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Preface 

In his first letter to Johann (I) Bernoulli, Leibniz wrote that it was better 
to reduce quadratures to rectifications than vice versa, "because surely the 
dimension of a line is simpler than the dimension of a surface." 1 I first read 
this passage in the late 1960s and it struck me as strange. Apparently Leibniz 

considered the arclength integral I J 1 + (*) 2dx as more basic than the area 

integral I ydx. Why? And what support for his opinion did he glean from the 
dimension argument? 

Looking back I think that the encounter with this argument was the be
ginning of my interest in the concept of construction in early modern mathe
matics. Its study proved extremely useful and revealing for understanding the 
conceptual developments in mathematics during the crucial period between the 
Renaissance and the Enlightenment. At first I concentrated on the treatment of 
curves (especially transcendental curves) in early analytic geometry and calcu
lus, and I emphasized the representational aspects of geometrical construction. 
It soon became clear that Descartes' ideas were decisive in the matter. For a 
long time after c. 1650 virtually all statements on mathematical construction 
could be understood as critical or concurring responses to a canon of geometrical 
construction laid down in Descartes' Geometry of 1637. 

Descartes' canon itself was also a response, namely to classical and previous 
early modern ideas about the proper solution of geometrical problems. Indeed 
the half-century before the publication of the Geometry witnessed an ongoing 
debate about this question. The debate centred around the concept of con
struction, because geometrical problems required a solution in the form of a 
construction. 

In studying Descartes' ideas and the previous discussions on construction I 
found that the representational aspects, on which I had concentrated at first,2 
did not provide a satisfactory entry into the matter. Rather than as a means of 
representing objects, such as curves, construction here functioned as the key con
cept in determining proper procedure in geometry and in demarcating between 

1 Letter of 21-03-1694 [Leihniz 1961-1962], vol. 3 pp. 135-137, passage on p. 137: " ... prae
stat reducere Quadraturas ad Rectificationes Curvarum, quam contra, ut vulgo fieri solet; 
eaque de re dudum cum successu cogitavi: nam simplicior utique est dimensio lineae, quam 
dimensio superficiei." For the context of the statement cf. [Bos 1974] pp. 7-8 (p. 105 of ed. in 
[Bos 1993c]) and [Bos 1987] pp. 1638-1640 (pp. 34-35 of ed. in [Bos 1993c]). 

2Notahly so in [Bos 1981]. 
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genuine knowledge and inadequate understanding in geometry and mathematics 
generally. 

No convincing answers have been found to these questions of propriety and 
demarcation, and personally I don't think that any will be found in the con
ceivable future. Thus the historical study of the reactions to these and similar 
questions cannot be studied in terms of right or wrong answers. Nonetheless, 
the matter presents a challenge to the historian because many mathematicians 
have found the questions important, or at least unavoidable, and opinions on the 
matter have deeply influenced the evolution of the field. I have found that such 
an historical study is best undertaken as the investigation of the reactions of 
professional mathematicians to ultimately unanswerable, and yet unavoidable, 
extra-mathematical questions. Thus I have studied the early modern conception 
and practice of geometrical construction primarily as the actualized answers to 
the questions about proper procedure and the demarcation of geometry. Be
hind these answers I have tried to detect the various attitudes or strategies that 
mathematicians have adopted in responding to these questions, and the role and 
effectiveness of these strategies in the development of mathematics. I use the 
term exactness to denote the complex of qualities that were (and are) invoked 
with respect to propriety and demarcation in mathematics. Accordingly, I call 
the activity of mathematicians engaged in defining boundaries of proper math
ematical procedure and of legitimately mathematical fields the interpretation of 
exactness. The present book, then, is a study of the concept of construction 
and the interpretation of geometrical exactness as developed and employed by 
Descartes and by early modern mathematicians active before him. 

In the introductory chapter I further explain the historiographical scheme 
that I have adopted in elaborating my research interest; the above outline of its 
earlier development and of the main concerns of the investigations exposed here 
may explain some of the present book's features, which I like to mention at the 
outset in order to avoid disappointing my prospective readers. 

It is not a book about the geometry of Descartes and the early modern 
mathematicians before him. There is no attempt at such generality; even the 
area of geometry that formed the setting of most of the developments described, 
the early modern tradition of geometrical problem solving, is treated only in the 
period mentioned and primarily as context for the mathematical developments 
related to construction and exactness. Thus, although the Geometry is ana
lyzed in great detail, some themes of Descartes' book are disregarded, because 
they are outside the focus of my enquiry. This applies in particular for Des
cartes' determination of tangents (which he himself once mentioned as his most 
valuable contribution), his treatment of ovals and his remarks about curves on 
non-plane surfaces. Otherwise important geometrical activities in the period, 
notably the reception of Archimedes' techniques, occupy a much smaller place 
in the present book than in general histories of mathematics. The same applies 
to some mathematicians of the period, and in particular to Fermat, whose im
portance in early modern mathematics is beyond doubt. Indeed Fermat's name 
is so often paired with Descartes' in connection with analytic geometry that 
a book with a strong interest in Descartes may surprise in bringing so little 
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(a short chapter and a few remarks in the Epilogue) about Fermat. But the 
latter's interest in mathematical exactness (in the sense explained above) and 
geometrical construction was minimal, and he wrote about the theme primarily 
in reaction to Descartes' Geometry, whereby his opinions fall outside the period 
studied here. 

Although I have found that the conception and the practices of construction 
provide a revealing entrance into the world of early modern mathematics, I 
do not view mathematics essentially in constructivist terms, nor do I consider 
the conceptual challenges of construction as a principal driving force in the 
development of mathematics. As will become clear in the Introduction, I link 
the principal dynamics in the developments studied here to analytical rather 
than to construction-related interests. 

The book is essentially restricted to the period from c. 1590 to c. 1650, 
the boundaries being marked by the publication of Pappus' Collection in 1588 
and by Descartes' death in 1650. The subject matter is confined to the early 
modern tradition of geometrical problem solving from c. 1590 to c. 1635, and 
to the mathematical activities of Descartes from c. 1620 onward, culminating in 
the publication of the Geometry in 1637. The book's themes would be better 
presented in a cadre extending to c. 1750, including the developments around 
construction and exactness within the investigation of curves by means of the 
new infinitesimal analysis. Reasons of time and of the size of the material have 
made me decide to postpone the treatment of the additional period. 

* * * 
I started writing this book in 1977. During the years that followed Kirsti An
dersen was a singular and invaluable companion in this scholarly enterprise -
as in so many other things! She discussed with me the ideas, the plans and the 
changes of plan, she read and critically commented all the drafts (and there were 
many), and she supported me in the times the undertaking seemed hopelessly 
misconceived. I am deeply thankful to her. 

* * * 
On receiving the manuscript of the book in early 1999, Springer Verlag invited 
Joella Yoder to read and comment on it. She did so, devoting to the task 
an amount of time and energy in no proportion to the remuneration which is 
customary in academia for such activities. Her wise and detailed comments 
were very helpful and led to changes that I'm sure are for the better. 

Many audiences have lent me their attention during lectures on subjects 
treated in the present book. I am thankful for the stimulus these lectures and 
the ensuing discussions provided for shaping, changing, and refining my ideas. 

The book would never have been finished without a number of temporary 
fellowships at illustrious research institutes, which offered facilities for extended 
periods of concentration on thinking and writing. I am thankful to the Insti
tutes of Mathematics and of History of Science of the University of Aarhus for 
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repeatedly providing such a supportive environment. I also express my gratitude 
for their hospitality and support to the Institut des Hautes Etudes Scientifiques 
in Bures-sur-Yvette (1979), the Institute for Advanced Study (School of Math
ematics) in Princeton (1988), and the Dibner Institute in Cambridge (MA.) 
(1997). 

The periods of concentrated work on the book elsewhere were generously 
made possible by my own academic base, the Department of Mathematics of 
Utrecht University, which granted me sabbaticals and other variants of leave of 
absence. And although, naturally, uninterrupted concentration is a rare com
modity at one's own base, the department. offered many other benefits for my 
research: good facilities, interested and stimulating students and colleagues, 
electronic media of constant reliability despite continuous change, and above all 
an environment of mathematical professionalism and collegiality in which the 
value of historical awareness for the well-being of mathematics was a matter of 
course. I am pleased to be able here to express my appreciation. 
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Part I 

The Early Modern Tradition of 
Geometrical Problem Solving 



Chapter 1 

General introduction 

1.1 Construction and representation 

Mathematics is an exact science - but what does exactness mean? Through- Exactness 
out history mathematicians have repeatedly raised this question and reshaped 
their science in order to meet more appropriate and higher standards of exact-
ness. Several such endeavors have been highly successful. Exploring the in-
tricacies of incommensurability and the infinite, Greek mathematicians created 
theories whose rigor is still impressive to the modern mind. The rigorization of 
analysis in the nineteenth century provided new standards of proof, which led 
to a deeper understanding of numbers and functions, as well as to powerful new 
analytic methods. 

The early modern period l witnessed another endeavor to clarify and insti- Exactness of 
tute exactness, but a less successful one. This endeavor occupied the minds constructions 
of many mathematicians from the sixteenth to the eighteenth centuries, and it 
concerned, in a primarily geometrical context, the question what it meant for a 
mathematical entity to be "known" or "given," and what it meant for a problem 
to be "solved," its solution to be "found." Classical Greek geometry provided 
answers to these questions: geometrical figures were "known" or "given" if they 
could be constructed starting from elements that were considered given at the 
outset; similarly a problem was considered solved if the required configuration 
was geometrically constructed. 

During the Renaissance revival of Greek geometry mathematicians accepted 
the main lines of this classical answer, but they also found themselves confronted 
with questions about construction for which the available ancient mathematical 
texts did not provide sufficient guidance. Such a confrontation occurred in par
ticular with respect to the acceptability of means of construction: Which means 
of construction can be accepted as sufficiently exact for figures constructed by 

1 I use the term "early modern" to denote the period between the Renaissance and the 
Enlightenment, i.e., roughly from c. 1550 to c. 1750. 

H. J. M. Bos, Redefining Geometrical Exactness
© Springer Science+Business Media New York 2001
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them to be considered genuinely known? Ruler and compass, or rather straight 
lines and circles,2 were certainly acceptable means of construction. But the 
classical geometers already knew from experience that many problems remained 
unsolvable if geometry were restricted to these means only. They had suggested 
various additional means of construction beyond straight lines and circles, but 
their texts did not clearly explain why these new means should be acceptable. 

Yet classical geometry had flourished despite an apparent lack of clarity about 
the acceptability of means of construction. Why did the issue become acute at 
the beginning of the early modern period? One reason was that mathemati
cians began using algebra as an analytical tool for the solution of geometrical 
problems. It was a powerful tool; more problems could be solved, old problems 
were solved more easily, and at the same time the new method suggested many 
new problems. Thus the field of geometrical problem solving grew considerably, 
and this growth necessitated a rethinking of the question what it meant to solve 
a problem. 

Another reason for considering the concept of construction in a new light was 
connected with special geometrical objects, namely curves. Curves occurred in 
geometry in three main roles: as objects of study, as means of construction, and 
as solutions of problems. In the first case they were usually supposed to be given, 
known, or constructed beforehand, and the mathematicians investigated their 
particular properties. In the two other cases, however, they were not necessarily 
known beforehand. Because of the growth of the field of geometrical problem 
solving, the question of when a curve was sufficiently known, or how it could 
acceptably be constructed, acquired a new urgency. 

At the beginning of the early modern period this new urgency mainly con
cerned the use of curves as means of construction. The problems that were 
studied usually required the construction of one special point or straight line 
in a given configuration. If such problems could not be solved by circles and 
straight lines, other curves had to be used, and this procedure obviously raised 
the question of how these curves themselves were to be constructed. 

After c. 1640 problems whose solutions were curves moved to the foreground. 
Such problems even more necessitated a rethinking of the question how curves 
themselves were to be constructed. These problems were of two types: the locus 
problems, in which a curve was to be determined from a given property shared 
by all its points, and the so-called "inverse tangent problems" in which a curve 
had to be determined from a given property of its tangents. Locus problems 
were known from classical sources. Inverse tangent problems (equivalent to 
first-order differential equations) were new; they arose especially in connection 
with the study of non-uniform and curvilinear motion in mechanics, and their 

21 use the terminology "by straight lines and circles" rather than "by ruler and compass" 
for constructions according to the Euclidean postulates, because Euclid did not mention in
struments to perform these constructions. 



1.1 Construction and representation 5 

treatment became possible through the various new methods of infinitesimals 
and indivisibles that were explored during the seventeenth century. 

Sometimes it turned out that the solution of a problem was a curve with 
which mathematicians were already familiar. In that case only the parameters of 
the curve and its position in the plane had to be determined. But, in particular 
for inverse tangent problems, it could also happen that the solution curve was 
hitherto unknown. In such cases the question arose of how to make unknown 
curves known. I use the expression representation of curves as a technical 
term to denote descriptions of curves that were considered to be sufficiently 
informative to make the curves known. For representing curves mathematicians 
resorted to the means which geometry offered for making objects known: the 
conceptual apparatus of construction. 

The questions which confronted mathematicians when compelled to recon- Conceptual 
sider the meaning of geometrical construction were primarily conceptual: What and opemtive 
does "exactness" mean? When is an object "known"? But because of the con- aspects 
frontation with new types of problems and with new objects, these questions 
acquired an additional operative aspect. They arose in connection with math-
ematical problems that had to be solved. So the answers to the questions of 
exactness and known-ness could not remain abstract, they had to offer guidance 
in a very concrete process: the solution of problems. In other words, the answers 
had to provide a viable canon of acceptable procedures within the practice of 
problem solving. 

The story of construction in early modern mathematics, then, is one about A forgotten 
mathematicians confronted with methodological problems. They did not find issue 
satisfactory anSwers. There is no danger here for a "Whig interpretation" of his-
tory.3 The endeavors of early modern mathematicians to clarify the questions 
about geometrical construction cannot be seen as the gradual realization and 
growth to maturity of established modern mathematical insights. On the con-
trary, the issue hardly occurs in present-day mathematics. Indeed the questions 
were not resolved; they were dissolved by later disregard and oblivion. 

The conceptual and technical developments concerning geometrical construc- A research 
tion and representation in the early modern period invite a historical research project 
project: to analyze the developments and to explore their relations to other as-
pects of early modern mathematics, notably the adoption of algebraic methods 
of analysis in geometry at the beginning of the period and the later emanci-
pation of analysis from its geometrical context. The project should also deal 
with the questions why nO satisfactory solution to the problem of geometrical 
construction was achieved, and what was, nevertheless, the function and the in-

3The term taken in the now usual, derogatory sense of a historiography of science, which 
finds interest in past events only if they can be argued to have led directly to valuable achieve
ments of modern science, cf. [Bynum 1984] s.v. "Whig history," pp. 445-446. 
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fluence of the debates on construction and representation within early modern 
mathematics. 

In the present study I pursue this research project with respect to the period 
c. 1590 - c. 1650. I hope to deal with the later period (c. 1650 - c. 1750) in a 
sequel to the present study.4 

1.2 The interpretation of exactness 

The present study, then, is about the opinions and arguments of mathe
maticians concerning the acceptability of geometrical procedures, in particular 
procedures of construction. These procedures served to solve problems and to 
make geometrical objects known, and so the issue of their acceptability hinged 
on the questions: When is a problem solved? When is an object known? Which 
procedures are acceptable in mathematics to solve problems and represent ob
jects? 

Early modern mathematicians agreed that approximative procedures, al
though very useful in practice, were not acceptable in genuine geometry. I use 
the terms exact and exactness for describing the ideal situation presupposed 
in the questions above about solving problems and knowing objects. "Exact" 
is indeed one of the terms which early modern mathematicians used in this 
connection.5 Other contemporary phraseology with this connotation included 
terms like "pure geometry," "true knowledge," "geometrical," "certain," "per
fect" and expressions invoking virtuous or lawful behaviour.6 Thus "exactness," 
in my present study, stands for a quality of mathematical procedures that, in the 
opinion of some mathematicians, makes them acceptabie as leading to genuine 
(as opposed to flawed) and precise (as opposed to approximate) mathematical 
knowledge. 

Mathematicians confronted with the question of which procedures are ac
ceptable had to explain, to themselves or to others, what requirements would 
make mathematical procedures exact in the above sense. Thus they had to 
interpret what it meant to proceed exactly in mathematics. I call this activity 
the interpretation of exactness. 

I should note that I avoid the terms "rigor" and "rigorous" in this respect, 
because they are commonly used in connection with proofs rather than with 
constructions, whereas my study concerns constructions primarily. However, I 
do think that many of the processes I discuss in connection with the interpreta
tion of the exactness of constructions have their counterparts in the historical 

4See [Bos 1987] for a sketch of a research program concerning the second period. 
5For instance Descartes, [Descartes 1637], p. 316: " ... il est, ce me semble, tres clair, que 

prenant com me on fait pour Geometrique ce qui est precis et exact, et pour Mechanique ce 
qui ne l'est pas .... " 

6Compare the quotations at Chapter 12 Note 11 ("pure geometry"); Chapter 10 Note 23 
("true knowledge"); Chapter 9 Note 15 ("geometrical"); Chapter 2 Note 29 ("certain"); Chap
ter 7 Note 19 ("perfect"); Chapter 3 Note 27 ("a considerable sin among geometers"); Chap
ter 10 Note 22 ("limits set by postulates"). 
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episodes in which mathematicians were forced to interpret or reinterpret the 
rigor of proofs. 

