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preface

At the time of his death in 1996, our colleague Sam Westfall had
begun to plan a Newton volume for the Cambridge Companions
series. He had made contact with potential contributors, but had not
reached the final stages of planning. When Cambridge University
Press invited us to succeed Sam as editors of this volume, we re-
ceived generous help fromhiswife,Gloria. For thiswe are profoundly
grateful. Studying Sam’s preliminary table of contents revealed to us
that his orientation to a book for this series, though reflecting his
deep scholarship, was nevertheless entirely different from ours. For
practical purposes, therefore, we started afresh. Still, it was a source
of constant regret that we could not draw on Sam’s wisdom and
knowledge of Newton, a loss aggrandized by the tragic early death of
Betty Jo Teeter Dobbs.

Our original plan for this book included a chapter on the recep-
tion and assimilation of Newton’s science among late-seventeenth-
and eighteenth-century philosophers. Two considerations led us to
abandon this plan and restrict attention to philosophers with whom
Newton actually interacted, most notably Leibniz. First, the num-
ber of philosophers such a chapter ought to examine is too large, and
their individual responses to Newton are too diverse, to be manage-
able within the scope of one or two chapters of reasonable length.
Second, many of these responses shed more light on the philosopher
in question than on Newton, often because they are responses to a
caricature of Newton’s science. There is a book to be written that
examines philosophers’ reactions to Newton’s science from Locke
through Kant (if not through Mill and Whewell, or even Mach),
carefully comparing their construals of that science both with what

xiii



xiv Preface

Newton actually did and with the contemporaneous responses to it
by “scientists” from Huygens through Laplace. Such a book, how-
ever, would not be a Companion to Newton in the sense of this
series.

Hilary Gaskin, our editor at Cambridge University Press, was ex-
tremely helpful to us in many ways in preparing this volume. It is
a far better volume than it would have been without her. We also
acknowledge Frances Brown’s effort in copy-editing, Andrew Janiak’s
help in reading the page-proofs, and Tobiah Waldron’s preparation of
the index.

The editors dedicate this volume to their wives, India and Susan.



i. bernard cohen and george e. smith

Introduction

Isaac Newton deserves to be included in a series of companions to
major philosophers even though he was not a philosopher in the
sense in which Descartes, Locke, and Kant were philosophers. That
is, Newton made no direct contributions to epistemology or meta-
physics that would warrant his inclusion in the standard list of
major philosophers of the seventeenth and eighteenth centuries –
Descartes, Spinoza, Locke, Leibniz, Berkeley, Hume, and Kant – or
even in a list of other significant philosophers of the era – Bacon,
Hobbes, Arnauld, Malebranche, Wolff, and Reid. The contributions
to knowledge that made Newton a dominant figure of the last mil-
lennium were to science, not to philosophy. By contrast, Galileo,
the other legendary scientific figure of the era, not only published
the most compelling critique of Aristotelian scholasticism in his
Dialogues on the Two Chief World Systems, but in the process
turned the issue of the epistemic authority of theology versus the
epistemic authority of empirical science into a hallmark of mod-
ern times. Although Newton clearly sympathized with Galileo, he
wrote virtually nothing critical of the Aristotelian tradition in phi-
losophy, and the immense effort he devoted to theology was aimed
not at challenging its epistemic authority, but largely at putting it
on a firmer footing. Newton made no direct contributions to philos-
ophy of a similar magnitude. Indeed, from his extant writings alone
Newton has more claim to being a major theologian than a major
philosopher.1

Without dispute Newton was the giant of science in the seven-
teenth and eighteenth centuries, just as James Clerk Maxwell was
the giant of science during the latter nineteenth century. But the
very thought of a companion to Maxwell for non-specialist students

1



2 i. bernard cohen and george e. smith

in philosophy would seem to be beyond serious consideration. Why
then a companion to Newton?

A superficial answer is that what we now call science was then
still part of philosophy, so-called “natural philosophy” as in the full
title of the work that turned Newton into a legend, Philosophiae
Naturalis Principia Mathematica, or Mathematical Principles of
Natural Philosophy. While historically correct, this answer is se-
riously misleading. Newton’s Principia is the single work that most
effected the divorce of physics, and hence of science generally,
from philosophy. Newton chose his title to parallel Descartes’s
Principia Philosophiae (1644), a work that he viewed as filled with
“figmenta” – imaginings – and that he intended his own Principia
(1687) to supplant, once and for all. Descartes thought of hisPrincipia
as a culmination of his philosophy, laying out not merely a full natu-
ral philosophy to replace Aristotle’s, but also point by point the epis-
temological principles that he had developed in hisMeditations. It is
a comment on the radical split between science and philosophy that
because of Newton’s Principia we no longer read Descartes’s Prin-
cipia as central to his philosophy, viewing it instead as Descartes’s
science. Correspondingly, to say that Newton’s Principia is a work
in philosophy is to use this term in a way that it rendered obsolete.

A better answer to why a companion to Newton for philosophers
is that his Principia gave us a new world-view in which a taxon-
omy of interactive forces among particles of matter is fundamental.
This supplanted not only the Aristotelian world-view, but also that
of the so-called “mechanical philosophy” espoused by Descartes
and others in the seventeenth century to replace the Aristotelian,
a view in which physical change takes place strictly through con-
tact of matter with matter. The trouble with this new-world-view
answer is that the new “experimental philosophy” which Newton
put forward as his alternative to the “mechanical philosophy” did
not as such include any ontological claims at all. Rather, its point
was that questions about what there is physically should be settled
purely through experimental inquiry; classical philosophical argu-
ments on issues like whether atoms or vacuums exist should cease
carrying anyweight. So, the revolution in physical ontology wrought
by Newton was just an ancillary product of his science, and hence it
too was part of the split between science and philosophy. With this
split, most questions about what physically exists would no longer
fall within the scope of traditional metaphysics.
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The best answer to why a companion to Newton for philosophers
is that Newtonian science created a new problem for philosophy, a
problem that remained at the forefront of philosophy for the next
two hundred years and is still central today. Questions about the
nature and scope of the knowledge we can achieve of the empiri-
cal world have been part of philosophy since Plato and Aristotle. In
part because of the challenge of Pyrrhonic skepticism, they became
especially important in the rise of modern philosophy during the
seventeenth and eighteenth centuries, that is, among philosophers
from Bacon and Descartes through Hume, if not Kant. Philosophical
considerations led virtually all of these philosophers to the same
largely negative conclusion: given the limited character of the in-
formation we receive through our senses, empirical inquiry in itself
cannot establish much in the way of general theoretical knowledge.
For Descartes and Leibniz this meant that empirical inquiry has to
be amply supplemented by philosophical reasoning, an alternative
dismissed by Locke and Hume. On the face of it, the science com-
ing out of Newton’s Principia defied such skeptical conclusions. The
initial problem this science posed for philosophers was tomake clear
just what sort of knowledge it was achieving. As the spectacular suc-
cess of this science became increasingly evident during the course
of the eighteenth century, the problem took on the added dimension
of explaining how such knowledge is possible. Both aspects of this
problem have been with us ever since.

The success of the science coming out of Newton’s Principia cre-
ated a second, more indirect problem for philosophy. This science
portrays the natural world as governed by laws. But we are part of
nature and hence to a considerable extent must also be governed by
such laws. The upshot is a tension between our conception of our-
selves as moral, reason-giving beings, on the one hand, and modern
science, on the other, that took root during the eighteenth century
and has again been with us ever since.

The compelling reason for a companion to Newton for philoso-
phers, then, is that Newtonian science has been a backdrop to
modern philosophy in much the way Euclidean geometry was to
philosophy before Newton. One has trouble understanding many of
the writings of philosophers after Newton without taking into ac-
count what they thought, rightly or wrongly, he had done. Newton
was not a philosopher in our present sense of the term. Neverthe-
less, he gave careful consideration to how to go about establishing
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scientific knowledge, reaching conclusions that prima facie conflict
with much of what philosophers have said about modern science.
Even though he did not engage much in metaphysics in the grand
sense of the term, he was more sensitive to issues of metaphysics
than most subsequent scientists have been and also more aware
of the metaphysical foundations implicit in science. Because of the
attention he did give to philosophical concerns, the issues his work
initiated in subsequent philosophy are better understood by putting
them in the context of an accurate picture of what he did.

The goal of this volume is to provide an introduction to Newton’s
work, enabling readers to gain more rapid access to it and to become
better judges of how well subsequent philosophers have dealt with
it. The primary emphasis is on Newton’s science, especially onmak-
ing it accessible to a philosophical audience. The science for which
he is known, however, occupied a much smaller fraction of his to-
tal intellectual life than one might think. Recent scholarship has
made clear that an appreciation of his efforts in such other areas
as theology, prophecy, and alchemy gives added perspective to the
work for which he is best known. Moreover, he lived in a time when
philosophic controversy was at the center of intellectual life. Even
though he wrote little in pure philosophy, he was thoroughly famil-
iar with the philosophic writings of others, especially Descartes, and
consequently his work is highly responsive, often in subtle ways, to
the philosophy of his times.

Because our goal is to acquaint philosophers with the main as-
pects of Newtonian science that actually influenced the develop-
ment of philosophy, the chapters that follow deal primarily with
thosewritings ofNewton that were published in his life-time or soon
thereafter. Nevertheless, almost every chapter draws heavily on the
enormous stock of Newton’s manuscripts and on the scholarship of
recent decades that has used these manuscripts to produce a fuller
perspective on the many facets of Newton’s intellectual activity.

the genuine newton versus
the figure of legend

The philosophic and popular literature on Newton abounds with
misinformation and myths that have saddled the educated public
with continuing misconceptions about him. As the close scrutiny



Introduction 5

given to his unpublished papers over the last fifty years has shown,
Newton is a figure of truly legendary proportions even without the
myths. Nevertheless, the myths and misconceptions seem to have
a life of their own, persisting in spite of the high quality of Newton
scholarship. As Rupert Hall shows in his chapter, some of the myths
arose, at times with assistance from Newton himself, during the
heated priority disputewith Leibniz over the calculus.Many of them,
however, derive either from the philosophic literature or fromworks
of intellectual history and careless remarks by authors of science
textbooks, and they continue to gain new life from these sources.
One of the goals of the volume is to dispel myths about Newton that
hamper current philosophic research and understanding.

Myths aboutNewton are too numerous to list here. A few of them,
however, have had such distortive effects on philosophic discussion
as to warrant their being singled out. The most prominent myth
of twentieth-century origin is that Einstein has shown that Leibniz
was correct all along about the relativity of motion. Robert DiSalle’s
chapter shows that the relationship between Einstein’s theories of
special and general relativity and Newton’s theories of motion and
gravity is intricate. Still, one point that is certain is that Einstein
did not show that Leibniz had been correct in his claims about the
relativity of space. For Leibniz denied that there can be any fact
of the matter about whether the Earth is orbiting the Sun, or the
Sun the Earth, and Einstein’s theories do not show this. Newtonian
gravity holds in the weak-field limit of Einsteinian gravity, so that
the former bears the same sort of relationship to the latter that
Galilean uniform gravity bears to Newtonian gravity, allowing the
evidence for the earlier theory in each case to carry over, with suit-
able qualifications about levels of accuracy, to the later theory.More-
over, as Euler showed in the late 1740s, and as Kant learned from
Euler,2 Newton’s approach to space and time is inextricably tied to
his laws of motion, in particular to the law of inertia. Abandoning
Newtonian space and time in the manner Leibniz called for would
entail abandoning the law of inertia as formulated in the seventeenth
century, a law at the heart of Leibniz’s dynamics. In gaining ascen-
dancy over Leibniz’s objections, Newton did not set physics down a
dead-end path from which it was finally rescued by Einstein; rather,
Einstein’s theories of relativity represent a further major step along
the path initiated by Newton.



6 i. bernard cohen and george e. smith

Nothing about Newton is better known than the story that he
came upon his theory of gravity while contemplating the fall of an
apple in his mother’s garden when away from Cambridge during the
plague. To quote R. S. Westfall, this story

has contributed to the notion that universal gravitation appeared to Newton
in a flash of insight in 1666 and that he carried the Principia about with him
essentially complete for twenty years until Halley pried it loose and gave it
to the world. Put in this form, the story does not survive comparison with
the record of his early work in mechanics. The story vulgarizes universal
gravitation by treating it as a bright idea.3

Newton definitely did give careful thought at some point during the
late 1660s to the possibility that terrestrial gravity extends, in an
inverse-square proportion, to the Moon. From his papers and corre-
spondence, however, we can clearly see that the earliest date that
can be assigned to his theory of universal gravity is late 1684 or early
1685, during the course of his revision of the tract “De motu.” In
their chapter Bruce Brackenridge and Michael Nauenberg show that
Newton had employed novel mathematics to explore orbital trajec-
tories from an early time. But because Newton did not make use of
Kepler’s area rule in these efforts, they fell significantly short of the
orbital mechanics he developed in the 1680s and that ultimately led
him in a sequence of steps to universal gravity. As I. B. Cohen shows
in his chapter, an important part of this sequencewasNewton’s arriv-
ing at new concepts ofmass and force that were required for both his
laws of motion and the law of gravity. The theory of gravity was thus
a product of twenty years of maturing thought about orbital motion.

In addition to being historically inaccurate, the bright-idea pic-
ture is an impediment to an appreciation of how complicated and
how revolutionary the Newtonian theory of gravity actually was.
From the point of view of his contemporaries, Newton’s theory con-
sists of a sequence of progressively more controversial claims: from
the inverse-square centripetal acceleration of orbiting bodies to in-
teractive forces not merely between orbiting and central bodies, but
among the different orbiting bodies as well; to the law of gravity
according to which the forces on orbiting bodies are proportional
to the masses of the distant bodies toward which these forces are
directed; and finally to the sweeping claim that there are gravita-
tional forces between every two particles of matter in the universe.
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William Harper’s chapter on Newton’s “deduction” of his theory of
gravity examines how Newton put this sequence forward, invoking
specific evidence for each claim in turn. Even the most outspoken
critics of universal gravity thought Newton had established some of
the claims in the sequence. Though they balked at different points,
the common feature was where they thought concession of a claim
was tantamount to conceding action at a distance. Newton himself
was troubled by action at a distance – so much so that it seems to
have driven him into thinking through and then laying out a new,
elaborate approach to how empirical science ought to be done, an
approach that the Principia was expressly intended to illustrate.

A further myth, complementing the bright-idea picture, is that
everything in orbital mechanics immediately fell into place under
Newton’s theory of gravity. A corollary to this myth is that the
continuing opposition to Newton’s theory represented philosophic
obstinacy in the face of overwhelming empirical evidence. Curtis
Wilson’s chapter dispels myths about Newton’s achievements in ce-
lestial mechanics. Newton’s most important achievement involved
two superficially opposing points. On the one hand, the Principia
raised Kepler’s rules, especially the area rule, from the status of one
among several competing approaches to calculating orbits, to the
status where they came to be thought of as laws, the laws of plane-
tary motion. On the other hand, the Principia concludes that none
of Kepler’s “laws” is in fact true of the actual system of planets or
their satellites, and this in turn shifted the focus of orbital mechan-
ics to deviations from Keplerian motion. With the exception of a few
results on the lunar orbit, the Principia made no attempt to derive
these deviations, and even in the case of the lunar orbit it left one
major loose end that became a celebrated issue during the 1740s. The
difficult task of reconciling Newtonian theory with observation oc-
cupied the remainder of the eighteenth century following Newton’s
death. This effort culminated with Laplace’s Celestial Mechanics,
the first volumes of which appeared in the last years of the cen-
tury. It was in these volumes that what physicists now speak of as
Newtonian physics first appeared comprehensively in print, more
than a hundred years after the first edition of the Principia.

A statement oftenmade about less successful sciences, “they have
not had their Newton yet,” rightly evokes Newton’s singular place
in the history of physics and astronomy. The combination of the
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bright-idea and the everything-fell-into-place myths, however, fos-
ters an unfortunate misconception of just what was involved in the
breakthrough he achieved and other such major breakthroughs. On
this misconception, the key to successful science is for someone to
come along who almost magically devises a new way of thinking
about the relevant aspect of the world and who is then somehow
able to see almost immediately how effective this new way of think-
ing is going to prove to be over the long run. Such an idea is plausible
only with the help of a still further myth about Newton: that he was
in some extraordinary way in tune with the world. One need look
no further than his unsuccessful efforts to develop a theory of fluid
resistance forces in Book 2 of the Principia in order to see that he was
no more in tune with the world than other scientists of his time.4

Newtonwas exceptional not because he had a capacity to leap to cor-
rect answers, but because of the speed and tenacity with which he
would proceed step-by-step through a train of inquiry, putting ques-
tions to himself, working out answers to these questions, and then
raising further questions through reflecting on these answers.

In the Principia (and to some degree in the Opticks) Newton tele-
scoped the results of an enormous amount of detailed scientific re-
search into an amazingly short duration of time. The research itself,
however, is not other-worldly at all. It is disciplined empirical in-
quiry at its best. A good reason to studyNewton’s scientific efforts is
that they provide insight into the ways in which science truly works.

An important feature of Newton’s mature science is the union of
mathematical analysis and the data of experience as manifested in
experiment and critical observation. For example, Newton’s analysis
of resistance forces depended on the results of experiments he under-
took in order to determine the parameters in laws for these forces.
Another feature ofNewton’s science, as set forth in thePrincipia, was
that the development of the subject matter should proceed without
any appeal to religious principles or arguments in favor of one or
another school of philosophy. That is, Newton consciously and pur-
posely excluded from the scientific text any overt considerations of
theology or fundamental philosophy. In later editions of thePrincipia
(1713, 1726), he added a supplementary General Scholium, in which
he introduced topics of theology and scientific method and the foun-
dations of scientific knowledge. But the system of rational mechan-
ics and the Newtonian gravitational system of the world were free
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of any overt reference to questions of theology and philosophy. In
this sense, the Principia established a mode of scientific presen-
tation that was free of what we today would call extra-scientific
considerations.

a brief biographical sketch

Newton lived into his eighty-fifth year, from 1642 to 1727, the year
after the third edition of the Principia appeared. His life may be di-
vided into four segments, the first ending in 1661 when he entered
Trinity College, Cambridge, as an undergraduate, and the second ex-
tending to the publication of the Principia in 1687. The third period
ismarked by the renown that the Principia brought him; it concludes
with his becoming disenchanted with Cambridge in the early 1690s
and his permanentmove to London and theMint in 1696. In the final
period,Newton remained intellectually active in London, though his
achievements of legend occurredmostly during his Cambridge years,
stretching from his early twenties to his early fifties.

Newton’s pre-Cambridge youth spans the period from the start
of the Civil War to the restoration of Charles II. He was born into
a Puritan family in Woolsthorpe, a tiny village near Grantham, on
Christmas Day 1642 (in the Julian calendar, old style), a little short
of twelve months after Galileo had died. Newton’s father, who had
died the previous October, was a farmer. Three years after Newton’s
birth, his mother Hannah married a well-to-do preacher, 63-year-old
Barnabas Smith, rector of North Witham. She moved to her new
husband’s residence, leaving young Isaac behind, to be raised by his
aged maternal grandparents. Hannah returned to Woolsthorpe and
the family farm in 1653, after Smith died, with three new children in
tow. Two years later Isaac was sent to boarding school in Grantham,
returning toWoolsthorpe in 1659. The family expected that hewould
manage his father’s farm. It soon became evident, however, that he
was not cut out to be a farmer. The headmaster of the Grantham
school and Hannah’s brother, who had received an M.A. from
Cambridge, then persuaded her that Isaac should prepare for the uni-
versity; and in 1661 he entered Trinity College as an undergraduate.

Newton’s years at Trinity College, as a student and Fellow and
then as a professor, appear to have been spent predominantly in soli-
tary intellectual pursuits. As an undergraduate he read the works of
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Aristotle and later commentators and some scientific works such as
Kepler on optics. At some point within his first two years as a stu-
dent, he began reading widely on his own, supplementing the clas-
sical education Cambridge was providing with more contemporary
writings of such figures as Descartes.

Cambridge then had on its faculty one of the leading British
mathematicians, Isaac Barrow, whose lectures he attended. Newton,
however, largely taught himself mathematics through extensive
reading of recent publications,most notably the second edition of van
Schooten’s Latin translation, with added commentary, of Descartes’s
Géométrie. Within an incredibly short period, less than two years,
Newton mastered the subject of mathematics, progressing from a
beginning student of university mathematics to being, de facto, the
leading mathematician in the world. He reached this status during
1665–6, a time when the university was closed because of the great
plague and he had returned to the family farm inWoolsthrope. It was
during this period that Newton developed the basic results of the dif-
ferential and integral calculus, including the fundamental theorem
relating the two. No later than this time, he also made his exper-
iments on refraction and color that similarly put him at the fore-
front in optics. His notebooks from the mid-1660s show him also
working out answers to questions about motion, most notably uni-
form circular motion, questions that were undoubtedly provoked by
his encountering the ideas of Galileo and especially Descartes (from
whom, amongmuch else, he learned the law of inertia). It was during
this early period that Newton independently discovered the v2/r rule
for uniform circular motion, a few years before Christiaan Huygens
published it in his renowned Horologium Oscillatorium.

On his return to Cambridge following the plague year, Newton
was elected a Fellow of Trinity College, receiving his M.A. in 1668.
The requirement of a fellowship in those days included a formal
statement of allegiance to the principles of the Church of England.
Before fulfilling this requirement, Newton initiated an intense study
of theology, especially the implications of the doctrine of the Trinity.
He ended up by rejecting this doctrine as a distortion of Christianity.
At this time, Newtonwas appointed to the Lucasian Professorship of
Mathematics,whichwas financed by private rather than state funds –
the basis for Newton not being examined on his beliefs concerning
the Trinity and the religious principles of the Church of England.
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During these years, Newton continued his work in mathematics
and optics, and he became immersed in chemical and alchemical re-
search and experiments. Hewrote a tract, “De analysi,” or “OnAnal-
ysis by Infinite Series,” in which he presented his key discoveries in
the calculus. This work was circulated among British mathemati-
cians and, notably, a copy was sent to the publisher John Collins in
London. It was undoubtedly because of this tract that Barrow recom-
mended the youthful Newton to succeed him as Lucasian Professor
of Mathematics. Newton occupied this chair from 1669 until he for-
mally resigned in 1701, five years after moving to London.

Newton’s sole formal publication before the Principiawas a series
of letters on the theory of light and colors, including the invention of
a reflecting telescope, published in the Philosophical Transactions
of the Royal Society from 1672 to 1676. He was so embittered by the
controversies that were engendered by these publications that he
vowed to publish no further discoveries from his research in natural
philosophy. The publication of these optical letters and his circulat-
ing of tracts inmathematics gaveNewton a reputation as amajor sci-
entist in Britain and abroad. His formal publications, however, were
merely the tip of an iceberg. Newton’s professorship required him
to deposit in the University Library a copy of his lectures. Among
these are his Optical Lectures of 1670–2, which, as Alan Shapiro
has shown, present an enormous range of experiments bolstering and
complementing those described in his publications. There are also
Lectures on Algebra from 1673 to 1683. These registered lectures
are ambitious to a point that one has trouble seeing how the stu-
dents could have handled the material. These lectures too, however,
represent but a fraction of Newton’s intellectual efforts during the
1670s. For example, his private papers show much more extensive
successful research in mathematics during this decade than the lec-
tures reflect, and he continued his research in chemistry, alchemy,
biblical chronology, prophecy, and theology, as well as occasional
physics.

In late 1679, in an effort to reinvigorate the activities of the Royal
Society, Robert Hooke wrote to Newton posing various research is-
sues, with the goal of stimulatingNewton to renew his active associ-
ationwith the Society.During the ensuing exchange of letters,Hooke
told Newton of his “hypothesis” that curved or orbital motion could
be analyzed by supposing two components: an inertial tangential
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motion and an accelerated motion directed toward a center of force.
He also raised the question of the precise trajectory described by a
body under an inverse-square force directed toward a central point in
space. During the course of this brief correspondence, Newton dis-
covered the relation between inverse-square centripetal forces and
Keplerian motion that comprises the initial stepping stone of the
Principia. Yet he communicated this to no one. Moreover, whatever
further conclusions he reached at the time, universal gravity was not
one of them, for in 1681 he concluded that comets do not generally
button-hook around the Sun.

In the summer of 1684 Edmond Halley visited Newton in
Cambridge in order to ask him a question that the London savants
could not answer: what curved path results from an inverse-square
force?Newton is reported to have repliedwithout any hesitation: the
curve produced by an inverse-square force is an ellipse. He promised
Halley to send the proof on to London. Halley received a tract,
Newton’s “De motu corporum in gyrum,” in November. He was
so impressed by the magnitude of Newton’s achievement that he
hastened to Cambridge for a second visit. On arrival, he learned that
Newton, evidently stimulated by Halley’s first visit, was continuing
research on orbital motion. Newton gave Halley permission to reg-
ister his tract with the Royal Society while awaiting further results.
Such were the beginnings of the Principia.

It was agreed that Newton’s book would be published by the
Royal Society. Halley was to supervise the actual publication. The
manuscript of Book 1 of the Principia arrived in London in spring
of 1686, prompting a controversy with Hooke, who claimed priority
for the concept of an inverse-square solar force. Halley managed to
keep Newton working in spite of the controversy, finally receiving
Book 2 in March 1687 and Book 3 in April.

Publication of the Principia in 1687, which ended Newton’s life of
comparative isolation, led to adulation in Britain and intense oppo-
sition to his theory of gravity elsewhere. He was elected to represent
Cambridge University in Parliament in 1689 (and again in 1701). He
continued experimental research in chemistry, writing his principal
alchemical essays in the early 1690s, and in optics, exploring diffrac-
tion phenomena and laying out but not finishing a book on optics.
He also initiated work on a radically restructured second edition of
the Principia, an effort he abandoned when he suffered some sort
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of mental breakdown in 1693. He had been pursuing positions in
London before the breakdown, and his efforts were finally rewarded
when he was appointed Warden of the Mint in 1696, and Master of
it in 1699. This nine-year period between when Newton was thrust
into prominence and when he departed from Cambridge, while in-
tense in more ways than one, yielded only manuscripts, and no new
publications. Clearly these years were marked by turmoil.

Newton’s subsequent thirty years in London contrast sharplywith
his thirty-plus years of comparatively solitary research inCambridge.
He was elected President of the Royal Society in 1703, a post he held
until his death, and he was knighted in 1705. Catherine Barton, the
extraordinarily vivacious teenage daughter of his half-sister, moved
in with him, gaining great prominence in London social circles; she
continued to reside with him until he died, even after she married
John Conduitt (who succeeded Newton as Master of the Mint) in
1717.

The first decade of the new century saw him publishing the first
edition of hisOpticks, a workwritten in English rather than in Latin.
An appendix to the Opticks contained two earlier tracts in mathe-
matics, one of which exhibited Newton’s dot-notation for differen-
tials. There was also an edition of Newton’s lectures in algebra and
a Latin edition of the Opticks (1706). During the last years of the
decade he began work in earnest on a second edition of the Principia,
which was finally published in 1713. Although this edition was not
radically restructured, 397 of its 494 pages involved changes from
the first edition – sometimes mere changes in wording, but in places
a complete rewriting or the addition of newmaterial. One important
feature of the second edition was the concluding Scholium Generale
with its slogan, “Hypotheses non fingo.” As Alexandre Koyré deter-
mined,Newtonmeant “I do not feign hypotheses.”He did not invent
fictions in order to provide scientific explanation.

Continental natural philosophers found it difficult to accept
Newton’s concept of a force of universal gravity. Thus Leibniz, like
Huygens and others, was strongly opposed to Newton’s theory of
gravity from the time it first appeared. Leibniz’s response was to pub-
lish an alternative account of Keplerian motion in 1689, followed by
his more important papers in dynamics. The relationship between
the two did not turn nasty, however, until one of Newton’s follow-
ers, John Keill, declared in 1709 that Leibniz had stolen the calculus
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from Newton. The ensuing priority dispute, which lasted beyond
Leibniz’s death in 1716, is described in Rupert Hall’s chapter. It was
complicated by the fact that Leibniz had been in England and had
visited John Collins in the early 1680s, before publishing his own
fundamental results in calculus. Furthermore, Newton had not then
published his work on the calculus, instead only circulating his ideas
in manuscript form. The priority dispute also spilled over into open
disputes about the theory of gravity and its philosophical and theo-
logical implications, leading to the Leibniz–Clarke correspondence
of 1715–16, analyzed in the chapter by Domenico Bertoloni Meli.
Of course, Newton’s calculus differed in key respects from Leibniz’s,
andwe are now aware that the twomenmade their breakthroughs in-
dependently. Today we know that Newton was first in inventing the
calculus, but that Leibniz was first in publishing it and then forming
a group working on its further development and dissemination.

Newton remained intellectually engaged during the last ten years
of his life, though less in science and mathematics than in theology,
chronology, and prophecy. Further editions of his Opticks appeared
in 1717/18 (and posthumously in 1730). Newton also produced a
third edition of the Principia, appearing in 1726, when he was 83
years old. It does not differ in essentials from the second edition;
the main change was some new text based on recent data. Though
his theory of gravity remained still largely unaccepted on the Conti-
nent, there can be no question but thatNewton had himself achieved
the status of legend throughout the educated world. He died on
20March 1727.

newton the scientist

Even after themyths and exaggerations have been discarded,Newton
still occupies a singular place in the history of science, having con-
tributed far more than any other single individual to the transforma-
tion of natural philosophy intomodern science. An obvious question
is, why him rather than someone else? What was it about Newton
that enabled him to have such an extraordinary impact on empirical
inquiry? The answer involves at least three factors: the historical
situation in which he found himself, the attitude with which he ap-
proached empirical research, and the breadth as well as the depth of
his genius.
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Newton iswell known for having remarked, “If I have seen further,
it is by standing on the sholders of Giants.”5 This was notmeremod-
esty. Newton knew better than anyone the extent to which he pro-
ceeded from the work of others before him. The two giants who are
invariably cited are Kepler and Galileo, but this grossly oversimpli-
fies the historical situation. In the case of astronomy, it makes little
sense to cite Keplerwithout citing Tycho Brahe for providing the data
that Kepler and all the other astronomers of the seventeenth century
relied on. Newton, moreover, learned his orbital astronomy from
reading not Kepler, but the generation that followed him, in partic-
ular Jeremiah Horrocks, Ishmaël Bouillau, Edward Streete, Vincent
Wing, Nicholas Mercator, and G. A. Borelli. Most of these figures
departed from Kepler in one respect or another, but in doing so they
gave rise to questions that would have had far less force thanwithout
these departures. In his own generation, as well, Newton relied on
John Flamsteed and, less directly, members of the French Academy
for astronomical observations of increasingly high quality. With-
out this body of research in astronomy over the century before the
Principia, Newton could never have made the enormous advances
that he presented to the world in that book.

The situation is similar in physics. Christiaan Huygens extended
Galileo’s work on motion in important ways, including pendulum
motion and an extraordinarily precise measurement of the strength
of surface gravity. This research is presented in his Horologium
Oscillatorium of 1673, a work Newton greatly admired – and ap-
propriately so, for it would have been the most important work in
the science of motion in the seventeenth century had it not been
eclipsed by the Principia. Huygens himself was the culmination of a
tradition represented not just byGalileo, but also byMarinMersenne
and Descartes as well. Huygens, not Newton, was the first in print
with amathematical account of the force required for a body tomove
uniformly in a circle, a force first called attention to by Descartes.
Huygens, along with John Wallis and Christopher Wren, were the
first in print with modern laws of impact, and the Royal Society,
for which Robert Hooke was curator of experiments, had evaluated
these laws experimentally. Much the same can be said of advances
made in theoretical and practical optics by figures precedingNewton,
startingwithKepler and Snell and includingDescartes, Huygens, and
others.
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Newton learned the principles of making experiments from such
masters as Robert Boyle and Robert Hooke. He became acquainted
with the corpuscular philosophy, or the doctrines of atomism, by
reading works of Boyle and from the writings of Pierre Gassendi and
Walter Charleton. Thus, Newton was informed of current thinking
in science by learning from great masters, the leading figures of an
age well described as “the century of genius.”

In short, although Newton worked largely as a solitary figure dur-
ing his decades at Cambridge, he was anything but insulated from
those who were forming an international scientific community dur-
ing the century.Newton readwidely, critically assimilating advances
made by others and openly building from them. His singular place
in the history of science is in no small part an accident of historical
timing, his coming of age at a time when the labors of many others
had created a singular opportunity.

A second factor enabling Newton to produce his extraordinary
impact was the depth of his commitment to the principle that in
matters of natural philosophy the empirical world should always be
the sole arbiter. The view that the empirical world should be the
ultimate arbiter was a hallmark of the era, whether as voiced by
Tycho and Kepler, by Galileo, by Bacon and Boyle, or by Mersenne
and Gassendi. Those engaged in empirical research were quick to
realize, however, that it was one thing to express a commitment to
this tenet and quite another to find ways in which the world would
provide conclusive answers to theoretical questions. This realization
led to awidespread guardedness, if not skepticism, toward theoretical
claims. Perhaps all that could be hoped for was to describe the world
accurately in themanner of a natural history, with purely theoretical
claims never rising above the status of conjectural hypotheses not
incompatible with the so-far observed world.

Newton, by contrast, took the commitment of the empirical
world’s being the ultimate arbiter as an obligation to insist on and
hence to pursue ways in which the empirical world could be made to
yield definite answers to theoretical questions. Throughout his ca-
reer he maintained a sharp distinction between conjectural hypothe-
ses and experimentally established results. He was never willing to
rest content with any hypothesis. Whether in alchemy and chem-
istry, in optics, or in orbital mechanics, the challenge was to design
sequences of experiments or to marshal complexes of observations
that would warrant taking theoretical claims to be established. He
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saw himself as having met this challenge in the case of orbital me-
chanics, to a lesser extent in the case of optics in so far as he never
thought he had established the corpuscular character of light, and
to almost no extent at all in the case of alchemy and chemistry,
despite years of effort and hundreds of experiments. The important
point, however, is that the depth of his commitment to having the
empirical world settle questions kept him going along lines of re-
search, asking further questions and looking for further evidence,
far beyond where anyone else would have stopped. One can easily
fail to appreciate how strongly Newton felt about this, for he often
voiced it in innocuous ways. For example, in a portion of the Preface
to the first edition of the Principia that he decided to withhold from
publication, he puts forward the idea that further progress in science
will come from inquiring into the forces among particles of matter,
beyond gravity, by which “bodies agitate one another and coalesce
into various structures”; he then adds: “It remains therefore that we
inquire by means of fitting experiments whether there are forces of
this kind in nature, then what are their properties, quantities, and
effects.”6 It is easy to underestimate how much is packed into the
word “fitting.”

Being unusually demanding and dogged in empirical research,
even during exceptionally propitious times, means little by itself.
The third, and most important, factor enabling Newton to have his
extraordinary impact was the breadth of his genius. It goes with-
out saying that he ranks among the two or three greatest theoreti-
cal scientists ever – one thinks of Maxwell and Einstein as well –
where the skill involved is taking an initial line of thought and
elaborating it into a full, detailed theory with a wide range of ram-
ifications. Newton is commonly listed with Gauss as the greatest
mathematicians in history, if not for his success in developing the-
oretical edifices, then for his ability to solve individual problems,
first identifying the core difficulty of the problem, then devising ap-
paratus to surmount this difficulty, and finally seeing the further
potential of this apparatus.

Less widely recognized is the fact that Newton was among the
most skillful experimental scientists in history. This is less widely
recognized not merely because we tend to celebrate theoreticians,
and not experimenters, but also because such a large fraction of
Newton’s experimental effort is not well known. His experiments
in alchemy and chemistry have yet to be published, the experiments
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in the Principia are in the rarely read Book 2, and even the exper-
iments that occupy much of the Opticks, which have indeed been
widely heralded as examples of experimental science at its best, are
rarely seen as the culminations of a much wider range of experi-
ments that complement and support them. With the exception of
Alan Shapiro’s chapter, this book too may be guilty of not putting
due emphasis on Newton the experimentalist, especially since the
total fraction of his time put into designing and carrying out experi-
ments has to have been far greater than the fraction put into devising
theories. In-born talent is less of a factor in genius in experiment than
it is in genius in mathematics and genius in theorizing. Great skill
in experimental research is something that gets developed through
extended practice over time. It involves more than just painstaking
care, perseverance in the face of practical difficulties, and ingenuity
in the schematic design of experiments. Telling experiments almost
always have to be developed, and this usually entails designing and
carrying out a large number of preliminary and complementary ex-
periments in order to obtain well-behaved results and to foreclose
alternative interpretations of these results. Newton belongs in the
first rank of experimentalists because his experimental research dis-
plays mastery of all of these aspects.

To be among the first rank of experimentalists, mathematicians,
and theoreticians is more than enough to put Newton in a class by
himself among empirical scientists, for one has trouble thinking of
any other candidate who was in the first rank of even two of these
categories. Moreover, we have not emphasized enough the extent to
which each of these dimensions of Newton’s genius fed off and in-
formed the other two in the way he approached empirical inquiry.
Even granting all of this, however, we have yet to capture the full
breadth of Newton’s genius. At least in comparison to subsequent
scientists, Newton was also exceptional in his ability to put his sci-
entific effort in much wider perspective.7 As one should expect, the
substance of his science concerns recondite details, and as already
noted he always maintained a sharp distinction between substantive
science and conjecture. Nevertheless, as a child of his time, he was a
natural philosopher, no less preoccupied with forming a comprehen-
sive conception of the naturalworld thanDescarteswas. This dimen-
sion of Newton’s science stands out most clearly in the Queries at
the end of theOpticks, but once identified and appreciated, it is easy
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to find everywhere else. Newton’s approach to natural philosophy
differed from Descartes’s first in his insistence that any conjectured
broad conception of the natural world be grounded in experimental
fact, and second in his view that the primary value of such conjec-
ture lay in framing questions and suggesting further experiments. As
a consequence, Newton’s pursuit of a philosophy of nature was at all
times part of his science, putting the science into a perspective that
invested its recondite details with added significance.

This “philosophical” dimension of Newton’s science shows up in
the present volume in three ways. First, he did frame a conception
of the natural world that, in addition to forming the core of our own
current conception, contrasted in interesting ways with those put
forward by other seventeenth- and eighteenth-century philosophers.
This is the main topic of Alan Gabbey’s chapter. Second, his pur-
suit of this conception forced him to be much more attentive to and
careful about “metaphysical” aspects of his science than is at first
apparent from reading this science. Howard Stein’s chapter makes
the metaphysics of Newtonian science explicit, a metaphysics that
has been crucial to subsequent science; in the process Stein reveals
how skillful a philosopher, in the grand sense of the word, Newton
was. Third, the importance Newton attached to conjecture about
nature as a whole, coupled with his insistence on a sharp epistemo-
logical distinction between such conjecture and established science,
led him into meticulous critical reflection on what is required to
establish scientific results. Few, if any, successful scientists have
given so much thought to questions of scientific methodology. From
both the point of view of understanding his science as he saw it and
the point of view of philosophy of science generally, Newton’s views
about how science should be done are important. While this topic
surfaces in many of the chapters in this volume, for example those
by DiSalle, Cohen, Shapiro, and Stein, it is the central topic in the
chapters by William Harper and George Smith.

newton the mathematician

This book emphasizes Newton the scientist because his importance
both to the millennium and to modern philosophy derives mostly
from the impact he had on science. This emphasis, however, gives a
distorted picture of Newton the individual. For the time and effort
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he put into science, even including the huge number of hours he
put into chemical experiments, represent a modest fraction of the
total time and effort he put into intellectual pursuits. Furthermore,
notwithstanding his strong insistence on strictly empirical criteria
within science, his other intellectual preoccupations could not help
but have some effect on how he did science. A full understanding of
Newton’s science, therefore, at the very least requires it to be seen as
fitting harmoniously within his other pursuits. And an understand-
ing of Newton the individual must put no less weight on his work
in pure mathematics, and his efforts in alchemy and theology, than
on the work that made him legendary.

Newton’s achievements in mathematics were extraordinary, yet
his impact on the history of theoretical mathematics, and conse-
quently on aspects of mathematics of greatest interest to philoso-
phers, is not in proportion to these achievements. Some reasons for
this are less interesting than others. Although he circulated some
manuscripts, he did not publish any of his work on the calculus un-
til the first decade of the eighteenth century, and by then the Leibniz
school had been going strong, with frequent publications, for over ten
years. Moreover, many of his mathematical results were never pub-
lished in his lifetime. A compelling case can be made that the full
range and depth of his achievements in mathematics became evi-
dent only in the twentieth century with the publication of the eight
magisterial volumes of his mathematical papers under the editor-
ship of D. T. Whiteside. Whatever inkling Newton’s contemporaries
may have gained of the scope of his mathematics from his publi-
cation of individual solved problems in the Principia, their lack of
access to the systematic development of the methods he had used
in these solutions limited their ability to build a growing body of
Newtonian mathematics. Instead, time and again, areas in which
Newton made breakthroughs, such as differential geometry and the
calculus of variations, had to be independently developed by later
mathematicians – most often Euler – who then had the impact on
the history of the subject.

Newton’s style as a mathematician also helps account for his
disproportionately limited impact on the history of the field. His
approach to mathematics – especially during the early periods –
tended to be primarily that of a problem solver, taking on the
challenge of specific unsolved problems. As remarked above, he had
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an uncanny knack for identifying the core difficulty of a problem
and then devising means for overcoming it, often adapting ideas and
methods of others, but putting them to novel use. Thus, for example,
his initial algorithms for derivatives combined techniques from
Cartesian geometry with the idea of an indefinitely small, vanishing
increment. Similarly, his initial algorithms for integrals adapted a
method Wallis had devised for algebraic curves, first reconceptu-
alizing it to represent an integral that grows as the curve extends
incrementally and then combining this with the binomial series to
obtain solutions for integrals of a much wider range of curves. Once
he had these results and found, from geometric representations of
them, the relationship between differentiation and integration, he
adapted Barrow’s way of treating curves as arising from the motion
of a point to recast his results on derivatives in terms of quantities
that change with time and their increments of change, “fluents”
and “fluxions.”8 (His first full tract on fluxions, dated 1666, was
called “To Resolve Problems by Motion.”9) He continued to extend
his methods over the next thirty years, applying them to a growing
range of problems. For Newton, however, the calculus was always
a collection of interrelated methods for solving problems, not a
radically new, superior approach to mathematics.

This view of the calculus is symptomatic of the factor that was
probably most responsible for limiting Newton’s impact on the his-
tory of mathematics, his mathematical conservatism. Rupert Hall’s
chapter calls attention to ways in which this conservatism intensi-
fied the priority dispute with Leibniz. Leibniz and his school saw the
calculus as opening the way to doing all mathematics purely through
the manipulation of symbols. To this end they put great effort into
devising a suitable notation for the calculus, resulting in the form
familiar to us. With the exception of the dot-notation (representing
derivatives with respect to time), which dates from the mid-1690s,
after the Principia, the notations Newton devised were not at all per-
spicuous. Given the range of Newton’s talents, this almost certainly
reflects not so much an inability on his part to come up with good
notations as a lack of interest in, if not opposition to, a revolution-
ary new mathematics dominated by symbol manipulation. Niccolò
Guicciardini’s chapter examines Newton’s changing views on the re-
lationship between geometry and symbol-dominated mathematics
and the impact these views had on his work. Following an intense
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reexamination of classical mathematics during the early 1680s,
Newton appears to have concluded that the true roots of all mathe-
matics lie in classical geometry.

This conservatism is apparent in themathematics of thePrincipia.
Contrary to a myth endorsed by Newton himself, there is no ev-
idence whatever that Newton first derived his results on celestial
orbits by using the symbolic calculus and then recast them in geo-
metric form. The differential calculus does appear in Book 2, where
Newton is unable to find a geometric solution to problems of mo-
tion with resistance forces varying as velocity squared; and in a
handful of places solutions for integrals are given, without deriva-
tions, that he surely obtained symbolically. Everywhere else, how-
ever, themathematics of the Principia is his “method of first and last
ratios,” a quite elegant extension of synthetic geometry that incor-
porates limits in a way that avoids the extensive use of reductio
ad absurdum proofs that others were resorting to when working
with infinitesimals. It was left to individuals within the Leibnizian
tradition to recast the Principia into the symbolic calculus. What
became clear in this process was the superiority of purely symbolic
methods in attacking perturbation problems in celestial mechanics.
With this realization the fundamental step in problems of physics
ceased being one of finding an adequate geometric representation
of the quantities involved, and instead became one of formulating
appropriate differential equations in purely symbolic form. In a real
sense, then, itwasNewton’s physics that gave the greatest impetus to
the Leibnizian approach tomathematics, disproportionately limiting
the impact Newton’s work in mathematics had on the history of the
field.

For the philosopher, however, Newton’s mathematics has some
special interest because of its arousing a controversy in which a
philosopher, Bishop Berkeley, was a major figure. Berkeley’s anti-
Newtonian polemic was called The Analyst and was addressed to
an “infidel mathematician.” It was long believed that the “infidel
mathematician” was Edmond Halley, but the target of Berkeley’s
attack was later identified as the physician Samuel Garth. Berkeley
was troubled by the use of infinitesimals in the Newtonian form of
the calculus, holding that this method of limits provided an unsound
foundation, one that was based on “ghosts of departed quantities.”10

Since the newmathematics was based on such insecure foundations,
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he argued, mathematicians should not presume to criticize the foun-
dations of religion. Berkeley further insisted that Newton’s gravita-
tional mechanics provided only a description of the phenomena of
the external world and not an explantion, the “how” but not the
“why” of the physics of the world.11 Philosophers should also be
aware that other aspects ofNewton’smathematics are of philosophic
interest. For example, as Rupert Hall shows in his chapter, the con-
troversy between Newton and the Leibnizians went beyond mere
questions of chronology and priority and in fact had important philo-
sophic implications.

the “other” newton: alchemy and theology

Although Newton’s fame and reputation are built on his scientific
work in rational mechanics, cosmology, optics, and mathematics,
the creative force of his intellect was not limited to these subjects.
Newton was also deeply committed to his research into what seem
to us esoteric domains, including historical and biblical chronology,
theology, prophecy, a tradition of ancient wisdom, and alchemy. (He
disdained the study of astrology, however, having concluded early on
that there was no validity to predictions based on horoscopes.) Some
of the esoteric subjects Newton studied bear no apparent or direct
relation to what we consider to have been his scientific work. But
others were not so completely distinct. For example, with regard to
the wisdom of the ancients, Newton alleged that certain aspects of
the law of universal gravity were known to ancient sages. At one
time he even thought to include in a new edition of the Principia
some extracts from Lucretius and other ancient writers. His studies
of biblical chronology, prophecy, or pure theology (exploring such
questions as the existence of the Trinity and the heresies of Arius)
do not have this close relationship with his science.

The situation is more complicated with his alchemical concerns.
Newton appears not to have conceived his studies of alchemy and his
explorations concerning certain kinds of active and passive forces, or
of aetherial and vegetative “spirits,” to be wholly separate fromwhat
we today would call his “hard science.” These domains of thought
were, for him, closely associated not just with the nature of matter
itself, but with the construction of matter and the action of forces
between the particles of which matter is composed.
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One feature of alchemical writings that evidently had a special
appeal to Newton was the belief that these texts, if properly inter-
preted, would reveal the wisdom handed down by God in the dis-
tant past. In this regard, Newton’s studies of alchemical texts had
a close kinship with his studies of prophecy in the Book of Daniel
and the Book of Revelation. Newton was not singular in believing
that there was a close connection between spiritual and experimen-
tal domains. Count Michael Maier, one of the most important of
the “authores optimi” for Newton, had a plate in his book Atalanta
Fugiens that symbolized the dual aspect of alchemy in a way that fits
Newton’s concerns. This plate shows an alchemical laboratory: on
one side is an oratory where the student of alchemy kneels in prayer,
while on the other is a furnace, well equipped for the “chymical”
part of the study.

In the present volume several chapters are devoted to aspects
of Newton’s research that are not obviously part of his scientific
work. William Newman clarifies the scope of seventeenth-century
“chymistry” and explains the basic principles of Newton’s alchemy
and its relation to ideas of van Helmont. Karin Figala shows the
importance forNewton’s alchemical studies of CountMichaelMaier
and Michael Sendivogius, in the process calling attention to ways
in which Newton’s alchemy had a potential for more far-reaching
ramifications. Maurizio Mamiami explores the extent to which
Newton’s discussions of methods of research in natural philosophy
were tied to his early acquaintance with rules for studies of the-
ology. Scott Mandelbrote examines Newton’s distinctive version of
Christianity and the reception of his posthumously published theo-
logical writings, which are strongly anti-Trinitarian, during the eigh-
teenth century.

Newton’s studies of alchemy are notoriously difficult to evaluate
because Newton did not produce treatises or tracts setting forth his
goals and interpretations. Almost all of the alchemical manuscripts
consist of notes on his reading, summaries or extracts from vari-
ous authors, or records of experiments. Newton had read widely in
alchemy and knew the alchemical literature better than most of his
contemporaries. Because much of this literature is still being dis-
covered, it is often difficult for us to be certain whether any given
document may be an original composition by Newton or a summary
of someone else’s ideas. A case in point is a document called “Clavis”
or “Key,”whichwas believed to be an essay byNewton untilWilliam
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Newman showed it to be a Latin version of an English essay sent by
George Starkey (a Harvard graduate who had moved to London) to
Robert Boyle.

On the basis of her studies, Karin Figala has concluded that
Newton found in alchemy a hierarchical scheme of matter in which
particles of different substances could be set out in a table according
to their size. She notes that this same hierarchy occurs in the planets,
which in alchemy were associated with the different metals. Such
schematization is related to Newton’s science (as science is com-
monly understood today) because in the later Queries of theOpticks
(and as recorded by David Gregory, in a memorandum of discussions
with Newton), Newton set forth a view of the structure of matter
based on a hierarchy of particles that is related to Maier’s hierarchy
of matter and of the planets with which he believed the different
types of particles were associated.

In considering the life and thought of Newton, the words alchemy
and alchemist must be used with caution. In Newton’s day, and
during earlier times, an alchemist was traditionally a charlatan,
someone who claimed the ability to transmute base metals such
as lead into the noble metal gold. In the words of John Harris, in his
Newtonian Lexicon Technicum, published in 1704, the same year as
Newton’s Opticks, such alchemists are said to “amuse the Ignorant
and Unthinking with hard Words and Nonsense.” It is a subject, he
wrote, that “begins with Lying, is continued with Toil and Labour,
and at last ends in Beggary.” As long ago as the fourteenth century,
the poet Chaucer (in “The Canon’s Yeoman’s Tale”) poked fun at
the alchemist, an obvious fraud, whose motto was the traditional
“Ignotum per ignotius,” or explaining what is “unknown” by what
is “more unknown.” Just before Newtonwas born, Ben Jonson wrote
a whole play (The Alchemist) poking fun at the charlatans who prac-
ticed this profession. Indeed, as late as the middle of the nineteenth
century, David Brewster (in his biography of Newton) was appalled
to find that Newton had been spending creative energy in such a
subject as alchemy. He simply could not “understand how a mind of
such power, and so nobly occupied with the abstractions of geome-
try, and the study of the material world, could stoop to be even the
copyist of the most contemptible alchemical poetry.”

And yet, even though in Newton’s day an alchemist tended to
be a charlatan, a purveyor of “get rich quick” schemes, there was
also in Newton’s day a serious tradition of the study of alchemy.
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Thus John Harris, in another entry in his Lexicon, gave a lengthy
discussion of “Transmutation,” quotingmany authorities, including
Robert Boyle.

In a certain sense, Newton’s and Boyle’s concern were with the
experimental side of alchemy. This is sometimes called “chymistry,”
not quite the subject of chemistry as it developed in a later period,
but a kind of study based on laboratory experiments and not just
speculation. According to Harris, the goal of “chymistry” was “to
separate usefully the Purer Parts of any mix’d Body from the more
gross and Impure.” This could in some measure be an account of
Newton’s research program in alchemy.

Because Newton’s thoughts on chymistry are closely related to
his theory of matter, they appear in some of the later Queries of
the Opticks, where the structure and properties of matter are under
discussion. We should note, however, that these discussions of the
structure of matter do not appear in the text of the Opticks, but are
part of the speculative Queries that are an appendix.

Still, Newton’s concern for alchemywas not limited to the strictly
chemical or metallurgical aspects of the subject. He made copious
notes or annotations on almost all aspects of alchemy, including
the spiritual or allegorical matrix in which alchemical writings have
traditionally been embedded. He was even deeply concerned to un-
derstand the symbolic illustrations that gracemany alchemical texts
and that at first glance seem only distantly related to the transmuta-
tion of metals. The seriousness of his concern is made evident by the
bare fact that his manuscript writings and notes on this subject are
so voluminous, coming to more than a million words, dating from
the late 1660s, when he first became interested, to at least the 1690s,
when he moved from Cambridge to London to become Warden and
then Master of the Mint.

Two scholars in particular havemademassive studies ofNewton’s
alchemical writings: the late Betty Jo Dobbs and Karin Figala.
Dobbs wrote two books on the subject, summarizing her findings
and conjectures.12 Her conclusions are of real significance for any
philosopher wishing to understand the mind of Newton. Figala has
rather concentrated on what she conceives to be Newton’s hierarchy
of matter. Her most complete presentation is available in a major
monograph in German, published in 1984.13 She has also summa-
rized her findings in a lengthy essay-review of Dobbs’s first book on
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Newton and alchemy.14 Yet a third presentation is available as an
appendix to Rupert Hall’s Isaac Newton: Adventurer in Thought.15

It is difficult to describe briefly all the findings and conjectures of
Betty Jo Dobbs concerning Newton’s actual goal in his alchemical
studies and the relation of this goal to his more orthodox scientific
work. Dobbsmademuch of awork she identified as a composition by
Newton, “Of Nature’s Obvious Laws and Processes in Vegetation.”
In her analysis of this document she finds evidence for an early belief
by Newton in the existence of forces with which particles of matter
are endowed.

In evaluating this area of Newton’s creative activity, we must
take note that it differs from his research in mathematics, ratio-
nal mechanics, cosmology, and optics in one very important feature:
his studies of alchemy were part of what Jan Golinski has called
Newton’s “private science.” His explorations of alchemy differ from
his work in physics and mathematics to the extent that these were
public. However reluctant Newton was to publish or even to cir-
culate his work in science and mathematics, the fact remains that
he did publish and make known a tremendous body of new science
and mathematics. But the results of his alchemical studies were vir-
tually never communicated, save to a select few intimate fellow
“adepts.” Indeed, Newton himself set forth this distinction in the es-
say “On Nature’s Obvious Laws and Processes in Vegetation.” Here
he made a clear separation between what he called “vulgar chym-
istry” and a process of growth and life (“vegetation”), considered to
be a feature of “Nature’s actions [which] are either vegetable or purely
mechanical” and thus in a manner shared by plants and animals and
also metals.16

Thus far we have not faced up to what may be the most important
question concerning Newton’s alchemical studies: how were they
related to his work in rational mechanics or optics. There seems to
be little doubt that Newton’s explorations in alchemy and the asso-
ciated esoteric philosophy were related to his thinking about various
types of “aether” and the ways in which the forces of nature (such
as gravitational attractions) could actually perform their functions.
It also does seem to be the case that Newton’s theory of matter was
strongly related to his explorations of alchemy. And this could ex-
tend to that part of optics inwhichNewton explored the interactions
of light particles and matter.
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But the situation is quite different when it comes to evidence that
Newton’s explorations of alchemy were in any significant way re-
lated to either the creation of his rationalmechanics or his cosmology
based on universal gravitational interaction. In her last book, Betty
Jo Dobbs took the opposite point of view, arguing that Newton’s
alchemy revealed the existence of forces between particles of matter
and that this gave Newton the justification to produce the physics
of attractive forces in the Principia. There is, however, not a single
document that would indicate that while composing the Principia
Newtonwas encouraged by his alchemical findings to dealwith gross
forces acting at a distance.

We should take note here that, in any event, the transition from
short-range forces to long-range forces is far from simple. It is the
inverse of the problem of a transition from long-range to short-range
forces. In fact, Newton did at one time speculate on such transi-
tions and even wrote up some discussions of them to be included
in a preface (from which we quoted earlier) and in a conclusion to
the original Principia. In the end, however, he rejected the idea of
including such speculations in the book, no doubt because they had
a degree of uncertainty and pure speculation that was out of place
in the mathematical elaboration of his theory of forces. As the doc-
uments make plain, Newton was convinced that short-range forces
of attraction and of repulsion do exist and do produce many of the
observed properties of matter. Yet he was also aware (and gave ex-
pression to his dubiety) that the very existence of these forces was
no more than an unsubstantiated hunch. In choosing not to include
both this preface and the conclusion in the Principia, he evidently
did not want the certainties of the Principia to be contaminated by
speculations.

Newton seems to have believed that there was a unity in all the
areas that he explored: the interpretation of the Bible, the tradition of
ancientwisdom,Church history, alchemy, prophecy, optics and color
theory, theory ofmatter, rationalmechanics, and celestial dynamics.
But it is a fact of record that in his writings on mathematics, in the
Principia, and in his writing about optics proper, there was no trace
of his concern for these esoteric subjects. Only in the later Queries to
theOpticks do we find a hint of his concern for alchemy, in that part
of the queries where he speculates about the structure of matter. In
short, these esoteric subjects were not features of the known thought
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of the public Newton or the Newton of history, the Newton who
has been so important a figure in modern thought. For the philoso-
pher, therefore, it is important to be aware of the range of Newton’s
thought and concerns; yet the Newton who has had so important
an influence in the historical development of thought is rather the
Newton of experiments and scientific theory, the mathematician
who was a creator of the calculus, and the Newton who estab-
lished the science of rational mechanics and set forth theNewtonian
system of the world.

varieties of newtonian natural philosophy

Although Newton’s influence on science and on philosophy was
primarily produced by the Principia, themen andwomen of the eigh-
teenth centurywere aware that theNewtonian philosophy embraced
more than the combination of mathematics and empirical evidence
which characterized that great work. We may gain some insight into
theways inwhichNewton influenced science and philosophy by ref-
erence once again to the Lexicon Technicum of John Harris, of which
the last edition was published in 1731. The varieties of Newtonian
philosophy set forth in this dictionary were adopted as still valid and
set forth once again in Ephraim Chambers’s Cyclopaedia (of which
the first edition was published in 1728), and still served as the basis
of the entry “Newtonianisme” in the Encyclopédie of Diderot and
d’Alembert. At the century’s end, in 1796, this delineation of the
varieties of Newtonian philosophywas still considered valid, appear-
ing once again in Charles Hutton’sMathematical and Philosophical
Dictionary.

Not surprisingly, the primary entry in the Lexicon Technicum
under the heading “NEWTONIAN Philosophy” is “the doctrine of
the universe, and particularly of the heavenly bodies; their laws,
affections, etc., as delivered by Isaac Newton.” The dictionary, how-
ever, goes on to record some other senses in which at that time the
term “Newtonian philosophy”was used. One further sense was “the
corpuscular philosophy, as it now stands corrected and reformed by
the discoveries and improvements made in several parts thereof by
Sir I. Newton.” As the lexicon explains, this aspect of “Newtonian
philosophy” was primarily founded on the third book of Newton’s
Opticks (the part containing the Queries) and sundry papers such
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as the “De natura acidorum,” first published in 1710 in the second
volume of Harris’s Lexicon.

A third meaning of the term “Newtonian Philosophy,” accord-
ing to the Lexicon, was “the method or order which Sir I. Newton
observes in philosophizing.” This “method” of doing science was
said to consist of the “drawing of conclusions directly fromphaenom-
ena, exclusive of all previous hypotheses; the beginning from simple
principles; deducing the first powers and laws of nature from a few
select phaenomena, and then applying those laws, etc., to account
for other things.”

The fourth and fifth meanings of “Newtonian Philosophy,” as
given in the Lexicon, refer rather particularly to the Principia. The
third equates the “Newtonian Philosophy” with the “Mechanical
and Mathematical Philosophy.” In this philosophy, “Physical bod-
ies are considered mathematically; and . . . geometry and mechanics
are applied to the solution of phaenomena.” The fourth meaning is
“that part of physical knowledge, which Sir I. Newton has handled,
improved, and demonstrated in his Principia.” Finally, there is the
sixth sense of this term: “the new principles which Sir I. Newton has
brought into philosophy; the new system founded thereon; and the
new solution of phaenomena thence deduced; or that which charac-
terizes, and distinguishes his philosophy from all others.”17

This record of the ways in which the Newtonian philosophy was
conceived during the eighteenth century is especially valuable for
a number of reasons. First of all, as we have seen, it reports a vari-
ety of beliefs concerning the Newtonian philosophy which lasted for
at least another three-quarters of a century. It indicates the signifi-
cance of an aspect of Newton’s thought that is not generally given
a just place of importance: the creation of new science based on
experiment, on the direct questioning of nature, and not produced
in the manner of the Principia by a combination of mathematics
(geometry, algebra, trigonometry, infinite series, and the calculus)
together with critical observations plus experiments. This other
formofNewtonian natural philosophywas found primarily in Book 1
of the Opticks, where the statement of each proposition one by one
is followed by “The Proof by Experiments,” and in the Queries with
which the Opticks concludes.

In defining the nature of the influence of Newton’s science, there-
fore, we must take account of the existence of two rather different
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varieties of Newtonian natural philosophy. They were, in a sense, as
different as themanner of presentation was different in the Principia
and the Opticks. The Principia was written in austere and formal
Latin, giving the appearance of a text on geometry, whereas the
Opticks was written in a gentle manner in flowing English prose,
a kind of record of experiments and conclusions in the form of
an extended laboratory journal. This difference in form determined
two classes of readers. John Locke, for example, could not follow the
mathematical proofs of the Principia, and relied on the judgment of
Christiaan Huygens concerning the validity of the proofs; by con-
trast, he read the Opticks again and again with great pleasure.

This separation between the two strands of Newtonian Philos-
ophy became even more marked with the publication of the later
Queries in the Opticks, which contain Newton’s speculations on
all sorts of scientific and philosophic questions. Scientists such as
Stephen Hales (the founder of plant physiology), the chemists Joseph
Black and Antoine-Laurent Lavoiser, and Benjamin Franklin could
thus be Newtonian scientists without the necessity of having any
competence in the science of the Principia. There is, perhaps, no
greater tribute to the genius of Isaac Newton than that he could thus
engender two related but rather different traditions of doing science.
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1 Newton’s philosophical analysis
of space and time

introduction: philosophical controversy over
newton’s ideas of space, time, and motion

Newton’s concepts of “absolute space,” “absolute time,” and “abso-
lute motion” met with serious objections from such philosophical
contemporaries as Huygens, Leibniz, and Berkeley. Among philoso-
phers of the early twentieth century, after the advent of Special
and General Relativity, the objections bordered on scorn: Newton’s
concepts were not only lately outmoded, but they were also episte-
mologically inherently defective, empirically unfounded – concepts
not scientific at all, but “metaphysical,” in so far as science is con-
cerned precisely with “sensible measures” rather than obscure no-
tions of what is “absolute.” The prevailing idea was that Einstein
had established not only a new theory of space and time, but a
deeper philosophical viewpoint on space and time in general. From
this viewpoint, space, time, and motion are essentially relative, and
to call them absolute was an elementary philosophical error. As
Einstein put it, General Relativity had taken from space and time
“the last remnant of physical objectivity.”1

The philosophical motivation for this viewpoint seems obvious.
Space cannot be observed; all that we can observe is the relative dis-
placement of observable things. Therefore, if we observe two bodies
in relative motion, to say that one of them is “really” moving, or
that it is moving “relative to absolute space,” is to pass beyond the
bounds of empirical science. If we wish to decide which bodies are
moving, we have to construct a frame of reference – that is, we must
designate some reference-points to be fixed, and compare the mo-
tions of other bodies to these. Einstein held that any such choice of

33
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a reference-frame is inherently arbitrary, and that a philosophically
sound physics would be independent of such arbitrary choices; the
“General Theory of Relativity” was supposed to be a theory in which
all reference-frames are equivalent. To his philosophical followers,
especially Hans Reichenbach and Moritz Schlick, Einstein was only
saying what philosophers ought to have known, and a few had al-
ready suspected, on purely philosophical grounds. Contemporaries
who had rejected Newton’s views now seemed to have anticipated
the eventual emergence of physics from its naive state.

In the 1960s and 1970s, however, many scientists and philoso-
phers began to recognize what a few had known all along: that gen-
eral relativity does not make space, time, and motion “generally
relative,” as Einstein had thought.2 Instead, the theory postulates
a spatio-temporal structure that is, in an obvious sense, just as
“absolute” as the structures postulated byNewton. On the one hand,
Einstein’s field equation relates the geometry of space-time to the
distribution of matter and energy. Thus, if “absolute” means “fixed
and uniform,” or “unaffected by material circumstances,” then we
can say that spacetime in general relativity is not “absolute,” but
“dynamical.” On the other hand, spacetime in general relativity
remains “absolute” in at least one philosophically decisive sense: it
is not an abstraction from relations among material things, but a
“physically objective” structure open to objective empirical investi-
gation. Moreover, the theory does indeed make “absolute” distinc-
tions among states of motion; it draws these distinctions in a way
that departs dramatically from Newton’s theory, but they remain
physically objective distinctions that do not depend on the arbitrary
choice of a reference-frame.

It became clear, then, that Newton’s theory and Einstein’s spe-
cial and general theories all make essentially similar claims about
the world: each specifies a certain “absolute” spatio-temporal struc-
ture, along with physical assumptions – primarily about the nature
of force and inertia – that enable us to connect that structure with
experience. In other words, conceptions of space and time are not
arbitrary metaphysical hypotheses appended to otherwise empiri-
cal physics; they are assumptions implicit in the laws of physics.
Defenders of Newton began to argue that “absolute” space-time
structures are not so very different fromother unobservable “theoret-
ical entities” introduced into physics, such as fundamental particles
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and fields. Accordingly, they ought to be judged by how well they
function in explanations of observed phenomena. Any reasonable
metaphysical question about space, time, and motion could thus
be translated into a straightforward question about physics. For ex-
ample, “is rotation absolute?” becomes, “does our best-established
physical theory distinguish between absolute rotation and relative
rotation?” and “is there an equally good or a better physical theory
that dispenses with absolute rotation, or that refers only to relative
motions?”3

From this point of view, we can ask of Newton’s conceptions of
absolute time, absolute space, absolute rotation, and absolute mo-
tion, “are they required by Newtonian physics?” And the answer is
straightforward: Newton’s laws presuppose absolute time, but not
absolute space; they enable us to distinguish a truly rotating or ac-
celerating body from one that is merely relatively rotating or accel-
erating; but they do not enable us to distinguish which bodies are “at
rest in absolute space,” or to determine the “absolute velocity” of
any thing. Therefore Newton’s laws require not absolute space, but
a four-dimensional structure known as “Newtonian space-time.” A
straight line of this structure represents uniformmotion in a straight
line, and therefore its physical counterpart is the motion of a body
not subject to forces.4 Einstein’s theories postulate different space-
time structures, based on different physical assumptions. Thus the
theories should not be judged on purely philosophical grounds; it is,
rather, a simple question ofwhich theory is best supported by the em-
pirical evidence. HadNewton said, “Spacetime is a four-dimensional
affine space,” instead of “Absolute space remains similar and im-
movable,” there would have been no philosophical grounds for ob-
jection, but only (eventually) new developments in physics demand-
ing new spacetime structures. Generally, on this point of view, our
philosophical views about space and time should depend on our be-
liefs about physics.

Yet this seemingly simple approach to space and time has always
been under philosophical suspicion. Einstein’s chief objection had
been anticipated by Leibniz: only the relative motions of bodies are
observable, while space and time are not. How, then, could space,
time, and motion be absolute? If we could construct a theory that
made no reference to absolute space, time, and motion, ought we
not to prefer it just for that reason? And even if “our best” physical
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theory does make claims about space, time, and motion, do we not
nonetheless have independent philosophical grounds to doubt their
“absolute” status? For it seems absurd that any argument about ob-
served spatial relations could prove that space itself is “absolute.”
Even to Newton’s sympathizers, objections like these have always
seemed challenging; to his opponents, they have seemed decisive.
Hence whether motion is absolute or relative has appeared to be one
of the perennial questions of philosophy.

As we will see, however, this approach to the philosophical ques-
tions of space and time is based on a fundamental misunderstanding
of what Newton accomplished – indeed, a misunderstanding of the
role that space and time play in physics. What it assumes is that
what we mean by space, time, and motion, and what we mean by
claiming that they are “absolute,” is already established on purely
philosophical grounds, so that we can then ask what physics has to
say about these philosophical concepts. What it overlooks is that
Newton was not taking any such meanings for granted, but defining
new theoretical concepts within a framework of physical laws. Inde-
pendently of such a framework, it is premature to ask, “did Newton
successfully prove that space, time, and motion are absolute?” The
proper questions are, what were Newton’s definitions of “absolute
space,” “absolute time,” and “absolute motion”? And, how do those
definitions function in his physical theory?

newton’s philosophical context

It was natural for Newton’s contemporaries to misunderstand his
purpose. Leibniz, for example, had an understanding of space, time,
and motion, and of what it means to be a “substance” or to be
“absolute,” that arose from his own peculiar metaphysics. And to
say that “space,” “time,” and “motion,” as he understood them, are
“absolute,” rather than essentially relative, seemed to be an obvious
mistake. But Newton explicitly proposed to ignore the prevailing
philosophical uses of these terms, and to introduce theoretical no-
tions of his own.

Although time, space, place, and motion are very familiar to everyone, it
must be noted that these quantities are popularly conceived solely with
reference to the objects of sense perception. And this is the source of certain
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preconceptions; to eliminate them it is useful to distinguish these quantities
into absolute and relative, true and apparent, mathematical and common.5

AsHoward Stein first emphasized,6 the preconceptions that Newton
had inmindwere those of Descartes and his followers. Descartes had
purported to prove that space is identical with extended substance.
It followed that a vacuum is impossible, for wherever there is ex-
tension, there is, by definition, substance as well; it also followed
that what we call motion “in space” is really motion relative to a
fluidmaterial plenum. From these foundations, Descartes developed
a vortex theory of planetary motion: the rotation of the Sun cre-
ates a vortex in the interplanetary fluid, and the planets are thereby
carried around in their orbits; similarly, the planets with satellites
create smaller vortices of their own. Descartes would thus seem to
have advanced a version of the Copernican theory, and attributed
real motion to the Earth. But he equivocated on this point by his def-
inition of “motion in the philosophical sense”: while motion “in the
vulgar sense” is “the action by which a body passes from one place
to another,” its motion “in the philosophical sense” is the body’s
“transference from the vicinity of those bodies contiguous to it to
the vicinity of others.”7 On this definition, Descartes could claim
to hold both the heliostatic and geostatic views of the planetary sys-
tem: the Earth is indeed revolving around the Sun in the vortex, but
“in the philosophical sense” it is at rest, since it remains contigu-
ous to the same particles of the fluid. Hence Descartes’s assertion:
“I deny the movement of the earth more carefully than Copernicus,
and more truthfully than Tycho.”8

Newton saw that such a definition is completely unsuitable for
any dynamical analysis of motion, and in particular the dynamical
understanding of the solar system. It implies that the choice between
Copernicus or Kepler, on the one hand, and Ptolemy or Tycho, on
the other, has nothing to do with the dynamical causes and effects of
motion, but can only be made on the grounds of simplicity or conve-
nience. From a certain philosophical point of view, of course, this is
the desired conclusion. But the vortex theory itself – as advanced not
only by Descartes, but by Leibniz and other “relativists” as well –
assumed that the planetary system really is a dynamical system: that
is, a system that is subject to the laws of motion, and whose parts
are related by causal interactions. On that assumption, the fact that
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planets orbit the sun, instead of moving uniformly in a straight line,
requires some kind of causal explanation. Thus, Descartes’s theory,
as a causal explanation of the planetary motions, required a distinc-
tion between inertial motion and motion under the causal influence
of a force. But this requirement is completely neglected by his defini-
tion of “motion in the philosophical sense.” We begin to understand
Newton’s Scholium by properly understanding the question it ad-
dresses: what concepts of time, space, and motion are required by a
dynamical theory of motion?

Asking this question about Newton’s theory does not deny its
connection with his profound metaphysical convictions – not only
about space and time, but about God and his relationship to the
natural world. On the contrary, it illuminates the nature of those
convictions and their relationship to Newton’s physics. For Newton,
God and physical things alike were located in space and time. But
space and time also formed a framework within which things act on
one another, and their causal relations became intelligible through
their spatio-temporal relations – above all, through their effects on
each other’s state of motion. The latter principle, which was implicit
in seventeenth-century physics, was for Newton the link between
physics and metaphysics: if physics is to understand the real causal
connections in the world, then physics must define space, time, and
motion so as to make those connections intelligible.

newton’s definitions

Newton begins by defining “absolute time” as time that, “without
reference to anything external, flows uniformly.”9 This means that,
regardless of whether any particular mechanical or natural process
flows equably – for example, regardless of whether the motion of
any real clock or rotating planet really sweeps out equal angles in
equal times – there is an objective fact, in “absolute time,” about
whether two intervals of time are truly equal. Absolute time also
implies absolute simultaneity, so that each moment of time is de-
fined everywhere, and it is an objective fact whether any two events
happened at the samemoment. These two principles define precisely
what is presupposed about time in the subsequent arguments of the
Principia. Newton’s critics, however, have traditionally taken him
to be asserting that “time is absolute,” and that the meaning of such
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a claim is established independently of physics. Leibniz, for exam-
ple, assumed that if time is absolute, it must be (what he would call)
a “substance,” and so each moment must be a distinguished indi-
vidual. This would mean that if the beginning of the universe were
shifted from one to another moment of absolute time, some real dif-
ference would be made. But no such difference could be discernible;
absolute time therefore violates the “Principle of the Identity of
Indiscernibles,” by which there cannot be two distinct things that
do not differ discernibly. Therefore, to Leibniz, time cannot be
“absolute,” but can only be an “order of succession.”

Yet in the notion of absolute time as defined by Newton, no such
difference is implied. In fact, Newton explicitly rejects the idea that
the moments of time (or space) have any identity above and beyond
their mutual order and position, asserting (in strikingly “Leibnizian”
terms) that “all things are placed in time with reference to order of
succession; and in space with reference to order of position.”10 The
defining characteristic of absolute time is not the distinct individu-
ality of its moments, but the structure of time, i.e., the fact that it
flows equably and that equal intervals of time are objectively defined.
The critical question is notwhetherNewton successfully proves that
“time is absolute” – for this was never his purpose – but whether his
definition of absolute time is a good one. And in the context of the
Principia, this amounts to asking, does this definition have objective
physical content? That is, can we define equal intervals of elapsed
time without recourse to some arbitrary standard? Is there a good
physical definition of what it means for time intervals to be equal,
even if no actual clock measures such intervals exactly? The answer
is “yes”: this is precisely the definition of time implied by Newton’s
laws of motion, which postulate an objective distinction between
inertial motions, which cross equal distances in equal times, and
motions that are accelerated by an impressed force. In short, an ideal
clock that keeps absolute time is simply an inertial clock: impossi-
ble to achieve in practice, but approachable to an arbitrary degree of
approximation. Thus Newton’s definition of absolute time is as well
founded as his laws of motion. And this is why, in spite of all the tra-
ditional philosophical objections to it, it could only be overthrown
by Einstein’s introduction of new fundamental physical laws.

A similar analysis can be given of Newton’s definitions of abso-
lute space and motion. For Leibniz and others, to say that “space
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is absolute” is to say that space is a substance, and thereby to at-
tribute a distinct identity to each point of space. But if the locations
of all things in space were shifted any distance in any direction, no
real difference would be made; therefore (again by the Principle of
the Identity of Indiscernibles), space cannot be absolute. Here again,
however, in the definition of absolute space given by Newton, no
such difference is implied. The defining characteristics of absolute
space are that it remains “homogeneous and immovable,” so that
the parts of absolute space (the “absolute places”) are truly at rest,
and that translation from one to another absolute place is “absolute
motion.”11 Thismeans that there is a real difference betweenmotion
and rest in the same absolute place over time; but it does not im-
ply any real difference between one universe, and another in which
everything is shifted to a different absolute place; a body’s state of
motion depends on whether it remains in the same absolute place,
but not onwhich absolute place it occupies. (Similarly, inNewtonian
spacetime we can determine whether two velocities are the same,
independently of their actual magnitude.) So Leibniz’s classic argu-
ments from the Principle of the Identity of Indiscernibles, cogent
though they may be against a certain conception of space and time
as “substances,” are not arguments against the concepts Newton
designated by “absolute time” and “absolute space.”

Now, however, if we ask of absolute space what we asked of ab-
solute time (is this a legitimate definition on physical grounds?) we
encounter a problem. Unlike absolute time, absolute space entails a
distinction that is not well defined according to Newton’s laws: the
distinction between rest and motion in absolute space. According to
the laws of motion, a body moves uniformly in a straight line until
an applied force causes it to accelerate, and the effect of the force is
independent of the velocity of the body it acts upon. In other words,
Newton’s laws embody the principle of Galilean relativity, which
Newton himself derived as Corollary 5 to the laws: “When bodies are
enclosed in a given space, their motions in relation to one another
are the same whether the space is at rest or whether it is moving
uniformly straight forward without circular motion.”12 This means
that nothing in the behavior of the solar system, for example, would
enable us to determine whether it is at rest or moving inertially.
Corollary 6 undermines absolute motion even further: “If bodies are
moving in any way whatsoever with respect to one another and are
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urged by equal accelerative forces along parallel lines, they will all
continue to move with respect to one another in the same way as
they would if they were not acted on by those forces.”13 That is,
nothing in the behavior of the solar system can even tell us whether
the system ismoving inertially, or being accelerated equally by some
force from outside the system. Thus, though absolute space is invul-
nerable to the familiar criticisms from Leibniz, it is devastated by
Newton’s own concepts of force and inertia. Evidently this might
have been otherwise: if the laws of physics measured force by ve-
locity rather than acceleration, then dynamics could identify which
bodies are truly at rest. Then we would have the physical definition
of absolute space that Newtonian physics lacks. But in a Newtonian
world, Newton’s distinction between absolute motion and absolute
rest cannot be realized.

That Newton was aware of this problem is clear from his discus-
sion of absolute motion. He proposes to distinguish absolute from
relative motion by its “properties, causes, and effects.” And in the
discussion of absolute translation, the properties can be simply de-
fined: that bodies at rest are at rest relative to one another; that
parts of a body partake of the motion of the whole; that whatever
is contained in a given space shares the motion of that space. These
properties together imply that we cannot determine the true state
of rest or motion unless we refer motion to immovable space, rather
than to some object or relative space that may be in motion. The
latter properties, moreover, are directed against Descartes (without
naming him, however). For they are not necessarily true of motion in
Descartes’s sense: if an apple moves, for example, the core remains
at rest, as it is not moving relative to the skin that is contiguous
to it. So Newton has given a more sensible analysis than Descartes
of what we might mean by motion, assuming that we know which
bodies are moving or resting in space. But that is precisely what we
do not know: none of these properties enables us actually to deter-
mine empirically what a body’s absolute motion is. An empirical
distinction between absolute and relative motion first appears when
we move from the properties of true motion to the causes and
effects – causes and effects that have to do with inertia and force.
And forces, as we have seen, can distinguish between accelera-
tion and uniform motion, but not between “absolute motion” and
“absolute rest.”
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The causes that distinguish absolute from relativemotion are “the
forces impressed upon bodies to generate motion.”14 Obviously, rel-
ative motion can be generated or changed without the action of any
force, but true motion is only generated or changed by a force. By the
same token, a body’s true motion necessarily “suffers some change”
from the application of a force, whereas its relative motion need not:
for example, if the reference-point by which we measure its relative
motion is subject to the same force. Here a “relativist” might be
tempted to ask, how does Newton know all of this about true mo-
tion?To ask this is to forget thatNewton is elaborating thedefinition
of true motion that is implicit in the principle of inertia. The critical
question is, instead, does the definition define exactly what Newton
wanted to define? Corollary 5 (or Corollary 6, for that matter) shows
explicitly that it does not: the effects of impressed forces on the “true
motions” of bodies are completely independent of the initial veloc-
ities of those bodies; therefore the causes of “true motion” provide
a definition, not of motion with respect to absolute space, but of
acceleration.

The same is true of the effects that distinguish absolute from rel-
ative motion: “the forces of receding from the axis of circular mo-
tion,” or centrifugal forces.15 “For in purely relative circular motion
these forces are null, while in true and absolute circular motion,
they are larger or smaller in proportion to the quantity of motion.”16

Such effects, even if we assume that they distinguish a true rotation
from a relative motion, certainly cannot reveal whether a rotating
body is at rest in absolute space. But what do they reveal? Newton
discusses this in the most controversial part of the Scholium, the
“water-bucket experiment.” The experiment is extremely simple:
suspend a bucket of water by a rope, and turn the bucket in one di-
rection until it is “strongly twisted”; then, turn the bucket in the
contrary direction and let the rope untwist. As the bucket now ro-
tates, the surface of the water will initially be flat, but relative to
the bucket, it is rotating. By the friction of the rotating bucket, the
water will gradually begin to rotate as well, eventually equaling the
speed of the bucket, so that its motion relative to the bucket grad-
ually ceases. Yet as the relative rotation of the water decreases, its
“endeavor to recede from the axis of motion” – exhibited by the wa-
ter’s climbing the sides of the bucket – increases correspondingly.
The significance of this is plain. Newton is identifying the water’s
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rotation by its dynamical effect, which is least when the motion in
Descartes’s sense is greatest, and greatestwhen theCartesianmotion
is least.

Therefore, that endeavor does not depend on the change of position of the
water with respect to surrounding bodies, and thus true circular motion
cannot be determined by such changes of position. The truly circularmotion
of each revolving body is unique, corresponding to a unique endeavor as its
proper and sufficient effect.17

Thus the Cartesian definition of motion ignores the very dynamical
effects withwhich physics ought to be concerned. Newton explicitly
points out, however, that his dynamical concept ofmotion is implicit
in Descartes’s own vortex theory. For in that theory,

the individual parts of the heavens [i.e. of the fluid vortex], and the planets
that are relatively at rest in the heavens to which they belong, are truly in
motion. For they change their positions relative to one another (which is not
the case with things that are truly at rest), and as they are carried around
together with the heavens, they participate in the motions of the heavens
and, being parts of revolving wholes, endeavour to recede from the axes of
those wholes.18

The true rotation of a body, then, cannot be judged from its motion
relative to contiguous bodies, but only from the magnitude of the
centrifugal effects it causes.

Critics of this argument have generally not defended theCartesian
view of motion against Newton’s objections. But Newton was evi-
dently trying to do more than distinguish true rotation from rota-
tion in Descartes’s “philosophical sense.” This is clear from another
thought-experiment: suppose that two globes, joined by a cord, re-
volve around their common center of gravity; suppose, further, that
there are no other bodies, contiguous or otherwise, to which we can
refer their motions. Even then, “the endeavor of the balls to recede
from the axis of motion could be known from the tension of the cord,
and thus the quantity of circular motion could be computed.”19 In
other words, the true rotation of a body is not only independent of
its rotation relative to contiguous bodies; it is independent of any
relative rotation. If Newton is correct, one could say of one body, in
an otherwise empty universe, whether it is rotating or not.

This is the step that has always raised philosophical doubts: do
the experiments prove that the water, or the pair of globes, is really
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rotating? Could such an experiment possibly demonstrate the exis-
tence of absolute space? Is rotation relative to absolute space really
the cause of the observed centrifugal forces? Perhaps the centrifugal
forces on the water are not caused by motion relative to the bucket,
but does this mean that they are independent of any relative mo-
tion, as the experiment of the globes purports to show? According
to Ernst Mach, writing two hundred years after Newton, if Newton
saw no need to refer motion to contiguous bodies, this is because
he was tacitly referring all motion to the “fixed stars”. And even
if we can deduce from Newton’s laws how bodies would behave in
the absence of the fixed stars, we cannot deduce whether, in those
circumstances, Newton’s laws would still hold anyway.20

To Einstein, under Mach’s influence, Newton’s argument illus-
trated the inherent “epistemological defect” of Newtonian physics.
Consider two spheres S1 and S2, rotating relative to one another, and
suppose that S2 bulges at its equator; how do we explain this differ-
ence? Einstein says,

No answer can be admitted as epistemologically satisfactory, unless the
reason given is an observable fact of experience . . .Newtonian mechanics
does not give a satisfactory answer to this question. It pronounces as follows:
The laws of mechanics apply to the space R1, in respect to which the body S1
is at rest, but not to the space R2, in respect to which the body S2 is at rest.
But the privileged space R1 . . . is a merely factitious cause, and not a thing
that can be observed.21

Einstein’s view became the “received view” of absolute rotation
among philosophers of science. And even philosophers who have de-
fended absolute rotation have accepted this challenge to show that
absolutemotion does provide a legitimate explanation.22As our read-
ing of Newton suggests, however, this critical view simply asks the
wrong questions. Newton never claims to prove that the centrifugal
forces on the water or the globes are caused by rotation relative to
absolute space, or claims that any such experiment could demon-
strate the existence of absolute space. What he says, instead, is that
the centrifugal forces define absolute rotation. It makes no sense to
ask, how does Newton know that S2 is really rotating? S2 is rotating
by definition – more precisely, S2 is rotating just because it satis-
fies the definition of absolute rotation. Thus Newton has not tried
to justify the causal link between rotation and centrifugal effects,
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but simply to identify it as definitive of true rotation. Thus he has
defined a theoretical quantity, absolute rotation, by exhibiting how
it is detected and measured by centrifugal effects. His discussion of
the water-bucket makes this explicit: from the endeavor to recede
from the axis, “one can find out and measure the true and absolute
circular motion of the water, which here is the direct opposite of its
relative motion” [emphasis added].23 And concerning the globes, he
states not only that from the tension on the cord “we might com-
pute the quantity of their circular motions,” but also that changes
in the tension would provide a measure of the increase or decrease
in rotation. “In this way both the quantity and the direction of this
circular motion could be found in any immense vacuum, where
nothing external or sensible existed with which the balls could be
compared.”24 Again, wemight think to ask howwe really know that
these effects provide a measure of absolute rotation, or by what right
we can infer from such effects the quantity of absolute rotation. But
this is as pointless as asking, bywhat right dowe infer themagnitude
and direction of an impressed force from the magnitude and direc-
tion of an acceleration? For this is just how Newton’s laws define
impressed force. In both cases, we are not inferring a theoretical en-
tity from a phenomenon, but defining a phenomenon as the measure
of a theoretical quantity.25

Newton’s argument, in sum,was never an argument fromphysical
phenomena tometaphysical conclusions about the “absoluteness” of
rotation. Instead, it was an argument of a sort that is fundamental to
every empirical science: an argument that a novel theoretical concept
has a well-defined empirical content. Like the definition of absolute
time, and unlike the definition of absolute translation, the definition
of absolute rotation does indeed have a basis in Newton’s laws. And
thismeans, again, that it is no less well founded thanNewton’s laws;
if the universe in fact obeys those laws, we can always measure the
true rotation of any body.

This interpretation of Newton’s Scholium defies a long and con-
tinuing tradition, though itsmain point was alreadymade by Stein in
1967.26 But it is explicitly corroborated by Newton’s other extended
discussion of space, the manuscript “De gravitatione et aequipondio
fluidorum.”27 For example, here Newton explicitly denies the con-
ception of space and time as “substances” that provoked Leibniz’s
“indiscernibility” objection: “The parts of duration and space are
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only understood to be the same as they really are because of their
mutual order and position; nor do they have any hint of individu-
ality apart from that order and position which consequently cannot
be altered.”28 Newton concludes that space “has its own way of be-
ing, which fits neither substances nor accidents.” He even suggests,
for reasons not unlike those later given by George Berkeley, that the
philosophical notion of “substance” is itself “unintelligible.”29

More important, “De gravitatione,” much more explicitly than
the Scholium, emphasizes that Newton’s dynamical arguments con-
cern the definition of truemotion. His entire discussion of space and
motion is contained in a “Note” to Definition 4: “Motion is change
of place.”30 As Stein pointed out (1967), Newton begins immediately
to justify this definition against “the Cartesians,” by showing that
Descartes’s definition of motion is incompatible with the basic prin-
ciples of mechanics. In particular, it is incompatible with the princi-
ple of inertia: if a body’s truemotion is defined relative to contiguous
bodies, and the latter are the constantly flowing particles of the vor-
tex, it will be impossible to define a definite path for the body. And in
that case, it will be impossible to say whether that path is rectilinear
or uniform. “On the contrary, there cannot be motion since there
can be no motion without a certain velocity and determination.”31

Newton also points out, however, that, alongside the “philosophi-
cal” conception of motion, Descartes makes casual or implicit use of
a physical and causal conception of motion. For example, Descartes
acknowledges that the revolution of a planet or comet around the sun
creates centrifugal forces in the planet, a centrifugal tendency that
must be balanced by the resistance of the fluid in the vortex. And
this physical motion of the vortex itself is referred, not to “the am-
bient bodies,” but to “generic” extension. Of course Descartes says
that the latter is an abstraction from extendedmatter that exists only
in thought; the vortical motion that produces the centrifugal forces
is thus mere “motion in the vulgar sense,” not true motion. But
Newton observes that of these two parallel concepts of motion, it is
the “vulgar” one, rather than the “philosophical” one, thatDescartes
appeals to in giving a physical and causal account of celestialmotion.
Therefore he argues that, of the possible ways of definingmotion, we
ought to choose that one that successfully defines a physical quan-
tity, and that can therefore play a role in causal explanation: “And
since the whirling of the comet around the Sun in his philosophical
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sense does not cause a tendency to recede from the center, which a
gyration in the vulgar sense can do, surelymotion in the vulgar sense
should be acknowledged, rather than the philosophical.”32

It might seem that Descartes’s theory of motion is too easy a tar-
get, especially compared to a sophisticated account of the relativity of
motion like that of Leibniz.33 But Newton’s objection to Descartes’s
definition is not merely its inadequacy or even incoherence, but also
its inconsistency with dynamical principles that Descartes himself
accepted. And this same objection applies to Leibniz: he appeals to
a causal account of motion that is incompatible with his professed
philosophical account. On philosophical grounds, as we have seen,
Leibniz denies that there is a real distinction between one state of
motion and another, and asserts the general “equivalence of hypothe-
ses” about which bodies are at rest or in motion; consequently, he
asserts that the Copernican and Ptolemaic systems are equivalent.
Yet he very clearly does attach a physicalmeaning to the distinction
between one state of motion and another. On the one hand, Leib-
niz presents a strange argument for the relativity of all motion. He
claims to agree with Newton on “the equivalence of hypotheses in
the case of rectilinear motions.” But a curved motion is really made
up of infinitesimal rectilinear motions, and so he concludes that a
curved path is equivalent to a straight one, because they are equiva-
lent in themathematical sense that both are “locally straight.” So all
motions, rectilinear or curved, are equivalent.34 On the other hand,
according to Leibniz’s own dynamical theory, the curved path is not
physically – therefore not causally – equivalent to the straight path.
This is because, on that theory, a body by its own inherent force
can maintain its motion in a straight path, whereas a body cannot
maintain a curvedmotionwithout the constant intervention of some
other body. Indeed, the crux of his objection to Newtonian action at
a distance is that it violates this principle:

If God wanted to cause a body to move free in the aether round about a
certain fixed center, without any other creature acting upon it, I say it could
not be done without a miracle, since it cannot be explained by the nature of
bodies. For a free body naturally recedes from a curve in the tangent.35

This passage establishes that Leibniz’s understanding of rotation and
centrifugal force was, at least in the context of physical explanation,
the same as Newton’s. And this is a natural consequence of Leibniz’s
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commitment to the vortex theory, inwhich the harmonic circulation
of the planets results from a balance between their own “centrifugal
tendencies” and the pressure of the ambient fluid.36 More generally,
such remarks reveal that, despite his “general law of equivalence,”
Leibniz’s convictions about the fundamental nature of bodies, and
their causal interactions with one another, depended on the concept
of a privileged state of motion.

Leibniz’s view exhibits the conflict, characteristic of seventeenth-
century “relativist” views of space, time, and motion, between two
opposingmotives. On the one hand was the desire for a “relativistic”
account of motion, in reaction against traditional Aristotelian objec-
tions to the motion of the earth. The classical argument was sim-
ply that terrestrial phenomena seem to reveal none of the expected
effects of a rapid rotation or revolution; to accept the Copernican
theory, one had to grasp the idea of “indistinguishable” states of mo-
tion, and to accept an “equivalence of hypotheses” about whether
the earth is at rest. Only thus could Galileo argue that the terrestrial
evidence is necessarily inconclusive, and appeal to the advantages
of Copernicanism as an elegant account of celestial phenomena.
On the other hand, the demise of Aristotle’s theory of celestial
motion – the “crystalline spheres” – produced the need for a causal
account of motion, which would reveal the physical connections
among the Sun and the planets. And the founding principle of that
account, at least for Newton and Leibniz and their contemporaries,
was Descartes’s principle that the planets tend to travel in straight
lines, but are forced by some physical cause into circulations around
the sun. Leibniz maintained the mechanistic view that any such
cause must act by immediate contact, while Newton accepted the
possibility of “action at a distance,” but, in any case, they shared the
principle that a certain state of motion is “natural,” and that any
deviation from that state requires a causal explanation. Therefore, a
“general law of equivalence” of states of motion would vitiate the
very celestial mechanics that Leibniz and other Cartesians hoped to
construct. If it made no physical difference whether the Sun orbited
the Earth, or the Earth the Sun; if it made no physical difference
whether the interplanetary medium were at rest, or rotating in a
vortex; then there would be little hope of explaining the celestial
motions by the physical interactions among the celestial bodies.
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All of this shows that Newton’s definition of absolute motion, in
so far as it identifies the latter by its “causes and effects,” is by no
means an arbitrary definition, or an idiosyncratic one derived solely
from his metaphysical views. Rather, Newton’s definition identi-
fies the very conception of motion that was implicit in seventeenth-
century thinking about physical causes and physical explanations.
His Scholium attempts (not entirely successfully, as we have seen) to
characterize this conception precisely, and especially to separate it
from philosophical “preconceptions” about relativity that are irrele-
vant to the task of physical explanation. In other words, instead of a
metaphysical hypothesis to account for dynamical effects, Newton
has offered a conceptual analysis of what is presupposed about mo-
tion – by Descartes, Leibniz, and every other seventeenth-century
mechanist – in ordinary reasoning frommotion to its physical cause.

the system of the world

TheNewtonian conception ofmotion has an obvious yet remarkable
consequence: whether the planetary system is geocentric or helio-
centric can no longer be settled by adopting the simplest hypothesis,
but is now a straightforward empirical question. For, assuming
the laws of motion, Book 3 of Newton’s Principia argues from the
celestial motions to the physical forces that cause them. Again, any
post-Cartesian physicist would infer, from the fact that a planet trav-
els in a closed orbit rather than a straight line, that some force keeps it
from following the tangent; Newton, drawing on thework of Galileo,
Huygens, and others, reasonedmathematically from the precise char-
acteristics of the orbit to the precise characteristics of the force. And
this reasoning leads eventually from Kepler’s laws of planetary mo-
tion to universal gravitation.37

Throughout this reasoning from motions to forces, Newton re-
mains neutral between the geocentric and heliocentric theories.
Once the forces are known, however, we can compare the masses
of the celestial bodies by comparing the forces they exert on their
satellites. From there, a very simple argument determines the phys-
ical center of the system. First, suppose (Hypothesis 1) that the cen-
ter of the system (whatever it is) is at rest.38 “No one doubts this,
although some argue that the earth, others that the sun, is at rest in
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the center of the system.” Then (Proposition ii) the common center
of gravity of the system must be at rest. For by Corollary 4 to the
laws of motion, “that center either will be at rest or move uniformly
straight forward. But if that center always moves forward, the center
of the universe will alsomove, contrary to the hypothesis.” The con-
clusion is immediate: “Proposition 12: That the sun is engaged in
continual motion but never recedes far from the common center
of gravity of all the planets.”39 In other words, if the planetary
system is a dynamical system, whose members interact according
to the accepted dynamical laws, then no body is at rest, for, by the
third law of motion, to every action of every body there is an equal
and opposite reaction, and only the center of gravity of the systemcan
remain at rest. However, the comparison of masses reveals that most
of the mass of the system is contained in the sun. Therefore, “if that
body toward which other bodies gravitate most had to be placed in
the center . . . that privilege would have to be conceded to the sun.”40

Newton’s argument is that, given the laws of motion and the ob-
served behavior of the planets and the sun, we can infer their causal
influences on one another and their relative masses; when all of this
is known, the structure andmotion of the system – “the frame of the
system of the world” – is determined. But, as Newton well knew, the
system is determined only up to a point. By Corollary 5, no dynam-
ical analysis of the solar system can reveal whether the system as
a whole is at rest or in uniform motion. And Corollary 6 renders
the analysis still less determinate. But none of this affects Newton’s
dynamical analysis:

It may be alleged that the sun and planets are impelled by some other force
equally and in the direction of parallel lines; but by such a force (by Cor. vi
of the Laws of Motion) no change would happen in the situation of the
planets to one another, nor any sensible effect follow; but our business is
with the causes of sensible effects. Let us, therefore, neglect every such
force as imaginary and precarious, and of no use in the phenomena of the
heavens.41

The causal analysis of the motions within the solar system estab-
lishes a close approximation to Kepler’s heliocentric system, what-
ever the motion of the system as a whole. And the geocentric theory
is revealed to be physically impossible, precisely as it would be
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physically impossible for a baby to whirl a large adult around its
head on a string: in both cases the smaller body must revolve further
from the center of gravity.

Philosophically this argument is not very different from the
Leibnizian argument for a heliocentric vortex. The latter, too, rea-
sons from accelerated motions to their physical causes, and it infers
from the nature and magnitude of the Sun that it, rather than the
Earth, has the required causal efficacy to serve as the physical center
of the system. Therefore, on Leibniz’s physical theory as well as on
Newton’s, whether Ptolemy or Copernicuswasmore nearly right is a
physically meaningful question. It should be emphasized, moreover,
that the same comparison can be made between Newton’s theory
and general relativity. Philosophers used to say that general rela-
tivity had finally established the equivalence of the Copernican and
Ptolemaic systems, except to the extent that onemight be “simpler”
than the other.42 Precisely as in Newton’s theory, however, in gen-
eral relativity the planetary orbits are determined by the mass of
the Sun. The mass causes spacetime curvature, instead of a grav-
itational field in Newton’s sense, but there remains an essential
similarity: the mass required to account for the precise curvature
of the planetary orbits is the same in both theories, and on either
theory the Earth’s mass is too small. So the two systems are, on
physical grounds, as inequivalent in Einstein’s theory as they are
in Newton’s. The decision between them is not an arbitrary choice
of reference-frame, but the outcome of a dynamical analysis, based
on the principle that states of motion can have genuine dynamical
differences.

conclusion: an empiricist view of space, time,
and motion

Newton’s conceptions of space, time, andmotion were long regarded
as metaphysical ideas whose place in empirical science was open to
dispute. Now we can finally see that they were, instead, exemplary
of the way in which science gives empirical meaning to theoretical
notions. A spatio-temporal concept belongs in physics just in case
it is defined by physical laws that explain how it is to be applied,
and how the associated quantity is to be measured; Newton called
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“absolute” precisely those quantities that could be so defined. By
this standard, absolute space does not belong in Newtonian physics,
since absolute translation in space is not a physically measurable
quantity. But absolute time, absolute acceleration, and absolute ro-
tation are well-defined concepts that are, as we saw, implicit in clas-
sical thinking about physical causes. Thus philosophical questions
about these concepts could become empirical questions. In partic-
ular, the question of what is really moving in the solar system was
reduced to simple empirical questions. Which bodies exhibit the dy-
namical effects that are definitive of true rotation? Where is the
center of gravity of the system, and what body is closest to that
center?

