional to the time by a geometrically irrational curve as follows.38

Note that geometrically rational curves correspond to Descartes’ geometrical curves,
whereas geometrically irrational curves correspond to Descartes’ mechanical ones.
The area of the focal sector of the ellipse is measured by the distance SR. The
equation of the focal sector cannot be an algebraic function, since for a given angle
it should be infinitely valued. Indeed, the spiral is a mechanical curve, not admitted
by Descartes’ Géométrie. Thus, the Kepler problem can be solved only via infinite
series (i.e., equations with an infinite number of terms). And infinite series are
Newton’s main tool to deal with mechanical curves (chapter 7).

In Proposition 31 and its Scholium, Newton showed how one could obtain numer-
ical approximations of the equation x− e sin x = z thanks to an iterative procedure
related to the Newton-Raphson method (§7.5, figure 7.10).39

It should be added that Newton was quick to realize that Keplerian planetary
theory is just an approximation (albeit a good one for primary planets), since univer-
sal gravitation implies perturbations that destroy the simplicity of elliptical orbits.
The complexity of the Newtonian cosmological picture opened a gulf (though not
that devastating as in the case of Cartesian cosmology) between causal and exact
mathematical descriptions of nature. In any case, for primary planets ellipses are
a satisfactory approximation (in Book 3 the quiescence of the planets’ aphelia was
invoked by Newton as the best evidence for inverse-square sun-centered attraction),
and thus the Kepler problem remained for Newton, and still remains today, of ut-
most importance for the astronomer. Indeed, Newton had dealt with this problem
since his youthful anni mirabiles and had then sketched a proof of the algebraic
nonintegrability of ellipses modeled along the lines of Lemma 28.40 It is, of course,
important to keep in mind that Newton, like many of his contemporaries, was inter-
ested in dealing with mechanical curves for a broader spectrum of reasons. However,
the growing importance of mechanical curves in the study of natural philosophy was
an important stimulus for him as well as a further motivation for rejecting Cartesian
methodology.

38 Principles, p. 513. “Hinc area ellipseos, quae radio ab umbilico ad corpus mobile ducto de-
scribitur, non prodit ex dato tempore, per aequationem finitam, & propterea per descriptionem cur-
varum geometrice rationalium determinari nequit. Curvas geometrice rationales appello quarum
puncta omnia per longitudines aequationibus definitas, id est, per longitudinum rationes com-
plicatas, determinari possunt; caeterasque (ut spirales, quadratrices, trochoides) geometrice irra-
tionales. Nam longitudines quae sunt vel non sunt ut numerus ad numerum (quemadmodum in
decimo elementorum) sunt arithmetice rationales vel irrationales. Aream igitur ellipseos tempori
proportionalem abscindo per curvam geometrice irrationalem ut sequitur.” Principia, pp. 190–1.
39 See Adams, “On Newton’s Solution of Kepler’s Problem” (1882), and Kollerstrom, “Thomas
Simpson and Newton’s Method of Approximation” (1992).
40 Around 1665, Newton had already sketched a proof, modeled along the lines of Lemma 28, that
the rectification of the ellipse’s arc is not algebraic. See Add. 3958.2, f. 34r in MP, 1, p. 545.
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Summing up, in Section 6, Book 1, of the Principia Newton showed that it was
essential for his mathematical cosmology to reject Descartes’ conceptions concerning
the relations between certainty, mechanics, and geometry, as he made clear in the
Preface. The Preface is thus a complex and stratified text located at the confluence
of a number of exigencies that motivated Newton’s mathematical natural philoso-
phy. Newton’s quest for certainty in natural philosophy, his idea that probabilism
and hypotheticism—“that are being blazoned about everywhere,” as he complained
in his youth—could be avoided by injecting mathematics into cosmology and optics,
made it a priority to safeguard the certainty of his mathematical methods. In the
Géométrie, Descartes had aimed at distinct and clear method by selecting only a
well-defined class of constructions that trace curves as loci of polynomial equations.
In order to mathematicize Keplerian planetary cosmology, Newton had to surpass
such limitations; his concern in the Preface was to show that he was not losing
certain mathematical ground with such a bold move.

Newton’s position is ultimately contradictory. On the one hand, he wished
to include mechanical curves as legitimate objects of study and exact means of
construction. On the other hand, in order to study mechanical curves he had
to resort to techniques in new analysis, as infinite series, which were grounded on
algorithmic manipulations based on analogies and Wallisian inductions (§7.1). Such
tensions between new analysis (based on computations) and ancient analysis (based
on porismatic mechanical tools), and between heuristic analysis and demonstrative
synthesis, were broached by Newton in the 1690s and 1710s in fascinating writings
on geometry (see chapter 14).



14 Analysis and Synthesis

But if the authority of the modern geometers is raised against us, even greater is
the authority of the ancients.

—Isaac Newton, mid-1690s

14.1 Analysis and Synthesis in “Geometriae Libri Duo”

In the 1690s, Newton researched extensively on geometry. He pursued projects
of restoration of the analysis of the ancients that had already occupied him in
the 1670s in his work on the Pappus problem. As we mentioned in chapter 5,
Newton became convinced that the ancients’ method of analysis was related to the
organic construction of curves and to the study of projective transmutations between
curves. In fact, in his manuscripts on geometrical method he often moved from a
Pappian characterization of the method of analysis to a treatment of projective
transformations.1

Newton’s writings on geometry in the 1690s culminated in a two-book treatise,
“Geometriae Libri Duo.”2 In the first book he presented his results on projective
geometry, classification of cubics, organic description of curves, and geometrical
fluxions in the style of “Geometria Curvilinea” (§9.2). The second book is devoted
to theorems on quadratures. The first book therefore covers methods (organic,
projective, and fluxional) of generation and transformation of curves that Newton
considered consonant with the ancients’ handling of loci (in his opinion, a basic
element of porismatic analysis). Previous drafts, written in the early 1690s, were
instead devoted to the ancients’ method of analysis, to a comparison of this with

Epigraph from MP, 7, p. 342. “Et si authoritas novorum Geometrarum contra nos facit, tamen
major est authoritas Veterum.”.
1 This connection is particularly evident in MS Add. 3963.15, ff. 180v/179r, reproduced in MP, 7,
pp. 212–6, entitled “In Analysi veterum observandae sunt hae regulae” (“In the Ancients’ analysis
these rules are to be observed”). Here after a characterization of the method of analysis as one in
which one “must consider the problem as accomplished and out of unknown quantities viewed as
given gather given ones as unknowns” (“considerandum est Problema tanquam confectum et ex
quantitatibus ignotis ceu datis colligendae sunt datae ceu ignotae”) (MP, 7, pp. 214–5), Newton
moved on to rules on projective correspondences between points.
2 Newton’s writings on geometry can be found in MP, 7, pp. 185–561. The final two-book version
of “Geometriae Libri Duo” (which Whiteside reconstructed mostly from Add. 3962.1, 3962.3,
3963.2, and 4004) is in MP, 7, pp. 402–561.
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the analysis of the moderns, to questions concerning the nature of synthetic compo-
sition, and to the nature of porisms. As Whiteside remarked, the value of Newton’s
1690s studies on geometry lies more in the light they shed on his mature method-
ological views on the nature of mathematics than in the results he achieved, since,
with the exception of what he did in classifying cubic curves, he for the most part
restated what he had obtained some fifteen years before.3

A Proemium to a preliminary version of “Geometriae Libri Duo” is particularly
interesting. In the opening section, entitled “What Is To Resolve a Problem, and
How To Solve It,” Newton dealt with the dual method of resolution (resolutio or
analysis) and solution (compositio or synthesis). After quoting freely from Pappus’s
famous introduction to Book 7 of the Collectio, where the dual method is cryptically
presented (§3.1), Newton drew a comparison with algebra, as was typical in the
seventeenth century:

What Pappus here describes is the very thing we do when, by assuming the unknown
as known and therefrom by an appropriate argument gathering something known
as unknown, we reduce a problem to an equation; and then by aid of that equation
we in inverse sequence gather from really known what is really unknown. Nor does
our algebra seem to differ from their [the Ancients’] analysis except in the mere
manner of its expression.4

The understanding of algebra as a form of ancient analysis was common in the
seventeenth century. For example, Descartes stated similar ideas in Regulae.5 But
just below these lines Newton began with his idiosyncratic invectives against the
use of algebra. He made it clear that a problem is solved only through composition,
and that in composing its solution no space needs to be given to algebraic criteria.
Synthetic composition is perfect only when the analysis is forgotten and eliminated
from sight.6 Composition, or synthesis, must be carried out in such a way that no
traces of analysis are evident:

3 “[T]hese uneven writings are memorable less, perhaps, for their individual flashes of innovatory
brilliance and sustained displays of masterly technical expertise than for the finely textured picture
which they collectively project of Newton’s mature attitude vis-à-vis the ‘ancient’ geometers and
the ‘new’ breed of Cartesian mathematicians, of whom, by upbringing and working practice, he
himself was one for all that he might defer to the superior logical authority of the former.” MP,
7, p. 185.
4 MP, 7, pp. 249, 251. “Quod Pappus hic describit id ipsum est quod nos facimus ubi assumendo
incognitum ut cognitum, et inde per debitam argumentationem colligendo aliquod cognitum ut
incognitum, problema ad aequationem deducimus: dein ope aequationis illius ex vere cognitis
inverso ordine colligimus vere incognitum. Nec differre videtur Algebra nostra ab illorum Analysi
nisi in modulo expressionis.” MP, 7, pp. 248, 250.
5 Descartes, Regulae ad Directionem Ingenii (1701) (AT, 10, pp. 376–7).
6 “ [The ancients] regarded a problem as resolved when a geometer had in his own view completed
its analysis, and as solved once he had without analysis learnt how to compose it. Whence the
solution of problems by the construction of an equation would, to the ancients’ mind, seem to
be excluded from pure geometry, unless perhaps insofar as an algebraist who is less cognizant
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[S]olution is, however, the opposite of resolution in that it may not be had till all
trace of resolution be removed from start to finish by means of a full and perfect
composition. For example, if a question be answered by the construction of some
equation, that question is resolved by the discovery of the equation and composed
by its construction, but it is not solved before the construction’s enunciation and
its complete demonstration is, with the equation now neglected, composed.7

More important, according to Newton, the criteria of analysis should not inter-
fere with synthesis. Descartes had erred in confusing the two levels of method by
imposing algebraic criteria on the choice of compositional tools. His way of com-
position (the construction of the equations, or “to denote the root of a proposed
equation geometrically”) was unnatural and removed from the simple synthesis of
the ancients:

For almost all problems have a natural way of being solved . . . whence happens it,
I think, that the ancients, whose aim was composition, frequently arrived at simpler
conclusions than the moderns, who are more devoted to algebra.8

Thus, not only are the moderns proposing spurious synthetic compositions, but
they are following algebraic analyses that are often more complicated compared to
geometrical ones. In many cases, according to Newton,

to solve the problem by algebra alone a man’s life would . . . not be long enough
aneither Hercules’ patience nor Methuselah’s years would sufficea.9

Last but not least, Newton often repeated that geometrical analysis is conducive
of a more natural synthesis. Algebraic analysis is not only burdensome; its main

of geometry should propose this particular problem: To denote the root of a proposed equation
geometrically, or insofar as a geometer should gather from the construction of an equation a
solution of a kind propoundable and demonstrable without knowledge of the equation.” MP, 7,
p. 251. “[Veteres] existimantes Problema resolutum esse quando Geometra apud se absolverat
Analysin, solutum quando sine Analysi componere didicerat. Unde solutio problematum per
constructionem aequationis e Geometria pura, ex veterum sententia, excludenda videtur: nisi forte
quatenus Algebraista qui Geometriam minus intelligit proponat hoc ipsum problema, Radicem
propositae aequationis Geometrice designare; aut quatenus Geometra ex constructione aequationis
colligat ejusmodi solutionem quae sine aequationis notitia proponi ac demonstrari potest.” MP,
7, p. 250.
7 MP, 7, p. 307. “solutionem vero ita contrariam esse resolutioni ut ea non prius habeatur quam
resolutio omnis a principio ad finem per compositionem plenam et perfectam excludatur. Verbi
gratia si quaestioni per constructionem aequationis alicujus respondeatur, quaestio illa resolvitur
per inventionem aequationis, componitur per constructionem ejusdem, sed non prius solvitur quam
constructionis enunciatio ac demonstratio tota componitur, aequatione neglecta.” MP, 7, p. 306.
8 MP, 7, p. 251. “Nam problemata fere omnia naturalem aliquem habent solvendi modum
. . . unde factum puto quod Veteres qui ad Compositionem collimabant simpliciores conclusiones
assequi solerent, quam recentes qui magis colunt Algebram.” MP, 7, p. 250.
9 aaanother version. MP. 7, p. 255. “ad solutionem problematis per solam Algebram . . . vita
hominis non sufficeret anec Herculis patientia nec anni Methusalem sufficerenta.” MP, 7, p. 254.
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drawback is that it does not reveal an elegant and simple composition to the ge-
ometer.10 As Newton stated in commenting on Antonio Hugo de Omerique’s work
entitled Analysis Geometrica (1698),

[T]herein is laid a foundation for restoring the Analysis of the Ancients wch is
more simple, more ingenious & more fit for a geometer than the Analysis of the
Moderns. For it leads him more easily & readily to the composition of Problems,
& the Composition wch it leads him to is usually more simple & elegant than that
wch is forct from Algebra.11

Analysis, whether modern algebraic or ancient porismatic, is in any case, in New-
ton’s opinion, unfit to be presented as demonstrative. Analysis, even the ancient
analysis, is a complex procedure made of trials and errors and constitutes the process
of discovery adopted by the skilled mathematician, who will begin with a conjecture,
draw consequences, introduce additional lemmas, adapt the initial hypotheses, until
he reaches some already achieved result on which the synthesis or composition can
be built. Further, the synthesis, or composition, is not a mere reversal of the steps
followed in the analysis; composition becomes true demonstration only when all
traces of the heuristic, complex, and tortuous analytical process are eliminated.12

It is interesting to note that Newton’s wholehearted endorsement of the supe-
riority of the ancient method of resolution and solution over the algebra employed
by the moderns; his efforts in restoring ancient porismatic analysis; his program
of embedding his geometrical methods (projective, organic, and fluxional) within
a historical reconstruction that views his mathematics in line with such ancient
tradition; his distancing himself from the heuristic, nonrigorous, and esthetically
defective mathematical methods of his contemporaries all occur in a period of his
life in which he was deeply involved in the myth of the ancients’ prisca sapientia.
As I have tentatively argued in my Reading the Principia, Newton’s admiration for
ancient geometry might be related to his conviction of being, as a natural philoso-
pher, a privileged interpreter of the Book of Nature and, as a pious Christian, a

10 This point is made particularly clear in Brigaglia, “La Riscoperta dell’Analisi e i Problemi
Apolloniani” (1995).
11 Bodleian. New College MS 361.2, f. 19r discussed in Pelseneer, “Une Opinion Inédite de Newton
sur l’Analyse des Anciens” (1930).
12 In a draft Preface to the “Geometriae Libri Duo” Newton opined, “Whence it comes that a
resolution which proceeds by means of appropriate porisms is more suited to composing demon-
strations than is common algebra. aBy present day analysis we arrive promptly at equations, but it
is in most cases difficult to derive constructions and demonstrations of the better quality from the
equations than happily to accomplish them by means of a complete resolution and compositiona.”
MP, 7, p. 261. “Unde fit ut Resolutio quae per debita Porismata procedit sit aptior componendis
demonstrationibus quam Algebra vulgi. aHac analysi prompte pervenitur ad aequationes, sed ex
aequationibus constructiones et demonstrationes melioris notae derivare utplurimum difficilius est
quam per resolutionem et compositionem totam feliciter perficerea.” MP, 7, p. 260. aaanother
version.
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privileged interpreter of the Book of Scripture. Newton began looking at ancient
texts not only for mathematical interests. As historians of Newton’s chemistry and
theology have shown, he was driven by the desire to restore an ancient knowledge
of alchemy and religion; it seems probable that this attitude matured in the 1690s.
It is plausible that in Newton’s mind the restoration of the lost books of the ancient
geometers of Alexandria was in resonance with his attempt to reestablish the lost
wisdom of the ancients.13

But Newton’s option for the ancient method of analysis and synthesis, and for
a mechanically based geometry—notwithstanding his insistence on the desire to
conform to ancient exemplars—was rooted in philosophical agendas motivated by
mid-seventeenth-century debates on the nature of mathematics and its relation with
natural philosophy.

14.2 Realism and Constructivism

Recent studies devoted to the history of British mathematics have related the math-
ematical work of Hobbes, Barrow, and Newton to the empiricist philosophy pursued
in England and Scotland. Pycior underlined how the preference for geometry over
algebra manifested by many British mathematicians was the result of a quest for an
empirically based mathematics. In his study on Colin Maclaurin, Sageng defined the
British fluxional school as dominated by mathematical empiricism. Sepkoski stud-
ied a nominalist and constructivist tradition in mathematics spanning from Pierre
Gassendi to George Berkeley, via Barrow, Hobbes, and Newton; the tradition was
also highlighted by Garrison.14 According to Sepkoski, the philosophy of mathe-
matics endorsed by Newton can be termed physicalist insofar as it implies a belief
that mathematical representations should be closely aligned with the properties of
physical bodies and their motions. The different perspectives taken by Pycior and
Sageng on the one side and Sepkoski and Garrison on the other reveal that it is
very hard to pigeonhole Newton as a philosopher of mathematics. In the Preface
to the Principia, Newton stated that geometrical objects must be conceived of as
generated mechanically (§13.1), and this seems in line with a constructivist position.
On the other hand, in the introduction to De Quadratura, Newton stated that the

13 Guicciardini, Reading the Principia (1999), pp. 30–1. The literature concerning Newton’s
alchemy and theology is vast. See, for instance, Knoespel, “Interpretive Strategies in Newton’s
Theologiae Gentilis Origines Philosophicae (1999); Snobelen, “‘The True Frame of Nature” (2005);
Figala “Die Exakte Alchemie von Isaac Newton” (1984); Principe, “The Alchemies of Robert Boyle
and Isaac Newton” (2000); Newman and Principe “Alchemy vs. Chemistry” (1998).
14 Garrison, “Newton and the Relation of Mathematics to Natural Philosophy” (1987); Pycior,
Symbols, Impossible Numbers, and Geometric Entanglements (1997); Sageng, Colin MacLaurin
and the Foundations of the Method of Fluxions (1989); and Sepkoski, Nominalism and Construc-
tivism in Seventeenth-Century Mathematical Philosophy (2007).
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mathematical quantities he considered in the method of fluxions have an existence in
rerum natura, a pronouncement that suggests a realist view of mathematics (§9.5).

This last theme was to become a leitmotif during the priority controversy with
Leibniz; the method of fluxions was presented by Newton’s defendants as endowed
with ontological content (see part VI). Newton claimed that fluents and fluxions are
really exhibited in rerum natura, whereas Leibnizian infinitesimals do not exist. But
this is not to say, as Sepkoski convincingly argued, that for Newton the geometrical
representations themselves were the ontologically real entities they describe; rather
their manner of description is closely related to the real world that we perceive.
Mathematical geometrical magnitudes are constructed by human faculties, but they
are constructed in a way that is not arbitrarily detached from empirical experience.

Newton often insisted also on the fact that the magnitudes of the fluxional
method are accessible to perceptual experience. In its mature form, the fluxional
method whenever it is possible employs, according to Newton, sensible finite mag-
nitudes.15 The generation of magnitudes can be performed by “God, nature or any
technician”16 (see chapter 13). Geometry mimics the constructive powers of God.
A passage from the work known under the title of “De Gravitatione et Aequipon-
dio Fluidorum,” a metaphysical manuscript whose dating is controversial, resonates
with Newton’s pronouncements on the relation between human and divine geome-
try:

[T]he analogy between the divine faculties and our own may be shown to be greater
than has formerly been perceived by philosophers. . . . Moreover, in moving bodies
we create nothing, nor can we create anything, but we only simulate the power of
creation. . . . if anyone, however, prefers this our power to be called the finite and
lowest level of the power which makes God the creator, this no more detracts from
the divine power than it detracts from his intellect that intellect belongs to us in a
finite degree too.17

Mechanically described figures, curves in particular, are thus generated by a fac-
ulty that mimics nature and God. In this sense Newton stated that mechanically

15 In the De Quadratura, he writes, “For fluxions are finite quantities and real, and consequently
ought to have their own symbols; and each time it can conveniently so be done, it is preferable
to express them by finite lines visible to the eye rather than by infinitely small ones.” MP, 8, pp.
113, 115.
16 MP, 7, p. 286.
17 Add. 4003, ff. 23–4. The title consists of the opening words of this manuscript. Translation by
Christian Johnson in Newton, Philosophical Writings (2004), p. 30. “ut Analogiam inter nostras
ac Divinas facultates majorem esse ostenderem quàm hactenus animadvertêre Philosophi. . . .
Sed praeterea movendo corpora non creamus aliquid nec possumus creare sed potestatem creandi
tantùm adumbramus. . . . Siquis autem maluit hanc nostram potestatem dici finitum et infimum
gradum potestatis quae Deum Creatorem constituit, hoc non magis derogaret de divina potestate
quàm de ejus intellectu derogat quod nobis etiam finito gradu competit intellectus.” Newton, “De
Gravitatione et Aequipondio Fluidorum” (1962), p. 108.
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generated curves, surfaces, and solids are “geneses which exist in rerum natura.”
The fact that one can study them only through approximation techniques, such
as infinite series, arises from the limitations of the human intellect, for “we, mere
men possessed only of finite intelligence, can neither designate all their terms nor
so grasp them as to ascertain exactly the quantities we desire from them.”18

It is interesting to note that Newton’s God is conceived of as a geometer rather
than as a calculator. A supreme calculator would be able to create a world that
functions according to the necessity of an algorithm. A supreme geometer, instead,
freely acts in nature, creating regions of impenetrable space, moving bodies, and
intervening in the absolute space and time in which he abides.

Newton’s rejection of Descartes’ methodological prescriptions concerning curves
and his preference for a mechanically based geometry are thus intertwined with
many facets of his views on mathematics: his geometrical classicism, his constructive
and empiricist conception of mathematical objects, and even his epistemological,
ontological, and theological concerns. The next section examines the relations that
Newton envisaged between the method of analysis and synthesis, a mechanically
based geometry, and the mathematization of force in some of his later writings.19

14.3 Analysis and Synthesis in Natural Philosophy

14.3.1 Newton’s Pronouncements

Pronouncements concerning connections between the mathematical method of
analysis and synthesis and the demonstrative practice in natural philosophy oc-
cur explicitly both in the Principia and in the Opticks. The first explicit reference
to the use of the dual method of mathematicians in natural philosophy can be
found in a draft preface to the first edition of the Opticks, which Newton wrote in
1703-1704:20

As Mathematicians have two Methods of doing things wch they call Composition
& Resolution & in all difficulties have recourse to their method of resolution before
they compound so in explaining the Phaenomena of nature the like methods are
to be used & he that expects success must resolve before he compounds. For the
explications of Phaenomena are Problems much harder then those in Mathematicks.
The method of Resolution consists in trying experiments & considering all the
Phaenomena of nature relating to the subject in hand & drawing conclusions from

18 MP, 2, p. 243.
19 Pioneering work in this area has been carried out by Henry Guerlac in “Newton and the Method
of Analysis” (1973). I am particularly indebted to Guerlac’s thoughtful essay.
20 James E. McGuire discovered and commented on this manuscript. McGuire, “Newton’s ‘Prin-
ciples of Philosophy’: An Intended Preface for the 1704 Opticks” (1970). The definitive study on
Newton’s use of analysis and synthesis in natural philosophy is Alan Shapiro, “Newton’s ‘Experi-
mental Philosophy’” (2004).
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them & examining the truth of those conclusions by new experiments & drawing new
conclusions (if it may be) from those experiments & so proceeding alternately from
experiments to conclusions & from conclusions to experiments until you come to the
general properties of things. [& by experiments & phaenomena have established
the truth of those properties]. Then assuming those properties as Principles of
Philosophy you may by them explain the causes of such Phaenomena as follow from
them: wch is the method of Composition. But if wthout deriving the properties
of things from Phaenomena you feign Hypotheses & think by them to explain all
nature you may make a plausible systeme of Philosophy for getting your self a
name, but your systeme will be little better then a Romance.21

This first pronouncement on the use of analysis and synthesis in natural philosophy
was incorporated in the Latin edition of the Opticks (1706) as Quaestio 23. Its
English version as Query 31 (1717) is often cited. In this new version Newton
added,

Analysis consists in making experiments & observations & in arguing by them from
compositions to ingredients & from motions to the forces producing them & in
general from effects to their causes & from particular causes to more general ones,
till the Argument end in the most general.22

The interesting fact about this last pronouncement is that Newton explicitly draws
an analogy between the methods followed in the Principia and those adopted in the
Opticks, two works that are often described as representative of different method-
ologies. In the Principia analysis is a deduction of forces from motions; in the

21 Add. 3970, f. 480v. The square brackets are Newton’s. Discussed in Shapiro, “Newton’s
‘Experimental Philosophy’” (2004). “Your systeme will be little better then a Romance”: prob-
ably a reference to Descartes’ advice to his readers in the letter to the abbé Claude Picot (the
translator of the first French edition of Principia Philosophiae) that Newton might have read in
Latin translation in Descartes, Opera Philosophica (1656), which he possessed. See Harrison, The
Library of Isaac Newton (1978), no. 506.
22 For the reader’s convenience, I quote in full: “As in Mathematicks so in Natural Philosophy
the investigation of difficult things by the method of Analysis ought ever to precede the method of
Composition. This Analysis consists in making experiments & observations & in arguing by them
from compositions to ingredients & from motions to the forces producing them & in general from
effects to their causes & from particular causes to more general ones, till the Argument ends in the
most general: The Synthesis consists in assuming the causes discovered & established, as Principles;
& by them explaining the Phaenomena proceeding from them, & proving the explanations. In
the two first Books of these Opticks I proceeded by Analysis to discover & prove the original
differences of the rays of light in respect of refrangibility reflexibility & colour & their alternate
fits of easy reflexion & easy transmission & the properties of bodies both opake & pellucid on
which their reflexions & colours depend: & these discoveries being proved may be assumed as
Principles in the method of Composition for explaining the phaenomena arising from them: an
instance of wch Method I gave in the end of the first Book.” Add. 3970, f. 286r. Alan Shapiro
in “Newton’s ‘Experimental Philosophy’” (2004), p. 197, observed that Newton’s English version
of this paragraph served as the basis for Samuel Clarke’s translation into Latin, which differs
somewhat from Newton’s text. See Newton, Optice (1706), pp. 347–8.
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Opticks it is a deduction from compositions to ingredients (clearly, the experiments
carried on in the analytical process concern the decomposition of white light into
its components). In both cases one has a deduction of causes from effects. Once
the analytical process arrives at some established cause, the synthesis can begin as
a deduction of new effects from known causes.