There is a tradition in the historiography of mathematics that interprets the Existence 
ancient Greek interest in geometrical construction as related to existence proofs. 
In this view, first advocated by Zeuthen,7 the postulates and constructions of 
Euclid's Elements served to prove the existence of the geometrical objects about 
which the subsequent theorems made assertions. This interpretation has been -
convincingly, in my opinion - refuted by recent historians of mathematics, such 
as Mueller8 and Knorr. 9 But, independently of the status of constructions in 
classical Greek geometry, the interpretation of constructions as existence proofs 
is inapplicable for the early modern period. I have found no evidence that early 
modern mathematicians doubted the existence of the solutions of the problems 
whose solution, by construction, they pursued with such intensity. Nor does 
it appear that they understood the classical interest in construction in terms 
of existence.lO Arguments, based on continuity, were known and accepted, for 
instance, to prove the existence of a square equal in area to a given circle,l1 but 
there was common agreement that such arguments did not count as solution of 
the problem to find, determine, or indeed construct such a square. Similarly, 
the existence of two mean proportionals12 between two given line segments was 
not doubted in the early modern period, but their existence left unanswered 
the question how, in pure, exact geometry, these proportionals should be con-
structed. 

It should be stressed that an answer to this question cannot be derived from An extm
axioms within an accepted corpus of mathematical knowledge. In classical ge- mathematical 
ometry as codified in the Euclidean Elements, figures are considered known if question 
they can be constructed by straight lines and circles from other figures assumed 
known. This interpretation of exactness is codified in postulates; it cannot itself 
be derived from other axioms or postulates. Similarly, in the 1690s Christi-
aan Huygens advocated the acceptance of a particular curve, the "tractrix", 
in the construction of other logarithmic curves. There is no way of proving 
mathematically that the tractrix is acceptable for that purpose; Huygens used 
extra-mathematical arguments in support of his suggestion. 13 

Thus any answer to the question of acceptable means of construction neces
sarily has the nature of a chosen postulate; the reasons for its choice lie outside 
the realm of proven argument. The question whether these reasons are correct 
or valid has, strictly speaking, no meaning. Mathematicians are free to accept 

7[Zeuthen 1896]. 
8Cf. [Mueller 1981] pp. 15-16, 27-29. 
9Cf. [Knorr 1986], Ch. 8; in particular p. 374, note 77. 

IOCf. Section 11.3 for an explicit early modern statement concerning the difference between 
existence and constructibility. 

11 Cf. Section 2.3. 
12Cf. Section 4.4. 
13Cf. [Bos 1988]. 
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or reject any proposed decision on the question of which means of construction 
are legitimate in geometry and which are not. 

The fact that choices of postulates and axioms in mathematics are based on 
extra-mathematical arguments does not necessarily involve great arbitrariness or 
ambiguity; the reasons for accepting an axiom or a postulate, although outside 
the sphere of formalized proven argument, may be cogent enough. However, in 
the case of construction during the early modern period, none of the arguments 
proposed to underscore the legitimacy and exactness of the various procedures 
proved lastingly convincing; as stated above, the issue ultimately vanished from 
the mathematical agenda. 

Imporlance Yet the early modern attempts to interpret exactness of constructions merits 
- and repays - historical study. The reasons for or against accepting proce
dures of construction, and the arguments in which mathematicians made them 
explicit, convincing or not, were very important in the development of mathe
matics. They determined directions in mathematical research, and they reflected 
the mental images that mathematicians had of the objects they studied. More
over, they changed essentially during the sixteenth to eighteenth centuries, and 
these changes reveal much about the processes of development within mathe
matics in that period. 

Proofs It should be noted that in the early modern period there was much less concern 

First period: 
geometrical 

problem 
solving 

about the rigor of proofs than there was about the legitimacy of constructions. 
This may seem remarkable because at present exactness in mathematics is re
lated almost exclusively to proofs; indeed the essence of mathematics is usually 
located in the fact that its assertions are proven. 

The relaxation of the classical Greek rigor of proof in mathematics has long 
been recognized as a characteristic of seventeenth- and eighteenth-century math
ematics. It may be less generally realized that this attitude did not imply a lack 
of interest in exactness. Mathematicians were concerned about the foundation 
of their science, but they regarded the questions about construction, or in gen
eral about procedures to make objects known, as more critical than rigor of 
proof. The example of Kepler is illustrative in this connection. Kepler was will
ing to replace rigorous Archimedean "exhaustion" proofs by loose arguments on 
infinitesimalsj 14 at the same time, as we will see in Chapter 11, he adopted an 
extremely purist position on construction, rejecting all other procedures than 
the orthodox Euclidean use of circles and straight lines. 

1.3 Structure of the story 

The structure of the story of construction and representation in early modern 
mathematics is basically simple. It comprises two slightly overlapping periods, 
c. 1590 - c. 1650, c. 1635 - c. 1750, and one central figure, Descartes. During 

14Cf. [Baron 1969] pp. 108-116. 
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the first period questions about construction arose primarily in connection with 
geometrical problems which required a point or a line segment to be constructed 
and which admitted one or at most a finite number of solutions. Examples were: 
dividing an angle in two equal parts (solved essentially by constructing one point 
on the bisectrix) and finding two (or n) mean proportionals between two given 
line segments. If translated into algebra, problems of this type led to equations 
in one unknown. 

Around these problems a considerable field of mathematical activity devel
oped, which may be called the early modern tradition of geometrical problem 
solving. It was in this field that the use of algebra as an analytical tool for 
geometry was pioneered by Viete and his followers and fully realized later by 
Fermat and Descartes. Indeed, the adoption of algebraic methods of analysis 
provided the principal dynamics of the developments in the field. The tradition 
also gave rise to a rich and diversified debate about the proper, exact ways of 
solving construction problems, especially those which could not be solved by 
the standard Euclidean means of straight lines and circles. 

Descartes' La Geometrie 15 of 1637 derived its structure and program from Descartes 
this field of geometrical problem solving. The two main themes of Descartes' 
book were the use of algebra in geometry and the choice of appropriate means 
of construction. The approach to geometrical construction that he formulated 
soon eclipsed all other answers to the question of how to construct in geometry. 
Thus Descartes closed the first episode of the early modern story of construction 
by canonizing one special approach to the interpretation of exactness concerning 
geometrical constructions. As stated above, my present study will be confined 
to this first episode. 

Geometrical problem solving remained alive for some time after Descartes Construction 
had provided it with a persuasive canon of construction and a standard alge- of equations 
braic approach. According to this approach a problem had to be translated 
into an equation in one unknown; thereafter, the roots of the equation had 
to be constructed by geometrically acceptable means. The latter procedure 
was called the "construction of equations." For some time after Descartes the 
"construction of equations" remained recognizable as a definite field of interest 
for mathematicians. Later, however, it fell into oblivion, and by 1750 it was 
extinct. 1B 

Descartes' Geometry may also be seen as the opening of a second episode Second period: 
lasting until around 1750. Now the problems that gave rise to questions about the study of 
construction and representation were primarily quadratures and inverse tangent curves 
problems. These belong to a class of problems in which it is required to find 
or construct a curve. If translated in terms of algebra, these problems lead 

15[Descartes 1637]; I refer to this text as "the Geometry." 
161 have described this process of rise and decline in [Bas 1984], d. also Section 29.3. 
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to equations in two unknowns, either ordinary (finite) equations or differential 
equations. 

Curve construction problems belonged to a field of mathematical activity, 
flourishing from c. 1635 to c. 1750, which can best be characterized as the 
investigation of curves by means of finite and infinitesimal analysis. 17 The field 
was loosely connected to the earlier tradition of geometrical problem solving; it 
also had strong roots in classical Greek studies on tangents, quadratures, centers 
of gravity, and the like. 

It was from this field that, in the period 1650 ~ 1750, infinitesimal analy
sis gradually emancipated itself as a separate mathematical discipline, inde
pendent of the geometrical imagery of coordinates, curves, quadratures, and 
tangents, and with its own subject matter, namely, analytical expressions and, 
later, functions. This process of emancipation, which might be called the de
geometrization of analysis, constituted the principal dynamics within the area of 
mathematical activities around the investigation of curves by means of finite and 
infinitesimal analysis. It was strongly interrelated with the changing ideas on 
the interpretation of exactness with respect to construction and representation. 

The solution of a curve construction problem required the representation (in 
the sense explained above) of the curve sought. It should be stressed that it was 
only by the end of the seventeenth century that analytical representation of a 
curve by an equation became a generally feasible option. For a long time such 
equations were available for algebraic curves only, and even for these curves 
mathematicians long felt hesitant about accepting an equation as a sufficient 
representation. To make a curve known, they argued, more was required than 
the algebraic expression of one particular property shared by the points on it; 
what was needed was a construction of the curve. In the case of non-algebraic 
curves such constructions should provide transcendental relations and for these 
the extant methods of construction were insufficient. Indeed, new methods were 
devised and they occasioned new debates about their acceptability, legitimacy, 
and effectiveness. 

The new debates on the appropriate construction and representation of curves 
were related to the earlier debates on point constructions. Curves were often 
represented by pointwise constructions, that is, procedures for constructing ar
bitrarily many points on a curve. In these pointwise constructions of curves 

17 After Viete's introduction of the analytical use of his new algebra in geometry and number 
theory, the term analysis was soon used as practically synonymous with the term algebra, both 
indicating letter-algebra. Later, when special symbols for objects or processes involving limits, 
indivisibles, or infinitesimals were introduced, it became customary to denote letter-algebra 
combined with these new symbols as analysis infinitorum ("analysis of infinite quantities") 
and, in contrast, letter-algebra itself as analysis finitorum ("analysis of finite quantities"). The 
"infinite quantities" included infinitely small ones. Remaining close to this terminology, I use 
finite analysis for letter-algebra and infinitesimal analysis for letter-algebra in combination 
with symbols for infinite or infinitesimal objects and processes. 
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mathematicians had to rely on the techniques and arguments developed earlier 
about constructions of points. Moreover, the representations of curves, espe
cially of non-algebraic curves, raised the same questions of interpretation of 
exactness as had arisen in connection with point constructions. Indeed, in the 
later debate about curve construction we can distinguish the same attitudes, 
strategies, and arguments as in the earlier debate (cf. Section 29.4). 

As mentioned above, Descartes' work constituted the conclusion of the first Role of 
debate; it was also a central point of reference in the later discussions. In Descartes' 
pointwise constructions mathematicians relied implicitly on the Cartesian canon ideas 
for constructing points. Moreover, they used Descartes' analytic techniques of 
studying curves by means of their equations. On the other hand, they had to 
break through the conceptual and technical restrictions of the Cartesian ap-
proach to geometry, in particular the restriction to algebraic curves and rela-
tionships, which was essential to Descartes' view of geometry. 

Although the interpretation of exactness with respect to geometrical con- The issues 
struction and representation was discussed with some intensity during the pe- vanished 
riods I have sketched above, no ultimately convincing answers were found. By 
1750 most mathematicians had lost the concern for issues of geometrical exact-
ness and construction; they found themselves working in the expanding field of 
infinitesimal analysis, which had by then outgrown its dependence of geometrical 
imagery and legitimation. 

1.4 Motivation of the study 

Although at present the concerns about the acceptability of geometrical con- Interpretation 
structions and representations are no longer part of the mathematical awareness of exactness 
and practice, they were very central in the early modern period. The vanish-
ing of reasonable and understandable concerns is an intriguing process and to 
understand it is, therefore, a valid objective of historical study. Moreover, the 
study of these issues of construction and representation seems important to me 
because it contributes in several different ways to our understanding of the de-
velopment of mathematics. In Section 1.2 I have introduced my subject as an 
instance of the endeavor to interpret mathematical exactness. The early mod-
ern attempts to create and legitimize methods of exact geometrical construction 
constitute a revealing example of the processes involved in the interpretation of 
mathematical exactness, especially so because ultimately they failed. Thereby, 
they offer an enlightening contrast with other, successful endeavors to inter-
pret mathematical exactness, such as the Greek treatment of incommensurable 
magnitudes, the rigorization of analysis in the nineteenth century, and the de-
velopments following the foundations crisis in the early twentieth century. 

Furthermore, the study of the concepts of construction and representation 
contributes to an understanding of early modern mathematics with respect to 
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the terminology and imagery of the texts, the directions of research, and the 
processes of development. 

Knowledge of the early modern concerns about construction and representa
tion is essential in reading the mathematical texts of the period. The conception 
of a geometrical problem as a task to be performed within a canon of acceptable 
procedures of construction is omnipresent in early modern texts; it strongly de
termines their structure and terminology. To give one example, to "construct" 
an equation or a differential equation meant to solve it. Even when, by the mid 
eighteenth century, the mathematicians had transferred their interest almost 
entirely from the geometrical to the analytical properties of these solutions, the 
term "construction" remained in use. 

In several instances the concerns about construction and representation de
termined the direction of mathematical research. As I will show in Part II, the 
structure of the Geometry of 1637 was largely determined by Descartes' endeavor 
to develop a new conception of exact geometrical construction which extended 
beyond the Euclidean restriction to straight lines and circles, and which was 
compatible with the use of algebraic methods of analysis. Also several develop
ments within the early infinitesimal analysis related directly to constructional 
concerns, for example, the earliest studies of elliptic integrals and the interest 
in tractional motion. I8 Thus the historical study of construction and repre
sentation offers essential insights into the early development of both analytic 
geometry and infinitesimal calculus. 

Early modern mathematics witnessed the creation and expansion of (finite 
and infinitesimal) analysis and its later emancipation from geometry. These 
developments brought deep and fundamental changes, not only concerning the 
problems that mathematicians solved and the methods they developed for that 
purpose, but also concerning the very conception of what it meant to solve a 
problem or to acquire new mathematical knowledge. Thus the rise and emanci
pation of analysis brought with it changes in interest, in directions of research, in 
canons of intelligibilityI9 and in rules for acceptable procedure in mathematics. 
These changes were brought about by such processes as the habituation to new 
mathematical concepts and material, and the progressive shift of methodolog
ical restrictions. By habituation, a mathematical entity that was earlier seen 
as problematical (for instance, some transcendental curve) could later serve as 
solution of a problem, even though the mathematical knowledge about it had 
not changed essentially. Methodological restrictions were mitigated or lifted as 
the result of conflicts on legitimacy of procedures and because of the appeal of 
new mathematical material. These processes are not exclusive to early modern 
mathematics, they belong also to other periods in the development of mathe
matics. I think they are important and interesting, and I find that the study of 

1BCf. [Bos 1974] and [Bos 1988]. 
19 A term I borrow, with appreciation, from M. Mahoney, d. [Mahoney 1984]. 
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the changing ideas and procedures of construction and representation provides 
a valuable key to the understanding of such general processes. 

1.5 Historiographical scheme 

Some remarks about my method are in order here. Basically I just want Methodology 
to tell about the interesting and exciting things I have found concerning the 
concept of construction in early modern mathematics, and the way they reflect 
the mathematicians' interpretation of the exactness of their science. However, I 
have experienced, to the cost of much time and bewilderment, that "interesting" 
and "exciting" are poor guides in structuring a report. So, in order to make 
the necessary choices and to plan strategies of writing, I found myself forced 
to define my "methodology." I think I should make that methodology explicit 
here. I do so with some reluctance because writing on "methodology" easily 
suggests directive and factiousness. Hence I use the term "historiographical 
scheme," and under that title I give a description of the method adopted in the 
present study and, more important, of its restrictions. 

The primary motivation of my study is to understand the processes that Model 
occur when mathematicians interpret or reinterpret the meaning and the cri-
teria of mathematical exactness. I restrict myself to a single period, the early 
modern one. In that period the arguments and debates on the interpretation 
of mathematical exactness centered on one concept, that of construction. For 
that reason the central subject of my study is the concept of construction and 
the changes it underwent in the early modern period. The concept did not sub-
sist and change in isolation, it functioned within mathematics and its changes 
interrelated with the large-scale developments within mathematics. So the un
derlying simple model of my investigation is that of one changing entity, the 
subject, within a broader domain, the context, in which global developments 
occur. 

It will be useful at the outset to identify not only the subject but also the 
context, and the developments within it, with respect to which I investigate the 
subject. As to the developments within the context, I have tried to simplify the 
model further by identifying what I call the principal dynamics in the context, 
that is, the main stimulus or agent of change in the developments. 

Below I describe the model in some more detail; I also state the methods I 
have used in gathering evidence and rendering results. 

The elements of the historiographical model adopted in this study are: 

• The subject of my study, namely: the concept of construction in the early 
modern period . 

