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THE CAMBRIDGE COMPANION TO

NEWTON

Sir Isaac Newton (1642-1727) was one of the greatest scien-
tists of all time, a thinker of extraordinary range and creativ-
ity who has left enduring legacies in mathematics and the
natural sciences. In this volume a team of distinguished con-
tributors examines all the main aspects of Newton’s thought,
including not only his approach to space, time, and univer-
sal gravity in his Principia, his research in optics, and his
contributions to mathematics, but also his more clandestine
investigations into alchemy, theology, and prophecy, which
have sometimes been overshadowed by his mathematical
and scientific interests. New readers and non-specialists
will find this the most convenient and accessible guide to
Newton currently available. Advanced students and special-
ists will find a conspectus of recent developments in the
interpretation of Newton.
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PREFACE

At the time of his death in 1996, our colleague Sam Westfall had
begun to plan a Newton volume for the Cambridge Companions
series. He had made contact with potential contributors, but had not
reached the final stages of planning. When Cambridge University
Press invited us to succeed Sam as editors of this volume, we re-
ceived generous help from his wife, Gloria. For this we are profoundly
grateful. Studying Sam’s preliminary table of contents revealed to us
that his orientation to a book for this series, though reflecting his
deep scholarship, was nevertheless entirely different from ours. For
practical purposes, therefore, we started afresh. Still, it was a source
of constant regret that we could not draw on Sam’s wisdom and
knowledge of Newton, a loss aggrandized by the tragic early death of
Betty Jo Teeter Dobbs.

Our original plan for this book included a chapter on the recep-
tion and assimilation of Newton’s science among late-seventeenth-
and eighteenth-century philosophers. Two considerations led us to
abandon this plan and restrict attention to philosophers with whom
Newton actually interacted, most notably Leibniz. First, the num-
ber of philosophers such a chapter ought to examine is too large, and
their individual responses to Newton are too diverse, to be manage-
able within the scope of one or two chapters of reasonable length.
Second, many of these responses shed more light on the philosopher
in question than on Newton, often because they are responses to a
caricature of Newton’s science. There is a book to be written that
examines philosophers’ reactions to Newton’s science from Locke
through Kant (if not through Mill and Whewell, or even Mach),
carefully comparing their construals of that science both with what

xiii
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Newton actually did and with the contemporaneous responses to it
by “scientists” from Huygens through Laplace. Such a book, how-
ever, would not be a Companion to Newton in the sense of this
series.

Hilary Gaskin, our editor at Cambridge University Press, was ex-
tremely helpful to us in many ways in preparing this volume. It is
a far better volume than it would have been without her. We also
acknowledge Frances Brown’s effort in copy-editing, Andrew Janiak’s
help in reading the page-proofs, and Tobiah Waldron’s preparation of
the index.

The editors dedicate this volume to their wives, India and Susan.



I. BERNARD COHEN AND GEORGE E. SMITH

Introduction

Isaac Newton deserves to be included in a series of companions to
major philosophers even though he was not a philosopher in the
sense in which Descartes, Locke, and Kant were philosophers. That
is, Newton made no direct contributions to epistemology or meta-
physics that would warrant his inclusion in the standard list of
major philosophers of the seventeenth and eighteenth centuries —
Descartes, Spinoza, Locke, Leibniz, Berkeley, Hume, and Kant - or
even in a list of other significant philosophers of the era — Bacon,
Hobbes, Arnauld, Malebranche, Wolff, and Reid. The contributions
to knowledge that made Newton a dominant figure of the last mil-
lennium were to science, not to philosophy. By contrast, Galileo,
the other legendary scientific figure of the era, not only published
the most compelling critique of Aristotelian scholasticism in his
Dialogues on the Two Chief World Systems, but in the process
turned the issue of the epistemic authority of theology versus the
epistemic authority of empirical science into a hallmark of mod-
ern times. Although Newton clearly sympathized with Galileo, he
wrote virtually nothing critical of the Aristotelian tradition in phi-
losophy, and the immense effort he devoted to theology was aimed
not at challenging its epistemic authority, but largely at putting it
on a firmer footing. Newton made no direct contributions to philos-
ophy of a similar magnitude. Indeed, from his extant writings alone
Newton has more claim to being a major theologian than a major
philosopher.*

Without dispute Newton was the giant of science in the seven-
teenth and eighteenth centuries, just as James Clerk Maxwell was
the giant of science during the latter nineteenth century. But the
very thought of a companion to Maxwell for non-specialist students

I



2 I. BERNARD COHEN AND GEORGE E. SMITH

in philosophy would seem to be beyond serious consideration. Why
then a companion to Newton?

A superficial answer is that what we now call science was then
still part of philosophy, so-called “natural philosophy” as in the full
title of the work that turned Newton into a legend, Philosophiae
Naturalis Principia Mathematica, or Mathematical Principles of
Natural Philosophy. While historically correct, this answer is se-
riously misleading. Newton’s Principia is the single work that most
effected the divorce of physics, and hence of science generally,
from philosophy. Newton chose his title to parallel Descartes’s
Principia Philosophiae (1644), a work that he viewed as filled with
“figmenta” - imaginings — and that he intended his own Principia
(1687) to supplant, once and for all. Descartes thought of his Principia
as a culmination of his philosophy, laying out not merely a full natu-
ral philosophy to replace Aristotle’s, but also point by point the epis-
temological principles that he had developed in his Meditations. It is
a comment on the radical split between science and philosophy that
because of Newton’s Principia we no longer read Descartes’s Prin-
cipia as central to his philosophy, viewing it instead as Descartes’s
science. Correspondingly, to say that Newton’s Principia is a work
in philosophy is to use this term in a way that it rendered obsolete.

A better answer to why a companion to Newton for philosophers
is that his Principia gave us a new world-view in which a taxon-
omy of interactive forces among particles of matter is fundamental.
This supplanted not only the Aristotelian world-view, but also that
of the so-called “mechanical philosophy” espoused by Descartes
and others in the seventeenth century to replace the Aristotelian,
a view in which physical change takes place strictly through con-
tact of matter with matter. The trouble with this new-world-view
answer is that the new “experimental philosophy” which Newton
put forward as his alternative to the “mechanical philosophy” did
not as such include any ontological claims at all. Rather, its point
was that questions about what there is physically should be settled
purely through experimental inquiry; classical philosophical argu-
ments on issues like whether atoms or vacuums exist should cease
carrying any weight. So, the revolution in physical ontology wrought
by Newton was just an ancillary product of his science, and hence it
too was part of the split between science and philosophy. With this
split, most questions about what physically exists would no longer
fall within the scope of traditional metaphysics.
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The best answer to why a companion to Newton for philosophers
is that Newtonian science created a new problem for philosophy, a
problem that remained at the forefront of philosophy for the next
two hundred years and is still central today. Questions about the
nature and scope of the knowledge we can achieve of the empiri-
cal world have been part of philosophy since Plato and Aristotle. In
part because of the challenge of Pyrrhonic skepticism, they became
especially important in the rise of modern philosophy during the
seventeenth and eighteenth centuries, that is, among philosophers
from Bacon and Descartes through Hume, if not Kant. Philosophical
considerations led virtually all of these philosophers to the same
largely negative conclusion: given the limited character of the in-
formation we receive through our senses, empirical inquiry in itself
cannot establish much in the way of general theoretical knowledge.
For Descartes and Leibniz this meant that empirical inquiry has to
be amply supplemented by philosophical reasoning, an alternative
dismissed by Locke and Hume. On the face of it, the science com-
ing out of Newton’s Principia defied such skeptical conclusions. The
initial problem this science posed for philosophers was to make clear
just what sort of knowledge it was achieving. As the spectacular suc-
cess of this science became increasingly evident during the course
of the eighteenth century, the problem took on the added dimension
of explaining how such knowledge is possible. Both aspects of this
problem have been with us ever since.

The success of the science coming out of Newton’s Principia cre-
ated a second, more indirect problem for philosophy. This science
portrays the natural world as governed by laws. But we are part of
nature and hence to a considerable extent must also be governed by
such laws. The upshot is a tension between our conception of our-
selves as moral, reason-giving beings, on the one hand, and modern
science, on the other, that took root during the eighteenth century
and has again been with us ever since.

The compelling reason for a companion to Newton for philoso-
phers, then, is that Newtonian science has been a backdrop to
modern philosophy in much the way Euclidean geometry was to
philosophy before Newton. One has trouble understanding many of
the writings of philosophers after Newton without taking into ac-
count what they thought, rightly or wrongly, he had done. Newton
was not a philosopher in our present sense of the term. Neverthe-
less, he gave careful consideration to how to go about establishing
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scientific knowledge, reaching conclusions that prima facie conflict
with much of what philosophers have said about modern science.
Even though he did not engage much in metaphysics in the grand
sense of the term, he was more sensitive to issues of metaphysics
than most subsequent scientists have been and also more aware
of the metaphysical foundations implicit in science. Because of the
attention he did give to philosophical concerns, the issues his work
initiated in subsequent philosophy are better understood by putting
them in the context of an accurate picture of what he did.

The goal of this volume is to provide an introduction to Newton’s
work, enabling readers to gain more rapid access to it and to become
better judges of how well subsequent philosophers have dealt with
it. The primary emphasis is on Newton’s science, especially on mak-
ing it accessible to a philosophical audience. The science for which
he is known, however, occupied a much smaller fraction of his to-
tal intellectual life than one might think. Recent scholarship has
made clear that an appreciation of his efforts in such other areas
as theology, prophecy, and alchemy gives added perspective to the
work for which he is best known. Moreover, he lived in a time when
philosophic controversy was at the center of intellectual life. Even
though he wrote little in pure philosophy, he was thoroughly famil-
iar with the philosophic writings of others, especially Descartes, and
consequently his work is highly responsive, often in subtle ways, to
the philosophy of his times.

Because our goal is to acquaint philosophers with the main as-
pects of Newtonian science that actually influenced the develop-
ment of philosophy, the chapters that follow deal primarily with
those writings of Newton that were published in his life-time or soon
thereafter. Nevertheless, almost every chapter draws heavily on the
enormous stock of Newton’s manuscripts and on the scholarship of
recent decades that has used these manuscripts to produce a fuller
perspective on the many facets of Newton'’s intellectual activity.

THE GENUINE NEWTON VERSUS
THE FIGURE OF LEGEND

The philosophic and popular literature on Newton abounds with
misinformation and myths that have saddled the educated public
with continuing misconceptions about him. As the close scrutiny
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given to his unpublished papers over the last fifty years has shown,
Newton is a figure of truly legendary proportions even without the
myths. Nevertheless, the myths and misconceptions seem to have
a life of their own, persisting in spite of the high quality of Newton
scholarship. As Rupert Hall shows in his chapter, some of the myths
arose, at times with assistance from Newton himself, during the
heated priority dispute with Leibniz over the calculus. Many of them,
however, derive either from the philosophic literature or from works
of intellectual history and careless remarks by authors of science
textbooks, and they continue to gain new life from these sources.
One of the goals of the volume is to dispel myths about Newton that
hamper current philosophic research and understanding.

Myths about Newton are too numerous to list here. A few of them,
however, have had such distortive effects on philosophic discussion
as to warrant their being singled out. The most prominent myth
of twentieth-century origin is that Einstein has shown that Leibniz
was correct all along about the relativity of motion. Robert DiSalle’s
chapter shows that the relationship between Einstein’s theories of
special and general relativity and Newton’s theories of motion and
gravity is intricate. Still, one point that is certain is that Einstein
did not show that Leibniz had been correct in his claims about the
relativity of space. For Leibniz denied that there can be any fact
of the matter about whether the Earth is orbiting the Sun, or the
Sun the Earth, and Einstein’s theories do not show this. Newtonian
gravity holds in the weak-field limit of Einsteinian gravity, so that
the former bears the same sort of relationship to the latter that
Galilean uniform gravity bears to Newtonian gravity, allowing the
evidence for the earlier theory in each case to carry over, with suit-
able qualifications about levels of accuracy, to the later theory. More-
over, as Euler showed in the late 1740s, and as Kant learned from
Euler,®> Newton’s approach to space and time is inextricably tied to
his laws of motion, in particular to the law of inertia. Abandoning
Newtonian space and time in the manner Leibniz called for would
entail abandoning the law of inertia as formulated in the seventeenth
century, a law at the heart of Leibniz’s dynamics. In gaining ascen-
dancy over Leibniz’s objections, Newton did not set physics down a
dead-end path from which it was finally rescued by Einstein; rather,
Einstein’s theories of relativity represent a further major step along
the path initiated by Newton.
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Nothing about Newton is better known than the story that he
came upon his theory of gravity while contemplating the fall of an
apple in his mother’s garden when away from Cambridge during the
plague. To quote R. S. Westfall, this story

has contributed to the notion that universal gravitation appeared to Newton
in a flash of insight in 1666 and that he carried the Principia about with him
essentially complete for twenty years until Halley pried it loose and gave it
to the world. Put in this form, the story does not survive comparison with
the record of his early work in mechanics. The story vulgarizes universal
gravitation by treating it as a bright idea.?

Newton definitely did give careful thought at some point during the
late 1660s to the possibility that terrestrial gravity extends, in an
inverse-square proportion, to the Moon. From his papers and corre-
spondence, however, we can clearly see that the earliest date that
can be assigned to his theory of universal gravity is late 1684 or early
1685, during the course of his revision of the tract “De motu.” In
their chapter Bruce Brackenridge and Michael Nauenberg show that
Newton had employed novel mathematics to explore orbital trajec-
tories from an early time. But because Newton did not make use of
Kepler’s area rule in these efforts, they fell significantly short of the
orbital mechanics he developed in the 1680s and that ultimately led
him in a sequence of steps to universal gravity. As I. B. Cohen shows
in his chapter, an important part of this sequence was Newton’s arriv-
ing at new concepts of mass and force that were required for both his
laws of motion and the law of gravity. The theory of gravity was thus
a product of twenty years of maturing thought about orbital motion.

In addition to being historically inaccurate, the bright-idea pic-
ture is an impediment to an appreciation of how complicated and
how revolutionary the Newtonian theory of gravity actually was.
From the point of view of his contemporaries, Newton’s theory con-
sists of a sequence of progressively more controversial claims: from
the inverse-square centripetal acceleration of orbiting bodies to in-
teractive forces not merely between orbiting and central bodies, but
among the different orbiting bodies as well; to the law of gravity
according to which the forces on orbiting bodies are proportional
to the masses of the distant bodies toward which these forces are
directed; and finally to the sweeping claim that there are gravita-
tional forces between every two particles of matter in the universe.
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William Harper’s chapter on Newton’s “deduction” of his theory of
gravity examines how Newton put this sequence forward, invoking
specific evidence for each claim in turn. Even the most outspoken
critics of universal gravity thought Newton had established some of
the claims in the sequence. Though they balked at different points,
the common feature was where they thought concession of a claim
was tantamount to conceding action at a distance. Newton himself
was troubled by action at a distance — so much so that it seems to
have driven him into thinking through and then laying out a new,
elaborate approach to how empirical science ought to be done, an
approach that the Principia was expressly intended to illustrate.

A further myth, complementing the bright-idea picture, is that
everything in orbital mechanics immediately fell into place under
Newton’s theory of gravity. A corollary to this myth is that the
continuing opposition to Newton’s theory represented philosophic
obstinacy in the face of overwhelming empirical evidence. Curtis
Wilson’s chapter dispels myths about Newton’s achievements in ce-
lestial mechanics. Newton’s most important achievement involved
two superficially opposing points. On the one hand, the Principia
raised Kepler’s rules, especially the area rule, from the status of one
among several competing approaches to calculating orbits, to the
status where they came to be thought of as laws, the laws of plane-
tary motion. On the other hand, the Principia concludes that none
of Kepler’s “laws” is in fact true of the actual system of planets or
their satellites, and this in turn shifted the focus of orbital mechan-
ics to deviations from Keplerian motion. With the exception of a few
results on the lunar orbit, the Principia made no attempt to derive
these deviations, and even in the case of the lunar orbit it left one
major loose end that became a celebrated issue during the 1740s. The
difficult task of reconciling Newtonian theory with observation oc-
cupied the remainder of the eighteenth century following Newton’s
death. This effort culminated with Laplace’s Celestial Mechanics,
the first volumes of which appeared in the last years of the cen-
tury. It was in these volumes that what physicists now speak of as
Newtonian physics first appeared comprehensively in print, more
than a hundred years after the first edition of the Principia.

A statement often made about less successful sciences, “they have
not had their Newton yet,” rightly evokes Newton’s singular place
in the history of physics and astronomy. The combination of the
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bright-idea and the everything-fell-into-place myths, however, fos-
ters an unfortunate misconception of just what was involved in the
breakthrough he achieved and other such major breakthroughs. On
this misconception, the key to successful science is for someone to
come along who almost magically devises a new way of thinking
about the relevant aspect of the world and who is then somehow
able to see almost immediately how effective this new way of think-
ing is going to prove to be over the long run. Such an idea is plausible
only with the help of a still further myth about Newton: that he was
in some extraordinary way in tune with the world. One need look
no further than his unsuccessful efforts to develop a theory of fluid
resistance forces in Book 2 of the Principia in order to see that he was
no more in tune with the world than other scientists of his time.#
Newton was exceptional not because he had a capacity to leap to cor-
rect answers, but because of the speed and tenacity with which he
would proceed step-by-step through a train of inquiry, putting ques-
tions to himself, working out answers to these questions, and then
raising further questions through reflecting on these answers.

In the Principia (and to some degree in the Opticks) Newton tele-
scoped the results of an enormous amount of detailed scientific re-
search into an amazingly short duration of time. The research itself,
however, is not other-worldly at all. It is disciplined empirical in-
quiry at its best. A good reason to study Newton'’s scientific efforts is
that they provide insight into the ways in which science truly works.

An important feature of Newton’s mature science is the union of
mathematical analysis and the data of experience as manifested in
experiment and critical observation. For example, Newton’s analysis
of resistance forces depended on the results of experiments he under-
took in order to determine the parameters in laws for these forces.
Another feature of Newton’s science, as set forth in the Principia, was
that the development of the subject matter should proceed without
any appeal to religious principles or arguments in favor of one or
another school of philosophy. That is, Newton consciously and pur-
posely excluded from the scientific text any overt considerations of
theology or fundamental philosophy. In later editions of the Principia
(1713, 1726), he added a supplementary General Scholium, in which
he introduced topics of theology and scientific method and the foun-
dations of scientific knowledge. But the system of rational mechan-
ics and the Newtonian gravitational system of the world were free
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of any overt reference to questions of theology and philosophy. In
this sense, the Principia established a mode of scientific presen-
tation that was free of what we today would call extra-scientific
considerations.

A BRIEF BIOGRAPHICAL SKETCH

Newton lived into his eighty-fifth year, from 1642 to 1727, the year
after the third edition of the Principia appeared. His life may be di-
vided into four segments, the first ending in 1661 when he entered
Trinity College, Cambridge, as an undergraduate, and the second ex-
tending to the publication of the Principia in 1687. The third period
is marked by the renown that the Principia brought him; it concludes
with his becoming disenchanted with Cambridge in the early 1690s
and his permanent move to London and the Mint in 1696. In the final
period, Newton remained intellectually active in London, though his
achievements of legend occurred mostly during his Cambridge years,
stretching from his early twenties to his early fifties.

Newton’s pre-Cambridge youth spans the period from the start
of the Civil War to the restoration of Charles II. He was born into
a Puritan family in Woolsthorpe, a tiny village near Grantham, on
Christmas Day 1642 (in the Julian calendar, old style), a little short
of twelve months after Galileo had died. Newton’s father, who had
died the previous October, was a farmer. Three years after Newton’s
birth, his mother Hannah married a well-to-do preacher, 63-year-old
Barnabas Smith, rector of North Witham. She moved to her new
husband’s residence, leaving young Isaac behind, to be raised by his
aged maternal grandparents. Hannah returned to Woolsthorpe and
the family farm in 1653, after Smith died, with three new children in
tow. Two years later Isaac was sent to boarding school in Grantham,
returning to Woolsthorpe in 1659. The family expected that he would
manage his father’s farm. It soon became evident, however, that he
was not cut out to be a farmer. The headmaster of the Grantham
school and Hannah’s brother, who had received an M.A. from
Cambridge, then persuaded her that Isaac should prepare for the uni-
versity; and in 1661 he entered Trinity College as an undergraduate.

Newton’s years at Trinity College, as a student and Fellow and
then as a professor, appear to have been spent predominantly in soli-
tary intellectual pursuits. As an undergraduate he read the works of
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Aristotle and later commentators and some scientific works such as
Kepler on optics. At some point within his first two years as a stu-
dent, he began reading widely on his own, supplementing the clas-
sical education Cambridge was providing with more contemporary
writings of such figures as Descartes.

Cambridge then had on its faculty one of the leading British
mathematicians, Isaac Barrow, whose lectures he attended. Newton,
however, largely taught himself mathematics through extensive
reading of recent publications, most notably the second edition of van
Schooten’s Latin translation, with added commentary, of Descartes’s
Géomeétrie. Within an incredibly short period, less than two years,
Newton mastered the subject of mathematics, progressing from a
beginning student of university mathematics to being, de facto, the
leading mathematician in the world. He reached this status during
1665-6, a time when the university was closed because of the great
plague and he had returned to the family farm in Woolsthrope. It was
during this period that Newton developed the basic results of the dif-
ferential and integral calculus, including the fundamental theorem
relating the two. No later than this time, he also made his exper-
iments on refraction and color that similarly put him at the fore-
front in optics. His notebooks from the mid-1660s show him also
working out answers to questions about motion, most notably uni-
form circular motion, questions that were undoubtedly provoked by
his encountering the ideas of Galileo and especially Descartes (from
whom, among much else, he learned the law of inertia). It was during
this early period that Newton independently discovered the v?/r rule
for uniform circular motion, a few years before Christiaan Huygens
published it in his renowned Horologium Oscillatorium.

On his return to Cambridge following the plague year, Newton
was elected a Fellow of Trinity College, receiving his M.A. in 1668.
The requirement of a fellowship in those days included a formal
statement of allegiance to the principles of the Church of England.
Before fulfilling this requirement, Newton initiated an intense study
of theology, especially the implications of the doctrine of the Trinity.
He ended up by rejecting this doctrine as a distortion of Christianity.
At this time, Newton was appointed to the Lucasian Professorship of
Mathematics, which was financed by private rather than state funds —
the basis for Newton not being examined on his beliefs concerning
the Trinity and the religious principles of the Church of England.
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During these years, Newton continued his work in mathematics
and optics, and he became immersed in chemical and alchemical re-
search and experiments. He wrote a tract, “De analysi,” or “On Anal-
ysis by Infinite Series,” in which he presented his key discoveries in
the calculus. This work was circulated among British mathemati-
cians and, notably, a copy was sent to the publisher John Collins in
London. It was undoubtedly because of this tract that Barrow recom-
mended the youthful Newton to succeed him as Lucasian Professor
of Mathematics. Newton occupied this chair from 1669 until he for-
mally resigned in 1701, five years after moving to London.

Newton’s sole formal publication before the Principia was a series
of letters on the theory of light and colors, including the invention of
a reflecting telescope, published in the Philosophical Transactions
of the Royal Society from 1672 to 1676. He was so embittered by the
controversies that were engendered by these publications that he
vowed to publish no further discoveries from his research in natural
philosophy. The publication of these optical letters and his circulat-
ing of tracts in mathematics gave Newton a reputation as a major sci-
entist in Britain and abroad. His formal publications, however, were
merely the tip of an iceberg. Newton’s professorship required him
to deposit in the University Library a copy of his lectures. Among
these are his Optical Lectures of 1670-2, which, as Alan Shapiro
has shown, present an enormous range of experiments bolstering and
complementing those described in his publications. There are also
Lectures on Algebra from 1673 to 1683. These registered lectures
are ambitious to a point that one has trouble seeing how the stu-
dents could have handled the material. These lectures too, however,
represent but a fraction of Newton’s intellectual efforts during the
1670s. For example, his private papers show much more extensive
successful research in mathematics during this decade than the lec-
tures reflect, and he continued his research in chemistry, alchemy,
biblical chronology, prophecy, and theology, as well as occasional
physics.

In late 1679, in an effort to reinvigorate the activities of the Royal
Society, Robert Hooke wrote to Newton posing various research is-
sues, with the goal of stimulating Newton to renew his active associ-
ation with the Society. During the ensuing exchange of letters, Hooke
told Newton of his “hypothesis” that curved or orbital motion could
be analyzed by supposing two components: an inertial tangential
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motion and an accelerated motion directed toward a center of force.
He also raised the question of the precise trajectory described by a
body under an inverse-square force directed toward a central point in
space. During the course of this brief correspondence, Newton dis-
covered the relation between inverse-square centripetal forces and
Keplerian motion that comprises the initial stepping stone of the
Principia. Yet he communicated this to no one. Moreover, whatever
further conclusions he reached at the time, universal gravity was not
one of them, for in 1681 he concluded that comets do not generally
button-hook around the Sun.

In the summer of 1684 Edmond Halley visited Newton in
Cambridge in order to ask him a question that the London savants
could not answer: what curved path results from an inverse-square
force? Newton is reported to have replied without any hesitation: the
curve produced by an inverse-square force is an ellipse. He promised
Halley to send the proof on to London. Halley received a tract,
Newton’s “De motu corporum in gyrum,” in November. He was
so impressed by the magnitude of Newton’s achievement that he
hastened to Cambridge for a second visit. On arrival, he learned that
Newton, evidently stimulated by Halley’s first visit, was continuing
research on orbital motion. Newton gave Halley permission to reg-
ister his tract with the Royal Society while awaiting further results.
Such were the beginnings of the Principia.

It was agreed that Newton’s book would be published by the
Royal Society. Halley was to supervise the actual publication. The
manuscript of Book 1 of the Principia arrived in London in spring
of 1686, prompting a controversy with Hooke, who claimed priority
for the concept of an inverse-square solar force. Halley managed to
keep Newton working in spite of the controversy, finally receiving
Book 2 in March 1687 and Book 3 in April.

Publication of the Principia in 1687, which ended Newton’s life of
comparative isolation, led to adulation in Britain and intense oppo-
sition to his theory of gravity elsewhere. He was elected to represent
Cambridge University in Parliament in 1689 (and again in 1701). He
continued experimental research in chemistry, writing his principal
alchemical essays in the early 1690s, and in optics, exploring diffrac-
tion phenomena and laying out but not finishing a book on optics.
He also initiated work on a radically restructured second edition of
the Principia, an effort he abandoned when he suffered some sort
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of mental breakdown in 1693. He had been pursuing positions in
London before the breakdown, and his efforts were finally rewarded
when he was appointed Warden of the Mint in 1696, and Master of
it in 1699. This nine-year period between when Newton was thrust
into prominence and when he departed from Cambridge, while in-
tense in more ways than one, yielded only manuscripts, and no new
publications. Clearly these years were marked by turmoil.

Newton’s subsequent thirty years in London contrast sharply with
his thirty-plus years of comparatively solitary research in Cambridge.
He was elected President of the Royal Society in 1703, a post he held
until his death, and he was knighted in 1705. Catherine Barton, the
extraordinarily vivacious teenage daughter of his half-sister, moved
in with him, gaining great prominence in London social circles; she
continued to reside with him until he died, even after she married
John Conduitt (who succeeded Newton as Master of the Mint) in
1717.

The first decade of the new century saw him publishing the first
edition of his Opticks, a work written in English rather than in Latin.
An appendix to the Opticks contained two earlier tracts in mathe-
matics, one of which exhibited Newton’s dot-notation for differen-
tials. There was also an edition of Newton’s lectures in algebra and
a Latin edition of the Opticks (1706). During the last years of the
decade he began work in earnest on a second edition of the Principia,
which was finally published in 1713. Although this edition was not
radically restructured, 397 of its 494 pages involved changes from
the first edition — sometimes mere changes in wording, but in places
a complete rewriting or the addition of new material. One important
feature of the second edition was the concluding Scholium Generale
with its slogan, “Hypotheses non fingo.” As Alexandre Koyré deter-
mined, Newton meant “I do not feign hypotheses.” He did not invent
fictions in order to provide scientific explanation.

Continental natural philosophers found it difficult to accept
Newton’s concept of a force of universal gravity. Thus Leibniz, like
Huygens and others, was strongly opposed to Newton’s theory of
gravity from the time it first appeared. Leibniz’s response was to pub-
lish an alternative account of Keplerian motion in 1689, followed by
his more important papers in dynamics. The relationship between
the two did not turn nasty, however, until one of Newton’s follow-
ers, John Keill, declared in 1709 that Leibniz had stolen the calculus



I4 I. BERNARD COHEN AND GEORGE E. SMITH

from Newton. The ensuing priority dispute, which lasted beyond
Leibniz’s death in 1716, is described in Rupert Hall’s chapter. It was
complicated by the fact that Leibniz had been in England and had
visited John Collins in the early 1680s, before publishing his own
fundamental results in calculus. Furthermore, Newton had not then
published his work on the calculus, instead only circulating his ideas
in manuscript form. The priority dispute also spilled over into open
disputes about the theory of gravity and its philosophical and theo-
logical implications, leading to the Leibniz—Clarke correspondence
of 1715-16, analyzed in the chapter by Domenico Bertoloni Meli.
Of course, Newton’s calculus differed in key respects from Leibniz’s,
and we are now aware that the two men made their breakthroughs in-
dependently. Today we know that Newton was first in inventing the
calculus, but that Leibniz was first in publishing it and then forming
a group working on its further development and dissemination.

Newton remained intellectually engaged during the last ten years
of his life, though less in science and mathematics than in theology,
chronology, and prophecy. Further editions of his Opticks appeared
in 1717/18 (and posthumously in 1730). Newton also produced a
third edition of the Principia, appearing in 1726, when he was 83
years old. It does not differ in essentials from the second edition;
the main change was some new text based on recent data. Though
his theory of gravity remained still largely unaccepted on the Conti-
nent, there can be no question but that Newton had himself achieved
the status of legend throughout the educated world. He died on
20 March 1727.

NEWTON THE SCIENTIST

Even after the myths and exaggerations have been discarded, Newton
still occupies a singular place in the history of science, having con-
tributed far more than any other single individual to the transforma-
tion of natural philosophy into modern science. An obvious question
is, why him rather than someone else? What was it about Newton
that enabled him to have such an extraordinary impact on empirical
inquiry? The answer involves at least three factors: the historical
situation in which he found himself, the attitude with which he ap-
proached empirical research, and the breadth as well as the depth of
his genius.
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Newton is well known for having remarked, “If Thave seen further,
it is by standing on the sholders of Giants.”5 This was not mere mod-
esty. Newton knew better than anyone the extent to which he pro-
ceeded from the work of others before him. The two giants who are
invariably cited are Kepler and Galileo, but this grossly oversimpli-
fies the historical situation. In the case of astronomy, it makes little
sense to cite Kepler without citing Tycho Brahe for providing the data
that Kepler and all the other astronomers of the seventeenth century
relied on. Newton, moreover, learned his orbital astronomy from
reading not Kepler, but the generation that followed him, in partic-
ular Jeremiah Horrocks, Ishmaél Bouillau, Edward Streete, Vincent
Wing, Nicholas Mercator, and G. A. Borelli. Most of these figures
departed from Kepler in one respect or another, but in doing so they
gave rise to questions that would have had far less force than without
these departures. In his own generation, as well, Newton relied on
John Flamsteed and, less directly, members of the French Academy
for astronomical observations of increasingly high quality. With-
out this body of research in astronomy over the century before the
Principia, Newton could never have made the enormous advances
that he presented to the world in that book.

The situation is similar in physics. Christiaan Huygens extended
Galileo’s work on motion in important ways, including pendulum
motion and an extraordinarily precise measurement of the strength
of surface gravity. This research is presented in his Horologium
Oscillatorium of 1673, a work Newton greatly admired — and ap-
propriately so, for it would have been the most important work in
the science of motion in the seventeenth century had it not been
eclipsed by the Principia. Huygens himself was the culmination of a
tradition represented not just by Galileo, but also by Marin Mersenne
and Descartes as well. Huygens, not Newton, was the first in print
with a mathematical account of the force required for a body to move
uniformly in a circle, a force first called attention to by Descartes.
Huygens, along with John Wallis and Christopher Wren, were the
first in print with modern laws of impact, and the Royal Society,
for which Robert Hooke was curator of experiments, had evaluated
these laws experimentally. Much the same can be said of advances
made in theoretical and practical optics by figures preceding Newton,
starting with Kepler and Snell and including Descartes, Huygens, and
others.



16 I. BERNARD COHEN AND GEORGE E. SMITH

Newton learned the principles of making experiments from such
masters as Robert Boyle and Robert Hooke. He became acquainted
with the corpuscular philosophy, or the doctrines of atomism, by
reading works of Boyle and from the writings of Pierre Gassendi and
Walter Charleton. Thus, Newton was informed of current thinking
in science by learning from great masters, the leading figures of an
age well described as “the century of genius.”

In short, although Newton worked largely as a solitary figure dur-
ing his decades at Cambridge, he was anything but insulated from
those who were forming an international scientific community dur-
ing the century. Newton read widely, critically assimilating advances
made by others and openly building from them. His singular place
in the history of science is in no small part an accident of historical
timing, his coming of age at a time when the labors of many others
had created a singular opportunity.

A second factor enabling Newton to produce his extraordinary
impact was the depth of his commitment to the principle that in
matters of natural philosophy the empirical world should always be
the sole arbiter. The view that the empirical world should be the
ultimate arbiter was a hallmark of the era, whether as voiced by
Tycho and Kepler, by Galileo, by Bacon and Boyle, or by Mersenne
and Gassendi. Those engaged in empirical research were quick to
realize, however, that it was one thing to express a commitment to
this tenet and quite another to find ways in which the world would
provide conclusive answers to theoretical questions. This realization
led to a widespread guardedness, if not skepticism, toward theoretical
claims. Perhaps all that could be hoped for was to describe the world
accurately in the manner of a natural history, with purely theoretical
claims never rising above the status of conjectural hypotheses not
incompatible with the so-far observed world.

Newton, by contrast, took the commitment of the empirical
world’s being the ultimate arbiter as an obligation to insist on and
hence to pursue ways in which the empirical world could be made to
yield definite answers to theoretical questions. Throughout his ca-
reer he maintained a sharp distinction between conjectural hypothe-
ses and experimentally established results. He was never willing to
rest content with any hypothesis. Whether in alchemy and chem-
istry, in optics, or in orbital mechanics, the challenge was to design
sequences of experiments or to marshal complexes of observations
that would warrant taking theoretical claims to be established. He
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saw himself as having met this challenge in the case of orbital me-
chanics, to a lesser extent in the case of optics in so far as he never
thought he had established the corpuscular character of light, and
to almost no extent at all in the case of alchemy and chemistry,
despite years of effort and hundreds of experiments. The important
point, however, is that the depth of his commitment to having the
empirical world settle questions kept him going along lines of re-
search, asking further questions and looking for further evidence,
far beyond where anyone else would have stopped. One can easily
fail to appreciate how strongly Newton felt about this, for he often
voiced it in innocuous ways. For example, in a portion of the Preface
to the first edition of the Principia that he decided to withhold from
publication, he puts forward the idea that further progress in science
will come from inquiring into the forces among particles of matter,
beyond gravity, by which “bodies agitate one another and coalesce
into various structures”; he then adds: “It remains therefore that we
inquire by means of fitting experiments whether there are forces of
this kind in nature, then what are their properties, quantities, and
effects.”® It is easy to underestimate how much is packed into the
word “fitting.”

Being unusually demanding and dogged in empirical research,
even during exceptionally propitious times, means little by itself.
The third, and most important, factor enabling Newton to have his
extraordinary impact was the breadth of his genius. It goes with-
out saying that he ranks among the two or three greatest theoreti-
cal scientists ever — one thinks of Maxwell and Einstein as well —
where the skill involved is taking an initial line of thought and
elaborating it into a full, detailed theory with a wide range of ram-
ifications. Newton is commonly listed with Gauss as the greatest
mathematicians in history, if not for his success in developing the-
oretical edifices, then for his ability to solve individual problems,
first identifying the core difficulty of the problem, then devising ap-
paratus to surmount this difficulty, and finally seeing the further
potential of this apparatus.

Less widely recognized is the fact that Newton was among the
most skillful experimental scientists in history. This is less widely
recognized not merely because we tend to celebrate theoreticians,
and not experimenters, but also because such a large fraction of
Newton’s experimental effort is not well known. His experiments
in alchemy and chemistry have yet to be published, the experiments
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in the Principia are in the rarely read Book 2, and even the exper-
iments that occupy much of the Opticks, which have indeed been
widely heralded as examples of experimental science at its best, are
rarely seen as the culminations of a much wider range of experi-
ments that complement and support them. With the exception of
Alan Shapiro’s chapter, this book too may be guilty of not putting
due emphasis on Newton the experimentalist, especially since the
total fraction of his time put into designing and carrying out experi-
ments has to have been far greater than the fraction put into devising
theories. In-born talent is less of a factor in genius in experiment than
it is in genius in mathematics and genius in theorizing. Great skill
in experimental research is something that gets developed through
extended practice over time. It involves more than just painstaking
care, perseverance in the face of practical difficulties, and ingenuity
in the schematic design of experiments. Telling experiments almost
always have to be developed, and this usually entails designing and
carrying out a large number of preliminary and complementary ex-
periments in order to obtain well-behaved results and to foreclose
alternative interpretations of these results. Newton belongs in the
first rank of experimentalists because his experimental research dis-
plays mastery of all of these aspects.

To be among the first rank of experimentalists, mathematicians,
and theoreticians is more than enough to put Newton in a class by
himself among empirical scientists, for one has trouble thinking of
any other candidate who was in the first rank of even two of these
categories. Moreover, we have not emphasized enough the extent to
which each of these dimensions of Newton’s genius fed off and in-
formed the other two in the way he approached empirical inquiry.
Even granting all of this, however, we have yet to capture the full
breadth of Newton’s genius. At least in comparison to subsequent
scientists, Newton was also exceptional in his ability to put his sci-
entific effort in much wider perspective.” As one should expect, the
substance of his science concerns recondite details, and as already
noted he always maintained a sharp distinction between substantive
science and conjecture. Nevertheless, as a child of his time, he was a
natural philosopher, no less preoccupied with forming a comprehen-
sive conception of the natural world than Descartes was. This dimen-
sion of Newton’s science stands out most clearly in the Queries at
the end of the Opticks, but once identified and appreciated, it is easy
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to find everywhere else. Newton’s approach to natural philosophy
differed from Descartes’s first in his insistence that any conjectured
broad conception of the natural world be grounded in experimental
fact, and second in his view that the primary value of such conjec-
ture lay in framing questions and suggesting further experiments. As
a consequence, Newton’s pursuit of a philosophy of nature was at all
times part of his science, putting the science into a perspective that
invested its recondite details with added significance.

This “philosophical” dimension of Newton’s science shows up in
the present volume in three ways. First, he did frame a conception
of the natural world that, in addition to forming the core of our own
current conception, contrasted in interesting ways with those put
forward by other seventeenth- and eighteenth-century philosophers.
This is the main topic of Alan Gabbey’s chapter. Second, his pur-
suit of this conception forced him to be much more attentive to and
careful about “metaphysical” aspects of his science than is at first
apparent from reading this science. Howard Stein’s chapter makes
the metaphysics of Newtonian science explicit, a metaphysics that
has been crucial to subsequent science; in the process Stein reveals
how skillful a philosopher, in the grand sense of the word, Newton
was. Third, the importance Newton attached to conjecture about
nature as a whole, coupled with his insistence on a sharp epistemo-
logical distinction between such conjecture and established science,
led him into meticulous critical reflection on what is required to
establish scientific results. Few, if any, successful scientists have
given so much thought to questions of scientific methodology. From
both the point of view of understanding his science as he saw it and
the point of view of philosophy of science generally, Newton’s views
about how science should be done are important. While this topic
surfaces in many of the chapters in this volume, for example those
by DiSalle, Cohen, Shapiro, and Stein, it is the central topic in the
chapters by William Harper and George Smith.

NEWTON THE MATHEMATICIAN

This book emphasizes Newton the scientist because his importance
both to the millennium and to modern philosophy derives mostly
from the impact he had on science. This emphasis, however, gives a
distorted picture of Newton the individual. For the time and effort
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he put into science, even including the huge number of hours he
put into chemical experiments, represent a modest fraction of the
total time and effort he put into intellectual pursuits. Furthermore,
notwithstanding his strong insistence on strictly empirical criteria
within science, his other intellectual preoccupations could not help
but have some effect on how he did science. A full understanding of
Newton’s science, therefore, at the very least requires it to be seen as
fitting harmoniously within his other pursuits. And an understand-
ing of Newton the individual must put no less weight on his work
in pure mathematics, and his efforts in alchemy and theology, than
on the work that made him legendary.

Newton’s achievements in mathematics were extraordinary, yet
his impact on the history of theoretical mathematics, and conse-
quently on aspects of mathematics of greatest interest to philoso-
phers, is not in proportion to these achievements. Some reasons for
this are less interesting than others. Although he circulated some
manuscripts, he did not publish any of his work on the calculus un-
til the first decade of the eighteenth century, and by then the Leibniz
school had been going strong, with frequent publications, for over ten
years. Moreover, many of his mathematical results were never pub-
lished in his lifetime. A compelling case can be made that the full
range and depth of his achievements in mathematics became evi-
dent only in the twentieth century with the publication of the eight
magisterial volumes of his mathematical papers under the editor-
ship of D. T. Whiteside. Whatever inkling Newton’s contemporaries
may have gained of the scope of his mathematics from his publi-
cation of individual solved problems in the Principia, their lack of
access to the systematic development of the methods he had used
in these solutions limited their ability to build a growing body of
Newtonian mathematics. Instead, time and again, areas in which
Newton made breakthroughs, such as differential geometry and the
calculus of variations, had to be independently developed by later
mathematicians — most often Euler — who then had the impact on
the history of the subject.

Newton’s style as a mathematician also helps account for his
disproportionately limited impact on the history of the field. His
approach to mathematics — especially during the early periods —
tended to be primarily that of a problem solver, taking on the
challenge of specific unsolved problems. As remarked above, he had
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an uncanny knack for identifying the core difficulty of a problem
and then devising means for overcoming it, often adapting ideas and
methods of others, but putting them to novel use. Thus, for example,
his initial algorithms for derivatives combined techniques from
Cartesian geometry with the idea of an indefinitely small, vanishing
increment. Similarly, his initial algorithms for integrals adapted a
method Wallis had devised for algebraic curves, first reconceptu-
alizing it to represent an integral that grows as the curve extends
incrementally and then combining this with the binomial series to
obtain solutions for integrals of a much wider range of curves. Once
he had these results and found, from geometric representations of
them, the relationship between differentiation and integration, he
adapted Barrow’s way of treating curves as arising from the motion
of a point to recast his results on derivatives in terms of quantities
that change with time and their increments of change, “fluents”
and “fluxions.”® (His first full tract on fluxions, dated 1666, was
called “To Resolve Problems by Motion.”?) He continued to extend
his methods over the next thirty years, applying them to a growing
range of problems. For Newton, however, the calculus was always
a collection of interrelated methods for solving problems, not a
radically new, superior approach to mathematics.

This view of the calculus is symptomatic of the factor that was
probably most responsible for limiting Newton’s impact on the his-
tory of mathematics, his mathematical conservatism. Rupert Hall’s
chapter calls attention to ways in which this conservatism intensi-
fied the priority dispute with Leibniz. Leibniz and his school saw the
calculus as opening the way to doing all mathematics purely through
the manipulation of symbols. To this end they put great effort into
devising a suitable notation for the calculus, resulting in the form
familiar to us. With the exception of the dot-notation (representing
derivatives with respect to time), which dates from the mid-1690s,
after the Principia, the notations Newton devised were not at all per-
spicuous. Given the range of Newton’s talents, this almost certainly
reflects not so much an inability on his part to come up with good
notations as a lack of interest in, if not opposition to, a revolution-
ary new mathematics dominated by symbol manipulation. Niccold
Guicciardini’s chapter examines Newton’s changing views on the re-
lationship between geometry and symbol-dominated mathematics
and the impact these views had on his work. Following an intense
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reexamination of classical mathematics during the early 1680s,
Newton appears to have concluded that the true roots of all mathe-
matics lie in classical geometry.

This conservatism is apparent in the mathematics of the Principia.
Contrary to a myth endorsed by Newton himself, there is no ev-
idence whatever that Newton first derived his results on celestial
orbits by using the symbolic calculus and then recast them in geo-
metric form. The differential calculus does appear in Book 2, where
Newton is unable to find a geometric solution to problems of mo-
tion with resistance forces varying as velocity squared; and in a
handful of places solutions for integrals are given, without deriva-
tions, that he surely obtained symbolically. Everywhere else, how-
ever, the mathematics of the Principia is his “method of first and last
ratios,” a quite elegant extension of synthetic geometry that incor-
porates limits in a way that avoids the extensive use of reductio
ad absurdum proofs that others were resorting to when working
with infinitesimals. It was left to individuals within the Leibnizian
tradition to recast the Principia into the symbolic calculus. What
became clear in this process was the superiority of purely symbolic
methods in attacking perturbation problems in celestial mechanics.
With this realization the fundamental step in problems of physics
ceased being one of finding an adequate geometric representation
of the quantities involved, and instead became one of formulating
appropriate differential equations in purely symbolic form. In a real
sense, then, it was Newton’s physics that gave the greatest impetus to
the Leibnizian approach to mathematics, disproportionately limiting
the impact Newton’s work in mathematics had on the history of the
field.

For the philosopher, however, Newton’s mathematics has some
special interest because of its arousing a controversy in which a
philosopher, Bishop Berkeley, was a major figure. Berkeley’s anti-
Newtonian polemic was called The Analyst and was addressed to
an “infidel mathematician.” It was long believed that the “infidel
mathematician” was Edmond Halley, but the target of Berkeley’s
attack was later identified as the physician Samuel Garth. Berkeley
was troubled by the use of infinitesimals in the Newtonian form of
the calculus, holding that this method of limits provided an unsound
foundation, one that was based on “ghosts of departed quantities.”
Since the new mathematics was based on such insecure foundations,
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he argued, mathematicians should not presume to criticize the foun-
dations of religion. Berkeley further insisted that Newton’s gravita-
tional mechanics provided only a description of the phenomena of
the external world and not an explantion, the “how” but not the
“why” of the physics of the world.’* Philosophers should also be
aware that other aspects of Newton’s mathematics are of philosophic
interest. For example, as Rupert Hall shows in his chapter, the con-
troversy between Newton and the Leibnizians went beyond mere
questions of chronology and priority and in fact had important philo-
sophic implications.

THE “OTHER” NEWTON: ALCHEMY AND THEOLOGY

Although Newton’s fame and reputation are built on his scientific
work in rational mechanics, cosmology, optics, and mathematics,
the creative force of his intellect was not limited to these subjects.
Newton was also deeply committed to his research into what seem
to us esoteric domains, including historical and biblical chronology,
theology, prophecy, a tradition of ancient wisdom, and alchemy. (He
disdained the study of astrology, however, having concluded early on
that there was no validity to predictions based on horoscopes.) Some
of the esoteric subjects Newton studied bear no apparent or direct
relation to what we consider to have been his scientific work. But
others were not so completely distinct. For example, with regard to
the wisdom of the ancients, Newton alleged that certain aspects of
the law of universal gravity were known to ancient sages. At one
time he even thought to include in a new edition of the Principia
some extracts from Lucretius and other ancient writers. His studies
of biblical chronology, prophecy, or pure theology (exploring such
questions as the existence of the Trinity and the heresies of Arius)
do not have this close relationship with his science.

The situation is more complicated with his alchemical concerns.
Newton appears not to have conceived his studies of alchemy and his
explorations concerning certain kinds of active and passive forces, or
of aetherial and vegetative “spirits,” to be wholly separate from what
we today would call his “hard science.” These domains of thought
were, for him, closely associated not just with the nature of matter
itself, but with the construction of matter and the action of forces
between the particles of which matter is composed.
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One feature of alchemical writings that evidently had a special
appeal to Newton was the belief that these texts, if properly inter-
preted, would reveal the wisdom handed down by God in the dis-
tant past. In this regard, Newton’s studies of alchemical texts had
a close kinship with his studies of prophecy in the Book of Daniel
and the Book of Revelation. Newton was not singular in believing
that there was a close connection between spiritual and experimen-
tal domains. Count Michael Maier, one of the most important of
the “authores optimi” for Newton, had a plate in his book Atalanta
Fugiens that symbolized the dual aspect of alchemy in a way that fits
Newton’s concerns. This plate shows an alchemical laboratory: on
one side is an oratory where the student of alchemy kneels in prayer,
while on the other is a furnace, well equipped for the “chymical”
part of the study.

In the present volume several chapters are devoted to aspects
of Newton’s research that are not obviously part of his scientific
work. William Newman clarifies the scope of seventeenth-century
“chymistry” and explains the basic principles of Newton’s alchemy
and its relation to ideas of van Helmont. Karin Figala shows the
importance for Newton’s alchemical studies of Count Michael Maier
and Michael Sendivogius, in the process calling attention to ways
in which Newton’s alchemy had a potential for more far-reaching
ramifications. Maurizio Mamiami explores the extent to which
Newton’s discussions of methods of research in natural philosophy
were tied to his early acquaintance with rules for studies of the-
ology. Scott Mandelbrote examines Newton’s distinctive version of
Christianity and the reception of his posthumously published theo-
logical writings, which are strongly anti-Trinitarian, during the eigh-
teenth century.

Newton'’s studies of alchemy are notoriously difficult to evaluate
because Newton did not produce treatises or tracts setting forth his
goals and interpretations. Almost all of the alchemical manuscripts
consist of notes on his reading, summaries or extracts from vari-
ous authors, or records of experiments. Newton had read widely in
alchemy and knew the alchemical literature better than most of his
contemporaries. Because much of this literature is still being dis-
covered, it is often difficult for us to be certain whether any given
document may be an original composition by Newton or a summary
of someone else’s ideas. A case in point is a document called “Clavis”
or “Key,” which was believed to be an essay by Newton until William
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Newman showed it to be a Latin version of an English essay sent by
George Starkey (a Harvard graduate who had moved to London) to
Robert Boyle.

On the basis of her studies, Karin Figala has concluded that
Newton found in alchemy a hierarchical scheme of matter in which
particles of different substances could be set out in a table according
to their size. She notes that this same hierarchy occurs in the planets,
which in alchemy were associated with the different metals. Such
schematization is related to Newton’s science (as science is com-
monly understood today) because in the later Queries of the Opticks
(and as recorded by David Gregory, in a memorandum of discussions
with Newton), Newton set forth a view of the structure of matter
based on a hierarchy of particles that is related to Maier’s hierarchy
of matter and of the planets with which he believed the different
types of particles were associated.