Further, the procedure of deduction from experiments (in the Opticks) and from
phenomena or observations (in the Principia) has the tentative, heuristic, and com-
plex structure of the analytical heuristic method of the mathematicians. Newton
could draw a comparison between the experimental method adopted in natural
philosophy and the method of analysis of the mathematicians because he placed
experimentation within a deductive mathematical procedure (causes, or principles,
are not induced but deduced from the phenomena). The analogy with the analyti-
cal method of the mathematicians is also justified by the piecemeal and branching
structure of the heuristic alternating process of multiple deductions “from conclu-
sions to experiments, and from experiments to conclusions” that characterizes the
mathematical natural philosophy that Newton pursued.23

After 1703, Newton often insisted on this theme, both in the Opticks and in
the second edition of the Principia. Already in the Preface to the first edition, he
wrote,

And therefore our present work sets forth mathematical principles of natural phi-
losophy. For the basic problem of philosophy seems to be to discover the forces of
nature from the phenomena of motions and then to demonstrate the other phenom-
ena from these forces.24

This concept was reiterated in the Preface to the second edition (1713), signed by
Roger Cotes:

[Those whose natural philosophy is based on experiment] proceed by a twofold
method, analytical and synthetic. From certain select phenomena they deduce by
analysis the forces of nature and the simpler laws of those forces, from which they
then give the constitution of the rest of the phenomena by synthesis. This is that
incomparably best way of philosophizing which our most celebrated author thought
should be justly embraced in preference of others.25

Deducing forces from select phenomena is thus proposed as an instantiation of the
method of analysis. Knowledge of the existence of a central inverse-square force
acting between massive bodies is not achieved via patient Baconian induction, a
collection of numerous, carefully conducted experiments. It is rather deduced math-
ematically. It is such a mathematical deduction, Cotes made clear, that delivers
certainty to the conclusions reached in the Principia:

23 This point has been made clear by Ihmig in “Newton’s Program of Mathematizing Nature”
(2005).
24 Principles, p. 382.
25 Principles, p. 386.



318 Chapter 14

Now it is reasonable to accept something that can be found by mathematics and
proved with the greatest certainty: namely, that all bodies moving in some curved
line described in a plane, which by a radius drawn to a point (either at rest or
moving in any way) describe areas about that point proportional to the times, are
urged by forces that tend towards that same point. . . . The following rules must
also be accepted and are mathematically demonstrated. If several bodies revolve
with uniform motion in concentric circles, and if the squares of the periodic times
are as the cubes of the distances from the common center, then the centripetal forces
of the revolving bodies will be inversely as the squares of the distances. Again, if
the bodies revolve in orbits that are very nearly circles, and if the apsides of the
orbits are at rest, then the centripetal forces of the revolving bodies will be inversely
as the squares of the distances.26

This is the gist of the argument for gravitation at the beginning of Book 3 of the
Principia. The mathematical propositions of the first Book make it possible to
deduce the existence of an inverse-square force from phenomena “agreed among
astronomers.”27

The deduction of forces from phenomena is presented by Newton as the ana-
lytical stage of mathematical natural philosophy. Once the forces are established,
the process is reversed and the synthetic stage begins. Now one deduces phenom-
ena from the forces. The importance of this concept cannot be overestimated; it
appeared at the end of the General Scholium (1713) in one of the most famous New-
tonian pronouncements about the rejection of hypotheses in natural philosophy.28

Newton also expanded on the role of the dual method of analysis and synthesis in
natural philosophy in the Intended Preface (late 1710s) to the Principia (§13.2).29

Newton’s pronouncements on the use of analysis and synthesis in natural phi-
losophy, which first appeared in print in the Latin Optice (1706), were probably an
ingredient of his reply to the criticisms of the Principia by the continentals (Leib-
niz among them). To the many who had accused him of having introduced into
natural philosophy either an occult cause or a force (gravitation) whose mechanism
of action remained unexplained, he wished to reply that gravitation had been de-
duced from phenomena and that its existence was therefore mathematically certain.
As had been the case with his early researches on optics, Newton cushioned what
he considered the indisputable certainty of his natural philosophy by profiling its
methods along the demonstrative practices of the mathematicians.

26 Principles, pp. 387–8.
27 Principles, p. 388. The propositions referred to by Cotes are Proposition 2, Book 1, where
it is proved that the area law implies a central force; Proposition 4, Book 1, which proves that
for circular orbits Kepler’s third law implies an inverse-square force; and Proposition 45, Book 1,
which demonstrates that for elliptical orbits the quiescence of the apsidal line implies an inverse-
square (or an elastic) force. These are the propositions deployed in the analytical demonstration
of gravitational force from phenomena.
28 Principles, p. 943.
29 MP, 8, pp. 442–59. Principles, pp. 49–54.
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14.3.2 Understanding Newton’s Pronouncements

My purpose in this section is to decode Newton’s pronouncements on the canon
of problem resolution (analysis) and solution (synthesis) for a mathematized nat-
ural philosophy. It is therefore appropriate to summarize some salient aspects of
Newton’s mathematical methodology that were previously discussed.

Newton wanted to inject certainty into natural philosophy via geometry. From
his viewpoint, algebra was not endowed with the certainty that characterizes geom-
etry. He often repeated that geometrical objects, such as plane curves, are better
understood if the reason of their genesis is known. Recourse to equations can be
helpful in the context of discovery, but in the end equations must be neglected.
Therefore, Newton conceived geometrical objects as generated by mechanical de-
vices. Most notably, curves are generated by tracing mechanisms.

In his practice of geometrical analysis Newton typically faced locus problems
(e.g., the Pappus problem) in which it is required to construct a curve that satisfies
a number of given conditions. The analysis begins from the assumption that the
sought curve is given, and proceeds by deduction until constructions given either
by postulate or by previously accomplished constructions are obtained. In short,
one assumes the sought curve as given and deduces the tracing mechanism that
generates it. In the synthetic stage one starts instead from the given conditions
and, via allowed constructive tools (postulates or already achieved constructions)
obtains the required curve.30

When the aim is to geometrize the natural philosophy of force and motion,
instead of curves one considers trajectories, instead of tracing mechanisms one con-
siders forces. From Newton’s viewpoint, mechanics provided geometry with its
subject matter, and it did so with a rich variety of mechanical constructions. Such
constructions could be produced by God, nature, or human agency.31 Therefore,
Newton’s fluents can be thought of as produced either by human-made tracing mech-
anisms, or by natural forces. Indeed, conic sections can be conceived of as traced
by rotating rulers as well as by physical causal agents, such as inverse-square cen-
tral forces. Newton remained trapped in the fascination of this ambiguity between
human-made construction and reality, an advantageous ambiguity in the sense that
it allowed him a seemingly smooth transition from constructive geometry to the
mathematical natural philosophy of motions, velocities, and accelerations. Indeed,
his peroration in favor of the method of analysis and synthesis in natural philosophy
cannot be understood too literally. It is a peroration that emerged in his mature

30 For an example, see §5.4.5.
31 “Both the genesis the subject-matter of geometry . . . and the fabrication of its postulates
pertain to mechanics. Any plane figure executed by God, nature or any technician [a Deo Natura
Artifice quovis confectas] you are to measure by geometry by the hypothesis that they are exactly
constructed.” MP, 7, p. 289.
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years, a period in which it could serve a rhetorical purpose in his polemic against
the method of the Cartesians, and Leibniz in particular.

Newton claimed that in natural philosophy in the analytical stage one has to
assume the trajectory as given (the phenomenon) and deduce the tracing causal
agent (the force). Once this is done, the synthesis reverses the process: now, given
the forces, one mathematically deduces the trajectory. The analogy between the
analytical/synthetic process applied to mechanically generated geometrical objects,
whereby one deduces tracing mechanisms from curves (analysis) and curves from
tracing mechanisms (synthesis), and the double implication of forces from phenom-
ena and vice versa of phenomena from forces, would guarantee the applicability of
geometrical methods to natural philosophy and therefore the transfer of certainty
from geometry to planetary theory and optics. An algebraic approach to natural
philosophy would not yield such a success. As algebra was inappropriate in study-
ing the nature of curves, so it was in studying the nature of trajectories. As Colin
Maclaurin wrote,

In order to proceed with perfect security, and to put an end for ever to disputes,
[Newton] proposed that, in our inquiries into nature, the methods of analysis and
synthesis should be both employed in a proper order.32

Note that in order to guarantee an ontological content to the forces deduced
from trajectories, Newton had to introduce his famous concepts of absolute time and
space. The phenomena from which forces are deduced are accelerations measured as
deviations from inertial motion.33 It was essential for Newton that such deviations
be measured as a function of absolute time and space (in modern terms, in an
inertial reference frame). Accelerations measured in an arbitrary reference frame
would imply deductions of forces that are not real because they are not located in
real bodies that cause them. So, for instance, a reference frame at rest with the
fixed stars allows one to measure accelerations of planets from which it is possible
to deduce the existence of a force exerted by the sun on the planets. In a reference
frame at rest with the earth, one would measure planetary accelerations from which
apparent forces acting on the planets would be deduced, forces not endowed with
ontological content. A kinematic geometry of fluent magnitudes is the right language
in natural philosophy because it enables mimicking of real motions, in real space
and real time, and therefore permits the deduction of real forces. The arbitrary
and conventional character of algebra would have more difficulty answering the
exigency of ontological content, at least this seems to be what Newton might have
claimed. Algebraically speaking, all reference frames are equivalent via suitable
transformations of coordinates.

32 Maclaurin, An Account of Sir Isaac Newton’s Philosophical Discoveries (1748), p. 9. See
Guerlac, “Newton and the Method of Analysis” (1973), p. 378.
33 See, for instance, the segment QR in Proposition 6, Book 1 (§10.2.4).



Analysis and Synthesis 321

Note also that once the forces are identified, one assumes the force law and
deduces new phenomena; this is the compositive, synthetic part of the method.
The synthetic part can be ampliative in our knowledge of the world, that is, it can
add to that which is already known. As Newton stated in a manuscript related to
the famous Query 23/31 of the Opticks,

I derived from it [the inverse-square law] all the motions of the heavenly bodies &
the flux & reflux of the sea, shewing by mathematical demonstrations that this force
alone was sufficient to produce all those Phaenomena, & deriving from it (a priori)
some new motions wch Astronomers had not then observed but since appeare to
be true.34

Notwithstanding the difficulties that plague this bold methodological project
(§14.3.3), considering it allows understanding of several typical aspects of New-
ton’s mathematized natural philosophy, most notably, a better understanding of
the way in which he deployed experiments as crucial, or select phenomena in the
analytical deduction of forces. As Garrison stated,

For Newton induction was merely a generalization from an experimental config-
uration. Repetitions of an experiment were no more necessary for Newton than
repetitions of a geometrical configuration would be for the geometrician. This al-
most anti-inductivist view of induction was as much misunderstood by Hooke, who
appealed in his controversy with Newton to “many hundreds of trials,” as it has
been by contemporary positivistic philosophers of science.35

Here Garrison is perhaps too optimistic in his claim of having captured all the facets
of Newton’s methodology. Newton’s experimental practice, both in the Principia
and in the Opticks, is too complex to be labeled anti-inductivist, and Newton himself
in his late years showed growing awareness of the fact that experimental philosophy
could not be reduced so easily to certainty via an imitation of the mathematicians’
methods. This said, I believe that Garrison has identified one important aspect of
Newton’s views concerning the use of crucial experiments. Newton did not aim at
a patient collection of phenomena to be used as a basis for probabilistic inductive
generalization, but rather he wished to identify a well-chosen phenomenon that
reveals the action of force to the mathematically trained natural philosopher, whose
main business is the certain deduction of forces.

14.3.3 Difficulties

How successful was Newton in refuting probabilism and fostering certainty in natu-
ral philosophy by deploying the method of analysis and synthesis, and by subsuming

34 MS Add. 3970. Commented on in Guerlac, “Newton and the Method of Analysis” (1973), p.
386.
35 Garrison, “Newton and the Relation of Mathematics to Natural Philosophy” (1987), p. 621.
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geometry to mechanical practice? I point out here a few difficulties that were per-
ceived by Newton’s contemporaries, and I believe also by Newton himself, who, as
Alan Shapiro has shown, drifted in his maturity toward a more favorable accep-
tance of experimental philosophy as an inquiry distinct from mathematics, yielding
probable truths and open to failure.36

A first difficulty concerns the fact that it is often problematic to map the method
of analysis and synthesis, as described in Newton’s pronouncements in Query 23/31
and in Cotes’s Preface, into Newton’s demonstrative practices in natural philos-
ophy.37 An even cursory inspection of the problems that Newton tackled in the
Principia reveals that many of them have to do with the analytical (in the strictly
mathematical sense) determination of effects from forces, not of forces from effects.
One can think of the so-called inverse problems of central forces whose purpose is to
determine the trajectory of a body, given known forces acting on it and initial condi-
tions (position and velocity). Such problems are resolved analytically by assuming
the sought trajectory as given and deducing consequences from this assumption.38

Many of the problems that Newton claimed to have resolved by the use of new
analysis were problems in which the task was to determine the trajectory given the
force, not the force given the trajectory, as in the method of analysis referred to
in Query 23/31 and similar passages. This difficulty, however, can be overcome by
noting that the pronouncements on the method of analysis and synthesis in natural
philosophy do not refer to the mathematical propositions of the first two books of
the Principia but to the deduction of universal gravitation in the third book. New-
ton drew a sharp distinction between the mathematical level followed in the first
two books and the physical (or philosophical) level of the last book. As he wrote
at the beginning of the third book,

In the preceding books I have presented principles of philosophy that are not,
however, philosophical but strictly mathematical—that is, those on which the study
of philosophy can be based. These principles are the laws and conditions of motions
and of forces, which especially relate to philosophy. . . . It still remains for us to
exhibit the system of the world from these same principles.39

This concept was already made clear in the Preface to the first edition:

[F]or the basic problem of philosophy seems to be to discover the forces of nature
from the phenomena of motions and then to demonstrate the other phenomena from

36 Alan Shapiro, “Newton’s ‘Experimental Philosophy’” (2004).
37 For the difficulties in discerning use of the method of analysis and synthesis in the Opticks, see
Shapiro, “Newton’s ‘Experimental Philosophy’” (2004).
38 Newton took both a geometrical and an algebraic approach to the inverse problem of central
forces in the Principia (§10.2.4, §10.2.7). It is particularly interesting to read Corollary 1, Proposi-
tions 11–13, Book 1, as related to the analytical procedures deployed by Newton in tackling locus
problems.
39 Principles, p. 793.
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these forces. It is to these ends that the general propositions in books 1 and 2 are
directed, while in book 3 our explanation of the system of the world illustrates these
propositions. For in book 3, by means of propositions demonstrated mathematically
in books 1 and 2, we derive from celestial phenomena the gravitational forces by
which bodies tend toward the sun and toward the individual planets. Then the
motions of the planets, the comets, the moon, and the sea are deduced from these
forces by propositions that are also mathematical.40

Therefore, in the first two books the mathematical method of analysis and synthesis
is applied to problems that relate forces to phenomena (mainly trajectories), which
are seen as purely abstract mathematical objects and are not necessarily instantiated
in nature. In the first two books the relation between forces and phenomena is purely
inferential and lacks a causal dimension. Here in general Newton sought for double
implications of the form the force is directly proportional to distance if and only if
the trajectory is an ellipse and the area law is valid for the ellipse’s center; or, the
force is inverse-square if and only if the trajectory is a conic section and the area
law is valid for a focus. Then, in the third book, the mathematical results obtained
in the first two books are applied in order to deduce the real forces acting in nature
from observed phenomena, most notably from planetary trajectories measured in
an inertial reference frame. Newton claimed that the deduction from observed
trajectories to real forces was analogous in physics to the analytical process followed
in mathematics, whereas the deduction of observed trajectories from real forces was
analogous to mathematical synthesis.

A second difficulty concerns an epistemological difference between geometrical
objects generated by tracing mechanisms operated by a technician and trajecto-
ries generated by natural forces. Whereas the tracing mechanisms are under the
control of the geometer, the forces acting in nature are in principle inaccessible to
direct knowledge; they can only be inferred by deduction from the phenomena. As
Ducheyne has shown, this asymmetry between the order of nature and the order
of knowledge was amply discussed in Aristotelian textbooks accessible to Newton.
Indeed, Newton’s discourse on analysis and synthesis was influenced not only by the
mathematical Pappian tradition but also by a philosophical tradition dating back
to Aristotle’s Posterior Analytics. In the jargon of Aristotelian natural philosophy
one would say that in the order of things (ordo naturae) causes come first and effects
follow from them, whereas in the order of knowing one notices effects first and from
them tries to infer the causes. Such inference from known effects to causes was anal-
ysis as resolutio or demonstratio quia. After the analysis (sometimes defined as a
process of induction) the Aristotelian philosopher was expected to infer from causes

40 Principles, p. 382. See also the final scholium to Section 11, Book 1: “Mathematics requires
an investigation of those quantities of forces and their proportions that follow from any conditions
that may be supposed. Then, coming down to physics, these proportions must be compared with
the phenomena.” Ibid, p. 588.
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to effects, producing a synthesis, a compositio or demonstratio propter quid.41 The
analogy between the methods of the geometers and those of the natural philosophers
breaks down at this level. The analytical method of the mathematicians is a pro-
cess in which one obtains what is known or given from what is unknown or searched
for, whereas in Aristotelian natural philosophy analysis is a process in which one
abtains what is unknown (but first in the order of nature) from what is known.
Newton, when writing about analysis and synthesis in his late writings, referred
to two different traditions. He referred to the mathematical tradition, eminently
represented by Pappus, in writings like “Geometriae Libri Duo,” and to the Aris-
totelian tradition in the Query 23/31 of the Opticks. It seems to me that Newton
conflated these two different conceptions of analysis and synthesis (the Pappian and
the Aristotelian) as a rhetorical move aimed at defending the certainty of his natural
philosophy.

The asymmetry between geometry and natural philosophy was discussed by Hob-
bes and Barrow. Hobbes had maintained a materialistic view of geometry in order
to claim its scientific status. Geometry is scientific because its objects are generated
by mechanisms that we know and control:

“But,” you will ask, “what need is there for demonstrations of purely geometric
theorems to appeal to motion?” I respond: “First, all demonstrations are flawed,
unless they are scientific, and unless they proceed from causes, they are not scien-
tific. Second, demonstrations are flawed unless their conclusions are demonstrated
by construction, that is, by description of figures, that is, by the drawing of lines.
For every drawing of a line is motion: and so every demonstration is flawed, whose
first principles are not contained in the definitions of motions by which figures are
described.”42

The science of every subject is derived from a precognition of the causes, generation,
and construction of the same, and consequently where the causes are known, there
is place for demonstration, but not where the causes are to seek for. Geometry
therefore is demonstrable, for the lines and figures from which we reason are drawn
and described by ourselves. . . . But because of natural bodies we know not the
construction, but seek it from the effects, there lies no demonstration of what the
causes be we seek for, but only of what they might be.43

These themes were dealt with long before in the mid-seventeenth-century debates de
certitudine mathematicarum initiated by Piccolomini.44 Further, Hobbes declared

41 See Ducheyne, “Newton’s Training in the Aristotelian Textbook Tradition” (2005).
42 Hobbes, De Principiis (1666), in Opera Philosophica (1839–1845), 4, p. 421. Translated and
commented on in Jesseph, Squaring the Circle (1999), p. 135.
43 Hobbes, Six Lessons to the Professors of the Mathematiques (1656), in English Works (1839–
1845), 7, p. 184.
44 On Hobbes’s involvement with the de certitudine mathematicarum debate and his idea of
mathematics as a science of causal relations, see Jesseph, Squaring the Circle (1999).
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in the opening chapter of De Corpore, which Newton knew since his early days
as a student in Cambridge,45 that philosophy is “knowledge of effects or appear-
ances, as we acquire by true ratiocination from the knowledge we have first of their
causes or generation: And again, of such causes or generations as may be from
knowing first their effects.”46 This statement has some resemblance with several
Newtonian definitions of the aims of natural philosophy.47 Similar observations can
be found in Barrow, who—echoing arguments advanced by Piccolimini’s critics—
advanced the idea of geometry as a science of causes.48 Both Hobbes and Barrow
showed awareness of the asymmetry between geometry and natural philosophy: un-
like geometrical constructive tools, natural causes are secondary in the order of
knowing.

Barrow showed awareness of a third difficulty that undermines Newton’s posi-
tion: geometrical causal relations lack the uniqueness required by physical causes.
As Newton was to do after him, Barrow equated the tracing mechanisms employed
in the organic generation of curves to causal mechanisms.49 But Barrow also em-
phasized that the same curve can be conceived of as generated by different causal
mechanisms. As Malet made clear, this led Barrow to understand geometry as a
science of possible worlds and to relate this view to a voluntaristic conception of
God, who chooses one of the possibilities envisaged by the geometer as the real
world.50 Barrow’s epistemology of mathematics is an example of the relation be-
tween constructivism and voluntarist theology, analyzed by Funkenstein.51

45 See McGuire and Tamny’s commentary in Newton, Certain Philosophical Questions (1983), p.
219.
46 Hobbes, English Works (1839–1845), 1, p. 3.
47 See, for example, the Preface to the Principia, namely, “[F]or the basic problem of philos-
ophy seems to be to discover the forces of nature from the phenomena of motions and then to
demonstrate the other phenomena from these forces.” Principles, p. 382.
48 “But those who study to detract not from the Certitude and Evidence, but from the Dignity
and Excellence of the Mathematics do bring another Device. For they attempt to prove that
mathematical Ratiocinations are not Scientific, Causal, and Perfect, because the Science of a
Thing signifies to know it by its Cause.. . . it is plain that Mathematical Demonstrations are
eminently Causal, from whence, because they only fetch their Conclusions from Axioms which
exhibit the principal and most universal Affections of all Quantities, and from Definitions which
declare the constitutive Generations and essential Passions of particular Magnitudes.” Barrow,
The Usefulness of Mathematical Learning (1734), pp. 80, 83.
49 “[T]hey [the Mathematicians] assign Generations or Causes easy to be understood and readily
admitted to all; they preserve a most accurate Order, every Proposition immediately following from
what is supposed and proved before, and reject all Things howsoever specious and probable which
cannot be inferred and deduced after the same manner.” Barrow, The Usefulness of Mathematical
Learning (1734), pp. 65–6.
50 Malet, “Isaac Barrow on the Mathematization of Nature” (1997).
51 Funkenstein, Theology and the Scientific Imagination (1986). For a recent appraisal, see Sep-
koski, Nominalism and Constructivism in Seventeenth-Century Mathematical Philosophy (2007).
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The epistemological asymmetry between known causal tracing mechanisms ver-
sus in principle unobservable forces, and between the uniqueness of physical causes
versus in principle multiple tracing mechanisms—highlighted by Barrow and Hobbes,
who held views on geometry and mechanics so similar to Newton—casts a shadow
on Newton’s use of the dual method of analysis and synthesis as a way out of the
Cartesian or Baconian probabilisms (see chapter 2).