• The subject is studied in its appropriate contexts, namely, 

Elements of 
the model 
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a in Parts I and II of the present study: the early modern tradition of 
geometrical problem solving c. 1590 - c. 1650; and 

b in the later part of the story (not treated in the present study): the 
investigation of curves by finite and infinitesimal analysis c. 1635 -
c. 1750. 

• Within these contexts or fields various developments occurred that I con
sider as following a principal dynamics. I define these principal dynamics 
as, 

a for Parts I and II: the creation and adoption of (finite20 ) algebraic anal
ysis as a tool for geometry, and, 

b for the later part: the emancipation of (finite and infinitesimal) analysis 
from its geometrical context. 

I study the subject, the concept of construction, primarily with the aim to un
derstand the processes involved in the interpretation of mathematical exactness. 
It will turn out, however, that this purpose requires a fairly broad covering of the 
mathematical-technical aspects of geometrical construction in the early modern 
period. 

Occasionally I view my subject in relation with processes outside of these 
particular contexts. In Part II, for example, I touch upon philosophical issues 
related to construction. However, in these cases I am far from exhaustive and 
there will be much room for further research. 

Other contexts than the above will generally be disregarded, notably the 
professional and personal contexts and the general cultural context. I disregard 
them for reasons of time and because I have the impression that these contexts 
will not provide essentially new insights in my subject. (Conversely, however, 
the developments concerning the interpretation of exactness may well shed new 
light on certain aspects of, for instance, the professional context.) 

As the scheme makes clear, my aim is not to write a comprehensive history of 
the domains identified as contexts. Rather I present the necessary background 
information about context and principal dynamics by means of characteristic 
examples of procedures and arguments. Thus Chapters 3-6 of Part I illustrate 
by various examples the nature of the early modern tradition of geometrical 
problem solving and the creation and adoption of (finite) algebraic analysis as 
a tool for this activity. 

Sources Although I do attempt a certain completeness in my study, it is neither pos-
sible nor desirable to report exhaustively on all incidents of interpretation of 
exactness that occurred with respect to the concept of construction within the 
contexts as indicated. Therefore, I concentrate on significant and characteristic 
statements of a restricted number of mathematicians who represent archetypal 
positions in the debates on exactness. In choosing these protagonists (notably 

20Cf. Note 17 above. 
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the ones discussed in Chapters 9-13} I have used a classification of attitudes of 
mathematicians vis-a-vis the interpretation of exactness. I explain that classifi
cation in Section 1.6 below. 

My investigation is based almost entirely on published primary sources. I 
have not searched for relevant but as yet unpublished archival material such 
as letters or manuscripts. For the pre-Descartes period such a search would 
probably bring new details to light, but I think it unlikely that they would 
affect the overall picture as it can now be sketched. For the Descartes episode 
one can hardly expect much new Cartesian archival material to turn up -
although I can't help hoping that the "ecrit" of 1631-1632 (cf. Section 19.1) 
will surface one day and provide an opportunity to test my conjectures on one 
stage in the development of Descartes' geometrical thought. 

In rendering mathematical argument I have adopted some conventions, which 
I explain in Section 1.7 below. 

Finally I should add that whenever I felt that it would be useful or enter
taining to step outside the historiographical scheme detailed above I have not 
hesitated to do so. 

1.6 Strategies in the interpretation of exactness 

The early modern mathematical literature offers an at first bewildering va- A 
riety of geometrical constructions and of arguments about their legitimacy. As classification 
I noted in Section 1.2 these arguments concern a meta- or extra-mathematical 
question; therefore, they cannot be classified according to their correctness. 
Yet a classification21 is needed to bring order into the material and to under-
stand the significance and influence of the arguments. I have found that such 
a classification emerges quite naturally from the source material if one views 
the arguments as reflecting certain attitudes, approaches, or strategies adopted 
by mathematicians when confronted with (ultimately undecidable) questions of 
interpretation of exactness. I distinguish a number of basic attitudes in this re-
spect, namely: (1) appeal to authority and tradition, (2) idealization of practical 
methods, (3) philosophical analysis of the geometrical intuition, and (4) appre-
ciation of the resulting mathematics. Two further, slightly different, categories 
are: (5) refusal, rejection of any rules, and (6) non-interest. 

This classification is primarily based on the material collected for the pur
pose of the present study, concerning the early modern tradition of geometrical 
problem solving and Descartes' Geometry. I believe that the classification may 
be relevant as well for the study of other episodes of interpretation of exactness 
in the history of mathematics. 

In the paragraphs below I give short descriptions of the categories, formu
lated primarily with respect to the early modern tradition of geometrical prob
lem solving; for each I note the persons or episodes dealt with in Parts I and II, 
that belong, totally or partly, within the category. 

21 I have presented the classification explained in the present section in [Bos 1993]. 
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Early modern geometry continued the classical geometrical tradition. Within 
that tradition certain construction procedures had been developed and codified. 
Although classical works provided little explanation of why they were accept
able, the procedures themselves were clear enough. Therefore, early modern 
geometers could opt for working in the style of that tradition, restricting them
selves to the procedures of construction they found in the classical works and 
arguing that these needed no other endorsement than the authority of great 
mathematicians such as Euclid, Archimedes, and Apollonius. Kepler's purist 
opinion on the proper ways of geometrical construction is an example; he re
jected all other means of construction than straight lines and circles, warning 
that the whole fabric of classical geometry would falter otherwise (Chapter 11). 
The recurrent invocation in early modern geometrical texts of a passage of 
Pappus in which the geometer is warned against the "sin" of constructing by 
improper means (cf. Section 3.4) is also a clear case of the appeal to authority 
and tradition. 

Some mathematicians argued for or against the adoption of procedures of 
construction by referring to the practice of draftsmen who use rulers, compasses, 
and other instruments to construct figures with great precision, such as the 
divisions of scales or the curves on the plates of astrolabes or on sundials. The 
precision and reliability of an instrument or a procedure in practice was an 
argument in favor of adopting the idealization of the instrument or the procedure 
as legitimate in pure geometry. In this case the interpretation of exactness was 
based upon an idealization of a geometrical practice. Clavius' attitude toward 
construction is an example; he defended pointwise construction of curves as 
acceptable in pure mathematics because of its precision in practice (Chapter 9). 
Molther's arguments (Chapter 12) belong in this category as well. 

Construction and representation served to make objects known. Hence, be
hind any choice of procedures for construction lay the intuition of "known-ness," 
or, in general, the intuition of certainty in geometry. Some mathematicians an
alyzed this intuition philosophically in order to find arguments for the adoption 
of their particular interpretation of constructional exactness. The most im
portant proponent of this approach in the early modern period was Descartes, 
whose whole vision of geometry was shaped by his philosophical concern for 
the certainty of the geometrical operations, in particular of the constructions 
(cf. Chapter 24). But others, too, considered the mental processes involved 
in geomet~ical procedures: Kepler for instance argued against other means of 
construction than the classical ones on the basis of their lack of certainty in 
principle. 

The result of accepting certain procedures of construction as legitimate is a 
mathematical system in which certain problems are solvable (they may be hard 
to solve or easy) and others are not. Different choices result in various systems 
that geometers may consider as qualitatively different. The mathematics of 
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one system may be experienced as richer, more interesting, more challenging 
than that of the other. The quality of the resulting mathematics, recognized 
implicitly or explicitly, played a role when mathematicians accepted or rejected 
certain methods of construction. In that case the reasoning did not primarily 
concern the merit of the postulated procedure itself, but rather the interest and 
the quality of the resulting mathematical system. Viete provides an example 
here; his choice of one extra postulate to supplement the classical Euclidean 
ones seems to have been inspired more by a wish to secure extant interesting 
practices than by the intrinsic persuasiveness of that postulate (Chapter 10). 

In interpreting geometrical exactness mathematicians make choices, accepting (5) Refusal, 
certain construction and rejecting others. The attitudes or strategies charac- rejection of 
terized in the four preceding categories have in common that the necessity of a any rules 
choice is accepted. However, occasionally I found geometers who seemed to re-
ject the practice of prescribing certain procedures of construction and forbidding 
others. Characteristically they argued that any problem had its own procedure 
of solution regardless of general criteria of acceptability. Clear examples of such 
open refusal are not to be found in the period covered in Parts I and II of this 
study, but in the later seventeenth and eighteenth century there are a few, which 
I hope to discuss in later publications. 

Finally, there were the mathematicians who simply were not interested in the (6) 
matter. This attitude was probably rather common, but in individual cases it Non-interest 
is difficult to distinguish it from the attitude listed above under (1). One major 
figure in the category of non-interest is Fermat, who, despite his important 
contributions to methods for analyzing geometrical problems, seems to have 
had very little affinity to questions of the acceptability of the constructions 
found by these methods (Chapter 13). 

1.7 Methods of exposition 

At the beginning of Chapter 6 (Section 6.2) I specify some terminology, no- Mathematical 
tably concerning concepts such as "arithmetic," "algebra," "unknowns" and terms and 
"indeterminates." Rather than giving these here I have inserted them at the arguments 
place where they become essential, namely in the chapter on the interrelations 
of arithmetic, algebra, geometry, and analysis during the beginning of the early 
modern period. 

It is impossible to render mathematical arguments from earlier times exactly 
as they were. The modern reader does not have the mathematical training 
and background of those for whom the old texts were originally written; he or 
she22 has both too much and too little mathematical knowledge. He knows 
modern theories which often readily reveal connections in the mathematical 
material that remained hidden for earlier mathematicians. On the other hand, 

221 use "he" henceforth, also in the cases where 1 mean "she or he." 
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the modern reader lacks certain skills that earlier writers would assume their 
readers to posses as a matter of course: knowledge of Latin, familiarity with 
classical authors, and the skill to elicit procedures or arguments from long and 
typographically unstructured prose texts referring to complicated and randomly 
lettered figures. 

The historian, wanting to convey the essence and the meaning of earlier 
mathematics to a modern reader, cannot avoid modifying the mathematical 
argument and adapting it to the purposes of his presentation; indeed, he should 
do so. He may shorten it where modern insight makes the result obvious and no 
lessons can be learned from going into detail through elaborate and unfamiliar 
notation and terminology, and he does well to unify the presentation where 
differences are unessential. On the other hand, he may need to expand certain 
now unfamiliar steps in the argument. 

In accordance with these general remarks I have not hesitated to modify 
the presentation of mathematical argument with respect to notation, symbols, 
and figures, in such cases where this makes the essence more clear and does not 
change the meaning. 

The mathematical arguments I study were thought or written in the past. 
Most of them are still valid at present, but a considerable number of the expres
sions, statements, and reasonings are no longer natural or acceptable in modern 
mathematics. This leads to a peculiar problem of representation: should the 
mathematical arguments from earlier times be presented in the past or in the 
present tense? I have adopted the following convention with respect to this 
question: In general, the arguments from past mathematics are rendered in the 
past tense; however, when they are presented in special typographical formats 
such as the one I use for constructions, they are given in the present tense. It 
may at first be somewhat strange to read that the equation x 2 - ax = b2 could 
be written as x( x - a) = b2 , because it still can. However I have found that 
the past tense in these cases is a very useful reminder that past mathematics 
is at issue and that its validity at present is not the main interest of historical 
research. 

Figures When taking over figures from primary sources, I have generally changed 
the letters. I have coordinated the lettering in figures that are related (as for 
instance the figures belonging to an analysis and a construction of the same 
problem). I indicate points and straight lines of indefinite length by capital 
letters and line segments by lower case letters. Without indication otherwise, a 
lower case letter indicates the line segment along the nearest straight line be
tween the two nearest marked points. If one point in a figure has an obvious 
central role, I denote it as O. Axes will usually be OX and OY. Otherwise 
the letters marking points are chosen in alphabetical order from A; if possible, 
the alphabetical order follows that of the appearance of the points in the argu
ment. Indices are used if functional (they do not occur in any of the original 
figures). The lay-out of the figure, however, will be the same as that of the 
original unless stated otherwise. In case line segments clearly have the function 
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of generic abscissa and ordinate of a curve with respect to some vertex, axis, 
and ordinate angle, I often indicate these segments by the lower case letters 
that would suitably denote the coordinates in the equation of the curve, even if 
the original argument involves no analytic geometry. In the case of facsimiles 
of original figures the conventions above, of course, do not apply. 

In classical geometrical reasoning line segments were combined to form par- Geometrical 
allelograms (rectangles in particular) or ratios. Later the operations of forming opemtions 
rectangles and ratios came to be seen as multiplication and division, respec-
tively. As the acceptance of these later conceptions was an essential element of 
the gradual adoption of algebraic analysis as a tool for geometry, it would be 
confusing to use the algebraic symbols for multiplication and division in cases 
where the texts have rectangles or ratios. In such cases I use the notations a : b 
for the ratio of a and b, sq(a) for the square with side a, and rect(a, b) for the 
rectangle with sides a and b. Proportionalities, that is, equalities between ratios, 
are denoted as a : b = c : d. In all cases where I use the common notations for 
multiplication (a x b, a· b, ab, or the exponent notation) and the quotient bar for 
division, this means that these notations were actually used in the original text 
or that the meaning in the text was clearly that of multiplication and division 
rather than forming rectangles or ratios. 

Constructions are stepwise procedures, each step being one of a canon of Constructions 
accepted simple standard constructions. I have stressed this unifying concep-
tion by presenting almost all constructions in the same format, indicating the 
given and required elements and numbering the separate steps in the proce-
dure. If relevant, I also render the "analysis" - the argument by which the 
construction was found - in a stylized, stepwise format. Within this format, 
my presentations are as close as possible to the original texts. I add (between 
square brackets) proofs or proof sketches of the constructions. As the origi-
nal proofs, if extant, are usually little informative, I have felt free to shorten 
and streamline these proofs considerably and to present them in modernized 
notation. However, unless noted otherwise, the proofs involve no arguments 
unknown at the time. 

For rendering the unknowns and indeterminates in algebraic arguments I use Algebm 
the common system whose appearance, in the Geometry of Descartes, is actually 
part of my story. That is: unknowns and indeterminates are indicated by lower 
case letters, those for the unknowns from the end of the alphabet (preferably 
x), those for indeterminates from the beginning. As in the case of figures, I 
have felt free to change the choice of letters, even if in the original document 
they were used in the Cartesian way just mentioned. However, if, as was mostly 
the case, the homogeneity or inhomogeneity of the equations was meaningful in 
the argument, I have kept these features in my rendering. I have used indices, 
summation signs, and the general function symbol wherever these modern ex-
pedients make it possible to express a generality which I think was meant by 
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the original author. 
A special remark has to be made about Vietean algebra. The algebra of 

Viete and his followers was written down in a beautifully consistent but some
what cumbersome and not fully symbolic notation. In general, this notation 
can be transformed straightforwardly into the notation described above. Occa
sionally information about the dimension of the terms or factors is lost in that 
transformation. In cases where this is essential I note it. I have occasionally 
provided examples of the Vietean notation. 

1.8 Survey 

In accordance with the structure of the story outlined in Section 1.3, my 
research project is naturally divided into three parts, of which the first two are 
dealt with in the present study. Part I (Chapters 1-14) is on construction and 
exactness in the early modern tradition of geometrical problem solving before 
Descartes; Part II (Chapters 15-28) is on Descartes' conception of construction 
and his related redefinition of geometrical exactness. The last part of the project, 
about the construction and representation of curves in the period c. 1650 -
c. 1750, is briefly sketched in the Epilogue (Chapter 29), but not further dealt 
with in the present volume; I hope to return to it in a later publication. 

The chapters of Part I naturally divide into four groups. In the first, Chap
ters 2-3, I sketch the starting point of the developments concerning construction 
and constructional exactness within the early modern tradition of geometrical 
problem solving. This starting point was located in time around 1590 because it 
was then that, through the publication in 1588 of Commandino's Latin transla
tion of Pappus' Coliection,23 the discussions on the interpretation of exactness 
with respect to construction acquired substance and structure. Chapter 2 is 
devoted to the earlier and rather elusive stage of these discussions beginning 
c. 1500; it also deals with the relevant classical sources that became known 
during the sixteenth century. Chapter 3 concerns Pappus' Collection as it be
came available by 1590. Several constructions from this work were influential 
in the later development of the concept of construction. They are discussed, 
together with Pappus' classification of problems and his precept for geometrical 
construction. It was precisely this classification that, together with the related 
precept, provided the substance and structure alluded to above. 

The next three chapters sketch the background of the debates on construc
tion: the early modern tradition of geometrical problem solving in the period 
c. 1590 - c. 1635. Chapter 4 gives an overview of the problems that constituted 
the subject matter of the tradition and provides a representative set of examples 
illustrating both the nature of these problems and the main methods of con
struction that were used. In Chapter 5 I turn to the analytical methods, that 

23[Pappus 1588]. 
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is, the formalized procedures for finding solutions. Besides acquainting them
selves with the classical Greek method of analysis from sources such as Pappus' 
Collection, mathematicians pioneered the use of algebra as an analytical tool in 
geometry. The use of algebra soon became so central that we may identify it 
as the principal dynamics within the tradition of geometrical problem solving. 
The chapter provides examples of both methods of analysis. Chapters 6 and 7 
take up a number of general issues that arose within the tradition of geomet
rical problem solving, in particular the legitimacy of using in geometry such 
fundamentally ungeometrical sciences as arithmetic and algebra. In Chapter 8 
I discuss how Viete dealt with the fundamental issues concerning the analytical 
use of algebraic techniques. 