In considering the life and thought of Newton, the words alchemy
and alchemist must be used with caution. In Newton’s day, and
during earlier times, an alchemist was traditionally a charlatan,
someone who claimed the ability to transmute base metals such
as lead into the noble metal gold. In the words of John Harris, in his
Newtonian Lexicon Technicum, published in 1704, the same year as
Newton’s Opticks, such alchemists are said to “amuse the Ignorant
and Unthinking with hard Words and Nonsense.” It is a subject, he
wrote, that “begins with Lying, is continued with Toil and Labour,
and at last ends in Beggary.” As long ago as the fourteenth century,
the poet Chaucer (in “The Canon’s Yeoman’s Tale”) poked fun at
the alchemist, an obvious fraud, whose motto was the traditional
“Ignotum per ignotius,” or explaining what is “unknown” by what
is “more unknown.” Just before Newton was born, Ben Jonson wrote
a whole play (The Alchemist) poking fun at the charlatans who prac-
ticed this profession. Indeed, as late as the middle of the nineteenth
century, David Brewster (in his biography of Newton) was appalled
to find that Newton had been spending creative energy in such a
subject as alchemy. He simply could not “understand how a mind of
such power, and so nobly occupied with the abstractions of geome-
try, and the study of the material world, could stoop to be even the
copyist of the most contemptible alchemical poetry.”

And yet, even though in Newton’s day an alchemist tended to
be a charlatan, a purveyor of “get rich quick” schemes, there was
also in Newton’s day a serious tradition of the study of alchemy.
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Thus John Harris, in another entry in his Lexicon, gave a lengthy
discussion of “Transmutation,” quoting many authorities, including
Robert Boyle.

In a certain sense, Newton’s and Boyle’s concern were with the
experimental side of alchemy. This is sometimes called “chymistry,”
not quite the subject of chemistry as it developed in a later period,
but a kind of study based on laboratory experiments and not just
speculation. According to Harris, the goal of “chymistry” was “to
separate usefully the Purer Parts of any mix’d Body from the more
gross and Impure.” This could in some measure be an account of
Newton’s research program in alchemy.

Because Newton’s thoughts on chymistry are closely related to
his theory of matter, they appear in some of the later Queries of
the Opticks, where the structure and properties of matter are under
discussion. We should note, however, that these discussions of the
structure of matter do not appear in the text of the Opticks, but are
part of the speculative Queries that are an appendix.

Still, Newton’s concern for alchemy was not limited to the strictly
chemical or metallurgical aspects of the subject. He made copious
notes or annotations on almost all aspects of alchemy, including
the spiritual or allegorical matrix in which alchemical writings have
traditionally been embedded. He was even deeply concerned to un-
derstand the symbolic illustrations that grace many alchemical texts
and that at first glance seem only distantly related to the transmuta-
tion of metals. The seriousness of his concern is made evident by the
bare fact that his manuscript writings and notes on this subject are
so voluminous, coming to more than a million words, dating from
the late 1660s, when he first became interested, to at least the 1690s,
when he moved from Cambridge to London to become Warden and
then Master of the Mint.

Two scholars in particular have made massive studies of Newton’s
alchemical writings: the late Betty Jo Dobbs and Karin Figala.
Dobbs wrote two books on the subject, summarizing her findings
and conjectures.’> Her conclusions are of real significance for any
philosopher wishing to understand the mind of Newton. Figala has
rather concentrated on what she conceives to be Newton’s hierarchy
of matter. Her most complete presentation is available in a major
monograph in German, published in 1984.'3 She has also summa-
rized her findings in a lengthy essay-review of Dobbs’s first book on
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Newton and alchemy.™# Yet a third presentation is available as an
appendix to Rupert Hall’s Isaac Newton: Adventurer in Thought.'s

It is difficult to describe briefly all the findings and conjectures of
Betty Jo Dobbs concerning Newton’s actual goal in his alchemical
studies and the relation of this goal to his more orthodox scientific
work. Dobbs made much of a work she identified as a composition by
Newton, “Of Nature’s Obvious Laws and Processes in Vegetation.”
In her analysis of this document she finds evidence for an early belief
by Newton in the existence of forces with which particles of matter
are endowed.

In evaluating this area of Newton’s creative activity, we must
take note that it differs from his research in mathematics, ratio-
nal mechanics, cosmology, and optics in one very important feature:
his studies of alchemy were part of what Jan Golinski has called
Newton’s “private science.” His explorations of alchemy differ from
his work in physics and mathematics to the extent that these were
public. However reluctant Newton was to publish or even to cir-
culate his work in science and mathematics, the fact remains that
he did publish and make known a tremendous body of new science
and mathematics. But the results of his alchemical studies were vir-
tually never communicated, save to a select few intimate fellow
“adepts.” Indeed, Newton himself set forth this distinction in the es-
say “On Nature’s Obvious Laws and Processes in Vegetation.” Here
he made a clear separation between what he called “vulgar chym-
istry” and a process of growth and life (“vegetation”), considered to
be a feature of “Nature’s actions [which] are either vegetable or purely
mechanical” and thus in a manner shared by plants and animals and
also metals.*®

Thus far we have not faced up to what may be the most important
question concerning Newton’s alchemical studies: how were they
related to his work in rational mechanics or optics. There seems to
be little doubt that Newton’s explorations in alchemy and the asso-
ciated esoteric philosophy were related to his thinking about various
types of “aether” and the ways in which the forces of nature (such
as gravitational attractions) could actually perform their functions.
It also does seem to be the case that Newton’s theory of matter was
strongly related to his explorations of alchemy. And this could ex-
tend to that part of optics in which Newton explored the interactions
of light particles and matter.
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But the situation is quite different when it comes to evidence that
Newton’s explorations of alchemy were in any significant way re-
lated to either the creation of his rational mechanics or his cosmology
based on universal gravitational interaction. In her last book, Betty
Jo Dobbs took the opposite point of view, arguing that Newton’s
alchemy revealed the existence of forces between particles of matter
and that this gave Newton the justification to produce the physics
of attractive forces in the Principia. There is, however, not a single
document that would indicate that while composing the Principia
Newton was encouraged by his alchemical findings to deal with gross
forces acting at a distance.

We should take note here that, in any event, the transition from
short-range forces to long-range forces is far from simple. It is the
inverse of the problem of a transition from long-range to short-range
forces. In fact, Newton did at one time speculate on such transi-
tions and even wrote up some discussions of them to be included
in a preface (from which we quoted earlier) and in a conclusion to
the original Principia. In the end, however, he rejected the idea of
including such speculations in the book, no doubt because they had
a degree of uncertainty and pure speculation that was out of place
in the mathematical elaboration of his theory of forces. As the doc-
uments make plain, Newton was convinced that short-range forces
of attraction and of repulsion do exist and do produce many of the
observed properties of matter. Yet he was also aware (and gave ex-
pression to his dubiety) that the very existence of these forces was
no more than an unsubstantiated hunch. In choosing not to include
both this preface and the conclusion in the Principia, he evidently
did not want the certainties of the Principia to be contaminated by
speculations.

Newton seems to have believed that there was a unity in all the
areas that he explored: the interpretation of the Bible, the tradition of
ancient wisdom, Church history, alchemy, prophecy, optics and color
theory, theory of matter, rational mechanics, and celestial dynamics.
But it is a fact of record that in his writings on mathematics, in the
Principia, and in his writing about optics proper, there was no trace
of his concern for these esoteric subjects. Only in the later Queries to
the Opticks do we find a hint of his concern for alchemy, in that part
of the queries where he speculates about the structure of matter. In
short, these esoteric subjects were not features of the known thought
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of the public Newton or the Newton of history, the Newton who
has been so important a figure in modern thought. For the philoso-
pher, therefore, it is important to be aware of the range of Newton’s
thought and concerns; yet the Newton who has had so important
an influence in the historical development of thought is rather the
Newton of experiments and scientific theory, the mathematician
who was a creator of the calculus, and the Newton who estab-
lished the science of rational mechanics and set forth the Newtonian
system of the world.

VARIETIES OF NEWTONIAN NATURAL PHILOSOPHY

Although Newton’s influence on science and on philosophy was
primarily produced by the Principia, the men and women of the eigh-
teenth century were aware that the Newtonian philosophy embraced
more than the combination of mathematics and empirical evidence
which characterized that great work. We may gain some insight into
the ways in which Newton influenced science and philosophy by ref-
erence once again to the Lexicon Technicum of John Harris, of which
the last edition was published in 1731. The varieties of Newtonian
philosophy set forth in this dictionary were adopted as still valid and
set forth once again in Ephraim Chambers’s Cyclopaedia (of which
the first edition was published in 1728), and still served as the basis
of the entry “Newtonianisme” in the Encyclopédie of Diderot and
d’Alembert. At the century’s end, in 1796, this delineation of the
varieties of Newtonian philosophy was still considered valid, appear-
ing once again in Charles Hutton’s Mathematical and Philosophical
Dictionary.

Not surprisingly, the primary entry in the Lexicon Technicum
under the heading “NEWTONIAN Philosophy” is “the doctrine of
the universe, and particularly of the heavenly bodies; their laws,
affections, etc., as delivered by Isaac Newton.” The dictionary, how-
ever, goes on to record some other senses in which at that time the
term “Newtonian philosophy” was used. One further sense was “the
corpuscular philosophy, as it now stands corrected and reformed by
the discoveries and improvements made in several parts thereof by
Sir I. Newton.” As the lexicon explains, this aspect of “Newtonian
philosophy” was primarily founded on the third book of Newton’s
Opticks (the part containing the Queries) and sundry papers such



30 I. BERNARD COHEN AND GEORGE E. SMITH

as the “De natura acidorum,” first published in 1710 in the second
volume of Harris’s Lexicon.

A third meaning of the term “Newtonian Philosophy,” accord-
ing to the Lexicon, was “the method or order which Sir I. Newton
observes in philosophizing.” This “method” of doing science was
said to consist of the “drawing of conclusions directly from phaenom-
ena, exclusive of all previous hypotheses; the beginning from simple
principles; deducing the first powers and laws of nature from a few
select phaenomena, and then applying those laws, etc., to account
for other things.”

The fourth and fifth meanings of “Newtonian Philosophy,” as
given in the Lexicon, refer rather particularly to the Principia. The
third equates the “Newtonian Philosophy” with the “Mechanical
and Mathematical Philosophy.” In this philosophy, “Physical bod-
ies are considered mathematically; and. .. geometry and mechanics
are applied to the solution of phaenomena.” The fourth meaning is
“that part of physical knowledge, which Sir I. Newton has handled,
improved, and demonstrated in his Principia.” Finally, there is the
sixth sense of this term: “the new principles which Sir I. Newton has
brought into philosophy; the new system founded thereon; and the
new solution of phaenomena thence deduced; or that which charac-
terizes, and distinguishes his philosophy from all others.”*”

This record of the ways in which the Newtonian philosophy was
conceived during the eighteenth century is especially valuable for
a number of reasons. First of all, as we have seen, it reports a vari-
ety of beliefs concerning the Newtonian philosophy which lasted for
at least another three-quarters of a century. It indicates the signifi-
cance of an aspect of Newton’s thought that is not generally given
a just place of importance: the creation of new science based on
experiment, on the direct questioning of nature, and not produced
in the manner of the Principia by a combination of mathematics
(geometry, algebra, trigonometry, infinite series, and the calculus)
together with critical observations plus experiments. This other
form of Newtonian natural philosophy was found primarily in Book 1
of the Opticks, where the statement of each proposition one by one
is followed by “The Proof by Experiments,” and in the Queries with
which the Opticks concludes.

In defining the nature of the influence of Newton’s science, there-
fore, we must take account of the existence of two rather different
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varieties of Newtonian natural philosophy. They were, in a sense, as
different as the manner of presentation was different in the Principia
and the Opticks. The Principia was written in austere and formal
Latin, giving the appearance of a text on geometry, whereas the
Opticks was written in a gentle manner in flowing English prose,
a kind of record of experiments and conclusions in the form of
an extended laboratory journal. This difference in form determined
two classes of readers. John Locke, for example, could not follow the
mathematical proofs of the Principia, and relied on the judgment of
Christiaan Huygens concerning the validity of the proofs; by con-
trast, he read the Opticks again and again with great pleasure.

This separation between the two strands of Newtonian Philos-
ophy became even more marked with the publication of the later
Queries in the Opticks, which contain Newton’s speculations on
all sorts of scientific and philosophic questions. Scientists such as
Stephen Hales (the founder of plant physiology), the chemists Joseph
Black and Antoine-Laurent Lavoiser, and Benjamin Franklin could
thus be Newtonian scientists without the necessity of having any
competence in the science of the Principia. There is, perhaps, no
greater tribute to the genius of Isaac Newton than that he could thus
engender two related but rather different traditions of doing science.

NOTES

1 Newton did, however, produce an extensive critique of Descartes’s
philosophy (in an essay known by its beginning, “De gravitatione,”
discussed in the chapters by Gabbey and Stein in this volume), but this
was not published until 1962.

2 See DiSalle’s chapter in this book, note 31.
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Philosophy (Cambridge, MA: MIT Press, 2001), pp. 249-313.

s This remark was made years before the Principia, in a letter to Hooke
(of 5§ February 1676); Hooke had offered a gesture of goodwill (in a letter
of 20 January 1676) following criticism of him by Newton in one of his
public letters on light. See The Correspondence of Isaac Newton, vol. 1,
ed. H. W. Turnbull (Cambridge: Cambridge University Press, 1959),
p- 416.
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ROBERT DISALLE

1 Newton’s philosophical analysis
of space and time

INTRODUCTION: PHILOSOPHICAL CONTROVERSY OVER
NEWTON’S IDEAS OF SPACE, TIME, AND MOTION

i

Newton’s concepts of “absolute space,” “absolute time,” and “abso-
lute motion” met with serious objections from such philosophical
contemporaries as Huygens, Leibniz, and Berkeley. Among philoso-
phers of the early twentieth century, after the advent of Special
and General Relativity, the objections bordered on scorn: Newton’s
concepts were not only lately outmoded, but they were also episte-
mologically inherently defective, empirically unfounded — concepts
not scientific at all, but “metaphysical,” in so far as science is con-
cerned precisely with “sensible measures” rather than obscure no-
tions of what is “absolute.” The prevailing idea was that Einstein
had established not only a new theory of space and time, but a
deeper philosophical viewpoint on space and time in general. From
this viewpoint, space, time, and motion are essentially relative, and
to call them absolute was an elementary philosophical error. As
Einstein put it, General Relativity had taken from space and time
“the last remnant of physical objectivity.”*

The philosophical motivation for this viewpoint seems obvious.
Space cannot be observed; all that we can observe is the relative dis-
placement of observable things. Therefore, if we observe two bodies
in relative motion, to say that one of them is “really” moving, or
that it is moving “relative to absolute space,” is to pass beyond the
bounds of empirical science. If we wish to decide which bodies are
moving, we have to construct a frame of reference — that is, we must
designate some reference-points to be fixed, and compare the mo-
tions of other bodies to these. Einstein held that any such choice of
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a reference-frame is inherently arbitrary, and that a philosophically
sound physics would be independent of such arbitrary choices; the
“General Theory of Relativity” was supposed to be a theory in which
all reference-frames are equivalent. To his philosophical followers,
especially Hans Reichenbach and Moritz Schlick, Einstein was only
saying what philosophers ought to have known, and a few had al-
ready suspected, on purely philosophical grounds. Contemporaries
who had rejected Newton’s views now seemed to have anticipated
the eventual emergence of physics from its naive state.

In the 1960s and 1970s, however, many scientists and philoso-
phers began to recognize what a few had known all along: that gen-
eral relativity does not make space, time, and motion “generally
relative,” as Einstein had thought.? Instead, the theory postulates
a spatio-temporal structure that is, in an obvious sense, just as
“absolute” as the structures postulated by Newton. On the one hand,
Einstein’s field equation relates the geometry of space-time to the
distribution of matter and energy. Thus, if “absolute” means “fixed
and uniform,” or “unaffected by material circumstances,” then we
can say that spacetime in general relativity is not “absolute,” but
“dynamical.” On the other hand, spacetime in general relativity
remains “absolute” in at least one philosophically decisive sense: it
is not an abstraction from relations among material things, but a
“physically objective” structure open to objective empirical investi-
gation. Moreover, the theory does indeed make “absolute” distinc-
tions among states of motion; it draws these distinctions in a way
that departs dramatically from Newton’s theory, but they remain
physically objective distinctions that do not depend on the arbitrary
choice of a reference-frame.

It became clear, then, that Newton’s theory and Einstein’s spe-
cial and general theories all make essentially similar claims about
the world: each specifies a certain “absolute” spatio-temporal struc-
ture, along with physical assumptions — primarily about the nature
of force and inertia — that enable us to connect that structure with
experience. In other words, conceptions of space and time are not
arbitrary metaphysical hypotheses appended to otherwise empiri-
cal physics; they are assumptions implicit in the laws of physics.
Defenders of Newton began to argue that “absolute” space-time
structures are not so very different from other unobservable “theoret-
ical entities” introduced into physics, such as fundamental particles
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and fields. Accordingly, they ought to be judged by how well they
function in explanations of observed phenomena. Any reasonable
metaphysical question about space, time, and motion could thus
be translated into a straightforward question about physics. For ex-
ample, “is rotation absolute?” becomes, “does our best-established
physical theory distinguish between absolute rotation and relative
rotation?” and “is there an equally good or a better physical theory
that dispenses with absolute rotation, or that refers only to relative
motions?”3

From this point of view, we can ask of Newton’s conceptions of
absolute time, absolute space, absolute rotation, and absolute mo-
tion, “are they required by Newtonian physics?” And the answer is
straightforward: Newton’s laws presuppose absolute time, but not
absolute space; they enable us to distinguish a truly rotating or ac-
celerating body from one that is merely relatively rotating or accel-
erating; but they do not enable us to distinguish which bodies are “at
rest in absolute space,” or to determine the “absolute velocity” of
any thing. Therefore Newton’s laws require not absolute space, but
a four-dimensional structure known as “Newtonian space-time.” A
straight line of this structure represents uniform motion in a straight
line, and therefore its physical counterpart is the motion of a body
not subject to forces.4 Einstein’s theories postulate different space-
time structures, based on different physical assumptions. Thus the
theories should not be judged on purely philosophical grounds; it is,
rather, a simple question of which theory is best supported by the em-
pirical evidence. Had Newton said, “Spacetime is a four-dimensional
affine space,” instead of “Absolute space remains similar and im-
movable,” there would have been no philosophical grounds for ob-
jection, but only (eventually) new developments in physics demand-
ing new spacetime structures. Generally, on this point of view, our
philosophical views about space and time should depend on our be-
liefs about physics.

Yet this seemingly simple approach to space and time has always
been under philosophical suspicion. Einstein’s chief objection had
been anticipated by Leibniz: only the relative motions of bodies are
observable, while space and time are not. How, then, could space,
time, and motion be absolute? If we could construct a theory that
made no reference to absolute space, time, and motion, ought we
not to prefer it just for that reason? And even if “our best” physical
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theory does make claims about space, time, and motion, do we not
nonetheless have independent philosophical grounds to doubt their
“absolute” status? For it seems absurd that any argument about ob-
served spatial relations could prove that space itself is “absolute.”
Even to Newton’s sympathizers, objections like these have always
seemed challenging; to his opponents, they have seemed decisive.
Hence whether motion is absolute or relative has appeared to be one
of the perennial questions of philosophy.

As we will see, however, this approach to the philosophical ques-
tions of space and time is based on a fundamental misunderstanding
of what Newton accomplished - indeed, a misunderstanding of the
role that space and time play in physics. What it assumes is that
what we mean by space, time, and motion, and what we mean by
claiming that they are “absolute,” is already established on purely
philosophical grounds, so that we can then ask what physics has to
say about these philosophical concepts. What it overlooks is that
Newton was not taking any such meanings for granted, but defining
new theoretical concepts within a framework of physical laws. Inde-
pendently of such a framework, it is premature to ask, “did Newton
successfully prove that space, time, and motion are absolute?” The
proper questions are, what were Newton’s definitions of “absolute
space,” “absolute time,” and “absolute motion”? And, how do those
definitions function in his physical theory?

NEWTON’S PHILOSOPHICAL CONTEXT

It was natural for Newton’s contemporaries to misunderstand his
purpose. Leibniz, for example, had an understanding of space, time,
and motion, and of what it means to be a “substance” or to be
“absolute,” that arose from his own peculiar metaphysics. And to
say that “space,” “time,” and “motion,” as he understood them, are
““absolute,” rather than essentially relative, seemed to be an obvious
mistake. But Newton explicitly proposed to ignore the prevailing
philosophical uses of these terms, and to introduce theoretical no-
tions of his own.

Although time, space, place, and motion are very familiar to everyone, it
must be noted that these quantities are popularly conceived solely with
reference to the objects of sense perception. And this is the source of certain
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preconceptions; to eliminate them it is useful to distinguish these quantities
into absolute and relative, true and apparent, mathematical and common.’

As Howard Stein first emphasized,® the preconceptions that Newton
had in mind were those of Descartes and his followers. Descartes had
purported to prove that space is identical with extended substance.
It followed that a vacuum is impossible, for wherever there is ex-
tension, there is, by definition, substance as well; it also followed
that what we call motion “in space” is really motion relative to a
fluid material plenum. From these foundations, Descartes developed
a vortex theory of planetary motion: the rotation of the Sun cre-
ates a vortex in the interplanetary fluid, and the planets are thereby
carried around in their orbits; similarly, the planets with satellites
create smaller vortices of their own. Descartes would thus seem to
have advanced a version of the Copernican theory, and attributed
real motion to the Earth. But he equivocated on this point by his def-
inition of “motion in the philosophical sense”: while motion “in the
vulgar sense” is “the action by which a body passes from one place
to another,” its motion “in the philosophical sense” is the body’s
“transference from the vicinity of those bodies contiguous to it to
the vicinity of others.”” On this definition, Descartes could claim
to hold both the heliostatic and geostatic views of the planetary sys-
tem: the Earth is indeed revolving around the Sun in the vortex, but
“in the philosophical sense” it is at rest, since it remains contigu-
ous to the same particles of the fluid. Hence Descartes’s assertion:
“I deny the movement of the earth more carefully than Copernicus,
and more truthfully than Tycho.”®

Newton saw that such a definition is completely unsuitable for
any dynamical analysis of motion, and in particular the dynamical
understanding of the solar system. It implies that the choice between
Copernicus or Kepler, on the one hand, and Ptolemy or Tycho, on
the other, has nothing to do with the dynamical causes and effects of
motion, but can only be made on the grounds of simplicity or conve-
nience. From a certain philosophical point of view, of course, this is
the desired conclusion. But the vortex theory itself — as advanced not
only by Descartes, but by Leibniz and other “relativists” as well —
assumed that the planetary system really is a dynamical system: that
is, a system that is subject to the laws of motion, and whose parts
are related by causal interactions. On that assumption, the fact that
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planets orbit the sun, instead of moving uniformly in a straight line,
requires some kind of causal explanation. Thus, Descartes’s theory,
as a causal explanation of the planetary motions, required a distinc-
tion between inertial motion and motion under the causal influence
of a force. But this requirement is completely neglected by his defini-
tion of “motion in the philosophical sense.” We begin to understand
Newton’s Scholium by properly understanding the question it ad-
dresses: what concepts of time, space, and motion are required by a
dynamical theory of motion?

Asking this question about Newton’s theory does not deny its
connection with his profound metaphysical convictions — not only
about space and time, but about God and his relationship to the
natural world. On the contrary, it illuminates the nature of those
convictions and their relationship to Newton’s physics. For Newton,
God and physical things alike were located in space and time. But
space and time also formed a framework within which things act on
one another, and their causal relations became intelligible through
their spatio-temporal relations — above all, through their effects on
each other’s state of motion. The latter principle, which was implicit
in seventeenth-century physics, was for Newton the link between
physics and metaphysics: if physics is to understand the real causal
connections in the world, then physics must define space, time, and
motion so as to make those connections intelligible.

NEWTON’S DEFINITIONS

Newton begins by defining “absolute time” as time that, “without
reference to anything external, flows uniformly.”? This means that,
regardless of whether any particular mechanical or natural process
flows equably — for example, regardless of whether the motion of
any real clock or rotating planet really sweeps out equal angles in
equal times - there is an objective fact, in “absolute time,” about
whether two intervals of time are truly equal. Absolute time also
implies absolute simultaneity, so that each moment of time is de-
fined everywhere, and it is an objective fact whether any two events
happened at the same moment. These two principles define precisely
what is presupposed about time in the subsequent arguments of the
Principia. Newton’s critics, however, have traditionally taken him
to be asserting that “time is absolute,” and that the meaning of such
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a claim is established independently of physics. Leibniz, for exam-
ple, assumed that if time is absolute, it must be (what he would call)
a “substance,” and so each moment must be a distinguished indi-
vidual. This would mean that if the beginning of the universe were
shifted from one to another moment of absolute time, some real dif-
ference would be made. But no such difference could be discernible;
absolute time therefore violates the “Principle of the Identity of
Indiscernibles,” by which there cannot be two distinct things that
do not differ discernibly. Therefore, to Leibniz, time cannot be
“absolute,” but can only be an “order of succession.”

Yet in the notion of absolute time as defined by Newton, no such
difference is implied. In fact, Newton explicitly rejects the idea that
the moments of time (or space) have any identity above and beyond
their mutual order and position, asserting (in strikingly “Leibnizian”
terms) that “all things are placed in time with reference to order of
succession; and in space with reference to order of position.”*® The
defining characteristic of absolute time is not the distinct individu-
ality of its moments, but the structure of time, i.e., the fact that it
flows equably and that equal intervals of time are objectively defined.
The critical question is not whether Newton successfully proves that
“time is absolute” — for this was never his purpose — but whether his
definition of absolute time is a good one. And in the context of the
Principia, this amounts to asking, does this definition have objective
physical content? That is, can we define equal intervals of elapsed
time without recourse to some arbitrary standard? Is there a good
physical definition of what it means for time intervals to be equal,
even if no actual clock measures such intervals exactly? The answer
is “yes”: this is precisely the definition of time implied by Newton’s
laws of motion, which postulate an objective distinction between
inertial motions, which cross equal distances in equal times, and
motions that are accelerated by an impressed force. In short, an ideal
clock that keeps absolute time is simply an inertial clock: impossi-
ble to achieve in practice, but approachable to an arbitrary degree of
approximation. Thus Newton’s definition of absolute time is as well
founded as his laws of motion. And this is why, in spite of all the tra-
ditional philosophical objections to it, it could only be overthrown
by Einstein’s introduction of new fundamental physical laws.

A similar analysis can be given of Newton’s definitions of abso-
lute space and motion. For Leibniz and others, to say that “space
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is absolute” is to say that space is a substance, and thereby to at-
tribute a distinct identity to each point of space. But if the locations
of all things in space were shifted any distance in any direction, no
real difference would be made; therefore (again by the Principle of
the Identity of Indiscernibles), space cannot be absolute. Here again,
however, in the definition of absolute space given by Newton, no
such difference is implied. The defining characteristics of absolute
space are that it remains “homogeneous and immovable,” so that
the parts of absolute space (the “absolute places”) are truly at rest,
and that translation from one to another absolute place is “absolute
motion.”™ This means that there is a real difference between motion
and rest in the same absolute place over time; but it does not im-
ply any real difference between one universe, and another in which
everything is shifted to a different absolute place; a body’s state of
motion depends on whether it remains in the same absolute place,
but not on which absolute place it occupies. (Similarly, in Newtonian
spacetime we can determine whether two velocities are the same,
independently of their actual magnitude.) So Leibniz’s classic argu-
ments from the Principle of the Identity of Indiscernibles, cogent
though they may be against a certain conception of space and time
as “substances,” are not arguments against the concepts Newton
designated by “absolute time” and “absolute space.”

Now, however, if we ask of absolute space what we asked of ab-
solute time (is this a legitimate definition on physical grounds?) we
encounter a problem. Unlike absolute time, absolute space entails a
distinction that is not well defined according to Newton’s laws: the
distinction between rest and motion in absolute space. According to
the laws of motion, a body moves uniformly in a straight line until
an applied force causes it to accelerate, and the effect of the force is
independent of the velocity of the body it acts upon. In other words,
Newton’s laws embody the principle of Galilean relativity, which
Newton himself derived as Corollary s to the laws: “When bodies are
enclosed in a given space, their motions in relation to one another
are the same whether the space is at rest or whether it is moving
uniformly straight forward without circular motion.”** This means
that nothing in the behavior of the solar system, for example, would
enable us to determine whether it is at rest or moving inertially.
Corollary 6 undermines absolute motion even further: “If bodies are
moving in any way whatsoever with respect to one another and are
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urged by equal accelerative forces along parallel lines, they will all
continue to move with respect to one another in the same way as
they would if they were not acted on by those forces.”*3 That is,
nothing in the behavior of the solar system can even tell us whether
the system is moving inertially, or being accelerated equally by some
force from outside the system. Thus, though absolute space is invul-
nerable to the familiar criticisms from Leibniz, it is devastated by
Newton’s own concepts of force and inertia. Evidently this might
have been otherwise: if the laws of physics measured force by ve-
locity rather than acceleration, then dynamics could identify which
bodies are truly at rest. Then we would have the physical definition
of absolute space that Newtonian physics lacks. But in a Newtonian
world, Newton’s distinction between absolute motion and absolute
rest cannot be realized.

That Newton was aware of this problem is clear from his discus-
sion of absolute motion. He proposes to distinguish absolute from
relative motion by its “properties, causes, and effects.” And in the
discussion of absolute translation, the properties can be simply de-
fined: that bodies at rest are at rest relative to one another; that
parts of a body partake of the motion of the whole; that whatever
is contained in a given space shares the motion of that space. These
properties together imply that we cannot determine the true state
of rest or motion unless we refer motion to immovable space, rather
than to some object or relative space that may be in motion. The
latter properties, moreover, are directed against Descartes (without
naming him, however). For they are not necessarily true of motion in
Descartes’s sense: if an apple moves, for example, the core remains
at rest, as it is not moving relative to the skin that is contiguous
to it. So Newton has given a more sensible analysis than Descartes
of what we might mean by motion, assuming that we know which
bodies are moving or resting in space. But that is precisely what we
do not know: none of these properties enables us actually to deter-
mine empirically what a body’s absolute motion is. An empirical
distinction between absolute and relative motion first appears when
we move from the properties of true motion to the causes and
effects — causes and effects that have to do with inertia and force.
And forces, as we have seen, can distinguish between accelera-
tion and uniform motion, but not between “absolute motion” and
“absolute rest.”
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The causes that distinguish absolute from relative motion are “the
forces impressed upon bodies to generate motion.”*¢ Obviously, rel-
ative motion can be generated or changed without the action of any
force, but true motion is only generated or changed by a force. By the
same token, a body’s true motion necessarily “suffers some change”
from the application of a force, whereas its relative motion need not:
for example, if the reference-point by which we measure its relative
motion is subject to the same force. Here a “relativist” might be
tempted to ask, how does Newton know all of this about true mo-
tion? To ask this is to forget that Newton is elaborating the definition
of true motion that is implicit in the principle of inertia. The critical
question is, instead, does the definition define exactly what Newton
wanted to define? Corollary 5 (or Corollary 6, for that matter) shows
explicitly that it does not: the effects of impressed forces on the “true
motions” of bodies are completely independent of the initial veloc-
ities of those bodies; therefore the causes of “true motion” provide
a definition, not of motion with respect to absolute space, but of
acceleration.

The same is true of the effects that distinguish absolute from rel-
ative motion: “the forces of receding from the axis of circular mo-
tion,” or centrifugal forces.'s “For in purely relative circular motion
these forces are null, while in true and absolute circular motion,
they are larger or smaller in proportion to the quantity of motion.”*®
Such effects, even if we assume that they distinguish a true rotation
from a relative motion, certainly cannot reveal whether a rotating
body is at rest in absolute space. But what do they reveal? Newton
discusses this in the most controversial part of the Scholium, the
“water-bucket experiment.” The experiment is extremely simple:
suspend a bucket of water by a rope, and turn the bucket in one di-
rection until it is “strongly twisted”; then, turn the bucket in the
contrary direction and let the rope untwist. As the bucket now ro-
tates, the surface of the water will initially be flat, but relative to
the bucket, it is rotating. By the friction of the rotating bucket, the
water will gradually begin to rotate as well, eventually equaling the
speed of the bucket, so that its motion relative to the bucket grad-
ually ceases. Yet as the relative rotation of the water decreases, its
“endeavor to recede from the axis of motion” — exhibited by the wa-
ter’s climbing the sides of the bucket — increases correspondingly.
The significance of this is plain. Newton is identifying the water’s
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rotation by its dynamical effect, which is least when the motion in
Descartes’s sense is greatest, and greatest when the Cartesian motion
is least.

Therefore, that endeavor does not depend on the change of position of the
water with respect to surrounding bodies, and thus true circular motion
cannot be determined by such changes of position. The truly circular motion
of each revolving body is unique, corresponding to a unique endeavor as its
proper and sufficient effect.’”

Thus the Cartesian definition of motion ignores the very dynamical
effects with which physics ought to be concerned. Newton explicitly
points out, however, that his dynamical concept of motion is implicit
in Descartes’s own vortex theory. For in that theory,

the individual parts of the heavens [i.e. of the fluid vortex], and the planets
that are relatively at rest in the heavens to which they belong, are truly in
motion. For they change their positions relative to one another (which is not
the case with things that are truly at rest), and as they are carried around
together with the heavens, they participate in the motions of the heavens
and, being parts of revolving wholes, endeavour to recede from the axes of
those wholes.™

The true rotation of a body, then, cannot be judged from its motion
relative to contiguous bodies, but only from the magnitude of the
centrifugal effects it causes.

Critics of this argument have generally not defended the Cartesian
view of motion against Newton’s objections. But Newton was evi-
dently trying to do more than distinguish true rotation from rota-
tion in Descartes’s “philosophical sense.” This is clear from another
thought-experiment: suppose that two globes, joined by a cord, re-
volve around their common center of gravity; suppose, further, that
there are no other bodies, contiguous or otherwise, to which we can
refer their motions. Even then, “the endeavor of the balls to recede
from the axis of motion could be known from the tension of the cord,
and thus the quantity of circular motion could be computed.”*® In
other words, the true rotation of a body is not only independent of
its rotation relative to contiguous bodies; it is independent of any
relative rotation. If Newton is correct, one could say of one body, in
an otherwise empty universe, whether it is rotating or not.

This is the step that has always raised philosophical doubts: do
the experiments prove that the water, or the pair of globes, is really
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rotating? Could such an experiment possibly demonstrate the exis-
tence of absolute space? Is rotation relative to absolute space really
the cause of the observed centrifugal forces? Perhaps the centrifugal
forces on the water are not caused by motion relative to the bucket,
but does this mean that they are independent of any relative mo-
tion, as the experiment of the globes purports to show? According
to Ernst Mach, writing two hundred years after Newton, if Newton
saw no need to refer motion to contiguous bodies, this is because
he was tacitly referring all motion to the “fixed stars”. And even
if we can deduce from Newton’s laws how bodies would behave in
the absence of the fixed stars, we cannot deduce whether, in those
circumstances, Newton’s laws would still hold anyway.2°

To Einstein, under Mach’s influence, Newton’s argument illus-
trated the inherent “epistemological defect” of Newtonian physics.
Consider two spheres S; and S,, rotating relative to one another, and
suppose that S, bulges at its equator; how do we explain this differ-
ence? Einstein says,

No answer can be admitted as epistemologically satisfactory, unless the
reason given is an observable fact of experience... Newtonian mechanics
does not give a satisfactory answer to this question. It pronounces as follows:
The laws of mechanics apply to the space R;, in respect to which the body S;
is at rest, but not to the space R,, in respect to which the body S, is at rest.
But the privileged space R; ...is a merely factitious cause, and not a thing
that can be observed.>!

Einstein’s view became the “received view” of absolute rotation
among philosophers of science. And even philosophers who have de-
fended absolute rotation have accepted this challenge to show that
absolute motion does provide a legitimate explanation.?? As our read-
ing of Newton suggests, however, this critical view simply asks the
wrong questions. Newton never claims to prove that the centrifugal
forces on the water or the globes are caused by rotation relative to
absolute space, or claims that any such experiment could demon-
strate the existence of absolute space. What he says, instead, is that
the centrifugal forces define absolute rotation. It makes no sense to
ask, how does Newton know that S, is really rotating? S, is rotating
by definition — more precisely, S, is rotating just because it satis-
fies the definition of absolute rotation. Thus Newton has not tried
to justify the causal link between rotation and centrifugal effects,



Newton’s philosophical analysis of space and time 45

but simply to identify it as definitive of true rotation. Thus he has
defined a theoretical quantity, absolute rotation, by exhibiting how
it is detected and measured by centrifugal effects. His discussion of
the water-bucket makes this explicit: from the endeavor to recede
from the axis, “one can find out and measure the true and absolute
circular motion of the water, which here is the direct opposite of its
relative motion” [emphasis added].23 And concerning the globes, he
states not only that from the tension on the cord “we might com-
pute the quantity of their circular motions,” but also that changes
in the tension would provide a measure of the increase or decrease
in rotation. “In this way both the quantity and the direction of this
circular motion could be found in any immense vacuum, where
nothing external or sensible existed with which the balls could be
compared.”?4 Again, we might think to ask how we really know that
these effects provide a measure of absolute rotation, or by what right
we can infer from such effects the quantity of absolute rotation. But
this is as pointless as asking, by what right do we infer the magnitude
and direction of an impressed force from the magnitude and direc-
tion of an acceleration? For this is just how Newton’s laws define
impressed force. In both cases, we are not inferring a theoretical en-
tity from a phenomenon, but defining a phenomenon as the measure
of a theoretical quantity.?s

Newton’s argument, in sum, was never an argument from physical
phenomena to metaphysical conclusions about the “absoluteness” of
rotation. Instead, it was an argument of a sort that is fundamental to
every empirical science: an argument that anovel theoretical concept
has a well-defined empirical content. Like the definition of absolute
time, and unlike the definition of absolute translation, the definition
of absolute rotation does indeed have a basis in Newton’s laws. And
this means, again, that it is no less well founded than Newton’s laws;
if the universe in fact obeys those laws, we can always measure the
true rotation of any body.

This interpretation of Newton’s Scholium defies a long and con-
tinuing tradition, though its main point was already made by Stein in
1967.2¢ But it is explicitly corroborated by Newton’s other extended
discussion of space, the manuscript “De gravitatione et aequipondio
fluidorum.”?” For example, here Newton explicitly denies the con-
ception of space and time as “substances” that provoked Leibniz’s
“indiscernibility” objection: “The parts of duration and space are
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only understood to be the same as they really are because of their
mutual order and position; nor do they have any hint of individu-
ality apart from that order and position which consequently cannot
be altered.”>® Newton concludes that space “has its own way of be-
ing, which fits neither substances nor accidents.” He even suggests,
for reasons not unlike those later given by George Berkeley, that the
philosophical notion of “substance” is itself “unintelligible.”2°
More important, “De gravitatione,” much more explicitly than
the Scholium, emphasizes that Newton’s dynamical arguments con-
cern the definition of true motion. His entire discussion of space and
motion is contained in a “Note” to Definition 4: “Motion is change
of place.”3° As Stein pointed out (1967), Newton begins immediately
to justify this definition against “the Cartesians,” by showing that
Descartes’s definition of motion is incompatible with the basic prin-
ciples of mechanics. In particular, it is incompatible with the princi-
ple of inertia: if a body’s true motion is defined relative to contiguous
bodies, and the latter are the constantly flowing particles of the vor-
tex, it will be impossible to define a definite path for the body. And in
that case, it will be impossible to say whether that path is rectilinear
or uniform. “On the contrary, there cannot be motion since there
can be no motion without a certain velocity and determination.”3”
Newton also points out, however, that, alongside the “philosophi-
cal” conception of motion, Descartes makes casual or implicit use of
a physical and causal conception of motion. For example, Descartes
acknowledges that the revolution of a planet or comet around the sun
creates centrifugal forces in the planet, a centrifugal tendency that
must be balanced by the resistance of the fluid in the vortex. And
this physical motion of the vortex itself is referred, not to “the am-
bient bodies,” but to “generic” extension. Of course Descartes says
that the latter is an abstraction from extended matter that exists only
in thought; the vortical motion that produces the centrifugal forces
is thus mere “motion in the vulgar sense,” not true motion. But
Newton observes that of these two parallel concepts of motion, it is
the “vulgar” one, rather than the “philosophical” one, that Descartes
appeals to in giving a physical and causal account of celestial motion.
Therefore he argues that, of the possible ways of defining motion, we
ought to choose that one that successfully defines a physical quan-
tity, and that can therefore play a role in causal explanation: “And
since the whirling of the comet around the Sun in his philosophical
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sense does not cause a tendency to recede from the center, which a
gyration in the vulgar sense can do, surely motion in the vulgar sense
should be acknowledged, rather than the philosophical.”3>

It might seem that Descartes’s theory of motion is too easy a tar-
get, especially compared to a sophisticated account of the relativity of
motion like that of Leibniz.3? But Newton'’s objection to Descartes’s
definition is not merely its inadequacy or even incoherence, but also
its inconsistency with dynamical principles that Descartes himself
accepted. And this same objection applies to Leibniz: he appeals to
a causal account of motion that is incompatible with his professed
philosophical account. On philosophical grounds, as we have seen,
Leibniz denies that there is a real distinction between one state of
motion and another, and asserts the general “equivalence of hypothe-
ses” about which bodies are at rest or in motion; consequently, he
asserts that the Copernican and Ptolemaic systems are equivalent.
Yet he very clearly does attach a physical meaning to the distinction
between one state of motion and another. On the one hand, Leib-
niz presents a strange argument for the relativity of all motion. He
claims to agree with Newton on “the equivalence of hypotheses in
the case of rectilinear motions.” But a curved motion is really made
up of infinitesimal rectilinear motions, and so he concludes that a
curved path is equivalent to a straight one, because they are equiva-
lent in the mathematical sense that both are “locally straight.” So all
motions, rectilinear or curved, are equivalent.34 On the other hand,
according to Leibniz’s own dynamical theory, the curved path is not
physically — therefore not causally — equivalent to the straight path.
This is because, on that theory, a body by its own inherent force
can maintain its motion in a straight path, whereas a body cannot
maintain a curved motion without the constant intervention of some
other body. Indeed, the crux of his objection to Newtonian action at
a distance is that it violates this principle:

If God wanted to cause a body to move free in the aether round about a
certain fixed center, without any other creature acting upon it, I say it could
not be done without a miracle, since it cannot be explained by the nature of
bodies. For a free body naturally recedes from a curve in the tangent.3s

This passage establishes that Leibniz’s understanding of rotation and
centrifugal force was, at least in the context of physical explanation,
the same as Newton’s. And this is a natural consequence of Leibniz’s
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commitment to the vortex theory, in which the harmonic circulation
of the planets results from a balance between their own “centrifugal
tendencies” and the pressure of the ambient fluid.3® More generally,
such remarks reveal that, despite his “general law of equivalence,”
Leibniz’s convictions about the fundamental nature of bodies, and
their causal interactions with one another, depended on the concept
of a privileged state of motion.

Leibniz’s view exhibits the conflict, characteristic of seventeenth-
century “relativist” views of space, time, and motion, between two
opposing motives. On the one hand was the desire for a “relativistic”
account of motion, in reaction against traditional Aristotelian objec-
tions to the motion of the earth. The classical argument was sim-
ply that terrestrial phenomena seem to reveal none of the expected
effects of a rapid rotation or revolution; to accept the Copernican
theory, one had to grasp the idea of “indistinguishable” states of mo-
tion, and to accept an “equivalence of hypotheses” about whether
the earth is at rest. Only thus could Galileo argue that the terrestrial
evidence is necessarily inconclusive, and appeal to the advantages
of Copernicanism as an elegant account of celestial phenomena.
On the other hand, the demise of Aristotle’s theory of celestial
motion — the “crystalline spheres” — produced the need for a causal
account of motion, which would reveal the physical connections
among the Sun and the planets. And the founding principle of that
account, at least for Newton and Leibniz and their contemporaries,
was Descartes’s principle that the planets tend to travel in straight
lines, but are forced by some physical cause into circulations around
the sun. Leibniz maintained the mechanistic view that any such
cause must act by immediate contact, while Newton accepted the
possibility of “action at a distance,” but, in any case, they shared the
principle that a certain state of motion is “natural,” and that any
deviation from that state requires a causal explanation. Therefore, a
“general law of equivalence” of states of motion would vitiate the
very celestial mechanics that Leibniz and other Cartesians hoped to
construct. If it made no physical difference whether the Sun orbited
the Earth, or the Earth the Sun; if it made no physical difference
whether the interplanetary medium were at rest, or rotating in a
vortex; then there would be little hope of explaining the celestial
motions by the physical interactions among the celestial bodies.
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All of this shows that Newton’s definition of absolute motion, in
so far as it identifies the latter by its “causes and effects,” is by no
means an arbitrary definition, or an idiosyncratic one derived solely
from his metaphysical views. Rather, Newton’s definition identi-
fies the very conception of motion that was implicit in seventeenth-
century thinking about physical causes and physical explanations.
His Scholium attempts (not entirely successfully, as we have seen) to
characterize this conception precisely, and especially to separate it
from philosophical “preconceptions” about relativity that are irrele-
vant to the task of physical explanation. In other words, instead of a
metaphysical hypothesis to account for dynamical effects, Newton
has offered a conceptual analysis of what is presupposed about mo-
tion — by Descartes, Leibniz, and every other seventeenth-century
mechanist — in ordinary reasoning from motion to its physical cause.

THE SYSTEM OF THE WORLD

The Newtonian conception of motion has an obvious yet remarkable
consequence: whether the planetary system is geocentric or helio-
centric can no longer be settled by adopting the simplest hypothesis,
but is now a straightforward empirical question. For, assuming
the laws of motion, Book 3 of Newton'’s Principia argues from the
celestial motions to the physical forces that cause them. Again, any
post-Cartesian physicist would infer, from the fact that a planet trav-
elsin aclosed orbit rather than a straight line, that some force keeps it
from following the tangent; Newton, drawing on the work of Galileo,
Huygens, and others, reasoned mathematically from the precise char-
acteristics of the orbit to the precise characteristics of the force. And
this reasoning leads eventually from Kepler’s laws of planetary mo-
tion to universal gravitation.3”

Throughout this reasoning from motions to forces, Newton re-
mains neutral between the geocentric and heliocentric theories.
Once the forces are known, however, we can compare the masses
of the celestial bodies by comparing the forces they exert on their
satellites. From there, a very simple argument determines the phys-
ical center of the system. First, suppose (Hypothesis 1) that the cen-
ter of the system (whatever it is) is at rest.3® “No one doubts this,
although some argue that the earth, others that the sun, is at rest in
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the center of the system.” Then (Proposition 11) the common center
of gravity of the system must be at rest. For by Corollary 4 to the
laws of motion, “that center either will be at rest or move uniformly
straight forward. But if that center always moves forward, the center
of the universe will also move, contrary to the hypothesis.” The con-
clusion is immediate: “Proposition 12: That the sun is engaged in
continual motion but never recedes far from the common center
of gravity of all the planets.”3° In other words, if the planetary
system is a dynamical system, whose members interact according
to the accepted dynamical laws, then no body is at rest, for, by the
third law of motion, to every action of every body there is an equal
and opposite reaction, and only the center of gravity of the system can
remain at rest. However, the comparison of masses reveals that most
of the mass of the system is contained in the sun. Therefore, “if that
body toward which other bodies gravitate most had to be placed in
the center. .. that privilege would have to be conceded to the sun.”4°

Newton’s argument is that, given the laws of motion and the ob-
served behavior of the planets and the sun, we can infer their causal
influences on one another and their relative masses; when all of this
is known, the structure and motion of the system — “the frame of the
system of the world” — is determined. But, as Newton well knew, the
system is determined only up to a point. By Corollary 5, no dynam-
ical analysis of the solar system can reveal whether the system as
a whole is at rest or in uniform motion. And Corollary 6 renders
the analysis still less determinate. But none of this affects Newton’s
dynamical analysis:

It may be alleged that the sun and planets are impelled by some other force
equally and in the direction of parallel lines; but by such a force (by Cor. v1
of the Laws of Motion) no change would happen in the situation of the
planets to one another, nor any sensible effect follow; but our business is
with the causes of sensible effects. Let us, therefore, neglect every such
force as imaginary and precarious, and of no use in the phenomena of the
heavens.+*

The causal analysis of the motions within the solar system estab-
lishes a close approximation to Kepler’s heliocentric system, what-
ever the motion of the system as a whole. And the geocentric theory
is revealed to be physically impossible, precisely as it would be
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physically impossible for a baby to whirl a large adult around its
head on a string: in both cases the smaller body must revolve further
from the center of gravity.

Philosophically this argument is not very different from the
Leibnizian argument for a heliocentric vortex. The latter, too, rea-
sons from accelerated motions to their physical causes, and it infers
from the nature and magnitude of the Sun that it, rather than the
Earth, has the required causal efficacy to serve as the physical center
of the system. Therefore, on Leibniz’s physical theory as well as on
Newton’s, whether Ptolemy or Copernicus was more nearly right is a
physically meaningful question. It should be emphasized, moreover,
that the same comparison can be made between Newton’s theory
and general relativity. Philosophers used to say that general rela-
tivity had finally established the equivalence of the Copernican and
Ptolemaic systems, except to the extent that one might be “simpler”
than the other.4* Precisely as in Newton’s theory, however, in gen-
eral relativity the planetary orbits are determined by the mass of
the Sun. The mass causes spacetime curvature, instead of a grav-
itational field in Newton’s sense, but there remains an essential
similarity: the mass required to account for the precise curvature
of the planetary orbits is the same in both theories, and on either
theory the Earth’s mass is too small. So the two systems are, on
physical grounds, as inequivalent in Einstein’s theory as they are
in Newton’s. The decision between them is not an arbitrary choice
of reference-frame, but the outcome of a dynamical analysis, based
on the principle that states of motion can have genuine dynamical
differences.

CONCLUSION: AN EMPIRICIST VIEW OF SPACE, TIME,
AND MOTION

Newton’s conceptions of space, time, and motion were long regarded
as metaphysical ideas whose place in empirical science was open to
dispute. Now we can finally see that they were, instead, exemplary
of the way in which science gives empirical meaning to theoretical
notions. A spatio-temporal concept belongs in physics just in case
it is defined by physical laws that explain how it is to be applied,
and how the associated quantity is to be measured; Newton called
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“absolute” precisely those quantities that could be so defined. By
this standard, absolute space does not belong in Newtonian physics,
since absolute translation in space is not a physically measurable
quantity. But absolute time, absolute acceleration, and absolute ro-
tation are well-defined concepts that are, as we saw, implicit in clas-
sical thinking about physical causes. Thus philosophical questions
about these concepts could become empirical questions. In partic-
ular, the question of what is really moving in the solar system was
reduced to simple empirical questions. Which bodies exhibit the dy-
namical effects that are definitive of true rotation? Where is the
center of gravity of the system, and what body is closest to that
center?