As is well known, the Cartesian and Leibnizian physici accused Newton of having
built a mathematical structure devoid of physical content. From their point of view,
Newton’s dual method was exactly what he claimed for it: a mathematical deduction
and, as such, removed from a true physical explanation.52 Huygens’s skepticism was
widely shared on the Continent:

I have great esteem for his [Newton’s] knowledge and subtlety, but, in my opinion,
he has made a poor use of them in most of this work [the Principia], when the
author researches things which have little utility, or when he builds on such an
unlikely principle as that of attraction.53

The phenomena Newton referred to as the starting point of his analytical deduc-
tive process are mathematical abstractions (e.g., planets mathematically modeled
as point masses tracing ellipses according to Kepler’s area law) not observed in the
real world. According to Newton’s physics of gravitation, real planetary motions
are a much more complicated phenomenon, one that did not find a simple place
in the dual scheme of analysis and synthesis. Newton did not endorse a Keple-
rian or Pythagorean faith in a simple mathematical structure underpinning natural
phenomena. In the Principia neither are forces deduced from real phenomenal plan-
etary motions, nor are these motions exactly deduced from simple inverse-square
forces.54 As Cohen and Smith have amply demonstrated, Newton made brilliant use
of the deviations of observed phenomena from the predictions of his mathematical
models. It is exactly his success in systematically controlling and reducing these
deviations by the construction of successive models which approximate the recalci-
trant phenomena better and better that corroborated his theory of gravitation.55

52 On the ontological commitments implied by Newton’s concept of force, see Janiak, “Newton
and the Reality of Force” (2007). Janiak also published Newton as Philosopher (2008), which
unfortunately I did not see printed during the composition of the present work.
53 “J’estime beaucoup son scavoir et sa subtilité, mais il y en a bien de mal emploié à mon avis,
dans une grande partie de cet ouvrage lors que l’autheur recherche des choses peu utiles, ou qu’il
batit sur le principe peu vraisemblable de l’attraction.” Huygens, Oeuvres (1888–1950), 10, p.
354.
54 Newton was quick to realize this fact, as he noted in 1684 in a revised version of “De Motu
Corporum in Gyrum”: “[ut] planetae nec moveantur in Ellipsibus exacte neque bis revolvant in
eadem orbita. Tot sunt orbitae Planeatae cujusque quot revolutiones, ut fit in motu Lunae. . . .
Tot autem motuum causas simul considerare et legibus exactis calculum commodum admittentibus
motus ipsos definire superat ni fallor vim omnem humani ingenij.” MP, 6, p. 78.
55 Cohen, The Newtonian Revolution (1980); Smith, “The Methodology of the Principia” (2002).
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These themes have been debated since the publication of the Principia and are
still the object of intense study by Newtonian scholars. They belong to a level
of discourse that I cannot reach from the standpoint of this book and because of
the limitations of my stature as a scholar. I hope, nonetheless, that this overview
of Newton’s mathematics has provided enough information about his method of
analysis and synthesis to allow appreciation of the language he used and the aims
he had in mind when he addressed himself so passionately to his contemporaries as
a defender of the dual method of mathematicians in natural philosophy.





VI Against Leibniz

When Newton confronted Leibniz in the dispute over priority, he was concerned
with building up forensic and historical documentation, most notably Commercium
Epistolicum (1713) and its anonymous “Account” (1715), whose purpose was to
prove Leibniz’s plagiarism. Many historians have amassed evidence about Newton’s
obsessive approach to the priority dispute, his lack of fairness, and his egotism. It
is also clear that Leibniz had to be opposed for a series of very solid reasons having
to do with philosophical and even political issues. The German, who was employed
by the Hanover family, after the accession of George I to the throne (August 1,
1714) wished to move to London as Royal Historian. The idea of having in England
such a towering intellectual who defended a philosophical view that contradicted
Newton’s voluntarist theology and who promoted the reunification of the Christian
churches was anathema for Newton and his supporters. Part VI disregards all such
intertwined issues and focuses on the priority dispute in order to put Newton’s views
concerning mathematical method and certainty in perspective.

Newton’s aim was not only to prove Leibniz’s plagiarism. He also wished to
highlight the superiority of his method over Leibniz’s calculus. The mathematical
program that Leibniz promoted with so much success was at odds with Newton’s
convictions concerning mathematics. Newton therefore defended positions that have
deep roots in his protracted opposition against Descartes’ canon of analysis and
synthesis and the modern mathematicians. He could scarcely fathom the depth of
the views concerning mathematics defended by his German opponent. For him,
Leibniz’s calculus was only “for finding it out,” a heuristic analytical symbolism
devoid of scientific character. Newton claimed that he himself possessed a synthetic
version of the method of fluxions that was well grounded in geometry and in the
nature of things.

Further, when comparing the two analytical tools, Newton focused on the rules
for squaring curves via approximations that constituted the climax of his inverse
method of fluxions. Leibniz based his claims as a discoverer of the calculus on his
rules for the direct differential calculus. For Leibniz, too, the calculus was a heuristic
tool, but he valued the systematic use of symbolism and its deductive structure
much more than Newton did. The rules of the differential calculus, because of their
simplicity and logical priority, were conceived of by Leibniz as playing a major role
in a broader logico-philosophical program aimed at the construction of a universal
language. By contrast, Newton never attributed great value to the discovery of the
rules of the direct method. These diverging orientations may explain the different
strategies adopted by Newton and Leibniz during the priority dispute. Newton’s



330 Part VI

policy, which was embodied in Commercium Epistolicum (1713), has often been
considered lacunose or even contradictory, but such evaluations are the result of a
misunderstanding of his agenda.

In order to place the controversy with Leibniz in context, it is important to
consider not only the pronouncements that Newton made after its inception but
also the strategies he followed after the 1670s in order to spread knowledge about
his mathematical discoveries. Chapter 15 surveys the main events related to the
controversy, chapter 16 discusses the circulation of Newton’s mathematical manu-
scripts and his mathematical correspondence, and chapter 17 reviews the editorial
and authorial policy he followed when printing his mathematical work with the
purpose of winning the battle against Leibniz.



15 The Quarrel with Leibniz: A Brief Overview

Did Newton and Leibniz discover the same thing? Obviously, in a straightfor-
ward mathematical sense they did: [Leibniz’s] calculus and [Newton’s] fluxions are
not identical, but they are certainly equivalent. . . . Yet one wonders whether
some more subtle element may not remain, concealed, for example, in that word
“equivalent.” I hazard the guess that unless we obliterate the distinction between
“identity” and “equivalence,” then if two sets of propositions are logically equiv-
alent, but not identical, there must be some distinction between them of a more
than trivial symbolic character.

—A. Rupert Hall, 1980

The controversy between Newton and Leibniz has been studied in detail, most
notably by Rupert Hall, to whose book Philosophers at War I am deeply indebted.
In this chapter I give an overview of the main stages of the controversy.

Newton formulated his method of series and fluxions between 1664 and 1666.
He continued working and refining the method, obtaining new results and new ver-
sions until the 1690s. He also let it circulate in manuscript form, since he was
proud of the results he had achieved, but at he first rejected the idea of printing
it. The reasons that lay behind Newton’s reluctance to print the new method are
complex (see chapter 16), but the main cause was likely his awareness that print-
ing a technique that implies the use of infinite series and infinitesimal magnitudes
would have involved him in a polemic similar to the one experienced by Wallis af-
ter the publication of Arithmetica Infinitorum (§7.2). In the 1670s, Newton was
fighting a frustrating battle against the naturalists of the Royal Society in order
to defend the cogency of his new theory of light. Aspects of this polemic were
concerned with the role of mathematics in natural philosophy; for Newton, geo-
metrical philosophers could overcome the uncertainty of the Baconian empiricism
in vogue at the Royal Society (see chapter 2). He therefore had to be very careful
to avoid a public endorsement of mathematical methods whose cogency might be
suspect.

When, in 1672, Leibniz arrived in Paris on a diplomatic mission, he had very
little knowledge of advanced mathematics, even though he had concerned himself
with combinatorics and universal language, showing a marked talent for abstraction
and manipulation of symbols. His encounter with Huygens, the great star of the
French Academy, revealed to him how little he knew about recent mathematical

Epigraph from Hall, Philosophers at War (1980), pp. 257–8.
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research. When the German diplomat visited London (in January–March 1673) the
impression he had made on Huygens was confirmed: the English mathematicians he
met judged him clever but amateurish. He was also suspected of having attributed
some results on series, which were well known to the cognoscenti, to himself. His
was not a great diplomatic success. Back in Paris, Leibniz carved his way toward
the differential and integral calculi. The manuscripts that have survived show an
independent path, traced by a towering mind. The result that Leibniz achieved
(his notation is still in use) was different from, but at the same time equivalent to,
Newton’s.

The confrontation between the two competing mathematical methods has been
dealt with by many historians of mathematics.1 It has often been noted that Leibniz
showed a greater interest in notation than Newton did; Leibniz devoted a great deal
of attention to the basic symbolical rules of the calculus. But considering Leibniz
as just a symbol manipulator would be a great simplification. First, his research on
mathematical symbols was motivated by broad-ranging philosophical agendas. Sec-
ond, as early as 1675 he began pondering the foundations of the calculus, devoting
profound pages to the problem of the continuum.2 The result of this research was
a foundation of quadrature methods in terms of limits that bears some resemblance
to Newton’s method of first and ultimate ratios.3 Leibniz, however, promoted an
approach to mathematical research that acknowledged the autonomy of the calculus
algorithm from metaphysical questions concerning the continuum and the status of
infinitesimals. Therefore, he encouraged his disciples to pursue the development
of the algorithm without worrying too much about its meaning. Philosophy was
his province of inquiry, but it should not interfere with the free development of
mathematical practice.

After moving to Hanover in 1676, Leibniz began printing his mathematical re-
sults: in 1682 his series quadrature for π, and two years later a short paper on the
differential calculus, which became a landmark in the history of mathematics. In
Nova Methodus (1684) one finds a statement of the basic rules for the differentia-
tion of the product, power, quotient, and root. Today one immediately recognizes
Leibniz’s notation and rules as familiar, whereas Newton’s method sounds some-
what arcane. In 1686, Leibniz printed another short seminal paper on the integral
calculus.

In the meantime Leibniz had been corresponding with Oldenburg on a variety
of topics. The secretary of the Royal Society, via Collins, kept him informed about
the advances achieved in England and Scotland on infinite series by Newton and

1 See Hall, Philosophers at War (1980); Bertoloni Meli, Equivalence and Priority (1993).
2 Leibniz, The Labyrinth of the Continuum (2002).
3 Leibniz, De Quadratura Arithmetica (1993); Knobloch, “Leibniz et Son Manuscrit Inédité”
(1989).
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James Gregory. Leibniz understood that Newton was a great mind in infinite series
expansion. He had no idea, however, that the Lucasian Professor had a method
for drawing tangents and squaring curves equivalent to Leibniz’s differential and
integral calculus. Two letters, known as the epistola prior and the epistola posterior,
which Newton addressed to him via Oldenburg in June and October 1676, opened
new vistas.

Leibniz had requested information about Newton’s mathematical discoveries,
and the latter produced two carefully drafted letters giving information about the
method of series and hinting at the method of fluxions. The epistola posterior con-
tained two puzzling anagrams (see chapter 16). In 1676 Leibniz had little to learn
from these letters and from the decoding of the anagrams, since he had already de-
veloped his calculus, but he realized from Newton’s results displayed in the epistolae
that the Englishman had reached an algorithm equivalent in power to his. Indeed,
on his way to Hanover from Paris in October 1676, Leibniz visited London for a
second time and was able to consult and annotate a copy of De Analysi kept at
the Royal Society. In June 1677 he replied to Newton, giving all the details of the
calculus. Realizing that the presumptuous but sloppy German dilettante, as judged
from his visit to London in 1673, could after just four years reach so far must have
had a chilling effect on his British correspondents. The correspondence between
Newton and Leibniz stopped for a while.

When Newton published the Principia he took notice of Leibniz’s discovery in a
Scholium to Lemma 2, Book 2 (§9.4). The Lemma can be viewed as a first reaction
to Leibniz’s challenging position in the arena of European mathematics. Indeed,
Newton here displayed the rules of the direct method in a way that is not to be found
either in De Analysi or in De Methodis, where he had instead illustrated the rules
of the direct algorithm by application to particular examples, namely, the reader
had to infer the rules from the particular example, but the rules were not stated
in their full generality.4 Was then Newton giving his method a more systematic
form in Lemma 2 in order to emulate Leibniz? This might well be the truth. It
should be added that Lemma 2 is an elaboration of “Geometria Curvilinea” (§9.2),
which Newton wrote around 1680 (if Whiteside’s dating is correct), therefore after
receiving Leibniz’s 1677 letter.

In the Scholium to Lemma 2, Newton publicly recognized that Leibniz had
independently achieved a result similar to his. He mentioned his epistola posterior
(1676) and Leibniz’s reply to him (1677). This Scholium was altered in the third
edition of the Principia (1726) in a way that was unfavorable to Leibniz; at that time
the priority dispute had already erupted and caused much damage. In the original
Scholium, Newton, while deciphering the first anagram of the epistola posterior,

4 For instance, from the algorithm illustrated with the example considered in §8.3.2 one can infer
the rule of differentiation for the product.
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wrote,

In correspondence which I carried on ten years ago with the very able geometer G.
W. Leibniz, I indicated that I was in possession of a method of determining maxima
and minima, drawing tangents, and performing similar operations, and that the
method worked for surd as well as rational terms. I concealed this method under
an anagram comprising this sentence “Given an equation involving any number of
fluent quantities, to find the fluxions, and vice versa.” The distinguished gentleman
wrote back that he too had come upon a method of this kind, and he communicated
his method, which hardly differed from mine except in the form of words and
notations aand the concept of generation of quantitiesa. The foundation of both
methods is contained in this lemma.5

Notwithstanding Newton’s declaration that in Britain an equivalent method had
been developed, it is on the Continent that the calculus first began to flourish and
expand. During the last decade of the seventeenth century the European journals,
most notably Acta Eruditorum, began to publish the works by Leibniz and the
brothers Jacob and Johann Bernoulli. Pierre Varignon was soon to join this little
group with a series of papers printed in the Mémoires of the Académie des Sciences.
These works extended and developed the differential and integral calculus. The
continental school was aware of its superiority over the British. As a matter of fact,
British mathematicians like John Craig and David Gregory had to consult Acta
Eruditorum as their source of information on the new calculus, as is evident from
Craig’s Methodus Figurarum (1685) and Gregory’s widely circulated manuscript
entitled Methodus Fluxionum.6

Newton continued to reject proposals for printed publication, which in the 1690s
were coming from Wallis, who complained about the fact that the “notions of flux-

5 Principles, p. 649n. aa added in second edition (1713). In the third edition the Scholium reads
as follows: “In a certain letter written to our fellow Englishman Mr. J. Collins on 10 December
1672, when I had described a method of tangents that I suspected to be the same as Sluse’s
method, which at that time had not yet been made public, I added: ‘This is one particular, or
rather a corollary of a general method, which extends, without any troublesome calculation, not
only to the drawing of tangents to all curve lines, whether geometric or mechanical or having
respect in any way to straight lines or other curves, but also to resolving other more abstruse
kinds of problems concerning curvatures, areas, lengths, centers of gravity of curves, . . . , and is
not restricted (as Hudde’s method of maxima and minima is) only to those equations which are
free from surd quantities. I have interwoven this method with that other by which I find the roots
of equations by reducing them to infinite series.’ So much for the letter. And these last words refer
to the treatise that I had written on this topic in 1671. The foundation of this general method
is contained in the preceding lemma.” Newton, Principles, pp. 649–50. For comments on this
Scholium, see chapter 16.
6 “Isaaci Newtoni Methodus Fluxionum; ubi Calculus Differentialis Leibnitij, et Methodus Tan-
gentium Barrovij explicantur, et exemplis plurimis omnis generis illustrantur. Auctore Davide
Gregorio M. D. Astronomiae Professore Saviliano Oxoniae.” Christ Church (Oxford). Other
copies are in St Andrews University Library (MS QA 33G8/D12) and in the Cambridge Univer-
sity Library, Macclesfield Collection, Add. 9597.9.3 and Add. 9597.9,4.
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ions” were circulating on the Continent “by the name of Leibniz’s calculus differen-
tialis.”7 The Savilian Professor was able to obtain just a few fragments from Newton
and eagerly included them in his chauvinist Algebra (1685) and Opera (1693–1699)
(§16.4). On the other side of the Channel, one of Leibniz’s staunchest defenders,
Johann Bernoulli, expressed symmetric complaints, for instance, in his letter to
Leibniz concerning Wallis’s Opera (1693) he stated that too little credit had been
given by Wallis to the Leibnizian school.8

In January 1697 (N.S.), Bernoulli circulated the brachistochrone problem as a
challenge “to the sharpest mathematicians in the whole world.” Newton’s solution
appeared anonymously in the February issue of Philosophical Transactions.9 New-
ton had probably achieved this solution through a fluxional equation similar to the
(unpublished)10 one he employed for the solid of least resistance. Newton’s paper
contained a geometrical construction of the curve required (a cycloid) but not the
fluxional analysis.11 In 1699, Fatio, in a work in which he dealt with the brachis-
tochrone, Lineae Brevissimi Descensus Investigatio Geometrica, accused Leibniz
of having plagiarized Newton’s method of fluxions.12 This episode was dealt with
diplomatically, and the case was soon silenced. As Hall wrote, Leibniz received from
Wallis the reassurance given to Wallis by the President of the Royal Society, Hans
Sloane, that Fatio had obtained the imprimatur of the Royal Society by means of
trickery.13

In the first decade of the eighteenth century the situation deteriorated. Though
Leibniz published his review of De Quadratura (1704) anonymously in 1705, it only
later provoked Newton’s anger when he read it, at Keill’s prompting, in 1711. This
review could be interpreted as a statement of the inferiority, or even chronolog-
ical posterity, of Newton’s method relative to Leibniz’s calculus.14 Things went

7 Correspondence, 4, p. 100.
8 Leibniz, Leibnizens Mathematische Schriften (1849–63), 3, pp. 301, 312, 316–7.
9 Bernoulli’s “Problema Novum, ad Cujus Solutionem Mathematici Invitantur” had already ap-
peared six months before in Acta Eruditorum for June 1696, p. 269. Newton’s anonymous paper
is in Philosophical Transactions 19 (1697): 384–9.
10 MP, 6, pp. 456–80. First published in the Appendix to Motte’s English translation of the
Principia (1729).
11 Bernoulli began addressing himself “Acutissimis qui toto Orbe florent Mathematicis S[alutem]
P[lurimam] D[icit] Johannes Bernoulli.” Bernoulli’s re-proposal of the challenge (Acta Eruditorum
for December 1696, p. 560) circulated as a broadsheet. Newton’s copy is held at the Royal Society
of London. A transcription can be found in MP, 8, pp. 80–5. Newton’s fluxional analysis of the
brachistochrone problem can be found in the University Library of Cambridge (Add. 3968.41, f.
2r) and was edited by Whiteside in MP, 8, pp. 86–91.
12 On Fatio de Duillier see Mandelbrote, “The Heterodox Career of Nicolas Fatio de Duillier”
(2005).
13 Hall, Philosophers at War (1980), p. 121. Leibniz, Leibnizens Mathematische Schriften (1849–
63), 3(2), pp. 596–621.
14 This anonymous review appeared in the Acta Eruditorum, (January 1705), pp. 30–6.
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to the worse as Leibniz attacked Newton’s gravitation theory, eminently in Essais
de Théodicée of 1710. In the same year, John Keill—it seems without Newton’s
knowledge—stated in the Philosophical Transactions of the Royal Society that Leib-
niz had plagiarized Newton.15

Leibniz was a member of the Royal Society, and so he felt fully entitled to ask for
a formal apology for such “most impertinent accusation.”16 His letter was addressed
to Sloane on February 21/March 4, 1710/11. Keill was requested by the Royal Soci-
ety to vindicate himself, which he did, after consulting Newton; he read his reply on
May 24, 1711.17 This reply made things worse for the relationship between Leibniz
and the Royal Society. Indeed, Keill, instead of apologizing, produced supposed ev-
idence of the fact that “some specimens” of the Newtonian method had been passed
to Leibniz by Newton, Collins, and Oldenburg, giving him “entrance into the dif-
ferential calculus.” Such evidence was in part derived from the papers of Collins,
which William Jones had recently acquired. In 1711, Jones published a small book-
let of Newton’s mathematical tracts and extracts from the correspondence that
reinforced Keill’s reply, which, being published in the Philosophical Transactions,
acquired an offending formal character. On December 18/29, 1711, Leibniz re-
quired that the Royal Society protect him from the “empty and unjust braying”
of such an “upstart” as Keill.18 Consequently, a committee of the Royal Society,
appointed on March 6, 1712, and secretly guided by its president, Isaac Newton,
produced a detailed report. Commercium Epistolicum was completed just 50 days
after the committee’s nomination but distributed free of cost only in February 1713
(N.S.). The committee maintained that Newton was the “first inventor” and that
“[Leibniz’s] Differential Method is one and the same with the Method of Fluxions,
excepting the Name and Mode of Notation.”19 It was also strongly suggested that
Leibniz, after his visits to London in 1673 and 1676, and after receiving letters and
other material from Newton’s friends, and in 1676 from Newton himself, had gained
sufficient information about the method of fluxions to allow him to publish the cal-
culus as his own discovery, after changing the symbols. It is only after the work of
historians such as Fleckenstein, Hofmann, Hall, and Whiteside that we have proof
that this accusation was unjust.20 Newton and Leibniz arrived at equivalent results
independently and following different paths of discovery.

Commercium Epistolicum (1713) can be considered Newton’s last mathematical
work. It is a diplomatic document, formally issued by the Royal Society, based

15 Keill’s “Epistola” was presented in 1708 but printed in 1710.
16 Correspondence, 5, p. 97.
17 Correspondence, 5, pp. 133–41.
18 “vanae et injustae vociferationes,” “cum homine docto, sed novo.” Correspondence, 5, p. 207.
19 Commercium Epistolicum (1713), p. 121.
20 Fleckenstein, Der Prioritätstreit zwischen Leibniz und Newton (1956); Hofmann, Leibniz in
Paris (1974); Hall, Philosophers at War (1980); Whiteside’s commentary in MP, 8.
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on Newton’s recollections and private archive; letters and manuscripts held in the
archives of the Royal Society; excerpts from printed works; and precious manu-
scripts provided by William Jones, who had acquired the Collins papers, a trove of
information on the mathematical activities of the British community in the 1670s.21

Formally it is the work of an independent committee. Materially, as the manuscripts
edited by Whiteside in Volume 8 of Mathematical Papers show, it was a work care-
fully drafted and engineered by Newton, who honed and brought to perfection every
detail of it.22 There is not a word, not a detail, that passed into print without his
supervision.

The controversy between Newton and Leibniz which ensued, and which con-
tinued after Leibniz’s death, involving a number of continental and British mathe-
maticians, theologians, and pamphleteers, is not detailed here. The polemic spanned
mathematical, philosophical, religious, and political issues, and Newton’s arguments
against Leibniz were weapons used on the battlefield of a broad-ranging war. But I
confine my attention here to the aspects of the dispute that reveal Newton’s method-
ological convictions concerning mathematics. I am interested in understanding why
he chose certain mathematical weapons rather than others, why he used them in
such an idiosyncratic way, and why he considered his strategy of attack a convincing
one for the expert mathematician.

21 The archival material in possession of William Jones forms part of the Macclesfield Collection
recently acquired by the University Library of Cambridge.
22 MP, 8, pp. 539–60.
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Our specious algebra is fit enough to find out, but entirely unfit to consign to writing
and commit to posterity.

—David Gregory, 1694

16.1 Newton’s Reluctance to Publish

16.1.1 Proposals for Publication

It is well known that Newton, prior to the printing of his mathematical works in
the eighteenth century, disseminated knowledge about his mathematical discoveries
through correspondence with other mathematicians or via intermediaries such as
John Collins and Henry Oldenburg. Correspondence was one of the main vehicles
of publication for seventeenth-century mathematicians. However, in his correspon-
dence (§16.3) Newton disclosed only a fraction of his mathematical output; many
important results, especially details about proof methods, remained buried in his
manuscripts. This aspect of Newton’s policy of publication has been extensively
researched, especially in studies focused on the priority dispute with Leibniz. Many
scholars have elucidated the details and the background of Newton’s mathemati-
cal letters, most notably the two 1676 epistolae to Leibniz, and of Commercium
Epistolicum (1713), which was supposed to constitute evidence of Leibniz’s plagia-
rism, evidence mainly based upon letters exchanged via Collins in the early days
of Newtonian creativity. Little research has been devoted to another aspect of
Newton’s policy of mathematical publication, that is, the controlled circulation of
mathematical manuscripts that Newton engineered in the 1670s, 1680s, and 1690s
(§16.2).1

Historians of Newton’s mathematics cannot avoid feeling disconcerted when they
realize that most of the mathematical discoveries achieved by Newton in the late
1660s and early 1670s were printed decades later, basically after the inception of the
priority dispute with Leibniz in 1699. These discoveries, especially those concerning

0 Epigraph from David Gregory’s memorandum of a May 1694 visit to Newton. Edinburgh Uni-
versity Library, MS Gregory C42. Translation by Whiteside in MP, 7, p. 196. See also Corre-
spondence, 3, p. 385. “Algebram nostram speciosam esse ad inveniendum aptam satis at literis
posterisque consignandum prorsus ineptam.”
1 Most of the information on this topic comes from Whiteside’s commentary to the eight volumes
of Newton’s mathematical manuscripts.
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the method of series and fluxions, were so innovative that late-seventeenth-century
European mathematics would have been different if Newton had been more prompt
in sending some of his early manuscripts on the method for publication. To take an
example, the priority dispute with Leibniz would have been so avoided.