The controversy over this theory of motion can be compared to
the controversy over Newton’s theory of gravitation as an action at a
distance. To his scientific and philosophical contemporaries, action
at a distance contradicted the very concept of physical action, which
was supposed to be possible only by direct contact. But for Newton,
action is defined by the laws of motion, which provide empirical cri-
teria for measuring the action of one thing on another; if the planets
and the sun satisfy these criteria in their direct mutual relations,
then they are acting on one another. Thus the question of action at a
distance became an empirical question. We can also compare this to
the controversy over non-Euclidean geometry in the nineteenth cen-
tury.Many philosophers found it inconceivable that space could pos-
sibly be curved; this seemed contrary to the very concept of space.43

According to Gauss, Riemann, and Helmholtz, however, when we
make precise the empiricalmeaning of the claim that space is curved,
we see that it is no more contradictory than the claim that space is
not curved. Both claims derive their meaning from physical assump-
tions about the behavior of bodies and light – for example, that “light
rays travel in straight lines”; just this understanding of the meaning
of curvaturemakes it an empiricallymeasurable quantity, andmakes
the question whether space is curved an empirical question. Simi-
larly, Newton showed that the familiar assumptions about inertia
and force – specifically, that “bodies not subject to forces travel uni-
formly in straight lines” – suffice to define acceleration and rotation
as empirically measurable quantities. His critics insisted that, to be
an empiricist about space and time, one had to define motion as
change of relative position; Newton’s philosophical insight was that
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empirical definitions of motion, space, and time come from the laws
of empirical science.
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7 René Descartes, The Principles of Philosophy, trans. Valentine Rodger

Miller and R. P. Miller (Dordrecht: Reidel, 1983), Part 2, article 28, p. 52.



54 robert disalle

8 Ibid., part 3, article 19.
9 Newton, The Principia, p. 408.
10 Ibid., p. 410.
11 Ibid., pp. 408–9.
12 Ibid., p. 423.
13 Ibid., p. 423.
14 Ibid., p. 412.
15 Ibid., p. 412.
16 Ibid., p. 412.
17 Ibid., p. 413.
18 Ibid., p. 413.
19 Ibid., p. 414.
20 Ernst Mach, Die Mechanik in ihrer Entwickelung, historisch-kritisch

dargestellt. (Leipzig: F. A. Brockhaus, 1883).
21 Einstein, “The Foundation of the General Theory of Relativity,” p. 113.
22 For example, Friedman, Foundations.
23 Newton, The Principia, p. 414.
24 Ibid., p. 414.
25 For further discussion, including a comparision of Newton’s arguments

with Einstein’s arguments for special and general relativity, see Robert
DiSalle, “Spacetime Theory as Physical Geometry,” Erkenntnis 42
(1995), 317–37.

26 Stein, “Newtonian Space-Time.” This paper has been frequently cited
in literature on the “absolute versus relational” debate, but, I would ar-
gue, generally misinterpreted. To the extent that that debate takes the
question, “are space, time and motion absolute?” to be well defined in
purely philosophical terms, Stein is taken to have shown that Newton
had good arguments, or better arguments than “relativists” or “rela-
tionalists” had ever acknowledged, for the “absolutist” side. (See, e.g.,
Friedman, Foundations, and Earman, World Enough.) Thus the essen-
tial point, that Newton’s Scholium introduces definitions of absolute
space, time, and motion – and to that extent transcends the traditional
debate – has not been generally appreciated.

27 “On the gravity and equilibriumof fluids” (hereafter “De gravitatione”).
In A. R. Hall and M. B. Hall (eds.), Unpublished Scientific Papers of
Isaac Newton (Cambridge: Cambridge University Press, 1962), pp. 89–
156. The most important philosophical commentary on this paper is
found in Stein, “Newtonian Space-Time”; see also Stein, this volume.

28 Hall and Hall, Unpublished Scientific Papers, p. 136.
29 Ibid., pp. 139–49. See also DiSalle, “On Dynamics, Indiscernibility, and

Spacetime Ontology,” British Journal for the Philosophy of Science 45
(1994), 265–87, and Stein, this volume.



Newton’s philosophical analysis of space and time 55

30 Hall and Hall, Unpublished Scientific Papers, p. 122.
31 Ibid., pp. 129–31. Stein suggests that “if Huygens and Leibniz . . .had

been confrontedwith the argument of this passage, a clarificationwould
have been forced that could have promoted appreciably the philosoph-
ical discussion of space-time” (“Newtonian Space-Time,” p. 186). It is
interesting to note that essentially the same argument was advanced by
Leonhard Euler in 1748, and had a very serious impact on the philoso-
phy of space and time. Euler’s general theme was the relation between
science and metaphysics; he claimed that the truths of physics – in par-
ticular the laws of mechanics – are so well founded that theymust serve
as a guide for metaphysical researches into the nature of bodies. “For
one has the right to reject in this science [metaphysics] all reasoning and
all ideas, however well founded they might otherwise appear, that lead
to conclusions contrary to those truths [of mechanics]” (“Reflexions sur
l’espace et le temps,” in Euler’s Opera Omnia, series 3, volume 2, pp.
377–83; p. 377). In particular, the principle that bodies continue tomove
in the same direction until a force is applied cannot be reconciled with
the relativistic account of space: “For if space and place were nothing
but the relation among co-existing bodies, what would be the same di-
rection? . . .However bodiesmaymove or change theirmutual situation,
that doesn’t prevent us from maintaining a sufficiently clear idea of a
fixed direction that bodies endeavour to follow in their motion, in spite
of the changes that other bodies undergo. From which it is evident that
identity of direction, which is an essential circumstance in the general
principles of motion, is absolutely not to be explicated by the relation or
the order of co-existing bodies” (ibid., p. 381). Euler’s essay, in turn, pro-
foundly influenced the development of Immanuel Kant’s thought away
from Leibnizian relationalism, toward a deeper understanding of the
Newtonian theory of space, time, and motion, and eventually toward
a complete reexamination of the roles of space and time in our under-
standing of the external world. See Michael Friedman, “Introduction”
to Kant and the Exact Sciences (Cambridge, MA: Harvard University
Press, 1993).

32 Hall and Hall, Unpublished Scientific Papers, p. 125.
33 See, especially, Julian Barbour, Absolute or Relative Motion?

(Cambridge: Cambridge University Press, 1991).
34 Cf. “A Specimen of Dynamics,” in Leibniz’s Philosophical Essays, ed.

and trans. R. Ariew and D. Garber (Indianapolis: Hackett Publishing
Co., 1989), pp. 136–7. This argument is evidently based on a misun-
derstanding of Galilean relativity, which, again, asserts the equiva-
lence of motions that are rectilinear and uniform. Even though curved
lines may be considered “infinitesimally straight,” their distinguishing



56 robert disalle

characteristic is that one “infinitesimal straight segment” has a differ-
ent direction from the next; the tangent to a circle at one point, for ex-
ample, is not parallel to the tangent at a nearby point. Of course Leibniz
was well aware of this. But this is just the distinguishing characteristic
of curvilinear motion that, on Leibniz’s own theory, requires a causal
explanation!

35 From Leibniz’s Third Letter to Samuel Clarke, in Philosophical Essays,
p. 327.

36 Cf. Leibniz’s letter to Christiaan Huygens (1690), in Philosophical Es-
says, pp. 309–12.

37 See chapter by W. Harper, this volume.
38 This “Hypothesis” is sometimesmisinterpreted as indicating Newton’s

belief that the center of the solar system is at absolute rest in the cen-
ter of the universe. But Newton knew (cf. below and note 40) that the
dynamical analysis of the solar system cannot determine whether the
entire system is at rest, in uniform motion, or even uniformly acceler-
ated. The function of Hypothesis 1 is, rather, purely dialectical. That
is, it is taken as the common assumption of the Keplerian and Tychonic
accounts of the structure of the planetary system, in order to show that
both sides are mistaken: neither the earth nor the sun is in the center.

39 Newton, The Principia, p. 816.
40 Ibid., p. 817.
41 Newton, The System of the World, in Sir Isaac Newton’s Mathemati-

cal Principles of Natural Philosophy and his System of the World, ed.
Florian Cajori, trans. Andrew Motte, 2 vols. (Berkeley: University of
California Press, 1962), vol. 2, p. 558.

42 For example, Hans Reichenbach, The Philosophy of Space and Time,
trans.Maria Reichenbach (NewYork: Dover Publications, 1957); Moritz
Schlick, Space andTime inContemporary Physics, trans. H. Brose (New
York: Oxford University Press, 1920).

43 For the history of this controversy, see Roberto Torretti, Philosophy of
Geometry from Riemann to Poincaré (Dordrecht: Reidel, 1977).
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2 Newton’s concepts of force
and mass, with notes on
the Laws of Motion

varieties of force in the PRINCIPIA1

Newton’s physics is based on two fundamental concepts: mass and
force.2 In the Principia Newton explores the properties of several
types of force. The most important of these are the forces that pro-
duce accelerations or changes in the state of motion or of rest in
bodies. In Definition 4 of the Principia, Newton separates these
into three principal categories: impact or percussion, pressure, and
centripetal force. In the Principia, Newton mentions other types
of forces, including (in Book 2) the forces with which fluids resist
motions through them.3 Of a different sort is Newton’s “force of
inertia,” which is neither an accelerative force nor a static force
and is not, properly speaking in the context of dynamics, a force
at all.4

The structure of Newton’s Principia follows a classical pattern:
definitions and axioms, followed by the statement of propositions
and their demonstrations. Newton’s treatise differs, however, from
classical (orGreek) geometry in two respects. First, there is a constant
appeal to themethod of limits –Newton’s “first and ultimate ratios,”
as set forth in Book 1, Section 1. Second, the validity of propositions
is tied to evidence of experiment and critical observation.

In the demonstrations in thePrincipia,Newton generally proceeds
by establishing a series of proportions from a geometric configura-
tion. He then allows one or more of the parameters to be dimin-
ished without limit, thereby obtaining a limiting (“ultimate”) value
of the geometric ratio. It is in the limit that Newton’s proofs are
valid.

57
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the structure of the PRINCIPIA

The propositions in the Principia are set forth in three “books.”
Book 1 analyzes motion in free spaces, that is, spaces devoid of
fluid resistance. Book 2 then considers various conditions of fluid
resistance and a variety of related topics. Finally, in Book 3, Newton
applies the results of Book 1 to the physics of the heavens, to the
“System of the World.” Here he shows that gravity extends to
the Moon and that the Earth is an oblate spheroid. He investigates
the motions of the Moon, calculates planetary densities and relative
masses, explains the motions of the tides, and shows that comets
are like planets and thus move in conic sections, some of which are
ellipses. Book 3, as Edmond Halley reported to the Royal Society,
displays a demonstration of the Copernican system as amended by
Kepler.5

As is well known, Book 3 centers on the concept of a universal
gravitating force, one which is shown by Newton to act between any
two particles in the universe. This force is directly proportional to
the product of the masses and inversely proportional to the square
of the distance between them.

In the final (second and third) editions, Newton has a concluding
General Scholiumwhich sets forth a philosophical point of view that
has dominated most of physical science ever since. According to this
philosophy, the goal of science is not to explore ultimate causes, as
for example the cause of gravity, nor to “feign” hypotheses.6 Rather,
Newton writes, it “is enough” that “gravity really exists and acts ac-
cording to the laws that we have set forth and is sufficient to explain
the motions of the heavenly bodies and of our sea.”

the definitions – newton’s concept of mass

The Principia opens with a set of “Definitions,” of which the first is
“mass,” a new concept formally introduced into physics by Newton
and a fundamental concept of all physical science ever since. In the
actual statement of the definition, Newton does not use the word
“mass.” Rather, he states what he means by the then-current ex-
pression, “quantity ofmatter” (“quantitasmateriae”). Hewrites that
hismeasure of quantity of matter is one that “arises from” (the Latin
is “orta est”) two factors jointly: density and volume. He indicates
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that this particular measure is what he means whenever he writes
of “body” or “mass.”

Newton introduced the concept of mass because his physics de-
manded a measure of matter that is not the result of a body happen-
ing to be at one place rather than another or being subject to some
particular physical circumstance such as an external pressure. In
other words, Newton’s measure – to use the language of Aristotelian
physics – is not an “accidental” property.

In Definition 1, Newton effectively rejects then-current mea-
sures of matter such as extension (favored by Descartes) or weight
(Galileo’s measure). He abandoned weight as the measure of matter
because the reported experiences of Richer and Halley had shown
that the weight of a body varies with its terrestrial latitude. Newton
points out that, at any given place, the mass of a body “can always
be known from a body’s weight”; he has found “by making very ac-
curate experiments with pendulums” that at any given place mass
is proportional to weight. The report on these experiments is given
in Book 3, Proposition 6.

Newton’s views concerning density were strongly influenced by
the pneumatic experiments of Boyle and others and by his own con-
cept of the theory of matter. He was aware that a given quantity of
air could be expanded or contracted. Under such varying conditions,
the density would change, but the quantity of matter would remain
fixed, depending on the volume and density jointly.

The quantity of matter in a given sample would, according to
Newton, remain unaltered if it were transported from one place on
Earth to another. According to Newton’s concept, the quantity of
matter would remain fixed even if the sample of matter were trans-
ported to the Moon or to Jupiter.

Newton’s concept of mass has been criticized, notably by Ernst
Mach,7 on the grounds of circularity. If density is mass per unit vol-
ume, how can mass be defined as jointly proportional to density and
volume?8 In the Principia, however, Newton does not define density,
nor did he everwrite a gloss onhisDefinition 1. Apparently, however,
he was thinking of density as a measure of the degree of concentra-
tion of the number of fundamental particles of which all matter is
composed.9 As such, density would not depend onmass and volume.

Newton came to his concept ofmass only as the Principiawas tak-
ing form. Mass does not occur in the several versions of “De motu”,
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the tract that Newton wrote just before composing the Principia, a
tract which he expanded into the Principia. In a list of definitions
drawn up just before writing the Principia,10 Newton used the noun
“pondus” or “weight” as the measure of matter, but he was careful
to note that he did not mean weight as commonly understood. He
thus wrote that because of the “want of a suitable word,” he will
“represent and designate quantity of matter by weight,” even though
he is aware that this usage is not appropriate in all circumstances.
Indeed, in an earlier statement in this same set of definitions, he
wrote that by “weight” (“pondus”), “I mean the quantity or amount
of matter being moved, apart from considerations of gravity, so long
as there is no question of gravitating bodies.”

newton’s “quantity of motion”

The subject of Definition 2 is “quantity of motion,” ourmomentum.
Newton says that it “arises from the velocity and quantity of matter
jointly.” Here he uses the same verb (“oriri”) as in the definition of
quantity of matter.

newton’s concept of “inertia” – VIS INSITA

and “force of inertia”

In Definition 3, Newton declares the sense in which he will use
a term then current in discussions of motion, vis insita.11 This
term was not an invention of Newton’s; it occurs in many books
with which Newton was familiar, even appearing as an entry in
RudolphGoclenius’s widely read dictionary, Lexicon Philosophicum
(1613). According to Goclenius, vis insita is a “natural power,” a
force (vis) that can be either insita (inherent or natural) or violenta
(violent). In Aristotelian physics this means that force is either ac-
cording to a body’s nature or contrary to it. The term vis insita
also appears in Johann Magirus’s Physiologiae Peripateticae Libri
Sex (1642), which Newton studied while a Cambridge undergradu-
ate, entering many extracts in his college notebook. Vis insita oc-
curs in both Magirus’s text and his accompanying Latin version of
Aristotle’s Nichomachean Ethics. Newton would also have encoun-
tered this term in the writings of Henry More, an influential figure
in Newton’s intellectual development.12
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In Definition 3, Newton declares that because he is giving a new
sense to this term, he will give it another name: vis inertiae or “force
of inertia.”

The traditional or older physics held that if the motive force ap-
plied to a body were to cease acting, the body would then seek its
natural place and there come to rest. Kepler, however, in his radical
restructuring of the science of motion, held that a primary quality of
matter is its “inertness,” its inability to move by itself, by its own
internal power. Accordingly, if an externally applied force producing
motion were to cease, then – according to Kepler – the body would
come to rest and do so wherever it happened to be.

Newton encountered this Keplerian concept of motion in a Latin
edition of Descartes’s correspondence, in an exchange of letters be-
tweenDescartes andMersenne concerning “natural inertia”; neither
correspondent referred to Kepler by name in this context.13 Newton
made a radical transformation of this Keplerian concept. No longer
would the inertia ofmattermerely bring a body to restwhen an exter-
nal force ceased to act; rather, this inertnesswould tend tomaintain a
body inwhatever “state” it happened to be, whether a state of resting
or of moving “uniformly straight forward.”14 The concept of a body
being in a “state” of motion was taken by Newton from Descartes’s
Principia.

Two further aspects of Newton’s concept of inertia should be
noted. One is that generally Newton does not refer, as we do today,
to “inertia” as such; rather he tends to write of a “force of inertia,”
a vis inertiae. The second is that he identified mass and inertia. The
vis insita of a body, he writes in Definition 3, “is always proportional
to the body,” that is, proportional to the mass. Furthermore, it “does
not differ from the inertia of themass” save for “themanner inwhich
it is conceived.” Hence, he writes, we may give vis insita a new and
“very significant name,” force of inertia (vis inertiae). And, indeed,
throughout the Principia, Newton generally uses vis inertiae rather
than vis insita.

Newton explains that, because of “a body’s inertia,” a body is only
“with difficulty” made to change its “state” of resting or moving
uniformly. It is for this reason, he declares, that vis inertiae is a better
name than vis insita. Although the use of vis or “force” in the context
of inertia seems outlandish to a twenty-first-century reader, this was
not the case for Newton’s successors in developing the science of
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dynamics. For example, Jean d’Alembert, in his Traité de dynamique
(1743), wrote: “I follow Newton in using the name ‘force of inertia’
for the properties which bodies have of remaining in the state in
which they are.”

Newton’s concept of vis inertiae has one puzzling feature. As he
makes clear, especially in Definition 4, this is not an “impressed”
force, one that can produce a change in state or an acceleration.
Therefore, this “force” cannot be combined by means of a force tri-
angle with continuous or instantaneous external forces.

Newton never explained why he wrote of a vis inertiae, a “force
of inertia,” rather than a property of inertia and we have no basis for
guessing what was his state of mind. Perhaps he was merely trans-
forming vis insita into a vis of a new and different sort.

three varieties of impressed force

In Definition 4, Newton deals with “impressed force,” a term that
has a long history of usage before the Principia. Newton is concerned
with the “action” of forces to alter the “state” of a body, to alter
a body’s condition of resting or moving uniformly straight forward.
According toNewton, this action occurs onlywhile the force is being
impressed, while the force is actually producing a change of state. It
does not remain in the body after the action is over. Newton says
explicitly that “a body perseveres in any new state solely by the
force of inertia.”

It is in the conclusion of Newton’s discussion of Definition 4 that
he declares that there are “various sources of impressed force, such
as percussion, pressure, or centripetal force.”

centripetal force

Newton has no need of comment on the first two of his three types
of impressed force: percussion and pressure. The case is different,
however, for centripetal force. The concept of centripetal force was
introduced into rational mechanics and celestial dynamics in the
Principia. In a memorandum, Newton said that he had invented the
name in honor of Christiaan Huygens, who had used the oppositely
directed vis centrifuga.

Centripetal force differs from percussion and pressure in one no-
table aspect. Percussion and pressure are the result of some kind of
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observable physical action. In both, there is a contact of one body
with another, typically providing visual evidence of a force acting,
for example, a billiard ball striking another billiard ball. These are
the kinds of force on which the so-called “mechanical philosophy”
was built, in particular the philosophy of nature of Descartes. These
forces display the principle of matter in contact with other matter
to produce or alter a motion.

Centripetal force, however, is very different. In important cases,
such as orbital motion, we do not know that there is a centripetal
force by seeing an action, as is the case for a pressure or a percussion;
the only evidence that a centripetal force is acting is that there is a
continuous change in a body’s state, a continuing departure from a
uniform rectilinear motion. Accordingly, in introducing centripetal
force in Definition 5, Newton is in effect declaring his indepen-
dence from the strait-jacket rigidity of the mechanical philosophy.
It is a fact of record that Continental natural philosophers – notably
Huygens and Leibniz – rejected the Newtonian science of motion
because it departed from the strict condition that forces must occur
only by the action of matter in contact with matter; they rejected
the notion of centripetal force, as posited by Newton, because this
“force” acts at a distance and is not produced by matter in contact
with matter.

In Definition 5, Newton refers to three examples of centripetal
force. One is gravity, by which he means terrestrial gravity, the force
that causes bodies to descend downward, “toward the center of the
Earth.” Another is magnetic force, in which a piece of iron “seeks
a lodestone.” And, finally, there is the “force, whatever it may be,
by which the planets are continually drawn back from rectilinear
motions and compelled to revolve in curved lines.” Note that it is
the departure from uniform linear motion that provides evidence
that there is a centripetal force acting.

Newton then turns to an important example of centripetal force
taken from Descartes, a stone being whirled in a sling. The stone
naturally tends to fly off on a tangent, but is restrained by the force
of the hand, constantly pulling the body inward toward the center
via the string. Newton calls such a force “centripetal” because “it
is directed toward the hand as toward the center of an orbit.” And
then he boldly asserts that the case is the same for “all bodies that
are made to move in orbits.” They all tend to fly off “in straight
lines with uniform motion” unless there is a force. We may note an
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anticipation of the first law in the statement that if there were no
gravity, a projectile or an orbiting body would move off in a straight
line “with uniform motion.” It follows from this discussion that
planets moving in orbits must similarly be subject to some kind of
centrally directed force.

three measures of force

The remaining definitions (Definitions 6–8) are concerned with the
three measures of centripetal force. These are the absolute quan-
tity (Definition 6), the accelerative quantity (Definition 7), and the
motive quantity (Definition 8). The most important of these is the
“accelerative” quantity, defined as the velocity which is generated
“in a given time.” Thismeasure is the rate atwhich velocity changes,
our acceleration. It is this measure that Newton has in mind during
the first ten sections of Book 1.

In Definition 8, Newton introduces a measure that is “propor-
tional to the motion” (i.e., momentum) which a force “generates in
a given time.” This measure is, in other words, the rate at which
“motion” (i.e., momentum) changes.

the laws of motion: newton’s first law

In thePrincipia, the definitions are followedbyNewton’s “Axiomsor
Laws ofMotion.” Newton’s “Axiomata sive leges motus” was an ob-
vious transformation of Descartes’s “Regulae . . . sive leges naturae,”
which appear in the latter’s Principia. This source of Newton’s name
for the “axioms” would have been obvious to most of Newton’s
readers, who would also have appreciated that the title of Newton’s
treatise,PhilosophiaeNaturalis PrincipiaMathematica, was a rather
obvious recasting of the title of Descartes’s Philosophiae Principia.15

The first law of motion, sometimes known as the law of inertia,
states: “Every body perseveres in its state of being at rest or of mov-
ing uniformly straight forward [i.e., moving uniformly forward in a
straight line] except insofar as it is compelled to change its state by
forces impressed.” In the brief paragraph which follows (consisting
of three short sentences), Newton mentions three examples of iner-
tial motion, each of which is based on an analysis of curved motion
produced by the action of a form of centripetal force. In each case, the
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curved motion is, by Newton’s analysis, compounded of a linear or
tangential component of inertial motion and an inward accelerated
motion produced by a centripetal force.

Thus a major purpose of the first law is to make explicit the con-
dition under which we can infer the action of a continously acting,
centrally directed force. Newton’s three examples, accordingly, in-
voke centripetal forces and not pressure or percussion.

The first example is themotion of projectiles. These “persevere in
their [linear forward]motions” except in so far as they are retarded by
air resistance and are “impelled downward by the force of gravity.”
Newton’s second example is the circular notion of a spinner or a top.
Here Newton explains that the particles that compose the spinning
object tend to fly off in straight lines along tangents to their curves
of motion. They do not fly off, however, but are kept in circular or-
bits by the cohesive forces that hold the top together. When a top is
subjected to a degree of rotation beyond some structural limit, the co-
hesive force is no longer great enough and the particles fly off in all di-
rections tangent to their original paths of rotation.16 Newton’s third
example is the long-term orbitalmotion of the planets and of comets.

The “forces impressed” which Newton mentions in the state-
ment of the law can be any of the three varieties of impressed force:
pressure, percussion, or centripetal force. In other words, the law is
equally valid for impulsive or instantaneous forces and continuous
forces.

the second law of motion

The second law states that a “change in motion” is proportional to
“the motive force impressed” and adds that this change in motion is
directed along “the straight line in which this force is impressed.”
Some commentators have added a word or phrase toNewton’s law so
as to have it read that the rate of “change in motion” (or the change
inmotion per unit time) is proportional to the force.17 This alteration
would make Newton’s second law read like the one found in today’s
physics textbooks.

Newton, however, did not make an error here. He chose his words
very carefully. In his formulation of the second law, Newton was ex-
plicitly stating a law for impulsive forces, not for continuous forces.
Thus Newton’s second law states quite correctly that an impulsive
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force – that is, a force acting instantaneously or nearly instanta-
neously, or acting in an infinitesimally small “particle” of time –
produces a change in the “quantity of motion” or momentum.

Newton’s discussion of this law, following its formal statement,
leaves no doubt that this is the correct reading ofNewton’s intention.
He says that the “effect” of the action of a force is the same “whether
the force is applied at once or successively by degrees.”

Consider the following example. Let an impulsive force F pro-
duce a certain change in momentum �(mV) and let that force be
divided into three equal parts, each of which will produce a change
in momentum 1/3 mV. Then, the successive application of these
three forces will produce a corresponding total change in momen-
tum of 3 × 1/3 × mV = mV . The net change in momentum is the
same whether the impacts are delivered seriatim or all at once. This
makes perfect sense for impulsive forces, but has no meaning for
continuous forces since the latter produce a net change of momen-
tum that depends on both the magnitude of the force and the time
during which the force acts.

This interpretation is further confirmed in Corollary 1 to the
Laws. Here (see Figure 2.1), Newton considers a body struck by a
blow. “Let a body in a given time,” he writes, “by a force M im-
pressed in A, be carried with uniformmotion from A to B.” Here is a
plain case of an impulsive force generating a motion. After receiving
the blow, the body then, according to Definition 4, “perseveres” in
the “new state” by its “force of inertia.”

In such statements as these, we can see the influence of
Descartes. In explaining how refraction takes place,Descartes – in his
Dioptrique (1637) – invokes an analogy with the motion of a tennis

A

C D

B

Fig. 2.1 Newton’s parallelogram rule for motions produced by impul-
sive forces.
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ball striking a body of water. At the moment of impact, at the inter-
face between the air and the water, Descartes supposes, the ball is
given a blow or is struck by an impulsive force. The ensuing motion,
originating from the instantaneous action at the interface, is uniform
and rectilinear, with a new magnitude and direction, as is the case
in a refracted light beam.18

Of course, Newton knew the second law as a law for continuously
acting forces. This form of the second law is implied in Definitions
7 and 8. In Book 2, Proposition 24, Newton writes that “the velocity
that a given force can generate in a given time in a given quantity of
matter is as the force and the time directly and thematter inversely.”
The factor of time shows that this is a case of the second law for
continuous forces.19

A reason why Newton may have given priority to the impulsive
form of the law rather than the continuous version is that in this case
one can witness an act of impact or pressure. As we have noted, the
most important class of continuous forces is in the orbital motion of
planets, planetary satellites, and eventually comets. In each of these
cases, the effect of the force is not associated with an observable
physical act.

Another factor of importance is thatNewton formed his dynamics
in the context of the great advances in the science of motion made,
during the decades before the Principia, by studies of impact – the
work of such giants as Wallis, Wren, and Huygens. Descartes had set
the scene in his Principia, which contained a series of statements
about impacts which are wrong.

In the Principia, Newton described at length the experiments he
himself hadmade on impact, including the distinction between elas-
tic and non-elastic collisions. In short, the primacy given by Newton
to impulsive forceswould have been in keepingwith the cutting edge
of the science of motion in those days.

Yet it is a fact that the propositions of Book 1, beginning with the
first group of propositions (Propositions 1–14), deal with varieties of
centripetal force and orbital motions and not with impulsive forces.
As we shall see shortly, in these opening propositions, Newton be-
gins with a series of impulsive forces and effects a transition from
a sequence of impulsive forces to a continuous force. Indeed, from
Newton’s point of view, the impact form of the second law led so
readily into the continuous form that he did not even bother to state
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the continuous form as a separate entity. In other words, the distinc-
tion between the two forms of the law is more significant for us than
it would have been for Newton.

the third law

Newton’s third lawhas been characterized by ErnstMach as themost
original of the three Laws of Motion. It is the only one of the Laws
of Motion that Newton did not allege had been known to Galileo. In
fact, Newton had found the law some years before he composed the
Principia.20 As commonly stated, the third law declares that action
is always equal and opposite to reaction. In Newton’s own words,
“To any action there is always an opposite and equal reaction.”

This law, however, simple as it is, is easily subject to misinter-
pretation. For example, it is often mistakenly believed that this law
provides for an equilibrium of two forces, the equal and oppositely
directed action and reaction. But the law actually says that if a body
A exerts a force Fa on body B, then body B will exert an equal and
opposite force Fb on body A. There is no equilibrium because the
forces Fa and Fb are exerted on different bodies, one on body A and
the other on body B.

Newton himself apparently saw that this law might be subject to
misinterpretation and so he included a second version in the state-
ment of the third law. In “other words,” he wrote, “the actions of
two bodies upon each other are always equal and always opposite in
direction.”

In the discussion of the law, Newton says that it applies specifi-
cally to collisions. He shows the way in which this law is related to
the law of conservation of momentum, previously announced by the
mathematician John Wallis, and known to Huygens. He concludes
with the important statement that this “law is valid also for attrac-
tions, as will be proved in the next scholium.”

why a separate law 1 and law 2

A number of critics and authors of textbooks on mechanics have
criticized Newton for having a separate Law 1 and Law 2. After
all, they argue, if there is no net external force F, the second law



Newton’s concepts of force and mass 69

(for continuous forces) implies that the acceleration A is zero and
so there is no change in a body’s state. In the case of the impact form
of the second law, there is similarly no change in state.

There are two sets of reasons, however, why Newton had a sep-
arate Law 1. First, in Newton’s day – as during many preceding
centuries – the common belief was that all motion requires a mover,
a moving force. The very statement of this law as an axiom was a
radical step, a declaration of an important new principle of motion,
too important to be a special case of another law. Indeed, such a state-
ment was possible only after Descartes’s bold assertion that uniform
rectilinearmotion can be considered a “state,” thus existing without
a driving or motive external force.

Second, Newton’s first two laws of motion depended heavily on
the prior statements of Descartes, Galileo, and Huygens. The form
inwhichNewton expressed the first law, including the choice of lan-
guage and the separate statement of Law 1 and Law 2, shows the in-
fluence of Descartes’s Principia, where these are part of the “regulae
quaedam sive leges naturae.”

In the 1660s, some two decades before developing themature ideas
expounded in the Principia, Newton had already seen how basic was
Descartes’s law of inertia. He wrote out (in English) what he called
a series of “Axiomes and Propositions,” of which the first one reads:
“If a quantity once move it will never rest unlesse hindered by some
external caus.” Another version reads as follows: “A quantity will al-
ways move on in the same streight line (not changing the determina-
tion nor celerity of its motion) unlesse some external caus divert it.”
He then started a new series of axioms, of which the first is labeled
“Ax: 100.” It reads: “Every thing doth naturally persevere in that
state in which it is unlesse it bee interrupted by some externall caus,
hence axiome 1st and 2nd.” Note that, early on, he recognized the
importance of Descartes’s concept of uniform motion as a “state.”21

An even more important reason why Newton had a separate Law
1 and Law 2 is that he was following the example set by Christiaan
Huygens in his Horologium Oscillatorium of 1673, a work that
Newton greatly admired. In the Horologium, Huygens axiomatized
Galileo’s rules for the motion of bodies such as projectiles, moving
in the Earth’s gravitational field. Huygens’s first law (he calls these
laws “Hypotheses”) is that if there were no gravity and no resistance
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of air to motion, “any body will continue its motion with uniform
velocity in a straight line.”22 Here is Newton’s first law stated for
a system in which the only possible forces are gravity and air resis-
tance (and possibly some force that gets forward motions started, as
in the firing of a projectile). That is, Huygens first considers a kind
of inertial motion without falling. Then, in a second law, he allows
such a moving body to be acted on by gravity so as to fall according
to the laws of falling bodies. Although Huygens does not state his
second law in the full generality found in the Principia, the model
is structurally the same: first, an inertial motion in the absence of
forces and then a new motion produced by the action of a force.

In the Principia, Newton added a statement about Galileo’s dis-
covery of the laws of projectile motion. According to Newton,
Galileo did so by using the first two laws of motion. Thus Galileo
would have been Newton’s third source for a first and second law.
There is no evidence, however, that Newton had ever read Galileo’s
Two New Sciences and his knowledge of Galileo’s ideas must have
come from secondary sources, such as the books of Kenelm Digby
and John Anderson.

from impulsive forces to continually
acting forces

Newton’s transition from the action of impulsive forces to the action
of continuous forces occurs in the first proposition in the Principia.
Here Newton’s goal is to find the significance of Kepler’s law of areas
(which Newton does not attribute to Kepler).

Newton’s proof starts out with a body (actually a mass point)
moving freely with a component of linear inertial motion along a
straight line. Newton shows (see Figure 2.2) that this motion is area-
conserving, that is, a line drawn from the moving body to any point
P (not on the line of motion) will sweep out equal areas in any equal
times. Actually, this was a startling result. Here Newton revealed
for the first time the link between the law of areas and the principle
or law of inertia.

Next, after a time interval T, the body is given an impulsive blow
directed toward the point P. The bodywill nowmove on a new linear
path, with a new velocity, according to the second law. By simple
geometry (see Figure 2.3), Newton proves that the area swept out in
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Fig. 2.2 The area law for uniform rectilinear motion. A body moves
with uniform motion along the straight line ABCD . . .Then in equal
times the distances AB, BC, CD . . .will be equal. Therefore, a line from
the moving body to any point P (not on the line of motion) will sweep
out equal areas in any equal time intervals, since the triangles ABP,
BCP, CDP . . .have a common altitude h and equal bases.
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Fig. 2.3 Newton’s polygonal path (from the first edition of the Prin-
cipia, 1687). During the first equal time-interval T, the body moves
fromA to B. At B it receives a thrust toward S. Had there not been such
a thrust, the body would have moved in the second time T from B to
c, where Bc = AB. But, as a result of the thrust, the body moves from
B to C. By the parallelogram rule and simple geometry, Newton shows
that the area of triangle BSC equals the area of triangle BSc. In this way
Newton constructs the polygonal path ABCDEF . . .
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time T by a line from the body to P will be the same along the new
path as it was when the bodymoved fromA to B. After the passage of
another timeT, thewhole procedure is repeated. In thisway,Newton
produces a polygonal trajectory, each side corresponding to motion
during a time interval T and each such side the base of a triangle; all
such triangles have the same area.

At this point, Newton says, “Now, let the number of triangles be
increased and their width decreased indefinitely,” that is, without
limit. Then he continues, “the ultimate perimeter ADFwill (by lem.
3, corol. 4) be a curved line.” In this way, “the centripetal force by
which the body is continually drawn back from the tangent of this
curve will act uninterruptedly.” Furthermore, “any areas described,
SADS and SAFS, which are always proportional to the times of de-
scription, will be proportional to those times in this case.” In other
words, Newton has essentially proved that a centrally directed force
will always produce (or is a sufficient condition for) the law of ar-
eas. This example shows how Newton used his method of limits to
make a transition from the action of a force consisting of a series of
impulses to the action of a continuously acting force.

newton’s shift from a second law for impulsive
to a second law for continuous
forces – newton’s concept of time

In analyzing Book 1, Proposition 1 of the Principia, attention has
been called to Newton’s mode of transition from a series of impulses
to a continuously acting force. This distinction between continuous
and instantaneous forceswas also seen in the statement of Law 2. But
a careful reading of the Principia shows that the distinction between
these forms of the second law, and the distinction between impulsive
and continuous forces, did not have the same significance forNewton
that it does for us.

In Newton’s system of dynamics, the two concepts of force – con-
tinuous and impulsive – are linked by Newton’s concept of time.
That this should be so is hardly surprising since the difference be-
tween the two forms of force lies in the factor of time of action: a
finite time for a continuous force and an infinitesimal time for an
impulsive force. We make a distinction between them but Newton
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could effect an easy transition from one to the other, conceiving
(as in Book 1, Propositions 1 and 4) a continuous force to be the limit
of a sequence of impulses. Newton’s procedure is troubling to us be-
cause there is a difference in dimensionality between the impulsive
force, which we measure by d (mV ), and the continuous force, mea-
sured by d (mV )/dt. Thus if we were to write these two forms of the
law as algebraic statements of proportion,

F = k1 d(mV)

F = k2 d(mV)/dt

it becomes at once obvious that k1 and k2 have different dimen-
sionality. It is for this reason that we would write the first of these
equations as

Fdt = k1 d(mV).

This was not a problem for Newton, however, since he did not write
proportions as algebraic equations and so was not concerned by the
fact that if the force F has the same dimensionality in both forms
of the second law, then the constants of proportionality must have
different dimensionality.

Newton generally compared one value of a quantity with another
rather than make computations that involve the numerical value of
the constant of proportionality. Thus, in Book 3, Proposition 12, he
compares the quantity of matter in the Sun to the quantity of matter
in Jupiter but does not compute either quantity in terms of some
fixed set of units such as pounds. In the Scholium toBook 2, Section 6,
he writes of a globe encountering a resistance which is to its weight
as 61,705 to 121. But he also makes some computations that, in
effect, involve evaluating a constant of proportionality (although he
does not use this form of expression). But he did not ever compute
numerical values (with units of dimensionality) in which he had to
be concerned about the difference in dimensional units that arise
because of the two forms of the second law.

It is well known that in Newton’s mathematics, as in his physics,
time is the primary independent variable, the one on which all other
quantities depend. Newton does not have an entry for time in the
section of definitions in the Principia, merely saying in a Scholium
that “time, place, space, and motion are very familiar to everyone.”
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He then alerts the reader to “absolute, true, andmathematical time,”
which “without reference to anything external, flows uniformly.”

It is, therefore, paradoxical that a consequence of Newton’s con-
cept of time as a uniform flow should be that it is composed of units
(dt) which are essentially constant infinitesimal increments. And
yet, in the Principia, Newton often writes of a “particle of time”
(“particula temporis”). These are not finite atoms of time in the sense
of tiny finite particles of matter. Rather, for Newton, time is finitely
continuous and only infinitesimally discrete. Thus the “fluxional”
character of the Principia depends in practice on a discrete kind of
infinitesimal of time inwhich quantities do not really flow evenly or
smoothly, but rather jerk, jerk along – to use a metaphor suggested
by D. T. Whiteside. But this aspect of time appears only on an in-
finitesimal level so that to our finite eyes time appears to be flowing
smoothly, as postulated by the method of first and ultimate ratios.

Thus, in Book 2, Proposition 2, Newton divides a time-interval
into “equal particles” and eventually lets “the equal particles of
time . . .be diminished and their number increased without limit”
(“in infinitum”). On first encounter, such a passage gives rise to
many problems because we would ask how a continuous flow of
time could possibly be composed of discrete units, even infinitesi-
mal ones. This post-Newtonian problem may serve as an index of
the difficulties that arise in the use of infinitesimals.

In considering the consequences of Newton’s concept of time, we
may anachronistically (that is, by using the Leibnizian algorithm of
the calculus) consider dt as Newton’s constant infinitesimal unit
of time. Thus dt represents the Newtonian concept of a primitive
or fundamental “time,” flowing uniformly at a constant rate every-
where, at all times, and under all conditions. Then it will follow at
once that there are a number of equivalent forms of the second law
as follows:

(1) F ∝ dV
(2) F ∝ dV/dt = d2s/dt2,where V = ds/dt
(3) F · dt ∝ dV
(4) F · dt2 ∝ d2s

where F is taken as the accelerative measure of force. The only dif-
ference between eq. (1), the impact form of the second law, and eqs.
(2)–(4), the continuous form, is that there is a different dimensionality
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in the constant of proportion (not shown). That is, the constant dt
can be absorbed in the constant of proportionality at will. In these
equations, if the force is itself a variable, then F must be the average
value during the time dt.

In considering these equations for a “force” F, it must be kept
in mind, as mentioned previously, that Newton did not write equa-
tions of motion but rather expressed his principles as statements of
proportion. Hence the constant of proportionality did not need to
appear explicitly, nor did Newton need to have any regard for the
dimensionality of the various forces he was studying. This was es-
pecially the case since Newton tended to compare one force with
another rather than compute numerical values in some given sys-
tem of units – which would have required a consideration of the
physical dimensions of the computed quantities. We may thus un-
derstand how it was possible to hold simultaneously the validity of a
second law symbolized by eq. (1) and a second law symbolized by eq.
(3), whereas we would encounter a problem with the quantity “F”
in eq. (1) and would consider an impulsive force to be F ·dt rather
than F.

a finite or infinitesimal level of discourse?

A critical study of the Principia reveals that much of the discourse is
pitched on an infinitesimal level. For example, in Book 1, Proposition
41, Newton introduces a ratio of a distance to a time, “the line-
element IK, described in a minimally small time.” These, clearly,
are not a finite distance and time, as is evident from the terms “line-
element” and “minimally small.” In the language of the calculus,
Newton is invoking an infinitesimal distance ds and an infinitesimal
unit or “particle” of time dt. Thus the ratio in question is Newton’s
way of expressing what we would write in Leibnizian terms as ds/dt.

An admirable exposition of the infinitesimal character of
Newton’s dynamics has been given by D. T. Whiteside,23 who has
made a careful analysis of the proof of the area law in Book 1, Propo-
sition 1, of the Principia, essentially the proof given in the prior tract
“Demotu”. In this proof, as we have seen, the continuous curved tra-
jectory is the limit of a polygonal path. In this process, according to
Whiteside, Newton replaces the continually acting central force by
the limit of “a series of component discrete impulses, each acting
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instantaneously but separated from its predecessor by a measur-
able if indefinitely small time-interval.” Under these circumstances,
Whiteside finds, the elements of force must be “of a second order
of the infinitely small.” Whiteside then notes that since dt2 is a
constant (a consequence of dt being a constant), Newton’s proof of
Proposition 1 would accordingly make use of the second law in a
form expressed by a variant of our eq. (4),

F ∝ d2s

which would be another way of saying that the force impulse must
be a second-order infinitesimal.24

A final example will show in a striking manner the importance of
keeping inmind thatmuch of the treatment of forces in the Principia
is couched on an infinitesimal level. Newton’s manuscripts show
that in the early 1690s he was planning a new edition of the Principia
in which he would revise his presentation of the second law. These
attempts to alter the presentation of the second law are of special
interest because there are no similar attempts to recast the presen-
tation of Law 1 or Law 3.

In one set of these revisions, Newton writes of “a motion gener-
ated in a space either immobile ormobile,” saying that such amotion
“is proportional to the motive force impressed and occurs along the
straight line in which that force is impressed.” As the manuscript
makes clear, Newton was thinking of a situation like Galileo’s ex-
ample of motion on a moving ship; Galileo compared the motion
as seen by an observer on the ship with the motion as seen by an
observer on the shore.

In the course of these revisions, Newton writes of the generated
motion as follows:

[it] has the same determination [i.e., direction] as the impressed force and
occurs from that place in which the body, before the force was impressed
upon it, was at rest either truly or at least relatively. And, therefore, if the
body was moving before the impressed force, the generated motion is either
added to the original motion or is subtracted from it if contrary or is added
obliquely to it if oblique and is compounded with it in accordance with the
direction of both.

Newton then proceeds to examine the manner in which the two
obliquemotions are compounded, that is, combined according to the
laws of composition of velocities. In the oblique case, the resulting
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Fig. 2.4 The trajectory of a moving body that has received a blow or
has been struck by an impulsive force. There can be no doubt that the
force is a thrust, an instaneous force, a force of impact, or a force of per-
cussion, since the text reads that the imparted motion “is proportional
to the force.”

motion, Newton says, “is neither parallel to, nor perpendicular to,
the original motion to which it is added.”

In this paragraph Newton will have anticipated Corollary 1 to the
laws by giving a proof of the method of composition of two motions.
But there is a major difference. In Corollary 1 to the laws, two im-
pulsive forces act either separately or simultaneously on a body at
rest, whereas in this revision a single impulsive force acts by giving
an oblique blow to a body in uniform motion.

This manuscript presents a problem, however, because although
the original motion is explicitly said to be uniform (“uniformiter
continuato”), the trajectory resulting from the action of the impul-
sive force or blow is not a straight line as we would have expected.
Rather (see Figure 2.4), the new trajectory AB is curved, seeming
to imply that the action did not simply generate a new straight-
line motion, as Newton’s text might have led us to expect. Rather,
the effect of the force seems to be to produce an acceleration, as if
the force had been continuously acting rather than having been an
impulse.

The trajectory AD, it should be noted, is the same parabola-like
curve in three separate occurrences of the diagram. In none of these
is the curve the result of a carelessly drawn free-hand diagram.AD is
simply not the diagonal of a parallelogram of forces. Hence, the con-
clusion must be that Newton was thinking of a trajectory produced
by a continuous force, even though the text indicates that the force
is an impulse, an instantaneous blow.
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Our bewilderment arises from our having assumed that these
manuscript texts were conceived on a finite rather than an infinites-
imal level. In the proposed revisions of the second law, Newton was
dealing with the effects of a blow or instantaneous force, that is, an
infinitesimal force-impulse acting in an infinitesimal time-unit �t. If
we now divide that infinitesimal time-unit �t into sub-units or parts
(�t/n), then the limit of the initial condition of the proposed revisions
of Law 2 (as n → ∞) will correspond to a sequence of infinitely small
quantities (which are infinitesimals of a higher order) of time. It is
on such an infinitesimal level, but not on a finite level (and only on
an infinitesimal level), that the two modes of action of an impulse –
Newton’s “simul et semel” and “gradatim et successive” – produce
the effects illustrated by Newton within the framework of the stated
Law 2 of the Principia.25

This analysis would accord with Newton’s statement concern-
ing the two ways in which a given force-impulse may act. Thus an
impulse Pmay in an instant produce a change in motion (or momen-
tum), acting – as Newton says – “altogether and at once.” Alterna-
tively, the impulseP can be considered as composed of a succession of
infinitesimal force-impulses. This is themode of action thatNewton
calls “by degrees and successively.” The difference between the two
lies in the mode of conceiving the actual production of the change in
motion. In the first case, there is an instantaneous change that can
occur in the direction and magnitude of the motion. In the second,
there is a succession of infinitesimal blows that in the limit produce
a curved motion, whose final direction and magnitude is the same
as in the first case.

the realities of force – the newtonian style

Newton came to believe in the existence of forces that could pro-
duce curved or orbital motion without contact, thereby holding a
drastically revised form of the then-current mechanical philosophy.
In effect he now enlarged the basis of explanation from effects pro-
duced by matter and motion, adding the further concept of force.
In the Principia, he avoided this issue as long as possible by start-
ing out on a mathematical level in which he did not need to con-
sider the physical aspects of his concepts. Thus the first ten sections
of Book 1 explore a purely mathematical problem: the motions of
bodies attracted to a mathematical point. These are mathematical
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bodies in so far as there are no considerations of mass, no physi-
cal dimensions, and no physical properties such as hardness. In the
opening of Section 11 of Book 1, Newton states clearly that in the
preceding sections he has “been setting forth the motions of bod-
ies attracted toward an immovable center, such as, however, hardly
exists in the natural world,” where “attractions are always directed
toward bodies.” Newton, in other words, stated as clearly as possible
that this opening part of Book 1 was a work of mathematics. Even
though he had used the verb “to attract,” he was not (in Book 1) con-
cerned with a physical force of attraction, with an attractive force of
gravity.

Some readers, especially on the Continent, did not take Newton
at his word and did not read Book 1 as a work of “mathematical
principles.” In the early eighteenth century, Fontenelle argued that,
no matter what Newton said, the word “attraction” implied a force
of a kind that is unacceptable in discussions of physics, of “natural
philosophy.” This same charge has been repeated in our times by
Alexandre Koyré.26 The reviewer of the first Principia in the Journal
des Sçavans could quite legitimately say that Newton had produced
a work on “mechanics” but not “physics.”

Since the primary difference between the subject of the first ten
sections of Book 1 and the world of nature is that in the world of
nature forces orginate in bodies, Newton – in Section 11 – introduces
the mathematics of two-body systems. These, however, are not as
yet “real” or physical bodies in the full sense. That is, they are not
characterized by such physical properties as size, shape, degree of
hardness, and so on. From a two-body systemNewton next advances
to a system of three mutually attracting bodies. Every reader would
recognize thatNewton’smathematical construct is gettingmore and
more closely to resemble the physical universe. And indeed, in the
twenty-two corollaries of Book 1, Proposition 66, Newton indicates
how his study of three interacting bodies will eventually be related
to the motion of the Moon. The diagram has a central body labeled
T (for Terra or Earth), about which there moves in orbit a satellite
or secondary planet P whose motion is being perturbed by a body
marked S (Sol or Sun).

I have called this mode of studying successive mathematical con-
structs “the Newtonian style.” Basically it consists of starting out
with a simple mathematical “system,” a mass point moving in orbit
about a mathematical center of force toward which it is attracted.
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Among the properties of this “system” developedmathematically by
Newton are that Kepler’s law of areas is a necessary and sufficient
condition for motion in a central force field and that Kepler’s law of
elliptical orbits implies that the central force varies inversely as the
square of the distance. Similarly, Newton shows that in a two-body
system, each of the bodies will move around the common center of
gravity.

Of course Newton’s goal is eventually to get to the dynamics of
the system of the world. But he makes it abundantly clear that in
Book 1 he is primarily concerned with elaborating the properties of
mathematical systems that have features resembling those found in
nature. And here he makes an important distinction between math-
ematics and physics. In this way, Newton is free to develop the prop-
erties ofmathematical forces of attractionwithout having to face the
great problem ofwhether such forces can actually exist or can be con-
sidered an element of acceptable physics. This distinction is stressed
by Newton in a concluding statement to Book 1, Section 11.27

As Newton proceeds step-by-step, he introduces into the math-
ematical system one-by-one such further properties as will make
the system more and more closely resemble what we observe in the
world of nature. Thus he considers the properties of bodieswith phys-
ical shapes, for example bodies composed of a sequence of homoge-
neous spherical shells. Eventually, in Book 2, he will add another set
of conditions found in the world of nature – various kinds of resisting
mediums.

The essence of the “Newtonian style” is this sequence of adding
one by one the conditions resembling those of the world of nature.
The goal is to produce eventually a dynamics that will apply to the
external world, to elaborate the properties of a mathematical sys-
tem that will closely resemble the world of nature. This style has
a number of advantages for Newton. The most important is that it
permits him to explore the mathematical consequences of his as-
sumptions one by one without having to face the impossible task of
analyzing the properties of the complex physical world all at once.
Furthermore, if we accept Newton’s position, expressly stated in
Book 1, Section 11, we can study the effects of forces of attraction
without having to face the inhibiting fact that the reigning natu-
ral philosophy, the “mechanical philosophy,” will not consider ac-
ceptable the concept of a force that is not the result of a material
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push or pull, that is not the result of some kind of contact between
bodies.

Of course, it would have been obvious to every reader that
Newton’s goal was to display and analyze the physics of planetary
motion. In the end, he would show that the celestial phenomena de-
clare the action of an inverse-square force and he would boldly assert
that this force is gravity, by which he means the force (whatever its
cause) that produces weight here on Earth and that he can showmust
extend as far out as the Moon.

Newton himself was troubled by the idea of a universal gravitat-
ing force extending through space, and he tried again and again to
find a way to account for its action. But, as he explained in the final
General Scholium, he had no doubt that a force of universal gravity
“really” exists. Newton did not disparage attempts to explain how
gravity might act, but he believed that such considerations should
not inhibit the use of the concept of universal gravity. His succes-
sors – including such giants as Euler, Clairaut, d’Alembert, Lagrange,
and above all Laplace – were not inhibited by concerns about the
nature of a force like universal gravity, and thus they found new
principles and tremendously enlarged the subject that Newton had
explored in the Principia.28
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firmed by I. B. Cohen.

7 Ernst Mach, The Science of Mechanics: A Critical and Historical
Account of Its Development, trans. Thomas J. McCormack, 6th edn,
with revisions from the 9th German edn (La Salle: The Open Court
Publishing Company, 1960), ch. 2, §7: “As we can only define density
as the mass of unit volume, the circle is manifest.”

8 But such criticism ignores Newton’s own statement. Newton does not
say that mass “is proportional to” the product of density and volume.
The verb, as we have seen, is “oriri” in the form “orta est,” meaning
“arises from.” If Newton had intended to say that a body’s mass is
jointly proportional to its volume and density, he would have done
so. Such statements of joint proportionality are not uncommon in the
Principia.

9 Furthermore, in Newton’s day, densities were usually given as relative
numerical quantities rather than as independent values. Thus John
Harris, in his Lexicon Technicum of 1704, follows Newton in giving
relative densities of substances, for example “the Density of Water to
Air” or “the Density of Quick-Silver to Water.”



Newton’s concepts of force and mass 83

Newton himself, in Book 2, Part 3, Proposition 10, of the Opticks
(1704), describes how density is to be determined. The “Densities
of the Bodies,” he writes, are to be “estimated by their Specifick
Gravities.” There follows a table in which one column gives “The den-
sity and specifick gravity of the Body.”

10 Seemy Introduction to Newton’s “Principia” (Cambridge,MA:Harvard
University Press; Cambridge: Cambridge University Press, 1971), ch. 4,
§3.

11 I have translated vis insita by “inherent force,” which seems to be
Newton’s equivalent term in English, but others have rendered it as
“innate force.” See my Introduction, ch. 3, 5.

12 Vis insita also appears in the writings of Kepler, notably in the Astrono-
mia Nova and in the Epitome Astronomiae Copernicanae, but we have
no evidence thatNewton had read either of these Keplerianworks before
composing the Principia. See, further, my Introduction and “Guide.”

13 For details see my “Guide,” pp. 101–2.
14 On the choice of “uniformly straight forward” rather than the tradi-

tional “uniformly in a straight line,” see the new translation cited above.
15 On the identity of phrases used by Newton and Descartes, see my

Introduction.
16 Although Newton’s example is a sound one, in accord with the ac-

cepted principles of physics, it was willfully misunderstood by Clifford
Truesdell, who alleged that Newton was here expressing a belief in a
kind of “circular inertia.”

17 For example,W.W.Rouse Ball,AnEssay onNewton’sPrincipia (London:
Macmillan and Co., 1893), p. 77: “The rate of change of momentum [per
unit of time] is always proportional to the moving force impressed.”
In order to indicate that he was giving a modern paraphrase of what
Newton wrote, Rouse Ball enclosed his insertion in square brackets.

18 For details see my paper in the Annus Mirabilis volume, cited in note 2
supra.

19 In other words, a speed V is proportional to the force and time and
inversely proportional to the mass of the body in question. If t is the
time in which a velocity V is generated in a mass m by a force F, then

V = (1/k)× F t/m

where k is a constant of proportionality. In this case,

F = km (V/t)

where V/t is the acceleration A. Plainly, Newton knew the second law
for continuous forces. As we shall see below, Newton showed how to
get from the second law as stated for impulsive forces to the continuous
form of the law.



84 i. bernard cohen

20 See the notes by Whiteside in his edition of Newton’s Mathematical
Papers, vol. 6, pp. 98–9 (n. 16), 148–9 (n. 152).

21 Quoted in full in my Newtonian Revolution, pp. 183–4; see John W.
Herivel, The Background to Newton’s Principia: A study of Newton’s
Dynamical Researches in the Years 1664–84 (Oxford: Clarendon Press,
1965), pp. 141, 153.

22 Christiaan Huygens, The Pendulum Clock, trans. Richard J. Blackwell
(Ames: Iowa State University Press, 1986).

23 D. T. Whiteside, “Newtonian Dynamics,” History of Science 5 (1966),
104–17.

24 For a different view, see this volume, p. 93, n. 30.
25 In my discussions of this question with D. T. Whiteside, he has pointed

out that there are two possibilities which lead to “exactly the same
theory of central forces.” One, favored by Leibniz, is that on a finite
level “the orbit is built up of a series of infinitesimal discrete force-
impulses.” The other, Newton’s favored approach, is that there is a “se-
ries of infinitesimal arcs generated by a continuous force (composed
of infinitesimal discrete force-impulses).” The first is what Newton in
1687 and afterwards called “simul et semel,” the latter being “gradatim
et successive.”
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3 Curvature in Newton’s dynamics

introduction

The first edition of Isaac Newton’s Principia was published in 1687,
followed by a second edition in 1713 and a third in 1726, the year
before he died. The Principia is universally held to have been amajor
turning point in natural philosophy in the seventeenth century. That
turning point is clearly reflected in the comparison of the title of
Descartes’s 1644 Principles of Philosophy with the title of Newton’s
Mathematical Principles of Natural Philosophy. Even though both
men were noted mathematicians, Newton’s book is distinguished
from that of Descartes by virtue of being amathematical description
of nature. In theGeneral Scholiumof the second editionNewton sets
out the difference quite clearly: “But hitherto I have not been able
to discover the cause of those properties of gravity from phenomena,
and I frame no hypotheses . . .And to us it is enough, that gravity
does exist, and acts according to the [mathematical] laws which we
have explained.”1 Although Newton was strongly influenced by the
Cartesian mechanical philosophy during the first two decades of his
scholarly work, he nevertheless expressed himself analytically from
the very beginning of his work in 1664. By 1684, however, he had
rejected Cartesian mechanical explanations for gravity, and in the
Principia he emphasized the analytical expression of the inverse-
square law for gravity. The final impetus for that rejection came from
Newton’s correspondence in 1679 with Robert Hooke,2 which led
Newton to derive Kepler’s area law as a geometrical measure of time
to employ in analyzing orbital motion. That same correspondence
has shown that Newton’s later work is an extension, not a revision,
of his earlier work.3,4

85
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In particular, the role of “curvature” in Newton’s dynamics
emerges as a major factor in the analysis of general curvilinear mo-
tion in both his early and mature work. As early as 1664, Newton
had developed the concept of curvature as a measure of the rate of
bending of curves:5 that is, the change in the slope of the curve as
a function of position on the curve. For example, a circle has a con-
stant rate of bending and thus the curvature is the same at all points,
while an ellipse has a changing rate of bending and thus the cur-
vature is not the same at all points.6 By 1671 curvature appeared
as an important element in his Method of Series and Fluxions. The
role of curvature in Newton’s revised editions of the Principia was
clearly recognized by eighteenth- and nineteenth-century commen-
tators, and in fact was seen by many as the principal method of ana-
lysis despite Newton’s representation of it in the revised Principia
as an “alternate method.”7 Most twentieth-century commentators,
however, have not been concerned with the role curvature played
in Newton’s dynamics.8 Recently, however, it has been argued that
curvature not only played a role in the Principia, but was the primary
mathematical device employed byNewton inhis early analysis of dy-
namical problems,9 and it continued to serve him from his very first
calculations as a student in 1665, through the initial 1687 edition of
the Principia,10 and into the revised editions of 1713 and 1726.11,12,13

The application of curvature to Newton’s dynamics is linked to
the analysis of uniform circularmotion: circular because the path is a
circle and uniform because the radius of the circle sweeps out equal
arcs and angles in equal times. Such motion was seen by early Greek
astronomers as central to the analysis of planetary motion. Plato is
reported to have set the challenge for astronomers to find the set of
uniform circular motions that would “save the phenomena”; that is,
he wanted to find a way of using combinations of uniform circular
motions to explain the apparent wandering motions of the planets.
It is in this tradition of “celestial circularity” that astronomers from
Hipparchus and Ptolemy to Copernicus and Kepler worked.14 The
role of circular motion in Newton’s analysis of planetary motion is
dramatically different from that of these early astronomers, but as
John Herivel points out, that role is a critical one.

It is worth pausing for a moment to consider how fortunate the existence of
uniform circular motion was for Newton, and how important his successful
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treatment of it for thewhole future development of his dynamics. Apart from
motion in a circle, the only relatively simple kinds of movement available
for study by Newton were rectilinear, parabolic, and elliptical. The first two
occurred inmotion under gravity at the Earth’s surface, and had already been
fully explored, at least in their kinematical aspects, by Galileo. Both bulked
large in the growth of Newton’s dynamical thought, especially uniformly
accelerated rectilinear motion, the paradigm case for all other more compli-
catedmotions. But neither of these motions admitted of any development of
the concept of force. On the other hand, the elliptical motion discerned by
Kepler in the unruly movements of the planet Mars was far too difficult and
complex a case for Newton to treat first. In contrast, the problem of uniform
circular motion was at once not impossibly difficult and yet of sufficient
complexity to call for a real advance in his concept of force and his method
of applying it to motion in a curved path.15

Herivel was not aware, however, that curvature provided Newton
with an early method of extending the analysis of uniform circular
motion to the analysis of curvilinear motion in general. It was not
until after the 1679 correspondence with Robert Hooke,16 which led
Newton to the derivation of Kepler’s area law, that he was able to
obtain the solution for the problem of elliptical motion presented in
the Principia. Between 1664 and 1684, however, Newton used cur-
vature and the analytical expression for the force required to main-
tain uniform circular motion to address the more general problem of
curvilinear motion.

uniform circular motion

Newton’s first investigations into dynamics, appearing in his bound
notebook, the Waste Book, were concerned with collisions. The
only date among the dynamical entries in the Waste Book was the
marginalia, “Jan. 20th, 1664” (1665 new style), that appeared in a sec-
tion devoted to problems of collisions between two perfectly elastic
bodies.17 In this section, Newton developed and refined concepts and
axioms of motion that Descartes had set out in 1644. For Descartes,
the natural state of motion of a body is to remain at rest or, if set
initially into motion by an external cause, to remain in uniform rec-
tilinear motion. Thus, an object of and by itself will not move in a
curved path unless it is acted upon by an external cause.18 This ba-
sic principle of linear inertia appears implicitly in all of Newton’s
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early work, and it appears explicitly in all editions of Newton’s
Principia.19

Herivel reports that the first discussion byNewton of the problem
of circular motion is found at Axiom 20 of theWaste Book, in which
a ball moves in a circular path on the interior of a hollow spherical
surface.20 Following Descartes, Newton observes that there is a con-
stant tendency for the ball at any point to continue in the instanta-
neous direction of its motion along the tangent to the circle. Because
the ball moves in a circle instead of along the tangent, Newton ar-
gues that a continuous force must act on it. This force can only arise
from the pressure between the ball and the spherical surface. But if
the surface presses on the ball, the ball must press on the surface,
and Newton is led to the following axiom:

Axiom 21. Hence it appears that all bodies moved circularly have an en-
deavor from the center aboutwhich theymove, otherwise the body . . .would
not continually press upon . . . [the hollow sphere].21

In the Principia, Newton reproduced a version of this early analysis
of circular motion. In 1664/5, he used the Cartesian terminology
“outward endeavor,” but he replaced it by Huygens’s “centrifugal
force”when it appeared as the last line of the Scholium toProposition
4 in Book 1 of the revised 1713 and 1726 Principia:

Scholium. This is the centrifugal force, with which the body impells the
circle: and to which the contrary force, wherewith the circle continually
repels the body towards the center, is equal.22

It has been argued that in the 1664 version Newton held the opin-
ion that the outward endeavor is an outward force that counterbal-
ances the inward force and that he continued to hold this opinion
until after 1679. Yet this early statement appears to be very similar
to the later statement. In the Waste Book the body is said to press
upon the sphere, and in the Principia the body is said to press upon
the circle. In both cases the body is deflected from its natural tan-
gential rectilinear motion by the action of an inward radial force. In
the case of circular motion, as considered here, the two forces are
equal and both lie along the radius. That condition, however, does
not hold for general orbital motion. It is critical to note that for gen-
eral orbital motion Newton never applied the term centrifugal force
except when the radius is either a maximum or minimum, that is, at
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Fig. 3.1 A particle at A rotates uniformly in a circle AD constrained
by a string attached to C, the center of the circle. The line AB is the
tangent to the circle at the point A.

extreme points where the force does lie along the radius of the circle
of curvature. This important distinction serves to clarify the specific
role Newton assigned to centrifugal force in general orbital motion.
Newton’s careful restricted use of “centrifugal force,” however, was
lost as it evolved during the following centuries to the current view
that centrifugal force is “fictitious.”23

Central to all ofNewton’s analysis of curvilinearmotion is the rep-
resentation of the force by the displacement it produces in a given
time. In Figure 3.1, the line AB is tangent to the circle AD at the
point A. The distance BD between a nearby point B on the tangen-
tial displacement and the corresponding point D on the circle, to be
called thedeviation, is proportional toNewton’smeasure of the force
required to maintain the uniform circular motion. In his Two New
Sciences, Galileo demonstrated that the linear displacement down
an inclined plane is directly proportional to the constant acceleration
acting down the plane and to the square of the time.24 Huygens, and
independently Newton, demonstrated that the force (acceleration)
required to produce the linear radial deviation BD from the tangent
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Fig. 3.2 A polygon AB, BC, etc. is inscribed in a circle of radius R.
A particle moving with uniform velocity from A to B experiences an
impulsive force at B and is then directed toward C. If the impulsive
force had not acted, then the particle would have moved to C’ in the
same time that it moves to C.

in uniform circular motion is directly proportional to the square of
the tangential speed and inversely proportional to the radius of the
circle. Newton eventually applied this result for uniform circular
motion to the analysis of general curvilinear motion bymeans of the
circle of curvature.

Before he arrived at an expression for the force required for uniform
circular motion, however, he recorded in the opening pages of the
Waste Book a relatively less sophisticated study of uniform circular
motion, one that uses a polygon as the initial representation of a
circle.25 In Figure 3.2 the polygon is inscribed in a circle of radius
R, as in Newton’s 1665 entry to the Waste Book. A particle travels
with a constant velocity V from point A to point B along a linear
portionAB of the polygon. At point B it ‘collides’ with the circle and



Curvature in Newton’s dynamics 91

experiences a change in velocity �V due to the impulsive action of
the force at point B, which is directed toward the center of the circle
S. Themagnitude of velocityV is unchanged, but the direction is now
along the linear portion BC. Newton first obtains a relationship for
the polygon and then investigates that relationship as the number of
sides of the polygon is increased until, in the limit of very small sides,
the polygon approaches the circle. The limiting process is central to
all of Newton’s analysis; it is used, for example, in Proposition 1 of
the Principia to obtain Kepler’s area law.

Analysis

If the particle had not encountered the circle at B, then it would
have traveled to the point C ′ in the same time interval T as it
traveled to the point C. The distance BC = BC ′ = V × T, and
the distance CC ′ = �V × T and is parallel to the radius BS
(because the force at B was directed toward the center of the
circle S ). The distance CC ′ is the deviation of the particle from
rectilinear motion due to the force at B and is thus the measure
of the force imparted to the particle at point B. Newton then
increases the number of sides of the polygon until it approaches
the circle as a limit. In that limit, Newton demonstrates that a
property of the motion is that “the force of all the reflections
[the scalar sum of the impulses] is to the force of the body’s
motion [the scalar linear momentum] as the sum of the sides
[of the inscribed polygon] is to the radius of the [circumscribed]
circle.” That property has no apparent application, but the two
factors used in its derivation, the deviation as a measure of the
force and the expansion to the limit, continue to be hallmarks
of Newton’s dynamics.26

Newton’s first solution to the problem of uniform circular mo-
tion appeared in a manuscript written before 1669, now called On
Circular Motion.27 In contrast to the previous analysis, in which
the path begins as a polygon, the path begins as a circle. Newton
again used the deviation as a measure of the force and again called
upon a limiting process. Figure 3.3 is from Newton’s figure in that
manuscript. A particle moves along a circular arc from P to Q under
the influence of a force directed toward the center of the circle S.
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Fig. 3.3 A particle moves along a circular arc from P to Q under the
influence of a force directed toward the center of the circle S. The line
PR is the tangent to the circle at the point P and the line segment QR
is the deviation from the tangent at point Q.

If no force acted upon the particle, it would continue along the tan-
gent to pointR. Because the force does act upon it, however, it moves
instead to the point Q. Newton used the uniform angular rate and
a version of a Euclidean theorem to solve the direct problem of uni-
form circular motion. He demonstrated that the force required to
maintain uniform circular motion is constant, proportional to the
given radius of the circle divided by the square of the constant pe-
riod; or, what is the same, the square of the magnitude of the tangen-
tial velocity divided by the given radius, a result first published by
Huygens.

Analysis

Referring to Figure 3.3, one has the following relationship from
Euclid Book 3, Proposition 36:28

RU/PR = PR/QR,
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which Newton applies to circular motion. In the limit as the
point Q approaches the point P, Newton notes that the line RU
approaches the diameter QU and the tangential displacement
PR approaches the arc or chord QP. Hence, that limit is given
as follows:

limit QR/QP2 = 1/QU.

For uniform circular motion QP = vt, where v is the constant
tangential velocity and t is a small time interval. Correspond-
ingly in the limit as the time interval t vanishes

limit QR/t2 = v2 limit QR/QP2 = v2/QU = (1/2)v2/r

where r = QU/2 = SP is the radius of the circle.29

Here, and in Lemma 10 of the Principia, Newton is applying the
Galilean relation, s ∝ t2 “at the very start of motion.” This relation
applies to a displacement in a direction normal to the tangent of
the orbit as well as to a displacement along the tangent. Hence, for
uniform circular motion the radial acceleration or central force ar is
a constant given by the ratio v2/r .30

conic motion

The types of problems in dynamics that initially challenged Newton
were known in the late seventeenth and early eighteenth centuries
as direct problems; that is, given the path of the particle and the lo-
cation of the center of force, find the mathematical expression of the
force required to maintain that motion. They are to be contrasted
with inverse problems; that is, given the mathematical expression
of the force as a function of distance, find the path of the parti-
cle relative to a given center of force. For direct problems with a
single body in orbit about a fixed center of force, the mass of the
body is not a factor, and the force is determined by the accelera-
tion, or what Newton calls the accelerative quantity of the force
(Definition 7, Book 1) in the Principia. Having solved the direct
problem of uniform circular motion, the question then arose of how
to extend this technique to evaluate acceleration or force for non-
uniform motion along an arbitrary curve or orbit, and in partic-
ular for elliptical motion, as Kepler had proposed for the planets.
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The primary challenge was to find a geometrical measure for the
time interval. In uniform circular motion the radius sweeps out
equal arcs and angles in equal times, and the time interval t can
be obtained in terms of the fraction of the total period of revo-
lution T given by the ratio t/T = arc(QP)/circumference(�QU).
The answer that Newton found after 1679 for any force directed
toward a fixed center was that the radius sweeps out equal areas
in equal times. It was fifteen years after his initial development of
dynamics, however, before Newton discovered this justification for
Kepler’s area law. After he discovered it, he could measure the time
interval by the area swept by the radius vector and apply it in a
measure of force to a series of direct problems. Until that discov-
ery, Newton had to seek other ways of treating direct and inverse
problems.

The earliest reference to a method for treating elliptical motion
appears in 1664/5 in Newton’s journal, the Waste Book, immedi-
ately following his discussion of the polygonal technique applied to
uniform circular motion. Newton states here that the force required
to maintain elliptical motion can be found from the circle of
curvature.

If the body b moved in an Elipsis, then its force in each point (if its mo-
tion in that point bee given) may bee found by a tangent circle of Equall
crookednesse with that point of the Ellipsis.31

In his early work on mathematics, Newton had developed the cir-
cle of curvature as a measure of the bending or “crookednesse” of a
curve, and as early as December of 1664 he had developed a method
for finding centers of curvature along an ellipse.32 In this statement
from theWasteBook Newton claims that curvature can be employed
to provide a solution to the direct problem of elliptical motion given
the velocity, i.e., “the motion.” The Waste Book does not contain
such a solution, but later, after his discovery of the origin of the area
law, it is given in detailed form in his unpublished 1690 revisions of
the Principia and as the alternate measure of force in Proposition 6
of the revised 1713 Principia. The curvature measure of force is also
used in the 1687 Principia in Proposition 15, Book 2, on the analysis
of orbital decay caused by a resisting medium, and also in Proposi-
tion 28, Book 3, on the analysis of lunar motion perturbed by the
gravitational force of the Sun. (See below, pp. 117–24.)
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The question of when Newton first developed a curvature mea-
sure of force has received a new answer in recent years. The first
published report of the cryptic curvature statement was by Herivel
in 1965, but he observes only that “Newton is already pondering the
more difficult problem of motion in an ellipse.”33 The cryptic curva-
ture statement was published next by Whiteside in 1967, where he
points out that the use of curvature is valid in arbitrary curves aswell
as in an ellipse.34 In 1992, one of the authors of this chapter, Brack-
enridge, published a chapter in a Festschrift for Whiteside entitled
“The Critical Role of Curvature in Newton’s Developing Dynam-
ics,” inwhichhe concluded that “the evidence is clear that such ideas
[curvature] were in Newton’s thoughts on dynamics as early as 1664,
that they appeared in his solutions of 1684, and that they reached
fruition in his unpublished revisions of the 1690’s.”35 The reference
to 1664was to the cryptic curvature statement, the reference to 1684
was to an alternate solution employing curvature not included in the
1687 Principia (later sent to John Locke), and the reference to 1690
is to the unpublished revisions. Brackenridge did not have evidence
of Newton’s use of curvature in the solution of orbital problems in
the two decades between 1664 and 1684. Nauenberg, the other au-
thor of this chapter, supplied themissing evidence onNewton’s early
computational methods for general orbital motion.36,37

newton’s early computational method
for dynamics

In 1679 Robert Hooke, who was then Secretary of the Royal Society,
initiated a correspondence with Newton that is of considerable in-
terest because it reveals the state of development of Newton’s under-
standing of orbital dynamics at that time. In a letter of 13December
1679, Newton discussed the orbits of a body under the action of
general central forces.38 In a corner of the letter is a drawing of an
orbit for the case in which the force is constant, and in the text of
the letter Newton discusses the changes that occur in such an orbit
when the force is no longer constant. Newton’s correct geometrical
description of these orbits indicates that he had a much deeper un-
derstanding of orbital dynamics at this time than has generally been
attributed to him. For example, he pointed out that these orbits have
a maximum and minimum distance from the center, and that the
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angle subtended by these extremal points from the center increases
as the force becomes “greater towards the center.” In the past, how-
ever, most Newtonian scholars have underestimated Newton’s un-
derstanding of this problem because his figure gives themagnitude of
this angle in gross disagreement with the upper bound for a constant
central force.39 Newton did not reveal any details of the method by
which he obtained this orbit except to indicate that it was an approx-
imation, stating that

Your acute Letter having putme upon considering thus far the species of this
curve, I might add something about its description by points quam proxime.
But the thing being of no great moment. I rather beg your pardon for having
troubled you thus far with this second scribble . . .

Newton did reveal, however, that he knew of other orbits beyond
that due to a constant force. In particular, he wrote of the orbit due
to a special force for which the body would spiral toward the center.

For the increase of gravity in the descent may be supposed such that the
body shall by an infinite number of spiral revolutions descend continually
till it cross the center by motion transcendently swift . . .

This remark is of great importance because an orbit with an infi-
nite number of spiral revolutions cannot be obtained by any approx-
imation method; thus, Newton must have used here an analytical
method. The analytical proofs in the Principia, however, depend on
the area law (to eliminate the time variable, reducing the problem
to a geometrical one), and there is strong evidence that Newton did
not discover the area law until after his 1679 correspondence with
Hooke.40 In his letter to Hooke, Newton did not give the radial de-
pendence of this force, but he did give it in a canceled scholium to
a revision of “De motu” (the short tract of late 1684 presaging the
Principia) in which he effectively repeated the content of his letter.41

Newton stated that the force required for a spiral orbit varies in-
versely with the cube of the distance.

It is of considerable interest to discover Newton’s computational
method by “points quam proxime” because it provides us with
insight into how he developed orbital dynamics. The errors in
Newton’s drawing of the orbit for a constant central force have gener-
ally been attributed to some failure in his approximations.42 A care-
ful examination of Newton’s figure, however, reveals that he made
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a substantial error only while drawing the figure representing the
orbit, but not in its calculation. Moreover, the examination reveals
that Newton’s early computational method not only enabled him to
calculate an orbit for a constant central force (after proper account
has been taken of the drawing errors) but also to calculate orbits for
forces that are not constant, but that increase with distance toward
the center of force. Finally, Newton’s early computational method
does not depend upon the area law; this is an important historical
constraint because at the time of theNewton–Hooke correspondence
Newton, by his own account, had not yet discovered that the area
law is a general consequence of central forces.

It is possible to employ curvature to obtain the correct angles and
to account for Newton’s figure without having recourse to the area
law. Instead, a relation involving the change of velocity with dis-
tance, which depends on the component of the force tangential to
the orbit, leads to an equation of motion based on Newton’s flux-
ional approach to curvature. Moreover, for certain orbits, Newton
could have solved the direct problemwith this equation analytically.
For example, the simplest non-trivial case is the spiral curve, which
corresponds to the inverse-cube force (details to follow).

Since the publication of Newton’s letter to Hooke, the large er-
ror (approximately 30◦ ) in the angle between the successive apogees
of the orbit in Newton’s diagram has been noted by many scholars
as evidence that Newton had not yet gained a proper understanding
of orbital dynamics. This error is paradoxical, however, because the
other features of the curve are correct; the orbit has approximate sym-
metries and it returns repeatedly to an apparent circumscribed cir-
cle. It is difficult to see, therefore, how an approximate method that
gives such large errors in the angular position does not violate funda-
mental laws. Careful examination of the figure, however, indicates
that the source of the angular error is not in the early computational
method, but rather in certain features of the drawing itself. Figure 3.4
is Newton’s diagram and it shows an orbit AFOGHJKL circum-
scribed by an apparent circle ABDEA, but the orthogonal axes AD
and BE on this figure do not divide it into equal quadrants.Moreover,
measurements of the distance of the crossing pointC of these axes to
the circumscribed curve reveal that this curve is not actually a circle;
instead only the segment KDHE of this curve is part of a circle cen-
tered at C. Finally, the segment AFOGH displays mirror symmetry,
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Fig. 3.4 Newton’s drawing of the orbit for a constant radial force which
appears on the upper right-hand corner of his letter to Hooke written
on 13 December 1679.

but the rest of the figure does not. The property of mirror symmetry
can be demonstrated by taking a transparency of Newton’s diagram,
reversing it, and putting it over the original diagram. If one aligns the
reversed apogee H with the original apogee A, and vice versa, then
the curve AFOGH and the reversed curve HGOFA will be identical,



Curvature in Newton’s dynamics 99

thus displaying mirror symmetry. Inspection of such a composite
transparency shows that the segment AFOGH does lie on its mirror
image, but that the center C of the reversed mirror image (hereafter
CS) is shifted up relative to the center C of the original diagram and
lies in the quadrant ACB. Measuring distances to the circumscribed
curve ABKDHEA from CS, one finds that part of the curve BAE is
a segment of a circle centered at CS, with the same radius as the
segment KDHE measured relative to C.

These errors in the drawing reveal the graphical construction that
Newton used to obtain his figure. Assuming that he had a method to
calculate a segment AFO of the orbit, and that for this segment the
force is centered atCS, then he obtained the remaining segmentOGH
of the curve by a mirror reflection and rotation of the segment AFO.
He evidently made an error in shifting the center C relative to CS,
however, and thenhe incorrectly adjusted the rotation in order to join
these two segments of the orbital curve as smoothly as possible. This
adjustment is also apparent in the section FOG of the drawing of this
orbit where Newton uses multiple lines to patch up the break in the
curve due to the incorrect rotation. In the text Newton refers to the
point O as the “nearest approach of the body to the center C.” This
statementmust be interpreted with some care, however, because the
figure has not one center C, but two centers C and CS. Indeed, while
O is the point on the segment AFOGH nearest to the center C, this
center applies only to the segment OGH. Therefore, the appropriate
angle subtended between the radial vectors along the maximum and
minimum distances to C is the angle HCO between the radial lines
HC and OC. This angle, when measured from the diagram, is found
to be approximately 107◦, which is only about 3◦ larger than the
maximum computed angle of 180◦/√3 ≈ 103.9◦ for constant central
force.43 If one does not realize that the point C is not the actual
center of force for this segment of the orbit, however, then the angle
between apogee and perigee of this segment of the orbit appears to
be the angle ACO. When measured from the diagram, that angle is
found to be approximately 130◦, which is about 26◦ larger than the
maximum computed angle of 103.9◦. That discrepancy is the source
of much of the negative criticism of Newton’s method, but it arises
from an error in shifting the centers of the template when drawing
the figure, and not from the curvature method of calculation.44
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Newton’s curvature method of computation

The preceding discussion has been largely concerned with Newton’s
construction of the diagram. We now turn to consideration of the
computationalmethod employing curvature bywhichNewton could
have obtained the curve, and in particular how he calculated the
segment AFO of the orbit between apogee and perigee.

Analysis

For a body moving on a circular orbit with radius � with a uni-
form velocity v, Newton had shown in 1665 that the force or
acceleration f is directed toward the center of the orbit, with a
magnitude45

f = v2/� (1)

This relation had also been obtained somewhat earlier by
Huygens.46 During this time Newton evidently had already
started to think about the generalization of this result for an
elliptical trajectory, as shown by the cryptic remark in his
manuscript on circular motion. If the force is directed to a fixed
center C, as in Figure 3.5, then the appropriate generalization
of Eq. (1) for the acceleration, assumed to be proportional to the
force, at a point P on the orbit is given by47

fn = v2/� (2)

where fn = f sin(�) is the component of the force (acceleration)
normal to the tangential velocity, � = PQ is the radius of cur-
vature at P, and � is the angle between the radius vector CP and
the tangent to the curve at P. Given initially f and v, during a
small interval of time �t the trajectory can then be approximated
by the arc of circle obtained by rotating the radius of curvature
vector through a small angle � = v�t/p about Q. At the end of
this time interval the magnitude of the velocity v changes by an
amount

�v = ft�t (3)

where ft = a cos(�) is the component of force (acceleration)
along the tangential velocity to the orbit at P. Thus, at the end
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Fig. 3.5 Illustrating how a segment PP′ of an orbit is obtained by rotat-
ing the radius of curvature vector PQ into P′Q about its fixed center of
curvature Q through an angle �, while the center of force is located at
C. The dashed lines PC and P′C are the radial positions with respect to
C, and the angle alpha is the angle between the tangent to the curve at
P and the radial line PC.
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of the time interval �t the velocity is v ′ ≈ v + �v, and the radius
of curvature becomes

� ′ ≈ v′/ f ′
n (4)

where f ′
n = f ′ sin(�′) and f ′ is the magnitude of the force at the

new radial distance r ′. The angle �′ can be evaluated geomet-
rically. Thus, the orbit can be obtained during the subsequent
time intervals �t by iterating the previous procedure.

There is a refinement in this procedure that Newton may
have also applied at this time. The first-order change �r in the
radial distance is given by

�r = −v�tcos(�) (5)

and therefore Eqs. (3) and (5) imply that

v�v = −a�r (6)

Integration of Eq. (6) leads to a special case of what is now called
the law of conservation of energy; it is a relationship that was
derived by Newton in Proposition 39 in Book 1 of the Principia,
and extended in Proposition 40, along similar lines as presented
here. Hence, Newton could also have applied this law to evalu-
ate v′ in Eq. (2) at different values of r.

The area law is only approximately valid for the finite step sizes of
the curvature method, and in applications one finds that areas swept
out in equal time intervals are only approximately equal. Therefore
it is not surprising that Newton’s early curvature method did not
direct him to the area law for central forces. Newton was led to that
discovery byHooke’s physical ideas on orbital dynamics, whichwere
communicated to him in the 1679/80 correspondence. In a letter to
Hooke, Newton remarked that

if its gravity be supposed uniform it will not descend in a spiral to the very
center but circulate with an alternate ascent & descent by it’s vis centrifuga
& gravity alternatively overballancing one another . . .

This reference to “overballancing one another” has been taken to im-
ply that “before 1679, Newton – likeDescartes, Borelli, and Leibniz –
believed that orbital motion depended on the imbalance between
gravity and centrifugal force,”48 where the centrifugal force acted
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upon the body in the same way as gravity. We here give quite a dif-
ferent meaning to the phrase as used by Newton in this curvature
calculation in particular, and as used by Newton in orbital calcula-
tions generally.49

Newton first elected to consider motion under a constant central
force function, that is, the motion depicted in the drawing in the
letter to Hooke (see Figure 3.4).

I then took the simplest case for computation, which was that of gravity
uniform in a medium not resisting . . .

Referring now to Figure 3.6, if the initial velocity v0 is perpendic-
ular to the initial radial distance r0 = AC (angle�0 = �/2) and if it
has a magnitude such that the radius of curvature �0 = Aa is less
than AC, where �0 = v20/ f0, then the radial distance will decrease,
and the body will begin to descend toward the center of force. For
a constant force, the radius of curvature � must increase monoton-
ically until the curvature vector becomes parallel with the radius
vector. Here at point O (F ), as in the initial state at point A, the ve-
locity vector is normal to the radius vectorCF (CsO) (angle � = �/2),
and the radius of curvature MO is parallel to the radius vector CO
and reaches an extremum value. Since the radius of curvature MO
is now greater than the radial distance CO, the radial distance will
increase, and therefore the body begins its “ascent” from the center
of force as Newton indicated in his letter to Hooke. Newton could
now apply a fundamental symmetry of the curvature method to de-
duce the subsequent evolution of the orbit. The continuation of this
orbit by rotations of the curvature vector gives a curve that is just
the reflection across the radial line CO of the orbit from A to O.

As Newton indicated in his letter to Hooke, he had found that or-
bits for central forces approach a minimum distance from the center
of force, ormay even pass through this center. The curvaturemethod
indicates that when r is a minimum or a maximum, the radius vec-
tor is perpendicular to the orbit (i.e., � = �/2). In this case the radius
of curvature vector becomes parallel to the radius vector. It is then
clear from reflection symmetry that the iteration of the orbit past
this minimum distance is the same as the original iteration, but in
reverse order. It is evident from Newton’s diagram (see Figure 3.4)
that he made use of this symmetry, although it is only approximate
for finite step size, to draw successive branches of the orbit. This is
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Fig. 3.6 The upper segment AO of the orbit for constant radial force
as obtained by the iterations of the curvature method. The point O
of closest approach to the center of force C is determined when the
curvature vector MO crosses C. Then the lower segment OGH of the
orbit is obtained by reflection symmetry of the segment AO about
the axis OC.

shown explicitly in Figure 3.6, where the segment OGH of the or-
bit is obtained as the mirror reflection of the segment AO with the
minimum distanceOC as the axis of symmetry. This orbit is in good
agreement with the exact orbit. If now the centers CS and C are dis-
placed by an amount corresponding to that mistakenly introduced in
Newton’s figure, and the lower segment OGH of the orbit is rotated
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Fig. 3.7 A simulation which accounts for the angular error in Newton’s
drawing. The amount by which the center of force C, shown in Fig. 3.6,
is shifted (relative to Cs) is obtained directly by reflection symmetry of
Newton’s diagram, Fig. 3.4.

by approximately 30′, then Figure 3.7 is obtained. This figure gives
a good approximation to Newton’s diagram, as can be verified by su-
perimposing Figure 3.7 on Newton’s original diagram in Figure 3.4,
after scaling it to the same size.

In the limit of small time steps, the curvature method (Eqs. 2 and
6) leads to equations of motion that can be solved analytically. Thus,
Newton could have applied his curvature method to determine the
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relation between motion on a given curve and the radial dependence
of the force, i.e., he could have solved some direct problems without
being aware of the area law. The spiral orbit with a center of force
at its pole is a particularly simple direct problem whose solution is
an inverse-cube force.50 In this way Newton could have discovered
in a straightforward manner that for the inverse-cube force the orbit
reaches the origin “by an infinite number of spiral revolutions,” as
he described it in his 13 December 1679 letter to Hooke. It is note-
worthy that in “De motu” Newton quoted this result in a scholium
without giving a geometrical demonstration as he did with his other
propositions, and later on in the Principia, he applied the 1/r3 force
law rather than the physicallymore interesting 1/r2 case, to solve ex-
plicitly the inverse problem (see Theorem 41, Corollary 3, Book 1).51

Although Newton could also have applied his curvature method to
solve the case of an elliptic orbit, there is no direct evidence that he
actually carried out such a calculation.

Themissing ingredient for a complete solution of the orbital prob-
lem, which must include the temporal as well as the spatial depen-
dence of themotion, was provided by the fundamental idea of Hooke
to view orbital motion as compounded by a tangential inertial veloc-
ity and a change of velocity impressed by the central force. This idea
can be expressed in simple mathematical form for forces that act
as periodic impulses for which the curvature method is not applica-
ble, and it leads directly to the area law (see Principia, Proposition 1,
Book 1). After the correspondencewithHooke,Newton evidently un-
derstood the equivalence of these two distinct physical approaches
to orbital motion, but he never credited Hooke for his seminal con-
tribution.

measures of force in the principia: polygonal,
parabolic, and curvature

The curvature method that Newton used to generate the curve in
his 1679 correspondence with Hooke did not require the area law. In
fact, Newton recounted to Halley in 1686 that it was following this
correspondence with Hooke that he derived the area law in gener-
ating his solution to the direct problem of Kepler’s ellipse. As re-
marked above (p. 90), in the opening pages of his 1664/5 Waste
Book, Newton used a polygon as the initial representation of a cir-
cle, and a series of periodic impulsive forces of equal magnitude were
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directed toward the center of the circle. The final step was a limit-
ing process in which the number of sides of the polygon increased
until the polygon approached the circle, and a property of uniform
circular motion was derived. Newton also used a generalized version
of this polygonal technique to derive the area law in Theorem 1 of
the 1684 “De motu,” which appears with few revisions as Proposi-
tion 1 of the 1687 Principia. A polygon was used to approximate an
arbitrary smooth curve, and the motion was subject to a series of
impulsive forces of variable magnitude that were directed toward a
fixed center of force. Themagnitude of this force is determined by the
condition that after each impulse the body returns to the prescribed
orbital curve. The final step again was a limiting process in which
the number of sides of the polygon increased until it approached a
general curve, demonstrating that in such motion the radius sweeps
out equal areas in equal time: uniform areal motion.

The area law

Figure 3.8 is taken from the first proposition in the 1687 Principia, in
which Newton derives Kepler’s law of equal areas in equal time in-
tervals. The path is a polygon described by a particle that experiences
a periodic impulsive force directed toward a fixed center of force S
in equal intervals of time T. The particle travels with constant ve-
locity VAB from point A to point B along a linear portion AB of the
polygon. At point B it reaches the general curve and experiences a
change in velocity �V due to the impulsive action of the force at
B, which is directed toward the center of force S. In contrast to the
circular motion, in this case the magnitude of the velocity generally
changes, as well as the direction. Newton was able to use the same
two factors, the deviation and limit, that he used previously in the
analysis of circular motion to obtain a very important consequence
for any force or force impulse directed toward a center S: the area law.

Analysis

If the particle had not received an impulse at B, it would have
traveled to the point c in the same time T as it traveled to
the point C. The distance Bc = AB = VABT and the deviation
Cc, which is due to the impulsive force at B, is parallel to SB.
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Fig. 3.8 Taken from Proposition 1, Book 1, 1687 Principia. At pointsA,
B, C, etc., a particle is subject to a series of periodic impulsive forces of
variable magnitude that are directed toward a given center of force S.
A polygon ABCDEF is used to approximate an arbitrary smooth curve
(not shown) that passes through each of the points. The magnitude of
the force is determined by the condition that after each impulse the
body returns to the prescribed curve (not shown in Newton’s figure).

Figure 3.9(a) and 3.9(b) are taken fromFigure 3.8; in Figure3. 9(a),
triangles SAB and SBC have equal areas because they have equal
bases AB = Bc and they have the same slant height SX. In Figure
3.9(b), the triangles SBc and SBC have equal areas because they
have a common base SB and equal slant heights cy = CY (the
deviation Cc is parallel to the impulsive force directed along
SB). Thus, area SAB = area ScB = area SBC, and by extension
this area is equal in turn to areas SCD, SDE, SEE, etc. Appealing
to Corollary 4 of Lemma 3, which discusses the approximation
of a curve by a polygon, Newton then increases the number of
sides of the polygon which approaches a given general curve as
a limit, and thus demonstrates that for any central force the
radius sweeps out equal areas in equal times.52 It is important
to note that while Figure 3.8 does not show a curve associated
with the vertices, Newton’s reference to Lemma 3 indicates that
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Fig. 3.9 Expanded from Fig. 3.8. (A) The triangles SAB and SBc have
equal basesAB = Bc and a common slant height SX. Thus, the triangles
have equal areas. (B) The triangles SBC and SBc have a common base
SB and equal slant heights CY = cy (Cc is parallel to Yy). Thus, the
triangles have equal areas.
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he had in mind a curve that fixes the size of the deviations or
impulses. There is considerable confusion on this point in the
literature.53

The parabolic measure of force

Newton’s first solution to the direct problem of uniform circular
motion appeared before 1669 in a vellummanuscript now called On
CircularMotion. In contrast to the polygonal technique used in 1664,
in this later manuscript Newton began with a continuous circular
path and considered the deviation between a point on the circle and
the corresponding point on the tangent. He demonstrated that in the
limit as the deviation becomes very small, the force (acceleration) is
directly proportional to the rectilinear deviation and inversely pro-
portional to the square of the time interval, where this interval is
proportional to the arc in uniform circular motion. After 1679, how-
ever, Newton had developed the area law as a measure of time and
so he could extend the technique to any central motion. The most
famous application of this measure is to the direct problem of ideal
planetary motion.

Galileo had demonstrated that motion under a constant gravita-
tional force, when coupled with a projection velocity at some angle
to the gravitational force, produces parabolic motion. During a small
interval of time inNewton’smeasure of force, the instantaneous tan-
gential velocity to a curve plays the role of the projection velocity;
and the central force, which is a constant in the limit of vanishingly
small time intervals, plays the role of the gravitational force. During
that small time interval the orbital arc is represented by a parabola. In
the 1687 Principia, Newton derived this parabolic measure of force
and applied it to the solution of the direct problem of ideal planetary
motion. Figure 3.10 is taken from Newton’s figure for Proposition 6
of Book 1 of the 1687 Principia (which is the same as that in Theorem
3 of the 1684 “De motu”). The particle P moves along the general
curve APQ under the action of a force centered at S. The force (ac-
celeration) is proportional to the distance QR, divided by the square
of the time interval, whereQR is parallel to SP and the time interval
�t is proportional to the triangular area SP × QT. Thus, the parabolic
measure of force QR/�t2 is given by the ratio QR/(QT × SP)2.
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Fig. 3.10 Taken fromProposition 6, Book 1, 1687Principia. The particle
at P moves along the general curve APQ under the influence of a force
center at S. The line RPZ is the tangent to the curve at P and the line
QR is constructed parallel to the line STP.

Analysis

A particle moves along an arc PQ of a general curve APQ under
the influence of a continuous force directed toward a center of
force S. If no force acted upon the particle, it would continue
along the tangent to point R. Because the force does act upon
it, it moves instead along the arc PQ. Again, Newton obtains
an appropriate measure for the force from the finite limit of
the ratio of the “deviation” QR divided by the square of the
time interval �t, where the limit is taken as the time interval �t
vanishes and the point Q approaches the point P:54

Force ∝ acceleration ∝ Lim [QR/�t2] ∝ Lim[QR/(QT × SP)2]

= (1/SP2)Lim[QR/QT2].

To find the dependence of the force upon the radius SP for a given or-
bital curve and center of force, Newton expresses the ratio (QR/QT2)
in terms of the geometry of the orbital curve and then evaluates its
limit as Q approaches P. In Proposition 11Newton solved the direct
problem of ideal planetary motion, an elliptical orbit with the center
of force at a focus; he demonstrated that in the limit asQ approaches
P, the ratio (QR/QT2) approaches 1/L, where L is the constant prin-
cipal latus rectum of the ellipse. Thus, the force is proportional to
the inverse square of the radius SP.



112 j. bruce brackenridge and michael nauenberg

The curvature measure of force

After his discovery of the area law and its application to the parabolic
measure of force, Newton may appear to have set aside curvature
in the solutions to direct problems in the 1684 “De motu” and in
the 1687 Principia. In the unpublished revisions of the 1690s and in
the published revisions of the 1713 Principia, however, Newton em-
ployed a measure of force based directly upon curvature to provide a
series of alternate solutions for these direct problems. There is am-
ple evidence, moreover, that he did indeed use curvature in the 1687
Principia: for example, Proposition 15 of Book 2 and Propositions
26–29 of Book 3 as discussed below, pp. 117–24.55

Curvature is most evident in Lemma 11 of Book 1, which in the
1687 editionwas only used in Proposition 4, Book 1 for the analysis of
uniform circular motion and in Proposition 9, Book 1 for the analysis
of spiral motion. In the revised editions, Newton gave a new solution
for Proposition 4 that does not call upon Lemma 11. That lemma
was given a central role, however, in the revised Proposition 6,
Book 1 that provides the paradigm for analysis of all direct problems.
Figure 3.11 is the diagram for Lemma 11 that appears in the 1687
Principia and in the revised editions that follow. The general curve
AbB appears to be a circle, perhaps because the initial application
was to the circular path in the figure in Proposition 4. In the revised
editions, there is no figure in Proposition 4 and the first and major
application of Lemma 11 is to the general curve in Proposition 6.
There is no explicit mention of curvature in the text of Lemma 11
in the 1687 edition save for a reference to “the nature of circles pass-
ing through the points A, B, G; A, b, g,” although curvature is im-
plicit in the lemma. In the subsequent scholium, however, Newton
specifies that Lemma 11 applies to curves where “the curvature is
neither infinitely small nor infinitely large.”56 Figure 3.12 is an en-
hanced diagram for Lemma 11with the general curve AbB no longer
circular and with the addition of the two circles, ABG and Abg, that
are explicit inNewton’s text and the circle of curvatureAJ that is im-
plicit in the text.57 Each circle is tangent to the general curveAbB at
point A; circle ABG cuts the general curve at point B and circle Abg
at point b; and they form their diameters at points G, g, and J respec-
tively. Newton demonstrates that the square of the chordAB is equal
to the product of the line BD (the subtense) and the diameter AG,
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Fig. 3.11 Taken from Lemma 11, Book 1, 1687 Principia.

and therefore AB2/Ab2 = (Bd× AG)/(bd× Ag). In the limit for curves
of finite curvature at pointA, as pointsB and b approachA, the diam-
eters AG and Ag approach AJ, the diameter of curvature at point A,
and the ratio AG/Ag approaches unity. Thus, the square of the chord
AB or ab is ultimately proportional to the subtense BD or bd (where
later the subtense is identified as being proportional to the force).
Therefore, curvature is central to the demonstration of Lemma 11,
and hence by extension to all the propositions that call upon it.