The controversy over this theory of motion can be compared to
the controversy over Newton’s theory of gravitation as an action at a
distance. To his scientific and philosophical contemporaries, action
at a distance contradicted the very concept of physical action, which
was supposed to be possible only by direct contact. But for Newton,
action is defined by the laws of motion, which provide empirical cri-
teria for measuring the action of one thing on another; if the planets
and the sun satisfy these criteria in their direct mutual relations,
then they are acting on one another. Thus the question of action at a
distance became an empirical question. We can also compare this to
the controversy over non-Euclidean geometry in the nineteenth cen-
tury. Many philosophers found it inconceivable that space could pos-
sibly be curved; this seemed contrary to the very concept of space.*3
According to Gauss, Riemann, and Helmholtz, however, when we
make precise the empirical meaning of the claim that space is curved,
we see that it is no more contradictory than the claim that space is
not curved. Both claims derive their meaning from physical assump-
tions about the behavior of bodies and light — for example, that “light
rays travel in straight lines”; just this understanding of the meaning
of curvature makes it an empirically measurable quantity, and makes
the question whether space is curved an empirical question. Simi-
larly, Newton showed that the familiar assumptions about inertia
and force — specifically, that “bodies not subject to forces travel uni-
formly in straight lines” — suffice to define acceleration and rotation
as empirically measurable quantities. His critics insisted that, to be
an empiricist about space and time, one had to define motion as
change of relative position; Newton’s philosophical insight was that
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empirical definitions of motion, space, and time come from the laws
of empirical science.
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2. Newton’s concepts of force
and mass, with notes on
the Laws of Motion

VARIETIES OF FORCE IN THE PRINCIPIA®

Newton’s physics is based on two fundamental concepts: mass and
force.? In the Principia Newton explores the properties of several
types of force. The most important of these are the forces that pro-
duce accelerations or changes in the state of motion or of rest in
bodies. In Definition 4 of the Principia, Newton separates these
into three principal categories: impact or percussion, pressure, and
centripetal force. In the Principia, Newton mentions other types
of forces, including (in Book 2) the forces with which fluids resist
motions through them.3 Of a different sort is Newton’s “force of
inertia,” which is neither an accelerative force nor a static force
and is not, properly speaking in the context of dynamics, a force
at all.4

The structure of Newton’s Principia follows a classical pattern:
definitions and axioms, followed by the statement of propositions
and their demonstrations. Newton’s treatise differs, however, from
classical (or Greek) geometry in two respects. First, there is a constant
appeal to the method of limits — Newton’s “first and ultimate ratios,”
as set forth in Book 1, Section 1. Second, the validity of propositions
is tied to evidence of experiment and critical observation.

In the demonstrations in the Principia, Newton generally proceeds
by establishing a series of proportions from a geometric configura-
tion. He then allows one or more of the parameters to be dimin-
ished without limit, thereby obtaining a limiting (“ultimate”) value
of the geometric ratio. It is in the limit that Newton’s proofs are
valid.

57
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THE STRUCTURE OF THE PRINCIPIA

The propositions in the Principia are set forth in three “books.”
Book 1 analyzes motion in free spaces, that is, spaces devoid of
fluid resistance. Book 2 then considers various conditions of fluid
resistance and a variety of related topics. Finally, in Book 3, Newton
applies the results of Book 1 to the physics of the heavens, to the
“System of the World.” Here he shows that gravity extends to
the Moon and that the Earth is an oblate spheroid. He investigates
the motions of the Moon, calculates planetary densities and relative
masses, explains the motions of the tides, and shows that comets
are like planets and thus move in conic sections, some of which are
ellipses. Book 3, as Edmond Halley reported to the Royal Society,
displays a demonstration of the Copernican system as amended by
Kepler.s

As is well known, Book 3 centers on the concept of a universal
gravitating force, one which is shown by Newton to act between any
two particles in the universe. This force is directly proportional to
the product of the masses and inversely proportional to the square
of the distance between them.

In the final (second and third) editions, Newton has a concluding
General Scholium which sets forth a philosophical point of view that
has dominated most of physical science ever since. According to this
philosophy, the goal of science is not to explore ultimate causes, as
for example the cause of gravity, nor to “feign” hypotheses.® Rather,
Newton writes, it “is enough” that “gravity really exists and acts ac-
cording to the laws that we have set forth and is sufficient to explain
the motions of the heavenly bodies and of our sea.”

THE DEFINITIONS — NEWTON’S CONCEPT OF MASS

The Principia opens with a set of “Definitions,” of which the first is
“mass,” a new concept formally introduced into physics by Newton
and a fundamental concept of all physical science ever since. In the
actual statement of the definition, Newton does not use the word
“mass.” Rather, he states what he means by the then-current ex-
pression, “quantity of matter” (“quantitas materiae”). He writes that
his measure of quantity of matter is one that “arises from” (the Latin
is “orta est”) two factors jointly: density and volume. He indicates
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that this particular measure is what he means whenever he writes
of “body” or “mass.”

Newton introduced the concept of mass because his physics de-
manded a measure of matter that is not the result of a body happen-
ing to be at one place rather than another or being subject to some
particular physical circumstance such as an external pressure. In
other words, Newton’s measure — to use the language of Aristotelian
physics — is not an “accidental” property.

In Definition 1, Newton effectively rejects then-current mea-
sures of matter such as extension (favored by Descartes) or weight
(Galileo’s measure). He abandoned weight as the measure of matter
because the reported experiences of Richer and Halley had shown
that the weight of a body varies with its terrestrial latitude. Newton
points out that, at any given place, the mass of a body “can always
be known from a body’s weight”; he has found “by making very ac-
curate experiments with pendulums” that at any given place mass
is proportional to weight. The report on these experiments is given
in Book 3, Proposition 6.

Newton’s views concerning density were strongly influenced by
the pneumatic experiments of Boyle and others and by his own con-
cept of the theory of matter. He was aware that a given quantity of
air could be expanded or contracted. Under such varying conditions,
the density would change, but the quantity of matter would remain
fixed, depending on the volume and density jointly.

The quantity of matter in a given sample would, according to
Newton, remain unaltered if it were transported from one place on
Earth to another. According to Newton’s concept, the quantity of
matter would remain fixed even if the sample of matter were trans-
ported to the Moon or to Jupiter.

Newton’s concept of mass has been criticized, notably by Ernst
Mach,” on the grounds of circularity. If density is mass per unit vol-
ume, how can mass be defined as jointly proportional to density and
volume?® In the Principia, however, Newton does not define density,
nor did he ever write a gloss on his Definition 1. Apparently, however,
he was thinking of density as a measure of the degree of concentra-
tion of the number of fundamental particles of which all matter is
composed.® As such, density would not depend on mass and volume.

Newton came to his concept of mass only as the Principia was tak-
ing form. Mass does not occur in the several versions of “De motu”,
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the tract that Newton wrote just before composing the Principia, a
tract which he expanded into the Principia. In a list of definitions
drawn up just before writing the Principia,*™ Newton used the noun
“pondus” or “weight” as the measure of matter, but he was careful
to note that he did not mean weight as commonly understood. He
thus wrote that because of the “want of a suitable word,” he will
“represent and designate quantity of matter by weight,” even though
he is aware that this usage is not appropriate in all circumstances.
Indeed, in an earlier statement in this same set of definitions, he
wrote that by “weight” (“pondus”), “I mean the quantity or amount
of matter being moved, apart from considerations of gravity, so long
as there is no question of gravitating bodies.”

NEWTON’S “QUANTITY OF MOTION"

The subject of Definition 2 is “quantity of motion,” our momentum.
Newton says that it “arises from the velocity and quantity of matter
jointly.” Here he uses the same verb (“oriri”) as in the definition of
quantity of matter.

NEWTON’S CONCEPT OF “INERTIA” — VIS INSITA
AND “FORCE OF INERTIA”

In Definition 3, Newton declares the sense in which he will use
a term then current in discussions of motion, vis insita.'* This
term was not an invention of Newton’s; it occurs in many books
with which Newton was familiar, even appearing as an entry in
Rudolph Goclenius’s widely read dictionary, Lexicon Philosophicum
(1613). According to Goclenius, vis insita is a “natural power,” a
force (vis) that can be either insita (inherent or natural) or violenta
(violent). In Aristotelian physics this means that force is either ac-
cording to a body’s nature or contrary to it. The term vis insita
also appears in Johann Magirus’s Physiologiae Peripateticae Libri
Sex (1642), which Newton studied while a Cambridge undergradu-
ate, entering many extracts in his college notebook. Vis insita oc-
curs in both Magirus’s text and his accompanying Latin version of
Aristotle’s Nichomachean Ethics. Newton would also have encoun-
tered this term in the writings of Henry More, an influential figure
in Newton’s intellectual development.'?
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In Definition 3, Newton declares that because he is giving a new
sense to this term, he will give it another name: vis inertiae or “force
of inertia.”

The traditional or older physics held that if the motive force ap-
plied to a body were to cease acting, the body would then seek its
natural place and there come to rest. Kepler, however, in his radical
restructuring of the science of motion, held that a primary quality of
matter is its “inertness,” its inability to move by itself, by its own
internal power. Accordingly, if an externally applied force producing
motion were to cease, then — according to Kepler — the body would
come to rest and do so wherever it happened to be.

Newton encountered this Keplerian concept of motion in a Latin
edition of Descartes’s correspondence, in an exchange of letters be-
tween Descartes and Mersenne concerning “natural inertia”; neither
correspondent referred to Kepler by name in this context.!> Newton
made a radical transformation of this Keplerian concept. No longer
would the inertia of matter merely bring a body to rest when an exter-
nal force ceased to act; rather, this inertness would tend to maintain a
body in whatever “state” it happened to be, whether a state of resting
or of moving “uniformly straight forward.”*4 The concept of a body
being in a “state” of motion was taken by Newton from Descartes’s
Principia.

Two further aspects of Newton’s concept of inertia should be
noted. One is that generally Newton does not refer, as we do today,
to “inertia” as such; rather he tends to write of a “force of inertia,”
a vis inertiae. The second is that he identified mass and inertia. The
vis insita of a body, he writes in Definition 3, “is always proportional
to the body,” that is, proportional to the mass. Furthermore, it “does
not differ from the inertia of the mass” save for “the manner in which
it is conceived.” Hence, he writes, we may give vis insita a new and
“yery significant name,” force of inertia (vis inertiae). And, indeed,
throughout the Principia, Newton generally uses vis inertiae rather
than vis insita.

Newton explains that, because of “a body’s inertia,” a body is only
“with difficulty” made to change its “state” of resting or moving
uniformly. It is for this reason, he declares, that vis inertiae is a better
name than vis insita. Although the use of vis or “force” in the context
of inertia seems outlandish to a twenty-first-century reader, this was
not the case for Newton’s successors in developing the science of
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dynamics. For example, Jean d’Alembert, in his Traité de dynamique
(1743), wrote: “I follow Newton in using the name ‘force of inertia’
for the properties which bodies have of remaining in the state in
which they are.”

Newton’s concept of vis inertiae has one puzzling feature. As he
makes clear, especially in Definition 4, this is not an “impressed”
force, one that can produce a change in state or an acceleration.
Therefore, this “force” cannot be combined by means of a force tri-
angle with continuous or instantaneous external forces.

Newton never explained why he wrote of a vis inertiae, a “force
of inertia,” rather than a property of inertia and we have no basis for
guessing what was his state of mind. Perhaps he was merely trans-
forming vis insita into a vis of a new and different sort.

THREE VARIETIES OF IMPRESSED FORCE

In Definition 4, Newton deals with “impressed force,” a term that
has a long history of usage before the Principia. Newton is concerned
with the “action” of forces to alter the “state” of a body, to alter
a body’s condition of resting or moving uniformly straight forward.
According to Newton, this action occurs only while the force is being
impressed, while the force is actually producing a change of state. It
does not remain in the body after the action is over. Newton says
explicitly that “a body perseveres in any new state solely by the
force of inertia.”

It is in the conclusion of Newton’s discussion of Definition 4 that
he declares that there are “various sources of impressed force, such
as percussion, pressure, or centripetal force.”

CENTRIPETAL FORCE

Newton has no need of comment on the first two of his three types
of impressed force: percussion and pressure. The case is different,
however, for centripetal force. The concept of centripetal force was
introduced into rational mechanics and celestial dynamics in the
Principia. In a memorandum, Newton said that he had invented the
name in honor of Christiaan Huygens, who had used the oppositely
directed vis centrifuga.

Centripetal force differs from percussion and pressure in one no-
table aspect. Percussion and pressure are the result of some kind of
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observable physical action. In both, there is a contact of one body
with another, typically providing visual evidence of a force acting,
for example, a billiard ball striking another billiard ball. These are
the kinds of force on which the so-called “mechanical philosophy”
was built, in particular the philosophy of nature of Descartes. These
forces display the principle of matter in contact with other matter
to produce or alter a motion.

Centripetal force, however, is very different. In important cases,
such as orbital motion, we do not know that there is a centripetal
force by seeing an action, as is the case for a pressure or a percussion;
the only evidence that a centripetal force is acting is that there is a
continuous change in a body’s state, a continuing departure from a
uniform rectilinear motion. Accordingly, in introducing centripetal
force in Definition §, Newton is in effect declaring his indepen-
dence from the strait-jacket rigidity of the mechanical philosophy.
It is a fact of record that Continental natural philosophers — notably
Huygens and Leibniz - rejected the Newtonian science of motion
because it departed from the strict condition that forces must occur
only by the action of matter in contact with matter; they rejected
the notion of centripetal force, as posited by Newton, because this
“force” acts at a distance and is not produced by matter in contact
with matter.

In Definition 5, Newton refers to three examples of centripetal
force. One is gravity, by which he means terrestrial gravity, the force
that causes bodies to descend downward, “toward the center of the
Earth.” Another is magnetic force, in which a piece of iron “seeks
a lodestone.” And, finally, there is the “force, whatever it may be,
by which the planets are continually drawn back from rectilinear
motions and compelled to revolve in curved lines.” Note that it is
the departure from uniform linear motion that provides evidence
that there is a centripetal force acting.

Newton then turns to an important example of centripetal force
taken from Descartes, a stone being whirled in a sling. The stone
naturally tends to fly off on a tangent, but is restrained by the force
of the hand, constantly pulling the body inward toward the center
via the string. Newton calls such a force “centripetal” because “it
is directed toward the hand as toward the center of an orbit.” And
then he boldly asserts that the case is the same for “all bodies that
are made to move in orbits.” They all tend to fly off “in straight
lines with uniform motion” unless there is a force. We may note an
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anticipation of the first law in the statement that if there were no
gravity, a projectile or an orbiting body would move off in a straight
line “with uniform motion.” It follows from this discussion that
planets moving in orbits must similarly be subject to some kind of
centrally directed force.

THREE MEASURES OF FORCE

The remaining definitions (Definitions 6-8) are concerned with the
three measures of centripetal force. These are the absolute quan-
tity (Definition 6), the accelerative quantity (Definition 7), and the
motive quantity (Definition 8). The most important of these is the
“accelerative” quantity, defined as the velocity which is generated
“in a given time.” This measure is the rate at which velocity changes,
our acceleration. It is this measure that Newton has in mind during
the first ten sections of Book 1.

In Definition 8, Newton introduces a measure that is “propor-
tional to the motion” (i.e., momentum) which a force “generates in
a given time.” This measure is, in other words, the rate at which
“motion” (i.e., momentum) changes.

THE LAWS OF MOTION: NEWTON’S FIRST LAW

In the Principia, the definitions are followed by Newton'’s “ Axioms or
Laws of Motion.” Newton’s “ Axiomata sive leges motus” was an ob-
vious transformation of Descartes’s “Regulae ... sive leges naturae,”
which appear in the latter’s Principia. This source of Newton'’s name
for the “axioms” would have been obvious to most of Newton’s
readers, who would also have appreciated that the title of Newton’s
treatise, Philosophiae Naturalis Principia Mathematica, was a rather
obvious recasting of the title of Descartes’s Philosophiae Principia.®s

The first law of motion, sometimes known as the law of inertia,
states: “Every body perseveres in its state of being at rest or of mov-
ing uniformly straight forward [i.e., moving uniformly forward in a
straight line] except insofar as it is compelled to change its state by
forces impressed.” In the brief paragraph which follows (consisting
of three short sentences), Newton mentions three examples of iner-
tial motion, each of which is based on an analysis of curved motion
produced by the action of a form of centripetal force. In each case, the
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curved motion is, by Newton’s analysis, compounded of a linear or
tangential component of inertial motion and an inward accelerated
motion produced by a centripetal force.

Thus a major purpose of the first law is to make explicit the con-
dition under which we can infer the action of a continously acting,
centrally directed force. Newton’s three examples, accordingly, in-
voke centripetal forces and not pressure or percussion.

The first example is the motion of projectiles. These “persevere in
their [linear forward] motions” except in so far as they are retarded by
air resistance and are “impelled downward by the force of gravity.”
Newton’s second example is the circular notion of a spinner or a top.
Here Newton explains that the particles that compose the spinning
object tend to fly off in straight lines along tangents to their curves
of motion. They do not fly off, however, but are kept in circular or-
bits by the cohesive forces that hold the top together. When a top is
subjected to a degree of rotation beyond some structural limit, the co-
hesive force is no longer great enough and the particles fly off in all di-
rections tangent to their original paths of rotation.’® Newton’s third
example is the long-term orbital motion of the planets and of comets.

The “forces impressed” which Newton mentions in the state-
ment of the law can be any of the three varieties of impressed force:
pressure, percussion, or centripetal force. In other words, the law is
equally valid for impulsive or instantaneous forces and continuous
forces.

THE SECOND LAW OF MOTION

The second law states that a “change in motion” is proportional to
“the motive force impressed” and adds that this change in motion is
directed along “the straight line in which this force is impressed.”
Some commentators have added a word or phrase to Newton’s law so
as to have it read that the rate of “change in motion” (or the change
in motion per unit time) is proportional to the force.'” This alteration
would make Newton’s second law read like the one found in today’s
physics textbooks.

Newton, however, did not make an error here. He chose his words
very carefully. In his formulation of the second law, Newton was ex-
plicitly stating a law for impulsive forces, not for continuous forces.
Thus Newton’s second law states quite correctly that an impulsive
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force — that is, a force acting instantaneously or nearly instanta-
neously, or acting in an infinitesimally small “particle” of time —
produces a change in the “quantity of motion” or momentum.

Newton’s discussion of this law, following its formal statement,
leaves no doubt that this is the correct reading of Newton’s intention.
He says that the “effect” of the action of a force is the same “whether
the force is applied at once or successively by degrees.”

Consider the following example. Let an impulsive force F pro-
duce a certain change in momentum A(mV) and let that force be
divided into three equal parts, each of which will produce a change
in momentum 1/3 mV. Then, the successive application of these
three forces will produce a corresponding total change in momen-
tum of 3 x 1/3 x mV = mV. The net change in momentum is the
same whether the impacts are delivered seriatim or all at once. This
makes perfect sense for impulsive forces, but has no meaning for
continuous forces since the latter produce a net change of momen-
tum that depends on both the magnitude of the force and the time
during which the force acts.

This interpretation is further confirmed in Corollary 1 to the
Laws. Here (see Figure 2.1), Newton considers a body struck by a
blow. “Let a body in a given time,” he writes, “by a force M im-
pressed in A, be carried with uniform motion from A to B.” Here is a
plain case of an impulsive force generating a motion. After receiving
the blow, the body then, according to Definition 4, “perseveres” in
the “new state” by its “force of inertia.”

In such statements as these, we can see the influence of
Descartes. In explaining how refraction takes place, Descartes —in his
Dioptrique (1637) — invokes an analogy with the motion of a tennis

C D

Fig. 2.1 Newton’s parallelogram rule for motions produced by impul-
sive forces.
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ball striking a body of water. At the moment of impact, at the inter-
face between the air and the water, Descartes supposes, the ball is
given a blow or is struck by an impulsive force. The ensuing motion,
originating from the instantaneous action at the interface, is uniform
and rectilinear, with a new magnitude and direction, as is the case
in a refracted light beam.™®

Of course, Newton knew the second law as a law for continuously
acting forces. This form of the second law is implied in Definitions
7 and 8. In Book 2, Proposition 24, Newton writes that “the velocity
that a given force can generate in a given time in a given quantity of
matter is as the force and the time directly and the matter inversely.”
The factor of time shows that this is a case of the second law for
continuous forces.™

A reason why Newton may have given priority to the impulsive
form of the law rather than the continuous version is that in this case
one can witness an act of impact or pressure. As we have noted, the
most important class of continuous forces is in the orbital motion of
planets, planetary satellites, and eventually comets. In each of these
cases, the effect of the force is not associated with an observable
physical act.

Another factor of importance is that Newton formed his dynamics
in the context of the great advances in the science of motion made,
during the decades before the Principia, by studies of impact — the
work of such giants as Wallis, Wren, and Huygens. Descartes had set
the scene in his Principia, which contained a series of statements
about impacts which are wrong.

In the Principia, Newton described at length the experiments he
himself had made on impact, including the distinction between elas-
tic and non-elastic collisions. In short, the primacy given by Newton
to impulsive forces would have been in keeping with the cutting edge
of the science of motion in those days.

Yet it is a fact that the propositions of Book 1, beginning with the
first group of propositions (Propositions 1-14), deal with varieties of
centripetal force and orbital motions and not with impulsive forces.
As we shall see shortly, in these opening propositions, Newton be-
gins with a series of impulsive forces and effects a transition from
a sequence of impulsive forces to a continuous force. Indeed, from
Newton’s point of view, the impact form of the second law led so
readily into the continuous form that he did not even bother to state
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the continuous form as a separate entity. In other words, the distinc-
tion between the two forms of the law is more significant for us than
it would have been for Newton.

THE THIRD LAW

Newton’s third law has been characterized by Ernst Mach as the most
original of the three Laws of Motion. It is the only one of the Laws
of Motion that Newton did not allege had been known to Galileo. In
fact, Newton had found the law some years before he composed the
Principia.*® As commonly stated, the third law declares that action
is always equal and opposite to reaction. In Newton’s own words,
“To any action there is always an opposite and equal reaction.”

This law, however, simple as it is, is easily subject to misinter-
pretation. For example, it is often mistakenly believed that this law
provides for an equilibrium of two forces, the equal and oppositely
directed action and reaction. But the law actually says that if a body
A exerts a force F, on body B, then body B will exert an equal and
opposite force Fp on body A. There is no equilibrium because the
forces F, and Fj are exerted on different bodies, one on body A and
the other on body B.

Newton himself apparently saw that this law might be subject to
misinterpretation and so he included a second version in the state-
ment of the third law. In “other words,” he wrote, “the actions of
two bodies upon each other are always equal and always opposite in
direction.”

In the discussion of the law, Newton says that it applies specifi-
cally to collisions. He shows the way in which this law is related to
the law of conservation of momentum, previously announced by the
mathematician John Wallis, and known to Huygens. He concludes
with the important statement that this “law is valid also for attrac-
tions, as will be proved in the next scholium.”

WHY A SEPARATE LAW I AND LAW 2

A number of critics and authors of textbooks on mechanics have
criticized Newton for having a separate Law 1 and Law 2. After
all, they argue, if there is no net external force F, the second law
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(for continuous forces) implies that the acceleration A is zero and
so there is no change in a body’s state. In the case of the impact form
of the second law, there is similarly no change in state.

There are two sets of reasons, however, why Newton had a sep-
arate Law 1. First, in Newton’s day — as during many preceding
centuries — the common belief was that all motion requires a mover,
a moving force. The very statement of this law as an axiom was a
radical step, a declaration of an important new principle of motion,
too important to be a special case of another law. Indeed, such a state-
ment was possible only after Descartes’s bold assertion that uniform
rectilinear motion can be considered a “state,” thus existing without
a driving or motive external force.

Second, Newton’s first two laws of motion depended heavily on
the prior statements of Descartes, Galileo, and Huygens. The form
in which Newton expressed the first law, including the choice of lan-
guage and the separate statement of Law 1 and Law 2, shows the in-
fluence of Descartes’s Principia, where these are part of the “regulae
quaedam sive leges naturae.”

In the 1660s, some two decades before developing the mature ideas
expounded in the Principia, Newton had already seen how basic was
Descartes’s law of inertia. He wrote out (in English) what he called
a series of “Axiomes and Propositions,” of which the first one reads:
“If a quantity once move it will never rest unlesse hindered by some
external caus.” Another version reads as follows: “A quantity will al-
ways move on in the same streight line (not changing the determina-
tion nor celerity of its motion) unlesse some external caus divert it.”
He then started a new series of axioms, of which the first is labeled
“Ax: 100.” It reads: “Every thing doth naturally persevere in that
state in which it is unlesse it bee interrupted by some externall caus,
hence axiome 1st and 2nd.” Note that, early on, he recognized the
importance of Descartes’s concept of uniform motion as a “state.”>!

An even more important reason why Newton had a separate Law
1 and Law 2 is that he was following the example set by Christiaan
Huygens in his Horologium Oscillatorium of 1673, a work that
Newton greatly admired. In the Horologium, Huygens axiomatized
Galileo’s rules for the motion of bodies such as projectiles, moving
in the Earth’s gravitational field. Huygens’s first law (he calls these
laws “Hypotheses”) is that if there were no gravity and no resistance
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of air to motion, “any body will continue its motion with uniform
velocity in a straight line.”>> Here is Newton’s first law stated for
a system in which the only possible forces are gravity and air resis-
tance (and possibly some force that gets forward motions started, as
in the firing of a projectile). That is, Huygens first considers a kind
of inertial motion without falling. Then, in a second law, he allows
such a moving body to be acted on by gravity so as to fall according
to the laws of falling bodies. Although Huygens does not state his
second law in the full generality found in the Principia, the model
is structurally the same: first, an inertial motion in the absence of
forces and then a new motion produced by the action of a force.

In the Principia, Newton added a statement about Galileo’s dis-
covery of the laws of projectile motion. According to Newton,
Galileo did so by using the first two laws of motion. Thus Galileo
would have been Newton’s third source for a first and second law.
There is no evidence, however, that Newton had ever read Galileo’s
Two New Sciences and his knowledge of Galileo’s ideas must have
come from secondary sources, such as the books of Kenelm Digby
and John Anderson.

FROM IMPULSIVE FORCES TO CONTINUALLY
ACTING FORCES

Newton’s transition from the action of impulsive forces to the action
of continuous forces occurs in the first proposition in the Principia.
Here Newton'’s goal is to find the significance of Kepler’s law of areas
(which Newton does not attribute to Kepler).

Newton’s proof starts out with a body (actually a mass point)
moving freely with a component of linear inertial motion along a
straight line. Newton shows (see Figure 2.2) that this motion is area-
conserving, that is, a line drawn from the moving body to any point
P (not on the line of motion) will sweep out equal areas in any equal
times. Actually, this was a startling result. Here Newton revealed
for the first time the link between the law of areas and the principle
or law of inertia.

Next, after a time interval T, the body is given an impulsive blow
directed toward the point P. The body will now move on a new linear
path, with a new velocity, according to the second law. By simple
geometry (see Figure 2.3), Newton proves that the area swept out in
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Fig. 2.2 The area law for uniform rectilinear motion. A body moves
with uniform motion along the straight line ABCD...Then in equal
times the distances AB, BC, CD ... will be equal. Therefore, a line from
the moving body to any point P (not on the line of motion) will sweep
out equal areas in any equal time intervals, since the triangles ABP,
BCP, CDP...have a common altitude h and equal bases.

Fig. 2.3 Newton’s polygonal path (from the first edition of the Prin-
cipia, 1687). During the first equal time-interval T, the body moves
from A to B. At B it receives a thrust toward S. Had there not been such
a thrust, the body would have moved in the second time T from B to
¢, where Bc = AB. But, as a result of the thrust, the body moves from
B to C. By the parallelogram rule and simple geometry, Newton shows
that the area of triangle BSC equals the area of triangle BSc. In this way
Newton constructs the polygonal path ABCDEF. ..
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time T by a line from the body to P will be the same along the new
path as it was when the body moved from A to B. After the passage of
another time T, the whole procedure is repeated. In this way, Newton
produces a polygonal trajectory, each side corresponding to motion
during a time interval T and each such side the base of a triangle; all
such triangles have the same area.

At this point, Newton says, “Now, let the number of triangles be
increased and their width decreased indefinitely,” that is, without
limit. Then he continues, “the ultimate perimeter ADF will (by lem.
3, corol. 4) be a curved line.” In this way, “the centripetal force by
which the body is continually drawn back from the tangent of this
curve will act uninterruptedly.” Furthermore, “any areas described,
SADS and SAFS, which are always proportional to the times of de-
scription, will be proportional to those times in this case.” In other
words, Newton has essentially proved that a centrally directed force
will always produce (or is a sufficient condition for) the law of ar-
eas. This example shows how Newton used his method of limits to
make a transition from the action of a force consisting of a series of
impulses to the action of a continuously acting force.

NEWTON’S SHIFT FROM A SECOND LAW FOR IMPULSIVE
TO A SECOND LAW FOR CONTINUOUS
FORCES — NEWTON’S CONCEPT OF TIME

In analyzing Book 1, Proposition 1 of the Principia, attention has
been called to Newton’s mode of transition from a series of impulses
to a continuously acting force. This distinction between continuous
and instantaneous forces was also seen in the statement of Law 2. But
a careful reading of the Principia shows that the distinction between
these forms of the second law, and the distinction between impulsive
and continuous forces, did not have the same significance for Newton
that it does for us.

In Newton’s system of dynamics, the two concepts of force — con-
tinuous and impulsive - are linked by Newton’s concept of time.
That this should be so is hardly surprising since the difference be-
tween the two forms of force lies in the factor of time of action: a
finite time for a continuous force and an infinitesimal time for an
impulsive force. We make a distinction between them but Newton
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could effect an easy transition from one to the other, conceiving
(as in Book 1, Propositions 1 and 4) a continuous force to be the limit
of a sequence of impulses. Newton’s procedure is troubling to us be-
cause there is a difference in dimensionality between the impulsive
force, which we measure by d(mV ), and the continuous force, mea-
sured by d(mV )/dt. Thus if we were to write these two forms of the
law as algebraic statements of proportion,

F =k d(mV)
F =k d{mv)/dt

it becomes at once obvious that k; and k, have different dimen-
sionality. It is for this reason that we would write the first of these
equations as

Fdt =k, d(mV).

This was not a problem for Newton, however, since he did not write
proportions as algebraic equations and so was not concerned by the
fact that if the force F has the same dimensionality in both forms
of the second law, then the constants of proportionality must have
different dimensionality.

Newton generally compared one value of a quantity with another
rather than make computations that involve the numerical value of
the constant of proportionality. Thus, in Book 3, Proposition 12, he
compares the quantity of matter in the Sun to the quantity of matter
in Jupiter but does not compute either quantity in terms of some
fixed set of units such as pounds. In the Scholium to Book 2, Section 6,
he writes of a globe encountering a resistance which is to its weight
as 61,705 to 121. But he also makes some computations that, in
effect, involve evaluating a constant of proportionality (although he
does not use this form of expression). But he did not ever compute
numerical values (with units of dimensionality) in which he had to
be concerned about the difference in dimensional units that arise
because of the two forms of the second law.

It is well known that in Newton’s mathematics, as in his physics,
time is the primary independent variable, the one on which all other
quantities depend. Newton does not have an entry for time in the
section of definitions in the Principia, merely saying in a Scholium
that “time, place, space, and motion are very familiar to everyone.”
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He then alerts the reader to “absolute, true, and mathematical time,”
which “without reference to anything external, flows uniformly.”

It is, therefore, paradoxical that a consequence of Newton’s con-
cept of time as a uniform flow should be that it is composed of units
(dt) which are essentially constant infinitesimal increments. And
yet, in the Principia, Newton often writes of a “particle of time”
(“particula temporis”). These are not finite atoms of time in the sense
of tiny finite particles of matter. Rather, for Newton, time is finitely
continuous and only infinitesimally discrete. Thus the “fluxional”
character of the Principia depends in practice on a discrete kind of
infinitesimal of time in which quantities do not really flow evenly or
smoothly, but rather jerk, jerk along — to use a metaphor suggested
by D. T. Whiteside. But this aspect of time appears only on an in-
finitesimal level so that to our finite eyes time appears to be flowing
smoothly, as postulated by the method of first and ultimate ratios.

Thus, in Book 2, Proposition 2, Newton divides a time-interval
into “equal particles” and eventually lets “the equal particles of
time...be diminished and their number increased without limit”
(“in infinitum”). On first encounter, such a passage gives rise to
many problems because we would ask how a continuous flow of
time could possibly be composed of discrete units, even infinitesi-
mal ones. This post-Newtonian problem may serve as an index of
the difficulties that arise in the use of infinitesimals.

In considering the consequences of Newton’s concept of time, we
may anachronistically (that is, by using the Leibnizian algorithm of
the calculus) consider dt as Newton’s constant infinitesimal unit
of time. Thus dt represents the Newtonian concept of a primitive
or fundamental “time,” flowing uniformly at a constant rate every-
where, at all times, and under all conditions. Then it will follow at
once that there are a number of equivalent forms of the second law
as follows:

(1) F o dV

(2) F o dV/dt = d*s/dt*>, where V = ds/dt
(3) F-dtocdV

(4) F - dt* o< d?s

where F is taken as the accelerative measure of force. The only dif-
ference between eq. (1), the impact form of the second law, and eqs.
(2)—{4), the continuous form, is that there is a different dimensionality



Newton’s concepts of force and mass 75

in the constant of proportion (not shown). That is, the constant dt
can be absorbed in the constant of proportionality at will. In these
equations, if the force is itself a variable, then F must be the average
value during the time dt.

In considering these equations for a “force” F, it must be kept
in mind, as mentioned previously, that Newton did not write equa-
tions of motion but rather expressed his principles as statements of
proportion. Hence the constant of proportionality did not need to
appear explicitly, nor did Newton need to have any regard for the
dimensionality of the various forces he was studying. This was es-
pecially the case since Newton tended to compare one force with
another rather than compute numerical values in some given sys-
tem of units — which would have required a consideration of the
physical dimensions of the computed quantities. We may thus un-
derstand how it was possible to hold simultaneously the validity of a
second law symbolized by eq. (1) and a second law symbolized by eq.
(3), whereas we would encounter a problem with the quantity “F”
in eq. (1) and would consider an impulsive force to be F-dt rather
than F.

A FINITE OR INFINITESIMAL LEVEL OF DISCOURSE?

A critical study of the Principia reveals that much of the discourse is
pitched on an infinitesimal level. For example, in Book 1, Proposition
41, Newton introduces a ratio of a distance to a time, “the line-
element IK, described in a minimally small time.” These, clearly,
are not a finite distance and time, as is evident from the terms “line-
element” and “minimally small.” In the language of the calculus,
Newton is invoking an infinitesimal distance ds and an infinitesimal
unit or “particle” of time dt. Thus the ratio in question is Newton’s
way of expressing what we would write in Leibnizian terms as ds/dt.

An admirable exposition of the infinitesimal character of
Newton’s dynamics has been given by D. T. Whiteside,?> who has
made a careful analysis of the proof of the area law in Book 1, Propo-
sition 1, of the Principia, essentially the proof given in the prior tract
“De motu”. In this proof, as we have seen, the continuous curved tra-
jectory is the limit of a polygonal path. In this process, according to
Whiteside, Newton replaces the continually acting central force by
the limit of “a series of component discrete impulses, each acting
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instantaneously but separated from its predecessor by a measur-
able if indefinitely small time-interval.” Under these circumstances,
Whiteside finds, the elements of force must be “of a second order
of the infinitely small.” Whiteside then notes that since dt* is a
constant (a consequence of dt being a constant), Newton’s proof of
Proposition 1 would accordingly make use of the second law in a
form expressed by a variant of our eq. (4),

F «xd’s

which would be another way of saying that the force impulse must
be a second-order infinitesimal.?4

A final example will show in a striking manner the importance of
keeping in mind that much of the treatment of forces in the Principia
is couched on an infinitesimal level. Newton’s manuscripts show
that in the early 1690s he was planning a new edition of the Principia
in which he would revise his presentation of the second law. These
attempts to alter the presentation of the second law are of special
interest because there are no similar attempts to recast the presen-
tation of Law 1 or Law 3.

In one set of these revisions, Newton writes of “a motion gener-
ated in a space either immobile or mobile,” saying that such a motion
“is proportional to the motive force impressed and occurs along the
straight line in which that force is impressed.” As the manuscript
makes clear, Newton was thinking of a situation like Galileo’s ex-
ample of motion on a moving ship; Galileo compared the motion
as seen by an observer on the ship with the motion as seen by an
observer on the shore.

In the course of these revisions, Newton writes of the generated
motion as follows:

[it] has the same determination [i.e., direction] as the impressed force and
occurs from that place in which the body, before the force was impressed
upon it, was at rest either truly or at least relatively. And, therefore, if the
body was moving before the impressed force, the generated motion is either
added to the original motion or is subtracted from it if contrary or is added
obliquely to it if oblique and is compounded with it in accordance with the
direction of both.

Newton then proceeds to examine the manner in which the two
oblique motions are compounded, that is, combined according to the
laws of composition of velocities. In the oblique case, the resulting



Newton’s concepts of force and mass 77

Fig. 2.4 The trajectory of a moving body that has received a blow or
has been struck by an impulsive force. There can be no doubt that the
force is a thrust, an instaneous force, a force of impact, or a force of per-
cussion, since the text reads that the imparted motion “is proportional
to the force.”

motion, Newton says, “is neither parallel to, nor perpendicular to,
the original motion to which it is added.”

In this paragraph Newton will have anticipated Corollary 1 to the
laws by giving a proof of the method of composition of two motions.
But there is a major difference. In Corollary 1 to the laws, two im-
pulsive forces act either separately or simultaneously on a body at
rest, whereas in this revision a single impulsive force acts by giving
an oblique blow to a body in uniform motion.

This manuscript presents a problem, however, because although
the original motion is explicitly said to be uniform (“uniformiter
continuato”), the trajectory resulting from the action of the impul-
sive force or blow is not a straight line as we would have expected.
Rather (see Figure 2.4), the new trajectory AB is curved, seeming
to imply that the action did not simply generate a new straight-
line motion, as Newton’s text might have led us to expect. Rather,
the effect of the force seems to be to produce an acceleration, as if
the force had been continuously acting rather than having been an
impulse.

The trajectory AD, it should be noted, is the same parabola-like
curve in three separate occurrences of the diagram. In none of these
is the curve the result of a carelessly drawn free-hand diagram. AD is
simply not the diagonal of a parallelogram of forces. Hence, the con-
clusion must be that Newton was thinking of a trajectory produced
by a continuous force, even though the text indicates that the force
is an impulse, an instantaneous blow.
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Our bewilderment arises from our having assumed that these
manuscript texts were conceived on a finite rather than an infinites-
imal level. In the proposed revisions of the second law, Newton was
dealing with the effects of a blow or instantaneous force, that is, an
infinitesimal force-impulse acting in an infinitesimal time-unit t. If
we now divide that infinitesimal time-unit 8t into sub-units or parts
(8t/n), then the limit of the initial condition of the proposed revisions
of Law 2 (as n — oo) will correspond to a sequence of infinitely small
quantities (which are infinitesimals of a higher order) of time. It is
on such an infinitesimal level, but not on a finite level (and only on
an infinitesimal level), that the two modes of action of an impulse -
Newton’s “simul et semel” and “gradatim et successive” — produce
the effects illustrated by Newton within the framework of the stated
Law 2 of the Principia.®s

This analysis would accord with Newton’s statement concern-
ing the two ways in which a given force-impulse may act. Thus an
impulse P may in an instant produce a change in motion (or momen-
tum), acting — as Newton says — “altogether and at once.” Alterna-
tively, the impulse P can be considered as composed of a succession of
infinitesimal force-impulses. This is the mode of action that Newton
calls “by degrees and successively.” The difference between the two
lies in the mode of conceiving the actual production of the change in
motion. In the first case, there is an instantaneous change that can
occur in the direction and magnitude of the motion. In the second,
there is a succession of infinitesimal blows that in the limit produce
a curved motion, whose final direction and magnitude is the same
as in the first case.

THE REALITIES OF FORCE — THE NEWTONIAN STYLE

Newton came to believe in the existence of forces that could pro-
duce curved or orbital motion without contact, thereby holding a
drastically revised form of the then-current mechanical philosophy.
In effect he now enlarged the basis of explanation from effects pro-
duced by matter and motion, adding the further concept of force.
In the Principia, he avoided this issue as long as possible by start-
ing out on a mathematical level in which he did not need to con-
sider the physical aspects of his concepts. Thus the first ten sections
of Book 1 explore a purely mathematical problem: the motions of
bodies attracted to a mathematical point. These are mathematical
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bodies in so far as there are no considerations of mass, no physi-
cal dimensions, and no physical properties such as hardness. In the
opening of Section 11 of Book 1, Newton states clearly that in the
preceding sections he has “been setting forth the motions of bod-
ies attracted toward an immovable center, such as, however, hardly
exists in the natural world,” where “attractions are always directed
toward bodies.” Newton, in other words, stated as clearly as possible
that this opening part of Book 1 was a work of mathematics. Even
though he had used the verb “to attract,” he was not (in Book 1) con-
cerned with a physical force of attraction, with an attractive force of
gravity.

Some readers, especially on the Continent, did not take Newton
at his word and did not read Book 1 as a work of “mathematical
principles.” In the early eighteenth century, Fontenelle argued that,
no matter what Newton said, the word “attraction” implied a force
of a kind that is unacceptable in discussions of physics, of “natural
philosophy.” This same charge has been repeated in our times by
Alexandre Koyré.>® The reviewer of the first Principia in the Journal
des Scavans could quite legitimately say that Newton had produced
a work on “mechanics” but not “physics.”

Since the primary difference between the subject of the first ten
sections of Book 1 and the world of nature is that in the world of
nature forces orginate in bodies, Newton — in Section 11 — introduces
the mathematics of two-body systems. These, however, are not as
yet “real” or physical bodies in the full sense. That is, they are not
characterized by such physical properties as size, shape, degree of
hardness, and so on. From a two-body system Newton next advances
to a system of three mutually attracting bodies. Every reader would
recognize that Newton’s mathematical construct is getting more and
more closely to resemble the physical universe. And indeed, in the
twenty-two corollaries of Book 1, Proposition 66, Newton indicates
how his study of three interacting bodies will eventually be related
to the motion of the Moon. The diagram has a central body labeled
T (for Terra or Earth), about which there moves in orbit a satellite
or secondary planet P whose motion is being perturbed by a body
marked S (Sol or Sun).

I have called this mode of studying successive mathematical con-
structs “the Newtonian style.” Basically it consists of starting out
with a simple mathematical “system,” a mass point moving in orbit
about a mathematical center of force toward which it is attracted.
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Among the properties of this “system” developed mathematically by
Newton are that Kepler’s law of areas is a necessary and sufficient
condition for motion in a central force field and that Kepler’s law of
elliptical orbits implies that the central force varies inversely as the
square of the distance. Similarly, Newton shows that in a two-body
system, each of the bodies will move around the common center of
gravity.

Of course Newton’s goal is eventually to get to the dynamics of
the system of the world. But he makes it abundantly clear that in
Book 1 he is primarily concerned with elaborating the properties of
mathematical systems that have features resembling those found in
nature. And here he makes an important distinction between math-
ematics and physics. In this way, Newton is free to develop the prop-
erties of mathematical forces of attraction without having to face the
great problem of whether such forces can actually exist or can be con-
sidered an element of acceptable physics. This distinction is stressed
by Newton in a concluding statement to Book 1, Section 11.%7

As Newton proceeds step-by-step, he introduces into the math-
ematical system one-by-one such further properties as will make
the system more and more closely resemble what we observe in the
world of nature. Thus he considers the properties of bodies with phys-
ical shapes, for example bodies composed of a sequence of homoge-
neous spherical shells. Eventually, in Book 2, he will add another set
of conditions found in the world of nature — various kinds of resisting
mediums.

The essence of the “Newtonian style” is this sequence of adding
one by one the conditions resembling those of the world of nature.
The goal is to produce eventually a dynamics that will apply to the
external world, to elaborate the properties of a mathematical sys-
tem that will closely resemble the world of nature. This style has
a number of advantages for Newton. The most important is that it
permits him to explore the mathematical consequences of his as-
sumptions one by one without having to face the impossible task of
analyzing the properties of the complex physical world all at once.
Furthermore, if we accept Newton’s position, expressly stated in
Book 1, Section 11, we can study the effects of forces of attraction
without having to face the inhibiting fact that the reigning natu-
ral philosophy, the “mechanical philosophy,” will not consider ac-
ceptable the concept of a force that is not the result of a material
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push or pull, that is not the result of some kind of contact between
bodies.

Of course, it would have been obvious to every reader that
Newton’s goal was to display and analyze the physics of planetary
motion. In the end, he would show that the celestial phenomena de-
clare the action of an inverse-square force and he would boldly assert
that this force is gravity, by which he means the force (whatever its
cause) that produces weight here on Earth and that he can show must
extend as far out as the Moon.

Newton himself was troubled by the idea of a universal gravitat-
ing force extending through space, and he tried again and again to
find a way to account for its action. But, as he explained in the final
General Scholium, he had no doubt that a force of universal gravity
“really” exists. Newton did not disparage attempts to explain how
gravity might act, but he believed that such considerations should
not inhibit the use of the concept of universal gravity. His succes-
sors —including such giants as Euler, Clairaut, d’Alembert, Lagrange,
and above all Laplace — were not inhibited by concerns about the
nature of a force like universal gravity, and thus they found new
principles and tremendously enlarged the subject that Newton had
explored in the Principia.®®

NOTES

1 All translations from the Principia in this chapter come from Isaac
Newton, The Principia, Mathematical Principles of Natural Philoso-
phy: A New Translation, trans. I. Bernard Cohen and Anne Whitman
(Berkeley: University of California Press, 1999), containing a “Guide to
Newton’s Principia” by I. B. Cohen.

2 On Newton’s concepts of force, see Richard S. Westfall, Force in
Newton’s Physics: The Science of Dynamics in the Seventeenth Cen-
tury (London: Macdonald; New York: American Elsevier, 1971); Max
Jammer, Concepts of Force (Cambridge, MA: Harvard University Press,
1957). On Newton’s concept of force in the Principia, see Bruce
Brackenridge, The Key to Newton’s Dynamics: The Kepler Problem
and the Principia (Berkeley: University of California Press, 1995); vol. 6
of D. T. Whiteside (ed.), The Mathematical Papers of Isaac Newton,
8 vols. (Cambridge: Cambridge University Press, 1967-81); Francois de
Gandt, Force and Geometry in Newton’s Principia, trans. Curtis Wilson
(Princeton: Princeton University Press, 1995); and my “Guide to
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Newton’s Principia”; also my “Newton’s Concept of Force and the
Second Law,” pp. 14385 in Robert P. Palter (ed.), The Annus Mirabilis of
Sir Isaac Newton 1666—1966 (Cambridge, MA: MIT Press, 1970) and my
The Newtonian Revolution (Cambridge: Cambridge University Press,
1980; a revised edition is in progress).

Here and there in the Principia, Newton introduces some other types
of force, among them magnetic force (said in Book 3, Proposition 6,
Corollary s, to be as the inverse cube of the distance), a general force of
attraction that is as the inverse cube of the distance (Book 1, Proposition
41, Corollary 3), and a hypothesized force of repulsion between particles
of an “elastic fluid” (or compressible gas) inversely proportional to the
distance between adjacent, proximate particles (Book 2, Proposition 23).
In his thinking about the forces of nature, Newton also developed
the concept of “passive” and “active” forces. On this topic, see J. E.
McGuire, “Force, Active Principles, and Newton’s Invisible Realm,”
Ambix 15 (1968) 154-208, and “Neoplatonism, Active Principles and
the Corpus Hermeticum,” pp. 93-142 of Robert S. Westman and J. E.
McGuire, Hermeticism and the Scientific Revolution (Los Angeles:
William Andrews Clark Memorial Library, University of California,
1977). See, further, Betty Jo Teeter Dobbs, The Janus Faces of Genius:
The Role of Alchemy in Newton’s Thought (Cambridge: Cambridge
University Press, 1991).

Alan Cook, Edmond Halley: Charting the Heavens and the Seas
(Oxford: Clarendon Press, 1998), p. 151.

This translation was first proposed by Alexandre Koyré and later con-
firmed by L. B. Cohen.

Ernst Mach, The Science of Mechanics: A Critical and Historical
Account of Its Development, trans. Thomas J. McCormack, 6th edn,
with revisions from the 9th German edn (La Salle: The Open Court
Publishing Company, 1960}, ch. 2, §7: “As we can only define density
as the mass of unit volume, the circle is manifest.”

But such criticism ignores Newton’s own statement. Newton does not
say that mass “is proportional to” the product of density and volume.
The verb, as we have seen, is “oriri” in the form “orta est,” meaning
“arises from.” If Newton had intended to say that a body’s mass is
jointly proportional to its volume and density, he would have done
so. Such statements of joint proportionality are not uncommon in the
Principia.

Furthermore, in Newton’s day, densities were usually given as relative
numerical quantities rather than as independent values. Thus John
Harris, in his Lexicon Technicum of 1704, follows Newton in giving
relative densities of substances, for example “the Density of Water to
Air” or “the Density of Quick-Silver to Water.”
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Newton himself, in Book 2, Part 3, Proposition 10, of the Opticks
(1704), describes how density is to be determined. The “Densities
of the Bodies,” he writes, are to be “estimated by their Specifick
Gravities.” There follows a table in which one column gives “The den-
sity and specifick gravity of the Body.”

See my Introduction to Newton’s “Principia” (Cambridge, MA: Harvard
University Press; Cambridge: Cambridge University Press, 1971), ch. 4,
§3.

I have translated vis insita by “inherent force,” which seems to be
Newton’s equivalent term in English, but others have rendered it as
“innate force.” See my Introduction, ch. 3, 5.

Vis insita also appears in the writings of Kepler, notably in the Astrono-
mia Nova and in the Epitome Astronomiae Copernicanae, but we have
no evidence that Newton had read either of these Keplerian works before
composing the Principia. See, further, my Introduction and “Guide.”
For details see my “Guide,” pp. 101-2.

On the choice of “uniformly straight forward” rather than the tradi-
tional “uniformly in a straight line,” see the new translation cited above.
On the identity of phrases used by Newton and Descartes, see my
Introduction.

Although Newton’s example is a sound one, in accord with the ac-
cepted principles of physics, it was willfully misunderstood by Clifford
Truesdell, who alleged that Newton was here expressing a belief in a
kind of “circular inertia.”

For example, W. W. Rouse Ball, An Essay on Newton’s Principia (London:
Macmillan and Co., 1893), p. 77: “The rate of change of momentum [per
unit of time] is always proportional to the moving force impressed.”
In order to indicate that he was giving a modern paraphrase of what
Newton wrote, Rouse Ball enclosed his insertion in square brackets.
For details see my paper in the Annus Mirabilis volume, cited in note 2
supra.

In other words, a speed V is proportional to the force and time and
inversely proportional to the mass of the body in question. If t is the
time in which a velocity V is generated in a mass m by a force F, then

V=(1/k) x Ft/m
where k is a constant of proportionality. In this case,
F =km(V/t)

where V/t is the acceleration A. Plainly, Newton knew the second law
for continuous forces. As we shall see below, Newton showed how to
get from the second law as stated for impulsive forces to the continuous
form of the law.
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See the notes by Whiteside in his edition of Newton’s Mathematical
Papers, vol. 6, pp. 98-9 (n. 16), 148-9 (n. 152).

Quoted in full in my Newtonian Revolution, pp. 183—4; see John W.
Herivel, The Background to Newton’s Principia: A study of Newton'’s
Dynamical Researches in the Years 1664—84 (Oxford: Clarendon Press,
1965), pp- 141, 153.

Christiaan Huygens, The Pendulum Clock, trans. Richard J. Blackwell
(Ames: Towa State University Press, 1986).

D. T. Whiteside, “Newtonian Dynamics,” History of Science 5 (1966),
104-17.

For a different view, see this volume, p. 93, n. 30.