Newton’s early mathematical papers do not consist only of private cluttered
notes. He wrote systematically and often in expository mood. In general, through-
out his life Newton produced a number of tidy and well-written treatises, which
often were not sent to the press. In the nineteenth century Henry Richards Luard,
who was inspecting the Portsmouth Collection on behalf of Cambridge University,
averred that many of the well-ordered folios had been composed “apparently from
the mere love of writing. His [Newton’s] power of writing a beautiful hand was
evidently a snare to him.”2 Rather than attributing to Newton such schizophrenic
behavior, it is more reasonable to assume that his manuscripts were not necessarily
meant for the press; they were composed in such beautiful hand in order to be
shared, even if in a controlled way, with a closed circle of acolytes. According to my
interpretation, it is wrong to conclude too hastily that Newton contemplated the
project of printing a mathematical work because its surviving manuscript is written
in an impeccable style. After the mid-1670s many of these manuscripts were meant
for circulation but not for the printer.

In October 1666, Newton gathered his discoveries on the calculus of fluxions
in a well-written small treatise (see chapter 1). In September 1668, Mercator’s
Logarithmotechnia was published. Here Newton could find results on infinite series
that he had achieved a few years before. Mercator had gone very close, too close, to
the binomial series. Newton was worried by the challenge posed by Mercator and
composed De Analysi. Barrow, who was aware of some of Newton’s discoveries,
communicated De Analysi to Collins in July 1669.3 This was the move to be taken
in order to promote his young protégé. Collins was a philomath who enthusiastically
gave English mathematicians publicity. He did so by supervising the publication of
mathematical works and by favoring the correspondence between English, Scottish,
and Continental numerati. Newton kept in touch with Collins until the mid-1670s.
The latter was even able to put Newton to work on a revised and expanded edition
of a treatise on algebra by the Dutchman Gerard Kinckhuysen (§4.1).4

In the early 1670s, Collins and Barrow proposed several editorial projects to
Newton, most notably De Analysi could have been published as an appendix to
Barrow’s Lectiones Geometricae (1670).5 Newton showed interest in these editorial

2 Adams, Liveing, Luard, and Stokes, A Catalogue of the Portsmouth Collection (1888), pp.
xix–xx, pp. 25–31. See Iliffe, “A Connected System” (1998).
3 Correspondence, 1, p. 14.
4 The translation from Dutch into Latin was the work of Mercator.
5 Collins to J. Gregory (February 12/22, 1669/70): “I believe Mr Newton . . . will give way to have
it printed with Mr Barrows Lectures.” Correspondence, 1, p. 26. See Whiteside’s commentary
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projects, but he soon changed his mind and his tract appeared only in 1711, when
the priority dispute with Leibniz was at its peak, in a collection of Newtonian
mathematical works edited by William Jones (§17.1.4).

The fate of De Analysi is a typical Newtonian story. The next major trea-
tise, De Methodis (see chapter 8)—perhaps Newton’s masterpiece on series and
fluxions—suffered an even worse destiny, being printed posthumously in an English
translation in 1736.6 Newton composed De Methodis in 1670–1671, in a moment of
mathematical creativity that almost obscures the anni mirabiles. In De Methodis
one can find the most advanced Newtonian techniques of series expansion, an ex-
position of the basic concepts and rules of the fluxional method, the application
of the direct method of fluxion to the calculation of tangents and curvatures, and
two systematic catalogues of curves that bring the squaring of curves to perfection.
Projects of printing De Analysi, De Methodis, or Newton’s comments on Kinck-
huysen’s algebra were repeatedly considered.7 However, De Methodis did not go
to press during Newton’s lifetime, and the notes on Kinckhuysen were later inte-
grated within the body of Arithmetica Universalis (1707). As a frustrated Collins
wrote to James Gregory in June 1675, “Mr Newton intends not to publish any-
thing, as he affirmed to me, but intends to give in his lectures yearly to the pub-
lick library.”8 In this case Newton’s lectures could be transcribed.9 But even
this less ambitious project remained still born, as Collins learned from Newton in
September 1676: “[T]hough about 5 years agoe I wrote a discourse in wch I ex-
plained ye doctrine of infinite aequations, yet I have not hitherto read it but keep it
by me.”10

Much to Collins’s frustration, Newton expressed his reluctance to print his math-
ematics. Newton was quite determined in not allowing his mathematical jewels
to escape from his hands. To the lucky few who had corresponded with him on
mathematical subjects and who had had access to his manuscripts he ordered si-
lence and secrecy. In October 1676 he wrote to Henry Oldenburg, the secretary
of the Royal Society who, after Collins, enjoyed Newton’s overtures on mathe-

in MP, 2, p. 168. Barrow’s geometrical lectures were reprinted in 1674 together with the optical
lectures.
6 Newton, The Method of Fluxions and Infinite Series (1736).
7 See, for instance, Newton to Collins (May 25, 1672): “I may possibly complete the discourse of
resolving Problemes by infinite series of wch I wrote the better half ye last christmas wth intension
that it should accompany my Lectures [Optical Lectures], but it proves larger than I expected &
is not yet finished.” Correspondence, 1, p. 161.
8 Collins to J. Gregory (June 29, 1675) in Hiscock, David Gregory, Isaac Newton and Their Circle
(1937), p. 310.
9 Collins to J. Gregory (December 24, 1670): “Mr Barrow told me the Mathematick Lecturer there
is obliged either to print or put 9 Lectures yearly in Manuscript into the publick Library, whence
Coppies of them might be transcribed.” Correspondence, 1, p. 54.
10 Newton to Collins (September 5, 1676) in Correspondence, 2, p. 95.
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matics, “Pray let none of my mathematical papers be printed wthout my special
licence.”11

16.1.2 Explanations

Several explanations of Newton’s secretive attitude have been given. Some histori-
ans refer to the cost of book printing after the Great Fire in 1666. Some describe
Newton as an odd, sometimes even neurotic character, who isolated himself in an
ivory tower. Some describe the aftermath of the dispute on optics as a cause for New-
ton’s reluctance to publish. Some think that in the 1670s Newton’s interest shifted
from mathematics to other subjects (primarily alchemy, theology, and history); he
would simply have lost a motivation to rework his mathematical manuscripts for
the press. There is a grain of truth in each of these explanations.

It is true that in the 1670s the booksellers in London were in crisis. Whiteside
has observed that the economic failure of Wallis’s Mechanica (1670), Horrocks’s
Opera Posthuma (1673), and Barrow’s Lectiones Opticae & Geometricae (1674) did
not help those who wished to enter the market of mathematical books.12 However,
the printing of mathematical books did not come to a halt. Barrow continued in
the 1670s to publish his lectures as well as his editions of Archimedes, Theodosius,
and Apollonius. To take some further examples, in the 1670s, John Crooke printed
Hobbes’s pamphlets on the circle quadrature, hardly to be defined as best sellers,
and William Godbid printed the two volumes of Kersey’s Algebra (1673–1674).
The latter saw the light thanks to the encouragement of Collins, who would have
certainly loved to be the midwife of one of Newton’s tracts.13

The fact that Newton was acutely sensitive to criticism is well documented. Fur-
ther, the effect of the dispute on the experimentum crucis cannot be overestimated.
His great paper of 1672 was fiercely attacked, and this frustrating experience was to
drive Newton away, maybe with revenge, from publishing his results in other fields
of enquiry.14 Tired after years of polemic, he wrote to Hooke in 1676,

There is nothing wch I desire to avoyde in matters of Philosophy more then con-
tention, nor any kind of contention more then one in print.15

11 Newton to Oldenburg (October 26, 1676) in Correspondence, 2, p. 163.
12 Whiteside documented Collins’s apprehensions in MP, 3, pp. 5–6.
13 On Collins’s role in promoting English algebra, see Pycior, Symbols, Impossible Numbers, and
Geometric Entanglements (1997), pp. 70–102. On Hobbes’s tracts, see Jesseph, Squaring the
Circle (1999).
14 In a letter dated May 25, 1672, concerning the project of printing his lectures on optics, Newton
wrote to Collins: “I have now determined otherwise of them; finding already by that little use I
have made of the Presse, that I shall not enjoy my former serene liberty till I have done with it.”
Correspondence, 1, p. 161.
15 February 5/15, 1675/76, Correspondence, 1, p. 416.
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He also divulged the idea that he was not interested in mathematics any longer. As
a worried Collins explained in 1675 to James Gregory, “[B]oth he and Dr Barrow
[are] beginning to thinke mathcall Speculations to grow at least nice and dry, if not
somewhat barren.” Newton, he added, was “intent upon Chimicall Studies.”16

But Newton, notwithstanding his reluctance to go to press and his declara-
tions of disinterest toward mathematics and natural philosophy, was still active as
a mathematician. The fourth, fifth, sixth, and seventh volumes of Mathematical
Papers edited by Whiteside reveal that Newton worked on mathematics until 1696
without interruptions. In the 1670s and early 1680s he produced his lectures on
algebra (printed as Arithmetica Universalis in 1707). He also devoted efforts to
the classification of cubics (he further improved this topic in 1695, producing the
treatise printed in 1704 as Enumeratio Linearum Tertii Ordinis); to the differential
method (Methodus Differentialis, printed in Jones’s collection of Newton’s math-
ematical tracts); and to geometry. In the early 1690s he concerned himself with
squaring techniques, writing several versions of what became Tractatus de Qua-
dratura Curvarum, printed as an appendix to the Opticks in 1704.17 However, it
was only at the beginning of the eighteenth century that Newton chose to print his
mathematics.

16.1.3 A Method “Unfit to Commit to Posterity”

To the preceding explanations of Newton’s rejection of print publication of his new
analysis of series and fluxions, I would like to add another one, which, in my opinion,
has been overlooked. The interpretation I propose is that in the 1670s, indeed as
early as Optical Lectures (1670), Newton showed a marked concern about the role
that mathematics could play in a broad-ranging and ambitious program in natural
philosophy. He was convinced that geometry could inject certainty into natural
philosophy, making it possible to surpass the probabilism inherent in both the Car-
tesian hypothetic-deductive method and in Baconian inductivism (see chapter 2).
The new analysis that Newton practiced so well, and that aroused the interest of
Collins, was not “worthy of public utterance,” Newton wrote in 1671.18 In 1694,
Gregory noted that according to Newton, “[O]ur specious algebra is fit enough to
find out, but entirely unfit to consign to writing and commit to posterity.”19 New-

16 Collins to J. Gregory (October 19, 1675) in Correspondence, 1, p. 356.
17 For bibliographical details, see A Brief Chronology of Newton’s Mathematical Work, following
chapter 18.
18 MP, 3, p. 279.
19 David Gregory’s memorandum of a May 1694 visit to Newton. “Algebram nostram speciosam
esse ad inveniendum aptam satis at literis posterisque consignandum prorsus ineptam.” Edinburgh
University Library, MS Gregory C42. Translation by Whiteside in MP, 7, p. 196. See also
Correspondence, 3, p. 385.
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ton therefore began searching for a synthetic, “more perspicuous and resplendent,”
method (1671) (§9.1).20

The experimentum crucis polemic that began in 1672 displeased Newton, since
he was drawn into litigation in a field that he had hoped left no room for controversy.
His results, based on mathematical deduction from phenomena, were, in his opinion,
indisputable. Newton was well aware that the publication of his method of series and
fluxions would have involved him in an even more embarrassing polemic. He knew
what kind of criticisms Wallis had to face against Fermat and Hobbes (§8.2). These
criticisms would have been lethal for Newton for two very solid reasons. First,
he would have had to defend his methods by claiming that they were analytical
methods of discovery, as such to be valued not in function of their rigor but in
function of their heuristic power. This move, which was Wallis’s reply, was not
available to Newton, since he defined himself as a philosopher who could achieve
certainty by certain geometrical means. Second, in printing his analytical method
Newton would have had to align himself with a genre of mathematical literature
practiced by moderns who often referred to Descartes as their master.

Newton in the 1670s developed a marked anti-Cartesian position (see part II).
In his notes on Kinckhuysen, and in his works on Pappus and on the restoration of
Euclid’s Porisms, he distanced himself from the Cartesian canon trying to devise
alternative analysis and synthesis. He very often contrasted the ancients to the
moderns and sided passionately with the first. The ancient method, in his opinion,
was “more elegant by far than the Cartesian one,” which he deemed so tedious as to
provoke nausea. Nothing written in a style different from the ancient one was worthy
to be read (late 1670s).21 One could use equations in the heuristic analytical stage,
but when demonstrating a proposition equations had to be neglected. The ancients,
Newton repeated, “never introduced arithmetical terms into geometry; while recent
people, by confusing both, have lost the simplicity in which all elegance of geometry
consist” (late 1670s).22

A model of geometrical style landed on Newton’s table in 1673, when he received
a complimentary copy of Huygens’s Horologium Oscillatorium. Huygens showed
how cutting-edge natural philosophy could be carried on in synthetic geometrical
style. The Horologium made a deep impression on Newton, who never ceased to
praise Huygens as the restorer of ancient mathematical tradition. Henry Pemberton,
editor of the third edition of the Principia (1726), and a privileged witness of
Newton’s last years, wrote in View of Sir Isaac Newton’s Philosophy (1728),

I have often heard him censure the handling of geometrical subjects by algebraic
calculations; . . . he frequently praised Slusius, Barrow and Huygens for not being

20 MP, 3, pp. 283, 331.
21 MP, 4, p. 277.
22 MP, 5, p. 429.
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influenced by the false taste, which then began to prevail. He used to commend
the laudable attempt of Hugo de Omerique to restore the ancient analysis, and
very much esteemed Apollonius’ book De Sectione Rationis for giving us a clearer
notion of that analysis that we had before . . . Sir Isaac Newton has several times
particularly recommended to me Huygens’ style and manner. He thought him
the most elegant of any mathematical writer of modern times, and the most just
imitator of the ancients. Of their taste and form of demonstration Sir Isaac always
professed himself a great admirer: I have heard him even censure himself for not
following them yet more closely than he did; and speak with regret of his mistake
at the beginning of his mathematical studies, in applying himself to the works of
Des Cartes and other algebraic writers before he had considered the elements of
Euclide with that attention, which so excellent a writer deserves.23

In these circumstances Newton shied away from printed publication of his new
analysis. The synthetic version of his method of fluxions (§9.2), which he elaborated
in “Geometria Curvilinea” (ca. 1680), was eventually printed in the Principia,
but Newton resisted the project of printing his new analysis. Very much as the
ancients had done, according to Newton’s historical reconstruction, he concealed
the analysis. Somewhat parenthetically, I would like to surmise that Newton’s
mathematical classicism and criticism of Cartesian mathematical method might be
in resonance with his agendas in cosmology, chronology, and theology, where similar
concerns about Cartesianism and the ancients emerge.

Finally, I would like once more to underline two points:

1. Newton’s new analysis took the form of a series of algorithmic rules that could
be displayed by application to particular examples. This is particularly evi-
dent in Newton’s handling of series, for instance, the technique of resolution
of affected equations (§7.5) and quadratures (§8.4). Rather than a theory that
could be presented in a book, the new analysis was a formidable panoply of
techniques whose handling could be best explained and communicated orally
or via correspondence. These Newtonian techniques, when translated into a
more algebraic and general language that was developed later in the eighteenth
century (e.g., by using symbols for functions, summations, etc.), acquire a gen-
erality and recursive character that is lacking in Newton’s original presentation.
The importance of personal contact in trading skills in the new analysis cannot
be overestimated, since the printed page was not a totally reliable support for
communicating the new analysis techniques. Indeed, as Newton learned from
the annoying dispute on the experimentum crucis, the printed page could also
fail to reliably convey the craft of experimental techniques. Newton admitted
to his rooms a number of mathematicians (Craig, Halley, Gregory, Fatio) who
could be instructed by the master. Similarly, the Leibnizian calculus spread on

23 Pemberton, View of Sir Isaac Newton’s Philosophy (1728): Preface.
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the Continent via extensive correspondence among its practitioners, or via such
means as privatissima imparted by Johann Bernoulli to L’Hospital in Paris, or
to young Euler in Basel. The craft had still to be learned in a bottega del maestro
rather than by reading a textbook. This condition changed rapidly as the pro-
duction of textbooks and journals flourished at the beginning of the eighteenth
century.

2. For Newton, as for many of his contemporaries, it was geometry, not algebra,
that delivered generality. We are accustomed, especially after the development
of algebra in the nineteenth century, to consider geometry a particular model of
a more general algebraic theory. This conception is not applicable to the late
seventeenth century. For mathematicians such as Huygens, Barrow, and New-
ton, geometry provided a much more general language than algebra. Algebra
could cover only a sector of the objects treated by these mathematicians, a lim-
itation that Descartes internalized in his Géométrie by rejecting treatment of
mechanical curves (§3.2.3). This is particularly evident for trigonometric mag-
nitudes. For instance, in Newton’s time there was no notation for hyperbolic
functions, which Newton represented geometrically by referring to conic areas,
for instance, the construction of Corollary 3, Proposition 41, Book 1, of the Prin-
cipia (§12.2.2).24 He did not have the notation for many transcendental func-
tions. The preference given to printing geometry rather than the new algebraic
analysis is not so surprising if one takes into consideration the limited range of ap-
plication of algebra compared to geometry available to late-seventeenth-century
mathematicians.

16.2 Manuscript Circulation

Newton had means other than printing to let the outside world know that he was
a great mathematician and to acquaint the cognoscenti with the new analysis that
flourished in his mathematical manuscripts. In the period preceding the printing of
the Principia, most of Newton’s mathematical discoveries were rendered available
to the mathematical community through rather oblique ways. Newton engineered
a complex publication strategy. He allowed some of his mathematical discoveries to
be divulged through letters (§16.3) and manuscript circulation. Manuscripts were
shown to a selected group of experts in the field (such as John Collins, John Craig,
Edmond Halley, John Flamsteed, David Gregory, and Nicolas Fatio de Duillier),
who visited Newton in Cambridge. They were deposited at the Royal Society in
London or as Lucasian Lectures in the University Library at Cambridge, and they
were even copied (sometimes in mutilated form).

24 One of the first occurrences of the notation for hyperbolic functions is in Riccati and Saladini,
Institutiones Analyticae (1765–1767), 2, p. 152.
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As mentioned (§16.1.3), Newton’s publication strategy was related to the values
that he endorsed and that he wished to defend. From the 1670s, Newton realized
that the standards of validation that he aimed at were often above his mathematical
practice, a practice he was led to downgrade to the level of a heuristic technique
not worthy of printed publication.

Recall that De Analysi was sent by Barrow to Collins in July 1669.25 Collins
not only informed a number of mathematicians of Newton’s researches in the new
analysis,26 but also made at least two transcriptions. Collins returned the original to
Barrow but kept a copy himself. In 1677 he made a secondary transcript, which was
sent to Wallis and, after Wallis’s death, passed into the hands of David Gregory.27

Leibniz was allowed to read and transcribe parts of the first transcript during his
visit to London in 1676.

De Methodis enjoyed a similar publication story. John Colson’s English trans-
lation of it, which appeared in 1736, is based on a transcript made by William
Jones about 1710.28 Whiteside mentioned a secondary transcript, now lost, from
Jones’s copy made by James Wilson about 1720. Samuel Horsley used both of these
transcripts in his edition of Newton’s Opera.29 In early 1685 the Scottish mathe-
matician John Craig was allowed to inspect several manuscripts by Newton and
probably made copies of parts of De Methodis,30 and Thomas Pellet received an
incomplete copy from Jones.31 In volume 3 of Mathematical Papers, Whiteside re-
produced a “Tractatus de Seriebus Infinitis et Convergentibus” in David Gregory’s
hand whose first folios are an abridged transcript of the opening sections of De
Methodis.32 The last two folios are Gregory’s jottings (in English) taken from New-
ton’s notes on Kinckhuysen and from the two epistolae to Leibniz. A letter from
Craig to Colin Campbell, dated January 30, 1688, on a “general method for Finding
the Curvature . . . copied out of Mr Newtons manuscript” seems to indicate that
Craig must have seen either Gregory’s transcript or a copy of it, since in it he deals

25 Barrow to Collins (July 31, 1669) in Correspondence, 1, p. 14.
26 Among others, William Brouncker, James Gregory, Rene-François de Sluse, and Giovanni
Alfonso Borelli. See the evidence discussed in MP, 2, p. 168.
27 William Jones found Collins’s copy in the papers of Collins that he had acquired, and used this
copy and the original that Newton lent him in 1709 in order to produce his edition. See Newton
Analysis per Quantitatum (1711), Praefatio [n.p.]. Newton’s original is now, bound with Jones’s
first transcript, at the Royal Society Library (MS LXXXI, No. 2), and the secondary transcript
is in St. Andrews University Library (MS QA 33 G8 D3, ff. 1–10). See Whiteside’s commentary
in MP, 2, pp. 206–7, note 2.
28 Macclesfield Collection (Cambridge University Library), Add. 9597.9.2. A transcript in Jones’s
hand of Colson’s commentary is in the Macclesfield Collection as Add. 9597.9.21.
29 Newton, Opera (1779–85), 1, p. 390. See MP, 3, p. 32.
30 MP, 7, pp. 3–4.
31 Robins, Mathematical Tracts (1761), 2, pp. 357–8, and MP, 3, p. 11n.
32 Edinburgh University Library, Gregory MSS A56, in MP, 3, pp. 354–72.
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with the problem of curvature in terms that show strong similarities with Gregory’s
transcript rather than with Newton’s 1671 tract.33

As far as the scribal dissemination of Newton’s fluxional writings one should note
here that there is evidence that the October 1666 Tract on Fluxions, one of the ear-
liest systematizations of fluxions achieved by Newton, enjoyed a limited circulation.
Copies can be found both in the Portsmouth and in the Macclesfield collection.
These copies must be late ones, certainly post 1690, since the dot notation for
velocities is used.34

There is a fascinating and complex story about the circulation of manuscripts re-
lated to the Principia. As I have shown in Reading the Principia (1999), knowledge
about the quadratures necessary to complete the gaps of several demonstrations
(especially in the Scholium to Proposition 35/34, Book 2, on the solid of least re-
sistance and in Proposition 41, Book 1, on central force motion) was shared by
Newton’s disciples (see figure 12.3).35

From this regrettably incomplete information about the dissemination of New-
ton’s mathematical manuscripts one understands that Newton did not close himself
in an ivory tower. He had a publication strategy for his mathematical discoveries
that can be best defined as scribal publication. As Love has shown, the practice of
scribal publication flourished in Restoration England. Love described the practice
of publishing texts in handwritten copies within a culture that had developed so-

33 Craig to Campbell (January 30, 1688) in Correspondence, 3, pp. 8–9. See Whiteside’s discussion
in MP, 3, p. 354n.
34 According to Whiteside, “[T]here exists, in private possession, an early contemporary copy
in the hand of Newton’s room-mate and amanuensis, Wickins, which was possibly destined for
John Collins though we have no evidence to show that it ever passed out of Newton’s possession
before his death. With this copy are some extra sheets of notes in the hand of William Jones [and
especially on Prob. 9]: we may conjecture that these are first drafts for the rearranged copy in his
hand in the University Library, Cambridge [Add. 3960.1, ff. 1–50]. An eighteenth-century entry,
in the hand of James Wilson, affirms correctly of the latter that ‘The Transcriber has here put ẋ,
ẏ and ż for p, q and r of the Original . . . Here seems to be some transpositions and interpolations,
as Mr Jones was wont to make in those papers of Sr Isaac Newton, which he distributed to his
scholars, that none might make a perfect book out of them’.” MP, 1, p. 400. Wilson prints
extracts of Wickins’s copy then in the hands of Newton’s executor Pellet. Robins, Mathematical
Tracts (1761), 2, pp. 351–6. Another copy (in Jones’s hand?) of the October 1666 Tract on
Fluxions is in the Macclesfield Collection, Add. 9597.9.1. In this copy, too, the post-1690 dotted
notation is changed in place of Newton’s early notation.
35 Newton’s fluxional solution of the problem of the solid of least resistance was circulated. In
1694, David Gregory got the solution from Newton: John Keill and William Jones transcribed
it. Newton’s fluxional solution was published by Fatio de Duillier in Lineae Brevissimi Descensus
Investigatio Geometrica (1699); by Charles Hayes in A Treatise of Fluxions (1704), on pp. 146–
50; and in 1729 in an Appendix to Motte’s English translation of the Principia, on pp. 657–9.
Newton’s manuscripts relating to the solid of least resistance were found in the Portsmouth papers
and published by Adams, Liveing, Luard, and Stokes in A Catalogue of the Portsmouth Collection
(1888). See also Correspondence, 3, pp. 323, 375–7, 380–2.
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phisticated means of generating, transmitting, and even selling such copies. Love
studied the ways in which manuscripts of political, literary, and musical content
circulated in Restoration England. The invention of printing did not, of course,
obliterate the practice of manuscript circulation. However, after the invention of
printing, scribal publication was pursued with specific purpose. As Love remarked,

[T]here is a significant difference between the kinds of community formed by the
exchange of manuscripts and those formed around identification with a text. The
most important is that the printed text, being available as an article of commerce,
had no easy way of excluding readers. Interesting in the choice of scribal publication
. . . was the idea that the power to be gained from the text was dependent upon
possession of it being denied to others. . . . Print publication implied the opposite
view of a community being formed by the public sharing of knowledge.36

Newton tried to keep control over the dissemination of his mathematical manu-
scripts. One learns something about the extent and modality of such practice from
James Wilson, who wrote to Newton on December 15, 1720,

I saw the other day in the hands of a certain person, several Mathematical Papers,
which, he told me, were transcribed from your Manuscripts. They chiefly related
to the Doctrine of Series and Fluxions, and seemed to be taken out of the Treatises
you wrote on those subjects in the years 1666 and 1671. . . . These papers, I
observed, had been very incorrectly copied, so that I endeavoured all I could, to
dissuade the Possessour of them from getting them printed, of which nevertheless
he seemed very fond. . . . I have since met with another Person, who told me, he
had likewise a Copy of your Manuscripts. But he would not let me see them, or
inform me how he came by them. I imagine, when you sent any of your Friends
your papers, the person they got to transcribe them, took a double copy, which
is a frequent practice, in order to make profit by it. So that they are in different
hands.37

By the 1720s, when Newton was a great celebrity, the circulation of unauthorized
copies of his mathematical manuscripts was, it seems, not uncommon. Newton’s
manuscripts had been circulating for too long and they had fallen into too many
hands. It is not known, however, how reliable is the recollection according to which
Halley and Raphson, when they examined the original manuscript of De Methodis

36 Love, Scribal Publication (1993), pp. 183–4. Another important study on the production and
circulation of manuscripts in seventeenth-century England is Beal, In Praise of Scribes (1998).
While Beal concentrates more on the first half of the century, what he has to say about the status
of scribes, and the nature of scriptoria, can be—with some caution—extended to the Restoration
and perhaps even to the early eighteenth century. Most notably Beal converges with Love in
characterizing the audience, or coterie, created by manuscript circulation as consciously seeking
selectiveness and an awareness to be above the common level of the market place.
37 Keynes MS 143.1 (King’s College, Cambridge). James Wilson to Newton (December 15, 1720)
in Correspondence, 7, pp. 107, 109.
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in Cambridge in 1691, found it “very much worn by having been lent out.”38 The
taking of copies and double copies was a frequent practice. Love pointed out that
booksellers often employed professional copyists in order to produce transcripts for
sale. From Collins’s days of pure enthusiasm for English mathematics the economic
interest in having access to Newton’s mathematical manuscripts had superseded
the scientific curiosity. The most devout Newtonians began to adopt the practice of
mutilating these copies in order to avoid pirated printing. James Wilson remarked
that Jones, the man who possessed a large corpus of Newtonian manuscripts, “was
wont to curtail or otherwise disguise the [Newton’s] papers, he communicated to
his scholars, that none might make out a compleat book.”39 In this case, Jones,
a mathematics teacher, made use of the Newtonian materials he held in order to
acquire prestige and students, but did not want to dissipate his treasure by letting
the manuscripts reach the hands of other parties in their entirety.