Figure 3.13 is taken from Newton’s revised diagram for Proposi-
tion 6, Book 1 in the 1713Principia, which is here enhanced by the ad-
dition of the circle of curvature PV. Comparison with the original di-
agram (in Figure 3.9 above) will show that themost obvious change is
the addition of the dotted lineYS, which passes through the force cen-
ter S and is normal to the tangent YPZ. A more subtle but even more
significant change in the figure is the extension of the line of force SP
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Fig. 3.12 Taken from Lemma 11, Book 1, 1687 Principia. In this en-
hanced version the general curve is no longer a circle, and circles ABG,
Abg, and AJ have been added, where AJ is the circle of curvature at
point A.

through the force center S to a pointV, where the line PV is identified
as the chord of curvature fromP through the center of force S.58 In this
revised Proposition 6, Newton still derives the parabolic measure of
force, QR/(SP2 × QT2), but in addition he shows that in the limit as
Q approaches P it becomes equal to an alternate measure of force,
1/(SY2× PV), which is clearly dependent upon curvature because PV
is the chord of curvature through the point S, the center of force.

The relationship of the curvature measure to the parabolic mea-
sure can be seen by applying Lemma 11 to the revised diagram of
Proposition 6. Figure 3.14 is an enhanced version ofNewton’s revised
diagram for Proposition 6 with the addition of an auxiliary circle
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Fig. 3.13 Taken from Proposition 6, Book 1, 1713 Principia. In this re-
vised diagramNewton has added the normal to the tangent through the
center of force YS and has extended the line SP to the point V, where
PV is the chord of curvature (the circle of curvature has been added to
Newton’s diagram).

PUG and its diameter PJG. Following the argument from Lemma 11,
as the point Q approaches the point P, then the auxiliary circle PUG
approaches the circle of curvature PVJ. Thus, one can employ Eu-
clidean relationships that are valid for the auxiliary circle to obtain
exact relationships for the general curve: that is, for the circle of
curvature. In particular, Proposition 36, Book 3 of Euclid’s Elements
is directly applicable to Newton’s revised diagram and, as was pre-
viously demonstrated for Figure 3.3, RU/PR = PR/QR. This Eu-
clidean relationship is one that Newton employs elsewhere in the
Principia, often without any explicit reference.

In Book 1 of the revised edition of 1713, Newton provided solu-
tions to the direct problems <orbit/force center> in Propositions 7
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Fig. 3.14 An enhanced version of Newton’s diagram shown in Fig. 3.13.
An auxiliary circle PUG and its diameter PJG have been added to
demonstrate the relationship of Lemma 11 to Proposition 6.

<circle/circumference>, 9 <spiral/pole>, 10 <ellipse/center> and 11
<ellipse/focus> using the alternatemeasure of force, 1/(SY 2×PV), as
well as the solution using the parabolic measure of force, QR/(SP 2×
QT 2), found in the 1687Principia. In the alternate solution for Propo-
sition 10, Newton calculated PV, the chord of curvature through the
center of the ellipse, and demonstrated that the force is directly pro-
portional to the radius from the center of the ellipse to the point on
the orbit. The alternate solution to Proposition 11, however, contains
yet another measure of force, one that is clearly identified as a third
measure in the unpublished revisions of the 1690s, but one that is
not clearly outlined in the published revisions of 1713. In it, Newton
employed a relationship from Proposition 7, Corollary 2 that relates
the force for a given orbit (here an ellipse) and two different centers of
force (here the center and focus of the ellipse). In the 1687 Principia,
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Proposition 7 only gave the solution to the direct problem of a cir-
cular orbit with the center of force on the circumference – that is, a
relatively simple application of the paradigm set out in Proposition 6.
In the revised edition of Proposition 7, however, the force center is
located at a general point, and in the first corollary the special case
of a force center on the circumference is considered. In the second
corollary, Newton obtains the expression for the forces directed to-
ward any two points for an object that moves in a given circle. In the
third corollary, Newton generalizes the result to any orbit in which
the body revolves about the two centers in the same periodic time.
In the closing line Newton uses curvature to relate the two corol-
laries: “For the force in this orbit at any point . . . is the same as in
a circle of the same curvature.” This result permits Newton to use
the force found in an elliptical path directed toward the center of the
ellipse (Proposition 10) to find the force in an elliptical path directed
toward a focus of the ellipse (Proposition 11). The role of curvature
in the alternate solution of Proposition 11 is hidden, however, in a
corollary of Proposition 7. Thus, even in the revised edition, which
sets out alternate solutions to the direct problems that employ the
chord of curvature PV, one must look carefully to find curvature.

application of newton’s curvature method
to two difficult problems: resistance forces
and lunar motion

Newton’s curvaturemethod first appeared as his cryptic statement of
1664 and is represented in this chapter by Eq. (2) (p. 100) as the gener-
alization of uniform circular motion to the circle of curvature – that
is, the curvature relationship in the central force f = v2/(� sin(�)). In
this section we describe the remarkable application of Newton’s cur-
vature method to two difficult problems in orbital dynamics: resis-
tance forces and lunar motion. These applications appeared in the
1687 edition of the Principia, and thus provide clear evidence that
Newton had developed his curvature approach to dynamics by that
time, although he did not publish an exposition until the 1713 edi-
tion. Newton’s geometrical constructions are difficult for the mod-
ern reader, and therefore we simplify our discussion by giving here
an equivalent representation based on Newton’s fluxional calculus.
It is possible, moreover, that Newton may have made some of his
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discoveries in this manner, and then demonstrated them later in the
geometrical language of the Ancients.

Resistance forces

One application of the curvature method is concerned with resis-
tance forces, as found in Proposition 15, Book 2 of the 1687 Principia.
Figure 3.15 is the diagram given in that proposition: a spiral curve
centered at S with points P, Q, R, and r lying on the orbit. Here,
Newton employs curvature to consider the effect of adding a resis-
tance force in a direction opposite to the motion of a body revolving
in a given orbit under the action of an inverse-square force. Newton
expected that if the cause of gravity was Cartesian vortices, then
the fluid forming these vortices must also give rise to a resistance
force with properties which could be determined; this problem was
beyond the capacity of his contemporaries.

In Propositions 15–17, Book 2, Newton considers a possible or-
bit, the equiangular spiral, for a body under the combined action of
a given centripetal force F centered at the origin of the spiral, and
an unknown resistance force, FR. The orbital curve is given and the
force is calculated: an example of a direct problem such as found
in the first three sections of Book 1. Unlike the problems of Book
1, however, the unknown resistance force FR is not centripetal, but
acts along the tangent to the spiral. Thus, the area law is not valid,
and Newton had to calculate the rate of change of area. What fol-
lows is an equivalent derivation of Newton’s ingenious geometrical
construction. This derivation is based on a differential form of the
calculus, which is close to Newton’s fluxional analysis.59

Analysis

The change of angular momentum �h during a small interval of
time �t is determined by the component of force perpendicular
to the radial direction r. In this case the rate of change is due
entirely to the resistance force FR, and therefore

�h = −r FR sin(�)�t, (1)
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Fig. 3.15 Figure in Proposition 15, Book 2, describing an equiangular
spiral curve PQRr for an orbit under the action of a gravitational force
centered at S and a resistance force (described in the text). The radius
of curvature at P is the line PO.

where� is the angle between the radial and tangential directions
at a point on the orbit. Since the component of the force nor-
mal to the orbit is due only to the centripetal force F, Newton’s
curvature relation depends only on this force.Newtonhad previ-
ously demonstrated that for an equiangular spiral � sin(�) = r ,60

and assuming the radial dependence for the central force F =
�/rn, given in Proposition 16, Book 2, the curvature relation can
be written as

v = √[F� sin(�)] = √[�/rn−1], (2)

and the angular momentum as

h = vr sin(�) = √[�/rn−3] sin(�). (3)

Hence, the change �h in a small interval �r , where �r =
v cos(�)�t, is given by
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�h = [(3− n)/2] sin(�) cos(�)[�/rn−1]�t, (4)

and comparing this relation with Eq. (1) for the resistive force
FR gives

FR = [(3− n)/2] cos(�)�/rn. (5)

Q.E .D.

Recall that the radial dependence of the force on the radius r is
given by F = �/rn. In Proposition 15, Book 2 Newton considered
the special case of n = 2, indicating that he had in mind the effect
of resistance on motion under inverse-square gravitational forces.
For the case of n = 3, the resistance force FR, given in Eq. (5), van-
ishes as expected from Proposition 9, where Newton proved that an
equiangular orbit is possible for an inverse-cube centripetal force by
itself.

Actually, Newton presented his result for FR in terms of the den-
sity of the medium under the assumption that the resistance is pro-
portional to the density and the square of the velocity, although he
neglected to mention this dependence in the statement of Proposi-
tions 15–17, Book 2. According to Eqs. (2) and (5), the ratio FR/v2 is
proportional to 1/r , which explains Newton’s statement at the start
of Propositions 15–17, that “if the density of a medium in each place
thereof be inversely as the distance of the places from an immovable
center . . .”61

Lunar motion

Another application of the curvature method is concerned with lu-
nar motion, as found in Propositions 26–29, Book 3, of the 1687 Prin-
cipia. Here Newton developed a special treatment of the influence
of the gravitational force of the Sun on the Moon’s motion around
the Earth. Before Newton, geometrical models had been developed
to account for the deviations of lunarmotions from simple Keplerian
elliptical motion, notably by Horrocks in 1641. The lunar deviations
are considerable, as was well known to astronomers in Newton’s
time, but it was not realized that they are are caused primarily by
the gravitational force of the Sun. In particular, Tycho Brahe had dis-
covered a bi-monthly variation in the lunar speed after missing an
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expected lunar eclipse. From Proposition 29, entitled “To find the
variation of the Moon,” it is evident that the method developed by
Newton in the two previous propositions was intended for the com-
putation of this variation. Remarkably, in Proposition 28 Newton
did not consider the actual motion of the Moon, which was known
to be approximated by Horrocks’s model of a precessing ellipse with
the Earth at one focus. Instead, he considered an idealized model in
which the Moon rotates in a circular orbit around the Earth in the
absence of the solar perturbation. He then computed the change of
the orbit due to this perturbation, and obtained results that were in
good agreement with Brahe’s observation. This was one of the great
triumphs of Newton’s gravitational theory; later it was developed
further by Euler,62 and by G. Hill.63

Newton’s key idea was to assume a model in which the perturbed
orbit of the Moon is an ellipse of small eccentricity with the Earth at
the center rather than at one of the foci. The ellipse rotates in such
a manner that one of the axes is always perpendicular to the Earth–
Sun distance. He then calculated the curvature � at the two apses of
the resulting rotating orbital curve, which depends on the unknown
eccentricity of the ellipse and the observed ratio of the synodic
and sidereal periods of the Moon. Since in his model the combined
gravitational force of the Earth, fEarth, and the Sun, fSun, on the
Moon is perpendicular to the direction of the lunar motion at the
apses, Newton could apply his curvature relation � = v2/ f with
f = fEarth + fSun, to evaluate also the curvature of this orbit. Equat-
ing the resulting ratio of curvatures with his geometrical calculation
then determines the eccentricity of the conjectured elliptical orbit.
A complication occurs here because, except at the apses, the Sun
also exerts a component of force on the Moon that is tangential to
its motion. This implies that the area law (or conservation of angular
momentumh) is not valid, and the velocity at the apses v = h/r varies
with h as well as with the radial distance r. Therefore, in Proposition
26, Newton computed the change in angular momentum between
the two apses in the approximation that the orbit is circular, an ap-
proximation he announced in the title of this proposition, “To find
the hourly increment of the area which the Moon, by a radius drawn
to the Earth, describes in a circular orbit.” In this manner he ob-
tained a basically correct result, although his method does not give
a complete solution. Such a solution requires that the geometrical
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curvature of the rotating elliptical curve be consistent with the solar
gravitational perturbation at points other than the apses of the
orbit. But, as Laplace remarked admiringly,64 “These computa-
tional assumptions . . . are permitted to inventors in such difficult
researches . . .” [Ces hypothèses de calcul . . . sont permises aux in-
venteurs, dans des recherches aussi difficiles . . . ]

Figure 3.16 is the diagramused byNewton in Proposition 28, Book
3, where he states that

by computation, I find that the difference between the curvature [�a] of this
orbit Cpa at the vertex a, and the curvature of a circle described about the
center T with the interval TA is to the difference between the curvature [�a]
of the ellipse at the vertex A and the curvature of the same circle, as the
square of the ratio [� ] of the angle CTP to the angle CTp.

In mathematical form this statement implies that

(1/�a − 1/TA)/(1/�A − 1/TA) = �2. (8)

Newton does not tell us how he obtained this result except for a
succinct remark that “All these relations are easily derived from
the sines of the angles of contact, and of the differences of those
angles.” From this hint Newton’s computation can be reconstructed
by referring to Lemma 11, Book 1 and its accompanying figure (see
Figure 3.11). This lemma gives a geometrical construction for the
radius of curvature at a point A of a given curve in terms of a small
arc AB of the curve, and the corresponding subtense of the angle of
contact defined by the line BD normal to the tangent. Newton shows
that the radius of curvature

�A = AB2/2DB, (9)

in the limit that B approaches A.

Analysis

In Figure 3.16, let a point T on the vertical axisAG be the origin
of a polar coordinate system, r the radial distance from T to a
point on the curve AB, and �� equal to the angle ATB. Then

AB ≈ rA�� (10)

and

DB = rA − rB cos(��) ≈ �2r + (rA/2)��2, (11)
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Fig. 3.16 Figure in Proposition 28, Book 3, for an ellipse CPADB repre-
senting a hypothetical orbit of the Moon around the Earth at the center
T of the ellipse in a frame rotating with the Earth around the Sun at S.
The curve Cpa shown in dashed lines is the corresponding orbit in an
inertial frame.

where the difference �2r = (rB − rA) is a second-order differen-
tial. Hence, according to Eq. (9), the curvature 1/�A at A can be
written in the form65

1/�A − 1/rA = 2�2r/r2a ��2. (12)
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For the rotating elliptical orbit shown in Figure 3.16, which is
obtained by the transformation �−→�′ = (1/� )�, the curvature
�a at the corresponding apse a is obtained by observing that at
this vertex the angular interval ��′ = (1/� )�, where � = Tsyd/Tsyn′
while ra = rA and �2r ′ = �r2, because corresponding radial dis-
tances remain unchanged.Therefore,

1/�a − 1/rA = 2�2(�2r/ra2��2), (13)

and taking the ratio of Eqs. (12) and (13) gives Newton’s result,
Eq. (8). Q.E.D.

To evaluate �a from Eq. (8), Newton had to obtain the curvature
at the apse A for the stationary ellipse. This can be shown to be a
straightforward application of Lemma 11 and Newton obtains “that
the curvature of the ellipse inA is to the curvature of that circle [TA]
as the square of the ratio of TA to TC.” Likewise, the corresponding
curvature �c, at the rotated vertex c, not shown in the figure, can be
obtained in this manner.66

At these two apses Newton also calculated the curvature by ap-
plying the dynamical relation � = v2/ f , where v = h/r and f is the
combined gravitation force of both the Earth and the Sun exerted on
theMoon. In this case the angular momentum h is not a constant be-
cause the solar force has a component tangential to the orbit except
at the two apses, and Newton evaluated the change in h (in Proposi-
tion 26, Book 3) by approximating the orbit by a circle. The details of
this calculation have been discussed elsewhere67,68 and will not be
presented here. This calculation enabled Newton to equate the re-
sulting ratio �a/�b obtained from dynamics with the corresponding
ratio obtained from the geometry of the conjectured rotating elliptic
orbit, to solve for the unknown eccentricity of the ellipse.

conclusion

Two of the essential elements in Newton’s dynamics are the con-
cept of curvature and the area law for centripetal forces. Curvature,
which is ameasure of the rate of bending of a curve, was developed by
Newton in themid-1660s, but itwasnot until1679, followinghis cor-
respondence with Hooke, that he discovered that Kepler’s area law
was valid for central forces. Newton’s early computational method
lacked this crucial insight of the area law, and he was limited to the
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calculation of approximate orbits for general central forces. With
the discovery of the area law, however, he was able to transform
dynamical problems that depend on time into a purely geometric
form by relating the time variable to the area of a sector of an orbit,
and thus to go beyond approximate solutions. In modern terms the
area law corresponds to conservation of angular momentum, which
is proportional to the time rate of change of area swept by the radial
line with its origin at the center of force. Newton gave the area law
a very prominent part in the Principia, where it appears in the first
two propositions of Book 1.

The area law also served to obscure the critical role that curva-
ture played in Newton’s dynamics. Following the substitution of
equal areas as a measure of time for orbital motion, Newton was
able to develop a purely geometrical measure of force (acceleration).
This measure corresponds to Galileo’s measure for force in the case
of uniform accelerated rectilinear motion and leads to the parabolic
measure of force QR/(QT2 ×SP2). It was this meaure of force that
appeared in the draft of “De motu” sent to Halley in 1684 and be-
came the paradigm for the solution of direct problems in the 1687
Principia. Since it was the only measure published in the first edi-
tion, there exists a general, but mistaken, belief that Newton did
not develop his curvature approach until after 1687. On the con-
trary, curvature plays a major role in Newton’s unpublished works
preceding and following the 1687 Principia, as well as in the work
itself.

Newton’s curvaturemethodwas based on an extension of the anal-
ysis of uniform circular motion to general orbital motion, which
implies that the normal component of the force Fn at any point on
the orbit is equal to the square of the tangential velocity v divided
by the radius of curvature � , that is, Fn = v2/� . Newton describes
this curvature measure of force in his cryptic statement of 1664, em-
ploys it in his method quam proxime in the 1679 correspondence
with Hooke, and applies it in the solution of the difficult problems
of resisted motion and lunar inequalities in the 1687 Principia, as
well as in some of his unpublished manuscripts. In some of these ap-
plications, he makes only limited reference to curvature, although
we have demonstrated that it plays a major role. He may have been
reluctant to refer to curvature because he had not yet published his
mathematical work on curvature done almost two decades earlier,
and he would have been well aware, therefore, that the concept of
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curvature was not known to most of his expected readers, with the
exception of Huygens. Immediately following the publication of the
1687 Principia, however, Newton began work on a radical revision
of the opening sections of Book 1 in which curvature is presented
as the primary measure of force. He never published those revisions,
although a version of themwas included in Book 1 of the revisedPrin-
cipia as Corollaries 3–5 of Proposition 6, and as an alternate method
of solution of the propositions of Sections 2 and 3. Some eighteenth-
and nineteenth-century commentators did recognize the importance
of curvature in Newton’s revised editions of the Principia. The full
role of curvature in the first edition (1687) has been made explicit
only recently.

In summary, the essential point is that Newton’s geometrical
proofs in the first few sections of Book 1 and in some advanced prob-
lems in Books 2 and 3 are based on curvature and on area law (an-
gular momentum) calculations. The task is to determine the chord
of curvature PV = 2� sin(�) and the normal to the tangent through
the center of force SY = r sin(�) for various orbits by whatever means
the clever geometer can conjure, and thus to obtain the force from the
curvature measure 1/(PV×SY2). This task can also be accomplished
by combining these two calculations into a single one: that is, to
calculate the limit of QR/(SP2 × QT2) as shown in Proposition 6,
Book 1. This parabolic measure of force, however, does not have the
direct geometrical significance of the curvature measure. Newton’s
first thoughts on a solution to the direct problem of elliptical orbital
motion stem from considerations of curvature, and it is from curva-
ture that we gain the deepest insights into his dynamics.
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the Principia were unknown (see pp. 95–106 and 117–24).

4 Michael Nauenberg, “Newton’s Early Computational Method for Dy-
namics,” Archive for History of Exact Sciences 46 (1994), 212–52, at
p. 227. Newton’s interim method, which uses curvature as a central el-
ement and which was previously unknown (see note 2), was supplied
by this paper; it is discussed in detail in pp. 95–106 of this chapter. The
early applications of curvature in the first edition of the Principia are
presented in pp. 112–17 of this chapter.

5 Michael Nauenberg, “Huygens and Newton on Curvature and its Ap-
plication to Dynamics,” De Zeventiende Eeuw 1 (1996), 215–34. In the
study of mathematics, Newton was almost entirely self-taught. He at-
tended a few lectures on the subject, but it was his acquisition of con-
temporary works on mathematics, in particular van Schooten’s second
Latin edition of Descartes’s Geometry, that provided him with a point
of departure. This second Latin edition contains extensive commen-
taries by van Schooten and some of his students, Jan Hudde, Hendrik
van Heurat, Jan de Wit, and Christiaan Huygens, that extended
Descartes’s work and solved new problems. Newton makes use of
their work as well as that of Descartes. The concept of curvature was
developed independently by Huygens (about 1658–9) and by Newton
(about 1664–5). Huygens published some of his results in 1673 in his
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Horologium Oscillatorium (translated into English by R. J. Blackwell in
Christiaan Huygens, The Pendulum Clock, Ames: Iowa State Univer-
sity Press, 1986), and sent a copy of his book to Newton, who acknowl-
edged it in a response via Henry Oldenberg, then secretary of the Royal
Society.

6 The curvature at a point on a general curve is defined by the inverse
radius of the circle that best approximates a small arc of the curve at
that point. This circle of curvature was introduced independently by
both Newton and Huygens. Later, Leibniz called it the osculating circle
(it just “kisses” the curve at that point). It is defined mathematically
by taking a circle that is tangent to the curve at the chosen point, and
that also intersects that curve at two nearby points. The radius of that
tangent circle is then decreased until the two points of intersection
approach the point of tangency and thus the tangent circle becomes the
circle of curvature. An alternate definition requires taking two normals
to the curve at nearby points and finding the point of intersection of the
normals. When the two normals approach each other, the intersection
of the normals approaches a limit point, and the radius of curvature is
defined by the distance from the curve along the normal of this limit
point.

7 For an eighteenth-century commentator on curvature, see John Clarke,
A Demonstration of Some of the Principal Sections of Sir Isaac New-
ton’s Principles of Natural Philosophy (London, 1730; Johnson Reprint
Series with an introduction by I. Bernard Cohen, New York, 1972). In
1730, following the publication of the third edition (1726) and Newton’s
death in 1727, John Clarke published a translation of, and commentary
on, a number of selected portions of the Principia, which were rear-
ranged and ordered so as to give a coherent presentation of both the ab-
stract dynamical principles and their practical astronomic application.
Clarke also commented in some detail upon Newton’s use of curvature
in the qualification which was added to Lemma 11 in the revised edi-
tions of the Principia: “in all curves which have a finite curvature at the
point of contact.” Clarke even gave a reference for the reader to Milne’s
Conic Sections for a further discussion of curvature. For a nineteenth-
century commentator on Lemma 11 and curvature, see Percival Frost,
Newton’s Principia, First Book, Sections I., II., III., with Notes and
Illustrations and a Collection of Problems, 4th edn (Macmillan and
Co., 1883), pp. 82–113. This excellent pedagogical guide for students
preparing for the Mathematical Tripos first appeared in 1878 and was
still being published into the twentieth century. Again, the role of cur-
vature is clearly made manifest.
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8 See Isaac Newton, The Mathematical Papers of Isaac Newton, 8 vols.,
trans. and ed. D. T. Whiteside (Cambridge: Cambridge University Press,
1967–81). The primary twentieth-century source of Newton’s develop-
ment of curvature is found in vols. 1, 3, and 6 of these monumental
volumes of Newton’s mathematical papers and in the extensive com-
mentaries of the editor. In vol. 6, Whiteside, the editor, describes New-
ton’s application of curvature to dynamics in the proposed revisions of
the Principia, which Newton wrote in the 1690s following the publi-
cation of the first edition. Whiteside rejects any earlier explicit use of
curvature by Newton, however, such as we find in the 1687 Principia.
“In precise terms, if the orbital speed at the point be v and the ra-
dius of curvature there be � , then v2/� will measure the component
[force] f sin� normal to the orbit . . .No use of this corollary is made –
explicitly so at least – either in the present ‘De motu corporum’ or
in the . . .Principia . . . (in 1687)” (Newton, Mathematical Papers, vol. 6,
p. 131, note 86). In this chapter, however, we argue that Newton did
make explicit use of this curvature relation in the 1687 Principia (see
this chapter, pp. 117–24). See alsoNewton,Mathematical Papers, vol. 6,
pp. 146–9, note 124 forWhiteside’s additional commentary on this topic.
For another excellent twentieth-century commentator onNewton’s use
of curvature in the Principia, see Bruce Pourciau, “Reading the Master:
Newton and the Birth of Celestial Mechanics,” American Mathemati-
cal Monthly 104 (1997), 1–19.

9 Nauenberg, “Newton’s Early Computational Method for Dynamics,”
pp. 212–52.

10 Michael Nauenberg, “Newton’s Perturbation Methods for the 3-Body
Problem and Its Application to Lunar Motion,” in Jed Buchwald and
I. Bernard Cohen (eds.), Issac Newton’s Natural Philosophy (Cambridge,
MA: MIT Press, 2001).

11 Brackenridge, The Key to Newton’s Dynamics. This book tracks New-
ton’s work on dynamics from its early stages at Cambridge before 1669,
through its revival of interest ten years later, to its fruition in 1687 in
the first edition of the Principia, and its revision and extension in the
later editions. Throughout, Brackenridge stresses the role of curvature
in all of Newton’s dynamics. “If any single measure deserves the title
of the key to Newton’s dynamics, it is the curvature measure,” p. 222.

12 S. Chandrasekhar,Newton’s Principia for the Common Reader (Oxford:
Clarendon Press, 1995). For a review of this book, see Michael Nauen-
berg, in American Journal of Physics 64 (1996), 957–8.

13 Michael Nauenberg, “The Mathematical Principles Underlying the
Principia Revisited,” The Journal for the History of Astronomy 29
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(1998), 286–300. This essay contains in part a review of Brackenridge’s
book, The Key to Newton’s Dynamics.

14 J. Bruce Brackenridge, “Kepler, Elliptical Orbits, and Celestial Circular-
ity: A Study in the Persistence of Metaphysical Commitment,” Annals
of Science 39 (1982), 117–43, 265–95. Kepler was working in this tra-
dition early in the seventeenth century, even as he described the non-
circular elliptical motion of the planets in his New Astronomy of 1609.
He was concerned with the cause of celestial motion, however, as well
as with its measurement and analysis. Despite his description of plan-
etary motion as elliptical, the circle remained the primary element for
Kepler in his understanding of God’s plan of the universe.

15 John Herivel, The Background to Newton’s Principia: A Study of New-
ton’s Dynamical Researches in the Years 1664–84, (Oxford: Clarendon
Press, 1965), p. 7.

16 The Correspondence of Isaac Newton, ed. H. W. Tumball, vol. 2 (Cam-
bridge: Cambridge University Press, 1960), pp. 297–313.

17 Herivel, Background to Newton’s Principia, pp. 133–5.
18 René Descartes, Principles of Philosophy (1644), trans. Valentine Roger

Miller and Reese P. Miller (Dordrecht: D. Reidel Publishing Co., 1983),
p. 59. “If it [a body] is at rest we do not believe that it will ever begin to
move unless driven to do so by some external cause. Nor, if it is moving,
is there any significant reason to think that it will ever cease to move
of its own accord and without some other thing which impedes it.”

19 Newton, Principia, 3rd edn, vol. 1, p. 19. “Every body perseveres in its
state of rest, or of uniformmotion in a right line, unless it is compelled to
change that state by forces impressed thereon.” It is interesting to note
that both Descartes and Newton were anticipated by Aristotle, who in
his Physicsmakes the following statement: “Hence, a bodywould either
continue in its state of rest or would necessarily continue in its motion
indefinitely, unless interfered with by a stronger force,” Aristotle, Aris-
totle’s Physics (c. 350 bc), trans. Richard Hope (Lincoln: University of
Nebraska Press, 1961), p. 72. Aristotle, however, is arguing that a void
cannot exist, for if it did then the above state of rest or uniform motion
would be observed. Since such ideal states are not observed in nature,
then Aristotle concludes that a void cannot exist.

20 Herivel, The Background to Newton’s Principia, p. 7.
21 Cited in Herivel, The Background to Newton’s Principia, p. 47.
22 Newton, Principia, 3rd edn, p. 67 and 1st edn, cited in Brackenridge,

The Key to Newton’s Dynamics, p. 250. The phrase “centrifugal force”
does not appear in the first edition, but Newton inserts it into the text
of the Scholium for the second and third editions.
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23 Of interest are the commentaries of the continental scholars with re-
spect to centrifugal force and the role that curvature plays in it. Bertoloni
Meli attempts to sort out the multiple definitions of centrifugal force
from Huygens in the mid-seventeenth century to Euler in the mid-
eighteenth century. He selects five mathematicians to represent the
wide range of opinions to be found among mathematicians in the early
decades of the eighteenth century: John Keill (presumably representing
Newton’s position), Johann Bernoulli and Christian Wolff (defending
Leibniz’s position), and Pierre Varignon and Jakob Hermann. On the
one hand, Leibniz refers to two types of conatus, or force, one of which
is an outward conatus given by v2/� , where the cause of the endeavor “is
the rotation of the body and its tendency to escape along the tangent.”
BertoloniMeli, “TheRelativization of Centrifugal Force,” Isis 81 (1990),
23–43, at p. 31. On the other hand, Keill sees centrifugal force in terms
of the third law: “A centrifugal force is the reaction or resistance which
a moving body exerts to prevent its being turned out of its way, and
whereby it endeavors to continue its motion in the same direction: and
as re-action is always equal, and contrary to action, so in like manner
is the centrifugal to the centripetal force. This centrifugal force arises
from the vis inertiae of matter.” John, Keill An Introduction to Natu-
ral Philosophy, ed. Willem Jakob ’sGravesande (London, 1745), p. 286,
cited in Bertoloni Meli, ”The Relativization of Centrifugal Force,”
p. 34.

24 Galileo found experimentally that the displacements of balls rolling
down inclined planes were proportional to the square of the times, and
deduced that the acceleration was uniform, where by uniform accelera-
tionwasmeant equal increments of speed in equal intervals of time. The
accelerationwas attributed to the component of gravity acting down the
incline of the plane.

25 Herivel, The Background to Newton’s Principia, pp. 129–30. Herivel
dates the entries to this folio on or after 20 January 1664 (OS) and he
notes that “there can be no doubt that the first two dynamical entries
on this folio must have been made later than the discussion of cir-
cular motion beginning at AX.-Proposition 20.” Thus, he conjectures
that Newton had left the first few pages of the Waste Book blank, and
later filled them in with this comparatively polished and complicated
analysis.

26 In the Scholium to Proposition 4, Book 1 in all the editions of the Prin-
cipia there is a revised version of this proof in which the relationship
v2/r is derived. Newton, Principia, 3rd edn, pp. 66–7 and 1st edn, cited
in Brackenridge, The Key to Newton’s Dynamics, p. 250.
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27 First published in Rupert Hall, “Newton on the Calculation of Central
Force,” Annals of Science 13 (1957), 62–71 and then in vol. 1 (1959) of
Newton,Correspondence, pp. 297–301. Herivel published the Latin text
as well as a translation, and he dates the manuscript “before Newton’s
appointment to the Lucasian Chair of Mathematics in 1669.” Herivel,
The Background to Newton’s Principia, pp. 193–8.

28 Euclid, The Thirteen Books of Euclid’s Elements, with introduction and
commentary by Sir Thomas L. Heath, 2nd edn (Cambridge: Cambridge
University Press, 1956), pp. 73–5. Euclid’s theorem can be demonstrated
analytically in the following way, where � is the angle between PS and
QS as seen in Figure 3.3:

1. RU/PR = (RS + RS cos �)/RS sin � = (1+ cos �)/ sin �

2. PR/QR = RS sin �/(RS − RS cos �) = sin �/(1− cos �)
3. Since 1− cos �2 = sin �2, then RU/PR = PR/QR.

29 Actually,Newton does not use the relationship QP = vt explicitly in his
demonstration. Rather, he demonstrates that the distance that would be
traveled under the force that produces the deviation QR during a full
cycle is equal to the square of the circumference divided by the diameter
QU, i.e., 4�2QU.

30 In an extended note, Whiteside discusses in considerable detail New-
ton’s “unconsidered subtleties” of the conditions under which “the cen-
tral force . . .over the whole arc . . .may be considered to be constant.”
Newton, Mathematical Papers, vol. 6, note 19, p. 37. We claim, how-
ever, that there are no “unconsidered subtleties” inNewton’s argument,
but rather that there is confusion about the nature of Newton’s mathe-
matical limits. The central force is not a constant over a finite arc, nor
does Newton make such an incorrect assumption. Newton defines a ra-
tio, e.g., QR/(QT2 × SP2), which varies with the location of both points
Q and P, and then he defines its limit as Q approaches P. This limit ex-
ists for any curve with finite curvature. Newton defines the force to be
proportional to this limit, which depends in general on the location of P.
Therefore, for a general curve the force varies both in magnitude and in
direction over any finite arc PQ. For further details, see Nauenberg,
“The Mathematical Principles Underlying the Principia Revisited,”
pp. 284–300.

31 Newton, Mathematical Papers, vol. 1, p. 456. For a discussion of the
source of this cryptic comment, see J. Bruce Brackenridge, “Newton’s
Mature Dynamics: A Crooked Path Made Straight,” in Buchwald and
Cohen (eds.), Issac Newton’s Natural Philosophy.

32 Newton, Mathematical Papers, vol. 1, pp. 252–5.
33 Herivel, The Background to Newton’s Principia, p. 132.
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34 Newton, Mathematical Papers, vol. 1, note 3, p. 456. In a later vol-
ume, Whiteside expands his commentary and explains in detail how
curvature is central to Newton’s alternate measure of force. Newton,
Mathematical Papers, vol.6, note 25, pp. 548–50.

35 Brackenridge, “The Critical Role of Curvature in Newton’s Dynamics,”
p. 256.

36 Nauenberg, “Newton’s Early Computational Method for Dynamics,”
pp. 212–52.

37 Nauenberg, “Newton’s Perturbation Methods for the 3-Body Problem
and Its Application to Lunar Motion.”

38 The Correspondence of Isaac Newton, vol. 2, pp. 307–8.
39 For a discussion of such opinions, seeNauenberg, “Newton’s EarlyCom-

putational Method for Dynamics,” p. 223.
40 Nauenberg, “Newton’s Early Computational Method for Dynamics,”

note 30, p. 248.
41 Newton, Mathematical Papers, vol. 6, pp. 149–53.
42 V. I. Arnol’d, Huygens & Barrow, Newton & Hooke (Birkhauser, 1990),

p. 19. Arnol’d states that “the letter contains among other mistakes an
impossible picture of an orbit.”

43 Newton, Principia, 3rd edn, vol. 1, pp. 182–3. See Corollary 2 of Propo-
sition 44, Book 1.

44 Indeed, measuring the distance of this segment of the curve to the dis-
placed center CS, one finds that the closest distance lies nearer to F.
Therefore, the correct angle between apogee and perigee is ACSF and
it is equal to HCO, as expected. In fact, Newton’s computation of the
segment of the orbit between apogee and perigee is remarkably good. Be-
cause of the drawing error, however, the circumscribed curve ABKDEA
is not a true circle and the additional segments HJK and KL of the orbit
which touch or approach the circumscribed curve ABKDEA cannot sat-
isfy the reflection symmetry. Therefore these segments had to be partly
sketched in and patched up by Newton, as is also quite evident in the
segment HJ of the diagram in Figure 3.4.

45 Herivel, The Background to Newton’s Principia, p. 130.
46 ChristiaanHuygens,De Vi Centrifuga, in Oeuvres complètes de Christi-

aan Huygens, vol. 16 (The Hague: Martinus Nijhoff 1929), pp. 253–301.
47 Newton, Principia, 3rd edn, vol. 1, pp. 68–70: Proposition 6, Corollary

3, Book 1.
48 Meli, “The Relativization of Centrifugal Force,” p. 33.
49 For example, Bertoloni Meli claims that “in general, he [Newton] ex-

plained curvilinear motion in terms of centripetal force and inertia
alone, without centrifugal force: why in this case centrifugal force could
be neglected, however, was not clear.” Meli, “The Relativization of
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Centrifugal Force,” p. 33. If one notes, however, that Newton always
applies the concept of centrifugal force only to circular motion, or to
the maximum and minimum points for general orbital motion (where
the force lies along the radius of the circle of curvature), then the situa-
tion is clarified. Centrifugal force is not neglected in curvilinear motion
as Bertoloni Meli claims; rather it is applied by Newton only under very
restricted conditions. See Nauenberg, “Newton’s Early Computational
Method for Dynamics,” p. 231.

50 Writing Eq. (2) in the form � sin(�) = v2/ f , where v2 is given by conser-
vation of energy, it is clear that both sides of this equation are functions
of the radial distance r. By 1671 Newton had obtained an explicit ex-
pression in polar coordinates for the radial component of the curvature
vector for any given curve. For a spiral curve Newton obtained the fol-
lowing relationship: � sin(�) = r , and therefore, v2 = f r , according to Eq.
(2). Taking differentials on both sides of this equation we have 2v�v =
r�f + f �r , and applying Eq. (6), the term v�v can be eliminated to obtain
r�f + 3 f �r = 0, which gives that the force f is proportional to 1/r3.

51 Newton solves the direct problem for a logarithmic spiral orbit by
an elegant self-similarity argument in Proposition 9, Book 1 of the
Principia, giving the central force as 1/r3.

52 A problem still remains, however. It must be shown that the “impul-
sive” force divided by the side of the polygon squared approaches a
limit when the side of the polygon becomes vanishingly small (evanes-
cent). In this limit the deviation divided by the time interval squared
corresponds to Newton’s “accelerative” measure of force. Newton’s
proof of this property is essentially the content of Proposition 6,
Book 1.

53 Nauenberg, “The Mathematical Principles Underlying the Principia
Revisited,” p. 298.

54 In Lemma 11, Newton shows that the limit of the ratio QR/QT2 exists
for curves of finite curvature. In the 1687 Principia Newton should
have referred to this curvature lemma for the proof of Proposition 6,
but instead he referred to Lemma 10, which has nothing to say about
the existence of the limit of QR/QT2. For a discussion of this point see
Nauenberg, “The Mathematical Principles Underlying the Principia
Revisited,” pp. 289–92.

55 Other than the multiple references to curvature in Proposition 28, Book
3, which is concerned with lunar motion, the word “curvature” in the
1687 edition appears only in the following eight places: Book 1, Lemma
6, “in the middle of the continued curvature (curvaturae)” and “against
the nature of curvature (curvaturam)”; Lemma 11, Scholium, “the
curvature (curvaturam) at the point A”; Proposition 44. Corollary 4,
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“the radius of curvature (curvaturae) which the orbit . . .”; Book 2, Propo-
sition 52 Scholium, “the diminution of this curvature (curvaturae)”;
Book 3, Lemma 4, “from the curvature (curvatura) . . .of the Comets”;
and Proposition 41, “That this curvature (curvatura) is greater when
the deviation is greater . . . for in the shorter tails, the curvature (cur-
vatura) is hardly to be perceived.” From an unpublished concordance of
the words in the first three editions of Newton’s Principia, which was
compiled by I. Bernard Cohen.

56 Newton,Principia, 1st edn, cited in Brackenridge, “TheKey toNewton’s
Dynamics,” p. 243.

57 In the heavily annotated edition of the Principia edited by LeSeur and
Jacquier and first published in Geneva in 1739–42, the diagram in the
footnote to Lemma 11 has a revised diagram in which points A, B,
and G lie on a semicircle identified as the “circuli osculantis.” The
chord AB is shown extended to a new point F, setting out a general
curve. Isaac Newton, Philosophiae Naturalis Principia Mathematica,
(reprinted: Glasgow 1822), vol. 1, p. 54.

58 For a full documentation of both the textual and graphical changes to
Proposition 6, Book 1 in the first three editions of the Principia see
Isaac Newton’s Philosophiae Naturalis Principia Mathematica, 3rd
edn (1726), ed. Alexandre Koyré and I. Bernard Cohen, with variant
readings (Cambridge: Cambridge University Press, 1972), pp. 103–6.

59 We sketch here the main arguments in Newton’s geometrical proof of
Proposition 15, Book 2, which correspond to the calculus-based deriva-
tion given in Eqs. (1)–(5), pp. 118–20. Reference to Figure 3.15, which is
from Proposition 15, Book 2, shows three nearby points P, Q, and r on
a spiral curve centered at S, with corresponding radial lines SP, SQ, and
Sr. The sectors PSQ and QSr have equal areas, corresponding to equal
intervals of time �t, and for an equiangular spiral Qr/PQ = SP/SQ.
Thus, P, Q, and r represent points along the spiral orbit traversed by a
body under the action of a centripetal force alone. The additional point
R between r and Q represents the position of the body when there is
resistance. Hence, the change in area due to the resistive force FR

is given by the area of the sector RSr = SP × Rr sin� = �h�t, where
Rr is a second-order differential proportional to the magnitude of this
force and to the square of the time interval. Substituting Rr = FR�t2

leads to Eq. (1), �h = −SP × FR sin(�)�t.
The location ofR is determined by the relation QR/PQ= √(SP/SQ),

which follows from the condition that the velocity v of the body varies
inversely as the square root of the radial distance. Newton derives this
result by referring to Lemma 3, Book 2 and to Lemma 10, Book 1. It is
clear, however, that Lemma 3 is based on a geometrical construction
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equivalent to Lemma 11, Book 1. The figure in Lemma 3 contains two
lines perpendicular to the spiral at P and Q that intersect at O, and
therefore in the limit that Q approaches P the line PO becomes the
radius of curvature of the spiral at P. While Newton does not mention
curvature in Lemma 3 or in Propositions 15–17, Book 2, nevertheless
his geometrical derivation that v is proportional to 1/

√(SP) makes
explicit use of the curvature relation PD = PQ2/2PO, where PD is the
“subtense of the angle of contact” defined in Lemma 11, Book 1.

60 Newton had already obtained this result by his fluxional calculus by
1671. Later he demonstrated it geometrically in Proposition 9, Book 1,
and implicitly in Section 4, Lemma 3, Book 2.

61 It should be pointed out that in his statement of Proposition 15, Book 2
Newton used the Latin words “gyrari potest,” which when translated
correctly as “can revolve” indicate that the equiangular curve is a
possible orbit. See Isaac Newton, The Principia, trans. I. Bernard Cohen
and Ann Whitman, p. 680. In the text of the proposition (although
not in its statement), these words have been translated incorrectly by
Motte, and subsequently by Motte–Cajori, as “will revolve” indicating
that the equiangular curve is the only orbit. Unfortunately, these earlier
translations have caused some confusion in the literature.

62 Leonhard Euler, Opera Omnia Series secunda, Opera Mechanica et
Astronomica, vol, 23. ed. L. Courvoisier and J. O. Fleckenstein (Basel:
Societatis Scientiarum Naturalium Helveticae), 1969, pp. 286–9.

63 Collected Mathematical Papers of G. W. Hill (Carnegie Institute of
Washington, 1905), vol. 1, pp. 284–335.

64 P. S. Laplace, A Treatise of Celestial Mechanics trans. from the French
by Henry H. Harte (Dublin, 1822), pp. 357–90.

65 This expression corresponds to the formula for the radius of curvature
in polar coordinates that Newton had obtained already by 1671 with
his fluxional calculus, evaluated at an extremal point of the curve
where dr/d� = 0. In this case, (1/� − 1/r ) = (−1/r2)d2r/d�2. It appears
from Newton’s text, however, that he applied the curvature formula in
the differential form, Eq. (12), obtained directly from geometry.

66 Newton presented his result for the ratio of these two curvatures as
“the curvature of the figure Cpa at a to be to its curvature at C as
AT3 + 16824/100000CT2 AT is to CT3 + 16824/100000AT2CT; where
the number 16824/100000 represents the difference of the squares of
the angles CTP and CTp divided by the square of the lesser angle CTP.”
Here the ratio 16824/1000 corresponds to the numerical evaluation of
1/�2 − 1 with Newton’s values for the sidereal and synodic period of
the Moon. There is an error in the 1934 Motte–Cajori edition (p. 447)
of the Principia, where the first plus sign in Newton’s result is given
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incorrectly as a minus sign, although it is correct in the original 1729
Motte edition (vol. 2, p. 270).

67 Curtis Wilson, “Newton on the Moon’s Variation and Apsidal Motion:
The Need for a Newer ‘New Analysis’,” in Jed Buchwald and I. Bernard
Cohen (eds.), Issac Newton’s Natural Philosophy (Cambridge, MA:MIT
Press, 2001).

68 Nauenberg, “Newton’s Perturbation Methods for the 3-Body Problem
and Its Application to Lunar Motion.”



george e. smith

4 The methodology
of the Principia

In the Preface to the first edition (1687) Newton informs the reader
straight off that he intends the Principia to illustrate a new way of
doing what we now call empirical science:

And therefore our presentwork sets forthmathematical principles of natural
philosophy. For the whole difficulty of philosophy seems to be to find the
forces of nature from the phenomena of motions and then to demonstrate
the other phenomena from these forces. It is to these ends that the general
propositions in Books 1 and 2 are directed, while in Book 3 our explanation of
the system of the universe illustrates these propositions . . . If only we could
derive the other phenomena of nature from mechanical principles by the
same kind of reasoning! For many things lead me to have a suspicion that all
phenomena may depend on certain forces by which the particles of bodies,
by causes yet unknown, either are impelled toward one another and cohere
in regular figures, or are repelled from one another and recede. Since these
forces are unknown, philosophers have hitherto made trial of nature in vain.
But I hope that the principles set down here will shed some light on either
this mode of philosophizing or some truer one.1

Surprisingly, however, the main body of the first edition contains
only two further comments about methodology: (1) a cryptic remark
at the end of the opening discussion of space and time, announcing
that the purpose of the work is to explain “how to determine the
true motions from their causes, effects, and apparent differences,
and, conversely, how to determine from motions, whether true or
apparent, their causes and effects”;2 and (2) a scholium buried at
the end of Book 1, Section 11 in which Newton proposes that his
distinctive approach will make it possible to argue more securely in
natural philosophy.

138
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In the second edition (1713), clearly in response to complaints
about his methodology, Newton introduces separate sections for
the Phenomena and Rules for Natural Philosophy3 involved in his
derivation of universal gravity (adding a fourth rule in the third edi-
tion, 1726), and he adds at the end the General Scholium containing
his most famous – and troubling – methodological pronouncement:

I have not as yet been able to deduce from phenomena the reason for these
properties of gravity, and I do not feign hypotheses. For whatever is not de-
duced from the phenomena must be called a hypothesis; and hypotheses,
whether metaphysical or physical, or based on occult qualities, or mechan-
ical, have no place in experimental philosophy. In this experimental philos-
ophy, propositions are deduced from the phenomena and are made general
by induction.4

In a later (anonymous) work, Newton softened his renunciation of
hypotheses by adding, “unless as conjectures or questions proposed
to be examined by experiments.”5

With or without this qualification, the thrust of the pronounce-
ment remains mostly negative: Newton’s new experimental phi-
losophy does not proceed hypothetico-deductively, even under
the supposedly safe constraint imposed by the then-prevailing
mechanical philosophy that all hypothesized action arises strictly
through contact of matter with matter. How, then, does theory con-
struction proceed on Newton’s approach? Vague talk of “deductions
fromphenomena” provided nomore adequate an answer to this ques-
tion then than it does now.

Newton leaves the task of extracting the answer from the
Principia largely to the reader. Three centuries of disagreement
give reason to think that the answer is far more complex than the
hypothetico-deductive alternative, which Christiaan Huygens, the
foremost figure in science at the time, managed to lay out in a single
paragraph in his January 1690 Preface to his Treatise on Light, pub-
lished thirty months after the Principia:

One finds in this subject a kind of demonstrationwhich does not carrywith it
so high a degree of certainty as that employed in geometry; and which differs
distinctly from the method employed by geometers in that they prove their
propositions by well-established and incontrovertible principles, while here
principles are tested by the inferences which are derivable from them. The
nature of the subject permits of no other treatment. It is possible, however, in
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thisway to establish a probabilitywhich is little short of certainty. This is the
case when the consequences of the assumed principles are in perfect accord
with the observed phenomena, and especially when these verifications are
numerous; but above all when one employs the hypothesis to predict new
phenomena and finds his expectations realized.6

Huygens’s Discourse on the Cause of Gravity, which contains his
critical evaluation of the Principia, was published in combination
with his Treatise on Light, making this paragraph prefatory to both.

The nearest Newton ever comes to such a capsule summary of
his approach is the one methodological pronouncement from the
first edition from which I have yet to quote, the Scholium at the end
of Book 1, Section 11:

By these propositions we are directed to the analogy between centripetal
forces and the central bodies toward which those forces tend. For it is rea-
sonable that forces directed toward bodies depend on the nature and the
quantity of matter of such bodies, as happens in the case of magnetic bodies.
And whenever cases of this sort occur, the attractions of the bodies must
be reckoned by assigning proper forces to their individual particles and then
taking the sums of these forces.

I use the word “attraction” here in a general sense for any endeavor what-
ever of bodies to approach one another, whether that endeavor occurs as a
result of the action of the bodies either drawn toward one another or acting on
one another by means of spirits emitted or whether it arises from the action
of ether or of air or of any medium whatsoever – whether corporeal or incor-
poreal – in anyway impelling toward one another the bodies floating therein.
I use the word “impulse” in the same general sense, considering in this trea-
tise not the species of forces and their physical qualities but their quantities
and mathematical proportions, as I have explained in the definitions.

Mathematics requires an investigation of those quantities of forces and
their proportions that follow from any conditions that may be supposed.
Then, coming down to physics, these proportions must be compared with
the phenomena, so that it may be found out which conditions of forces
apply to each kind of attracting bodies. And then, finally, it will be possible
to argue more securely concerning the physical species, physical causes, and
physical proportions of these forces. Let us see, therefore, what the forces
are by which spherical bodies, consisting of particles that attract in the way
already set forth, must act upon one another, and what sorts of motions
result from such forces.7

The goal in what follows is to describe the methodology of the
Principia in the light of this too often neglected Scholium.8
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First, however, the Scholium (which remained word-for-word the
same in all three editions) should be put into context. Section 11
treats bodies moving under centripetal forces directed not toward a
point in space, as in the preceding sections, but toward other mov-
ing bodies – so-called “two-body” and “three-body” problems. By far
the largest portion of Section 11 presents Newton’s limited, qual-
itative results for three-body effects on the motions of the planets
and the Moon, results that he called “imperfect” in the Preface. The
Scholium thus occurs just after it should have become clear to readers
that the true orbital motions are so intractably complex as to pre-
clude hope of exact agreement between theory and observation. To
concede that theory can at best only approximate the realworld, how-
ever, appears to concede that multiple conflicting theories can claim
equal support from the available evidence at any time. Seventeenth-
century readers would have been quick to note this, for equipollence
of astronomical theories had been a celebrated concern for over a
century,9 and such leading figures as Descartes and Marin Mersenne
had frequently called pointed attention to the limitations of exper-
imental evidence.10 Newton would have accordingly expected his
readers to see his remark about arguing more securely as making
a startling claim in the face of a concession that the real world is
intractably complex.

Proposition 69, to which the Scholium is attached, lays the
groundwork for Newton’s law of gravity by asserting that in the rele-
vant inverse-square case the forces directed toward the various bodies
must be proportional to the masses of those bodies. Sections 12
and 13 examine the characteristics of forces directed toward bodies
when these forces are composed out of forces directed toward the
individual particles of matter making up the bodies. In other words,
they lay the groundwork for Newton’s claim that his law of gravity
holds universally between individual particles of matter. Now, the
mechanical philosophy did not bar “attractive” forces amongmacro-
scopic bodies, for intervening unseen matter could be hypothesized
to effect these forces in the manner Descartes had proposed in the
case of magnets, and also gravity.11 As Newton well realized, how-
ever, no hypothetical contact mechanism seems even imaginable to
effect “attractive” forces among particles of matter generally. The
Scholium thus occurs at the point where adherents to the mechani-
cal philosophy would start viewing Newton’s reasoning as “absurd”
(to use the word Huygens chose privately).12 The Scholium attempts
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to carry the reader past this worry, but not by facing the demand
for a contact mechanism head-on. Instead, Newton warns that he is
employing mathematically formulated theory in physics in a new
way, with forces treated abstractly, independently of mechanism.
What we need to do first, then, is to understand howNewton is using
mathematical theory and talk of forces in the Principia, and how he
is departing from his predecessors. Then we can turn, in the last two
sections of the chapter, to the questions of how Newton prefers to
argue for theoretical claims and whether this way of arguing is more
secure.

mathematical theory in newton’s PRINCIPIA

The two most prominent books presenting mathematical theories
of motion before the Principia were Galileo’s Two New Sciences
(1638)13 and Huygens’sHorologium Oscillatorium (1673).14 Newton
almost certainly never saw the former, but he knew the latter well,
and it together with Galileo’s Dialogues on the Two Chief World
Systems (1632)15 and various secondary sources16 made him familiar
with Galileo’s results. Outwardly, the Principia appears to take the
same mathematical approach as these two earlier books, proceeding
from axioms to a series of rigorously demonstrated propositions. In
fact, however, the approach to mathematical theory in Books 1 and 2
of the Principia differs from that taken by Galileo and Huygens in
two important respects.

The first difference is subtle. Almost without exception, the
demonstrated propositions of Books 1 and 2 of the Principia are of
an “if-then” logical form, as illustrated by Propositions 1 and 2, re-
stated in modern form: if the forces acting on a moving body are all
directed toward a single point in space, then a radius from that point
to the body sweeps out equal areas in equal times, and conversely.17

So far as strict logic is concerned, the same can be said of the demon-
strated propositions of Galileo and Huygens, as illustrated by the
latter’s celebrated isochronism theorem: if a body descends along a
path described by a cycloid, then the time of descent is the same
regardless of the point along the path from which its descent
begins.18 From the point of view of empirical science, however, this
and the other demonstrated propositions of Galileo and Huygens
are better described as having a “when-then” form, in which the
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antecedent describes an experimental situation and the consequent,
a prediction of what will occur whenever that situation is realized.
A primary aim of Galileo’s and Huygens’s mathematical theories is
to derive observable consequences from their axioms that can pro-
vide evidence supporting these axioms, taken as hypotheses, or that
can facilitate practical applications, such as the design of pendulum
clocks.19

What lies behind this “when-then” form is the kind of quantities
employed in the theories laid out by Galileo and Huygens. With the
notable exception of the latter’s theorems on centrifugal force, ap-
pendedwithout proofs at the end ofHorologiumOscillatorium, their
axioms and demonstrated propositions make no reference to forces.
Surprising as it may be, even the rate of acceleration in vertical fall –
for us, g, and for them the distance of fall in the first second – enters
nowhere into Galileo’s propositions. This quantity does enter into
the very last propositions of Horologium Oscillatorium, enabling
Huygens to carry out a theory-mediated measurement of it to very
high accuracy by means of pendulums; nonetheless, it plays no role
in the development of his theory. The quantities central to themath-
ematical theories ofmotionunder uniformgravity laid out byGalileo
and Huygens were all open to measurement without having to pre-
suppose any propositions of the theories themselves.

Unlike Galileo and Huygens, Newton takes his “axioms or laws
of motion” to hold true from the outset of Books 1 and 2 of the
Principia. His demonstrated “if-then” propositions amount to
inference-tickets20 linking motions to forces, forces to motions, and
macrophysical forces to microphysical forces composing them. As
Newton indicates in the quotation given earlier from the Preface
to the first edition, the aim of the mathematical theories of Books
1 and 2 is first to establish means for inferring conclusions about
forces from phenomena of motion and then to demonstrate fur-
ther phenomena from these conclusions about forces. In Newton’s
hands force is a flagrantly theoretical quantity. The principal prob-
lemNewton’s mathematical theories address is to find ways to char-
acterize forces.

The second critical difference between Newton’s mathematical
theories and those of Galileo and Huygens concerns their respec-
tive scopes. Galileo offered a mathematical theory of uniformly ac-
celerated motion, and Huygens extended this theory to curvilinear
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trajectories and uniform circular motion. Newton, by contrast, does
not offer a theory of motion under inverse-square centripetal forces,
much less under gravity, alone. Rather, Book 1 offers a generic theory
of centripetal forces and motion under them. Inverse-square forces
receive extra attention, but the theory also covers centripetal forces
that vary linearly with distance to the force-center, that vary as the
inverse-cube, and finally that vary as any function whatever of dis-
tance to the center. Similarly, while Book 2 emphasizes resistance
forces that vary as the square of the velocity, it ultimately derives
“if-then” propositions that allow resistance forces to vary as the sum
of any powers of velocity whatever, including non-integer powers.21

Book 2 thus strives to offer a generic theory of resistance forces,
where these are characterized as arising from the velocity of a mov-
ing body in a fluid medium. The generic scope of these two theories
is not simply a case of Newton displaying hismathematical prowess,
as is sometimes suggested. The theories need to be generic in order
to allow him to establish strong conclusions about forces from phe-
nomena of motions, conclusions that exclude potential competing
claims.

The propositions from Books 1 and 2 that become most impor-
tant to the overall Principia are of two types. The first type consists
of propositions that link parameters in rules characterizing forces
to parameters of motion. The historically most significant example
of this type is Newton’s “precession theorem” for nearly circular
orbits under centripetal forces.22 It establishes a strict relationship
between the apsidal angle � – the angle at the force-center between,
for example, the aphelion and the perihelion – to the square root of
the index n, namely n = (�/�)2, where the centripetal force varies
as r (n−3). This relationship not only confirms that the exponent of r
is exactly –2 when the apsidal angle is 180 degrees and exactly +1
when the angle is 90 degrees, but also yields a value of n and hence
of the exponent for any other apsidal angle, or in other words for any
rate at which the overall orbit precesses. This proposition and others
of its type thus enable theory-mediated measurements of parame-
ters characterizing forces to be made from parameters characteriz-
ing motions.23 The propositions laid out earlier relating centripetal
forces to Kepler’s area rule, and their corollaries, provide another ex-
ample of this type in which areal velocity yields a theory-mediated
measure of the direction of the forces acting on a body.
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As alluded to above, in his theory ofmotion under uniform gravity
Huygens had derived propositions expressing the laws of the cy-
cloidal and small-arc circular pendulums; and these results had
enabled him to obtain from the periods and lengths of such pen-
dulums a theory-mediated measure of the strength of surface grav-
ity to four significant figures. This was a spectacular advance over
prior attempts to measure the distance of vertical fall in the first
second directly. Also, Huygens’s theory of centrifugal force in uni-
form circular motion had allowed him to characterize the strength
of these forces in terms of such motions, and from this to derive
the law of the conical pendulum; and this result had enabled him
to obtain a still further theory-mediated measure of the strength
of surface gravity, in precise agreement with his other measures.24

So, regardless of whether Newton first learned about propositions
enabling theory-mediated measurements from Huygens, he at the
very least had seen the utility of such propositions in Horologium
Oscillatorium. Huygens, however, seems never to have seen any spe-
cial evidential significance in his precise, stable measures of gravity.
In Newton’s hands, by contrast, theory-mediated measures became
central to a new approach to marshaling evidence.

It is difficult to exaggerate the importance of measurement to
the methodology of the Principia25 or, for that matter, the sophis-
tication with which Newton thought through philosophical issues
concerning measurement. The importance is clear even in the def-
initions of key quantities with which the Principia opens, which
are at least as much about measures of these quantities as they are
about terminology. As the discussion of astronomical measures of
time in the Scholium immediately following these definitionsmakes
clear, Newton recognized that measures invariably involve theoret-
ical assumptions, and hence remain provisional, even if not theory-
mediated in the more restricted sense invoked above. He also seems
to have appreciated that, because measurements in physics involve
physical procedures and assumptions, a distinctive feature of this
science is that it cannot help but include within itself its own em-
pirically revisable theory of measurement. This insight may explain
why Newton was so quick to view success in measurement as a
form of evidence in its own right; here success includes (1) stabil-
ity of values as a measure is repeated in varying circumstances – as
illustrated by the stability of Huygens’s measure of surface gravity
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by cycloidal pendulums of different lengths – and (2) convergence of
values when the same quantity is determined through differentmea-
sures involving different assumptions – as illustrated by the conver-
gence of Huygens’s cycloidal and conical pendulummeasures. (Being
open to increasingly greater precision appears to be a still further di-
mension of success in measurement for Newton.) Achieving success
of this sort in determining values for forces is almost certainly what
Newton had in mind with the cryptic remark at the end of the
Scholium on space and time about the book explaining “how to de-
termine the true motions from their causes, effects, and apparent
differences.”

The second type of proposition important to the Principia consists
of combinations that draw clear contrasts between different condi-
tions of force in terms of different conditions of motion. An histori-
cally significant example is the contrast between the simple form of
Kepler’s 3/2 power rule and the form requiring a specific small correc-
tion for each individual orbiting body; the latter holds if the orbiting
and central bodies are interactingwith one another in accordwith the
third law of motion, while the former holds if the orbiting body does
not exert a force causing motion of the central body. Another his-
torically significant example is the contrast between inverse-square
celestial gravity acting to hold bodies in their orbits – a formof gravity
that Huygens thought Newton had established – and inverse-square
universal gravity between all the particles of matter in the universe:
only under the latter does gravity vary linearly with distance from
the center beneath the surface of a (uniformly dense) spherical Earth;
and only under the latter does a particular relationship hold between
the non-sphericity of a (uniformly dense) Earth and the variation of
surface gravity with latitude. Combinations of propositions of this
type thus provide contrasts that open the way to crossroads experi-
ments – experimenta crucis – enabling phenomena of motion to pick
out which among alternative kinds of conditions hold true of forces.

As these examples and the examples for the first type suggest,
Newton prefers “if-and-only-if” results with both types. When he is
unable to establish a strict converse, he typically looks for a result
that falls as little short of it as he can find, as illustrated by the
qualitative theorems on the “three-body” problem in Section 11.

Once these two types are identified, an examination of the overall
development of the mathematical theories of Books 1 and 2 makes
clear that the propositionsNewtonwasmost pursuing in these books
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are of these two types. His preoccupation with these explains why
he included the propositions he did and not others that he could
easily have added. Propositions that do not fall into these types gen-
erally serve to enable ones that do. By contrast, an examination of
the overall development of the mathematical theories of Galileo and
Huygens indicates that the propositions they were most pursuing
are ones that make a highly distinctive empirical prediction, that
provide an answer to some practical question, or that explain some
known phenomenon. In other words, the mathematical theories of
motion of Galileo andHuygens are primarily aimed at predicting and
explaining phenomena. The mathematical theories of motion devel-
oped in Books 1 and 2 of the Principia do not have this aim. Rather,
their aim is to provide a basis for specifying experiments and observa-
tions by means of which the empirical world can provide answers to
questions – this in contrast to conjecturing answers and then testing
the implications of these conjectures. Newton is using mathemati-
cal theory in an effort to turn otherwise recalcitrant questions into
empirically tractable questions. This is what he is describing when
he says:

Mathematics requires an investigation of those quantities of forces and their
proportions that follow from any conditions that may be supposed. Then,
coming down to physics, these proportions must be compared with the phe-
nomena, so that it may be found out which conditions of forces apply to
each kind of attracting bodies.

This initial picture of Newton’s approach is too simple in one
crucial respect: if only because of imprecision of measurement, the
empirical world rarely yields straightforward univocal answers to
questions. That Newton was acutely aware of this is clear from
his supplementing key “if-then” propositions with corollaries not-
ing that the consequent still holds quam proxime (i.e., very nearly)
when the antecedent holds only quam proxime. Nothing adds to the
complexity of Newton’s methodology more than his approach to in-
exactitude. We will return to this subject after considering the way
in which he talks of force.

newtonian forces: mathematical and physical

The theories developed in the Principia, unlike the theory of uni-
formly accelerated motion developed by Galileo and extended by
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Huygens, are first and foremost about forces. Book 1 develops a gen-
eral theory of centripetal forces and motions under them, and the
first two-thirds of Book 2, a general theory of resistance forces and
motions under them; the last third of Book 2 then develops a theory of
the contribution the inertia of fluidmediamakes to resistance forces,
and Book 3, a theory of gravitational forces and their effects. Newton
was not the first to employ talk of forces in theories ofmotion. As the
warning in the Scholium at the end of Section 11 about how he uses
“attraction” and “impulse” indicates, he saw his way of employing
such terms as novel, threatening confusion he needed to obviate.
Definition 8 at the beginning of the Principia includes essentially
the same warning about these terms, and “force” as well, adding,
“this concept is purely mathematical, for I am not now considering
the physical causes and sites of forces.”26 The warnings themselves
are clear enough: Newton wants to be taken as talking of forces in
the abstract, as quantities unto themselves, totally without regard
to the physical mechanisms producing them. Not so clear are the
ramifications of talking in this way.

The prior work that comes closest to treating forces in the man-
ner of Newton is Huygens’s theory of centrifugal force arising from
uniform circular motion.27 Like Descartes, Huygens uses the con-
trapositive of the principle of inertia to infer that something must be
impeding any body that is not moving uniformly in a straight line.
He further concludes that the magnitude of the force acting on the
impediment is proportional to the extent of departure from what we
now call inertial motion, obtaining for uniform circular motion the
familiar v2/r result. What Huygens means by “centrifugal force,”
however, is the force exerted on the impediment – for example, the
tension in the string retaining the object in a circle. Huygens’s cen-
trifugal force is thus a form of static force, expressly analogous to the
force a heavy object exerts on a string fromwhich it is dangling. Talk
of static forces was widespread in accounts of mechanical devices
during the seventeenth century. Huygens was reaching beyond such
talk only in inferring the magnitude of the force from the motion.

As Newton’s discussion of his laws of motion makes clear, he too
intended his treatment of forces to be continuouswith the traditional
treatment of static forces. Unlike Huygens, however, he singles out
the unbalanced force that acts on the moving body, making it de-
part from inertial motion. Where Descartes and Huygens used the
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contrapositive of the principle of inertia to infer the existence of an
impediment in contactwith the non-inertiallymoving body,Newton
uses it to infer the existence of an unbalanced force, independently
of all consideration of what is effecting that force. His second law of
motion then enables the magnitude and direction of any such force
to be inferred from the extent and direction of the departure from
inertial motion. Unbalanced force as a quantity can thus be fully
characterized in abstraction from whatever might be producing it.
This is what Newton means when he speaks in Definition 8 of con-
sidering “forces not from a physical but only from a mathematical
point of view.”

Newton had reason to expect that this way of talking of forces
would confuse many of his readers. In his writing on light and col-
ors in the early 1670s he had adopted essentially the same strat-
egy in talking of rays of light as purely mathematically charac-
terizable, independently of the underlying physics of light and the
process or mechanism of its transmission. His warnings notwith-
standing, many readers had insisted on equating his rays of light
with paths defined by hypothetical particles comprising light; they
had then argued, to his consternation, that his claims about refrac-
tion had not been established because he had not established that
light consists of such particles.28 His warnings about considering
forces “from amathematical point of view” were scarcely any better
heeded.

From the mathematical point of view any unbalanced force act-
ing on a body is a quantity with magnitude and direction. The gen-
eral theory of centripetal forces developed in Book 1 considers forces
from this point of view, with the direction specified toward a center
and the magnitude taken to vary as a function of distance from that
center. The same is true of the general theory of resistance forces
developed in the first two-thirds of Book 2, but with the direction
specified opposite to the direction ofmotion and themagnitude vary-
ing as a function of velocity. An unbalanced force that is thus fully
characterized by its direction andmagnitude can be resolved into cor-
respondingly fully characterized components in anyway onewishes,
without regard to the particular physical components that happen to
be giving rise to it. This absence of constraint in resolving forces into
components is important in several places in Books 1 and 2, perhaps
most strikingly in Proposition 3 of the former:
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Every body that, by a radius drawn to the center of a second body moving
in any way whatever, describes about that center areas that are proportional
to the times is urged by a force compounded of the centripetal force tending
toward that second body and of the whole accelerative force by which that
second body is urged.29

In principle – indeed, in practice – this situation can occur with-
out there being any form of physical interaction, or physical forces,
between the two bodies.

Still, as Newton’s remark about “arguing more securely concern-
ing the physical species, physical causes, and physical proportions
of these forces” indicates, it does make sense according to his way
of talking about forces to ask what physical forces a net unbalanced
force results from. The theory of gravitational forces of Book 3 and
the theory of the constituent of resistance forces arising from the
inertia of the fluid at the end of Book 2 both treat forces from a
physical point of view. Judging from the development of these two
theories, Newton requires five conditions to be met for a component
of a mathematically characterized force to be considered a physical
force: (1) its direction must be determined by some material body
other than the one it is acting on;30 (2) all respects in which its mag-
nitude can varymust be given by a general law that is independent of
the first two laws of motion, such as the law of gravity, F ∝ Mm/r2;
(3) some of the physical quantities entering into this law must per-
tain to the other body that determines the direction of the force; (4)
this lawmust hold for some forces that are indisputably real, such as
terrestrial gravity in the case of the law of gravity; and (5) if the force
acts on a macroscopic body, then it must be composed of forces act-
ing on microphysical parts of that body – this primarily to safeguard
against inexactitude in the force law introduced by inferring it from
macroscopic phenomena.

Notably absent from this list is anything about the mechanism
or process effecting the force. Adherents to the “mechanical phi-
losophy,” such as Descartes and Huygens, and undoubtedly Galileo
as well, would have required not just a mechanism effecting the
force, but specifically a contact mechanism. Otherwise the putative
force might be beyond explanation and hence occult. This is where
Newton’s new “experimental philosophy” departed most radically
from the prevailing “mechanical philosophy.”
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The law characterizing a force from a physical point of view gives
its “physical proportions” and assigns it to a “physical species.” Two
forces are of the same physical species only if they are characterized
by the same law. Thus the inverse-square forces retaining the planets
and their statellites in their orbits are the same in kind as terrestrial
gravity, while (for Newton) the constituent of resistance forces aris-
ing from the inertia of the fluid is different in kind from that arising
from its viscosity in so far as the former varies as velocity squared,
and the latter does not. A theory of any physical species of force is
required to give (1) necessary and sufficient conditions for a force
to be present, (2) a law or laws dictating the relative magnitude and
direction of this force in terms of determinable physical quantities,
and (3) where relevant, an account of how it is composed out of mi-
crostructural forces.

Microstructural forces have a more fundamental status in the
overall taxonomy of forces. In the Principia Newton identifies three
species of microstructural force, gravity, pressure, and, percussion,
where the theory of the latter had already been put forward by
Huygens, Christopher Wren, and John Wallis.31 The remark in the
Preface to the first edition – “all phenomena may depend on certain
forces by which the particles of bodies, by causes yet unknown, ei-
ther are impelled toward one another and cohere in regular figures,
or are repelled from one another and recede” – points to a program
of pursuing theories of further species of microstructural force. This
program is described in more detail in the unpublished portion of
this Preface and an unpublished Conclusion, as illustrated by this
passage from the former:

I therefore propose the inquiry whether or not there be many forces of this
kind, never yet perceived, by which the particles of bodies agitate one an-
other and coalesce into various structures. For if Nature be simple and pretty
conformable to herself, causes will operate in the same kind of way in all
phenomena, so that the motions of smaller bodies depend upon certain
smaller forces just as the motions of larger bodies are ruled by the greater
force of gravity. It remains therefore that we inquire by means of fitting
experiments whether there are forces of this kind in nature, then what are
their properties, quantities, and effects. For if all natural motions of great
or small bodies can be explained through such forces, nothing more will re-
main than to inquire the causes of gravity,magnetic attraction, and the other
forces.32
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To his contemporaries, what seemed most confusing about
Newton’s way of talking about forces was his willingness to put
forward a theory of gravitational “attraction” without regard to the
causal mechanism effecting it. They generally concluded that he had
to be committed to action at a distance as a causal mechanism in its
own right. The outspoken opposition to the Principia in many quar-
ters stemmed primarily from the inexplicability of action at a dis-
tance. Present-day readers, viewing the Principia in the light of 300
years of success in physics, are not likely to find the way Newton
talks of forces from a physical point of view confusing. What most
tends to confuse them is the distinction between considering forces
from a physical point of view and considering them purely from a
mathematical point of view. A symptom of this confusion is the ten-
dency to read Book 1 as if its subject is gravitational forces,wondering
why Newton bothered to include in it so many seemingly irrelevant
propositions.

arguing from phenomena of motion to laws
of force

In the Scholium at the end of Section 11Newton says, rather vaguely,
that the transition from mathematically to physically character-
ized forces is to be carried out by comparing the mathematically
characterized proportions with phenomena. As other methodolog-
ical remarks in the Principia make clear, the specific approach he
prefers is to use the “if-then” propositions of his mathematical
theory to “deduce” the physical laws characterizing forces from
phenomena33 – most notably, to deduce the law of gravity from the
phenomena of orbital motion specified by two of Kepler’s rules,34

along with Thomas Streete’s conclusion that the planetary aphelia
are stationary.35 Serious difficulties stand in the way of any such de-
duction, however.Much of the complexity ofNewton’smethodology
comes from his approach to these difficulties.

One difficulty, noted earlier, is that limits of precision in obser-
vation entail that statements of phenomena hold at most quam
proxime. This limitation was evident at the time in the case of
Kepler’s rules. Ishmaël Boulliau had replaced Kepler’s area rule with
a geometric construction, yet had achieved the same level of accu-
racy relative to Tycho Brahe’s data as Kepler – roughly the level of
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accuracy that Tycho had claimed for observations at Uraniborg; and
VincentWing had done almost as well using an oscillating equant in-
stead of the area rule.36 Jeremiah Horrocks and Streete were the only
orbital astronomers to claim that the lengths of the semi-major axes
of the planetary orbits could be inferred more accurately from the
periods using Kepler’s 3/2 power rule than by classical methods that
were known to be sensitive to observational imprecision.37 Even in
the case of the ellipse, which virtually all orbital astronomers were
using, the question whether it is merely a good approximation or
the true exact trajectory remained open.38 In short, Kepler’s rules
were at best established only quam proxime, and any “deduction”
from them would have to concede that other ways of stating the
phenomena could not be eliminated on grounds of accuracy alone.

From Newton’s point of view, however, imprecision was not the
worst difficulty. In the brief “De motu” tracts that preceded the
Principia he had concluded that there are inverse-square centripetal
acceleration fields (to use the modern term) around the Sun, Jupiter,
Saturn, and the Earth, with the strength of each given by the in-
variant value [a3/P2] for bodies orbiting them, where a is the mean
distance for any orbit and P is the period.39 Presumably, the acceler-
ation fields around Jupiter, Saturn, and the Earth extend to the Sun,
putting it into motion. By a generalization of the principle of inertia
to a system of interacting bodies – a generalization that is equivalent
to the third law of motion of the Principia – the interactions among
the bodies cannot alter the motion of the center of gravity of the
system. From this Newton reached a momentous conclusion:

By reason of the deviation of the Sun from the center of gravity, the cen-
tripetal force does not always tend to that immobile center, and hence the
planets neither move exactly in ellipses nor revolve twice in the same orbit.
There are as many orbits of a planet as it has revolutions, as in the motion of
the Moon . . .But to consider simultaneously all these causes of motion and
to define these motions by exact laws admitting of easy calculation exceeds,
if I am not mistaken, the force of any human mind.40

In other words, before he began writing the Principia itself (and, if I
am right, before he had even discovered the law of gravity41), Newton
had concluded that Kepler’s rules can at best be true only quam
proxime of the planets and their satellites, not because of impreci-
sion of observation, but because the true motions are immensely
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more complicated than Kepler’s or any other such rules could hope
to capture.

Newton was not the first to conclude that real motions are ex-
ceedingly complex. Galileo had concluded that the multiplicity of
factors affecting motion in resisting media preclude “fixed laws and
exact description”;42 and, in a letter to Mersenne, Descartes too had
denied the possibility of a science of air resistance.43 Newton was
most likely unaware of these remarks of Galileo and Descartes on
resistance, but he definitely did know thatDescartes, in his Principia
(1644), had denied that the planetary orbits aremathematically exact,
remarking that as “in all other natural things, they are only approx-
imately so, and also they are continuously changed by the passing
of the ages.”44 The response of Galileo, Huygens, and Descartes to
the complexities of real-world motions and limits in precision of
measurement was to employ the hypothetico-deductive approach
to marshaling evidence, deducing testable conclusions from conjec-
tured hypotheses and then exposing these conclusions to falsifica-
tion. From the beginning of his work in optics in the 1660s, Newton
had always distrusted the hypothetico-deductive approach, arguing
that toomany disparate hypotheses can be compatible with the same
observations.45 Inexactitude, whether from imprecision in observa-
tion or from the complexity of the real world, exacerbates this short-
coming. In saying that the approach illustrated by the Principia puts
one in position to argue more securely about features of underlying
physics, Newton was claiming to have a response to inexactitude
that surmounts limitations of the hypothetico-deductive approach
of his predecessors.

Because Newton never describes his approach in detail, we have
to infer what it involves from the evidential reasoning in the Prin-
cipia. A key clue is provided by what I. Bernard Cohen has called
the “Newtonian style”46 – proceeding from idealized simple cases to
progressively more complicated ones, though still idealized. Thus,
in the case of inverse-square centripetal forces, Book 1 first consid-
ers so-called “one-body” problems, for which Kepler’s three rules
hold exactly. Next are one-body problems inwhich inverse-cube cen-
tripetal forces are superposed on the inverse-square; Kepler’s rules
still hold exactly, but for orbits that rotate, that is, whose lines of
apsides precess. Next are “two-body” problems subject to the third
law of motion. The results for these show that two of Kepler’s rules
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continue to hold, but the 3/2 power rule requires a correction. Last
are problems involving three or more interacting bodies. For these
Newton succeeds in obtaining only limited, qualitative results, yet
still sufficient to show that none of Kepler’s three rules holds. A
distinctive feature of this sequence is the extent to which it focuses
on systematic deviations fromKepler’s simple rules that can serve as
evidence for two-body and three-body interaction. Newton is putting
himself in a position to address the complexity of real orbital motion
in a sequence of successive approximations, with each approxima-
tion an idealizedmotion and systematic deviations from it providing
evidence for the next stage in the sequence.

Here too Huygens had foreshadowed the Newtonian style, though
again only up to a point. The initial theory of pendulum motion in
Horologium Oscillatorium is for pendulums with idealized “point-
mass” bobs.47 Huygens then turns to the question of physical bobs
with a distinctive shape and real bulk, solving the celebrated problem
of the center of oscillation that Mersenne had put forward as a chal-
lenge decades earlier. The small-arc circular pendulummeasurement
of gravity presented near the end of the book incorporates a small cor-
rection to the length of the pendulum, corresponding to the distance
between the center of gravity of the bob and its center of oscillation.
This correction, however, holds only for the circular pendulum, not
for the cycloidal pendulum that was the crowning achievement of
Huygens’s initial theory. For the correction depends not only on the
shape of the bob, but also on the length of the string, and this length
varies along the cycloidal path. (Indeed, it is this variation thatmakes
the cycloid the isochronous path for a point-mass bob.) Huygens had
tried to find the corrected path required for strict isochronism with
a physically real bob, only to despair when the problem proved in-
tractably complex. In the manner typical of pre-Newtonian science,
the small residual discrepancies between idealized theory and the
real world were dismissed as being of no practical importance. This
is one more example of the way in which the complexity of the
real world ended up being viewed as an impediment, limiting the
quality of empirical evidence, and not as a resource for progressively
higher-quality evidence that it became with Newtonian successive
approximations.

Newton’s “deductions” of the various parts of the law of gravity
from phenomena of orbital motion reveal two restrictions, beyond
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mathematical tractability, that he at least prefers to impose on the
successive approximations.48 First, in every case inwhich he deduces
some feature of celestial gravitational forces, he has taken the trouble
in Book 1 to prove that the consequent of the “if-then” proposition
licensing the deduction still holds quam proxime so long as the an-
tecedent holds quam proxime. For instance, two corollaries of Propo-
sition 3 show that the force on the orbital body is at least very nearly
centripetal so long as the areas swept out in equal times remain very
nearly equal. This, by the way, explains why Newton himself never
deduced the inverse-square variation from the Keplerian ellipse even
though he had proved in Book 1 that an exact Keplerian ellipse entails
an exact inverse-square variation: an orbitalmotion can approximate
a Keplerian ellipse without the exponent of r in the rule governing
the centripetal force variation being even approximately minus 2.49

Restricting the deductions to ones that hold quamproxime so long as
the phenomenon describes the truemotions quam proxime provides
a guarantee: under the assumption that the laws of motion hold, the
deduced feature of the physical forces holds at least quam proxime of
the specific motions that license the statement of the phenomenon.
In other words, thanks to this restriction, unless his laws of motion
are seriouslywrong,Newton’s law of gravity is definitely true at least
quam proxime of celestial motions over the century of observations
from Tycho to the Principia.

Second, in every case in which Newton deduces some feature
of celestial gravitational forces, mathematical results established in
Book 1 allowhim to identify specific conditions underwhich the phe-
nomenon from which the deduction is made would hold not merely
quam proxime, but exactly. For instance, the orbiting body would
sweep out equal areas in equal times exactly if the only forces acting
on it were centripetal, and its line of apsides would be stationary if
the only forces acting on it were inverse-square centripetal forces.
The choice of the subjunctive here is not mine, but Newton’s: in
Proposition 13 of Book 3, for example, he remarks, “if the Sun were
at rest and the remaining planets did not act upon one another, their
orbits would be elliptical, having the Sun at their common focus,
and they would describe areas proportional to the times.”50 By im-
posing this restriction on the phenomena from which force laws are
deduced, Newton is assuring that these phenomena are not just ar-
bitrary approximations to the true motions; at least according to the
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theory of the “deduced” physical force, the true motions would be
in exact accord with the phenomena were it not for specific compli-
cating factors.

Let me here restrict the term “idealization” to approximations
that would hold exactly in certain specifiable circumstances. If, as I
have proposed, Newton is addressing the complexity of real orbital
motion in a sequence of successive approximations, then he had pro-
found reasons for preferring that each successive approximation be
an idealization in this sense. For any deviation of the actual motions
from a given approximation will then be physically meaningful, and
not just a reflection of the particularmathematical scheme employed
in achieving the approximation, as in curve fitting. Of course, omni-
science is required to know whether any approximation really is an
idealization in the requisite sense, and (as Book 2 attests) Newton
was far from omniscient. The most he could demand is that the the-
ory being “deduced” from the approximations entails that they be
idealizations of this sort. At least from the point of view of the the-
ory, then, any observed systematic pattern in the deviations from
a given approximation would have the promise of being physically
informative, and hence a promise of becoming telling evidence.

In sum, judging from details of Newton’s “deductions” from phe-
nomena, his approach to the complexities of real-world motions is
to try to address them in a sequence of progressively more complex
idealizations, with systematic deviations from the idealizations at
any stage providing the “phenomena” serving as evidence for the
refinement achieved in the next. Such systematic deviations are ap-
propriately called “second-order phenomena” in so far as they are
not observable in their own right, but presuppose the theory. Thus,
for example, no one can observe the famous 43 arc-seconds per cen-
tury discrepancy in the motion of the perihelion of Mercury that
emerged in the second half of the nineteenth century and then be-
came evidence for Einstein’s theory of general relativity: they are
the residual left over after subtracting the 531 arc-seconds per cen-
tury produced by the other planets according to Newtonian theory
from the 574 arc-seconds derived from observation once allowance
is made for the 5600 arc-seconds associated with the precession of
the equinoxes.

Attempting to proceed in successive approximations in this way
involves restrictions on how second-order phenomena are to be
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marshaled as evidence. In the case of orbital motions, any systematic
discrepancy from the idealized theoretical motions has to be identi-
fied with a specific physical force – if not a gravitational force, then
one governed by some other generic force law. This restriction pre-
cludes inventing ad hoc forces to save the law of gravity. It thereby
makes success in carrying out a program of successive approxima-
tions far from guaranteed.

A second, less familiar example shows this in a different way. In
Propositions 19 and 20 of Book 3Newton first calculates a 17mile dif-
ference between the radii to the poles and to the equator of the Earth,
and then a specific variation of surface gravity with latitude. These
calculations presuppose universal gravity. Indeed, as Huygens was
quick to notice (and Maupertuis and Clairaut forty years later), this
is the sole result in the Principia amenable at the time to empirical
assessment that differentiates universal gravity from macroscopic
inverse-square celestial gravity. Newton’s calculations also presup-
pose that the density of the Earth is perfectly uniform. Hence, his
results are not straightforwardly testable predictions, for they apply
only to an idealized Earth. In all three editions Newton pointed out
that any deviation from the calculated results is a sign that the Earth’s
density increases from the surface to the core. In the first edition he
went so far as to propose that a linear increase in density be assumed
for the next idealized approximation.51 This was not an ad hoc way
of protecting the law of universal gravity from refutation because, as
Huygens’s efforts in his Discourse on the Cause of Gravity showed,
different assumptions about gravity yield very different relationships
between the Earth’s oblateness on the one hand, and the variation
of surface gravity with latitude on the other.52 Therefore, a varia-
tion in density inferred from, say, an observed oblateness differing
fromNewton’s 17miles was not guaranteed to yield a corresponding
improvement between the observed variation in surface gravity and
Newton’s calculated variation. (From Clairaut forward the field of
physical geodesy has been inferring the internal density distribution
of the Earth from features of its shape and gravitational field, always
presupposing the law of universal gravity; the discrepancies between
observation and current theory have grown continually smaller.53)

Needless to say, Newton’s theory of gravity provides an explana-
tion of Kepler’s rules and of each of the subsequent idealized orbital
motions in the sequence of successive approximations. That is, the
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theory explains why these idealizations hold at least quam proxime
and why they have claim to being preferred descriptions of the ac-
tual motions even though they are not exact and observation is not
precise. Providing such explanations, however, is not the distinctive
feature of the theory. As Leibniz showed in print within months af-
ter the Principia first appeared, a theory of a very different sort, one
that meets the demands of the mechanical philosophy, can explain
Kepler’s rules too.54 The distinctive feature of Newtonian theory is
the spotlight it shines on discrepancies between theory and obser-
vation. In his “System of the World” in Book 3 Newton no sooner
spells out the conditions under which, for example, Keplerian mo-
tion would hold exactly than he turns to the principal real-world
respects in which it does not, such as the gravitational effect of
Jupiter on themotion of Saturn and on the precession of the aphelia of
the inner planets. In adopting his approach of successive approxima-
tions, with its focus on theory-dependent second-order phenomena,
Newtonwas turning theory into an indispensable instrument for on-
going research. Exact science as illustrated by the Principia is thus
not exact science in the sense of Newton’s predecessors, an account
of how the world would be if it weremore rational. It is exact science
in the sense that every systematic deviation from current theory au-
tomatically has the status of a pressing unsolved problem.

Even with the above restrictions, the “deduction” of the law of
gravity, or any other force law, from phenomena of motion that hold
only quam proxime shows at most that it holds quam proxime.
When the restrictions are met, however, as they by and large are
in the case of the law of gravity,55 Newton views the derivation as
authorizing the force law to be taken, provisionally, as exact. Specif-
ically, his fourth Rule for Natural Philosophy says:

In experimental philosophy, propositions gathered from phenomena by in-
duction should be considered either exactly or very nearly true notwith-
standing any contrary hypotheses, until yet other phenomena make such
propositions either more exact or liable to exceptions.

This rule should be followed so that arguments based on induction may not
be nullified by hypotheses.56

Taking the force law to be exact when the evidence for it shows at
most that it holds quam proxime amounts to an evidential strat-
egy for purposes of ongoing research. This strategy is transparently
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appropriate when the goal is to use systematic deviations from cur-
rent theory as evidence in a process of successive approximations.

arguing MORE SECURELY

The preceding section has offered a detailed description of how
Newton prefers to argue from phenomena to physically character-
ized forces. Nothing has yet been said, however, about why this way
of arguing might have claim to yielding conclusions that are more
secure.

One respect in which it offers more security is easy to see. The
“if-then” propositions used in deducing the law, as well as their app-
roximative counterparts (“if-quam-proxime-then-quam-proxime”),
are rigorously derived from the laws of motion. The phenomena –
that is, the propositions expressing Newton’s phenomena – are in-
ductive generalizations from specific observations, and hence they
hold at least quam proxime of these observations. But then, unless
the laws of motion are fundamentally mistaken, the force law too is
guaranteed to hold at least quam proxime of these observations. By
way of contrast, the fact that a consequence deduced from a hypoth-
esized force law holds quam proxime of specific observations need
not provide any such guarantee. A conjectural hypothesis can reach
far beyond the observations providing evidence for it not merely in
its generality, but in its content. In practice Newton’s first Rule for
Natural Philosophy –nomore causes . . . should be admitted than are
both true and sufficient to explain their phenomena – has the effect
of confining the content of theory to no more than the data clearly
demand. Calling for the force law to be deduced from phenomena is
a way of meeting this Rule.

Put another way, Newton’s demand for a deduction from phenom-
ena is an attempt to confine risk in theorizing as much as possible
to “inductive generalization.” What Newton means by “made gen-
eral by induction” and “propositions gathered from phenomena by
induction” amounts to more than merely projecting an open-ended
generalization from some of its instances. The Phenomena he lists
at the beginning of Book 3 involve first projection from discrete ob-
servations to orbital rules that fill in the gaps among these observa-
tions, and then projection of these rules into the indefinite past and
future. His second Rule for Natural Philosophy – same effect, same
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cause – authorizes inferences that Charles Saunders Peirce would
have labeled abductive in contrast to inductive. Even his third Rule,
which at first glance seems most akin to induction, authorizes infer-
ences of much greater sweep than is customary in simple induction:
it specifies conditions under which conclusions based on observa-
tions and experiments within our reach may be extended to the far
reaches of the universe and to microphysical reaches far beyond our
capacity to observe. The care Newton put into this third Rule,57

which he formulated in the early 1690s when he was in close con-
tact with John Locke, indicates that he was acutely aware of the risk
in “propositions gathered from phenomena by induction.” So too
does his insistence on the provisional status of these propositions in
the subsequently added fourth Rule.

Newton’s further demand that the theory entail specific condi-
tions under which the phenomena in question hold exactly provides
some support for projecting these phenomena inductively beyond
the available observations. Specifically, as noted earlier, such a
“re-deduction” gives reason to take the phenomena as lawlike, and
not just one among many possible curve-fits. The deduced force law
itself, however, can hold quam proxime of these observations and
still turn out not to be suitable for inductive generalization; themost
that can be said is that its deduction and the subsequent re-deduction
of the phenomena make it an exceptionally promising candidate for
inductive generalization.

Over the long term, pursuit of refinements in a sequence of suc-
cessive approximations can provide a further source of security. Any
current approximation to, for example, orbital motions is an ideal-
ization predicated on the force law. Hence observed deviations from
it continually, so to speak, put the law to test. Recalcitrant devi-
ations point to deficiencies in the law. If, however, second-order
phenomena emerge and the presence of further forces complicat-
ing the motions is successfully established from them, then new
evidence accrues to the law. Such new evidence does more than just
support the original inductive generalization. The process of succes-
sive approximations leads to increasingly small residual deviations
from current theory, which in turn tighten the range over which the
force law holds quam proxime. More important, because the process
of successive approximations presupposes the force law, continuing
success in it leads to progressively deeper entrenchment of the law,
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to use Nelson Goodman’s term.58 This, of course, is precisely what
happened in the case of Newton’s law of gravity, with continuing im-
provement over the last three centuries in the agreement between
theory and observation not only for orbital motion within celestial
mechanics, but also for the Earth’s shape and gravity field within
physical geodesy. Indeed, the process of successive approximations
issuing from Newton’s Principia in these fields has yielded evidence
of a quality beyond anything his predecessors ever dreamed of.

Evidence from long-term success in pursuit of successive approx-
imations, however, can in principle be achieved by a hypothetico-
deductive approach as well. The most that can be said for Newton’s
approach in this regard is that its confining the risk to the extent
it does to inductive generalization may enhance its prospects for
achieving such success.

What form does the risk take with Newton’s approach? His induc-
tively generalized law of universal gravity is presupposed as holding
exactly in evidential reasoning at each stage after the first in the pro-
cess of successive approximations. The main risk is a discovery that
would falsify this law in a way that nullifies all or part of the eviden-
tial reasoning that has been predicated on it. Suppose, for example,
that a discovery entails that various second-order phenomena that
had been crucial as evidence were not phenomena at all, but mere ar-
tifacts of a supposed law that just so happens to hold quam proxime
under parochial circumstances. Then, to the extent the evidence for
this discovery is predicated on advances based on these second-order
phenomena, the discovery itself would, in a sense, be self-nullifying.
The conclusion would have to be that the pursuit of successive ap-
proximations had been proceeding down a garden path, and the area
of science in question would have to be restarted from some earlier
point.

Newton’s attempt to initiate successive approximations in the
case of resistance forces was shown to be going down just such a gar-
den path by Jean d’Alembert twenty-five years after the third edition
of the Principia appeared.59 Surprising as it may seem to many read-
ers, however, this has yet to happen in the case of his theory of grav-
ity. The large conceptual gap between Newtonian and Einsteinian
gravitation notwithstanding, the theory of gravity in general relativ-
ity has not nullified the evidential reasoning predicated onNewton’s
theory. In particular, it has not nullified the evidential reasoning from
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which the phenomenon of the residual 43 arc-seconds per century
precession of the perihelion of Mercury emerged; if it had, this phe-
nomenon could not be used directly as evidence supporting it. The
reason why evidential reasoning predicated on Newtonian gravity
was not nullified is because general relativity entails that Newton’s
law holds in the weak-field limit, and virtually none of this reason-
ing, viewed in retrospect, required anything more of Newton’s law
than that it hold to very high approximation in weak gravitational
fields.60

The risk of a garden path with Newton’s approach, therefore, does
not as such derive from the possibility that the force law deduced
fromphenomena at the outset is not exact. This law itself can be open
to refinement as part of the process of successive approximations
without undercutting the process and having to restart from some
earlier point. The relativistic refinements to Newton’s first two laws
of motion show that the same can be said about the axioms presup-
posed in the deduction of the force law. Rather, the risk comes from
the huge inductive leap, from a celestial force law that holds at least
quam proxime over a narrow body of data to the law of universal
gravity – a leap authorized by Newton’s first three Rules govern-
ing inductive reasoning. More specifically, the risk comes from two
“taxonomic” presuppositions entering into this leap. Newton’s vi-
sion of a fundamental taxonomy based on physical forces – or, more
accurately, interactions61 – is largely beside the point so far as gravity
alone is concerned. Nevertheless, his inductive generalization does
presuppose (1) that there is a distinct species – or natural kind, to use
our current term – of elementary motion and a distinct species of
static force which are characterized at least to a first approximation
by his deduced law of gravity. The risk lies in the possibility that
subsequent research will conclude either that there are no such dis-
tinct species or that they are species of limited range, even artifacts
of the data from which he was working. Further, his inductive gen-
eralization presupposes (2) that certain specific motions – primarily
planetary motions – are pure enough examples of motions of a spe-
cific elementary species to typify this species as a whole.

The risks from both of these presuppositions are evident in the
garden path formed by Newton’s efforts on resistance forces. In the
first edition of the Principia he thought that phenomena of pen-
dulum decay would allow him to demarcate the different species
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of resistance force and their respective variation with velocity.
Recognizing the failure of this,62 in the second and third editions
he assumed that vertical fall of ordinary-size objects is dominated by
resistance forces arising purely from the inertia of the fluid – at least
to a sufficient extent to allow a law to be established for this kind of
resistance force. His announced planwas for the other kinds to be ad-
dressed using discrepancies between observations and this law.63 The
garden path arose because both of these taxonomic presuppositions
were wrong. First, there are no distinct species of resistance force,
but only one species governed by interaction between inertial and
viscous effects in the fluid, interaction that is so complicated that
we still have no law for resistance of the sort Newton was pursuing,
but only empirically determined relationships for bodies of various
shapes.64 Second, as d’Alembert showed, resistance in an idealized
inviscid fluid of the sort Newton had assumed in deriving his law for
purely inertial resistance is exactly zero, regardless of shape and ve-
locity. Newton’s supposed “law” for the purely inertial effects of the
fluid turns out to amount to nothing more than a very rough approx-
imation to the total resistance on spheres for a limited combination
of diameters, velocities, and fluid densities and viscosities – a mere
curve-fit over a restricted domain.65

Newton’s taxonomic presuppositions are best regarded as working
hypotheses underpinning his inductive generalizations. As with all
such working hypotheses, some immediate protection is afforded by
demanding that the evidence developed out of the data be of high
quality, without lots of loose ends. Newton’s “deduction” of the law
of gravity met this demand to a much greater extent than did his
evidential reasoning on resistance.66 Still, the “deduction”was based
primarily on the motion of only five planets over an astronomically
brief period of time. The danger of being misled by such limited data
is always high.

I know of nowhere that Newton acknowledges the risk that such
taxonomic working hypotheses introduce into inductive generaliza-
tion. He does acknowledge the risk of inductive generalization in the
most famous methodological passage in the Opticks, in the discus-
sion of the methods of “analysis and synthesis” in the next to last
paragraph of the final Query, which was added in 1706:

This Analysis consists in making Experiments and Observations, and in
drawing general Conclusions from them by Induction, and admitting of no
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Objections against theConclusions, but such as are taken fromExperiments,
or other certain Truths. For Hypotheses are not to be regarded in ex-
perimental Philosophy. And although the arguing from Experiments and
Observations by Induction be no Demonstration of general Conclusions;
yet it is the best way of arguing which the Nature of the Thing admits
of, and may be looked upon as so much the stronger, by how much the
Induction is more general. And if no Exception occur from Phenomena,
the Conclusion may be pronounced generally. But if at any time afterwards
any Exception shall occur from Experiments, it may then begin to be pro-
nounced with such Exceptions as occur. By this way of Analysis we may
proceed from Compounds to Ingredients and from Motions to the Forces
producing them; and in general, from Effects to their Causes, and from par-
ticular Causes to more general ones, till the Argument end in the most
general.67

Perhaps Newton saw success in achieving unrestricted generality as
the ultimate safeguard against the risk introduced by the unavoidable
taxonomic hypotheses entering into induction.