In my discussions of this question with D. T. Whiteside, he has pointed
out that there are two possibilities which lead to “exactly the same
theory of central forces.” One, favored by Leibniz, is that on a finite
level “the orbit is built up of a series of infinitesimal discrete force-
impulses.” The other, Newton’s favored approach, is that there is a “se-
ries of infinitesimal arcs generated by a continuous force (composed
of infinitesimal discrete force-impulses).” The first is what Newton in
1687 and afterwards called “simul et semel,” the latter being “gradatim
et successive.”

Alexandre Koyré Newtonian Studies (Cambridge, MA: Harvard Univer-
sity Press; London: Chapman & Hall, 1965).

This concluding statement is examined in detail in George Smith’s
chapter in this volume.

At the time of the second edition of the Principia (1713), Newton had
hopes that a physical cause of the action of gravity might be found
in the study of electricity; see A. Rupert Hall and Marie Boas Hall,
Unpublished Scientific Papers of Isaac Newton (Cambridge: Cambridge
University Press, 1962), pp. 361—2 and my “Guide”, pp. 280—7. Also see
Henry Guerlac’s studies on Newton and Francis Hauksbee’s electrical
experiments in his Essays and Papers in the History of Modern Science
(Baltimore, Johns Hopkins University Press, 1977). In the 1717-18 edi-
tion of the Opticks, Query 21, Newton expressed the thought that the
cause of gravity might be an “aetherial medium” of varying density.
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3  Curvature in Newton’s dynamics

INTRODUCTION

The first edition of Isaac Newton’s Principia was published in 1687,
followed by a second edition in 1713 and a third in 1726, the year
before he died. The Principia is universally held to have been a major
turning point in natural philosophy in the seventeenth century. That
turning point is clearly reflected in the comparison of the title of
Descartes’s 1644 Principles of Philosophy with the title of Newton’s
Mathematical Principles of Natural Philosophy. Even though both
men were noted mathematicians, Newton’s book is distinguished
from that of Descartes by virtue of being a mathematical description
of nature. In the General Scholium of the second edition Newton sets
out the difference quite clearly: “But hitherto I have not been able
to discover the cause of those properties of gravity from phenomena,
and I frame no hypotheses... And to us it is enough, that gravity
does exist, and acts according to the [mathematical] laws which we
have explained.”! Although Newton was strongly influenced by the
Cartesian mechanical philosophy during the first two decades of his
scholarly work, he nevertheless expressed himself analytically from
the very beginning of his work in 1664. By 1684, however, he had
rejected Cartesian mechanical explanations for gravity, and in the
Principia he emphasized the analytical expression of the inverse-
square law for gravity. The final impetus for that rejection came from
Newton’s correspondence in 1679 with Robert Hooke,?> which led
Newton to derive Kepler’s area law as a geometrical measure of time
to employ in analyzing orbital motion. That same correspondence
has shown that Newton’s later work is an extension, not a revision,
of his earlier work.34

85
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In particular, the role of “curvature” in Newton’s dynamics
emerges as a major factor in the analysis of general curvilinear mo-
tion in both his early and mature work. As early as 1664, Newton
had developed the concept of curvature as a measure of the rate of
bending of curves:’ that is, the change in the slope of the curve as
a function of position on the curve. For example, a circle has a con-
stant rate of bending and thus the curvature is the same at all points,
while an ellipse has a changing rate of bending and thus the cur-
vature is not the same at all points.® By 1671 curvature appeared
as an important element in his Method of Series and Fluxions. The
role of curvature in Newton’s revised editions of the Principia was
clearly recognized by eighteenth- and nineteenth-century commen-
tators, and in fact was seen by many as the principal method of ana-
lysis despite Newton’s representation of it in the revised Principia
as an “alternate method.”” Most twentieth-century commentators,
however, have not been concerned with the role curvature played
in Newton’s dynamics.? Recently, however, it has been argued that
curvature not only played a role in the Principia, but was the primary
mathematical device employed by Newton in his early analysis of dy-
namical problems,? and it continued to serve him from his very first
calculations as a student in 1665, through the initial 1687 edition of
the Principia,*® and into the revised editions of 1713 and 1726.7% 1> 13

The application of curvature to Newton'’s dynamics is linked to
the analysis of uniform circular motion: circular because the path is a
circle and uniform because the radius of the circle sweeps out equal
arcs and angles in equal times. Such motion was seen by early Greek
astronomers as central to the analysis of planetary motion. Plato is
reported to have set the challenge for astronomers to find the set of
uniform circular motions that would “save the phenomena”; that is,
he wanted to find a way of using combinations of uniform circular
motions to explain the apparent wandering motions of the planets.
It is in this tradition of “celestial circularity” that astronomers from
Hipparchus and Ptolemy to Copernicus and Kepler worked.'# The
role of circular motion in Newton’s analysis of planetary motion is
dramatically different from that of these early astronomers, but as
John Herivel points out, that role is a critical one.

It is worth pausing for a moment to consider how fortunate the existence of
uniform circular motion was for Newton, and how important his successful
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treatment of it for the whole future development of his dynamics. Apart from
motion in a circle, the only relatively simple kinds of movement available
for study by Newton were rectilinear, parabolic, and elliptical. The first two
occurred in motion under gravity at the Earth’s surface, and had already been
fully explored, at least in their kinematical aspects, by Galileo. Both bulked
large in the growth of Newton’s dynamical thought, especially uniformly
accelerated rectilinear motion, the paradigm case for all other more compli-
cated motions. But neither of these motions admitted of any development of
the concept of force. On the other hand, the elliptical motion discerned by
Kepler in the unruly movements of the planet Mars was far too difficult and
complex a case for Newton to treat first. In contrast, the problem of uniform
circular motion was at once not impossibly difficult and yet of sufficient
complexity to call for a real advance in his concept of force and his method
of applying it to motion in a curved path.™s

Herivel was not aware, however, that curvature provided Newton
with an early method of extending the analysis of uniform circular
motion to the analysis of curvilinear motion in general. It was not
until after the 1679 correspondence with Robert Hooke,'® which led
Newton to the derivation of Kepler’s area law, that he was able to
obtain the solution for the problem of elliptical motion presented in
the Principia. Between 1664 and 1684, however, Newton used cur-
vature and the analytical expression for the force required to main-
tain uniform circular motion to address the more general problem of
curvilinear motion.

UNIFORM CIRCULAR MOTION

Newton'’s first investigations into dynamics, appearing in his bound
notebook, the Waste Book, were concerned with collisions. The
only date among the dynamical entries in the Waste Book was the
marginalia, “Jan. 20th, 1664” (1665 new style), that appeared in a sec-
tion devoted to problems of collisions between two perfectly elastic
bodies.'” In this section, Newton developed and refined concepts and
axioms of motion that Descartes had set out in 1644. For Descartes,
the natural state of motion of a body is to remain at rest or, if set
initially into motion by an external cause, to remain in uniform rec-
tilinear motion. Thus, an object of and by itself will not move in a
curved path unless it is acted upon by an external cause.'® This ba-
sic principle of linear inertia appears implicitly in all of Newton’s
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early work, and it appears explicitly in all editions of Newton’s
Principia.*®

Herivel reports that the first discussion by Newton of the problem
of circular motion is found at Axiom 20 of the Waste Book, in which
a ball moves in a circular path on the interior of a hollow spherical
surface.?° Following Descartes, Newton observes that there is a con-
stant tendency for the ball at any point to continue in the instanta-
neous direction of its motion along the tangent to the circle. Because
the ball moves in a circle instead of along the tangent, Newton ar-
gues that a continuous force must act on it. This force can only arise
from the pressure between the ball and the spherical surface. But if
the surface presses on the ball, the ball must press on the surface,
and Newton is led to the following axiom:

Axiom 21. Hence it appears that all bodies moved circularly have an en-
deavor from the center about which they move, otherwise the body . .. would
not continually press upon. .. [the hollow sphere].>*

In the Principia, Newton reproduced a version of this early analysis
of circular motion. In 1664/5, he used the Cartesian terminology
“outward endeavor,” but he replaced it by Huygens’s “centrifugal
force” when it appeared as the last line of the Scholium to Proposition
4 in Book 1 of the revised 1713 and 1726 Principia:

Scholium. This is the centrifugal force, with which the body impells the
circle: and to which the contrary force, wherewith the circle continually
repels the body towards the center, is equal.??

It has been argued that in the 1664 version Newton held the opin-
ion that the outward endeavor is an outward force that counterbal-
ances the inward force and that he continued to hold this opinion
until after 1679. Yet this early statement appears to be very similar
to the later statement. In the Waste Book the body is said to press
upon the sphere, and in the Principia the body is said to press upon
the circle. In both cases the body is deflected from its natural tan-
gential rectilinear motion by the action of an inward radial force. In
the case of circular motion, as considered here, the two forces are
equal and both lie along the radius. That condition, however, does
not hold for general orbital motion. It is critical to note that for gen-
eral orbital motion Newton never applied the term centrifugal force
except when the radius is either a maximum or minimum, that is, at
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Fig. 3.1 A particle at A rotates uniformly in a circle AD constrained
by a string attached to C, the center of the circle. The line AB is the
tangent to the circle at the point A.

extreme points where the force does lie along the radius of the circle
of curvature. This important distinction serves to clarify the specific
role Newton assigned to centrifugal force in general orbital motion.
Newton’s careful restricted use of “centrifugal force,” however, was
lost as it evolved during the following centuries to the current view
that centrifugal force is “fictitious.”?3

Central to all of Newton’s analysis of curvilinear motion is the rep-
resentation of the force by the displacement it produces in a given
time. In Figure 3.1, the line AB is tangent to the circle AD at the
point A. The distance BD between a nearby point B on the tangen-
tial displacement and the corresponding point D on the circle, to be
called the deviation, is proportional to Newton’s measure of the force
required to maintain the uniform circular motion. In his Two New
Sciences, Galileo demonstrated that the linear displacement down
an inclined plane is directly proportional to the constant acceleration
acting down the plane and to the square of the time.>4 Huygens, and
independently Newton, demonstrated that the force (acceleration)
required to produce the linear radial deviation BD from the tangent
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F

Fig. 3.2 A polygon AB, BC, etc. is inscribed in a circle of radius R.
A particle moving with uniform velocity from A to B experiences an
impulsive force at B and is then directed toward C. If the impulsive
force had not acted, then the particle would have moved to C’ in the
same time that it moves to C.

in uniform circular motion is directly proportional to the square of
the tangential speed and inversely proportional to the radius of the
circle. Newton eventually applied this result for uniform circular
motion to the analysis of general curvilinear motion by means of the
circle of curvature.

Before he arrived at an expression for the force required for uniform
circular motion, however, he recorded in the opening pages of the
Waste Book a relatively less sophisticated study of uniform circular
motion, one that uses a polygon as the initial representation of a
circle.?s In Figure 3.2 the polygon is inscribed in a circle of radius
R, as in Newton’s 1665 entry to the Waste Book. A particle travels
with a constant velocity V from point A to point B along a linear
portion AB of the polygon. At point B it ‘collides’ with the circle and
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experiences a change in velocity AV due to the impulsive action of
the force at point B, which is directed toward the center of the circle
S. The magnitude of velocity Vis unchanged, but the direction is now
along the linear portion BC. Newton first obtains a relationship for
the polygon and then investigates that relationship as the number of
sides of the polygon is increased until, in the limit of very small sides,
the polygon approaches the circle. The limiting process is central to
all of Newton’s analysis; it is used, for example, in Proposition 1 of
the Principia to obtain Kepler’s area law.

Analysis

If the particle had not encountered the circle at B, then it would
have traveled to the point C’ in the same time interval T as it
traveled to the point C. The distance BC = BC’' = V x T, and
the distance CC’ = AV x T and is parallel to the radius BS
(because the force at B was directed toward the center of the
circle S). The distance CC’ is the deviation of the particle from
rectilinear motion due to the force at B and is thus the measure
of the force imparted to the particle at point B. Newton then
increases the number of sides of the polygon until it approaches
the circle as a Iimit. In that limit, Newton demonstrates that a
property of the motion is that “the force of all the reflections
[the scalar sum of the impulses] is to the force of the body’s
motion [the scalar linear momentum| as the sum of the sides
[of the inscribed polygon] is to the radius of the [circumscribed]
circle.” That property has no apparent application, but the two
factors used in its derivation, the deviation as a measure of the
force and the expansion to the limit, continue to be hallmarks
of Newton’s dynamics.?¢

Newton’s first solution to the problem of uniform circular mo-
tion appeared in a manuscript written before 1669, now called On
Circular Motion.*” In contrast to the previous analysis, in which
the path begins as a polygon, the path begins as a circle. Newton
again used the deviation as a measure of the force and again called
upon a limiting process. Figure 3.3 is from Newton’s figure in that
manuscript. A particle moves along a circular arc from P to Q under
the influence of a force directed toward the center of the circle S.
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P R

Fig. 3.3 A particle moves along a circular arc from P to Q under the
influence of a force directed toward the center of the circle S. The line
PR is the tangent to the circle at the point P and the line segment QR
is the deviation from the tangent at point Q.

If no force acted upon the particle, it would continue along the tan-
gent to point R. Because the force does act upon it, however, it moves
instead to the point Q. Newton used the uniform angular rate and
a version of a Euclidean theorem to solve the direct problem of uni-
form circular motion. He demonstrated that the force required to
maintain uniform circular motion is constant, proportional to the
given radius of the circle divided by the square of the constant pe-
riod; or, what is the same, the square of the magnitude of the tangen-
tial velocity divided by the given radius, a result first published by
Huygens.

Analysis

Referring to Figure 3.3, one has the following relationship from
Euclid Book 3, Proposition 36:%®

RU/PR= PR/QR,
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which Newton applies to circular motion. In the limit as the
point Q approaches the point P, Newton notes that the line RU
approaches the diameter QU and the tangential displacement
PR approaches the arc or chord QP. Hence, that limit is given
as follows:

limit QR/ QP> = 1/QU.

For uniform circular motion QP = vt, where v is the constant
tangential velocity and ¢ is a small time interval. Correspond-
ingly in the limit as the time interval ¢ vanishes

limit QR/t* = v* limit QR/QP?> = v*>/QU = (1/2)v*/r

where r = QU/2 = SP is the radius of the circle.??

Here, and in Lemma 10 of the Principia, Newton is applying the
Galilean relation, s o t> “at the very start of motion.” This relation
applies to a displacement in a direction normal to the tangent of
the orbit as well as to a displacement along the tangent. Hence, for
uniform circular motion the radial acceleration or central force 4, is
a constant given by the ratio v?/r.3°

CONIC MOTION

The types of problems in dynamics that initially challenged Newton
were known in the late seventeenth and early eighteenth centuries
as direct problems; that is, given the path of the particle and the lo-
cation of the center of force, find the mathematical expression of the
force required to maintain that motion. They are to be contrasted
with inverse problems; that is, given the mathematical expression
of the force as a function of distance, find the path of the parti-
cle relative to a given center of force. For direct problems with a
single body in orbit about a fixed center of force, the mass of the
body is not a factor, and the force is determined by the accelera-
tion, or what Newton calls the accelerative quantity of the force
(Definition 7, Book 1) in the Principia. Having solved the direct
problem of uniform circular motion, the question then arose of how
to extend this technique to evaluate acceleration or force for non-
uniform motion along an arbitrary curve or orbit, and in partic-
ular for elliptical motion, as Kepler had proposed for the planets.
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The primary challenge was to find a geometrical measure for the
time interval. In uniform circular motion the radius sweeps out
equal arcs and angles in equal times, and the time interval t can
be obtained in terms of the fraction of the total period of revo-
lution T given by the ratio t/T = arc(QP)/circumference(m QU).
The answer that Newton found after 1679 for any force directed
toward a fixed center was that the radius sweeps out equal areas
in equal times. It was fifteen years after his initial development of
dynamics, however, before Newton discovered this justification for
Kepler’s area law. After he discovered it, he could measure the time
interval by the area swept by the radius vector and apply it in a
measure of force to a series of direct problems. Until that discov-
ery, Newton had to seek other ways of treating direct and inverse
problems.

The earliest reference to a method for treating elliptical motion
appears in 1664/5 in Newton’s journal, the Waste Book, immedi-
ately following his discussion of the polygonal technique applied to
uniform circular motion. Newton states here that the force required
to maintain elliptical motion can be found from the circle of
curvature.

If the body b moved in an Elipsis, then its force in each point (if its mo-
tion in that point bee given) may bee found by a tangent circle of Equall
crookednesse with that point of the Ellipsis.3’

In his early work on mathematics, Newton had developed the cir-
cle of curvature as a measure of the bending or “crookednesse” of a
curve, and as early as December of 1664 he had developed a method
for finding centers of curvature along an ellipse.3? In this statement
from the Waste Book Newton claims that curvature can be employed
to provide a solution to the direct problem of elliptical motion given
the velocity, i.e., “the motion.” The Waste Book does not contain
such a solution, but later, after his discovery of the origin of the area
law, it is given in detailed form in his unpublished 1690 revisions of
the Principia and as the alternate measure of force in Proposition 6
of the revised 1713 Principia. The curvature measure of force is also
used in the 1687 Principia in Proposition 15, Book 2, on the analysis
of orbital decay caused by a resisting medium, and also in Proposi-
tion 28, Book 3, on the analysis of lunar motion perturbed by the
gravitational force of the Sun. (See below, pp. 117-24.)
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The question of when Newton first developed a curvature mea-
sure of force has received a new answer in recent years. The first
published report of the cryptic curvature statement was by Herivel
in 1965, but he observes only that “Newton is already pondering the
more difficult problem of motion in an ellipse.”33 The cryptic curva-
ture statement was published next by Whiteside in 1967, where he
points out that the use of curvature is valid in arbitrary curves as well
as in an ellipse.34 In 1992, one of the authors of this chapter, Brack-
enridge, published a chapter in a Festschrift for Whiteside entitled
“The Critical Role of Curvature in Newton’s Developing Dynam-
ics,” in which he concluded that “the evidence is clear that such ideas
[curvature] were in Newton’s thoughts on dynamics as early as 1664,
that they appeared in his solutions of 1684, and that they reached
fruition in his unpublished revisions of the 1690’s.”35 The reference
to 1664 was to the cryptic curvature statement, the reference to 1684
was to an alternate solution employing curvature not included in the
1687 Principia (later sent to John Locke), and the reference to 1690
is to the unpublished revisions. Brackenridge did not have evidence
of Newton’s use of curvature in the solution of orbital problems in
the two decades between 1664 and 1684. Nauenberg, the other au-
thor of this chapter, supplied the missing evidence on Newton’s early
computational methods for general orbital motion.3¢ 37

NEWTON’S EARLY COMPUTATIONAL METHOD
FOR DYNAMICS

In 1679 Robert Hooke, who was then Secretary of the Royal Society,
initiated a correspondence with Newton that is of considerable in-
terest because it reveals the state of development of Newton’s under-
standing of orbital dynamics at that time. In a letter of 13 December
1679, Newton discussed the orbits of a body under the action of
general central forces.3® In a corner of the letter is a drawing of an
orbit for the case in which the force is constant, and in the text of
the letter Newton discusses the changes that occur in such an orbit
when the force is no longer constant. Newton’s correct geometrical
description of these orbits indicates that he had a much deeper un-
derstanding of orbital dynamics at this time than has generally been
attributed to him. For example, he pointed out that these orbits have
a maximum and minimum distance from the center, and that the
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angle subtended by these extremal points from the center increases
as the force becomes “greater towards the center.” In the past, how-
ever, most Newtonian scholars have underestimated Newton’s un-
derstanding of this problem because his figure gives the magnitude of
this angle in gross disagreement with the upper bound for a constant
central force.3® Newton did not reveal any details of the method by
which he obtained this orbit except to indicate that it was an approx-
imation, stating that

Your acute Letter having put me upon considering thus far the species of this
curve, I might add something about its description by points quam proxime.
But the thing being of no great moment. I rather beg your pardon for having
troubled you thus far with this second scribble. ..

Newton did reveal, however, that he knew of other orbits beyond
that due to a constant force. In particular, he wrote of the orbit due
to a special force for which the body would spiral toward the center.

For the increase of gravity in the descent may be supposed such that the
body shall by an infinite number of spiral revolutions descend continually
till it cross the center by motion transcendently swift. ..

This remark is of great importance because an orbit with an infi-
nite number of spiral revolutions cannot be obtained by any approx-
imation method; thus, Newton must have used here an analytical
method. The analytical proofs in the Principia, however, depend on
the area law (to eliminate the time variable, reducing the problem
to a geometrical one), and there is strong evidence that Newton did
not discover the area law until after his 1679 correspondence with
Hooke.#° In his letter to Hooke, Newton did not give the radial de-
pendence of this force, but he did give it in a canceled scholium to
a revision of “De motu” (the short tract of late 1684 presaging the
Principia) in which he effectively repeated the content of his letter.4!
Newton stated that the force required for a spiral orbit varies in-
versely with the cube of the distance.

It is of considerable interest to discover Newton’s computational
method by “points quam proxime” because it provides us with
insight into how he developed orbital dynamics. The errors in
Newton’s drawing of the orbit for a constant central force have gener-
ally been attributed to some failure in his approximations.4> A care-
ful examination of Newton’s figure, however, reveals that he made
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a substantial error only while drawing the figure representing the
orbit, but not in its calculation. Moreover, the examination reveals
that Newton’s early computational method not only enabled him to
calculate an orbit for a constant central force (after proper account
has been taken of the drawing errors) but also to calculate orbits for
forces that are not constant, but that increase with distance toward
the center of force. Finally, Newton’s early computational method
does not depend upon the area law; this is an important historical
constraint because at the time of the Newton—-Hooke correspondence
Newton, by his own account, had not yet discovered that the area
law is a general consequence of central forces.

It is possible to employ curvature to obtain the correct angles and
to account for Newton’s figure without having recourse to the area
law. Instead, a relation involving the change of velocity with dis-
tance, which depends on the component of the force tangential to
the orbit, leads to an equation of motion based on Newton'’s flux-
ional approach to curvature. Moreover, for certain orbits, Newton
could have solved the direct problem with this equation analytically.
For example, the simplest non-trivial case is the spiral curve, which
corresponds to the inverse-cube force (details to follow).

Since the publication of Newton’s letter to Hooke, the large er-
ror (approximately 30°) in the angle between the successive apogees
of the orbit in Newton’s diagram has been noted by many scholars
as evidence that Newton had not yet gained a proper understanding
of orbital dynamics. This error is paradoxical, however, because the
other features of the curve are correct; the orbit has approximate sym-
metries and it returns repeatedly to an apparent circumscribed cir-
cle. It is difficult to see, therefore, how an approximate method that
gives such large errors in the angular position does not violate funda-
mental laws. Careful examination of the figure, however, indicates
that the source of the angular error is not in the early computational
method, but rather in certain features of the drawing itself. Figure 3.4
is Newton’s diagram and it shows an orbit AFOGHJKL circum-
scribed by an apparent circle ABDEA, but the orthogonal axes AD
and BE on this figure do not divide it into equal quadrants. Moreover,
measurements of the distance of the crossing point C of these axes to
the circumscribed curve reveal that this curve is not actually a circle;
instead only the segment KDHE of this curve is part of a circle cen-
tered at C. Finally, the segment AFOGH displays mirror symmetry,
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Fig. 3.4 Newton’s drawing of the orbit for a constant radial force which
appears on the upper right-hand corner of his letter to Hooke written
on 13 December 1679.

but the rest of the figure does not. The property of mirror symmetry
can be demonstrated by taking a transparency of Newton’s diagram,
reversing it, and putting it over the original diagram. If one aligns the
reversed apogee H with the original apogee A, and vice versa, then
the curve AFOGH and the reversed curve HGOFA will be identical,
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thus displaying mirror symmetry. Inspection of such a composite
transparency shows that the segment AFOGH does lie on its mirror
image, but that the center C of the reversed mirror image (hereafter
Cs) is shifted up relative to the center C of the original diagram and
lies in the quadrant ACB. Measuring distances to the circumscribed
curve ABKDHEA from Cg, one finds that part of the curve BAE is
a segment of a circle centered at Cs, with the same radius as the
segment KDHE measured relative to C.

These errors in the drawing reveal the graphical construction that
Newton used to obtain his figure. Assuming that he had a method to
calculate a segment AFO of the orbit, and that for this segment the
forceis centered at Cs, then he obtained the remaining segment OGH
of the curve by a mirror reflection and rotation of the segment AFO.
He evidently made an error in shifting the center C relative to Cs,
however, and then he incorrectly adjusted the rotation in order to join
these two segments of the orbital curve as smoothly as possible. This
adjustment is also apparent in the section FOG of the drawing of this
orbit where Newton uses multiple lines to patch up the break in the
curve due to the incorrect rotation. In the text Newton refers to the
point O as the “nearest approach of the body to the center C.” This
statement must be interpreted with some care, however, because the
figure has not one center C, but two centers C and Cs. Indeed, while
O is the point on the segment AFOGH nearest to the center C, this
center applies only to the segment OGH. Therefore, the appropriate
angle subtended between the radial vectors along the maximum and
minimum distances to C is the angle HCO between the radial lines
HC and OC. This angle, when measured from the diagram, is found
to be approximately 107°, which is only about 3° larger than the
maximum computed angle of 180°/, /3 &~ 103.9° for constant central
force.#3 If one does not realize that the point C is not the actual
center of force for this segment of the orbit, however, then the angle
between apogee and perigee of this segment of the orbit appears to
be the angle ACO. When measured from the diagram, that angle is
found to be approximately 130°, which is about 26° larger than the
maximum computed angle of 103.9°. That discrepancy is the source
of much of the negative criticism of Newton’s method, but it arises
from an error in shifting the centers of the template when drawing
the figure, and not from the curvature method of calculation.44
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Newton’s curvature method of computation

The preceding discussion has been largely concerned with Newton’s
construction of the diagram. We now turn to consideration of the
computational method employing curvature by which Newton could
have obtained the curve, and in particular how he calculated the
segment AFO of the orbit between apogee and perigee.

Analysis

For a body moving on a circular orbit with radius p with a uni-
form velocity v, Newton had shown in 1665 that the force or
acceleration f is directed toward the center of the orbit, with a
magnitude*s

f=v/p (1)

This relation had also been obtained somewhat earlier by
Huygens.4® During this time Newton evidently had already
started to think about the generalization of this result for an
elliptical trajectory, as shown by the cryptic remark in his
manuscript on circular motion. If the force is directed to a fixed
center C, as in Figure 3.5, then the appropriate generalization
of Eq. (1) for the acceleration, assumed to be proportional to the
force, at a point P on the orbit is given by#’

fa=v/p (2)

where f, = f sin(a) is the component of the force (acceleration)
normal to the tangential velocity, p = P Q is the radius of cur-
vature at P, and «a is the angle between the radius vector CP and
the tangent to the curve at P. Given initially f and v, during a
small interval of time 3t the trajectory can then be approximated
by the arc of circle obtained by rotating the radius of curvature
vector through a small angle & = v3t/p about Q. At the end of
this time interval the magnitude of the velocity v changes by an
amount

v = f.ot (3)

where f, = acos(a) is the component of force (acceleration)
along the tangential velocity to the orbit at P. Thus, at the end
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Curvature method

Fig. 3.5 Illustrating how a segment PP’ of an orbit is obtained by rotat-
ing the radius of curvature vector PQ into P’Q about its fixed center of
curvature Q through an angle ¢, while the center of force is located at
C. The dashed lines PC and P'C are the radial positions with respect to
C, and the angle alpha is the angle between the tangent to the curve at
P and the radial line PC.
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of the time interval 3t the velocity is v’ ~ v + 8v, and the radius
of curvature becomes

p R/ (4)

where f/ = f’'sin(a/) and f’ is the magnitude of the force at the
new radial distance r’. The angle o’ can be evaluated geomet-
rically. Thus, the orbit can be obtained during the subsequent
time intervals 8t by iterating the previous procedure.

There is a refinement in this procedure that Newton may
have also applied at this time. The first-order change 8r in the
radial distance is given by

dr = —vdt cos|a) (s)
and therefore Eqs. (3) and (5) imply that
vdv = —adr (6)

Integration of Eq. (6) leads to a special case of what is now called
the law of conservation of energy; it is a relationship that was
derived by Newton in Proposition 39 in Book 1 of the Principia,
and extended in Proposition 40, along similar lines as presented
here. Hence, Newton could also have applied this law to evalu-
ate v’ in Eq. (2) at different values of r.

The area law is only approximately valid for the finite step sizes of
the curvature method, and in applications one finds that areas swept
out in equal time intervals are only approximately equal. Therefore
it is not surprising that Newton’s early curvature method did not
direct him to the area law for central forces. Newton was led to that
discovery by Hooke’s physical ideas on orbital dynamics, which were
communicated to him in the 1679/80 correspondence. In a letter to
Hooke, Newton remarked that

if its gravity be supposed uniform it will not descend in a spiral to the very
center but circulate with an alternate ascent & descent by it’s vis centrifuga
e gravity alternatively overballancing one another. ..

This reference to “overballancing one another” has been taken to im-
ply that “before 1679, Newton —like Descartes, Borelli, and Leibniz -
believed that orbital motion depended on the imbalance between
gravity and centrifugal force,”4® where the centrifugal force acted
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upon the body in the same way as gravity. We here give quite a dif-
ferent meaning to the phrase as used by Newton in this curvature
calculation in particular, and as used by Newton in orbital calcula-
tions generally.4?

Newton first elected to consider motion under a constant central
force function, that is, the motion depicted in the drawing in the
letter to Hooke (see Figure 3.4).

I then took the simplest case for computation, which was that of gravity
uniform in a medium not resisting. ..

Referring now to Figure 3.6, if the initial velocity v, is perpendic-
ular to the initial radial distance r, = AC(angle oy = 7/2) and if it
has a magnitude such that the radius of curvature p, = Aa is less
than AC, where p, = v2/f,, then the radial distance will decrease,
and the body will begin to descend toward the center of force. For
a constant force, the radius of curvature p must increase monoton-
ically until the curvature vector becomes parallel with the radius
vector. Here at point O (F), as in the initial state at point A, the ve-
locity vector is normal to the radius vector CF (C;0) (angle o = 7/2),
and the radius of curvature MO is parallel to the radius vector CO
and reaches an extremum value. Since the radius of curvature MO
is now greater than the radial distance CO, the radial distance will
increase, and therefore the body begins its “ascent” from the center
of force as Newton indicated in his letter to Hooke. Newton could
now apply a fundamental symmetry of the curvature method to de-
duce the subsequent evolution of the orbit. The continuation of this
orbit by rotations of the curvature vector gives a curve that is just
the reflection across the radial line CO of the orbit from A to O.

As Newton indicated in his letter to Hooke, he had found that or-
bits for central forces approach a minimum distance from the center
of force, or may even pass through this center. The curvature method
indicates that when r is 2 minimum or a maximum, the radius vec-
tor is perpendicular to the orbit (i.e., « = 7/2). In this case the radius
of curvature vector becomes parallel to the radius vector. It is then
clear from reflection symmetry that the iteration of the orbit past
this minimum distance is the same as the original iteration, but in
reverse order. It is evident from Newton’s diagram (see Figure 3.4)
that he made use of this symmetry, although it is only approximate
for finite step size, to draw successive branches of the orbit. This is
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Constant Central Force

Vo A

D

Fig. 3.6 The upper segment AO of the orbit for constant radial force
as obtained by the iterations of the curvature method. The point O
of closest approach to the center of force C is determined when the
curvature vector MO crosses C. Then the lower segment OGH of the
orbit is obtained by reflection symmetry of the segment AO about
the axis OC.

shown explicitly in Figure 3.6, where the segment OGH of the or-
bit is obtained as the mirror reflection of the segment AO with the
minimum distance OC as the axis of symmetry. This orbit is in good
agreement with the exact orbit. If now the centers Cs and C are dis-
placed by an amount corresponding to that mistakenly introduced in
Newton’s figure, and the lower segment OGH of the orbit is rotated
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Constant Central Force

A

D

Fig. 3.7 A simulation which accounts for the angular error in Newton’s
drawing. The amount by which the center of force C, shown in Fig. 3.6,
is shifted (relative to Cs) is obtained directly by reflection symmetry of
Newton’s diagram, Fig. 3.4.

by approximately 30/, then Figure 3.7 is obtained. This figure gives
a good approximation to Newton’s diagram, as can be verified by su-
perimposing Figure 3.7 on Newton’s original diagram in Figure 3.4,
after scaling it to the same size.

In the limit of small time steps, the curvature method (Egs. 2 and
6) leads to equations of motion that can be solved analytically. Thus,
Newton could have applied his curvature method to determine the
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relation between motion on a given curve and the radial dependence
of the force, i.e., he could have solved some direct problems without
being aware of the area law. The spiral orbit with a center of force
at its pole is a particularly simple direct problem whose solution is
an inverse-cube force.’° In this way Newton could have discovered
in a straightforward manner that for the inverse-cube force the orbit
reaches the origin “by an infinite number of spiral revolutions,” as
he described it in his 13 December 1679 letter to Hooke. It is note-
worthy that in “De motu” Newton quoted this result in a scholium
without giving a geometrical demonstration as he did with his other
propositions, and later on in the Principia, he applied the 1/13 force
law rather than the physically more interesting 1/ case, to solve ex-
plicitly the inverse problem (see Theorem 41, Corollary 3, Book 1).5*
Although Newton could also have applied his curvature method to
solve the case of an elliptic orbit, there is no direct evidence that he
actually carried out such a calculation.

The missing ingredient for a complete solution of the orbital prob-
lem, which must include the temporal as well as the spatial depen-
dence of the motion, was provided by the fundamental idea of Hooke
to view orbital motion as compounded by a tangential inertial veloc-
ity and a change of velocity impressed by the central force. This idea
can be expressed in simple mathematical form for forces that act
as periodic impulses for which the curvature method is not applica-
ble, and it leads directly to the area law (see Principia, Proposition 1,
Book 1). After the correspondence with Hooke, Newton evidently un-
derstood the equivalence of these two distinct physical approaches
to orbital motion, but he never credited Hooke for his seminal con-
tribution.

MEASURES OF FORCE IN THE PRINCIPIA: POLYGONAL,
PARABOLIC, AND CURVATURE

The curvature method that Newton used to generate the curve in
his 1679 correspondence with Hooke did not require the area law. In
fact, Newton recounted to Halley in 1686 that it was following this
correspondence with Hooke that he derived the area law in gener-
ating his solution to the direct problem of Kepler’s ellipse. As re-
marked above (p. 90), in the opening pages of his 1664/5 Waste
Book, Newton used a polygon as the initial representation of a cir-
cle, and a series of periodic impulsive forces of equal magnitude were
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directed toward the center of the circle. The final step was a limit-
ing process in which the number of sides of the polygon increased
until the polygon approached the circle, and a property of uniform
circular motion was derived. Newton also used a generalized version
of this polygonal technique to derive the area law in Theorem 1 of
the 1684 “De motu,” which appears with few revisions as Proposi-
tion 1 of the 1687 Principia. A polygon was used to approximate an
arbitrary smooth curve, and the motion was subject to a series of
impulsive forces of variable magnitude that were directed toward a
fixed center of force. The magnitude of this force is determined by the
condition that after each impulse the body returns to the prescribed
orbital curve. The final step again was a limiting process in which
the number of sides of the polygon increased until it approached a
general curve, demonstrating that in such motion the radius sweeps
out equal areas in equal time: uniform areal motion.

The area law

Figure 3.8 is taken from the first proposition in the 1687 Principia, in
which Newton derives Kepler’s law of equal areas in equal time in-
tervals. The path is a polygon described by a particle that experiences
a periodic impulsive force directed toward a fixed center of force S
in equal intervals of time T. The particle travels with constant ve-
locity Vap from point A to point B along a linear portion AB of the
polygon. At point B it reaches the general curve and experiences a
change in velocity AV due to the impulsive action of the force at
B, which is directed toward the center of force S. In contrast to the
circular motion, in this case the magnitude of the velocity generally
changes, as well as the direction. Newton was able to use the same
two factors, the deviation and limit, that he used previously in the
analysis of circular motion to obtain a very important consequence
for any force or force impulse directed toward a center S: the area law.

Analysis

If the particle had not received an impulse at B, it would have
traveled to the point ¢ in the same time T as it traveled to
the point C. The distance Bc = AB = Vg T and the deviation
Cc, which is due to the impulsive force at B, is parallel to SB.
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Fig. 3.8 Taken from Proposition 1, Book 1, 1687 Principia. At points A,
B, C, etc., a particle is subject to a series of periodic impulsive forces of
variable magnitude that are directed toward a given center of force S.
A polygon ABCDEF is used to approximate an arbitrary smooth curve
(not shown) that passes through each of the points. The magnitude of
the force is determined by the condition that after each impulse the
body returns to the prescribed curve (not shown in Newton’s figure).

Figure 3.9(A) and 3.9(B) are taken from Figure 3.8; in Figure3. 9(a),
triangles SAB and SBC have equal areas because they have equal
bases AB = Bc and they have the same slant height SX. In Figure
3.9(B), the triangles SBc and SBC have equal areas because they
have a common base SB and equal slant heights cy = CY (the
deviation Cc is parallel to the impulsive force directed along
SB). Thus, area SAB = area ScB = area SBC, and by extension
this area is equal in turn to areas SCD, SDE, SEE, etc. Appealing
to Corollary 4 of Lemma 3, which discusses the approximation
of a curve by a polygon, Newton then increases the number of
sides of the polygon which approaches a given general curve as
a limit, and thus demonstrates that for any central force the
radius sweeps out equal areas in equal times.5? It is important
to note that while Figure 3.8 does not show a curve associated
with the vertices, Newton’s reference to Lemma 3 indicates that
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A)

(B)

Fig. 3.9 Expanded from Fig. 3.8. (A) The triangles SAB and SBc have
equal bases AB = Bc and a common slant height SX. Thus, the triangles
have equal areas. (B) The triangles SBC and SBc have a common base
SB and equal slant heights CY = cy (Cc is parallel to Yy). Thus, the
triangles have equal areas.
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he had in mind a curve that fixes the size of the deviations or
impulses. There is considerable confusion on this point in the
literature.s3

The parabolic measure of force

Newton’s first solution to the direct problem of uniform circular
motion appeared before 1669 in a vellum manuscript now called On
Circular Motion. In contrast to the polygonal technique used in 1664,
in this later manuscript Newton began with a continuous circular
path and considered the deviation between a point on the circle and
the corresponding point on the tangent. He demonstrated that in the
limit as the deviation becomes very small, the force (acceleration) is
directly proportional to the rectilinear deviation and inversely pro-
portional to the square of the time interval, where this interval is
proportional to the arc in uniform circular motion. After 1679, how-
ever, Newton had developed the area law as a measure of time and
so he could extend the technique to any central motion. The most
famous application of this measure is to the direct problem of ideal
planetary motion.

Galileo had demonstrated that motion under a constant gravita-
tional force, when coupled with a projection velocity at some angle
to the gravitational force, produces parabolic motion. During a small
interval of time in Newton’s measure of force, the instantaneous tan-
gential velocity to a curve plays the role of the projection velocity;
and the central force, which is a constant in the limit of vanishingly
small time intervals, plays the role of the gravitational force. During
that small time interval the orbital arc is represented by a parabola. In
the 1687 Principia, Newton derived this parabolic measure of force
and applied it to the solution of the direct problem of ideal planetary
motion. Figure 3.10 is taken from Newton’s figure for Proposition 6
of Book 1 of the 1687 Principia (which is the same as that in Theorem
3 of the 1684 “De motu”). The particle P moves along the general
curve APQ under the action of a force centered at S. The force (ac-
celeration) is proportional to the distance QR, divided by the square
of the time interval, where QR is parallel to SP and the time interval
dt is proportional to the triangular area SP x QT. Thus, the parabolic
measure of force QR/8t? is given by the ratio QR/(QT x SP)*.
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Fig. 3.10 Taken from Proposition 6, Book 1, 1687 Principia. The particle
at P moves along the general curve APQ under the influence of a force
center at S. The line RPZ is the tangent to the curve at P and the line
QR is constructed parallel to the line STP.

Analysis

A particle moves along an arc PQ of a general curve APQ under
the influence of a continuous force directed toward a center of
force S. If no force acted upon the particle, it would continue
along the tangent to point R. Because the force does act upon
it, it moves instead along the arc PQ. Again, Newton obtains
an appropriate measure for the force from the finite limit of
the ratio of the “deviation” QR divided by the square of the
time interval 8¢, where the limit is taken as the time interval 8t
vanishes and the point Q approaches the point P:54

Force o acceleration o« Lim [ QR/8¢t*] o« Lim[ QR/( QT x SP)*]
= (1/SP*)Lim[QR/QT?].

To find the dependence of the force upon the radius SP for a given or-
bital curve and center of force, Newton expresses the ratio (QR/ QT?)
in terms of the geometry of the orbital curve and then evaluates its
limit as Q approaches P. In Proposition 11 Newton solved the direct
problem of ideal planetary motion, an elliptical orbit with the center
of force at a focus; he demonstrated that in the limit as Q approaches
P, the ratio (QR/QT?) approaches 1/L, where L is the constant prin-
cipal latus rectum of the ellipse. Thus, the force is proportional to
the inverse square of the radius SP.
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The curvature measure of force

After his discovery of the area law and its application to the parabolic
measure of force, Newton may appear to have set aside curvature
in the solutions to direct problems in the 1684 “De motu” and in
the 1687 Principia. In the unpublished revisions of the 1690s and in
the published revisions of the 1713 Principia, however, Newton em-
ployed a measure of force based directly upon curvature to provide a
series of alternate solutions for these direct problems. There is am-
ple evidence, moreover, that he did indeed use curvature in the 1687
Principia: for example, Proposition 15 of Book 2 and Propositions
26-29 of Book 3 as discussed below, pp. 117-24.55

Curvature is most evident in Lemma 11 of Book 1, which in the
1687 edition was only used in Proposition 4, Book 1 for the analysis of
uniform circular motion and in Proposition 9, Book 1 for the analysis
of spiral motion. In the revised editions, Newton gave a new solution
for Proposition 4 that does not call upon Lemma 11. That lemma
was given a central role, however, in the revised Proposition 6,
Book 1 that provides the paradigm for analysis of all direct problems.
Figure 3.11 is the diagram for Lemma 11 that appears in the 1687
Principia and in the revised editions that follow. The general curve
ADB appears to be a circle, perhaps because the initial application
was to the circular path in the figure in Proposition 4. In the revised
editions, there is no figure in Proposition 4 and the first and major
application of Lemma 11 is to the general curve in Proposition 6.
There is no explicit mention of curvature in the text of Lemma 11
in the 1687 edition save for a reference to “the nature of circles pass-
ing through the points A, B, G; A, b, g,” although curvature is im-
plicit in the lemma. In the subsequent scholium, however, Newton
specifies that Lemma 11 applies to curves where “the curvature is
neither infinitely small nor infinitely large.”5¢ Figure 3.12 is an en-
hanced diagram for Lemma 11 with the general curve AbB no longer
circular and with the addition of the two circles, ABG and Abg, that
are explicit in Newton’s text and the circle of curvature AJ that is im-
plicit in the text.57 Each circle is tangent to the general curve AbB at
point A; circle ABG cuts the general curve at point B and circle Abg
at point b; and they form their diameters at points G, g, and ] respec-
tively. Newton demonstrates that the square of the chord AB is equal
to the product of the line BD (the subtense) and the diameter AG,
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A d D

G

Fig. 3.11 Taken from Lemma 11, Book 1, 1687 Principia.

and therefore AB*/ Ab* = (Bd x AG)/(bd x Ag). In the limit for curves
of finite curvature at point A, as points B and b approach A, the diam-
eters AG and Ag approach AJ, the diameter of curvature at point A,
and the ratio AG/Ag approaches unity. Thus, the square of the chord
AB or ab is ultimately proportional to the subtense BD or bd (where
later the subtense is identified as being proportional to the force).
Therefore, curvature is central to the demonstration of Lemma 11,
and hence by extension to all the propositions that call upon it.
Figure 3.13 is taken from Newton’s revised diagram for Proposi-
tion 6, Book 1 in the 1713 Principia, which is here enhanced by the ad-
dition of the circle of curvature PV. Comparison with the original di-
agram (in Figure 3.9 above) will show that the most obvious change is
the addition of the dotted line YS, which passes through the force cen-
ter S and is normal to the tangent YPZ. A more subtle but even more
significant change in the figure is the extension of the line of force SP
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Fig. 3.12 Taken from Lemma 11, Book 1, 1687 Principia. In this en-
hanced version the general curve is no longer a circle, and circles ABG,
Abg, and AJ have been added, where AJ is the circle of curvature at
point A.

through the force center S to a point V, where the line PV is identified
as the chord of curvature from P through the center of force S.58 In this
revised Proposition 6, Newton still derives the parabolic measure of
force, QR/(SP?* x QT?), but in addition he shows that in the limit as
Q approaches P it becomes equal to an alternate measure of force,
1/(8Y? x PV), which is clearly dependent upon curvature because PV
is the chord of curvature through the point S, the center of force.
The relationship of the curvature measure to the parabolic mea-
sure can be seen by applying Lemma 11 to the revised diagram of
Proposition 6. Figure 3.14 is an enhanced version of Newton’s revised
diagram for Proposition 6 with the addition of an auxiliary circle
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Fig. 3.13 Taken from Proposition 6, Book 1, 1713 Principia. In this re-
vised diagram Newton has added the normal to the tangent through the
center of force YS and has extended the line SP to the point V, where
PV is the chord of curvature (the circle of curvature has been added to
Newton’s diagram).

PUG and its diameter PJG. Following the argument from Lemma 11,
as the point Q approaches the point P, then the auxiliary circle PUG
approaches the circle of curvature PV]. Thus, one can employ Eu-
clidean relationships that are valid for the auxiliary circle to obtain
exact relationships for the general curve: that is, for the circle of
curvature. In particular, Proposition 36, Book 3 of Euclid’s Elements
is directly applicable to Newton’s revised diagram and, as was pre-
viously demonstrated for Figure 3.3, RU/PR = PR/QR. This Eu-
clidean relationship is one that Newton employs elsewhere in the
Principia, often without any explicit reference.

In Book 1 of the revised edition of 1713, Newton provided solu-
tions to the direct problems <orbit/force center> in Propositions 7
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Fig. 3.14 An enhanced version of Newton’s diagram shown in Fig. 3.13.
An auxiliary circle PUG and its diameter PJG have been added to
demonstrate the relationship of Lemma 11 to Proposition 6.

<circle/circumference>, 9 <spiral/pole>, 10 <ellipse/center> and 11
<ellipse/focus> using the alternate measure of force, 1/(SY? x PV), as
well as the solution using the parabolic measure of force, QR/(SP 2 x
QT?), found in the 1687 Principia. In the alternate solution for Propo-
sition 10, Newton calculated PV, the chord of curvature through the
center of the ellipse, and demonstrated that the force is directly pro-
portional to the radius from the center of the ellipse to the point on
the orbit. The alternate solution to Proposition 11, however, contains
yet another measure of force, one that is clearly identified as a third
measure in the unpublished revisions of the 1690s, but one that is
not clearly outlined in the published revisions of 1713. In it, Newton
employed a relationship from Proposition 7, Corollary 2 that relates
the force for a given orbit (here an ellipse) and two different centers of
force (here the center and focus of the ellipse). In the 1687 Principia,
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Proposition 7 only gave the solution to the direct problem of a cir-
cular orbit with the center of force on the circumference — that is, a
relatively simple application of the paradigm set out in Proposition 6.
In the revised edition of Proposition 7, however, the force center is
located at a general point, and in the first corollary the special case
of a force center on the circumference is considered. In the second
corollary, Newton obtains the expression for the forces directed to-
ward any two points for an object that moves in a given circle. In the
third corollary, Newton generalizes the result to any orbit in which
the body revolves about the two centers in the same periodic time.
In the closing line Newton uses curvature to relate the two corol-
laries: “For the force in this orbit at any point...is the same as in
a circle of the same curvature.” This result permits Newton to use
the force found in an elliptical path directed toward the center of the
ellipse (Proposition 10) to find the force in an elliptical path directed
toward a focus of the ellipse (Proposition 11). The role of curvature
in the alternate solution of Proposition 11 is hidden, however, in a
corollary of Proposition 7. Thus, even in the revised edition, which
sets out alternate solutions to the direct problems that employ the
chord of curvature PV, one must look carefully to find curvature.

APPLICATION OF NEWTON’S CURVATURE METHOD
TO TWO DIFFICULT PROBLEMS: RESISTANCE FORCES
AND LUNAR MOTION

Newton’s curvature method first appeared as his cryptic statement of
1664 and is represented in this chapter by Eq. (2] (p. 100) as the gener-
alization of uniform circular motion to the circle of curvature — that
is, the curvature relationship in the central force f = v*/(p sin(«a)). In
this section we describe the remarkable application of Newton’s cur-
vature method to two difficult problems in orbital dynamics: resis-
tance forces and lunar motion. These applications appeared in the
1687 edition of the Principia, and thus provide clear evidence that
Newton had developed his curvature approach to dynamics by that
time, although he did not publish an exposition until the 1713 edi-
tion. Newton’s geometrical constructions are difficult for the mod-
ern reader, and therefore we simplify our discussion by giving here
an equivalent representation based on Newton’s fluxional calculus.
It is possible, moreover, that Newton may have made some of his
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discoveries in this manner, and then demonstrated them later in the
geometrical language of the Ancients.

Resistance forces

One application of the curvature method is concerned with resis-
tance forces, as found in Proposition 15, Book 2 of the 1687 Principia.
Figure 3.15 is the diagram given in that proposition: a spiral curve
centered at S with points P, Q, R, and r lying on the orbit. Here,
Newton employs curvature to consider the effect of adding a resis-
tance force in a direction opposite to the motion of a body revolving
in a given orbit under the action of an inverse-square force. Newton
expected that if the cause of gravity was Cartesian vortices, then
the fluid forming these vortices must also give rise to a resistance
force with properties which could be determined; this problem was
beyond the capacity of his contemporaries.

In Propositions 15-17, Book 2, Newton considers a possible or-
bit, the equiangular spiral, for a body under the combined action of
a given centripetal force F centered at the origin of the spiral, and
an unknown resistance force, Fz. The orbital curve is given and the
force is calculated: an example of a direct problem such as found
in the first three sections of Book 1. Unlike the problems of Book
1, however, the unknown resistance force Fy is not centripetal, but
acts along the tangent to the spiral. Thus, the area law is not valid,
and Newton had to calculate the rate of change of area. What fol-
lows is an equivalent derivation of Newton’s ingenious geometrical
construction. This derivation is based on a differential form of the
calculus, which is close to Newton’s fluxional analysis.s?