With the starting point, the background and the fundamental issues thus Interpreting 
sketched I turn in Chapters 9-13 to my main theme, the debates on the exact- constructional 
ness of constructions within the early modern tradition of geometrical problem exactness 
solving. I discuss successively the opinions of five mathematicians who stated 
their position in the matter explicitly, namely Clavius (Ch. 9), Viete (Ch. 10), 
Kepler (Ch. 11), Molther (Ch. 12), and Fermat (Ch. 13). By way of a summary 
of Part I, I sketch in Chapter 14 the state of the art of geometrical problem 
solving around the year 1635. 

Apart from being of interest in itself as the description of an important tra- Part II 
dition within early modern mathematics, the material gathered in Part I also 
serves to sketch the background of Descartes' program for restructuring the art 
of geometrical problem solving that led to the Geometry of 1637.24 The pro-
gram of Descartes is the subject of Part II, which is organized chronologically. 
After a brief introductory Chapter (15), Chapters 16-19 deal with Descartes' 
studies before the publication of the Geometry, his first programmatic ideas on 
problem solving and construction, the adoption of algebra as a means for analy-
sis of geometrical problems, his first geometrical interpretation of the algebraic 
operations, and the difficulties he encountered in generalizing this interpreta-
tion. 

The next eight chapters (20-27) are about the Geometry itself, its contents, 
its underlying methodological problems, and the canon of geometrical construc
tion which it presented. The concluding chapters 28 and 29 summarize the 
dynamics of the development of Descartes' geometrical thinking and sketch the 
lines of later mathematical development that emanated from the early mod
ern tradition of geometrical problem solving and in particular from Descartes' 
Geometry. 

1.9 Conclusion 

With the scheme, the categories, the conventions, and the structure intro- Validity and 

24[Descartes 1637]. 
value 
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duced in the preceding sections, I attempt to render and analyze the various 
approaches adopted by early modern mathematicians when they had to forge 
programs, answers, or tactics with respect to the exactness of geometrical con
struction and representation. As said above (Section 1.6), these endeavors can
not be classified according to their validity because they attempted to answer 
an extra-mathematical question. To conclude, let me stress that this does not 
imply that the arguments are without value. On the contrary. They are very 
informative about mathematical ways of thinking in an earlier period and some 
of them have an independent intellectual quality. Indeed, I find that the mathe
maticians' arguments on the interpretation of geometrical exactness were largely 
sincere and serious, and occasionally showed a depth and penetration that can 
be admired and enjoyed even by readers of a later age for whom the question 
of exactness of geometrical construction has lost its former urgency. 



Chapter 2 

The legitimation of 
geometrical procedures 
before 1590 

2.1 Introduction 

Sixteenth- and seventeenth-century mathematicians were not the first to Antiquity 
struggle with the interpretation of exactness of geometrical constructions; also 
in the classical Greek period there existed a rich variety of constructional proce-
dures and many opinions on their acceptability. It appears that these opinions 
never converged to a clear communis opinio. This lack of uniformity and the 
relative scarcity of sources meant that sixteenth-century mathematicians had no 
clear classical examples in developing their ideas about the exactness of geomet-
rical constructions. Therefore, it is not necessary to survey the classical ideas on 
the legitimacy of constructions here; rather I can restrict myself to dealing with 
those few classical sources that actually influenced the early modern debates. 
Besides, and fortunately, I can refer to an excellent recent study on the classical 
tradition of geometrical problem solving, Wilbur Knorr's The ancient tradition 
of geometric problems. 1 

During the sixteenth century several writers participating in the Renaissance The sixteenth 
discovery and elaboration of classical mathematical knowledge commented on century 
the geometrical status of constructions. Usually the occasion was provided by 
one of the three so-called "classical problems": the quadrature of the circle, the 
construction of two mean proportionals, and the trisection of the angle. These 
problems cannot be solved, i.e., constructed, by straight lines and circles only. 

1 [Knorr 1986]. 
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This impossibility, which was formally proved only in the nineteenth century, 2 

had been accepted as a matter of experience by classical Greek mathematicians, 
and most early modern mathematicians assumed, by experience or on author
ity, that the classical problems could not be constructed by straight lines and 
circles. In the course of history these problems inspired, because of their con
ditional insolvability, several new lines of mathematical argument and repeated 
rethinking of the rules concerning geometrical construction. 

However, the opinions expressed during the sixteenth century about the 
solvability of the classical problems, and about the acceptability of the means 
used to solve them, largely remained inconclusive and very few of them were 
backed by clear arguments. In particular, I have found no explicit criteria for 
accepting or rejecting geometrical procedures in the relevant literature before 
c. 1590. Below I present a number of statements characteristic for the level 
of the discussion on the matter during most of the sixteenth century. The 
level increased markedly after the publication in 1588, of Commandino's Latin 
translation of Pappus' Collection, which contained enough material to instigate 
an ordered and effective discussion of both the techniques of construction and 
their acceptability. 

2.2 The legitimacy of the Euclidean 
constructions 

Circles and No mathematician of the sixteenth century doubted the legitimacy of using 
straight lines circles and straight lines in geometrical constructions. This use was codified in 

the first three postulates of Euclid's Elements. Although the actual execution 
of these constructions required the use of instruments, namely, a ruler and a 
compass, no one objected to their geometrical legitimacy on the grounds that 
they involved mechanical instruments - as we will see, this objection was raised 
against other instruments and procedures. 

Proclus' commentary on the first book of Euclid's Elements, available in 
print since 1533,3 contained several comments on the special status of straight 
lines and circles in geometry. Proclus primarily invoked the authority of Plato. 
Thus in a passage early in the book he wrote: 

. . . Plato constructs the soul out of all the mathematical forms, 
divides her according to numbers, binds her together with propor
tions and harmonious ratios, deposits in her the primal principles of 
figures, the straight line and the circle, and sets the circles in her 
moving in intelligent fashion. All mathematics are thus present in 
the soul from the first. Before the numbers the self-moving numbers, 
before the visible figures the living figures, before the harmonised 
parts the ratios of harmony, before the bodies moving in a circle 

2Cf. [Kline 1972] pp. 38-42, 764 and 981-982. Cf. also Section 26.6 for Descartes' expla
nation why problems like the trisection cannot be constructed by straight lines and circles. 

3Greek text in [Euclid 1533], Latin translation in [Proclus 1560J. 
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the invisible circles are already constructed, and the soul is the full 
company of them. 4 

Commenting on Euclid's definition of the straight line in Elements I (Def. 4) 
Proclus explained: 

Plato assumes that the two simplest and most fundamental species 
of line are the straight and the circular and makes all other kinds 
mixtures of these two, both those called spiral, whether lying in 
planes or about solids, and curved lines that are produced by the 
sections of solids.5 

In the comments on the first postulates, Proclus argued that drawing straight 
lines and circles was a supremely evident procedure. 6 The definition of the 
circle in Elements I (Def. 15) gave him the occasion to explain that straight 
lines and circles were the "first and simplest and most perfect of figures" 7 and 
to state some more profound analogies such as the one between the circle and the 
heavens, on the one hand, and the straight line and "the world of generation," 8 

on the other hand. 
Sixteenth-century mathematicians would readily interpret Proclus' state

ments about circles and straight lines as arguments in favor of their use in 
geometrical constructions, or at any rate in support of their non-mechanical na
ture, as opposed to such means and procedures as applied in the constructions 
of two mean proportionals (cf. Sections 2.4 and 4.4). 

However, Proclus did not state explicitly that geometry should restrict itself 
to circles and straight lines in constructions, nor did he formulate any other 
explicit criterion for demarcating the domain of legitimate geometrical proce
dures. 

2.3 The quadrature of the circle 

In 1559 Buteo published his Two books on the quadrature of the circle, in Buteo 
which many quadratures are refuted and Archimedes is defended against the 
attacks from all and sundry.9 Apparently the squaring of the circle was widely 
discussed; Buteo had occasion to refute the attempts of no less than ten classical 
and later authors. lO The book provides an illuminating picture of the discussions 
on the quadrature of the circle around the middle of the sixteenth century. A 
brief report on some of the arguments from Buteo's work may serve here to 
illustrate the nature and the level of these discussions. 

4 [Proclus 1992], p. 14. 
5[Proclus 1992]' p. 84. 
6[Proclus 1992], pp. 140 sqq. 
7[Proclus 1992], p. 117. 
8[Proclus 1992], p. 117. 
9 [Buteo 1559]. 

lONamely Antiphon, Bryson, Hippocrates, an Arab writer which Buteo did not identify, 
Campanus, Cusanus, Durer, Fortius (i.e., Joachim Fortius Ringelberg), Bouvelles, and Fine. 



26 2. The legitimation of geometrical procedures before 1590 

Buteo's main· target was Oronce Fine, who had published a quadrature of 
the circlell in 1544. Fine's incorrect quadrature involved a construction of two 
mean proportionals, which was equally wrong. His work drew immediate fire; 
in 1546 Nonius published an elaborate reaction12 pointing out all the errors in 
the book. 

Buteo refuted most of the quadratures he discussed by showing that they 
implied a ratio between the diameter and the circumference of the circle that 
lay outside the limits proved by Archimedes. But he also dealt with more sub
tle matters, in particular, the distinction between existence and constructibil
ity. The issue arose in connection with Bryson's quadrature,13 which consisted 
merely in an argument to the effect that for any given circle there existed an 
equal square. Buteo agreed, because, as he wrote, 

the circle and the square belong to the same kind of magnitude 
[namely area] 14 

so that, because clearly there was a square smaller than the given circle, and a 
larger one as well, there must also be a square whose area was equal to that of the 
circle. Apparently Buteo tacitly assumed that the concept of magnitude implied 
continuity and thereby a kind of intermediate-value theorem for magnitudes of 
the same kind; he gave no explicit arguments for this. However, he insisted that 
the quadrature of the circle required more than an argument for the existence 
of an equal square - this equal square must actually be found. Elsewhere, 
criticizing Cusanus, he repeated this argument, stressing 

the point that among geometers it is not considered impossible that 
something can be demonstrated although it is not given.15 

Thus Buteo was competently able to refute false quadratures, and he was aware 
of the subtle distinction between existence and constructibility. Nevertheless, 
he did not formulate any positive criteria for a circle quadrature to be truly geo
metrical. This approach was characteristic for the discussions on the quadrature 
of the circle throughout the period until 1590: the problem was recognized as 
important and intriguing; it was also understood that merely proving the ex
istence of the required square was not enough, the square had to be found or 
constructed in some geometrically acceptable way; but no positive criteria for ac
ceptability were formulated. It should be noted that Buteo's prudent comments 
did not prevent later circle squarers from publishing mistaken quadratures; thus 
the 1690s witnessed a considerable row about Scaliger's failed attempts to solve 
this classical problem.16 

11 [Fine 1544]. 
I2[Nonius 1546]. 
I30n this quadrature, dating from the fourth century b.C., see [Knorr 1986] pp. 76-78. 
I4[Buteo 1559) p. 14: "circulus et quadratum sunt in eadem specie magnitudinis." 
I5[Buteo 1559) p. 121: "id quod non est apud Geometras impossibile, scilicet aliquid posse 

demonstrari, quamvis non detur id ipsum." Buteo's criticism of Cusanus concerned a passage 
in the latter's Quadroture of the circle, [Cusanus 1980) pp. 58-67, in particular p. 59. 

I6Cf. [Scaliger 1594) and [Scaliger 1594c]. 
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2.4 Two mean proportionals 

I now turn to the construction of two mean proportionals. Of the three Preeminence 
classical problems, the construction of two mean proportionals attracted most among the 
notice in the sixteenth century. There were two related reasons for this pre- classical 
eminence. The first was that the list of 12 different constructions of two mean problems 
proportionals that Eutocius had included in his commentary to Archimedes' 
Sphere and Cylinder17 became available in print, first in works of Valla18 and 
Werner,19 later in editions of Archimedes' works. 2o A similar, though smaller 
set of constructions of the trisection in Pappus' Collection 21 became known only 
much later. Secondly, mathematicians learned and found that several problems 
not solvable by straight lines and circles could be reduced to the problem of two 
mean proportionals, whereas fewer, if any, problems were found to be reducible 
to trisection; so the former problem acquired a central position among problems 
beyond the constructional power of straight lines and circles. 

It is generally assumed that the problem of two mean proportionals arose Two mean 
in antiquity as a useful generalization of the cube duplication problem22 (see proportionals 
below). It is as follows: 

Problem 2.1 (Two Mean Proportionals) 
Given two line segments a and b, it is required to find their two mean propor
tionals, that is, two line segments x and y such that 

a:x=x:y=y:b. (2.1) 

Equivalently the problem can be stated as requiring the construction of four line 
segments forming a geometrical sequence whose first and last terms are given. 
If in particular b = 2a, then the first of the two mean proportionals, x, solves 
the cube duplication problem, because in that case x 3 = 2a3 , that is, x is the 
side of a cube twice as large as the cube with side a. 23 

In another sense the problem is a generalization of a construction that can 
be performed by Euclidean means, namely the determination of one or the 
mean proportional of two given line segments, i.e., the segment x satisfying 
a : x = x : b. On the further generalization to any number of mean proportionals 
see Section 4.4. 

17[Eutocius CommSphrCyl] pp. 588-620. 
18[Valla 1501] book XIII, Caput II, pp. u vV-x ivT • 

19 [Werner 1522] pp. c ivT -h ivT • 

20 [Archimedes 1544]' [Archimedes 1615]. 
21Cf. Construction 3.8. 
22The insight that the duplication of the cube can be achieved if a general method is 

available for determining two mean proportionals is attributed to Hippocrates of Chios, cf., 
e.g., [Knorr 1986] pp. 23-24. 

231t should be noted that the converse does not apply; a method for duplicating the cube 
cannot be used for determining two mean proportionals between an arbitrary pair of line 
segments. For this reason it is somewhat confusing to consider the duplication, rather than 
the determination of two mean proportionals, as one of the three "classical problems." 
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The occasion for Eutocius' list of constructions was Proposition I of Book 
II of On the sphere and cylinder in which Archimedes constructed a sphere 
equal to a given cone or cylinder. In his construction he assumed that it was 
possible to find two mean proportionals between two given line segments. As 
he did not explain how, Eutocius had good reason to provide constructions in 
his commentary; the fact that he could provide twelve different ones testified to 
the classical interest in the problem. 

Three As the problem cannot be constructed by straight lines and circles, each 
constructions classical construction of two mean proportionals reported by Eutocius involved 

one step that was alien to the Euclidean corpus of geometrical procedures. These 
steps differed from construction to construction; some involved a procedure of 
trial-and-adjustment with rulers, others employed special instruments or curves 
traced by such instruments, again others used the intersection of conic sections. 
We will see examples of all these types in the course of this study. The most 
popular construction in the period before 1590 was the one which Eutocius 
ascribed to Heron; two other often quoted ones were those attributed to Plato 
and to Nicomedes. Those of Heron and Plato employed a ruler or a system of 
rulers, which was shifted over the figure until, by trial, adjustment, and trial 
again, the desired position was achieved. The third construction used a so
called "neusis" procedure for which Nicomedes had devised a special curve, the 
conchoid. 

Heron's Before turning to the opinions about the legitimacy of these procedures I 
construction discuss the three constructions mentioned above. 

Construction 2.2 (Two Mean Proportionals - Heron)24 
Given: two line segments a and b (see Figure 2.1); it is required to find their 
two mean proportionals x and y. 

Construction: 
1. Construct a rectangle 0 AO B with sides 0 A = a and 0 B = b; 
prolong the sides OA and OB; mark the middle D of the rectangle. 
2. Place a ruler along point 0; its points of intersection with OA 
and OB are E and F, respectively; turn the ruler around 0 until a 
position is reached in which DE = D F. 
3. Then x = BF and y = AE are the required mean proportionals. 
[Proof: We have a: x = y : b = (a+y) : (b+x) by similar triangles. 
Further DE2 = DF2 yields (y + !a)2 + ib2 = (x + !b)2 + ia2, so 
y(a + y) = x(b + x), whence x: y = (a + y) : (b + x) = a: x.] 

Step 2 of the construction cannot be performed by straight lines and circles. It 
is an example of a construction by shifting rulers: a ruler is shifted until two 
line segments in the resulting figure (here DE and DF) are equal to each other. 
In such procedures sometimes (as here) both line segments were affected by the 

24 [Eutocius CommSphrCyl] pp. 590-592. 
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a 

b 

E 

Figure 2.1: Heron's construction of two mean proportionals 

motion of the ruler, sometimes only one of them, the other being fixed (as in the 
classical neusis construction, see below). The methods to check whether or not 
the line segments were equal might differ; in the case of Heron's construction a 
compass could be used. 

The construction which Eutocius ascribed to Plat025 proceeded by shifting Plato's 
rulers, or rather shifting gnomons: construction 

Construction 2.3 (Two Mean Proportionals - Plato )26 
Given: two line segments a and b (see Figure 2.2); it is required to find their 
two mean pmportionals x and y. 