This brings us to the last distinctive aspect of the approach to the-
ory construction illustrated by the Principia – that is, illustrated in
the case of gravity, though not in the case of resistance. After estab-
lishing the law of universal gravity and the conditions for Keplerian
motion, Book 3 goes on to “applications” of the law in unresolved
problems at some remove from the phenomena from which it was
“deduced”: (1) the non-spherical shape of the Earth and the variation
of surface gravity with latitude; (2) the area-rule violation in the orbit
of the Moon, the motion of its nodes, and its fluctuating inclination;
(3) the tides; (4) the precession of the equinoxes; and (5) the trajecto-
ries of comets. The idea seems to be to protect against risks arising
in the inductive leap by immediately pushing the theory for all it is
worth, employing it as a tool of research on problems that prima facie
have nothing to do with the original evidence for it. It goes without
saying that, regardless of how far afield such “applications” may be,
they still provide no guarantee against a garden path. Nevertheless,
they do represent a concerted effort to expose limitations in the tax-
onomic presuppositions set out above. As already noted, the shape of
the Earth and the variation of surface gravity directly involve the gen-
eralization from celestial to universal gravity, as does the precession
of the equinoxes indirectly. The vagaries in the lunar orbit address
the most glaring known counterexample to Keplerian motion and
hence worries about generalizing beyond planetary motion. Both the
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tides and the precession of the equinoxes involve the generalization
from simple centripetal forces to interactive gravity, as does a gravi-
tational treatment of vagaries in the motions of Jupiter and Saturn.
And finally the comets involve the extension of the law of gravity
to bodies that appear to consist of matter very different from that of
the planets and their satellites and that pass through the intermedi-
ate distances from the Sun between the orbits of the planets.68 The
fact that all of these address evidential worries in the original in-
ductive generalization indicates that the process of comparison with
phenomena, and hence the argument for securing universal gravity,
extends across all of Book 3.69

The efforts occupying the rest of Book 3were extraordinarily inno-
vative. In this respect they are akin to predictions of novel phenom-
ena of the sort Huygens singled out as the strongest form of evidence
for empirical theories. None of them, however, is a truly straight-
forward prediction of the sort classically called for in hypothetico-
deductive evidence. In every case some further, contestable assump-
tions were needed beyond Newton’s theory, if only the assumption
that no other forces are at work besides gravity. Still, Newton’s in-
ductive generalization to universal gravity clearly introduced a large
conjectural element in his theory; and the applications of it beyond
Keplerian motion put this element to the test, ultimately supplying
the most compelling evidence for it. The key prediction put to the
test in these applications was not somuch that every two particles of
matter interact gravitationally, but rather one that is more abstract:
every discrepancy between Newtonian theory and observation will
prove to be physically significant and hence can be taken to be
telling us something further about the physical world. Contrast this
with deviations from a curve-fit, which usually reflect nothing more
than the particular mathematical framework that happened to have
been used. Lacking omniscience, the only way we have of decid-
ing whether a discrepancy is physically significant is from the point
of view of ongoing theory. The issue of physical significance from
this point of view turns most crucially on whether the taxonomic
working hypotheses underlying Newton’s inductive step to univer-
sal gravity remain intact as theory advances. Does the discrepancy
give reason to conclude that a taxonomy of interactions is not funda-
mental or that gravitational interactions do not comprise a distinct
kind within that taxonomy?
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In part because of the further contestable assumptions, every one
of the efforts occupying the rest of Book 3, as well as Newton’s brief
suggestions about the motions of Jupiter and Saturn, initiated its
own historical sequence of successive approximations subsequent
to the Principia. Moreover, even at the time the third edition ap-
peared, almost forty years after the first, serious loose ends remained
in the treatment of every one of these topics in the Principia. These
loose ends may help to explain why so many capable scientists who
came of age after the Principia were initially so cautious in accept-
ing Newton’s theory. A decade or so after Newton died, Clairaut,
Euler, and d’Alembert began their efforts to tie up these loose ends,
followed by Lagrange and Laplace over the last forty years of the eigh-
teenth century.70 In a very real sense, then, Newton’s argument for
universal gravity was not completed until a century after the publi-
cation of the first edition of the Principia. With its completion, the
new approach to theory construction that the book was intended to
illustrate – that is, the new type of generic mathematical theory, the
contrast betweenmathematical and physical points of view, the roles
of “deduced” theory and idealizations in ongoing research, and the
insistence on pushing theory far beyond its original basis – became
a permanent part of the science of physics.
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5 Newton’s argument for universal
gravitation

The aspect of Newton’s Principia that has provoked the most con-
troversy within the philosophy of science, other than his invoca-
tion of absolute space, time, and motion, has been his claim to have
“deduced” the law of universal gravity from phenomena of orbital
motion. In particular, a tradition that began with Pierre Duhem1

and continued with Karl Popper2 and then Imre Lakatos3 has argued
that this claim is at best misleading (Duhem) and at worst a sub-
terfuge (Lakatos). Among other reasons they have advanced against
any such deduction is the objection that no deduction from consis-
tent premises can yield a conclusion that entails one ormore of these
premises is false; yet one consequence of the law of universal grav-
ity is that all the orbital phenomena from which Newton proceeds
in his supposed deduction are, strictly, false. Duhem, Popper, and
Lakatos insist, to the contrary, that only a hypothetico-deductive
construal of Newton’s evidence for universal gravity makes sense,
Newton’s outspoken objections to hypothetico-deductive evidence
notwithstanding. More recently, Clark Glymour4 has offered a
“bootstrapping” construal of Newton’s evidence, proposing that it
captures the logical force of the reasoning for universal gravitation
in the Principia better than a straightforward hypothetico-deductive
construal can. Glymour too, however, sees no way around conclud-
ing that some of what Newton seems to think he is doing cannot be
correct.

One issue this raises is understanding the reasoning Newton of-
fers in arriving at the law of universal gravity and describes as a
“deduction” from phenomena. Another is the extent to which such
reasoning is cogent and illuminates scientific method. The sim-
plest way to respond to these questions is to proceed step-by-step

174
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through Newton’s reasoning. I will argue that his argument from
phenomena to universal gravitation, which opens his system of
the world in Book 3, illustrates a general methodology in which
phenomena constrain theory to approximations established by
measuring parameters. This methodology, which continues to guide
research in gravitational physics, has not been as well appreciated
by philosophers of science as it ought to be. Nevertheless, it be-
comes clear and easy to defend once attention is paid to the de-
tails of the argument in Propositions 1 to 8 of Book 3 in the third
edition.

inferences from phenomena

Jupiter’s Moons

Proposition 1. The forces by which the circumjovial planets [or satellites of
Jupiter] are continually drawn away from rectilinear motions and are main-
tained in their respective orbits are directed to the center of Jupiter and are
inversely as the squares of the distances of their places from that center.5

The first part of the proposition is evident from phen. 1 and from prop. 2
or prop. 3 of book 1, and the second part from phen. 1 and from corol. 6 to
prop. 4 of book 1.

The same is to be understood for the planets that are Saturn’s companions
[or satellites] by phen. 2.

The cited phenomenon (Phenomenon 1) consists of two parts. The
first part is that the moons of Jupiter, by radii drawn to the center
of Jupiter, describe areas proportional to the times. This is what we
call Kepler’s “law” of areas for these moons with respect to that
center.6 The second part is that the periodic times of the orbits of
these moons – the fixed stars being at rest7 – are as the 3/2 power of
their distances from the center of Jupiter. This is Kepler’s harmonic
law for these orbits.

Newton demonstrates that the lawof areas carries the information
that the force maintaining a body in an orbit which satisfies it is
directed toward the center with respect to which it sweeps out equal
areas in equal times. He also demonstrates that the harmonic law for
a system of orbits carries the information that the accelerative forces
maintaining bodies in those orbits are inversely as the squares of the
distances from the center about which those orbits are described.
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the law of areas as a criterion for centripetal force. Proposi-
tions 1 and 2 of Book 1, together, yield a biconditional equivalence
between the centripetal direction of the force maintaining a body in
an orbit about an inertial center and themotion of that orbit being in
a plane and satisfying Kepler’s law of areas. According to Corollary 1
of Proposition 2, the rate at which areas are described is increasing
only if the force is angled off-center toward the direction of motion,
while a decreasing rate obtains only if the force is angled off-center
in the opposite direction. These dependencies make the constancy
of the rate at which areas are being swept out by radii to a center
measure the centripetal direction of the force maintaining a body
in an orbit about that center, provided the center can be treated as
inertial.

Treating Jupiter’s center as inertial ignores the substantial cen-
tripetal acceleration toward the Sun as the Jupiter system orbits it.
To the extent that the Sun’s actions on Jupiter and its moons ap-
proximate equal and parallel accelerations, the Jupiter system can
be treated as unperturbed by the forces accelerating it toward the
Sun.8 To the extent that this approximation holds and the center of
Jupiter approximates the center of mass of the Jupiter system, the
center of Jupiter can be treated as inertial.9

Having the area rule hold, very nearly, for the orbits of thesemoons
with respect to the center of Jupiter carries information that these
approximations are not appreciably inaccurate.10 In his discussion
of Phenomenon 1, Newton pointed out that the orbits of Jupiter’s
moons so closely approximate uniformmotion on circles concentric
to Jupiter that no appreciable differences from such motions were
detected in observations by astronomers. That good observations de-
tected no appreciable departures from uniformmotion on concentric
circular orbits for Jupiter’s moons indicates that no appreciable er-
rors result from treating Jupiter’s center as inertial for purposes of
using the area rule as a criterion for the centripetal direction of the
forces maintaining those moons in their orbits.

Newton’s proofs of the theorems underwriting the area rule as a
criterion for centers toward which orbital forces are directed make
no assumptions about any power law for these forces. Given that
the centripetal direction of the forces maintaining these moons in
their orbits is inferred from the law of areas, Newton can appeal to
his theorems about orbital motion under centripetal forces to argue
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that the harmonic law phenomenon, for the system of those orbits,
carries the information that the accelerative forces are inversely as
the squares of their distances from that center. This illustrates that
Newton’s inferences are not merely hypothetico-deductive.11

the harmonic rule as a criterion for inverse-square forces.
Corollary 6 of Proposition 4 of Book 1 states that the harmonic law
for a system of circular orbits is equivalent to having the accelerative
centripetal forces maintaining bodies in those orbits be inversely as
the squares of the distances from the center. Corollary 7 is equivalent
to the following universal systematic dependency

t ∝ Rs iff f ∝ R1−2s,

where f is the accelerative force maintaining a body in uniform mo-
tion in a circular orbit with period t and radiusR. Corollary 6 follows
when s equals 3/2. For each of a whole range of alternative power
law proportions of periods to orbital radii, Corollary 7 establishes the
equivalent power law proportion to radii for the centripetal forces
that would maintain bodies in those orbits. To have the periods be
as some power s > 3/2 would be to have the centripetal forces fall
off faster than the −2 power of the radii, while to have the periods
be as some power s < 3/2 would be to have the centripetal forces
fall off less fast than the −2 power of the radii. These systematic
dependencies make the harmonic law phenomenon (s = 3/2) for a
system of orbits measure the inverse-square (−2) power law for the
centripetal forces maintaining bodies in those orbits. This consti-
tutes a very strong sense in which the harmonic law carries the in-
formation that the forces maintaining bodies in those orbits satisfy
the inverse-square power law.

As evidence for the harmonic law Newton offers a table citing
periods agreed upon by astronomers and four distance estimates from
astronomers for each of the four moons of Jupiter known at the time.
The fit of the harmonic law to these data is quite good. He also offers
more precise data from observations taken by Pound in 1718–20. The
fit of the harmonic rule to these considerably more precise data12 is
very much better than the already good fit of the harmonic law to
the earlier data.
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Primary planets

Proposition 2. The forces by which the primary planets are continually
drawn away from rectilinear motions and are maintained in their respec-
tive orbits are directed to the sun and are inversely as the squares of their
distances from its center.
The first part of the proposition is evident from phen. 5 and from prop. 2 of
book 1, and the latter part from phen. 4 and from prop. 4 of the same book.
But this second part of the proposition is proved with the greatest exactness
from the fact that the aphelia are at rest. For the slightest departure from
the ratio of the square would (by book 2, prop. 45, corol. 1) necessarily result
in a noticeable motion of the apsides in a single revolution and an immense
such motion in many revolutions.

the area rule for the planets
Phenomenon 5. The primary planets, by radii drawn to the earth, describe
areas in no way proportional to the times but, by radii drawn to the Sun,
traverse areas proportional to the times.

ThatNewton considers radii drawn to theEarth aswell as radii drawn
to the Sun illustrates that he does not assume theCopernican system
as a phenomenon to argue from.Hepoints out thatwith respect to the
Sun as center the angular motion is almost uniform and the depar-
tures from uniform motion – “a little more swiftly in their perihelia
and more slowly in their aphelia” – are such that the description of
areas is uniform.13

the harmonic rule for the planets. Newton provides a separate
phenomenon stating that the orbits of the primary planets encircle
the Sun. This phenomenon does not include the Earth as one of these
planets.
Phenomenon 3. The orbits of the five primary planets – Mercury, Venus,
Mars, Jupiter, and Saturn – encircle the Sun.

Tycho Brahe’s geo-heliocentric system in which the other planets
orbit the Sun, while the Sun together with those planets orbits the
Earth, is compatible with this phenomenon. To every Copernican
system a corresponding Tychonic system is defined by taking the
center of the Earth rather than the center of the Sun as a reference
frame.14

Newton’s statement of the harmonic law is neutral between such
Sun-centered and Earth-centered systems.
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Fig. 5.1 Log mean distances versus log periodic times for the planets.

Phenomenon 4. The periodic times of the five primary planets and of either
the sun around the earth or the earth around the sun – the fixed stars being
at rest – are as the 3/2 power of their mean distances from the sun.

Newton cites periods agreed upon by astronomers and estimates of
mean distances from Kepler and the French astronomer Boulliau
which exhibit the excellent fit of the harmonic law to available data.
This fit is nicely illustrated by plotting log periods against log dis-
tances, as in Figure 5.1.

That a straight line of some slope s fits the result of plotting
Logt against LogR is to have the periods be as some power s of the
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distances. To have the harmonic law hold is to have the slope s of
this line be 3/2 = 1.5.

The mean distances cited in Newton’s table are the semi-major
axes of elliptical orbits, not radii of concentric circular orbits.
Unlike Jupiter’smoons, the orbits of the primary planetswere known
to have non-negligible eccentricities. Newton’s proofs of Proposi-
tion 4, Book 1 and of its Corollaries 6 and 7 are for concentric circular
orbits. These results, however, extend to elliptical orbits with forces
toward a focus.15

Given that the orbit of each planet fits the area rule with respect
to the Sun, that the mean distances are the semi-major axes of those
orbits construed as ellipses with the Sun at their common focus,
and that the periods are as some power s of the mean distances,
then to have the harmonic law hold, i.e., to have s = 3/2, carries
the information that the forces maintaining them in their respective
con-focal elliptical orbits agree with those of a single inverse-square
centripetal acceleration field directed toward the Sun.16 This makes
the harmonic law ratios for the planets into agreeing measurements
of the strength of this single Sun-centered inverse-square accelera-
tion field.17

aphelia at rest. Newton claims that the inverse-square variation
with distance from the Sun of the forces maintaining the planets
in their orbits is proved “with the greatest exactness” from the fact
that the aphelia are at rest.18 He cites Corollary 1 of Proposition 45,
Book 1, according to which

Precession is p The centripetal force f is
degrees per if and only if as the (360/360+ p)2 − 3
revolution power of distance

If a planet in going from aphelion (the furthest point from the Sun)
to return to it again makes an angular motion against the fixed stars
of 360 + p degrees, then the aphelion is precessing forward with p
degrees per revolution. According to this corollary, zero precession
is equivalent to having the centripetal force be as the −2 power of
distance; forward precession is equivalent to having the centripetal
force fall off faster than the inverse-square; and backward precession
is equivalent to having the centripetal force fall off slower than the
inverse-square.
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Newton’s Proposition 45, Book 1 and its corollaries are proved
for orbits that are very nearly circular. The results, however, can
be extended to orbits of arbitrarily great eccentricity. Indeed, orbital
eccentricity increases the sensitivity of absence of unaccounted for
precession as a null experiment measuring inverse-square variation
of a centripetal force.19

unification and the moon

The Moon

Proposition 3.
The force by which the moon is maintained in its orbit is directed toward
the earth and is inversely as the square of the distances of its places from
the center of the earth.

Newton claims that the first part (the centripetal direction) is evident
from Phenomenon 6 (and Proposition 2 or 3 of Book 1).

Phenomenon 6. The moon, by a radius drawn to the center of the earth,
describes areas proportional to the times.

This is evident from a comparison of the apparent motion of the moon
with its apparent diameter. Actually, the motion of the moon is somewhat
perturbed by the force of the sun, but in these phenomena I pay no attention
to minute errors that are negligible.

The comparisons of apparent diameter and apparent motion men-
tioned by Newton are in good rough agreement with the law of
areas.20

The observed motion of the apogee makes the argument for
inverse-square variation more problematic than the corresponding
argument for the planets. This apsidal motion is, Newton tells us,
only about 3 degrees and 3 minutes forward in each revolution.
According to Corollary 1, Proposition 45, Book 1, this is equivalent
to a centripetal force varying inversely as the 2 4

243 power. As he also
points out, this is 593

4 times closer to the square than to the cube.
Newton claims that this motion of the lunar apogee is to be ig-

nored because it arises from the action of the Sun. He appeals to
Corollary 2 of Proposition 45, Book 1 to suggest that the action of the
Sun to draw the Moon away from the Earth is roughly as 1/178.725
of the centripetal force of the Moon.21 Newton, however, does not
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provide an account of how the lunar precession is due to the action
of the Sun on the Moon’s motion.22

Gravitation toward the Earth

Proposition 4.Themoon gravitates toward the earth and by the force
of gravity is always drawn back from rectilinear motion and kept in
its orbit.

the moon-test. In theMoon-test, Newton cites six estimates by as-
tronomers and assumes amean Earth–Moon distance of 60 terrestrial
semidiameters. He cites a lunar period established by astronomers
and a circumference for the Earth according to measurements by the
French, which, together with the assumption of 60 earth radii as the
lunar distance, give 15.009 Paris feet as distance theMoonwould fall
in one minute if it were deprived of all its motion and let fall by the
force by which it is maintained in its orbit.

Newton’s assumption of 60 terrestrial semidiameters as the lu-
nar distance, together with inverse-square variation, makes the one-
minute fall corresponding to the strength of this force at the lunar
distance exactly equal to the one-second fall corresponding to the
increased strength this force would have at the surface of the Earth.

Huygens had used his experimentally established length of a sec-
onds pendulum to measure the one-second fall produced on terres-
trial bodies by the Earth’s gravity. His determination of the length
of a seconds pendulum was so stable over repetitions that his mea-
sured value for the one-second fall at Paris of 15.096 Paris feet could
be trusted to about ±0.01 Paris feet.23

Newton’s assumption of 60 earth radii as the lunar distance, to-
gether with his appeal to a correction factor to offset a supposed
1/178.725 reduction due to the action of the Sun, leads to an ex-
traordinarily close agreement with Huygens’s measurement.24 If we
do not apply that correction and use all six (59, 60, 60, 601

3 , 60
2
5 ,

601
2 ) of Newton’s cited lunar distance estimates together with his

cited circumference of the earth (123,249,600 Paris feet) and lunar
period (39,343 minutes), we arrive at 15.041 ± 0.429 Paris feet as
the measured value of the one-second fall at the surface of the Earth
corresponding to the centripetal acceleration of the lunar orbit. That
Huygens’s value is well within these error bounds shows that the
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positive outcome of the Moon-test did not depend either upon the
selection of 60 as the lunar distance25 or upon Newton’s assumed
correction factor.

rules 1 and 2. Newtonmakes an explicit appeal to his first two rules
for reasoning in natural philosophy to infer that the force maintain-
ing the Moon in its orbit is terrestrial gravity.

And therefore that force bywhich themoon is kept in its orbit, in descending
from themoon’s orbit to the surface of the earth, comes out equal to the force
of gravity here on earth, and so (by rule 1 and rule 2) is that very force which
we generally call gravity.

The basic argument for Proposition 4 is the equality established in
the Moon-test together with this appeal to Rules 1 and 2.

Rule 1. No more causes of natural things should be admitted than are both
true and sufficient to explain their phenomena.

Rule 2. Therefore, the causes assigned to natural effects of the same kind
must be, so far as possible, the same.

The statement of Rule 2 suggests that it is intended as a consequence
or implication of Rule 1. We can read these two rules, together, as
telling us to opt for common causeswheneverwe can find them.This
seems to be exactly their role in the application we are considering.

We have two phenomena: the centripetal acceleration of theMoon
and the length of a seconds pendulum at Paris. Eachmeasures a force
producing accelerations at the surface of the Earth. These accelera-
tions are equal and equally directed toward the center of the Earth.
Identifying the forces makes these phenomena count as agreeing
measures of the very same inverse-square force. This makes them
count as effects of a single common cause.

The identification of the centripetal force maintaining the Moon
in its orbit with terrestrial gravity transforms the notion of terres-
trial gravity by making it now count as varying inversely with the
square of distance from the center of the Earth. This was acclaimed
as an unexpected, and highly regarded, new discovery about gravity
by such critics of universal gravitation as Huygens and Leibniz.26

inverse-square centripetal acceleration field. Newton’s Scho-
lium27 to Proposition 4 opens with a thought experiment which
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appeals to induction to extend Kepler’s harmonic relation (t ∝ R3/2)
to a hypothetical system of several moons revolving around the
Earth.He explicitly calls this harmonic relation a “law” and backs up
the inverse-square assumption in theMoon-test by appeal to the cor-
responding inverse-square ( f ∝ R−2) relation among the centripetal
forces that would maintain moons in orbits satisfying it.

Howard Stein28 has argued that the scholium version of theMoon-
test –

Therefore, since both forces – vis., those of heavy bodies and those of the
moons – are directed toward the center of the earth and are similar to one
another and equal, they will (by rule 1 and rule 2) have the same cause. And
therefore that force by which the moon is kept in its orbit is the very one
that we generally call gravity.

– should be interpreted in light of Newton’s discussion (Definitions
5–8) of centripetal force and its three measures: absolute, acceler-
ative, and motive. The motive measure of a centripetal force on a
body is its mass times its centripetal acceleration – this is the mea-
sure of force familiar to students of Newtonian physics today. The
accelerative measure is the acceleration produced and is referred to
distances from the center. Stein29 argues that Newton’s discussion
makes it clear that he intends thismeasure to be appropriate to a cen-
tripetal acceleration field – a centripetal force field that would pro-
duce equal centripetal accelerations on unsupported bodies at equal
distances from the center. The harmonic law ratio for a system of
orbits about a common center requires that the orbits exhibit cen-
tripetal accelerations corresponding to a single inverse-square cen-
tripetal acceleration field. The absolutemeasure of such a centripetal
acceleration field is its strength. The ratio of the absolute measures
of two such centripetal acceleration fields is the common ratio of the
accelerations they would produce at any equal distances from their
respective centers.

This suggests that, in the above passage from the ScholiumMoon-
test, the several forces – those of heavy bodies and those of the
moons – are the motive forces exerted on those heavy bodies and
moons. Their common cause is a single inverse-square centripetal
acceleration field surrounding the Earth – the Earth’s gravity. On this
interpretation, all these motive forces directed toward the center of
the Earth are the weights toward it of those moons and other bodies.
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empirical success. This application of Rules 1 and 2 is backed by an
ideal of empirical success exhibited inNewton’s inferences fromphe-
nomena. According to this ideal, a theory succeeds empirically by
having its causal parameters receive convergent accurate measure-
ments from the phenomena it purports to explain. On the identifica-
tion Newton argues for, we have a single inverse-square acceleration
field the strength of which is given agreeing measurements by the
length of a seconds pendulum at the surface of the Earth and by the
centripetal acceleration exhibited by the orbit of the Moon.

Each of these counts as a phenomenon. The length of a seconds
pendulum established by Huygens is a generalization that is backed
up by a large and open-ended body of precise data. The centripetal
acceleration exhibited by the orbital motion of the Moon is also a
generalization backed up by a large and open-ended body of data. In
this case the data are far less precise than those backing upHuygens’s
measurements. Even though they are less precise, their agreement
in measured value of the strength of the common acceleration field
makes the lunar data count as additional empirical support backing
up Huygens’s measurement of the acceleration of gravity at the sur-
face of the earth.30 It also makes Huygens’s very precise data back
up estimates of the centripetal acceleration of the lunar orbit.

Empiricists, who limit empirical success to prediction alone,
would see the appeal to simplicity in Rules 1 and 2 as something
extraneous to empirical success. According to such a view, these
rules endorse a general commitment to simplicity imposed as an
additional, pragmatic, requirement beyond empirical success. No
merely pragmatic commitment to simplicity can do justice to the
way in which identifying the force that maintains the Moon in its
orbit with terrestrial gravity is empirically backed up by agreeing
measurements. This gives reason to consider the richer notion of
empirical success that informs Newton’s methodology.

generalization by induction

Rule 4

Proposition 5. The circumjovial planets [or moons of Jupiter] gravitate to-
ward Jupiter, the circumsaturnian planets [or satellites of Saturn] gravitate
toward Saturn, and the circumsolar [or primary] planets gravitate toward
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the sun, and by the force of their gravity they are always drawn back from
rectilinear motions and kept in curvilinear orbits.

This generalization is a unification – all these orbital phenomena
are effects of gravitation of satellites toward primaries. On it, we can
understand each of these phenomena as an agreeing measurement of
such general features of gravitation toward primaries as centripetal
direction and inverse-square accelerative measure.

Newton further generalizes centripetal forces of gravity (the first
part of Corollary 1) that are inversely as the squares of distances
from their centers (Corollary 2) to all planets universally. For planets
without satellites there are no centripetal accelerations of bodies
toward them to measure gravitation toward them.

The following Scholium is offered in support of this generalization
to all planets.

Scholium. Hitherto we have called “centripetal” that force by which celes-
tial bodies are kept in their orbits. It is now established that this force is
gravity, and therefore we shall call it gravity from now on. For the cause
of the centripetal force by which the moon is kept in its orbit ought to be
extended to all planets, by rules 1, 2, and 4.

This appeal to Rules 1 and 2 is backed up by appeal to an additional
rule.

Rule 4. In experimental philosophy, propositions gathered from phenom-
ena by induction should be considered either exactly or very nearly true
notwithstanding any contrary hypotheses, until yet other phenomena make
such propositions either more exact or liable to exceptions.

This rule instructs us to consider propositions gathered from phe-
nomena by induction as “either exactly or very nearly true”31 and
to maintain this in the face of any contrary hypotheses. We want to
clarify what are to count as propositions gathered from phenomena
by induction and how they differ from what are to count as mere
hypotheses.

We have seen that the classic inferences from phenomena which
open the argument for universal gravitation aremeasurements of the
centripetal direction and the inverse-square accelerative quantity of
gravitation maintaining moons and planets in their orbits. To ex-
tend attribution of centripetally directed inverse-square gravitational
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acceleration to planets without moons is to treat such orbital phe-
nomena as measurements of these quantifiable features of gravita-
tion for planets universally.

Whatwould it take for an alternative proposal to succeed in under-
mining this generalization of gravity to planets without moons? The
arguments we have been examining suggest that Newton’s Rule 4
would have us treat such an alternative proposal as a mere “con-
trary hypothesis” unless it is sufficiently backed up by measure-
ments from phenomena to count as a rival to be taken seriously.

Weight proportional to mass

Proposition 6. All bodies gravitate toward each of the planets, and at any
given distance from the center of any one planet the weight of any body
whatever toward that planet is proportional to the quantity of matter which
the body contains.

The centripetal forces that have been identified as gravitation toward
planets are acceleration fields. The ratio of weight to inertial mass
is the same for all bodies at any equal distances.32 In arguing for this
proposition Newton backs up his earlier arguments by providing ex-
plicit measurements of the equality of these ratios of weight tomass.

gravitation toward the earth. Newton begins with gravitation
toward the Earth. He describes pendulum experiments which mea-
sure the equality of the ratio of weight to inertial mass for pairs of
samples of nine varied materials. The equality of the periods of such
pairs of pendulums counts as a phenomenon which measures the
equality of these ratios for laboratory-sized bodies near the surface
of the Earth to a precision of 0.001.

A second phenomenon is the outcome of the Moon-test. The
agreement between the acceleration of gravity at the surface of the
Earth and the inverse-square-adjusted centripetal acceleration exhib-
ited by the lunar orbit measures the further agreement between, on
the one hand, the ratio of the Moon’s weight toward the Earth to
its mass and, on the other, the common ratio to their masses of
the inverse-square-adjusted weights toward the Earth that terrestrial
bodies would have at the lunar distance. The lunar distance data
Newton cites measure the equality of these ratios to <0.03.



188 william harper

rule 3. Corollary 2 (Proposition 6, Book 3). All bodies universally that are
on or near the earth are heavy [or gravitate] toward the earth, and theweights
of all bodies that are equally distant from the center of the earth are as
the quantities of matter in them. This is a quality of all bodies on which
experiments can be performed and therefore by rule 3 is to be affirmed of all
bodies universally.

Rule 3. Those qualities of bodies that cannot be intended and remitted
[that is, qualities that cannot be increased and diminished] and that belong
to all bodies on which experiments can be made should be taken as qualities
of all bodies universally.

Those qualities of bodies that cannot be intended or remitted are
those that count as constant parameter values. This rule, therefore,
endorses counting such parameter values found to be constant on all
bodies within the reach of experiments as constant for all bodies uni-
versally. In Corollary 2, the quality of bodies which is generalized is
weight toward the Earth. To have gravitation toward the Earth count
as an inverse-square acceleration field is to have the ratio between
inverse-square-adjusted weight toward the Earth and inertial mass
be a constant value for all bodies.

The equal periods of pairs of pendulums in Newton’s experiments
is a phenomenon established with sufficient precision to measure to
0.001 the equalities of ratios ofweight tomass for terrestrial bodies.33

Similarly, the outcome of the Moon-test counts as a rougher mea-
surement bound (< 0.03) in agreement with the more precise mea-
surement bound (<0.001) that would result from extending the out-
come of Newton’s pendulum experiments to the equality of ratios
to masses of the inverse-square-adjusted weights bodies would have
at the lunar distance. These phenomena count as agreeing measure-
ments bounding toward zero a parameter�e representing differences
between ratios of inverse-square-adjusted weight toward the Earth to
mass for bodies.34

Rule 3 tells us to conclude that the ratio of mass to gravitation
toward the Earth is equal for all bodies at any distance from the cen-
ter of the Earth if that equality holds for all the bodies in reach of
our experiments. The agreement exhibited by Newton among mea-
surements of this equality by phenomena is an example of what he
would take as sufficient to count the proposition that it holds for all
bodies within reach of our experiments as gathered from phenomena
by induction. This makes his Rule 4 tell us to put the burden of proof
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on a sceptic to provide evidence for bodies within reach of our exper-
iments that would exhibit phenomenamaking this equality liable to
exceptions.

the argument for proposition 6 continued. Newton follows up
his argument for the Earth with an appeal to the harmonic law
for Jupiter’s moons as a phenomenon which measures, at the dis-
tance of each moon, the equality of the ratio of mass to inverse-
square-adjusted weight toward Jupiter for bodies at that distance.
Rule 3 would extend this equality to bodies at any distances. The
data Newton cites from other astronomers measure the equality of
these ratios to fair precision (� j < 0.03), while Pound’s more pre-
cise data do considerably better (� j < 0.0007). Similarly, the data
Newton cites for the harmonic law for the primary planets measure
bounds (�s < 0.004) on the equality of ratios between inverse-square-
adjusted weight toward the Sun and mass for bodies at the mean
distances of the planets.

For equality of ratios ofmass toweight toward the Sun at equal dis-
tancesNewton also appeals to three additional phenomena – absence
of polarization toward or away from the Sun of orbits of respectively
Jupiter’s moons, Saturn’s moons and the Earth’s moon. If the ratio of
mass to weight toward the Sun for a moon were greater or less than
the corresponding ratio for the planet, then the orbit of that moon
would be shifted toward or away from the Sun. Absence of such
orbital polarization counts as a phenomenon measuring the equal-
ity of ratios of mass to weight toward the Sun at equal distances.
The data on Jupiter’s moons cited in Newton’s table establish this
phenomenon with sufficient precision to measure the equality of
these ratios to a precision of �s < 0.034, while his data from Pound
are precise enough to reach �s < 0.004.35

All these phenomena count as agreeing measurements bounding
toward zero a single general parameter � representing differences
between bodies of the ratios of their inertial masses to their inverse-
square-adjusted weights toward planets.36

parts of planets. Newton concludes his argument for Proposition
6 by explicitly extending the argument to equal ratios between mass
and weight toward other planets to individual parts of planets. Here,
instead of direct measurements by phenomena, we have a thought
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experiment which makes salient that it would be very improbable
to have parts differing in ratios of weight to inertial mass so ex-
actly proportioned that whole planets had equal ratios. This is made
especially implausible by the additional fact that the Moon-test es-
tablishes agreement between outer parts of the Earth (ordinary ter-
restrial bodies) and the whole of the Moon.

gravitation is a universal force of interaction

Applying the third law of motion

Proposition 7. Gravity exists in all bodies universally and is proportional to
the quantity of matter in each.

gravitation toward planets
We have already proved that all planets are heavy [or gravitate] toward one
another and also that the gravity toward any one planet, taken by itself, is
inversely as the square of the distance of places from the center of the planet.
And it follows (by book 1, prop. 69 and its corollaries) that the gravity toward
all the planets is proportional to the matter in them.

In Proposition 69, Book 1, Newton considers a system of bodiesA, B,
C, D, etc. He argues that under the assumption that body A attracts
all the others (including body B) with inverse-square accelerative
forces and the assumption that body B, similarly, attracts all the
others (including A), then the absolute force of A (the strength of
the acceleration field toward A) will be to the absolute force of B as
the mass of A is to the mass of B.

Newton’s proof begins by pointing out that the supposition that
each body attracts all the rest with inverse-square accelerative forces
requires the ratios of accelerations produced by such forces at equal
distances to be independent of distance. The distance of A from B
equals the distance of B from A. Therefore,

accA(B)/accB(A) = absFA/absFB (i.1)

The ratio of the magnitude of B’s acceleration toward A to the mag-
nitude of A’s acceleration toward B equals the ratio of the strength
of the attractive force towardA to the strength of the attractive force
toward B.
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The key step in Newton’s proof is an application of his third law
of motion to the motive force attracting B toward A and the motive
force attracting A toward B.

Law 3. To any action there is always an opposite and equal reaction; in other
words, the actions of two bodies one upon the other are always equal and
always opposite in direction.

To have the motive forces of A on B, fA(B) = m(A)accB(A), and of B
onA, fB(A) = m(B)accA(B), count as equal action and reactionmakes

m(A)/m(B) = accA(B)/accB(A) (i.2)

where m(B) and m(A) are the masses of B and A. Combining i.2with
i.1 yields Newton’s conclusion,

m(A)/m(B) = absFA/absFB (i.3)

In the assumption of the argument for Proposition 7, gravitation of
any planets Aand B toward one another is treated as an interaction,
so that the equal and opposite reaction to the weight of B toward A
is the weight of Atoward B. This makes the argument of Proposition
69 apply, so the strengths of the centripetal attractions toward each
are proportional to their masses.

gravitation toward parts of planets
Further, since all the parts of any planet A are heavy [or gravitate] toward
any planet B, and since the gravity [weight toward B] of each part is to the
gravity [weight toward B] of the whole as the matter of the part is to the
matter of the whole, and since to every action (by the third law of motion)
there is an equal reaction, it follows that planet B will gravitate toward all
the parts of planet A, and its gravity toward any one part will be to its gravity
toward the whole of the planet as the matter of that part to the matter of the
whole. Q.E.D.

For any planets A and B, each part a of planet A is itself a body be-
ing accelerated toward planet B. Newton’s supposition follows from
proposition 6. We have

fB(a)/ fB(A) = m(a)/m(A), (ii.1)

where fB(a) and fB(A) are the weights of part a and planet A toward
planet B.
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As in the proof of Proposition 69, the third law ofmotion is applied
to yield the conclusion. The weight, fa(B), of planet B toward part a
is taken to be the equal and opposite reaction to the weight, fB(a), of
part a to planet B, just as the weights fA(B) and fB(A) of the whole
planets toward one another are taken to be equal action and reaction.
This yields

fa(B)/ fA(B) = fB(a)/ fB(A). (ii.2)

Combining ii.2 with ii.1 gives Newton’s conclusion,

fa(B)/ fA(B) = m(a)/m(A). (ii.3)

The weight of planet B toward part a is to its weight toward the
whole planet A as the mass of the part is to the mass of the whole
planet.37

The extension of the argument to include, in addition to grav-
itation toward planets,38 gravitation toward parts of planets would
count, inNewton’s day, as an extension to include gravitation toward
all bodies within reach of experiments. This would make Rule 3
endorse extending to all bodies universal gravitation toward them
proportional to their masses.

inverse-square gravitation toward particles
Corollary 2 (Proposition 7, Book 3). The gravitation toward each of the indi-
vidual equal particles of a body is inversely as the square of the distance of
places from those particles. This is evident by book 1, prop. 74, corol. 3.

Corollary 3 (Proposition 74, Book 1). If a corpuscle placed outside a homoge-
neous sphere is attracted by a force proportional to the square of the distance
of the corpuscle from the center of the sphere, and the sphere consists of at-
tracting particles, the force of each particle will decrease in the squared ratio
of the distance from the particle.

The inference in this corollary is from inverse-square variation of
the total force on a corpuscle outside a sphere toward its center to
the inverse-square variation of the component attractions toward
particles. Just as is the case with Newton’s classic inferences from
phenomena, this inference is backed up by systematic dependencies.
Any difference from the inverse-square law for attraction toward the
particles would produce a corresponding difference from the inverse-
square for the law of attraction toward the center resulting from
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summing the attractions toward the particles.39 These dependencies
make phenomena measuring inverse-square variation of attraction
toward thewhole count asmeasurements of inverse-square variation
of the law of attraction toward the particles.

Resolving the two chief world systems problem

In Proposition 8, Newton appeals to theorems on attraction to-
ward spheres to extend his conclusions to gravitation toward bodies
approximating globes made up of spherically homogeneous shells.
Attraction between such bodies is directly as the product of their
masses and inversely as the square of the distance between their
centers.

Proposition 7 is applied to use harmonic law ratios to measure
the masses of the Sun and planets with moons (Corollary 2, Propo-
sition 8). The resulting convergent agreeing measurements of the
masses of these bodies count as a significant realization of Newton’s
ideal of empirical success – a realization that is especially important
because it adds support to his appeal to Law 3 in the argument for
Proposition 7.40

These measurements lead to his surprising center-of-mass resolu-
tion of the two chief world systems problem.

Proposition 12 (Book 3). The sun is in continual motion but never recedes
far from the common center of gravity of all the planets.

Both the Copernican and the Brahean systems are wrong; however,
the Sun-centered system closely approximates true motions while
the Earth-centered system is wildly inaccurate.

In this center of mass frame the separate centripetal acceleration
fields toward solar system bodies are combined into a single system
where each body undergoes an acceleration toward each of the others
proportional to its mass and inversely proportional to the square of
the distance between them.

General Relativity

Newton transformed the two chief world systems problem into a
physically meaningful question that could be answered by analysis



194 william harper

of relative accelerations and the information they carry about the
distribution of mass. General Relativity incorporates the basic de-
pendencies between acceleration fields and spherical mass distri-
butions that inform Newton’s account, even though it reinterprets
gravitational free fall as motion along a shortest-distance path –
“geodesic motion” – in a curved space-time.41 Therefore, contrary to
Reichenbach,42 General Relativity does not undercut the objectivity
of Newton’s solution to the two chief world systems problem.43

Contrary to Kuhn,44 the revolutionary change to General Rela-
tivity is in accordance with the evaluative procedures of Newton’s
methodology. The development and applications of perturbation
theory, from Newton through Laplace at the turn of the nine-
teenth century and on through Simon Newcomb at the turn of
the twentieth, led to increasingly accurate successive corrections
of Keplerian planetary orbits. At each stage, departures from mo-
tion in accord with the model developed counted as higher-order
phenomena carrying information about further interactions. These
successive corrections led to increasingly precise specifications of
solar system phenomena backed up by increasingly precise mea-
surements of the masses of the interacting solar system bodies.
The extra 43 arc-seconds per century of Mercury’s perihelion pre-
cession was a departure from the Newtonian theory that resisted
attempts to account for it by such interactions. The successful ac-
count of this extra precession, together with the Newtonian limit
which allowed it to recover the empirical successes of Newtonian
perturbation theory (including the account of the other 531 arc-
seconds per century of Mercury’s perihelion precession45), made
General Relativity do better than Newton’s theory on Newton’s
own ideal of empirical success. Since its initial development General
Relativity has continued to improve upon what Newton’s method-
ology counts as its clear advantage over Newtonian gravitation
theory.46
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8 Corollary 6 (Laws of Motion). If bodies are moving in any way whatsoever with
respect to one another and are urged by equal accelerative forces along parallel
lines, they will all continue to move with respect to one another as they would
if they were not acted upon by those forces.

9 Corollary 4 (Laws of Motion). The common center of gravity of two or more
bodies does not change its state whether of motion or of rest as a result of the
actions of the bodies upon one another; and therefore the common center of
gravity of all bodies acting upon one another (excluding external actions and
impediments) either is at rest or moves uniformly straight forward.

10 Newton explicitly gives corollaries (Corollaries 2 and 3 of Proposition 3,
Book 1) to cover such approximations. These extensions show that the
areal rule can be a quite general criterion for finding centers toward
which forces maintaining bodies in orbits are directed.

11 Clark Glymour (Theory and Evidence) used these inferences as ex-
amples of good scientific practice that could not be accounted for
by hypothetico-deductive (H-D) methodology. The systematic depen-
dencies backing up Newton’s inferences make such inferences avoid
the counterexamples put forward to challenge bootstrap confirmation,
Glymour’s proposed alternative to H-D confirmation. See W. L. Harper,
“Measurement andApproximation:Newton’s Inferences fromPhenom-
ena versus Glymour’s Bootstrap Confirmation,” in G. Weingartner,
G. Schurz, and G. Dorn (eds.), The Role of Pragmatics in Contempo-
rary Philosophy (Vienna: Hölder-Picher-Tempsky, 1998).
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12 The mean error of Pound’s observed estimates from today’s values is
only +0.135 of Jupiter’s semi-diameter, while the average mean error
for the other four astronomers cited by Newton is −1.098.

13 Newton also suggests that the area rule for Jupiter is “especially prov-
able by the eclipses of its satellites.” Each eclipse gives a heliocentric
longitude (seeD.Densmore,Newton’s Principia:TheCentral Argument
[Santa Fe: Green Lion Press, 1995], pp. 275–7). This allows triangulation
of its heliocentric distance from observations of its angular position
with respect to the Earth. The shortness of the time intervals between
them compared to Jupiter’s period allows sequences of such eclipses to
afford sequences of triangles approximating areas swept out. The area
law for Jupiter can be tested by checking that the areas of those triangles
are proportional to the intervals of time.

14 In his Dialogue concerning the Two Chief World Systems, Galileo had
appealed to the phases of Mercury and Venus and the absence of phases
of Mars, Jupiter, and Saturn in concluding that the orbits of the first two
encompass the Sun, but not the Earth, while the orbits of the last three
encompass both.While ruling out Ptolemaic systems, this still left open
the question of a Copernican versus a Tychonic system (or intermedi-
ates between them). See G. Galileo,Dialogue concerning the Two Chief
World Systems, trans S. Drake (Berkeley: University of California Press,
1967), pp. 322ff.

15 SeeW. L. Harper, “The First Six Propositions in Newton’s Argument for
Universal Gravitation,” The St. John’s Review 45, no. 2 (1999), 74–93,
at pp. 84–7.

16 Newton’s orbital data can be fit as well or better by a higher-order curve
that would not have the periods be any constant power s of the mean
distances. On such a hypothesis, the application of Corollary 7 of Propo-
sition 4 would be undercut. The orbits would, therefore, not carry in-
formation about any simple power law relating the accelerative forces
to distances from the sun.

Similarly, the orbital data are not precise enough directly to rule
out an ellipse with the Sun slightly displaced toward the center from
the focus so that the force is not directed exactly at that focus. As
George Smith points out, Newton knew that any such orbit would be
incompatible with an inverse-square power law. G. E. Smith, “From the
Phenomenon of the Ellipse to an Inverse-Square Force: Why Not?,”
in David Malament (ed.), Reading Natural Philosophy: Essays in the
History and Philosophy of Science and Mathematics to Honor Howard
Stein on his 70th Birthday (La Salle: Open Court, 2002).

These alternative hypotheses illustrate the fact that Newton’s infer-
ences fromphenomena are not logically forced by the data, even together
with mathematical theorems derived from the Laws of Motion.
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17 Boulliau uses the samemean distances as Kepler for the Earth andMars.
For the ten distinct estimates cited by Newton, the ratio of sd+ to the
mean value of the harmonic law ratios [R3/t2] is 0.007.

18 In his System of the World, an earlier version of Book 3 composed “in a
popularmethod that it might be read bymany” (Introduction to Book 3),
Newton points out:

But now, after innumerable revolutions, hardly any such motion has been per-
ceived in the orbits of the circumsolar planets. Some astronomers affirm there
is no such motion; others reckon it no greater than what may easily arise from
causes hereafter to be assigned, which is of no moment to the present question.
(F. Cajori [ed. and trans.], Newton’s Principia, Motte’s Translation Revised [Los
Angeles: University of California Press, 1934], p. 561)

Any precession that can be accounted for by perturbation due to forces
toward other bodies can be ignored in using stable apsides to measure
inverse-square variation of the centripetal force toward the Sun main-
taining planets in their orbits.

19 See S. R. Valluri, C.Wilson, andW. L. Harper, “Newton’s Apsidal Preces-
sion Theorem and Eccentric Orbits,” Journal of the History of
Astronomy 27 (1997), 13–27.

20 See Densmore, Newton’s Principia, p. 282.
21 Using 1/178.725 in Corollary 2, Proposition 45 yields fairly close to

what Newton cites as the lunar precession per revolution.
In Proposition 26, Book 3, however, Newton shows that the average,

over a lunar orbit, of theMoon–Earth radial component of the force of the
Sun to perturb the Moon is a reduction of 1/357.45 of the basic inverse-
square centripetal force on the Moon. The result of using 1/357.45 in
Corollary 2, Proposition 45 shows that the radial component alone of
the Sun’s force on the Moon would account for only about half of the
lunar precession. See G. E. Smith, “The Motion of the Lunar Apsis,” in
The Principia, ed. and trans. Cohen and Whitman, pp. 257–64.

22 It was not until 1749 that a solution showing how the lunar precession
could be accounted for by the Sun’s perturbation of the lunar orbit was
achieved. See R. Taton and C. Wilson, The General History of Astron-
omy, vol. 2B (Cambridge: Cambridge University Press, 1995), pp. 35–46.

23 Huygens’s one-second fall of 15.096 Paris feet corresponds to 980.7
cm/sec2 for the acceleration of gravity at Paris. The modern value for
q at Paris is 980.87 cm/sec2. See G. E. Smith, “Huygens’s Empirical
Challenge to Universal Gravity” (forthcoming) for this comparison and
for a detailed account of Huygens’s achievement.

24 When the correction is applied we get 15.0935 Paris feet.
25 Newton’s main text for Proposition 4 concludes with an appeal to the

two-body correction which can defend using 60 in the Moon-test when
the measured distance is somewhat greater.
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26 SeeH. Stein, “‘From the Phenomena ofMotions to the Forces ofNature’:
Hypothesis or Deduction?,” PSA 1990 2 (1991), 209–22; also Taton and
Wilson, General History, vol. 2B, pp. 7, 12 and Huygens’s Discourse
on the Cause of Gravity, trans. Karen Bailey, in George E. Smith (ed.),
A Measure in Evidence: Huygens’s Determination of Surface Gravity
(forthcoming).

27 This Scholium was added in the third (1726) edition; see Isaac
Newton’s Philosophiae Naturalis Principia Mathematica, the Third
Edition with Variant Readings, ed. A. Koyré, I. B. Cohen, and Anne
Whitman (Cambridge, MA: Harvard University Press; Cambridge:
Cambridge University Press, 1972), p. 569.

28 Stein, “‘From the Phenomena of Motions’,” pp. 211–13.
29 Stein, “ ‘From the Phenomena of Motions’,” p. 213, and H. Stein, “On

the Notion of Field in Newton, Maxwell, and Beyond,” in R. H. Stuewer
(ed.),Historical and Philosophical Perspectives of Science (Minneapolis:
University of Minnesota Press, 1970) pp. 264–87.

30 The lunar data will provide more epistemic resistance to conjectures
that would make the acceleration of gravity at the surface of the Earth
differ fromHuygens’s measure by enough to go outside the error bounds
set by the Moon-test estimate than would have been provided by
Huygens’s data alone. Agreeing measurements by several phenomena
contributes to increase the resiliency – resistance to large changes – of
estimates of parameter values.

31 The provision for approximations fitswith construing such propositions
as established up to tolerances provided by measurements. This makes
Rule 4 verymuch in linewith themethodology guiding testing programs
in relativistic gravitation today (Harper, “Measurement andApproxima-
tion,” pp. 284–5; W. L. Harper, “Isaac Newton on Empirical Success and
Scientific Method,” in J. Earman and J. D. Norton [eds.], The Cosmos of
Science [Pittsburgh: University of Pittsburgh Press, 1997], pp. 55–86).

32 Where f1/m1 and f2/m2 are ratios of weights toward the center of a
planet to inertial masses of attracted bodies while a1 and a2 are their
respective gravitational accelerations toward it, it follows from f = ma
that a1 = a2 if and only if f1/m1 = f2/m2.

33 These experiments extend to this, much greater, precision the many
long-established, rougher but agreeing, observations that bodies fall at
equal rates “at least on making an adjustment for the inequality of the
retardation that arises from the very slight resistance of the air.”

34 For any body x, let Qe(x) = (We(x)[de(x)]2)/m(x), where We(x) is the
weight of x toward the earth, de(x) is the distance of x from the cen-
ter of the earth, and m(x) is the inertial mass of x. For bodies x and y,
�e(x, y) = Qe(x) − Qe(y) is the difference in the ratios of their inverse-
square-adjusted weights toward the earth to their inertial masses.
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35 Newton does not provide the details of his calculation and the result he
cites is incorrect. The 0.034 results from applying a modern calculation
to the tolerances for distance estimates exhibited by the data cited by
Newton from other astronomers and the 0.004 from applying it to tol-
erances estimated from comparing Pound’s data with current estimates
of orbital distances for Jupiter’s moons. See W. L. Harper, S. R. Valluri,
and R. Mann, “Jupiter’s Moons and the Equivalence Principle,” forth-
comming in Proceedings of the Ninth Marcel Grossmann Meeting on
General Relativity, for discussion and references.

36 Bounds limiting this universal parameter toward zero are what count
today as bounds limiting violations of the weak equivalence princi-
ple – the identification of passive gravitational with inertial mass.
The phenomena cited by Newton together with additional phenom-
ena of far greater precision count today as agreeing measurements sup-
porting this identification. (See Harper, “Isaac Newton on Empirical
Success,” and “Measurement and Approximation,” for discussion and
references.)

37 This extends the identification of gravitational and inertial mass to in-
clude active as well as passive gravitational mass (see note 36).

38 The classic use of “planet” to refer to heavenly wanderers would in-
clude the Sun, the Moon, and primary planets and their satellites. The
argument for Proposition 6 includes gravitation toward the Earth, which
suggests that Newton extends the classic use to count the Earth, also,
as a planet.

His thought experiment with terrestrial bodies raised to the Moon
illustrates that a body can count as part of a planet just by falling on it.

39 S. Chandrasekhar (Newton’s Principia for the Common Reader [Oxford:
Clarendon Press, 1995], formula 9, p. 289) provides an integral formulat-
ing the dependencies Newton provides in Lemma 29 and Propositions
79–81, Book 1.

According to Proposition 74, Book 1, inverse-square attraction to-
ward the center of a uniform sphere on corpuscles outside, right down to
the surface, results from summing the inverse-square attractions on the
corpuscle toward the particles making up the sphere. This proposition
follows from Chandrasekhar’s integral when the law of attraction to-
ward particles is the −2 power of distance.

A power law differing even slightly from the inverse-square, e.g., a
−2.01 power law, for the particles will approach the same power law for
attractions to the whole at great distances but will yield attractions to
the whole corresponding to differing non-uniform relations to distance
for locations close to the surface of the sphere. The inverse-square case,
and the simple harmonic oscillator case where attraction is directly as
the distance, are special in that the law of attraction toward particles
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yields the same law of attraction toward the whole all the way down to
the surface of the sphere. These are the two cases Newton singles out
for detailed treatment.

40 Howard Stein, in “ ‘From The Phenomena of Motions’,” pointed out
that Newton’s application of Law 3 in his argument for Proposition 7
is not an inference from the phenomena cited in the argument for
Propositions 1–7. This significant objection was anticipated by Cotes
and responded to by Newton in letters to Cotes. For a discussion of how
issues raised by this challenge illuminate Newton’s methodology, see
W. L. Harper, “Howard Stein on Isaac Newton: Beyond Hypotheses?,”
in David Malament (ed.), Reading Natural Philosophy: Essays in the
History and Philosophy of Science and Mathematics to Honor Howard
Stein on his 70th Birthday (La Salle: Open Court, 2002).

41 See DiSalle, this volume, for discussion and further references.
42 According to Hans Reichenbach (The Philosophy of Space and Time

[New York: Dover, 1958], p. 217):

The relativity theory of dynamics is not a purely academicmatter, for it upsets the
Copernican world view. It is meaningless to speak of a difference in truth claims
of the theories of Copernicus and Ptolemy; the two conceptions are equivalent
descriptions. What had been considered the greatest discovery of western science
compared to antiquity, is now denied its claim to truth.

43 The mass of the Sun with respect to the masses of the planets is large
enough to support geodesics approximating orbits of the planets about it,
while the mass of the Earth (measured by the motion of the Moon) is far
too small. Thesemass differences, togetherwith the difficulties imposed
on construing the irregularities of Brahean orbits as geodesics in a curved
space-time generated by the Earth as a spherically symmetric mass
distribution, make General Relativity agree with Newton in counting
Earth-centered systems as wildly inaccurate. See DiSalle, this volume.

44 T. S. Kuhn, The Structure of Scientific Revolutions, 2nd edn (Chicago:
University of Chicago Press, 1970), p. 94:

Like the choice between competing political institutions, that between compet-
ing paradigms proves to be a choice between incompatible modes of community
life. Because it has that character, the choice is not and cannot be determined
by the evaluative procedures characteristic of normal science, for these depend
in part upon a given paradigm, and that paradigm is at issue. When paradigms
enter, as they must, into a debate about paradigm choice, their role is necessarily
circular. Each group uses its own paradigm to argue in that paradigm’s defense.

45 This 531 arc-seconds per century does not include the general precession
of 5025.6 arc-seconds resulting from the precession of the equinoxes
(see C. M. Will, Theory and Experiment in Gravitational Physics
[Cambridge: Cambridge University Press, 1993], p. 4). The contrast
between the approximately 531+43 arc-seconds per century that needs
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to be dynamically accounted for and the general precession, which
results merely from rotating coordinates, illustrates that General Rela-
tivity continues to distinguish between true andmerely relativemotion.

As Smith points out (“From the Phenomenon of the Ellipse”),
General Relativity’s solution to the Mercury perihelion problem
requires that it be able to recover also the precession accounted for by
Newtonian perturbations.

46 In addition to the famous three basic tests there are now a great many
post-Newtonian corrections required by the more precise data made
available by such new observations as radar ranging to planets and
laser ranging to the Moon. These provide not just predictions but
also measurements of parameters, such as those of the PPN testing
framework, which support General Relativity. See Will, Theory and
Experiment, and Harper, “Isaac Newton on Empirical Success,” for
discussion and references.
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6 Newton and celestial mechanics

Newton’s achievements in celestial mechanics tend in popular ac-
counts to be underestimated in some respects, exaggerated in others.
This chapter seeks to correct a number of misconceptions arising
from inattention to the detailed history.

kepler’s first two laws, so-called, and newton

The claim that the planets move in elliptical orbits, with the radii
vectores from Sun to planet sweeping out equal areas in equal times,
first appeared in Kepler’s Astronomia Nova of 1609. Since the late
eighteenth century the two parts of this claim have been referred to
as Kepler’s first two planetary “laws,” understood as empirical laws.
According to the popular account, Newton relied on these “laws” as
thus established.

Writing to Halley on 20 June 1686, Newton stated: “Kepler knew
ye Orb to be not circular but oval & guest it to be elliptical.”1

Whether Newton ever saw the Astronomia Nova is unknown.
TheAstronomiaNova is an innovativework. It establishes impor-

tant empirical results, such as the passage of the planet’s orbital plane
through the Sun’s center and the orbit’s oval shape. Was the orbit’s
ellipticity also a straightforwardly empirical result, say by means of
triangulations of Mars, as sometimes asserted?2 Kepler carried out
many such triangulations, but they were subject to sizeable observa-
tional error, of which he was acutely aware.3

At the end of Chapter 58 we at last find him asserting that “no
figure is left for the planetary orbit but a perfect ellipse.” This chap-
ter attempts to refute another oval orbit, the via buccosa or puffy-
cheeked path. Kepler’s whole effort, he tells us, has been to find a

202
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hypothesis yielding not only distances in agreement with observa-
tion, but also correct “equations” – “equation” here meaning the
difference between themean and the true heliocentricmotions,mea-
sured from aphelion. To derive the true position at any time, Kepler
used his area rule, inwhich area swept out is proportional to time.He
had already found that this rule, when applied to a particular ellipse –
the ellipse with the Sun at one focus – yielded the true positions
with no more than expected observational error; but he was unable
to explain why the planet should move in this ellipse. He turned to
another hypothesis which he called the “libration,” and which, so
he supposed, implied a different orbit.

In the “libration,” the planet oscillates sinusoidally along the ra-
dius vector. The cause of this oscillation, Kepler proposed, was a
quasi-magnetic attraction and repulsion from the Sun. (In Kepler’s
preinertial physics, separate causes had to be assumed for the planet’s
forward motion about the Sun, and for its motion toward and away
from the Sun.) The libration gave the Sun–planet distances correctly,
agreeing with the triangulations to within the range of observational
error. In another respect it was indeterminate: the radius vector
started at the Sun’s center, but where did the other end go? Kepler
at first imagined he knew where it went, and his initial placement
yielded the puffy-cheeked orbit (we omit details). Then he discov-
ered that a different placement, just as plausible, would yield the
Sun-focused ellipse. Thus the libration hypothesis could be com-
bined with this ellipse to give both correct equations and correct
distances.

But in his diagram he found the alternative radii vectores in the
ellipse and puffy-cheeked orbit to be separated by observationally
detectable angles,+5′.5 at 45◦ of anomaly and−4′ at 135◦ of anomaly.
Since the ellipse gave correct equations, Kepler concluded that the
puffy-cheeked orbit could not do so. Hence, “no figure is left for the
planetary orbit but a perfect ellipse.”

The conclusion is unwarranted. Motion on the puffy-cheeked or-
bit in accordance with the area rule, when calculated by integra-
tion throughout the orbit, differs at maximum from motion in the
ellipse by about 1′, a difference not observationally significant in
Tycho’s data.4 (Of course, with the mathematics available to him
Kepler would have been hard put to carry out an equivalent of the
modern integration.)
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If the ellipticity of the orbits was not empirically established by
Kepler, then neither was the so-called second law: determination
of areas presupposes orbital shape. For Kepler the area rule was the
expression of a dynamical hypothesis, the idea of a motive virtue
issuing from and rotating with the Sun so as to push the planets
round, its strength varying inversely with distance from the Sun.
Kepler’s dynamics was Aristotelian, making speed proportional to
force. His conception implied that the component of orbital speed at
right angles to the radius vector varied inversely with distance.5 The
area rule, he belatedly realized, was a consequence.

Given his two rules, Kepler in his Tabulae Rudolphinae (1627)
derived tables for calculating planetary and lunar positions. These
proved more accurate than all earlier tables, and so confirmed the
two rules in combination.

Newton was aware of the principal features of Kepler’s causal ac-
count of planetarymotion: he had read (probably in 1685 or 1686) the
critique of it given by Ishmaël Boulliau (1605–94) in his Astronomia
Philolaica (Paris, 1645). This astronomical treatise was the first af-
ter Kepler’s Rudolphine Tables to take elliptical orbits as a basis for
calculating planetary tables. But Boulliau entirely rejected Kepler’s
hypothetical physical causes, devoting the bulk of his Chapter xii
to refuting them.6 He preferred to believe that each planet is moved
by its “proper form.”7 To Boulliau, Kepler’s assumption of a virtus
movens issuing from the Sun was mere conjecture.

Also, to Kepler’s assumption of an inverse proportionality of the
virtus movens to solar distance Boulliau objected that corporeal
virtues issuing from a point source should vary inversely with the
square of the distance from the source. Newton picked up on this
assertion in a long postscript to his letter to Halley of 20 June 1686:
“Bullialdus [Boulliau] wrote that all force respecting ye Sun as its
center & depending on matter must be reciprocally in a duplicate
ratio of ye distance from ye center.”8 Newton was here seeking to
rebut Robert Hooke’s claim to have furnished him originally with
the idea of an inverse-square variation for gravity.

From Boulliau’s critique Newton learned that Kepler’s dynamics
violated the principle of inertia, and that Kepler, in seeking to ex-
plain the planet’s alternate approach to and recession from the Sun,
had invoked a hypothetical magnetism in the Sun and planet – a
hypothesis that Boulliau dismissed as merely conjectural. Newton,
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corresponding with Flamsteed in 1681, had argued that the Sun, be-
ing hot, could not be a magnet.9

In the inertial mechanics of Newton, equable description of area
becomes equivalent to a centripetal force, a single cause for a single
effect, namely the departure of the orbiting body from its instanta-
neous rectilinear path. His derivation of the ellipticity of the plan-
etary orbits in Proposition 13, Book 3 of the Principia rested on the
Laws of Motion announced at the beginning of the Principia, and on
the inverse-square law of universal gravitation argued for in the first
seven propositions of Book 3.10 In contrast with Kepler’s attempted
derivation, it contained no bare conjectures.

Universal gravitation did not become the guiding idea inNewton’s
thinking on planetarymotion tillmuch later thanwas long supposed:
not before 1685. How had Newton viewed the Keplerian rules in the
years before the Principia?

In the mid-1660s Newton made notes on Thomas Streete’s As-
tronomia Carolina (1661). In 1669 or 1670 he perused VincentWing’s
Astronomia Britannica (1669), and wrote notes on its endpapers.11

Both authors took the orbits of the planets to be elliptical, with-
out offering justification for the assumption. Neither mentioned or
used Kepler’s area rule. Instead, each proposed a different calcula-
tive procedure for passing from mean anomaly (angle from aphelion
that would be traversed at the planet’s mean rate) to true anomaly
(the planet’s actual angle from aphelion). The area rule did not admit
of such a direct procedure, except by approximation. Both Wing’s
and Streete’s procedures were corrections to a faulty procedure pro-
posed in Boulliau’s Astronomia Philolaica (we omit details12), and
produced results differing by only small amounts from those derived
by the area rule. Streete’s procedure gives a maximum error for Mars
of 1′51′′. In Wing’s procedure the corresponding error is 20′′.

Newton’s reaction to these hypothetical devices, as his notes on
Wing’s Astronomia Britannica attest, was to doubt both the elliptic-
ity of the orbits and the accuracy of the calculative procedures. Both
orbital shape and motion, he proposed, should be controlled empiri-
cally, and he showed in a construction how this could be done.13

Both Streete and Wing assumed that the planets are moved by
a solar vortex. Newton in the 1660s, while rejecting the Cartesian
identification of matter and extension (on which for Descartes the
necessity of vortices rested), accepted planetary vortices. In his
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speculations about planetary motion during the 1670s, he again
assumed such vortices. A document datable to 1681 shows him still
doing so.14 The supposition of vortices with their hydrodynamical
complexities could hardly fail to give rise to doubts about the
mathematical accuracy of the elliptical orbits accepted by his
contemporaries.

kepler’s third or harmonic law, and newton

Streete differed sharply from Wing in asserting the strict accuracy
of Kepler’s third law – the law according to which the planetary pe-
riods are as the three-halves power of their mean solar distances.
In a departure from Kepler’s Rudolphine Tables, he used the law
to derive the mean solar distances from the periods. The solar dis-
tances could be determined observationally only by imprecise tri-
angulations, whereas the periods were precisely determinable from
comparisons of ancient and modern observations. Hindsight tells us
that, for the planets from Mercury to Mars (but not for Jupiter or
Saturn), the new rule improved the accuracy of the solar distances
by three orders of magnitude.

Streete took this procedure from the as yet unpublished Venus in
Sole Visa of Jeremiah Horrocks (1618? – 3 January 1641). Horrocks
had found empirical support for it in his observations of Mars and
Venus.15

Newton, on reading about this rule in Streete’s Astronomia
Carolina, made a note of it. A few years later, perusing Wing’s
Astronomia Britannica, he found that Wing’s values for the mean
solar distances disagreed with this “regula Kepleriana.” They would
better agree with observations, he wrote in the endpapers of his copy,
if they were reduced to the rule.

Newton’s interest had a theoretical dimension. Probably in 1666
he had derived a formula for “the endeavor from the center of a body
revolving in a circle,” thus quantifying the Cartesian concept; in a
not yet published work Huygens had given the name “centrifugal
force” to the pull on a string that retains the body in the circle,
counteracting this endeavor.16 According to the formula, when bod-
ies are moving in different circles, their endeavors from the centers
of those circles are as the radii divided by the squares of the pe-
riodic times. Since by the “regula Kepleriana” the squares of the
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periods of the planets are as the cubes of their mean solar distances,
their endeavors from the Sun will be reciprocally as the squares of
their solar distances. Newton also compared the Moon’s endeavor to
recede from the Earth with gravity at the Earth’s surface, and found
the latter to be “4000 and more times greater” than the former – not
(60)2 = 3600 times, as an inverse-square relation would imply.

David Gregory on a visit to Newton in 1694 was shown a
manuscript with these calculations, and wrote afterwards that here
“all the foundations of his [Newton’s] philosophy are laid: namely the
gravity of the Moon to the Earth, and of the planets to the Sun.”17

From Henry Pemberton, writing in 1728,18 and William Whiston,
writing in 1749,19 we have similar accounts. According to Whiston,
the failed lunar calculation led Newton to suspect that the force
on the Moon was due partly to gravity and partly to “Cartesius’s
Vortices.”

These tales give us a Newton about to embark on the enterprise of
the Principia in the 1660s, but delaying for twenty years on account
of a computation’s failing to match expectation. As Florian Cajori
has pointed out, the computation could easily have been corrected.
Newton had used an inaccurate value for the length of a degree of ter-
restrial latitude. Better values were readily available; Newton came
to know of them by 1672.20

During these years Newton employed aethereal hypotheses to ac-
count for optical, electrical, chemical, and other phenomena. In the
Hypothesis Explaining ye Properties of Lightwhich he transmitted to
the Royal Society in December 1675,21 he assumed an elastic aethe-
real medium – not “one uniforme matter,” but rather compounded
of various “aethereall Spirits.” These aethereal Spirits could be con-
densable, so that “the whole frame of Nature may be nothing but
various Contextures of some certain aethereall Spirits or vapours
condens’d as it were by precipitation.” Terrestrial gravitation could
be due to a certain aethereal Spirit which is condensed in the body
of the Earth; in descending from above, it would “beare downe with
it the bodyes it pervades with a force proportionall to the superfi-
cies of all their parts it acts upon.” This aethereal matter, trans-
formed alchemically within the Earth, would then slowly ascend to
constitute the Earth’s atmosphere for a time, before vanishing again
into the aethereal spaces.“And as the Earth, so perhaps may the Sun
imbibe this Spirit copiously to conserve his shineing, & keep the
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Planets from recedeing further from him.” This downward flux,
Newton supposed, was separate from the aethereal vortex carrying
the planets about the Sun; the two fluxes passed through one another
withoutmixing. He considered that the downward flux of aether into
the central body would lead to an inverse-square law.22

The dynamics that Newton here relied on was the Cartesian dy-
namics of an endeavor from the center – plausible for a stone twirled
in a sling or a planet carried about in a vortex. What if the planet
moves inertially in a straight line, and is simultaneously attracted
to a center? Robert Hooke proposed the latter conception to Newton
in a letter of 24 November 1679.23

The import of facts changes with the changing ideas in the light of
which they are viewed. Evidence for an inverse-square law of force
may be taken, in a universe of vortices, as evidence for a certain kind
of aethereal flux; but it hardly suggests an opening into an exact,
quantitative theory of planetary motion: unknown aethereal pres-
sures within and between vortices may be operative. In a universe
empty of aethereal matter, on the other hand, such evidence suggests
a force somehow acting across the space from Sun to planet, as the
predominant determinant of the planet’s motion.

Newton in a tract “De motu” that he sent to Edmond Halley
in November 1684 proceeded along the lines of this latter concep-
tion. Centripetal force, he showed, implied equable description of
areas. Also, given a conic-section orbit about the Sun in a focus, the
force is inverse-square. Further, assuming inverse-square law implies
conic-section orbit, he showed how to find the conic section corre-
sponding to any particular initial conditions of position and velocity.
“Therefore,” he astonishingly claimed, “the major planets gyrate in
ellipses having their foci in the center of the Sun; and by radii drawn
to the Sun, describe areas proportional to the times, just as Kepler
supposed.”24

What led Newton to pursue Hooke’s conception we do not know.
PerhapsCometHalley, appearing in 1682 in its retrograde orbit across
the sky, at last convinced him that vortices could not exist.25

At least as interesting isNewton’s lack of conviction afterNovem-
ber 1684 as to the exact truth of Hooke’s conception or its sufficiency
to account for the phenomena. As he wrote Flamsteed on 12 January
1685, “Now I am upon this subject I would gladly know ye bottom
of it before I publish my papers.”26
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Newton had sought Flamsteed’s help in December. From Flam-
steed’s letter of 27 December he learned that the maximum elonga-
tions of Jupiter’s four satellites “are as exactly in sesquialte propor-
tion to theire periods as it is possible for our sences to determine.”27

This was good news: “Your information about ye Satellits of Jupiter
gives me very much satisfaction.”28 Flamsteed’s determinations,
made with the screwmicrometer, were precise to one-thousandth of
the semi-diameter of Jupiter’s disk.

Whether the mean solar distances of the primary planets agreed
with Kepler’s harmonic rule was still a question. “The orbit of
Saturn,” Newton wrote Flamsteed on 30 December, “is defined by
Kepler too little for ye sesquialterate proportion.” He went on to ex-
plain how he thought the motion of Saturn might be perturbed by
Jupiter. The idea astonished Flamsteed, but, responding on 5 January,
he acknowledged that his determinations had not yet been strict
enough to exclude “such exorbitation as you suggest of Saturn.”29

Newton replied:

Your information about ye error of Keplers tables for Jupiter & Saturn has
eased me of several scruples. I was apt to suspect there might be some cause
or other unknown to me, wch might disturb ye sesquialtera proportion . . . It
would ad to my satisfaction if you would be pleased to let me know the
long diameters of ye orbits of Jupiter & Saturn assigned by your self & Mr
Halley . . . that I may see how the sesquiplicate proportion fills ye heavens
together wth another small proportion wch must be allowed for.30

The “small proportion wch must be allowed for” is presumably the
modification of Kepler’s harmonic rule introduced in Propositions
57–60, Book 1 of the Principia.

Evidently Newton was now embarked on a program of substanti-
ating a dynamical conception whose full reach was in doubt. He had
yet to satisfy himself that the force between the planets and the Sun
was solely gravitational, that terrestrial gravity like the solar and
Jovial attractions was directly proportional to mass, that the gravi-
tational attraction of a body arose from the gravitational attractions
of all its least particles, etc.

The argument for universal gravitation is the crowning achieve-
ment of the Principia. The book abounds in mathematical triumphs
as well. True, not all its demonstrations are valid; it does not achieve
everything it attempts to achieve; it leaves unanswered questions
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that the idea of universal gravitation can raise. These judgments of a
pioneeringwork should not surprise. Both bywhat it achieved and by
what it failed to achieve, it set the agenda for the celestial mechanics
of the next two centuries.

How Newton and his successors responded to this agenda will be
our concern in the following sections.

newton on the moon’s motion

In Proposition 22, Book 3 of the Principia (all editions), with the aid
of Corollaries of Book 1 66, Newton showed qualitatively how the
known inequalities of the Moon arise from the varying difference
between the accelerations that the Sun causes in the Moon and
the Earth. These include the inequalities called “the Variation”
and the “annual equation,” the oscillations in the Moon’s orbital
eccentricity and apsidal line postulated in the lunar theory of
Jeremiah Horrocks, the inequalities in the lunar latitudes detected
by Tycho, and the general forward advance of the lunar apse.

Horrocks’s lunar theory had first been published by Flamsteed in
1672, and then republished with Flamsteed’s revised constants in
1681. It combined the Moon’s unperturbed elliptical orbit with the
second inequality due to the Sun (the “evection” as Boulliau called
it) to obtain an ellipse with oscillating eccentricity and apse. The
Horrocksian theory was the first lunar theory to admit in a direct
way of a Newtonian analysis in terms of forces.

The Principia includes certain quantitative derivations with re-
gard to the Moon’s motions. Such are the derivations of the motions
of the Moon’s nodes (Propositions 30–33, Book 3) and of the changes
in the Moon’s orbital inclination (Propositions 34, 35, Book 3); these
are valid and the results correct. Newton derives the Variation in
Propositions 26, 28, and 29, Book 3, with an accurate result (it as-
sumes without proof that the Sun has the effect of transforming an
idealized circular lunar orbit into one that can be approximated by
an ellipse with the Earth at the center).

In the first edition Scholium to Proposition 35, Book 3 of the
Principia, Newton speaks of computing the motion of the Moon’s
apogee, and finding its annual mean motion to be 40◦. “The com-
putations, however, as being too complicated and impeded by ap-
proximations, and insufficiently accurate, it is better to omit.” The
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manuscript in which these computations were made was discov-
ered in the late nineteenth century, and has been published by
Whiteside.31 It shows Newton taking account of both the radial and
transverse components of the Sun’s perturbing force; the analysis is
in many respects brilliant. It includes, however, an illegitimate step,
and the final result, as Whiteside judges, is fudged. In later editions
Newton omitted all reference to this computation.

In Corollary 2 of Proposition 45, Book 1 (all editions), Newton cal-
culated the effect of the radial component of the solar perturbation
in producing motion of the Moon’s apse, but without identifying the
calculation as having to do with the Moon. The calculated apsidal
advance per revolution was 1◦31′ 28′′. In the third edition Newton
added the remark: “The apse of the Moon is about twice as swift.”
To eighteenth-century readers, this appeared to be the sum total of
what Newton had supplied in the way of a quantitative derivation of
the Moon’s apsidal motion. “Neither,” wrote John Machin in 1729,
“is there any method that I have ever yet met with upon the com-
monly received principles, which is perfectly sufficient to explain
the motion of the Moon’s apogee.”32

On 1 September 1694 Newton visited Flamsteed at Greenwich.
Flamsteed showed him about 150 observed places of theMoon, along
with the corresponding places derived from his (Flamsteed’s) lunar
theory. The errors averaged to about 8 arc-minutes, but went as high
as 20 arc-minutes. Now, a primary purpose of Flamsteed’s appoint-
ment as “the King’s Astronomer” (in 1675), and of the establishment
of the Greenwich Observatory, was to obtain star positions and a lu-
nar theory accurate enough to enable navigators to determine the
longitude at sea. For determining the angular distance in longitude
from a given meridian to within 1◦, the lunar theory had to be accu-
rate to 2 arc-minutes. Newton, seeing that Flamsteed’s theory was
insufficiently accurate, undertook to develop amore accurate theory.

From Flamsteed Newton received a total of about 250 lunar obser-
vations, themost extensive and accurate database a lunar theorist had
yet had to base a theory upon. Newton’s new theory was published
in 1702, first in Latin, then in English, as A New and most Accurate
Theory of the Moon’s Motion; Whereby all her Irregularities may
be solved, and her Place truly calculated to Two Minutes.

The elements of the new theory are presented without explana-
tion of their derivation. The core of the theory is (like Flamsteed’s
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theory) Horrocksian but with revised numerical parameters. A few
specifically Newtonian features are added: special annual equations
in the meanmotions of the lunar apsides and node, with coefficients
of 20′ and 9′30′′ respectively, and four new small terms whose ori-
gin is unexplained, although in the second edition of the Principia
Newton asserted that they were derived from the theory of gravity.

Newton’s theory is not as accurate as claimed in the title of the
English version. But, when comparison is made with an historically
accurate modern ephemeris, he is found to have determined the
Moon’s mean motion for the period 1680–1700 with greater accu-
racy than any of his contemporaries. And,when the small error in the
meanmotion is removed, the corrected theory proves to have a stan-
dard deviation of 1.9 arc-minutes; 95% of its values thus fall within
3.8 arc-minutes of the correct values. The errors in Flamsteed’s
theory of 1681 were about twice as large.33 Not till 1753 would a
lunar theory accurate to within 2 arc-minutes be devised.

aberration, nutation, precession

In 1725 Samuel Molyneux and James Bradley undertook to repli-
cate observations of the meridian transits of Gamma Draconis that
Robert Hooke had made in 1669 – observations ostensibly confirm-
ing annual parallax in this star, and thus proving the Copernican hy-
pothesis. Hooke’s observations, they found, were mistaken: Gamma
Draconis was moving in an annual cycle, but not the one that an-
nual parallax implied. Later Bradley verified that other stars moved
in such annual cycles. The pattern of motion could be explained by
assuming that light has a finite velocity, and that the Earth ismoving
about the Sun, so that the direction of the light with respect to the
moving Earth had a component in the direction of the Earth’smotion.
Thus all the stars move annually in ellipses, with a long axis of about
40′′; the ellipses reduce to a straight line for stars on the ecliptic, and
to circles for stars near the ecliptic North Pole. Bradley announced
the discovery of this effect, which he named the aberration of light,
to the Royal Society early in 1729.

Thereafter he discovered that, besides aberration, further stellar
motions were occurring; and he was able to account for them as
a kind of wobble in the precessional motion of the Earth’s axis – a
nutation – with a period of eighteen years, the period of revolution of
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the Moon’s nodes. He announced this discovery to the Royal Society
in January 1748, after verifying the hypothesis over a complete cycle.

For the attainment of an astronomy accurate to arc-seconds, these
discoveries were crucial. Previously, aberration and nutation, un-
recognized, had played havoc with attempts to found observational
astronomy on a secure basis. As the astronomer Nicolas-Louis de
Lacaille (1713–62) put it, “Many obscurities thus arose . . . it finally
seemed that hardly anything certain could be deduced from the heav-
ens. Fortunately, to meet such evil, at length came Bradley.”34

The nutation, which Newton had not predicted, required an ex-
planation in terms of inverse-square gravitation, and in mid-1748
Jean le Rond d’Alembert (1717–83) set about deriving it. Nutation
is a refinement of the precession of the equinoxes, and d’Alembert
soon found that Newton’s explanation of the precession (Proposi-
tion 66, Corollary 22, Book 1, and Proposition 39, Book 3 with the
preceding lemmas) was deeply flawed.35 Newton’s basic error arose
from his lack of an appropriate dynamics for the rotational motions
of solid bodies, and his attempt to treat problems involving suchmo-
tions in terms of linear momentum rather than angular momentum.
D’Alembert now furnished the elements of the appropriate dynam-
ics, and Leonhard Euler systematized it.

the motion of the lunar apse derived
from the inverse-square law

The first to apply Leibnizian-style mathematics, that is to say differ-
ential equations, to the problemof theMoon’smotionswas Leonhard
Euler. He published lunar tables in 1745, then revised them for his
Opuscula Varii Argumenti of 1746. In the preface to the tables in the
Opuscula, he stated that they were derived from Newton’s theory of
attraction, but gave no details.

In the spring of 1746 Alexis-Claude Clairaut (1713–65) and
d’Alembert separately set out to derive differential equations for
the three-body problem, and to apply them to the Moon’s motions.
By the summer of 1747 Clairaut knew that a first-order solution to
his equations yielded reasonable values for the major perturbational
terms, but only about half the observed motion of the Moon’s apse.
Meanwhile, Euler’s essay on the perturbations of Jupiter and Saturn,
submitted in the Paris Academy’s prize contest for 1748, arrived, and
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Clairaut, as a member of the prize commission, read it in September
1747. Therein Euler expressed doubt as to the accuracy of the inverse-
square law of gravitation, and, in support of his doubt, stated that
Newton’s law led to but half the observed motion of the lunar apse.

Addressing the Paris Academy in November 1747, Clairaut pro-
posed thatNewton’s law be altered by the addition of a small, inverse
fourth power term, whereby the full motion of the lunar apse would
become deducible. This proposal unleashed a storm of controversy.36

Clairaut retracted his proposal in May 1749. In outline, the reversal
came about as follows.37

From his differential equations, Clairaut had obtained by a double
integration the result

f 2
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where f, g, and q are constants of integration, M is the sum of the
masses of the Earth and the Moon, v is the true anomaly, and � is
a function of r and the perturbing forces. To solve this equation for
r, it was necessary to substitute an approximate value of r into � on
the right-hand side. It was known empirically that the Moon’s apse
moves, and Clairaut proposed using the formula k/r = 1− e cos mv,
which represents a precessing ellipse. Here k, e, m are presumptive
constants, determinable in terms of other constants in the equation.
The resultant motion, Clairaut hoped, could be largely accounted
for – small oscillations excepted – as motion on a precessing ellipse.

In the initial outcome, this hope appeared to be satisfied.Clairaut’s
modified equation took the form
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where n is theMoon’smean siderealmotion divided by itsmean syn-
odic motion, and 	, 
 , � evaluated in terms of the other constants in
the theory were found to be 0.007090988, −0.00949705, 0.00018361,
hence small relative to e (known empirically to be about 0.05).

From the beginning, Clairaut had supposed that a second-order
approximation was eventually to be carried out, to refine the coef-
ficients of the several terms of the theory preparatory to construct-
ing tables. In this second approximation, formula (2), with 	, 
 , �

retained as symbols, would be substituted back into � in (1), and the
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latter equation would again be solved for r. Before the spring of 1749,
Clairaut had not supposed that this refinement could lead to other
than minor improvements in the coefficients; certainly it could not
result in a doubled value for m! The calculation proved him wrong.
The contributions coming to m from the term with coefficient 


were especially sizeable. This term was proportional to the trans-
verse perturbing force, whereas the initially computed contribution
to m had been proportional to the radial perturbing force. Clairaut’s
final result for the apsidal motion per month was 3◦2′6′′, just 2′ shy
of the empirical value he accepted.

Euler, learning of Clairaut’s turnabout, tried to find the error in his
own derivation. At last on 10 April 1751 he was able to tell Clairaut
of his success.38 Euler’s unstinting praise for Clairaut’s achievement
overflows into another letter of 29 June 1751:

the more I consider this happy discovery, the more important it seems to
me, and in my opinion it is the greatest discovery in the Theory of Astron-
omy . . .For it is very certain that it is only since this discovery that one can
regard the law of attraction reciprocally proportional to the squares of the
distances as solidly established; and on this depends the entire theory of
astronomy.39

the ‘great inequality’ of jupiter and saturn

The values for the mean motions of Jupiter and Saturn given in
the Rudolphine Tables were early recognized to require correction.
Jupiter wasmoving faster than Kepler’s numbers implied, and Saturn
slower. Flamsteed labored for nearly five decades to correct the the-
ories of these planets, at first by simply refining their Keplerian
elements. In the 1690s he asked Newton for help. Newton proposed
taking as the focus of Saturn’s orbit the center of gravity of Jupiter and
the Sun, and introducingHorrocksian-style oscillations into Saturn’s
eccentricity and line of apsides (see Proposition 13, Book 3 of the
Principia); his suggestions were not numerically specific. Flamsteed,
left to his own devices, sought an oscillation in the motion of each
of the two planets, such as might bring their theories into line with
observations, but eventually gave up in despair.40

EdmondHalley (1656–1742), in planetary tables published posthu-
mously in 1749, introduced a secular acceleration of Jupiter’s mean
motion of +3◦49′.4 in 2000 years, and a secular deceleration of
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Saturn’s mean motion of −9◦16′.1 in 2000 years. This proposal was
widely accepted by astronomers.

In a paper completed in 1774, Pierre-Simon Laplace (1749–1827)
demonstrated that, to the first order with respect to the masses, and
to the second order with respect to the eccentricities and inclina-
tions,mutual planetary perturbations could not produce secular vari-
ations of the mean motions. Joseph Louis Lagrange (1736–1813) in
1776 extended this result to all powers of the eccentricities and in-
clinations. In 1784 he showed that secular acceleration of the mean
motions arising indirectly from secular accelerations in other or-
bital elements would be negligible for Jupiter and Saturn. Thus the
anomalous motions of these planets remained unexplained. Laplace
thought they might be due to perturbation by comets. Up to late
1785, they posed for Laplace the chief obstacle to asserting the sta-
bility of the solar system – its freedom from runaway variables.

At last, on 23 November 1785, Laplace announced to the Paris
Academy that he had succeeded in resolving the anomalies. He had
found that a periodic inequality of the third order with respect to the
orbital eccentricities and inclinations of Jupiter and Saturnwas large,
with a coefficient of 49′ for Saturn and 20′ for Jupiter, and a period
of some 900 years. A few shorter-term inequalities resulted from the
combination of this long-term inequality with known inequalities,
and all the inequalities taken together yielded a theory agreeing with
both ancient and modern observations. Laplace’s completed theory
of Jupiter and Saturn appeared in 1786.

Inequalities of the third order in the eccentricities and inclinations
had not been computed earlier because of the labor involved; only
zeroth-order and first-order perturbations had been computed sys-
tematically. Laplace in attacking the higher-order inequalities pro-
ceeded by a species of sharpshooting, which left uncertain whether
all terms to a given order of smallness had been accounted for. But
his methods were empirically successful.

By December 1787 Laplace had an explanation for the one remain-
ingmajor anomaly in the solar system, the secular acceleration of the
Moon originally discovered by Halley in the 1690s. The secular de-
crease in the Earth’s orbital eccentricity, Laplace showed, would lead
to a secular diminution of the radial component of the Sun’s perturb-
ing force; consequently the Moon’s mean motion would accelerate.
(As we shall see later, this explanation was only partially correct.)
To Laplace, it now appeared that Newton’s law of gravitation was
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sufficient to account for all the motions in the solar system, and
that the system was stable, like well-designed clockwork. This idea
inspired his Exposition du système du monde (1796) and his Traité
de mécanique céleste (first four volumes, 1798–1805).

accurate lunar prediction

The first three analytic theories of theMoon to be published, those of
Clairaut (1752), Euler (1753), and d’Alembert (1754), proved accurate
only to 4 or 5 arc-minutes, hence insufficiently accurate to meet the
needs of navigation. But in 1753 Tobias Mayer (1723–62) published
lunar tables which, compared with 139 lunar longitudes observed
by Bradley from 1743 to 1745, deviated on average by only 27′′, and
at maximum by only 1′37′′. In subsequent years Mayer refined his
tables; his final version of them, submitted by his widow to the
British Board of Admiralty in 1762, became the basis for the British
Nautical Almanac. How did Mayer achieve such accuracy?

He had carried out an analytic derivation of the lunar inequal-
ities from Newton’s law in his Theoria Lunae juxta Systema
Newtonianum, completed in 1754 but published only in 1767. In this
he deduced forty-six perturbational corrections to the mean motion.
They could be reduced, he then showed, to thirteen steps of progres-
sive correction. In his preface he stated:

the theory has this inconvenience, that many of the inequalities cannot be
deduced from it accurately, unless one should pursue the calculation – in
which I have now exhausted nearly all my patience – much further. My aim
is rather to show that at least no argument against the goodness of my tables
can be drawn from the theory. This is most evidently gathered from the
fact that the inequalities found in the tables, which have been corrected by
comparison with many observations, never differ from those that the theory
alone supplies by more than 1

2
′
.

How did Mayer carry out his “comparison with many observa-
tions”? In all likelihood by applying a statistical procedure he had
learned from Euler. Multiple equations of condition, derived from
observation, were used in evaluating differential corrections to the
elements of a theory; the equations were solved by neglecting small
terms. (The invention of the more reliable method of least squares
was still a half-century away.) The predictive accuracy of Mayer’s
tables rested on the empirical refinement of coefficients.
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Revisions of Mayer’s tables were carried out by Charles Mason in
1778 and by Johann Tobias Bürg a little later, in each case on the
basis of large numbers of observations. “[Their tables] correspond
with the observations made on the Moon,” Laplace remarked, “with
a degree of accuracy that it will be difficult to surpass.”41 In a few
respects Laplace’s lunar theory (published in 1802) improved on the
empirically grounded tables; in other respects Laplace could aimonly
tomatch the accuracy of these tables. In 1811 JohannKarl Burckhardt
(1773–1825) completed new lunar tables, based on Laplace’s theory
together with 4000 observations; they would serve as the basis for
the French and British lunar ephemerides until 1861.

Not till 1862 did the national ephemerides come to be based on
a lunar theory in which the inequalities (a very few excepted) were
deduced from theNewtonian theorywithout resort to statistical cor-
rection. This was the lunar theory of Peter Andreas Hansen (1795–
1874), elaborated by a method derived from the Lagrange–Poisson
theory of variation of orbital constants. Hansen’s theory was the first
perfectly rigorous deduction of the lunar inequalities fromNewton’s
theory. It would remain the basis of the national ephemerides until
1922.

Hansen’s theory was numerical rather than literal: it did not give
for each coefficient an algebraic formula that could be re-derived and
so independently checked for accuracy. A literal theory, at least as ac-
curate as Hansen’s, was achieved by Charles Eugène Delaunay in the
1860s. The series giving the coefficients, however, converged all too
slowly. The problemof slow convergencewas at length overcome in a
new and innovative theorywhose foundationswere laid byG.W.Hill
in the 1870s. In 1888 E.W. Brown commenced the process of develop-
ingHill’s foundational ideas into a complete lunar theory. The result-
ing tables, demonstrably more accurate than all their predecessors,
became the basis of the British and American ephemerides in 1923.

Nevertheless, small, long-term changes in the Moon’s mean mo-
tion remained puzzling.

cometary orbits, unperturbed and perturbed

On 20 June 1686 Newton reported to Halley that “the third [book]
wants ye Theory of Comets.”42 He had been hard put to discover a
way of fitting an orbit to cometary observations. Sometime before
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April 1687 when he sent the completed manuscript of Book 3 to
Halley, he hit on a graphical method of fitting a parabolic trajectory
to three observations. The longitude of the perihelion and node and
the orbital inclination determined in this way are very nearly correct
even if the orbit is elliptical rather than parabolic.

Edmond Halley used a partially arithmetized version of Newton’s
procedure to determine the parabolic orbital elements of some
twenty-four comets, as presented in his Synopsis Astronomiae
Cometicae (1705). The elements of the retrograde comets appearing
in 1531, 1607, and 1682 were nearly identical, and Halley declared
himself convinced that these three comets were one and the same.
The two intervals between the three apparitions differed by nearly a
year, but Halley believed the difference could be caused by perturba-
tion due to Jupiter. In an expanded version of the Synopsis published
posthumously with his Tabulae Astronomicae of 1749, Halley pre-
dicted that the comet would reappear toward the end of 1758 or the
beginning of 1759.

For astronomers of the 1750s, Halley’s prediction presented two
challenges: to locate the returning comet as soon as possible and de-
termine its parabolic elements; and to predict fromNewton’s theory
and the previous apparitions the time of the new perihelion passage.
The second taskwas undertaken byClairaut, assisted by Lalande and
Mme. Lepaute.

For his calculation Clairaut used the differential equations he had
derived for the three-body problem. The new application was far
more labor-intensive than the earlier application to theMoon. In the
Moon’s case, the integrands were approximated by trigonometric se-
ries and so rendered integrable. The goodness of the approximation
depended on the rapidity of convergence of the series, which in turn
depended on the orbit being nearly circular. The orbit of Halley’s
comet is very elongated. Trigonometric series could not be used, and
Clairaut and his colleagues had to resort to numerical integration.
Thiswas the first large-scale numerical integration ever performed.43

In November 1758, Clairaut, in order not to be forestalled by the
comet, announced preliminary results, predicting a perihelion pas-
sage in mid-April 1759, give or take a month. The comet was first
detected by JohannGeorge Palitzsch on 25December, and then inde-
pendently by Charles Messier on 21 January. In March it disappeared
into the rays of the Sun, then reappeared on 31 March. Calculation
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showed that the perihelion had occurred on 13March, a month ear-
lier than Clairaut had predicted. This was the first proof that comets
may indeed return, andmove in accordancewith theNewtonian law.

the problem of the earth’s figure and the
problem of the tides

Newton addressed both these problems in his Principia; in both cases
his attack on them proved inadequate, and further advances were
made only after the introduction of new and more powerful mathe-
matical techniques.

In Proposition 19, Book 3Newton showed that for a homogeneous
spherical Earth subject to inverse-square gravity and rotating diur-
nally, the downward acceleration at the Equator would be 288/289
of that at the Pole. Supposing the Earth to have been initially fluid,
and assuming as its equilibrium shape an infinitesimally flattened
ellipsoid of revolution, he claimed that all linear columns from cen-
ter to surface would weigh the same, and inferred a flattening of
1/229. Could the assumptions be justified, and could Newton’s con-
clusions be extended to cases (like Jupiter’s) where the flattening was
greater? Newton asserted without demonstration that, if the density
increased toward the center, the flattening would be greater.

In analytical studies using partial differentiation and culminating
in his Théorie de la terre of 1743, Clairaut showed that a homoge-
neous, rotating ellipsoid of revolution with infinitesimal flattening
could be a figure of equilibrium. He showed further that for an Earth
consisting of individually homogeneous ellipsoidal strata with in-
finitesimal flattening but with densities increasing toward the cen-
ter, the Earth would be less flattened than in the homogeneous
case, with a flattening between 1/576 and 1/230. He supplied a new
necessary condition for a rotating figure to be in equilibrium: the
work to take a unit mass round any closed path within the body
must add to zero.

The discussion was taken up again by Adrien-Marie Legendre
(1752–1833) and Laplace in the 1780s. Legendre introduced the
Legendre polynomials for expressing the attraction, potential, and
meridian curve of equilibium figures of revolution. Laplace then gen-
eralized these results to ‘spheroids’, understood as any figures given
by a single equation in r, �, and �.
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A reconciliation of these mathematical results with practical
geodetical measurements was effected only after F. W. Bessel’s intro-
duction of a sophisticated statistical understanding of the geodesist’s
task.

Newton’s account of the tides appears in Propositions 24, 36, and
37, Book 3. Newton assumed that the waters would be raised in
places directly underneath the Sun or the Moon, and also on the op-
posite side of the Earth, and would be depressed in places 90◦ distant.
He supposed the height of the tide would be as the force raising it. He
in effect assumed that the instantaneous figure of the waters raised
by the Sun or the Moon would be a prolate ellipsoid with longer
axis directed toward the attracting body. The height of the tide at
any given place and time would be the sum of the radii vectores
in the two ellipsoids at that place, minus the radius vector for the
undisturbed sea. But the highest tide, Newton knew, did not occur at
the syzygies, when the two ellipsoids combined to give a maximum
height, but rather some forty-three hours later. He attributed this
delay to the inertia of the waters.

Newton’s theory leads to a number of predictions that are con-
tradicted by observation. Thus it implies that two consecutive high
tides at the time of the syzygies should differ greatly in height, es-
pecially when the difference in declination of the Sun and Moon is
greatest; whereas these tides are known to be of nearly equal height.
Laplace, stimulated by this and other anomalies, devised an analyt-
ical account of the tides based on the solution of partial differential
equations; modern tidal theory has its starting point in his account.
He showed that inertial maintenance of motion is negligible in the
tides, and that the differences in linear speed of thewaters at different
latitudes owing to diurnal rotation play a significant role.

limitations of newton’s theory of gravitation

In 1787, as we have seen, Laplace claimed to show that the Moon’s
secular acceleration arose from a secular decrease in the radial com-
ponent of the Sun’s perturbing force. The tangential component, he
assumed, contributed nothing to the effect. In 1853 J. C. Adams
showed that, in fact, the tangential component diminished the over-
all effect, reducing it to 6′′ per century. Delaunay confirmed Adams’s
calculation in 1859.
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In 1865Delaunay suggested that the tidal protuberances raised by
the Moon, being carried eastward of the Moon by the Earth’s diurnal
rotation, would be attracted backward by theMoon; friction between
the tidal water and the solid Earth could then slow the Earth’s rota-
tion, making the Moon appear to accelerate. To the Moon’s action
on the tidal bulge must correspond a contrary force on the Moon,
speeding it up so that it rises into a higher orbit with a reduced mean
angular motion in longitude. This effect appeared to be confirmed in
1920 by J. K. Fotheringham in studies of ancient eclipses.44 He found
10′′.8 for the secular acceleration of the Moon, and 1′′.5 for the secu-
lar acceleration of the Sun. The latter effect presumably arises solely
from the retardation in the Earth’s diurnal rotation. Because the
Moon’s mean motion is 13.4 times the Sun’s, the acceleration of the
Moon due to the same cause should be 13.4 × 1′′.5 = 20′′T 2. With
the 6′′T 2 found by Adams added, the total result is 26′′T 2, exceed-
ing the observed secular acceleration by about 15′′. The difference
is attributable to the second half of the action–reaction pair in the
interaction between the Moon and the terrestrial tides.

The Earth–Moon system is thus evolving in time, and so, it ap-
pears, are other satellite–planet pairs in the solar system. In our
Moon’s case, the effects of tidal friction appear to undergo irregular
variations in rate. We have consequently to allow that the Moon’s
places are, to a small extent, subject to temporal changes in tidal
friction.

Non-gravitational forces are now accorded a role in cometary mo-
tion. The second periodic comet to be discovered was Comet Encke,
first located in 1818. It had a period of 3.3 years, but when Encke
computed the perturbations he found a non-gravitational decrease
of about 2.5 hours per period, which he attributed to aethereal re-
sistance. Those who in the 1830s computed the perturbations of
Halley’s Comet to predict its perihelial passage in 1835 found its
period to be increasing – a change not attributable to aethereal resis-
tance. Current opinion assigns these non-gravitational accelerations
to outgassing in the comet’s near approach to the Sun; the comet
is rotating, and the thrust it receives from the outgassing is a little
delayed, so as to have a component accelerating or decelerating the
comet’s orbital motion.45

In 1859 U. J. J. Le Verrier discovered that some 38 arc-seconds
per century of the precession of Mercury’s perihelion could not be
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accounted for on the basis of Newton’s inverse-square law.46 (The to-
tal observed apsidal precession is about 5596′′ per century, of which
over 5000′′ is due to the precession of the equinoxes, and over
500′′ to planetary perturbation.) In 1882 Simon Newcomb revised
Le Verrier’s value for the discrepancy upward to 43 arc-seconds per
century. Asaph Hall in 1894 proposed accounting for the discrepancy
by taking the exponent in the gravitational law to be−2.00000016.47

In 1903, however, Ernest W. Brown showed this suggestion to be un-
tenable: he had by this time developed the Hill– Brown lunar theory
far enough to rule out an exponent differing from−2 by 0.00000016.48

In 1915Einstein showed that the anomalous apsidal precession could
be derived from his Theory of General Relativity.49

Thus Newton’s law of gravitation is not strictly correct. The ba-
sis of the national ephemerides remained essentially Newtonian till
1984, when a post-Newtonian basis, incorporating relativistic terms,
was adopted. The measurement of time, derived from atomic clocks
on a rotating Earth, also requires correction for relativistic effects.50
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7 Newton’s optics and atomism

After his first optical publications in 1672Newton was identified by
his contemporaries and later generations as a supporter of the corpus-
cular or emission theory of light, in which light is assumed to consist
of corpuscles, or atoms, emitted from a luminous source such as the
Sun. While it is true that Newton believed in a corpuscular theory,
utilized it in developing many of his optical experiments and theo-
ries, and argued vigorously against the wave theory of light, he never
believed that it was a demonstrated scientific truth and considered
it to be only a probable hypothesis. This distinction explains why,
for example, he never set forth a synthetic account of the emission
theory and eschewed it in his public accounts of his scientific theo-
ries. In order to understand Newton’s advocacy and use of atomism
in his optics it is necessary to understand his views on hypotheses
and certainty in science.

hypotheses in newton’s science

From the beginning of his scientific career Newton was concerned
with establishing a new, more certain science to replace con-
temporary science, which he felt was rife with “conjectures and
probabilities.”1 He believed that he could establish a more certain
science both by developing mathematical theories and by basing
his theories on experimentally discovered properties. To establish
a more certain science, Newton insisted that one must “not mingle
conjectures with certainties.”2 To avoid compromising rigorously
demonstrated principles by hypotheses, he developed the techniques
of clearly labeling hypotheses as such and setting them apart, as with
his “An hypothesis explaining the properties of light discoursed of

227
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in my severall Papers” in 1675, or with the queries appended to the
Opticks in 1704 and in subsequent editions.