It is difficult to establish who had access to, and what was known about, New-
ton’s mathematical manuscripts. There was an inner circle of acolytes who could
have had access to Newton’s papers by visiting him in Cambridge or correspond-
ing with him. This was the case with Collins, who received just some hints about
Newton’s fluxions but was well aware of Newton’s researches on series, algebra,
and the organic description of curves.40 In 1674, John Flamsteed was given a set
of notes on algebra by Newton.41 The lectures on algebra were deposited in the
University Library in 1684, and in principle they became public. The Scots Craig
and David Gregory were able to transcribe some of the mathematical manuscripts
after their visits to Cambridge in 1685 and 1694, respectively. Gregory summarized
what he saw in Cambridge in a treatise on fluxions now in Christ Church (Ox-
ford).42 Gregory’s short treatise itself circulated; a copy (in the hand of Colson?)
and a scribal copy are preserved in the Macclesfield Collection.43 Halley, Raphson,
and Fatio were certainly allowed by Newton to read his mathematical manuscripts.

38 This statement can be found in Raphson, The History of Fluxions (1715), pp. 2–3, and therefore
cannot be accounted as completely reliable. Raphson was defending Newton in the priority dispute,
and any proof of circulation of knowledge about fluxions was instrumental to Newton’s cause. See
MP, 3, p. 32n.
39 Robins, Mathematical Tracts, 2, pp. 357–8. See MP, 3, p. 11n.
40 See, for instance, Newton to Collins (August 20, 1672) in Correspondence, 1, pp. 229–32.
41 This manuscript was first edited by Edleston, who reproduced an original paper in Newton’s
hand pasted at the beginning of vol. 42 of Flamsteed’s manuscripts at Greenwich. “At the bottom
are the words ‘Mr. Newton’s paper given at one of his lectures, Midsummer, 1674.’ Flamsteed was
at Cambridge from the end of May to July 13, and visited Newton.” J. Edleston, Correspondence
of Sir Isaac Newton and Professor Cotes (1850), pp. 252–3. See Whiteside’s edition in MP, 5,
pp. 32–3.
42 “Isaaci Newtoni Methodus Fluxionum Ubi Calculus Differentialis Leibnitii, et Methodus Tan-
gentium Barowij Explicantur, et Exemplis Quamplurimis Omnis Generis Illustrantur.”
43 Macclesfield Collection (Cambridge University Library), Add. 9597.9.3 and Add. 9597.9.4.
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For instance, in 1695, Halley was given De Quadratura for transcription.44 Another
manuscript that was circulated is the short treatise on the construction of equa-
tions45 that Newton wrote in the early 1670s. It was sent on August 20, 1672, to
Collins, who described its content to Wallis46 and made a copy that passed into the
hands of William Jones, who probably contemplated the possibility of publishing
it.47 In the late 1690s the manuscript of Enumeratio Linearum Tertii Ordinis was
shown to David Gregory.48 There was also a larger circle of philomaths, whose
composition is difficult to determine, who were informed, sometimes in mutilated
form, by the acolytes.

16.3 Correspondence with Collins and Leibniz

16.3.1 Collins

In Newton’s time, notwithstanding the establishment of scientific journals in the
second half of the seventeenth century, correspondence was still an important vehi-
cle for exchanging information on cutting-edge research. One of the most active in
promoting correspondence between mathematicians was John Collins, a mathemat-
ical entrepreneur who from 1667 was employed as librarian for the Royal Society.
A clerk who worked most of his life as a government accountant, but who had pre-
vious experience with bookbinding and navigation, Collins established himself as
a mathematics teacher, prolific book editor, and liaison between Scottish, English,
and continental geometers. It is to him that Barrow turned in order to promote his
young protégé, sending a copy of De Analysi (§1.5).

Newton engaged in a rich mathematical correspondence with Collins during the
period 1669–1674. Collins transcribed Newton’s letters and manuscripts, circu-
lated knowledge about them, and made Newton aware of advances achieved by
other mathematicians.49 After his death in 1683 his papers and library passed
into William Jones’s hands; it is to this archive that Newton turned when, during
the priority dispute with Leibniz, he looked for documentary evidence of his early
advances in mathematics.

44 Halley to Newton (September 7, 1695): “I have not yett returned your Quadratures of Curves,
having not yet transcribed them, but no one has seen them, nor shall, but by your directions; and
in a few days I will send you them.” Correspondence, 4, p. 165.
45 Add.3963.9, ff. 70r–106v, in MP, 2, pp. 450–517.
46 Newton to Collins (August 20, 1672) in Correspondence, 1, p. 231, and Collins to Wallis
(?1677/8) in Correspondence, 2, p. 243.
47 See Whiteside’s commentary in MP, 2, pp. 450–1.
48 David Gregory noted in July (?) 1698: “sunt 16 genera Curvarum secundi generis, et 76 Curvae
Newtonus conscripsit tractatum de illis quem mihi impertietur ut eum edam.” Correspondence,
4, p. 277.
49 Pycior, Symbols, Impossible Numbers, and Geometric Entanglements (1997), pp. 70–87.
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Collins was mainly interested in algebra. He busied himself with the project of
producing an updated textbook on algebra available to interested readers in Britain.
He is the midwife of both Pell’s edition of Rahn’s algebra and Kersey’s Elements.50

With Newton he embarked on an ambitious editorial project, the edition of Mer-
cator’s Latin translation of Kinckhuysen’s Dutch textbook on algebra. Newton’s
notes on Kinckhuysen were the first steps toward a research program that eventu-
ally led to Arithmetica Universalis (§4.1). Consequently, Newton’s correspondence
with Collins relates mostly to algebraic matters.

Of course, series entered prominently into the mathematical discussion between
Newton and Collins, since series were conceived of as a topic belonging to algebra.
Collins knew everything about Newton’s quadrature methods via infinite series as
developed in De Analysi, and he discussed Newton’s results with Brouncker at the
Royal Society and with James Gregory. Further, Collins informed Newton about
Gregory’s exceptional results in this field. It is thanks to this exchange that Newton
learned that all the series for trigonometric magnitudes that he had displayed in
De Analysi (§7.4) were accessible to the Scot as well. Newton’s infinite series
were therefore in the public domain by the mid-1670s via scribal circulation and
correspondence.

But Newton communicated to Collins more than algebra. There are letters
concerning the organic description of conics, the calculation of logarithms, and—
exceptionally—the method of fluxions. In the mid-1670s, Collins thus became the
person who was best informed about Newton’s mathematical work. A report he
compiled for Wallis in 1677/1678 showed that he was well aware of the notes on
Kinckhuysen and of the work on series (namely, De Analysi) as well as of some of
Newton’s work on geometry, algebra, and optics.51

16.3.2 The Tangent-Letter to Collins, December 10, 1672

What did Collins know about the method of fluxions, direct (§8.3) and inverse
(§8.4), as developed by Newton in De Methodis? It seems very little. Whenever
Collins was asked to report about Newton’s discoveries he referred to algebra, to the
organic description of conics, and to the quadrature techniques via series expansion
of De Analysi (§7.4).

50 Rahn, An Introduction to Algebra (1668); Kersey, The Elements of That Mathematical Art
Commonly Called Algebra (1673–4).
51 In a letter, written presumably in 1677/78, he informed Wallis about the extent of Newton’s
work. Wallis was working at his English Algebra, which eventually appeared in 1685, a work
providing a historical presentation of the development of algebra. Collins listed the following: (i)
an introductory part from Kinckhuysen, (ii) a discourse about bringing problems to an equation,
(iii) a treatise about the construction of problems and equations, (iv) a discourse concerning
several kinds of infinite series, (v) a treatise de locis, (vi) “the same applyed to Dioptriques.”
Correspondence, 2, pp. 242–3.
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In a famous letter dated December 10, 1672 (the tangent-letter), Newton hinted
at his method for drawing tangents, but he illustrated it with a simple cubic curve.52

This letter originated from the fact that René-François de Sluse, after receiving a
copy of Barrow’s Lectiones Geometricae, had replied that he had a tangent method,
too, and had presented it to Philosophical Transactions.53 Newton replied to Collins
that he was “heartily glad” to find that the “forreign Mathematicians . . . are
falln into the same method of drawing Tangents wth me.” He gave an example
(x3 − 2x2y + bx2 − b2x + by2 − y3 = 0) fully within Sluse’s power but added that
his “Generall Method,” contrary to Hudde’s and Sluse’s (which he defined as corol-
laries of his) extended not only to geometrical lines but also to equations not “free
from surd quantities” (§8.3.3) and even to mechanical curves (§8.3.4). His method,
Newton continued, could be used for the calculation of “crookedness, areas, lengths,
centers of gravity of curves.”54 Collins transcribed this letter and sent it to James
Gregory.55 Newton gave no details, however, about his general, direct method of
fluxions. The premises for a controversy between Newton and Sluse were silenced,
it seems, at a council of the Royal Society. Newton’s apologetic concession was
transmitted to Sluse via Oldenburg.56

16.3.3 The Quadrature-Letter to Collins, November 8, 1676

The same secretive attitude can be discerned with regard to the inverse method.
When, in his letter dated August 17/27, 1676, after receiving the epistola prior,
Leibniz informed Newton about his transmutation method for squaring curves ap-
plied to the circle quadrature,57 Newton wrote to Collins (on November 8, 1676)
that he had a much more powerful technique:

I say there is no such curve line but I can in less then half a quarter of an hower [sic]
tell whether it may be squared or what are ye simplest figures it may be compared
wth, be those figures Conic sections or others.58

The attentive reader of Newton’s mathematical papers will not miss what Newton
was hiding here. “Curves that may be squared” and “curves that may be compared

52 Correspondence, 1, pp. 247–52 (on p. 247).
53 On Barrow’s tangent method, see §8.1.4. For Sluse, see Philosophical Transactions, 7 (1672–3),
pp. 5143–7, and proof in 8 (1673), p. 609.
54 Correspondence, 1, pp. 247–8.
55 Collins to James Gregory (February 20, 1673) in J. Gregory, Tercentenary Memorial Volume
(1939), p. 258. There is also a transcript in tremulous imitation of Newton’s hand: see Corre-
spondence, 2, p. 14.
56 Birch, History of the Royal Society (1756–1757), 3, p. 92. Newton to Oldenburg (June 23, 1973)
in Correspondence, 1, p. 294. Hofmann, Leibniz in Paris (1974), pp. 263–4. See also Collins to
Newton (June 18, 1673) in Correspondence, 1, pp. 288–9.
57 Correspondence, 2, pp. 57–64
58 Correspondence, 2, p. 179.
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with conic sections” are technical expressions denoting the two quadrature tech-
niques (Method 2 and Method 3) that allowed Newton to write the two catalogues
of De Methodis (§8.4.3, §8.4.4).59 But after this tantalizing hint at his method of
quadratures via the two catalogues, which were eventually printed at the end of De
Quadratura, Newton added,

This may seem a bold assertion . . . but it’s plain to me by ye fountain I draw it
from, though I will not undertake to prove it to others.60

This letter to Collins (the quadrature-letter), composed in the context of the 1676
correspondence with Leibniz, is revealing of Newton’s policy of publication. The
fountain he wanted to hide comprised the two methods (Method 2 and Method 3) for
squaring curves based on (in Leibnizian terms) anti-differentiation (first catalogue)
and integration by variable substitution (second catalogue). This was the fountain
that Newton, at this juncture of his mathematical development, kept secret. By
contrast, integration via power series (basically what one finds in De Analysi) was
made accessible in scribal form.61

16.3.4 The Epistola Prior for Leibniz, June 13, 1676

Newton’s policy of publication is evident also in what he chose to communicate and
hide in his 1676 epistolae to Leibniz. In these letters he was quite open about his
quadrature methods via infinite series (De Analysi) but much more secretive about
his “short ways” to square curves (De Methodis, Method 2 and Method 3).

59 For instance, in De Methodis, Newton wrote, “Hitherto we have exposed the quadrature of
curves defined by less simple equations by the technique of reducing them to equations consisting
of infinitely many simple terms. However, curves of this kind may sometimes be squared by means
of finite equations also, or at least compared with other curves (such as conics) whose area may,
after a fashion, be accepted as known. For this reason I have now decided to add the two following
catalogues of theorems.” MP, 3, p. 237. Here Newton first referred to a method for squaring
curves via reduction to equations consisting of an infinite number of terms (infinite series) and
then presented two other methods. The former refers to curves that can be squared in finite terms,
the latter to curves that can be compared to curves whose area is assumed to be known, as conic
sections.
60 Correspondence, 2, p. 180.
61 Both the tangent-letter (December 10, 1672) and the quadrature-letter (November 8, 1676)
to Collins played a significant role in the controversy with Leibniz. Most notably, the 1672
tangent-letter was reproduced in Commercium Epistolicum (1713), pp. 29–30; an excerpt of
the quadrature-letter was printed in Newton, Analysis per Quantitatum (1711), p. 38. The
tangent-letter is important because Leibniz was able to consult it during his second visit to Lon-
don in October 1676. It is clear, however, that Leibniz was already in possession of the differential
method and that Newton’s tangent-letter does not contain the direct algorithm of fluxions. New-
ton claimed that the quadrature-letter was proof that he had composed part of De Quadratura
before 1676. See MP, 3, p. 19n.
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Table 16.1 A Scheme of the epistola prior

Incipit 20

Binomial theorem stated 21
Nine examples of binomial expansion 21–23

Extraction of affected roots in numerical equations (Newton-Raphson) 23
Extraction of affected roots in literal equations 24
“Quadratures and mechanical lines can be expressed via infinite series” 24

Quadratures, as in De Analysi, explained by nine examples 25–29
Example 1: arcsin series 25
Example 2: sine and versed sine series 25
Example 3: angular section 25
Example 4: area of elliptic sector 25–26
Example 5: arc length of ellipse 26–27
Example 6: inverse of ellipse’s arc 27
Example 7: area of hyperbola (exponential series) 27–28
Example 8: arc length and area of quadratrix 28
Example 9: volume of ellipsoid of revolution 28–29

“The limits of analysis are enlarged by infinite equations” 29
Numerical approximations for circle’s and hyperbola’s area and arc length 29–31

Explicit 31

Note: The numbers indicate pages in Correspondence, vol. 2.

When Newton was asked by Oldenburg to prepare for Leibniz a summary of his
mathematical researches, he replied with a letter dated June 13, 1676, the epis-
tola prior, whose main theme is curve-squaring via series expansion (table 16.1).62

Actually, this is exactly what Leibniz had requested. Indeed, Leibniz had previ-
ously asked Oldenburg about British advances in mathematics and had received
the impression that series constituted the main research area in Britain. In his first
letter for Leibniz, Newton presented results on quadratures via infinite series in the
style of De Analysi. He began by stating the binomial theorem (§7.3) and then
displayed his method of root approximation (the Newton-Raphson algorithm) and
the related method of resolution of affected equations (§7.5). He made clear that
these methods of series expansion are useful in the calculation of areas of curvilinear
surfaces, volumes of curvilinear solids, and centers of gravity. He displayed these
applications of series by nine examples. Typically, Newton showed how the moment
of a flowing quantity can be expressed as a power series, and then determined the
fluent by squaring term-wise. This is the main quadrature technique of De Analysi
(§7.4). Once a series was obtained, Newton often reversed it, for instance, in the
epistola prior, when he obtained the series for the arcsine, he reversed it and ob-
taind the series for the sine. In brief, the epistola prior is a good introduction to

62 Correspondence, 2, pp. 20-32. The exchange of letters between Newton and Leibniz has been
analyzed in detail in Hofmann, Leibniz in Paris (1974), pp. 225–76.
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the binomial theorem (stated, not explained) and to some results on quadratures
via infinite series of De Analysi.

16.3.5 Leibniz’s First Reply, August 17/27, 1676

Leibniz replied on August 17/27, 1676, presenting what he called a general doctrine
of transformations, the method of transmutation. Basically, this method consists
in a geometrical transformation of infinitesimal components of a curvilinear sur-
face. Leibniz appled it to the calculation of π and to the expression of logarithm,
exponential, and trigonometric magnitudes.63 Further, he asked for details and
demonstrations that were lacking in the epistola prior. He wished to know how
Newton could (i) demonstrate the binomial theorem, (ii) resolve affected equations,
and (iii) reverse series.

16.3.6 The Epistola Posterior for Leibniz, October 24, 1676

Whereas the epistola prior presented the main results of De Analysi, the epistola
posterior explained the details of the methods of De Analysi and hinted at the
results on higher quadratures of De Methodis while omitting explanations about
them.64

In the epistola posterior, dated October 24, 1676, Newton gave details about
his discovery of the binomial theorem, describing the route he had followed in 1664
from Wallis’s Arithmetica Infinitorum (§7.3). He explained the gist of the inductive
generalization that allowed him to reach this result. Newton also dealt at length
with the analytical parallelogram whereby affected equations are resolved (§7.5) and
gave examples of series reversion (§7.4). In doing so, he fully answered the questions
Leibniz had posed in the letter dated August 17/27, 1676.

Newton did more than this. Probably because Leibniz’s letter of August 17/27
had made him aware of the stature of the German, he wrote at length about most
of his mathematical discoveries. Most notably, he hinted at all three methods
for the quadrature of curves in De Methodis but was very secretive about them;
he stated results but gave no instruction about how to achieve them. I suspect
that the purpose of the epistola posterior was to impress Leibniz with the full
breadth and depth of Newtonian mathematics. The epistola posterior is indeed
a carefully written treatise. A significant selection of Newton’s mathematical dis-
coveries is included, but its author presented them with varying degrees of secrecy
(table 16.2).

Newton revealed everything related to series and their use in the quadrature
of curves. He also explained the resolution of affected equations via the analytical

63 Correspondence, 2, pp. 57–64.
64 Correspondence, 2, pp. 110–29.
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Table 16.2 A Scheme of the epistola posterior

Incipit 110–111

Discovery and demonstration of binomial theorem explained 111–113
Application of binomial theorem to logarithm calculations 113–114

History of correspondence with Collins and James Gregory 114–115
A treatise [De Methodis] written in 1671 114–115

First anagram, this is the foundation for rendering quadratures simpler 115

Prime theorem (Method 2), no demonstration provided 115
Applications of prime theorem 115–117

Quadratures via reduction to conic areas (Method 3), no demonstration
provided 117
Rectification of cissoid 117

Organic description (with no calculation) of cubics 119

Partial list of quadratures from the second catalogue of curves (Method 3) 119–120
Method 3 achieved “withdrawing from the contemplation of the figures” 120

Leibniz’s series for π deduced and criticized as converging too slowly 120
Summation of numerical series 120–126

Analytical parallelogram used in resolution of affected equations explained 126-127
Reversion of series explained 127–129

Second anagram on two methods on the inverse method of tangents; the two
methods are Method 1 and the method of undetermined coefficients 129

Explicit 129

Note: The numbers indicate pages in Correspondence, vol. 2.

parallelogram and the reversion of series. This is basically the content of De Analysi
(chapter 7).

Newton also hinted at a treatise where “infinite series played no great part.”
This treatise (De Methodis) contained, among “few other things,” the “method of
drawing tangents.” The foundation of this method was concealed, as was customary
in the period, behind an anagram (the first of two occurring in the epistola posterior)
whose meaning is: “given an equation involving any number of fluent quantities to
find the fluxions, and conversely.”65 The decoding of this anagram would not, of
course, have been of any help to Leibniz. The first anagram is a contraction of
the basic Problem 1 and its inverse Problem 2 of De Methodis (§8.3, §8.4). Most
probably, the role of the first anagram was to record the existence of De Methodis
by quoting one of its crucial passages.66

65 Correspondence, 2, p. 134.
66 Recall that Problem 1 in the De Methodis is “Given the relation of the flowing quantities to one
another, to determine the relation of the fluxions.” MP, 3, p. 75. Problem 2 is “When an equation
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It is generally believed that in this anagram Newton was hiding the calculus.
This idea is both too general and inaccurate. There is no secret mathematical
theorem hidden in the first anagram, whose decoding is really an anticlimax. What
Newton’s priorities were, what he was proud about, and what he wanted to hide
are apparent from the general structure of the epistola posterior.

Immediately after the first anagram, Newton proceeded to explain why the
method for drawing tangents was important to him:

On this foundation I have also tried to simplify the theories which concern the
squaring of curves, and I have arrived at certain general Theorems.67

This is the crucial point for Newton. Thanks to the understanding of the inverse
relation between the method for drawing tangents (differentiation) and that for
squaring curves (integration), a general method for drawing tangents translates into
a powerful tool for constructing (in Leibnizian terms) integral tables. Indeed, this is
the method (Method 2) that allowed the compilation of the first catalogue of curves
of De Methodis. Newton did not want to reveal this method. He was not much
concerned with his solution of Problem 1 and its application to the direct method
of fluxions: determination of tangents, curvatures, maxima and minima, and the
like. He was rather concerned with the results on the inverse method achieved in
tackling Problem 2. And, indeed, just after the first anagram he proceeded to show
the prime theorem on quadratures (§8.5.1) and its applications to three examples.
The prime theorem is a generalization of results contained in the first catalogue of
curves of De Methodis.68 Newton communicated to Leibniz some of his theorems
on quadratures achieved via Method 2 but not the actual method that he had
employed.69

Following that, Newton hinted at theorems for the quadrature of curves by “com-
parison with conic sections” that he had achieved “withdrawing from the contem-
plation of figures,” that is, “reducing the whole matter to the simple consideration
of ordinates alone.” This is Method 3, which allowed the compilation of the second
catalogue of curves, whereby by a transformation of variables (the “contemplation
of ordinates”) the areas of surfaces subtended to some difficult curves are calcu-
lated in terms of conic areas. On this method Newton kept everything hidden. He
merely listed a few curves taken from the second catalogue that, he claimed, could
be squared by Method 3.70

involving the fluxions of quantities is exhibited, to determine the relation of the quantities one to
another.” MP, 3, p. 83. See §8.3.1 and §8.4.1.
67 Correspondence, 2, p. 134.
68 See the discussion in MP, 3, p. 237, n. 540.
69 He wrote, “And to be frank, here is the first Theorem.” Correspondence, 2, p. 134. But how
could even a mathematician of Leibniz’s stature guess the demonstration?
70 Correspondence, 2, p. 117, pp. 119–20.
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The second anagram, which occurs at the end of the epistola posterior, also
has to do with the inverse method, namely, with the inverse method of tangents
(in modern terms, integration of ordinary differential equations).71 Once again,
Newton hid his secrets behind an anagram. It is interesting to consider how he
introduced the second anagram because his wording reveals his priorities and his
policy of publication:

When I said that almost all problems are soluble I wished to be understood to refer
specially to those about which mathematicians have hitherto concerned themselves,
or at least those in which mathematical arguments can gain some place. For of
course one may imagine others so involved in complicated conditions that we do
not succeed in understanding them well enough, and much less in bearing the burden
of such long calculations as they require. Nevertheless—lest I seem to have said too
much—inverse problems of tangents are within our power, and others more difficult
than those, and to solve them I have used a twofold method of which one part is
neater, the other more general. At present I have thought fit to register them both
by transposed letters, lest, through others obtaining the same result, I should be
compelled to change the plan in some respects.72

The meaning of the second anagram is as follows:

One method consists in extracting a fluent quantity from an equation at the same
time involving its fluxion; but another by assuming a series for any unknown quan-
tity whatever, from which the rest could conveniently be derived, and in collecting
homologous terms of the resulting equation in order to elicit the terms of the as-
sumed series.73

Leibniz would not have been helped by decoding the second anagram either. Newton
introduced the second anagram by making clear that it hid a double method that
allowed the solution of the most cutting-edge problems considered by the mathe-
maticians of his times. Further, he openly declared himself to be particularly proud
of this advanced double method.