Construction: 
1. Mark OA = a and OB = b along two lines AOe and BOD 
intersecting perpendicularly in O. 
2. Place a gnomon with one arm along A and its vertex on OD; the 
vertex marks Eon OD; the second arm intersects oe in F. 
3. Place a second gnomon with its vertex in F and one arm along 
EF; its second arm intersects OB in G. 
4. If G coincides with B we are done; if not, move E up or down 
along OD, keeping the one arm along A, and adjust the second 

250n the attribution to Plato, which is doubtful because Plato would hardly have accepted 
the construction as geometrical, see [Heath 1921]' vol. 1, p. 255 and [Knorr 1986] pp. 57-6l. 

26[Eutocius CommSphrCyl] pp. 589-590. 
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a 

Figure 2.2: Plato's construction of two mean proportionals 

gnomon along the first with its vertex on OC, until G coincides 
with B. 
5. Now G = B, and x = OE and y = OF are the required mean 
proportionals. 
[Proof: The triangles AOE, EOF, and FOB are similar, hence 
a : x = x : y = y : b.] 

Step 4 of the construction cannot be performed by straight lines and circles. 

The conchoid The construction of two mean proportionals attributed by Eutocius to Nico-
of Nicomedes medes employed a procedure called "neusis" (see below), for which Nicomedes 

used a curve called the conchoid. Eutocius explained an instrument that Nicomedes 
had devised to trace this curve; it consisted (see Figure 2.3) of two perpendic
ularly connected rulers AB, CD and a movable ruler EG. The rulers CD and 
EG had slots along their central lines; at 0 on AB and at F on EG pins were 
fixed, which fell in the slots as shown. The distances FG = a and AO = b 
were constant. (Nicomedes probably envisaged an instrument in which these 
distances were adjustable.) When the ruler EG was moved, the point G de
scribed the conchoid. The pins and the slots ensured that in all its positions 
EG passed through the fixed point 0 while F remained on the line CD. Thus 
any point H on the conchoid had the property that its distance to the base line 
CD measured along the line HO was equal to a. 
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_----_H 

Figure 2.3: Nicomedes' instrument for tracing the conchoid 

Eutocius went on to show how Nicomedes' conchoid could be used for solving The neusis 
the so-called neusis problem: problem 

Problem 2.4 (Neusis) 
Given: two straight lines Land M, a point 0 (referred to as the "pole" of the 
neusis) and a segment a (see Figure 2.4); it is required to find a line through 0, 
intersecting Land M in A and B, respectively, such that AB = a. 

Literally "neusis" means "verging": the given segment is placed between the 
two given lines such that it verges or points toward the given pole. In general, a 
neusis cannot be constructed by straight lines and circles. The neusis problem 
played an important role in classical Greek constructional practice. However, 
the importance of this role became apparent to early modern mathematicians 
only after the publication of Pappus' Collection in 1588. Accordingly I discuss 
it in more detail later (cf. Sections 3.6 and 4.6, Problem 3.7 and Constructions 
3.8,4.16, 5.4, 5.6, and 12.1). 

Nicomedes' solution of the neusis problem by means of the conchoid was as 
follows: 

Construction 2.5 (Neusis by means of a conchoid - Nicomedes)27 
Given and required: see Problem 2.4. 

Construction: 
1. Draw (see Figure 2.5) a conchoid with axis along L and pole 

27[Eutocius CommSphrCylj pp. 618. 
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L 

M a 

Figure 2.4: The neusis problem 

L 

M 

Figure 2.5: Neusis by means of a conchoid - Nicomedes 
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Figure 2.6: Nicomedes' construction of two mean proportionals 

in 0 (this could be done with help of the instrument described in 
(Figure 2.3) above, by adjusting the pins 0 and F such that b is equal 
to the distance of 0 from L and a is equal to the given segment); 
the conchoid intersects M in B. 
2. Draw OB; it intersects L in A. 
3. OAB is the required line. 
[Proof: Immediate from the definition of the conchoid.j 

Nicomedes' construction of two mean proportionals, as reported by Eutocius, Nicomedes' 
reduced the problem to a neusis. It was as follows: construction 

Construction 2.6 (Two Mean Proportionals - Nicomedes)28 
Given: Two line segments a and b, a < b (see Figure 2.6); it is required to find 
their two mean proportionals x and y. 

Construction: 
1. Construct a rectangle 0 AC B with sides 0 A = a and 0 B = b; 
prolong OA to both sides and OB upwards; bisect OA and OB in 
D and E, respectively; draw D F perpendicular to 0 A; draw C E 
intersecting AO prolonged in G and making CO = 0 A = a. 
2. Take H on DF such that AH = OE (= ~b); draw CH; draw AI 
parallel to C H. 

28[Eutocius CommSphrCyl] pp. 615-620. 
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3. By "neusis" draw a line H J K through H, intersecting AI and D A 
prolonged in J and K, respectively, and such that JK = DE (= ~b). 
4. Draw and prolong KG, it intersects DB prolonged in L. 
5. x = H J and y = AK are the required proportionals. 
6. Moreover, LB = x, so Nicomedes' construction yields the same 
configurations as Heron's. 
[Proof: In the right triangles D H A and D II K we have D H2 = 
(~b)2 - (~a)2 = (~b + X)2 - (~a + y)2, whence ay + y2 = bx + x2, 
or (a + y) : (b + x) = x : y (*). The triangles AJ K and G H K are 
similar, so JK : AK = HJ : GA , whence (~b) : y = x : 2a, and 
a : x = y : b (**). From this proportionality it follows further that 
a: y = x: b, so (a + y) : y = (x + b) : band ((1, + y) . (x + b) = y : b 
(* * *). From (*) and (* * *) follows x : y = y : b, and together 
with (**) this yields a : x = x : y = y : b. Finally, by step (4) of 
Nicomedes' construction a : BL = y : b, whence BL = x.] 

Step 3 of the construction cannot be performed by straight lines and circles. 

2.5 The status of the constructions 

Mechanical Eutocius hardly discussed the question whether the constructions of two 
nature mean proportionals were geometrically acceptable; as far as he expressed pref

erences, they concerned the practical ease of the constructions, not their theoret
ical exactness. The general attitude of sixteenth-century writers to the problem 
seems to have been the same. Most of them stated explicitly that no truly ge
ometrical solution had yet been found. The only explicit argument against the 
available constructions was that they involved the use of instruments and were 
therefore "mechanical." Ramus, for instance, wrote about Heron's construction: 

Until now no way has been found by which this mechanical procedure 
could be performed on the basis of certain geometrical principles 
which would ensure that the equality of the distances was caught 
right-on by direct action.29 

In the 1615 edition of Archimedes' works, which included Eutocius' commentary, 
the editor, Rivault, surveyed the list of constructions of two mean proportionals 
and aptly remarked that 

nobody left this stone unturned, 

but that all solutions used instruments and were therefore mechanical, 

so that this problem has remained unsolvable until the present day, 
which is one among many reasons why Geometry is defective and 

29 [Ramus 1569] p. 95: "et hoc mechanicum nullo principio geometriae certo adhuc inventum 
est, ut protinus actione prima aequidistantia deprehendatur." Similar statements can be 
found e.g. in [Benedetti 1599] p. 353, [Bombelli 1579] pp. 47-48, [Nonius 1546] pp. 1 and 8, 
[Stevin 1583] p. 1. 
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imperfect. It is indeed not certain that anybody ever will provide 
this supplement to the art.30 

Despite their insistence on the ungeometrical nature of the mechanical means 
and the procedures of trial and adjustment that were involved in the construc
tions of two mean proportionals, mathematicians apparently felt little reluctance 
in accepting and presenting them; indeed the problem of two rhean proportion
als engendered less controversy than the quadrature of the circle. And, as in 
the case of the circle quadrature, the problem of two mean proportionals did 
not induce mathematicians to formulate positive criteria for truly geometrical 
procedures. 

Besides the legitimacy of the various constructions there was of course the Impossibility 
question whether it was really impossible to square the circle or to determine not proved 
two mean proportionals by means of circles and straight lines only. Many math-
ematicians wrote that truly geometrical constructions were not yet found. But 
it is unclear whether they meant constructions by straight lines and circles or 
by other means that were to be considered geometrical. There was, as far as I 
could ascertain, no awareness that the possibility or impossibility might be or 
ought to be proved by a formal demonstration. Still the informed opinion among 
mathematicians seems to have been that it was useless to try to find a construc-
tion of two mean proportionals according to strict geometrical requirements -
whatever these were. 

But, as there were circle squarers there were also those who did think they Mesolabum 
had found the true constructions of two mean proportionals. One of these was 
Salignac who in his Exposition of the mesolabe31 claimed that he had found a 
solution.32 His book revealed that he did not understand the question; he only 
showed that in the configuration of Heron's construction it may indeed happen 
that the ruler passes through the vertex of the rectangle, and that if so, the con-
struction does give the required two mean proportionals. Salignac added a long 
discussion about the provability of theorems,33 which only helped to increase 
the confusion. His work, however, was of some importance because apparently 
it was the first of a series of works, often featuring the word "Mesolabum" 34 
in their titles, about the duplication of the cube and the construction of two 
mean proportionals. Some of these books showed ignorance similar to Salignac's 

30 [Archimedes 1615J p. 100: "nemo enim hunc lapidem non movit" ; "ita ut insolubile huc 
usque manserit hoc problema, quo Geometria ut multis aliis manca et imperfecta est. Incertum 
an unquam quisquam arti supplementum istud addiderit." 

31[Salignac 1574J pp. 9-16. 
32 Another was Fine who based his quadrature of the circle ([Fine 1544]) on a construction of 

two mean proportionals by circles and straight lines. Both the quadrature and the construction 
were wrong, as Nonius ([Nonius 1546]) and Buteo ([Buteo 1559]) took great care to explain. 

33[Salignac 1574J pp. 16-19. 
34The term "mesolabum" was taken from Eutocius' report on Eratosthenes' construc

tion of two mean proportionals ([Eutocius CommSphrCylJ pp. 609-615), where the instru
ment devised by Eratosthenes for determining any number of mean proportionals was called 
(mesolabos), "taker of means" ; cf. [Knorr 1986] pp. 17, 210-218. 
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(for instance [Scaliger 1594b]), but others, such as [Viete 1593] and [Sluse 1659] 
were serious mathematical studies. 

2.6 Conclusion 

The examples given above make clear that several sixteenth-century math
ematicians showed concern about geometrical exactness, criticizing procedures 
and proofs for the quadrature of the circle and questioning the geometrical sta
tus of constructions beyond the Euclidean canon, in particular those for two 
mean proportionals. But there was little clarity about the distinctions between 
questions of proof, construction, and existence. We find no explicit formulation 
of criteria for acceptability of geometrical procedures, nor an insistence that 
geometry should restrict itself to constructions by circles and straight lines. 

Thus the debates on the exactness of constructions were opaque and they 
remained inconclusive. That situation changed with the publication in 1588 of 
Pappus' Collection. 



Chapter 3 

1588: Pappus' "Collection" 

3.1 Introduction 

Commandino's Latin translation of Pappus' Collection became available in Themes 
print in 1588.1 Pappus' text, composed in the early fourth century AD, provided 
clear-cut statements on the aim and rules of geometrical problem solving, many 
examples of constructions, and suggestive information about analytical methods 
for finding the solutions of problems. At the same time Pappus' practice of 
problem solving was often inconsistent with the rules and aims he professed. As 
a result the influence of the book on the subsequent ideas about construction 
was strong but undogmatic. 

After c. 1590, largely under the influence of Pappus' text, geometrical prob
lem solving became a recognizable, well-defined subfield of geometry with a 
shared understanding of its first aims and principal methods. And, although at 
first there was no communis opinio on the legitimacy of means of construction 
beyond straight lines and circles, the discussions on this issue were much more 
clear and objective than they had been before. Three themes were of particular 
importance in this process of clarification: Pappus' classification of problems, 
the use of curves in constructions, and neusis constructions. 

3.2 The classification of problems 

In two famous passages Pappus classified geometrical problems as either Plane, solid 
"plane," or "solid," or "line-like". Plane problems were those that could be and line-like 
constructed by circles and straight lines. Solid problems were non-plane prob- problems 
lems that could be constructed by straight lines, circles, and conic sections. If 

1 [Pappus 1588]; there were two re-issues: [Pappus 1589] and [Pappus 1602]. The 1588 
edition was posthumous; Commandino had died in 1575. By that time a considerable number 
of manuscript copies of the Greek text circulated among humanists and mathematicians, 
cf. [Pappus 1986] pp. 62-63, [Treweek 1957]' and [Passalaqua 1994]. In 1569, for instance, 
Ramus referred to the treatment of two mean proportionals in book III of the Collection 
([Ramus 1569b] p. 95); cf. also Note 4 of Chapter 9. 
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other curves than these had to be used in a problem's construction, it was called 
line-like.2 The two passages3 were almost literally the same. I quote the first 
one, keeping my translation close to Commandino's Latin version: 

The ancients stated that there are three kinds of geometrical prob
lems, and that some of them are called plane, others solid, and others 
line-like; and those that can be solved by straight lines and the cir
cumference of a circle are rightly called plane because the lines by 
means of which these problems are solved have their origin in the 
plane. But such problems that must be solved by assuming one or 
more conic sections in the construction, are called solid because for 
their construction it is necessary to use the surfaces of solid figures, 
namely cones. There remains a third kind that is called line-like. 
For in their construction other lines than the ones just mentioned 
are assumed, having an inconstant and changeable origin, such as 
spirals, and the curves that the Greeks call (tetragonizousas), and 
which we can call "quadrantes,,,4 and conchoids, and cissoids, which 
have many amazing properties.5 

The classification evidently presupposed that all problems should be constructed 
by the intersection of curves, rather than, for instance, by instruments or by 
shifting rulers. We will see that Pappus himself was nevertheless quite interested 
in these alternative methods of construction. 

Solid problems The first class of problems, the plane ones, comprised the common problems 
constructible by Euclidean means. The best known example of a solution of a 
solid problem by the intersection of conics was the construction of two mean 
proportionals that Eutocius attributed to Menaechmus. It was as follows: 

2Commandino used the term "linearis" in translating the Greek "(grammike)"; I will 
use "line-like" rather than "linear" because in modern mathematics the latter term suggests 
straight lines and first-degree equations, which is the opposite of what Pappus meant. 

3[Pappus Collection] III, § 7, pp. 38-39 (introduction to Prop. 5), and IV, § 36, pp. 206-208 
(introduction to Props 31-34). 

4The term (tetragonizousa) means "square making" and indicates that the curve was im
portant for a quadrature. Indeed, Pappus used the same term for the curve used in a quadra
ture of the circle, see below, Definition 3.3; Commandino translated this as "linea quadrans" 
([Pappus 1660]' p. 88). It seems that Clavius was the first to call this curve "quadratrix," 
cf. Section 9.2. 

5[Pappus Collection] III (§ 7, pp. 38-39), in Commandino' translation ([Pappus 1660] p. 7): 
"Problematum geometricorum antiqui tria genera esse statuerunt, et eorum alia quidem plana 
appeliari, alia solida, alia linearia, que igitur per rectas lineas et circuli circumferentiam solvi 
possunt, merito plana dicuntur; etenim lineae, per quas eiusmodi problemata solvuntur, in 
plano ortum habent. Problemata vero quaecumque solvantur, assumpta in constructionem 
aliqua coni sectione, vel pluribus, solida appellantur namque ad constructionem necesse est 
solid arum figurarum superficiebus, nimirum conis, uti. Restat tertium genus, quod lineare 
appellatur. Lineae enim aliae praeter iam dictas in constructionem assumuntur, varium, et 
transmutabilem ortum habentes, quales sunt helices, et quas graeci (tetragonizousas) appel
lant, nos quadrantes dicere possumus, conchordes [sic; read: conchoides] et cissoides, quibus 
quidem multa, et admirabilia accidunt." 
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Figure 3.1: Menaechmus' construction of two mean proportionals 

Construction 3.1 (Two mean proportionals - Menaechmus)6 
Given: two line segments a and b (see Figure 3.1); it is required to find their 
two mean proportionals x and y. 

Construction: 
1. Mark a quadrant by a vertical and a horizontal half-axis through 
O. Draw a parabola with vertical axis, vertex 0, and latus rectum 7 

a. 
2. Draw in the quadrant a (single branch of a) hyperbola, which has 
the two axes as asymptotes and whose abscissae and ordinates form 
rectangles equal to rect(a, b). 
3. The two curves intersect in Cj draw perpendiculars CX and CY 
through C to the axes, with X and Y on the horizontal and vertical 
axes, respectively. 
4. Now x = OX and y = OY are the required two mean prop or
tionals. 