As part of his campaign to reform science, Newton continually
railed against hypotheses, that is, conjectural causal explanations.
His condemnations of hypotheses – the most famous being his
“hypotheses non fingo” (I do not feign hypotheses) in the Principia
(1687) – are always aimed at preserving the certainty of scientific
principles rather than objecting to the use of hypotheses in them-
selves. Newton held that hypotheses without any experimental sup-
port whatever, such as Cartesian vortices, had no place in science,
but those based on some experimental evidence, though insufficient
to establish them as demonstrated principles, could be used to under-
stand properties already discovered and to suggest new experiments.
The corpuscular theory of light fell into the second category.

Newton believed that by formulating his theories phenomenolog-
ically, in terms of experimentally observed properties, or principles
deduced from them, without any causal explanations (hypotheses)
of those properties, he could develop a more certain science. While
he considered causal explanations to be desirable, they never play an
essential or necessary role in his science. As we shall see, however,
in his private work Newton did use hypotheses to develop theories
and predict new properties. When he used hypothetical causes such
as light corpuscles and the aether in this way, he then purged them
(or, at least, attempted to do so) from his public work and reformu-
lated his theories in terms of experimentally discovered “properties”
such as unequal refrangibility and periodicity. Newton appears never
to have questioned the possibility of constructing an hypothesis-free
science. To have denied such a possibility would have been tanta-
mount to denying his conception of science.

By examining the role of atomism inNewton’s theory of color and
refraction and the colors of thin films, we will see how his attitude
on the proper use of hypotheses in science played a fundamental role
in the development and formulation of those theories. In investigat-
ing the colors of thin films, he introduced another hypothesis – a
vibrating aether – in order to account for the periodicity of light.
The hypothesis of a vibrating aether suffered a very different fate
from that of light corpuscles, for the former – as “fits” devoid of the
aether – was eventually raised to a demonstrated principle, while the
latter always remained an hypothesis. We will examine the different
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fate of these two hypotheses. Although Newton’s methodology can
be considered to be very conservative, I shall argue that his refusal to
accept the corpuscular theory as true was justified by the course of
his own research program. Finally, we will consider Newton’s theory
of colored bodies, where he used an atomic theory of matter, but did
not consider that to be an hypothesis.

theory of light and color

Given this philosophical background, we should not expect
Newton’s use of the corpuscular theory of light to be readily evident
in his published scientific works; rather we have to turn to his un-
published papers and his speculative writings. Optics was one of the
subjects to which Newton devoted himself in his early years of dis-
covery, 1664–6. In his commonplace book “Questiones quaedam
philosophicae” (Certain Philosophical Questions) from this period
Newton recorded, under the entry “Of Colours,” his thoughts on
optical subjects such as the nature of color and the cause of reflec-
tion and refraction. In all of his speculations he consistently worked
with a corpuscular theory, though he seemed to be trying out a whole
range of ideas for the physical interactions between bodies and light
corpuscles, or, as he then called them, “globuli.”3 He considered the
reflection of the light corpuscles variously to occur from the aether
within the pores of bodies, from loose particles within the pores, and
from the particles of the body. He also could not decide whether the
color of light rays was due to their speed alone or their speed and
mass (momentum), and he carried out a calculation of the change of
momentum of light corpuscles of different size after colliding with
particles of different size.

In the midst of these notes Newton made one of his most funda-
mental discoveries, namely, that rays of different color are refracted
different amounts.4 While his notes show that hemade an attempt to
explain this discovery in terms of the mechanical parameters of the
particles, he soon largely abandoned such speculations to carry out
a further series of experiments and develop a theory of the nature of
sunlight and color. Newton worked out the essential elements of his
theory by 1666. He formulated it in substantial detail in his Optical
Lectures delivered at Cambridge University between 1670 and 1672,
but he did not publish the theory until February 1672, when his
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“New theory about light and colors” appeared in Philosophical
Transactions. In order to see what role, if any, atomism or the cor-
puscular theory of light played in the development and formulation
of that theory, I will briefly sketch its key elements.

Newton established his theory with a series of experiments with
prisms that by the early eighteenth century became a model of an
experimental science.5 All of his optical investigations, which were
gathered together in the Opticks, were founded on an extensive se-
ries of interlocking experiments, usually variants on a small number
of fundamental experimental arrangements. His experiments play a
variety of roles in his researches, for example determining the precise
nature of the phenomenon and its causes, confirmation of them, and
elimination of alternatives. Sometimes, as in the Optical Lectures,
the large number of experiments with slight variations to establish
various points may seem tedious, but Newton attempted to leave no
room for objections.

The essential point of his theory of light and color is that sunlight
or white light is a mixture of rays differing in degree of refrangibility
and color. He found that, at the same angle of incidence, rays of
different color are refracted different amounts and that there is a
constant correspondence between color and degree of refrangibility;
that is, the red rays are always least refracted, the violet most, and
the intermediate colors intermediate amounts (Figure 7.1). Rays of
each color apart obey Snell’s law of refraction, but with a different
index of refraction for each.

The color of a ray, he found, is immutable and cannot be changed
by reflection, refraction, transmission, or any other means. In order
to develop his new theory further, he introduced his new concepts
of simple and compound colors. Though these two sorts of color
appear identical to the eye, simple or primary colors consist of rays
of a single degree of refrangibility and compound ones are a mixture
of rays of different refrangibility. They can always be distinguished
by refraction, which separates or decomposes the rays of different
refrangibility that make up compound colors while leaving simple
colors unchanged.

The colors of the spectrum – red, yellow, green, blue, and vio-
let – together with their intermediate gradations, are primary colors.
“But,” Newton announced, “the most surprising and wonderful
composition was that of Whiteness . . . ’Tis ever compounded.” This
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into rays of different degrees of refrangibility and color.

was the most revolutionary part of the theory, for sunlight had
universally been considered to be simple, homogeneous, and pure,
whereas colors were assumed to be some modification of sunlight.
“Colours are not Qualifications of Light,” Newton concluded,
“derived from Refractions, or Reflections of natural Bodies (as ’tis
generally believed,) but Original and connate properties.”6 When-
ever colors appear, they are only separated from sunlight; they are
never created. The theory of color was the foundation for all of
Newton’s subsequent optical research.

The fundamental idea underlying Newton’s theory, that light rays
always preserve their identity – color and degree of refrangibility –
whether they are isolated or mixed together, or whatever processes
they undergo, certainly seems to be most naturally understood in
terms of light rays as atoms. Indeed, the three early and eminent crit-
ics of Newton’s theory – Robert Hooke, Ignace Gaston Pardies, and
Christiaan Huygens – perceived that Newton supported an atomic
theory of light and were concerned that his color theory was in-
compatible with a wave theory. In replying to Hooke’s accusation,
Newton did not deny that he believed in the emission theory, but
insisted that it played no part in his theory of color. He replied that,

Had I intended any such Hypothesis I should somewhere have explained it.
But I knew that the Properties wch I declared of light were in some measure
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capable of being explicated not onely by that, but bymany otherMechanicall
Hypotheses. And therefore I chose to decline them all, & speake of light in
generall termes, considering it abstractedly as something or other propagated
everyway in streight lines from luminous bodies, without determiningwhat
that thing is.7

Newton’s remarks illustrate many of the features of his optical
science that I sketched in the introduction: its phenomenologi-
cal formulation, which considers light “abstractedly” and describes
properties and avoids hypotheses, and his clear declaration that the
emission theory of light is an hypothesis.

To reassure his opponents that his theory does not depend on light
corpuscles he then explained how the wave theory could be accom-
modated to it. If wave theorists considered sunlight to consist of
a mixture of waves of various wavelengths (“depths or bignesses”)
each of which is refracted differently and excites a different color,
then their theories would be compatible with his color theory with-
out any need to adopt light corpuscles. After offering this pioneering
suggestion, he then set out what would throughout his life be his
principal objection to the wave theory, the violation of rectilinear
propagation: “namely that the waves or vibrations of any fluid can
like the rays of Light be propagated in streight lines, without a con-
tinuall & very extravagant spreading & bending every way into ye

quiescent Medium where they are terminated by it. I am mistaken
if there be not both Experiment & Demonstration to the contrary.”8

Of course, light rays conceived of as atoms would naturally move in
a straight line when they were in a uniform medium.

It cannot be doubted that Newton fruitfully utilized the emission
theory in devising his color theory or that it was easier to imagine
his theory within a corpuscular theory where the light corpuscles
retained their identity throughout, but there is insufficient evidence
to conclude that it was an essential element in his thinking.9

explaining reflection, refraction,
and dispersion

Newton most systematically utilized the emission theory of light in
his quest to explain refraction and chromatic dispersion (the amount
that the rays of different color are separated by refraction, angle PFT
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in Figure 7.1). His aim was to derive quantitative measures of these
effects for different substances by a strict mechanical approach, as-
suming that light corpuscles are deflected at the interface of different
media.

The law of reflection had been known since antiquity and had
been relatively easy to explain in a corpuscular theory by a simple
collision model in analogy to the reflection of a ball from a hard
surface. In his earliest notes Newton used collisions between the
corpuscles of light and bodies to explain both reflection and refrac-
tion. However, he soon recognized that when matter was assumed
to have an atomic structure, this model broke down. On an atomic
scale the surface of a reflecting body is not smooth like a mirror but
very rough, with corpuscles separated by pores. Reflection could not
occur from the corpuscles of the body because this would require the
fortuitous arrangement of all the corpuscles, whatever the angle of
incidence, such that the rays were reflected from the body at an angle
equal to their angle of incidence. This required reflection to occur
from the aether or, later in the Opticks, “some power of the Body
which is evenly diffused all over its Surface,” namely, a force.10 These
solutions were hypothetical, though the experimental and observa-
tional evidence that he marshaled in the Opticks against reflection
actually occurring from the corpuscles of bodies was overwhelming.

Newton moved beyond such qualitative physical models in an
essay “Of Refractions,” probably written between 1666 and 1668,
and calculated a table for the index of refraction of the extreme rays
(red and violet) in various media passing into air from water, glass,
and “christall.” From an entry in the table, “The proportions of ye

motions of the Extreamely Heterogeneous Rays,” it is clear that he is
considering the motion of corpuscles.11 It is possible to reconstruct
his table on this assumption, especially since he utilized the same
model in his Optical Lectures, though he there suppressed any men-
tion of corpuscles or motions.12 Newton assumes (Figure 7.2) that
when a light ray IX in air enters glass at the boundary AB at grazing
incidence (i.e., parallel to the refracting surface), rays of each color
receive the same increase of velocity perpendicular to the refracting
surface. If XC, XD, XE represent the parallel component of the mo-
tion of the violet, green, and red rays in air, which is unchanged after
refraction, then XP, XR, and XT represent the refractions of these
rays. Each has had the identical quantity of velocity perpendicular
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Fig. 7.2 Newton’s dispersion model from his Optical Lectures.

to the surface, CP, DR, ET, added to its parallel component of veloc-
ity. The refractions at any other mediummay be readily determined
by this model once the mean refraction X� is known. This model as-
sumes that the projections parallel to the surface of all spectra are of
equal length and that the same colors always occupy equal portions
of it, that is, that chromatic dispersion is a property of light and not
of the refracting media.

In his Optical Lectures Newton left the origin of this dispersion
law totally mysterious, while conceding that “I have not yet derived
the certainty of this proposition from experiments . . .meanwhile be-
ing content to assume it gratuitously.”13 For much of the Optical
Lectures he pursued the implications of this law and derived numer-
ous spurious properties of colored light, all with little or no concern
with reality. Meanwhile, he had deduced another dispersion law on
different grounds.14 Newton was unable to choose between them on
the limited number of measurements that he made. Had he exam-
ined a greater range of substances, he would have found that nei-
ther is true.15 Newton abandoned his plans to publish the Optical
Lectures for a number of reasons, but it is hard to believe that he
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did not recognize that his dispersion law was an hypothesis that
went nowhere. None the less, throughout his career he continued
his quest to find a mathematico-mechanical explanation of refrac-
tion and dispersion, since the promised payoff was so high – namely,
a mathematical foundation for a theory of color – and the models so
tractable by the new science. He would return to it in the Principia.

Newton’s dispersion model was inspired by Descartes’s deriva-
tion of the law of refraction (Snell’s law) in the Dioptrique (1637).
The derivation was based on an analogy to a ball that has its velocity
altered on crossing the boundary of two refracting media. In a me-
chanics that was based solely on contact action, it was difficult for
Descartes to explain how the speed of the projectile was changed, es-
pecially when its speed increased in passing into an optically denser
medium. In his “An hypothesis explaining the properties of light dis-
coursed of inmy severall Papers,” which he sent to the Royal Society
in December 1675, Newton explained how an aether could serve as
the cause of refraction. He assumed that the aether permeates all
space and is rarer in denser substances that have narrow pores, such
as glass andwater, than in free space such as air. When a light corpus-
cle moves through a region of aether of varying density, as near the
boundary of two bodies, it is pressed by the denser aether towards
the rarer, “& receivs a continuall impulse or ply from that side to
recede towards the rarer, & so is accelerated if it move that way, or
retarded if the contrary.” If it is further assumed that the change of
motion occurs perpendicular to the refracting surface, then Snell’s
law will follow.16

WhenNewton had developed the concept of force in the Principia,
he concluded Book 1with Section 14 on the analogy between themo-
tion of corpuscles and light. By replacing the action of the aether in
his earlier model of refraction by an intense short-range force be-
tween the corpuscles of the refracting body and light, he offered
a powerful approach to optics and, more generally, to physics. In
Figure 7.3 the force is assumed to act in the very small region be-
tween the refracting surfacesAa, Bb and perpendicular to them. The
motion of the particles in this field behaves exactly like that of a
projectile “falling” in the earth’s gravitational field. Newton demon-
strated that its path HI in the region of the force field is a parabola
(“fromwhatGalileo demonstrated”), and that the angles of incidence
QMI and refraction MIK obey Snell’s law.17 The derivation yielded
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Fig. 7.3 Newton’s derivation of Snell’s lawof refraction in thePrincipia,
Book 1, Proposition 94.

an expression for the index of refraction n in terms of mechanical
parameters. If we let f (� ) be the force per unit mass, where i and r
are the angles of incidence and refraction, and � the distance from
the refracting surface, then Newton’s result in analytic form is:

n = sin i
sin r

=
√

1− 2�

�2
,

where v is the incident velocity and � = ∫ R
0 f (� )d� .

By at least 1675 in the “Hypothesis” Newton had recognized that
if the change ofmotion of the light corpuscles occurs perpendicular to
the refracting surface, then Snell’s law will always follow. Thus, the
aim of this demonstration was not to derive Snell’s law, but rather to
show that corpuscular optics could be brought into the realm of the
new mechanics and to explore its physical implications and, in par-
ticular, to explain the cause of the different colors and refrangibility
of light rays. The most natural explanation of the cause of the differ-
ent refrangibility of rays of different color according to this model is
that the velocity of the corpuscles varies. Four years after the publi-
cation of the Principia, Newton realized that this could be tested by
observing the color of the eclipses of Jupiter’s moons. When a satel-
lite disappears behind the planet, the slowest color should be seen
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last, and when it reemerges, the fastest color should be seen first. In
August 1691 Newton asked John Flamsteed if he had ever observed
any color changes in eclipses of Jupiter’s moons; the following Febru-
ary Flamsteed replied that he had not.18 This was a serious blow to
explaining refraction and dispersion by short-range forces, for it elim-
inated velocity as a cause of color and refraction. Themodel could be
applied only with some radical assumptions that conflicted with the
principles of terrestrial mechanics. Choosing mass instead of veloc-
ity would contradict the motion of projectiles, which is independent
of their mass. Allowing the force to vary with the nature of the cor-
puscle and refracting substance wouldmake the force a selective one
like a chemical reaction, whichwas decidedly unlike any force in the
newmechanics.19 Newton’s elegant demonstration based on his con-
cept of short-range forces had to be restricted tomonochromatic rays
since color could not be explained with his new mechanics.

The model was not, however, without a notable success. In 1691
Newton used it to calculate the refraction of light rays entering the
atmosphere and prepared a table of atmospheric refraction that was
vastly superior to anything that then existed.20 In a Scholium to
this section of the Principia Newton also suggested that short-range
forces acting on light corpuscles could explain diffraction. A few
years later, as we shall see, he tried to carry out this program of
applying short-range forces to diffraction before he hit a dead end.
Newton concluded this Scholium by reminding his readers that he
was proposing only an analogy and not arguing that light actually
consists of corpuscles:

[B]ecause of the analogy that exists between the propagation of rays of light
and themotion of bodies, I have decided to subjoin the following propositions
for optical uses [namely, on geometrical optics], meanwhile not arguing at
all about the nature of the rays (that is, whether they are bodies or not), but
only determining the trajectories of bodies, which are very similar to the
trajectories of rays.21

The two theorems that Newton added determined the surfaces,
Cartesian ovals, that refracted light from a point to a point. Newton
had in fact solved this problem more than fifteen years earlier in his
Optical Lectures without the corpuscular theory of light.22

Newton attempted to provide a mechanical account of the ac-
tions of light corpuscles throughout his career, because it promised
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to unify optics as part of the mathematical science of mechanics and
offered enough promising results to continue pursuing it. However,
he did not limit himself to mechanical models in his speculations
on the nature of light and always left his options open. For exam-
ple, when he was writing the Opticks in the early 1690s, he briefly
toyedwith the idea that the force between light corpuscles and bodies
might be selective like a chemical force: “If ye rays of light be bod-
ies they are refracted by attraction [of] the parts of refracting bodies
by some such principle as the parts of acids & alcalies rush towards
one another & coalesce.”23 All these options remained hypothetical,
since none of them had more than occasional experimental support.

aethereal vibrations and the colors
of thin films

In his investigation of the colors of thin films, which he began while
he was still developing his theory of color, Newton imaginatively ex-
panded his corpuscular hypothesis to incorporate the aether and its
interactions with light corpuscles in order to explain the periodicity
of light. The essential feature of his aether is its vibrations, which
reflect light corpuscles at condensations and transmit them at rar-
efactions. He was able to develop this qualitative, mechanical model
into a relatively sophisticatedmathematical one that agreedwith his
observations to a high degree of precision. Just as with the corpuscu-
lar model in his theory of color, Newton suppressed the vibrations
in his formal accounts of his research on the colors of thin films. It
was only in his speculative “Hypothesis” in 1675 that he chose to
expound this model fully. Yet his aethereal vibrations differed in two
significant ways from the light corpuscles that he used in his theory
of color and refraction: (i) the vibrations were essential to the devel-
opment of his explanation of the colors of thin films, and not just
an heuristic; and (ii) he eventually elevated the vibrations – recast
as “fits” in the Opticks – from an hypothesis to a confirmed scien-
tific result, namely, the periodicity of light, whereas light corpuscles
always remained hypothetical.

Newton learned about the colors of thin films from Hooke’s ac-
count in theMicrographia (1665) of the colors seen in sheets of mica.
Hooke had conjectured that the appearance of the colors was peri-
odic, though he was unable to measure the thickness of such thin
films in order to demonstrate this. Newton’s key breakthrough was
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Fig. 7.4 Newton’s method for determining the thickness d of a thin
film of air formed between a spherical lens and a plane.

his insight that if he put a lens (which is really just a segment of a
circle) on a flat plane, then by a principle from Euclidean geometry
about tangents to circles he could readily determine the distance be-
tween them simply bymeasuring the circle’s diameter. If (Figure 7.4)
a convex lensABC is placed on a glass plate FBG and illuminated and
viewed from above, a set of concentric colored circles – now known
as “Newton’s rings” – produced by the thin film of air ABCGBF will
be seen through the upper surface of the lens. The circles will form
an alternating sequence of bright and dark colored rings, and their
common center, the point of contact B, will be surrounded by a dark
spot. If the diameter of any of these colored circles be denoted by D,
the thickness of the air film producing that circle by d, and the
radius of the lens by R, then d = D2/8Rby Euclid’s Elements, Book 3,
Prop. 36.

Newton apparently had this insight while reading the Micro-
graphia and quickly carried out a rough and ready test in 1666 and
entered it in his essay “On Colours.” To establish that the circles do
appear at integralmultiples of somedefinite thickness, he simply had
to measure the diameter of successive circles and see if their squares
increased as the integers. For the first six circles he found that the
thickness of the air between the lens and the plate increased by inte-
gral multiples of the thickness at the first ring, that is, as 1, 2, 3, 4, 5,
6. He then calculated that “ye thickness of ye aire for one circle was

1
64000

inch
, or 0,000015625. [wch is ye space of a pulse of ye vibrating

medium.].”24 His results, though quantitatively wide of the mark, as
he later noted, were enough to demonstrate to his satisfaction that
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the appearance of the colors was a periodic phenomenon, and he suc-
ceeded in determining a measure of the periodicity. His method for
determining the thickness of the film was in principle valid, and it
later allowed him to develop a mathematical theory of the appear-
ance of periodic colors.Moreover, fromhis remark in square brackets
we can see that from the beginning of his research he was already
utilizing vibrations in the aether as the physical cause of the rings.

Since one ofNewton’s immediate aimswas to show that the colors
of thin films are compatible with his recent discovery of the com-
pound nature of sunlight, he would quite naturally have assumed
that those colors in the incident sunlight that were not reflected
by the film were transmitted. By examining the transmitted rings,
he readily confirmed that the transmitted and reflected rings were
complementary. And by examining the rings produced by rays of a
single color, it was possible for him to understand their formation in
white light when the colors are not separately visible because of their
overlapping and mixing. Namely, he was able to see that at the same
place some rays are reflected whereas the others are transmitted, and
that rays of the same color are at some places reflected and at oth-
ers transmitted. At this stage Newton had not fully elaborated these
points, especially the second, which requires assigning a particular
thickness or vibration length to each color.

Satisfied with this fundamental result and convinced that his
methodworked,Newton set it aside until he had fullyworked out his
theory of color. In about 1671 he undertook a serious investigation
of the colors of thin films, and his record of this investigation, “Of ye

coloured circles twixt two contiguous glasses,” survives.25 Newton’s
primary aim was to examine and describe Newton’s rings quantita-
tively through a series of mathematical propositions and supporting
measurements and observations; but he apparently also hoped to
confirm his belief in the corpuscular constitution of light and its
interactions with the aether. In the following year he wrote up his
results for submission to the Royal Society, but because of the con-
troversies over his theory of color he withheld it. When Newton
once again felt sufficiently comfortable in revealing his works to the
public, in 1675, he revised the “Observations” from 1672 and sub-
mitted it with a new companion piece, “An hypothesis explaining
the properties of light,” to the Royal Society.26 The 1675 version of
the “Observations,”which also contains his theory of colored bodies,
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was later minimally revised to become the greater part of Book 2 of
the Opticks. In the progression from the preliminary investigation
in “Of Colours” through the “Observations” the variety of experi-
ments carried out expanded significantly.

Before turning to Newton’s model of corpuscles and aethereal vi-
brations, I will sketch his description of the conditions for the ap-
pearance of the rings and their periodicity. Although Newton did not
write his results as an equation, they are equivalent to the following

d = D2

8R
= mI

2
,

where the first two terms of the equation express the Euclidean
theorem cited above for the thickness of the film of air, and I is an
interval such that for modd the ring is a bright one and for meven a
dark one. The interval I is the length of an aethereal vibration and,
later, in the Opticks that of a fit.27 However, in neither version of
the “Observations” nor in the two parts of theOpticks does Newton
introduce this physical interpretation, though it is apparent from
“Of Colours” and “Of ye coloured circles” that he actually arrived
at these results byworkingwith the vibrations. He treats the interval
solely as an experimentally determined property of the film – “the
interval of the glasses, or thickness of the interjacent air, by which
each colourwas produced” – and not of light.28 AlthoughNewton did
not calculate the value of the interval I in “Of ye coloured circles,”
in the “Observations” he adopted 1/80,000 of an inch – “to use a
round number” – for the middle of white light (i.e., for a yellow).29

Only one other result from his investigation need concern us, his
determination of the variation of the diameters of the rings when
water was placed between the lenses. From his measurements he
found that the diameters of the circles, and thus the thickness of
the film, decrease in proportion to the index of refraction. Thus the
earlier equation becomes

d = D2

8R
= mI

2n
,

where n is the index of refraction of the film. Newton was probably
led to accept this as a general rule valid for any medium, because
he was able to deduce it from his model of light particles and aethe-
real vibrations. In “Of ye coloured circles” he had stated this law in
Proposition 4 in terms both of the index of refraction (the “subtilty”
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of the medium) and “ye motions of ye rays in that medium.”30 Like
all the other propositions in “Of ye coloured circles,” no derivation
was presented, but it is readily inferred. If the particles move faster
in water in proportion to the increase of index of refraction (as the
emission theory required), then they would more quickly reach the
lower surface of the film and encounter the first aethereal conden-
sation. The vibration length would then be shorter in the inverse
proportion.

From his first effort at explaining the colors of thin films in “Of
colours”Newton tried to derive their properties from the corpuscular
theory. He set forth a law for the increase of the diameter of the
colored circles as they are observed more obliquely to the surface
as a proportion expressed in terms of the motion (momentum) and
velocity of the incident light corpuscles. This passage is still not
fully understood, but the proportion certainly does not agree with
the phenomenon and Newton deleted it with a large ×.31

Newton later made one more attempt in “Of ye coloured circles”
to describe the variation of the circles in terms of the motion of the
light corpuscles. The paper opens with six propositions to be con-
firmed in the subsequent observations. The properties of the circles
are mathematically described, and many of them are interpreted in
terms of the “motion,” “force,” and “percussion” of the corpuscles
or rays, though no derivations are presented. The following two are
typical:

Prop 2. That they [i.e., the colored circles] swell by ye obliquity of the eye:
soe yt the diameter of ye same circle is as ye [co]secants of ye rays obliquity
in ye interjected filme of aire, or reciprocally as ye sines of its obliquity; that
is, reciprocally as yt part of the motion of ye ray in ye said filme of aire wch is
perpendicular to it, or reciprocally as ye force it strikes ye refracting surface
wthall.

Prop 3. And hence ye spaces wch ye rays passe through twixt ye circles in
one position to the said spaces in another position are as ye squares of ye said
[co]secants or reciprocally as ye [s]quares of ye sines, motion, or percussion.32

Both of these propositions were subsequently contradicted by
the observations that follow in the manuscript. At this point
Newton undoubtedly recognized that the phenomenon was simply
not amenable to a description using corpuscles. In all his later quan-
titative work on the colors of thin films he worked only with the
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vibrations set up by the corpuscles. However, in his physical think-
ing the encounter of the corpuscles with the compressions and rar-
efactions of the vibrations played a fundamental role, as we saw in
his deduction of the variation of the diameters of the ringswith index
of refraction.

Newton submitted “An hypothesis explaining the properties of
light discoursed of in my severall Papers” to the Royal Society, be-
cause he hoped that revealing the hypotheses or physicalmodels that
underlay his phenomenological theories would make themmore in-
telligible. He insisted, however, “that no man may confound this
with my other discourses, or measure the certainty of one by the
other.”33 The “Hypothesis,” which Newton did not allow to be pub-
lished, is his most openly speculative work and – unlike the thirty-
one queries which roam over the scientific landscape – reveals how
he used his speculations to explore a single scientific theory. It shows
clearly how he was able to control and mathematize speculative me-
chanical models and arrive at experimentally confirmed laws.

The first two hypotheses assert that the aether exists and is capa-
ble of vibrating. This aether is almostwithout resistance, for it resists
the motion of light particles only initially, at their emission from a
luminous source, and at the boundaries of different bodies, where its
density changes. When light particles are emitted, they are acceler-
ated “by a Principle of motion . . . till the resistance of the Aethereal
Medium equal the force of that principle.” Henceforth the aether of-
fers as little resistance as a vacuum. This is contrary to the principles
of Galilean mechanics, and Newton knew it: “God who gave Ani-
mals self motion beyond our understanding is without doubt able to
implant other principles of motion in bodies wch wemay understand
as little. Some would readily grant this may be a Spiritual one; yet a
mechanical one might be showne, did not I think it better to passe it
by.”34 Although the problem of the aether’s resistance would vanish
when Newton replaced the contact action of the aether with forces,
this shows how he was able to elide physical difficulties in order to
pursue the mathematical representation of a phenomenon. Newton
emphasizes that he considers the particles to be light and not the
vibrations, “I suppose Light is neither this Aether not its vibrating
motion,” which is simply an effect of light.35

The aether has a stiff surface that is responsible for the reflec-
tive power of bodies. The constant bombardment of light particles
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excites vibrations in the surface that are propagated throughout the
aether. If a light corpuscle strikes the surface when it is compressed,
it will be reflected because the surface is too stiff and dense to let
the corpuscle pass; but if a corpuscle happens to strike the surface
when it is expanded, it will pass through. This is the physical mech-
anism that Newton uses to introduce periodicity to a corpuscular
theory of light. That he had failed in quantifying the relationship
between the corpuscles and the magnitude of the excited vibrations
did not hinder him from using it as the basis for describing the pe-
riodic colors of thin films. The corpuscles still play a fundamental,
if less prominent, role in that one has to keep track of the location
of both the corpuscles and the vibrations to determine the observed
phenomenon.

The periodicity of Newton’s rings is now readily explained (Fig-
ure 7.5). At the centerA, where the glasses touch, the corpuscles will
be transmitted because the aether in the two glasses is continuous,
and a central dark spot will be seen. At a certain thickness BC (= I/2)
away from the center the corpuscle will encounter the condensed
part of the first overtaking vibration and be reflected, and a bright
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Fig. 7.5 One quadrant of Newton’s rings produced with light of a single
color.
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ring will be seen; at double that thickness DE, it will encounter the
rarefied part of that wave and be transmitted, and a dark ring will be
seen; at triple the thickness FG it will encounter the condensed part
of the second wave and be reflected; and so on in arithmetic progres-
sion, in agreement with observation. To extend this model to white
light, Newton only had to introduce the idea that the rays or parti-
cles of different color vary in “magnitude, strength or vigour” and so
excite vibrations of different size.36 The red vibrations are assumed
to be larger than the violet ones and thus to form larger circles, as is
observed.

In the Opticks Newton transformed the aethereal vibrations into
the “fits of easy reflection and transmission,” and raised them to
an established principle. The fits were now held to be a property of
light, and not of the aether. Merely purging the vibrations of their
hypothetical elements was insufficient ground for Newton to raise
them to a demonstrated truth. More evidence for the periodicity
of light was required. Newton found this in the new phenomenon
of the colors of thick plates, which he set forth in Book 2, Part 4 of
the Opticks. He was able to explain them with the same vibration
lengths I and mathematical-physical theory as for thin plates, and
he was able to predict the size of colored rings of thick plates with
the same precision as those of thin films.37 The existence of light
corpuscles never achieved this level of generality or confirmation.

the atomic structure of matter
and colored bodies

If Newton always considered the existence of light corpuscles to be
an hypothesis, he assumed the existence of corpuscles of matter in
his explanation of the colors of natural bodies – the colors of all the
things we see around us, like grass, cloth, and clouds. He was as cer-
tain of the existence of atoms as he was of the existence of God. Al-
though the theory of colored bodies is an extension of his explanation
of the colors of thin films and an integral part of his optical theory,
it is as much a theory about the structure and properties of matter.

The essence ofNewton’s theory is the idea that the colors of bodies
are produced in the same way as they are in thin films. He developed
this theory in the early 1670s simultaneously with his account of the
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colors of thin films, and it forms the third part of the “Observations”
of 1672 and 1675 and of Book 2 of the Opticks. In the more than
thirty years between the time it was first developed and published
in the Opticks, he abandoned the aether and developed the concepts
of force and fits, but the theory of colored bodies scarcely changed.

Newton opens his theory by arguing that colored transparent and
opaque bodies consist of transparent corpuscles and pores. The exis-
tence of aether in the pores is hypothetical, but he does not question
the existence of corpuscles. His reasoning is straightforward: since
reflection occurs only where there is a difference in optical density,
for reflection to occur from the corpuscles composing bodies, the
bodies must have pores that are of a different optical density from
the corpuscles. Opacity is attributed to multiple reflections caused
by the internal parts of the body. Newton’s evidence for these claims
comes almost entirely from macroscopic bodies, and it is then ex-
tended to the imperceptible corpuscles. For example, he argues that
the “least parts” of bodies are transparent from observations that
show that, when made sufficiently thin, bodies become transparent;
and he argues that opacity arises from a multitude of internal re-
flections by observing that transparent substances like glass become
opaque when they are shattered into tiny pieces. This can be a tricky
mode of argument.38

The central proposition of Newton’s theory establishes that: “The
transparent parts of bodies, according to their several sizes, must re-
flect rays of one colour, and transmit those of another, on the same
grounds, that thin plates or bubbles do reflect or transmit those rays:
and this I take to be the ground of all their colours.”39 Newton
demonstrates this by what would become his second Rule of Rea-
soning in the Principia, namely, that “the causes assigned to natural
effects of the same kind must be, so far as possible, the same.”40

He presents evidence showing that the colors of natural bodies and
thin plates are of the same kind, and therefore have the same cause.
With this demonstrated, Newton estimated the size of the corpus-
cles composing various bodies from their color. He assumed that the
corpuscles are of the same optical density as water or glass, “as by
many circumstances is obvious to collect.” In his account of the col-
ors of thin films, Newton had prepared a table of the thicknesses of
films of air, water, and glass that produce the various colors of each
ring or order. For example, he deduced that the green of vegetation
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corresponds to the green in the third colored ring, and from his table
he found that the corpuscles of vegetable matter are 171

2 × 10−6 or
about 1/60,000 inch in diameter, assuming that they had the same
density as glass.41 The corpuscles of black and colorless transparent
bodies must be less than any of those producing colors, just as the
central spot in Newton’s rings is colorless and reflects no light.

While it is not possible to see light corpuscles, Newton antici-
pated actually seeing the corpuscles of bodies. He explained that he
deduced the sizes of the corpuscles “because it is not impossible, but
that microscopes may at length be improved to the discovery of the
corpuscles of bodies, on which their colours depend.” If their mag-
nification could be increased five or six hundred times, we might
be able to see the largest corpuscles, and if “three or four thousand
times, perhaps they might be discovered but those, which produce
blackness.”42

A closer examination of the corpuscles responsible for the color
of bodies reveals some characteristic features of Newton’s theory
of matter. Despite their apparent smallness, the corpuscles are none
the lessmacroscopic, compound bodies. If we consider a thin sheet of
colorless glass that is of this green color, or even one so thin (approx-
imately 1/160,000 inch) that it exhibits a yellow of the first order,
it must contain within that thickness a number of the corpuscles
that make it glass. A segment of that glass as wide as it is thick is a
small, albeit very small, piece of glass with all the properties of glass.
Green glass (or grass) will be composed of corpuscles of the same size
as these fragments, each of which is composed of the corpuscles that
compose colorless glass. Thus, the corpuscles’ composing bodies al-
ready have a structure and are themselves composed of parts; they
are not atoms.

“And hence we may understand,” Newton wrote in the Opticks,
“that Bodies are much more rare and porous than is commonly
believed.”43 If we recall his explanation of the colors of thin films
and the model expounded in the “Hypothesis,” a thin film or plate
consists primarily of aether with some interspersed solid parts. The
only function he assigns to the parts, besides defining the pores, is
to stop and absorb any light particles that collide with them. The vi-
brations of the aether cause rays of some colors to be reflected while
allowing others to be transmitted. Since colored bodies are composed
of corpuscles the thickness of which is the same as a thin film of
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Fig. 7.6 A compound corpuscle of matter illustrating Newton’s hierar-
chical conception of the structure ofmatter. A light ray T is transmitted
through a corpuscle if it does not hit one of its parts.

that color, then those corpuscles must likewise primarily consist of
aether and some parts. Consequently, for Newton matter actually
consists mostly of aether or empty space.44

To explain how apparently solid matter could consist mostly of
pores, Newton finally revealed his ideas on the hierarchical structure
of matter in the Latin translation of theOpticks, though he had held
this idea from almost the beginning of his scientific career. He had
probably first encountered it in his reading of Boyle, and it was not
an uncommon view in seventeenth-century (al)chemical works. If
we imagine a body to consist of parts and pores and that the pores
occupy as much space as the parts; and then imagine each of those
parts to be similarly composed of much smaller pores and parts that
occupy equal space; and then imagine this process to proceed until
solid particles or atoms are reached, bodies would consist mostly of
pores (Figure 7.6). A body, for example, with four such compositions
would have fifteen times more pores than solid parts, and with ten
compositions above one thousand times more pores than parts. It is
important to recognize that Newton offered this particular structure
only as a possibility, for “there are other ways of conceiving how
Bodies may be exceeding porous. But what is really their inward
Frame is not yet known to us.”45
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That Newton did not consider the existence of atoms to be an
hypothesis becomes apparent from a preface that he drafted for the
Opticks in 1703 but did not publish. He considered the possibility
of deducing all phenomena from just four “general suppositions” or
“principles.” These principles were not hypotheses, but derived by
induction, for “there is no otherway of doing any thingwith certainty
then by drawing conclusions from experiments & phaenomena un-
till you come at general Principles.” The first three principles are the
existence of God, the impenetrability of matter, and the law of grav-
itational attraction. In describing the fourth principle, he announced
that he intended to derive the theory of the colors of natural bodies
from his hierarchical, corpuscular theory of matter:

A fourth Principle is that all sensible bodies are aggregated of particles
laid together wth many interstices or pores between them . . .As by the third
Principle we gave an account heretofore of ye motions of the Planets & of ye

flux & reflux of ye sea, so by this Principle we shall in ye following treatise
give an acct of ye permanent colours of natural bodies, nothing further being
requisite for ye production of those colours then that ye coloured bodies
abound with pellucid particles of a certain size & density. This is to be
understood of the largest particles or particles of ye last composition. For as
bodies are composed of these larger particles with larger pores between them
so it is to be conceived that these larger particles are composed of smaller
particles with smaller pores between them.46

The corpuscular theory of matter was thus for Newton not an
hypothesis but a demonstrated principle established with as much
certainty as the existence ofGod or the theory of gravitation.He cites
two principal sorts of evidence in its support: various substances
penetrate the pores of bodies, like water into vegetable and animal
matter, and quicksilver into metals; and transparency, which shows
that light passes through the pores of a great variety of bodies (which,
to be sure, assumes an emission theory of light). The theory of colored
bodies was not only founded on the corpuscularity of matter; it was
a theory of matter attributing specific properties and arrangements
to the corpuscles that cause the transparency or opacity and colors
of bodies. For Newton to have considered corpuscularity to be an
hypothesis or a working assumption would have been to violate one
of his most fundamental methodological principles.
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atomism and hypotheses

WhenNewtonwas completing theOpticks in the early 1690s, he un-
dertook an investigation of diffraction andwrote it up as the last book
of the Opticks. He took his usual phenomenological approach and
described his observations and experiments while eschewing phys-
ical hypotheses. His unpublished papers show that as in his other
investigations he fully used the corpuscular theory of light and – as
this was carried out post-Principia – short-range forces. He assumed
that diffraction occurred when light corpuscles pass very close to
an edge of a body and are deflected by the short-range forces of the
corpuscles of the body. He was able to develop this model mathe-
matically and carried out measurements and calculations with it.
He even derived some laws governing diffraction. After completing
the manuscript, however, he carried out an experiment that showed
conclusively that this model with forces and corpuscles could not
possibly be correct. Newton removed this book from the manuscript
of the Opticks with the intention of carrying out more experiments
and revising it. It turned out that he was near the end of his sci-
entific career and never carried out any more optical experiments.
Shortly before he published the Opticks in 1704, he simply revised
the book and eliminated the results that depended on the corpuscle-
force model.47

If Newton had hoped that his investigation of diffraction would
finally vindicate the corpuscular nature of light, this episode would
have disabused him of that hope. The corpuscular theory of light
would remain an hypothesis. This was by no means the first time
that his efforts to establish that theory were stymied. His dispersion
models could not be experimentally confirmed; his attempt to de-
duce the properties of the colors of thin films from the motion of the
light corpuscles failed; the derivation of refraction in Principia was
elegant, but it encountered serious problemswhen eclipse tests failed
to confirm the velocity interpretation. Newton had some successes,
especially with his qualitative models, such as in his interpretation
of his theory of color, and the cause of Newton’s rings, and the cal-
culation of atmospheric refraction. This is not a sterling record, and
we can understand Newton’s conviction that the corpuscular the-
ory of light was an hypothesis. It certainly was fruitful, guiding him
through a series of major investigations by suggesting experiments
and new laws, but it had not been confirmed in any generality, as
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had the periodicity of light. Newton was not acting out of method-
ological fussiness in distinguishing certainties from conjectures, but
rather exercising sound scientific judgment.

Because he judged the corpuscular theory of light to be an hypoth-
esis, most of Newton’s published writings on it are in the queries of
the Opticks. Here Newton discusses such topics as the corpuscular
theory and the cause of colors, fits, diffraction, and double refrac-
tion, and also devotes substantial attention to refuting rival wave or
continuum theories of light, not to mention sensation, heat, and es-
pecially chemistry. In an anonymous review in 1715Newton clearly
described the hypothetical nature of the queries and explained why
he set them apart from the rest of the Opticks. In the Principia and
Opticks, he wrote, “Mr. Newton” adopted the “experimental phi-
losophy,” in which “Hypotheses have no place, unless as Conjec-
tures or Questions proposed to be examined by Experiments. For
this Reason Mr. Newton in his Optiques distinguished those things
which were made certain by Experiments from those things which
remained uncertain, and which he therefore proposed in the End of
hisOptiques in the FormofQueries.”48 In the eighteenth century the
queries were widely interpreted as representing Newton’s declared
views on the topics discussed rather than as speculations. Our study
of Newton’s use of the corpuscular hypothesis in his optical inves-
tigations, that is, his actual scientific practice, shows how mistaken
this view was.49
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8 Newton’s metaphysics

When one speaks ofNewton’s “metaphysics,” it should be noted that
the word itself was rarely used by Newton; further, that in point
of general philosophical usage, that word has not had in our own
time a fixed and well-established acceptation. For the purposes of
the present study, a rather broad view will be adopted – suggested
on the one hand by Newton’s most influential near predecessor,
the previous author of a book called Principia Philosophiae,1

Descartes, according to whom metaphysics treats of the principles
of [all] knowledge, and serves as the root of the “tree of philosophy”
(whose “trunk” is physics, andwhose “branches” arewhatwe should
call the “applied sciences”);2 and on the other by the author of the
article “Metaphysics” in the eleventh edition of the Encyclopaedia
Britannica, ThomasCase, who summarizes the concern of this disci-
pline in the two questions: “1. What is the world of things we know?
2. How do we know it?”3 Thus metaphysics will here be understood
to be the discussion of the most general features, both of the consti-
tution of the world, and of the principles of human inquiry into the
nature of the world.

It will be useful for our discussion to put Newton’s position in
comparison with that of Descartes; for the work of the latter was
both enormously influential in general – in the seventeenth century,
and also, so far as metaphysics (in contrast to natural philosophy) is
concerned, right down to the present day – and of great moment for
Newton in particular.

On themethodological side, Descartes’s program for a reformation
of knowledge – for the establishment of a science that should be both
secure in its theoretical attainments and of unexampled power in its
aid to the control of the natural conditions of human life4 – was

256
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based upon the demand that every item of knowledge be either
immediately clear and certain beyond a doubt, or be connected to
such clear and certain foundations by clear and certain links. Both the
guarantee of the truth of what the mind perceives clearly and with
no possible doubt,5 and the identification of the fundamental princi-
ples so perceived, come, according toDescartes, frommetaphysics or
“first philosophy”; therefore this science is indeed “first” in the or-
der of investigation: as already remarked, metaphysics is the “root”
of that tree of which physics – natural philosophy – is the “trunk.”

It is important to emphasize that this radical position does not
mean, as it has sometimes been taken to, that Descartes thinks all
of physics can be deduced from principles known through “pure
reason.” In his program for the investigation of the natural world,
experiment plays a central role. But to characterize that role, some-
thing must be said about the deliverances of Cartesian metaphysics
on what one might call its “ontological” side. The chief points that
are relevant here are these:

Descartes, like Aristotle and the scholastic tradition, takes
“substance” to be the primary category of “being” in the world: the
“things that are”are“substances.”Acentral innovation byDescartes
is his principle that there are two fundamentally distinct sorts
of substance, each distinguished by its characteristic essential
“attribute”: “thinking things” (res cogitantes) or minds, and “ex-
tended things” (res extensae) or bodies. Bodies form the subject of
natural philosophy. Since it is of the essence of these simply to be
extended, the notion of empty space – extension void of body – is
just contradictory; so the world is a plenum: body is everywhere. The
only distinctions or diversities that are conceivable among bodies
as extended things are diverse motions. Therefore, the processes
of nature consist solely in the motions of bodies and the changes
of those motions; and the foundations of physics consist in the
principles that govern those motions and changes of motions. The
task of natural philosophy, therefore, is to account for all natural
phenomena by describing the motions and changes of motion in
which they consist, and exhibiting those processes of motion and
change of motion as consequences of such fundamental principles.

Now, at the very base of this conception lies a serious difficulty:
namely, how to characterize “motion” at all, when it has been
declared that there is nothing more to body than its attribute of
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extension. In his earliest treatise on physics, The World, Descartes
takes for granted what one may call the “naive” conception of mo-
tion: it is “that by which bodies pass from one place to another and
successively occupy all the spaces between”; and what place is, is
a question not even raised. If, however, bodies are essentially just
“what is extended,” there is no real distinction between “bodies”
and “spaces”; so one is baffled what to make of the notion of the
same body successively occupying different spaces. It is in fact clear
that in The WorldDescartes is taking it for granted that we possess –
presumably as clear and innate ideas – two distinct notions of
identity (over time) for “the extended”: (1) identity of place, and
(2) identity of body. On the other hand, since Descartes himself does
not explicitly signalize this twofold notion of identity – which, as
we shall see presently, Descartes drastically revises in his decisive
work, the Principles of Philosophy – it seems impossible to acquit
him of a lack of “clarity and distinctness” on this point.

The World was not published during Descartes’s lifetime. In a let-
ter to Mersenne of 22 July 1633, Descartes says that the treatise is
nearly finished. In late November, he wrote again. This time he says
that he had intended to give Mersenne a copy of the completed work
as a New Year’s present. But he has just learned that Galileo’s World
System6 has been condemned in Rome; and the only reason he can
think of for such a condemnation is the fact of its having “tried to es-
tablish that the earthmoves” – onwhich issue, he continues: “Imust
admit that if the view is false, so too are the entire foundations of
my philosophy, for it can be demonstrated from them quite clearly.
And it is so closely interwoven in every part of my treatise that I
could not remove it without rendering the whole work defective.”
Consequently, Descartes set the work aside, and – after a consider-
able lapse of time – proceeded to revise its foundations so far as the
nature of motion is concerned.

The Principles of Philosophy, published in 1644, is repeatedly re-
ferred to by Descartes in his correspondence as a new version of “my
World.” In it he presents, in place of what has above been called the
“naive” conception of motion, a new and sophisticated one. Motion
“in the ordinary sense of the term” is still “the action by which a
body travels from one place to another”;7 but place is now said to
be an ambiguous, or relative, notion8 and, “rightly taken,” to be de-
fined by the surface of the surrounding body.9 Accordingly, “motion
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in the strict sense of the term” is defined as “the transfer of one
piece of matter, or one body, from the vicinity of the other bodies
which are in immediate contact with it, and which are regarded as
being at rest, to the vicinity of other bodies.” (This “sophisticated” –
and semi-relativist10 – conception raises new problems of its own, as
Newton’s critique will make plain.)

In any case, having posited the realm of “extended things” and
its character as a plenum, Descartes appeals to the testimony of the
senses (itself warranted as reliable on such an issue by God’s nec-
essarily non-deceptive character) to establish both that this realm
actually exists,11 and that it is in continual and very diversified
motion.

The principles that govern suchmotion are on the other hand not,
according to Descartes, to be ascertained by means of, or with any
help from, empirical observation: these principles or rules he claims
to infer directly from God’s immutability – from the constancy of
his action in preserving the world from moment to moment, which
implies (a) the conservation of all states which are not necessarily al-
tered through the postulated fact of motion, and (b) the conservation
of the total “quantity ofmotion” itself (of all bodies together – not, of
course, of each individually), from moment to moment. The actual
rules stated by Descartes need not concern us (although it should
be remarked that they – and the arguments he gives for them – are
really bizarre); what is important is that these principles of motion
constitute, in Descartes’s system, the analogue of what the physi-
cists of our own time call the “fundamental forces” of nature. Thus
Descartes’s position is (1) that a sound physics presupposes a (cer-
tain, indubitable) knowledge of the fundamental forces; (2) that such
knowledge – prior to the rest of physics – is indeed possible; and
(3) that this knowledge is possible through, and only through, un-
aided thought. In this sense, Descartes demands, and claims to have
achieved, a “purely rational” physics – more accurately, a purely ra-
tional foundation for physics. In his Rules for the Direction of the
Mind, this demand is expressed, in connection with the particular
example of a problem in optics, as the stipulation that for a satisfac-
tory solution of the problem it must be traced back to a knowledge
of what a natural power in general is – “this last being the most
absolute term in [the] whole series” (of conditions upon which the
solution depends).12
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The role of experiment in Cartesian method can now be briefly
characterized as follows: by experimentwe learn the existence of fea-
tures of our natural environment, which pose problems for science.
The solution of such problems, the very task of physics, consists
in the tracing back of these observed natural phenomena to their
fundamental causes – that is, the demonstration that the phenom-
ena do (or would) result from the fundamental principles of physics,
themselves derived as we have seen from first philosophy, when
we have correctly attributed the phenomena we observe to underly-
ing structures of Cartesian matter-in-motion: that is, when we have
constructed (to use a later terminology) the appropriate mechanical
model for each phenomenon. How this is to be done is certainly the
most vexing problem in the interpretation of Descartes’s scientific
method; but what is most important in respect of Descartes’s histor-
ical influence on later seventeenth-century investigators is the fact
that the early attempts of Descartes to proceed systematically and
with certainty from observed phenomena to their causes (that is, to
mechanical models that represent the true nature of the processes
underlying the observed phenomena) were abandoned – perhaps even
in some degree by Descartes himself – in favor of a far more tenta-
tive procedure of seeking for likely models, that might “save” or
“satisfy” the phenomena, and whose correctness could be rendered
at least highly probable by their success in doing so.13 In short, the
method of investigation of nature that eventually came to comple-
ment Cartesian metaphysics – a method that grew out of the failure
of his more stringent original prescription – was that of attempting
to invent mechanical hypotheses that would explain, with the help
of “rational” deduction from the fundamental principles of motion,
whatever was discovered by experiment.

One other feature of the intellectual environment in which
Newton developed should be mentioned: namely, that many ad-
herents to some variety of the “new philosophy” came to reject
Descartes’s identification of matter with whatever is extended, in
favor of the classical view of atomism: that (a) there is void space
as well as occupied space – the world is not a plenum; and (b) the
ultimate parts of matter are “corpuscles” or “atoms”: rigid and
indivisible bodies.14 Within this “revisionist” conception – also
known as the “corpuscular philosophy” – it was still maintained
as a fundamental tenet that all the processes of nature consist in the
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motions of bodies, and that all natural changes of motion are occa-
sioned by direct actions of one body pushing on another.15 The fea-
tures common to this position and Descartes’s constituted the
framework of the celebrated “mechanical philosophy.” It is from
the mechanical philosophy that the metaphysics, as well as the nat-
ural philosophy, of Newton departed: that philosophy was Newton’s
point of departure; and he indeed departed from it, in profound ways.

Taking Descartes as the first point of comparison, a radical differ-
ence between his view of metaphysics and Newton’s lies in the fact
that for Newtonmetaphysics is not the “root” or foundation of natu-
ral philosophy – the “beginning of wisdom.” His positionmay rather
be said to agree with that of Aristotle – a conception symbolized by
the fact that the followers of Aristotle placed his treatises on first
philosophy “after the physical ones.”16 Aristotle, distinguishing be-
tween what is “first and better known to nature” and what is “first
and better known to us,” regards the most basic principles – “prior,”
in nature, to those of the special sciences – as to be known only after
the special sciences themselves have been established. An indication
that Newton thought similarly is to be seen in the fact that his chief
published discussions of the metaphysics of nature, and of his views
concerningGod in relation to nature, occur at the end of his two great
treatises: in the General Scholium to theMathematical Principles of
Natural Philosophy, and at the end of the long concluding Query 31
in Book 3 of the Opticks. In his discussion of theological matters in
the General Scholium, Newton says of God: “We know him only
by his most wise and excellent contrivances of things, and final
causes”; and concludes that discussion with the words: “And thus
much concerning God; to discourse of whom from the appearances
of things, does certainly belong to Natural Philosophy” (emphasis
added). In Query 31 of the Opticks, after a long review of the most
diverse phenomena (chiefly of chemistry), he says: “All these things
being consider’d, it seems probable to me, that God in the Begin-
ning form’d Matter in solid, massy, hard, impenetrable, moveable
Particles, [etc.]” (again, emphases added here). In both places the
views put forward are thus expressed as, in point of knowledge,
a posteriori; and in the latter place, the view is explicitly described as
probable (this is a lower degree of confidence than Newton attaches
to his principal results in physics).17 Further, it is not only man’s
knowledge of God, among doctrines one would call metaphysical,
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that Newton describes as deriving from experience rather than from
pure reason. In the preface to the first edition of the Principia, and in
the third of the “Rules of Philosophizing” at the beginning of Book 3
of that work,18 Newton expresses the opinion that (a) geometry is
founded in experience (in, as he says, “mechanical practice”), and
(b) so is everything we know about bodies (in particular, their
“extension, hardness, impenetrability, mobility, and vis inertiae”).
This is a matter to which we shall return later; for the present, let
it suffice to note that these statements leave little scope, in New-
ton’s view of knowledge, whether in “first philosophy” or in natural
philosophy, for the a priori or purely rational.19

Let us now turn to the content ofNewton’smetaphysical doctrine:
what, according to him, is the basic constitution of the world – what
are its constituents, and how are they interconnected?

The question does not have an entirely straightforward answer. In
order to seewhy – and in order to arrive at as clear as possible a picture
of his mature doctrine – it will be useful to pay some attention to
the apparent development of Newton’s view over time.

It is clear fromNewton’s early notebooks20 that hemoved rapidly,
in his student years, towards adherence to the general views in nat-
ural philosophy represented by Galileo and – in part – Descartes, in
opposition to the scholastic (“peripatetic”) teachings; and also that
he quickly became critical of some of the basic tenets of Descartes.
For example, in a very early manuscript Newton discusses with evi-
dent skepticism various scholastic views about projectile motion;21

argues against Aristotle’s rejection of a vacuum;22 and notes with-
out comment Descartes’s definition of motion in the strict sense
of the term: “Cartes defines motion . . . to be the Transplantation of
one part of matter or one body from the vicinity of those bodys
which immediately touch it and seem to rest, to the vicinity of
others.”23 Not long afterwards, in what is clearly an attempt (some-
what awkward) to sketch a systematic theory of motion, Newton
states his own definition: “When a Quantity is translated/passeth
from one parte of Extension to another it is saide to move”24 –
a definition not very remarkable, but which clearly deviates from
the conception advocated by Descartes in his Principles. The re-
sult was a position that fell within the framework of the corpus-
cular philosophy. It is important to note, in particular, that in the
manuscript last cited Newton offers a general characterization of
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force, as follows: “Force is the pressure or crouding of one body upon
another.”25

We come now to a crucial document, and what the present com-
mentator regards as a crucial turn in the character and depth of
Newton’s thought on fundamental issues. The document – first pub-
lished in 1962, in the original Latin followed by an (unfortunately
defective) English translation26 – is of a curious kind. It is an in-
complete and untitled draft of what was evidently intended to be a
treatment of hydrostatics, and begins with the statement: “De Grav-
itatione et aequipondio fluidorum et solidorum in fluidis scientiam
duplici methodo tradere convenit”; that is: “It is fitting to treat the
science of the gravitation [i.e., the “weighing down”] and equilib-
rium of fluids and of solids in fluids by a twofold method.”27 The
opening phrase, “De gravitatione et aequipondio fluidorum,” is the
title by which the piece has come to be known.

Whatmakes the fragment both odd and extraordinarily interesting
is the fact that, after a brief introduction and four definitions, there
occurs a digression into questions of metaphysics, taking up about
two-thirds of the entire length of the manuscript; then the technical
presentation resumes, with another fifteen definitions followed by
two propositions (with five corollaries) – and breaks off. Thus in spite
of the title under which it is known, and its evident original intent,
the entire interest of the piece is as an essay in metaphysics – of a
kind that is unique among Newton’s writings.

The first four definitions are introduced and stated as follows:

Definitions

The terms quantity, duration, and space are too well known to be suscep-
tible of definition by other words.

Def: 1. A place is a part of space that a thing fills adequately.
Def: 2. A body is that which fills a place.
Def: 3. Rest is remaining in the same place.
Def: 4. Motion is change of place.

Newton explains that in saying that a body fills (Latin: implet) a
space, he means to imply “so fully occupies it as utterly to exclude
other things of the same kind (other bodies) as if it were an impene-
trable thing.”Why, onemay ask, “as if”? Does not a body’s exclusion
of other bodies mean that it is an “impenetrable thing”? The answer
to this emerges later: Newton believes thatminds, as well as bodies,
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have their definite places in space; and he believes that bodies and
minds can occupy the same – or overlapping – places; so bodies are
not absolutely impenetrable, but are so only to one another.

After a few further preliminary clarifications, Newton calls atten-
tion to the fact that in these definitions he has departed fundamen-
tally from the doctrines of the Cartesians: both in distinguishing
between space and bodies, and in that he has “determined motion
with respect to the parts of that space, not with respect to the po-
sitions of the contiguous bodies.” It is this remark that leads to the
metaphysical digression, in which Newton is concerned, first, to
refute the theory of space and motion of Descartes’s Principles of
Philosophy; then to present his own conception of the nature of space
(and, with less elaboration, of time); finally – and with greatest
originality – to present his conception of the nature of body – how it
is related to, and how distinguished from, space.

The refutation of Descartes on place and motion has two main
parts. In the first, Newton argues that Descartes himself, in the de-
velopment of his physics in Parts 2 and 3 of his Principles, proceeds
in a way that is inconsistent with his own theory ofmotion, and thus
“seems to acknowledge” its inadequacy. Since we are not here pri-
marily concerned with Descartes, one examplemay suffice – the one
that is most directly connected with Newton’s evidence for the view
he himself favors. According to Descartes, the earth – and, indeed,
each of the planets – is, “if we are speaking properly and according
to the truth of the matter” (Newton paraphrases the second phrase
as “according to the philosophical sense”), not moved, but rather
at rest; since each of these bodies, according to Descartes’s theory of
the planetary system, is carried around the sun by a material vortex:
each planet, then, is at rest relative to the bodies that immedi-
ately surround it, and is therefore at rest in the “proper” sense of
the word.28 This is the basis of Descartes’s claim that his view in
the Principles is immune to the charge of attributing motion to the
earth. But, Newton points out, in his dynamical theory of the plane-
tary system Descartes attributes to the planets a tendency to recede
from the Sun on account of their motion around it. So in developing
the principles of his philosophyDescartes makes use of a conception
of motion that is not the one he puts forward as “proper and accord-
ing to the truth of the matter”; or, again to use Newton’s paraphrase,
“according to the philosophical sense.”29
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In the second main part of his argument against the Cartesian
theory of place and motion, Newton shows that the basic principles
of the physics of motion generally agreed upon in his time cannot
even be formulated within the conceptual framework provided by
that Cartesian theory. (Thus we may say that whereas in the first
part Newton had shown Descartes to be in contradiction with him-
self, in the second part he shows that the contradiction is not merely
with some special features of Cartesian physics: rather, it is with
the general principles – to which Descartes himself was a contribu-
tor – that underlie all of what for him is “modern” physics.) Again
it will suffice here to consider one central point. Newton says it
follows from Descartes’s position “that a moving body has no de-
terminate velocity and no definite line in which it moves. And,” he
adds, “what is much more, that the velocity of a body moving with-
out resistance cannot be said to be uniform, nor the line straight
in which its motion is accomplished.” In other words, what is still
called the “first law of motion” does not make sense in Cartesian
terms. The reason is straightforward. In Descartes’s terms, “accord-
ing to the truth of the matter,” a body’s motion should be described
in relation to bodies in immediate contact with it that “are regarded
as at rest”; these define the body’s “place” (at a given time). But
over time, bodies that were once relatively at rest will in general
no longer be so – they will disperse. Therefore, over time, these
(former) “places” will no longer exist; so that it will be impossible to
speak of the distance a body has traveled (the distance between its
present and its former place) – and equally impossible to speak of the
path it has followed (the ordered array of places through which it has
passed).30

It is important to note that this argument of Newton’s does not
claim to rest on principles that are epistemologically a priori. When
he claims that Descartes’s concept of motion is not the one needed
for physics, he is speaking of the existing physics of his time – and,
indeed, of features of that physics that are accepted by the Cartesians
as well as by himself. This physics had had some considerable suc-
cess; therefore it was reasonable to make use of its principles, and to
frame basic conceptions so as to be consistent with them. Objections
should be considered out of order, unless (a) they are drawn from
demonstrable inadequacies in the application of the accepted theory
to phenomena, or (b) the objector has an alternative to offer that is
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at least as good as that theory, and better in respect of the points he
objects to.31

Newton summarizes his results so far in the following words:

It follows indubitably that Cartesian motion is not motion, for it has no
velocity, no direction, and hence there is no space or distance traversed by it.
So it is necessary that the determination of places, and hence of localmotion,
be referred to some immobile being, such as extension alone, or space in
so far as it is seen to be truly distinct from body. And this the Cartesian
Philosopher may the more willingly acknowledge, if only he notices that
Descartes himself had an idea of extension as distinct from bodies, which
he wished to distinguish from corporeal extension by calling it “generic.”
Art. 10, 12, & 18, part 2 Princip. And that the whirlings of the vortices,
from which he deduced the force of the aether in receding from the centers
(and therefore his whole mechanical Philosophy), are tacitly referred to this
generic extension.

He turns, then, to the question ofwhat, in his ownview, the nature
is of the “immobile being” – space or extension itself, distinguished
from body – to which places andmotions are to be referred. He raises
three possibilities, arising out of the philosophical tradition, as to
how he might “now be expected” to define extension: either as it-
self a kind of substance; or as a kind of accident (note: this was
the standard philosophical term for an attribute: anything that can
be “predicated” of a substance); or, third, as “simply nothing.” The
third alternative looks odd, but is undoubtedly meant to refer to
the anti-establishment ancient tradition of atomism, in which the
fundamental ontological contrast of atoms and the void was also ex-
pressed as that of “being” and “non-being.” Newton repudiates all
three answers, and offers instead something rather new: he says that
extension “has a certain mode of existence of its own, which agrees
neither with substances nor accidents.” It is not substance for two
reasons: (1) “because it subsists, not absolutely of itself, but as, so to
speak, an emanative effect of God, and a certain affection of every
being”; (2) because it is not something that acts.32 The first point
we must presently examine more closely. The second is of capital
importance for Newton’s view: he says that although philosophers
do not traditionally define substance as “a being that can act upon
something,” they in fact all tacitly hold such a definition – “as for
instance is plain from this, that they would easily concede exten-
sion to be a substance like a body if only it could move and could
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exercise the actions of a body; and on the other hand, they would
by nomeans concede a body to be a substance if it neither couldmove
nor arouse any sensation or perception in anymind whatever.” To be
noted well, then: (a) the definitive criterion of substantiality is the
ability to act; (2) one of the characteristics that belongs to the essen-
tial nature of bodies, to their character as substances, is their ability
to arouse perceptions in a mind. As to the question whether space is
an “accident” – something that can exist only as “inhering in some
subject” – Newton denies this emphatically: we can, he says, clearly
conceive of empty space, and thus of “extension existing as it were
without any subject”; “we believe it to exist wherever we imagine
there to be no bodies; nor are we to believe that, if God were to anni-
hilate some body, its extension [that is: the place of that body] would
perish with it.” This leads Newton to his repudiation of the third pu-
tative answer as well: so far is extension from being “nothing,” that
“it is more ‘something’ than is an accident, and rather approaches to
the nature of substance” – namely, in that it needs no “subject” to
“support” its existence. Further: “Of nothing, no Idea is given, nor
has it any properties, but of extension we have an Idea the clearest
of all, namely by abstracting the affections and properties of body so
that there remains only the uniform and unlimited stretching out of
space in length breadth and depth.”33

But what does Newtonmean by the statement quoted under (1) in
the preceding paragraph, that space or extension “subsists . . . as, so
to speak, an emanative effect of God, and a certain affection of every
being”? There are a number of problems to be considered here: What
are we to understand by an “emanative effect”? What reason can
there be for Newton’s statement that space is “an emanative effect of
God”? And if space subsists as “a certain affection” – that is, a kind
of “qualification” or “mode” – of every thing (“every being”), then
how can it to be said not to be an “accident,” butmore like substance
than accident? Of these questions, the first is very much clarified
by what Newton goes on to say, in six numbered articles in which
he proposes “to show not only that [space] is something, but what
it is.”

The fourth of these articles begins as follows:

Space is an affection of a being just as a being. No being exists or can exist
that does not have relation in someway to space. God is everywhere, created
minds are somewhere, and a body in the space that it fills; and whatever is
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neither everywhere nor anywhere is not. And hence it follows that space
is an emanative effect of the first-existing being, for if I posit any being
whatever I posit space. And the like may be affirmed of Duration: namely
both are affections or attributes of a being in accordance with which the
quantity of the existence of any individual is denominated, as to amplitude
of presence and perseverance in its being. So the quantity of the existence of
God, according to duration has been eternal, and according to the space in
which he is present, infinite; and the quantity of the existence of a created
thing, according to duration has been just so much as the duration since its
first existence, and according to the amplitude of its presence, as much as
the space in which it is.34

This paragraph sheds great light on the statement that extension
is an emanative effect of God. In the first place, although Newton’s
theology is deeply involved in that statement, and in this paragraph,
the latter actually makes it quite explicit that Newton does not de-
rive his “Idea” of space – its ontological status included – from his
theology (as has often been claimed); for he tells us that if anything
is posited, space is posited. He infers – quite simply – that space
(in some sense) “results from” the existence of anything. Now, in
Newton’s theology – which in some respects was heterodox, but cer-
tainly not on this point – the “first-existing being” was God, whom
he regards as the creator of the universe; so space (in some sense)
“results from” the existence of God. However, what follows from
Newton’s “metaphysics of space” is precisely the weaker statement
he makes in this paragraph: that space is (some kind of) effect of the
existence of anything; and therefore, of the first-existing thing.

But what kind of effect? What is here meant by an “emanative
effect”? Here some historical consideration of the word is helpful.
In the philosophical tradition of the neo-Platonic school, there was
a quite elaborate doctrine of “emanations” from the godhead; and
Newton was closely acquainted with members of the group at
Cambridge University known as the Cambridge Platonists – most
closely with Henry More. However, the neo-Platonist doctrine, in
its ancient version, was concerned with the origin of the universe;
whereas – as we shall presently see – Newton in the piece we are
discussing sharply distinguishes between space, as an emanative
effect of God, and both bodies and minds, as God’s “creations.”
As for the Cambridge doctrines, it is instructive that the Oxford
English Dictionary, under “emanation,” i.1, quotes the following
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from Henry More’s philosophical Poems: “Man’s soul’s not by
Creation . . .Wherefore let’t be by emanation.” On the one hand,
this supports the view that “emanation,” whatever it is, is to be
distinguished from creation; on the other hand, it is clearly not in
agreement with Newton’s view – expressed in the very paragraph we
are discussing – that human “souls” (or “minds”) are created; in-
deed, that all minds save that of God are so35 (for Newton writes,
clearly intending a complete survey of all the kinds of “being”
[or “beings”]: “God is everywhere, created minds are somewhere,
and a body is in the space it fills”). So the grounds for thinking
that Newton’s theory of emanation is neo-Platonic, or “Cambridge
Platonic,” are very weak. On the other hand, the OED in the same
entry, i.1.c, gives the definition (noted as obsolete): “Logical develop-
ment frompremises; inference” –with an illustrative quotation from
the Logic of T. Spencer (1628); and gives in ii.3.b the related defini-
tion (not designated obsolete): “A necessary consequence or result” –
with two illustrative quotations, the first from Richard Steele in
The Tatler (1710), the other the following phrase, from John Stuart
Mill’sUtilitarianism (1861): “A direct emanation from the first prin-
ciples of morals.”

But this sense of the word – simply a necessary consequence, with
no connotation of “causal efficacy” or “action” – exactly fits the rest
of what Newton says; indeed, this meaningmight have been inferred
directly from Newton’s words: “[S]pace is an emanative effect of the
first-existing being, for if I posit any being whatever I posit space”:
the second clause tells us precisely what the first clause means.

For our second question – what reason Newton thought there was
that justified this view of space as an “emanative effect” of whatever
exists – it is to be noted that he describes the proposition as inferred
from a preceding one: that “no being exists or can exist that does
not have relation in some way to space”; and this in turn he founds
upon an enumeration of all the kinds of “beings” he takes actually
to exist, and their several relations to space. In the light of this, and
of the fact that there is no suggestion – here or indeed anywhere the
present writer knows of in Newton’s writings – of an a priori episte-
mological ground for any item of knowledge, it appears reasonable to
conclude that the reason in question is an empirical one: our expe-
rience affords no grounds for a conception of real existents – beings
capable of acting – that do not have an appropriate relation to space.
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It might well be asked how experience could be said to ground
Newton’s assertion that “God is everywhere.” But first – although
the claim thatGod is everywhere present in spacewas a controversial
one, and even somewhat dangerous to advocate – Newton thought
the doctrine of the ubiquity or omnipresence of God amply founded
in the tradition of revealed truth; and second, he clearly thought
experience shows that minds can act only where they are;36 so the
doctrine of God’s omnipotence (likewise founded in revelation) itself
entails his omnipresence. As to the possible outright heretical im-
plications of the doctrine, Newton guards himself in the following
passage (the second paragraph of the same fourth article as quoted
above), which is of interest in its own right for its further elaboration
of Newton’s view both of space and of time (“duration”):

Moreover lest anyone imagine from this that God is extended and made of
divisible parts like a body: it should be known that spaces themselves are
not actually divisible, and furthermore that each being has its own proper
mode of presence in spaces. Thus, the relation to space of duration is far
different from that of body. For we do not ascribe different durations to the
different parts of space, but say that they all endure together. A moment of
the duration of Rome and of London is the same, as is one of the Earth and of
[any] star in the entire heavens. And just as we understand any one moment
of duration to be thus diffused through all spaces, in its own way, without
any conception of its parts: so it is no more contradictory that a Mind can
likewise, in its own way, be diffused through space without any conception
of parts.

But this in turn calls for commentary. What does Newton intend
by the statement that “spaces themselves are not actually divisible”?
He certainly does not mean that, for instance, a line-segment is not,
in the ordinary sense, “divisible into two equal parts.” That space has
parts is implied by Newton’s definition of place, quoted earlier; and
the first numbered article in the series enumerating the properties of
extension begins with the assertion: “Space can be distinguished ev-
erywhere into parts whose common boundaries we are accustomed
to call surfaces; and these surfaces can be distinguished everywhere
into parts, whose common boundaries we call lines; and these lines
in turn can be distinguished everywhere into parts that we call
points.” Newtonmeans, rather, that this “distinguishing into parts”
is not an “actual” division: the parts of space are not “divisible,” or
separable from one another, as the parts of a(n ordinary) body37 are.
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So we must say: spaces have parts, but are not “actually divisible”;
God, furthermore, who is present everywhere in space, not only is
indivisible, but does not have parts at all: this is what the analogy
of “durations” emphasizes: moments of duration, too, are present
throughout space, but do not have spatial – or any – parts; just as,
again, on Newton’s conception of (“absolute”) space, points of space
are present throughout time, but do not have temporal – or any –
parts.

Finally (in this series of questions), as to the sense in which space
can be said to subsist “as a certain affection” of every being, and yet
not to be an “accident,” but “more like substance than accident,”
Newton has already given a part of the answer explicitly: space is
not an accident because we can conceive it to exist without any
subject. But, says the objector, can we – on Newton’s view – con-
ceive space without any subject of which it is an “affection”? Can
we conceive space without God? We face again the question of the
relation of Newton’s conception of space to his theology, on which a
view contrary to the one that has perhapsmost often been held has al-
ready been stated above. But there is in fact explicit testimony from
Newton himself. Later in the piece under discussion, in reverting to
his objections to the Cartesian identification of bodywith extension,
Newton says the following (emphases added here):

If we say with Descartes that extension is body, do we not manifestly offer
a path to Atheism, both because extension is not a creature but has existed
eternally, and because we have an absolute Idea of it without any relation-
ship to God, and therefore we are able to conceive of it as existent while
feigning the non-existence of God?38

That, surely, is decisive! Space, the existence of space, or extension,
follows from that of anything whatsoever; but extension does not
require a subject in which it “inheres,” as a property; and it can
be conceived as existent without presupposing any particular thing,
God included. On the other hand, it is an “affection of every being.”
We can perhaps understand this better with the help of another arti-
cle in Newton’s enumeration of the fundamental characteristics of
space – the third article:

The parts of space are immobile . . .For just as the parts of duration are indi-
viduated by their order, so that (for example) if yesterday could change places
with today and become the later, it would lose its individuality and be no
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longer yesterday but today: So the parts of space are individuated by their
positions, so that if any two could interchange their positions, they would at
the same time interchange their individualities, and each be converted nu-
merically into the other. The parts of duration and of space are understood
to be the same as they truly are solely by their order and mutual positions;
nor have they any other principle of individuation beyond that order and
those positions – which therefore cannot change.

This can be taken, in rather modern terms, as saying that space is a
structure, or “relational system,” which can be conceived of inde-
pendently of anything else; its constituents are individuated just by
their relations to one another, as elements of this relational system.
But the system, or its constitutive elements, none the less can and
must “affect,” in the appropriate way, all things that exist: all exis-
ting things have spatial and temporal relations to one another by
virtue of their having, each one of them, the appropriate kind of rela-
tion to the parts of space and of duration (again: God is everywhere,
createdminds are somewhere, and a body is in the place it fills – but,
for the last two, we must add: at each moment of its own duration).

Having presented his view of the ontological status of space,
Newton turns to the corresponding question about bodies. Before de-
scribing his answer, a comment about a rather curious historical con-
nection seems in order – both for its intrinsic interest, and because it
bears upon the question whether the views of this manuscript frag-
ment can be taken to be those held by Newton in his mature years
(opinion being divided as to the date of the fragment itself).39

In Locke’sEssay concerningHumanUnderstanding (Book 4, ch. x,
§18) the following remark appears (but not in the first edition – 1690;
it was introduced only in the second edition – 1694): “possibly, if we
would emancipate ourselves from vulgar Notions . . .we might be
able to aim at some dim and seeming conception how Matter might
at first be made, and begin to exist by the power of [the] eternal
first being”; but he immediately adds that to discuss this “would
perhaps lead us too far from the Notions, on which the Philosophy
now in the World is built,” and so excuses himself from saying more
about it. In his commentary on Locke’s Essay, his New Essays on
Human Understanding (in dialogue form), Leibniz’s representative,
Theophilus, responding to Philalethes,who presents the thoughts ex-
pressed by Locke, says of this: “You have given me real pleasure, sir,
by recounting something of a profound thought of your able author,
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which his overscrupulous caution has stopped him from offering in
its entirety. It would be a great pity if he suppressed it and, having
brought us to a certain point with ourmouthswatering, left us stand-
ing there. I assure you, sir, that I believe there is something fine and
important hidden under this rather enigmatic passage.”40 The sec-
ond French edition of the Essay (1729 – after the deaths of all three
concerned: Locke, who died in 1704; Leibniz, 1716; Newton, 1727)
contained a note to this passage by the translator, Pierre Coste: “Here
Mr. Locke excites our curiosity, without being inclined to satisfy it.
Many persons, imagining that he must have communicated to me
this mode of explaining the creation of matter” – Coste had served
as Locke’s amanuensis for several years, and had translated the work
under Locke’s supervision – “requested, when my translation first
appeared, that I would inform them what it was; but I was obliged
to confess that Mr. Locke had not made even me a partner in the
secret. At length, long after his [Locke’s] death, Sir Isaac Newton, to
whom I was accidentally speaking of this part of Mr. Locke’s book,
discovered to me the whole mystery. He told me, smiling, that he
himself had suggested to Mr. Locke this way of explaining the cre-
ation of matter; and that the thought had struck him one day, when
this question chanced to come up in a conversation between him-
self, Mr. Locke, and the late Earl of Pembroke. He thus described to
them his hypothesis:” – and there follows a brief statement of the
same account of the creation of matter that appears in the present
chapter.41 It is clear, then, that the account we are about to consider,
whenever it may have been written down, was in its general lines
communicated by Newton to Locke at some time in the early 1690s.
It is clear, also, that this account was considered by Locke to be a
very radical philosophical departure – and that Leibniz thought that
it must indeed be so, and was very eager to learn what it was.42

As all this has intimated, Newton’s analysis of the fundamental
nature of bodies takes the form of a discussion of how bodies might
have been created. In one respect, this is of secondary importance; for
one can reasonably see it as merely a vivid way of focusing attention
onwhat bodies “fundamentally are” – to “create a body somewhere,”
God has to bring it to pass thatwhatever bodies “fundamentally are,”
by hypothesis not there before, comes to be there (for Newton is not
going to tell us “how” God does this in the sense of analyzing his
power to bring such-and-such to pass: this power he takes for granted,
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since he takes God to be omnipotent; he is going to tell us “how”
a body is created, rather, in the sense of exactly what has to be
brought about to achieve such a creation). To put the point another
way: what “God creates” is simply “the fundamental constitution
of corporeal nature”; we might leave God out of the story, and take
it to be a description, or analysis, of the fundamental constitution of
corporeal nature.

In another respect, however, there is something very important
that this strategy of Newton implies – something that can be seen
from the words with which this part of his discussion is introduced:

Extension having been described, for the other part the nature of bodies re-
mains to be explained. Of this, however, since it exists not necessarily but
by the divine will, the explanation will be more uncertain, because it is not
at all given to us to know the limits of the divine power – namely, whether
matter could have been created in one way only, or whether there are several
ways bywhich other beings similar to bodiesmight have been produced. And
although it hardly seems credible that God could create beings like bodies,
that should perform all their actions and exhibit all their phaenomena, and
yet in essential and metaphysical constitution should not be bodies: since
nevertheless I do not have a clear and distinct perception of this matter, I
should not dare to affirm the contrary, and accordingly I will not say posi-
tively what the nature of bodies is, but rather shall describe a certain kind
of beings, in every way similar to bodies, whose creation we cannot fail to
acknowledge to be within the power of God – and which thus we cannot
certainly declare not to be bodies.

So Newton distinguishes between the epistemological status of
his theory of space – which he has presented as something he re-
gards as exceptionally clear in conception (or “Idea”), and as entirely
convincing in its doctrine – and that of his theory of body, which
is fundamentally conjectural, because bodies, unlike space, are
effects of God’s will;43 and it is not given to us to know all the ways
in which the exercise of that will might accomplish given observ-
able effects. This, again, is a proposition that can be paraphrased
non-theologically: “Our conception of the fundamental constitution
of nature – that is, of the substantial world of things capable of
acting – is a conception of how every phenomenon we observe could
be effected; but since we have no epistemologically a priori knowl-
edge of this, the possibility always remains that those phenomena
are effected in some (perhaps even very) different way.”
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Newton’s creation story starts by supposing that a corporeal world
already exists; what, Newton asks, would God have to do to create
a new body – or, rather, what might he do that would create a new
entity indistinguishable from the bodies we know?

First, he says, “let us feign empty spaces scattered through the
world, some one of which, defined by certain limits, by the divine
power becomes impervious to bodies”: bodies simply cannot enter
this region, but are, let us say, constrained to bounce back from its
boundary. Such a “region of impenetrability” will be like a body,
except that (so far as we have gone) it will be immobile. Second,
then, we may “feign that impenetrability not conserved always in
the same part of space, but able to be transferred hither and thither
according to certain laws, yet so that the quantity and shape of that
impenetrable space are not changed.”44

This is not the last step, but it is worth pausing over. First, one
may ask whether, according to Newton, it is in some way a “con-
ceptual necessity” that bodies be impenetrable. The answer to this
question – at least, at the stage of the composition of the third of the
“Rules of Philosophizing” in Book 3 of the Principia45 – is unequivo-
cally negative; for in the discussion of that Rule, Newton says: “That
all bodies are impenetrable, we gather, not from reason, but from sen-
sation.” Second, we should note that in conferringmobility upon the
new (quasi-)bodies – that is, in making the property of impenetrabil-
ity “able to be transferred hither and thither” – it is essential that
this “transfer” be regulated by suitable laws. Of these, all Newton
specifies is that the transfer preserve the size and shape of the regions
of impenetrability; this, in effect, gives to the new (quasi-)particles
the distinguishing property of (rigid) atoms. It is, however, clear that
the motion of these new things is to be governed by the “first law
of motion”: namely, that, in the absence of encounters with bodies
(or with other “quasi-bodies”), a quasi-particle is propagated through
space with uniform speed in a straight line (understood to include
the case of rest – that is, no “transfer” at all); and that when encoun-
ters do occur, they are to be governed by the ordinary laws of impact
(which, in turn, implies that each quasi-particle is characterized by
a parameter corresponding – in “ordinary” particles – to their mass).

So far, we have a constitution for (quasi-)corporeal nature that
looks very much like just what is needed for bodies, according to
the corpuscular philosophy: rigid and indivisible ultimate particles,
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interacting only by impact – “by impulse, and nothing else,” as Locke
says: “It being impossible to conceive, that Body should operate on
what it does not touch . . .or when it does touch, operate any other
way than by Motion.”46 Yet Locke also tells us the following:

Another Idea we have of Body, is the power of communication of Motion
by impulse; and of our Souls, the power of exciting of Motion by Thought.
These Ideas, the one of Body, the other of our Minds, every days experi-
ence clearly furnishes us with: But if here again we enquire how this is
done, we are equally in the dark. For in the communication of Motion
by impulse, wherein as much Motion is lost to one Body, as is got to the
other, which is the ordinariest case, we can have no other conception, but
of the passing of Motion out of one Body into another; which, I think, is
as obscure and unconceivable, as how our Minds move or stop our Bodies
by Thought; which every moment we find they do . . . I think, we have
as many, and as clear Ideas belonging to Spirit, as we have belonging to
Body, the Substance of each being equally unknown to us; and the Idea of
Thinking in Spirit, as clear as of Extension in Body; and the communica-
tion of Motion by Thought, which we attribute to Spirit, is as evident, as
that by impulse, which we ascribe to Body. Constant Experience makes us
sensible of both of these, though our narrow Understandings can compre-
hend neither. For when the Mind would look beyond those original Ideas
we have from Sensation or Reflection, and penetrate into their Causes,
and manner of production, we find still it discovers nothing but its own
short-sightedness.47

In other words, according to Locke, the only way in which we can
conceive bodies to act, is a way in which we cannot conceive bodies
to act: it is a way that is “obscure and unconceivable,” and is beyond
the capacity of “our narrow Understandings [to] comprehend.”

Locke is here wrestling with a fundamental incoherence in
the philosophical foundations of the corpuscular philosophy; the
fact that he appears to contradict himself – that he does contradict
himself! – is testimony to the basic honesty of his mind, and to his
penetrating insight. For although he accepts the corpuscular philos-
ophy as the most plausible hypothesis about nature, and accepts the
widespread view that it represents the only basis on which we can
hope to understand natural processes, he also sees (sometimes, at
least) that the underpinnings of that philosophy are not “clear and
distinct principles” such as the Cartesians thought they had, but
principles whose own grounds are obscure. Partly for this reason,
Locke draws very pessimistic conclusions concerning the possible



Newton’s metaphysics 277

advance of science; indeed, he thinks that a truly systematic knowl-
edge of nature is beyond human capacity.48

Newton sees the very same impossibility of a “transparent” sys-
tem of fundamental principles; but he faces it squarely, and it does
not create for him a desperate predicament: the fundamental consti-
tution of nature is simply not (directly) open to us; but we can never-
theless form perfectly clear conceptions of what structures may
underlie phenomena; not why they do – nor even for certain that
they do – but what structures would suffice as a basis for the con-
stitution of the world we know, at the stage of knowledge we have
reached. Andwhat allows us to do this is a clear understanding of the
lawful relationships that we have so far managed to discover among
phenomena. Thus, first of all, we have “of extension an Idea the clear-
est of all.” How did we obtain it? From experience – and, of course,
thought (in particular, thought of the kind we call “mathematical”)
based upon experience: “geometry is founded in mechanical prac-
tice”; and “it is the glory of geometry that from [a] few principles,
brought from without, it is able to produce so many things.”49 And
in the second place, we have a perfectly clear conception of those at-
tributes of bodies that the mechanical, corpuscular, philosophy has
conceived as fundamental, including the laws governing the interac-
tions of those bodies: the laws of impact. That means, in Newton’s
view, that we have a sufficiently clear conception ofwhat bodies are
if the mechanical philosophy is true.

To appreciate the clarifying power of this analysis, it is helpful to
describe another perplexity in which Locke finds himself. In agree-
ment with both the Aristotelian tradition and the Cartesian philos-
ophy, Locke calls all “real existents” substances; and he asks what
goes to make up our “Ideas of Substances.”50 His general answer
is exemplified by one of his favorite examples: “the greatest part of
the Ideas, that make up our complex Idea of Gold, are Yellowness,
greatWeight, Ductility, Fusibility, and Solubility inAqua Regia, etc.
all united together in an unknown Substratum.”51 This “unknown
substratum,” the “idea” of whichmakes a part of all our ideas of par-
ticular substances according to Locke, he calls, simply, “substance”
(or “substance in general”). At the same time, however, Locke tells
us that we have of substance no idea at all:

I confess, there is [an] Idea, which would be of general use for Mankind
to have . . . and that is the Idea of Substance, which we neither have, nor
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can have, by Sensation or Reflection . . .We have no such clear Idea at all,
and therefore signify nothing by the word Substance, but only an uncertain
supposition of we know not what . . .which we take to be the substratum,
or support, of those Ideas we do know.52

There has been much discussion of the precise nature of Locke’s
dilemma here – that of holding both that we require a certain “idea,”
and that we do not have it. If we “do not have” the idea, how can it
be an idea at all – how can we know what it is that we need but do
not have? The following is a passage that helps to clarify the issue:
“[I]n Substances, besides the several distinct simple Ideas that make
them up, the confused one of Substance, or of an unknown Support
and Cause of their Union, is always a part.”53 What this suggests
we “need” is an answer to the twofold question: “(1) In what do the
qualities we attribute to a substance exist together? (2) What is the
cause of their existing thus together?”

Newton’s analysis may be said to separate these two questions. To
the first, his answer is that the qualities that fundamentally consti-
tute a body can be coherently and clearly conceived to exist in, or to
have as their “logical subject” or themetaphysical “support” of their
“being,” simply extension: regions or “parts” of space. In the lan-
guage of later natural philosophy, the distribution of bodies through
space can be described as a kind of field on space: the “field of impen-
etrability,” characterized, at each point of space, by the simple indi-
cation “filled” or “not filled.”54 Newton’s own comment upon this
part of the question (in his summing-up, later in the piece) is illumi-
nating, both of his own view and for the possible light it sheds on the
perplexity Locke felt – since Newton (quite independently of Locke’s
thoughts on thematter) names a perplexity that his account removes:

[F]or the existence of these beings [– that is, the beingswhose creation byGod
he has imagined –] it is unnecessary to feign some unintelligible substance
to be given in which as in a subject a substantial form should inhere: exten-
sion and an act of the divine will suffice. Extension takes the place of the
substantial subject in which the form of the body is conserved by the divine
will; and that effect of the divine will is the form or formal reason of the
body, denominating as a body every region of space in which it is produced.

Newton goes on to assimilate the “unintelligible substance,” the
need for which he claims he has obviated, to the “materia prima” po-
sited by the scholastics:55 the notion of a totally “formless” ultimate
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“support” of all forms or attributes; and says the following (Articles
(3) and (4) of his summary):

(3) Between extension and the form imposed upon it there is almost the
same Analogy that the Aristotelians posit between the materia prima and
substantial forms, namely when they say that the same matter is capable of
assuming all forms, and borrows the denomination of numerical body from
its form. For thus I suppose that any form may be transferred through any
space, and everywhere denominate the same body.

(4) They differ, however, in that extension . . .has more reality than
materia prima, and also in that it is intelligible, as likewise is the form that
I have assigned to bodies. For if there is any difficulty in this conception, it
is not in the form that God imparts to space, but in the way in which he
imparts it. But that is not to be taken for a difficulty, since the same [point]
occurs with respect to the way we move our limbs, and nevertheless we do
believe that we can move them. If that way were known to us, by parity
of reason we should also know how God can move bodies, and expel them
from a certain space terminated in a given figure, and prevent the expelled
bodies or any others from entering into it again – that is, cause that space to
be impenetrable and to assume the form of a body.

Here, then, we have Newton’s answer (in effect) to the second
part of the above-posed twofold Lockean question: what causes the
coexistence of the basic qualities of his “new” or “quasi-”bodies, as
well as the laws of propagation and interaction, which form a part of
the essential character of these entities, is just “God’s action” itself;
or, in our neutral paraphrase, this coexistence and these laws just are,
on this view, the fundamental constitution of corporeal nature.This
may indeed be wrong – it is possible that the phenomena we know
are produced in a different way; but if it is right, it is enough: the
demand for a further “explanation” of this constitutional fact stems
from the Cartesian illusion that we must in principle have a “clear
and distinct” apprehension of the necessity of the basic constitution
of nature – precisely the illusion that Locke on the one hand shares
when he speaks of “impulse” as the onlywaywe can conceive bodies
to act, and that he on the other hand explodes when he asks: “Have
we indeed a clear conception of this mode of transfer of motion?”

But there still remains a step to be taken in the creation of the
“new” bodies. Why so? If the “beings” so far described have all the
fundamental properties posited by the corpuscular philosophy, why
is that not sufficient? The reason is this: we must ask, would these
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beings have all the attributes required for us to take them for bodies
of the sort we know? In particular, how couldwe detect the existence
of these beings at all? So far, we have assumed that “ordinary” bod-
ies already exist (including our own bodies!). Then we could detect
the “new” bodies by the interaction of ordinary bodies with them:
for instance, we should perceive that ordinary bodies bounce off the
new ones, and so detect their presence; lightmight be reflected from
them, so that we could see them; etc. But the metaphysical hypoth-
esis Newton intends to suggest is that what we have been calling
“new” or “quasi-”bodies are in fact just the bodies we know. And for
this, he says, it is necessary to suppose that these beings are endowed,
further, with the power to interact with minds: “[t]hat they be able
to excite various perceptions in the senses and the fancy in created
minds, and in turn to be moved by the latter” – most especially,
that they are able, when they form part of what he calls our “sen-
sorium” (the crucial region of our brain), to induce specific forms of
awareness as a consequence of specific motions on their part; and,
correspondingly, that our acts of will cause suitablemotions in those
that initiate activity in what we now call our motor neurons.

This is another rather original idea. Descartes placed the
“essence” of bodies in extension alone; to this, Locke objects
that impenetrability, which he calls “solidity,” is equally essential
to bodies;56 and in an important summary passage, he suggests as
the “primary and original” ideas we have of anything the following:
“Extension, Solidity, Mobility, or Power of being moved; which by
our Senses we receive from Body: Perceptivity, or the Power of per-
ception, or thinking; Motivity, or the Power of moving: which by re-
flectionwe receive fromourMinds.”57 ButNewton points out (again,
quite without any acquaintance with Locke’s discussion) that just
as “mobility” is correlative with “motivity,” so must perceptibility
be correlative with perceptivity; that, indeed, contrary to what the
grammatical formation of the wordsmight suggest, “perceptivity” is
a susceptibility to being affected: a process in which it is bodies that
“act on”minds.That such a power is essential to bodies is something
he argues for rather strongly:

But should anyone object that bodies not united to minds cannot directly
arouse perceptions in minds, and that hence . . . this power is not essential to
them: it should be noted that there is no question here of an actual union,
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but only of a faculty in bodies by which they are capable of a union through
the forces of nature. From the fact that the parts of the brain, especially the
finer ones to which the mind is united, are in a continual flux, new ones
succeeding to those which fly away, it is manifest that that faculty is in
all bodies. And, whether you consider divine action or corporeal nature, to
remove this is no less [a violation of the nature withwhichGod has endowed
bodies] than to remove that other faculty by which bodies are enabled to
transfer mutual actions amongst one another58 – that is, to reduce body to
empty space.

Towards the end of this lengthy digression,59 Newton makes the
claim that “the usefulness of the described Idea of bodies shines forth
most in that it clearly involves and best confirms and explicates the
chief truths of Metaphysics.” What he goes on to contend is that the
conception of body in question provides a powerful argument against
atheism. But the end of this passage has an importance beyond, and
quite independent of, its theological claims. Having argued that the
chief, or even the only, support of atheism is the “prejudice” or “no-
tion” of bodies “as if having in themselves a complete absolute and
independent reality,” he adds:

Thus the prejudice just mentioned ought to be laid aside, and substantial
reality rather ascribed to these kinds of Attributes which are real and intelli-
gible in themselves and do not require a subject in which they inhere . . .And
this we canmanage without difficulty if (besides the Idea of body expounded
above) we reflect that we can conceive of space existing without any sub-
ject, when we think of a vacuum . . . In the same way, if we should have an
Idea of that Attribute or power by which God, through the sole action of his
will, can create beings: we should perhaps conceive that Attribute as it were
subsisting of itself, without any substantial subject, and involving his other
attributes. But while we cannot form an Idea of this Attribute, nor even of
our own power by which we move our bodies, it would be rash to say what
is the substantial foundation of minds.

The boldness of this would be hard to exaggerate. In his rejection
of the notion of “substance” as having reference to what he calls
an “unintelligible” support or subject of attributes, in favor of a no-
tion of “substantiality” of the attributes themselves (the criterion of
substantiality being, as indicated by him earlier, the role played in
actions), Newton goes so far as to suggest that even God might be
conceived entirely in terms of his attributes, if only we could form
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clear “Ideas” of these. It is well known that Newton’s theologico-
religious convictions (which he kept carefully concealed from all but
a few very trusted contemporaries)60 were unorthodox; in particular,
that he rejected the doctrine of the Trinity. Well, of course the view
of substantial reality described here would make not so much false,
as entirely unintelligible, the proposition that God is “three persons,
but one substance”!

However, as has been remarked, the reach of Newton’s suggestion
is by nomeans only theological; it bears explicitly upon the so-called
“mind–body problem” – or, perhaps better put as Newton put it:
upon the problem of understanding “the substantial foundation of
minds.” Just as in the theological case, the suggestion sets aside the
distinction of “kinds of substance”: mind–body dualism or monism,
in favor of the program: to seek to understand mental attributes and
their relation to corporeal ones.When these relations are sufficiently
understood, Newton implies, we may expect to know all that there
is to know about the “substantial foundation of minds”; before they
are sufficiently understood,61 “it would be rash to say what is the
substantial foundation of minds.”

It remains now to discuss what consequences for Newton’s meta-
physics resulted from his greatest discovery in natural philosophy:
that of the law of universal gravitation.

The short answer is that this discovery led Newton to a quite new
conception of the nature of what Descartes had called “a natural
power in general”; that is, to a new conception of how it may be
fruitful – not, as for Descartes, how it is necessary – to conceive
of the “actions” that characterize nature, with a view to the deeper
understanding of natural phenomena. In the Preface to the Principia,
Newton formulates this conception in the following way: having
first remarked that, whereas the ancients cultivated mechanics as
the science of machines – that is, as the “art” of moving weights –
his design in the present work concerns “not arts but philosophy,”
and his subject is “not manual but natural powers,” he goes on:

And therefore we offer this work as mathematical principles of philoso-
phy. For all the difficulty of philosophy seems to consist in this, from the
phaenomena of motions to investigate the forces of Nature, and then from
these forces to demonstrate the other phaenomena . . . In the third book we
give an example of this in the explication of the System of the World. For by
the propositions mathematically demonstrated in the first books, we there
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derive from the celestial phaenomena, the forces of Gravity with which bod-
ies tend to the Sun and the several Planets. Then from these forces by other
propositions, which are also mathematical, we deduce the motions of the
Planets, the Comets, the Moon, and the Sea. I wish we could derive the rest
of the phaenomena of Nature by the same kind of reasoning from mechani-
cal principles. For I am induced bymany reasons to suspect that theymay all
depend upon certain forces by which the particles of bodies, by some causes
hitherto unknown, are either mutually impelled towards each other and co-
here in regular figures, or are repelled and recede from each other; which
forces being unknown, Philosophers have hitherto attempted the search of
Nature in vain. But I hope the principles here laid down will afford some
light either to that, or some truer, method of Philosophy.62

This is the new program for natural philosophy: deriving the phe-
nomena of nature from“mechanical principles,” not in the sense pre-
viously understood by themechanical philosophy, but in the sense of
principles governing forces of attraction and repulsion – themselves
to be discovered by reasoning from the phenomena, as in Book 3 of
the Principia itself. It is important to note that the program is put
forward as tentative and open to revision. But what bearing does this
change have on Newton’s metaphysics?

For the answer to this, we must consider Newton’s exposition of
the general framework of his system of mechanical principles, both
in the Principia and near the end of that thirty-first Query of the
Opticks to which brief reference has already been made.

At the opening of the Principia we find first a section of “Defini-
tions,” and then one of “Axioms, or Laws of Motion.” Among the
eight definitions, six treat of concepts associatedwith the general no-
tion of force. Definition 3 tells us that the “innate force of matter”
is “a power of resisting, by which every body, as much as in it lies,
endeavours to persevere in its present state, whether it be of rest, or
of moving uniformly forward in a right line.” The paragraph of dis-
cussion following this definition introduces the alternative expres-
sion vis inertiae – “force of inactivity” – for this same power; makes
the important remark that this force is quantitatively measurable by
“the [mass of the] body whose force it is”; and explains further that
whenever a force is “impressed” upon one body, A, by another body,
B, so as to tend to change the condition of A, the force of inactivity is
exercised in a twofold way: (a) in the degree to which A“withstands”
the force impressed – i.e., in the smallness of the change of velocity
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that results; and (b) in that A, “by not easily giving way,” recipro-
cally “endeavours to change the state” of B. Definition 4 is of a term
already used in the passage just described: it says that an “impressed
force” is an action exerted upon a body, tending to change its state
of rest or motion. One might assume from this that “intrinsic force”
and “impressed force” are, for Newton, correlative contrary terms;
but as we shall see, this would be not quite correct. The paragraph
of explanation following this definition remarks first that impressed
force “consists in the action only; and remains no longer in the body,
when the action is over.” Thus, whereas the “force of inactivity” is
a permanent attribute of a body – not always exercised, but always
present – impressed force is by its nature episodic. The explanation
ends with the remark, “Impressed forces are of different origins; as
from percussion, from pressure, from centripetal force.” The phrase-
ology here – a force said to be “from” another (kind of) force as its
“origin” – is rather odd. But the point is this: the “intrinsic force of
matter” is, in Newton’s terminology, one of the “natural powers”
or forces of nature. The various “origins” of impressed forces, too,
are natural powers: permanent features of material nature, not tran-
sient episodes. An impressed force is the action upon a body of one
of these natural powers.