Analysis

The change of angular momentum 8h during a small interval of
time 3t is determined by the component of force perpendicular
to the radial direction r. In this case the rate of change is due
entirely to the resistance force Fg, and therefore

d8h = —r Fysin(a)dt, (1)
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Fig. 3.15 Figure in Proposition 15, Book 2, describing an equiangular
spiral curve PQRr for an orbit under the action of a gravitational force
centered at S and a resistance force (described in the text). The radius
of curvature at P is the line PO.

where a is the angle between the radial and tangential directions
at a point on the orbit. Since the component of the force nor-
mal to the orbit is due only to the centripetal force F, Newton’s
curvature relation depends only on this force. Newton had previ-
ously demonstrated that for an equiangular spiral p sin(a) = r,%°
and assuming the radial dependence for the central force F =
w/r?, given in Proposition 16, Book 2, the curvature relation can
be written as

v = JIFpsinfa)] = /[un/r"7], (2)
and the angular momentum as
h = vrsinfa) = \/[p,/rnﬂ] sin(a). (3)

Hence, the change 8h in a small interval &r, where &r =
v cos(a)dt, is given by
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8h = [(3 — n)/2] sinfa) cos(a)[i/r"" 3¢, (4)
and comparing this relation with Eq. (1) for the resistive force
Fr gives

Fr = (3 —n)/2] coslau/r". (s)

Q.E.D.

Recall that the radial dependence of the force on the radius r is
given by F = p/r" In Proposition 15, Book 2 Newton considered
the special case of n = 2, indicating that he had in mind the effect
of resistance on motion under inverse-square gravitational forces.
For the case of n = 3, the resistance force Fg, given in Eq. (5), van-
ishes as expected from Proposition 9, where Newton proved that an
equiangular orbit is possible for an inverse-cube centripetal force by
itself.

Actually, Newton presented his result for Fy in terms of the den-
sity of the medium under the assumption that the resistance is pro-
portional to the density and the square of the velocity, although he
neglected to mention this dependence in the statement of Proposi-
tions 15-17, Book 2. According to Egs. (2) and (5), the ratio Fg/v* is
proportional to 1/r, which explains Newton’s statement at the start
of Propositions 15-17, that “if the density of a medium in each place
thereof be inversely as the distance of the places from an immovable
center...”¢!

Lunar motion

Another application of the curvature method is concerned with lu-
nar motion, as found in Propositions 26-29, Book 3, of the 1687 Prin-
cipia. Here Newton developed a special treatment of the influence
of the gravitational force of the Sun on the Moon’s motion around
the Earth. Before Newton, geometrical models had been developed
to account for the deviations of lunar motions from simple Keplerian
elliptical motion, notably by Horrocks in 1641. The lunar deviations
are considerable, as was well known to astronomers in Newton’s
time, but it was not realized that they are are caused primarily by
the gravitational force of the Sun. In particular, Tycho Brahe had dis-
covered a bi-monthly variation in the lunar speed after missing an
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expected lunar eclipse. From Proposition 29, entitled “To find the
variation of the Moon,” it is evident that the method developed by
Newton in the two previous propositions was intended for the com-
putation of this variation. Remarkably, in Proposition 28 Newton
did not consider the actual motion of the Moon, which was known
to be approximated by Horrocks’s model of a precessing ellipse with
the Earth at one focus. Instead, he considered an idealized model in
which the Moon rotates in a circular orbit around the Earth in the
absence of the solar perturbation. He then computed the change of
the orbit due to this perturbation, and obtained results that were in
good agreement with Brahe’s observation. This was one of the great
triumphs of Newton’s gravitational theory; later it was developed
further by Euler,** and by G. Hill.

Newton’s key idea was to assume a model in which the perturbed
orbit of the Moon is an ellipse of small eccentricity with the Earth at
the center rather than at one of the foci. The ellipse rotates in such
a manner that one of the axes is always perpendicular to the Earth—
Sun distance. He then calculated the curvature p at the two apses of
the resulting rotating orbital curve, which depends on the unknown
eccentricity of the ellipse and the observed ratio of the synodic
and sidereal periods of the Moon. Since in his model the combined
gravitational force of the Earth, fg,m, and the Sun, fsu,, on the
Moon is perpendicular to the direction of the lunar motion at the
apses, Newton could apply his curvature relation p = v?/f with
f = fEarth + fsun, to evaluate also the curvature of this orbit. Equat-
ing the resulting ratio of curvatures with his geometrical calculation
then determines the eccentricity of the conjectured elliptical orbit.
A complication occurs here because, except at the apses, the Sun
also exerts a component of force on the Moon that is tangential to
its motion. This implies that the area law (or conservation of angular
momentum h)is not valid, and the velocity at the apses v = h/r varies
with h as well as with the radial distance r. Therefore, in Proposition
26, Newton computed the change in angular momentum between
the two apses in the approximation that the orbit is circular, an ap-
proximation he announced in the title of this proposition, “To find
the hourly increment of the area which the Moon, by a radius drawn
to the Earth, describes in a circular orbit.” In this manner he ob-
tained a basically correct result, although his method does not give
a complete solution. Such a solution requires that the geometrical
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curvature of the rotating elliptical curve be consistent with the solar
gravitational perturbation at points other than the apses of the
orbit. But, as Laplace remarked admiringly,®¢ “These computa-
tional assumptions...are permitted to inventors in such difficult
researches...” [Ces hypothéses de calcul...sont permises aux in-
venteurs, dans des recherches aussi difficiles . . .|

Figure 3.16 is the diagram used by Newton in Proposition 2.8, Book
3, where he states that

by computation, I find that the difference between the curvature [p,] of this
orbit Cpa at the vertex a, and the curvature of a circle described about the
center T with the interval TA is to the difference between the curvature [p,]
of the ellipse at the vertex A and the curvature of the same circle, as the
square of the ratio [£] of the angle CTP to the angle CTp.

In mathematical form this statement implies that
(1/pa —1/TA)(1/pa—1/TA =& (8)

Newton does not tell us how he obtained this result except for a
succinct remark that “All these relations are easily derived from
the sines of the angles of contact, and of the differences of those
angles.” From this hint Newton’s computation can be reconstructed
by referring to Lemma 11, Book 1 and its accompanying figure (see
Figure 3.11). This lemma gives a geometrical construction for the
radius of curvature at a point A of a given curve in terms of a small
arc AB of the curve, and the corresponding subtense of the angle of
contact defined by the line BD normal to the tangent. Newton shows
that the radius of curvature

pa= AB>/2DB, (9)

in the limit that B approaches A.

Analysis

In Figure 3.16, let a point T on the vertical axis AG be the origin
of a polar coordinate system, r the radial distance from T to a
point on the curve AB, and 80 equal to the angle ATB. Then

AB ~ 1430 (10)
and

DB =r4—rpcos(d30) ~ &1 + (ra/2)30, (11)
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B

Fig. 3.16 Figure in Proposition 28, Book 3, for an ellipse CPADB repre-
senting a hypothetical orbit of the Moon around the Earth at the center
T of the ellipse in a frame rotating with the Earth around the Sun at S.
The curve Cpa shown in dashed lines is the corresponding orbit in an
inertial frame.

where the difference 8r = (rg — r4) is a second-order differen-
tial. Hence, according to Eq. (9), the curvature 1/p 4 at A can be
written in the form®s

I/pa—1/14=281/1280". (12)
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For the rotating elliptical orbit shown in Figure 3.16, which is
obtained by the transformation 6— 0’ = (1/£)0, the curvature
pq at the corresponding apse a is obtained by observing that at
this vertex the angular interval 86’ = (1/£)0, where & = Tiya/ Tiyns
while r, = ra and 8%’ = 8r?, because corresponding radial dis-
tances remain unchanged. Therefore,

I/pa—I/rA:2§2(BZI/ra2862), (13)

and taking the ratio of Eqs. (12) and (13) gives Newton’s result,
Eq. (8). Q.E.D.

To evaluate p, from Eq. (8), Newton had to obtain the curvature
at the apse A for the stationary ellipse. This can be shown to be a
straightforward application of Lemma 11 and Newton obtains “that
the curvature of the ellipse in A is to the curvature of that circle [TA]
as the square of the ratio of TA to TC.” Likewise, the corresponding
curvature pg, at the rotated vertex ¢, not shown in the figure, can be
obtained in this manner.®¢

At these two apses Newton also calculated the curvature by ap-
plying the dynamical relation p = v>/f, where v = h/r and f is the
combined gravitation force of both the Earth and the Sun exerted on
the Moon. In this case the angular momentum h is not a constant be-
cause the solar force has a component tangential to the orbit except
at the two apses, and Newton evaluated the change in h (in Proposi-
tion 26, Book 3) by approximating the orbit by a circle. The details of
this calculation have been discussed elsewhere®’-® and will not be
presented here. This calculation enabled Newton to equate the re-
sulting ratio p,/pp obtained from dynamics with the corresponding
ratio obtained from the geometry of the conjectured rotating elliptic
orbit, to solve for the unknown eccentricity of the ellipse.

CONCLUSION

Two of the essential elements in Newton’s dynamics are the con-
cept of curvature and the area law for centripetal forces. Curvature,
which is a measure of the rate of bending of a curve, was developed by
Newton in the mid-1660s, but it was not until 1679, following his cor-
respondence with Hooke, that he discovered that Kepler’s area law
was valid for central forces. Newton’s early computational method
lacked this crucial insight of the area law, and he was limited to the
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calculation of approximate orbits for general central forces. With
the discovery of the area law, however, he was able to transform
dynamical problems that depend on time into a purely geometric
form by relating the time variable to the area of a sector of an orbit,
and thus to go beyond approximate solutions. In modern terms the
area law corresponds to conservation of angular momentum, which
is proportional to the time rate of change of area swept by the radial
line with its origin at the center of force. Newton gave the area law
a very prominent part in the Principia, where it appears in the first
two propositions of Book 1.

The area law also served to obscure the critical role that curva-
ture played in Newton’s dynamics. Following the substitution of
equal areas as a measure of time for orbital motion, Newton was
able to develop a purely geometrical measure of force (acceleration).
This measure corresponds to Galileo’s measure for force in the case
of uniform accelerated rectilinear motion and leads to the parabolic
measure of force QR/(QT* xSP?). It was this meaure of force that
appeared in the draft of “De motu” sent to Halley in 1684 and be-
came the paradigm for the solution of direct problems in the 1687
Principia. Since it was the only measure published in the first edi-
tion, there exists a general, but mistaken, belief that Newton did
not develop his curvature approach until after 1687. On the con-
trary, curvature plays a major role in Newton’s unpublished works
preceding and following the 1687 Principia, as well as in the work
itself.

Newton’s curvature method was based on an extension of the anal-
ysis of uniform circular motion to general orbital motion, which
implies that the normal component of the force F, at any point on
the orbit is equal to the square of the tangential velocity v divided
by the radius of curvature p, that is, F,, = v*/p. Newton describes
this curvature measure of force in his cryptic statement of 1664, em-
ploys it in his method quam proxime in the 1679 correspondence
with Hooke, and applies it in the solution of the difficult problems
of resisted motion and lunar inequalities in the 1687 Principia, as
well as in some of his unpublished manuscripts. In some of these ap-
plications, he makes only limited reference to curvature, although
we have demonstrated that it plays a major role. He may have been
reluctant to refer to curvature because he had not yet published his
mathematical work on curvature done almost two decades earlier,
and he would have been well aware, therefore, that the concept of
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curvature was not known to most of his expected readers, with the
exception of Huygens. Immediately following the publication of the
1687 Principia, however, Newton began work on a radical revision
of the opening sections of Book 1 in which curvature is presented
as the primary measure of force. He never published those revisions,
although a version of them was included in Book 1 of the revised Prin-
cipia as Corollaries 3—5 of Proposition 6, and as an alternate method
of solution of the propositions of Sections 2 and 3. Some eighteenth-
and nineteenth-century commentators did recognize the importance
of curvature in Newton’s revised editions of the Principia. The full
role of curvature in the first edition (1687) has been made explicit
only recently.

In summary, the essential point is that Newton’s geometrical
proofs in the first few sections of Book 1 and in some advanced prob-
lems in Books 2 and 3 are based on curvature and on area law (an-
gular momentum) calculations. The task is to determine the chord
of curvature PV = 2p sin(a) and the normal to the tangent through
the center of force SY = r sin(a) for various orbits by whatever means
the clever geometer can conjure, and thus to obtain the force from the
curvature measure 1/(PV x SY?). This task can also be accomplished
by combining these two calculations into a single one: that is, to
calculate the limit of QR/(SP* x QT?) as shown in Proposition 6,
Book 1. This parabolic measure of force, however, does not have the
direct geometrical significance of the curvature measure. Newton'’s
first thoughts on a solution to the direct problem of elliptical orbital
motion stem from considerations of curvature, and it is from curva-
ture that we gain the deepest insights into his dynamics.

NOTES

1 Isaac Newton, The Mathematical Principles of Natural Philosophy,
3rd edn, 2 vols., trans. Andrew Motte [1729]. Facsimile reprint Lon-
don: Dawsons of Pall Mall, 1968, vol. 2, p. 392. Hereafter, cited as
Newton, Principia. There is an edition of Motte’s 1729 translation of
the Principia with some revisions by Florian Cajori published by the
University of California Press in 1934 in a single volume and in 1971
in a two-volume paperback edition. Moreover, there is a new trans-
lation into English of the third edition: Isaac Newton, The Principia,
Mathematical Principles of Natural Philosophy: A New Translation,
trans. I Bernard Cohen and Ann Whitman, preceded by “A Guide to
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PP. 231-60, and pp. 238-9. Newton’s early references to curvature as an
analytical device are noted and its later uses are detailed, but his interim
method and some early applications of curvature in the first edition of
the Principia were unknown (see pp. 95-106 and 117-24).

Michael Nauenberg, “Newton’s Early Computational Method for Dy-
namics,” Archive for History of Exact Sciences 46 (1994), 212-52, at
p. 227. Newton’s interim method, which uses curvature as a central el-
ement and which was previously unknown (see note 2), was supplied
by this paper; it is discussed in detail in pp. 95—106 of this chapter. The
early applications of curvature in the first edition of the Principia are
presented in pp. 11217 of this chapter.

Michael Nauenberg, “Huygens and Newton on Curvature and its Ap-
plication to Dynamics,” De Zeventiende Eeuw 1 (1996), 215-34. In the
study of mathematics, Newton was almost entirely self-taught. He at-
tended a few lectures on the subject, but it was his acquisition of con-
temporary works on mathematics, in particular van Schooten’s second
Latin edition of Descartes’s Geometry, that provided him with a point
of departure. This second Latin edition contains extensive commen-
taries by van Schooten and some of his students, Jan Hudde, Hendrik
van Heurat, Jan de Wit, and Christiaan Huygens, that extended
Descartes’s work and solved new problems. Newton makes use of
their work as well as that of Descartes. The concept of curvature was
developed independently by Huygens (about 1658—9) and by Newton
(about 1664-5). Huygens published some of his results in 1673 in his
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Horologium Oscillatorium (translated into English by R. J. Blackwell in
Christiaan Huygens, The Pendulum Clock, Ames: Iowa State Univer-
sity Press, 1986), and sent a copy of his book to Newton, who acknowl-
edged it in a response via Henry Oldenberg, then secretary of the Royal
Society.

The curvature at a point on a general curve is defined by the inverse
radius of the circle that best approximates a small arc of the curve at
that point. This circle of curvature was introduced independently by
both Newton and Huygens. Later, Leibniz called it the osculating circle
(it just “kisses” the curve at that point). It is defined mathematically
by taking a circle that is tangent to the curve at the chosen point, and
that also intersects that curve at two nearby points. The radius of that
tangent circle is then decreased until the two points of intersection
approach the point of tangency and thus the tangent circle becomes the
circle of curvature. An alternate definition requires taking two normals
to the curve at nearby points and finding the point of intersection of the
normals. When the two normals approach each other, the intersection
of the normals approaches a limit point, and the radius of curvature is
defined by the distance from the curve along the normal of this limit
point.

For an eighteenth-century commentator on curvature, see John Clarke,
A Demonstration of Some of the Principal Sections of Sir Isaac New-
ton’s Principles of Natural Philosophy (London, 1730; Johnson Reprint
Series with an introduction by I. Bernard Cohen, New York, 1972). In
1730, following the publication of the third edition (1726) and Newton'’s
death in 1727, John Clarke published a translation of, and commentary
on, a number of selected portions of the Principia, which were rear-
ranged and ordered so as to give a coherent presentation of both the ab-
stract dynamical principles and their practical astronomic application.
Clarke also commented in some detail upon Newton’s use of curvature
in the qualification which was added to Lemma 11 in the revised edi-
tions of the Principia: “in all curves which have a finite curvature at the
point of contact.” Clarke even gave a reference for the reader to Milne’s
Conic Sections for a further discussion of curvature. For a nineteenth-
century commentator on Lemma 11 and curvature, see Percival Frost,
Newton’s Principia, First Book, Sections I, II., III., with Notes and
Illustrations and a Collection of Problems, 4th edn (Macmillan and
Co., 1883), pp. 82—113. This excellent pedagogical guide for students
preparing for the Mathematical Tripos first appeared in 1878 and was
still being published into the twentieth century. Again, the role of cur-
vature is clearly made manifest.
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See Isaac Newton, The Mathematical Papers of Isaac Newton, 8 vols.,
trans. and ed. D. T. Whiteside (Cambridge: Cambridge University Press,
1967-81). The primary twentieth-century source of Newton’s develop-
ment of curvature is found in vols. 1, 3, and 6 of these monumental
volumes of Newton’s mathematical papers and in the extensive com-
mentaries of the editor. In vol. 6, Whiteside, the editor, describes New-
ton’s application of curvature to dynamics in the proposed revisions of
the Principia, which Newton wrote in the 1690s following the publi-
cation of the first edition. Whiteside rejects any earlier explicit use of
curvature by Newton, however, such as we find in the 1687 Principia.
“In precise terms, if the orbital speed at the point be v and the ra-
dius of curvature there be p, then v>/p will measure the component
[force] f sina normal to the orbit...No use of this corollary is made —
explicitly so at least — either in the present ‘De motu corporum’ or
in the... Principia...(in 1687)” (Newton, Mathematical Papers, vol. 6,
p. 131, note 86). In this chapter, however, we argue that Newton did
make explicit use of this curvature relation in the 1687 Principia (see
this chapter, pp. 117-24). See also Newton, Mathematical Papers, vol. 6,
Pp. 146—9, note 124 for Whiteside’s additional commentary on this topic.
For another excellent twentieth-century commentator on Newton’s use
of curvature in the Principia, see Bruce Pourciau, “Reading the Master:
Newton and the Birth of Celestial Mechanics,” American Mathemati-
cal Monthly 104 (1997), 1-19.

Nauenberg, “Newton’s Early Computational Method for Dynamics,”
pp. 212-52.

Michael Nauenberg, “Newton’s Perturbation Methods for the 3-Body
Problem and Its Application to Lunar Motion,” in Jed Buchwald and
I. Bernard Cohen (eds.), Issac Newton’s Natural Philosophy (Cambridge,
MA: MIT Press, 2001).

Brackenridge, The Key to Newton’s Dynamics. This book tracks New-
ton’s work on dynamics from its early stages at Cambridge before 1669,
through its revival of interest ten years later, to its fruition in 1687 in
the first edition of the Principia, and its revision and extension in the
later editions. Throughout, Brackenridge stresses the role of curvature
in all of Newton’s dynamics. “If any single measure deserves the title
of the key to Newton’s dynamics, it is the curvature measure,” p. 222.
S. Chandrasekhar, Newton’s Principia for the Common Reader (Oxford:
Clarendon Press, 1995). For a review of this book, see Michael Nauen-
berg, in American Journal of Physics 64 (1996), 957-8.

Michael Nauenberg, “The Mathematical Principles Underlying the
Principia Revisited,” The Journal for the History of Astronomy 29
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(1998), 286—300. This essay contains in part a review of Brackenridge’s
book, The Key to Newton’s Dynamics.

J. Bruce Brackenridge, “Kepler, Elliptical Orbits, and Celestial Circular-
ity: A Study in the Persistence of Metaphysical Commitment,” Annals
of Science 39 (1982), 117-43, 265-95. Kepler was working in this tra-
dition early in the seventeenth century, even as he described the non-
circular elliptical motion of the planets in his New Astronomy of 1609.
He was concerned with the cause of celestial motion, however, as well
as with its measurement and analysis. Despite his description of plan-
etary motion as elliptical, the circle remained the primary element for
Kepler in his understanding of God’s plan of the universe.

John Herivel, The Background to Newton’s Principia: A Study of New-
ton’s Dynamical Researches in the Years 1664—84, (Oxford: Clarendon
Press, 1965), p. 7.

The Correspondence of Isaac Newton, ed. H. W. Tumball, vol. 2 (Cam-
bridge: Cambridge University Press, 1960), pp. 297—-313.

Herivel, Background to Newton’s Principia, pp. 133-5.

René Descartes, Principles of Philosophy (1644), trans. Valentine Roger
Miller and Reese P. Miller (Dordrecht: D. Reidel Publishing Co., 1983),
p. 59. “If it [a body] is at rest we do not believe that it will ever begin to
move unless driven to do so by some external cause. Nor, if it is moving,
is there any significant reason to think that it will ever cease to move
of its own accord and without some other thing which impedes it.”
Newton, Principia, 3rd edn, vol. 1, p. 19. “Every body perseveres in its
state of rest, or of uniform motion in aright line, unless it is compelled to
change that state by forces impressed thereon.” It is interesting to note
that both Descartes and Newton were anticipated by Aristotle, who in
his Physics makes the following statement: “Hence, a body would either
continue in its state of rest or would necessarily continue in its motion
indefinitely, unless interfered with by a stronger force,” Aristotle, Aris-
totle’s Physics (c. 350 Bc), trans. Richard Hope (Lincoln: University of
Nebraska Press, 1961), p. 72. Aristotle, however, is arguing that a void
cannot exist, for if it did then the above state of rest or uniform motion
would be observed. Since such ideal states are not observed in nature,
then Aristotle concludes that a void cannot exist.

Herivel, The Background to Newton’s Principia, p. 7.

Cited in Herivel, The Background to Newton’s Principia, p. 47.
Newton, Principia, 3rd edn, p. 67 and 1st edn, cited in Brackenridge,
The Key to Newton’s Dynamics, p. 250. The phrase “centrifugal force”
does not appear in the first edition, but Newton inserts it into the text
of the Scholium for the second and third editions.



23

24

25

26

Curvature in Newton’s dynamics 131

Of interest are the commentaries of the continental scholars with re-
spect to centrifugal force and the role that curvature plays in it. Bertoloni
Meli attempts to sort out the multiple definitions of centrifugal force
from Huygens in the mid-seventeenth century to Euler in the mid-
eighteenth century. He selects five mathematicians to represent the
wide range of opinions to be found among mathematicians in the early
decades of the eighteenth century: John Keill (presumably representing
Newton’s position), Johann Bernoulli and Christian Wolff (defending
Leibniz’s position), and Pierre Varignon and Jakob Hermann. On the
one hand, Leibniz refers to two types of conatus, or force, one of which
is an outward conatus given by v*/p, where the cause of the endeavor “is
the rotation of the body and its tendency to escape along the tangent.”
Bertoloni Meli, “The Relativization of Centrifugal Force,” Isis 81 (1990),
23-43, at p. 31. On the other hand, Keill sees centrifugal force in terms
of the third law: “A centrifugal force is the reaction or resistance which
a moving body exerts to prevent its being turned out of its way, and
whereby it endeavors to continue its motion in the same direction: and
as re-action is always equal, and contrary to action, so in like manner
is the centrifugal to the centripetal force. This centrifugal force arises
from the vis inertiae of matter.” John, Keill An Introduction to Natu-
ral Philosophy, ed. Willem Jakob ‘sGravesande (London, 1745), p. 286,
cited in Bertoloni Meli, "The Relativization of Centrifugal Force,”
D. 34.

Galileo found experimentally that the displacements of balls rolling
down inclined planes were proportional to the square of the times, and
deduced that the acceleration was uniform, where by uniform accelera-
tion was meant equal increments of speed in equal intervals of time. The
acceleration was attributed to the component of gravity acting down the
incline of the plane.

Herivel, The Background to Newton’s Principia, pp. 129-30. Herivel
dates the entries to this folio on or after 20 January 1664 (OS) and he
notes that “there can be no doubt that the first two dynamical entries
on this folio must have been made later than the discussion of cir-
cular motion beginning at AX.-Proposition 20.” Thus, he conjectures
that Newton had left the first few pages of the Waste Book blank, and
later filled them in with this comparatively polished and complicated
analysis.

In the Scholium to Proposition 4, Book 1 in all the editions of the Prin-
cipia there is a revised version of this proof in which the relationship
v?/r is derived. Newton, Principia, 3rd edn, pp. 66—7 and 1st edn, cited
in Brackenridge, The Key to Newton’s Dynamics, p. 250.
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First published in Rupert Hall, “Newton on the Calculation of Central
Force,” Annals of Science 13 (1957), 62—71 and then in vol. 1 (1959) of
Newton, Correspondence, pp. 297-301. Herivel published the Latin text
as well as a translation, and he dates the manuscript “before Newton’s
appointment to the Lucasian Chair of Mathematics in 1669.” Herivel,
The Background to Newton'’s Principia, pp. 193-8.

Euclid, The Thirteen Books of Euclid’s Elements, with introduction and
commentary by Sir Thomas L. Heath, 2nd edn (Cambridge: Cambridge
University Press, 1956), pp. 73-5. Euclid’s theorem can be demonstrated
analytically in the following way, where 6 is the angle between PS and
QS as seen in Figure 3.3:

1. RU/PR=(RS+ RScos0)/RSsin® = (1 + cos0)/sin O
2. PR/QR = RSsin0/(RS — RScos8) =sin6/(1 — cos 6)
3. Since 1 — c0s0* = sin 02, then RU/PR = PR/QR.

Actually, Newton does not use the relationship QP = vt explicitly in his
demonstration. Rather, he demonstrates that the distance that would be
traveled under the force that produces the deviation QR during a full
cycle is equal to the square of the circumference divided by the diameter
QU, i.e., 47 QU.

In an extended note, Whiteside discusses in considerable detail New-
ton’s “unconsidered subtleties” of the conditions under which “the cen-
tral force...over the whole arc...may be considered to be constant.”
Newton, Mathematical Papers, vol. 6, note 19, p. 37. We claim, how-
ever, that there are no “unconsidered subtleties” in Newton’s argument,
but rather that there is confusion about the nature of Newton’s mathe-
matical limits. The central force is not a constant over a finite arc, nor
does Newton make such an incorrect assumption. Newton defines a ra-
tio, e.g., QR/(QT* x SP?), which varies with the location of both points
Q and P, and then he defines its limit as Q approaches P. This limit ex-
ists for any curve with finite curvature. Newton defines the force to be
proportional to this limit, which depends in general on the location of P.
Therefore, for a general curve the force varies both in magnitude and in
direction over any finite arc PQ. For further details, see Nauenberg,
“The Mathematical Principles Underlying the Principia Revisited,”
pp. 284-300.

Newton, Mathematical Papers, vol. 1, p. 456. For a discussion of the
source of this cryptic comment, see J. Bruce Brackenridge, “Newton’s
Mature Dynamics: A Crooked Path Made Straight,” in Buchwald and
Cohen (eds.), Issac Newton’s Natural Philosophy.

Newton, Mathematical Papers, vol. 1, pp. 252-5.

Herivel, The Background to Newton’s Principia, p. 132.
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Newton, Mathematical Papers, vol. 1, note 3, p. 456. In a later vol-
ume, Whiteside expands his commentary and explains in detail how
curvature is central to Newton’s alternate measure of force. Newton,
Mathematical Papers, vol.6, note 25, pp. 548-50.

Brackenridge, “The Critical Role of Curvature in Newton’s Dynamics,”
p- 256.

Nauenberg, “Newton’s Early Computational Method for Dynamics,”
Pp. 212-52.

Nauenberg, “Newton’s Perturbation Methods for the 3-Body Problem
and Its Application to Lunar Motion.”

The Correspondence of Isaac Newton, vol. 2, pp. 307-8.

For a discussion of such opinions, see Nauenberg, “Newton’s Early Com-
putational Method for Dynamics,” p. 223.

Nauenberg, “Newton’s Early Computational Method for Dynamics,”
note 30, p. 248.

Newton, Mathematical Papers, vol. 6, pp. 149-53.

V. L. Arnol’d, Huygens & Barrow, Newton & Hooke (Birkhauser, 1990,
p. 19. Arnol’d states that “the letter contains among other mistakes an
impossible picture of an orbit.”

Newton, Principia, 3rd edn, vol. 1, pp. 182-3. See Corollary 2 of Propo-
sition 44, Book 1.

Indeed, measuring the distance of this segment of the curve to the dis-
placed center Cs, one finds that the closest distance lies nearer to F.
Therefore, the correct angle between apogee and perigee is ACsF and
it is equal to HCO, as expected. In fact, Newton’s computation of the
segment of the orbit between apogee and perigee is remarkably good. Be-
cause of the drawing error, however, the circumscribed curve ABKDEA
is not a true circle and the additional segments H/K and KL of the orbit
which touch or approach the circumscribed curve ABKDEA cannot sat-
isfy the reflection symmetry. Therefore these segments had to be partly
sketched in and patched up by Newton, as is also quite evident in the
segment HJ of the diagram in Figure 3.4.

Herivel, The Background to Newton’s Principia, p. 130.

Christiaan Huygens, De Vi Centrifuga, in Qeuvres complétes de Christi-
aan Huygens, vol. 16 (The Hague: Martinus Nijhoff 1929), pp. 253-301.
Newton, Principia, 3rd edn, vol. 1, pp. 68—70: Proposition 6, Corollary
3, Book 1.

Meli, “The Relativization of Centrifugal Force,” p. 33.

For example, Bertoloni Meli claims that “in general, he [Newton] ex-
plained curvilinear motion in terms of centripetal force and inertia
alone, without centrifugal force: why in this case centrifugal force could
be neglected, however, was not clear.” Meli, “The Relativization of
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Centrifugal Force,” p. 33. If one notes, however, that Newton always
applies the concept of centrifugal force only to circular motion, or to
the maximum and minimum points for general orbital motion (where
the force lies along the radius of the circle of curvature), then the situa-
tion is clarified. Centrifugal force is not neglected in curvilinear motion
as Bertoloni Meli claims; rather it is applied by Newton only under very
restricted conditions. See Nauenberg, “Newton’s Early Computational
Method for Dynamics,” p. 231.

Writing Eq. (2) in the form p sin(a) = v*/f, where v? is given by conser-
vation of energy, it is clear that both sides of this equation are functions
of the radial distance r. By 1671 Newton had obtained an explicit ex-
pression in polar coordinates for the radial component of the curvature
vector for any given curve. For a spiral curve Newton obtained the fol-
lowing relationship: p sin(a) = r, and therefore, v* = fr, according to Eq.
(2). Taking differentials on both sides of this equation we have 208y =
rdf + f&r, and applying Eq. (6), the term vdv can be eliminated to obtain
rdf + 3 fdr = o, which gives that the force f is proportional to 1/r3.
Newton solves the direct problem for a logarithmic spiral orbit by
an elegant self-similarity argument in Proposition 9, Book 1 of the
Principia, giving the central force as 1/r3.

A problem still remains, however. It must be shown that the “impul-
sive” force divided by the side of the polygon squared approaches a
limit when the side of the polygon becomes vanishingly small (evanes-
cent). In this limit the deviation divided by the time interval squared
corresponds to Newton’s “accelerative” measure of force. Newton's
proof of this property is essentially the content of Proposition 6,
Book 1.

Nauenberg, “The Mathematical Principles Underlying the Principia
Revisited,” p. 298.

In Lemma 11, Newton shows that the limit of the ratio QR/QT* exists
for curves of finite curvature. In the 1687 Principia Newton should
have referred to this curvature lemma for the proof of Proposition 6,
but instead he referred to Lemma 10, which has nothing to say about
the existence of the limit of QR/QT>. For a discussion of this point see
Nauenberg, “The Mathematical Principles Underlying the Principia
Revisited,” pp. 289-92.

Other than the multiple references to curvature in Proposition 28, Book
3, which is concerned with lunar motion, the word “curvature” in the
1687 edition appears only in the following eight places: Book 1, Lemma
6, “in the middle of the continued curvature (curvaturae)” and “against
the nature of curvature (curvaturam)”; Lemma 11, Scholium, “the
curvature (curvaturam) at the point A”; Proposition 44. Corollary 4,
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“the radius of curvature (curvaturae) which the orbit . . . ”/; Book 2, Propo-
sition §2 Scholium, “the diminution of this curvature (curvaturae)”;
Book 3, Lemma 4, “from the curvature (curvatura)...of the Comets”;
and Proposition 41, “That this curvature (curvatura) is greater when
the deviation is greater...for in the shorter tails, the curvature (cur-
vatura) is hardly to be perceived.” From an unpublished concordance of
the words in the first three editions of Newton’s Principia, which was
compiled by I. Bernard Cohen.

Newton, Principia, 1st edn, cited in Brackenridge, “The Key to Newton’s
Dynamics,” p. 243.

In the heavily annotated edition of the Principia edited by LeSeur and
Jacquier and first published in Geneva in 173942, the diagram in the
footnote to Lemma 11 has a revised diagram in which points A, B,
and G lie on a semicircle identified as the “circuli osculantis.” The
chord AB is shown extended to a new point F, setting out a general
curve. Isaac Newton, Philosophiae Naturalis Principia Mathematica,
(reprinted: Glasgow 1822}, vol. 1, p. 54.

For a full documentation of both the textual and graphical changes to
Proposition 6, Book 1 in the first three editions of the Principia see
Isaac Newton’s Philosophiae Naturalis Principia Mathematica, 3rd
edn (1726), ed. Alexandre Koyré and I. Bernard Cohen, with variant
readings (Cambridge: Cambridge University Press, 1972), pp. 103-6.
We sketch here the main arguments in Newton’s geometrical proof of
Proposition 15, Book 2, which correspond to the calculus-based deriva-
tion given in Egs. (1)—(5), pp. 118-20. Reference to Figure 3.15, which is
from Proposition 15, Book 2, shows three nearby points P, Q, and r on
a spiral curve centered at S, with corresponding radial lines SP, SQ, and
Sr. The sectors PSQ and QSr have equal areas, corresponding to equal
intervals of time 8t, and for an equiangular spiral Qr/PQ = SP/SQ.
Thus, P, Q, and r represent points along the spiral orbit traversed by a
body under the action of a centripetal force alone. The additional point
R between r and Q represents the position of the body when there is
resistance. Hence, the change in area due to the resistive force Fg
is given by the area of the sector RSr = SP x Rrsina = 8hdt, where
Rr is a second-order differential proportional to the magnitude of this
force and to the square of the time interval. Substituting Rr = Fpdt*
leads to Eq. (1), 8h = —SP x Fpsin(a)dt.

The location of R is determined by the relation QR/P Q= /[SP/SQ),
which follows from the condition that the velocity v of the body varies
inversely as the square root of the radial distance. Newton derives this
result by referring to Lemma 3, Book 2 and to Lemma 10, Book 1. It is
clear, however, that Lemma 3 is based on a geometrical construction
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equivalent to Lemma 11, Book 1. The figure in Lemma 3 contains two
lines perpendicular to the spiral at P and Q that intersect at O, and
therefore in the limit that Q approaches P the line PO becomes the
radius of curvature of the spiral at P. While Newton does not mention
curvature in Lemma 3 or in Propositions 15-17, Book 2, nevertheless
his geometrical derivation that v is proportional to 1/, /(SP) makes
explicit use of the curvature relation PD = P (?/2P O, where PD is the
“subtense of the angle of contact” defined in Lemma 11, Book 1.
Newton had already obtained this result by his fluxional calculus by
1671. Later he demonstrated it geometrically in Proposition 9, Book 1,
and implicitly in Section 4, Lemma 3, Book 2.

It should be pointed out that in his statement of Proposition 15, Book 2
Newton used the Latin words “gyrari potest,” which when translated
correctly as “can revolve” indicate that the equiangular curve is a
possible orbit. See Isaac Newton, The Principia, trans. I. Bernard Cohen
and Ann Whitman, p. 680. In the text of the proposition (although
not in its statement), these words have been translated incorrectly by
Motte, and subsequently by Motte-Cajori, as “will revolve” indicating
that the equiangular curve is the only orbit. Unfortunately, these earlier
translations have caused some confusion in the literature.

Leonhard Euler, Opera Omnia Series secunda, Opera Mechanica et
Astronomica, vol, 23. ed. L. Courvoisier and J. O. Fleckenstein (Basel:
Societatis Scientiarum Naturalium Helveticae), 1969, pp. 286—9.
Collected Mathematical Papers of G. W. Hill (Carnegie Institute of
Washington, 1905), vol. 1, pp. 284-335.

P. S. Laplace, A Treatise of Celestial Mechanics trans. from the French
by Henry H. Harte (Dublin, 1822), pp. 357-90.

This expression corresponds to the formula for the radius of curvature
in polar coordinates that Newton had obtained already by 1671 with
his fluxional calculus, evaluated at an extremal point of the curve
where dr/d6 = o. In this case, (1/p — 1/r) = (—1/r*)d*>r/d6>. It appears
from Newton’s text, however, that he applied the curvature formula in
the differential form, Eq. (12), obtained directly from geometry.
Newton presented his result for the ratio of these two curvatures as
“the curvature of the figure Cpa at a to be to its curvature at C as
AT3 + 16824/100000CT?* AT is to CT3 + 16824/100000AT>CT; where
the number 16824/100000 represents the difference of the squares of
the angles CTP and CTp divided by the square of the lesser angle CTP.”
Here the ratio 16824/1000 corresponds to the numerical evaluation of
1/£* — 1 with Newton’s values for the sidereal and synodic period of
the Moon. There is an error in the 1934 Motte—Cajori edition (p. 447)
of the Principia, where the first plus sign in Newton’s result is given
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incorrectly as a minus sign, although it is correct in the original 1729
Motte edition (vol. 2, p. 270).

Curtis Wilson, “Newton on the Moon’s Variation and Apsidal Motion:
The Need for a Newer ‘New Analysis’,” in Jed Buchwald and I. Bernard
Cohen (eds.), Issac Newton’s Natural Philosophy (Cambridge, MA: MIT
Press, 2001).

Nauenberg, “Newton’s Perturbation Methods for the 3-Body Problem
and Its Application to Lunar Motion.”



GEORGE E. SMITH

4  The methodology
of the Principia

In the Preface to the first edition (1687) Newton informs the reader
straight off that he intends the Principia to illustrate a new way of
doing what we now call empirical science:

And therefore our present work sets forth mathematical principles of natural
philosophy. For the whole difficulty of philosophy seems to be to find the
forces of nature from the phenomena of motions and then to demonstrate
the other phenomena from these forces. It is to these ends that the general
propositions in Books 1 and 2 are directed, while in Book 3 our explanation of
the system of the universe illustrates these propositions...If only we could
derive the other phenomena of nature from mechanical principles by the
same kind of reasoning! For many things lead me to have a suspicion that all
phenomena may depend on certain forces by which the particles of bodies,
by causes yet unknown, either are impelled toward one another and cohere
in regular figures, or are repelled from one another and recede. Since these
forces are unknown, philosophers have hitherto made trial of nature in vain.
But I hope that the principles set down here will shed some light on either
this mode of philosophizing or some truer one.*

Surprisingly, however, the main body of the first edition contains
only two further comments about methodology: (1) a cryptic remark
at the end of the opening discussion of space and time, announcing
that the purpose of the work is to explain “how to determine the
true motions from their causes, effects, and apparent differences,
and, conversely, how to determine from motions, whether true or
apparent, their causes and effects”;> and (2) a scholium buried at
the end of Book 1, Section 11 in which Newton proposes that his
distinctive approach will make it possible to argue more securely in
natural philosophy.

138
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In the second edition (1713), clearly in response to complaints
about his methodology, Newton introduces separate sections for
the Phenomena and Rules for Natural Philosophy? involved in his
derivation of universal gravity (adding a fourth rule in the third edi-
tion, 1726), and he adds at the end the General Scholium containing
his most famous — and troubling — methodological pronouncement:

I have not as yet been able to deduce from phenomena the reason for these
properties of gravity, and I do not feign hypotheses. For whatever is not de-
duced from the phenomena must be called a hypothesis; and hypotheses,
whether metaphysical or physical, or based on occult qualities, or mechan-
ical, have no place in experimental philosophy. In this experimental philos-
ophy, propositions are deduced from the phenomena and are made general
by induction.4

In a later (anonymous) work, Newton softened his renunciation of
hypotheses by adding, “unless as conjectures or questions proposed
to be examined by experiments.”’

With or without this qualification, the thrust of the pronounce-
ment remains mostly negative: Newton’s new experimental phi-
Iosophy does not proceed hypothetico-deductively, even under
the supposedly safe constraint imposed by the then-prevailing
mechanical philosophy that all hypothesized action arises strictly
through contact of matter with matter. How, then, does theory con-
struction proceed on Newton’s approach? Vague talk of “deductions
from phenomena” provided no more adequate an answer to this ques-
tion then than it does now.

Newton leaves the task of extracting the answer from the
Principia largely to the reader. Three centuries of disagreement
give reason to think that the answer is far more complex than the
hypothetico-deductive alternative, which Christiaan Huygens, the
foremost figure in science at the time, managed to lay out in a single
paragraph in his January 1690 Preface to his Treatise on Light, pub-
lished thirty months after the Principia:

One finds in this subject a kind of demonstration which does not carry with it
so high a degree of certainty as that employed in geometry; and which differs
distinctly from the method employed by geometers in that they prove their
propositions by well-established and incontrovertible principles, while here
principles are tested by the inferences which are derivable from them. The
nature of the subject permits of no other treatment. It is possible, however, in
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this way to establish a probability which is little short of certainty. This is the
case when the consequences of the assumed principles are in perfect accord
with the observed phenomena, and especially when these verifications are
numerous; but above all when one employs the hypothesis to predict new
phenomena and finds his expectations realized.¢

Huygens’s Discourse on the Cause of Gravity, which contains his
critical evaluation of the Principia, was published in combination
with his Treatise on Light, making this paragraph prefatory to both.

The nearest Newton ever comes to such a capsule summary of
his approach is the one methodological pronouncement from the
first edition from which I have yet to quote, the Scholium at the end
of Book 1, Section 11:

By these propositions we are directed to the analogy between centripetal
forces and the central bodies toward which those forces tend. For it is rea-
sonable that forces directed toward bodies depend on the nature and the
quantity of matter of such bodies, as happens in the case of magnetic bodies.
And whenever cases of this sort occur, the attractions of the bodies must
be reckoned by assigning proper forces to their individual particles and then
taking the sums of these forces.

T use the word “attraction” here in a general sense for any endeavor what-
ever of bodies to approach one another, whether that endeavor occurs as a
result of the action of the bodies either drawn toward one another or acting on
one another by means of spirits emitted or whether it arises from the action
of ether or of air or of any medium whatsoever — whether corporeal or incor-
poreal - in any way impelling toward one another the bodies floating therein.
T use the word “impulse” in the same general sense, considering in this trea-
tise not the species of forces and their physical qualities but their quantities
and mathematical proportions, as I have explained in the definitions.

Mathematics requires an investigation of those quantities of forces and
their proportions that follow from any conditions that may be supposed.
Then, coming down to physics, these proportions must be compared with
the phenomena, so that it may be found out which conditions of forces
apply to each kind of attracting bodies. And then, finally, it will be possible
to argue more securely concerning the physical species, physical causes, and
physical proportions of these forces. Let us see, therefore, what the forces
are by which spherical bodies, consisting of particles that attract in the way
already set forth, must act upon one another, and what sorts of motions
result from such forces.”

The goal in what follows is to describe the methodology of the
Principia in the light of this too often neglected Scholium.®
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First, however, the Scholium (which remained word-for-word the
same in all three editions) should be put into context. Section 11
treats bodies moving under centripetal forces directed not toward a
point in space, as in the preceding sections, but toward other mov-
ing bodies — so-called “two-body” and “three-body” problems. By far
the largest portion of Section 11 presents Newton’s limited, qual-
itative results for three-body effects on the motions of the planets
and the Moon, results that he called “imperfect” in the Preface. The
Scholium thus occurs just after it should have become clear to readers
that the true orbital motions are so intractably complex as to pre-
clude hope of exact agreement between theory and observation. To
concede that theory can at best only approximate the real world, how-
ever, appears to concede that multiple conflicting theories can claim
equal support from the available evidence at any time. Seventeenth-
century readers would have been quick to note this, for equipollence
of astronomical theories had been a celebrated concern for over a
century,® and such leading figures as Descartes and Marin Mersenne
had frequently called pointed attention to the limitations of exper-
imental evidence.’ Newton would have accordingly expected his
readers to see his remark about arguing more securely as making
a startling claim in the face of a concession that the real world is
intractably complex.

Proposition 69, to which the Scholium is attached, lays the
groundwork for Newton’s law of gravity by asserting that in the rele-
vant inverse-square case the forces directed toward the various bodies
must be proportional to the masses of those bodies. Sections 12
and 13 examine the characteristics of forces directed toward bodies
when these forces are composed out of forces directed toward the
individual particles of matter making up the bodies. In other words,
they lay the groundwork for Newton’s claim that his law of gravity
holds universally between individual particles of matter. Now, the
mechanical philosophy did not bar “attractive” forces among macro-
scopic bodies, for intervening unseen matter could be hypothesized
to effect these forces in the manner Descartes had proposed in the
case of magnets, and also gravity.’* As Newton well realized, how-
ever, no hypothetical contact mechanism seems even imaginable to
effect “attractive” forces among particles of matter generally. The
Scholium thus occurs at the point where adherents to the mechani-
cal philosophy would start viewing Newton’s reasoning as “absurd”
(to use the word Huygens chose privately).’> The Scholium attempts
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to carry the reader past this worry, but not by facing the demand
for a contact mechanism head-on. Instead, Newton warns that he is
employing mathematically formulated theory in physics in a new
way, with forces treated abstractly, independently of mechanism.
What we need to do first, then, is to understand how Newton is using
mathematical theory and talk of forces in the Principia, and how he
is departing from his predecessors. Then we can turn, in the last two
sections of the chapter, to the questions of how Newton prefers to
argue for theoretical claims and whether this way of arguing is more
secure.

MATHEMATICAL THEORY IN NEWTON’S PRINCIPIA

The two most prominent books presenting mathematical theories
of motion before the Principia were Galileo’s Two New Sciences
(1638)™3 and Huygens’s Horologium Oscillatorium (1673).* Newton
almost certainly never saw the former, but he knew the latter well,
and it together with Galileo’s Dialogues on the Two Chief World
Systems (1632)"S and various secondary sources'® made him familiar
with Galileo’s results. Outwardly, the Principia appears to take the
same mathematical approach as these two earlier books, proceeding
from axioms to a series of rigorously demonstrated propositions. In
fact, however, the approach to mathematical theory in Books 1 and 2
of the Principia differs from that taken by Galileo and Huygens in
two important respects.

The first difference is subtle. Almost without exception, the
demonstrated propositions of Books 1 and 2 of the Principia are of
an “if-then” logical form, as illustrated by Propositions 1 and 2, re-
stated in modern form: if the forces acting on a moving body are all
directed toward a single point in space, then a radius from that point
to the body sweeps out equal areas in equal times, and conversely.'’
So far as strict logic is concerned, the same can be said of the demon-
strated propositions of Galileo and Huygens, as illustrated by the
latter’s celebrated isochronism theorem: if a body descends along a
path described by a cycloid, then the time of descent is the same
regardless of the point along the path from which its descent
begins.™® From the point of view of empirical science, however, this
and the other demonstrated propositions of Galileo and Huygens
are better described as having a “when-then” form, in which the
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antecedent describes an experimental situation and the consequent,
a prediction of what will occur whenever that situation is realized.
A primary aim of Galileo’s and Huygens’s mathematical theories is
to derive observable consequences from their axioms that can pro-
vide evidence supporting these axioms, taken as hypotheses, or that
can facilitate practical applications, such as the design of pendulum
clocks.™

What lies behind this “when-then” form is the kind of quantities
employed in the theories laid out by Galileo and Huygens. With the
notable exception of the latter’s theorems on centrifugal force, ap-
pended without proofs at the end of Horologium Oscillatorium, their
axioms and demonstrated propositions make no reference to forces.
Surprising as it may be, even the rate of acceleration in vertical fall —
for us, g, and for them the distance of fall in the first second - enters
nowhere into Galileo’s propositions. This quantity does enter into
the very last propositions of Horologium Oscillatorium, enabling
Huygens to carry out a theory-mediated measurement of it to very
high accuracy by means of pendulums; nonetheless, it plays no role
in the development of his theory. The quantities central to the math-
ematical theories of motion under uniform gravity laid out by Galileo
and Huygens were all open to measurement without having to pre-
suppose any propositions of the theories themselves.

Unlike Galileo and Huygens, Newton takes his “axioms or laws
of motion” to hold true from the outset of Books 1 and 2 of the
Principia. His demonstrated “if-then” propositions amount to
inference-tickets*° linking motions to forces, forces to motions, and
macrophysical forces to microphysical forces composing them. As
Newton indicates in the quotation given earlier from the Preface
to the first edition, the aim of the mathematical theories of Books
1 and 2 is first to establish means for inferring conclusions about
forces from phenomena of motion and then to demonstrate fur-
ther phenomena from these conclusions about forces. In Newton’s
hands force is a flagrantly theoretical quantity. The principal prob-
lem Newton’s mathematical theories address is to find ways to char-
acterize forces.

The second critical difference between Newton’s mathematical
theories and those of Galileo and Huygens concerns their respec-
tive scopes. Galileo offered a mathematical theory of uniformly ac-
celerated motion, and Huygens extended this theory to curvilinear
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trajectories and uniform circular motion. Newton, by contrast, does
not offer a theory of motion under inverse-square centripetal forces,
much less under gravity, alone. Rather, Book 1 offers a generic theory
of centripetal forces and motion under them. Inverse-square forces
receive extra attention, but the theory also covers centripetal forces
that vary linearly with distance to the force-center, that vary as the
inverse-cube, and finally that vary as any function whatever of dis-
tance to the center. Similarly, while Book 2 emphasizes resistance
forces that vary as the square of the velocity, it ultimately derives
“if-then” propositions that allow resistance forces to vary as the sum
of any powers of velocity whatever, including non-integer powers.?!
Book 2 thus strives to offer a generic theory of resistance forces,
where these are characterized as arising from the velocity of a mov-
ing body in a fluid medium. The generic scope of these two theories
isnot simply a case of Newton displaying his mathematical prowess,
as is sometimes suggested. The theories need to be generic in order
to allow him to establish strong conclusions about forces from phe-
nomena of motions, conclusions that exclude potential competing
claims.

The propositions from Books 1 and 2 that become most impor-
tant to the overall Principia are of two types. The first type consists
of propositions that link parameters in rules characterizing forces
to parameters of motion. The historically most significant example
of this type is Newton’s “precession theorem” for nearly circular
orbits under centripetal forces.?? It establishes a strict relationship
between the apsidal angle 6 — the angle at the force-center between,
for example, the aphelion and the perihelion — to the square root of
the index n, namely n = (w/0)?, where the centripetal force varies
as '3, This relationship not only confirms that the exponent of r
is exactly —2 when the apsidal angle is 180 degrees and exactly +1
when the angle is 9o degrees, but also yields a value of n and hence
of the exponent for any other apsidal angle, or in other words for any
rate at which the overall orbit precesses. This proposition and others
of its type thus enable theory-mediated measurements of parame-
ters characterizing forces to be made from parameters characteriz-
ing motions.?3 The propositions laid out earlier relating centripetal
forces to Kepler’s area rule, and their corollaries, provide another ex-
ample of this type in which areal velocity yields a theory-mediated
measure of the direction of the forces acting on a body.