6[Eutocius CommSphrCyl] p. 603-605. 
7 Latus rectum and latus tmnsversum are the Latin terms for certain line segments occurring 

in the defining properties of conic sections. If the vertex of the conic section is taken as origin 
and the X-and Y -direction are taken along the axis of the conic and perpendicular to the 
axis, respectively, then the latus rectum a and the latus tmnsversum b occur in the analytical 
equations for the conics in the following way: y2 = ax (parabola), y2 = ax - %x2 (ellipse), 
and y2 = ax + %X2 (hyperbola). For an excellent explanation of Apollonius' definition of 
these line segments see [Hogendijk 1991] pp. 4-12. 
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[Proof: Because C is on the parabola with latus rectum a, we have 
ay = x 2 ; and because C is on the hyperbola we have xy = abo Hence 
a : x = x : y = y : b.] 

As the example shows, construction by the intersection of conics presupposed 
that, given their parameters (vertex, axes, latus rectum, latus transversum, or 
equivalent data) these curves could somehow be posited in the plane, and that 
thereby their points of intersection became known. I return to this presupposi
tion in Section 3.5 below. 

Only a few other constructions by conics were known from classical sources 
before C. 1590.8 The method of constructing used in these solutions apparently 
made very little impression in the sixteenth century. As we will see, Pappus 
provided more examples of such constructions. Yet, although the possibility 
of constructing by the intersection of conics was recognized as important after 
1590, the method was hardly ever used before Descartes and Fermat did so in 
the 1620s and 1630s. 

Line-like The line-like problems that attracted most interest after 1590 were those 
problems which made use of the spiral and the quadratrix. These curves were defined 

by specifying a procedure for generating them. I give the definitions and one 
example of a construction by means of the quadratrix. 

Pappus devoted several sections of his fourth book to Archimedes' theory of 
the spirals.9 In his book on spirals Archimedes defined the curve as follows: 

Construction-Definition 3.2 (Spiral - Archimedes)lO 
Given: a point a in the plane (see Figure 3.2); a curve, starting in 0, is traced, 
called the Archimedean spiral. 

Construction: 
1. Let a line L through a rotate one full turn at uniform speed; at 
the same time let a point A move uniformly along L starting in a. 
2. The curve traced by the point A is the spiral. 

Pappus assumed the definition of the spiral to be known. He was more explicit 
about the quadratrix. He mentioned that the curve was used by Dinostratos 
and Nicomedes.l1 He gave its definition in Book IV: 

Construction-Definition 3.3 (Quadratrix - Pappus)12 
Given a square aBCA (see Figure 3.3) and a quadrant aBA, a curve is traced, 
called the quadratrix. 

8Eutocius inserted in his list after the one by Menaechmus discussed above, a construction 
by means of two parabolas; this construction is usually also ascribed to Menaechmus. Euto
cius also gave some constructions by conics in his commentary at Sphere and Cylinder 11-4 
[Eutocius CommSphrCyl] pp. 626-666. 

9[Pappus Collection] IV-19-22 (§§ 21-25), pp. 177-185. 
lO[Archimedes Spirals] Def. 1; p. 165. 
llThe curve is often called "quadratrix of Dinostratos," but a more likely originator of the 

curve is Hippias. 
12[Pappus Collection] IV-25-26 (§ 30), pp. 191-192. 
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Figure 3.2: Definition of the Archimedean spiral 
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Figure 3.3: Definition of the quadratrix 
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Construction: 
1. Let a line segment turn uniformly around 0 from position OB to 
position OA (its endpoint describes the arc BA); let during the same 
time interval another line segment move uniformly from position Be 
to position OA, keeping parallel to OA. 
2. During the motion the point of intersection E of the two line 
segments traces the quadratrix BEED. 

An immediate consequence of the definition, noted by Pappus, is that for any 
point E on the quadratrix, with corresponding positions FC of the moving hor
izontalline segment and OH of the moving radius, the following proportionality 
holds: 

arcBH: arcBA = BF: BO. (3.1) 

Pappus then proved 13 that 

OD : OA = OA : arcBA. (3.2) 

If a quadratrix was given, the lengths OD and OA were given too, and the pro
portionality of Equation 3.2 implied that arcBA could be determined. Thereby 
the circle was rectified and hence the circle could be squared as well, using 
Archimedes' proposition that the area of a circle is equal to half the area of the 
rectangle formed by its radius and its circumference. This application gave the 
curve its name. 14 

In the construction of the quadratrix it was assumed that the two uniform 
motions could be regulated such that the one line turned through the quadrant 
in exactly the same time as the other moved along the given square. Pappus 
reported objections to this assumption such as the one from Sporus, who noticed 
that in order to do so one should regulate the speeds in the ratio of the arc BA 
and the radius OB, hence that ratio should be known beforehand. But squaring 
the circle meant finding precisely that ratio; hence, Sporus objected, using the 
curve in solving that problem would imply a petitio principii. 15 

13[Pappus Collection] IV-26, §§ 31-32, pp. 194-196; the proof employed a reductio ad ab
surdum argument. 

14 Cf. Note 4 above. 
15The relevant passage ([Pappus Collection] IV-25-26 (§ 31), p. 193) was translated by 

Commandino as follows ([Pappus 1660] p. 88): 

Hae autem linea spero [sic; read: Sporo] iure ac merito non satisfacit propter 
haec. Primum enim ad quod videtur utilis esse, hoc in suppositione assumit, 
quomodo, inquit, fieri potest, ut duo puncta ab ipso B principium motus capien
tia; hoc quidem in recta linea ad A, illud, vero in circumferentia ad D in aequali 
tempore simul restituantur, nisi prius proportio rectae lineae AB ad circumfer
entiam BED cognita sit. In hac enim proportione, et motuum velocitates sint, 
necesse est. Nam quo pacto arbitrantur ea simul restitui. Velocitatibus temere, 
et nulla ratione utentia? nisi forte quispiam dicat hoc casu evenire, quod est 
absurdum. 

Few modern historians of mathematics have commented upon this objection. Heath ac
cepts it ([Heath 1921] vol 1 p. 230); Van der Waerden considers it "only partially justified" 
([Waerden 1961] p. 192) because, he claims, for practical purposes the quadratrix can be con-
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Pappus also mentioned another objection. In using the quadratrix for squar
ing the circle by means of the proportionality of Equation 3.2, it was assumed 
that the intersection D of the quadratrix and the base was given. But that point 
was not covered by the procedure described in the definition. Indeed at the end 
of the procedure, the two moving lines coincided and so their intersection, which 
should be D, was not defined. 16 

Pappus qualified this construction of the quadratrix as "rather mechani
cal," 17 but added that the curve could be generated in a more geometrical man
ner by the intersection of surface loci. He then described two ways in which the 
quadratrix could be considered as resulting from the intersection of surfaces. 18 

A good example of the use of the quadratrix in constructing line-like problems A 'construction 
is Pappus' solution of the problem to divide a given angle in a given ratio. As using the 
this construction could be used for any angular section problem (the trisection, quadratrix 
for instance, by taking the given ratio to be 1 : 2) I refer to it as the "general 
angular section." It was as follows: 

Construction 3.4 (General angular section - Pappus) 19 

Given: an (acute) angle'P and a ratio p (see Figure 3.4); it is required to divide 
'P in two angles 'P1 and 'P2 such that 'P1 : 'P2 = p. 

Construction: 
1. Draw a quadratrix BA with pertaining square OBCA and BA. 
2. Draw OH (with H on arcBA) such that LHOA is equal to the 
given angle 'P. 
3. Mark the intersection E of OH and the quadratrix. 
4. Draw FEG II OA with F and G on BO and CA, respectively. 
5. Divide FO in F' such that F F' : F'O = p. 

structed pointwise. Remarkably, it seems not to have been noticed that, contrary to what 
Sporus is reported to have objected, it is not necessary to pre-install a special ratio of veloc
ities to draw a quadratrix. The ratio of the arc BA and the radius OB arises only because 
the square in which the quadratrix is to be drawn is supposed as given. For the curve's later 
use in constructions this supposition is unnecessary. One may define the quadratrix as the 
curve traced by the intersection of two lines, the one turning (d. Figure 3.3) counterclockwise 
around 0 starting from position OA, the other moving parallel to itself upward, also starting 
from position OA, both motions being uniform. No preliminary supposition about the ratio of 
the motions need be made; once the curve is traced one can determine the pertaining square 
by determining the intersection B of the quadratrix with the perpendicular to OA through 0, 
and completing the square. Note that in the case of the spiral (d. Definition 3.2) the tracing 
point also moves from the center outward and no presupposition is made about the ratio of 
the speeds. No criticism similar to Sporus' was raised against the spiral. 

16This objection remained valid in the case of the alternative tracing procedure for the 
quadratrix mentioned in Note 15; at the beginning of the motion the point of intersection of L 
and M is undetermined because the two lines coincide. Thus the second objection precluded 
the use of the curve in squaring the circle but not in performing angular sections by means of 
Construction 3.4 below. 

17[Pappus Collection] IV (§§ 31, 33), pp. 194, 197. 
18[Pappus Collection] IV-28, 29 (§§ 33-34), pp. 197-201; for further details on these stere

ometric constructions see [Knorr 1986] p. 129. 
19 [Pappus Collection] IV-35 (§ 45) pp. 222-223. 
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Figure 3.4: General angular section by means of the quadratrix - Pappus 

6. Draw F'G' II OA (with G' on CA) and mark its intersection E' 
with the quadratrix. 
7. Draw GE' H' (with H' on arcBA); call LHGH' = 'Pt and LH'GA 
= 'P2· 
8. OH' divides LHOA in the required manner, i.e. 'Pt : 'P2 = p. 
[Proof: The property of the quadratrix represented in Equation 3.1 
implies that 'Pt : 'P2 = arcH H' : arcH' A = F F' : F' 0 = p.] 

In his next proposition Pappus used the spiral to construct the same problem. 
In fact, although the name of the quadratrix refers to its use in squaring the 
circle, it seems likely that the curve, and similarly the spiral, were conceived 
precisely to solve angular section problems. In both curves the two motions are 
combined in such a way that the division of the angle is related to the division 
of the line, and this seems to be the only rationale to devise such a combination 
of motions. 

An example of a line-like construction using one of the other curves mentioned 
by Pappus was the construction of two mean proportionals by means of the 
cissoid ascribed to Diocles. It occurred in Eutocius' list of constructions of that 
problem. The construction was based on a property of the configuration of lines 
in a semicircle illustrated in Figure 3.5. Let OAB be a semicircle with radius 
OD = d; let E and F be points on the diameter equidistant from D and let EG 
and F H be the corresponding ordinates with Hand G on the semicircle; the 
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H B 
G 

_------ d --- -----', 
o F D E A 

Figure 3.5: A property relevant to Diocles' cissoid 

straight line OG intersects H F in I. Then 

F I : Fa = Fa : F H = F H : FA; (3.3) 

in other words, Fa and F H are the two mean proportionals between F I and 
FA. [Proof: Because FD = DE, the triangles FlO, FOH, and FHA are 
similar, from which the proportionality follows.] 

The cissoid collects as it were all possible proportionalities 3.3 that occur 
within the semicircle in the way described above. Its construction, as explained 
by Eutocius, is as follows: 

Construction-Definition 3.5 (Cissoid - Diocles)20 
Given: a semicircle DAB with radius OD = DA = d and vertex B (see Fig
ure 3.6); a curve, called the cissoid, is constructed pointwise. 

Construction: 
1. Choose arbitrarily a point H on arc DB; draw a line through H 
perpendicular to OA intersecting the base in F. 
2. Take G on arc BA such that H B = BG; draw GO, it intersects 
FH in I. 
3. Proceed as in 1-2 starting with other points H1 , H2 ,'" on arc 
OB. 
4. The points I, h, 12 ,'" thus found lie on a curve from a to B; 

20[Eutocius CommSphrCylj pp. 595-597. 
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G2 

A 

Figure 3.6: Construction of the cissoid - Diocles 

this curve is the cissoid. 
5. After having constructed sufficient points h connect them by 
lines to get the curve itself. 

I return below (Section 3.5) to the pointwise method of constructing the curve. 
It followed from the definition and from the property in Equation 3.3 that 

a given cissoid could be used for constructing two mean proportionals. The 
construction, as explained by Eutocius, proceeded as follows: 

Construction 3.6 (Two mean proportionals - Diocles)21 
Given: two line segments a and b (a < b) (see Figure 3.7); it is required to find 
their two mean proportionals x and y. 

Construction: 
1. Draw a cissoid OB within a semicircle OAB with radius OD = 
DA=d. 
2. Determine a line segment c such that a : b = c : d; take C on DB 
with DC = c. 
3. Draw and prolong AC; it intersects the cissoid in I; draw F H 
through I perpendicular to 0 A with F on the base 0 A and H on 
the semicircle. 
Note that by the defining property of the cissoid we now have four 
line segments e, u, v, f in continued proportion, namely, e = FI, 

21 [Eutocius CommSphrCylJ pp. 595-597. 
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Figure 3.7: Diodes' construction of two mean proportionals by means of the 
cissoid 

u = FO, v = F H and f = FA. Moreover, because of similarity, 
e : f = c : d = a : bj so we have found two mean proportionals (u 
and v) between two line segments (e and I), which have the same 
ratio as a and b. Here Eutocius stopped his explanation of the con
structionj evidently he considered the further construction of x and 
y from a, b, e, u, v, f obvious. It could be done as follows: 
4. Determine line segments x and y such that e : a = u : x = v : 
y (= f : b). 
5. The line segments x and yare the two required mean proportion
als of a and b. 
Note that the constructions in 2 and 4 are standard plane construc
tions (offourth proportionals, Elements VI-12, cf. Construction 4.1). 
[Proof: See note at 3j the proportionality of a, x, y, b is proved by 
composition of ratios.] 

This was the only construction by means of the cissoid known from classical 
sources, and Pappus probably had this construction in mind when he referred 
to the use of the cissoid in solving line-like problems. Yet the problem itself, as 
Pappus well knew, was solid because it could be constructed by conic sections. 
On the implication of this discrepancy see Section 3.4 below. 
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3.3 Terminology and context 
of the classification 

Terminology In the classification given by Pappus, problems were grouped according to 
the nature of the curves needed in their construction. The names of the classes 
also related to these curves: circle and straight line had their origin in the 
plane, hence problems constructible by them were called plane; conics had their 
origin in solid figures (namely, the cones from whose section with a plane they 
arose), hence problems constructible by conics were called solid; the remaining 
problems were called line-like because they were constructed by means of more 
intricate lines. 

Context The two passages in which Pappus explained the classification occurred in 

"A 
considerable 

sin" 

Book III and Book IV of the Collection. 22 The first related to the problem of 
two mean proportionals, the second to trisection. In both cases Pappus gave the 
classification of problems in order to explain the approaches of earlier geometers 
to these problems. These geometers, he said, first tried to solve the problems by 
plane means but did not succeed because the problems were solid. In Book III 
he reported that the geometers could not construct two mean proportionals in a 
geometrical way because it was not easy to draw conics in a plane; they therefore 
devised special instruments for finding mean proportionals and in that way 
succeeded admirably well. Pappus then discussed23 instrumental constructions 
of mean proportionals by Eratosthenes, Nicomedes, Hero, and one by himself 
(all four also occur in Eutocius' list24 ). Those of Nicomedes and Hero were 
given in Section 2.4 above. The construction by Eratosthenes25 employed a 
rather complicated instrument26 which, by trial, readjustment and trial again, 
yielded any number of mean proportionals between two given line segments; 
Pappus' own construction was of the neusis type (cf. Problem 2.4, I explain this 
type of construction in Section 3.6). In Book IV Pappus explained that in the 
case of the trisection the ancient geometers were frustrated because they did not 
know about the conics. Later they succeeded in trisecting the angle by means 
of conics, based on a solution by means of a neusis (cf. Constructions 3.8 and 
3.9 below). 

According to Pappus, then, earlier mathematicians used special instruments 
or neusis constructions because they did not know the proper geometrical con
struction by conics, or because they found such a construction too difficult. 