Of the three kinds of “origin” instanced by Newton, two – percus-
sion and pressure – are recognizably the ones assumed by the me-
chanical philosophy. It is the third – “centripetal force” – that is
the characteristic novelty of the Principia; and Definitions 5–8 are
devoted to aspects of this notion.

Definition 5 tells us simply that a centripetal force is one directed
towards a point as center. In the paragraph of discussion, Newton
cites three characteristic examples – “Gravity by which bodies tend
to the centre of the Earth; Magnetism, by which iron tends to the
loadstone; and that force, whatever it is, by which the Planets are
perpetually drawn aside from the rectilinear motions, which other-
wise they wou’d pursue, and made to revolve in curvilinear orbits.”
These, it is clear, rightly count as “forces of nature”; and the main
business of the Principiawill be to establish that the first and third of
them are the same, and to establish the fundamental law that char-
acterizes this force. Unfortunately, with an uncharacteristic lapse in
clarity, Newton adds a fourth example: that of the force by which
a sling holds a stone in its orbit about the hand. In what sense this
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example obscures the concept Newton has chiefly in view, we shall
soon see.

The remaining three definitions concern three “quantities,” or
“measures,” of a centripetal force, which Newton calls the absolute,
the accelerative, and themotive quantities; and it is in his character-
ization of these three measures – above all, in the second paragraph
of discussion following Definition 8, which paragraph is devoted to
a fuller explication of all three measures – that Newton gives us the
deepest information about his conception of a centripetal force itself
as a natural power. Of the three definitions taken by themselves, the
first two are, in different ways, a little puzzling. Definition 6 says
that the absolute quantity of a centripetal force is the measure of
that force “proportional to the efficacy of the cause that propagates
it from the centre, through the spaces round about”; and Newton
adds by way of example that “the magnetic force is greater in one
load-stone and less in another, according to their sizes and strength.”
Thismakes clear the general idea of what it is that the absolute quan-
tity is supposed to measure; however, it fails to tell us how this is to
be measured: the phrase “proportional to the efficacy of the cause”
presupposes that we know how to express the efficacy of the cause in
a quantitative way.63 But in spite of this, when the issue arises con-
cretely, in the case of the force of gravity, the appropriate quantitative
measure is entirely clear. With Definition 7, on the other hand, the
quantity is explicitly named – the “accelerative quantity” of a cen-
tripetal force is its measure, “proportional to the velocity which it
generates in a given time”: in other words, the accelerative quantity
is in effect just what we call the acceleration produced by the force;
what is puzzling is Newton’s remark in explanation of this notion:
“Thus the force of the same loadstone is greater at less distance, and
less at greater: also the force of gravity is greater in valleys, less on
tops of exceeding high mountains; and yet less (as shall be hereafter
shown) at greater distances from the body of the Earth; but at equal
distances, it is the same everywhere . . .” The puzzle is, why choose
acceleration as the measure that varies in this sort of fashion with
distance? But here, the puzzle vanishes upon a little reflection. In the
case of a magnet, acceleration is indeed not an appropriate choice for
the measure Newton really has in mind; for it is by no means true
(nor does Newton say it is) of the acceleration produced by a magnet
that “at equal distances, it is the same everywhere.” But that is true
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of gravitational force. This is the centrifugal force Newton is chiefly
concerned with in the Principia, and he has formulated his general
definition in a way that strictly fits only this special case. Finally,
Definition 8 presents us with the quantity that we normally asso-
ciate with the word “force” in Newtonian mechanics: it defines the
motive quantity of a centripetal force as its measure, “proportional
to the motion which it generates in a given time.” Since (1) accord-
ing to Newton’s Definition 2 the “quantity of motion” is jointly
proportional to the mass and the velocity of a body, and since (2)
the quantity generated “in a given time” means, in more modern
language, the rate, per unit time, with which it is generated, the
definition says that the motive quantity measures the force by the
rate of change of momentum produced thereby; in other words, it
measures the force impressed upon a body by the product of the
mass of the body and the resulting acceleration.

Newton considers these interrelated notions important enough to
devote a few paragraphs to their further clarification. Of these the
most important part, for our concerns, is the following:

These quantities of Forces, we may for brevity’s sake call by the names of
Motive, Accelerative, and Absolute forces; and for distinction sake consider
them, with respect to the Bodies that tend to the centre; to the Places of
those bodies; and to the Centre of force towards which they tend: That is
to say, I refer the Motive force to the Body, as an endeavour and propensity
of the whole towards a centre, arising from the propensities of the several
parts taken together; the Accelerative force to the Place of the body, as a
certain power or energy64 diffused from the centre to all places around to
move the bodies that are in them; and the Absolute force to the Centre, as
indued with some cause, without which those motive forces would not be
propagated through the spaces round about; whether that cause is some cen-
tral body, (such as is the Load-stone, in the centre of the force of Magnetism,
or the Earth in the centre of gravitating force) or any thing else that does not
yet appear. For I here design to give a Mathematical notion of those forces,
without considering their Physical causes and seats.

This passage describes the conception of what in a later termino-
logy is called a field of force, distributed about – and everywhere tend-
ing towards – a center.65 The “absolute quantity” of this force (this
field) is meant to characterize the strength of the field as a whole –
the “efficacy of the cause” by which it is produced, or “propagated
through the spaces round about”; again, in later terms, it is the
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“source-strength” at the center of the field. The “accelerative quan-
tity” is meant to characterize the intensity of the field at any given
place (and in the special case of gravitation, the “acceleration due
to gravity” at the place in question successfully does so).66 Finally,
the “motive quantity” characterizes the action of the field upon an
actual body: it measures, in other words, the force impressed upon
a body by the field – the impressed force that has the given (field of)
centripetal force as its “origin.” In the case of gravity, the motive
quantity of the force on a body is simply the weight of that body.67

When this array of concepts is juxtaposed with the passage quoted
earlier from the preface to the Principia, in which the program is laid
out of trying to account for the phenomena of nature as the effect of
forces of attraction and repulsion, what emerges is the view that the
natural powers – that of the vis inertiae of matter excepted – may
all take the form of fields of force associated with the particles of
matter; and, indeed, “central” fields (tending either toward or away
from a center).68

One further essential point remains to bemade – this derived from
the Laws of Motion: namely, that the forces of nature constituted by
the central fields are forces of interaction, governed by the third law
of motion: that is, they produce equal and opposite motive forces
between pairs of bodies. In Newton’s argument in Book 3 culminat-
ing in the law of universal gravitation, this conception of a force of
nature as an interaction subject to the third law plays a most crucial
role.69 Newton’s awareness that there is in this a novel and impor-
tant idea is clearly shown in a passage in the first version of Book 3,
written (he tells us) “in a popular method,”70 not published during
his lifetime, but published both in Latin and in an English trans-
lation in 1728. The passage in question is striking in its iteration,
which contrasts with Newton’s usual conciseness of exposition (all
emphases are added here, chiefly to highlight the main point – the
one exception is explained in note 71):

Since the action of the centripetal force upon a body attracted is, at equal
distances, proportional to the matter in this body, it accords with reason
that it should be proportional also to the matter in the body attracting.
For action is mutual, and (by the third Law of Motion) makes bodies by
a mutual tendency approach one another, and hence must be conformable
with itself in each body.One body may be considered as attracting, another
as attracted; but this distinction is more mathematical than natural. The
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attraction really is of each body towards the other, and is thus of the same
kind in each.

And hence it is that the attractive force is found in each.The Sun attracts
Jupiter and the other Planets, Jupiter attracts the Satellites; and by parity of
reason, the Satellites act among themselves reciprocally and upon Jupiter,
and all the Planets mutually among themselves. And though the mutual
actions of two Planets may be distinguished from one another, and consid-
ered as two actions, by which each attracts the other: yet in so far as these
[actions] are intermediate, they are not two, but a single operation between
two terms. By the contraction of a single interceding cord two bodies may
be drawn each to the other. The cause of the action is twofold, indisputably
[that cause is] the disposition of each body; the action is likewise twofold
in so far as it is upon two bodies; but as between two bodies it is sole and
single. It is not one operation by which the Sun for instance attracts Jupiter,
and another operation by which Jupiter attracts the Sun, but it is one op-
eration by which the Sun and Jupiter mutually endeavor to approach one
another. By the action by which the Sun attracts Jupiter, Jupiter and the Sun
endeavor to come nearer together (by the third Law ofMotion) and, by the ac-
tion by which Jupiter attracts the Sun, Jupiter and the Sun likewise endeavor
to come nearer together: but the Sun is not attracted towards Jupiter by a
double action, nor Jupiter by a double action towards the Sun, but it is one
intermediate action by which both approach nearer together. Iron draws the
loadstone as much as the loadstone draws the iron; for all iron in the neigh-
borhood of the loadstone also draws other iron. But the action between the
loadstone and the iron is single, and is considered as single by the Philoso-
phers . . .Conceive a single operation arising from the conspiring nature of
both to be exerted in this way between two Planets; and this will be disposed
in the same way towards both: hence being manifestly proportional to the
matter in one of them, it will be proportional to the matter in the other.71

To repeat, then: the almost obsessive iteration in this passage
seems clear evidence of Newton’s intention to bring emphatically
forward a new notion of the unity of interaction as the form of a
force of nature. In terms of the fields already referred to, this means
that exactly those bodies that are susceptible to the action of a given
interaction-field are also the sources of the field; and that the mea-
sures of susceptibility and of source-strength (the “absolute quan-
tity” of the body’s force) are the same.

If all this is brought into relation to the metaphysical analysis in
“De gravitatione et aequipondio fluidorum,” it implies that in cre-
ating a body, God (or in the “constitution” of a body, nature) must
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impose, not only the field of impenetrability and the laws of motion
appropriate thereto, but other fields as well, with their laws, charac-
terizing forces of interaction of the kind that have been described –
which fields, according to the Preface to the Principia, it becomes
the presumed task of natural philosophy to discover.

And this is precisely the picture presented by Newton near the
end of Query 31 of the Opticks. He there makes the explicit dis-
tinction, among natural powers or forces of nature, between the vis
inertiae, as a “passive principle,” and the other forces, which are
“active principles”; but in both cases, he makes clear, what charac-
terizes or identifies a particular such force is a law of nature (of the
appropriate kind). Here are the principal relevant statements; they
are preceded by a lengthy survey of physical and chemical phenom-
ena, all tending to show that our understanding of nature depends
upon the determination of forces of attraction and repulsion among
particles:

And thus Nature will be very conformable to herself and very simple, per-
forming all the great Motions of the heavenly Bodies by the Attraction of
Gravity which intercedes those Bodies, and almost all the small ones of their
Particles by some other attractive and repelling Powers which intercede the
Particles. The Vis inertiae is a passive Principle by which Bodies persist in
their Motion or Rest, receive Motion in proportion to the Force impressing
it, and resist as much as they are resisted.72

We see, then, that Newton regards as the law or principle character-
izing the intrinsic force of matter as a natural power, not what we
call the “law of inertia,” but the conjunction of all three Laws of
Motion. This is quite in accord with what he has said in his discus-
sion of Definition 3 of the Principia, where he describes the twofold
manifestation or “exercise” of the force of inertia: in reducing the
acceleration of the body acted upon by an impressed force (Law 2),
and in the reciprocal “endeavor to change the state” of the body re-
sponsible for that impressed force (Law 3).

After some further discussion,which culminates in the statement:
“All these things being consider’d, it seems to me probable that God
in the Beginning form’d Matter in solid, massy, hard, impenetrable,
moveable Particles, [etc.],”73 mentioned earlier – a statement that in
itself can be regarded as a pretty close counterpart of the creation
story of “De gravitatione et aequipondio fluidorum,” but with its



290 howard stein

deeper ontological analysis omitted – Newton goes on:

It seems to me farther, that these Particles have not only a Vis inertiae,
accompanied with such passive Laws of Motion as naturally result from
that Force, but also that they are moved by certain active Principles, such
as is that of Gravity, and that which causes Fermentation, and the Cohesion
of Bodies. These Principles I consider, not as occult Qualities, supposed to
result from the specifick Forms of Things, but as general Laws of Nature,
by which the Things themselves are form’d; their Truth appearing to us
by Phaenomena, though their Causes be not yet discover’d. For these are
manifest Qualities, and their Causes only are occult.74

We have, then, once again, the explicit distinction of the one passive
principle and the several active principles; the explicit identifica-
tion of such a principle with a “general Law of Nature”; and further,
the indication that these principles, forces, or laws, are taken not to
result from something like Aristotelian “substantial forms,” which
are “occult Qualities,” but to replace them: it is by these “general
Laws of Nature” that “the Things themselves are form’d” – just as,
in “De gravitatione et aequipondio fluidorum,” the clear attributes
of impenetrability and laws of transference of the fields of impen-
etrability through the parts of space replaced the obscure notions
of substance and substantial forms. The contrast is further drawn –
and the tentative character of Newton’s philosophic program further
emphasized – in these words:

[O]ccult Qualities put a stop to the Improvement of natural Philosophy, and
therefore of late Years have been rejected. To tell us that every Species of
Things is endow’d with an occult specifick Quality by which it acts and
produces manifest Effects, is to tell us nothing: But to derive two or three
general Principles of Motion from Phaenomena, and afterwards to tell us
how the Properties and Actions of all corporeal Things follow from those
manifest Principles, would be a very great step in Philosophy, though the
Causes of those Principles were not yet discover’d: And therefore I scruple
not to propose the Principles of Motion above-mentioned, they being of very
general Extent, and leave their Causes to be found out.75

Combining what Newton says here with the words previously
quoted from the Preface to the Principia, one sees that – apart from
the obvious openness to the future of a program of investigation for
physics – the metaphysics that Newton presents is open and tenta-
tive in two respects: First, the words just cited imply that, although
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we are asked to consider the active principles as candidates to re-
place the old substantial forms as fundamental constitutional ele-
ments of nature, we are not to suppose, dogmatically, that whatever
principles we have managed to discover are necessarily “the” funda-
mental ones: it will be a question for the future whether (yet deeper)
causes of these principles may remain to be found out. In particu-
lar, this explains why Newton never claimed – and strongly denied
holding – that gravity is “essential” to bodies. In the Principia, in the
General Scholium to that work (added in the second edition, 1713),
he says in a very celebrated passage:

Hitherto we have explain’d the phaenomena of the heavens and of our sea,
by the power of Gravity, but have not yet assign’d the cause of this power.
This is certain, that it must proceed from a cause that penetrates to the very
centers of the Sun and Planets, without suffering the least diminution of
its force . . .But hitherto I have not been able to discover the cause of those
properties of gravity from phaenomena, and I feign no hypotheses. For what-
ever is not deduc’d from the phaenomena, is to be called an hypothesis; and
hypotheses, whether metaphysical or physical, whether of occult qualities
or mechanical, have no place in experimental philosophy.76

And in the Opticks (in Query 21, added in its second edition, in
1717), Newton does actually sketch an hypothesis as to a possible
“mechanical” cause of gravity by the action of a highly elastic
aethereal medium (NB: a possible cause: one to be considered, not
adopted; hence, although an hypothesis, not “feigned”).

The second respect in which the metaphysics is left open to revi-
sion is more far-reaching (and commensurately vaguer). It is related
to Newton’s statement in “De gravitatione et aequipondio fluido-
rum” that we cannot know with certainty the ultimate constitution
of things: namely, the general “probable” metaphysical conclusions
Newton has reached on the basis of a comprehensive consideration
of what has been discovered from phenomena are in the nature of
the case open to possible re-consideration when more things have
been learned; hence the form in which Newton expresses his hopes
for the success of his program in the Preface to the Principia: “I hope
the principles here laid down will afford some light either to that, or
some truer, method of Philosophy.”

In conclusion, it is worth considering briefly what the actual suc-
cess has been of Newton’s metaphysics, in the perspective of the
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natural philosophy of the present time.Of course, in our ownphysics,
all the foundations of Newtonian physics have been radically modi-
fied: space and time, since the work of Einstein, are not conceived as
Newton conceived them; finitely extended rigid and impenetrable ul-
timate particles have been replaced by far more exotic beings; fields
that are not rigidly associated with particle sources, as Newton’s
were, but that are capable of existing to some degree independently,
and that have their own internal structure and interaction among
their parts (as in the propagation of waves), have come to have an
“ontological” standing no less fundamental than “fundamental par-
ticles” themselves; and – especially since the advent of quantum
mechanics – we have even had to abandon the notion of particles as
having, at each instant of time, definite locations in space, and as
interacting through Newtonian “impressed motive forces.” On the
other hand, in the developments that have led to the present state of
physics, the conceptions introduced by Newton have played an in-
dispensable role. Andwhat are arguably his twomost characteristic –
and in his own time most sharply controverted – basic conceptions
remain, although radically modified, as basic characteristics of the
structure envisaged by our own science. The first of these is the
structure of space-time. It was once thought that the development
of the general theory of relativity had decided the issue of “absolute”
versus “relative” space and motion against Newton and in favor of
his strongest contemporary critic in this matter, Leibniz; but more
careful consideration has shown that in spite of the very far-reaching
changes wrought by Einstein – in spite of the fact that absolute space
and absolute time have been abandoned, and the geometric structure
of space-time has proved to be interdependent with the distribution
of matter (or, rather, of “energy-momentum”) – it remains necessary
to regard space-time and its geometry as having a status as “real”
as that of matter: the program of “reducing” the properties of space-
time to properties and interrelations of “bodies” has not succeeded.
So on this general score – although certainly not in detail – Newton
was, in the eyes of our own science, “right” to take space and time
as fundamental entities.77

The other characteristic notion of Newton’s that has proved quite
remarkably durable is that of a natural power, or force of nature.
This statement may seem as surprising as the claim that Newton
was “right” in a general sense about space and time: for (a) as has
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been already remarked, Newtonian “motive force” has disappeared
from quantum mechanics, and (b) it is “motive force” – the “force”
of Newton’s second law, f = ma – that is usually taken as the char-
acteristic notion of “Newtonian mechanics.” But as we have seen,
as important as this concept is in Newton’s Principia, it does not
express his most basic notion; for instance, whereas an impressed
force is not a natural power, the “force of inertia” – which is some-
thing entirely different from the force that is equal to ma – is
one. Newton’s basic notion of a force of nature is, however, so far
from being antiquated that it is substantially the same – although
again, as in the case of space and time, with profound modifica-
tions in detail – as the notion used when physicists today speak
of the “four fundamental forces.” Of these, the gravitational force
is the first to have been discovered; it was, of course, a great dis-
covery of Newton’s – and, on the analysis here offered, provided the
grounds on which Newton’s general conception was based. Two of
the four fundamental forces – the weak and the strong nuclear force –
obviously could not have been foreseen in Newton’s time. Of the re-
maining one – the electromagnetic force, whose classical definitive
form was discovered by Maxwell in the 1860s – we find some traces
in Newton’s work. References to the loadstone have been quoted
above. In the long closing query of the Opticks, from which mate-
rial occurring near the end has been cited as illuminating Newton’s
general concept of a force of nature, there is also the following inci-
dental speculation about electrical force, in the midst of a more gen-
eral consideration (itself showing again exactly the tentative view
of the “fundamental” that has been suggested as characteristic of
Newton):

What I call Attractionmay be perform’d by impulse, or by some othermeans
unknown to me. I use that Word here to signify only in general any Force
by which Bodies tend towards one another, whatsoever be the Cause. For
we must learn from the Phaenomena of Nature what Bodies attract one
another, and what are the Laws and Properties of the Attraction, before we
enquire the Cause by which the Attraction is perform’d. The Attractions of
Gravity, Magnetism, and Electricity, reach to very sensible distances, and
so have been observed by vulgar Eyes, and there may be others which reach
to so small distances as hitherto escape Observation; and perhaps electrical
Attraction may reach to such small distances, even without being excited
by Friction.78
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When we remember that electrical attractions, in Newton’s time,
constituted a rather isolated phenomenon, observed only when cer-
tain bodies were suitably rubbed – and when we recall that the “at-
tractions [and repulsions aswell] extending to small distanceswithin
bodies” that Newton had in mind were the ones that should even-
tually account for cohesion and for chemical processes – this glim-
mering of a suspicion that electricity might not be merely a special
effect of rubbing, but might exist and be responsible for forces at
short range as a general fact of nature surely deserves to be consid-
ered a remarkable one. In our own science, it is the electromagnetic
force that is in fact seen to be responsible (but only in the light of
quantum mechanics, not of Newtonian mechanics) for the physical
and chemical properties of ordinary bodies.

“To derive two or three general Principles of Motion from
Phaenomena, and afterwards to tell us how the Properties and Ac-
tions of all corporeal Things follow from those manifest Principles,
would be a very great step in Philosophy, though the Causes of those
Principles were not yet discover’d.” Such is the great step in philoso-
phy that Newton’s metaphysics was conceived to facilitate: “I hope
the principles here laid down will afford some light either to that,
or some truer, method of philosophy.” It seems fair to say that that
hope has been amply realized.

notes

1 “The previous author” of a book with that title: for the title Newton
used – Philosophiae Naturalis Principia Mathematica – is clearly a de-
liberate allusion to Descartes’s work.

2 RenéDescartes,Principles of Philosophy, trans. ValentineRodgerMiller
and Reese P. Miller (Dordrecht: D. Reidel Publishing Company, 1983),
p. xxiv (in the “Letter from the Author to the Translator of this Book
[into French], which can serve here as a Preface”).

3 Encyclopaedia Britannica, 11th edn, vol. 18, p. 253.
4 Descartes hoped that his goals for a new science would be achieved

entirely in his own lifetime, and indeed by his own efforts – aided only
by the work of artisans and trained technicians he needed to construct
equipment for experiments and to help in carrying out the experiments.
The most ambitious of these goals was the establishment, on sound
principles, of a science of medicine that should succeed in prolonging
human life to a term measured in centuries.
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5 The guarantee, that is, of what we should call the “objective validity”
of those principles that carry complete “subjective” conviction.
(Descartes’s terminology, following that of themedieval philosophers, is
the reverse: for him, “subjective” means what characterizes the proper
subject of knowledge – the “real things”; whereas “objective” means
characteristic of the “object of the mind,” as mental object, whatever
it may be in reality – or indeed whether or not it exists in reality.) The
guarantee of truth is obtained by the famous argument of Descartes’s
Meditations, a crucial turn in which is the (alleged) demonstration (a)
of the existence of God as a “perfect being,” and (b) of the consequence
that, since a perfect being cannot be a deceiver, everything we perceive
as true beyond the possibility of doubt must be true in reality.

6 That is, the Dialogue concerning the Two Chief World Systems.
7 Principles of Philosophy, Part 2, §24.
8 Ibid., §13.
9 Ibid., §15. In the Rules for the Direction of the Mind, in stark con-

trast, “place” is offered as an example of those “simple natures” which
are self-evident in themselves, and cannot be defined or “explained” in
terms of something even more evident; and Descartes adds: “And when
told that ‘place’ is the surface of the surrounding body, would anyone
conceive of thematter in the sameway? For the surface of the ‘surround-
ing body’ can change, even though I do not move or change my place;
conversely, it may move along with me, so that, although it still sur-
rounds me, I am no longer in the same place.” (Quoted from The Philo-
sophical Writings of Descartes, ed. John Cottingham, Robert Stoothoff,
and Dugald Murdoch, vol. 1 [Cambridge: Cambridge University Press,
1985], p. 45.) So here Descartes has ridiculed, as a bizarre doctrine of
the scholastic philosophy he is attacking, the very notion he puts for-
ward in his Principles as the scientifically “correct” one. (We shall later
see that Newton makes mincemeat of this way of conceiving place and
motion.)

10 “Semi-”relativist, because some bodies are singled out – or partially
singled out – as the ones to which motion in the strict sense should
be referred; but only partially singled out because of the arbitrariness
implied by “and which are regarded as being at rest.”

11 Both in his Meditations on First Philosophy and in his Principles of
Philosophy, what Descartes claims to establish by thought without the
aid of sensation is the essential attribute of material things, in the sense
of “what they would be if they did exist”; then sensory experience is
called upon to show that such things do exist.

12 Quoted from the fourth paragraph in the discussion of Rule Eight; edi-
tion of Cottingham et al., p. 29.
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13 In the Rules for the Direction of the Mind, Descartes deprecates in the
strongest terms any reliance upon hypotheses (“conjectures”) and any
“merely probable cognition”; and at least as late as 1637, in replying to
an objection of Fermat to the argumentation of Descartes’s Dioptrics
(which was published in that year in the same volume as his Discourse
on the Method of Rightly Conducting One’s Reason and Seeking the
Truth in the Sciences), he says “I consider almost as false whatever is
only a matter of probability” (letter of 5October 1637, to Mersenne). At
the end of hisPrinciples of Philosophy (1644), he says, in contrast to that:
“With regard to the things which cannot be perceived by the senses, it is
enough to explain their possible nature, even though their actual nature
may be different” (Part 4, §204) – certainly an endorsement of the value
of “hypotheses,” even of ones that may in the end not be true. He goes
on, however (in the next two articles), to claim (a) that his explanations
“appear to be at least morally certain”; and (b) that his explanations
possess “more than moral certainty”; indeed that “perhaps even these
results of mine will be allowed into the class of absolute certainties”
(emphasis added).

14 It is of course possible to maintain proposition (a) while rejecting (b);
but hardly the reverse: for if space is full of rigid, indivisible bod-
ies, the possibilities for motion are extremely restricted – the kinds
of motion we encounter in the world would be quite impossible on
such an assumption. It should be added that one important philoso-
pher, slightly younger than Newton, who came to reject Descartes’s
metaphysical characterization ofmatter, nevertheless also rejectedboth
(a) and (b): namely, Leibniz, in whose view empty space was not a
contradictory notion, but who claimed to derive the proposition that
the world is a plenum from his metaphysical principle of “sufficient
reason.”

15 A characteristic expression of this view, late in the century, by a philoso-
pher who was certainly not a Cartesian, is to be found in Locke; cf. his
Essay concerning Human Understanding, Book 2, ch. viii, §11, which
reads as follows in the first edition (1690): “The next thing to be con-
sider’d, is how Bodies operate one upon another, and that is manifestly
by impulse, and nothing else. It being impossible to conceive, that Body
should operate on what it does not touch, (which is all one as to imagine
it can operate where it is not) or when it does touch, operate any other
way than by Motion.” Quoted from John Locke, An Essay concerning
HumanUnderstanding, ed. PeterH.Nidditch (Oxford: Clarendon Press,
1979), p. 135 (via the apparatus at the foot of the page – the passage hav-
ing been drastically revised in the fourth edition).
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16 This, as is well known, is the origin of the very word “metaphysics”
(which is quite foreign to Aristotle himself): the collection of Aristotle’s
treatises on first philosophy was labeled – as if by a call-number –
��̀ �ε��̀ ��̀ ������́: “the [writings] after the physical [ones].”

17 The point needs to be emphasized, because there is a tradition that sees
the basic conceptions of Newton’s natural philosophy, most especially
his conceptions of space and time, as derivative from, or grounded in,
his theology. Thus, J. E. McGuire claims “that the basic concepts of
Newton’s natural philosophy can be ultimately clarified only in terms
of the theological frameworkwhich guided somuch of his thought” (see
his “Force, Active Principles, and Newton’s Invisible Realm,” Ambix
15 [1968], 154). McGuire goes on to remark that the thesis is not original
with him, and gives the following citations:

See the fundamental studies of H. Metzger, Attraction universelle et re-
ligion naturelle chez quelques commentateurs anglais de Newton, Paris,
1938, and A. Koyré, From the Closed World to the Infinite Uni-
verse, Harper edition, 1958. Also see H. Guerlac, “Newton et Epicure,”
Conf[é]rences du palais de la découverte, no. 91, Paris, 1963: an excel-
lent study by David Kubrin, “Newton and the Cyclical Cosmos: Prov-
idence and the Mechanical Philosophy,” J.H.I., 1967, XXVIII, 325–46;
J. E. McGuire and P. M. Rattansi, “Newton and the Pipes of Pan,” Notes and
Records of the Royal Society of London, 1966, 21, 108–43; J. E. McGuire, “Body
and Void and Newton’s De Mundi Systemate: some new sources,” Archive
for History of Exact Sciences, 1966, 3, 206–48; an important lengthy study by
A. Koyré and I. B. Cohen, “Newton and the Leibniz–Clarke correspondence,”
Archive[s] Internationales d’histoire des Sciences, 1962, 15, 63–126; and A. R.
and M. B. Hall, Unpublished Scientific Papers of Isaac Newton, Cambridge,
1962, part 3.

The evidence cited in the text above, preceding and immediately fol-
lowing the place to which this note is attached, does not show that
this opinion is wrong, so far as concerns either the psychological con-
nections of Newton’s thought or the logical or conceptual connections
among his principles; but it does at least strongly suggest that the opin-
ion is at variance with what Newton himself thought about these con-
nections, and therefore at variance with at least the epistemological
side of Newton’s own metaphysics. To discuss the controversy implied
with any pretence to thoroughness is beyond the scope of a chapter like
the present one; but further evidence will be given, tending to show
that on the objective or ontological side, too, Newton’s doctrine about
space and time, in the light of his explicit statements, did not teach
that space and time per se, or their attributes, depend upon the nature
of God.
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On the degree of confidence attached by Newton to his main results
in physics, in both his optical work and that on the solar system and
the theory of gravity, cf. Shapiro’s and Smith’s chapters in this volume.

18 This rule, with the statement referred to in the text above, first appeared
in the second edition of the Principia, 1713.

19 To avoid a possible wrong inference, it should be added that besides
knowledge of God “from the appearances of things,” which “belongs
to Natural Philosophy,” Newton holds that there is knowledge of God
through revelation. This, too, of course, would be through experience;
and what is more important so far as concerns Newton’s own efforts in
the domain of “revealed” theology (efforts that occupied no small part
of his whole intellectual career), the deliverances of revelation are, for
Newton, accessible only through historical documents (Newton does
not subscribe to any claim of immediate religious authority – nor does
he claim access to revelation through personal inspiration), and there-
fore demand a very arduous historical-critical investigation of such doc-
uments. In any event, there is nowhere in Newton a suggestion that
our knowledge of anything pertaining to natural philosophy can be de-
rived from revealed truths. (He does relate some aspects of his views
about space, for example, to passages in ancient writings, both pagan
and Judeo-Christian; but this is far from ascribing evidentiary or con-
ceptually binding force to such relations.)

20 See the specimens given in John Herivel, The Background to Newton’s
Principia: A Study of Newton’s Dynamical Researches in the Years
1664–84 (Oxford: Clarendon Press, 1965).

21 Herivel, Background to Newton’s Principia, p. 123.
22 Ibid., p. 124.
23 Ibid., p. 125.
24 Ibid., p. 136.
25 Ibid., p. 138.
26 See A. Rupert Hall and Marie Boas Hall (eds.), Unpublished Scientific

Papers of IsaacNewton (Cambridge: CambridgeUniversity Press, 1962),
pp. 89–121 (Latin), 121–56 (English). In the present text, translations
from this work are my own.

27 Mistranslation begins with this first sentence, which the Halls render
as: “It is proper to treat the science of gravity and of the equilibrium of
fluid and solid bodies in fluids by two methods.” This version has been
used as the basis of a claim that the manuscript actually represents an
abortive draft of an introduction to Newton’s Principia, “[s]ince the two
studies mentioned – of gravitation and of the equilibrium of fluids and
of solid bodies in fluids – bear a strong resemblance to Books I and II of
the published Principia,” and since the two methods Newton describes



Newton’s metaphysics 299

also have a correspondence to the Principia. (See Betty Jo Teeter Dobbs,
The Janus Faces of Genius: The Role of Alchemy in Newton’s Thought
[Cambridge: Cambridge University Press, 1991], p. 141.) But Newton’s
phrase has nothing to do with a “science of gravity”: he is speaking of
the weight of fluids and of solids in fluids, which is the exact subject
of the classic treatise “On Floating Bodies” of Archimedes; and, on the
other hand, Book 2 of the Principia is concerned with the motions, not
the equilibrium, of fluids and of solids in fluids – an entirely new subject
at the time of its publication.

28 For these statements, see Descartes, Principles of Philosophy, Part 3,
§27.

29 It is important to bear inmind that forNewton – and for all seventeenth-
century thinkers – the word “philosophy” was used for all systematic
knowledge or systematic inquiry.Thus, whenNewton speaks of “philo-
sophical” usage, he means exact, or systematic, or technical usage; and
so doesDescartes. SoNewton’s criticism is that inDescartes’s technical
discussion of motion, he does not use that conception of motion which
he had put forward as technically correct; and so he has implicitly ac-
knowledged that the conception he calls “proper” is in fact unsuitable
for technical purposes.

30 On the particular issue of the “straightness” of the path, an important
argument of Galileo’s is relevant, and may be clarifying. Galileo consid-
ered an object dropped from high up on the mast of a ship that is sailing,
in a smooth sea, with uniform speed. To an observer on shipboard, the
object will appear to fall vertically downward – that is, in a straight
line – alongside the mast, with a speed that increases proportionally to
the time of fall. To an observer on the shore – who of course also sees the
object as falling directly alongside the mast, but who also sees the mast
itself as moving uniformly forward – the object will appear to traverse a
parabolic arc. Therefore – even setting aside the issue of the dispersal of
surrounding bodies – whether, in general, a path is straight or not will
depend upon which bodies one chooses to “regard as at rest.”

31 The force of Newton’s argument is great. In a famous polemic that came
to a head late in the lives of both men, Leibniz took up the cudgels
against Newton on behalf of a “relational” view of space and motion –
not, indeed, that of Descartes, but one that was still open to Newton’s
criticism that on that view neither straightness of a path of motion
nor constancy of speed is a concept that makes sense. Yet Leibniz – in
the same polemic – in arguing against Newton’s theory of gravitation,
says that for one body to move in a curved line about the other with-
out something that pushes on the first “could not be done without a
miracle; since it cannot be explained by the nature of bodies” (because
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a body of itself tends to move uniformly in a straight line) (Leibniz’s
third letter, in his correspondence with Samuel Clarke of 1715–16,
§17; in, e.g., H. G. Alexander [ed.], The Leibniz–Clarke Correspondence
[Manchester: Manchester University Press, 1956], p. 30.) It is unfortu-
nate that Clarke – Newton’s representative in this discussion – did not
point out to Leibniz the incoherence that Newton had long ago noted in
a position that simultaneously maintains that principle about the mo-
tion of bodies and regardsmotion as having ameaning only as “relative,”
among bodies. This might have led to a clarification by Leibniz of his
own relational theory. For further discussion of the issues involved,
in which Newton’s own position – although much stronger than it was
once thought to be among philosophers – is by nomeans the lastword (so
far as the foundations of “Newtonian mechanics” itself are concerned),
see Howard Stein, “Newtonian Space-Time,” The Texas Quarterly 10
(1967), 174–200; also (with correction of an important typesetting error
in a quotation) in Robert Palter (ed.), The Annus Mirabilis of Sir Isaac
Newton 1666–1966 (Cambridge, MA: MIT Press, 1970), pp. 258–84.
For further discussion of the views of Leibniz, and also those ofHuygens,
on the relativity of motion, see also Howard Stein, “Some Philosophi-
cal Prehistory of General Relativity,” in John Earman, Clark Glymour,
and John Stachel (eds.), Foundations of Space-Time Theories, Minnesota
Studies in the Philosophy of Science 8 (Minneapolis: University of
Minnesota Press, 1977), pp. 3–49 (§§1 and 2, with relevant Notes, and
Appendix). Cf. also DiSalle’s chapter in the present volume.

32 Newton’s words here – quite scholastic in cast – are: “it does not stand
under the kind of characteristic affections that denominate substance,
namely actions, such as are thoughts in a mind and motions in a body.”

33 The use of the word “idea” – unusual for Newton – is striking; and so
is its capitalization (here, and in similar contexts later in the piece).
One is reminded of Locke’s Essay concerning Human Understanding,
in which the word is also uniformly capitalized (and italicized as well).
There can be no question of influence, in either direction: whatever
the date of this fragmentary piece of Newton’s, it certainly antedates
Locke’s Essay; and, as certainly, Locke had never seen it when he wrote
the Essay.

34 Some words are necessary here concerning the translation, since this
passage is one of those in which the published version is badly at fault.
There, the first sentence reads: “Space is a disposition of being qua be-
ing.”Newton’s Latin is: “Spatiumest entis quatenus ens affectio.”Now,
the word affectio is standard in philosophical Latin, and is regularly
translated by its English cognate, “affection”; “disposition” has a rather
different connotation. But this is a minor point. The major one is how
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to translate – and how to understand – the phrase entis quatenus ens.
Latin “ens” and English “being” are precisely synonymous; and “entis”
is the genitive of “ens”; so “an affection of being as being” – or “of be-
ing qua being” – that is, “of being as such” – is linguistically warranted.
Further, the phrase is borrowed directly from the Aristotelian tradition,
in which “being qua being” is the standard definition of the subject-
matter of first philosophy or metaphysics. So far, therefore, the Halls’
rendering seems justified. However, onemust also note two things: first,
that the Latin word “ens” like the English word “being” is susceptible
of a concrete meaning (as when we call ourselves “human beings”) as
well as an abstract one; second, that in Latin there are no articles, def-
inite or indefinite; and therefore the reading given in the text above
is, on purely linguistic grounds, equally eligible. Two considerations
may be thought to favor the Halls: first, the point just made about the
formula in the Aristotelian tradition; second, the fact that the phrase
“being qua being,” understood to mean “being in the highest sense,”
had the special connotation of “[the] divine Being” (cf. God’s answer to
Moses, Exodus 3.14, in response to the question what Moses shall tell
the people is the name of the one who has sent him: “I am that I am”);
this would seem to agree with Newton’s former statement that space is
an emanative effect of God. However, these considerations are clearly
overborne by what follows – in particular, by Newton’s statement, “If
I posit any being whatever, I posit space.” The word “being” – ens –
in this assertion can only be taken in its concrete sense. And since this
statement is given to ground the clause immediately preceding it, there
too “being” must be used in the concrete sense; indeed, in any case,
only the concrete sense – “the first-existing thing – or entity” – fits that
clause at all. (The translation of that phrase by the Halls – “the first
existence of being,” rather than “the first-existent being” – not only
makes its sense obscure, but is incompatible with the grammar of the
Latin. To discuss this in detail here would take us too far into purely
linguistic matters.)

35 Newton, of course, under the rubric “all minds,” would have included
the minds of angels.

36 On this point it is instructive to compare what Locke says about the re-
lation of mind (“spirit” or “soul”) to place and motion: “[F]inding that
Spirits, as well as Bodies, cannot operate, but where they are; and that
Spirits do operate at several times in several places, I cannot but attribute
change of place to all finite Spirits . . .Every one finds in himself, that his
Soul can think, will, and operate on his Body, in the place where that
is; but cannot operate on a Body, or in a place, an hundred Miles distant
from it. No Body can imagine, that his Soul can think, or move a Body
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at Oxford, whilst he is at London; and cannot but know, [sic] that being
united to his Body, it constantly changes place all the whole Journey,
between Oxford and London, as the Coach, or Horse does, that carries
him [etc.].”

37 The qualification, “ordinary,” is needed to distinguish the case from
the special one of an atom, which on Newton’s (and the traditional)
conception is precisely an indivisible body.

38 Another case ofmistranslation in the published version: the latter reads,
not “and therefore we are able [etc.],” but (emphasis added): “and so in
some circumstances itwould be possible for us to conceive of extension
while imagining the non-existence of God.” This suggests that only on
Descartes’s conception would we be able – “in some circumstances” –
to conceive extension while “imagining the non-existence of God.” But
this is not what Newton says: (1) There is nothing in the Latin that
corresponds to the phrase “in some circumstances.” (2) The verb is
possumus: indicative – “we are able”; not the subjunctive possimus:
“we should be able.” Newton asserts unqualifiedly that we are able to
conceive of space without any reference to God (“we have an absolute
Idea of it without any relationship to God”); his point against Descartes
is that on the identification of extensionwith body the same thingwould
hold of body: (a) it would be uncreated; (b) we could conceive of it “as
existent” while “feigning” the non-existence of God. (This criticism
would of course be rejected by Descartes; the point here is merely to be
clear about what Newton’s doctrine is.)

39 The Halls, in first publishing “De gravitatione et aequipondio fluido-
rum,” expressed uncertainty about its date, but described the hand-
writing as characteristic of Newton’s youth, and – although they noted
the important fact that it has affinities with the General Scholium
to Newton’s Principia (introduced in the second edition of that work,
thus in 1713, when Newton was seventy years old) – they characterized
its general style as labored, and some of its thought as immature (see
Unpublished Scientific Papers, pp. 89–90); on these grounds, they leaned
toward an early date. The presentwriter, in a paper presented at a confer-
ence in 1969 and published in 1970, while not contesting the early date
assigned, suggested two reasons for caution about it: first, a disagree-
ment with the Halls’ assessment of the thought; second, the testimony
of Coste about to be discussed in the text of the chapter (see Howard
Stein, “On the Notion of Field in Newton, Maxwell, and Beyond,” in
Roger H. Stuewer (ed.), Historical and Philosophical Perspectives of
Science, Minnesota Studies in the Philosophy of Science 5 [Minneapo-
lis: University of Minnesota Press, 1970], p. 274, n. 11). More recently,
Dobbs,who gives a survey of opinions on the question (Dobbs,The Janus
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Faces of Genius, pp. 139–40), has argued for a date close to that of the
Principia – namely, late in 1684 or early in 1685; but it must be noted
that an important part of her case rests upon the mistakes noted earlier
(note 27 above). It seems fair to say that uncertainty remains about the
date of “De gravitatione,” and evidence based upon handwriting may
after all be decisive.

40 Gottfried Wilhelm Leibniz, New Essays on Human Understanding,
trans. Peter Remnant and Jonathan Bennett (Cambridge: Cambridge
University Press, 1981), p. 442.

41 Coste’s account is quoted in A. C. Fraser’s edition of Locke’s Essay;
see Locke, An Essay concerning Human Understanding, ed. Alexander
Campbell Fraser (reprinted New York: Dover Publications, 1959), vol. 2,
pp. 321–2.

42 In their edition of Leibniz’s New Essays, Remnant and Bennett cite a
letter from Leibniz to Locke’s friend Lady Masham in 1704, containing
“an urgent request that she ask Locke to elucidate”; but it arrived after
Locke’s death. (See Leibniz, New Essays, ed. Remnant and Bennett,
p. xxxix, near the end of the volume.)

43 Latin, arbitrarius: “depending on the will.”
44 Newton’s repeated use of the expression “let us feign” – Latin, finga-

mus: the same verb that occurs in Newton’s famous declaration, in the
General Scholium to the Principia, “Hypotheses non fingo”: “I do not
feign hypotheses” – is reminiscent of language used by Descartes in
his own “creation fable,” both in The World and in his Principles of
Philosophy. For the former, see René Descartes, Le Monde, ou Traité
de la lumière, parallel edition (French and English), trans. Michael Sean
Mahoney (New York: Abaris Books, 1979), pp. 50 (French), 51 (English);
the phrase in French is “Or puisque nous prenons la liberté de feindre
cette matière à nostre fantaisie . . .” (emphasis added) – “Now since we
are taking the liberty of feigning this matter to our fancy . . .”; “la liberté
de feindre” is rendered by Mahoney as “the liberty of imagining.” As to
the Principles, the verb fingere occurs in Part 4, §2: “Fingamus itaque
Terram hanc [etc]” – “Let us therefore feign this earth [etc].” (Again, in
the translation by Miller and Miller cited earlier, the verb is translated
“Let us imagine.”) The phrase “fingamus itaque,” in this last place, is
exactly the same as that used by Newton in the opening sentence of his
creation story: “Fingamus itaque spatia vacua . . .” – “Let us therefore
feign empty spaces . . .” In view of the fact that this whole metaphysical
discussion has the character of an anti-Cartesian polemic, the parody of
Descartes is most probably intentional.

45 See note 18 above.
46 Cf. note 15 above.
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47 Locke, Essay concerning Human Understanding, Book 2, ch. xxiii, §28;
Nidditch edition, pp. 311–12.

48 These pessimistic views about the possibility of systematic science
were strikingly ameliorated by Locke’s reflections on what Newton had
achieved, but he did not allow his changed assessment to have any effect
on the later editions of theEssay.The point is discussed inHoward Stein,
“On Locke, ‘the Great Huygenius, and the incomparableMr. Newton’,”
in Phillip Bricker and R. I. G. Hughes (eds.), Philosophical Perspectives
on Newtonian Science (Cambridge, MA: MIT Press, 1990), pp. 17–47;
see esp. pp. 30–3.

49 Both quotations are from the Author’s Preface to the first edition of the
Principia. They are quoted in an order the reverse to that in which they
occur there; and the emphasis (in the second passage) is added here.

50 The subject of Book 2, ch. xxiii of the Essay concerning Human Under-
standing.

51 Ibid., §37; Nidditch edn, p. 317.
52 Ibid., Book 1, ch. iv, §18; Nidditch edn, p. 95.
53 Ibid., Book 3, ch. vi, §21; Nidditch edn, p. 450.
54 This characterization of Newton’s theory of bodies as a theory of fields

of impenetrability was first given in Stein, “On the Notion of Field
in Newton, Maxwell, and Beyond” (cited in note 39 above); there fol-
low immediately in the same volume some critical comments by Gerd
Buchdahl and by Mary Hesse, with responses by the author defending
his view.

55 Whether Aristotle himself believed in such a thing is a debatable
question.

56 See Essay concerning Human Understanding, Book 2, ch. iv.
57 Ibid., ch. xxi, §73; Nidditch edn, pp. 286–7.
58 Newton’s wording is a little odd, in its reference to “removing“

the power in question; he has in mind Descartes’s famous thought-
experiment with a lump of wax, of which he attempts to strip away,
in thought, whatever properties can be removed from the wax without
destroying its “essential” character as bodily substance. Descartes con-
cluded that only extension cannot be removed; Newton argues that to
remove impenetrability, and the laws of transfer of motion, from his
mobile impenetrable regions would be to reduce them to empty space;
and he adds, here, that to remove the power to produce perceptions in
minds would be an equally serious derogation from their substantial
nature.

59 (But before the passage quoted immediately above.)
60 (Locke was prominent among these.)
61 (A condition in which it would seem we remain to this day.)



Newton’s metaphysics 305

62 This and subsequent passages are quoted from the (unemended!) trans-
lation of AndrewMotte: Isaac Newton, The Mathematical Principles of
Natural Philosophy, trans. Andrew Motte (1729) (reprinted in two vol-
umes, London: Dawsons of Pall Mall, 1968). See “The Author’s Preface”
(prefatory material is on unnumbered pages).

63 More precisely, for the expression “proportional to the efficacy of the
cause” to have a well-defined meaning, one would have to have the
conception of the ratio of the efficacy of one cause to that of another.

64 The Latin phrase here rendered as “a certain power or energy” is effica-
ciam quandam: that is, simply, “a certain efficacy.”

65 Again, cf. Stein, “On the Notion of Field in Newton, Maxwell, and
Beyond,” cited in note 39 above.

66 For other fields, quite different measures of the field intensity are ap-
propriate: e.g., for magnetism, the “force per unit pole”; for electricity,
the “force per unit charge.” (For a fuller discussion of the role of the
concept of field in Newton’s investigation, see Stein, “On the Notion
of Field in Newton, Maxwell, and Beyond,” cited in note 39 above.)

67 One sees, then, how far the example of the sling is from illustrating the
intended pattern: here, there is indeed an impressedmotive force toward
the hand as a center; but no good sense can be made of the conception
of “a certain efficacy diffused from the center to all the places around,”
with a definite magnitude or measure at each point (whether or not
there is an actual body there to be acted upon).

68 In the Opticks, on the basis of a wide survey of phenomena – both
optical and chemical phenomena figuring largely among them–Newton
concludes that there must be some forces that are attractive at certain
distances, repulsive at others. See IsaacNewton,Opticks (“based on the
fourth edition, London, 1730”; New York: Dover Publications, 1952),
pp. 395ff.

69 That Newton’s special use of the third law, crucial to his argument,
involves a risky assumption, was briefly mentioned in Stein, “On the
Notion of Field in Newton, Maxwell, and Beyond” (cited in note 39
above), p. 269; the point is discussedmore fully in Howard Stein, “‘From
the Phenomena of Motions to the Forces of Nature’: Hypothesis or
Deduction?” PSA 1990 2 (1991), 209–22, and also in Dana Densmore,
Newton’s Principia: The Central Argument (Santa Fe: Green Lion Press,
1995), p. 353.

70 See Principia, introductory paragraph to Book 3.
71 Translated by the present author from Newton, De Mundi Systemate

Liber (London, 1728), pp. 24–6. Matter in square brackets has been
added to help to show in clear English the sense of the Latin. Besides
the emphases added to highlight the main point, the word “towards”
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in the last sentence has been italicized; this has been done to indicate
a contrast Newton is making, perhaps somewhat subtly, by the way
he manages his prepositions: that between how the “operation” arises
from the bodies, on the one hand, and how it “behaves towards them”
on the other (if it arises from them in the same way, it will affect them
in the same way).

The author has had the advantage of consulting both the excellent
English translation of 1728 (anonymous, but presumably by Andrew
Motte, whose translation of the Principia was published the following
year) A Treatise of the System of the World (London, 1728), and a draft
of a forthcoming translation by I. B. Cohen and Anne Whitman. The
old translation was reissued with revisions in the volume: Sir Isaac
Newton’s Mathematical Principles of Natural Philosophy and his Sys-
tem of the World. Translated into English by Andrew Motte in 1729.
The translations revised . . .by Florian Cajori. (2nd printing; Berkeley:
University of California Press, 1946). In that edition the sections (dis-
tinguished in the original Latin publication and in the 1728 English
version by marginal section-headings) are numbered (these numbers do
not appear in the 1728 English or in the 1728 or 1731 Latin editions); the
paragraphs quoted are, with a small elision, §§20–21 there (pp. 568–9).
Unfortunately, the revisions made in that publication introduce a seri-
ous error into the text of §21; the author is therefore particularly grate-
ful to Benjamin Weiss, Curator of Rare Books at the Burndy Library of
the Dibner Institute for the History of Science and Technology at the
Massachusetts Institute of Technology, formaking available photostatic
copies of the 1728 English and Latin versions of those sections (and of
the 1731 Latin edition as well); and to George Smith for obtaining those
copies, as well as a copy of the Cohen and Whitman draft mentioned
above. (See editors’ additional note, p. 307.)

72 Opticks (Dover edn), p. 397.
73 Ibid., p. 400.
74 Ibid., p. 401.
75 Ibid., pp. 401–2.
76 Principia (edition cited in note 62 above), vol. 2, p. 392. (One emenda-

tion has beenmade of theMotte translation: “I feign no hypotheses” for
“I frame no hypotheses.” It was pointed out by Alexandre Koyré – cited
in I. Bernard Cohen, Introduction to Newton’s “Principia” [Cambridge,
MA:HarvardUniversity Press, 1978], p. 241, n. 9 – that this is the English
version of his Latin phrase “hypotheses non fingo” used by Newton
himself in the Opticks, in Query 28; see Dover edn, p. 369.)

77 Cf., for fuller discussion of these matters, Stein, “Newtonian Space-
Time” and “Some Philosophical Prehistory of General Relativity”
(sections 1–3), both cited in note 31 above.
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78 Opticks (Dover edn), p. 376.

Editors’ note. In note 71 above, Professor Stein calls attention to the
section numbers in Cajori’s version of the English translation ofA Trea-
tise of the System of the World and their absence in both the English
and Latin editions of 1728. The history of these section numbers
is complicated. The manuscript from which the Latin edition was
printed, entitled “De motu corporum liber secundus,” is in the hand of
HumphreyNewton (Isaac’s amanuensis at the time), withmodifications
in Isaac’s hand. This manuscript contains eighty section-headings in
the margins, with the first twenty-eight numbered in Roman numerals,
precisely in the manner of Descartes’s published Principia; the remain-
ing fifty-two sections, however, are not numbered. In every edition of
the English translation before Cajori’s, and in all Latin editions save one,
the section-headings are placed in themargin without numbers. The ex-
ception is Samuel Horsley’s Latin edition in his Isaaci Newtoni Opera
Quae Exstant Omnia of 1779–85. Horsley, who had gained access to the
“De motu corporum liber secundus” manuscripts, kept the eighty
section-headings in the margins, but placed Arabic numerals at the
beginning of the text of seventy-eight of the sections, electing to omit
a number in the case of the seventy-fifth section-heading (introducing
Table ii) and the eightieth (introducing the lemmata near the end). In
his German translation, attached to his 1872 translation of Newton’s
Principia, Jakob Phillipp Wolfers put numbered section-headings in
the text rather than the margins, and he dropped the seventy-fifth
and eightieth section-headings entirely. Cajori, who acknowledged his
use of this German translation, followed Wolfers save for putting the
numbers in brackets, presumably to signify their absence in the English
translation that he was modifying.
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9 Analysis and synthesis in
Newton’s mathematical work

The opposition between analytical and synthetic proof methods has
an intriguing and complex role in the history of Western mathemat-
ics. In Antiquity analytical method (in brief, analysis) was conceived
of as a method of discovery, or problem solving: it starts from what
is sought as if it had already been achieved, and, working step by step
backwards, it eventually arrives at what is known. This and similar
rather vague definitions were aimed at describing in a general way a
whole apparatus of geometric problem solving procedures developed
by the Greeks. Synthesis goes the other way round: it starts from
what is known and, working through the consequences, it arrives at
what is sought. The axiomatic and deductive structure of Euclid’s
Elements was the model of the synthetic method of proof. Analysis
(or resolutio) was often thought of as a method of discovery prelim-
inary to the synthesis (or compositio), which, reversing the steps of
the analytical procedure, achieves the true scientific demonstration.
Analysis was thus the working tool of the geometer, but it was with
synthesis that one could demonstrate things in an indisputable way.
In theMiddle Ages this pattern of definitions became bound up with
the philosophical and logical tradition. A question which was often
raised concerned the relationship between the mathematical proof
methods and other accepted forms of deductive proof, typically those
codified in Aristotle’s Organon.1

Publication in the sixteenth century of new editions of the Greek
classics sparked new interest in the analytical method. Most no-
tably, in 1588 Federico Commandino published his Latin translation
of the Mathematicae Collectiones, a synopsis of Greek geometry
compiled by the fourth-centurymathematician Pappus. The attitude
of Renaissance culture towards the classics, whether in sculpture,

308
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architecture, music, or philosophy, was characterized by admiration
and a desire to recover the forgotten achievements of the ancients.
The works of Euclid, Apollonius, and Archimedes were considered
unsurpassable models. How could the Greeks have achieved such a
wealth of results? Pappus’ Collectiones offered not only geometri-
cal theorems, but also, in the seventh book, a method of analysis,
described in vague terms, which would have permitted the ancients
to discover their extraordinary results. The books containing full
descriptions of this method of analysis referred to by Pappus had
been lost. This was the starting point for a deeply rooted, and widely
accepted, belief that the ancient geometers were in possession of a
powerful method of discovery which they kept hidden, either be-
cause it was a secret to be revealed to a handful of adepts, or because
they deemed it a method not suitable for public demonstration.

In the decades following the publication of the Collectiones, this
belief in the existence of a lost or hidden “treasure of analysis”
prompted many attempts to “restore” the ancients’ method of dis-
covery. Not everybody trod in the steps of Commandino, however.
Many promoters of the new symbolic algebra were proud to define
themselves as innovators, rather than as restorers. Still, it was com-
mon even among creative algebraists such as François Viète, John
Wallis, and Isaac Newton to relate symbolic algebra to the ancient
analysis, to the hidden problem solving techniques of the ancients.2

In fact symbolic algebra could be seen as “analysis” since it solves
problems by means of equations in which names are given to all
quantities – known and unknown. When we state an equation, as
Descartes observed, “we first suppose the solution already effected.”3

The equation, linking known andunknownquantities, is the starting
point of a process which ends with the expression of the unknown
in terms of quantities which are given. Viète’s main work, signif-
icantly entitled In Artem Analyticem Isagoge, published in 1591,
opens with a reference to the ancients’ knowledge of analysis. Such
references to the remote past have often been used (Copernicus in
De Revolutionibus [1543] is another example) to validate theories
which appear to be extremely innovative. Ascertaining the rhetor-
ical role of such declarations is always a difficult historiographic
matter. Did Viète genuinely believe himself to be a rediscoverer
of past truths, or was he merely invoking the authority of the an-
cients in order to render new ideas acceptable? It often happens that
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reference to the lost ancient tradition is used in different ways by the
same author, sometimes even in the same work. Identifying algebra
with the analytical methods of discovery of the ancients became
common currency, finding a place in the widely circulated, late-
seventeenth-century mathematical dictionary by Ozanam (1690).4

However, as the seventeenth century progressed, the rapid advances
in mathematical techniques made this form of reference to the an-
cients less and less plausible, since the results that mathematicians
were then obtaining were obviously beyond the grasp of the ancient
geometers.

A work that forcefully displayed this idea of modernity, this
awareness of having superseded the venerated ancients, was René
Descartes’s Géométrie (1637). In this little tract Descartes showed
how symbolic algebra could be applied to the study of plane curves.
Algebra had been developed by mathematicians such as Girolamo
Cardano and Rafael Bombelli in order to deal in a general way with
problems concerning numbers; its object was the solution of alge-
braic equations. Thanks to the work of Viète, Pierre de Fermat, and
Descartes, it became possible to unite algebra with geometry. Ac-
cording to Descartes, given a coordinate system, a curve can be de-
fined as the locus of points which satisfy an algebraic equation of the
form f (x, y) = 0, and the study of the algebraic equation defining a
curve allows one to study the properties of the curve. In Géométrie
Descartes did not stress continuitywith past tradition: his tract could
be read as a deliberate proof of the superiority of the new analytical
methods, uniting symbolic algebra and geometry, over the purely ge-
ometrical ones of the ancients. (At least this is how the Géométrie
was read by many seventeenth-century mathematicians; recent re-
search has shown thatDescartes’s ideas on the relationships between
algebra, geometry, and ancient analysis were actually much more
complex than this.5) Descartes began the Géométrie with a prob-
lem stated in Pappus’ Collectiones. According to Descartes, it could
be inferred from Pappus’ text, which he cited at length, that Euclid
and Apollonius were not able to solve this problem, at least in its
general form, yet Pappus’ problem, as it became known, received a
general solution in Géométrie: could there have been better proof of
the superiority of the moderns over the ancients?

Descartes’sGéométriewas introduced in England in a Latin trans-
lation prepared by the Dutch mathematician Frans van Schooten.
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Two editions of this Latin Geometria were published, in 1649 and
1659–61, both with a series of appendices written by van Schooten
and other Dutch mathematicians. The second of these editions
was known to the young Isaac Newton during his early mathe-
matical studies in Cambridge. He had on his desk a limited, very
well chosen, set of mathematical books, which included Viète’s
works (1646), William Oughtred’s Clavis Mathematicae (1631), and
John Wallis’s Arithmetica Infinitorum (1655). Oughtred was one of
the most outspoken English supporters of Viète’s analytic art. His
Clavis was a small, symbol-laden introduction to algebraic equa-
tions, and his preference for the symbolic style was backed by
a number of English mathematicians, including Thomas Harriot,
John Pell, John Kearsey, John Collins, and Wallis. These authors,
in their efforts to promote the acceptance of symbolic algebra, of-
ten underscored the advantages of the terse language of modern
mathematics when compared with the verbose style of geometry.
Such major figures of the scientific revolution as Francis Bacon and
Robert Hooke had the same view of the requirements for scientific
prose.6

The two books which made the strongest impact on Newton’s
mathematical mind were Descartes’s Geometria and Wallis’s Arith-
metica Infinitorum. In Descartes’s work Newton could study the
connection between algebraic equations and curves and learn about
the Cartesian algebraic method for drawing a tangent to a curve.
He could also acquaint himself with the recent results on maxima
and minima of the Dutch school, as laid out in the commentaries
by van Schooten, Johann Hudde, and René F. Sluse. Wallis’s work
went a step further. Where Descartes, Viète, and Oughtred had con-
cerned themselves with finite algebric procedures – the equations
which they handled consisted of a finite number of terms – Wallis
had employed infinitary approximation procedures, typically infi-
nite products and infinite series, in dealing with “quadratures” (i.e.,
with the problem of determining the area bounded by a curve).
Wallis’s infinitary techniques belong to what historians of mathe-
matics often call pre-calculus. In the first half of the seventeenth
century, mathematicians tackled problems such as finding tangents
and curvatures of curves, or finding areas, volumes, and arc-lengths.
Bonaventura Cavalieri, Evangelista Torricelli, James Gregory,
Fermat, Blaise Pascal, Gilles Personne de Roberval, and Isaac Barrow,
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among many others, felt the need to make recourse to the infinite
and the infinitesimal. For instance, a tangent to a curve could be
conceived as a straight line which intercepts two infinitely close
points on the curve, and an area bounded by a curve could be cal-
culated by summing an infinite number of infinitesimally small
areas composing it. Newton termed the finitary algebraic methods
which he learned in Descartes and Oughtred “common analysis,”
and he termed “newanalysis” themethods that he learned from read-
ing Wallis and from personal contacts with Isaac Barrow, who held
the Lucasian Chair of Mathematics when Newton was a student at
Cambridge.7

Newton was able, during the winter of 1664–5, to establish his
first mathematical discovery, the binomial theorem, which can be
expressed in somewhat modernized notation as follows:

(a + b)n = an + nan−1b + n(n− 1)
2

an−2b2 + n(n− 1)(n− 2)
3× 2

an−3b3 + · · ·

where n can be a positive or negative fraction, such as −3/2.
Newton obtained this result by generalizing Wallis’s interpolation
techniques. Starting from a table of the binomial coefficients for
positive integer powers, he interpolated for fractional powers and
extrapolated for negative powers through complex and rather shaky
guesswork.

Newton employed the binomial theorem in order to find the area
bounded by curves. This can best be illustrated by an example. A
circle with unit radius and center coinciding with the origin of a
rectangular coordinate system has equation x2 + y2 = 1, from which
we get y = (1 − x2)1/2. Here is a classic question: what is the area
of the circle? Applying the binomial theorem to this formula for y
gives the following infinite series:

y = 1− x2

2
− x4

8
− x6

16
− 5x8

128
+ · · ·

Now the areas bounded by the curves of equations y = 1, y = −x2/2,

y = −x4/8, etc., are easy to calculate by techniques well known to
Newton’s predecessors. The area of the circle will be obtained by
summing all these easily obtainable areas. In practice one can ap-
proximate the area under the curve y = (

1 − x2
)1/2 over the interval

[0,x] by summing a finite number of terms. The intuitive idea, not
yet substantiated by a theory of convergence as nowadays would be
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required, was that the greater the number of terms, the better the
approximation.

Newton systematized his findings on quadratures via infinite se-
ries in a little tract entitled “De analysi per aequationes numero
terminorum infinitas”; it was written in 1669, but not published
until 1711.8 As its title suggests, it deals with analysis: it is based
on algebraic symbolism derived from Viète and Oughtred, while
curves are represented by equations as in Descartes’s Géométrie.
However, these equations are “infinite equations” (i.e., infinite se-
ries), something that Descartes would not have accepted. Infinite se-
ries were understood by Newton and his contemporaries as “infinite
equations,” symbolic objects to which the rules of algebra could be
straightforwardly applied. This rather free, algebraic handling of in-
finite series was common until the beginning of the nineteenth cen-
tury, when concerns over rigor in dealing with infinites began to take
hold. According to Newton, the realm of the “common analysis,” re-
stricted to “finite equations,” could thus be extended to all known
curves. Newton wrote: “From all this it is to be seen how much the
limits of analysis are enlarged by such infinite equations: in fact by
their help analysis reaches, I might almost say, to all problems.”9

During 1670–1, Newton wrote one of his greatest mathemati-
cal works, the Method of Fluxions and Infinite Series (the title
with which it first appeared in an English translation in 1736).10

In this long treatise, he presented the rules and the applications of
a “method” which he had devised in the anni mirabiles 1665–6,
the period in which he also performed experiments with prisms and
speculated on gravitation. The central idea of hismethod is the intro-
duction of quantities which are “infinitely” or “indefinitely” small
in comparison with finite quantities. Such infinitesimal quantities
had already been widely used in seventeenth-century pre-calculus.
For these infinitely small quantities a principle of cancellation holds:
if a is infinitely small and A is finite, then A+ a = A.

The objects to which Newton’s algorithm is applied are quantities
which “flow” in time. For instance the motion of a point generates
a line; the motion of a line generates a surface. The quantities gener-
ated by “flow” are called “fluents,” and their instantaneous speeds
are called “fluxions.” The “moments” of the fluent quantities are
“the infinitely small additions by which those quantities increase
during each infinitely small interval of time.”11 Thus, consider a
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point which flows with variable speed along a straight line. The dis-
tance covered at time t is the fluent; the instantaneous speed is the
fluxion; the “infinitely” (or “indefinitely”) small increment acquired
after an “infinitely” (or “indefinitely”) small period of time is the
moment. Newton further observed that “the moments of the fluent
quantities . . . are as their speeds of flow” (i.e., as the fluxions).12 His
reasoning is based on the idea that during an “infinitely small period
of time” the fluxion remains constant, and therefore the moment is
proportional to the fluxion.

The notation Newton developed for this was rather awkward; it
was not until the 1690s that he introduced a now standard notation:
the moment of time is o, the fluxion of x is denoted by ẋ, and the
moment of x by ẋo. The fluxions themselves can be considered fluent
quantities, and hence they too have fluxions. In the 1690s Newton
denoted the “second” fluxion of x by ẍ.

Newton gives the basic algorithm for calculating fluxions by
means of an example. He considers the equation:

x3 − ax2 + axy− y3 = 0. (1)

He substitutes x + ẋ0 in place of x and y + ẏ0 in place of y and
expands the powers. Deleting x3 −ax2 +axy− y3 as equal to zero and
dividing through by o, he obtains an equation from which he cancels
the terms which have o as a factor. In fact, these terms “will be
equivalent to nothing in respect to the others,” since “o is supposed
to be infinitely small.”13 At last Newton arrives at:

3ẋx2 − 2aẋx + aẋ y+ aẋx − 3ẏy2 = 0, (2)

a relation from which the ratio ẏ/ẋ defining the tangent to the curve
expressed by equation (1) can be obtained.

This result is achieved by employing the rule of cancellation of in-
finitesimals. In fact, Newton assumes that during the infinitesimal
interval of time o the motion is uniform, so that when x flows to x +
ẋo, y flows to y +ẏo. Hethenapplies theprincipleofcancellationof in-
finitesimals, so in the last step the terms in o are dropped. His justifi-
cation for this procedure is not muchmore rigorous than that offered
for similar algorithms earlier in the century, such as those by Hudde
and Sluse in the commentaries to Descartes’sGeometria. As we will
see, Newton was soon to face some serious foundational questions.
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In the Method, Newton gives the solution of a series of prob-
lems “in illustration of this analytical art,” mainly problems of max-
ima and minima, tangents, curvatures, areas, surfaces, volumes, and
arc lengths. With quantities represented as generated by continuous
flow, all of these problems can be reduced to the following two (one
the inverse of the other):

1. Given the length of the space at every time, to find the speed
of motion at any proposed time.

2. Given the speed of motion at every time, to find the length
of the space described at any proposed time.14

This is among the greatest generalizations in the history of
mathematics, reducing the great majority of problems faced by
mathematicians of the time to two basic problems. Today’s students
are accustomed to tackling an impressively large class of problems
through the differential and integral calculus. They also know that
differentiation and integration are inverse operations, a fact estab-
lished in the second half of the seventeenth century by Newton and
Gottfried Wilhelm Leibniz independently.

In 1671Newtonwas thus in possession of amathematicalmethod
which allowed him to supersede all his contemporaries. Just after
completing the Method of Fluxions and Infinite Series, Newton
drafted an addendum15 in which a “more natural approach” was
presented, based on axioms “as is customary with the synthetic
method.”16 In this short appendix he seems to have been influ-
enced by the mathematical style of his predecessor in the Lucasian
Chair, Barrow. Barrow is one of the main representatives – the other,
for different reasons, being Thomas Hobbes – of what has been de-
scribed as a “geometric backlash” in English seventeenth-century
mathematics.17 Barrow and Hobbes were vocal in their support of
geometry and took a critical stance toward what they saw as an
excessive reliance on symbolism. As indicated earlier, the case for
symbolic algebra tied in well with the general move toward simple
scientific prose which was characteristic of the English scientific
revolution; the defense of geometry, meanwhile, tied in with an-
other equally important aspect of the Baconian methodology then in
vogue, empiricism.18 Questions often asked were whether the sym-
bols employed by the practitioners of the new analysis correspond
to existing entities and what the referents are of such new symbols
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as the roots of negative numbers (the “imaginary” numbers) and the
infinitesimals. In his unfinished addendum to the Method of Flux-
ions and Infinite Series, Newton began to reformulate his method in
purely geometric terms, avoiding the symbolism which had allowed
him to advance so far.

Neither the addendum nor the Method of Fluxions and Infinite
Series was published during Newton’s lifetime. Indeed, one of the
most striking aspects of Newton as a mathematician is how little
and how late he published his results. Soon after completing the
addendum he was drawn into a bitter dispute concerning his op-
tical theory. Some scholars think that his reluctance to publish in
mathematics originated from this sad experience. But other inter-
ests, rather than optics or mathematics, were to dominate Newton’s
attention during the 1670s, and study of these new interests can
help us to understand Newton’s changing approach to mathematical
methodology, revealing other reasons which might have led him not
to publish his early mathematical discoveries.19

In the 1670s Newton devoted a great deal of effort to the study
of alchemy, theology, and chronology. Some of his correspondents
observed that he had almost abandoned the study of mathematics
and natural philosophy.20 These new interests were driven in part by
a deep concern about the theological consequences of the new me-
chanical philosophy, whose champion was Descartes. Like many of
his English contemporaries, most notably Henry More, Newton felt
that the reduction of natural phenomena to matter and motion was
the first step toward a view of nature which left little room for God’s
providential action. By contrast, all his life Newton held to the idea
that God was continuously intervening in the course of natural and
historical events. He turned to the tradition of alchemy and natural
magic, therefore, in order to decipher, behind the figurative language
of the hermetic literature, a truth about Nature and its relation to
God deeper than the image offered by the mechanical philosophy.

In his many alchemical and theological manuscripts Newton
simply repeated themes, rhetorical figures, and myths from the
neo-Platonic tradition. His interest in topics such as the prophecies,
the Kabbala, the chronologies of ancient kingdoms, and alchemy are
typical of a philosophical tradition that was pervasive in the Renais-
sance, and still alive in Newton’s England. It is from this tradition
that Newton derived his idea of history as a process of corruption.
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On this view, the ancients – the Jews, but also the Egyptians, the
Chaldeans, the Phoenicians, the Greeks, and the Romans – were in
possession of the true religion (an uncorrupted form of Christian-
ity), and of the true philosophy as well. As is well known, in the
1690s Newton attributed to the ancients a knowledge of the helio-
centric planetary system, of atoms and the void, and of the law of
gravitation.21 In Newton’s writings the religion and the natural phi-
losophy of the moderns are always depicted as inferior to, or even a
distorted corruption of what the ancients knew. In the neo-Platonic
tradition the wisdom of the ancients is often associated with mathe-
matics. A typical example is themyth that Pythagoras revealed to his
adepts a secret philosophy based on themathematical understanding
of the harmonies of the world, a myth endorsed by Newton.22

During the 1670s Newton developed a great admiration for the
geometrical writings of the ancients, leading him into outspoken
criticism of the symbolical mathematics pursued by the moderns.
His target was often Descartes, whom he criticized with a vehe-
mence illustrated by the following comment on Descartes’s solution
of Pappus’ problem:

To be sure, their [the ancients’] method is more elegant by far than the
Cartesian one. For he [Descartes] achieved the result by an algebraic calculus
which, when transposed into words (following the practice of the Ancients
in their writings), would prove to be so tedious and entangled as to provoke
nausea, nor might it be understood. But they accomplished it by certain
simple propositions, judging that nothing written in a different style was
worthy to be read, and in consequence concealing the analysis by which
they found their constructions.23

Similar statements can be found in the polemic works of Hobbes, for
instance his criticism of the algebraist Wallis in the following terms:

You show me how you could demonstrate the . . . articles a shorter way. But
though there be your symbols, yet noman is obliged to take them for demon-
stration. And though they be granted to be dumb demonstrations, yet when
they are taught to speak as they ought to do, they will be longer demonstra-
tions than these of mine.24

Newton’s close study of the seventh book of Pappus’ Collectiones
and his work on the restoration of lost books by Apollonius undoubt-
edly influenced him in his reassessment of geometry. He devoted
particular attention to Pappus’ problem, to which his own geometric
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solution – clearly framed in opposition to Descartes’s solution – ex-
hibits “not an [analytical] composition but a geometrical synthesis,
such as the ancients required”; it was to appear in print in Section 5,
Book 1, of the Principia.25 In manuscripts, Newton characterized the
geometry of the ancients as simple, elegant, concise, fitting for the
problem posed, and always interpretable in terms of existing objects.
In particular, he held, geometrical demonstrations have a safe refer-
ential content. By contrast, he stressed the mechanical character of
the algebraical methods of the moderns, their utility only as heuris-
tic tools and not as demonstrative techniques, the lack of referential
clarity of the concepts employed, and their redundance.26

This admiration for the geometrical methods of the ancients and
critical view of the algebraical methods of the moderns have their
roots in the 1670s, becoming stronger as the years passed. Henry
Pemberton, a privileged witness (as editor of the third [1726] edition
of the Principia) of Newton’s last years, wrote:

I have often heard him censure the handling of geometrical subjects by alge-
braic calculations . . .Of their [the ancients’] taste and form of demonstration
Sir Isaac always professed himself a great admirer: I have heard him even cen-
sure himself for not following them yet more closely than he did; and speak
with regret of his mistake at the beginning of his mathematical studies, in
applying himself to the works of Des Cartes and other algebraic writers be-
fore he had considered the elements of Euclide with that attention, which
so excellent a writer deserves.27

In a manuscript dating from the early 1690s, Newton quotes Pappus’
definition of the methods of analysis and synthesis, and then directs
his attention to algebra, which seems to “differ from their [the an-
cients’] analysis except in the mere manner of its expression.” He
then considers a few geometrical problems, remarking that “neither
Hercules’ patience norMethuselah’s years would . . . suffice” in order
to solve them by algebra alone.28

It would certainly be overstatement to say that Newton com-
pletely abandoned the “new analysis” that he had developed in his
anni mirabiles. Some of his mathematical achievements in algebra
that date from the 1670s were published in 1707 as Arithmetica
Universalis, and in his later years he continued to be interested in
the algebraic classification of cubic curves, in integration techniques,
and in power series. However, it is fair to say that after the 1670s he
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set out to contrast geometrical methods with algebraical ones with
the purpose of showing the superiority of the former to the latter,
and that he emphasized this superiority on a number of occasions.
The circumstances surrounding the publication of the Arithmetica
Universalis of 1707 are interesting in this regard. Thiswork appeared
anonymously, and Newton made it clear that he was compelled to
publish it in order to obtain the support of his Cambridge colleagues
in the election to the 1705 Parliament.29 In the preamble “To the
Reader” it was stated that the author had “condescended to handle”
the subject, and the work ended with oft-quoted statements in fa-
vor of pure geometry and against the “moderns” who had lost the
“Elegance” of Geometry.30 In his later years Newton did continue
to publish analytical works, but he always emphasized to the reader
that these works were not solely representative of his mathematical
activity and that geometrical works were superior.

Another way in which Newton distanced himself from his
early work in mathematics was the preference he gave to a new
method, the “synthetic method of fluxions,” which he contrasted
with his earlier “analytical method of fluxions.”31 This new syn-
thetic method was first presented in a treatise entitled “Geometria
curvilinea,” written around 1680.32 He called this new method
“synthetic” because it was based on a number of definitions, ax-
ioms, and postulates concerning continuous motion,33 and its de-
ductive structure was modeled on that of Euclid’s Elements. The
“Geometria curvilinea” opens with the following declaration:

Men of recent times, eager to add to the discoveries of the ancients, have
united specious arithmetic [i.e., algebra] with geometry. Benefiting from
that, progress has been broad and far-reaching if your eye is on the pro-
fuseness of output, but the advance is less of a blessing if you look at the
complexity of its conclusions. For these computations, progressing bymeans
of arithmetical operations alone, very often express in an intolerably round-
about way quantities which in geometry are designated by the drawing of a
single line.34

Newton’s purpose in this workwas to reformulate the results con-
cerning fluents and fluxions from his early analytical method in geo-
metric terms that were compatible with themethods of the ancients.
In the first place he had to avoid symbolic algebra, which he did by re-
ferring directly to geometric figures and their properties. Second, he
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had to avoid infinitesimals. In the Preface of the “Geometria curvi-
linea” Newton wrote:

Those who have taken the measure of curvilinear figures have usually
viewed them as made up of infinitely many infinitely-small parts. I, in fact,
shall consider them as generated by growing, arguing that they are greater,
equal or less according as they grow more swiftly, equally swiftly or more
slowly from their beginning. And this swiftness of growth I shall call the
fluxion of a quantity.35

In the synthetic method of fluxions Newton considers geometrical
figures not as composed by infinitesimals, but as generated by con-
tinuous motion. Furthermore, instead of making recourse to a rule
of cancellation of infinitesimals, he deploys limit procedures. A typ-
ical limit procedure consists in the determination of a ratio of two
geometrical flowing quantities (i.e., two “fluents”) which “vanish”
in the same instant. For example, given a plane curve, the “ulti-
mate ratio” – when points A and B “come together” – of the chord
and arc terminated by points A and B is equal to 1.36 Such geomet-
ric limit procedures are extensively employed in Newton’s Principia
(1687).37 By means of this method, he achieved an improvement on
the “Geometria curvilinea” in explicitly avoiding infinitesimals, re-
placing them with limits, though he still needed to justify the limits
themselves.

Berkeley was to observe in the Analyst (1734) that the “limits of
vanishing quantities” employed in the Principia are asmysterious as
the infinitesimals, since the “ultimate ratio of two vanishing quan-
tities,” when the quantities are “vanished,” is 0/0, and before they
have vanished the ratio is not the “ultimate.” It is worth quoting
from Section 1 of the Principia on this point, where Newton invokes
intuitions concerning continuous motion:

It may be objected that there is no such thing as an ultimate proportion
of vanishing quantities, inasmuch as before vanishing the proportion is not
ultimate, and after vanishing it does not exist at all. But by the same argu-
ment it could equally be contended that there is no ultimate velocity of a
body reaching a certain place at which themotion ceases; for before the body
arrives at this place, the velocity is not the ultimate velocity, and when it
arrives there, there is no velocity at all.38

The synthetic method of first and ultimate ratios is not the only
mathematical tool employed in the Principia:39 the book draws on a



Analysis and synthesis in Newton’s mathematical work 321

considerable repertoire of mathematical techniques. The analytical
method of fluxions plays a role in Book 2 of the Principia,40 a fact
thatNewton emphasized in the heated context of the famous priority
dispute in which he and Leibniz, who had discovered the calculus in-
dependently, accused each other of plagiarism. Clearly Newton was
trying to use the Principia as proof that his knowledge of analytic
methods was equivalent to Leibniz’s calculus prior to the first pub-
lication of the differential calculus in 1684. Speaking of himself in
the third person, he wrote:

By the help of this new Analysis Mr. Newton found out most of the Propo-
sitions in his Principia Philosophiae. But because the Ancients for making
things certain admitted nothing into Geometry before it was demonstrated
synthetically, he demonstrated the Propositions synthetically that the sys-
teme of the heavensmight be founded upon good Geometry. And this makes
it now difficult for unskillful men to see the Analysis by which those Propo-
sitions were found out.41

Clearly such statements have to be regardedwith some caution since
they were aimed at proving Leibniz’s plagiarism. However, there
are a number of Newton’s manuscript notes in existence that give
demonstrations of the Principia which show the analytical method
of fluxions being deployed. Newton is quite right in stating that the
“synthetic method of fluxions [notably, the method of first and ulti-
mate ratios] occurs widespread” in the Principia. There is abundant
evidence that he is also right in maintaining that in the Principia
there are also “specimens of the analytical method.”42 Most notably,
in many demonstrations of the Principia Newton used his highly
symbolic algorithms for quadratures which he had developed in the
Method of Fluxions and Infinite Series.

There are propositions in the Principia which begin with phrases
such as “granting the quadratures of curvilinear figures.” These
propositions reduce the problem to the quadrature of (i.e., the de-
termination of the area subtended by) a curve. Newton does not
explain to the reader how these quadratures can be achieved, but
he sometimes states the results which follow from them. So it is
true that specimens of the analytical method occur in the Prin-
cipia, but in a rather oblique, veiled way. The following points pro-
vide further evidence of this: (i) there are results in the Principia
which can be achieved only by application of quadrature techniques
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(in Leibnizian jargon, integral calculus), (ii) these results are pre-
ceded, or followed, by statements in which the analytical method
of quadratures is referred to, (iii) all these quadratures are included
in the Method of Fluxions and Infinite Series, and (iv) when David
Gregory asked Newton to complete missing steps alluded to in the
Principia, Newton replied by expressing the dynamical quantities
(such as velocity and acceleration) in the geometric diagrams in sym-
bolic terms and then formed a fluxional equation and solved it. The
analytical method of fluxions thus did occur in the Principia, but it
occurred implicitly.43

There are many reasons why Newton might have chosen not to
be open about his use of the analytical method of fluxions. One of
these is his classicism, the methodological turn in favor of the an-
cient geometry which had led him to distance himself prior to the
composition of the Principia from modern symbolical methods; but
this provides only one cultural reason for his adopting the geometric
style of the Principia. There were other reasons behind his choice
of the Principia’s mathematical style: the readers whom he had in
mind, his ideas on the relationship betweenmathematics and nature,
and the problems that his cosmology implied.

When Newton wrote the Principia, he was addressing himself to
readers who did not know the calculus, which during this period,
the 1680s and 1690s, was practiced by only a handful of initiates. In
the late 1710s Newton showed awareness that the competence of his
readers had changed:

To the mathematicians of the present century, however, versed almost
wholly in algebra as they are, this [i.e., the Principia’s synthetic style of
writing] is less pleasing, whether because it may seem too prolix and too
akin to the method of the ancients, or because it is less revealing of the
manner of discovery. And certainly I could have written analytically what
I had found out analytically with less effort than it took me to compose
it. I was writing for philosophers steeped in the elements of geometry, and
putting down geometrically demonstrated bases for physical science.44

While the “philosophers” of 1687 were “steeped” in geometry, the
generation of mathematicians formed under the Bernoullis in Paris
and Basel, who began their studies in higher mathematics reading
L’Hospital’sAnalyse des infiniment petits (1696), found thePrincipia
obscure.
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Furthermore, Newton insisted that his mathematical methods be
ontologically well founded. While the algebraical, symbolical meth-
ods were merely heuristic tools, the method of fluxions, especially
in its synthetic, geometric version, dealt with objects, fluents, and
fluxions, which “take place in the reality of physical nature and are
dailywitnessed in themotion of bodies.”45 According to theGalilean
tradition the Book of Nature is written in geometric terms. Newton
endorsed this tradition and resisted the idea of representing motion,
acceleration, and force in symbolic terms. The geometric diagrams of
the Principia exhibit real trajectories and represent real accelerations
and forces in terms of visualizable geometric magnitudes: “for flux-
ions are finite quantities and real, and consequently ought to have
their own symbols; and each time it can conveniently so be done, it
is preferable to express them by finite lines visible to the eye rather
than by infinitely small ones.”46 A late Newtonian, John Colson,
went so far as to describe the fluxional geometrical procedures as
“ocular demonstrations.”47

One further reason lies behind the preference given to geometry in
the Principia: Newton’s cosmology of universal gravitation and the
problems it implied. According to this cosmology, mathematizing
Naturemeans dealing inmathematical termswith universal gravita-
tion: mathematizing all the effects caused by the gravitational force,
e.g., tides and planetary shapes. The possibility of mathematically
predicting these effects was crucial for Newton, and the acceptance
of universal gravitation depended on the success of such a math-
ematization. However, the analytical method of fluxions was not
yet sufficiently powerful to cope with these problems, and Newton
and his followers found on their agenda a set of problems which
could not be tackled with the calculi which he and Leibniz had cre-
ated. Recent research carried on by SubrahamyanChandrasekhar and
Michael Nauenberg has shown us how far Newton could go in deal-
ing in analytical terms with lunar motion.48 It seems clear to me,
however, that in advanced topics such as these the analyticalmethod
could be employed only with sporadic success. In several passages of
his demonstrations Newton had no choice but to fall back on the
rich traditional arsenal of geometry.

After thePrincipia, Newton’s creativity as amathematician some-
what declined. He was busy, however, editing his mathematical
works, forming a school of proselytes, and arguing with Leibniz. He
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also devoted a great deal of time to his project of reinstating the work
of the ancient geometers. As the century progressed, this project
appeared more and more old fashioned, but Newton was adamant
in championing the ancients against the moderns. In the 1690s he
wrote: “and if the authority of the new Geometers is against us,
nonetheless the authority of the Ancients is greater.”49 He also suc-
ceeded in communicating his interest in classical mathematics to
some of his disciples, which resulted in, for example, the editions of
Apollonius’ Conics by Gregory and Edmond Halley and the restora-
tion of Euclid’s Porisms by Robert Simson and Matthew Stewart.

Newton’s concern for the foundations of his method is evi-
dent in the editing for publication of his “Tractatus de quadratura
curvarum” (composed in the early 1690s and published in 1704)
and the “De analysi per aequationes numero terminorum infinitas”
(composed in 1669 and published in 1711). He revised his original
manuscripts in an effort to avoid reference to infinitesimals.50 He
also made it clear in the Preface to the “De quadratura” and in
the anonymous Account of the Commercium Epistolicum (1715)
that the algorithmic techniques of the analytical method of flux-
ions were nothing more than an heuristic tool, employed when “not
demonstrating but only investigating a Proposition, for making dis-
patch,” which could and should be translated into the rigorous geo-
metric form of the synthetic method.51 He viewed Leibniz’s calculus
in this way, as an heuristic tool, devoid of scientific character:
“Mr. Leibnitz’s [method] is only for finding it out.”52 His analytical
fluxional algorithm, by contrast, was truly demonstrative since it
could always be interpreted in geometric terms:

This approach agrees basically with that of Leibniz, yet is, however, but a
small part of a more general method . . . analytical mathematicians attempt
to bring everything down to equations. In the present method equations are
hardly handled at all.53

The values that Newton promoted among his disciples –
continuity with the past geometrical tradition, an interest in the rep-
resentability of mathematical symbols, and a distrust of algorithmic
techniques – were in sharp conflict with the values enthusiastically
adopted by the Leibnizian school. Leibniz thought of his calculus
as an example of universal characteristic, a universal symbolic lan-
guage able to express all forms of reasoning. Indeed, he praised the
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cogitatio caeca, the blind use of reasoning, which frees the mind
from the burden of imagination.54 In his view the geometry of the
ancients was inferior to the new calculus. Writing to Huygens in
September 1691, he affirmed with pride:

It is true, Sir, as you correctly believe, that what is better and more useful in
my new calculus is that it yields truths by means of a kind of analysis, and
without any effort of the imagination, which often works as by chance, and
it gives us the same advantages over Archimedes, which Viète and Descartes
gave us over Apollonius.55

This highly abstract, proudly innovative and de-geometrized calcu-
lus, which was to dominate eighteenth-century mathematics, found
little favor with Newton and his British disciples.56
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Géométrie,” Archive for History of Exact Sciences 24 (1981), 295–338;
Giorgio Israel, “The Analytical Method in Descartes’ Géométrie,” in
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10 Newton, active powers, and
the mechanical philosophy

Among the notable eighteenth-century expositions of Newton’s
achievements were Henry Pemberton’sA View of Sir Isaac Newton’s
Philosophy (1728), Willem Jacob ’sGravesande’s Mathematical Ele-
ments of Natural Philosophy confirm’d by experiments: or, an intro-
duction to Sir Isaac Newton’s Philosophy (6th edn, 1747), and Colin
Maclaurin’s posthumous An Account of Sir Isaac Newton’s Philo-
sophical Discoveries (1748). To the modern eye, there is something
puzzling about these titles. We note the terms “philosophy,” “nat-
ural philosophy,” and “philosophical,” and we wonder what they
mean in this setting. TakeMaclaurin’sAccount, the best of the genre,
and written by one of the leading Newtonians of the day. Newton
made great scientific discoveries, and we can learn what most of
them are from readingAn Account, but what philosophical discover-
ies did he make? Maclaurin describes Newton’s work in mechanics,
rational and celestial, and in physics, theoretical and experimental
(though not optics). But Newton the philosopher? To answer these
questions requires a preliminary disentanglement of the disciplinary
classifications that clustered around the business of “philosophy” in
the seventeenth and eighteenth centuries.

In Newton’s day the predominant framework of university
instruction in philosophy was that of the Peripatetic or scholastic
tradition, adapted to local religious and cultural requirements
(Protestant in Germany, Holland, and Britain; Catholic in France,
Spain, and Italy). In that tradition, Philosophy divides into specu-
lative and practical philosophy. Speculative philosophy divides in
turn into three principal sciences (scientiae):metaphysicsor first phi-
losophy, natural philosophy, and mathematics; to which are added
the middle sciences (scientiae mediae), which include theoretical
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mechanics, optics, and astronomy. Loosely speaking, science (scien-
tia) is knowledge of virtually anything, or a habitus, an intellectual
disposition enjoyed by the possessor of scientific knowledge.
Properly speaking, science results from demonstration with respect
to “the why” of something, and is knowledge (cognitio) of things
through their proximate causes.1 Mathematics is the science of num-
ber, extension, and measure, in abstraction from material things.
Natural philosophy, also called physics (physica) or sometimes
physiology (physiologia), is the science of the causes of change and
stasis in the natural world; the middle or mixed sciences combine
mathematics and physics. In its widest acceptation, metaphysics is
the science of being qua being, in abstraction from particular beings,
but for some, metaphysics is the science of beings that are other than
physical, that is, God, angels, and separated souls or minds, though
some argued that to treat of God, angels, and souls is not the business
of metaphysics,2 and others that it is not the business of physics.3

For yet others, metaphysics is the universal science of concepts that
apply transcendentally to beings in general. Practical philosophy
divides into active or moral philosophy (ethics, home economics,
and politics), and the mechanical arts (artes mechanicae), which are
concerned with the production of artificial objects for human use.
Some writers included logic as a branch of philosophy, though it was
more commonly seen as an art or instrument of reason.4 Another
important classification of philosophy was that of the Stoics, or
more generally of the Hellenistic philosophers, who divided philos-
ophy into physics, ethics, and logic. This taxonomy shaped Locke’s
“Division of the Sciences” at the end of Book 4 of the Essay concern-
ing Human Understanding (1690),5 and is reflected in Newton’s
proposal, which dates from the early 1690s, for university reform,
“Of Educating Youth in the Universities.” The philosophy professor
is to begin with “things introductory to natural philosophy” (space,
time, laws of motion, circular motion, mechanical powers, laws of
gravity, hydrostatics, projectiles), and then move to natural philos-
ophy in the wider sense (cosmology, meteors, minerals, vegetables,
animals, anatomy). “Also to examin in Logicks & Ethicks.”6

Viewing them within a disciplinary perspective (as distinct from
the revolutionary changes in their theoretical content), mathematics
and natural philosophy retained the same core identity throughout
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the seventeenth and eighteenth centuries. Mathematics maintained
its special autonomy. Natural philosophy continued to be defined
in eighteenth-century dictionaries and encyclopedias as the science
of natural bodies, and its topical range underwent no substantial
change from the late sixteenth to well into the eighteenth century.
When Newton began the study of natural philosophy in his second
year at Trinity College, Cambridge, in June 1661, the textbook was
JohannesMagirus’s Physiologia Peripatetica. Magirus dealt with the
full sweep of topics proper to physiologia: the principles of natural
things, place, vacuum,motion, time; the planets, fixed stars, eclipses;
the elements, primary, secondary and occult qualities, mixed bodies;
meteors, comets, tides, winds; metals, minerals, plants, spirits, man,
zoophytes; the soul, the senses, dreams, the intellect, the will. This
was the broad agenda for natural philosophy throughout Newton’s
lifetime, unimpaired in his case by a possible inclination toward the
Stoic classification of philosophy.7 He wrote on many of these top-
ics, though not in equal measure. In particular, he wrote and experi-
mented in great measure on alchemical questions. As a speculative
inquiry into the manifold reactions between metals, acids and al-
kalis, minerals and other substances, alchemy was part of natural
philosophy. As an art (ars), wielding crucible and furnace for the
prize of transmutation in accordance with the precepts of specula-
tive theory, alchemy was distinguished from natural philosophy by
Peripatetic encyclopedists. As for metaphysics, there were varying
senses of the term in Newton’s day, as we have seen, and its ca-
reer in Britain, from Locke through Newton and Berkeley to Hume,
wasmarkedly at variance with its career across the English Channel,
from Descartes, Spinoza, and Leibniz through Wolff to Kant.

Evidently, Newton was a natural philosopher and mathematician
in the traditional senses. But he was also a metaphysician in one or
other of the sensesmentioned above, and to be one he did not have to
have published ametaphysical discourse in theActa Eruditorum or a
treatise on first philosophy. In the unpublishedmanuscript “De grav-
itatione” (mid-1680s), metaphysics deals with God and his manage-
ment of his Creation, doctrines of substance, the nature of mind and
body and their interaction and union.8 In the Principia (1687), writ-
ten shortly after “De gravitatione,” we find what seems a shift in
perspective that is all the more significant because it appears in a
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public setting. The “General Scholium,” which first appeared in the
second edition, contains the famous passage onGod, Lord over all. He
is eternal, infinite, absolutely perfect, omnipotent and omniscient,
and substantially omnipresent. His substance is unknown to us; we
know God only through his attributes and the excellency of the nat-
ural order, and through the final causes of things. He is the God
of providence: “no variation in things arises from blind metaphysi-
cal necessity, which especially is always and everywhere the same.”
Newton rounds off the passage with the remark: “And thus much
concerning God, to reason about whom, at least from phenomena, is
a concern of Natural Philosophy.”9 The study of God qua Author of
Nature (of souls too, by implication), or rather the study of Christ’s
vice-regency in the world, in keeping withNewton’s Arianism,10 has
become part of natural philosophy, as allowed by Locke’s division of
the sciences. On this view, metaphysics would be restricted to such
topics as freedom and necessity, causality, and (presumably) being
qua being. Again, the evidence of some manuscript drafts (c. 1705)
relating to Query 23 of the LatinOptice (1706), which becameQuery
31 of the second English edition (1717–18), is that “metaphysical”
describes non-empirical inquiries into the occult non-inertial pow-
ers, and associated laws of motion hitherto undiscovered, that might
activate the interacting realms of the spiritual and the corporeal.11

Yet part of Query 28 in the printed Opticks (3rd and 4th English edi-
tions, 1721, 1730) reads as though the metaphysician inquires into
the divine ground of physical process, a view in keeping with that
in “De gravitatione.” The ancient atomists rejected a universal fluid
medium for the propagation of light,

tacitly attributing Gravity to some other Cause than dense Matter. Later
Philosophers banish the Consideration of such a Cause out of natural Phi-
losophy, feigning Hypotheses for explaining all things mechanically, and
referring other Causes to Metaphysicks: Whereas the main Business of nat-
ural Philosophy is to argue from Phaenomena without feigning Hypotheses,
and to deduce Causes from Effects, till we come to the very first Cause,
which certainly is not mechanical.12

Taken together, these representative passages suggest ambiguities
in Newton’s position on the identity of metaphysics, or reveal ten-
sions arising from an awareness of creeping unsettlement on these
taxonomic matters among his philosophical peers. Perhaps the issue
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can be stated in another way: how much of the study of God, qua
Author of Nature, is to belong to natural philosophy, how much to
metaphysics?

Leaving the general question of how Newton understood the dis-
cipline of metaphysics, there are metaphysical aspects of his natural
philosophy that are crucial to an adequate understanding of two spe-
cific issues on which I want to concentrate. These are (1) Newton’s
engagement with the mechanical philosophy, and (2) his account
of the causal interventions of mind and soul in the physical world.
As it happens, a convenient bridge to these issues is provided by
Maclaurin’s Account, of which Book 1 is a survey of previous philo-
sophical systems designed to silhouette the superiority of Newton’s
system. Maclaurin’s closeness to the Newtonian legacy wins him
a measure of ostensible authenticity which I shall exploit for my
purposes in this chapter.

Maclaurin sees natural philosophy as “the firmest bulwark
against Atheism,” securing natural religion equally “against the idle
sophistry of Epicureans, and the dangerous refinements of modern
metaphysicians.”13 He attacks those philosophers, ancient andmod-
ern, whose transgressions have compromised the firmness of that
bulwark. In every case, and on nearly every issue, the paragon of all
virtues philosophical, whether natural, metaphysical or mathemati-
cal, is Sir IsaacNewton.14Newtonunmasks themonstrous Lucretian
system, reborn in the extravagant system ofDescartes, who banished
final causes, referring all explanations to “mechanismandmetaphys-
ical or material necessity.” It was Newton’s delight, “as I have heard
him observe,” notes Maclaurin, that his philosophy called attention
to final causes. AmongDescartes’s errors was a principle of conserva-
tion of motion, based on an “extraordinary” inference from the con-
stancy of God’s action. Yet nothing is more at odds with experience,
because perfectly elastic bodies do not exist, the only circumstance
that would make the principle plausible. Somemotion is always lost
when bodies collide, so the universe per se cannot be a mechanical
perpetual motion. The conservation principle is the cornerstone of
the mechanist’s universe, whether in the Cartesian, Leibnizian, or
Spinozan form. In Spinozism, “un Cartésianisme outré” (Maclaurin
expediently quoting Leibniz), substance exists necessarily, all hap-
pens with absolute necessity, there are no final causes, there is no
vacuum, the account of good and evil is a perversion, and the same
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quantity of motion, or at any rate the same proportion of motion
to rest, is conserved in the universe. The absurdities of Spinozism
illustrate the nonsense to which Cartesianism leads, and for those
coming fresh to the Spinozan system, in trusting innocence, they
reveal its source, “which is no other than the Cartesian fable; of
which almost every article has been disproved by Sir Isaac Newton
or others.”

A philosopher who “ridiculed the metaphysics of the English,
as narrow, and founded on unadequate notions,”15 was responsible
for “a far-fetched uncommon stretch of metaphysics” according to
which there cannot be atoms or a vacuum, because a principle of the
identity of indiscernibles stipulates that not even God can choose
between two identical states of affairs. Leibniz’s claim that “the
material system is a machine absolutely perfect,” a consequence of
“an excessive fondness for necessity and mechanism,” is refuted by
Newton’s observation that “the fabrick of the universe, and course of
nature, could not continue for ever in its present state, but would re-
quire, in process of time, to be re-established or renewed by the same
hand that formed it.” Descartes’s beast-machine doctrine is as noth-
ing comparedwith Leibniz’s preestablished harmony, orwith his pre-
tense “that the soul does not act on the body, nor the body on the soul;
that both proceed by necessary laws, the soul in its perceptions and
volitions, and the body in its motions, without affecting each other;
but that each is to be considered as a separate independentmachine.”