The methodology of the Principia 145

As alluded to above, in his theory of motion under uniform gravity
Huygens had derived propositions expressing the laws of the cy-
cloidal and small-arc circular pendulums; and these results had
enabled him to obtain from the periods and lengths of such pen-
dulums a theory-mediated measure of the strength of surface grav-
ity to four significant figures. This was a spectacular advance over
prior attempts to measure the distance of vertical fall in the first
second directly. Also, Huygens’s theory of centrifugal force in uni-
form circular motion had allowed him to characterize the strength
of these forces in terms of such motions, and from this to derive
the law of the conical pendulum; and this result had enabled him
to obtain a still further theory-mediated measure of the strength
of surface gravity, in precise agreement with his other measures.>4
So, regardless of whether Newton first learned about propositions
enabling theory-mediated measurements from Huygens, he at the
very least had seen the utility of such propositions in Horologium
Oscillatorium. Huygens, however, seems never to have seen any spe-
cial evidential significance in his precise, stable measures of gravity.
In Newton’s hands, by contrast, theory-mediated measures became
central to a new approach to marshaling evidence.

It is difficult to exaggerate the importance of measurement to
the methodology of the Principia®s or, for that matter, the sophis-
tication with which Newton thought through philosophical issues
concerning measurement. The importance is clear even in the def-
initions of key quantities with which the Principia opens, which
are at least as much about measures of these quantities as they are
about terminology. As the discussion of astronomical measures of
time in the Scholium immediately following these definitions makes
clear, Newton recognized that measures invariably involve theoret-
ical assumptions, and hence remain provisional, even if not theory-
mediated in the more restricted sense invoked above. He also seems
to have appreciated that, because measurements in physics involve
physical procedures and assumptions, a distinctive feature of this
science is that it cannot help but include within itself its own em-
pirically revisable theory of measurement. This insight may explain
why Newton was so quick to view success in measurement as a
form of evidence in its own right; here success includes (1) stabil-
ity of values as a measure is repeated in varying circumstances — as
illustrated by the stability of Huygens’s measure of surface gravity
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by cycloidal pendulums of different lengths — and (2) convergence of
values when the same quantity is determined through different mea-
sures involving different assumptions — as illustrated by the conver-
gence of Huygens’s cycloidal and conical pendulum measures. (Being
open to increasingly greater precision appears to be a still further di-
mension of success in measurement for Newton.) Achieving success
of this sort in determining values for forces is almost certainly what
Newton had in mind with the cryptic remark at the end of the
Scholium on space and time about the book explaining “how to de-
termine the true motions from their causes, effects, and apparent
differences.”

The second type of proposition important to the Principia consists
of combinations that draw clear contrasts between different condi-
tions of force in terms of different conditions of motion. An histori-
cally significant example is the contrast between the simple form of
Kepler’s 3/2 power rule and the form requiring a specific small correc-
tion for each individual orbiting body; the latter holds if the orbiting
and central bodies are interacting with one another in accord with the
third law of motion, while the former holds if the orbiting body does
not exert a force causing motion of the central body. Another his-
torically significant example is the contrast between inverse-square
celestial gravity acting to hold bodies in their orbits —a form of gravity
that Huygens thought Newton had established — and inverse-square
universal gravity between all the particles of matter in the universe:
only under the latter does gravity vary linearly with distance from
the center beneath the surface of a (uniformly dense) spherical Earth;
and only under the latter does a particular relationship hold between
the non-sphericity of a (uniformly dense) Earth and the variation of
surface gravity with latitude. Combinations of propositions of this
type thus provide contrasts that open the way to crossroads experi-
ments — experimenta crucis — enabling phenomena of motion to pick
out which among alternative kinds of conditions hold true of forces.

As these examples and the examples for the first type suggest,
Newton prefers “if-and-only-if” results with both types. When he is
unable to establish a strict converse, he typically looks for a result
that falls as little short of it as he can find, as illustrated by the
qualitative theorems on the “three-body” problem in Section 11.

Once these two types are identified, an examination of the overall
development of the mathematical theories of Books 1 and 2 makes
clear that the propositions Newton was most pursuing in these books
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are of these two types. His preoccupation with these explains why
he included the propositions he did and not others that he could
easily have added. Propositions that do not fall into these types gen-
erally serve to enable ones that do. By contrast, an examination of
the overall development of the mathematical theories of Galileo and
Huygens indicates that the propositions they were most pursuing
are ones that make a highly distinctive empirical prediction, that
provide an answer to some practical question, or that explain some
known phenomenon. In other words, the mathematical theories of
motion of Galileo and Huygens are primarily aimed at predicting and
explaining phenomena. The mathematical theories of motion devel-
oped in Books 1 and 2 of the Principia do not have this aim. Rather,
their aim is to provide a basis for specifying experiments and observa-
tions by means of which the empirical world can provide answers to
questions — this in contrast to conjecturing answers and then testing
the implications of these conjectures. Newton is using mathemati-
cal theory in an effort to turn otherwise recalcitrant questions into
empirically tractable questions. This is what he is describing when
he says:

Mathematics requires an investigation of those quantities of forces and their
proportions that follow from any conditions that may be supposed. Then,
coming down to physics, these proportions must be compared with the phe-
nomena, so that it may be found out which conditions of forces apply to
each kind of attracting bodies.

This initial picture of Newton’s approach is too simple in one
crucial respect: if only because of imprecision of measurement, the
empirical world rarely yields straightforward univocal answers to
questions. That Newton was acutely aware of this is clear from
his supplementing key “if-then” propositions with corollaries not-
ing that the consequent still holds quam proxime (i.e., very nearly)
when the antecedent holds only quam proxime. Nothing adds to the
complexity of Newton’s methodology more than his approach to in-
exactitude. We will return to this subject after considering the way
in which he talks of force.

NEWTONIAN FORCES: MATHEMATICAL AND PHYSICAL

The theories developed in the Principia, unlike the theory of uni-
formly accelerated motion developed by Galileo and extended by
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Huygens, are first and foremost about forces. Book 1 develops a gen-
eral theory of centripetal forces and motions under them, and the
first two-thirds of Book 2, a general theory of resistance forces and
motions under them; the last third of Book 2 then develops a theory of
the contribution the inertia of fluid media makes to resistance forces,
and Book 3, a theory of gravitational forces and their effects. Newton
was not the first to employ talk of forces in theories of motion. As the
warning in the Scholium at the end of Section 11 about how he uses
“attraction” and “impulse” indicates, he saw his way of employing
such terms as novel, threatening confusion he needed to obviate.
Definition 8 at the beginning of the Principia includes essentially
the same warning about these terms, and “force” as well, adding,
“this concept is purely mathematical, for I am not now considering
the physical causes and sites of forces.”?® The warnings themselves
are clear enough: Newton wants to be taken as talking of forces in
the abstract, as quantities unto themselves, totally without regard
to the physical mechanisms producing them. Not so clear are the
ramifications of talking in this way.

The prior work that comes closest to treating forces in the man-
ner of Newton is Huygens’s theory of centrifugal force arising from
uniform circular motion.?” Like Descartes, Huygens uses the con-
trapositive of the principle of inertia to infer that something must be
impeding any body that is not moving uniformly in a straight line.
He further concludes that the magnitude of the force acting on the
impediment is proportional to the extent of departure from what we
now call inertial motion, obtaining for uniform circular motion the
familiar v?/r result. What Huygens means by “centrifugal force,”
however, is the force exerted on the impediment — for example, the
tension in the string retaining the object in a circle. Huygens’s cen-
trifugal force is thus a form of static force, expressly analogous to the
force a heavy object exerts on a string from which it is dangling. Talk
of static forces was widespread in accounts of mechanical devices
during the seventeenth century. Huygens was reaching beyond such
talk only in inferring the magnitude of the force from the motion.

As Newton'’s discussion of his laws of motion makes clear, he too
intended his treatment of forces to be continuous with the traditional
treatment of static forces. Unlike Huygens, however, he singles out
the unbalanced force that acts on the moving body, making it de-
part from inertial motion. Where Descartes and Huygens used the
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contrapositive of the principle of inertia to infer the existence of an
impediment in contact with the non-inertially moving body, Newton
uses it to infer the existence of an unbalanced force, independently
of all consideration of what is effecting that force. His second law of
motion then enables the magnitude and direction of any such force
to be inferred from the extent and direction of the departure from
inertial motion. Unbalanced force as a quantity can thus be fully
characterized in abstraction from whatever might be producing it.
This is what Newton means when he speaks in Definition 8 of con-
sidering “forces not from a physical but only from a mathematical
point of view.”

Newton had reason to expect that this way of talking of forces
would confuse many of his readers. In his writing on light and col-
ors in the early 1670s he had adopted essentially the same strat-
egy in talking of rays of light as purely mathematically charac-
terizable, independently of the underlying physics of light and the
process or mechanism of its transmission. His warnings notwith-
standing, many readers had insisted on equating his rays of light
with paths defined by hypothetical particles comprising light; they
had then argued, to his consternation, that his claims about refrac-
tion had not been established because he had not established that
light consists of such particles.?® His warnings about considering
forces “from a mathematical point of view” were scarcely any better
heeded.

From the mathematical point of view any unbalanced force act-
ing on a body is a quantity with magnitude and direction. The gen-
eral theory of centripetal forces developed in Book 1 considers forces
from this point of view, with the direction specified toward a center
and the magnitude taken to vary as a function of distance from that
center. The same is true of the general theory of resistance forces
developed in the first two-thirds of Book 2, but with the direction
specified opposite to the direction of motion and the magnitude vary-
ing as a function of velocity. An unbalanced force that is thus fully
characterized by its direction and magnitude can be resolved into cor-
respondingly fully characterized components in any way one wishes,
without regard to the particular physical components that happen to
be giving rise to it. This absence of constraint in resolving forces into
components is important in several places in Books 1 and 2, perhaps
most strikingly in Proposition 3 of the former:
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Every body that, by a radius drawn to the center of a second body moving
in any way whatever, describes about that center areas that are proportional
to the times is urged by a force compounded of the centripetal force tending
toward that second body and of the whole accelerative force by which that
second body is urged.>?

In principle — indeed, in practice — this situation can occur with-
out there being any form of physical interaction, or physical forces,
between the two bodies.

Still, as Newton’s remark about “arguing more securely concern-
ing the physical species, physical causes, and physical proportions
of these forces” indicates, it does make sense according to his way
of talking about forces to ask what physical forces a net unbalanced
force results from. The theory of gravitational forces of Book 3 and
the theory of the constituent of resistance forces arising from the
inertia of the fluid at the end of Book 2 both treat forces from a
physical point of view. Judging from the development of these two
theories, Newton requires five conditions to be met for a component
of a mathematically characterized force to be considered a physical
force: (1) its direction must be determined by some material body
other than the one it is acting on;3° (2) all respects in which its mag-
nitude can vary must be given by a general law that is independent of
the first two laws of motion, such as the law of gravity, F o« Mm/r?;
(3) some of the physical quantities entering into this law must per-
tain to the other body that determines the direction of the force; (4)
this law must hold for some forces that are indisputably real, such as
terrestrial gravity in the case of the law of gravity; and (5) if the force
acts on a macroscopic body, then it must be composed of forces act-
ing on microphysical parts of that body — this primarily to safeguard
against inexactitude in the force law introduced by inferring it from
macroscopic phenomena.

Notably absent from this list is anything about the mechanism
or process effecting the force. Adherents to the “mechanical phi-
losophy,” such as Descartes and Huygens, and undoubtedly Galileo
as well, would have required not just a mechanism effecting the
force, but specifically a contact mechanism. Otherwise the putative
force might be beyond explanation and hence occult. This is where
Newton’s new “experimental philosophy” departed most radically
from the prevailing “mechanical philosophy.”
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The law characterizing a force from a physical point of view gives
its “physical proportions” and assigns it to a “physical species.” Two
forces are of the same physical species only if they are characterized
by the same law. Thus the inverse-square forces retaining the planets
and their statellites in their orbits are the same in kind as terrestrial
gravity, while (for Newton) the constituent of resistance forces aris-
ing from the inertia of the fluid is different in kind from that arising
from its viscosity in so far as the former varies as velocity squared,
and the latter does not. A theory of any physical species of force is
required to give (1) necessary and sufficient conditions for a force
to be present, (2) a law or laws dictating the relative magnitude and
direction of this force in terms of determinable physical quantities,
and (3) where relevant, an account of how it is composed out of mi-
crostructural forces.

Microstructural forces have a more fundamental status in the
overall taxonomy of forces. In the Principia Newton identifies three
species of microstructural force, gravity, pressure, and, percussion,
where the theory of the latter had already been put forward by
Huygens, Christopher Wren, and John Wallis.3* The remark in the
Preface to the first edition — “all phenomena may depend on certain
forces by which the particles of bodies, by causes yet unknown, ei-
ther are impelled toward one another and cohere in regular figures,
or are repelled from one another and recede” — points to a program
of pursuing theories of further species of microstructural force. This
program is described in more detail in the unpublished portion of
this Preface and an unpublished Conclusion, as illustrated by this
passage from the former:

I therefore propose the inquiry whether or not there be many forces of this
kind, never yet perceived, by which the particles of bodies agitate one an-
other and coalesce into various structures. For if Nature be simple and pretty
conformable to herself, causes will operate in the same kind of way in all
phenomena, so that the motions of smaller bodies depend upon certain
smaller forces just as the motions of larger bodies are ruled by the greater
force of gravity. It remains therefore that we inquire by means of fitting
experiments whether there are forces of this kind in nature, then what are
their properties, quantities, and effects. For if all natural motions of great
or small bodies can be explained through such forces, nothing more will re-
main than to inquire the causes of gravity, magnetic attraction, and the other
forces.3?
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To his contemporaries, what seemed most confusing about
Newton’s way of talking about forces was his willingness to put
forward a theory of gravitational “attraction” without regard to the
causal mechanism effecting it. They generally concluded that he had
to be committed to action at a distance as a causal mechanism in its
own right. The outspoken opposition to the Principia in many quar-
ters stemmed primarily from the inexplicability of action at a dis-
tance. Present-day readers, viewing the Principia in the light of 300
years of success in physics, are not likely to find the way Newton
talks of forces from a physical point of view confusing. What most
tends to confuse them is the distinction between considering forces
from a physical point of view and considering them purely from a
mathematical point of view. A symptom of this confusion is the ten-
dency toread Book 1 asif its subject is gravitational forces, wondering
why Newton bothered to include in it so many seemingly irrelevant
propositions.

ARGUING FROM PHENOMENA OF MOTION TO LAWS
OF FORCE

In the Scholium at the end of Section 11 Newton says, rather vaguely,
that the transition from mathematically to physically character-
ized forces is to be carried out by comparing the mathematically
characterized proportions with phenomena. As other methodolog-
ical remarks in the Principia make clear, the specific approach he
prefers is to use the “if-then” propositions of his mathematical
theory to “deduce” the physical laws characterizing forces from
phenomena3? — most notably, to deduce the law of gravity from the
phenomena of orbital motion specified by two of Kepler’s rules,34
along with Thomas Streete’s conclusion that the planetary aphelia
are stationary.3’ Serious difficulties stand in the way of any such de-
duction, however. Much of the complexity of Newton’s methodology
comes from his approach to these difficulties.

One difficulty, noted earlier, is that limits of precision in obser-
vation entail that statements of phenomena hold at most quam
proxime. This limitation was evident at the time in the case of
Kepler’s rules. Ishmaél Boulliau had replaced Kepler’s area rule with
a geometric construction, yet had achieved the same level of accu-
racy relative to Tycho Brahe’s data as Kepler — roughly the level of
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accuracy that Tycho had claimed for observations at Uraniborg; and
Vincent Wing had done almost as well using an oscillating equant in-
stead of the area rule.3® Jeremiah Horrocks and Streete were the only
orbital astronomers to claim that the lengths of the semi-major axes
of the planetary orbits could be inferred more accurately from the
periods using Kepler’s 3/2 power rule than by classical methods that
were known to be sensitive to observational imprecision.3” Even in
the case of the ellipse, which virtually all orbital astronomers were
using, the question whether it is merely a good approximation or
the true exact trajectory remained open.3® In short, Kepler’s rules
were at best established only quam proxime, and any “deduction”
from them would have to concede that other ways of stating the
phenomena could not be eliminated on grounds of accuracy alone.
From Newton’s point of view, however, imprecision was not the
worst difficulty. In the brief “De motu” tracts that preceded the
Principia he had concluded that there are inverse-square centripetal
acceleration fields (to use the modern term) around the Sun, Jupiter,
Saturn, and the Earth, with the strength of each given by the in-
variant value [a3/P?] for bodies orbiting them, where a is the mean
distance for any orbit and P is the period.3° Presumably, the acceler-
ation fields around Jupiter, Saturn, and the Earth extend to the Sun,
putting it into motion. By a generalization of the principle of inertia
to a system of interacting bodies — a generalization that is equivalent
to the third law of motion of the Principia - the interactions among
the bodies cannot alter the motion of the center of gravity of the
system. From this Newton reached a momentous conclusion:

By reason of the deviation of the Sun from the center of gravity, the cen-
tripetal force does not always tend to that immobile center, and hence the
planets neither move exactly in ellipses nor revolve twice in the same orbit.
There are as many orbits of a planet as it has revolutions, as in the motion of
the Moon. .. But to consider simultaneously all these causes of motion and
to define these motions by exact laws admitting of easy calculation exceeds,
if I am not mistaken, the force of any human mind.4°

In other words, before he began writing the Principia itself (and, if I
am right, before he had even discovered the law of gravity4*), Newton
had concluded that Kepler’s rules can at best be true only quam
proxime of the planets and their satellites, not because of impreci-
sion of observation, but because the true motions are immensely
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more complicated than Kepler’s or any other such rules could hope
to capture.

Newton was not the first to conclude that real motions are ex-
ceedingly complex. Galileo had concluded that the multiplicity of
factors affecting motion in resisting media preclude “fixed laws and
exact description”;4* and, in a letter to Mersenne, Descartes too had
denied the possibility of a science of air resistance.4> Newton was
most likely unaware of these remarks of Galileo and Descartes on
resistance, but he definitely did know that Descartes, in his Principia
(1644), had denied that the planetary orbits are mathematically exact,
remarking that as “in all other natural things, they are only approx-
imately so, and also they are continuously changed by the passing
of the ages.”44 The response of Galileo, Huygens, and Descartes to
the complexities of real-world motions and limits in precision of
measurement was to employ the hypothetico-deductive approach
to marshaling evidence, deducing testable conclusions from conjec-
tured hypotheses and then exposing these conclusions to falsifica-
tion. From the beginning of his work in optics in the 1660s, Newton
had always distrusted the hypothetico-deductive approach, arguing
that too many disparate hypotheses can be compatible with the same
observations.45 Inexactitude, whether from imprecision in observa-
tion or from the complexity of the real world, exacerbates this short-
coming. In saying that the approach illustrated by the Principia puts
one in position to argue more securely about features of underlying
physics, Newton was claiming to have a response to inexactitude
that surmounts limitations of the hypothetico-deductive approach
of his predecessors.

Because Newton never describes his approach in detail, we have
to infer what it involves from the evidential reasoning in the Prin-
cipia. A key clue is provided by what I. Bernard Cohen has called
the “Newtonian style”4® — proceeding from idealized simple cases to
progressively more complicated ones, though still idealized. Thus,
in the case of inverse-square centripetal forces, Book 1 first consid-
ers so-called “one-body” problems, for which Kepler’s three rules
hold exactly. Next are one-body problems in which inverse-cube cen-
tripetal forces are superposed on the inverse-square; Kepler’s rules
still hold exactly, but for orbits that rotate, that is, whose lines of
apsides precess. Next are “two-body” problems subject to the third
law of motion. The results for these show that two of Kepler’s rules
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continue to hold, but the 3/2 power rule requires a correction. Last
are problems involving three or more interacting bodies. For these
Newton succeeds in obtaining only limited, qualitative results, yet
still sufficient to show that none of Kepler’s three rules holds. A
distinctive feature of this sequence is the extent to which it focuses
on systematic deviations from Kepler’s simple rules that can serve as
evidence for two-body and three-body interaction. Newton is putting
himself in a position to address the complexity of real orbital motion
in a sequence of successive approximations, with each approxima-
tion an idealized motion and systematic deviations from it providing
evidence for the next stage in the sequence.

Here too Huygens had foreshadowed the Newtonian style, though
again only up to a point. The initial theory of pendulum motion in
Horologium Oscillatorium is for pendulums with idealized “point-
mass” bobs.4” Huygens then turns to the question of physical bobs
with a distinctive shape and real bulk, solving the celebrated problem
of the center of oscillation that Mersenne had put forward as a chal-
lenge decades earlier. The small-arc circular pendulum measurement
of gravity presented near the end of the book incorporates a small cor-
rection to the length of the pendulum, corresponding to the distance
between the center of gravity of the bob and its center of oscillation.
This correction, however, holds only for the circular pendulum, not
for the cycloidal pendulum that was the crowning achievement of
Huygens’s initial theory. For the correction depends not only on the
shape of the bob, but also on the length of the string, and this length
varies along the cycloidal path. (Indeed, it is this variation that makes
the cycloid the isochronous path for a point-mass bob.) Huygens had
tried to find the corrected path required for strict isochronism with
a physically real bob, only to despair when the problem proved in-
tractably complex. In the manner typical of pre-Newtonian science,
the small residual discrepancies between idealized theory and the
real world were dismissed as being of no practical importance. This
is one more example of the way in which the complexity of the
real world ended up being viewed as an impediment, limiting the
quality of empirical evidence, and not as a resource for progressively
higher-quality evidence that it became with Newtonian successive
approximations.

Newton’s “deductions” of the various parts of the law of gravity
from phenomena of orbital motion reveal two restrictions, beyond
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mathematical tractability, that he at least prefers to impose on the
successive approximations.4® First, in every case in which he deduces
some feature of celestial gravitational forces, he has taken the trouble
in Book 1 to prove that the consequent of the “if-then” proposition
licensing the deduction still holds quam proxime so long as the an-
tecedent holds quam proxime. For instance, two corollaries of Propo-
sition 3 show that the force on the orbital body is at least very nearly
centripetal so long as the areas swept out in equal times remain very
nearly equal. This, by the way, explains why Newton himself never
deduced the inverse-square variation from the Keplerian ellipse even
though he had proved in Book 1 that an exact Keplerian ellipse entails
an exact inverse-square variation: an orbital motion can approximate
a Keplerian ellipse without the exponent of r in the rule governing
the centripetal force variation being even approximately minus 2.4°
Restricting the deductions to ones that hold quam proxime so long as
the phenomenon describes the true motions quam proxime provides
a guarantee: under the assumption that the laws of motion hold, the
deduced feature of the physical forces holds at least quam proxime of
the specific motions that license the statement of the phenomenon.
In other words, thanks to this restriction, unless his laws of motion
are seriously wrong, Newton’s law of gravity is definitely true at least
quam proxime of celestial motions over the century of observations
from Tycho to the Principia.

Second, in every case in which Newton deduces some feature
of celestial gravitational forces, mathematical results established in
Book 1 allow him to identify specific conditions under which the phe-
nomenon from which the deduction is made would hold not merely
quam proxime, but exactly. For instance, the orbiting body would
sweep out equal areas in equal times exactly if the only forces acting
on it were centripetal, and its line of apsides would be stationary if
the only forces acting on it were inverse-square centripetal forces.
The choice of the subjunctive here is not mine, but Newton’s: in
Proposition 13 of Book 3, for example, he remarks, “if the Sun were
at rest and the remaining planets did not act upon one another, their
orbits would be elliptical, having the Sun at their common focus,
and they would describe areas proportional to the times.”5° By im-
posing this restriction on the phenomena from which force laws are
deduced, Newton is assuring that these phenomena are not just ar-
bitrary approximations to the true motions; at least according to the
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theory of the “deduced” physical force, the true motions would be
in exact accord with the phenomena were it not for specific compli-
cating factors.

Let me here restrict the term “idealization” to approximations
that would hold exactly in certain specifiable circumstances. If, as I
have proposed, Newton is addressing the complexity of real orbital
motion in a sequence of successive approximations, then he had pro-
found reasons for preferring that each successive approximation be
an idealization in this sense. For any deviation of the actual motions
from a given approximation will then be physically meaningful, and
notjust areflection of the particular mathematical scheme employed
in achieving the approximation, as in curve fitting. Of course, omni-
science is required to know whether any approximation really is an
idealization in the requisite sense, and (as Book 2 attests) Newton
was far from omniscient. The most he could demand is that the the-
ory being “deduced” from the approximations entails that they be
idealizations of this sort. At least from the point of view of the the-
ory, then, any observed systematic pattern in the deviations from
a given approximation would have the promise of being physically
informative, and hence a promise of becoming telling evidence.

In sum, judging from details of Newton’s “deductions” from phe-
nomena, his approach to the complexities of real-world motions is
to try to address them in a sequence of progressively more complex
idealizations, with systematic deviations from the idealizations at
any stage providing the “phenomena” serving as evidence for the
refinement achieved in the next. Such systematic deviations are ap-
propriately called “second-order phenomena” in so far as they are
not observable in their own right, but presuppose the theory. Thus,
for example, no one can observe the famous 43 arc-seconds per cen-
tury discrepancy in the motion of the perihelion of Mercury that
emerged in the second half of the nineteenth century and then be-
came evidence for Einstein’s theory of general relativity: they are
the residual left over after subtracting the 531 arc-seconds per cen-
tury produced by the other planets according to Newtonian theory
from the 574 arc-seconds derived from observation once allowance
is made for the 5600 arc-seconds associated with the precession of
the equinoxes.

Attempting to proceed in successive approximations in this way
involves restrictions on how second-order phenomena are to be
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marshaled as evidence. In the case of orbital motions, any systematic
discrepancy from the idealized theoretical motions has to be identi-
fied with a specific physical force — if not a gravitational force, then
one governed by some other generic force law. This restriction pre-
cludes inventing ad hoc forces to save the law of gravity. It thereby
makes success in carrying out a program of successive approxima-
tions far from guaranteed.

A second, less familiar example shows this in a different way. In
Propositions 19 and 20 of Book 3 Newton first calculates a 17 mile dif-
ference between the radii to the poles and to the equator of the Earth,
and then a specific variation of surface gravity with latitude. These
calculations presuppose universal gravity. Indeed, as Huygens was
quick to notice (and Maupertuis and Clairaut forty years later), this
is the sole result in the Principia amenable at the time to empirical
assessment that differentiates universal gravity from macroscopic
inverse-square celestial gravity. Newton’s calculations also presup-
pose that the density of the Earth is perfectly uniform. Hence, his
results are not straightforwardly testable predictions, for they apply
only to an idealized Earth. In all three editions Newton pointed out
that any deviation from the calculated results is a sign that the Earth’s
density increases from the surface to the core. In the first edition he
went so far as to propose that a linear increase in density be assumed
for the next idealized approximation.5* This was not an ad hoc way
of protecting the law of universal gravity from refutation because, as
Huygens'’s efforts in his Discourse on the Cause of Gravity showed,
different assumptions about gravity yield very different relationships
between the Earth’s oblateness on the one hand, and the variation
of surface gravity with latitude on the other.5> Therefore, a varia-
tion in density inferred from, say, an observed oblateness differing
from Newton’s 17 miles was not guaranteed to yield a corresponding
improvement between the observed variation in surface gravity and
Newton’s calculated variation. (From Clairaut forward the field of
physical geodesy has been inferring the internal density distribution
of the Earth from features of its shape and gravitational field, always
presupposing the law of universal gravity; the discrepancies between
observation and current theory have grown continually smaller.53)

Needless to say, Newton'’s theory of gravity provides an explana-
tion of Kepler’s rules and of each of the subsequent idealized orbital
motions in the sequence of successive approximations. That is, the
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theory explains why these idealizations hold at least quam proxime
and why they have claim to being preferred descriptions of the ac-
tual motions even though they are not exact and observation is not
precise. Providing such explanations, however, is not the distinctive
feature of the theory. As Leibniz showed in print within months af-
ter the Principia first appeared, a theory of a very different sort, one
that meets the demands of the mechanical philosophy, can explain
Kepler’s rules too.54 The distinctive feature of Newtonian theory is
the spotlight it shines on discrepancies between theory and obser-
vation. In his “System of the World” in Book 3 Newton no sooner
spells out the conditions under which, for example, Keplerian mo-
tion would hold exactly than he turns to the principal real-world
respects in which it does not, such as the gravitational effect of
Jupiter on the motion of Saturn and on the precession of the aphelia of
the inner planets. In adopting his approach of successive approxima-
tions, with its focus on theory-dependent second-order phenomena,
Newton was turning theory into an indispensable instrument for on-
going research. Exact science as illustrated by the Principia is thus
not exact science in the sense of Newton'’s predecessors, an account
of how the world would be if it were more rational. It is exact science
in the sense that every systematic deviation from current theory au-
tomatically has the status of a pressing unsolved problem.

Even with the above restrictions, the “deduction” of the law of
gravity, or any other force law, from phenomena of motion that hold
only quam proxime shows at most that it holds quam proxime.
When the restrictions are met, however, as they by and large are
in the case of the law of gravity,’S Newton views the derivation as
authorizing the force law to be taken, provisionally, as exact. Specif-
ically, his fourth Rule for Natural Philosophy says:

In experimental philosophy, propositions gathered from phenomena by in-
duction should be considered either exactly or very nearly true notwith-
standing any contrary hypotheses, until yet other phenomena make such
propositions either more exact or liable to exceptions.

This rule should be followed so that arguments based on induction may not

be nullified by hypotheses.5°

Taking the force law to be exact when the evidence for it shows at
most that it holds quam proxime amounts to an evidential strat-
egy for purposes of ongoing research. This strategy is transparently
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appropriate when the goal is to use systematic deviations from cuzr-
rent theory as evidence in a process of successive approximations.

ARGUING MORE SECURELY

The preceding section has offered a detailed description of how
Newton prefers to argue from phenomena to physically character-
ized forces. Nothing has yet been said, however, about why this way
of arguing might have claim to yielding conclusions that are more
secure.

One respect in which it offers more security is easy to see. The
“if-then” propositions used in deducing the law, as well as their app-
roximative counterparts (“if-quam-proxime-then-quam-proxime”),
are rigorously derived from the laws of motion. The phenomena -
that is, the propositions expressing Newton’s phenomena — are in-
ductive generalizations from specific observations, and hence they
hold at least quam proxime of these observations. But then, unless
the laws of motion are fundamentally mistaken, the force law too is
guaranteed to hold at least quam proxime of these observations. By
way of contrast, the fact that a consequence deduced from a hypoth-
esized force law holds quam proxime of specific observations need
not provide any such guarantee. A conjectural hypothesis can reach
far beyond the observations providing evidence for it not merely in
its generality, but in its content. In practice Newton’s first Rule for
Natural Philosophy — no more causes . .. should be admitted than are
both true and sufficient to explain their phenomena — has the effect
of confining the content of theory to no more than the data clearly
demand. Calling for the force law to be deduced from phenomena is
a way of meeting this Rule.

Put another way, Newton’s demand for a deduction from phenom-
ena is an attempt to confine risk in theorizing as much as possible
to “inductive generalization.” What Newton means by “made gen-
eral by induction” and “propositions gathered from phenomena by
induction” amounts to more than merely projecting an open-ended
generalization from some of its instances. The Phenomena he lists
at the beginning of Book 3 involve first projection from discrete ob-
servations to orbital rules that fill in the gaps among these observa-
tions, and then projection of these rules into the indefinite past and
future. His second Rule for Natural Philosophy — same effect, same
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cause — authorizes inferences that Charles Saunders Peirce would
have labeled abductive in contrast to inductive. Even his third Rule,
which at first glance seems most akin to induction, authorizes infer-
ences of much greater sweep than is customary in simple induction:
it specifies conditions under which conclusions based on observa-
tions and experiments within our reach may be extended to the far
reaches of the universe and to microphysical reaches far beyond our
capacity to observe. The care Newton put into this third Rule,’”
which he formulated in the early 1690s when he was in close con-
tact with John Locke, indicates that he was acutely aware of the risk
in “propositions gathered from phenomena by induction.” So too
does his insistence on the provisional status of these propositions in
the subsequently added fourth Rule.

Newton’s further demand that the theory entail specific condi-
tions under which the phenomena in question hold exactly provides
some support for projecting these phenomena inductively beyond
the available observations. Specifically, as noted earlier, such a
“re-deduction” gives reason to take the phenomena as lawlike, and
not just one among many possible curve-fits. The deduced force law
itself, however, can hold quam proxime of these observations and
still turn out not to be suitable for inductive generalization; the most
that can be said is that its deduction and the subsequent re-deduction
of the phenomena make it an exceptionally promising candidate for
inductive generalization.

Over the long term, pursuit of refinements in a sequence of suc-
cessive approximations can provide a further source of security. Any
current approximation to, for example, orbital motions is an ideal-
ization predicated on the force law. Hence observed deviations from
it continually, so to speak, put the law to test. Recalcitrant devi-
ations point to deficiencies in the law. If, however, second-order
phenomena emerge and the presence of further forces complicat-
ing the motions is successfully established from them, then new
evidence accrues to the law. Such new evidence does more than just
support the original inductive generalization. The process of succes-
sive approximations leads to increasingly small residual deviations
from current theory, which in turn tighten the range over which the
force law holds quam proxime. More important, because the process
of successive approximations presupposes the force law, continuing
success in it leads to progressively deeper entrenchment of the law,
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to use Nelson Goodman’s term.5® This, of course, is precisely what
happened in the case of Newton’s law of gravity, with continuing im-
provement over the last three centuries in the agreement between
theory and observation not only for orbital motion within celestial
mechanics, but also for the Earth’s shape and gravity field within
physical geodesy. Indeed, the process of successive approximations
issuing from Newton’s Principia in these fields has yielded evidence
of a quality beyond anything his predecessors ever dreamed of.

Evidence from long-term success in pursuit of successive approx-
imations, however, can in principle be achieved by a hypothetico-
deductive approach as well. The most that can be said for Newton’s
approach in this regard is that its confining the risk to the extent
it does to inductive generalization may enhance its prospects for
achieving such success.

What form does the risk take with Newton’s approach? His induc-
tively generalized law of universal gravity is presupposed as holding
exactly in evidential reasoning at each stage after the first in the pro-
cess of successive approximations. The main risk is a discovery that
would falsify this law in a way that nullifies all or part of the eviden-
tial reasoning that has been predicated on it. Suppose, for example,
that a discovery entails that various second-order phenomena that
had been crucial as evidence were not phenomena at all, but mere ar-
tifacts of a supposed law that just so happens to hold quam proxime
under parochial circumstances. Then, to the extent the evidence for
this discovery is predicated on advances based on these second-order
phenomena, the discovery itself would, in a sense, be self-nullifying.
The conclusion would have to be that the pursuit of successive ap-
proximations had been proceeding down a garden path, and the area
of science in question would have to be restarted from some earlier
point.

Newton’s attempt to initiate successive approximations in the
case of resistance forces was shown to be going down just such a gar-
den path by Jean d’Alembert twenty-five years after the third edition
of the Principia appeared.’® Surprising as it may seem to many read-
ers, however, this has yet to happen in the case of his theory of grav-
ity. The large conceptual gap between Newtonian and Einsteinian
gravitation notwithstanding, the theory of gravity in general relativ-
ity has not nullified the evidential reasoning predicated on Newton’s
theory. In particular, it has not nullified the evidential reasoning from
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which the phenomenon of the residual 43 arc-seconds per century
precession of the perihelion of Mercury emerged; if it had, this phe-
nomenon could not be used directly as evidence supporting it. The
reason why evidential reasoning predicated on Newtonian gravity
was not nullified is because general relativity entails that Newton’s
law holds in the weak-field limit, and virtually none of this reason-
ing, viewed in retrospect, required anything more of Newton’s law
than that it hold to very high approximation in weak gravitational
fields.%°

The risk of a garden path with Newton’s approach, therefore, does
not as such derive from the possibility that the force law deduced
from phenomena at the outset is not exact. This law itself can be open
to refinement as part of the process of successive approximations
without undercutting the process and having to restart from some
earlier point. The relativistic refinements to Newton’s first two laws
of motion show that the same can be said about the axioms presup-
posed in the deduction of the force law. Rather, the risk comes from
the huge inductive leap, from a celestial force law that holds at least
quam proxime over a narrow body of data to the law of universal
gravity — a leap authorized by Newton’s first three Rules govern-
ing inductive reasoning. More specifically, the risk comes from two
“taxonomic” presuppositions entering into this leap. Newton’s vi-
sion of a fundamental taxonomy based on physical forces — or, more
accurately, interactions®’ —is largely beside the point so far as gravity
alone is concerned. Nevertheless, his inductive generalization does
presuppose (1) that there is a distinct species — or natural kind, to use
our current term — of elementary motion and a distinct species of
static force which are characterized at least to a first approximation
by his deduced law of gravity. The risk lies in the possibility that
subsequent research will conclude either that there are no such dis-
tinct species or that they are species of limited range, even artifacts
of the data from which he was working. Further, his inductive gen-
eralization presupposes (2) that certain specific motions — primarily
planetary motions — are pure enough examples of motions of a spe-
cific elementary species to typify this species as a whole.

The risks from both of these presuppositions are evident in the
garden path formed by Newton’s efforts on resistance forces. In the
first edition of the Principia he thought that phenomena of pen-
dulum decay would allow him to demarcate the different species
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of resistance force and their respective variation with velocity.
Recognizing the failure of this,®® in the second and third editions
he assumed that vertical fall of ordinary-size objects is dominated by
resistance forces arising purely from the inertia of the fluid - at least
to a sufficient extent to allow a law to be established for this kind of
resistance force. His announced plan was for the other kinds to be ad-
dressed using discrepancies between observations and this law.®3 The
garden path arose because both of these taxonomic presuppositions
were wrong. First, there are no distinct species of resistance force,
but only one species governed by interaction between inertial and
viscous effects in the fluid, interaction that is so complicated that
we still have no law for resistance of the sort Newton was pursuing,
but only empirically determined relationships for bodies of various
shapes.®* Second, as d’Alembert showed, resistance in an idealized
inviscid fluid of the sort Newton had assumed in deriving his law for
purely inertial resistance is exactly zero, regardless of shape and ve-
locity. Newton’s supposed “law” for the purely inertial effects of the
fluid turns out to amount to nothing more than a very rough approx-
imation to the total resistance on spheres for a limited combination
of diameters, velocities, and fluid densities and viscosities — a mere
curve-fit over a restricted domain.®s

Newton’s taxonomic presuppositions are best regarded as working
hypotheses underpinning his inductive generalizations. As with all
such working hypotheses, some immediate protection is afforded by
demanding that the evidence developed out of the data be of high
quality, without lots of loose ends. Newton’s “deduction” of the law
of gravity met this demand to a much greater extent than did his
evidential reasoning on resistance.®® Still, the “deduction” was based
primarily on the motion of only five planets over an astronomically
brief period of time. The danger of being misled by such limited data
is always high.

I know of nowhere that Newton acknowledges the risk that such
taxonomic working hypotheses introduce into inductive generaliza-
tion. He does acknowledge the risk of inductive generalization in the
most famous methodological passage in the Opticks, in the discus-
sion of the methods of “analysis and synthesis” in the next to last
paragraph of the final Query, which was added in 1706:

This Analysis consists in making Experiments and Observations, and in
drawing general Conclusions from them by Induction, and admitting of no
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Objections against the Conclusions, but such as are taken from Experiments,
or other certain Truths. For Hypotheses are not to be regarded in ex-
perimental Philosophy. And although the arguing from Experiments and
Observations by Induction be no Demonstration of general Conclusions;
yet it is the best way of arguing which the Nature of the Thing admits
of, and may be looked upon as so much the stronger, by how much the
Induction is more general. And if no Exception occur from Phenomena,
the Conclusion may be pronounced generally. But if at any time afterwards
any Exception shall occur from Experiments, it may then begin to be pro-
nounced with such Exceptions as occur. By this way of Analysis we may
proceed from Compounds to Ingredients and from Motions to the Forces
producing them; and in general, from Effects to their Causes, and from par-
ticular Causes to more general ones, till the Argument end in the most
general.®’

Perhaps Newton saw success in achieving unrestricted generality as
the ultimate safeguard against the risk introduced by the unavoidable
taxonomic hypotheses entering into induction.

This brings us to the last distinctive aspect of the approach to the-
ory construction illustrated by the Principia — that is, illustrated in
the case of gravity, though not in the case of resistance. After estab-
lishing the law of universal gravity and the conditions for Keplerian
motion, Book 3 goes on to “applications” of the law in unresolved
problems at some remove from the phenomena from which it was
“deduced”: (1) the non-spherical shape of the Earth and the variation
of surface gravity with latitude; (2) the area-rule violation in the orbit
of the Moon, the motion of its nodes, and its fluctuating inclination;
(3) the tides; (4) the precession of the equinoxes; and (5) the trajecto-
ries of comets. The idea seems to be to protect against risks arising
in the inductive leap by immediately pushing the theory for all it is
worth, employingit as a tool of research on problems that prima facie
have nothing to do with the original evidence for it. It goes without
saying that, regardless of how far afield such “applications” may be,
they still provide no guarantee against a garden path. Nevertheless,
they do represent a concerted effort to expose limitations in the tax-
onomic presuppositions set out above. As already noted, the shape of
the Earth and the variation of surface gravity directly involve the gen-
eralization from celestial to universal gravity, as does the precession
of the equinoxes indirectly. The vagaries in the lunar orbit address
the most glaring known counterexample to Keplerian motion and
hence worries about generalizing beyond planetary motion. Both the
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tides and the precession of the equinoxes involve the generalization
from simple centripetal forces to interactive gravity, as does a gravi-
tational treatment of vagaries in the motions of Jupiter and Saturn.
And finally the comets involve the extension of the law of gravity
to bodies that appear to consist of matter very different from that of
the planets and their satellites and that pass through the intermedi-
ate distances from the Sun between the orbits of the planets.®® The
fact that all of these address evidential worries in the original in-
ductive generalization indicates that the process of comparison with
phenomena, and hence the argument for securing universal gravity,
extends across all of Book 3.%9

The efforts occupying the rest of Book 3 were extraordinarily inno-
vative. In this respect they are akin to predictions of novel phenom-
ena of the sort Huygens singled out as the strongest form of evidence
for empirical theories. None of them, however, is a truly straight-
forward prediction of the sort classically called for in hypothetico-
deductive evidence. In every case some further, contestable assump-
tions were needed beyond Newton’s theory, if only the assumption
that no other forces are at work besides gravity. Still, Newton’s in-
ductive generalization to universal gravity clearly introduced a large
conjectural element in his theory; and the applications of it beyond
Keplerian motion put this element to the test, ultimately supplying
the most compelling evidence for it. The key prediction put to the
test in these applications was not so much that every two particles of
matter interact gravitationally, but rather one that is more abstract:
every discrepancy between Newtonian theory and observation will
prove to be physically significant and hence can be taken to be
telling us something further about the physical world. Contrast this
with deviations from a curve-fit, which usually reflect nothing more
than the particular mathematical framework that happened to have
been used. Lacking omniscience, the only way we have of decid-
ing whether a discrepancy is physically significant is from the point
of view of ongoing theory. The issue of physical significance from
this point of view turns most crucially on whether the taxonomic
working hypotheses underlying Newton’s inductive step to univer-
sal gravity remain intact as theory advances. Does the discrepancy
give reason to conclude that a taxonomy of interactions is not funda-
mental or that gravitational interactions do not comprise a distinct
kind within that taxonomy?
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In part because of the further contestable assumptions, every one
of the efforts occupying the rest of Book 3, as well as Newton'’s brief
suggestions about the motions of Jupiter and Saturn, initiated its
own historical sequence of successive approximations subsequent
to the Principia. Moreover, even at the time the third edition ap-
peared, almost forty years after the first, serious loose ends remained
in the treatment of every one of these topics in the Principia. These
loose ends may help to explain why so many capable scientists who
came of age after the Principia were initially so cautious in accept-
ing Newton’s theory. A decade or so after Newton died, Clairaut,
Euler, and d’Alembert began their efforts to tie up these loose ends,
followed by Lagrange and Laplace over the last forty years of the eigh-
teenth century.’ In a very real sense, then, Newton’s argument for
universal gravity was not completed until a century after the publi-
cation of the first edition of the Principia. With its completion, the
new approach to theory construction that the book was intended to
illustrate — that is, the new type of generic mathematical theory, the
contrast between mathematical and physical points of view, the roles
of “deduced” theory and idealizations in ongoing research, and the
insistence on pushing theory far beyond its original basis — became
a permanent part of the science of physics.

NOTES

I thank Kenneth G. Wilson, Eric Schliesser, and I. Bernard Cohen for
several useful comments on an earlier draft of this chapter.

1 Isaac Newton, The Principia, Mathematical Principles of Natural
Philosophy: A New Translation, trans. I. Bernard Cohen and Anne
Whitman (Berkeley: University of California Press, 1999), pp. 382f.

2 Ibid., p. 415; see Robert DiSalle’s chapter in this volume for a discussion
of Newton’s views on relative versus absolute motion.

3 In Latin, Regulae Philosophandi; see William Harper’s chapter in
this volume for a discussion of Newton’s use of these Rules in his
“deduction” of universal gravitation.

Newton, Principia, p. 943.

5 Isaac Newton, “An Account of the Book Entituled Commercium
Epistolicum,” reprinted in A. Rupert Hall, Philosophers at War: The
Quarrel between Newton and Leibniz (Cambridge: Cambridge Univer-
sity Press, 1980), p. 312. Newton made much the same concession to
hypotheses in 1672 in one of his exchanges with Pardies on his light and
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colors experiments; see . Bernard Cohen and Robert E. Schefield (eds.),
Isaac Newton’s Papers and Letters on Natural Philosophy, revised edi-
tion (Cambridge, MA: Harvard University Press, 1978), p. 106; see note
45 below.

Christiaan Huygens, Traité de la Lumiére, in Qeuvres completes de
Christiaan Huygens, vol. 19 (The Hague: Martinus Nijhoff, 1937), p. 454;
the English translation is from Michael R. Matthews, Scientific Back-
ground to Modern Philosophy (Indianapolis: Hackett, 1989), p. 126. The
hypothesis which Huygens had most in mind was the longitudinal wave
theory of light.

Newton, Principia, pp. 588f.

A few Newton scholars have emphasized this Scholium, most no-
tably I. Bernard Cohen in his The Newtonian Revolution (Cambridge:
Cambridge University Press, 1980), Clifford Truesdell in “Reactions of
Late Baroque Mechanics to Success, Conjecture, Error, and Failure in
Newton’s Principia,” reprinted in his Essays in the History of Mechanics
(New York: Springer-Verlag, 1968), and E. W. Strong in “Newton’s
‘Mathematical Way’,” Journal of the History of Ideas 12 (1951), 9o-110.
See N. Jardine, The Birth of History and Philosophy of Science: Kepler’s
A Defence of Tycho against Ursus (Cambridge: Cambridge University
Press, 1984).

See Alexandre Koyré, “An Experiment in Measurement,” in his Meta-
physics and Measurement (Cambridge, MA: Harvard University Press,
1968).

René Descartes, Principles of Philosophy, trans. Valentine Rodger Miller
and Reese P. Miller (Dordrecht: D. Reidel, 1983); gravity and magnetism
are discussed in Part 4, the former in Propositions 20 through 27 and
the latter in Propositions 133 through 183.

In a letter of 1690 from Huygens to Leibniz; see Ceuvres complétes de
Christiaan Huygens, vol. 9 (1901), p. 538.

Galileo Galilei, Dialogues concerning Two New Sciences, trans. Henry
Crew and Alfonso de Salvio (Buffalo: Prometheus Books, 1991).
Christiaan Huygens, The Pendulum Clock; or, Geometrical Demon-
stration concerning the Motion of Pendula as Applied to Clocks, trans.
Richard J. Blackwell (Ames: Iowa State University Press, 1986).
Galileo Galilei, Dialogue concerning the Two Chief World Systems,
2nd edn, trans. Stillman Drake (Berkeley: University of California Press,
1967). Newton read the English translation by Thomas Salusbury, pub-
lished in 1661.

For example, Robert Anderson’s The Genuine Use and Effects of the
Gun; Kenelm Digby’s “The Nature of Bodies” in his Two Treatises;
and Walter Charleton’s Physiologia: Epicuro-Gassendo-Carltoniai, or
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A Fabrick of Science Natural, Upon the Hypothesis of Atoms. Newton
either owned copies or copied out portions of each of these. I thank
1. B. Cohen for this point.

See Newton, Principia, pp. 444 and 446.

See Huygens, The Pendulum Clock, Proposition 25, p. 69.

In his Horologium Oscillatorium Huygens expressly calls the three
opening principles (the first of which is the principle of inertia)
“hypotheses” (p. 33). Apparently following Huygens, Newton too called
the forerunners of his laws of motion “hypotheses” in his tract, "De
motu corporum in gyrum,” the seed from which the Principia grew; the
change to “laws” appears first as a correction to “hypotheses” in the
revised version of this tract. See D. T. Whiteside (ed.), The Preliminary
Manuscripts for Isaac Newton’s 1687 Principia: 1684—1686 (Cambridge:
Cambridge University Press, 1989), pp. 3 and 13.

The term is Arthur Prior’s.

See Newton, Principia, Book 2, Proposition 30 and 31, pp. 708-12.
Newton, Principia, Book 1, Proposition 45, pp. §39—45. This proposition
is discussed in See Ram Valluri, Curtis Wilson, and William Harper,
“Newton’s Apsidal Precession Theorem and Eccentric Orbits,” Journal
for the History of Astronomy 28 (1997), 13-27.

Newton’s use of such measurements has been discussed in several places
by William Harper; see his chapter in this volume.

Huygens presents his simple pendulum measurement in Part 4 of
his Horologium Oscillatorium, Proposition 26 (The Pendulum Clock,
pp. 170-2), and he describes a conical pendulum measurement in Part
v (pp. 173-5). See chapters 2-4 of Joella Yoder’s Unrolling Time:
Christiaan Huygens and the Mathematization of Nature (Cambridge:
Cambridge University Press, 1988) for a discussion of the original mea-
surements Huygens carried out in 1659.

E. W. Strong makes clear the indispensability of measurement to
Newton’s “mathematical way” in his “Newton’s ‘Mathematical Way’,”
cited in note 8 above. Unfortunately, the passage from the English trans-
lation of Newton’s System of the World from which Strong develops his
essay appears to be spurious, added by the translator; Strong’s argument,
however, requires no recourse to this passage.

Newton, Principia, p. 407.

Huygens lists 13 propositions on centrifugal force, a term he coined,
at the end of his Horologium Oscillatorium (The Pendulum Clock,
pp. 176-8). A full manuscript including proofs was published in 1703,
in the edition of his posthumous papers prepared by de Volder and
Fullenius. See Qeuvres complétes de Christiaan Huygens, vol. 16 (1929),

Pp. 255-30T.
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This complaint was voiced most outspokenly by Robert Hooke; see
p. 111 of Isaac Newton’s Papers and Letters on Natural Philosophy,
cited in note 5 above. Newton’s mathematical treatment of rays of light
is discussed in Alan Shapiro’s chapter in this volume.

Newton, Principia, p. 448.

This requirement is met in the case of resistance forces because the
velocity which determines their direction is the velocity of the resisted
body relative to the fluid medium.