3.4 The precept 

If Pappus' text had only provided the classification of problems, its effect on 

22Cf. Note 3 above. 
23[Pappus Collection] III-5 (§§ 7-10), pp. 40-50. 
24 [Eutocius CommSphrCyl] pp. 588-620. 
25[Eutocius CommSphrCyl] pp. 609-615. 
26The "mesolabum," cf. Note 34 of Chapter 2. 
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early modern mathematics would probably have been restricted to terminology 
and perhaps some increased interest in construction by means of curves. The 
reason why it had much more impact was that Pappus combined the classi
fication with a strongly worded methodological precept: Problems should be 
constructed with the means appropriate to their class. It was not allowed in ge
ometry to construct plane problems by solid or line-like means, nor to construct 
solid problems by line-like means. And it was unwise to attempt constructing 
solid problems by plane means or line-like problems by plane or solid means. 
Pappus formulated this precept only in Book IV. Commandino used strong 
words in the translation of the passage, notably the term "sin" ("peccatum"): 

Among geometers it is in a way considered to be a considerable sin 
when somebody finds a plane problem by conics or line-like curves 
and when, to put it briefly, the solution of the problem is of an 
inappropriate kind.27 

In this connection Pappus referred to two examples of inappropriate construc
tions of problems, namely, ''the problem in the case of the parabola in the fifth 
book of the conics of Apollonius and in the book on spirals an assumed solid 
neusis with respect to a circle.,,28 Pappus gave no further reference but it is 
generally accepted29 that he referred to Proposition 51 of Book V of Apollo
nius' Conics and Proposition 18 of Archimedes' On spirals. The Apollonian 
proposition concerned the construction of a normal to a parabola through a 
given point outside the parabola. Apollonius' construction employed the inter
section of a hyperbola and the given parabola. The construction could also be 
performed by intersecting the given parabola with a circle. If the parabola was 
indeed considered as given, the latter construction used plane means only and 
was therefore, according to Pappus' precept, preferable over the one Apollonius 
gave. Probably this was Pappus' reason for criticizing Apollonius' result. Pap
pus' remark gave the problem of the perpendicular to the parabola a certain 
fame in the early modern period; I return to it in Section 4.10 below. Pappus' 
second example, the use of neusis in Proposition 18 of Archimedes' On spirals, 
concerned a more complicated matter which, it seems, was not taken up in the 
early modern period.3o 

Pappus' stern words made a strong impression; mathematicians quoted Implications 
the passage on the "sin" or the "error" of geometers often in discussions and 

27[Pappus CollectionJ IV-30, (§ 36) p. 208; in Commandino' translation ([Pappus 1660J 
p.95): "Videtur autem quodammodo peccatum non parum esse apud Geometras, cum prob
lema planum per conica, vellinearia ab aliquo invenitur, et ut summatum [summatim?J dicam, 
cum ex improprio solvitur genere .... " 

28[Pappus CollectionJ IV-30 (§ 36) p. 208, in Commandino' translation ([Pappus 1660J 
p. 95): " ... in quinto libro conicorum Apollonii problema in parabola: et in libro de lineis 
spriralibus: assumpta solida inc1inatio in circulo." 

29Cf. e.g. [Zeuthen 1886J pp. 284-288, [Apollonius 1961J pp. cxxvii-cxxix, [Pappus 1986J 
pp. 529-530. 

30Cf. [Knorr 1986J pp. 176-178. 
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polemics.31 The precept could indeed be read as a strict directive. Understood 
in that sense it implied that the only legitimately geometrical constructions 
were those that employed the intersection of straight lines and curves - thus 
excluding the use of instruments or shifting rulers. Moreover, the only examples 
of line-like problems in the Collection were constructed by means of the spiral 
or the quadratrix, and Pappus reported reservations about their generation by 
motion. Thus the impression was given that beyond solid problems the extant 
construction procedures were somehow suspect. 

Yet the practice of problem solving in the Collection implied a much more 
lenient attitude toward the legitimacy of constructions. Pappus himself freely 
used neusis, instruments, and intricate curves; indeed, he was quite interested 
in them. He gave many constructions by means of the quadratrix, and he dis
cussed several instrumental constructions of two mean proportionals (a problem 
that, according to his precept, should be constructed by conics), even adding a 
neusis construction of his own. Moreover, Pappus did not report any explicit 
arguments in support of a preference for construction by means of curves as 
codified in the classification and the precept. In fact, he made clear that in 
practice construction by curves was not easy. He mentioned that earlier geome
ters had found it difficult to trace conic sections, and he did not give methods 
to do so himself. From his remarks on the construction of two mean proportion
als it appeared that, as to practicability, he preferred instruments and neusis 
constructions over the use of conic sections. 

Thus the stern formulation and the implications of the precept were miti
gated by the practice throughout the Collection. The result was, as we will see 
in Chapters 9-13, that the precept had a marked but variegated influence on 
the later conceptions of geometrical construction. The issue was taken seriously, 
but mathematicians did not infer one uniform directive from Pappus' writings. 

3.5 The constructing curves 

How to The doctrine about geometrical construction implied in Pappus' classification 
construct the and precept left one obvious question unanswered. If geometers should construct 

means of by means of straight lines, circles, conics, or more intricate curves, how should 
construction? they construct these lines and curves themselves? In other words: how to 

construct the means of construction? This question was to playa crucial role in 
the early modern discussions on construction. Pappus did not explicitly provide 
an answer, but early modern geometers could gather some implicit answers from 

31The theme will frequently recur below; here three characteristic examples may suffice. 
Descartes wrote that it would be "an error in geometry" to construct with curves of a too 
high degree, as much as it was an error "to try in vain to construct some problem by a simpler 
kind of curves than the nature of the problem allows" ([Descartes 1637], p. 371). Fermat wrote: 
"for it has been often declared already, by Pappus and by more recent mathematicians, that 
it is a considerable error in geometry to solve a problem by means that are not proper to it" 
([Fermat DissTrip] p. 121). Jakob Bernoulli wrote as late as 1688: "I can see nothing that 
could in this case acquit Descartes from the vice of acting ungeometrically which he mentions 
so often" ([Bernoulli 1688], p. 349). 
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Pappus' practice in the Collection. 
In constructing plane problems Pappus used straight lines and circles without 

further comment; apparently he considered the first three postulates of the 
Euclidean Elements sufficient foundation for this practice. 

Pappus accepted the constructions of conics from Book I of Apollonius' Con- Construction 
ics.32 These constructions were indeed "solid" in the sense that they referred to of conics 
solids in space. To construct a conic in a given plane Apollonius located the top 
and the base circle of a cone in the space surrounding the plane. The intersec-
tion of this cone with the plane then produced the required conic. Apollonius 
did not base this constructional practice on explicitly formulated postulates. 

Proposition 33 of Book IV of the Collection33 provides an interesting exam
ple of how Pappus dealt with the Apollonian constructions of conics. At that 
point in his text Pappus had shown (Propositions 31-32) that the trisection and 
the neusis problem (with respect to two straight lines, cf. Section 3.6) could be 
constructed by the intersection of a circle and a hyperbola with given asymp
totes and passing through a given point (I discuss these constructions in detail 
below, Constructions 3.8 and 3.9). Now the construction of a hyperbola with 
given asymptotes and passing through a given point was not among the ones 
given by Apollonius in the first book of the Conics, but it did occur in Book 
II as Proposition 4, in which Apollonius reduced it to one of the constructions 
in book I. Pappus, however, did not refer to this construction but provided 
one himself, which involved a different reduction to one of the constructions of 
book I. This procedure suggests that Pappus considered the constructions from 
Conics I as postulates, but felt that in the case of a construction which Apollo
nius himself had reduced to one of these basic constructions, he (Pappus) could 
provide an alternative reduction. 

As we have seen, Pappus mentioned the cissoid and the conchoid as curves Higher-order 
used in constructing line-like problems.34 In Section 3.2 above (Construc- curves 
tion 3.6) I gave an example of the cissoid's use (by Diocles, as reported by 
Eutocius), in which the curve itself was construded "pointwise"; Pappus him-
self did not discuss constructions by means of the cissoid. 

Pappus did mention Nicomedes' instrumental generation of the conchoid and 
he explained how the curve could be used to perform a neusis. 35 He referred 

32These constructions are: I-52: parabola with given vertex, axis, parameter, and ordinate 
angle of 90°; I-53: the same but with arbitrary ordinate angle; I~54: hyperbola with given 
vertex, diameter, latus rectum, and ordinate angle of 900 ; I-55: the same with arbitrary 
ordinate angle; I-56: ellipse with given diameter, vertex, latus rectum, and ordinate angle of 
90°, case that the latus rectum is smaller than the diameter; I-57: the same in the case that 
the latus rectum is larger than the diameter; I-58: as in 56 and 57 but with arbitrary ordinate 
angle; I-59: two branches of a hyperbola whose diameter, latus rectum, vertices, and ordinate 
angle are given; 1-60: four branches of two opposite hyperbolas whose vertices and diameters 
are given. 

33[Pappus Collection] IV-33 (§§ 41-42) pp. 214-217. 
34[Pappus Collection] IV-30 (§ 36), pp. 206-208. 
35[Pappus Collection] IV-23 (§§ 26-28) pp. 185-188. 
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to this use of the curve in connection with Nicomedes' construction of two 
mean proportionals.36 However, in discussing the neusis construction itself he 
did not refer to the conchoid and provided (cf. Construction 3.8) a proper solid 
construction by the intersection of a circle and a hyperbola.37 Nor did he refer to 
the conchoid in connection with the trisection by neusis (cf. Construction 3.9).38 

Thus the relevant passages from Pappus suggested that if the conchoid or 
the cissoid were used in constructing line-like problems, they were to be con
structed pointwise or by instruments. Yet the only problem Pappus explicitly 
mentioned as solvable by means of these curves was a solid problem, namely, the 
finding of two mean proportionals, which according to Pappus' precept should 
be constructed by conics. 

I have found no classical examples of non-solid problems constructed by 
means of the cissoid or the conchoid (or indeed any algebraic curve with degree 
higher than two). Hence it seems that Pappus' mention of the cissoid and 
the conchoid with respect to line-like problems was only relevant in so far as 
their use in constructing solid problems such as the determination of two mean 
proportionals or the neusis was inappropriate. However, Pappus did not spell 
out this consequence explicitly. 

Thus the only curves that were actually used in the classical sources as means 
to solve line-like problems were the spiral and the quadratrix. We have seen that 
Pappus presented these curves as traced by motion and that he noted objections 
to the feasibility or acceptability of this way of generating the curves. 

The construction of the general angular section with the quadratrix (Con
struction 3.4) illustrated that, if accepted, the quadratrix was a very powerful 
means of construction. Bisection, trisection, or any division of the angle was 
possible and all were equally simple, because via the quadratrix any angle di
vision was reduced to a division of a line segment in a given ratio. Similarly, 
the construction of regular polygons and squaring the circle were simple prob
lems once the quadratrix was given. Pappus dealt with these quadratrix-based 
constructions extensively,39 and it is noteworthy that he did not stipulate that 
in special cases (as the bisection or the trisection) one should prefer plane or 
solid constructions over the use of the quadratrix. We will see, however, that 
in the early modern period these constructions by means of the quadratrix and 
the spiral were considered somewhat suspect, among other things because of 
reported objections such as Sporus,.40 

36[Pappus Collection] IV-24-25 (§§ 28-29) pp. 188-191, cf. Construction 2.6. 
37 [Pappus Collection] IV-31 (§§ 36-37) pp. 21(}-212. 
38[Pappus Collection] IV-32 (§§ 38-40) pp. 212-214. 
39[Pappus Collection] IV-36-41 (§§ 47-51), pp. 224-230; in particular: To cut equal arcs 

from unequal circles (IV-36); to construct an isosceles triangle in which the base angle has 
to the top angle a given ratio (IV-37); to construct regular polygons within a given circle 
(IV-38); to construct a circle with given circumference (IV-39); to construct on a given line 
segment an arc which has to the given segment a given ratio (IV-40); to divide an angle in 
two incommensurable angles (IV-41). 

40Cf. Sections 9.3 and 16.5. 
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Figure 3.8: The neusis problem 

3.6 Neusis constructions 

I now turn to the third important theme in Pappus' Collection: neusis con- The neusis 
structions. As I briefly mentioned in the previous chapter, a neusis construction problem 
was one in which it was essentially assumed that the neusis problem could be 
solved. I repeat the formulation of the neusis problem given earlier (Prob-
lem 2.4): 

Problem 3.7 (Neusis) 
Given: two straight lines Land M, a point ° (often referred to as the "pole" of 
the neusis) and a segment a (see Figure 3.8); it is required to find a line through 
0, intersecting Land M in A and B, respectively, and such that AB = a. 

In particular cases (for instance when the distances of the pole ° to Land M 
were equal) the problem could be solved by straight lines and circles, but not in 
general. There were variants of the problem in which one or both of the straight 
lines Land M were replaced by circles. 

Problems unsolvable by straight lines and circles could often be solved by a Neusis by 
neusis construction. Still, as we have seen, Pappus' precept could be under- intersection of 
stood as implying that neusis procedures did not supply properly geometrical comes 
constructions, and that geometers should try to find constructions by intersec-
tion of conics instead. Although apparently Pappus did not draw so strict a 
conclusion from the precept, he did explain how a neusis could be performed by 
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Figure 3.9: Neusis by intersection of a hyperbola and a circle - Pappus 

the intersection of conics. He did so in Book IV of the Collection, in connec
tion with the trisection. The relevant constructions were influential later and 
I present them here in the order in which they were treated in the Collection. 
Pappus started with the following: 

Construction 3.8 (Neusis - Pappus)41 
Given: two perpendicular42 lines Land M (see Figure 3.9), intersecting in A, a 
point 0 and a segment a; it is required to construct a line through 0 intersecting 
Land M in E and F, respectively, and such that EF = a. 

Construction: 
1. Complete the rectangle ABOC; prolong BO. 
2. Draw a hyperbola through C with asymptotes along BA pro
longed (= M) and BO prolonged.43 
3. Draw a circle with center C and radius a; it intersects the hyper
bola in D. 
4. Draw a line through D parallel to AC; it intersects BA prolonged 
in F; draw OF; OF intersects AC in E. 
5. OEF is the required line; EF = a. 
[Proof: Draw CD; draw CD parallel to AB. Then rect.(FD, DC) = 

41 [Pappus Collection] IV-31 (§§ 36-37), pp. 210-212. 
42The construction can be easily adjusted to the case of non-perpendicular lines; Pappus, 

however, did not explicitly mention this. 
43This step in the construction was criticized by Kepler, see 'Section 11.4. 
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Figure 3.10: Trisection by neusis - Pappus 

rect.(CA, CO) because D and C are on the hyperbola; hence recto 
(BF,FD) = rect.(BA, AC), so BF : BA = AC : FD (*); fur
thermore, the triangles l::.BFO and l::.COE are similar, whence 
BF : BO = CO : CE, so BF : CO = BO : CE, i.e., BF : 
BA = AC: CE (**); comparing the proportionalities * and ** 
yields CE = FD so CEFD is a parallelogram, so EF = CD = a as 
required.] 

Having thus shown that a neusis between perpendicular lines could be per- Trisection by 
formed by means proper to solid problems, Pappus went on to explain how to neusis 
trisect an angle by this kind of neusis: 

Construction 3.9 (Trisection - Pappus)44 
Given: an angle <p (see Figure 3.10); it is required to construct an angle equal 
to i<p, 

Construction: 
1. Construct a right angled triangle ABC with L.CAB = <Pi call 
AC = a; draw a line M through C parallel to AB. 
2. By neusis, draw ADE, intersecting BC in D and M in E and 
such that DE = 2a. 
3. Then LDAB is the required angle. 

44 [Pappus Collection] IV-32 (§§ 38-40), pp. 212-214. 
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[Proof: With F on DE such that DF = FE, we have DF = CF = 
FE = CA = a, hence, by isosceles triangles, LCAF = LCFA = 
(LFCE + LFEC) = 2LFEC = 2LDAB, so LDAB = ~LCAB.l 

Together the two constructions showed that the trisection could be performed 
by the intersection of conics; it was indeed a solid problem. Pappus added two 
further constructions of the trisection,45 which I don't discuss in detail. Both 
used the intersection of a circle and a hyperbola and Pappus stressed that they 
did not use a neusis as an intermediary step. Apparently it was important for 
him to show that the neusis step in the construction of the trisection could be 
avoided. 

3.7 Conclusion 

Pappus'views I can now summarize Pappus' views on geometrical construction as they 
on would appear to early modern readers of the Collection. Proper geometrical 

construction construction proceeded by the intersection of straight lines, circles, conics, or 
other more complicated curves. Other constructing procedures, such as neusis, 
shifting rulers or the use of special instruments, were useful if they were easy 
in practice, and they were interesting enough to be studied and proved; but 
the ultimate aim in solving geometrical problems was to find proper geometri
cal constructions in the sense above. These constructions induced a classifica
tion of problems according to their constructibility by plane, solid, or line-like 
curves. The geometer was obliged to construct problems by means proper to 
the problem's class. Although there was some doubt on the geometrical status 
of constructions by quadratrix and spiral, solid problems properly and legiti
mately belonged to geometry, and so did the conics by which they were to be 
constructed. 

Exactness The Collection offered little argument concerning the interpretation of ex-
actness. Pappus' attitude to the question appeared ambivalent. He explained 
a strict interpretation of constructional exactness and based a classification of 
problems on it; yet he devoted considerable attention to constructions which 
were at variance with this interpretation. In so far as he argued explicitly about 
constructional exactness he took the position which in Section 1.6 I have charac
terized as appeal to authority and tradition. His remarks about the advantages 
of instrumental or other constructions seem to refer to actual rather than to 
idealized practice of construction. 

Influence Despite the absence of explicit arguments about exactness, the clear structure 
of the methods of properly geometrical construction that Pappus presented had 
a crucial influence on the early modern interpretation of geometrical exactness. 
Indeed the publication of the Collection in 1588 marked the starting point of an 

45[Pappus Collection] IV-34 (§§ 43-44), pp. 217-221. 
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ordered debate on the geometrical legitimacy of construction procedures. Pap
pus' views on construction provided structure to this debate in several ways. 
First, the question of legitimate procedures in geometry became focused on 
construction rather than on methods of proof or questions of existence.46 Sec
ond, the question of proper geometrical construction was split in two separate 
issues: the demarcation between geometrical and ungeometrical procedures of 
construction, and the classification of the geometrical procedures as to simplic
ity. Third, the fact that Pappus' classification of problems concerned the curves 
used in their construction led to a heightened interest in curves and the methods 
by which they could be generated. 