In short, almost everybody is found wanting. Witness the absurd
schemes of Plato, Aristotle, Epicurus, the Sceptics, the alleged clear
ideas of Descartes, the fictitious metaphysics of Leibniz, the crazy
notions of Spinoza. The obsession with mechanism has led some to
exclude from the universe everything but matter and motion (pre-
sumably Hobbes); others (meaning Berkeley) admit only perceptions
and what perceives; others (presumably the Occasionalists) “impair
the beauty of nature” by denying intermediate causal links between
God and the world. “Many who suffered themselves to be pleased
with Des Cartes’s fables, were put to a stand by Spinoza’s impi-
eties. Many went along with Mr. Leibnitz’s scheme of absolute ne-
cessity, but demurred at his monads and pre-established harmony.
And some, willing to give up the reality of matter, could not think of
giving up their own and otherminds.” Such amedley of philosophies
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has induced scepticism in certain quarters about the ability of philos-
ophy to furnish any knowledge at all (presumably Locke and Hume).

But it has appeared sufficiently, from the discoveries of those who have
consulted nature and not their own imaginations, and particularly fromwhat
we learn from Sir Isaac Newton, that the fault has lain in the philosophers
themselves, and not in philosophy. A compleat system indeed was not to
be expected from one man, or one age, or perhaps from the greatest number
of ages; could we have expected it from the abilities of any one man, we
surely should have had it from Sir Isaac Newton: but he saw too far into
nature to attempt it. How far he has carried this work, and what are the
most important of his discoveries, we now proceed to consider.

Allowing for Maclaurin’s hagiographical intemperance, we are in-
trigued that he sends the knight of Woolsthorpe to battle against
Descartes, Spinoza, Leibniz, and, though he is shy about naming
them, Locke, Berkeley, and Hume. The author of the Principia and
the Opticks seems not to belong in the same intellectual arena as
the opposing triumvirates of what some now call “Rationalism”
and “Empiricism.” But that is not how Maclaurin saw the situa-
tion. Looking at it through his eyes, without kneeling with him at
the Newtonian altar, we discover a Newton who is not a dabbler
in metaphysical matters, but a mathematician and natural philoso-
pher whose theorizing is inseparable frommetaphysical concerns he
shared with his contemporaries and predecessors.16

For thoseworkingwithin “the new philosophy,” themost striking
limitation of Peripatetic natural philosophy was its inability to pro-
vide what they took to be properly explanatory schemes for dealing
with natural phenomena. The Peripatetics had constructed impres-
sive arrays of divisions and subdivisions for describing the bewilder-
ing variety of principles, qualities, relations, motions, and quantities
revealed by natural bodies, but for the protagonists of the new philos-
ophy these classificatory proliferations were absurdly complex and,
more to the point, were useless for explaining natural phenomena.
They welcomed the possibility of explaining nature by recourse to
three or four fundamental attributes and modes of body.17 The un-
dergraduate Newton would have quickly spotted the explanatory in-
effectiveness of the Peripatetic system, and would have appreciated
the contrasting attractions of the newways of philosophizing that he
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found in the writings of Galileo, Charleton, Hobbes, Boyle, Hooke,
More, Glanvill, Digby, and Descartes, when he began to study them
on his own (they were not in the curriculum!) a couple of years after
entering Trinity College.

However, Newton also quickly understood that the new physics
promisedmore than it could ever deliver, seducingmany into believ-
ing that its explanatory simplicities would be able to cope with the
endlessly complex real worlds of (al)chemist, metallurgist, exper-
imental philosopher, pharmacist, physiologist, or physician. The
mechanical philosophy, of whatever stripe, was by no means an un-
qualified success in explaining all natural phenomena. There ismuch
truth in Stahl’s observation (1723) that “mechanical philosophy,
though it vaunts itself as capable of explaining everything most
clearly, has applied itself rather presumptuously to the consideration
of chemico-physical matters . . . it scratches the shell and surface of
things and leaves the kernel untouched.”18 Or rather, it purported to
reveal the reality of the kernel though it was incapable of reaching
it through experimental inquisition. No one understood that better
than Isaac Newton.

Newton’s engagement with the mechanical philosophy is there-
fore an intractable issue. There are two immediate difficulties. The
first concerns the term “mechanical.” In the early modern period
it enjoyed a wide range of meanings, the shared central sense be-
ing “concerned in some way with manual activity,” that is, with
artisanal operations, practical skills, the construction and work-
ing of machines, physical conditions and objects and the interac-
tions between them, chemical manipulations, and experiments. By
extension, since Antiquity, “mechanical” had connoted the the-
ory of machines and more generally mechanics qua the science
of bodies in motion and rest.19 But proper usages of “mechanical” in
the “artisanal sense” and in the “theoretical sense” did not depend
on or assume any perceived necessary relation between them.
Writing in 1594, Henry Percy extolled “the doctrine of generation
and corruption,” which “unfoldeth to our understandings the
method generall of all attomycall combinations possible in homo-
geneall substances, together with the wayes possible of generating
of the same substance,” a part of philosophy that “the practisse of
Alkemy doeth mutche further, and it selfe [is] incredibely inlarged,
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being a meere mecanicall broiling trade without this phylosophicall
project.”20 Clearly, this mechanical trade is far removed from any-
thing in Pseudo-Aristotle’s Mechanica or Book 8 of Pappus’ Collec-
tiones.WhenThomasSprat in1667askedwhether itwouldnotbebet-
ter for children to learn through seeing and touching sensible things –
“In a word, Whether a Mechanical Education would not excel the
Methodical?”21 – he was not referring to the theory of machines or
to the laws of motion. Nor was Henry Power when in 1664 he looked
to the day when the microscope would reveal magnetic effluvia, the
atoms of light and of fluids, and air particles. “And though these
hopes be vastly hyperbolical,” he conceded, “yet who can tel how
far Mechanical Industry may prevail; for the process of Art is
indefinite, and who can set a non-ultra to her endeavours?”22 Robert
Boyle understood “mechanical” in both the artisanal and theoreti-
cal senses, and had a sharper insight into their relations than most
of his contemporaries.23 Shortly before the publication of Newton’s
Principia his friend Fatio deDuillier informed the Abbé Nicaise that:
“They are publishing a Latin work by Monsieur Newton in which
he deals with the general mechanics of the world. This work con-
cerns mainly the system of astronomy, but it is filled with a large
number of very interesting things about rather another subject and
which concerns at the same time physics and mathematics.”24 The
phrase “the general mechanics of the world” might be thought to
refer to mechanics in the theoretical sense. But even here the sub-
stantive “the mechanics” refers to “the general workings or mech-
anism of the world,” not to a body of mechanical laws that apply
to that mechanism, though of course Fatio de Duillier knew that
the Principia contained those as well. Newton himself wrote in the
Opticks that one of the tasks of natural philosophy is “to unfold
the Mechanism of the World” (quoted below); these are virtually
the same terms used by Fatio de Duillier to describe the Principia.

The second difficulty is how to characterize “the mechanical
philosophy.” A theory of explanation of phenomena in the non-
qualitative terms of the configurations and motions of atoms or
corpuscles, or other homogeneous matter individuated into bodies?
A theory characterized by the notion that the universe and every sys-
tem within it is a machine? Or characterized by the ideal of math-
ematizing the world picture? Or by the belief in necessary laws of
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nature and of motion? A theory in which the spiritual and the im-
material have been banished from the domain of investigation? Each
of these is distinct from the others, yet each of them is a candidate
for inclusion under the umbrella of “the mechanical philosophy.”25

Robert Boyle seems to have been the first to coin the term, in 1661.
Pairing the philosophies ofGassendi andDescartes, Boyle noted their
shared wish to explain phenomena intelligibly “by little bodies di-
versely figured and diversely moved.” Searching for a suitable name
for this species of natural philosophy, Boyle suggests “the corpuscu-
lar philosophy,” though sometimes he calls it the “the Phoenician
philosophy,” because of the believed origin of corpuscularianism.
But because “it is evident and efficacious in the domain of me-
chanical engines, sometimes I call it also the mechanical hypoth-
esis or philosophy.”26 Boyle’s sense of the mechanical philosophy
centered on its intelligible ontological content and on its marked
advantages over the tautologous explanations of Peripatetic natural
philosophy.

These considerationsmust be borne inmind whenwe ask to what
extent Newton can be described as a proponent of “the mechanical
philosophy.” If there is a coherent answer to the question, it will not
be easy to come by. In the first place, Newton used “mechanical”
(English and Latin) in both the theoretical and artisanal senses.
There are several occurrences of “mechanical” (“mechanics”) in the
Principia, the Opticks, and certain manuscript drafts, where it is
clear that Newton has in mind either the theory of machines or
rational mechanics, a division within mechanics in the theoreti-
cal sense that creates problems of its own.27 However, his use of
the artisanal sense creates problems too. In the important alchem-
ical draft manuscript “Of natures obvious laws & processes in veg-
etation” (c. 1672), natural processes are either “mechanicall” or
“vegetable,” corresponding to the distinction between “common”
and “vegetable” chemistry (alchemy). Mechanical processes are sen-
sible interactions between chemical bodies, whereas vegetation is
the result of an enlivening, universal aether working in a “subtile
secret & noble way” in all animal, vegetable, and alchemical activ-
ity. So Newton can write:

All these changes thus wrought in the generation of things so far as to sense
may appear to be nothing but mechanism, or several dissevering & associ-
ating the parts of the matter acted upon, & that because several changes
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to sense may be wrought by such ways without any interceding act of
vegetation . . .Nay all the operations in vulgar chemistry (many of which
to sense are as strange transmutations as those of nature) are but mechani-
cal coalitions or separations of particles, as may appear in that they return
into their former natures if reconjoined or (when unequally volatile) dissev-
ered, & that without any vegetation.28

Here Newton is talking about “mechanism” in the artisanal sense,
not about some version of “the mechanical philosophy.” Elsewhere
in this manuscript, and indeed as a general rule, when Newton
describes a process as “mechanical” (English or Latin), we cannot
assume without further ado that he is using the term in the theo-
retical sense. To ignore the distinction is to risk misinterpretation.
Earlier in the same manuscript Newton declares that “Natures ac-
tions are either vegetable or purely mechanicall (grav. flux. meteors.
vulg. Chymistry).”29 For Dobbs this is explicit evidence that at the
time of the composition of “Of natures obvious laws” Newton “still
thought . . . that his gravity was mechanical in its operation.”30 That
would be so if all the bracketed examples were of the “purely me-
chanicall,” but the operations of “vulgar chemistry” are not at all the
same sort of thing as gravity (the “gravitating flux”) or meteorolog-
ical phenomena, and in such a disorganized draft it is just as likely
that the bracketed examples refer respectively to the vegetable and
the purelymechanical. That is (takingmeteorological phenomena to
be in a doubtful category), gravity is a vegetable action, and common
chemistry is purely mechanical, in the artisanal sense.

Newton’s employment of the term “mechanical” in the artisanal
sense tells us nothing about his involvement with “the mechanical
philosophy.” His employment of the term (or the cognate substan-
tive) in the theoretical sense points to the ideal of mathematizing
the world picture, as is evident from the early studies on motion,
the Definitions, Laws of Motion, Corollaries and their applications
in the Principia, and the Preface to the first edition. But for Newton
themathematical waywent hand-in-handwith a denial ofmechanis-
tic necessity, a denial of a purely corporeal world and an insistence on
the existence of non-corporeal active powers at work in nature under
God’s stewardship, and a deep antipathy to the dogmatic assurance of
the Cartesians and others who claimed that in amechanical universe
the causes of phenomena are already known, or are readily accessible
to human inquiry.
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Onewonders ifNewton everwas amechanical philosopher of “the
canonical” sort. The editors of the student manuscript “Questiones
quaedam philosophicae” (1664–5) rightly note that there is nothing
in the text that shows unqualified support for either Boyle’s program
or the action-by-contact condition characteristic of Descartes’s me-
chanical philosophy.31 Often Newton’s tone is hypothetical rather
than declarative. For example, he begins the section “Of Gravity &
Levity” with the words: “The matter causing gravity must pass
through all the pores of a body. It must ascend again, (1) for either
the bowels of the Earth must have had large cavities and inanities to
contain it, (2) or else the matter must swell the Earth.”32 It would
be a mistake to infer from these “must”s that Newton is affirming
gravity to be corporeal in nature. Rather, he means that if gravity
is corporeal, then “the matter causing gravity must pass through all
the pores of a body,” but we cannot tell from the text what Newton’s
own views on gravity were at that time. After all, these were quaes-
tiones, not postulata. Still, the “Questiones” does show “a unity
of outlook,” as the editors conclude, that of Newton as an atomist,
a commitment that remained with him throughout his life.

Newton’s alchemical papers of the 1660s were not expressed or
conceived in mechanist terms. His first attempts to interrelate his
alchemical thinking and mechanist doctrines date from 1672–5.
In “An Hypothesis explaining the Properties of Light discoursed of
in my severall Papers” (read to the Royal Society in 1675), Newton
sought to explain these properties in terms of “an aethereallMedium
much of the same constitutionwith air, but far rarer, subtiler &more
strongly Elastic.” This aether was denser outside bodies than within
their pores, and its pressure deflected light corpuscles in varying di-
rections. But it had to explain a wide range of phenomena, such as
surface tension, the cohesion of solids, animal motion, the phenom-
ena of static electricity and magnetism, and “the gravitating prin-
ciple,” and so was non-homogeneous, being “compounded partly of
the maine flegmatic body of aether partly of other various aethereall
Spirits.”

Newton’s aether hypothesis, of neo-Platonic origin, was a revision
of the doctrine of the Universal Spirit from which embodied specific
forms are born. “Perhaps the whole frame of Nature may be nothing
but aether condensed by a fermental principle,” wrote Newton in
the initial version of his 1675 paper. For his Royal Society audience
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he expanded this idea in terms less redolent of the alchemical ori-
gin of the aether hypothesis: “Perhaps the whole frame of Nature
may be nothing but various Contextures of some certain aethereall
Spirits or vapours condens’d as it were by praecipitation . . . and after
condensation wrought into various formes, at first by the immediate
hand of the Creator, and ever since by the power ofNature.” So forms
change into forms through unending cycles, “for nature is a perpet-
ual circulatory worker, generating fluids out of solids, and solids out
of fluids, fixed things out of volatile, & volatile out of fixed, subtile
out of gross, & gross out of subtile.”33

The transformability of matter was one of Newton’s abiding be-
liefs, as was the corresponding unity of matter implied by the notion
of nature as a “perpetual circulatory worker.” Both doctrines there-
fore fall under the umbrella of the mechanical philosophy, as indi-
cated earlier, so they form a link between Newton’s alchemy and
his inclinations toward mechanism. Furthermore, despite its neo-
Platonic origins, Newton’s aether, here and in his later writings, is
material, so when employed to explain natural phenomena, its role
was indistinguishable from that of analogousmaterialmedia in other
mechanical philosophies.

Yet because of themateriality of this aether, Newton had a serious
problem. Do the aether’s actions themselves have material causes,
or are they the effects of a non-material active source? Are the ulti-
mate sources of alchemical andmechanical activity material or non-
material? In “OfNatures obvious laws&processes in vegetation” the
principles of (al)chemical activity are material. On the other hand, in
“An Hypothesis” Newton invokes non-material “secret principles
of (un)sociableness” that account for (im)miscibility between cer-
tain fluids.34 The vitalizing magnetic principles in “the star regulus
of antimony” (the crystalline star formation that appears when anti-
mony is prepared from antimony ore – stibnite – using a non-metallic
reducing agent under controlled conditions), called “magnesia” by
Newton, are also non-material. In short, Newton can never quite say
if the natural changes he analyzes are the effects of purely material
causation or of vital causation acting through the matter undergoing
change.

In the decade following “An Hypothesis” and “Of Nature’s
obvious laws,” Newton became temporarily disenchanted with
aether hypotheses. In addition to the difficulties just mentioned, he
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surmised that an aether ought to retard the heliocentric motions of
the planets, but no retardation had ever been observed. So the general
concept of forces seemed to offer away of explaining natural phenom-
ena, and coupled with this idea was a developed account of chemi-
cal and physical composition. All Newton’s aethers, from whatever
stage in his thinking, were particulate, so it was a relatively com-
fortable transformation from the concept of an aethereal medium to
that of conglomerations of particles under the influence of attrac-
tive and repulsive inter-particulate forces acting across the pores or
other spaces separating the particles. The best-known application
of this idea is Newton’s account of bodies in terms of hierarchies of
increasingly complex aggregations of particles held together by short-
range attractive forces, as detailed in his “De natura acidorum” (“On
the nature of acids,” 1692, published in 1710).35 The idea of hierar-
chical composition appears in Query 31 of the second English edi-
tion (1717) of theOpticks, where, in addition, longer-range repulsive
forces (at the micro-level) explain the emission, reflection, and re-
fraction of light, and where too the aether stages a comeback (as it
did in the General Scholium of the Principia) in the tentative hope
that it might after all account for gravity and optical phenomena.

In later life Newton did take a view on the ultimate causes of cor-
poreal activity that seemed like a decision between material or non-
material, or, more accurately, seemed to reveal the ultimate ground
of every cause, ofwhatever corporeal kind. InQuery 31 of theOpticks
(1717–18) we read:

The Vis inertiae is a passive principle by which bodies persist in their
motion or rest, receive motion in proportion to the force impressing it, and
resist as much as they are resisted. By this principle alone there could never
have been any motion in the world. Some other principle was necessary for
putting bodies into motion; and now they are in motion, some other princi-
ple is necessary for conserving themotion. For from the various composition
of two motions, ’tis very certain that there is not always the same quantity
of motion in the world. For if two globes joined by a slender rod, revolve
about their common centre of gravity with an uniform motion, while that
centre moves on uniformly in a right line drawn in the plane of their circular
motion; the sum of the motions of the two globes, as often as the globes are
in the right line described by their common centre of gravity, will be bigger
than the sum of their motions, when they are in a line perpendicular to that
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right line. By this instance it appears that motion may be got or lost. But by
reason of the tenacity of fluids, and attrition of their parts, and the weakness
of elasticity in solids, motion is much more apt to be lost than got, and is
always upon the decay. For bodies which are either absolutely hard, or so soft
as to be void of elasticity, will not rebound from one another. Impenetrabil-
ity makes them only stop. If two equal bodies meet directly in vacuo, they
will by the laws of motion stop where they meet, and lose all their motion,
and remain in rest, unless they be elastic, and receive new motion from
their spring . . .Seeing therefore the variety of motion which we find in the
world is always decreasing, there is a necessity of conserving and recruiting
it by active principles, such as are the cause of gravity, by which planets and
comets keep their motions in their orbs, and bodies acquire great motion
in falling; and the cause of fermentation, by which the heart and blood of
animals are kept in perpetual motion and heat; the inward parts of the earth
are constantly warm’d, and in some places grow very hot; bodies burn and
shine,mountains take fire, the caverns of the earth are blown up, and the sun
continues violently hot and lucid, and warms all things by his light. For we
meet with very little motion in the world, besides what is owing to these ac-
tive principles. And if it were not for these principles the bodies of the earth,
planets, comets, sun and all things in them, would grow cold and freeze,
and become inactive masses; and all putrefaction, generation, vegetation
and life would cease, and the planets and comets would not remain in their
orbs.36

This is a far cry from the materialist universe of metaphysical ne-
cessity that Maclaurin ridiculed in the writings of Descartes and
Spinoza. However, the magnificence of Newton’s vision in this fine
passage should not deflect us from asking a few troubling questions.
Do these active principles act according to mathematical law? If not,
what becomes of the mathematical architecture that informs the
Principia Mathematica? If they do, has metaphysical necessity not
just returned by the back door?

Newton was a dualist and, on the question of human volition,
a libertarian. He was in no doubt whatever about the mind’s free-
dom to create new motion in the corporeal world, though he con-
fesses his ignorance as to how this causal transaction takes place.
We learn from Query 28 of the second English edition (1717/18) of
the Opticks that this is one of the great problems that the natural
philosopher should aim to unravel:
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the main Business of natural Philosophy is to argue from Phaenomena with-
out feigning Hypotheses . . . and not only to unfold the Mechanism of the
World, but chiefly to resolve these and such like questions . . .How do the
Motions of the Body follow from the Will, and whence is the Instinct in
Animals?37

There is abundant textual evidence of Newton’s belief in the motive
powers of the will. For example, in a draft variant (c. 1705) of Query
23 of the 1706 Latin edition of the Opticks, that is, of Query 31 of
the later English editions, Newton stipulates that:

the first thing to be done in Philosophy is to find out all the general laws
of motion (so far as they can be discovered) on wch the frame of nature
depends . . . in this search metaphysical arguments are very slippery . . .We
find in orselves a power of moving our bodies by or thoughts (but the laws of
this power we do not know) & see ye same power in other living creatures
but how this is done & by what laws we do not know. And by this instance
& that of gravity it appears that there are other laws of motion (unknown
to us) than those wch arise from Vis inertiae (unknown to us) wch is enough
to justify & encourage or search after them. We cannot say that all nature is
not alive.38

In the second edition (1713) of Principia Mathematica, the final para-
graph of the General Scholium of Book 3 reads:

And now we might add something concerning a certain most subtle spirit
which pervades and lies hid in all gross bodies; by the force and action of
which spirit the particles of bodies attract one another . . . and electric bod-
ies operate to greater distances . . . and light is emitted, reflected . . . and heats
bodies; and all sensation is excited, and the members of animal bodies move
in accordancewith thewill, namely, by the vibrations of this spirit,mutually
propagated along the solid filaments of the nerves, from the outward organs
of sense to the brain, and from the brain into themuscles. But these are things
that cannot be explained in few words, nor are we furnished with that suf-
ficiency of experiments which is required to an accurate determination and
demonstration of the laws bywhich this electric and elastic spirit operates.39

A few years later, in Query 24 of the second (and subsequent) English
edition (1717/18) of the Opticks, Newton returned to his aethereal
vibrations, asking a question that was to inspire the association-
ist David Hartley’s “doctrine of vibrations”: “Is not animal motion
perform’d by the vibrations of this medium [aether], excited in the
brain by the power of the will, and propagated from thence through
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the solid, perlucid, and uniform capillamenta of the nerves and the
muscles, for contracting and dilating them?”40

The general reading public would have got enough hints from the
General Scholium and the editions of the Opticks. For readers of
Philosophical Transactions, there was Newton’s 1715 anonymous
review of the Commercium Epistolicum, which he rounds off with
an explicit recognition of the opposing views he and Leibniz took on
the question of volitions and their physical effects:

It must be allowed that these two Gentlemen differ very much in Phi-
losophy. The one proceeds upon the Evidence arising from Experiments
and Phaenomena, and stops where such Evidence is wanting; the other is
taken up with Hypotheses, and propounds them, not to be examined by
Experiments, but to be believed without Examination . . .The one doth not
affirm that animal Motion in man is purely mechanical: the other teaches
that it is purely mechanical, the Soul or Mind (according to the Hypothesis
of an Harmonia Praestabilita) never acting upon the body so as to alter or
influence its Motions.41

Those in the know would have had the full picture. Newton ex-
plained to Antonio Conti, ultimately for Leibniz’s edification, that
Leibniz

colludes in the significations of words, calling those things miracles wch

create no wonder & those things occult qualities whos causes are occult
tho the qualities themselves be manifest, & those things the souls of men
wch do not animate their bodies, His Harmonia praestabilita is miraculous
& contradicts the daily experience of all mankind, every man finding in
himse[l]f a power of seeing with his eyes & moving his body by his will.42

As we have seen from the draft for Query 23 of the 1706 Latin
Opticks, and as we would have expected from these anti-Leibnizian
sallies, the will in Newton’s universe is not shackled by the impo-
sitions of any universal conservation principle. That too carried a
Newtonian seal of approval. Query 31 of the Opticks shows that
a principle of the universal conservation of something equivalent
to vis viva or “energy” was wholly foreign to Newtonian natural
philosophy:

TheVis inertiae is a passive principle bywhich bodies persist in theirmotion
or rest, receive motion in proportion to the force impressing it, and resist
as much as they are resisted. By this principle alone there could never have
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been anymotion in theworld. Someother principlewas necessary for putting
bodies intomotion; and now they are inmotion, some other principle is nec-
essary for conserving the motion. For from the various composition of two
motions, ’tis very certain that there is not always the same quantity of mo-
tion in the world . . .by reason of the tenacity of fluids, and attrition of their
parts, and theweakness of elasticity in solids, motion ismuchmore apt to be
lost than got, and is always upon the decay . . .Seeing therefore the variety of
motion which we find in the world is always decreasing, there is a necessity
of conserving and recruiting it by active principles . . .And if it were not for
these principles the bodies of the earth, planets, comets, sun and all things
in them would grow cold and freeze, and become inactive masses; and all
putrefaction, generation, vegetation and life would cease, and the planets
and comets would not remain in their orbs.43

In creating the world, evidently, God opted not to follow Leibnizian
recipes. It is not surprising that Maclaurin denounced the conser-
vation principles of Descartes, Leibniz, and (as he misreads him)
Spinoza.

I conclude with a couple of issues on which we find Newton and
Descartes in intriguing counterpoise. The first concerns the roles of
the divine and human will. For Descartes, the only idea we have
of the way God can move bodies is our consciousness of the power
of our own minds to move our bodies.44 Newton takes a similar line
in his discussion of the nature of body in “De gravitatione,” but
reaches an anti-Cartesian conclusion. He does not know what the
real nature of body is, so he substitutes an entity which it is within
God’s power to create, andwhichwill be indistinguishable frombody
as known empirically:

Since each man is conscious that he can move his body at will, and believes
further that all men enjoy the same power of similarly moving their bodies
by thought alone; the free power of moving bodies at will can by no means
be denied to God, whose faculty of thought is infinitely greater and more
swift. And by like argument it must be agreed that God, by the sole action of
thinking and willing, can prevent a body from penetrating any space defined
by certain limits.

If he should exercise this power, and cause some space projecting above
the Earth, like a mountain or any other body, to be impervious to bodies
and thus stop or reflect light and all impinging things, it seems impossible
that we should not consider this space to be truly body from the evidence
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of our senses (which constitute the sole judges in this matter); for it will be
tangible on account of its impenetrability, and visible, opaque and coloured
on account of the reflection of light, and itwill resonatewhen struck because
the adjacent air will be moved by the blow.45

One lesson to be drawn from this speculation is “that the analogy
between theDivine faculties and our own is greater thanhas formerly
been perceived by Philosophers. Thatwewere created inGod’s image
holy writ testifies.” Some might prefer the supposition that God
entrusts the task of “solidifying” space to “the soul of the world,”
but Newton does not see why he should not do it directly, without
any intermediary, thereby creating bodies empirically on all fours
with Cartesian res extensae. Furthermore, this account of body is
useful in that “it clearly involves the chief truths of metaphysics,
and thoroughly confirms and explains them. For we cannot postulate
bodies of this kind without at the same time supposing that God
exists, and has created bodies in empty space out of nothing, and
that they are beings distinct from created minds, but nevertheless
able to unite with minds.”46

Cartesian res extensa fails this test. It leads to atheism, because
extension is uncreated and can be conceived together with the imag-
ined non-existence of God. It makes the mind–body distinction un-
intelligible, unless we say that mind is unextended and therefore
exists nowhere, which is to say it does not exist at all, or at least that
its union with body is completely unintelligible, if not impossible.47

Furthermore, the Cartesian real distinction between body and mind
implies thatGod does not contain extension eminenter and so cannot
create it, soGod and extension are two quite independent substances.
On the other hand, if extension is contained in God eminenter, “the
idea of extension will be eminently contained within the idea of
thinking, and hence the distinction between these ideas will not be
so great but that both may fit the same created substance, that is,
that bodies may think or thinking things be extended.”48 This could
be an allusion to Spinoza’s doctrine of Thought and Extension as the
two (known) attributes of infinite substance.49 If it is, it is also a
misunderstanding of Spinoza, who does not claim that “bodies may
think.” That is the well-known speculation of Locke, but that seems
not to be the allusion Newton has in mind here.50
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The second issue takes the form of a puzzling incongruity inNew-
ton’s natural philosophy that matches an incoherence at the heart of
Descartes’s doctrine ofmind–body causal relations. Descartes claims
that the freely acting mind can increase or diminish motions in the
body towhich it is united, fromwhich it follows that each time I kick
a ball or stop something in motion, I violate Descartes’s principle
of conservation of motion.51 Descartes was aware of the difficulty,
which it seems he tried to side-step by separating the jurisdiction of
human volitional activity in the corporeal world from that of the di-
vinely maintained conservation principle and the laws of nature, but
this leads to difficulties in explaining how the conservation law can
be applied with assurance in given cases.52 Newton did not have a
principle of conservation that might have conflicted with the conse-
quences of the mind’s actions on body, but he did share with Leibniz
the principle of conservation of momentum (as I call it for the sake
of convenience) in the form of the third law, which states that action
and reaction are equal and opposite. However, it is unclear if and how
the third law applies to corporeal actions caused by human will. If I
move my finger, causing directly at least one part of my physiology
to begin a new motion, on what does that part react, as it must do,
according to the third law? Does my mind suffer in reply a reaction
quantitatively equal to the action received by the part I will into
motion? If so, why am I never aware of any such reaction each time
I decide to move my body? The problem seems to have been rec-
ognized, though confusedly, by two Newtonians, the idiosyncratic
Roger Boscovich, and the less idiosyncratic Colin Maclaurin. In the
Appendix to his A Theory of Natural Philosophy (1763) Boscovich
writes that motion

can never be produced by themind in a point ofmatter, without producing an
equalmotion in some other point in the opposite direction.Whence it comes
about that neither the necessary nor the free motions of matter produced by
our minds can disturb the equality of action and reaction, the conservation
of the same state of the centre of gravity, & the conservation of the same
quantity of motion in the Universe, reckoned in the same direction.53

Far from resolving the difficulty, Boscovich has deftly multiplied it
by two. Maclaurin offers a similar and equally unavailing resolution
in his Account. He insists the third law is so general that



Newton, active powers, and the mechanical philosophy 349

Even in the motions produced by voluntary and intelligent agents, we find
the same law take place; for tho’ the principle of motion, in them, be above
mechanism, yet the instruments which they are obliged to employ in their
actions are so far subject to it as this law requires. When a person throws
a stone, for example, in the air, he at the same time reacts upon the earth
with an equal force; by which means the centre of gravity of the earth and
stone perseveres in the same state as before.54

For one Newtonian experimentalist in the domain of moral sub-
jects, the consequence seems to have been taken as read, without
any apparent puzzlement. At one point in the Dialogues concerning
Natural Religion (1779), Hume has Philo argue for the causal fit be-
tween the parts of an organism and its environment, explaining that
“thought has no influence upon matter, except where that matter is
so conjoined with it, as to have an equal reciprocal influence upon
it. No animal can move immediately any thing but the members of
its own body; and indeed, the equality of action and re-action seems
to be an universal law of nature.”55 Hume’s causal match in the
ecological economy of organisms might be important in the context
of the emergence of Lamarckian or Darwinian evolution theory, but
it does nothing to clarify how matter interacts with mind according
to Newton’s third law.

Newton did nothing to clarify the issue either. According to the
hypothesis in “De gravitatione” that bodies are the effects of God
willing that regions of space be endowed with impenetrability, a cor-
puscle created in this waywould lack no empirically known property
of body.

It would have shape, be tangible andmobile, and be capable of reflecting and
being reflected, and constitute a part of the structure of things no less than
any other sort of corpuscle, and I do not see that it would not equally operate
upon our minds and in turn be operated upon, because it is nothing other
than the product of the divine mind realized in a definite quantity of space.
For it is certain that God can stimulate our perception by his own will, and
thence apply such power to the effects of his will.56

I sense Berkeley waiting in the wings. But apart from that, New-
ton evidently takes mind–body interactions to be unproblematic.
There is no evidence that he was aware of the mismatch between
his third law and his inviolable belief in the power of the human
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mind to intervene in the mechanism of the world. This parallel be-
tween Descartes and Newton points to the incompatibility between
the doctrine of human freedom of action and the doctrine of the in-
violate rule of physical law.

The Principia and the Opticks were formative influences on
eighteenth-century discussions of mind–body interaction and their
physiological background, providing much of the methodological
and conceptual backcloth. The impact of these great works, the ab-
sence of a conservation principle in Newton’s natural philosophy,
the work of Locke, and the anti-Leibnizian ethos of the Newtonian
Age in England – all of these help to explain why eighteenth-century
British physiologists, psychologists, and theorists of mind discussed
the mind’s action on the body without feeling the need to address
– perhaps in some cases without being aware of – the purely me-
chanical or dynamical considerations that had energized Leibniz’s
critique of Cartesian mind–body causality. There were good reasons
not to paymuch attention to Leibniz anyway, not only because of the
vis viva controversy and the priority dispute over the calculus, but
also because any general conservation law, whether Cartesian or
Leibnizian, could be discounted on the authoritative Newtonian
ground that “motion is much more apt to be lost than got, and is
always upon the decay.” In those circumstances, it is not surpris-
ing that mind–body interrelations could be analyzed without any-
one having to confront their physiology of action with a principle of
universal conservation of motion or force (however quantified).

So, rather unexpectedly, it turns out that Isaac Newton merits a
recognized place in the twin histories of psychology and philosophy
of mind.
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Doctorat, préparée sous la direction d’E. Coumet, Centre A. Koyré,
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11 The background to Newton’s
chymistry

To those who are unfamiliar with the history of alchemy, the image
of Isaac Newton poring over manuscripts illuminated strangely with
dragons, sceptered gods, and couples copulating within flasks can-
not fail to educe a strikingly discordant tone. How could such a great
mathematical mind, the father of modern physics, concern himself
with such seemingly unintelligible gibberish?Mustwe simply throw
up our hands at the “superstitious” Zeitgeist of the age, as Newton’s
nineteenth-century biographers did, and conclude that he was de-
luded by the work of “a fool and a knave”?1 Should we conclude,
with more recent scholars of Newton’s alchemy, that he was en-
gaged in a fundamentally religious quest in which alchemy would
provide the key by which God’s immaterial activity could be linked
to the phenomenal world ofmatter?2 Or is there yet another answer –
that Newton’s alchemical research was primarily an investigation of
the microstructure of matter, the forces of chemical affinity, and the
ability of material substances to undergo radical transformation in
the laboratory?3 Needless to say, the matter is not easy to decide,
given that Newton copied, abstracted, commented upon, and com-
posed about amillion words of manuscript material on the subject of
alchemy, over a period spanning more than thirty years.4 One thing,
however, is sure: in order to understand Newton’s fascination with
alchemy, we must not consider the enterprise from an anachronistic
viewpoint that equates alchemy with the irrational, the mystical,
or the anti-mechanical. If we wish to comprehend Newton’s deep
involvement in this subject, we must have a firm grounding in the
subject of alchemy as it existed in the seventeenth century.

Despite the image of gold-making and charlatanry that alchemy
may conjure up in the minds of modern readers, the term “alchemy”
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to most seventeenth-century writers was synonymous with “chym-
istry.” Chymistry was a multi-faceted discipline that included such
diverse practices as the production of mineral acids, distilling of
alcholic beverages, manufacture of dyes and perfumes, extraction
and use of pharmaceuticals, and of course “chrysopoeia” and “argy-
ropoeia,” the attempt to make artificial precious metals, also known
as alchemia transmutatoria or “transmutatory alchemy.” But chym-
istry was not merely an industrial pursuit. In the previous century,
the founder of “chymiatria” (chymical medicine), Paracelsus, had
emphasized the power of chymical techniques, such as distillation,
and products, such as the mineral acids, as tools of analysis. Hence
chymistry acquired the cognomen “spagyria,” which was widely in-
terpreted in the seventeenth century to be fused from the Greek
terms for “analysis” and “synthesis.”5

Seventeenth-century England was fully alive to the industrial and
scientific promise of chymistry, and in the period of the Interregnum
the subject experiencedwide popularization by themedical followers
of the Belgian iatrochemist Joan Baptista van Helmont.6 Among the
most prolific of the English commentators on vanHelmontwere two
authors who would form the object of Newton’s intense scrutiny:
Robert Boyle and George Starkey, who together supply over one hun-
dred pages of extracts in Newton’s most important chymical labora-
tory notebook.7 As the author of The Sceptical Chymist (1661) and
The Origine of Forms and Qualities (1666), Boyle hardly needs an
introduction. Yet the full involvement of Boyle in chrysopoeia – a
quest that occupied some forty years of his life – has only recently
come to light.8 Surprisingly, it was the obscure American chymist
George Starkey (1628–65) who introduced Boyle to the experimen-
tal pursuit of this subject, supplying him with a recipe for a “sophic
mercury” – a substance that was supposed to reduce gold into its
first principles and stimulate it into becoming the “philosophers’
stone” or agent of metallic transmutation.9 A graduate of Harvard
College who immigrated to London in 1650, Starkey soon began a
dual career of writing Helmontian works under his own name while
also composing a series of works devoted to transmutatory alchemy
under the nom de guerre of “Eirenaeus Philalethes” (a peaceful lover
of truth).10WhileNewton’s chymical notebook is filledwith extracts
from Starkey’s works on chymical medicine, such as Pyrotechny
(1658), it was the Philalethan œuvre that he returned to throughout
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his career in his ongoing attempt to decipher the veiled processes of
the alchemical magnum opus.

Although some have maintained that van Helmont exercised lit-
tle influence on Newton, it is quite clear that Newton’s most fun-
damental positions in chymistry were of Helmontian origin, even if
partially mediated by Starkey, Boyle, and other Helmontians such
as John Webster.11 This emerges not only from explicitly alchemical
papers in Newton’s Nachlass, but also from his works on physics.
Hence the chymical treatise entitled “Of natures obvious laws&pro-
cesses in vegetation” (Dibner MS 1031 b) employs such Helmontian
concepts as that of the “Alkahest,” a marvellous dissolvent and ana-
lytical tool that could supposedly resolve all bodies into their prim-
itive constituents, and the notion of “Gur” (or “Bur”), a half-formed
metallic substance thatwas thought to be the immature substance of
metals within theirmines.12 More importantly, one finds here and in
Newton’s unfinished Conclusio to the Principia, an explicit adher-
ence to the idea that all material things are made, ultimately, from
water.13 The Conclusio passage is striking for its open acceptance of
van Helmont’s position:

that rare substancewater can be transformed by continued fermentation into
the more dense substances of animals, vegetables, salts, stones and various
earths. And finally by the very long duration of the operation be coagulated
into mineral and metallic substances. For the matter of all things is one and
the same, which is transmuted into countless forms by the operations of
nature, andmore subtle and rare bodies are by fermentation and the processes
of growth commonly made thicker and more condensed.14

This remarkable passage not only affirms van Helmont’s theory
that the source of the phenomenal world is water, but also adopts the
Helmontian belief that the transmutation of water into other sub-
stances is brought about by fermentation. Newton’s laboratory note-
books are filled with attempts to make various mineral and chem-
ical products ferment and “putrefy.”15 Although fermentation was
an idea dear to the heart of many an alchemist, the particular no-
tion of fermenting water in order to produce the specified materials
of the world perceived by the senses is at heart Helmontian. In the
following it will therefore be useful to give a brief overview of van
Helmont’s matter-theory.
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helmontian matter-theory

As Walter Pagel, the leading modern scholar of van Helmont, has
noted, the Belgian iatrochemist was eager to explain chemical and
physical processes in terms of immaterial powers.16 At the same
time, however, van Helmont employed many explanations that
resorted to the displacement and rearrangement of corpuscles which
were invisibly small. The most striking example of van Helmont’s
corpuscularism lies in the Supplementum de Aquis Spadanis, pub-
lished in 1624, and then integrated into the voluminous Ortus
Medicinae of 1648.17 In the Supplementum, van Helmont correctly
describes the plating of iron by the copper found in naturally
occurring springs of “vitriol” (mostly copper sulfate). Unlike most
previous authors, van Helmont did not attribute this striking change
to a transmutation of iron into copper, but argued that atoms (atomi)
of copper were being deposited on the surface of the iron, which
itself was losing corpuscles by gradually going into solution.18 Van
Helmont’s Ortus Medicinae presented many other corpuscular
explanations as well, some of them going so far as to describe the
internal structure of the corpuscles at the micro-level. These micro-
structural ruminations led van Helmont to devise what I (following
the lead of Karin Figala) have elsewhere called the shell-theory of
matter, whose fullest explanation appears in the Ortus Medicinae’s
description of water.19 In an attempt to explain how water can both
vaporize upon boiling and sublime upon freezing, van Helmont
argues that water is composed of complex corpuscles made up of
layers. The layers correspond to the three Paracelsian principles,
mercury, sulfur, and salt, although van Helmont is careful to point
out that water cannot be analyzed into its constituent principles.20

When liquid water is vaporized, its particles are separated and
forced upward. It can be converted to “gas,” however, by a further
attenuation, which also “extraverts” the particles by rearranging
the order of their shells. The sulfur, which had formed the central
kernel of the “atom,” is now forced to the exterior, where it provides
a hard shell. Van Helmont seems to have thought that this further
extenuation and reordering of the water particles could account for
the facts that ice is less dense than water and that ice can sublime.21

Van Helmont’s corpuscular theory also played a part in his treat-
ment of metals. Like water, metals were composed of particles made
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upof shells corresponding to the Paracelsian principles. VanHelmont
argued that ordinary acids worked on metals by attacking their sul-
fur and separating their corpuscles from one another.22 Such cor-
rosives eventually ceased their operation on a given metal because
they were “exantlated” – that is, exhausted – by their own action.23

The mysterious universal dissolvent, or Alkahest, was supposed to
operate on metals by subjecting them to a much finer division than
the mineral acids could achieve, ultimately reducing them to water.
The Alkahest, unlike acids, worked sine repassione – it suffered
none of the exhaustion that caused ordinary corrosives to lose their
acidity. Once a metal had been reduced to its minimal particles
by the Alkahest, it could then be transmuted into another metal,
or indeed any other substance. All that was necessary was that
the atoms of the erstwhile metal absorb a “ferment,” which could
impress a new “seed” (semen) on them.24 The semina acquired
through fermentation were the agents, therefore, by which water
was transmuted into the multifarious substances of the physical
world.

One can see, then, that van Helmont’s work provided a vitalistic
corpuscular theory: the “atoms” and corpuscles of which he speaks
were endued with powers and forces which could cause them to
“ferment” and “vegetate.” This vitalistic corpuscularism was devel-
oped further by the seventeenth-century English Helmontians such
as George Starkey. In his treatment of alchemical theory, the De
Metallorum Metamorphosi composed in the early 1650s, Starkey
presents an elaborate corpuscular theory combining elements of
Helmontianism with the theory of the Polish alchemist Michael
Sendivogius, who claimed that the semen of every substance was
a “spark of light” (scintilla lucis) making up 1/8200 of its total
substance.25 Starkey adopted the shell-theory of van Helmont, and
argued that the Sendivogian scintilla lucis was the genuine minimal
part intowhichmatter could be divided. At the center of everymetal-
lic corpuscle, within the shells provided by van Helmont’s corpuscu-
lar theory, one could therefore find the active semenwhich provided
the “fermentative force” (vis fermentativa) to that metal.26 If one
could only find a means of dividing metals into their minimal parts,
then, he would free the tiny, active particles that lay “in fetters,”
chained within the center of each metallic corpuscle.27 Such
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radical division would serve as the necessary precursor to metallic
transmutation.

corpuscularism in newton’s chymistry

Since Newton had already begun transcribing the works of Eire-
naeus Philalethes in the late 1660s, and his massive collation of
alchemical writers, the IndexChemicus composed in the 1680s, con-
tains over 300 references to Philalethes, we should not be surprised
to see the Helmontianism of the Philalethan corpus reappear in
Newton’s writings.28 This influence is already apparent in Newton’s
1675 “Hypothesis of light” written to Henry Oldenburg. In this let-
ter, Newton stresses the role of “mediation,” by which two sub-
stances normally incapable of undergoing mixture can be made to
fuse together.29 This emphasis on chymical mediation was probably
stimulated by Newton’s reading of the Philalethan corpus, where
great emphasis is placed on the making of eutectic alloys. In a letter
that Starkeywrote to Boyle in 1651, whichNewton transcribed fairly
early in his alchemical career, the American alchemist describes the
manufacture of a sophic mercury from the “star regulus” of anti-
mony (crystalline metallic antimony), silver, and quicksilver. The
silver acted as a mediator, allowing the mercury and antimony to
amalgamate.30 Newton used the concept of mediation to explain
“how some things unsociable are made Sociable.” Among the exam-
ples that he provides one finds regulus of antimony, which allows
the mixture of molten copper and lead.

The same emphasis on mediation appears in a well-known let-
ter that Newton sent to Boyle in February 1679, with many of the
same examples. Here, however, Newton adds a corpuscular model
intended to explain how water can be made to mix with metals
by the mediation of “saline spirits.” Like most seventeenth-century
chymists,Newton at this time envisioned themineral acids as highly
active and subtle salts dissolved in water. The acid particles con-
gregated around metallic ones because of their “sociability” with
them, and worked their way into the pores between the corpus-
cles of metal. Breaking the metallic corpuscles loose, the saline
particles then encompassed the metallic ones “as a coat or shell
does a kernell.” If a base, such as salt of tartar, was then added,
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it would attract the saline particles away from the metal, which
would then precipitate to the bottom of the vessel.31 What is truly
striking about this explanation is its use of the shell/kernel ter-
minology already employed by the Helmontian Philalethes. In his
Marrow of Alchemy, a work intensely studied by Newton from
the late 1660s onward, Philalethes said that the “metalline sulfur”
of gold “like to a Coat/the Mercury encloseth.”32 Now one could
argue that Newton was not talking here about sulfur and mer-
cury, but rather about salts enclosing particles of metal. This ob-
jection quickly disappears, however, if we consult Newton’s trea-
tise on acids, “De natura acidorum,” first published in 1710 as
part of John Harris’s Lexicon Technicum, but composed in or before
1692.

The “De natura acidorum” covers much the same ground as the
1679 letter to Boyle, but with different emphases. Here Newton
places great importance on the relative sizes of water, acid, and
metallic corpuscles, the last of which he now refers to as “earthy”
particles. Water is composed of extremely minute corpuscles, acid
of bigger ones, and earthy particles are bigger yet. As in the letter to
Boyle, Newton envisions the dissolution of metals in acid as a pro-
cess that results in the coating of a central kernelwith an acidic shell.
Here, however, he views the combination of acid and earthy parti-
cles as making up a salt, rather than thinking of the salt as resident
only in the “saline spirits” of the acid. Newton also adds that acid
particles can in some circumstances eventually penetrate into the
earthy core to compose “sulphureous” or “fatty bodies” that are dif-
ficult tomixwith water.33 The conversion of salts into sulfurous oils
was a theme dear to the heart of Helmontians, and Newton’s labora-
tory notebooks contain passages excerpted from George Starkey on
this very subject.34 What cements Newton’s debt to the Helmontian
shell-theory, however, is a passagewhereNewton affirms that “what
is said by chemists, that everything is made from sulphur and mer-
cury, is true, because by sulphur theymean acid, and bymercury they
mean earth.”35 Hence Newton’s image of acid particles surrounding
earthy ones as a shell does a kernel was another way of saying – as
Philalethes did – that the sulfurous shell encloses the mercurial one.
And since Newton here affirmed that “everything” is made of sulfur
and mercury, the shell-theory was applicable to the material world
as a whole. As if to underscore his Helmontian allegiances, Newton
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then apparently dictated to his scribe that “all things can be reduced
into water.”36

A final point at which the shell-theory emerges in Newton’s pub-
lished work can be found in Query 31 of the Opticks. Here Newton
develops an analogy already suggested in passing in “De natura aci-
dorum,” between a particle of salt and the globe of the earth. Since
many of the themes touched upon up to now are developed further
in the Opticks passage, it is worth inspecting in toto:

As Gravity makes the Sea flow round the denser and weightier Parts of the
Globe of the Earth, so the Attraction may make the watry Acid flow round
the denser and compacter Particles of Earth for composing the Particles of
Salt. For otherwise the Acid would not do the Office of a Medium between
the Earth and common Water, for making Salts dissolvable in the Water;
nor would Salt of Tartar readily draw off the Acid from dissolved Metals,
nor Metals the Acid from Mercury. Now, as in the great Globe of the Earth
and Sea, the densest Bodies by their Gravity sink down in Water, and al-
ways endeavor to go towards the Center of the Globe; so in Particles of Salt,
the densest Matter may always endeavor to approach the Center of the Par-
ticle: So that a Particle of Salt may be compared to a Chaos; being dense,
hard, dry, and earthy in the Center; and rare, soft, moist, and watry in the
Circumference.37

Here we may see the full flowering of Newton’s corpuscular specu-
lations, along with the associated concept of mediation. As in “De
natura acidorum,” Newton here stresses that the acid particles serve
as a mediator between the water and the metallic earth at the kernel
of a particle of salt. The attraction that holds the acid particles in
place around this earthy core is similar to the gravity that retains
the sea around the earth. Interestingly, Newton now emphasizes the
qualitative differences between the kernel and the shell of the salt
corpuscle. The corpuscle is hard and dry at its earthy center, and
moist and rare at its watery circumference. A quasi-metaphorical ter-
minology of opposed “centers” and “circumferences” was the daily
bread of seventeenth-century chymists, and it is highly likely that
Newton is replaying the language of Eirenaeus Philalethes or earlier
alchemists. In his commentaries to the fifteenth-century English
alchemist George Ripley, Philalethes had spoken of the hidden and
manifest parts of metals, which can be internally hot and dry while
externally cold and moist.38
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In addition, Newton’s reference to a particle of salt as a “chaos”
deserves comment. In his Telluris Theoria Sacra of 1681, Thomas
Burnet speaks of the primordial earth, already layered into strata of
earth, water, and air, as a chaos.39 Newton was keenly interested
in Burnet’s theory, as witnessed by a letter from Newton written in
1681.40 Burnet is a likely candidate, then, for Newton’s peculiar ter-
minology of the layered earth as a chaos. At the same time, another
sourcemay have been inNewton’smind at the time ofwritingQuery
31. Eirenaeus Philalethes frequently refers to mineral antimony as a
“chaos,” and, unlike Burnet, Philalethes stresses the opposed quali-
ties at the center and the surface of the antimony, apparently a refer-
ence to the shell-theory. Newton paraphrased a Philalethan passage
to this intent in his chymical dictionary, the Index Chemicus, under
the entry “Chaos.”41 In some sheets preceding his alchemical com-
position Praxis, written in the 1690s, Newton explicitly associates
mineral antimony with the sphere of the world, probably because
he believed that antimony was close to the primordial substance of
the metals. Significantly, both the terrestrial globe and antimony-
ore shared the same graphic symbol – a circle surmounted by a cross.
Here too, as inQuery 31,Newton stresses the opposed characteristics
of the antimony-globe: “It is hot and dry, wet and cold. It is a watery
fire and a fiery water. It is a corporeal spirit and a spiritual body. It
is the condensed spirit of the world; it is the noblest quintessence of
all things, and therefore it is customarily depicted by the symbol for
the world.”42

From the brief overview given here, it should be clear that there is
a close integration betweenNewton’s corpuscularmatter-theory and
his researches in chymistry. This should not be surprising, given the
prevalence of corpuscular explanations for material change among
early modern chymists, both those who actively engaged in a search
for the philosophers’ stone and those who focused on more mun-
dane aspects of chymical technology. Like most of his contempo-
raries, Newton distinguished between a “vulgar chymistry” that
concerned itself only with interactions between gross particles and
a more sublime chymistry that could penetrate between the small-
est corpuscles of bodies by means of processes such as fermentation
and putrefaction, and by doing so, workmarvelous transmutations.43

We must not see this as equivalent to the modern distinction be-
tween “chemistry” and “alchemy,” however, for it was a dichotomy
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erected by the alchemists themselves, in common use from the
Middle Ages onward. Newton, like other Helmontians, was both
“alchemist” and “chemist” at the same time, and it does damage
to the historical record to distinguish the two pursuits. Once we
acknowledge the fact that Newton’s “alchemy” and “chemistry”
were inseparable, an answer to the questions posed at the begin-
ning of this chapter begins to emerge. Newton’s chymistry was
certainly not a product of delusion, and no more dominated by
religiosity than any other part of his scientific endeavor. The
precise observations that hemade of chemical affinity and his specu-
lations about the invisible structure of matter are as “scientific” as
any other part of his work. Only if one wishes to label Newton’s
work as a whole as some sort of natural theology may one ar-
gue that the goal of his chymistry was primarily spiritual. It is no
longer acceptable to single out Newton’s alchemical endeavors as a
rearguard rebellion against the mainstream of seventeenth-century
science.
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12 Newton’s alchemy

newton’s alchemical manuscripts1

It may seem suprising to present Isaac Newton, the founder of mod-
ern mathematical natural science, as a serious student of alchemy.
He himself must have felt this anomaly, since at all stages of his
life he was concerned to hide his occult interests from the public.
Until very recently his large collection of alchemical manuscripts
was hardly looked at, much less systematically sorted or studied, in
contrast to his better-understood manuscripts dealing with mechan-
ics or the theory of matter. Yet Newton dedicated at least as much
time to alchemical and theological studies as to his mathematical
and physical ones.

The process of dating his manuscripts has shown that Newton
worked on alchemy at all periods of his productive life, in parallel
with his scientific work. This evidence proves that his occult stud-
ies were not the aberrations of senility. Newton would hardly have
devoted so much time to such “absurdities” if he had not been con-
vinced that some deeper knowledge lay hidden, which he eventually
believed that he had at least in part discovered.

Newton attempted to make a synthesis of his occult-alchemical
and exact-scientific research. For him a means of attaining this goal
was the study of the so-called “prisca sapientia,” a tradition of an-
cient wisdom. Newton considered that the original wisdom of the
ancients, which had been gradually lost through the ages, was most
fully retained in the writings of the Hermetic tradition. He saw him-
self as endeavoring to explain, by means of experimental science,
this “sapientia,” which had grown unintelligible.

370
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The combination of exact science andmagical thinking, which to-
day can only be seen as schizophrenic, corresponds to a seventeenth-
century mode of thinking. The tension evident in Newton’s per-
sonality and work is also characteristic of an era which tried to
combine tradition and progress in science with mystical revelation
andmetaphysics.2 ForNewton such philosophical teaching, explain-
ing the first cause and the relationships between all creation, was not
a modern pale abstract philosophical system, but was clearly visible
in nature and had been handed down from the beginning of time in
spiritual alchemy.

One can safely assume that if this great mathematician, for whom
the Bible was the highest authority, stressed that God created all
things in wonderful and harmonious proportions, he was thinking
about a fundamental universal law. Inwhat follows, I shall argue that
we can understand Newton’s goal by considering as central his only
fragmentarily published “composition theory ofmatter.” In this way
we shall be able to represent important characteristic assumptions of
the alchemical tradition in formulae: the “golden hierarchical chain
of being,” the relation of the above (heaven) and below (earth) of
the legendary Hermes Trismegistus, and the continuing dispersing
movement from the original “divine unity.”

Newton also succeeded in expressing mathematically, with the
help of this seemingly static model for the construction of matter,
the most important symbol of alchemy, the “three-fold acting
Mercury of the philosophers.”Themediating function of this “divine
messenger,” which combines the opposites of matter – that is,
sulfuric male earth and vacuum or female mercurial heaven –
on all levels of the “living” pyramid of being, is precisely de-
scribed in the generally valid “recurrence relation” of the theory of
composition.

Although the hierarchical theory of matter, which was briefly
presented in the Opticks of 1717, is nowhere mentioned explic-
itly in the great number of alchemical manuscripts, it may be de-
duced from Newton’s choice of texts, and especially those from his
favorite authors.3 In this study it will only be possible to show
this by examples primarily from a single alchemist, one whom
Newton particularly valued throughout his life: Michael Maier
(1569–1622).



372 karin figala

newton’s composition theory of matter

Newton may have had in mind a specific model for the internal
structure of matter when writing his Principia (1687).4 He may have
been referring to this model in Definition 1: mass (“quantitas mate-
riae”). This definition, in terms of the product of density (“densitas”)
and volume (“magnitudo”), has often been criticized as tautological.
This formulation seems circular because density is defined as the
relation of mass to volume. In the Principia Newton did not define
density but was using this concept in the generally understood sense.
The criticism of circularity does not, however, take into account the
background of Newton’s theory of matter. In the seventeenth cen-
tury the experimental way of comparing masses was by measuring
densities, that is, specific gravities.5 But such measured densities
give no indication of the inner structure of bodies, that is, of the dis-
tribution of matter and vacuum (pores). Some law is required about
the inner structure of bodies that defines this relationship.

A variety of sources provide evidence of Newton’s having such a
law concerning the “inner structure of matter.” Newton mentioned
it to his younger friend David Gregory (1661–1710) in 1705, and to
his confidant and favorite pupil in alchemy, Nicolas Fatio de Duillier
(1664–1753), at least a decade earlier.6 It was mentioned in print
by Newton considerably later, in the second English edition of his
Opticks of 1717–18.

we conceive these Particles of Bodies to be so disposed amongst themselves,
that the Intervals or empty Spaces between them may be equal in magni-
tude to them all; and that these Particles may be composed of other Particles
much smaller, which have as much empty Space between them as equals
all the Magnitudes of these smaller Particles; And that in like manner these
smaller Particles are again composed of others much smaller, all which to-
gether are equal to all the Pores or empty Spaces between them; and so on
perpetually till you come to solid Particles, such as have no Pores or empty
Spaces within them; And if in any gross Body there be, for instance, three
such degrees of Particles, the least of which are solid; this Body will have
seven times more Pores than solid Parts. But if there be four such degrees of
Particles, the least of which are solid, the Body will have fifteen times more
Pores than solid Parts. If there be five degrees, the Body will have one and
thirty times more Pores than solid Parts. If six degrees, the Body will have
sixty and three times more Pores than solid Parts. And so on perpetually.7
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It appears from various remarks that Newton held the opinion
that originally absolutematter is completely pure and homogeneous.
Its separate, smallest, yet already structured particles, which do not
differ in extension, hardness, impenetrability, mobility, and inertia –
that is, in the characteristics of matter – seem to correspond to the
“elementary particles” which can be no further divided through any
natural, physical process. It is notable that although Newton calls
the smallest particles of matter by a variety of names, he generally
avoids the term “atom.”

These original minute particles, which are themselves combina-
tions of equal parts of matter and vacuum, are characterized by the
strongest attractive force. Called first-order forms, they combine to
make new “compositions” of the second order (“particulae secundae
compositionis”), in which the elementary particles are surrounded
by equally large spaces. The width of these “vacuoles” or pores cor-
responds to the diameter of the fundamental particles. Particles of a
lower order provide building blocks for those of a higher order, while
the width of the pores always corresponds to the diameter of the
smaller element. From this pattern, one can construct particles of
the first, second, third order, and so on, up to the biggest particles of
the “ultimae compositionis.” These build perceptible bodies held to-
gether only by weak forces of attraction on which depend the normal
chemical reactions and colors of natural matter.8

Although Newton in his Opticks referred specifically to the two
main elements of the old atomist theory, the atom and the vacuum,9

his philosophy of the atom was fundamentally different from that
of the ancient authors. On the one hand, he introduced opposing
forces in the form of the passive inherent power (vis inertiae) and the
active forces of gravitation, fermentation, and cohesion; and on the
other, he presupposed this hierarchical structure within the formed
particles.

The unchangeable, inherent “inertia” or vis insita10 seems to have
corresponded in Newton’s alchemy to the “immutable seeds” which
can be formed only byGod.Newton attributed the active, “external”
forces to a “spirit” which can nurture and bring to fruition the
seeds which only God can create. Similarly, he equated the “matter-
seed” with the “sulphuric principle” of alchemy, while the “alchem-
ical Mercury” symbolizes the originally completely “matter-less
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spirit-vacuum.” Through this “theory of structure” one can visu-
alize quantitatively the alchemical sulfur seed as the material part
and the alchemical spirit of Mercury as the vacuum.

newton’s source for the ‘‘prisca sapientia’’

In what follows, besides a short glimpse of the alchemy of the Pol-
ish alchemistMichael Sendivogius (1556–1636), one author whowas
undoubtedly influential in Newton’s alchemical work will be con-
sidered, the German RosicrucianMichaelMaier. Sendivogius’s work
inspired a kind of alchemical school in London whose activities
can be traced at least to the beginning of the eighteenth century.
The spiritual leader of this alchemical group, who published un-
der the pseudonym Eirenaeus Philalethes, was George Starkey (died
1665?), whose influence on the young Newton has been shown by
Westfall and Dobbs, and more recently by the findings of William
Newman.11

With regard to Newton’s later alchemical interests, Cleidophorus
Mystagogus (the likewise pseudonymous successor of Philalethes)
and the medical doctor William Y–Worth (or Yarworth), both mem-
bers of this school, should be mentioned.

Newton’s library contained works of both authors.12 A recent dis-
covery has demonstrated that theywere one and the sameman.A let-
ter from Y–Worth to Newton, written about 1702, indicates a close,
personal relationship between the two unevenlymatched “adepts”13

and contradictsWestfall’s opinion thatNewton’s interest in alchemy
ceased when he moved to London.14

For bothMaier15 and Sendivogius,16 alchemy was the greatest sci-
ence of principles, in a sense a metaphysics. Maier’s alchemy, pre-
sented symbolically through ancient myths, represented to him an
all-embracing universal science. Newton may have been interested
in Maier’s genealogical interpretation of heathen mythology, since
Newton in his philosophical as well as in his theological and al-
chemical works always held that time and history unfold accord-
ing to law. Sendivogius’s alchemy, on the other hand, offered to
Newton a natural philosophy with underlying universal dynamic
principles characterized by internal forces and a mutual relation be-
tween reacting bodies. Two of the earliest of Newton’s manuscripts,
from about 1669, contain extracts from Maier’s Symbola Aureae
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Mensae (Keynes MS 29) and Sendivogius’s Novum Lumen
Chymicum (Keynes MS 19).17

Further influences on Newton’s philosophical concepts, less
marked than those of the alchemists, can be attributed to Joan
Baptista van Helmont (1579–1644), who advocated vitalism, and
Pierre Gassendi (1592–1655), who represented atomism.18 One may
wonder why Newton preferred the apparently occult and unintelli-
gible works of the alchemists Sendivogius and Maier to those of en-
lightened rational philosophers such as van Helmont and Gassendi.

michael maier and the rosicrucian tradition

As already mentioned, the German Rosicrucian Michael Maier was
besides Sendivogius one of the first alchemical authors Newton read
and copied extracts from;19 throughout his life Newton numbered
them both among the “authores optimi” and the “magis utiles.”20

Most of Maier’s works, heavily annotated, are still to be found in
Newton’s library;21 theymust have fascinated him all themore since
the German Rosicrucian also saw that an intensive study of chronol-
ogy and alchemy, as well as the Bible, was the best way of resolving
experimentally God’s Revelation and the secrets of the “composi-
tion” of matter. Newton’s interest in Maier’s writings also supports
the view, expressed above, that his alchemy cannot be seen solely
in connection with his chemical experiments but was also a link
between his religious beliefs and his scientific aims.

Even in one of Maier’s earliest works, the Arcana Arcanissima
of 1614, there are clear parallels to Newton’s ideas. Although Maier
dismissed the worship of false gods of ancient civilizations as the
falling away from the Truth of the one God, he believed in a hidden
deeper meaning whichmust be surmised from themyths of gods and
demons as well as from the Egyptian hieroglyphs. Accordingly, the
aim of his research and work was to detect the philosophical, the
scientific, and particularly the chemical truths in the allegories and
adventures of the gods. Wars, battles, and deeds of the gods were
for him exact symbols of natural laws, that is, the laws which reg-
ulate matter and the structure of the universe.22 Throughout his
life, Newton also believed that mankind originally worshipped one
God and received one law from him. The worship of false gods
led to an estrangement which became greater as more objects were
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worshipped.23 Like Maier, Newton considered that we can under-
stand the worship of these gods as the symbol of an exact scientific
truth.24

Although Newton did not blindly followMaier, he usually agreed
with the ideas of the German Rosicrucian and saw him as one of the
true philosophical “magi” who had theoretical as well as practical
knowledge. The rich alchemical bibliography inMaier’sworks shows
that he had read widely on alchemy. Since most of the works named
by Maier can still be found in Newton’s library, it is possible that
Newton based his alchemical studies to a large degree on this author,
whom he had discovered early in his career.25

It is also possible that some ideas in Newton’s color theory may
have been influenced byMaier,whobelieved that Saturn corresponds
to the black out of which comes light. In the Opticks the smallest
particles are described as black and invisible – even through bet-
ter microscopes – on account of their transparency.26 In alchemy
blackmatter under the rule of Saturn corresponds to chaos and to the
“materia prima” for which Newton set out more than forty names
in his long handwritten “Index chemicus” (c. 1680–1700).27 Through
putrefaction this black matter becomes completely shapeless and
therefore capable of assuming new forms. In Newton’s composition-
theory the blackness of Saturn, that is, the “materia prima,” belongs
to the first level of order which is characterized by equal parts of
matter and vacuum.

The God Jupiter, whose realms are light and air, can be classed in
a relatively primal “celestial” region, and in Maier’s alchemy light
and air are associated with him. This could have led Newton to pay
greatest attention to this element, the metal tin, in his chemical ex-
periments, particularly in those involving volatization. In Newton’s
chemical and alchemical writings after 1681, we find themyth of the
dethroning of Saturn, and the assumption of power by Jupiter, to-
gether with his peace-making function through the scepter and the
eagle which carries him to the throne.28 Following Maier, Newton
named Jupiter as the father of Mars and the other planets, which
shows the importance and original position Newton gave to Jupiter,
to the equivalent light-mediator-function in optics, and to the cor-
responding metal in chemistry.

In many places Maier implied a model of an increasingly split,
structured, and specialized “pyramid of composition.” The four
chemical gods of the Egyptians – the female–male original principle
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of Osiris (male Sun) and the corresponding Isis (wife–sister, female
Moon), as well as Mercury and Vulcan – become eight and finally
twelve gods, who are later taken over by the Greeks. The death and
resurrection of Osiris were used byMaier and byNewton as a symbol
for the alchemical process. Osiris is killed and dismembered by his
brother Typhon; this corresponds to death, putrefaction, and a return
to primary matter; his body, which is collected by Isis, symbolizes
the renewed circle of life and death.

The special position of the “incestuous couple” Isis and Osiris in
Newton’s alchemical chronology, or chronological chemistry, may
be understood if one looks atMaier’s dark symbols throughNewton’s
clear mathematician’s eyes. His careful and at the same time formal-
izing drawings in early extracts from Maier (Keynes MS 29), around
1668, and in the late manuscript (Keynes MS 32) seem to indicate
that he found his composition-theory in Maier’s “Arbor genealogica
metallorum.”

The relationships in Maier’s genealogical tree seem to indicate
that Newton in his composition-theory identified the valued last off-
spring of alchemy with the absolute, filled matter-particle (without
vacuum)which on its own is completely immobile, cold, and dead. In
the pyramidwhich reflects “life,” the last offspring characteristically
corresponds to the relative, sulfuric matter-particles. In his diagram
Newton graphically presents these confusing alchemical symbols for
the incestuous relationships which intermingle the generations, and
the increasingly complicated mixed particles typical of this model.

The model of Maier’s god–metal genealogy can also be detected in
the mature alchemical Praxis manuscript,29 written by Newton not
earlier than 1693. The text of this manuscript was revised several
times, indicating that it was not merely a copy but an original com-
position by Newton. Right at the beginning are various versions of a
model that combines planets, metals, and elements. A notable fea-
ture is the “old-fashioned,”markedly Pythagorean order.30 Although
Maier is quoted only among other authors in the subsequent text of
Praxis, the chronological ordering suggests that it was based on his
concept, one to which Newton devoted long study. Newton took
this concept found in the works of the German Rosicrucian31 and
further developed it, made it more “scientific,” and included it in
his chronological system. In the Praxis manuscript an unsuccessful
(that is, crossed-out) attempt and a less extensive scheme are fol-
lowed by one which is introduced with the words: “In Aegyptiorum
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philosophia Dij erant duodecim quibus menses anni et signa Zodiaci
dicabantur [sic]. Hi erant: ‘Planetae septem’, ‘Elementa quatuor’,
‘Quintessentia . . .’ ” This mode of ordering the presentation can also
be found in Newton’s published Chronology, where even indica-
tions of relationships are shown,32 starting with the four elements
(“Elementa quatuor”) and their correspondence to countries; three
elements carry the names (Misraim, Phut, Canaan)33 of the sons of
Ham, who was the son of Noah. A second line of elements con-
tains purely Egyptian gods, while the seven planet-metals cannot in
this case be attributed to particular nations. The following third line
gives the corresponding Roman gods, and the fourth and fifth lines
contain the alchemical symbols and the Latin names of metals and
chemicals. In his first draft, the first line, except “Thot,” was miss-
ing, but the chemical classification of the four elements and of chaos
was done more carefully. (That Newton was not sure about this clas-
sification can be seen from the fact that he entered different ideas in
the same manuscript as well as in Keynes MS 48.) In an additional
list he added to his ideas on the four peripatetic elements by distin-
guishing the “elements” of the metals from the minerals that form
them.34

In what follows I will try to point out some aspects of the geneal-
ogy of the gods in Newton’s (al)chemical system whose sequence of
generations, in accordance with the Chronology, starts with the de-
scendants of Noah in the period when – according to Newton – the
turning away from monotheism began. It led via hero worship to
polytheism, to downfall and corruption, and eventually to complete
estrangement from God. The special position of Jupiter in Newton’s
alchemy, mentioned earlier, is indicated here in the dual position of
“Ham” (“Cham”) who as planet-metal (= Jupiter, tin) is the father
of the planet-metal (= Mars, iron) as well as of the three elements
of fire, water, and earth, or the corresponding mineral- and metal-
elements. Newton’s working laboratory notes show that this is not
just the result of theoretical reflection but also of experiments.35

According toPraxis the “SpiritusMundi”works on the completely
undifferentiated chaos gradually to separate the four elements.
Chaos and “Spiritus Mundi” differ only in their degree of condensa-
tion, so that each chaos can be termed “condensatus spiritusmundi,”
“spiritus corporalis,” or “corpus spirituale.”36 In Newton’s diagram,
chaos corresponds to antimony and is equatedwith “Quintessentia,”
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while in the text he distinguishes between the chaos of the “four
elements” of the imperfect metals and the “Quintessentia” of
bismuth.37 The more specific term, “hollow oak,” applied to the
amalgamated metal-chaos, was often used in Newton’s chemical
laboratory notes.38 For Newton, antimony is the microcosmic
mineral-metal correspondence of the macrocosmic globe. Just as
the earth presents the most intense homogeneous mixture of the
four “peripatetic” elements, antimony corresponds to the amalgam
of the four elements of the imperfect metals. In the Praxis scheme
as found in Babson MS [420], the separation of elements from the
chaos is presented in the same order as in Newton’s exact natural
philosophy, as found in the early Burndy MS 16 manuscript39 and
perhaps in the Principia.

In Praxis, both Typhon40 and the Sea-GodNeptune41 are classed as
“aqua pontica.” The importance which Newton attributed through-
out his life to the Egyptian Typhon is already clear in his earliest
Maier manuscripts. This wild, fiery, sulfur-mercurial spirit, which
can break up a coherent mass into its smallest elements, is also com-
pared to the dragon. That the snake which was killed by the Greek
Cadmus is called a descendant of Typhon seems to indicate the active
acid character of its Egyptian ancestor. Newton’s laboratory notes of
about 1680 show how much importance he attached to the “aqua
pontica” even in exact chemical experiments. Here the correspond-
ing Sea-God Neptune is called “menstruum aqueum minerale.” His
power is symbolized by the trident which is equated with the fer-
ment and compared to the “caduceus mercurii.”42

In his theory of acids, Newton attributed to all acid particles, be-
cause of their ability to dissolve or dilute, a relatively strong attrac-
tive force resulting from their high content of spirit. Small quanti-
ties, which are hidden in earthy, that is, passive substances, can be
gradually recognized by their being “Fat and Fusible Bodies.”43 In
quantitative chemistry, the proportion of acid (= force of attraction),
equivalent to the alchemical fire-sulfur in each substance, can be
determined.

The parallel between chemical acid and alchemical fire-sulfur
becomes clear in Query 31 of theOpticks, where the “acid vapours,”
which are best suited to fermentation in the mineral as well as the
animal kingdom, generate heat and eventually, acting as a “very po-
tent Principle,” set fire to bodies.44 Although one could quote many
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more examples from Query 31 for the analogy with the alchemical
models in Praxis, I want only to point out that their general arrange-
ment clearly distinguishes between the two attracting poles – the
earthy, alkaline, fixed, passive, and the fiery, acid, volatile.

Although in his later excerpts, made about 1700, Newton con-
centrated particularly on the alchemical–arithmetical–astronomical
aspects of Maier’s definition of sulfur, earlier in his life he had been
stimulated by other aspects of its definitions.One can almost assume
that in the annus mirabilis, after his first reading of Maier’s works,
he orientated himself on this model, and then, during the following
years, never lost sight of its “encircling”method. Onlywhen the “in-
nermost hidden sulphur” has been precisely defined in all disciplines
can its “innermost, hidden,” absolute (that is, pure, separate, inde-
pendent) character be known and defined according to the same laws.

There is no doubt that Newton accepted Maier’s physical-
biological definition of sulfur as the “foetus” just born into light.45

He succeeded in transferring the alchemical symbolism to physics
by defining light as the “corporeal emanation” of the aether-spirit.
Maier’s alchemical foetus corresponds to Newton’s light in optics,
and the mercurial, fruit-bearing womb becomes the aether, the car-
rier of the sun-tinder.

Maier’s tendency to look for repeated, ordered relationships also
permeated Newton’s scientific works. He established a relationship
between optics and music by applying the Doric mode to define the
diameter of the colored rings of thin films aswell as to the intervals of
consecutive “fits of easy reflexion and easy transmission.” Newton
strengthened this relationship between optics and music when, in
his apparently arbitrary division of light into the seven colors of the
spectrum, he arranged the spectrum so as to agree with the divi-
sions of the monochords. Another indication of the influence of the
German Rosicrucian on his optical theories can be seen in the late
manuscript (Keynes MS 32), where, in an excerpt of around 1700, he
deals with the “mythological” connection between colors andmusic
which is associated with Apollo, God of Light, who leads the nine
Muses.46 Newton’s attempt to establish a relationship between mu-
sical notes and optical colors has often been criticized by historians
of science. In spite of this criticism, so far no research has been car-
ried out into whyNewton assumed the same law for the thickness of
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air in the bands that produce color in thin films and for the intervals
between single “fits.”47 It is possible that this idea was influenced
by Maier’s definition of sulfur.
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13 Newton on prophecy and the
Apocalypse

the intellectual background of a natural
philosopher of the seventeenth century

Newton’s theological manuscripts are concerned principally with
two subjects: the interpretation of the prophecies of the Apocalypse
and Daniel, and the history of the early Church. These two sub-
jects are linked, but it was as a consequence of his interpretation of
the Apocalypse that Newton undertook his study of the history of
the Church. The study of prophetic literature was firmly rooted in
Cambridge, where this subject was taught by JosephMede, author of
a Clavis Apocalyptica (or Key to the Apocalypse), a work much used
by Newton.

Newton’s interest in the prophecies is already documented in the
“Quaestiones” of the Trinity Notebook (1664–5).1 In “Of Earth”
(c. 1664) Newtonmade deductions about physics, “in rerumnatura,”
directly from the Scriptures: the final conflagration of the earth, and
the probable succession of worlds. This last affirmation was sup-
ported by a passage of the Book of Revelation which referred to days
and nights after the Last Judgment, whichwould havemade no sense
had theworld finished for ever. In “Of theCreation” (c. 1664)Newton
made use of a passage from Genesis to prove that God had created
time.2 From these entries it is evident that Newton used biblical
texts to determine the truth of a philosophical proposition. Strange
or ingenuous as this approach of Newton’s might seem, given that
the trial and condemnation of Galileo had shown the difficulty of
reconciling philosophy and religion, it was one he maintained in
subsequent years.3

387
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Newton’s theological and scientific interests not only mani-
fested themselves almost contemporaneously, but always remained
connected. Shortly before matriculating at Cambridge on 8 July
1661, Newton had acquired a Greek–Latin dictionary and an edition
of the New Testament in Greek and Latin.4 In his first year at
Cambridge, Newton acquired only one book from the curriculum,
the Logicae Artis Compendium (Summary of Logical Art) by Robert
Sanderson, which exerted, as we shall see, a notable influence
upon Newton’s methodological ideas. Yet he bought as many as
four theological books.5 In a pocket book, Newton also noted the
purchase, for a shilling, of a second-hand edition of De Quatuor
Monarchiis (The Four Kingdoms) by J. Sleidan.6

Sleidan interpreted the dream of the king of Babylon (Daniel 2): a
colossal statue was broken into four pieces, each made of a different
metal. The four kingdoms (Babylonian, Persian, Greek, and Roman)
would correspond to the four parts of the statue. Sleidan, drawing
upon arguments in Luther, held that the fourth kingdom had not yet
ended, and that it would endure until Christ’s return, represented
by the rock which, independently of man, detached itself from the
mountain, destroyed the colossus, and became in its turn a great
mountain.Newton’s reading of Sleidan probably served to strengthen
his interest in the relations between prophecies and history.

The Trinity Notebook indicates that in 1664–5 other intellec-
tual passions took their places firmly alongside Newton’s interest
in the Bible. The entries on light and colors occupied more and more
space in the notebook, and there one finds the first draft of the “New
Theory of Light and Colors” which Newton presented to the Royal
Society in 1672. From 1664, having obtained a scholarship to Trinity
College, Newton studied mathematics intensively. During the two
plague years (1665 and 1666), Newton withdrew to Woolsthorpe,
claiming later that he was “in the prime of my age for invention &
mindedMathematicks & Philosophy more then at any time since.”7

The results of this extraordinary creative explosion are well
known: the method of fluxions, the theory of light and colors, and
the law of an inverse-square force, necessary for the stability of plan-
etary orbits. These achievements have sustained themyth of the cre-
ative genius, struck by sudden illuminations. Newton’s manuscript
papers tell a different story, no less deserving of admiration. The ex-
pression thatNewton applied to himself of seeing further by virtue of
standing on the shoulders of giants8 was a particularly apt metaphor.
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Many indeed stood upon those shoulders, but no one else saw as far.
The method of fluxions was at first a generalization and application
of Wallis’s method, as the theory of colors was a felicitous com-
bination of Cartesian explanations and Boylean experiences.9 The
inverse-square law was only a theorem – based on Galileo’s law of
falling bodies and on Kepler’s rule of the periodical times – which
as yet had not been verified with reference to the orbit of any of the
planets. Much work was to be done – work which would occupy al-
most the rest of Newton’s life – before these brilliant results would
acquire the significance they have in the Principia, in the Opticks,
and in the mathematical writings.

These discoveries came into being together with criticism of
the methods used by the authors Newton was reading (Descartes,
Galileo, Boyle, Wallis, etc.), and from the effort to establish a more
reliable method for the investigation of nature.

Having returned to Cambridge in 1667, Newton continued to
work on optics until at least 1670, when he drafted the manuscript
of the Lectiones Opticae, which contained his lectures as Lucasian
Professor of Mathematics for the year 1669/70. Here Newton indi-
cated a new approach that united geometry and experimental re-
search, taking as an example his own discoveries of the refractions
of light and the explanation of colors.10 It was probably in the same
years that Newton began to compose an essay on physics, the “De
gravitatione.”11 Thiswork beginswith a brief exposition of themeth-
ods thatNewton intended to adopt, butwhich also serves to illustrate
the manner by which he had arrived at the brilliant discoveries of
the years 1665 and 1666.

Newton asserts that:

it is proper to treat the science of gravity and of the equilibrium of fluid
and solid bodies in fluids by two methods. To the extent that it appertains
to the mathematical sciences, it is reasonable that I largely abstract it from
physical considerations. And for this reason I have undertaken to demon-
strate its individual propositions from abstract principles, sufficiently well
known to the student, strictly and geometrically. Since this doctrine may
be judged to be somewhat akin to natural philosophy, insofar as it may be
applied to making clear many of the phenomena of natural philosophy, and
in order, moreover, that its usefulness may be particularly apparent and the
certainty of its principles perhaps confirmed, I shall not be reluctant to illus-
trate the propositions abundantly from experiments as well, in such a way,
however, that this freer method of discussion, disposed in scholia, may not
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be confused with the former which is treated in Lemmas, propositions and
corollaries.12

“De gravitatione” also contains a long metaphysical discussion
of the concept of space, in open disagreement with the ideas of
Descartes. In this discussion, Newton used subjects drawn from the
Bible in a characteristic manner.

Space – Newton contended – is not the essence of matter, but a
property of being as such. Taking motifs similar to those of Gassendi
and More, Newton upheld the idea of the real presence of God in
space; he not only denied that extension is the essence of matter,
but also suggested that matter in and of itself had no essence. Matter
depended for its existence on God. Thus “we cannot postulate bod-
ies . . . without at the same time supposing that God exists.”13 It is
evidence – arguedNewton – that God created the world by the action
of will alone, as man, by the same action, has the power to move his
own body. To justify this affirmationNewton added, the “analogy be-
tween the Divine faculties and our own is greater than has formerly
been perceived by Philosophers. That we were created in God’s im-
age holy writ testifies.”14 The Scriptures, therefore, completed and
corrected philosophy.

By the beginning of the 1670s Newton had to his credit an expe-
rience of study which ranged from mathematics to theology, from
physics to metaphysics, from optics to alchemy. Without doubt,
however, his principal interests in the preceding years had been
mathematics and physics, areas of research in which he had demon-
strated considerable open-mindedness, a strong critical sense, and
the tendency to unify these two fields of knowledge. In 1672, after
the publication in the Philosophical Transactions of the theory of the
colors, and the disputeswhich followed,Newton abruptly abandoned
his research into mathematics and physics, and dedicated himself
with the same passion to the interpretation of the Apocalypse along
with his study of alchemy. However one accounts for this new di-
rection, which, as Westfall stated, “absorbed virtually all of his time
for the following fifteen years before a visit from Edmond Halley
started the investigation that resulted in the Principia and altered
the tenor of his existence,”15 Newton never abandoned his search
for a method by which truth could be established no matter what
the field of knowledge. Whatever interests exercised him, there was
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always one central question that Newton tried to resolve: how is it
possible to arrive at certain knowledge?

It is thereforemisleading to ask – asmany interpreters have done –
what influenceNewton’s theologyhaduponhis science. In his search
for a criterion of the truth, Newton made no distinction between
science and theology. It was the same approach that had led him
to break down the boundaries between mathematics and physics,
between geometric optics and philosophy, betweenmatter and spirit.
In this sense, the anachronistic debate between those who would
have Newton preeminently a theologian, and those who would have
him preeminently a scientist, can be resolved only by the assertion
that, like Descartes, Hobbes, and Leibniz, Newtonwas a philosopher
in the seventeenth-century sense of the term.

to methodize the apocalypse

A book Newton acquired at the same time as the one by Sleidan,
and which was set by the university curriculum, helped Newton
to “methodize” the Apocalypse, in other words to render his inter-
pretation univocal. The book was Sanderson’s manual of logic, in
which were listed the laws common to every method of arranging
or discovering in all sorts of knowledge. This manual, as we shall
see, was the main source for Newton’s rules for interpreting the
Apocalypse.

Why was it necessary to have a method for understanding the
Apocalypse? The obscurity of the Apocalypse presents its interpreter
with a problem: either it expresses God’s plans – the wisest andmost
suitable for his purpose – or it is entirely without sense.16 According
to Newton, no one had successfully tried to understand its visions;
therefore the BookofRevelationhad beenneglected by everyChurch.
But in that case – Newton insisted – what was the reason why God
had given the prophetic Scriptures? Was it in jest? If the prophecies
were not supposed ever to have been understood, to what end had
God revealed them?

Newton used the argument from design to affirm the perfect com-
prehensibility of the Apocalypse. The design, the purpose, consti-
tuted the first condition of interpretation itself. If God spoke, he
spoke to be understood. The prophecies therefore must contain an
ascertainable significance, straightforward and comprehensible to
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the intellect, appropriate for all men, without requiring the medi-
ation of the learned. Why then were they so obscure that Newton
himself held that not even the most learned men could ever have
understood them? The simplest solution to the problem was that of
making the obscurity itself relevant to God’s plans. The obscurity
was God’s way of prolonging the revelation in time and of distin-
guishing true Christians from apostates.

The true Christian is therefore characterized by his “understand-
ing,” which is distinct from the mere natural gift of intelligence, and
requires also humility and impartiality:

And for this end it is that they are wrapt up in obscurity, & so framed by
the wisdom of God that the inconsiderate, the proud, the self-conceited the
presumptuous the sciolist, the sceptic, they whose judgments are ruled by
their lusts, their interest, the fashions of the world, their [opinions] esteem
of men, the outward shew of thing or other prejudice; & all they who, of
how pregnant natural parts soever they be, yet cannot discern the wisdom
of God in the contrivance of the creation: that these men whose heads are
thus hardened in seeing should see & not perceive & in hearing should heare
& not understand.17

Newton affirmed that “God who best knows the capacities of
men does hide his mysteries from the wise & prudent of this world”
and reveals them to the children and “the inferiour people.”18 This
account never became socially subversive, because its real function
was to underline the clarity of the prophecies and the possibility of
arriving at certainty in interpreting them.

The“understanding”towhichNewtonreferredwas that capable of
perceiving the wisdom of God, the unity of his design, in nature and
in Scripture. It is an “understanding” common to all men, one which
is characterized in a positive sense by the activity of the individual
search for truth, and which acquires a strong ethical connotation
from its contrast with the state of being blinded by prejudice.

Everyone therefore can and must understand the “substance” of
the prophecy with absolute certainty.

But what is the substance of the prophecy? The prophecy has a
content, and a function or purpose. The content of the prophecy is
history, nothing other than the history of the things which must
occur.19 The identity of content between prophecy and history de-
mands that one interpret the first according to the same criteria as
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one reconstructs the second. This is why Newton speaks of the con-
struction of the Apocalypse, which is the proper outcome of his idea
of a method of interpretation. The term “construction” is reminis-
cent also of the grammatical and rhetorical tradition that Newton
had learnt from Sanderson’s manual. To understand the Apocalypse
it is necessary to fix rules for constructing it. These will be pre-
ceded by general rules for interpreting the words and language of
the Scriptures, and followed by specific rules for interpreting the
Apocalypse.

Besides a content, prophecy has a function or purpose. For what
reason did God reveal the future to men? Undoubtedly because he
deemed it useful that it should be known by those who were to live
in the future. There is, therefore, in the history of the final events
a content the knowledge of which is necessary to men and to the
Church. In fact:

All sacred Prophesies are given for the use of the Church, & therefore they
are all to be understood by the Church in those ages for whose use God
intended them. But these prophesies were never understood by the Church
in the former ages: they did not so much as pretend to understand them, nor
thought that they concerned their times, but with one universall consent
delivered down to posterity the famous Tradition of the Antichrist described
therein to come in the latter ages. And therefore since they were never yet
understood, & God cannot be disappointed, we must acknowledg that they
were written & shall prove for the benefit of the present & future ages, &
so are not yet fulfilled. Wherefore let men be carefull how they indeavour
to divert or hinder the use of these scriptures, least they be found to fight
against God.20

The purpose of the prophecies of the Apocalypse is the edification
of the trueChurch, whichwill come to fulfillment at the end of time.
The churches of history are not yet the true Church. On the contrary.
The necessity of the degeneration of the churches is, for Newton,
not only clearly written in the Apocalypse, but a conclusion to be
drawn by common sense when one considers their multiplicity. The
true Church is constituted not by all those who “call themselves
Christians, but a remnant, a few scattered persons which God hath
chosen, such as without being [bended] led by interest, education or
humane authorities can set themselves sincerely and earnestly to
search after truth.”21 This virtual Church will become real only at
the end of time.
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If this is the purpose of the Apocalypse, then its content becomes
clear: in these prophecies there is told the story of the Antichrist in
as much as true believers can recognize him, and, by not adhering
to his kingdom, save themselves. Newton largely accepts Sleidan’s
interpretation of the four Kingdoms of Daniel’s visions, of which the
last, the Roman Empire, corresponds to the ten-horned Beast of the
Apocalypse. The two-horned Beast corresponds to the little horn of
Daniel’s Fourth Beast. The two-horned Beast is identified byNewton
with other figures: the False Prophet and the Whore of Babylon. The
two-horned Beast receives the power of the first Beast (that is of
Rome, in the age of Constantine) by deception, using portents and
miracles (an allusion to the Catholic Church). The whore Church
bids its believers construct an image of the first Beast (an allusion to
the Caesarism of the Popery). The Woman Fled into the Wilderness
is the primitive evangelical Church sent into exile (after the Council
of Nicaea). The mystery or the blasphemy written on the forehead
of the Whore are probably the Trinity, introduced by Athanasius as
a new form of polytheism. We come to the Grand Apostasy, to the
seventh seal, which represents one and the same, continual apos-
tasy, which ceases at the onset of the seventh trumpet. With the
seventh trumpet we are already in the future. The Grand Apostasy
cannot be overthrown without the intervention of the Savior, the
second coming of Christ, announced by the Book of Revelation. A
new monarchy that would put an end to apostasy is not possible be-
cause it is not part of God’s plans. Hence the reformed Churches are
also necessarily apostate.

The mystery of iniquity is at the center of the Apocalypse, epito-
mized in the figure of the man of sin, the Antichrist. The Antichrist
is the type of deception rather than a person. To be truly effective, de-
ceptionmust be seductive, and present itself in the trappings of truth.

But what if the hour of the Antichrist has not yet arrived? Newton
foresaw this objection, and his response showed that his conception
of the Antichrist was not purely eschatological. As he is the prince
of deception, he is preceded by whatever deception is perpetrated to
man’s cost, and the very multiplicity of religions renders deception
ever possible:

Antichrist was to seduce the whole Christian world & therefore he may
easily seduce thee if thou beest not well prepared to discern him. But if he
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should not be yet come into the world yet amidst somany religions of which
there can be but one true & perhaps none of those that thou art acquainted
with it is great odds but thoumayst be deceived & therefore it concerns thee
to be very circumspect.22

The possibility of deception is explained by the argument that
there can be only one truth, an affirmationwhich corresponds almost
verbatimwithapassage fromDiscours de laméthode byDescartes.23

For this reason Newton denounces the errors of learned interpreters.
Where had these interpreters gone wrong? Fundamentally from ex-
cess of imagination. Newton called it, to underline its negativity,
private imagination, in other words subjective and arbitrary imag-
ination. It was the source of heresy. Not truly understanding the
word of God, they superimposed their own. Private imagination cor-
rupted the interpretation of the Scriptures as the hypotheses and rash
dreams of conjecturing philosophers did sane philosophy.

Among the interpreters who had preceded him, Newton absolved
only, and in part, JosephMede, attributing to him themerit of having
begun to methodize the Apocalypse:

all that I have seen besides the labours of Mr Mede have been so botched
& framed without any due proportion, that I [could heartily wish those Au-
thors] fear some of those Authors did not so much as beleive their own
interpretations.24

The natural order, the internal characters, the due proportionwere
the new interpretive criteria that Newton wanted to introduce. If no
one could arrive at certainty in understanding the Scriptures, then
there was a reason “which is to make the scriptures no certain rule
of faith, & so to reflect upon the spirit of God who dictated it.”25

Thus we arrive at the heart of Newton’s hermeneutic method: to
reduce prophecy to its univocal meaning in the same way in which
phenomena could be reduced to a single law. The univocity of the
prophecy and the univocity of the laws of nature were the sign of
their truth: “Tis true that an Artificer may make an Engin capable
of being with equal congruity set together more ways then one, &
that a sentence may be ambiguous: but this Objection can have no
place in the Apocalyps, because God who knew how to frame it
without ambiguity intended it for a rule of faith.”26

Newton’s hermeneutic method envisaged three phases. The first
phase consisted of sixteen rules of interpretation, moving from the
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general to the particular, such that “the judgment of the Reader be
prepared by considering well the following Rules for inabling him
to know when an interpretation is genuine & of two interpretations
which is the best.”27

The second phase of the method was the elaboration of defini-
tions. The prophetic language had to be understood in terms of the
figurative language that was its distinguishing feature and the most
appropriate way to communicate revealed truth because it was that
best understood by all. In fact the definitions constituted the vocab-
ulary of the prophetic language: “By which means the Language of
the Prophets will [appear] become certain & the liberty of wresting it
to private imaginations be cut of. The heads to which I reduce these
words I call Definitions.”28

The third phase consisted of the elaboration of propositions.Given
the rules and the definitions, the Apocalypse was divided into com-
parable, and thus ordered, parts. The “substance” of the prophecy
was drawn out in propositions, to each of which was added the rea-
son of truth, in other words, the proof.

the interpretive rules of the apocalypse
and the experimental method

According to FrankManuel, the interpretive rules of the Apocalypse
were a copy of the Regulae Philosophandi of the Principia, but this
conclusion is chronologically impossible – the rules of the Principia
were written almost forty years after those of the Trattato.29 Obvi-
ously the inverse must be the case. But how can it be that the Rules
of Reasoning of the Principia, considered the foundation of the ex-
perimental method, are a copy of the interpretive rules of the Apoc-
alypse? If we bear in mind Newton’s intellectual development, the
answer is clear. Even before hewas concernedwith the interpretation
of the Apocalypse, Newton had developed many of his methodolog-
ical ideas. Both in his studies in optics and in the unfinished “De
gravitatione” Newton had proposed a method by which to arrive at
a greater degree of certainty in understanding. In any case Newton
did not apply to optics – at least for the time being – the method
described in a letter to Oldenburg of 1672:

I drew up a series of such Experiments on designe to reduce the Theory of
colours to Propositions & prove each Proposition from one or more of those
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Experiments by the assistance of common notions set down in the form of
Definitions &Axioms in imitation of theMethod by whichMathematitians
are wont to prove their doctrines.30

In fact the method sketched here, which represented a notable step
forward with respect to “De gravitatione,” in which Newton still
spoke of two distinct methods, was applied to the interpretation of
the Apocalypse. And it was precisely here that Newton introduced
the rules for the first time with a goal of reconciling the understand-
ing of particulars with the definitions. Finally, the proof or demon-
stration of the propositions was obtained both with the help of the
definitions and with recourse to particulars, ordered according to
the rules. For example, the eighth proposition (“The Dragon & Beast
are the Kingdome whose symptomes are declared in the Seales &
Trumpits, whereof the Dragon begins with the Seales and the Beast
with the Trumpets”31) is proved by eight particulars, and the mean-
ing of each particular is referred to the definitions with the aid of the
rules.

These rules, as has been pointed out, are largely a reworking of
those contained in Sanderson’s manual, as one can see from the table
on pp. 398–9 in which the regulae of the Principia are also cited.32

As can be seen, Newton’s hermeneutic method did not differ for-
mally from his scientific method, even if the subject matters were
very different. The principal risk of Newton’s hermeneutic method
was dogmatism:

He that without better grounds then his private opinion or the opinion of
anyhuman authoritywhatsoever shall turn scripture from the plainmeaning
to an Allegory or to any other less naturall sense declares thereby that he
reposes more trust in his own imaginations or in that human authority
then in the Scripture [& by consequence that he is no true beleever]. And
therefore the opinion of such men how numerous soever they be, is not to
be regarded.33

With his deprecation of the private imagination Newton intended
to reduce arbitrary interpretation to the minimum, but at the same
time his method impeded the exercise of criticism and discussion.
Following the construction, the truth of the Apocalypse was fully
disclosed and evident. In fact “a meer naturall man, how wicked
soever, who will but read it, may judg of it & perceive the strength of
it with as much perspicuity & certainty as he can a demonstration in
Euclide.”35 The justification for Newton’s dogmatism was without
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doubt the strong sense he attributed to the notion of truth, which in
all cases originated in God. All error was implicitly heresy. It was for
this reason that Newton did not countenance objections:

Hence if any man shall contend that my Construction of the Apocalyps is
uncertain, upon pretence that it may be possible to find out other ways, he
is not to be regarded unless he shall show wherein what I have done may be
mended. If the ways which he contends for be less natural or grounded upon
weaker reasons, that very thing is demonstration enough that they are fals,
& that he seeks not [after] truth but [labours for] the interest of a party. And
if the way which I have followed be according to the nature & genius of the
Prophecy there needs no other demonstration to convince it.36

Pressed by Hooke’s objections to his theory of colors, Newton
had already replied to Oldenburg with the tone and almost the same
words used in the Trattato:

And therefore I could wish all objections were suspended, taken from
Hypotheses or any other Heads then these two; Of showing the insufficiency
of experiments . . . ; Or of producing other Experiments which directly con-
tradict me, if any such may seem to occur.37

Throughout the 1670s, Newton revised and enlarged the text of
his first treatise, includingmodifications to themethod of interpreta-
tion, but only in verbal details (for example, calling “Positions” that
which he had called “Propositions”). After Halley’s visit in 1684,
Newton returned to his first passions, natural philosophy and math-
ematics, with a far more precise idea of the method to follow in the
construction of the system of the world than he had had in 1665–6.
After Newton’s death, his nephew Benjamin Smith published the
Observations upon the Prophecies of Daniel, and the Apocalypse of
St John (1733). As Westfall observed, this was “a work of surpass-
ing tedium,”38 compiled provisionally by Newton in his old age.
None the less it sold very well. In it, the methodological apparatus
of the first work on theApocalypsewas omitted. There are only a few
pages, inserted after the introduction, given to the figurative style of
the Prophets, which summarized the section dedicated to the Def-
initions in the early treatise. If Newton’s interest in the figurative
language endured so long, it is likely that it constituted a cultural
component of primary importance, which interpreters have hitherto
underestimated.
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the figurative language of the prophets
and the language of dreams

In his early interpretation of the Apocalypse Newton is also con-
cerned with dreams. His exegesis views the dream as a fundamental
metaphor. The dreams of Joseph and of the king of Babylon, as dis-
closed by Daniel, testify that to reveal the future God prefers oneiric
language. Thus, the Apocalypse is like a dream; decoding the Book
of Revelation is the same as interpreting a dream. Oneiric language
is composed of figurative expressions. It is likely that Newton’s re-
marks on the language of the prophecies were deeply influenced by
the visual culture of the Baroque, in keeping with the Renaissance
tradition of emblems and devices. Moreover, as we shall see, the
metaphors, medieval in origin, of the theatre of the world (theatrum
mundi) and of the “book of nature” (liber naturae) become the foun-
dation itself of mystical language.

The seventy definitions that form the dictionary of the prophetic
language according to Newton are inspired in particular by an (al-
leged) medieval Arab writer, Achmet,39 who dealt with the events
and meanings of dreams. Newton provides the following reasons for
his choice:

Now although these interpretations by their analogy with one another &
resemblance to the things signified,may seemplain enough, yet that nothing
be wanting to establish them, I shall further show their consent with the
scriptures, & also with the translation of the Chalde Paraphrast & with the
ancient doctrin of the Eastern Interpreters (of Dreams & [visions]) as it is
recorded by Achmet an Arabian out of the ancient monuments of Egypt
Persia & India . . .For the Prophets without doubt spoke in a dialect then
commonly known to the more understanding sort of men, & many of their
types& figures which are unusual& difficult to us appear by these records of
Achmet to have been very familiar to those Eastern nations; at least among
their interpreters.40

Newton’s personal library contained the De Symbolica Aegyptio-
rum Sapientia (Cologne, 1631) by Nicolas Caussin, the well-known
author of Baroque eloquence.41 There was also a copy of Valeriano’s
Hieroglyphica, a famous book of sacred emblems, and a work by
Emanuele Tesauro, one of the theorists of the new oratorical, lap-
idary, and symbolic art. It is noteworthy that Tesauro compares the
skill of man in producing metaphors and symbols with the creative
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action of God.42 A similar idea, not necessarily taken from Tesauro,
is clearly expressed in the “De gravitatione.”43 I think that this
idea, which enhances the creative aspect of the mystical language,
guided Newton in his choice of the true interpreters of the Apoca-
lypse. The human talent and the revelation of God share the same
language: “And therefore since God gave the sacred Prophesies to
be interpreted by humane skill, we cannot next after the Scrip-
tures have a better guide then the established doctrin of the ancient
Interpreters.”44

For according to the ancient interpreters – like Daniel, the magi-
cians, and the wise men of the Pharaoh – the gift of prophecy is the
same as the talent of understanding visions and dreams. Neverthe-
less, as we have seen, Newton does not credit the private imagina-
tion but the collective one, founded upon the precise agreement of
the testimonies.