One can gather that these two methods for the resolution of the inverse method
of tangents correspond to Method 1 (§8.4.2) of De Methodis and to the method of
undetermined coefficients that was to play such an important role in De Quadratura
(Theorem 3; §8.5.2).74 The method of undetermined coefficients underpins both

71 Recall that in the inverse problem of tangents, the property of the tangent of a curve is given,
and one has to determine the curve. Of course, this corresponds to integrating a differential
equation.
72 Correspondence, 2, p. 148.
73 Correspondence, 2, p. 159.
74 This interpretation is strongly supported (§17.3) by the comment to the second anagram in
Newton’s “Account” (1715), p. 193. In his commentary to the second anagram, Wallis affirmed
that the interpretation of the second method was easy: “Harum methodorum Secunda ex verbis
jam recitatis absque ulteriore explicatione intelligi potest.” Opera, 2, p. 393.
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the theorems of De Quadratura and the approximations of curvilinear areas via
interpolation of Methodus Differentialis (§8.6).

From this analysis of the epistolae it emerges that Newton was open insofar as
the quadrature techniques of De Analysi are concerned. The fountain of knowledge
that in the mid-1670s he kept away from Collins and Leibniz consisted in the more
advanced quadrature techniques of De Methodis and those that he was developing
in writings that would eventually lead to De Quadratura.

16.3.7 Leibniz’s Second Reply, June 11/21, 1677

But Leibniz knew about this fountain very well as he showed in his reply dated
June 11/21, 1677. Newton must have been chilled by what he found there.75

The bold and reassuring words he had sent to Collins a few months before (“as
for ye apprehension yt M. Leibnitz’s method may be more general or more easy
then mine, you will not find any such thing”) were disproved.76 Leibniz presented
the direct algorithm in full detail, going beyond Sluse’s method exactly as New-
ton had done, his differential calculus being applicable not only to polynomials
but also to quantities involving quotients and roots. Leibniz was right on target
when, after presenting the rules and the application of the differential method, he
added, “In my opinion, what Newton wished to conceal about the drawing of tan-
gents is not discordant with these [rules].”77

Further, and this must have been more worrying for Newton, Leibniz immedi-
ately seized the gist of Newton’s first anagram by showing full understanding of the
fundamental theorem of the calculus:

What he [Newton] adds [just after the first anagram], on this same basis, that
squarings are also rendered easier, confirms me in this opinion: those figures surely
are always quadrable [read “integrable in finite terms”] which are related to a dif-
ferential equation.78

Leibniz continued showing applications of integration via antidifferentiation, exactly
as Newton had done with Method 2 in the first catalogue of curves.

Leibniz wrote another letter to Oldenburg on July 12/22, 1677, in continuation
of the letter dated June 11/21.79 At this crucial point Newton interrupted the cor-
respondence. Leibniz was getting too close to the secret fountain of his advanced
methods for squaring curves. The correspondence between Newton and Leibniz
lagged until March 7/17, 1692/93, when Leibniz approached Newton with much

75 Correspondence, 2, pp. 212–9.
76 Newton to Collins (November 8, 1676). Correspondence, 2, p. 179.
77 Correspondence, 2, p. 221.
78 Correspondence, 2, p. 221.
79 Correspondence, 2, pp. 231–2.
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politeness. Newton replied on October 16, 1693, apologizing for his protracted si-
lence. He also expressed his worries that Leibniz might be offended by the imminent
publication of the second volume of Wallis’s Opera, where the fluxional method and
notation were briefly presented, and he deciphered the first anagram. Newton thus
abandoned the strategy followed in the mid-1670s; he was now determined to let
something of his fluxional quadratures be printed.80

16.4 Disclosures, 1684–1699

From the mid-1680s, Newton realized that the policy of scribal publication that he
had adopted in the 1670s had to be revised. In introducing the second anagram in
the epistola posterior he had stated that he would have revealed the higher methods
of quadrature if others were “obtaining the same result.”81 This is exactly what
happened in the 1680s and 1690s. Developments in quadrature techniques obtained,
for example, by David Gregory, John Craig, and, on the Continent, by Leibniz posed
a direct challenge to Newton. Therefore he began disclosing knowledge about his
analytical method of fluxions, even about his higher quadrature methods.

In 1684, David Gregory entered Newton’s life in a traumatic way. It was trau-
matic precisely because in Gregory’s letter dated June 9 he announced the Exerci-
tatio Geometrica de Dimensione Figurarum, a work where David Gregory edited
his uncle James Gregory’s results on squaring via infinite series.82 After receiv-
ing the Exercitatio Geometrica, Newton began writing a dossier on quadratures,
“Matheseos Universalis Specimina,” which incorporated material from his two epis-
tolae for Leibniz.83 Most probably, it is because of Halley’s eventful visit, which
sparked interest in planetary motions and the writing of the Principia, that Newton
abandoned the risposte to Gregory. It would be simplistic to think that Newton
meant “Matheseos Universalis Specimina” for print publication, as is often sur-
mised. Given its forensic character (it consists of a collection of excerpts from
letters interspersed with information on the circumstances that led to their com-
position and annotations on their mathematical content), it is more probable that
Newton conceived it as a dossier to be circulated or shown to visitors.

In 1685, John Craig visited Newton (§8.5.1, §16.2). It is interesting to note that
at this juncture, while abandoning the project of completing “Matheseos Universa-
lis Specimina,” Newton revealed to Craig one of the pillars of his higher quadrature

80 Correspondence, 3, pp. 257–8, pp. 285–6.
81 “I have thought fit to register them [Newton’s two methods of quadratures] both by transposed
letters, lest, through others obtaining the same result, I should be compelled to change the plan
in some respects.” Correspondence, 2, p. 148.
82 Gregory to Newton (June 9, 1684) letter accompanying Exercitatio Geometrica de Dimensione
Figurarum (1684) on series expansion of (1 ± x)±1/2.. Correspondence, 2, p. 396.
83 Add. 3964.3, ff. 7r–20v, edited by Whiteside in MP, 4, pp. 526–89.



362 Chapter 16

methods, the prime theorem. Craig was close to publishing his pioneering trea-
tise on quadratures, Methodus Figurarum Lineis Rectis & Curvis Comprehensarum
Quadraturas Determinandi (1685). This short treatise was written in differential
notation and gave credit to a number of mathematicians. Newton was cited in pass-
ing, together with Descartes, Fermat, Sluse, Barrow, Wallis, Ehrenfried Walther
von Tschirnhaus, and Leibniz. The same holds true for Craig’s next work, Trac-
tatus Mathematicus de Figurarum Curvilinearum Quadraturis et Locis Geometricis
(1693). Newton’s decision to reveal the prime theorem to Craig finds its justifica-
tion in his awareness that Gregory, Craig, and Leibniz were progressing toward the
discovery of his higher quadrature methods. The prime theorem fell into the hands
of David Gregory, who printed it as one of his own discoveries in Pitcairn’s Solutio
Problematis de Historicis seu Inventoribus (1688) (§8.5.1).

In writing the Principia, Newton continued to reject disclosure in print of his
analytical method of quadratures. Part IV considered Newton’s publication pol-
icy of his mathematics in the Principia, a work in which he had to assemble a
panoply of mathematical tools, from quadratures to infinite series, from porismatic
geometry to first and ultimate ratios, behind a seemingly coherent façade. As
mentioned, the more competent readers understood the might of Newton’s math-
ematical achievement but were frustrated by the omissions that they identified in
the text. The mathematical subtext that Newton kept away from his readers was
what seemed interesting to experts such as Huygens and Johann Bernoulli. What
were the analytical tools that Newton possessed and that lay behind his geometrical
constructions? This question recurred often in the correspondence of the mathe-
maticians who set themselves the challenging task of understanding Newton’s mag-
num opus.84 Recall that its readers had access to the binomial theorem (stated
in the Scholium to Proposition 93, Book 1) and to infinite power series expansions
(Proposition 45, Book 1, and Proposition 10, Book 2). Newton was eager to com-
municate his results on infinite series. Algebraic and fluxional equations, which
were deployed in certain demonstrations, were neglected (see chapters 11 and 12).
Some knowledge of the foundations of the method of fluxions could be derived from
the synthetic versions provided in Section 1, Book 1, and in Lemma 2, Book 2
(§9.3, §9.4). But no indication on how the algorithm might work was given. Such
information was provided only partially and posthumously in an appendix, entitled
“Explications, (given by a Friend,) of some Propositions in this Book, not demon-
strated by the Author,” to the English translation of the Principia by Andrew
Motte (1729).

In 1691, Gregory wrote to Newton claiming the prime theorem on quadratures
(§8.5.1), which he had learned from Craig’s recollection of the visit to Newton

84 Guicciardini, Reading the Principia (1999).
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in 1685, as his own invention.85 Gregory was challenging Newton on the inverse
method. Newton’s reaction was one of panic and rage. He immediately set himself
the task of writing extensively on quadratures, and he did so with characteristic
historicism, his aim being that of showing his priority in these important matters.86

The first drafts of what became De Quadratura were written in this context. The di-
rect method of tangents was not as important as the inverse method of quadratures,
from Newton’s point of view; his reaction to Sluse’s paper on the direct method was
lukewarm (§16.3.2).

In May 1694, despite these tensions, and for reasons unclear to me, David Gre-
gory was admitted into Newton’s close circle. Rather than printing his fresh trea-
tise on quadratures (a shortened version appeared as an appendix to the Opticks in
1704), the Lucasian Professor decided to show his private manuscripts to Gregory
in his rooms at Trinity College. After these eventful privatissima Gregory became
a faithful acolyte. He recorded his encounters with Newton in extensive memo-
randa and wrote a short tract on fluxions (§16.2). He also speculated on the idea of
transforming his “Notae” on the Principia into a running commentary—modeled
on van Schooten’s exemplary commentary to Descartes’ Géométrie—for a second
edition of the magnum opus. Meeting Newton’s favor could be profitable in estab-
lishing a reputation in the diplomatic competition that was inflaming the European
Republic of Letters.87

Typically, Gregory’s memoranda said very little about the rules of the direct
method, whereas he praised Newton’s inverse method for the quadrature of curves.
For instance, in 1694, Gregory stated, “The problem of quadratures and the inverse
method of tangents includes the whole of more advanced geometry.”88 Gregory was
impressed by Newton’s catalogues of curves and recognized that these quadratures
underpinned many of the most advanced parts of the Principia:

The second treatise [De Quadratura] will contain his [Newton’s] Method of Quadra-
tures . . . on these [quadratures] depend certain more abstruse parts in his philos-
ophy as hitherto published, such as Corollary 3, Proposition 41 and Corollary 2,
Proposition 91.89

If one turns to Nicolas Fatio de Duillier, the most influential of Newton’s acolytes
in the 1690s, one discovers that when he acted as a middleman between Huygens

85 Gregory to Newton (November 7, 1691). Correspondence, 3, pp. 172–6. This letter was sent
to Wallis for inclusion in his Opera, 2 (1693), pp. 377–80.
86 See Newton’s draft reply to David Gregory in MP, 7, pp. 21–3.
87 See Guicciardini, Reading the Principia (1999), pp. 179–84. The similarity with van Schooten’s
commentary is particularly evident in the exemplar held at Christ Church Library.
88 Correspondence, 3, p. 313. “Problema de Quadraturis et Methodo tangentium inversa omnen
reconditiorem Geometriam comprehendit.” David Gregory’s memorandum of a May 1694 visit to
Newton. Translation in Correspondence, 3, p. 318.
89 Edinburgh University Library, MS Gregory C42. David Gregory’s memorandum (July 1694) of
a May 1694 visit to Newton. Translation in Correspondence, 3, p. 386.
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and Newton in the years immediately following the publication of the Principia, he
had an extensive correspondence with his former Dutch mentor about the inverse
method of tangents. This is what Huygens wished to know. In the correspondence
between Fatio and Huygens little attention is paid to the direct method.90 Fatio
was clearly capitalizing on his privileged access to Newton’s conversation and man-
uscripts; indeed, his status among the European mathematicians was high at that
juncture exactly because he could inform correspondents about the subtexts hidden
in Newton’s printed work.

It is thanks to Wallis that Newton’s avoidance of printed mathematical publi-
cation began to fade. Newton allowed Wallis to print excerpts from his fluxional
manuscripts and letters. This was, at this juncture, a reasonable compromise. New-
ton used Wallis’s Algebra and Opera as vehicles for rendering his analytical method
of fluxions better known while avoiding an involvement in an authored publication,
such as a signed paper or book. Wallis, always keen on making available in print
analytical heuristic tools, especially those achieved in Britain, was able—after im-
ploring Newton in several letters—to obtain accounts of the new analytical method,
which he inserted in his English Algebra (1685) and in his Latin Opera (vol. 2, 1693,
vol. 1, 1695, vol. 3, 1699). Newton allowed Wallis to print the epistola prior al-
most in its entirety and material taken from the epistola posterior in the English
Algebra; the binomial theorem and some of the quadratures via infinite series of
De Analysi were printed there.91 For the second volume of the Opera, Wallis ob-
tained the epistola posterior and additional material provided by Newton; the first
presentation in print of the method of fluxions appeared on pages 390–396. Wallis
provided a synopsis of the epistola posterior and included the deciphering of the
string anagrams (on pp. 392–393) and an explanation, missing from the epistola
posterior, of the dotted notation for fluxions. The full text of the two epistolae was
eventually printed in the third volume of the Opera (1699). These events were to
play a momentous role in the controversy with Leibniz. What appeared in Wallis’s
Opera was, however, a small fraction of Newton’s mathematical output and cer-
tainly did not exhaust the appetite of those who were trying to divine the subtext
of the Principia.

The challenge originated by the development of calculus in Britain and on the
Continent, combined with the effects of the uncontrolled dissemination of New-
ton’s mathematical manuscripts, induced Newton to print his analytical method of
fluxions (see chapter 17).

90 On the correspondence between Fatio and Huygens on the inverse method, see Vermij and van
Maanen, “An Unpublished Autograph by Christiaan Huygens” (1992).
91 Excerpts from the 1676 epistolae to Leibniz in Algebra, pp. 330-46; the content of the epistolae
is reviewed in Opera, 2, pp. 368–396, where Wallis could rely upon material delivered from Newton
(the prime theorem on quadratures as part of a draft of De Quadratura is on pp. 390–6); full text
of the 1676 epistolae to Leibniz in 3, pp. 622–9, 634–45.



17 Fluxions in Print, 1700–1715

In a Letter written to Mr. Leibnitz in the Year 1676, and published by Dr. Wallis, I
mentioned a Method by which I had found some general Theorems about squaring
Curvilinear Figures, or comparing them with the Conic Sections, or other simplest
Figures with which they may be compared. And some Years ago I lent out a
Manuscript containing such Theorems, and having since met with some Things
copied out of it, I have on this Occasion made it publick . . . . And I have joined
with it another small Tract concerning the Curvilinear Figures of the Second Kind,
which was also written many Years ago, and made known to some Friends, who
have solicited the making it publick.

—Isaac Newton, 1704

17.1 In the Public Sphere

17.1.1 The Demise of Newton’s Scribal Strategies, 1700–1703

Newton’s policy of controlled scribal publication was no longer tenable at the turn of
the seventeenth century. In 1699, Fatio had bluntly posed the question of priority
in his Lineae Brevissimi Descensus Investigatio Geometrica, noting that on the
Continent the calculus was unjustly attributed to Leibniz. As a privileged acolyte
of Newton he informed his readers that his great mentor had devised an equivalent
algorithm well before the publication of Leibniz’s “Nova Methodus.” In 1695, Wallis
had complained to Newton,

[Y]our Notions (of Fluxions) pass there with great applause, by the name of Leibniz’s
Calculus Differentialis . . . You are not so kind to your Reputation (& that of the
Nation) as you might be, when you let things of worth ly by you so long, till others
carry away the Reputation that is due to you.1

The challenge for Newton came not only from the Continent but also from Britain
(§16.4). Manuscripts were circulating in a rather uncontrolled way. As Newton
affirmed in the advertisement to the Opticks (1704), he was going to add De Qua-
dratura and the Enumeratio as appendices, since there were too many “things copied
out” of a manuscript that had been lent out and “made known to some Friends.”2

Epigraph from Newton, Opticks (1704), Advertisement [n.p.].
1 Wallis to Newton (April 10, 1695) in Correspondence, 4, p. 100. See also similar complaints by
Wallis in his letter to Newton (April 30, 1695) in Correspondence, 4, pp. 116–7.
2 Newton, Opticks (1704), Advertisement [n.p.].
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Further, British mathematicians such as Gregory and Craig were producing results
that were as worrying for Newton as those of Leibniz and the Bernoullis.

The situation came to a head because of a tract authored by an amateurish
mathematician, the iatro-mechanist George Cheyne, who tried with his Fluxionum
Methodus Inversa (1703) to write a treatise completely devoted to the inverse
method. He was induced to attempt this task by his influential friend Pitcairn,
who had already caused frictions with Newton by hosting David Gregory’s quadra-
tures in his Solutio Problematis de Historicis seu Inventoribus (1688). The result
was, as Whiteside puts it, “a competent and comprehensive survey of recent de-
velopments in the field of inverse fluxions not merely in Britain, at the hands of
Newton, David Gregory, and John Craig, but also by Leibniz and Johann Bernoulli
on the Continent, and drew the assemblage together and systematized it with proofs
and elaborations of Cheyne’s own contrivance.”3 Cheyne’s pamphlet is representa-
tive of the dependence of British authors on continental work on integration that
was prevalent in this period.4 Craig and Gregory found inspiration on quadrature
techniques in the papers by Leibniz and the Bernoullis printed in Acta Eruditorum.
Newton was obviously displeased by Cheyne’s Fluxionum Methodus Inversa. Abra-
ham De Moivre was instructed to attack Cheyne, and he did so with vehemence
in his Animadversiones in D.Georgii Cheynaei Tractatum de Fluxionum Methodo
Inversa (1704).

The fact that there was some danger in proposing a book on Newtonian discov-
eries without previous negotiations with Newton himself is evident not only from
the Cheyne affair but also from Humphry Ditton’s The General Laws of Nature
and Motion (1705), a small treatise in which the English reader was given some
instructions on the first three sections of the Principia. In the Preface, Ditton was
cautious in stating Newton’s absolute right of property on the mathematization of
central forces:

The materials that this Book is composed of, are so absolutely Mr Newton’s Prop-
erty, that I dare hardly pretend to call any thing mine. The Principles most certainly
are all his own: and if I have attempted any where to make any Use of them, or to
draw any consequences from them; yet the indisputable Right that he has to the
Former, gives him a title to the Latter also, where they are just and good. This
is certain, that his Inventions are new and compleat; and equally exclude all the
Additions and Claims of those that come after. . . . Further, To render what I
have done more universally serviceable here at Home, I chose to make it appear
in English rather than Latin. For if it be granted that Mr. Newton’s Discoveries
are but barely useful, there’s no Reason why a Multitude of very capable Minds

3 MP, 8, pp. 17–8
4 On the influence of the Acta Eruditorum on David Gregory, see Eagles, The Mathematical Work
of David Gregory (1977). An interesting paper covering the Continental influence on British
mathematicians is Schneider, “Direct and Indirect Influences” (2006).
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shou’d be debarr’d from them meerly [sic] for want of a Language. . . . Thus in-
deed I confess, do some people argue for keeping the Sacred Books in an unknown
Tongue: But we pretend to a Protestant Liberty, at least with respect to our
Philosophy.5

In the meantime Newton became aware that it was time to publish his treatise
on quadratures written in 1693. He appended it (enriched with a newly written
Introduction and Scholium) to the first edition of the Opticks (1704) with the title
Tractatus de Quadratura Curvarum. In the appendix to the Opticks one could
also find Enumeratio Linearum Tertii Ordinis. The printing stage for Newton as
a mathematical author begins properly in 1704. It is interesting to consider which
works, among the vast number of the mathematical manuscripts that he kept in his
hands and circulated among his acolytes, Newton chose to print; the circumstances
in which his decisions were taken; and the editorial choices he made before printing
them. My aim in this chapter is to examine the priorities and values that guided
him when he moved from scribal to printed publication.

17.1.2 The Two Treatises of 1704

The great event in Newton’s career as a mathematical author occurred in 1704
when the Opticks was printed. At last the reader could hope for more light on his
methods. Two short mathematical tracts were appended, the Enumeratio and De
Quadratura. The high hopes were, however, soon frustrated.

As discussed in chapter 6, the Enumeratio lacked all the proofs concerning the
reduction of third-degree equations to four basic forms, the methods for plotting
the cubics complex graphs that enigmatically adorn the beautifully engraved plates,
the projective classification of cubics into five classes, and the organic generation
through given points. The interested reader could only surmise that the Enumeratio,
like the Principia, had its well-hidden subtext.

De Quadratura was an equally challenging text. Newton’s concise presentation of
his complicated quadratures needed commentary and explanation. Commentaries
to De Quadratura therefore flourished in the first half of the eighteenth century.
Explaining De Quadratura was a frequently attempted task for Newton’s mathe-
matical followers. Careful recalculations of Newton’s theorems in William Jones’s
hand, probably intended for his patron or for the use of his students, have survived.6

In 1745, John Stewart still thought it worthwhile to explain Newton’s theorems in
more than 400 pages of commentary, and some 20 years later Le Seur and Jacquier
devoted two chapters of their Elemens du Calcul Intégral (1768) to a careful anal-
ysis of De Quadratura. It was agreed that such an effort was necessary because

5 Ditton, The General Laws of Nature and Motion (1705), Preface [n.p.].
6 Cambridge University Library, Macclesfield Collection, Add. 9597.4.37.
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in order to understand the Principia fully one had to understand the complicated
techniques of De Quadratura.7 Stewart wrote,

But further, every one, who is the least conversant in these Matters, knows, that
natural Philosophy never was, nor can be successfully prosecuted or advanced, but
by the Help of Geometry and Arithmetick . . . Witness our noble Author, who in
that admirable Performance, his Mathematical Principles of Natural Philosophy,
hath happily shown us, of what great Use abstract Mathematical Knowledge may
be, for investigating the Forces of natural Bodies . . . and as the great part of the
Discoveries contained in that Book, is owing to and founded upon, the Doctrine of
Fluxions . . . as was observed some time ago by the noble and learned Marquis de
l’ Hospital; so we find in particular, that he often proceeds upon the Quadrature
of Curves as a Postulatum, or Principle already known and granted. See Propos.
46, 53, 54, 56, 81, Book I and many other Places. By which he has shewn, that the
most sublime parts of geometry, and particularly the Doctrine of Fluxions, and the
Quadrature of Curves, are of infinite Use in true Philosophy.8

In 1712 and 1719, Newton thought about adding De Quadratura as an appendix to
the Principia.9

Both the Enumeratio and De Quadratura presented challenging, somewhat enig-
matic, and cutting-edge research. They appealed to Newton because by printing
them he could display the level of his results in areas that he very much cherished:
projective geometry and organic constructions (in the Enumeratio) and the inverse
method of fluxions (in De Quadratura). These were the results that Newton was at
this point anxious to establish as his own achievement, in a context in which the
Leibnizian calculus was becoming prominent on the Continent and Britain. Note
that Newton did not print what appears to us to be his masterpiece, De Methodis,
where the direct method of fluxions was explained and applied to tangents and cur-
vatures. Most probably he was not interested in making public a treatise written
“for the use of learners,” considering it too elementary to deserve print publica-
tion.10

7 The two Minim Friars Thomas Le Seur and François Jacquier, who had promoted knowledge of
the Principia with a detailed commentary (1739–42), devoted their Elemens du Calcul Intégral
(1768), Chapters 4–7 of the first volume (pp. 135–544), and Chapter 2 of the second volume
(pp. 52–103), to a commentary on Newton’s methods of quadrature in De Quadratura and De
Methodis.
8 Newton, Two Treatises (1745), p. viii. The reference to L’Hospital, Analyse des Infiniment
Petits (1696), is in fact to the Preface, which is due to Fontenelle.
9 Copies of De Quadratura recast by Newton for publication as an appendix to the Principia are
extant. MP, 8, pp. 258ff, pp. 625ff, pp. 656ff. In a letter from Cotes to Newton written on April,
26, 1712, one reads: “I am glad to understand by Dr. Bentley that You have some thoughts of
adding to this Book [the Principia] a small Treatise of Infinite Series & the Method of Fluxions.”
Correspondence, 5, p. 279; Cohen, Introduction to Newton’s Principia (1971), pp. 238–9.
10 As John Colson made clear in his Preface to the English translation of De Methodis, which
appeared in 1736: “[The Method ] is of an elementary nature, preparatory and introductory to
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17.1.3 Arithmetica Universalis, 1707

The circumstances surrounding the publication of Arithmetica Universalis (1707)
are interesting (§4.1). In this work, devoted to Cartesian algebra, Newton published
results on the theory of equations that he had achieved in the 1670s and deposited
at the University Library in 1684. Arithmetica Universalis, which had a didac-
tic structure and which rendered the algebraic analysis wholly explicit, appeared
anonymously in 1707. Newton made it clear that he was compelled to publish in
order to obtain the support of his Cambridge colleagues in the election to the 1705
Parliament.11 In the opening “To the Reader” of the first English translation it was
stated that the author had “condescended to handle” the subject.12 Arithmetica
Universalis also ended with statements in favor of geometrical method and against
the moderns who had lost the elegance of geometry (§4.2). The fact that its au-
thor did not recognize Arithmetica Universalis as representing what he meant by
good geometry, which instead was the style of the Principia, was made clear to any
person belonging to the Republic of Letters.