Papers summarizing the “laws of motion” by Wallis and Wren appeared
in Philosophical Transactions of the Royal Society in the spring of 1669
(pp. 864-8), followed shortly after (pp. 925-8) by a summary of the the-
orems of Huygens, who had in effect refereed the papers by Wallis and
Wren. Huygens’s beautiful proofs of his account of impact did not ap-
pear in print until his posthumous papers were published in 1703; see
Ceuvres completes de Christiaan Huygens, vol. 16, pp. 29-9T.
A.Rupert Hall and Marie Boas Hall (eds.), Unpublished Scientific Papers
of Isaac Newton (Cambridge: Cambridge University Press, 1962), p. 307.
The word “phenomena” for Newton does not refer to individual obser-
vations, but to inductively generalized summaries of observations, such
as Kepler’s area rule.

The word “rules” best describes Kepler’s famous orbital claims at the
time Newton was writing the Principia. They came to be called “laws”
only after the Principia was published — first apparently in Leibniz’s
Iustrio Tentaminis de Motuum Coelestium Causis of 1689 (a transla-
tion of which can be found in Domenico Bertolini Meli’s Equivalence
and Priority: Newton versus Leibniz [Oxford: Oxford University Press,
1993], pp. 126-42).

Streete’s Astronomia Carolina, from which Newton first learned his or-
bital astronomy, was published in 1661. Streete’s claim that the orbits
are stationary was challenged in Vincent Wing’s Examen Astronomiae
Carolinae of 1665, and then defended anew in Streete’s Examen Exam-
inatum of 1667.

See Curtis Wilson, “Predictive Astronomy in the Century after Kepler,”
in René Taton and Curtis Wilson (eds.), Planetary Astronomy from the
Renaissance to the Rise of Astrophysics, Part A: Tycho Brahe to Newton
(Cambridge: Cambridge University Press, 1989), pp. 172-85.

Ibid., pp. 168 and 179.

Thus we find Robert Hooke, in the correspondence of 1679-80 with
Newton that initiated his key discoveries on orbital motion, asking
Newton to calculate the curve described by a body under inverse-square
forces, and remarking, “this curve truly calculated will show the error of
those many lame shifts made use of by astronomers to approach the true
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motions of the planets with their tables.” (The Correspondence of Isaac
Newton, vol. 2, ed. H. W. Turnbull [Cambridge: Cambridge University
Press, 1960), p. 309.)

Newton, “De motu corporum in gyrum,” in D. T. Whiteside (ed.), The
Mathematical Papers of Isaac Newton, vol. 6 (Cambridge: Cambridge
University Press, 1974), pp. 30-74.

Ibid., pp. 74-80. An English translation of the augmented version of “De
motu” can be found in Unpublished Scientific Papers of Isaac Newton,
cited in note 32 above, pp. 239—92. The English translation given here
is from Curtis Wilson, “The Newtonian Achievement in Astronomy,”
in Taton and Wilson (eds.), Planetary Astronomy, p. 253.

See William Harper and George E. Smith, “Newton’s New Way of
Inquiry,” in Jarrett Leplin (ed.), The Creation of Ideas in Physics: Stud-
ies for a Methodology of Theory Construction (Norwell: Kluwar, 1995),
pp. 133-9.

Galileo, Two New Sciences, cited in note 13 above, p. 252.

René Descartes, The Philosophical Writings of Descartes, vol. 3, trans.
John Cottingham, Robert Stoothoff, Dugald Murdoch, and Anthony
Kenny (Cambridge: Cambridge University Press, 1991), pp. 9ff.
Descartes, Principles, cited in note 11 above, p. 98.

Thus, Newton remarked in a response to objections to his early publi-
cations in optics,

For the best and safest method of philosophizing seems to be, first to inquire
diligently into the properties of things, and establishing those properties by
experiments and then to proceed more slowly to hypotheses for the expla-
nation of them. For hypotheses should be subservient only in explaining the
properties of things, but not assumed in determining them; unless so far as
they may furnish experiments. For if the possibility of hypotheses is to be

the test of the truth and reality of things, I see not how certainty can be
obtained in any science; since numerous hypotheses may be devised, which

shall seem to overcome new difficulties. (Cohen, Isaac Newton’s Papers
and Letters on Natural Philosophy, cited in note 5 above, p. 106)

Newton’s attitude toward hypotheses in his work is optics in discussed
in detail in Alan Shapiro’s chapter in this volume.

Cohen, The Newtonian Revolution, cited in note 8 above, ch. 3; see his
chapter in this volume as well.

The term “point-mass” is Euler’s, not Newton’s or Huygens'’s.
Newton’s “deduction” of universal gravity from phenomena is exam-
ined in detail in William Harper’s chapter in this volume.

For details, see my “From the Phenomenon of the Ellipse to an Inverse-
Square Force: Why Not?,” in David Malament (ed.), Reading Natural
Philosophy: Essays in the History of Science and Mathematics to Honor
Howard Stein on his 7oth Birthday (La Salle: Open Court, 2002).
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Newton, Principia, pp. 817ff.

Newton, Principia, textual note bb, p. 827.

See Huygens, Discours de la Cause de la Pesanteur, in Qeuvres comp-
Iétes de Christiaan Huygens, vol. 21 (1944), pp. 462-71, and pp. 476ff.
For a discussion of the current state of these discrepancies, see Kurt
Lambeck, Geophysical Geodesy: The Slow Deformations of the Earth
(Oxford: Oxford University Press, 1988).

See Leibniz, Tentamen, cited in note 34 above.

The one notable exception is the tacit assumption that the third law of
motion holds between the Sun and the individual planets. This assump-
tion has been pointed out by Howard Stein in his “ ‘From the Phenomena
of Motions to the Forces of Nature’: Hypothesis or Deduction?” (PSA 2
[1990], 209—22); Dana Densmore in her Newton’s Principia: The Central
Argument (Santa Fe: Green Lion Press, 1995), p. 353; and before them
by Roger Cotes, the editor of the second edition of the Principia, in cor-
respondence with Newton (see The Correspondence of Isaac Newton,
vol. 5, ed. A. Rupert Hall and Laura Tilling [Cambridge: Cambridge
University Press, 1975], pp. 391ff). William Harper’s chapter in this vol-
ume discusses this and the other details of Newton’s “deduction” of
universal gravity from phenomena.

Newton, Principia, p. 796.

The history of Newton’s third Rule for Natural Philosophy is discussed
in L. Bernard Cohen’s Introduction to Newton’s * Principia” (Cambridge,
MA: Harvard University Press, 1978), pp. 23-6.

Nelson Goodman, Fact, Fiction, and Forecast, 3rd edn (Indianapolis:
Bobbs-Merrill, 1973).

Jean d’ Alembert, Essai d’'une Nouvelle Théorie de la Résistance des
Fluides (Paris: David, 1752).

Newton, by the way, took the trouble in Book 1, Section 10 to show
that Galileo’s and Huygens’s results similarly hold in the limit in the
case of universal gravity, namely the limit of the linear variation of
gravity up to the surface of a uniformly dense Earth as the radius of this
surface approaches infinity. This result authenticates Newton’s use of
Huygens’s precise theory-mediated measurement of surface gravity in
his crucial argument in Book 3, Proposition 4 that the Moon is held in
orbit by terrestrial gravity.

See the chapter by Howard Stein in this volume for a discussion of the
centrality of interactions in Newton’s metaphysics.

See George E. Smith, “Fluid Resistance: Why Did Newton Change His
Mind?,” in Richard Dalitz and Michael Nauenberg (eds.), Foundations of
Newtonian Scholarship (Singapore: World Scientific, 2000), pp. 105-36.
Newton, Principia, p. 749.
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See L. D. Landau and E. M. Lifshitz, Fluid Mechanics, vol. 6 in Course
in Theoretical Physics (Oxford: Pergamon, 1959}, pp. 31-6, 168-79.

See George E. Smith, “The Newtonian Style in Book 2 of the Principia,”
in].Z.Buchwald andI. B. Cohen (eds.), Isaac Newton’s Natural Philoso-
phy (Cambridge, MA: MIT Press, 2001), pp. 249—98, esp. p. 278, Fig. 9.7.
Ibid., pp. 276-87.

Isaac Newton, Opticks: or, A Treatise of the Reflections, Refractions,
Inflections and Colours of Light (New York: Dover, 1952), p. 404. The
quotation continues: “This is the Method of Analysis: And the Synthesis
consists in assuming the Causes discover’d, and establish’d as Princi-
ples, and by them explaining the Phenomena proceeding from them,
and proving the Explanations.” This passage was undoubtedly a direct
response to Huygens’s description of the hypothetico-deductive method
quoted at the beginning of this chapter.

Extending gravity to comets was more important than first meets the
eye. Hooke had expressed a general principle of celestial attraction in
his Attempt to Prove the Motion of the Earth of 1674, but had denied
that it extends to comets in his Cometa of 1678. See Curtis Wilson,
“The Newtonian Achievement in Astronomy,” p. 239.

Newton indicates as much in a letter to Leibniz in 1693 when he defends
the Principia by remarking, “all phenomena of the heavens and the sea
follow precisely, so far as [ am aware, from nothing but gravity acting
in accordance with the laws described by me.” (The Correspondence
of Isaac Newton, vol. 3, ed. H. W. Turnbull [Cambridge: Cambridge
University Press, 1961], pp. 284 ff.)

See Curtis Wilson’s chapter in this volume for a discussion of the de-
velopment of celestial mechanics during the eighteenth century. This
development culminates in the five volumes of Laplace’s Mécanique
Céleste, the first four of which appeared from 1798 to 1805, and the fifth
in 1825. (All but the fifth volume are available in English in the transla-
tion of 1829-39 by Nathaniel Bowditch [Bronx, NY: Chelsea Publishing
Company, 1966].)
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5 Newton’s argument for universal
gravitation

The aspect of Newton’s Principia that has provoked the most con-
troversy within the philosophy of science, other than his invoca-
tion of absolute space, time, and motion, has been his claim to have
“deduced” the law of universal gravity from phenomena of orbital
motion. In particular, a tradition that began with Pierre Duhem®
and continued with Karl Popper? and then Imre Lakatos? has argued
that this claim is at best misleading (Duhem) and at worst a sub-
terfuge (Lakatos). Among other reasons they have advanced against
any such deduction is the objection that no deduction from consis-
tent premises can yield a conclusion that entails one or more of these
premises is false; yet one consequence of the law of universal grav-
ity is that all the orbital phenomena from which Newton proceeds
in his supposed deduction are, strictly, false. Duhem, Popper, and
Lakatos insist, to the contrary, that only a hypothetico-deductive
construal of Newton’s evidence for universal gravity makes sense,
Newton’s outspoken objections to hypothetico-deductive evidence
notwithstanding. More recently, Clark Glymour4 has offered a
“bootstrapping” construal of Newton’s evidence, proposing that it
captures the logical force of the reasoning for universal gravitation
in the Principia better than a straightforward hypothetico-deductive
construal can. Glymour too, however, sees no way around conclud-
ing that some of what Newton seems to think he is doing cannot be
correct.

One issue this raises is understanding the reasoning Newton of-
fers in arriving at the law of universal gravity and describes as a
“deduction” from phenomena. Another is the extent to which such
reasoning is cogent and illuminates scientific method. The sim-
plest way to respond to these questions is to proceed step-by-step

174
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through Newton’s reasoning. I will argue that his argument from
phenomena to universal gravitation, which opens his system of
the world in Book 3, illustrates a general methodology in which
phenomena constrain theory to approximations established by
measuring parameters. This methodology, which continues to guide
research in gravitational physics, has not been as well appreciated
by philosophers of science as it ought to be. Nevertheless, it be-
comes clear and easy to defend once attention is paid to the de-
tails of the argument in Propositions 1 to 8 of Book 3 in the third
edition.

INFERENCES FROM PHENOMENA

Jupiter’s Moons

Proposition 1. The forces by which the circumjovial planets [or satellites of
Jupiter] are continually drawn away from rectilinear motions and are main-
tained in their respective orbits are directed to the center of Jupiter and are
inversely as the squares of the distances of their places from that center.’

The first part of the proposition is evident from phen. 1 and from prop. 2
or prop. 3 of book 1, and the second part from phen. 1 and from corol. 6 to
prop. 4 of book 1.

The same is to be understood for the planets that are Saturn’s companions
[or satellites| by phen. 2.

The cited phenomenon (Phenomenon 1) consists of two parts. The
first part is that the moons of Jupiter, by radii drawn to the center
of Jupiter, describe areas proportional to the times. This is what we
call Kepler’s “law” of areas for these moons with respect to that
center.® The second part is that the periodic times of the orbits of
these moons — the fixed stars being at rest’ — are as the 3/2 power of
their distances from the center of Jupiter. This is Kepler’s harmonic
law for these orbits.

Newton demonstrates that the law of areas carries the information
that the force maintaining a body in an orbit which satisfies it is
directed toward the center with respect to which it sweeps out equal
areas in equal times. He also demonstrates that the harmonic law for
a system of orbits carries the information that the accelerative forces
maintaining bodies in those orbits are inversely as the squares of the
distances from the center about which those orbits are described.
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THE LAW OF AREAS AS A CRITERION FOR CENTRIPETAL FORCE. Proposi-
tions 1 and 2 of Book 1, together, yield a biconditional equivalence
between the centripetal direction of the force maintaining a body in
an orbit about an inertial center and the motion of that orbit being in
a plane and satisfying Kepler’s law of areas. According to Corollary 1
of Proposition 2, the rate at which areas are described is increasing
only if the force is angled off-center toward the direction of motion,
while a decreasing rate obtains only if the force is angled off-center
in the opposite direction. These dependencies make the constancy
of the rate at which areas are being swept out by radii to a center
measure the centripetal direction of the force maintaining a body
in an orbit about that center, provided the center can be treated as
inertial.

Treating Jupiter’s center as inertial ignores the substantial cen-
tripetal acceleration toward the Sun as the Jupiter system orbits it.
To the extent that the Sun’s actions on Jupiter and its moons ap-
proximate equal and parallel accelerations, the Jupiter system can
be treated as unperturbed by the forces accelerating it toward the
Sun.® To the extent that this approximation holds and the center of
Jupiter approximates the center of mass of the Jupiter system, the
center of Jupiter can be treated as inertial.”

Having the area rule hold, very nearly, for the orbits of these moons
with respect to the center of Jupiter carries information that these
approximations are not appreciably inaccurate.’® In his discussion
of Phenomenon 1, Newton pointed out that the orbits of Jupiter’s
moons so closely approximate uniform motion on circles concentric
to Jupiter that no appreciable differences from such motions were
detected in observations by astronomers. That good observations de-
tected no appreciable departures from uniform motion on concentric
circular orbits for Jupiter’s moons indicates that no appreciable er-
rors result from treating Jupiter’s center as inertial for purposes of
using the area rule as a criterion for the centripetal direction of the
forces maintaining those moons in their orbits.

Newton’s proofs of the theorems underwriting the area rule as a
criterion for centers toward which orbital forces are directed make
no assumptions about any power law for these forces. Given that
the centripetal direction of the forces maintaining these moons in
their orbits is inferred from the law of areas, Newton can appeal to
his theorems about orbital motion under centripetal forces to argue
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that the harmonic law phenomenon, for the system of those orbits,
carries the information that the accelerative forces are inversely as
the squares of their distances from that center. This illustrates that
Newton’s inferences are not merely hypothetico-deductive.™

THE HARMONIC RULE AS A CRITERION FOR INVERSE-SQUARE FORCES.
Corollary 6 of Proposition 4 of Book 1 states that the harmonic law
for a system of circular orbits is equivalent to having the accelerative
centripetal forces maintaining bodies in those orbits be inversely as
the squares of the distances from the center. Corollary 7 is equivalent
to the following universal systematic dependency

t o RS iff f oc RP725,

where f is the accelerative force maintaining a body in uniform mo-
tion in a circular orbit with period t and radius R. Corollary 6 follows
when s equals 3/2. For each of a whole range of alternative power
law proportions of periods to orbital radii, Corollary 7 establishes the
equivalent power law proportion to radii for the centripetal forces
that would maintain bodies in those orbits. To have the periods be
as some power s > 3/2 would be to have the centripetal forces fall
off faster than the —2 power of the radii, while to have the periods
be as some power s < 3/2 would be to have the centripetal forces
fall off less fast than the —2 power of the radii. These systematic
dependencies make the harmonic law phenomenon (s = 3/2) for a
system of orbits measure the inverse-square (—2) power law for the
centripetal forces maintaining bodies in those orbits. This consti-
tutes a very strong sense in which the harmonic law carries the in-
formation that the forces maintaining bodies in those orbits satisfy
the inverse-square power law.

As evidence for the harmonic law Newton offers a table citing
periods agreed upon by astronomers and four distance estimates from
astronomers for each of the four moons of Jupiter known at the time.
The fit of the harmonic law to these data is quite good. He also offers
more precise data from observations taken by Pound in 1718-20. The
fit of the harmonic rule to these considerably more precise data®® is
very much better than the already good fit of the harmonic law to
the earlier data.
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Primary planets

Proposition 2. The forces by which the primary planets are continually
drawn away from rectilinear motions and are maintained in their respec-
tive orbits are directed to the sun and are inversely as the squares of their
distances from its center.

The first part of the proposition is evident from phen. 5 and from prop. 2 of
book 1, and the latter part from phen. 4 and from prop. 4 of the same book.
But this second part of the proposition is proved with the greatest exactness
from the fact that the aphelia are at rest. For the slightest departure from
the ratio of the square would (by book 2, prop. 45, corol. 1) necessarily result
in a noticeable motion of the apsides in a single revolution and an immense
such motion in many revolutions.

THE AREA RULE FOR THE PLANETS

Phenomenon 5. The primary planets, by radii drawn to the earth, describe
areas in no way proportional to the times but, by radii drawn to the Sun,
traverse areas proportional to the times.

That Newton considers radii drawn to the Earth as well as radii drawn
to the Sun illustrates that he does not assume the Copernican system
as aphenomenon to argue from. He points out that with respect to the
Sun as center the angular motion is almost uniform and the depar-
tures from uniform motion — “a little more swiftly in their perihelia
and more slowly in their aphelia” — are such that the description of
areas is uniform.™3

THE HARMONIC RULE FOR THE PLANETS. Newton provides a separate
phenomenon stating that the orbits of the primary planets encircle
the Sun. This phenomenon does not include the Earth as one of these
planets.

Phenomenon 3. The orbits of the five primary planets — Mercury, Venus,
Mars, Jupiter, and Saturn - encircle the Sun.

Tycho Brahe’s geo-heliocentric system in which the other planets
orbit the Sun, while the Sun together with those planets orbits the
Earth, is compatible with this phenomenon. To every Copernican
system a corresponding Tychonic system is defined by taking the
center of the Earth rather than the center of the Sun as a reference
frame.™4

Newton’s statement of the harmonic law is neutral between such
Sun-centered and Earth-centered systems.
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Fig. 5.1 Log mean distances versus log periodic times for the planets.

Phenomenon 4. The periodic times of the five primary planets and of either
the sun around the earth or the earth around the sun — the fixed stars being
at rest — are as the 3/2 power of their mean distances from the sun.

Newton cites periods agreed upon by astronomers and estimates of
mean distances from Kepler and the French astronomer Boulliau
which exhibit the excellent fit of the harmonic law to available data.
This fit is nicely illustrated by plotting log periods against log dis-
tances, as in Figure 5.1.

That a straight line of some slope s fits the result of plotting
Logt against LogR is to have the periods be as some power s of the
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distances. To have the harmonic law hold is to have the slope s of
this line be 3/2 = 1.5.

The mean distances cited in Newton’s table are the semi-major
axes of elliptical orbits, not radii of concentric circular orbits.
Unlike Jupiter’s moons, the orbits of the primary planets were known
to have non-negligible eccentricities. Newton’s proofs of Proposi-
tion 4, Book 1 and of its Corollaries 6 and 7 are for concentric circular
orbits. These results, however, extend to elliptical orbits with forces
toward a focus.’s

Given that the orbit of each planet fits the area rule with respect
to the Sun, that the mean distances are the semi-major axes of those
orbits construed as ellipses with the Sun at their common focus,
and that the periods are as some power s of the mean distances,
then to have the harmonic law hold, i.e., to have s = 3/2, carries
the information that the forces maintaining them in their respective
con-focal elliptical orbits agree with those of a single inverse-square
centripetal acceleration field directed toward the Sun.™® This makes
the harmonic law ratios for the planets into agreeing measurements
of the strength of this single Sun-centered inverse-square accelera-
tion field.*”

APHELIA AT REST. Newton claims that the inverse-square variation
with distance from the Sun of the forces maintaining the planets
in their orbits is proved “with the greatest exactness” from the fact
that the aphelia are at rest.'® He cites Corollary 1 of Proposition 45,
Book 1, according to which

Precession is p The centripetal force f is
degrees per if and only if  as the (360/360 + p)* — 3
revolution power of distance

If a planet in going from aphelion (the furthest point from the Sun)
to return to it again makes an angular motion against the fixed stars
of 360 + p degrees, then the aphelion is precessing forward with p
degrees per revolution. According to this corollary, zero precession
is equivalent to having the centripetal force be as the —2 power of
distance; forward precession is equivalent to having the centripetal
force fall off faster than the inverse-square; and backward precession
is equivalent to having the centripetal force fall off slower than the
inverse-square.
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Newton’s Proposition 45, Book 1 and its corollaries are proved
for orbits that are very nearly circular. The results, however, can
be extended to orbits of arbitrarily great eccentricity. Indeed, orbital
eccentricity increases the sensitivity of absence of unaccounted for
precession as a null experiment measuring inverse-square variation
of a centripetal force.™

UNIFICATION AND THE MOON

The Moon

Proposition 3.

The force by which the moon is maintained in its orbit is directed toward
the earth and is inversely as the square of the distances of its places from
the center of the earth.

Newton claims that the first part (the centripetal direction) is evident
from Phenomenon 6 (and Proposition 2 or 3 of Book 1).

Phenomenon 6. The moon, by a radius drawn to the center of the earth,
describes areas proportional to the times.

This is evident from a comparison of the apparent motion of the moon
with its apparent diameter. Actually, the motion of the moon is somewhat
perturbed by the force of the sun, but in these phenomena I pay no attention
to minute errors that are negligible.

The comparisons of apparent diameter and apparent motion men-
tioned by Newton are in good rough agreement with the law of
areas.>°

The observed motion of the apogee makes the argument for
inverse-square variation more problematic than the corresponding
argument for the planets. This apsidal motion is, Newton tells us,
only about 3 degrees and 3 minutes forward in each revolution.
According to Corollary 1, Proposition 45, Book 1, this is equivalent
to a centripetal force varying inversely as the 22% power. As he also
points out, this is 59% times closer to the square than to the cube.

Newton claims that this motion of the lunar apogee is to be ig-
nored because it arises from the action of the Sun. He appeals to
Corollary 2 of Proposition 45, Book 1 to suggest that the action of the
Sun to draw the Moon away from the Earth is roughly as 1/178.725
of the centripetal force of the Moon.? Newton, however, does not
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provide an account of how the lunar precession is due to the action
of the Sun on the Moon’s motion.>?

Gravitation toward the Earth

Proposition 4. The moon gravitates toward the earth and by the force
of gravity is always drawn back from rectilinear motion and kept in
its orbit.

THE MOON-TEST. In the Moon-test, Newton cites six estimates by as-
tronomers and assumes a mean Earth-Moon distance of 60 terrestrial
semidiameters. He cites a lunar period established by astronomers
and a circumference for the Earth according to measurements by the
French, which, together with the assumption of 6o earth radii as the
lunar distance, give 15.009 Paris feet as distance the Moon would fall
in one minute if it were deprived of all its motion and let fall by the
force by which it is maintained in its orbit.

Newton’s assumption of 6o terrestrial semidiameters as the lu-
nar distance, together with inverse-square variation, makes the one-
minute fall corresponding to the strength of this force at the lunar
distance exactly equal to the one-second fall corresponding to the
increased strength this force would have at the surface of the Earth.

Huygens had used his experimentally established length of a sec-
onds pendulum to measure the one-second fall produced on terres-
trial bodies by the Earth’s gravity. His determination of the length
of a seconds pendulum was so stable over repetitions that his mea-
sured value for the one-second fall at Paris of 15.096 Paris feet could
be trusted to about 4o0.01 Paris feet.23

Newton’s assumption of 6o earth radii as the lunar distance, to-
gether with his appeal to a correction factor to offset a supposed
1/178.725 reduction due to the action of the Sun, leads to an ex-
traordinarily close agreement with Huygens’s measurement.>* If we
do not apply that correction and use all six (59, 60, 60, 607, 60%,
603 ) of Newton’s cited lunar distance estimates together with his
cited circumference of the earth (123,249,600 Paris feet) and lunar
period (39,343 minutes), we arrive at 15.041 & 0.429 Paris feet as
the measured value of the one-second fall at the surface of the Earth
corresponding to the centripetal acceleration of the lunar orbit. That
Huygens’s value is well within these error bounds shows that the
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positive outcome of the Moon-test did not depend either upon the
selection of 60 as the lunar distance®S or upon Newton’s assumed
correction factor.

RULES I AND 2. Newton makes an explicit appeal to his first two rules
for reasoning in natural philosophy to infer that the force maintain-
ing the Moon in its orbit is terrestrial gravity.

And therefore that force by which the moon is kept in its orbit, in descending
from the moon’s orbit to the surface of the earth, comes out equal to the force
of gravity here on earth, and so (by rule 1 and rule 2) is that very force which
we generally call gravity.

The basic argument for Proposition 4 is the equality established in
the Moon-test together with this appeal to Rules 1 and 2.

Rule 1. No more causes of natural things should be admitted than are both
true and sufficient to explain their phenomena.

Rule 2. Therefore, the causes assigned to natural effects of the same kind
must be, so far as possible, the same.

The statement of Rule 2 suggests that it is intended as a consequence
or implication of Rule 1. We can read these two rules, together, as
telling us to opt for common causes whenever we can find them. This
seems to be exactly their role in the application we are considering,.

We have two phenomena: the centripetal acceleration of the Moon
and the length of a seconds pendulum at Paris. Each measures a force
producing accelerations at the surface of the Earth. These accelera-
tions are equal and equally directed toward the center of the Earth.
Identifying the forces makes these phenomena count as agreeing
measures of the very same inverse-square force. This makes them
count as effects of a single common cause.

The identification of the centripetal force maintaining the Moon
in its orbit with terrestrial gravity transforms the notion of terres-
trial gravity by making it now count as varying inversely with the
square of distance from the center of the Earth. This was acclaimed
as an unexpected, and highly regarded, new discovery about gravity
by such critics of universal gravitation as Huygens and Leibniz.?®

INVERSE-SQUARE CENTRIPETAL ACCELERATION FIELD. Newton’s Scho-
lium?7 to Proposition 4 opens with a thought experiment which
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appeals to induction to extend Kepler’s harmonic relation (t oc R3/?)
to a hypothetical system of several moons revolving around the
Earth. He explicitly calls this harmonic relation a “law” and backs up
the inverse-square assumption in the Moon-test by appeal to the cor-
responding inverse-square (f o« R™?) relation among the centripetal
forces that would maintain moons in orbits satisfying it.

Howard Stein?® has argued that the scholium version of the Moon-
test —

Therefore, since both forces — vis., those of heavy bodies and those of the
moons — are directed toward the center of the earth and are similar to one
another and equal, they will (by rule 1 and rule 2) have the same cause. And
therefore that force by which the moon is kept in its orbit is the very one
that we generally call gravity.

— should be interpreted in light of Newton’s discussion (Definitions
5-8) of centripetal force and its three measures: absolute, acceler-
ative, and motive. The motive measure of a centripetal force on a
body is its mass times its centripetal acceleration — this is the mea-
sure of force familiar to students of Newtonian physics today. The
accelerative measure is the acceleration produced and is referred to
distances from the center. Stein* argues that Newton’s discussion
makes it clear that he intends this measure to be appropriate to a cen-
tripetal acceleration field — a centripetal force field that would pro-
duce equal centripetal accelerations on unsupported bodies at equal
distances from the center. The harmonic law ratio for a system of
orbits about a common center requires that the orbits exhibit cen-
tripetal accelerations corresponding to a single inverse-square cen-
tripetal acceleration field. The absolute measure of such a centripetal
acceleration field is its strength. The ratio of the absolute measures
of two such centripetal acceleration fields is the common ratio of the
accelerations they would produce at any equal distances from their
respective centers.

This suggests that, in the above passage from the Scholium Moon-
test, the several forces — those of heavy bodies and those of the
moons — are the motive forces exerted on those heavy bodies and
moons. Their common cause is a single inverse-square centripetal
acceleration field surrounding the Earth — the Earth’s gravity. On this
interpretation, all these motive forces directed toward the center of
the Earth are the weights toward it of those moons and other bodies.
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EMPIRICAL SUCCESS. This application of Rules 1 and 2 is backed by an
ideal of empirical success exhibited in Newton’s inferences from phe-
nomena. According to this ideal, a theory succeeds empirically by
having its causal parameters receive convergent accurate measure-
ments from the phenomena it purports to explain. On the identifica-
tion Newton argues for, we have a single inverse-square acceleration
field the strength of which is given agreeing measurements by the
length of a seconds pendulum at the surface of the Earth and by the
centripetal acceleration exhibited by the orbit of the Moon.

Each of these counts as a phenomenon. The length of a seconds
pendulum established by Huygens is a generalization that is backed
up by a large and open-ended body of precise data. The centripetal
acceleration exhibited by the orbital motion of the Moon is also a
generalization backed up by a large and open-ended body of data. In
this case the data are far less precise than those backing up Huygens’s
measurements. Even though they are less precise, their agreement
in measured value of the strength of the common acceleration field
makes the lunar data count as additional empirical support backing
up Huygens’s measurement of the acceleration of gravity at the sur-
face of the earth.3° It also makes Huygens’s very precise data back
up estimates of the centripetal acceleration of the lunar orbit.

Empiricists, who limit empirical success to prediction alone,
would see the appeal to simplicity in Rules 1 and 2 as something
extraneous to empirical success. According to such a view, these
rules endorse a general commitment to simplicity imposed as an
additional, pragmatic, requirement beyond empirical success. No
merely pragmatic commitment to simplicity can do justice to the
way in which identifying the force that maintains the Moon in its
orbit with terrestrial gravity is empirically backed up by agreeing
measurements. This gives reason to consider the richer notion of
empirical success that informs Newton’s methodology.

GENERALIZATION BY INDUCTION

Rule 4

Proposition 5. The circumjovial planets [or moons of Jupiter] gravitate to-
ward Jupiter, the circumsaturnian planets [or satellites of Saturn| gravitate
toward Saturn, and the circumsolar [or primary| planets gravitate toward
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the sun, and by the force of their gravity they are always drawn back from
rectilinear motions and kept in curvilinear orbits.

This generalization is a unification — all these orbital phenomena
are effects of gravitation of satellites toward primaries. On it, we can
understand each of these phenomena as an agreeing measurement of
such general features of gravitation toward primaries as centripetal
direction and inverse-square accelerative measure.

Newton further generalizes centripetal forces of gravity (the first
part of Corollary 1) that are inversely as the squares of distances
from their centers (Corollary 2) to all planets universally. For planets
without satellites there are no centripetal accelerations of bodies
toward them to measure gravitation toward them.

The following Scholium is offered in support of this generalization
to all planets.

Scholium. Hitherto we have called “centripetal” that force by which celes-
tial bodies are kept in their orbits. It is now established that this force is
gravity, and therefore we shall call it gravity from now on. For the cause
of the centripetal force by which the moon is kept in its orbit ought to be
extended to all planets, by rules 1, 2, and 4.

This appeal to Rules 1 and 2 is backed up by appeal to an additional
rule.

Rule 4. In experimental philosophy, propositions gathered from phenom-
ena by induction should be considered either exactly or very nearly true
notwithstanding any contrary hypotheses, until yet other phenomena make
such propositions either more exact or liable to exceptions.

This rule instructs us to consider propositions gathered from phe-
nomena by induction as “either exactly or very nearly true”3' and
to maintain this in the face of any contrary hypotheses. We want to
clarify what are to count as propositions gathered from phenomena
by induction and how they differ from what are to count as mere
hypotheses.

We have seen that the classic inferences from phenomena which
open the argument for universal gravitation are measurements of the
centripetal direction and the inverse-square accelerative quantity of
gravitation maintaining moons and planets in their orbits. To ex-
tend attribution of centripetally directed inverse-square gravitational
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acceleration to planets without moons is to treat such orbital phe-
nomena as measurements of these quantifiable features of gravita-
tion for planets universally.

What would it take for an alternative proposal to succeed in under-
mining this generalization of gravity to planets without moons? The
arguments we have been examining suggest that Newton’s Rule 4
would have us treat such an alternative proposal as a mere “con-
trary hypothesis” unless it is sufficiently backed up by measure-
ments from phenomena to count as a rival to be taken seriously.

Weight proportional to mass

Proposition 6. All bodies gravitate toward each of the planets, and at any
given distance from the center of any one planet the weight of any body
whatever toward that planet is proportional to the quantity of matter which
the body contains.

The centripetal forces that have been identified as gravitation toward
planets are acceleration fields. The ratio of weight to inertial mass
is the same for all bodies at any equal distances.3* In arguing for this
proposition Newton backs up his earlier arguments by providing ex-
plicit measurements of the equality of these ratios of weight to mass.

GRAVITATION TOWARD THE EARTH. Newton begins with gravitation
toward the Earth. He describes pendulum experiments which mea-
sure the equality of the ratio of weight to inertial mass for pairs of
samples of nine varied materials. The equality of the periods of such
pairs of pendulums counts as a phenomenon which measures the
equality of these ratios for laboratory-sized bodies near the surface
of the Earth to a precision of 0.001.

A second phenomenon is the outcome of the Moon-test. The
agreement between the acceleration of gravity at the surface of the
Earth and the inverse-square-adjusted centripetal acceleration exhib-
ited by the lunar orbit measures the further agreement between, on
the one hand, the ratio of the Moon’s weight toward the Earth to
its mass and, on the other, the common ratio to their masses of
the inverse-square-adjusted weights toward the Earth that terrestrial
bodies would have at the lunar distance. The lunar distance data
Newton cites measure the equality of these ratios to <o0.03.
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RULE 3. Corollary 2 (Proposition 6, Book 3). All bodies universally that are
on or near the earth are heavy [or gravitate] toward the earth, and the weights
of all bodies that are equally distant from the center of the earth are as
the quantities of matter in them. This is a quality of all bodies on which
experiments can be performed and therefore by rule 3 is to be affirmed of all
bodies universally.

Rule 3. Those qualities of bodies that cannot be intended and remitted
[that is, qualities that cannot be increased and diminished] and that belong
to all bodies on which experiments can be made should be taken as qualities
of all bodies universally.

Those qualities of bodies that cannot be intended or remitted are
those that count as constant parameter values. This rule, therefore,
endorses counting such parameter values found to be constant on all
bodies within the reach of experiments as constant for all bodies uni-
versally. In Corollary 2, the quality of bodies which is generalized is
weight toward the Earth. To have gravitation toward the Earth count
as an inverse-square acceleration field is to have the ratio between
inverse-square-adjusted weight toward the Earth and inertial mass
be a constant value for all bodies.

The equal periods of pairs of pendulums in Newton’s experiments
is a phenomenon established with sufficient precision to measure to
0.00T the equalities of ratios of weight to mass for terrestrial bodies.33
Similarly, the outcome of the Moon-test counts as a rougher mea-
surement bound (< 0.03) in agreement with the more precise mea-
surement bound (< 0.001) that would result from extending the out-
come of Newton’s pendulum experiments to the equality of ratios
to masses of the inverse-square-adjusted weights bodies would have
at the lunar distance. These phenomena count as agreeing measure-
ments bounding toward zero a parameter A, representing differences
between ratios of inverse-square-adjusted weight toward the Earth to
mass for bodies.34

Rule 3 tells us to conclude that the ratio of mass to gravitation
toward the Earth is equal for all bodies at any distance from the cen-
ter of the Earth if that equality holds for all the bodies in reach of
our experiments. The agreement exhibited by Newton among mea-
surements of this equality by phenomena is an example of what he
would take as sufficient to count the proposition that it holds for all
bodies within reach of our experiments as gathered from phenomena
by induction. This makes his Rule 4 tell us to put the burden of proof



Newton’s argument for universal gravitation 189

on a sceptic to provide evidence for bodies within reach of our exper-
iments that would exhibit phenomena making this equality liable to
exceptions.

THE ARGUMENT FOR PROPOSITION 6 CONTINUED. Newton follows up
his argument for the Earth with an appeal to the harmonic law
for Jupiter’s moons as a phenomenon which measures, at the dis-
tance of each moon, the equality of the ratio of mass to inverse-
square-adjusted weight toward Jupiter for bodies at that distance.
Rule 3 would extend this equality to bodies at any distances. The
data Newton cites from other astronomers measure the equality of
these ratios to fair precision (A; < 0.03), while Pound’s more pre-
cise data do considerably better (A; < 0.0007). Similarly, the data
Newton cites for the harmonic law for the primary planets measure
bounds (Ag < 0.004) on the equality of ratios between inverse-square-
adjusted weight toward the Sun and mass for bodies at the mean
distances of the planets.

For equality of ratios of mass to weight toward the Sun at equal dis-
tances Newton also appeals to three additional phenomena — absence
of polarization toward or away from the Sun of orbits of respectively
Jupiter’s moons, Saturn’s moons and the Earth’s moon. If the ratio of
mass to weight toward the Sun for a moon were greater or less than
the corresponding ratio for the planet, then the orbit of that moon
would be shifted toward or away from the Sun. Absence of such
orbital polarization counts as a phenomenon measuring the equal-
ity of ratios of mass to weight toward the Sun at equal distances.
The data on Jupiter’s moons cited in Newton’s table establish this
phenomenon with sufficient precision to measure the equality of
these ratios to a precision of Ay < 0.034, while his data from Pound
are precise enough to reach Ay < 0.004.35

All these phenomena count as agreeing measurements bounding
toward zero a single general parameter A representing differences
between bodies of the ratios of their inertial masses to their inverse-
square-adjusted weights toward planets.3°

PARTS OF PLANETS. Newton concludes his argument for Proposition
6 by explicitly extending the argument to equal ratios between mass
and weight toward other planets to individual parts of planets. Here,
instead of direct measurements by phenomena, we have a thought
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experiment which makes salient that it would be very improbable
to have parts differing in ratios of weight to inertial mass so ex-
actly proportioned that whole planets had equal ratios. This is made
especially implausible by the additional fact that the Moon-test es-
tablishes agreement between outer parts of the Earth (ordinary ter-
restrial bodies) and the whole of the Moon.

GRAVITATION IS A UNIVERSAL FORCE OF INTERACTION

Applying the third law of motion

Proposition 7. Gravity exists in all bodies universally and is proportional to
the quantity of matter in each.

GRAVITATION TOWARD PLANETS

We have already proved that all planets are heavy [or gravitate] toward one
another and also that the gravity toward any one planet, taken by itself, is
inversely as the square of the distance of places from the center of the planet.
And it follows (by book 1, prop. 69 and its corollaries) that the gravity toward
all the planets is proportional to the matter in them.

In Proposition 69, Book 1, Newton considers a system of bodies A, B,
C, D, etc. He argues that under the assumption that body A attracts
all the others (including body B) with inverse-square accelerative
forces and the assumption that body B, similarly, attracts all the
others (including A), then the absolute force of A (the strength of
the acceleration field toward A) will be to the absolute force of B as
the mass of A is to the mass of B.

Newton’s proof begins by pointing out that the supposition that
each body attracts all the rest with inverse-square accelerative forces
requires the ratios of accelerations produced by such forces at equal
distances to be independent of distance. The distance of A from B
equals the distance of B from A. Therefore,

acc(B)/accp(A) = absF4/absFp (i.1)

The ratio of the magnitude of B’s acceleration toward A to the mag-
nitude of A’s acceleration toward B equals the ratio of the strength
of the attractive force toward A to the strength of the attractive force
toward B.
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The key step in Newton’s proof is an application of his third law
of motion to the motive force attracting B toward A and the motive
force attracting A toward B.

Law 3. To any action there is always an opposite and equal reaction; in other
words, the actions of two bodies one upon the other are always equal and
always opposite in direction.

To have the motive forces of A on B, fa(B) = m(A)accg(A), and of B
on A, fg(A) = m(B)acc [ B), count as equal action and reaction makes

m(A)/m(B) = acc4(B)/accg(A) (i.2)

where m(B) and m(A) are the masses of B and A. Combiningi.2 with
i.1 yields Newton’s conclusion,

m(A)/m(B) = absF4/absFp (i.3)

In the assumption of the argument for Proposition 7, gravitation of
any planets Aand B toward one another is treated as an interaction,
so that the equal and opposite reaction to the weight of B toward A
is the weight of Atoward B. This makes the argument of Proposition
69 apply, so the strengths of the centripetal attractions toward each
are proportional to their masses.

GRAVITATION TOWARD PARTS OF PLANETS

Further, since all the parts of any planet A are heavy [or gravitate] toward
any planet B, and since the gravity [weight toward B] of each part is to the
gravity [weight toward B] of the whole as the matter of the part is to the
matter of the whole, and since to every action (by the third law of motion)
there is an equal reaction, it follows that planet B will gravitate toward all
the parts of planet A, and its gravity toward any one part will be to its gravity
toward the whole of the planet as the matter of that part to the matter of the
whole. Q.E.D.

For any planets A and B, each part a of planet A is itself a body be-
ing accelerated toward planet B. Newton'’s supposition follows from
proposition 6. We have

fsla)/ fs(A) = m(a)/m(A), (ii.1)

where fg(a) and fp(A) are the weights of part a and planet A toward
planet B.
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As in the proof of Proposition 69, the third law of motion is applied
to yield the conclusion. The weight, f,(B), of planet B toward part a
is taken to be the equal and opposite reaction to the weight, fz(a), of
part a to planet B, just as the weights f4(B) and fg(A) of the whole
planets toward one another are taken to be equal action and reaction.
This yields

falB)/falB) = fsla)/ fsA). (ii.2)
Combining ii.2 with ii.1 gives Newton’s conclusion,
fal B)/ fal B) = m(a)/m[A). (ii.3)

The weight of planet B toward part a is to its weight toward the
whole planet A as the mass of the part is to the mass of the whole
planet.3”

The extension of the argument to include, in addition to grav-
itation toward planets,3® gravitation toward parts of planets would
count, in Newton’s day, as an extension to include gravitation toward
all bodies within reach of experiments. This would make Rule 3
endorse extending to all bodies universal gravitation toward them
proportional to their masses.

INVERSE-SQUARE GRAVITATION TOWARD PARTICLES

Corollary 2 (Proposition 7, Book 3). The gravitation toward each of the indi-
vidual equal particles of a body is inversely as the square of the distance of
places from those particles. This is evident by book 1, prop. 74, corol. 3.
Corollary 3 (Proposition 74, Book 1). If a corpuscle placed outside a homoge-
neous sphere is attracted by a force proportional to the square of the distance
of the corpuscle from the center of the sphere, and the sphere consists of at-
tracting particles, the force of each particle will decrease in the squared ratio
of the distance from the particle.

The inference in this corollary is from inverse-square variation of
the total force on a corpuscle outside a sphere toward its center to
the inverse-square variation of the component attractions toward
particles. Just as is the case with Newton’s classic inferences from
phenomena, this inference is backed up by systematic dependencies.
Any difference from the inverse-square law for attraction toward the
particles would produce a corresponding difference from the inverse-
square for the law of attraction toward the center resulting from
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summing the attractions toward the particles.3° These dependencies
make phenomena measuring inverse-square variation of attraction
toward the whole count as measurements of inverse-square variation
of the law of attraction toward the particles.

Resolving the two chief world systems problem

In Proposition 8, Newton appeals to theorems on attraction to-
ward spheres to extend his conclusions to gravitation toward bodies
approximating globes made up of spherically homogeneous shells.
Attraction between such bodies is directly as the product of their
masses and inversely as the square of the distance between their
centers.

Proposition 7 is applied to use harmonic law ratios to measure
the masses of the Sun and planets with moons (Corollary 2, Propo-
sition 8). The resulting convergent agreeing measurements of the
masses of these bodies count as a significant realization of Newton’s
ideal of empirical success — a realization that is especially important
because it adds support to his appeal to Law 3 in the argument for
Proposition 7.4°

These measurements lead to his surprising center-of-mass resolu-
tion of the two chief world systems problem.

Proposition 12 (Book 3). The sun is in continual motion but never recedes
far from the common center of gravity of all the planets.

Both the Copernican and the Brahean systems are wrong; however,
the Sun-centered system closely approximates true motions while
the Earth-centered system is wildly inaccurate.

In this center of mass frame the separate centripetal acceleration
fields toward solar system bodies are combined into a single system
where each body undergoes an acceleration toward each of the others
proportional to its mass and inversely proportional to the square of
the distance between them.

General Relativity

Newton transformed the two chief world systems problem into a
physically meaningful question that could be answered by analysis
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of relative accelerations and the information they carry about the
distribution of mass. General Relativity incorporates the basic de-
pendencies between acceleration fields and spherical mass distri-
butions that inform Newton’s account, even though it reinterprets
gravitational free fall as motion along a shortest-distance path —
“geodesic motion” —in a curved space-time.4* Therefore, contrary to
Reichenbach,4* General Relativity does not undercut the objectivity
of Newton’s solution to the two chief world systems problem.43

Contrary to Kuhn,4 the revolutionary change to General Rela-
tivity is in accordance with the evaluative procedures of Newton’s
methodology. The development and applications of perturbation
theory, from Newton through Laplace at the turn of the nine-
teenth century and on through Simon Newcomb at the turn of
the twentieth, led to increasingly accurate successive corrections
of Keplerian planetary orbits. At each stage, departures from mo-
tion in accord with the model developed counted as higher-order
phenomena carrying information about further interactions. These
successive corrections led to increasingly precise specifications of
solar system phenomena backed up by increasingly precise mea-
surements of the masses of the interacting solar system bodies.
The extra 43 arc-seconds per century of Mercury’s perihelion pre-
cession was a departure from the Newtonian theory that resisted
attempts to account for it by such interactions. The successful ac-
count of this extra precession, together with the Newtonian limit
which allowed it to recover the empirical successes of Newtonian
perturbation theory (including the account of the other s31 arc-
seconds per century of Mercury’s perihelion precession*s), made
General Relativity do better than Newton’s theory on Newton’s
own ideal of empirical success. Since its initial development General
Relativity has continued to improve upon what Newton’s method-
ology counts as its clear advantage over Newtonian gravitation
theory.4¢
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2 K. Popper, “The Aim of Science”, in Objective Knowledge: An Evolu-
tionary Approach (Oxford: Oxford University Press, 1972).
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I. Lakatos, “Newton’s Effect on Scientific Standards,” in J. Worrall and
G. Curere (eds.), The Methodology of Scientific Research Programmes
(Cambridge: Cambridge University Press, 1978), pp. 193—222.

C. Glymour, Theory and Evidence (Princeton: Princeton University
Press, 1980), pp. 203-26.

The cited passages are from The Principia, Mathematical Principles of
Natural Philosophy: A New Translation, trans. I. Bernard Cohen and
Anne Whitman, preceded by “A Guide to Newton’s Principia” by I. B.
Cohen (Berkeley: University of California Press, 1999).

Curtis Wilson suggests that Leibniz in his “Tentamen de motuum
coelestium causis” of 1689 (after reading the first edition of Newton’s
Principia) was the first author to call Kepler’s rules “laws.” C. Wilson,
“From Kepler to Newton: Telling the Tale,” in Richard H. Dalitz and
Michael Nauenberg (eds.), The Foundations of Newtonian Scholarship
(Singapore: World Scientific, 2000), pp. 223-42, at pp. 225-6.

Newton'’s clause — the fixed stars being at rest — tells us that the periods
are calculated with respect to those stars. This treats a reference frame
at the center of Jupiter with fixed directions with respect to the stars as
non-rotating. Such non-rotating frames are also used to calculate areas
in the areal law.

Corollary 6 (Laws of Motion). If bodies are moving in any way whatsoever with
respect to one another and are urged by equal accelerative forces along parallel
lines, they will all continue to move with respect to one another as they would
if they were not acted upon by those forces.

Corollary 4 (Laws of Motion). The common center of gravity of two or more
bodies does not change its state whether of motion or of rest as a result of the
actions of the bodies upon one another; and therefore the common center of
gravity of all bodies acting upon one another (excluding external actions and
impediments) either is at rest or moves uniformly straight forward.

Newton explicitly gives corollaries (Corollaries 2 and 3 of Proposition 3,
Book 1) to cover such approximations. These extensions show that the
areal rule can be a quite general criterion for finding centers toward
which forces maintaining bodies in orbits are directed.

Clark Glymour (Theory and Evidence) used these inferences as ex-
amples of good scientific practice that could not be accounted for
by hypothetico-deductive (H-D) methodology. The systematic depen-
dencies backing up Newton’s inferences make such inferences avoid
the counterexamples put forward to challenge bootstrap confirmation,
Glymour’s proposed alternative to H-D confirmation. See W. L. Harper,
“Measurement and Approximation: Newton’s Inferences from Phenom-
ena versus Glymour’s Bootstrap Confirmation,” in G. Weingartner,
G. Schurz, and G. Dorn (eds.), The Role of Pragmatics in Contempo-
rary Philosophy (Vienna: Holder-Picher-Tempsky, 1998).
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The mean error of Pound’s observed estimates from today’s values is
only +o.135 of Jupiter’s semi-diameter, while the average mean error
for the other four astronomers cited by Newton is —1.098.

Newton also suggests that the area rule for Jupiter is “especially prov-
able by the eclipses of its satellites.” Each eclipse gives a heliocentric
longitude (see D. Densmore, Newton’s Principia: The Central Argument
[Santa Fe: Green Lion Press, 1995], pp. 275—7). This allows triangulation
of its heliocentric distance from observations of its angular position
with respect to the Earth. The shortness of the time intervals between
them compared to Jupiter’s period allows sequences of such eclipses to
afford sequences of triangles approximating areas swept out. The area
law for Jupiter can be tested by checking that the areas of those triangles
are proportional to the intervals of time.

In his Dialogue concerning the Two Chief World Systems, Galileo had
appealed to the phases of Mercury and Venus and the absence of phases
of Mars, Jupiter, and Saturn in concluding that the orbits of the first two
encompass the Sun, but not the Earth, while the orbits of the last three
encompass both. While ruling out Ptolemaic systems, this still left open
the question of a Copernican versus a Tychonic system (or intermedi-
ates between them). See G. Galileo, Dialogue concerning the Two Chief
World Systems, trans S. Drake (Berkeley: University of California Press,
1967), pp. 322ff.

See W. L. Harper, “The First Six Propositions in Newton’s Argument for
Universal Gravitation,” The St. John’s Review 45, no. 2 (1999), 74-93,
at pp. 84-7.

Newton’s orbital data can be fit as well or better by a higher-order curve
that would not have the periods be any constant power s of the mean
distances. On such a hypothesis, the application of Corollary 7 of Propo-
sition 4 would be undercut. The orbits would, therefore, not carry in-
formation about any simple power law relating the accelerative forces
to distances from the sun.