The salient value of the metaphors is historical rather than liter-
ary. Through their figurative language, they bring us nearer to the
time in which God revealed himself to men. Thus what is diffi-
cult and unusual to us acquires a cognitive significance. This will
be made clear by some examples. The fundamental postulation of
the figurative language of the prophets is the correspondence of the
features of heaven and earth to those of a kingdom. Newton found
the same correspondence in Achmet, the interpreter of dreams: “The
Sun immutably represents the King, the moon the next in power to
the King, the Planet Venus the Queen, the rest of the greater stars
the great men of the Kingdom. Achmet. chap. 167. Ind. Pers. Eg.”45

Prophecy is similar to dream not because the latter discloses the
future, but because the prophet is using the same language as that
of dreams: “If a King dream that he sits upon the Clouds carried
whither he will he shall rule over his enemies, & obtein victories &
unexpected joy.”46

The correspondence between the images of dream and reality is
established in detail. Analogy also conveys mathematical propor-
tionality:

Achmet in c 151 affirms: . . . If a King dream that he plants trees he shall
institute new Magistrates. And if a plebeian dream that he gathers into his
hous the leaves of trees, he shall obtein riches from great men proportionall
to the leaves.47
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Newton combined the biblical images with those of the inter-
preters of dreams in order to get new meanings. The emblems are
founded upon analogy, and there is often a reason for their meaning:

If one dream that he builds a merchant ship he shall gather an assembly of
men to celebrate religious mysteries. The reason of this Emblem I suppose
is that a Temple brings profit to a Priest as a ship to a Merchant & is also
separate from other buildings as ships are from one another.48

The emblem of the apocalyptic dragon contains various meanings
in one:

ADragon signifies the person of a hostileKing, & serpents according to their
bignes the persons of other greater or lesser enemies Achm: c 288. According
to which doctrin the Apocalyptic Dragon is a very proper emblem as well of
the Roman Kingdom which was so great an enemy to the Church, as of the
Devil that arch-enemy to mankind. But there seems to be in this emblem a
further mystery: namely to insinuate a comparison of the oppression of the
Church under the Roman Empire to the Egyptian Bondage, as if that were a
type of this.49

It can be noticed that the emblem linking dreams to reality has
various degrees of realization: the Egyptian bondage, the Roman Em-
pire, the devil. A single emblem – the dragon – unites several events
at once, attributing to each of them a further symbolic value: the
Egyptian bondage is the type of the Roman Empire as the Antichrist
is the type of the Devil. Newton is willing to use these constant
products of imagination (emblems and types) as if they were univer-
sal definitions, and on this presumed universality he establishes the
possibility of unambiguous interpretation of the Apocalypse. The
emblems become a universal type because of analogy.

So the hermeneuticmethod of Newton cannot be well understood
without understanding the literature of emblems, so deeply rooted
in Baroque culture. The Newtonian iconography of the Apocalypse
is vivid and intense like the colors produced by the prism. How-
ever, the figures are not external accessories. Newton stresses the
unifying function of the emblems, because of their reasonableness
as against the excessive liberty of “a luxuriant ungovernable fansy”
which “borders on enthusiasm.”50

The mechanism of the Baroque metaphor is carefully analyzed
by Newton. Since the emblem links together different sorts of par-
ticular events with no ambiguity, it is thereby possible to achieve a
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construction of the Apocalypse’s content according to the laws
of prophetic language. In order to discover these laws, Newton
searches for an hermeneutic method in which every emblem is
exactly defined:

To prepare the Reader also for understanding the Prophetique language I
shall lay down a short description thereof, showing how it is borrowed from
comparing a kingdom either to the Universe or to a Beast: So that by the
resemblance of their parts the signification of the figurative words & ex-
pressions in these Prophesies may be apprehended at one view & limited
from the grownd thereof.51

As we have said, the rules for interpreting the words and language
in Scripture were later to become, in the Principia, the Rules of Rea-
soning (Regulae Philosophandi). At the heart of the scientific rules
we again find analogy as the key for reading the book of nature. The
analogy of nature corresponds entirely to the analogy of the prophetic
style, because God is the same author of the infinite world and of the
eternal prophecy.

Newton’s successors (and Newton himself) call the use of analogy
in the scientific enterprise “induction.” Nothing is more misleading
than this term, borrowed from Aristotelian logic, in pointing out the
concrete use that Newton made of analogy. For example, Newton
compares the spectrum of colors with the tonal scale, and he is able
to find in it numerical correspondences.52 In the classical scholia
Newton is convinced that the ancients caught sight of the law
of gravitation through the harmony of the celestial spheres.53

The harmony of heavens is the type of the gravitation just as
the Babylonian bondage is the type of the Roman Empire. In the
same manner, he interprets the Pythagorean discovery of the direct
proportion between the weights hung from strings of equal length
and the resulting sounds as a type of the inverse proportion between
gravity and the square of the distance.54 Analogy is not enumerative
induction, but a search for types. It becomes an alternative way of
explaining why an apple falls!

Therefore it is not too surprising, as we have already seen, to find
Newton’s assertion of the similarity between the creative powers
of man and of God in the unpublished “De gravitatione,” being the
extreme outcome of his Baroque mentality:
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Holywrit testifies thatwewere created inGod’s image. And his imagewould
shine more clearly in us if only he simulated in the faculties granted to us
the power of creation in the same degree as his other attributes.55

It is the same concept we have found in Tesauro, the theorist of
Baroque eloquence. For Newton this similarity, neither a literary
ornament alone nor a rhetorical effect, was to be the groundwork
of his conception of matter, since God is to matter as man is to his
body. The human will is the type of the divine one.

Newton goes even further. Every difficulty that concerns the na-
ture of bodies may be reduced to our faculty of moving our bodies,
that is, by virtue of analogy, to God’s will:

Thus I have deduced a description of this corporeal nature from our faculty
of moving our bodies, so that all the difficulties may at length be reduced to
that.56

The similarity betweenman andGod occurs aswell in theGeneral
Scholium of the Principia.57 Man is a type of God.

To give further weight to this likeness, Newton researched into
the properties of an immaterial aether for many years. The aethe-
real spirit would have been a way of explaining gravity, animal
movement, and such forces acting in the microcosm as electric
and magnetic attractions. It may be the intermediary between the
thinking soul and the unthinking body,58 between God and the
world. Newton’s Baroque science is the theatre of divine manifes-
tations, since the world is like a dream of God.
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14 Newton and eighteenth-century
Christianity

You will be very able to deal with Sr Isaac, and I shall be glad to leave Him
in such good hands. He is a man of such scope, and his Authority so justly
celebrated in some things, that his name is of great weight in other matters,
where He was plainly out of his element, and knew little of what He was
talking about. Besides his countenancing Arianism, in the piece referred to,
He has given too much encouragement to Popery by his large concessions,
such as our best Protestant writers, att the time of K[ing]. James as well as
before, would never make.1

IsaacNewton’sObservations upon the Prophecies of Daniel, and the
Apocalypse of St. John, prepared for the press from his manuscripts
by his nephew Benjamin Smith, was published in two editions in
London and Dublin in 1733.2 According to Richard S. Westfall,
Newton’s finest twentieth-century biographer, the author “had
cleansed his Observations” and his heirs “could publish the
manuscript without concern.”3 Yet one might be permitted to won-
der whether either the actual or the intended reception of Newton’s
posthumous work was as uncontroversial as it has seemed to late-
twentienth-century eyes. The book was dedicated to Peter King,
baron of Ockham, the lord chancellor, who had defended Newton’s
sometime disciple, William Whiston, during his trial for heresy in
July 1713.4 Although Whiston later fell out with King, he never-
theless continued to maintain that King’s youthful writings on the
primitiveChurch supported theArian position forwhich he had him-
self been condemned.5 King was also the dedicatee of other works
of dubious theological orthodoxy, such as Daniel Mace’s attempted
revision of theNewTestament.Mace showed little respect for the au-
thenticity of the two New Testament texts that most clearly upheld
the orthodox doctrine of the Trinity, i John 5.7 and i Timothy 3.16.

409
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Listing ancient manuscripts which gave non-Trinitarian readings, he
hinted strongly that their modern, orthodox variants were the prod-
uct of interference with the primitive text of scripture.6

The young King’s most significant friendship had been with his
second cousin, John Locke. He was one of the philosopher’s clos-
est confidants toward the end of his life and an executor of his
will, by which he inherited half of Locke’s library and all of his
manuscripts. He was also charged with “a little packet sealed up and
directed to Mr Newton.”7 King had acted as an occasional interme-
diary between Newton and Locke, passing on information between
the twomen about matters concerning theMint and about the inter-
pretation of scripture. He conveyed chapters of the draft of Locke’s
A Paraphrase and Notes on the Epistles of St. Paul to Newton for
comment.8 Locke informed King that Newton was “really a very
valuable man not onely for his wonderfull skill in Mathematicks
but in divinity too and his great knowledge in the Scriptures where
in I know few his equals.”9 As an acquaintance of Newton and a
prominent whig politician, King may therefore have been a natural
choice as the dedicatee of the Observations. But, as his earlier doc-
trinal sympathies, his knowledge of suspicions that had been voiced
about Locke’s orthodoxy on the matter of the Trinity, and his later
patronage of heterodox Presbyterians such as Mace make clear, King
was not a theologically neutral choice as a patron of a work of bibli-
cal interpretation.10 Moreover, as the owner of Locke’s manuscripts,
King had access to evidence of Newton’s heterodox beliefs about the
Trinity, in the letters that passed into his keeping at Locke’s death.11

It is tempting to speculate that the “little packet” that King had
been charged with returning to Newton may have contained a more
incriminating piece of correspondence, sent by Newton to Locke in
1690 but no longer extant among Locke’s papers: Newton’s initial
letters comprising “An Historical account of two Notable Corrup-
tions of Scripture,” i John 5.7 and i Timothy 3.16.12 King was not
displeased by the dedication of Observations, granting Smith a me-
diety of the rectory of Linton in Craven, Yorkshire.13

Smith had been ordained by a friend of Newton’s twilight years,
William Stukeley. Stukeley himself had been inspired by Newton
to “[study] the Mosaic cosmogony seriously,” suggesting that “Here
is the Original Source of True Philosophy The Oracle of Nature,
The Springhead of knowledge where Those that thirst after the
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NewtonianDraughtsmay drink largely at the Fountain.”14 He seems
to have been only one of a group of those who met and were
influenced by Newton who undertook to defend the accuracy of
Moses’ natural philosophy at one time or another.15 His affection
for Newton’s theology extended to attempts to reconstruct the plan
of Solomon’s Temple, itself the setting for many of the prophetic
events that Newton tried to elucidate.16 However, Stukeley, like
many of Newton’s erstwhile disciples, doubted the accuracy of the
calculations to be found in The Chronology of Ancient Kingdom’s
Amended, published by Newton’s heirs from his manuscripts in
1728.17

The Chronology had been dedicated to Queen Caroline, an ad-
mirer of Newton who had encouraged his chronological writing and
protected his closest theological disciple, Samuel Clarke, throughout
the 1710s and 1720s. Even theQueen, however, was powerless to pre-
vent debate about the historical accuracy and religious orthodoxy of
Newton’swritings. This had begunwith criticismof theChronology,
but soon spilled over into more serious attacks on Observations.
Remarking on the plans for the publication of the Chronology,
Stukeley’s friend and Newton’s physician, Richard Mead, com-
mented that Newton “was a christian, believed revelation, though
not all the doctrines which our orthodox divines have made articles
of faith.”18 Following its publication, others were less generous to
Newton’s beliefs and intentions. The Bristol clergyman, orientalist,
and moral reformer Arthur Bedford observed that:

When Sir Isaak Newton’s Chronology was printed and extolled by many,
which must absolutely have destroyed all the Scripture History, [I] first
printed an Octavo against it, and afterward a Folio intituled, The Scripture
Chronology demonstrated by Astronomical Observations, a Work recom-
mended by Archbishop Usher in his Annals, but never attempted ’til then;
the Consequence of whichwas the Establishing the Authority of theHebrew
Chronology, in somuch that the other notions are now intirely disregarded.19

Bedford’s work was sponsored by the Society for Promoting Chris-
tian Knowledge, with which many of the hierarchy of the Church
of England were associated.20 His initial criticisms were directed at
the astronomical methods of dating that Newton’s chronology
had deployed. He pointed out that Newton’s findings disagreed
with those of the most prominent orthodox writers on chronology –
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James Ussher, William Lloyd, Richard Cumberland, and William
Beveridge – all of whom were in agreement about the major dates
in secular and sacred history.21 But he soon identified his real target:
“we live in an Age, when we cannot be too cautious . . .The Divinity
of our blessed SAVIOUR is struck at by the Revivers of ancient and
modern Heresies; especially that, which destroyed all the eastern
Nations, and introduced Mahometism among them.”22

Bedford was perceptive in noticing that Newton’s conclusions
about sacred history created doubts over the authority and antiquity
of scripture.23 He felt these were reminiscent of the beliefs of
Newton’s disciples, Whiston and Clarke, and therefore raised the
specter of Arianism. This heresy had swept through the eastern
Church in the early fourth century, weakening it both theologically
and politically. Its beliefs about Christ’s nature as the first of God’s
creations, rather than as God himself, seemed to people like Bedford
the most blasphemous of the primitive heresies that were currently
being revived by Whiston and, more cautiously, Clarke.24

In themonths followingNewton’s death, speculationwas rife that
he had shared the heterodox beliefs for which Whiston and Clarke
were pilloried. The Presbyterian minister and historian Robert
Wodrow, who was a friend of a number of Scottish Newtonians,
received frequent reports about the publication of Newton’s
Chronology. As early as 1711, Wodrow had recorded rumours con-
cerning Newton’s influence on Whiston: “It is said he has not only
much of his Mathematicks, but severall of his other errours from
Sir Isaack Neuton, which I incline not to belive.”25 He was thus re-
lieved to be informed in November 1727 that Newton’s unpublished
papers appeared at first to contain nothing about the doctrine of the
Trinity. Wodrow’s composure was shattered in May 1729 when he
learned that Newton had agreed with Clarke about the subordina-
tion of Christ to God the Father and had had peculiar notions about
the interpretation of the prophecies of Daniel.26

In the following year, Whiston excited speculation by writing that
Clarke’s interpretation of the prophecy of the seventy weeks (Daniel
9.24–7) was “only a Conjecture of Sir Isaac Newton’s, and I think a
Conjecture not well grounded neither.” This prophecy was widely
believed to have predicted the birth of Christ, the Crucifixion, or
the destruction of Jerusalem by the Romans as marking the end
of a period of captivity for God’s people. Whiston mischievously
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looked forward to the publication of “Sir Isaac’s own great work
upon the Scripture Prophecies . . .which we expect this Summer,”
confident that it would provide information about Newton’s un-
usual belief that the entire prophecy had not yet been fulfilled.27

Others ofNewton’s former acquaintances also began to reveal details
of his heterodox beliefs. John Craig privately observed that Newton’s
thoughts about religion “were some times different from thosewhich
are commonly receiv’d.”28 The Chevalier Ramsay was less discreet,
suggesting to Joseph Spence that “Sir Isaac Newton and Dr. Clarke
endeavoured to clear it [the doctrine of the Trinity] from its corrup-
tions, but in their way ’tis as difficult and embarrassed as it was
before.” Ramsay had once been a pupil of Newton’s closest friend
of the early 1690s, Nicolas Fatio de Duillier, and shared his faith in
the orthodox doctrine of the Trinity.29 Once Newton’sObservations
was published in 1733, therefore, it was bound to become the sub-
ject of scrutiny from orthodox divines, whatever protectionmight be
provided for it by dedication to a prominent member of the ministry.

Daniel Waterland, Master of Magdalene College, Cambridge was
perhaps the most indefatigable upholder of Trinitarian orthodoxy of
the time. He was a veteran of numerous controversies, notably with
Samuel Clarke, the deist Matthew Tindal, and Conyers Middleton.
At first glance, Waterland’s attitude toward Newton’s posthumous
publications seems to have been ambivalent. His second in the
duel withMiddleton, Zachary Pearce, found Newton’sChronology a
readyweapon in an argument about the relative antiquity of Egyptian
and Israelite religious practices and hence about the reliability of the
literal sense of the Bible as a historical source.30 In this context,
Newton was presumably one of the “men as learned and honest as
Spencer, or Marsham” who had answered their arguments about an-
cient Egyptian religion.31 Waterland advised Pearce in this oppor-
tunistic use of Newton’s work: “And though I do not myself follow
Sir Isaac Newton’s Chronology, yet I am very well pleased to see it
so strongly pressed upon one who perhaps does.”32

Middleton, however, soon turned the use of Newton against
Waterland and his ally: “I must take the liberty to dissent from you,
and to declare, that for a thorough knowledge of Antiquity, and the
whole compass of Greek and Ægyptian Learning, there have been,
in my Opinion, and now are, many Men as far superior to him, as
he within his proper Character is superior to everybody else.” To
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hold Newton up as an authority on chronology was simply rash.33

Yet this did not deter Waterland from again invoking Newton’s au-
thority, in the preface published with the final part of his attack on
Tindal, Scripture Vindicated. Here, Waterland referred admiringly to
Newton’sObservations, which, he claimed, “has given us some use-
ful Hints for the better explaining such symbolical language.”34 It is,
however, tempting to presume that this was a knowing attempt to
set a thief to catch a thief.35 Waterland and his allies were concerned
to use the strong literalism and respect for the Hebrew Bible to be
found in Newton’s posthumous writings to combat the tendency of
deist authors to read the Bible allegorically and to offset historical
and critical concerns about the reliability of the Hebrew text as a
source. They wished to do this not because they were convinced of
Newton’s own orthodoxy but because somany of their opponents ei-
ther cited the work of Newton or his followers in some way or could
be expected to be awed by his example as a natural philosopher.36

Elsewhere, Waterland expressedmuchmore straightforward opin-
ions about Newton’s theological writings and those of his allies. He
attacked Clarke’s duplicity with regard to the thirty-nine articles of
the Church of England and the ambiguous language deployed in The
Scripture-Doctrine of the Trinity.37 He was equally damning about
what he took to be Newton’s lack of candor about the intentions and
implications of his arguments in his Chronology and Observations.
He thus wrote to Zachary Grey that he was “sorry that no one yet
has undertaken a just Answer to Sir Isaac Newton’s 14th. Chapter
relating to the Prophecies of Daniel: in which he slily abuses the
Athanasians . . .That Prophetical Way of managing this Debate on
the Side of Arianism, is a very silly one, & might be easily retorted.
But besides that, what Sir Isaac has said, is most of it false History.
I have scribbled the Margin all the way.”38 A particular excitement
for Waterland and Grey was the possibility provided by Newton’s
Observations of catching the great mathematician out in his own
calculations.39 Since Waterland claimed he was too busy and too un-
well for the task, Grey duly took up the cudgel on his behalf, thus
enhancing his growing reputation as an apologist for the Church of
England.40

The resulting attack on the fourteenth chapter of the Obser-
vations was unforgiving in its criticism of Newton’s argument
and intentions and unpleasantly insightful about his methods as a
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theologian and historian. Grey confronted Newton’s chronology,
logic, and use of sources and found all of them wanting. His target
was particularly well chosen, since the chapter under review pre-
sentedNewton’s case for the growth of idolatry in the early Christian
Church, itself a sign of Newton’s broader point that the incarnation
of Christ had notmarked the fulfillment of Daniel’s prophecies. Grey
cannot have known that these had been the principal themes of Isaac
Newton’s theology since the 1670s, and it was only an inspired guess
on his part to identify this passage as the key to the underpinning of
Newton’s Arian Christology in his interpretation of prophecy.41 He
argued that Newton had suppressed evidence demonstrating that re-
spect was given to saints andmartyrs in the primitive Church which
was inconvenient to his prophetic scheme. He showed that Newton
had distorted the Greek Fathers, to make it appear that the early cult
of martyrs’ graves constituted a form of idolatry and that the first
monks had perverted true Christianity. He suggested that the accu-
sations of furthering idolatry whichNewton leveled at the orthodox,
Trinitarian Athanasians ought properly to be directed at the Arians
themselves.42 An earlier attack on theChronology by the Cambridge
divine Arthur Young had also pointed out that Newton had placed
the origins of the worship of saints too early. Whereas Grey and
Waterland were content to imply that Newton’s work might give
comfort to the deists, Young explicitly associated his publications
with those of Tindal. He also argued that Newton’s comments on
figurative language and the preservation of the text of the Hebrew
Bible, which had been disingenuously admired by Waterland, in fact
“[could] not [be] more prejudicial to Christianity.”43

For both Young and Grey, the commentaries of Symon Patrick,
Bishop of Ely, and the Connection of Humphrey Prideaux, Dean
of Norwich, provided the definitive treatments of the meaning of
Hebrew prophecy.44 They thus both upheld the authority of the clas-
sic biblical commentators of the time, whose works appealed to a
broad spectrum of ecclesiastical opinion. Moreover, both critics ar-
gued that the only real beneficiary of Newton’s attack on the reputa-
tion of the Fathers was the Roman Catholic Church. Grey suggested
that Newton assisted its polemicists by falsely attributing corrupt
Catholic doctrines to the pure, primitive Fathers.45 Given Newton’s
own powerful history of anti-Catholicism, this was a remarkable
conclusion. Because of the reputation of the theology of the early
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Church in English Protestant writing from the time of the Reforma-
tion, however, it was also justifiable.

Intellectually, one of the most powerful of Grey’s criticisms of
Newton’s theological writings was that they distorted the mean-
ing of the Greek Fathers. Grey noticed that Newton’s quotations
from writers like St. Cyril of Jerusalem, St. Cyril of Alexandria, or
St. Gregory of Nazianzus were often selective and that he was prone
to making errors in citations (for example, confusing Sozomen with
one of his sources, Socrates). Above all, the problemwas thatNewton
often seemed to be using translations rather than the original text.
This was most extreme in the case of St. Ephraem Syrus, where
Newton appeared to be using a Latin translation made from a Greek
version of the original Syriac text.46 Grey had realized that Newton’s
method for his theological writings depended largely on the assimi-
lation of works in English and Latin, many of which already seemed
dated. Although he possessed several editions of patristic texts,
Newton’s Greek was probably not good enough to allow him to cope
easily with the original versions of many of the sources on which he
ought to have beenmost dependent for a history of the early Church.
Where Newton did own the relevant Greek works, he did so in edi-
tions which also gave the text in Latin.47 This tendency was even
more marked with Newton’s use of Hebrew works, where he quite
shamelessly marked passages in the Latin parallel texts that later
appeared as quotations in Hebrew in his own writings.48 Newton’s
theological writings frequently appear to be littlemore than compen-
dia of quotations; what is less apparent is that their copious citations
were often constructed largely out of the compilations of previous
critics.49 Newton was not unusual among humanist scholars in em-
ploying this method of study, in which selective reading was rapidly
converted into the appearance of mammoth erudition in pursuit of
a particular, clearly defined goal. However, this technique worked
best when the ideology informing it was an orthodox one, since, by
definition, it was likely to be vulnerable to scrutiny.50 Given the
unusual nature of the case that Newton was trying to prove, it was
unlikely that scholarly habits such as his would bear up well under
examination.

Waterland, Grey, and Young were not the only churchmen
to criticize Newton’s posthumously published theological works.
Both Samuel Shuckford and William Warburton attacked Newton’s
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Chronology and his attitude to ancient Egyptian history.51 George
Berkeley, engaged in controversy over themetaphysical implications
of Newton’s mathematics, found it necessary to deny that he wrote
out of annoyance that “Sir Isaac Newton had presumed to interpose
in Prophecies and Revelations, and to decide in religious affairs.”
Like Grey or Waterland, he also asserted that “there are too many
that deride Mysteries, and yet admire Fluxions; who yield that Faith
to a mere Mortal, which they deny to Jesus Christ, whose Religion
they make it their Study and Busines to discredit.”52 Although some
authors defended Newton’s writings in the course of the eighteenth
century, they tended to be drawn either from the ranks of enlight-
ened dissent, or from a noisy but embattled group of churchmenwho
were sympathetic to Newton’s Arianism. The latter included writ-
ers like Arthur Ashley Sykes, a client of the Conduitt family, and
the renegade Bishop of Clogher, Robert Clayton.53 During the whole
of the eighteenth century, Newton’s Chronology and Observations
were not reprinted separately after their original publication. When
the unsold sheets of the first edition of theChronologywere reissued
in 1770, a letter was appended to them that had been written in 1754
by Zachary Pearce to Thomas Hunt, Regius Professor of Hebrew at
Oxford and a friend of Arthur Bedford. This contained an account of
Newton’s revision of the Chronology in the weeks before his death
which made it clear that sections of the published Chronology had
never been revised and that some of the problems which later au-
thors had exposed were a product of confusion on the part of its
editors.54

That Newton’s reputation as an author who favored Christian be-
lief grew during the eighteenth century depended largely on three
things. The first was the steadfast maintenance of the story of
Newton’s own simple piety by friends like William Stukeley. This
concealed the fact that Newton was only an occasional conformist
for whom attendance at the worship of the Church of England was
made considerably easier during his later years by life in Samuel
Clarke’s parish,where accommodations in the public liturgy could be
made to ease his tender conscience.55 Second, the general reception
of Newton’s natural philosophy, as presented by Richard Bentley’s
Boyle lectures, by Newton’s own General Scholium to the Principia,
and by the published correspondence of Leibniz and Clarke, was that
it tended to promote Christianity and support the Church. This was
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perhaps more a reflection of a belief among Low Church divines that
natural philosophy itself might be conducive to religion, and of the
popularity of Locke’s epistemology, rather than a wholesale endorse-
ment of Newtonianism, but nevertheless it had powerful effects.56

It was also the way in which the cautious Newton had intended to
present his system, apparently shorn of most of its clandestine het-
erodoxy. Even so, its appearance required the prompting of Bentley in
1692 and the careful direction given to the reader by Roger Cotes’s
preface to the Principia in 1713. Nor were the works in question,
particularly the General Scholium, in fact completely free of theo-
logical controversy.57 Finally, there was the revival in eschatologi-
cal prophecy in the last two decades of the eighteenth century, in
whose vanguard came Unitarian readers of Newton’s theology such
as Joseph Priestley. This also paved the way for the widespread inter-
est in Newton’s Observations among nonconformists in the nine-
teenth century.58 This movement, however, returned Newton’s the-
ological works to controversy rather than saving them from it. Thus,
Samuel Horsley, the High Church editor of Newton’s Opera Omnia
(1779–85), which reprinted the Chronology and the Observations
and provided the first reliable edition of Newton’s letters on the cor-
ruption of scripture, took Priestley to task:

It is probable too, that after the painswhich I have taken to examine thewrit-
ings and authorities on which [Newton’s] ancient chronology was founded,
I am as well qualified, as Dr. Priestley, to judge of his talents in . . . subjects,
which are not capable of demonstration. Now in these, I scruple not to
say . . . that the great Newton went out like a Common Man.59

For Horsley, as for many other orthodox divines, the printing of
Newton’s theological works was a way to reveal their inadequacy
and thus to snatch away a weapon from anti-Trinitarian critics of
the Church.

It was therefore unnecessary for eighteenth-century critics of
Newton’s theology to take refuge in the natural philosophy and scrip-
tural exegesis of John Hutchinson, whose tenets seemed laughable
to those, like Arthur Bedford, who had a competent knowledge of
Hebrew. The Hutchinsonians, in any case, were more concerned
with overthrowingNewton’s natural philosophy thanwith bothering
about his divinity, and their arguments in favor of the Trinity were
often less than incisive.60 For many of Newton’s readers, however,
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the principal attraction of his writings both in natural philosophy
and in theology lay in their anti-Trinitarianism. These included sev-
eral leading figures in the Church of England, notably Edmund Law,
Bishop of Carlisle, who themselves had doubts about the doctrine
of the Trinity and for whom Newton’s letters on “Two Notable Cor-
ruptions of Scripture,” eventually published in 1754, provided irresis-
tible ammunition in the campaign to institute a fresh translation of
the Bible as part of the doctrinal improvement of the Church.61

Yet neither Newton nor Clarke ever risked his career for such a
reformation of the Church. According to Whiston, who was himself
less cautious, the reason for this was that they believed that the
prophecy of Daniel’s seventy weeks remained unfulfilled.

However, it is not impossible that such a Notion of a long future corrupt
State of the Church soon coming on, according to the Scripture Prophecies,
might be oneDiscouragement to Sir IsaacNewton’s andDr.Clarke’smaking
publick Attempts for the Restoration of Primitive Christianity: as I confess
my Expectation of the near approach of the Conclusion of the corrupt State,
and by Consequence of the Commencement of the State when Primitive
Christianity is, by those Prophecies, to be restored, greatly encourages me
to labour for its Restoration.62

The reticence which led Newton to keep secret his views about
the doctrine of the Trinity indeed did not derive principally from anx-
iety concerning publication of his ideas about the two notable cor-
ruptions of scripture. Other more orthodox critics also doubted the
authenticity of the verses examined by Newton. Thus John Mill, to
whosemassive attempt to gather up variant readings of the text of the
New Testament Newton had himself contributed during the 1690s,
noted the paucity of authentic manuscript witnesses to i John 5.7
and rehearsed more briefly the problems associated with i Timothy
3.16.63 Richard Bentley, who perhaps knew of Newton’s discussion
of i John 5.7, also questioned the authenticity of the received reading
of that versewithout casting doubt on the doctrine of the Trinity that
it underpinned: “Arianism in its height was beat down without the
help of that verse: and, let the fact prove as it will, the doctrine [of
the Trinity] is unshaken.”64 Newton’s concerns arose from the fact
that for him the corruption of the text of the Bible was one aspect of
a much broader perversion of the Christian religion, perpetrated by
Athanasius and his followers in the fourth century. They had spread
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calumnies against other theologians, notably Arius, fomented sedi-
tion, and distorted the true meaning of the Nicene Creed:

this Council [Nicaea] allowed the interpretation of homousios by similitude
& the fathers by way of caution exprest this interpretation in their sub-
scriptions yet by the clamours of Athanasius & his party it is since grown ye

semiarrian heresy for anyman tomake this interpretation.Whether Athana-
sius therefore & his friends have not done violence to this Council I leave
to be considered.65

The false religion and idolatry introduced during the fourth century
had been perpetuated by the Catholic Church and survived even
in the reformed Church of England of Newton’s day. The Reforma-
tion had swept away many of the aspects of Catholic religion that
Newtonmost distrusted. These included the invocation of saints and
the institution of monasticism, which seemed to him to have fos-
tered many of the errors of the Church. But the critical elements of
Athanasian corruption, in particular the failure to acknowledge the
full extent of God’s dominion by attributing divinity to Christ and
the Holy Ghost, persisted in the Church of England. The exercise of
political power by the priesthood, which Newton argued had helped
to corrupt the early Church,was also one of the distinguishing char-
acteristics of the contemporary English Church.66 Yet, despite the
need for further reformation, Newton believed that the lives of the
faithful had to be governed by the times of prophecy, not by personal
whim. This may explain why he waited for signs that the prophecy
of the seventy weeks was being fulfilled before taking action that
might undermine lawful authority.67

Through his belief that he belonged to a remnant singled out to
preserve the truth about the Church and his distrust of sacerdotal
power, Newton revived concerns which were expressed earlier in
the seventeenth century by numerous Independent divines, espe-
cially in the tumultuous years of the 1640s and 1650s. His suspicion
of set forms in religion and his reluctance to subscribe to any of the
accepted creeds of the Church are again reminiscent of the writing
of that time, as are his convictions that the primitive Church had
not practiced infant baptism and had worshipped God on a Satur-
day sabbath.68 Like many writers of the mid-seventeenth century,
Newton approached issues of ecclesiastical and doctrinal history
through the prism of a strict biblical literalism. One aspect of this
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attitude to the Biblewas that the text of scripture both confirmed and
interpreted itself.69 These hermeneutical principles were borne out
in the synchronism of the prophecies of Daniel and the Apocalypse
which Newton proposed. They also helped to cast doubt on the au-
thenticity of the doctrine of the Trinity, which depended for its scrip-
tural authority largely on two verses, i John 5.7 and i Timothy 3.16.

For Newton, the notion of the divine Trinity represented the cul-
mination of the human tendency to corrupt religion into idolatry.
The survival of the true Church depended on the correct understand-
ing of God, who ruled through his servants with undivided dominion
over the created world, and its manifestation in an appropriate form
of worship.70 Much of Newton’s unpublished theological scholar-
ship was devoted to elucidating the history of that Church, from its
reestablishment byNoah to itsmost recent corruption byAthanasius
and his papal successors.71 Traces of his conclusions about the pure,
primitive religion of Noah can also be found in the published and
unpublished queries to the Opticks.72 It is possible that Newton de-
rived some of his ideas about the corruption of scripture and the
true nature of God from reading contemporary heterodox writings,
in particular those of Socinian authors, yet it is equally likely that he
reached his conclusions largely by himself, through the application
of a sharp mind, intolerant of ambiguity, to the complexities of the
Bible. He was certainly unwilling to accept anyone as his master in
the study of scripture and was thus representative of the most defi-
antly independent tradition of nonconformist biblical scholarship.73

Newton’s belief that the Christian religion consisted in a few funda-
mental truths (the worship of God and love of one’s neighbor) found
expression in his distrust of creeds that seemed to impose more than
these essentials on the believer.74 His concern to avoid excessive pre-
scription in matters of faith may have been a reflection on his first
experiences at Trinity College, Cambridge, where, within littlemore
than a year of his arrival as an undergraduate, he would have wit-
nessed bitter argument over the liturgy to be used in chapel and the
expulsion of one fellow, the natural philosopher John Ray, for refus-
ing to take the oaths under the Act of Uniformity in 1662.75 Perhaps
it was also a consequence of these events that Newton wanted to
confine suffering for his faith to the private experience of his closet,
even though his personal beliefs were quite different from those of
ordinary members of the Church to which he nominally belonged.
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Yet the burden of the prophecy of the seventy weeks may have
forced Newton to intervene publicly in debate about the doctrines
of the Church at two moments, in 1687–91 and in 1709–13. These
were both times of tribulation for God’s people when it seemed that
the captivity of the Church might begin again.76 In 1687, Newton
broke cover to defend the legality of the University of Cambridge’s
refusal to admit the Benedictinemonk Alban Francis to anMAwith-
out taking the oaths. This was Newton’s first public act of defiance
to the regime of James II and its policy of advancing the rights of
Catholics. Following James’s deposition in 1688, Newton took up
a university seat in the Convention Parliament, which considered
not only the succession but the right of the Church of England to
persecute dissenters. Less than nine months after the dissolution of
the Convention, when fears were already mounting about the reli-
gious and theological disorder that might result from the Toleration
Act that it had passed, Newton sent the first of his letters to Locke
about two notable corruptions of scripture, i John 5.7 and i Timothy
3.16. For a brief few months, Newton dared to think of allowing
Locke’s friend Jean Le Clerc to publish a Latin or French translation
of the work, before retreating under the mounting anxieties of the
time.77 Le Clerc’s copy of Newton’s work, written in Locke’s hand,
was never returned. Versions of it circulated after Le Clerc’s death
in 1736, by which time the manuscript was incomplete.78 One of
these later became the basis for the first, inaccurate publication of
the letters in 1754.79

Newton again considered publishing the letters in around 1709,
when he commissioned Hopton Haynes, an employee at the Mint
who shared his anti-Trinitarian sentiments, to translate what he
had written about i John 5.7 into Latin. The manuscript title-page of
this work bore the putative imprint “Amsterdam. 1709.”80 The years
around the end of the first decade of the eighteenth century were dif-
ficult ones for Newton and his closest disciples. After the tory elec-
tion victory of 1710, the liberties that had been won for religious dis-
senters in 1689 seemed to be under increasing threat.Moreover, from
1708, Whiston began to draw attention to himself as a critic of the or-
thodox doctrine of the Trinity and a proponent of further reformation
in the Church.81 Whiston attempted to involve both Samuel Clarke
and Newton in the debate that he conducted with Archbishops
Tenison and Sharp and Bishop Lloyd during 1708 and 1709.82 It seems
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likely that this exchange prompted Newton to reconsider the pub-
lication of his letters on the scriptural authority for the doctrine of
the Trinity. Haynes later remarked of his translation that “I know
Sr Isaac intended them for the Press, and only waited for a good
opportunity.”83 Yet Newton hesistated. Both Whiston and Clarke
knew of Newton’s attack on the authenticity of i John 5.7 by 1719.84

But although Whiston had obtained a copy of the letters by 1738, it
seems unlikely that he had extensive physical evidence of Newton’s
beliefs during his mentor’s lifetime.85 Newton did reveal hints of his
heterodox ideas about God in the General Scholium that he added to
the second edition of the Principia in 1713, in the process support-
ing Clarke’s arguments, published in The Scripture-Doctrine of the
Trinity during the preceding year.86 Controversial though Newton’s
published views were, they stopped short of spelling out the implica-
tions for the Church of his beliefs about the nature of God.87 Newton
therefore chose to keep his own counsel about the past and future
of true religion, despite the dangers that confronted his friends and
the threat of a return to the persecution of dissent. Curiously, the
exposure of his genuine opinions was thus left to the divines of the
eighteenth-century Church of England.
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pp. 8–9, 33–9, 81–104; cf. G. D. Henderson, Chevalier Ramsay (London:
Nelson, 1952) and D. P. Walker, The Ancient Theology (London:
Duckworth, 1972), pp. 231–63; Fatio’s views on the Trinity may be
found in BPU, MS. Français 602, fol. 24r.
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15 Newton versus Leibniz: from
geometry to metaphysics

In the course of a long life IsaacNewtonmademany enemies: Francis
Linus (or Hall), Robert Hooke, John Flamsteed, Gottfried Wilhelm
Leibniz, Johann I Bernoulli. Of these Leibniz was by far the greatest
intellect and above all an outstanding mathematician and philoso-
pher. Newton defeated them all and outlived them all except the
last, twenty-five years his junior.

It was a sad chronology that brought two such inventive mathe-
maticians as Newton and Leibniz to live in the same age; never were
temperaments and intellectual characters more at odds. Almost the
only feature that they had in common was Protestant piety, yet even
in appealing to God the Creator they could not agree. In mathemat-
ics and its applications to celestial mechanics, and more particularly
in the development of the calculus, though the methods promul-
gated by the two men were equivalent, they had been reached and
were justified by wholly distinct arguments. Newton was by choice
a geometer, Leibniz an algebraist; the difference does not of course
imply that they could not tackle the same problems. J. E. Hofmann
has written that Leibniz’s “first major [mathematical] discovery in
Paris [in 1673] originated in thoughts strongly influenced by consid-
erations of logic and philosophy – and as so often with Leibniz, was
not fully established but came as the fruit of a particular insight ob-
served in simple examples and generalised by a stroke of genius.”1At
this stage Leibniz was working with numerical series, for example:

1+ 1
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+ 1
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+ 1
35

+ 1
70

+ · · · = 4
3
;

a particular case of his general theorem that even infinite series
of numbers can be summed. Later of course Leibniz would extend
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his technique to include the approximate summation of the infinite
serieswhich could be used to express themagnitude of areas bounded
by curved lines, that is, problems in geometry; thus he found that

1− 1
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5

− 1
7

+ · · · = �

4

Other series which he developed – in some cases having been antic-
ipated (unknown to him at this time) by other mathematicians – ex-
pressed sinx, tanx, etc. Moreover, in his approach to his far greater
discovery of the methods of calculus, Leibniz relatively early (in
1675) developed a new algebraic symbolism in which to express
them. The outline of his invention that he wrote for Newton on
21 June 1677 (N.S.) is wholly algebraic even though the object of
the operation may be to define the tangent to a curve or its quadra-
ture. We have to remember, however, that in contemporary terms
to effect the quadrature or rectification of a curve demanded (where
possible) the expression of the result in a definite algebraic expres-
sion, whereas the method of series – first developed by Newton and
then used by others – employed for the same purpose could only
afford an approximation because such a series could not be exactly
summed.2

With Newton it was far otherwise. The undergraduate who (ac-
cording to a familiar anecdote) had failed to master Euclid because it
seemed to him a trifling book, became the mathematician who re-
garded algebra as bungling. It is no coincidence that Newton’s only
set of lectures on algebra was published under the title Arithmetica
Universalis. Or we may contrast the relative fullness of our knowl-
edge of Leibniz’s relations with his mentor, Christiaan Huygens,
with the complete absence of any facts bearing onNewton’s relations
with his mentor and patron, Isaac Barrow (also a geometer), before
Newton was 27 years of age in 1669.3 In later life, in the course of
the long dispute with Leibniz and the continental mathematicians,
Newton sought to maintain that (like the ancient geometers) after
having found the propositions in the Principia by analysis (that is,
algebra) he had demonstrated them to the reader by means of ge-
ometry; thus at one and the same time asserting his mastery of the
supreme modern analysis, calculus or fluxions, and the superiority
in certainty of his work over that of others who relied entirely on
discovery by analysis, without geometrical demonstration.4
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This contention of Newton’s, developed as a consequence of the
calculus dispute in order to buttress his claim that in composing the
Principia he had employed the method of fluxions for the solution
of intricate problems in mechanics, has been discussed by D. T.
Whiteside. Its complete factual truth is at least debatable. I have my-
self long accepted the view that he has advanced that the Principia
was in large part drafted in the form in which, after considerable re-
vision, we now have it. The earliest precursors of the book, including
thetract(s)“Demotu,”areof thesamemathematical form.5Wedonot
find many analytical attacks upon Principia propositions. We only
know that in the case of just one recalcitrant problem, the determina-
tion of the formof the solid of least resistance (Proposition 34, Book 2,
in the third edition), Newton left a sound analytical demonstration
of the result, which was published without proof. In other cases (for
example, in Proposition 10 of the same book) it is possible that a prior
analysismight have preceded the printed geometrical proof. But there
is no evidence, and this was certainly not Newton’s usual procedure.

When we consider also Newton’s own early researches into anal-
ysis, which brought him to the fluxional calculus, perhaps it may
seem that his later insistance upon geometrical demonstration was
contrary to the tenor of his mathematical work during his most cre-
ative years. D. T. Whiteside has reminded us that though in youth
Newton critically annotated a copy ofDescartes’sLaGéometriewith
Error and Non Geom, as well as writing a paper on Errores Cartesii
Geometriae, they are nowhere “connected to form any imputation
that Descartes errs because he adopts an algebraicmethod of geomet-
rical analysis.”6 On the other hand, Newton commended Huygens’s
use of geometry in proving the propositions of Horologium Oscilla-
torium (1673). Further, at a late date indeed (themid-1690s), Newton
drafted a major work on geometry amounting to more than 150 of
D. T. Whiteside’s large pages.7 In the last revision of Book 2 is an ab-
breviated version of the still unpublished “De quadratura curvarum”
(written in 1691–2). In an early draft of his Geometry Newton ex-
pressed his opinion that our algebra seems not to differ from the
ancients’ process of analysis

except in the manner of its expression. But they in composing the resolved
[that is, synthetic] proof used to shape demonstrations of their findings in a
[geometrical] form adapted to the common capacity to comprehend; whereas
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we exhibit the [algebraic] analysis of the findings and are less solicitous about
its [synthetic] composition.8

Elsewhere, post-1698, Newton wrote an opinion of a book Analysis
Geometrica (Cadiz, 1698) by Hugo de Omerique:

therein is laid [he wrote] a foundation for restoring the Analysis of the An-
cients wch is more simple, more ingenious & more fit for a Geometer than
the Algebra of the Moderns. For it leads him more easily and readily to the
composition [synthetic demonstration] of Problems and the Composition
which it leads him to is usually more simple and elegant then that wch is
forct from Algebra.9

These passages were all written before the poison of the priority
dispute had infected the mathematical writings of Newton’s old age.
Newton had long been attached to the idea of the “prisca theolo-
gia”: the Renaissance belief that the ancients had been far wiser and
more inventive than the moderns, that their wisdom had therefore
exceeded ours, and that the best endeavors of the moderns should
be devoted to recovering what the ancients had possessed. We may
guess that as such a philosophy matured in Newton’s mind during
his middle years it penetrated even his thoughts on mathematics.

The story of the calculus dispute may conveniently begin with
Newton’s admission in the first edition of the Principia that Leibniz
had in 1677 sent to him “a method of determining maxima and min-
ima, of drawing tangents, and performing similar operations, serving
for irrational terms as well as rational ones . . .which hardly differed
from my own except in words and notation”; Newton’s method of
fluxions (ofwhich he nowgave a terse algebraic outline) had of course
been in existence by then for more than a decade without reaching
print. Nor did Newton ever freely open it to Leibniz, in response
to the latter’s frankness. The whole Scholium in the Principia, this
limited disclosure of themethod of fluxions (which went not beyond
what Leibniz had disclosed in 1677), has to be seen as Newton’s re-
sponse to Leibniz’s first (difficult) paper on his new calculus in the
Acta Eruditorum of 10 October 1684.10

As yet there were no claims for priority nor assertions of bad
faith. The first unpleasantness occurred after the senior English
mathematician, John Wallis, published a fuller account of Newton’s
method of fluxions (derived from its author) in his ownOpera Math-
ematica (vol. 2, 1693).11 On this Leibniz merely remarked again the
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equivalence of Newton’s method with his own, and expressed some
disappointment that Newton had discovered no newer method of
quadrature (integration) than that offered by the summation of infi-
nite series. His younger friend Johann I Bernoulli, however, in a letter
to Leibniz (of 15 August 1696) said he did not know “whether or not
Newton, having seen your calculus, did not thereupon fabricate his
own method, especially as I see that you had imparted your calculus
to him before he published his method.”12 This was of course a pri-
vate expression of opinion, not a public accusation. Neither Newton
nor Leibniz was inflamed against the other. Indeed, an exchange of
letters between the two men after a silence of many years was con-
ducted in formally affable terms, each man praising the other for
his contributions to mathematics and Leibniz assuring Newton that
“above all things, I desire you, who are a perfect geometer, to con-
tinue as you have begun to treat Nature mathematically, in which
kind of investigation you have certainly accomplished something
very worthwhile.”13

Meanwhile, itmust be added, Leibniz had published another paper
in the Acta which was in subsequent years further to sour Newton’s
unexpressed thoughts about him. Thiswas Leibniz’s essayTentamen
de Motuum Coelestium Causis (“An Essay on the Causes of the
Celestial Motions”), appearing only two years after the publication
of the Principia. In this essay (also obscure to its readers) Leibniz took
care to explain that he had not yet seen a copy of the Principia when
he wrote it, being stimulated to do so by a review of that book in the
Acta Eruditorum. Domenico BertoloniMeli has convincingly shown
this account to be untrue;14 notes on the Principia made in Vienna
by Leibniz are clearly to be placed at a time before Leibniz wrote the
essay in Italy. Its object was to show how the motions of the Moon
and planets calculated by Newton on the basis of his law of uni-
versal gravitation might be mechanically produced by a “harmonic”
aethereal vortex, divided into five layers so that each might have a
speed appropriate to the planet which it propelled. To account for the
ellipticity of the orbits, Leibniz proposed (following G. A. Borelli in
1665) that each planet oscillated on a solar radius, thrust outwards
to aphelion by the force of rotation and equally drawn inwards to
perihelion by the force of a second aether acting independently of
the first.

Since the Acta Eruditorum were little read in England, it was per-
haps only after other incidents had begun to set Newton against
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Leibniz, during the early years of the eighteenth century, that
Newton became aware of Leibniz’s complicated theory of celestial
mechanics, in which he at once discovered a numerical error (in
Leibniz’s computation of the central forces acting on the planets),
an error that Leibniz was impelled to correct when it was privately
brought to his notice by the French mathematician Pierre Varignon
in 1704. Newtonwas not impressed by Leibniz’s vortical theory, find-
ing this and all Leibniz’s excursions into physics contorted, unnec-
essary, and geometrically unsound; he held the private opinions that
Leibniz’s claimof ignorance of thePrincipia at the time ofwriting the
Tentamen was false, and that the vortical theory of the Tentamen
was more closely modeled on his own book than Leibniz cared to ad-
mit. The incident was seen by him as another instance of Leibniz’s
questionable candor.

This was an opinion that Newton’s friends were eager to confirm.
Apart from Fatio de Duillier they were mostly Scots, of whom the
first to become acquainted with Newton was John Craige (d. 1731),
an able mathematician, who spent some time in 1685 in Cambridge
with Newton (who called it “an extended stay”).15 Craige brought
with him a draft work on the quadrature of geometric figures which
he asked Newton to comment upon before having it printed. Con-
tinuing with Craige’s narrative, “this with great kindness Newton
did” and then acquainted him with the quadrature of two curves
(m2y2 = x4 + a2x2) and (my2 = x3 + ax2) “and assured me that he
could show innumerable others of the same kind, by means of an
infinite series.”16 In fact, it seems that Newton permitted Craige
to study some of his own early manuscripts and Principia drafts, as
Craige had formerly studied works by Barrow and Leibniz already
in print. In his ensuing revised book, however, Craige used Leibniz’s
calculus notation, changing only in later years to fluxions; he ex-
pressed indebtedness to both Leibniz and Newton.17 After his return
to Scotland, Craige brought Newton’s achievements to the attention
of David Gregory in Edinburgh, who in turn imparted them to his
students Cheyne, Keill, and Pitcairne.

These Scottish Newtonians, most of whom established them-
selves either in Oxford or in London, in later years offered strong
support to Newton in diffusing his innovations and in supporting
him against the continentals. The first author to print an accusation
against Leibniz tantamount to a charge of plagiary was, however,
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Nicolas Fatio de Duillier. For about ten years he had had access
to Newton’s mathematical papers of the 1660s and 1670s, his vari-
ous essays, and correspondence with other mathematicians. He may
even have received from Newton some hint that Leibniz had been
ungenerous in forgetting the kindness he had received from Collins
in 1676, when Leibniz had been allowed to look through Collins’s
massive correspondence and even Newton’s tract “De analysi” (“On
Analysis”) and so to scan a great deal of British mathematics. The
immediate occasion of Fatio’s attackwas the challenge issued to “the
finest mathematicians of Europe” by Johann I Bernoulli to solve a
pair of problems in mechanics. Newton first saw the challenge on
29 January 1697; he solved the problems that night after a hard day’s
work at the Mint, though much out of practice in analysis. Almost
certainly Bernoulli had expected him tomaster the problems – aswas
done only by the challenger himself, his own elder brother Jakob, and
Leibniz. At any rate, he correctly guessed that an anonymous solu-
tion from England came fromNewton, “as the lion [is known] by his
claw.”

Contrary to Fatio’s supposition, the challenge can hardly have
been posed in order to exposeNewton’s weakness in calculus; rather,
the continentals perceived and respected Newton’s ability. Fatio,
anxious to leap to Newton’s defense and piqued because he himself
had not been sent a copy of the challenge, now declared in print:

I recognise that Newton was the first and by many years the senior inventor
of the calculus . . . as to whether Leibniz, the second inventor, borrowed any-
thing from him, I prefer to let those judge who have seen Newton’s letters
and other manuscripts, not myself.18

Leibniz’s eagerness, he went on, “in ubiquitously attributing the cal-
culus to himself would deceive no one familiar with the documents
I have myself examined.”

As happened to Newton in the opposite sense, this attack made
Leibniz sensitive to the Newtonians’ hostility, but he was too much
occupied in bringing to a successful conclusion his grand scheme
for an Academy at Berlin to pay much attention to a mere “fish-
wives’ quarrel.” In a published reply to Fatio of May 1700 Leibniz
merely claimed that Newton himself would not be taken in by such
nonsense as Fatio had printed and (correctly) that only Newton and
himself were original founders of the calculus, as Newton had stated
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in 1687. This last point was made in opposition to Fatio’s assertion
that hewas himself an inventivemathematician, having “since 1687
acquired by his own self-tutored efforts a working proficiency with
the basic methods and procedures of elementary calculus” and in-
deed imparted to Newton a useful integration process.19

In his next intervention Leibniz became more severe. In 1703
George Cheyne, both physician and mathematician like (later on)
Newton’s editorial assistant Henry Pemberton, published the third
or fourth treatise on fluxions to appear in print, Fluxionum Metho-
dus Inversa (“The Inverse Method of Fluxions,” that is, integration)
based on the work of Newton and David Gregory; the latter noted
that this book provokedNewton into publishing “On the quadrature
of curves” with his Opticks in 1704.20 Abraham de Moivre wrote
against Cheyne’s book; no Newtonian thought well of it. Cheyne’s
marked Anglophilia and use (without acknowledgment) of Leibniz’s
published work irritated the continentals. In one passage Cheyne
wrote that everything published about methods of quadrature dur-
ing the previous twenty-four years “relating to these methods of
[Newton], or to other not dissimilar methods, is only a repetition
or an easy corollary of what Newton long ago communicated to his
friends or the public” (my emphasis). Although Johann Bernoulli
thought Cheyne’s book “stuffed with clever discoveries,” Leibniz
was sufficiently provoked to comment in one of his letters to
Bernoulli:

it may be the case that just as Mr Newton discovered some things before
I did, so I discovered others before him. Certainly I have encountered no
indication that the differential calculus or an equivalent to it was known to
him before it was known to me. (My emphasis)21

It seems that privately Leibniz was beginning to lose his earlier will-
ingness to accept Newton as a co-discoverer of the calculus, which
after all rested only on his belief that Newton – whom he never
met – was an honorable man.

The death of Robert Hooke (3 March 1703) enabled Newton to
publish Opticks, begun more than fifteen years before; indeed, he
had promised his friends even before the end of the year 1702 that he
would publish this work together with “The quadrature of curves”
and his “Enumeration” of the cubic curves.22 There was no great
triumph, alas, to be won by this first public appearance of Newton,
now past 60 years of age, as a puremathematician. The first textbook
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of Leibnizian calculus, adapted by the Marquis de L’Hospital from
the lessons he had received from Johann I Bernoulli, was now eight
years old; intensive work by Leibniz himself, the Bernoulli brothers,
and others had brought their mathematics up to, perhaps beyond,
the accomplishment of Newton, single-handed, twenty years earlier.
Newton’s suppression of “Quadrature” was twelve years too long. In
the words of D. T. Whiteside:

Newton’s historical importance as the author of “DeQuadraturaCurvarum”
is the minimal one of a lone genius who was able, somewhat uselessly in
the long view, to duplicate the combined expertise and output of his con-
temporaries in the field of calculus. What is not communicated at its due
time to one’s fellow-men is effectively stillborn.23

Newton’s achievements might stand as a model and inspiration
for Britons and a few continentals – such as the Comte de Buffon
whose translation, La méthode des fluxions, appeared in 1740 – but
there was nothing new in “Quadrature” for those at the forefront of
mathematics, who (moreover) were busy expressing Newton’s own
science of rational mechanics in the new analytical form.24 All this
of course is not to deny the essay ingenuity and depth of thought.

Not surprisingly, “Quadrature” figured largely in Leibniz’s un-
signed review of the Opticks volume in the Acta Eruditorum;25 five
whole pageswere devoted to the twomathematical treatises. Leibniz
was naturally particularly attentive to a very early passage in which
Newton gave a reasonably exact summary of how “in the years 1665
and 1666 I gradually hit upon the method of fluxions, which I have
here employed in the quadrature of curves.” The fluxion, he contin-
ued – in one of his only partially successful attempts at the definition
of his fundamental and unchanging concept – is the velocity with
which a [geometrical] quantity increases or diminishes according to
some law, while the fluent is the quantity generated.

Mathematical quantities I here consider not as consisting of least possible
parts [infinitesimals] but as described by a continuous motion. Lines are
described, and generated by being described, not by the addition of parts but
by the continuous motion of points, surfaces by the motion of lines, solids
by the motion of surfaces, angles by the motion of sides, and times by [their]
continuous flow and so for the rest.26

It is very relevant that Newton did not at this point plunge at once
into algebra, as Leibniz had done in his letter to Newton of 11 June
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1677, but defined and explained his procedure in geometrical terms,
treating of geometrical figures defined by lines and areas. Leibniz
commented not at all on the geometry/algebra contrast between the
two methods; instead, he insinuated (with only a veneer of polite-
ness) that Newton’s calculus was derived by imitation from his own
antecedent model:

instead of the Leibnizian differences Mr Newton employs, and has always
employed, fluxions which are almost the same as the increments of the flu-
ents generated in the smallest equal portions of time. He has made elegant
use of them both in his Principia Mathematica and in other publications.
(Emphasis in original)27

Leibniz then went on: “just as Honoré Fabri in his Synopsis Geomet-
rica substituted the advance of movements for the method of [Evan-
gelista] Cavalieri.” The sense of these last words, as they appeared
to Newton after they had first been kindly brought to his attention
by John Keill in 1711, was stated by Newton himself:

The sense of the words is that Newton substituted fluxions for the differ-
ences of Leibniz, just as Honoré Fabri substituted the advance of movements
for the [infinitesimal] method of Cavalieri. That is, that Leibniz was the first
author of thismethod andNewton had it fromLeibniz, substituting fluxions
for differences.28

There were, however, compliments to Newton in this review, and
when Arithmetica Univeralis was brought out by William Whiston
in 1707 Leibniz wrote in the Acta that things missing from large
tomes on algebra were to be found in this little book.

While Leibniz’s reviewswere still unread byNewton, JohnKeill in
1708 repeated Fatio de Duillier’s accusation of Leibniz’s plagiarism.
Printing as his first contribution to the Philosophical Transactions
an article on “The Laws of Force,” Keill declared that:

All these things follow from the nowadays highly celebrated arithmetic of
fluxions, whichMrNewton beyond any shadow of doubt first discovered, as
anyone reading his letters published byWallis [in 1693] will readily ascertain,
and yet the same arithmetic was afterwards published by Mr Leibniz in the
Acta Eruditorum having changed the name and the symbolism.29

Here there is an obvious suggestio falsi that Newton had published
his fluxions before Leibniz hadmade the calculus known. Since there
is no evidence that Keill was familiarly acquainted with Newton
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at this time, it is possible that his words only paraphrase those of
Fatio in 1699. Before considering Leibniz’s rebuttal, one must note
that in the first years of the eighteenth century Leibniz’s attitude
to Newton’s concept of universal gravitation as an immaterial (or
at least, indefinable) force in the universe had become more hostile;
he now judged that it was time to refute the foolish “English phi-
losophy” in the Acta Eruditorum, a periodical very much under his
control. Its reviews inveighed against George Cheyne’s Philosophi-
cal Principles of Natural Religion (1705) and John Freind’sChymical
Lectures (1709) for teachingNewtonian concepts of gravitational and
chemical forces, with the accusation that these writers were revert-
ing to the “occult qualities, such as sympathy and antipathy were
in the [medieval] schools of philosophy.” To attack the writings of
Cheyne and Freind was in effect to attack Newton’s works. Only
recently, in Optice (1706), in Query 23, Newton, while admitting
that “what I call Attraction may be perform’d by impulse, or by
some other means unknown to me” had (after this gesture toward
metaphysical neutrality) questioned whether “the small Particles of
Bodies” do not have “certain Powers, Virtues or Forces, by which”
matter affects light, “but also upon one another for producing a great
Part of the Phaenomena of Nature,” instancing gravity, magnetism,
and electricity as making “it not improbable that there may be more
attractive Powers than these.”30 To such neo-Cartesians as Leibniz
Newtonian forces betrayed all the advances made by Francis Bacon
and Gassendi, Galileo, and Desartes, the modern reformers of phi-
losophy. As for the personal accusation, Leibniz had been a Fellow of
the Royal Society since 1673 (Keill only since 1700); he now wrote
to its Secretary, Hans Sloane, to protest against Keill’s accusations.
Sloane in turn sought the advice of the President, Sir Isaac Newton
(as he now was), who demanded an explanation from Keill. The lat-
ter had no difficulty in showing how Newton, his mathematics and
his philosophy had been criticized in the Acta Eruditorum, so that
Newton now thought himself more sinned against than sinning.31

Accordingly, clearly with Newton’s help, Keill composed a sub-
stantial letter to Leibniz, withdrawing nothing but rather affirming
that in his two letters to Leibniz of 1676 Newton “had given pretty
plain indications to thatmanofmost perceptive intelligence,whence
Leibniz derived the principles of [his] calculus, or at least could
have derived them.” Newton, he declared, had advanced further in
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calculus by 1671 than anyone else had done to the present day.32 By
the time that this letter had been approved by the Royal Society (24
May 1711) and sent to Berlin, Newton’s position had been slightly
reinforced by the publication – from the papers of the long-deceased
John Collins which had passed into the hands of William Jones, a
teacher of mathematics – of Newton’s “De analysi” (written forty-
two years before), together with a more recent treatise, Methodus
Differentialis, and the pair of essays already printed with Opticks,
and correspondence. Leibniz’s second demand for an apology from
Keill reached London in January 1712, prompting Newton for the
first time to make a verbal statement before the Royal Society: in
this he pointed out that though himself the “first author” of the
new calculus he was not the first aggressor in the dispute that had
arisen. No doubt at the President’s instigation a committee was ap-
pointed to report on the issues at stake, a committee consisting of
ten Fellows (mostly mathematicians, among whom William Burnet
was well acquainted with Leibniz) and the Prussian Ambassador in
London.33

The report of this committee, appointed on 6 March, was ready
by 24 April 1712. Newton himself had in effect done its work; he
had made a dossier of the relevant documents and drafted a report
which was in all essentials adopted by the committee; its judgment
was that “Mr Newton was the first inventor [of the calculus] and are
of opinion that Mr Keill in asserting the same has been noways inju-
rious to Mr Leibniz.”34 The Society ordered the immediate printing
of both the report and selected documents (in Latin for international
circulation). So appeared at the end of 1712 – to Anglicize its long
title – The Correspondence of Mr John Collins and Others concern-
ing the Promotion of Analysis.35

As long ago as 1855,Newton’s biographer SirDavid Brewster, over-
whelmed by the published investigations of Augustus De Morgan,
confessed: “It is due to historical truth to state that Newton sup-
plied all the materials for the Commercium Epistolicum and . . .was
virtually responsible for its contents.” Whiteside repeats the same
needless adverb: “Itwas in factNewtonwho, virtually single-handed,
elicited and annotated the volume of letters which was not quite a
year later printed off and privately circulated.”36 Further, a decade
later and six years after Leibniz’s death, Newton carefully doctored
a second edition of this book to make his own priority still more
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evident. To the Victorians this revelation of Newton’s duplicity – he
who had told Leibniz that no man should stand as a witness in his
own cause! – was very shocking. In our more cynical age it is still
deplorable and, as we now know, it was pointless. Newton was a
powerful and a very great man: few cared to oppose him. Of him it
may be said – to revise Shakespeare’s words – that the good he did
lived on and the evil was inter’d with his bones. Many of the claims
made for the Commercium were true (the Committee was interna-
tional in that de Moivre was born in France, the Ambassador Bonet
in Prussia), the documents were faithfully printed, and so on. But
Leibniz was allowed no hand in activating Newton’s puppets. Only
the evidence from one side was heard and judged.

Not surprisingly, many of the elections to the Royal Society from
about 1690 onwards were of men already, or soon to be, Newton’s
admirers, from Joseph Raphson in 1690 to Henry Pemberton in 1720.
When Newton became President in 1705 the Society accorded him
solid support. William Jones’s publication of Newton’s mathemat-
ical essays from 1669 initiated a series of Newtonian publications:
the Commercium Epistolicum was followed by the second edition
of the Principia (1713) – with a Preface by Roger Cotes strongly at-
tacking Leibniz’s criticisms of universal gravitation – reprinted at
Amsterdam in the following year. Raphson’s History of Fluxions ap-
peared in 1715 to be followed two years later not only by the third
edition of Opticks with further Queries but by the Leibniz–Clarke
Correspondence (see below), in which, by Leibniz’s death toward the
end of 1716, Clarke was given the last word. These various authors
were not at all conscious of defending a weak cause; rather they were
fully convinced of its strength.

The spread of Newton’s reputation on the Continent was limited
for a time by theCommerciumEpistolicum affair. To the Leibnizians
the book revealed the British as enemies of truth and progressive
mathematics; all their mathematicians were tainted by Newton’s
false conduct. A damaging rift was created, isolating the British
mathematicians from the Continent for a century, even though
in time cordial personal relations were restored. Only slowly, be-
ginning with Opticks, first the Italians, then the French, accepted
and adopted Newtonian science, while the Germanic school, repre-
sented by men of the highest talent such as Johann Bernoulli and
Leonhard Euler, continued to reject its more speculative aspects. In
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the last years of his life continental rejection caused Newton not a
little distress, hence his particular cordiality toward those like Pierre
Varignon and Willem ’sGravesande who showed intelligent appreci-
ation of his enormous achievements in mechanics and also personal
esteem.

From about 1710 Newton or his friends kept a close eye on the
Acta Eruditorum. Early in 1713 Newton drafted a letter (the ad-
dressee is not stated, and the letter was never sent) protesting against
a review of William Jones’s Analysis per Quantitatum Series, Flux-
iones et Differentias (1711); in his ownmethod of first and last ratios,
he protested, quantities are never considered as infinitely little.37 By
now the Commercium Epistolicum had reached Germany, to the
great affront of Johann Bernoulli who in May 1713 sent Leibniz a
detailed account of its iniquities: “you are at once accused before
a tribunal consisting, as it seems, of the participants and witnesses
themselves, as if charged with plagiary, then documents against you
are produced, sentence is passed; you lose the case, you are con-
demned.” Bernoulli assured his friend that Newton’s understanding
of differentiation was imperfect – a charge to be repeated later by
him in several places, but unjustified; it was his incomprehension
of Newton’s processes that was at fault.38 This was to be the basis
for the oft-repeated charge that Newton did not understand how to
obtain second differentials, which was urged in a particular context.
In September 1712Nikolaus Bernoulli, Johann’s nephew and an able
mathematician, had made a visit to London, bringing news of an er-
ror inNewton’s investigation of resistedmotion in Principia, Book 2,
Proposition 10. This had been discovered by Johann in 1710; by
Bernoulli’s calculations Newton’s printed result was in error by a
factor of three to two. No one, however, had identified the flaw in
Newton’s reasoning, which he was left to find out for himself within
two or three days of first being told of the discrepancy, when he gave
a dinner to Nikolaus and his host Abraham de Moivre. Newton’s re-
view of his old work was long and difficult, filling some fifty pages;39

he satisfied himself of the error of his original result and the accuracy
of his new one (agreeing with Bernoulli) in five different ways. Then
he had to construct a proof of the new result that would more or less
exactly fill the same space in the already printed text of the second
edition. All this he successfully did. Three months had passed, how-
ever, before Newton could send his draft of the necessary rewritten
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pages toRogerCotes atCambridge, eagerly awaiting them for the sec-
ond edition of the Principia. Neither Cotes, Newton’s patient editor
who corrected many blemishes in the new text, nor the Bernoullis
(in relation to Proposition 10 of Book 2) ever received aword of public
acknowledgment.40

Meanwhile, Leibniz had been inflamed bywhat he read of the new
English philosophy of attraction, in the originals or reviews in the
Acta, not least by the rejection of his own vortex hypothesis in the
Tentamen and by suggestions of his own plagiarism from Newton,
all suggestions he dismissed as “idiotic . . . [Newton] no more knew
our calculus than Apollonius knew the algebraic calculus of Viète
and Descartes . . .He knew fluxions but not the calculus of fluxions”
which he had fashioned later upon Leibniz’s model.41 The English,
Leibniz believed, were inveterate thieves of German inventions, as
with Boyle whose air-pump had been taken fromOtto von Guericke.
On 18 July Leibniz, now living in Vienna, had his Acta Erudito-
rum friends in Leipzig publish anonymously a flysheet (the Charta
Volans), based on letters from Johann Bernoulli and others, designed
to set Newton’s iniquities and injustice to himself before a wide
European public.42 After discovering the “unnatural xenophobia of
the English,”which had led themnot only to includeNewton among
the discoverers of the calculus but to exclude Leibniz himself from
their number, he had begun to suspect “that the calculus of fluxions
had been developed in imitation of the differential calculus”:

having undeservedly obtained a share in this, through the kindness of a
foreigner [that is, Leibniz], he [Newton] longed to have deserved the whole –
a sign of a mind neither fair nor honest. Of this Hooke too has complained,
in relation to the hypothesis of the planets, and Flamsteed because of the
use of his observations.

Leibniz, not mincing his words, was looking for allies. More in-
teresting, in the passage immediately before that just quoted, is his
remark that he had discovered the differential calculus “first in num-
bers [arithmetic] and then transferred it . . . to Geometry.” Newton’s
method of fluxions was from the first geometrical, conceived from
the generation of lines by moving points and areas by moving lines.

The flysheet was widely distributed in continental journals, with
some “Remarks” added by Leibniz, and probably Keill had no great
difficulty in convincing Newton (during the autumn of 1713) that
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it must be refuted. Keill had already printed a Newtonian account
of fluxions in the Journal Litéraire de la Haye; he now wrote
an “Answer” to Leibniz that appeared in the same journal during
July/August 1714.43 From this time, for about five years (that is, un-
til after the death of Leibniz in 1716) therewas a frequent exchange of
alternate accusations and rebuttals between the young champions on
either side, neither Newton nor Leibniz contributing much directly
to the debate. Each side continued to accuse the other of stealing the
principles of calculus, and (as proof of this) lacking the knowledge to
apply second differentials correctly in the solution of the more dif-
ficult problems in mechanics.44 Both sides attempted to invoke the
support of parties unconcerned in the original dispute about events
that had occurred forty years before. Two vain attempts at medi-
ation between the principals were made: one by a journalist, John
Chamberlayne (who possibly put copies of the Charta Volans into
Newton’s hands), the other by a curious international amateur of phi-
losophy, the Abbé Conti; both failed. Newton’s principal late inter-
vention was the printing in the Philosophical Transactions for 1715
ofAnAccount of the Book entituledCommerciumEpistolicum, pur-
porting to be an impartial review but in fact written byNewton him-
self. Here, employing much the same kind of scholastic argument
that he used inwriting history and theology, Newton “proved,” plau-
sibly enough, that Leibniz by his own admissions could not possibly
have known the differential method before 1677, that is, after he had
read Newton’s two long letters of the previous year. Newton’s recon-
struction was distorted by his own self-interest and by his inability
to appreciate how partial and idiosyncratic Leibniz’s knowledge of
recent mathematics had then been. Further, he insisted on the su-
periority of the concept of fluxions: “We have no ideas of infinitely
little quantities, and therefore Mr Newton introduced fluxions into
his method, that it might proceed by finite quantities as much as
possible.”

Here he contrasted the fluxion, “the first ratio of nascent quanti-
ties, which have a being in geometry” with the differences, or first
nascent quantities “which have no being either in geometry or na-
ture.” Moreover, the Leibnizian calculus requires “a summing of
indivisibles to compose an area or solid . . .never yet admitted into
geometry,” and so that process afforded only analysis, not demon-
stration, while his own method of fluxions admitted of synthetic



Newton versus Leibniz: from geometry to metaphysics 447

demonstration. Even as a technique of analysis Leibniz’s calculus
was defective, Newton argued, without the use of the method of
infinite series to which Leibniz could lay no possible claim. One
statement in the Account has caused confusion through the years:

By the help of the new [fluxional] analysis Mr Newton found out most of
the Propositions in his Principia philosophiae, but because the Ancients for
making things certain admitted nothing into geometry before it was demon-
strated synthetically, he demonstrated the propositions synthetically that
the system of the heavens might be founded on good geometry. And this
makes it now difficult for unskilful Men to see the Analysis by which those
Propositions were found out.

As already remarked, this process of double work seems rarely to
have been used, or at any rate recorded.45

Perhaps Newton hoped to end the dispute by the publication of
this detailed history of mathematics from the 1660s onwards and
the exposure of Leibniz’s iniquities. If so, he failed. Little that was
new about the mathematical issues was to be brought out in subse-
quent papers, but considerable attention was to be paid to criticisms
of Newton’s philosophy by Leibniz. We may start from the Pref-
ace to the second edition of the Principia composed by Roger Cotes
(to whom Newton deliberately refused any hints or guidance), the
purpose of which was to defend the theory of universal gravitation
formulated by Newton and refute vortex theories such as that of
Leibniz. Cotes explained the superior character of experimental phi-
losophy as compared with that which enjoys purely rational founda-
tions: “This is that incomparably best way of philosophizing, which
our renowned author most justly embraced” when he deduced the
system of the world from the theory of gravity. Some persons of great
name, Cotes went on, “too much prepossessed with certain preju-
dices, are unwilling to assent to this new principle, and are ready to
prefer uncertain [hypothetical] notions to certain.”46 In the remain-
der of the Preface he developed the argument that the science of ra-
tional mechanics, applied to the question of the system of the world
with the aid of the law of universal gravitation, yielded a far more
certain philosophy than did such vortex theories as that expounded
by Leibniz and was fully in accord with true religious principles.

Leibniz seems not to have greatly concerned himself with
the errors of the metaphysical foundations of Newton’s natural
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philosophy, as he saw them, until late 1715.47 True, he had some
long time before noted the two curious passages in Optice (1706,
pp. 315 and 346; Queries 20 and 23) in which Newton twice invoked
the notion that space is the sensorium ofGod,which Leibniz chose to
interpret in the absurd sense of space’s constituting the sense-organs
of God.48 Moreover, his Essais de théodicée (1710) hadmade clear his
opposition to theway inwhich – as Leibniz saw it –Newton aswell as
non-mathematicians like Richard Bentley and the philosopher John
Locke, who followed Newton’s example, attributed universal gravi-
tation to the arbitrary will of the Creator. In Leibniz’s opinion it was
incumbent upon philosophers to find out the logical links or mecha-
nisms whereby phenomena might duly appear from the unchanging
structure of the world. Bentley, under Newton’s guidance, had in-
deedwritten that gravitation is above allmechanism andmechanical
causation; that in fact “it cannot be innate and essential to matter”;
consequently “it could never supervene to it, unless impress’d and
infused into it by an immaterial and divine Power” (perhaps a last
vestige of Henry More’s Spirit of Nature?).49 We know that Newton
did not disdain the notion that since the fabric of the world could
not endure for ever as he had described it, without change, its long
continuance would require occasional divine interventions. Leibniz
thought such a divine intervention amiracle, and that universal grav-
itation should arise from the divine power seemed to him a miracle
also. In his “First Paper” answered by Samuel Clarke, Leibniz fa-
mously appealed to the analogy of the Clockmaker:

Nay, the machine of God’s making [the universe] is so imperfect, accord-
ing to [the Newtonians]; that he is obliged to clean it now and then by an
extraordinary concourse, and even to mend it, as a clockmaker mends his
work.

This letter led to a series of five exchanges between Leibniz and
Samuel Clarke, theologian, metaphysician, and friend of Newton;
Leibniz’s death on 14November 1716 prevented his reading Clarke’s
Fifth Reply.50

This correspondence, ofwhichNewtonian sciencewas the passive
subject, began with a letter written in November 1715 by Leibniz to
Caroline, Princess of Wales, in London; she was later George II’s
Queen. Caroline’s friendship with Leibniz had begun during a visit
she made to the Electoral Court at Berlin and was renewed after her
marriage to the Electoral Prince of Hanover (later George II). She
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and Leibniz maintained a correspondence until the latter’s death. In
this letter of November 1715 Leibniz deplored Newton’s influence
uponEnglish philosophy; the Princess, being already acquaintedwith
Dr. Clarke, and knowing that he had adoptedNewton’smetaphysical
opinions, invited him to read Leibniz’s letter and respond to it,51 For
herself, she declared, she was “in a dispute with” Dr. Clarke because
he was “too much of Sir Isaac Newton’s opinion” and rejected those
favored by Leibniz. The latter responded to Clarke’s First Reply, and
so on.

The volume in which Clarke, in 1717, printed his exchanges with
Leibniz is a small one, but the various matters on which Leibniz
found Newton at fault while Clarke defended him were neither few
nor trivial. One controversy, on the correct definition of mechanical
force, was settled (when shown to be founded on inadequately de-
fined terms) only after two generations of debate, by d’Alembert in
1743. Another – is there an absolute space and an absolute time? –
was settled only by Einstein in 1905. Other matters in debate, such
as the application of the principle of sufficient reason to the actions
of God, were not and perhaps are not capable of decision. In the ex-
treme form, Leibniz’s confidence that God must always act for the
best was later mocked by Voltaire and others. However, on the first
specific criticism by Leibniz, touched on in all the letters, whether
or not Newton had attributed to God the possession of sense-organs,
the debate turned essentially on the meaning of Newton’s word
sensorium – was it an organ or a place? – and again no decision was
possible. In general, the points at issue have since been settled –with-
out in general one party or the other being better vindicated – where
theywerematters of physics;when theyweremetaphysical theymay
still be debated. Time has not spoken decisively on either side save
in the matter of the vacuity of space: celestial vortices have been
dead for over 200 years. Most authorities judge Leibniz to have been
a sounder metaphysician than either Newton or Clarke, yet the lat-
ter presumably thought well of his own performance since he put
the letters into print so quickly.

Leibniz clearly believed thatNewton directed Clarke’s pen. Itmay
have been so; but there is no firm evidence that Newton did not iso-
late himself as completely from Clarke as he had previously from
Cotes and would later attempt to do from Des Maizeaux. For the
death of Leibniz, while it ended the philosophical discussions, by
no means brought a cessation of mathematical irritation. Exchanges
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between the antagonists continued until at least 1720; some of them
were published in the literary journals. In the final years of his life
Leibniz began a documentary statement of his own mathematical
evolution, Historia et Origo Calculi Differentialis, unfinished and
unpublished till the nineteenth century. Newton wrote a last im-
portant letter on the issues to the Abbé Conti, in February 1716;
the original is lost.52 In this Newton, besides rehearsing many fa-
miliar points in dispute, drew attention to Leibniz’s admission in
the Acta (1700) that no one before Newton and himself had original
knowledge of the calculus, and thatNewtonwas the first to prove his
knowledge by example, in the Principia. Challenge problems contin-
ued to be directed against the English: Leibniz’s “orthogonals” prob-
lem of November 171553 was followed by Keill’s challenge (1717) to
Johann Bernoulli to solve the general problem of ballistics: what is
the trajectory in a resistingmedium such as air?54 This was an unfair
problem in that Keill had not solved it, and never did; Bernoulli pub-
lished appropriate differential equations in the Acta Eruditorum of
May 1719. The equations do not admit of an exact integration. After
this humiliation of the English, whose honor was partly redeemed by
Brook Taylor, it remains only to note the penultimate major publica-
tion bearing on the quarrel between Newton and Leibniz, Pierre Des
Maizeaux’s Recueil de diverses pièces sur la philosophie, la religion
naturelle, l’histoire, les mathématiques etc. (Amsterdam, 1720).55

The editor was a Huguenot refugee, in England from 1699, who (like
Newton) won the patronage of Charles Montagu, earl of Halifax. His
plans for the book were never fully realized: he published only the
second edition of the Leibniz–Clarke correspondence (in French) and
Newton only gave him small help (and some hindrance) in printing
the selection of correspondence in the second volume. Newton was
pleased subsequently to declare (not quite truthfully!) that he had
had no hand in the book.

While Newton’s star rose slowly on the Continent from about
1706with the publication of the LatinOpticks, Leibniz’s chief shield-
bearer, Johann I Bernoulli, never yielded his position. To the end he
supported Leibniz’s invention of calculus and his planetary vortices.
Yet, with the eager encouragement of Pierre Varignon, Bernoulli
made an effort to effect a personal reconciliation with Newton by
clearing himself of false accusations. If only flattery were all! He
addressed Newton as “a man of divine genius of whom our age has
no equal”; Newton’s optical discovery was “more enduring than any
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bronze, and one to be more greatly prized by posterity than it is
now.”56 But Newton was never more than formally correct in re-
turn. He could never forgive the “eminent mathematician” who had
so strongly buttressed Leibniz’s false claims (as he saw them). Per-
haps in this volumeNewtonmay be given the last word, from a draft
written for Des Maizeaux in 1718:

If Mr Leibnitz could have made a good objection against the Commercium
Epistolicum, he might have done it in a short letter without writing another
book as big. But this book being matter of fact & unanswerable he treated
it with opprobrious language & avoided answering it by several excuses, &
then laying it aside by appealing to the judgment of his friendMr Bernoulli &
by writing to his friends at Court, & by running the dispute into a squabble
about a Vacuum, & Atoms, & universal gravity, & occult qualities, & Mira-
cles, & the Sensorium of God, & the perfection of the world, & the nature of
time & space, & the solving of Problemes, & the Question whether he did
not find the Differential Method proprio marte: all of which are nothing to
the purpose . . .The proper question is: Who was the first Inventor?57

To that question at least there is now a clear answer.
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16 Newton and the Leibniz–Clarke
correspondence

introduction

Between 1715 and 1716 Gottfried Wilhelm Leibniz and Samuel
Clarke were engaged in a theological and philosophical dispute me-
diated by Caroline, Princess of Wales. Ten letters were exchanged,
five on each side, before the controversy was brought to an end by
Leibniz’s death in November 1716. During the controversy those in-
volved agreed to publish the texts, which were edited in 1717 by
Clarke, who also translated Leibniz’s letters into English. His editio
princeps is considered to be both fair and excellent, and contains
Leibniz’s original French on facing pages, as well as a useful selection
of additional explanatory materials. This extraordinarily influential
controversy is among the most famous and heavily studied philo-
sophical disputative texts of all times, and, in the words of a recent
interpreter, its intellectual intricacies are reserved only for the very
learned or the foolhardy.1

Despite the extent of interest and studies the correspondence has
attracted,2 however, we still lack a comprehensive critical edition
taking into account all the relevant texts, including Caroline’s and
Clarke’s. Interestingly, eighteenth-century editions did not include
the private correspondence between Caroline and Leibniz, which
was first made available in the nineteenth century, notably by Onno
Klopp in the most complete form.3 The private correspondence of
the Princess of Wales was probably not available to Clarke and, even
if it had been, publishing it at the time would have been highly inap-
propriate. That correspondence, however, provides interesting per-
spectives on the exchange between Leibniz and Clarke. At times
interpreters have assumed that Leibniz was writing to Clarke and
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Clarke to Leibniz, without taking sufficiently into account all levels
of the exchange. Paying attention to Caroline’s role and to the genre
of the correspondence will help shed light on what was at stake.4

Besides the lack of a complete critical edition, some areas are still
relatively unclear and little explored. For the purposes of this chapter,
I wish to examine briefly two topics, namely the character of the
exchange in terms of literary genre, and the level of Newton’s in-
volvement alongside Clarke in both defending his world-view and
attacking Leibniz’s. Although in the final section I will survey some
of the main themes of the correspondence, this chapter should be
read as an invitation to study it afresh.

the genre of the correspondence

The correspondence between Leibniz and Clarke originated when
Caroline, Princess of Wales, passed to Clarke an extract of a letter
she had just received from Leibniz, an extract not originally in-
tended for Clarke. She claimed that she was having a dispute with
the English divine, gave him Leibniz’s extract, and then passed on
Clarke’s reply to Leibniz. Caroline remained the mediator through-
out the controversy. The documents that have survived consist of
two parallel sets of exchanges, one between Leibniz and Clarke,
and one between Caroline and Leibniz. In addition, we have records
of Clarke’s discussions with Caroline and Newton’s visits to her,
as well as her witnessing several experiments on colors and the
void. Other parallel exchanges too have been considered relevant,
such as that between Leibniz and Newton mediated by the Abbé
Conti.5

Why did Leibniz and Clarke proceed inexorably, month after
month, to exchange ever longer letters on the nature of space and
time, the notion of miracle, and the cause of gravity? Are there lit-
erary precedents for such types of exchange? I shall start with the
second question.

The first examples which spring to mind are the Leibniz–
Arnauld and Leibniz–Pellisson correspondences, both dealing with
theological and philosophical issues. The correspondence between
Leibniz and French theologian and philosopher Antoine Arnauld
was mediated by the Landgrave of Hesse-Rheinfels, a Catholic con-
vert interested in Church reunion. The correspondence between
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Leibniz and Paul Pellisson, which also involved Church reunion,
was instigated by, and conducted through, an interested aristocratic
intermediary, Sophia, Duchess of Hanover. In both cases philosophi-
cal themeswere interwovenwith theological ones.6 Incidentally, the
issue of Church reunion was raised in the correspondence between
Leibniz and Caroline early in 1716, at the time of the election of
William Wake as Archbishop of Canterbury. In the dispute between
Leibniz and Clarke, however, Church reunion was not mentioned,
and the tone was more confrontational. Thus we need to look for a
more appropriate precedent.

Another episode from earlier in the seventeenth century looks
helpful, namely the affair involving scripture and Copernicanism
at the Tuscan court in the mid-1610s. The exchanges between
Benedetto Castelli and Galileo on one side, and the philosopher
Cosimo Boscaglia on the other, with Grand Duchess Christina of
Lorraine as patron and intermediary, share some analogies with the
Leibniz–Clarke correspondence. Castelli had lunch with Christina,
mother of Grand Duke Cosimo II, the Grand Duke himself,
Boscaglia, and others. Apparently, Boscaglia had Christina’s ear for a
while. When Castelli left, he barely managed to get out of the palace
before he was called back inside by Christina’s porter. There, he was
asked to reconcile passages from scripture with Copernicanism –
notably where Joshua invoked God, asking him to stop the sun – a
task Castelli accomplished brilliantly. This was a crucial episode
in the attack against Galileo and Copernicanism, leading to his
Copernican letters to Castelli, Piero Dini, and eventually Christina.
Galileo’s letter to the Grand Duchess was, at one and the same time,
a continuation of the prior discussion after lunch when Copernican-
ism had been attacked and an appeal to an influential familymember
of Galileo’s patrons.7

In the cases of both Christina and Caroline, one party used its
contacts with a high-ranking female patron in order to launch an
attack on the opposite side. In both cases the female patrons were
not just spectators, but were known for their religious interests and
orthodoxy, Christina on the Catholic side, Caroline on the Lutheran.
Christina is described by the sources as a bigot in the hands of the
papacy and, following Cosimo II’s death in 1621, a regent possessed
by religious zeal against state interests. By contrast, Caroline is de-
picted as an intellectual woman with a mind of her own. In her
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early twenties she showed sufficient independence of judgment to
refuse to convert to Catholicism, thus renouncing marriage to the
Emperor’s son, in order to retain her Lutheran confession. Writing
to a female patron, moreover, enabled Galileo, as well as Clarke and
Leibniz, to reach a wider audience by addressing philosophical and
theological issues in an intelligent, but not excessively technical
fashion.8

On the philosopher’s side, of course, Leibniz was a far more inter-
esting and sophisticated thinker than Boscaglia, and his arguments
are of incomparably greater philosophical import than the Joshua
quotation from the Bible. Despite these important differences, how-
ever, the structure of the two events shows revealing similarities.

By appealing to such high-ranking patrons with such accusa-
tions as the claim that the Joshua passage in the Bible contradicted
Copernicanism, or that Newton’s and Locke’s philosophies were
detrimental to natural religion, philosophers were not just engaging
in an intellectual debate. They were launching potentially devastat-
ing attacks with very serious consequences. Although Leibniz was
not aiming at having Newton tried for heresy, he was certainly at-
tempting to reduce him, together with his philosophical system, to
the status of an intellectual pariah. Unable to reach an honorable
settlement in the priority dispute over the invention of the calcu-
lus, Leibniz tried to undermine Newton and his allies through his
contacts with the recently installed Princess of Wales.

Seen from this perspective, the correspondence between Leibniz
and Clarke appears in a rather dramatic light. Leibniz’s accusation of
Socinianism, a discredited religious sect, launched against Clarke,
Locke, and Newton was an important step in this strategy.9 The
contenders were trying not just to explain their philosophies to each
other, but to undermine the very credibility of each other’s system.
This partly explains the very selective nature of the exchange, the
inclusion of some topics, and the exclusion of others. Readers of
Clarke’s dedication to Caroline will not fail to realize the high stakes
involved, aswell as how astutelyClarke used his theological prowess
and proximity to Caroline against his rival.

By reflecting on the genre of the correspondence,we are drawn into
payingmore attention to Caroline’s role. After the early events in her
lifementioned briefly above, she becamevery close to Leibniz,whose
Théodicée was one of her favorite readings. It is certainly not by
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accident that Leibniz referred to it so frequently in his dispute with
Clarke. In the absence of a queen, since George I’s wife remained in
Germany relegated to the Castle of Ahlden, Caroline was the highest
female royal.10 Her role and theological interests made her particu-
larly influential on religious matters. Some said that the election
of the new Archbishop of Canterbury, William Wake, in December
1715was due to her good offices. It is not difficult to grasp from this
perspective a dimension of the dispute that would have been obvious
in its significance to contemporaries.

newton’s role

The role Newton played in the correspondence has been a matter of
debate. It seems appropriate here briefly to review both sides of the
argument, assessing their significance in relation to the circumstan-
tial and documentary evidence.

Manuscript evidence indicating Newton’s involvement in the ex-
change does exist, but it is scanty, especially bearing in mind how
obsessively he drafted and redrafted his works. Alexandre Koyré and
I. Bernard Cohen forcefully stated that they had found no drafts of
Clarke’s replies in Newton’s hand, no suggestions as to what those
replies should be, and not even versions of Clarke’s replies with
Newton’s emendations. There is, however, a copy in Newton’s hand
of Leibniz’s “Apostille” to his fourth letter on atoms and the void,
where Newton wrote “received of the Princess May 7th 1716, and
copied May 8.” The Princess must have made the text available to
Newton immediately upon its arrival, and with good reason.11 At
that time, between April and May 1716, Caroline witnessed several
experiments on colors and the void. The king set a special room aside
so that they could be performed in front of his daughter-in-law. This
may have been necessary for the optical demonstrations, requiring
a space sufficiently long and which could be suitably darkened. It is
difficult to imagine that Newton was not involved in these experi-
ments, especially since Caroline referred to them as “les expérimens
du chevalier Newton.” Moreover, in the same letter where Caroline
announced that she was going to witness the experiments, she re-
ferred to a visit by Newton and Clarke with Conti.12

Thus, despite the relative lack of manuscript evidence, what we
have does suggest thatNewtonwas kept abreast of the developments
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not just by Clarke, but by Caroline as well. In addition, Clarke
and Newton were neighbors, and Clarke served at Newton’s parish,
St. James’s, and was rector of the chapel in Golden Square, of which
Newtonwas a trustee. Circumstances formeeting and discussing the
exchange, without the need to pass written documents, would have
been plentiful, and indeed we know that Caroline herself warned
Leibniz that Clarke’s letters were not written “without the advice of
the Chevalier Newton.” Moreover, we know from the diary of Mary
Cowper, Lady of the Bedchamber to Caroline, that on 11 February
1716 “Sir Isaac Newton and Dr Samuel Clarke came this afternoon
to explain Sir Isaac’s System of Philosophy to the Princess.”13 Thus
historians looking for signs of Newton’s involvement exclusively
amongNewton’smanuscriptsmay have cast their nets too narrowly.
Evidence from a broader set of sources strongly points to his having
been involved in the dispute.

Alongside these remarks, one should not forget that Clarke was
a powerful intellect in his own right and an able controversialist.
His views were broadly, though not completely, in agreement with
Newton’s. Although he was clearly the material author of the letters
on the English side of the dispute, his replies to Leibniz can be seen
to some extent as the result of the collaboration between two minds
working on the same wavelength.14

the correspondence

These preliminary reflections are a useful springboard for a histori-
cist reading of the correspondence, one taking into account circum-
stances of composition and authorship in conjunctionwith a number
of themes interwoven with the religious and political events and de-
bates of the day.

Unfortunately, we do not knowwhat Leibniz wrote to Caroline in
November 1715 in the letter that started the exchange.Weknowonly
the extract communicated by Caroline to Clarke, which seems to be
cut out from a larger canvas, as the opening sentence and especially
the word “itself” suggest: “Natual religion itself seems to decay.” In
the previous letter to Caroline of 10May 1715, for example, Leibniz
had outlined a sophisticated and effective argument on the doctrine
of gravity and the Eucharist to embarrass the Newtonians. Topics
related to other aspects of the decay of religion in England would
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thus have been at hand. Moreover, the extract from Leibniz’s letter
was selected by Caroline, and this is a significant feature. It seems at
least plausible that Caroline selected for Clarke a portion she deemed
suitable for an exchange. The fact that all subsequent exchangeswent
through her reinforces the importance of her role.

The opening words, “Natural religion,” set the tone of the entire
exchange. There was widespread belief in several quarters that the
recent advancements of knowledge and the development of the ex-
perimental philosophywere going hand in handwith the strengthen-
ing of true religion. Leibniz’s attack tried to put a devastating wedge
between crucial points in Locke’s and Newton’s philosophies, on
the one hand, and religious orthodoxy, on the other. This was a line
of attack particularly suited to gaining Caroline’s approval, and one
Clarke had to reject thoroughly point by point. In his dedication to
the Princess of Wales, he stated that “Christianity presupposes the
Truth of Natural Religion. Whatsoever subverts Natural Religion,
does consequently muchmore subvert Christianity: and whatsoever
tends to confirm Natural Religion, is proportionably of Service to
the True Interest of the Christian.”15

The themes of the correspondence evolved from letter to letter. In
some cases, such as Leibniz’s attack on Locke’s alleged opinion that
the soul is material and perishable, Clarke did not see fit to mount
a defense. In other cases, such as God’s role in the universe, the ex-
change proceeded through all ten letters. Leibniz argued that in the
Newtonian system God had to intervene from time to time in the
mechanisms of the universe in order to repair it, as if God lacked
foreknowledge to arrange them perfectly from the beginning. Clarke
argued that Leibniz’s system introduced materialism and fatality, in
that the world continues by itself without any role for a deity. Other
themes in the correspondence follow a similar pattern: for exam-
ple, Leibniz’s God has preordained the future course of events in the
universe in the most perfect way, whereas Clarke’s and Newton’s
God has to intervene every now and then to reach his purposes.
Polemically, Clarke argued that Leibniz’s God was intelligentia
supramondana, emphasizing his detachment from the affairs of the
world. The notion of miracle too is linked to this issue in that al-
terations to the normal course of nature were seen differently by
the contenders. Clarke relied on the notion of what commonly hap-
pens in order to define a miracle. By contrast, Leibniz relied on the
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notion of laws of nature and what is not explicable by them in his
definition. Thus attraction is obviously not miraculous according to
Clarke, because it acts at each instant, whereas for Leibniz it is, be-
cause it transcends the power of bodies, which cannot act without
being present.16

Probably the most heavily studied topic in the entire correspon-
dence is the nature of space and time. The issue was raised in the
first letter, when Leibniz accused Newton of having made space the
sensorium of God. Indeed, Newton had unguardedly let this notion
slip through his pen in two passages of his 1706 Optice, only one of
which was removed in some copies, with an awkward cancel.17

The crucial point of the debate about space and time concerned
again God’s actions. In his attack Leibniz was able to construct an ar-
gument he had not previously put forward, although a similar line of
reasoning can be found in the Théodicée.18 He posited the principle
of sufficient reason, namely that nothing happens without a reason,
and argued that if space and time were something absolute and uni-
form, as Newton believed, the principle of sufficient reason would
be violated. God could have created the universe in space, preserving
the mutual situations among bodies, but changing for example West
into East; similarly, he could have created the universe at a different
instant. There could be no reason, however, why God could have
chosen between two qualitatively identical situations, and thus in
his act of creation he would have acted without a sufficient reason.
Clarke’s reply was that God’s will was in itself a sufficient reason for
his actions.

The existence of atoms too was attacked by Leibniz on the basis of
a principle derived from that of sufficient reason, namely the identity
of indiscernibles. Leibniz argued that if two qualitatively identical
atoms existed, there would be no reason to place one of them here
and the other there. God’s wisdom would not allow him to create
a world where he would have to make choices without reason, and
therefore atoms do not exist. Later Leibniz argued that the existence
of atoms would directly violate the other principle as well, because
God would lack a sufficient reason to stop the divisibility of matter
at one point rather than another.19

Caroline’s presence as an arbiter between the contenders provided
implicit guidelines for their correspondence, but his does not make
the historian’s task easier. Rather, it adds a dimension to the already
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complex field of Leibniz’s, Clarke’s, and Newton’s theological and
philosophical views.
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pp. 65–87.

Herivel, John, The Background to Newton’s Principia: A Study of Newton’s
Dynamical Researches in the Years 1664–84 (Oxford: Clarendon Press,
1965).

Kollerstrom,Nicholas,Newton’s Forgotten Lunar Theory: His Contribution
to the Quest for Longitude (Santa Fe, New Mexico: Green Lion Press,
2000).

Lakatos, Imre, “Newton’s Effect on Scientific Standards,” in The Method-
ology of Scientific Research Programmes, Philosophical Papers, vol. 1
(Cambridge: Cambridge University Press, 1978), pp. 193–222.

Nauenberg, Michael, “Newton’s Early Computational Method for Dynam-
ics,” Archive for History of Exact Sciences 46 (1994), 221–52.

“Hooke, Orbital Motion and Newton’s Principia,” American Journal of
Physics 62 (1994), 331–50.

“Newton’s Portsmouth Perturbation Method and its Application to
Lunar Motion,” in Dalitz and Nauenberg (eds.), The Foundations of
Newtonian Scholarship, listed above, pp. 167–94.

Rigaud, Stephen Peter Historical Essay on the First Publication of Sir Isaac
Newton’s Principia (Oxford: Oxford University Press, 1838). (Reprinted
New York and London: Johnson Reprint Corporation, 1972.)

Rynasiewicz, Robert, “By Their Properties, Causes and Effects: Newton’s
Scholium on Time, Space, Place and Motion,” Studies in History and
Philosophy of Science 26 (1995), 133–53, 295–321.

Smith, George E., “The Newtonian Style in Book II of the Principia,” in
Buchwald and Cohen (ed.), Isaac Newton’s Natural Philosophy, listed
above, pp. 249–313. An appendix includes English translations of the
passages from the first edition replaced or removed in the second and
third.



Bibliography 477

“From the Phenomenon of the Ellipse to an Inverse-Square Force: Why
Not?,” in David Malament (ed.), Reading Natural Philosophy: Essays
in the History and Philosophy of Science and Mathematics to Honor
Howard Stein on his 70th Birthday (La Salle: Open Court, 2002).

Stein, Howard, “Newtonian Space-Time,” Texas Quarterly 10 (1967),
174–200; reprinted in Palter (ed.), The Annus Mirabilis of Sir Isaac
Newton 1666–1966, listed above.

“‘From the Phenomena of Motions of the Forces of Nature’; Hypothesis
or Deduction?” PSA 1990, Proceedings of the 1990 Biennial Meeting
of the Philosophy of Science Association, vol. 2 (East Lansing, MI:
Philosophy of Science Association, 1991), pp. 209–22.
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philosophie, la religion naturelle,
l’histoire, les mathématiques, etc
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