17.1.4 Jones’s Edition of Newton’s Mathematical Tracts, 1711

A second wave of mathematical printed publication of Newton’s works occurred
in the heated context of the dispute with Leibniz. In 1711, William Jones, who
in 1712 was to play a decisive role as a member of the committee of the Royal
Society since he was in possession of Collins’s papers, edited Analysis per Quanti-
tatum Series, Fluxiones, ac Differentias: cum Enumeratione Linearum Tertii Or-
dinis. In this lavishly produced booklet one can find De Analysi, De Quadra-
tura, the Enumeratio, and Methodus Differentialis, together with excerpts from
some of Newton’s letters, later reproduced in full with much additional material
in Commercium Epistolicum.13 Three features of Jones’s edition should be briefly
discussed.

his other most arduous and sublime Speculations, and intended by himself for the instruction of
Novices and Learners.” Colson also stated that “Pemberton, as he acquaints us in his View of
Sir Isaac Newton’s Philosophy, had once a design of publishing this Work, with the consent and
under the inspection of the Author himself.” Newton, The Method of Fluxions (1736), pp. ix–x.
11 David Gregory wrote, “He was forced seemingly to allow it, about 14 months agoe, when he
stood for Parliament-man at the University. He has not seen a sheet of it, nor knows he what
value it is in, nor how many sheets it will make, nor does he well remember the contents of it. He
intends to goe down to Cambridge this summer and see it, and if does not please him to buy up
the copyes.” Hiscock, David Gregory, Isaac Newton and Their Circle (1937), p. 36.
12 “If any Thing could add to the Esteem every Body has for the Analytick Art, it must be, that
Sir Isaac has condescended to handle it.” Newton, Universal Arithmetick (1720), p. i.
13 Namely, fragments of the two 1676 epistolae for Leibniz, the material Newton sent to Wallis to
be inserted in the second volume of the Opera (1693), and the quadrature-letter to Collins (1676).
Newton, Analysis per Quantitatum (1711), pp. 23–38.
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Figure 17.1

Engraving from Newton, Analysis per Quantitatum, Series, Fluxiones, ac Differentias:
cum Enumeratione Linearum Tertii Ordinis (1711). This engraving is placed before the
title of De Analysi. It expresses a cherished idea of Newton and his acolytes. The fluxional
methods revealed in De Analysi would, according to Jones’s propaganda, constitute the
hidden analysis of the Principia. Indeed, the mythological characters display scrolls and
shields where one can distinguish some of the diagrams of the Principia’s key propositions.
One recognizes, from left to right, several diagrams that occur in Book 1: (on the ground)
Prop. 94 on the motion of light corpuscles refracted by a medium; (held by a putto) Prop.
66 on the three body problem; (on the shield) Prop. 32 on rectilinear fall accelerated by
an inverse-square force and Prop. 43 on precession of orbits; (on the ground) Prop. 1
on the law of areas; (on the ground) Cor. 2, Prop. 91, on the attraction exerted by an
oblate ellipsoid. The message addressed to the Leibnizians such as Johann Bernoulli could
not be clearer. Source: Newton, Analysis per Quantitatum (1711), p. 1. Courtesy of the
Biblioteca Universitaria di Bologna.

1. The stress is on quadrature techniques. De Analysi is defined as a “short trea-
tise on the quadrature of curves,” its use being to allow quadratures via series
expansion.14 The excerpts from the correspondence are equally concerned with
the inverse method. Nowhere does Jones insist on the direct method as an
interesting topic.

2. Newton’s early use of infinitesimals is obliterated by a skillful editing of De
Analysi. Most notably, William Jones changed, probably in accordance with
Newton’s instruction, occurrences of esse infinite parvam into in infinitum
diminui & evanescere.15 These interventions were aimed at changing the orig-

14 “brevis de Curvarum Quadratura Tractatus.” Newton, Analysis per Quantitatum (1711), Prae-
fatio [n.p.].
15 Newton, Analysis per Quantitatum (1711), p. 20.
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Figure 17.2

Engraving from Newton, Analysis per Quantitatum, Series, Fluxiones, ac Differentias:
cum Enumeratione Linearum Tertii Ordinis (1711). This engraving is placed before
the title of Enumeratio Linearum Tertti Ordinis. It expresses an idea that was quite
important for Newton. The objects of geometry, in this case, plane curves, should be
conceived of as traced by motion, geometry being based upon mechanical practice. In-
deed, the two putti are intent on drawing a conic by deploying Newton’s mechanical
description via rotating rulers (§5.4). Such generations of curves, treated in the final
pages of the Enumeratio, can be performed both by artifice and by nature (see chap-
ters 13 and 14). Plane curves are indeed daily observed in rerum natura. On the
right, Urania (?) has at her feet a representation of the circular orbit of the moon,
a curve that can also be traced by means of the compass held by a putto. With her
right hand she holds a representation of the elliptical orbit traced by a comet, which
one of the putti is generating “organically” by means of the instrument devised by
Newton. Geometry, when conceived of as devoted to kinematically generated objects,
paves the way for astronomy (represented by two books and the armillary sphere to-
ward which Urania points her finger). Source: Newton, Analysis per Quantitatum (1711),
p. 69. Courtesy of the Biblioteca Universitaria di Bologna.

inal form of the method of fluxions into a version more homogeneous with the
Principia and De Quadratura, which were based on limits.16

3. The engravings that adorn Jones’s edition of Newton’s mathematical tracts vi-
sually express another cherished idea of Newton and his acolytes. According to
Jones’s propaganda, the analysis revealed in these tracts constitutes the hidden

16 As Jones stated, “Hujus Geometriae Newtonianae non minimam esse laudem duco, quod dum
per limites Rationum Primarum & Ultimarum argumentatur, aeque demonstrationibus Apodic-
ticis ac illa Veterum munitur; utpote quae haud innititur duriusculae illi Hypotesi quantitatum
Infinite parvarum vel Indivisibilium, quarum Evanescentia obstat quominus eas tanquam quan-
titates speculemur.” Newton, Analysis per Quantitatum (1711), Praefatio [n.p.] This, however,
strictly applies to De Quadratura, not to the original De Analysi.
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Figure 17.3

Engraving from Newton, Analysis per Quantitatum, Series, Fluxiones, ac Differentias:
cum Enumeratione Linearum Tertii Ordinis (1711). This engraving is placed before the
title of Introductio ad Quadratura Curvarum. The quadrature techniques of the analytical
inverse method of fluxions are illustrated by a workshop where mathematics directs the
diverse and purposeful activities of craftsmen. The putti make use of instruments such as
hammers, saws, chisels, brushes, furnaces, and balances. Useful applications are evoked,
such as carpentry, painting, fortification (alluded to in the drawing at the upper right
corner). Here we see the method of quadrature represented as a collection of disconnected,
heuristic techniques, as a craft rather than as a unified theory. A tension surfaces between
this image and previous images, which stress continuity between the mathematical tracts
edited by Jones and astronomy. In the years of the polemic with Leibniz, Newton often
stressed the idea that the analytical method of series and fluxions is a heuristic technique
that should not be confounded with the “good geometry” on which the study of the “system
of the heavens” is grounded. On the other hand, he maintained that the propositions of the
Principia had been found by application of the “new analysis.” Source: Newton, Analysis
per Quantitatum (1711), p. 41. Courtesy of the Biblioteca Universitaria di Bologna.

analysis of the Principia. Indeed, the mythological characters represented in one
of the engravings display scrolls and shields where one can distinguish some of
the diagrams of the Principia’s key propositions (figure 17.1). Two other engrav-
ings can be interpreted as illustrations of other important aspects of Newton’s
conceptions of mathematics, namely, his ideas on the relations between mechan-
ics, geometry, and natural philosophy (figure 17.2), and his evaluation of the
analytical method of fluxions as a heuristic technique (figure 17.3).

17.2 Commercium Epistolicum

Jones’s edition of Newton’s mathematical tracts anticipated many aspects of Com-
mercium Epistolicum (1713). Also in Commercium Epistolicum, De Analysi was
presented as the main proof that Newton was the first inventor of the method of
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fluxions, and ample use was made of Newton’s correspondence with Collins and
Oldenburg held in the archives of the Earl of Macclesfield and at the Royal Society.

Commercium Epistolicum can be considered Newton’s last mathematical work. I
have always been fascinated by the technical, both mathematically and forensically,
terminology that Newton employed in this pamphlet and by its carefully drafted
structure. There is no doubt, in my opinion, that Newton believed himself to be
right in his quarrel with Leibniz and that he was convinced of having provided
indisputable evidence of the German’s plagiarism.

But there is a puzzle here. There is a general consensus among historians sid-
ing with Leibniz, such as Jean Etienne Montucla, Jean-Baptiste Biot and Felix
Lefort, and Augustus De Morgan, that Commercium Epistolicum failed to accom-
plish what Newton meant to achieve, that is, to deliver convincing proof of Newton’s
case against Leibniz.17 The failure of Commercium Epistolicum is supposedly to-
tal; it is claimed that it does not even yield evidence that Newton discovered the
calculus before Leibniz, since it deals with topics deemed to be only loosely related
to the calculus. Most notably, the two epistolae that Newton addressed to Leibniz
in 1676, and that were meant to constitute the main proof provided in Commer-
cium Epistolicum that crucial information was passed to the German, were often
described as lacking this very evidence. Leibniz’s remonstration, expressed in the
posthumous “Historia et Origo Calculi Differentialis,” has been considered justified
and correct by many commentators,

They have changed the whole point of the controversy, for in their publication . . .
one finds hardly anything about the differential calculus; instead every other page
is made up of what they call infinite series . . . This is certainly a useful discovery,
for by it arithmetical approximations are extended to the analytical calculus; but it
has nothing at all to do with the differential calculus. They use this sophism, that
whenever his adversary works out a quadrature by addition of the parts by which
a figure is gradually increased, at once they hail it by the use of the differential
calculus [as, for instance, on page 15 of Commercium Epistolicum; see figure 7.5]
. . . Since therefore his opponents, neither from the Commercium Epistolicum that
they have published, nor from any other source brought forward the slightest bit of
evidence whereby it might be established that his rival used this calculus before it
was published by our friend; therefore all the things that they have reported may
be rejected as extraneous to the matter. They have made recourse to the skill of
ranters with the purpose of diverting attention of judges from the matter on trial
to other things, namely to infinite series.18

17 See the apparatus criticus by Biot and Lefort in their 1856 edition of Commercium Epistolicum.
I cite from Montucla’s Histoire (1799–1802). De Morgan authored several revisionist papers con-
cerning the priority dispute. See De Morgan, “On the Additions Made to the Second Edition of
the Commercium Epistolicum” (1848), “A Short Account of Some Recent Discoveries” (1852),
and “On the Authorship of the Account” (1852).
18 “Mutarunt etiam statum controversiae, nam in eorum scripto . . . de calculo differentiali vix
quicquam [invenitur]: utramque paginam faciunt series, quas vocant, infinitae. . . . Utile est inven-
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The defensive policy followed in Commercium Epistolicum might appear, and to
Leibniz surely did appear, as a clever way of shifting the level of discourse in order
to avoid a fair confrontation. But after the publication of Newton’s mathematical
papers it is clear that Newton might have provided very many sources as evidence
of his use of an algorithm equivalent to his rival’s differential calculus. Why did
Newton fail to do so? Why did he engineer Commercium Epistolicum to focus on
infinite series? The easy answer that Newton was just dishonest does not capture the
complexity of his position. Even if one wanted to concede dishonesty in Newton’s
handling of the quarrel with Leibniz, it would have been simply stupid not to provide
evidence as strong as possible in Commercium Epistolicum.19

I believe that most of the perplexities that Commercium Epistolicum has engen-
dered depend upon a lack of understanding of Newton’s intentions and priorities.
At this point, I therefore, devote some space to Newton’s ideas on the nature of
the calculus. What did Newton mean by calculus (or to use his terms, by the
method of series and fluxions) in the context of the priority dispute? How did he
address the issue of how the method had to be published and circulated? Indeed,
the whole question of the priority in publishing the calculus cannot be broached
without asking what terms like calculus and publishing meant for Newton.

As mentioned in chapter 16, printing was just one choice from a spectrum of
means of communication available to him, which included manuscript circulation,
oral communication, correspondence, and insertion of excerpts in books authored
by other geometers. Newton believed that he had indeed already published his
method of series and fluxions.

In Commercium Epistolicum, Newton also revealed that he had a different view
of the nature and importance of the discovery that, he was convinced, Leibniz
had stolen from him. I claim that while Leibniz insisted on the importance of
his discovery and publication of the algorithm for differentiation, Newton and his
acolytes focused on methods of quadrature (namely, integration) as the crucial issue.

Before commenting on Commercium Epistolicum, I briefly note that the con-
text leading to its publication was polarized by matters concerning the inverse,

tum, et appropinquationes Arithmeticas transfert ad calculum Analyticum, sed nihil ad calculum
differentialem. . . . Cum ergo adversarii neque ex Commercio Epistolico, quod edidere, neque
aliunde vel minimum indicium protulerint, unde constet aemulum tali calculo usum ante edita a
nostro; ab his allata omnia ut aliena sperni possunt. Et usi sunt arte rabularum, ut judicantes a
re de qua agitur ad alia diverterent, nempe ad series infinitas.” Leibniz, Mathematische Schriften
(1849–1863), 5, pp. 393, 410. See also Leibniz to Conti (March 29/April 9, 1716): “Lors que
j’eus enfin le Commercium Epistolicum, je v̂is qu’on s’y écartoit entirement du but, & que les
Lettres qu’on publioit ne contenoient pas un mot qui peut faire revoquer en doute mon Invention
du Calcul des Differences dont il s’agissoit. Au lieu de cela je remarquay qu’on se jettoit sur les
Series.” Correspondence, 6, pp. 305–6. This letter, now lost, is reproduced in Raphson, History
of Fluxions (1715), pp. 103–11.
19 For a well-balanced view of this question, see Hall, Philosophers at War (1980), pp. 188–9.
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not the direct, method. Indeed, the priority dispute began in 1699 with an ac-
cusation of plagiarism addressed to Leibniz that was encapsulated in a work by
Fatio on the brachistochrone, Lineae Brevissimi Descensus Investigatio Geomet-
rica. Fatio was using fluxions in order to solve a difficult problem in the inverse
method. The more proximate cause of the quarrel, Keill’s paper on central forces
(1708), was also devoted to the inverse method: the offending stab against Leib-
niz occurred in a paper devoted to a fluxional treatment of the inverse problem
of central forces. This problem in mathematical dynamics, which was broached in
terms of integration of differential equations, was to become a cause célèbre in the
dispute between the Newtonians and the Leibnizians. When Commercium Epis-
tolicum began to take shape in Newton’s hands, the attention of mathematicians
was caught by quadrature problems. The polemics between the brothers Bernoulli,
or between Johann Bernoulli, Jacopo Riccati, and Jacob Hermann in the Giornale
dei Letterati, were all concerned with inverse problems of quadrature. The chal-
lenges that Bernoulli delivered in 1696 were again on the inverse method (Methods
1, 2, and 3; see §8.4). Leibniz’s insistence on the direct method, his pride in be-
ing the inventor of the algorithm for differentiation, appears unique. Perhaps he
could share enthusiasm in researches on the direct method only with mathemati-
cians like Varignon and L’Hospital, who were considered second-rank by the top
winners of the French Academy prizes. Johann Bernoulli could easily sell the di-
rect method to L’Hospital, but he was reluctant to pass his results on integration
both to L’Hospital and to Varignon. The integral calculus was what he consid-
ered precious, and he jealously guarded it as his own province. It is thanks to his
knowledge of integration that he established his reputation in the Malebranchiste
circle in 1691; it is the discovery of integral calculus that he claimed as his own ac-
complishment in “Epistola pro Eminente Mathematico” (1716), addressed against
Keill.

When Newton engineered his reply to Leibniz, it was natural for him to turn to
the inverse method as the crucial issue. Indeed, Commercium Epistolicum begins
in Ad Lectorem with the statement that the controversy relates to

a general method of resolving finite equations into infinite ones, and applying these
equations both finite and infinite, to the solution of problems by the proportions of
the momentary augments of nascent and vanishing quantities.20

When one analyzes the mathematical examples adduced in Commercium Epis-
tolicum, it emerges that Newton and his acolytes who were slavishly editing it

20 “Newtonus . . . habuit jam tum Methodum generalem aequationes finitas in infinitas resol-
vendi, & aequationes tum finitas tum infinitas applicandi ad Problemata solvenda, ope propor-
tionum Augmentorum momentaneorum Quantitatum nascentium & augescentium.” Commercium
Epistolicum (1713), p. ii.
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were referring to the inverse method of fluxions applied to problems of quadra-
ture. This method consisted in expressing the ratio between fluxions (or, equiv-
alently, moments) ẏ/ẋ (in Leibnizian terms, between differentials) as an equation
f(ẏ, ẋ, x, y) = 0, resolving the equation into an infinite series, and integrating
term-wise (§7.4).

Here is a typical example. On page 15 of Commercium Epistolicum one finds
a footnote to De Analysi—reproduced in its entirety roughly at the beginning of
Commercium Epistolicum—which claims that what is presented is “an example of
calculation by the moments of fluents.”21 This claim was an offending one for Leib-
niz.22 On this page one finds a rectification of the circle’s arc, namely, a quadrature,
achieved via power series expansion and term-wise integration (see §7.4 and figure
7.5). The footnotes that mark, according to the editors of Commercium Epis-
tolicum, examples of the method of fluxions are invariably referred to quadratures.

It is interesting to turn to the two epistolae, which together with De Analysi
constitute the main evidence provided in Commercium Epistolicum. The two epis-
tolae contain a great deal of information about quadrature techniques achieved via
infinite series, and in the epistola posterior the higher quadrature techniques of the
two catalogues of curves are also hinted at. In Commercium Epistolicum the two
anagrams are deciphered and the second commented on by a long footnote that
reveals Newton’s priorities; it ends with a triumphant “no one doubts that Newton
is the first discoverer of these rules.” What is the claim of priority stated in this
footnote?

In his letters Newton reduced analysis by fluents and their momenta in equations,
whether infinite or finite, to four rules. By the first a fluent is extracted from
binomials, and so from any non-affected equations whatever by an infinite series,
and at the same time it yields the moment of the fluent, at whose vanishing the
series returns to a finite equation. [That is, the first rule is, expand the integrand via
the binomial theorem and integrate term-wise; see §7.4.] By the second the fluent
is extracted from affected equations not involving the fluxion. [That is, the second
rule is, given a polynomial equation f(x, y) = 0, expand y as a fractional power
series in x via analytical parallelogram and integrate term-wise; see §7.5.] By the
third the fluent is extracted from affected equations which at the same time involve
the fluxion. [That is, the third rule corresponds to Cases 1 and 2 of Problem 2 of De
Methodis; see §8.4.2 and figure 8.11.] By the fourth the fluent is elicited from the
conditions of the problem. [That is, the fourth rule is the method of undetermined
coefficients.]23 The first two rules are put at the beginning of the former letter [the

21 “Exemplum calculi per Momenta fluentium.” Commercium Epistolicum (1713), p. 15 (p. 84,
2d edition).
22 See the quotation from Leibniz’s “Historia et Origo Calculi Differentialis” in this section.
23 Doubts about the interpretation of the fourth rule are clarified by Newton in the “Account”:
“[H]e deduces converging Series from the Conditions of the Probleme, by assuming the Terms of
the Series gradually, and determining them by those Conditions.” Newton, “Account” (1715), p.
193.
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epistola prior], the last two at the end of this [the epistola posterior]. No one doubts
that Newton is the first discoverer of these rules.24

Newton’s rules were not the rules Leibniz was referring to in claiming his share
in the discovery of the calculus. Leibniz was concerned with the direct method of
differentiation, Newton with the inverse method of quadrature.