Similarly, the orbital data are not precise enough directly to rule
out an ellipse with the Sun slightly displaced toward the center from
the focus so that the force is not directed exactly at that focus. As
George Smith points out, Newton knew that any such orbit would be
incompatible with an inverse-square power law. G. E. Smith, “From the
Phenomenon of the Ellipse to an Inverse-Square Force: Why Not?,”
in David Malament (ed.), Reading Natural Philosophy: Essays in the
History and Philosophy of Science and Mathematics to Honor Howard
Stein on his 70th Birthday (La Salle: Open Court, 2002).

These alternative hypotheses illustrate the fact that Newton’s infer-
ences from phenomena are not logically forced by the data, even together
with mathematical theorems derived from the Laws of Motion.



17

18

19

20
21

22

23

24
25

Newton’s argument for universal gravitation 197

Boulliau uses the same mean distances as Kepler for the Earth and Mars.
For the ten distinct estimates cited by Newton, the ratio of sd* to the
mean value of the harmonic law ratios [R3/t*] is 0.007.

In his System of the World, an earlier version of Book 3 composed “in a
popular method that it might be read by many” (Introduction to Book 3),
Newton points out:

But now, after innumerable revolutions, hardly any such motion has been per-
ceived in the orbits of the circumsolar planets. Some astronomers affirm there
is no such motion; others reckon it no greater than what may easily arise from
causes hereafter to be assigned, which is of no moment to the present question.
(F. Cajori [ed. and trans.], Newton’s Principia, Motte’s Translation Revised [Los
Angeles: University of California Press, 1934], p. 561)

Any precession that can be accounted for by perturbation due to forces
toward other bodies can be ignored in using stable apsides to measure
inverse-square variation of the centripetal force toward the Sun main-
taining planets in their orbits.

See S. R. Valluri, C. Wilson, and W. L. Harper, “Newton’s Apsidal Preces-
sion Theorem and Eccentric Orbits,” Journal of the History of
Astronomy 27 (1997), 13-27.

See Densmore, Newton'’s Principia, p. 282.

Using 1/178.725 in Corollary 2, Proposition 45 yields fairly close to
what Newton cites as the lunar precession per revolution.

In Proposition 26, Book 3, however, Newton shows that the average,
over a lunar orbit, of the Moon-Earth radial component of the force of the
Sun to perturb the Moon is a reduction of 1/357.45 of the basic inverse-
square centripetal force on the Moon. The result of using 1/357.45 in
Corollary 2, Proposition 45 shows that the radial component alone of
the Sun’s force on the Moon would account for only about half of the
lunar precession. See G. E. Smith, “The Motion of the Lunar Apsis,” in
The Principia, ed. and trans. Cohen and Whitman, pp. 257-64.

It was not until 1749 that a solution showing how the lunar precession
could be accounted for by the Sun’s perturbation of the lunar orbit was
achieved. See R. Taton and C. Wilson, The General History of Astron-
omy, vol. 2B (Cambridge: Cambridge University Press, 1995), pp. 35-46.
Huygens’s one-second fall of 15.096 Paris feet corresponds to 980.7
cm/sec? for the acceleration of gravity at Paris. The modern value for
g at Paris is 980.87 cm/sec?. See G. E. Smith, “Huygens’s Empirical
Challenge to Universal Gravity” (forthcoming) for this comparison and
for a detailed account of Huygens’s achievement.

When the correction is applied we get 15.0935 Paris feet.

Newton’s main text for Proposition 4 concludes with an appeal to the
two-body correction which can defend using 60 in the Moon-test when
the measured distance is somewhat greater.
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See H. Stein, “ ‘From the Phenomena of Motions to the Forces of Nature’:
Hypothesis or Deduction?,” PSA 1990 2 (1991}, 209-22; also Taton and
Wilson, General History, vol. 2B, pp. 7, 12 and Huygens’s Discourse
on the Cause of Gravity, trans. Karen Bailey, in George E. Smith (ed.),
A Measure in Evidence: Huygens’s Determination of Surface Gravity
(forthcoming).

This Scholium was added in the third (1726) edition; see Isaac
Newton’s Philosophiae Naturalis Principia Mathematica, the Third
Edition with Variant Readings, ed. A. Koyré, 1. B. Cohen, and Anne
Whitman (Cambridge, MA: Harvard University Press; Cambridge:
Cambridge University Press, 1972), p. 569.

rn

Stein, “‘From the Phenomena of Motions’,” pp. 211-13.

Stein, “ ‘From the Phenomena of Motions’,” p. 213, and H. Stein, “On
the Notion of Field in Newton, Maxwell, and Beyond,” in R. H. Stuewer
(ed.), Historical and Philosophical Perspectives of Science (Minneapolis:
University of Minnesota Press, 1970) pp. 264-87.

The lunar data will provide more epistemic resistance to conjectures
that would make the acceleration of gravity at the surface of the Earth
differ from Huygens’s measure by enough to go outside the error bounds
set by the Moon-test estimate than would have been provided by
Huygens’s data alone. Agreeing measurements by several phenomena
contributes to increase the resiliency — resistance to large changes — of
estimates of parameter values.

The provision for approximations fits with construing such propositions
as established up to tolerances provided by measurements. This makes
Rule 4 very much in line with the methodology guiding testing programs
in relativistic gravitation today (Harper, “Measurement and Approxima-
tion,” pp. 284~5; W. L. Harper, “Isaac Newton on Empirical Success and
Scientific Method,” in J. Earman and J. D. Norton [eds.|, The Cosmos of
Science [Pittsburgh: University of Pittsburgh Press, 1997], pp. 55-86).
Where f;/m; and f,/m, are ratios of weights toward the center of a
planet to inertial masses of attracted bodies while a, and a, are their
respective gravitational accelerations toward it, it follows from f = ma
that a; = a, if and only if f,/m, = f,/m,.

These experiments extend to this, much greater, precision the many
long-established, rougher but agreeing, observations that bodies fall at
equal rates “at least on making an adjustment for the inequality of the
retardation that arises from the very slight resistance of the air.”

For any body x, let Q.(x) = (W,(x)[d.(x)]?)/m(x), where W,(x) is the
weight of x toward the earth, d,(x) is the distance of x from the cen-
ter of the earth, and m(x) is the inertial mass of x. For bodies x and y,
A%, y) = Q(x) — Q,(y) is the difference in the ratios of their inverse-
square-adjusted weights toward the earth to their inertial masses.
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Newton does not provide the details of his calculation and the result he
cites is incorrect. The 0.034 results from applying a modern calculation
to the tolerances for distance estimates exhibited by the data cited by
Newton from other astronomers and the 0.004 from applying it to tol-
erances estimated from comparing Pound’s data with current estimates
of orbital distances for Jupiter’s moons. See W. L. Harper, S. R. Valluri,
and R. Mann, “Jupiter’s Moons and the Equivalence Principle,” forth-
comming in Proceedings of the Ninth Marcel Grossmann Meeting on
General Relativity, for discussion and references.

Bounds limiting this universal parameter toward zero are what count
today as bounds limiting violations of the weak equivalence princi-
ple — the identification of passive gravitational with inertial mass.
The phenomena cited by Newton together with additional phenom-
ena of far greater precision count today as agreeing measurements sup-
porting this identification. (See Harper, “Isaac Newton on Empirical
Success,” and “Measurement and Approximation,” for discussion and
references.)

This extends the identification of gravitational and inertial mass to in-
clude active as well as passive gravitational mass (see note 36).

The classic use of “planet” to refer to heavenly wanderers would in-
clude the Sun, the Moon, and primary planets and their satellites. The
argument for Proposition 6 includes gravitation toward the Earth, which
suggests that Newton extends the classic use to count the Earth, also,
as a planet.

His thought experiment with terrestrial bodies raised to the Moon
illustrates that a body can count as part of a planet just by falling on it.
S. Chandrasekhar (Newton’s Principia for the Common Reader [Oxford:
Clarendon Press, 1995], formula 9, p. 289) provides an integral formulat-
ing the dependencies Newton provides in Lemma 29 and Propositions
79-81, Book 1.

According to Proposition 74, Book 1, inverse-square attraction to-
ward the center of a uniform sphere on corpuscles outside, right down to
the surface, results from summing the inverse-square attractions on the
corpuscle toward the particles making up the sphere. This proposition
follows from Chandrasekhar’s integral when the law of attraction to-
ward particles is the —2 power of distance.

A power law differing even slightly from the inverse-square, e.g., a
—2.01 power law, for the particles will approach the same power law for
attractions to the whole at great distances but will yield attractions to
the whole corresponding to differing non-uniform relations to distance
for locations close to the surface of the sphere. The inverse-square case,
and the simple harmonic oscillator case where attraction is directly as
the distance, are special in that the law of attraction toward particles
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yields the same law of attraction toward the whole all the way down to
the surface of the sphere. These are the two cases Newton singles out
for detailed treatment.

Howard Stein, in “‘From The Phenomena of Motions’,” pointed out
that Newton’s application of Law 3 in his argument for Proposition 7
is not an inference from the phenomena cited in the argument for
Propositions 1-7. This significant objection was anticipated by Cotes
and responded to by Newton in letters to Cotes. For a discussion of how
issues raised by this challenge illuminate Newton’s methodology, see
W. L. Harper, “Howard Stein on Isaac Newton: Beyond Hypotheses?,”
in David Malament (ed.), Reading Natural Philosophy: Essays in the
History and Philosophy of Science and Mathematics to Honor Howard
Stein on his 7oth Birthday (La Salle: Open Court, 2002).

See DiSalle, this volume, for discussion and further references.
According to Hans Reichenbach (The Philosophy of Space and Time
[New York: Dover, 1958], p. 217):

Therelativity theory of dynamics is not a purely academic matter, for it upsets the
Copernican world view. It is meaningless to speak of a difference in truth claims
of the theories of Copernicus and Ptolemy; the two conceptions are equivalent
descriptions. What had been considered the greatest discovery of western science
compared to antiquity, is now denied its claim to truth.

The mass of the Sun with respect to the masses of the planets is large
enough to support geodesics approximating orbits of the planets about it,
while the mass of the Earth (measured by the motion of the Moon) is far
too small. These mass differences, together with the difficulties imposed
on construing the irregularities of Brahean orbits as geodesics in a curved
space-time generated by the Earth as a spherically symmetric mass
distribution, make General Relativity agree with Newton in counting
Earth-centered systems as wildly inaccurate. See DiSalle, this volume.
T. S. Kuhn, The Structure of Scientific Revolutions, 2nd edn (Chicago:
University of Chicago Press, 1970), p. 94:

Like the choice between competing political institutions, that between compet-
ing paradigms proves to be a choice between incompatible modes of community
life. Because it has that character, the choice is not and cannot be determined
by the evaluative procedures characteristic of normal science, for these depend
in part upon a given paradigm, and that paradigm is at issue. When paradigms
enter, as they must, into a debate about paradigm choice, their role is necessarily
circular. Each group uses its own paradigm to argue in that paradigm’s defense.
This 531 arc-seconds per century does not include the general precession
of 5025.6 arc-seconds resulting from the precession of the equinoxes
(see C. M. Will, Theory and Experiment in Gravitational Physics
[Cambridge: Cambridge University Press, 1993], p. 4). The contrast
between the approximately §31 + 43 arc-seconds per century that needs
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to be dynamically accounted for and the general precession, which
results merely from rotating coordinates, illustrates that General Rela-
tivity continues to distinguish between true and merely relative motion.
As Smith points out (“From the Phenomenon of the Ellipse”),
General Relativity’s solution to the Mercury perihelion problem
requires that it be able to recover also the precession accounted for by
Newtonian perturbations.
In addition to the famous three basic tests there are now a great many
post-Newtonian corrections required by the more precise data made
available by such new observations as radar ranging to planets and
laser ranging to the Moon. These provide not just predictions but
also measurements of parameters, such as those of the PPN testing
framework, which support General Relativity. See Will, Theory and
Experiment, and Harper, “Isaac Newton on Empirical Success,” for
discussion and references.
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6 Newton and celestial mechanics

Newton’s achievements in celestial mechanics tend in popular ac-
counts to be underestimated in some respects, exaggerated in others.
This chapter seeks to correct a number of misconceptions arising
from inattention to the detailed history.

KEPLER’S FIRST TWO LAWS, SO-CALLED, AND NEWTON

The claim that the planets move in elliptical orbits, with the radii
vectores from Sun to planet sweeping out equal areas in equal times,
first appeared in Kepler’s Astronomia Nova of 1609. Since the late
eighteenth century the two parts of this claim have been referred to
as Kepler’s first two planetary “laws,” understood as empirical laws.
According to the popular account, Newton relied on these “laws” as
thus established.

Writing to Halley on 20 June 1686, Newton stated: “Kepler knew
ye Orb to be not circular but oval & guest it to be elliptical.”*
Whether Newton ever saw the Astronomia Nova is unknown.

The Astronomia Nova is an innovative work. It establishes impor-
tant empirical results, such as the passage of the planet’s orbital plane
through the Sun’s center and the orbit’s oval shape. Was the orbit’s
ellipticity also a straightforwardly empirical result, say by means of
triangulations of Mars, as sometimes asserted?*> Kepler carried out
many such triangulations, but they were subject to sizeable observa-
tional error, of which he was acutely aware.3

At the end of Chapter 58 we at last find him asserting that “no
figure is left for the planetary orbit but a perfect ellipse.” This chap-
ter attempts to refute another oval orbit, the via buccosa or puffy-
cheeked path. Kepler’s whole effort, he tells us, has been to find a

202
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hypothesis yielding not only distances in agreement with observa-
tion, but also correct “equations” — “equation” here meaning the
difference between the mean and the true heliocentric motions, mea-
sured from aphelion. To derive the true position at any time, Kepler
used his area rule, in which area swept out is proportional to time. He
had already found that this rule, when applied to a particular ellipse —
the ellipse with the Sun at one focus — yielded the true positions
with no more than expected observational error; but he was unable
to explain why the planet should move in this ellipse. He turned to
another hypothesis which he called the “libration,” and which, so
he supposed, implied a different orbit.

In the “libration,” the planet oscillates sinusoidally along the ra-
dius vector. The cause of this oscillation, Kepler proposed, was a
quasi-magnetic attraction and repulsion from the Sun. (In Kepler’s
preinertial physics, separate causes had to be assumed for the planet’s
forward motion about the Sun, and for its motion toward and away
from the Sun.) The libration gave the Sun—planet distances correctly,
agreeing with the triangulations to within the range of observational
error. In another respect it was indeterminate: the radius vector
started at the Sun’s center, but where did the other end go? Kepler
at first imagined he knew where it went, and his initial placement
yielded the puffy-cheeked orbit (we omit details). Then he discov-
ered that a different placement, just as plausible, would yield the
Sun-focused ellipse. Thus the libration hypothesis could be com-
bined with this ellipse to give both correct equations and correct
distances.

But in his diagram he found the alternative radii vectores in the
ellipse and puffy-cheeked orbit to be separated by observationally
detectable angles, +5'.5 at 45° of anomaly and —4’ at 135° of anomaly.
Since the ellipse gave correct equations, Kepler concluded that the
puffy-cheeked orbit could not do so. Hence, “no figure is left for the
planetary orbit but a perfect ellipse.”

The conclusion is unwarranted. Motion on the puffy-cheeked or-
bit in accordance with the area rule, when calculated by integra-
tion throughout the orbit, differs at maximum from motion in the
ellipse by about 1/, a difference not observationally significant in
Tycho’s data.4 (Of course, with the mathematics available to him
Kepler would have been hard put to carry out an equivalent of the
modern integration.)
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If the ellipticity of the orbits was not empirically established by
Kepler, then neither was the so-called second law: determination
of areas presupposes orbital shape. For Kepler the area rule was the
expression of a dynamical hypothesis, the idea of a motive virtue
issuing from and rotating with the Sun so as to push the planets
round, its strength varying inversely with distance from the Sun.
Kepler’s dynamics was Aristotelian, making speed proportional to
force. His conception implied that the component of orbital speed at
right angles to the radius vector varied inversely with distance.’ The
area rule, he belatedly realized, was a consequence.

Given his two rules, Kepler in his Tabulae Rudolphinae (1627)
derived tables for calculating planetary and lunar positions. These
proved more accurate than all earlier tables, and so confirmed the
two rules in combination.

Newton was aware of the principal features of Kepler’s causal ac-
count of planetary motion: he had read (probably in 1685 or 1686) the
critique of it given by Ishmaél Boulliau (1605-94) in his Astronomia
Philolaica (Paris, 1645). This astronomical treatise was the first af-
ter Kepler’s Rudolphine Tables to take elliptical orbits as a basis for
calculating planetary tables. But Boulliau entirely rejected Kepler’s
hypothetical physical causes, devoting the bulk of his Chapter xi1
to refuting them.® He preferred to believe that each planet is moved
by its “proper form.”” To Boulliau, Kepler’s assumption of a virtus
movens issuing from the Sun was mere conjecture.

Also, to Kepler’s assumption of an inverse proportionality of the
virtus movens to solar distance Boulliau objected that corporeal
virtues issuing from a point source should vary inversely with the
square of the distance from the source. Newton picked up on this
assertion in a long postscript to his letter to Halley of 20 June 1686:
“Bullialdus [Boulliau] wrote that all force respecting y® Sun as its
center & depending on matter must be reciprocally in a duplicate
ratio of y® distance from y® center.”® Newton was here seeking to
rebut Robert Hooke’s claim to have furnished him originally with
the idea of an inverse-square variation for gravity.

From Boulliau’s critique Newton learned that Kepler’s dynamics
violated the principle of inertia, and that Kepler, in seeking to ex-
plain the planet’s alternate approach to and recession from the Sun,
had invoked a hypothetical magnetism in the Sun and planet — a
hypothesis that Boulliau dismissed as merely conjectural. Newton,
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corresponding with Flamsteed in 1681, had argued that the Sun, be-
ing hot, could not be a magnet.®

In the inertial mechanics of Newton, equable description of area
becomes equivalent to a centripetal force, a single cause for a single
effect, namely the departure of the orbiting body from its instanta-
neous rectilinear path. His derivation of the ellipticity of the plan-
etary orbits in Proposition 13, Book 3 of the Principia rested on the
Laws of Motion announced at the beginning of the Principia, and on
the inverse-square law of universal gravitation argued for in the first
seven propositions of Book 3.1° In contrast with Kepler’s attempted
derivation, it contained no bare conjectures.

Universal gravitation did not become the guiding idea in Newton’s
thinking on planetary motion till much later than was long supposed:
not before 1685. How had Newton viewed the Keplerian rules in the
years before the Principia?

In the mid-1660s Newton made notes on Thomas Streete’s As-
tronomia Carolina (1661). In 1669 or 1670 he perused Vincent Wing's
Astronomia Britannica (1669), and wrote notes on its endpapers.!!
Both authors took the orbits of the planets to be elliptical, with-
out offering justification for the assumption. Neither mentioned or
used Kepler’s area rule. Instead, each proposed a different calcula-
tive procedure for passing from mean anomaly (angle from aphelion
that would be traversed at the planet’s mean rate) to true anomaly
(the planet’s actual angle from aphelion). The area rule did not admit
of such a direct procedure, except by approximation. Both Wing’s
and Streete’s procedures were corrections to a faulty procedure pro-
posed in Boulliau’s Astronomia Philolaica (we omit details™?), and
produced results differing by only small amounts from those derived
by the area rule. Streete’s procedure gives a maximum error for Mars
of 1'51”. In Wing'’s procedure the corresponding error is 20”.

Newton’s reaction to these hypothetical devices, as his notes on
Wing’s Astronomia Britannica attest, was to doubt both the elliptic-
ity of the orbits and the accuracy of the calculative procedures. Both
orbital shape and motion, he proposed, should be controlled empiri-
cally, and he showed in a construction how this could be done.*3

Both Streete and Wing assumed that the planets are moved by
a solar vortex. Newton in the 1660s, while rejecting the Cartesian
identification of matter and extension (on which for Descartes the
necessity of vortices rested), accepted planetary vortices. In his
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speculations about planetary motion during the 1670s, he again
assumed such vortices. A document datable to 1681 shows him still
doing so.'# The supposition of vortices with their hydrodynamical
complexities could hardly fail to give rise to doubts about the
mathematical accuracy of the elliptical orbits accepted by his
contemporaries.

KEPLER’S THIRD OR HARMONIC LAW, AND NEWTON

Streete differed sharply from Wing in asserting the strict accuracy
of Kepler’s third law — the law according to which the planetary pe-
riods are as the three-halves power of their mean solar distances.
In a departure from Kepler's Rudolphine Tables, he used the law
to derive the mean solar distances from the periods. The solar dis-
tances could be determined observationally only by imprecise tri-
angulations, whereas the periods were precisely determinable from
comparisons of ancient and modern observations. Hindsight tells us
that, for the planets from Mercury to Mars (but not for Jupiter or
Saturn), the new rule improved the accuracy of the solar distances
by three orders of magnitude.

Streete took this procedure from the as yet unpublished Venus in
Sole Visa of Jeremiah Horrocks (16187 — 3 January 1641). Horrocks
had found empirical support for it in his observations of Mars and
Venus."s

Newton, on reading about this rule in Streete’s Astronomia
Carolina, made a note of it. A few years later, perusing Wing's
Astronomia Britannica, he found that Wing’s values for the mean
solar distances disagreed with this “regula Kepleriana.” They would
better agree with observations, he wrote in the endpapers of his copy,
if they were reduced to the rule.

Newton’s interest had a theoretical dimension. Probably in 1666
he had derived a formula for “the endeavor from the center of a body
revolving in a circle,” thus quantifying the Cartesian concept; in a
not yet published work Huygens had given the name “centrifugal
force” to the pull on a string that retains the body in the circle,
counteracting this endeavor.™® According to the formula, when bod-
ies are moving in different circles, their endeavors from the centers
of those circles are as the radii divided by the squares of the pe-
riodic times. Since by the “regula Kepleriana” the squares of the
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periods of the planets are as the cubes of their mean solar distances,
their endeavors from the Sun will be reciprocally as the squares of
their solar distances. Newton also compared the Moon’s endeavor to
recede from the Earth with gravity at the Earth’s surface, and found
the latter to be “4000 and more times greater” than the former — not
(60)* = 3600 times, as an inverse-square relation would imply.

David Gregory on a visit to Newton in 1694 was shown a
manuscript with these calculations, and wrote afterwards that here
“all the foundations of his [Newton’s| philosophy are laid: namely the
gravity of the Moon to the Earth, and of the planets to the Sun.”'?
From Henry Pemberton, writing in 1728,"® and William Whiston,
writing in 1749, we have similar accounts. According to Whiston,
the failed lunar calculation led Newton to suspect that the force
on the Moon was due partly to gravity and partly to “Cartesius’s
Vortices.”

These tales give us a Newton about to embark on the enterprise of
the Principia in the 1660s, but delaying for twenty years on account
of a computation’s failing to match expectation. As Florian Cajori
has pointed out, the computation could easily have been corrected.
Newton had used an inaccurate value for the length of a degree of ter-
restrial latitude. Better values were readily available; Newton came
to know of them by 1672.2°

During these years Newton employed aethereal hypotheses to ac-
count for optical, electrical, chemical, and other phenomena. In the
Hypothesis Explaining y©¢ Properties of Light which he transmitted to
the Royal Society in December 1675,2! he assumed an elastic aethe-
real medium — not “one uniforme matter,” but rather compounded
of various “aethereall Spirits.” These aethereal Spirits could be con-
densable, so that “the whole frame of Nature may be nothing but
various Contextures of some certain aethereall Spirits or vapours
condens’d as it were by precipitation.” Terrestrial gravitation could
be due to a certain aethereal Spirit which is condensed in the body
of the Earth; in descending from above, it would “beare downe with
it the bodyes it pervades with a force proportionall to the superfi-
cies of all their parts it acts upon.” This aethereal matter, trans-
formed alchemically within the Earth, would then slowly ascend to
constitute the Earth’s atmosphere for a time, before vanishing again
into the aethereal spaces.”And as the Earth, so perhaps may the Sun
imbibe this Spirit copiously to conserve his shineing, & keep the
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Planets from recedeing further from him.” This downward flux,
Newton supposed, was separate from the aethereal vortex carrying
the planets about the Sun; the two fluxes passed through one another
without mixing. He considered that the downward flux of acther into
the central body would lead to an inverse-square law.>*

The dynamics that Newton here relied on was the Cartesian dy-
namics of an endeavor from the center — plausible for a stone twirled
in a sling or a planet carried about in a vortex. What if the planet
moves inertially in a straight line, and is simultaneously attracted
to a center? Robert Hooke proposed the latter conception to Newton
in a letter of 24 November 1679.23

The import of facts changes with the changing ideas in the light of
which they are viewed. Evidence for an inverse-square law of force
may be taken, in a universe of vortices, as evidence for a certain kind
of aethereal flux; but it hardly suggests an opening into an exact,
quantitative theory of planetary motion: unknown aethereal pres-
sures within and between vortices may be operative. In a universe
empty of aethereal matter, on the other hand, such evidence suggests
a force somehow acting across the space from Sun to planet, as the
predominant determinant of the planet’s motion.

Newton in a tract “De motu” that he sent to Edmond Halley
in November 1684 proceeded along the lines of this latter concep-
tion. Centripetal force, he showed, implied equable description of
areas. Also, given a conic-section orbit about the Sun in a focus, the
force is inverse-square. Further, assuming inverse-square law implies
conic-section orbit, he showed how to find the conic section corre-
sponding to any particular initial conditions of position and velocity.
“Therefore,” he astonishingly claimed, “the major planets gyrate in
ellipses having their foci in the center of the Sun; and by radii drawn
to the Sun, describe areas proportional to the times, just as Kepler
supposed.”’24

What led Newton to pursue Hooke’s conception we do not know.
Perhaps Comet Halley, appearing in 1682 in its retrograde orbit across
the sky, at last convinced him that vortices could not exist.?’

Atleast as interesting is Newton'’s lack of conviction after Novem-
ber 1684 as to the exact truth of Hooke’s conception or its sufficiency
to account for the phenomena. As he wrote Flamsteed on 12 January
1685, “Now I am upon this subject I would gladly know y® bottom
of it before I publish my papers.”?°
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Newton had sought Flamsteed’s help in December. From Flam-
steed’s letter of 27 December he learned that the maximum elonga-
tions of Jupiter’s four satellites “are as exactly in sesquialte propor-
tion to theire periods as it is possible for our sences to determine.”?’
This was good news: “Your information about y® Satellits of Jupiter
gives me very much satisfaction.”?® Flamsteed’s determinations,
made with the screw micrometer, were precise to one-thousandth of
the semi-diameter of Jupiter’s disk.

Whether the mean solar distances of the primary planets agreed
with Kepler’s harmonic rule was still a question. “The orbit of
Saturn,” Newton wrote Flamsteed on 30 December, “is defined by
Kepler too little for y¢ sesquialterate proportion.” He went on to ex-
plain how he thought the motion of Saturn might be perturbed by
Jupiter. The idea astonished Flamsteed, but, responding on 5 January,
he acknowledged that his determinations had not yet been strict
enough to exclude “such exorbitation as you suggest of Saturn.”2?
Newton replied:

Your information about y¢ error of Keplers tables for Jupiter & Saturn has
eased me of several scruples. I was apt to suspect there might be some cause
or other unknown to me, w® might disturb y® sesquialtera proportion...It
would ad to my satisfaction if you would be pleased to let me know the
long diameters of y¢ orbits of Jupiter & Saturn assigned by your self & Mr
Halley...that I may see how the sesquiplicate proportion fills y¢ heavens
together w another small proportion w*" must be allowed for.3°

The “small proportion wh must be allowed for” is presumably the

modification of Kepler’s harmonic rule introduced in Propositions
57-60, Book 1 of the Principia.

Evidently Newton was now embarked on a program of substanti-
ating a dynamical conception whose full reach was in doubt. He had
yet to satisfy himself that the force between the planets and the Sun
was solely gravitational, that terrestrial gravity like the solar and
Jovial attractions was directly proportional to mass, that the gravi-
tational attraction of a body arose from the gravitational attractions
of all its least particles, etc.

The argument for universal gravitation is the crowning achieve-
ment of the Principia. The book abounds in mathematical triumphs
as well. True, not all its demonstrations are valid; it does not achieve
everything it attempts to achieve; it leaves unanswered questions
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that the idea of universal gravitation can raise. These judgments of a
pioneering work should not surprise. Both by what it achieved and by
what it failed to achieve, it set the agenda for the celestial mechanics
of the next two centuries.

How Newton and his successors responded to this agenda will be
our concern in the following sections.

NEWTON ON THE MOON’S MOTION

In Proposition 22, Book 3 of the Principia (all editions), with the aid
of Corollaries of Book 1 66, Newton showed qualitatively how the
known inequalities of the Moon arise from the varying difference
between the accelerations that the Sun causes in the Moon and
the Earth. These include the inequalities called “the Variation”
and the “annual equation,” the oscillations in the Moon’s orbital
eccentricity and apsidal line postulated in the lunar theory of
Jeremiah Horrocks, the inequalities in the lunar latitudes detected
by Tycho, and the general forward advance of the lunar apse.

Horrocks’s lunar theory had first been published by Flamsteed in
1672, and then republished with Flamsteed’s revised constants in
1681. It combined the Moon’s unperturbed elliptical orbit with the
second inequality due to the Sun (the “evection” as Boulliau called
it) to obtain an ellipse with oscillating eccentricity and apse. The
Horrocksian theory was the first lunar theory to admit in a direct
way of a Newtonian analysis in terms of forces.

The Principia includes certain quantitative derivations with re-
gard to the Moon’s motions. Such are the derivations of the motions
of the Moon’s nodes (Propositions 30-33, Book 3) and of the changes
in the Moon’s orbital inclination (Propositions 34, 35, Book 3); these
are valid and the results correct. Newton derives the Variation in
Propositions 26, 28, and 29, Book 3, with an accurate result (it as-
sumes without proof that the Sun has the effect of transforming an
idealized circular lunar orbit into one that can be approximated by
an ellipse with the Earth at the center).

In the first edition Scholium to Proposition 35, Book 3 of the
Principia, Newton speaks of computing the motion of the Moon’s
apogee, and finding its annual mean motion to be 40°. “The com-
putations, however, as being too complicated and impeded by ap-
proximations, and insufficiently accurate, it is better to omit.” The
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manuscript in which these computations were made was discov-
ered in the late nineteenth century, and has been published by
Whiteside.3® It shows Newton taking account of both the radial and
transverse components of the Sun’s perturbing force; the analysis is
in many respects brilliant. It includes, however, an illegitimate step,
and the final result, as Whiteside judges, is fudged. In later editions
Newton omitted all reference to this computation.

In Corollary 2 of Proposition 45, Book 1 (all editions), Newton cal-
culated the effect of the radial component of the solar perturbation
in producing motion of the Moon’s apse, but without identifying the
calculation as having to do with the Moon. The calculated apsidal
advance per revolution was 1°31’ 28”. In the third edition Newton
added the remark: “The apse of the Moon is about twice as swift.”
To eighteenth-century readers, this appeared to be the sum total of
what Newton had supplied in the way of a quantitative derivation of
the Moon’s apsidal motion. “Neither,” wrote John Machin in 1729,
“is there any method that I have ever yet met with upon the com-
monly received principles, which is perfectly sufficient to explain
the motion of the Moon’s apogee.” 3>

On 1 September 1694 Newton visited Flamsteed at Greenwich.
Flamsteed showed him about 150 observed places of the Moon, along
with the corresponding places derived from his (Flamsteed’s) lunar
theory. The errors averaged to about 8 arc-minutes, but went as high
as 20 arc-minutes. Now, a primary purpose of Flamsteed’s appoint-
ment as “the King’s Astronomer” (in 1675), and of the establishment
of the Greenwich Observatory, was to obtain star positions and a lu-
nar theory accurate enough to enable navigators to determine the
longitude at sea. For determining the angular distance in longitude
from a given meridian to within 1°, the lunar theory had to be accu-
rate to 2 arc-minutes. Newton, seeing that Flamsteed’s theory was
insufficiently accurate, undertook to develop a more accurate theory.

From Flamsteed Newton received a total of about 250 lunar obser-
vations, the most extensive and accurate database a lunar theorist had
yet had to base a theory upon. Newton’s new theory was published
in 1702, first in Latin, then in English, as A New and most Accurate
Theory of the Moon’s Motion; Whereby all her Irregularities may
be solved, and her Place truly calculated to Two Minutes.

The elements of the new theory are presented without explana-
tion of their derivation. The core of the theory is (like Flamsteed’s
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theory) Horrocksian but with revised numerical parameters. A few
specifically Newtonian features are added: special annual equations
in the mean motions of the lunar apsides and node, with coefficients
of 20" and 930" respectively, and four new small terms whose ori-
gin is unexplained, although in the second edition of the Principia
Newton asserted that they were derived from the theory of gravity.

Newton’s theory is not as accurate as claimed in the title of the
English version. But, when comparison is made with an historically
accurate modern ephemeris, he is found to have determined the
Moon’s mean motion for the period 1680-1700 with greater accu-
racy than any of his contemporaries. And, when the small error in the
mean motion is removed, the corrected theory proves to have a stan-
dard deviation of 1.9 arc-minutes; 95% of its values thus fall within
3.8 arc-minutes of the correct values. The errors in Flamsteed’s
theory of 1681 were about twice as large.33 Not till 1753 would a
lunar theory accurate to within 2 arc-minutes be devised.

ABERRATION, NUTATION, PRECESSION

In 1725 Samuel Molyneux and James Bradley undertook to repli-
cate observations of the meridian transits of Gamma Draconis that
Robert Hooke had made in 1669 — observations ostensibly confirm-
ing annual parallax in this star, and thus proving the Copernican hy-
pothesis. Hooke’s observations, they found, were mistaken: Gamma
Draconis was moving in an annual cycle, but not the one that an-
nual parallax implied. Later Bradley verified that other stars moved
in such annual cycles. The pattern of motion could be explained by
assuming that light has a finite velocity, and that the Earth is moving
about the Sun, so that the direction of the light with respect to the
moving Earth had a component in the direction of the Earth’s motion.
Thus all the stars move annually in ellipses, with a long axis of about
40"; the ellipses reduce to a straight line for stars on the ecliptic, and
to circles for stars near the ecliptic North Pole. Bradley announced
the discovery of this effect, which he named the aberration of light,
to the Royal Society early in 1729.

Thereafter he discovered that, besides aberration, further stellar
motions were occurring; and he was able to account for them as
a kind of wobble in the precessional motion of the Earth’s axis — a
nutation — with a period of eighteen years, the period of revolution of
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the Moon’s nodes. He announced this discovery to the Royal Society
in January 1748, after verifying the hypothesis over a complete cycle.

For the attainment of an astronomy accurate to arc-seconds, these
discoveries were crucial. Previously, aberration and nutation, un-
recognized, had played havoc with attempts to found observational
astronomy on a secure basis. As the astronomer Nicolas-Louis de
Lacaille (1713-62) put it, “Many obscurities thus arose...it finally
seemed that hardly anything certain could be deduced from the heav-
ens. Fortunately, to meet such evil, at length came Bradley.”34

The nutation, which Newton had not predicted, required an ex-
planation in terms of inverse-square gravitation, and in mid-1748
Jean le Rond d’Alembert (1717-83) set about deriving it. Nutation
is a refinement of the precession of the equinoxes, and d’Alembert
soon found that Newton’s explanation of the precession (Proposi-
tion 66, Corollary 22, Book 1, and Proposition 39, Book 3 with the
preceding lemmas) was deeply flawed.35 Newton’s basic error arose
from his lack of an appropriate dynamics for the rotational motions
of solid bodies, and his attempt to treat problems involving such mo-
tions in terms of linear momentum rather than angular momentum.
D’Alembert now furnished the elements of the appropriate dynam-
ics, and Leonhard Euler systematized it.

THE MOTION OF THE LUNAR APSE DERIVED
FROM THE INVERSE-SQUARE LAW

The first to apply Leibnizian-style mathematics, that is to say differ-
ential equations, to the problem of the Moon’s motions was Leonhard
Euler. He published lunar tables in 1745, then revised them for his
Opuscula Varii Argumenti of 1746. In the preface to the tables in the
Opuscula, he stated that they were derived from Newton’s theory of
attraction, but gave no details.

In the spring of 1746 Alexis-Claude Clairaut (1713-65) and
d’Alembert separately set out to derive differential equations for
the three-body problem, and to apply them to the Moon’s motions.
By the summer of 1747 Clairaut knew that a first-order solution to
his equations yielded reasonable values for the major perturbational
terms, but only about half the observed motion of the Moon’s apse.
Meanwhile, Euler’s essay on the perturbations of Jupiter and Saturn,
submitted in the Paris Academy’s prize contest for 1748, arrived, and
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Clairaut, as a member of the prize commission, read it in September
1747. Therein Euler expressed doubt as to the accuracy of the inverse-
square law of gravitation, and, in support of his doubt, stated that
Newton’s law led to but half the observed motion of the lunar apse.
Addressing the Paris Academy in November 1747, Clairaut pro-
posed that Newton’s law be altered by the addition of a small, inverse
fourth power term, whereby the full motion of the lunar apse would
become deducible. This proposal unleashed a storm of controversy.3°
Clairaut retracted his proposal in May 1749. In outline, the reversal
came about as follows.37
From his differential equations, Clairaut had obtained by a double
integration the result
fz
Mr

=1—gsinv—gcosv + sinv/decosv— cosv/desinv, (1)

where f, g, and g are constants of integration, M is the sum of the
masses of the Earth and the Moon, v is the true anomaly, and Q is
a function of r and the perturbing forces. To solve this equation for
r, it was necessary to substitute an approximate value of r into  on
the right-hand side. It was known empirically that the Moon’s apse
moves, and Clairaut proposed using the formula k/r = 1 — e cos m,
which represents a precessing ellipse. Here k, e, m are presumptive
constants, determinable in terms of other constants in the equation.
The resultant motion, Clairaut hoped, could be largely accounted
for — small oscillations excepted — as motion on a precessing ellipse.

In the initial outcome, this hope appeared to be satisfied. Clairaut’s
modified equation took the form

k 2v <2 > (2 >
—=1-—ecosmv + Bcos— + ycos | — — v+ dcos|=+m)v, (2)
r n n n
where n is the Moon’s mean sidereal motion divided by its mean syn-
odic motion, and B, vy, 8 evaluated in terms of the other constants in
the theory were found to be 0.007090988, —0.00949705, 0.00018361,
hence small relative to e (known empirically to be about 0.05).
From the beginning, Clairaut had supposed that a second-order
approximation was eventually to be carried out, to refine the coef-
ficients of the several terms of the theory preparatory to construct-
ing tables. In this second approximation, formula (2}, with B, vy, §
retained as symbols, would be substituted back into @ in (1), and the
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latter equation would again be solved for r. Before the spring of 1749,
Clairaut had not supposed that this refinement could lead to other
than minor improvements in the coefficients; certainly it could not
result in a doubled value for m! The calculation proved him wrong.
The contributions coming to m from the term with coefficient vy
were especially sizeable. This term was proportional to the trans-
verse perturbing force, whereas the initially computed contribution
to m had been proportional to the radial perturbing force. Clairaut’s
final result for the apsidal motion per month was 3°2/6”, just 2/ shy
of the empirical value he accepted.

Euler, learning of Clairaut’s turnabout, tried to find the error in his
own derivation. At last on 10 April 1751 he was able to tell Clairaut
of his success.3® Euler’s unstinting praise for Clairaut’s achievement
overflows into another letter of 29 June 1751:

the more I consider this happy discovery, the more important it seems to
me, and in my opinion it is the greatest discovery in the Theory of Astron-
omy ...For it is very certain that it is only since this discovery that one can
regard the law of attraction reciprocally proportional to the squares of the
distances as solidly established; and on this depends the entire theory of
astronomy.3?

THE ‘GREAT INEQUALITY' OF JUPITER AND SATURN

The values for the mean motions of Jupiter and Saturn given in
the Rudolphine Tables were early recognized to require correction.
Jupiter was moving faster than Kepler’s numbers implied, and Saturn
slower. Flamsteed labored for nearly five decades to correct the the-
ories of these planets, at first by simply refining their Keplerian
elements. In the 1690s he asked Newton for help. Newton proposed
taking as the focus of Saturn’s orbit the center of gravity of Jupiter and
the Sun, and introducing Horrocksian-style oscillations into Saturn’s
eccentricity and line of apsides (see Proposition 13, Book 3 of the
Principia); his suggestions were not numerically specific. Flamsteed,
left to his own devices, sought an oscillation in the motion of each
of the two planets, such as might bring their theories into line with
observations, but eventually gave up in despair.4°

Edmond Halley (1656-1742), in planetary tables published posthu-
mously in 1749, introduced a secular acceleration of Jupiter’s mean
motion of +3°49’.4 in 2000 years, and a secular deceleration of
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Saturn’s mean motion of —9°16’.1 in 2000 years. This proposal was
widely accepted by astronomers.

In a paper completed in 1774, Pierre-Simon Laplace (1749-1827)
demonstrated that, to the first order with respect to the masses, and
to the second order with respect to the eccentricities and inclina-
tions, mutual planetary perturbations could not produce secular vari-
ations of the mean motions. Joseph Louis Lagrange (1736-1813) in
1776 extended this result to all powers of the eccentricities and in-
clinations. In 1784 he showed that secular acceleration of the mean
motions arising indirectly from secular accelerations in other or-
bital elements would be negligible for Jupiter and Saturn. Thus the
anomalous motions of these planets remained unexplained. Laplace
thought they might be due to perturbation by comets. Up to late
1785, they posed for Laplace the chief obstacle to asserting the sta-
bility of the solar system - its freedom from runaway variables.

At last, on 23 November 1785, Laplace announced to the Paris
Academy that he had succeeded in resolving the anomalies. He had
found that a periodic inequality of the third order with respect to the
orbital eccentricities and inclinations of Jupiter and Saturn was large,
with a coefficient of 49’ for Saturn and 20’ for Jupiter, and a period
of some 900 years. A few shorter-term inequalities resulted from the
combination of this long-term inequality with known inequalities,
and all the inequalities taken together yielded a theory agreeing with
both ancient and modern observations. Laplace’s completed theory
of Jupiter and Saturn appeared in 1786.

Inequalities of the third order in the eccentricities and inclinations
had not been computed earlier because of the labor involved; only
zeroth-order and first-order perturbations had been computed sys-
tematically. Laplace in attacking the higher-order inequalities pro-
ceeded by a species of sharpshooting, which left uncertain whether
all terms to a given order of smallness had been accounted for. But
his methods were empirically successful.

By December 1787 Laplace had an explanation for the one remain-
ing major anomaly in the solar system, the secular acceleration of the
Moon originally discovered by Halley in the 1690s. The secular de-
crease in the Earth’s orbital eccentricity, Laplace showed, would lead
to a secular diminution of the radial component of the Sun’s perturb-
ing force; consequently the Moon’s mean motion would accelerate.
(As we shall see later, this explanation was only partially correct.)
To Laplace, it now appeared that Newton’s law of gravitation was
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sufficient to account for all the motions in the solar system, and
that the system was stable, like well-designed clockwork. This idea
inspired his Exposition du systeme du monde (1796) and his Traité
de mécanique céleste (first four volumes, 1798-1805).

ACCURATE LUNAR PREDICTION

The first three analytic theories of the Moon to be published, those of
Clairaut (1752), Euler (1753), and d’Alembert (1754), proved accurate
only to 4 or § arc-minutes, hence insufficiently accurate to meet the
needs of navigation. But in 1753 Tobias Mayer (1723-62) published
lunar tables which, compared with 139 lunar longitudes observed
by Bradley from 1743 to 1745, deviated on average by only 27", and
at maximum by only 1'37”. In subsequent years Mayer refined his
tables; his final version of them, submitted by his widow to the
British Board of Admiralty in 1762, became the basis for the British
Nautical Almanac. How did Mayer achieve such accuracy?

He had carried out an analytic derivation of the lunar inequal-
ities from Newton’s law in his Theoria Lunae juxta Systema
Newtonianum, completed in 1754 but published only in 1767. In this
he deduced forty-six perturbational corrections to the mean motion.
They could be reduced, he then showed, to thirteen steps of progres-
sive correction. In his preface he stated:

the theory has this inconvenience, that many of the inequalities cannot be
deduced from it accurately, unless one should pursue the calculation — in
which I have now exhausted nearly all my patience — much further. My aim
is rather to show that at least no argument against the goodness of my tables
can be drawn from the theory. This is most evidently gathered from the
fact that the inequalities found in the tables, which have been corrected by
comparison with many observations, never differ from those that the theory
alone supplies by more than {.

How did Mayer carry out his “comparison with many observa-
tions”? In all likelihood by applying a statistical procedure he had
learned from Euler. Multiple equations of condition, derived from
observation, were used in evaluating differential corrections to the
elements of a theory; the equations were solved by neglecting small
terms. (The invention of the more reliable method of least squares
was still a half-century away.) The predictive accuracy of Mayer’s
tables rested on the empirical refinement of coefficients.
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Revisions of Mayer’s tables were carried out by Charles Mason in
1778 and by Johann Tobias Biirg a little later, in each case on the
basis of large numbers of observations. “[Their tables] correspond
with the observations made on the Moon,” Laplace remarked, “with
a degree of accuracy that it will be difficult to surpass.”4' In a few
respects Laplace’s lunar theory (published in 1802) improved on the
empirically grounded tables; in other respects Laplace could aim only
to match the accuracy of these tables. In 1811 Johann Karl Burckhardt
(1773-1825) completed new lunar tables, based on Laplace’s theory
together with 4000 observations; they would serve as the basis for
the French and British lunar ephemerides until 1861.

Not till 1862 did the national ephemerides come to be based on
a lunar theory in which the inequalities (a very few excepted) were
deduced from the Newtonian theory without resort to statistical cor-
rection. This was the lunar theory of Peter Andreas Hansen (1795—
1874), elaborated by a method derived from the Lagrange-Poisson
theory of variation of orbital constants. Hansen’s theory was the first
perfectly rigorous deduction of the lunar inequalities from Newton’s
theory. It would remain the basis of the national ephemerides until
1922.

Hansen’s theory was numerical rather than literal: it did not give
for each coefficient an algebraic formula that could be re-derived and
so independently checked for accuracy. A literal theory, at least as ac-
curate as Hansen’s, was achieved by Charles Fugene Delaunay in the
1860s. The series giving the coefficients, however, converged all too
slowly. The problem of slow convergence was at length overcomein a
new and innovative theory whose foundations were laid by G. W. Hill
in the 1870s. In 1888 E. W. Brown commenced the process of develop-
ing Hill’s foundational ideas into a complete lunar theory. The result-
ing tables, demonstrably more accurate than all their predecessors,
became the basis of the British and American ephemerides in 1923.

Nevertheless, small, long-term changes in the Moon’s mean mo-
tion remained puzzling.

COMETARY ORBITS, UNPERTURBED AND PERTURBED

On 20 June 1686 Newton reported to Halley that “the third [book]
wants y® Theory of Comets.”4* He had been hard put to discover a
way of fitting an orbit to cometary observations. Sometime before
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April 1687 when he sent the completed manuscript of Book 3 to
Halley, he hit on a graphical method of fitting a parabolic trajectory
to three observations. The longitude of the perihelion and node and
the orbital inclination determined in this way are very nearly correct
even if the orbit is elliptical rather than parabolic.

Edmond Halley used a partially arithmetized version of Newton’s
procedure to determine the parabolic orbital elements of some
twenty-four comets, as presented in his Synopsis Astronomiae
Cometicae (1705). The elements of the retrograde comets appearing
in 1531, 1607, and 1682 were nearly identical, and Halley declared
himself convinced that these three comets were one and the same.
The two intervals between the three apparitions differed by nearly a
year, but Halley believed the difference could be caused by perturba-
tion due to Jupiter. In an expanded version of the Synopsis published
posthumously with his Tabulae Astronomicae of 1749, Halley pre-
dicted that the comet would reappear toward the end of 1758 or the
beginning of 1759.

For astronomers of the 1750s, Halley’s prediction presented two
challenges: to locate the returning comet as soon as possible and de-
termine its parabolic elements; and to predict from Newton’s theory
and the previous apparitions the time of the new perihelion passage.
The second task was undertaken by Clairaut, assisted by Lalande and
Mme. Lepaute.

For his calculation Clairaut used the differential equations he had
derived for the three-body problem. The new application was far
more labor-intensive than the earlier application to the Moon. In the
Moon’s case, the integrands were approximated by trigonometric se-
ries and so rendered integrable. The goodness of the approximation
depended on the rapidity of convergence of the series, which in turn
depended on the orbit being nearly circular. The orbit of Halley’s
comet is very elongated. Trigonometric series could not be used, and
Clairaut and his colleagues had to resort to numerical integration.
This was the first large-scale numerical integration ever performed.43

In November 1758, Clairaut, in order not to be forestalled by the
comet, announced preliminary results, predicting a perihelion pas-
sage in mid-April 1759, give or take a month. The comet was first
detected by Johann George Palitzsch on 25 December, and then inde-
pendently by Charles Messier on 21 January. In March it disappeared
into the rays of the Sun, then reappeared on 31 March. Calculation
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showed that the perihelion had occurred on 13 March, a month ear-
lier than Clairaut had predicted. This was the first proof that comets
may indeed return, and move in accordance with the Newtonian law.

THE PROBLEM OF THE EARTH’S FIGURE AND THE
PROBLEM OF THE TIDES

Newton addressed both these problems in his Principia; in both cases
his attack on them proved inadequate, and further advances were
made only after the introduction of new and more powerful mathe-
matical techniques.

In Proposition 19, Book 3 Newton showed that for a homogeneous
spherical Earth subject to inverse-square gravity and rotating diur-
nally, the downward acceleration at the Equator would be 288/289
of that at the Pole. Supposing the Earth to have been initially fluid,
and assuming as its equilibrium shape an infinitesimally flattened
ellipsoid of revolution, he claimed that all linear columns from cen-
ter to surface would weigh the same, and inferred a flattening of
1/229. Could the assumptions be justified, and could Newton’s con-
clusions be extended to cases (like Jupiter’s) where the flattening was
greater? Newton asserted without demonstration that, if the density
increased toward the center, the flattening would be greater.

In analytical studies using partial differentiation and culminating
in his Théorie de la terre of 1743, Clairaut showed that a homoge-
neous, rotating ellipsoid of revolution with infinitesimal flattening
could be a figure of equilibrium. He showed further that for an Earth
consisting of individually homogeneous ellipsoidal strata with in-
finitesimal flattening but with densities increasing toward the cen-
ter, the Earth would be less flattened than in the homogeneous
case, with a flattening between 1/576 and 1/230. He supplied a new
necessary condition for a rotating figure to be in equilibrium: the
work to take a unit mass round any closed path within the body
must add to zero.

The discussion was taken up again by Adrien-Marie Legendre
(1752-1833) and Laplace in the 1780s. Legendre introduced the
Legendre polynomials for expressing the attraction, potential, and
meridian curve of equilibium figures of revolution. Laplace then gen-
eralized these results to ‘spheroids’, understood as any figures given
by a single equation in r, 8, and .



Newton and celestial mechanics 221

A reconciliation of these mathematical results with practical
geodetical measurements was effected only after F. W. Bessel’s intro-
duction of a sophisticated statistical understanding of the geodesist’s
task.

Newton’s account of the tides appears in Propositions 24, 36, and
37, Book 3. Newton assumed that the waters would be raised in
places directly underneath the Sun or the Moon, and also on the op-
posite side of the Earth