The fact that Newton and his acolytes focused on the use of series in the inverse
method (integration) rather than on the direct method (differentiation) is supported
by the attribution that one encounters repeatedly in their writings, of the direct
method to Barrow, James Gregory, and Sluse rather than to Newton and Leibniz.
Wallis, for instance, who was the first in 1693 to print the fluxional notation and
algorithm in the second volume of his Opera, stated in his commentary that

akin to this method [the direct method of fluxions] there is on the one hand the
method of Leibniz, and on the other hand that method, older than either, which Dr
Isaac Barrow has expounded in his Lectiones Geometricae: and this is acknowledged
in the Acta Lipsica (Jan 1691).25

Acta Lipsica was Acta Eruditorum (published in Leipzig), and the reference is to a
paper in which Jacob Bernoulli claimed that Leibniz’s differential calculus was the
same as Barrow’s.26 Of the same opinion was David Gregory, who in the opening
lines of his Isaaci Newtoni Methodus Fluxionum made it clear that both Leibniz’s
and Newton’s methods “slightly differ only in name” and “flow easily from Barrow’s
Method of Tangents treated in the 10th chapter of his Lectiones Geometricae.”27

Wallis and Gregory were simply repeating what Collins had reported to Wallis in
the late 1670s.28

24 “Analysin per Fluentes & earum Momenta in aequationibus tam infinitis quam finitis, Newtonus
in his Epistolis ad regulas quatuor reduxit. Per primam extrahitur Fluens ex Binomiis, adeoque
ex aequationibus quibuscunque non affectis in Serie infinita, & Momentum fluentis simul prodit,
quo evanescente Series in Aequationem finitam redit. Per secundam extrahitur Fluens ex aequa-
tionibus affectis Fluxionem non involventibus. Per tertiam extrahitur Fluens ex aequationibus
affectis Fluxionem simul involventibus. Per quartam eruitur Fluens ex conditionibus Problema-
tis. Regulae duae primae in principio Epistolae superioris, duae ultimae in fine hujus ponuntur.
Harum Regularum Newtonum esse inventorem primum nemo dubitat.” Commercium Epistolicum
(1713), p. 86. Emphasis supplied.
25 “Huic Methodo affinis est tum Methodus differentialis Leibnitii, tum utraque antiquior illa
quam Dr Is. Barrow in Lectionibus Geometricis exposuit. Quod agnitum est in Actis Leipsiensis
(Anno 1691, mense Jan.) à quodam qui methodum adhibet Leibnitii similem.” Wallis, Opera, 2,
p. 396.
26 See §8.1.4.
27 Gregory refers also to Tschirnaus: “Calculus Differentialis Leibnizij et Methodus Fluxionum
Newtoni, prior in Actis Lipsiae Octobris 1684, posterior a Wallisio Volumine altero Operum Math-
ematicorum 1692, tantum nomine tenus differant, ut et Tschirnausij Methodi Decembri 1682 et
Martio 1683; quae omnes facile fluunt ex Methodo Tangentium Barrovij Lect: 10. Geom: tradita.”
Christ Church (Oxford), f. 1r.
28 Correspondence, 2, pp. 242–3.
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This interpretation seems not to have bothered Newton too much. Indeed, in
Commercium Epistolicum, drafted under Newton’s careful supervision, one repeat-
edly finds the direct method attributed to Barrow, James Gregory, and Sluse. In
commenting on Leibniz’s letter dated June 11/21, 1677, in which the rules of the
differential calculus were first displayed to Newton, the editors of Commercium
Epistolicum noted that “the very same thing achieved Barrow . . . and by a very
similar calculus.”29 Similarly, John Keill in his answer to Leibniz published in
Philosophical Transactions for 1711, which was reproduced at the end of Com-
mercium Epistolicum, stated that Sluse, James Gregory, and Barrow had methods
for drawing tangents to curves “which do not differ too much from the method of
fluxions.”30

These statements, which appeared with Newton’s approbation, have often been
considered counterproductive. For instance, Montucla wrote,

Is it not contradictory to say that Leibniz’s method, described in the letter which we
are considering [Leibniz to Oldenburg (June 11/21, 1677)], is just that of Barrow,
and that it is the same as the one that Newton had communicated in 1669, which
is claimed to be his method of fluxions? Because from this it follows that Newton’s
method is equivalent to Barrow’s, excepting the notation.31

It is highly unlikely that Newton allowed the attribution of the direct method to
Barrow because of careless editing of Commercium Epistolicum. One knows from
the many manuscripts that Newton left that he supervised its publication with an
almost obsessive attention to details of forensic relevance.32

29 “Idem fecit D Barrow in ejus Lect. 10, Anno 1669 impressa, idque calculo consimili.” Com-
mercium Epistolicum (1713), p. 88.
30 “Sciendum vero primum est, Celeberrimos tunc temporis Geometras, Dominos Franciscum Slu-
sium, Isaacum Barrovium, & Jacobum Gregorium, Methodum habuisse qua Curvarum Tangentes
ducebant, quae a Fluxionum methodo non multum abludebat.” Keill opines that if one substitutes
Gregory’s symbol o, or Barrow’s a and e with ẋ and ẏ or dx and dy one obtains Newton’s and
Leibniz’s methods respectively. Commercium Epistolicum (1713), p. 112.
31 “D’ailleurs n’y a-t-il pas de la contradiction à dire que la méthode de Leibnitz, décrite dans
la lettre dont nous parlons [Leibniz to Oldenburg (June 11/21, 1677)], n’est que celle de Barrow,
et qu’elle est la même que celle que Neuton [sic] avoit communiquée dès 1669, qu’on prétend être
son calcul des fluxions. Car il suivroit delà que la méthode même de Neuton ne seroit que celle
de Barrow à la notation près.” Montucla, Histoire des Mathématiques (1799–1802), 3, p. 107.
When Montucla died, pp. 1–336 of vol. 3 of his new edition of the Histoire had already been
proofread and printed; the rest was revised by J. de Lalande (and Lalande availed himself of the
help of several scholars; most notably S. F. Lacroix revised pp. 342–52 on integration of partial
differential equations). See footnotes on pp. 336, 342, 344, 349 in vol. 3. Since volumes 3 and 4
of the Histoire are a cooperative effort, it is improper to attribute them to a single author. We do
not know how heavily Montucla’s text was changed, especially after p. 336. It is fair, I surmise,
to attribute to Montucla quotations from pp. 1–336 of vol. 3.
32 MP, 8, pp. 539–60.
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Hall has an interesting explanation. According to his reading, one should in-
terpret the pronouncements concerning Barrow’s priority in the discovery of the
direct method as an attempt to deflate Leibniz’s challenge. Since it was difficult to
gather evidence that Leibniz had obtained the direct method from Newton, because
of Newton’s secrecy on this point, it was functional to the maneuvers of the Royal
Society’s committee to state that the method was already at Leibniz’s disposal in
Barrow’s Lectiones Geometricae, which Leibniz acquired while in London in 1673.33

Further, in the Newtonian camp there must have been some awareness of the fact
that Leibniz’s algorithm for the direct (differential) method was superior to what
Newton could offer, especially before the invention of the dotted notation in the
1690s. Newton in the 1670s (e.g, in De Methodis) had used letters such as n, m, l
for the first fluxions of variable fluents x, y, z, and p, q, r for the second fluxions.
Newton’s early notation makes it unclear which fluxions belong to which variable.
In Commercium Epistolicum and in Jones’s 1711 edition of Newton’s mathematical
tracts, Newton’s early manuscripts were edited to introduce the dotted notation,
giving the impression it had been employed by Newton in his youth. Thus, accord-
ing to Hall’s analysis, attributing the direct method to Barrow rescued Newton from
confronting Leibniz on a terrain that was unfavorable to Newton. There is certainly
much truth in this interpretation, but I believe one should add that Newton, to-
gether with most of his contemporaries, showed little interest in the direct method
for drawing tangents and in its algorithm, and was rather secretive and sensitive
regarding his highly algebraic techniques in the inverse method (integration).

For modern readers the calculus is a deductive theory based on definitions (of
limit, derivative, differential, etc.) and basic rules for differentiation. The crucial
questions for modern interpreters have often been, Who was the first to discover
these rules? and Who was the first to publish them? As a matter of fact, it is easier
to find the rules of the differential calculus in Leibniz’s “Nova Methodus” than in
any of Newton’s works. But these questions do not address what was crucial for
Newton. A formal theory and its basic rules were not a matter of great interest for
him. Rather, he was concerned with a method for resolving geometrical problems
analytically via the method of moments and series, and he was, of course, much
concerned also with the “splendid” geometrical constructions “worthy of public
utterance.” This method, in his opinion, showed its power only when tested against
hard problems in squaring of curves or in the inverse method of tangents. Thus he
saw himself as the discoverer not of simple rules for finding tangents but of a secret
fountain that allowed him to solve such inverse problems.34

33 Hall, Philosophers at War (1980), p. 55.
34 There is an analogy here with Newton’s attitude toward the three laws or axioms of motion of
the Principia. Recent historiography on the Principia has put much stress on the laws. Questions
such as, Was Newton indebted to Descartes or Galileo? Were his laws formulated in terms different
from the ones accepted nowadays? When were Newton’s laws applied in the eighteenth century?
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The following remark from the third volume of Montucla’s Histoire can be cited
as an example of how, from a perspective different than Newton’s, the epistola
posterior, one of the chief evidential documents of Commercium Epistolicum, can
be viewed as defective:

Here we note that, after having read and re-read this letter [the epistola poste-
rior ], we find only the method of fluxions described as far as its consequences and
advantages, but not as far as its principles.35

But Newton, unlike Leibniz, had always presented his analytical method of fluxions
as a panoply of successful problem-solving techniques: its consequences and its
advantages were his priority.

At this point, one can summarize the different positions held by the two com-
batants as follows. When evaluating the merits of his analytical method of fluxions
over Leibniz’s calculus, Newton focused on the rules for squaring curves of the in-
verse method. Leibniz instead based his claims as a discoverer of the calculus on the
rules for the direct differential calculus. For Leibniz, too, the calculus was a heuris-
tic tool, but he valued the systematic use of its symbolism and its logical structure
highly. From his viewpoint, the rules of the direct differential calculus came first.
By contrast, Newton never paid great attention to the rules of the direct method.
For him the analytical method of fluxions was a patchwork of techniques that he
did not attempt to systematize into a logical structure. The analytical method of
fluxions was, in his opinion, in the end nondemonstrative. It was only its synthetic
and geometrical form that could achieve mathematical certainty and that there-
fore needed a deductive structure whereby one posited legitimate postulates at its

Was Newton able to express F = ma? Did he understand the second law as valid for discontinuous
impacts rather than for continuous forces? have occupied much attention and stimulated important
research. But Newton did not consider the laws his most important contribution. He conceived
the first two laws as belonging to the background knowledge of his days, attributing them to
Galileo. His commentators rarely paid much attention to them. Typically, Gregory began his
detailed commentary on the Principia (“Notae in Newtoni Principia Mathematica Philosophiae
Naturalis,” Royal Society, MS 210) with Section 1 on first and ultimate ratios. He did not waste a
single word on commenting on the definitions, the laws, and their corollaries and scholia. Nowadays
we identify Newton’s mechanics with the three laws of motion and think about mechanics as a
deductive axiomatic mathematical structure. And what can be more important than the axioms
in an axiomatic structure? Newton and his acolytes instead understood the Principia as a treatise
where mechanical problems are analytically resolved and synthetically constructed. Consequently
their agenda and priorities differed from ours. The laws of motion were seen as expressing causal
relations, the equivalent of artificial tracing mechanisms in organic geometry and the fluxional
method, between forces and motions: the whole business of philosophy was applying analysis and
synthesis to deduce motions from forces, and vice versa (see chapters 13 and 14).
35 “Nous remarquons ici qu’après avoir lu et relu cette lettre, nous y trouvons seulement cette
méthode [des fluxions] décrite, quant à ses effets et ses avantages, mais non quant à ses principes.”
Montucla, Histoire des Mathématiques (1799–1802), 3, p. 103.
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beginning (see chapter 9). Consequently, Newton displayed the analytical method
by successful applications to specific examples; he was convinced that its value lay
in the fact that it permitted the resolution of hard quadrature problems. A typi-
cal statement that Newton anonymously circulated in 1717 can be cited as further
evidence of his viewpoint:

In the year 1684 Mr Leibnitz published only the Elements of the Calculus differen-
tialis & applied them to questions about Tangents & Maxima & Minima as Fermat
Gregory & Barrow had done before, & shewed how to proceed in these Questions
without taking away surds, but proceeded not to the higher Problemes. The Prin-
cipia Mathematica gave the first instances made publick of applying the Calculus
to the higher Problemes.36

I do not detail here the intricate series of events that followed after the publica-
tion of Commercium Epistolicum. Most notably, Leibniz, in the “Charta Volans,”
his remarks on Keill’s review of Commercium Epistolicum printed in French in Jour-
nal Literaire, and his letters to Conti was able to make his protestations known.
Pressed by Leibniz’s counterattacks, Newton and his acolytes had to abandon what
appears to me the adamant coherence of Commercium Epistolicum. They had to
explain that series were not extraneous to the issue, that Newton already had a
notation and rules “not impeded by surds” for drawing tangents, and that he had
an algorithm equivalent to the “véritable Calcul des différences.” They had to
explain why such an algorithm was not, in their opinion, so important; they had
to justify many of their editorial choices behind the Royal Society’s screed. It is
due to Newton’s and Leibniz’s intellectual stature that these trivialities were soon
replaced, or better intertwined, with a dialogue about a broad-ranging series of is-
sues concerning the nature of mathematics, the status of geometry and algebra, the
legitimacy of infinitesimals, and many more philosophical matters. These themes
were touched on by Newton in the “Account” of Commercium Epistolicum that
appeared anonymously in Philosophical Translactions for 1715.

17.3 The “Account”

It would be reductive to read the “Account” (1715) only as a polemicist essay. For
my purposes, it is interesting to turn to some passages that reveal Newton’s views
on mathematical method in the most explicit way.

In the “Account,” speaking of himself in the third person, Newton made clear
that, in his opinion, Leibniz had only approached the analytical, heuristic part of
the problem-solving method:

36 Cambridge University Library, Add. 3968.41, f. 448r, cited in MP, 8, p. 513. This statement,
written in 1716, appeared on page 117 of the anonymous appendix (pp. 111–9) to the 1717 reissue
of Raphson, The History of Fluxions (1717), that Newton wrote.
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Mr. Newton’s Method is also of greater Use and Certainty, being adapted either
to the ready finding out of a Proposition by such Approximations as will create no
Error in the Conclusion, or to the demonstrating it exactly; Mr. Leibnitz’s is only
for finding it out.37

So according to Newton, Leibniz had achieved only the first stage of the Pappian
method and had not attained the exact, certain demonstration. The latter had to
be carried out in purely geometrical terms (see chapter 9).

Further, Newton noted that in his method of first and ultimate ratios no in-
finitesimals occur, everything being performed according to limiting procedures.
From Newton’s point of view, the avoidance of infinitesimals and the possibility of
interpreting algebraic symbols as geometrical magnitudes had the double advantage
of endowing his method with referential content and being consonant with ancient
mathematics:

We have no Ideas of infinitely little Quantities & therefore Mr Newton introduced
Fluxions into his Method that it might proceed by finite Quantities as much as
possible. It is more Natural & Geometrical because founded upon primae quanti-
tatum nascentium rationes [first ratios of nascent quantities] wch have a Being in
Geometry, whilst Indivisibles, upon which the Differential Method is founded have
no Being either in Geometry or in Nature. There are rationes primae quantitatum
nascentium, but not quantitates primae nascentes. Nature generates Quantities by
continual Flux or Increase, and the ancient Geometers admitted such a Generation
of Areas and Solids . . . . But the summing up of Indivisibles to compose an Area
or Solid was never yet admitted into Geometry.38

Nature and geometry are the two key concepts, allowing Newton to defend his
synthetic method of fluxions because of its continuity with ancient tradition as well
as because of its ontological content.

Finally, Newton insisted on the fact that the emphasis with which Leibniz praised
the power of his symbolism was excessive. Algorithm is certainly important, but it
has to be viewed only as a component of the method:

Mr Newton – he wrote – doth not place his Method in Forms of Symbols, nor
confine himself to any particular Sort of Symbols.39

Several notations are possible and equally acceptable. Newton was proud to show
that he could frame his mathematics in different notations. Most notably, the draw-
ing of tangents—the direct algorithm on which Leibniz insisted so much—could be
achieved deploying different notations, or even without computation, making re-
course to kinematic compositions of velocities (see §1.3 and figure 1.1). Newton

37 Newton, “Account” (1715), p. 206.
38 Newton, “Account” (1715), pp. 205–6.
39 Newton, “Account” (1715), p. 204.
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thought that the symbolical, algorithmic stage of analytical resolution had ulti-
mately to be discarded from composition, and that only composition was worthy of
being published (§4.5). Why then worry so much about a question of notation, as
Leibniz did?

I conclude this chapter by pointing out, once more, that in these pronouncements
one detects a tension and contradiction between Newton’s deflationary statements
concerning notation and his prodigiously fertile algebraic mathematical practice.
Some of his mathematical achievements were possible thanks to his ability to tres-
pass the boundaries of geometrical representability. This consideration applies es-
pecially to those results in the inverse method of fluxions that he so cherished. As
Newton observed in the epistola posterior when comparing his squaring techniques
with Leibniz’s transmutation method,

And indeed in the course of the progression [of the curves listed in the second cat-
alogue; see §8.4.4] all soon became very complicated, so that I hardly think they
can be found by the transformation of the figures, which Gregory and others have
used [a reference to the method of transmutation delivered in Leibniz’s reply to the
epistola prior ; see §16.3.5, which Newton compared with the geometrical quadra-
tures of James Gregory], without some further foundation. Indeed I myself could
gain nothing at all general in this subject before I withdrew from the contemplation
of figures and reduced the whole matter to the simple consideration of ordinates
alone.40

The “simple consideration of ordinates” is, of course, the technique of variable sub-
stitution that allowed Newton to construct his second catalogue of curves, where he
reduced the squaring of a curve whose ordinate is y and abscissa z to the squaring of
a conic whose ordinate is v and abscissa x. This defense of the power of symbolism
in freeing the mind from the “contemplation of figures” is almost unique in New-
ton’s writings yet is revealing of the gap between his views on mathematical method
and his mathematical practice. Indeed, the preceding statement is a criticism of
Leibniz’s method, which, being based on a geometrical transmutation of geometri-
cal infinitesimals surface components, is deemed less powerful compared with the
purely formal substitutions of variables that characterize Newton’s quadrature tech-
niques. That is, while in Leibniz’s method the curve is squared by decomposing the
surface bounded by it into infinitesimal components, Newton, in order to achieve
the quadratures of the second catalogue, considered the algebraic relation between
abscissa and ordinate, abstracting from geometrical representation.41

40 Correspondence, 2, p. 138.
41 See also Newton’s comments in his letter to Collins dated November 8, 1676: “‘As for ye
apprehension yt M. Leibnitz’s method may be more general or more easy then mine, you will not
find any such thing . . . As for ye method of Transmutation in general, I presume he has made
further improvements then others have done, but I dare say all that can be done by it may be
done better wthout it, by ye simple consideration of the ordinatim applicatae.” Correspondence,
2, p. 179.
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The “Account” ends with a long paragraph opened by the words, “[I]t must
be allowed that these two Gentlemen differ very much in Philosophy.”42 Newton
proceeded to succinctly list a series of philosophical points of disagreement between
himself and Leibniz, from the role of experiments to the cause of gravity, from the
nature of miracles to the power of God on natural phenomena. The mathematical
controversy expanded in a complex philosophical confrontation that culminated in
the correspondence between Leibniz and Samuel Clarke.43

42 Newton, “Account” (1715), p. 224.
43 See Hall, “Newton versus Leibniz” (2002).
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After this detailed analysis of Newton’s writings on mathematical method it is time
to briefly evaluate what has been achieved. Does Newton emerge as a creative and
innovative philosopher of mathematics? Clearly, the answer is no. From this view-
point, he does not compare with Descartes and Leibniz. His methodological views
were framed in terms that are commonplace in the history of seventeenth-century
mathematics. Newton’s conceptions on analysis and synthesis, or on the merits
of geometry over algebra, were shared by many of his contemporaries, including
Hobbes, Fermat, Huygens, and Barrow. Descartes and Leibniz, would have sub-
scribed to many of Newton’s statements concerning the certainty of geometry and
the concealed analysis of the ancients.1 Devoting attention to commonplaces is,
however, rewarding for a historian, since commonplaces can be put into use for very
different purposes by different historical actors. As I have tried to show, these com-
monplaces meant something particular to Newton that he was at pains to enforce
in his milieu. It is my fascination with the idiosyncratic peculiarity of Newton’s
views on mathematical method that motivated this book.

Eminently Newton was a mathematician, and like many great mathematicians he
was an innovator, an opportunist, and careless about rigor in his forays into virgin
territory. His mathematical practice lacks systematicity, it appears as a patchwork
of problem-solving techniques that is difficult to schematize. When engaged in
solving a problem, he could make recourse to his knowledge of Apollonian geometry,
to Wallisian inductions, or even to instruments, such as rotating rulers, that he
manipulated. In some instances Newton relied upon unproven statements, which
turned out to be deep truths that he just glimpsed. Such lack of systematicity is
often caused by the fertility of his mind, by the fact that he excelled in mathematical
fields so far apart one from the other. He could produce interesting results in infinite
series as well as in projective geometry, in the theory of equations as well as in
mathematical physics.

Newton’s unsystematic but efficient mathematical practice was at odds with his
philosophical agenda. He sought certainty in mathematics, and never ceased to see
mathematics as the vehicle for delivering certainty in natural philosophy. He was
opposed to the anticlassical stance that he perceived in Descartes’ Géométrie and
portrayed himself as indebted to Euclid and Apollonius rather than to the moderns.

1 See, e.g., Descartes, Meditationes de Prima Philosophia (1641) (AT, 7, pp. 155–6); Leibniz’s
review of Arithmetica Universalis in Acta Eruditorum (November 1708), pp. 519–26, reproduced
in MP, 5, pp. 23–31 (on p. 30).
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This notwithstanding, his mathematical methods are a Cartesian heritage. He tried
therefore to reformulate his analytical methods of discovery into a synthetic form,
a form in which all reference to algebraic analysis is suppressed—the equation is
neglected—and the purity, unity, and beauty of geometry recovered. This was
largely a failure.

The fact is that the symbolical tools in the common and new analyses that Newton
mastered so well were becoming increasingly autonomous from geometry. When
he turned algebra into synthetic constructions, he relied on aesthetic criteria of
exactness and simplicity that were arbitrary and unjustified (see part II). When he
reformulated the new analysis into the synthetic method of fluxions he could not
capture the eminently symbolical character of his quadrature techniques (see part
III). As he wrote to Leibniz, he could achieve his quadratures by “withdrawing from
the contemplation of the figures.” His reticence in making explicit all the quadrature
techniques in the Principia rendered some portions of his masterpiece unintelligible
exactly because the geometrical constructions of the results achieved via the inverse
method of fluxions could not—contrary to what he maintained—reveal the analysis
even to very skillful mathematicians (see part IV). The geometrical constructions
that Descartes and Newton conceived were remote from the analytical symbolic
process of discovery. Newton was keenly aware of this asymmetry between modern
algebraic analysis and geometrical synthesis and tried hard to recover and extend the
analytical geometrical process of discovery to curvilinear figures. But this did not
lead him to recover the unity between analysis and synthesis that, he was convinced,
characterized the mathematical practices of the ancients. What he obtained was a
series of interesting results in projective geometry that never reached systematicity
in his hands. Newton’s deployment of the analysis/synthesis dichotomy was basic
to his reflections on the role of mathematics in the mathematization of natural
phenomena. But here also he did not encounter success; he was able to formulate
some rhetorical pronouncements on the method of analysis and synthesis in natural
philosophy that do not stand up to close scrutiny (see part V).

I have tried to sketch a diachronic image of Newton the philosopher of math-
ematics. This book has followed him from his early unsystematic inventive re-
searches carried on in the 1660s and his bold programmatic statement on the role
of mathematics in natural philosophy (1670), to his more mature lucubrations in
the mid-1670s, when as Lucasian Professor he began to study ancient geometry and
to position himself against Cartesian mathematics. It has delved into the tensions
that characterized the Principia (1687) and into the period of reformulations that
followed its publication, when Newton mused on the myth of the ancients’ wisdom.
It has examined how he modified his publication strategy because of the changes
in the mathematical scene in England and on the Continent, most notably because
of Leibniz’s entrance into the arena. This development, this tortuous and suffered
trajectory, also has something to tell about Newton, about the seriousness with
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which he faced the problem of mathematical certainty and about the failures he
experienced.

The lack of originality and aporetic character of Newton’s views on mathematical
method, and the tensions that these views created with the mathematical methods
that he practiced, are evident. And perhaps these drawbacks and failures are the
reason this fragment of Newton’s work has been ignored so far. But this fragment is
important for understanding significant aspects of Newton’s intellectual biography
as it interacted with his views on the ancients and moderns, on Cartesianism, and
on the role of mathematics in natural philosophy. This fragment also determined
Newton’s approach to publication, shaped his relationships with his acolytes, and
influenced his strategy in the polemic with Leibniz. I hope that this book, by
looking at these aspects of Newton’s thought and work, will be of some help to
Newtonian scholarship.





A Brief Chronology of Newton’s Mathematical Work

1661 enters Trinity College, Cambridge
1664? fruitful relationship with Barrow begins shaping his mathematical ideas
1664–1665 notes on Wallis’s Arithmetica Infinitorum (1655) lead to binomial series
1665–1666 anni mirabiles culminate in the October 1666 Tract on Fluxions
1669 work on infinite series applied to quadratures in De Analysi sent to Collins
1669 appointed Lucasian Chair

1670–1671 work on analytical method of fluxions in De Methodis left unfinished
1670–1672 in Optical Lectures the role of geometry in natural philosophy is defended
1672 elected Fellow of the Royal Society (January 1/11, 1671/72)
1672 the polemic on “New Theory about Light and Colors” begins
1673 Newton receives a copy of Huygens’s Horologium Oscillatorium
1670s (mid) work on interpolation
1676 epistola prior and epistola posterior sent to Leibniz
1670s (late) Pappus problem solved in “Solutio Problematis Veterum de Loco Solido”
1670s (late) “Errores Cartesij Geometriae”: criticisms against Descartes
1670s (late) work on classification of cubics
1679–1680 correspondence with Hooke on planetary motions

1680? work on synthetic method of fluxions in “Geometria Curvilinea”
1683–1684 Lucasian Lectures on Algebra deposited
1684 Halley visits Newton; “De Motu Corporum” sent to Royal Society
1684–1686 composition of Principia
1685 binomial series and quadratures via infinite series in Wallis’s Algebra
1685 Craig visits Newton and receives the prime theorem
1687 publication of Principia

1691–1692 composition of De Quadratura
1690s (early) work on the restoration of Porisms in “Geometriae Libri Duo”
1693 fluxional notation and quadrature methods in vol. 2 of Wallis’s Opera
1694 Gregory visits Newton; receives information on Newton’s

mathematics and a letter on the use of quadratures in Principia
1690s (mid) evidence of Newton’s endorsement of the myth of a prisca sapientia
1690s (mid) Newton-Cotes formula in “Of Quadrature by Ordinates”
1695 composition of Enumeratio
1696 Newton moves to London as Warden of the Mint
1699 Fatio’s Lineae Brevissimi Descensus; Leibniz accused of plagiarism
1699 full text of the two epistolae for Leibniz in vol. 3 of Wallis’s Opera

1703 elected President of the Royal Society
1704 De Quadratura and Enumeratio published in appendix to Opticks
1705 Leibniz’s anonymous review of De Quadratura
1706 Quaestio 23 in Optice on analysis and synthesis in natural philosophy
1707 Whiston supervises the publication of Arithmetica Universalis



390 A Brief Chronology of Newton’s Mathematical Work

1710 Leibniz accused of plagiarism in Keill’s “Epistola” (1708)
1711 De Analysi, Methodus Differentialis, De Quadratura, and Enumeratio

published by Jones in Newton, Analysis per Quantitatum (1711)
1711 (late) Leibniz writes to Sloane asking for Keill’s apology
1713 (early) Commercium Epistolicum distributed free of cost
1713 second edition of Principia
1715 anonymous “Account” of Commercium Epistolicum
1726 third edition of Principia
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Paris: Lefévre, 1844.
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le Secours du Calcul Differentiel, les Proprietés, ou Affections Principales des Lignes
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