As we will see in Chapters 9-14 these themes were indeed prominent in the 
debate on the interpretation of the exactness of geometrical procedures after 
c. 1590. 

46Cf. Sections 1.2 and 2.6. 



Chapter 4 

The early modern tradition 
of geometrical problem 
solving; survey and 
examples 

4.1 Introduction 

In Section 1.5 I identified the early modern tradition of geometrical problem Two 
solving as the context of the debates on the interpretation of the exactness classifications 
of construction during the period c. 1590 - c. 1650. The debates primarily 
concerned the solution of point construction problems, that is, problems that 
admitted one or a finite number of solutions only. Solving such problems was 
indeed seen as a major, if not the main, aim of geometry. 1 

The geometrical problems of the early modern tradition can be classified 
in two ways: by their class according to Pappus' distinction of plane, solid, 
and line-like problems, and by a distinction of types. The combination of both 
classifications yields an array as in Table 4.1. In the next sections I discuss the 
various types in the order of that table and illustrate them by examples. 

Together with the constructions presented in the previous two chapters, the 
examples discussed below serve to illustrate the various methods of construction 
that were used. Table 4.2 gives a survey of these methods with references to 
the constructions. The examples are also chosen so as to be useful in explaining 
the early modern methods of analysis in Chapter 5. 

lThus in 1591 Viete's formulated the objective of his analytical program as "to leave no 
problem unsolved" (cf. Note 6 of Chapter 6) and Descartes opened his Geometry of 1637 
with the words "All the problems of geometry ... " (cf. [Descartes 1637J p. 297). Knorr notes 
a similar preeminence of problems over theorems in classical Greek geometry, [Knorr 1986J 
p.300. 

H. J. M. Bos, Redefining Geometrical Exactness
© Springer Science+Business Media New York 2001
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Class --t Plane Solid Line-like 
Type 1 problems problems problems 

Standard Euclidean standard Vietean standard 
problems and constructions; later "constitutive 
constructions plane standard problems" 
(Section 4.2) constructions 

Angular Bisection, Trisection; General 
sections 2n -section; regular regular heptagon angular 
(Section 4.3) pentagon; and nonagon section; 

"constructible" regular 
regular polygons polygons 

Mean One MP; three Two MP's; Any number 
proportionals MP's; (2n-1) MP's doubling the of means 
(MP's) cube; 11 MP's 
(Section 4.4) 

Area and Quadrature of Cubature of Quadrature of 
content rectilinear figures; polyhedra; the circle 
problems similar rectilinear addition of 
(Section 4.5) figures with given similar solids 

areas 

Neusis Special neusis General neusis 
problems problems between straight 
(Section 4.6) lines 

Division of Division of plane Division of a 
figures rectilinear figures sphere 
(Section 4.8) 

Triangle Plane triangle 
problems problems 
(Section 4.9) 

Varia Normal to a 
(Section 4.10) parabola 

Table 4.1: The early modern tradition of geometrical problem solving: types 
and classes of problems 
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1. Construction of plane problems 

By circles and straight lines and/or by reduction to standard plane 
problems: 4.1 (Fourth Proportional - Euclid), 4.2 (Mean propor
tional- Euclid), 4.3 (Scholium to Elements III-36 -- Clavius), 4.4 
(x2 - ax = b2 - Viete), 4.8 (Lines in continued proportion - Clav
ius), 4.16 (Special neusis between a circle and a line - Ghetaldi), 
4.18 (Triangle division - Clavius), 4.21 (Triangle problem - Viete). 

2. Construction of solid problems 

2.1 By approximative procedures: 2.2 (Two Mean Proportionals by 
shifting a ruler - Hero), 2.3 (Two Mean Proportionals by shifting 
gnomons - Plato), 4.9 (Two mean proportionals by shifting a ruler 
- Clavius). 

2.2 By the intersection of conics: 3.1 (Two mean proportionals by 
intersection of a parabola and a hyperbola - Menaechmus), 3.8 
(Neusis by intersection of a hyperbola and a circle - Pappus). 

2.3 By procedures using special constructing curves: 3.4 (Angular 
section by means of the quadratrix curve - Pappus), 2.5 (Neusis by 
means of a conchoid - Nicomedes), 3.6 (Two mean proportionals 
by means of the cissoid - Diocles), 4.11 (Two mean proportionals 
by means of a curve constructed pointwise earlier - Villalpando). 

2.4 By reduction to standard solid problems: 4.6 (Root of a cubic 
equation by reduction to trisection - Viet e) , 4.19 (Division of a 
sphere by reduction to trisection - Huygens), 4.15 (Addition of 
similar solids by reduction to two mean proportionais - Stevin), 
4.22 (Perpendicular to a parabola by reduction to a Vietean standard 
problem - Anderson), 2.6 (Two Mean Proportionals by neusis -
Nicomedes), 3.9 (Trisection by neusis - Pappus). 

3. Construction of curves 

3.1 By motion: 3.2 (Spiral by combination of a rotating and a rec
tilinear motion - Archimedes), 3.3 (Quadratrix by combination of 
a rotating and a rectilinear motion - Pappus). 

3.2 By "pointwise" procedure: 3.5 (Cissoid pointwise - Diocles), 
4.10 ("First proportionatrix" pointwise - Villalpando). 

Table 4.2: Methods of construction from Chapters 2-4 
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Methodological Apart from illustrating the various aspects of the early modern tradition of 
questions geometrical problem solving mentioned above, the examples are meant to convey 

the urgency of the two main methodological questions faced by the practitioners 
of the art of geometrical problem solving. First, the diversity of the means 
chosen to construct non-plane problems illustrates that no communis opinio 
existed on the interpretation of exactness of constructions beyond the Euclidean 
means. And second, the apodictical and unenlightening manner in which the 
constructions were often presented (which my uniform format for rendering 
constructions enhances, but not much so) shows the need for a uniform and 
generally applicable method to find the constructions, that is, the need of an 
effective method of analysis. 

4.2 Standard problems, standard constructions 

Euclidean In solving problems geometers hardly ever wrote out their construction in 
standard complete detail. Rather than explicitly reducing the whole procedure to its 

constructions smallest constituent steps, they assumed that their readers knew a range of 
standard constructions to which they merely referred by name or by reference 
to standard sources, notably to Euclid's Elements. The most important stan
dard constructions concerned the fourth, the third, and the mean proportional. 
For given line segments a, b, and c (the terminology also applied to other mag
nitudes), a line segment x was called the fourth proportional of a, b, and c 
if 

a:b=c:x; ( 4.1) 

a line segment y was called the third proportional of a and b if 

a:b=b:y; (4.2) 

and a line segment z was called the mean proportional of a and b if 

a:z=z:b (4.3) 

(cf. Problem 2.1). The Euclidean constructions of these proportionals were as 
follows: 

Construction 4.1 (Fourth Proportional - Eudid)2 
Given: three line segments a, b, and c (see Figure 4.1); it is required to find 
their fourth proportional. 

Construction: 
1. Draw two half lines through a point 0 under any angle. 
2. Mark OA = a and AB = b on the one half line, and OC = con 
the other. 
3. Connect AC and draw a line through B parallel to AC, it inter
sects OC prolonged in D. 

2 Elements VI-12. 
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B 

a-------
b---
c-----

Figure 4.1: Construction of the fourth proportional ~ Euclid 

4. d = CD is the required fourth proportional, i.e., a : b = c: d. 
[Proof: By similar triangles.] 

The same construction yields the third proportional if one takes c = b. 3 

Construction 4.2 (Mean proportional- Euclid)4 
Given: Two line segments a and b (see Figure 4.2); it is required to construct 
their mean proportional. 

Construction: 
1. Mark AO = a and OB = b along a straight line. 
2. Draw a semicircle with diameter AB; draw a line through 0 
perpendicular to AB, it intersects the semicircle in C. 
3. c = OC is the required mean proportional, i.e., a: c = c: b. 
[Proof: By the similarity of the triangles AOC and COB.] 

Occasionally, geometers felt that some standard constructions were missing A standard 
in Euclid and supplied them. An example is a construction which Clavius gave construction 
as a Scholium to Elements 111-36 in his Euclid edition. Elements 111-36 stated by Clavius 
that (see Figure 4.3) if a line OA is tangent at A to a circle and if another line 
through 0 intersects the circle in Band C, then5 sq.(OA) = rect.(OB,OC). 

3 Elements VI-H. 
4 Elements VI-l3. 
5See Section 1.7 for the notations sq. and recto 
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Figure 4.2: Construction of the mean proportional - Euclid 

Figure 4.3: Elements 1II-36 
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a ---------------
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Figure 4.4: Clavius' construction in his Scholium to Elements III-36 

Clavius used this result in the following construction (which he later used as 
standard construction6 ): 

Construction 4.3 (Scholium to Elements 111-36 -- Clavius) 7 

Given: Two line segments a and b (see Figure 4.4). It is required to mark DE = 
a along a stmight line and prolong it beyond E to B such that rect.(DB, EB) = 
sq.(b). 

Construction: 
1. Along perpendicular lines through 0 mark 0 B = b to the right 
and OA = a upward. 
2. Draw a circle with diameter OA; its center is C. 
3. Draw and prolong CB; it intersects the circle in D and E. 
4. D, E, and B are points as required. 
[Proof: DE = a by construction, and by Elements III-36 rect.(DB, EB) = 
sq.(OB) = sq.(b).] 

We will meet this construction later on (cf. Construction 22.1) because Descartes 
chose it as standard construction for the root of a quadratic equation of the form 
x2 = ax+b2 . Indeed, if we choose x = DB, then x(x-a) = b2 , i.e. x2 = ax+b2 • 

As part of his program of reconstituting the ancient art of analysis (Sec- A standard 

6Cr. Construction 4.18 
7Scholium to III-36 in [Euclid 1589] voL 1, pp. 446-447. 

construction 
by Viele 
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Figure 4.5: Viete's construction of the root x of x2 - ax = b2 

tion 8.2) Viete gave standard constructions for the roots of quadratic and cubic 
equations. He explained how such equations could be reduced to a number 
of standard forms and related each of these forms to a standard problem. He 
called these the "constitutive problems" of the equations. Each of the consti
tutive problems related to a situation involving three or four line segments in 
continued proportion. Thus in the treatise in which he surveyed plane construc
tions8 he explained that the equation 

( 4.4) 

could be written as x(x - a) = b2 and therefore as a proportionality 

x : b = b : (x - a) . (4.5) 

Hence solving Equation 4.4 was equivalent to determining three line segments 
x, y, z (x > z) in continued proportion, such that y = b and x - z = a. On 
the basis of that interpretation of the equation, he gave the following standard 
construction: 

Construction 4.4 (x2 - ax = b2 - Viete)9 
Given: Two line segments a and b (see Figure 4.5); it is required to construct a 

8 [Viete 1592]. 
9[Viete 1592] Prop. 10, pp. 232-233 ([Viete 1983] p. 376). In illustration of Viete's ter

minology and notation I quote the original text, in which A, Band D correspond to x, a, 
and b above, respectively: "Itaque cum proponetur A quadratum, minus B in A aequari D 
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line segment x satisfying x 2 - ax = b2 ; equivalently, it is required to construct 
three line segments x, y, z (x> z) such that x: y = y : z, y = b and x - z = a. 

Construction: 
1. Draw AO = a and OB = b intersecting perpendicularly in 0; 
bisect AO in C. 
2. Draw a circle with center C and radius CB. 
3. The line AO, prolonged to both sides, intersects the circle in 
points D and E of which D is nearest to O. 
4. x = OE, y = OB = band z = OD satisfy the requirements. 
[Proof: The triangles t::"EOB and 6BOD are similar, hence x 
y = y : z; OD = AE, so x - z = a.] 

Proceeding in this way Viete set up the following correspondence between the 
standard forms of the quadratic equation and standard plane "constitutive prob
lems" about three proportional line segments: 10 

x 2 + ax = b2 {:=:} x:y=y:z, y=b, z-x=a(l), (4.6) 

x 2 - ax = b2 {:=:} x:y=y:z, y = b , x - z = a (2) , 

ax - x 2 = b2 {:=:} x:y=y:z, y = b , x + z = a (3) . 

Solid problems were mostly reduced to one of a few standard problems that Solid standard 
were assumed solved, solvable, or still to be solved. The most important stan- problems 
dard solid problem was the construction of two mean proportionals between 
two given line segments (Problem 2.1). We have seen several methods to solve 
this problem (cf. Constructions 2.2, 2.3, 2.6, and 3.1) and we will meet more 
below. Viete showed, as we will see in detail in Chapters 8 and 10, that all solid 
problems could be reduced either to the construction of two mean proportionals 
or to the trisection of an angle.ll With this result the trisection acquired as 
it were a status among the solid problems symmetrical to the determination of 
two mean proportionals. From Pappus' Collection mathematicians learned that 
the trisection of an angle could be performed by neusis (Construction 3.9), and 
Nicomedes' construction of two mean proportionals (Construction 2.6) showed 
that this problem could also be reduced to a neusis. Combined with Viete's 
result mentioned above, this implied that any solid problem could be reduced 
to a neusis problem. Thus the neusis occupied an even more central position 
among solid problems than the trisection of an angle and the determination of 
two mean proportionals. Viete's use of the neusis as standard solid problem will 
be discussed in detail in Section 10.1. 

quadrato: intelligetur D media inter extremas, B differentia earundem. Et ex media et differ
entia extremarum quaerentur extremae, quarum major erit A, de qua quaeritur." ("Therefore, 
if it is proposed that the square of A minus A in D be equal to a square D: then consider 
a mean D between extremes, and B their difference. And from the mean and the difference 
of the extremes, the extremes are required, of which the larger is the A, which the question 
concerned.") 

lO[Viete 1592] Props. 9, 11, pp. 232-233 ([Viete 1983] pp. 375-377). 
llTo be precise: he showed that any problem whose algebraic equivalent was a third- or 

fourth-degree equation could be so reduced, cf. Section 10.3. 
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Vietean solid The three standard solid problems discussed above, determining two mean 
"constitutive" proportionals, trisecting an angle, and performing a neusis, were rather differ-

problems ent in character, nor was there a clear analogy between the three equations 
pertaining to these problems. This may have been the reason why Viete felt 
the need for another set of standard solid problems and equations similar to 
the ones he singled out for plane problems (Equations 4.6). He proceeded as 
follows. He knew that by a transformation removing the quadratic term, any 
cubic equation could be written in one of the following forms (in which a and b 
were positive and only positive roots were considered):12 

x 3 a2b, (4.7) 

x 3 + a2x a2b, (1) 
x3 _ a2x a2b, (2) 
a2x _ x3 a2b . (3) 

He did not separately discuss the first form, whose one positive root was the 
first of two mean proportionals between a and b. He related each of the three 
others to a standard problem of the form: 

Problem 4.5 (Standard solid problems - Viete)13 
Given: Two line segments a and bi it is required to construct four line segments 
a, x, y, and z in continued proportion, i.e. 

a:x=x:y=y:z, 

and such that, in the different cases, 

x+z 

z-x 

x-z 

b, (1) 

b, (2) 

b. (3) 

(4.8) 

(4.9) 

The correspondence of the equations and the problems is seen, for instance, in 
case (2), as follows: by 4.8 we have a2 : x2 = X : z, hence x3 = a2z, so by 4.9-2 
x3 = a2 (x + b) or x3 = a2x + a2b, as in 4.7-2. Note that the equation x 3 = a2b, 
which he did not discuss, fits the same general formulation as a problem; it is 
the case in which the additional requirement is z = b. 14 

In his Supplement to geometry of 1593 Viete showed how in each of these 
cases a root of the equation could be found either by the determination of two 
mean proportionals or by the trisection of an angle. I discuss these results in 
more detail in Section 10.3; here it may suffice to give an example concerning 
case (2). Viete rewrote the equation as 

12[Viete 1615]' pp. 86-87, [Viete 1983] pp. 164-167. 
13[Viete 1615] pp. 86-87, [Viete 1983] pp. 164-167. 

(4.10) 

14Viete also knew that, by methods as the one by Ferrari (see Note 18 of Chapter 10) the 
solution of fourth-degree equations could be reduced to the solution of quadratic and third
degree ones. Thus his list of constitutive equations covered all problems that were reducible 
to third- or fourth-degree equations, d. Note 11. 
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Figure 4.6: Construction of the root X of x 3 - 3a2x = 2a2b - Viete 

in order to distinguish more easily between reduction to trisection and reduction 
to two mean proportionals; the former case applied if a > b, the latter if a < b. 15 

Viete's construction of the former case was as follows: 

Construction 4.6 (Root of a cubic equation -- Viete)16 
Given: line segments a and b, a > b (see Figure 4.6); it is required to find a 
root of the equation x 3 - 3a2 x = 2a2 b. 

Construction: 
1. Construct an isosceles triangle ABC with AB = 2b and AC = 
BC = a; prolong AB to the left. 
2. Assuming trisection possible, draw CD such that LCDB = ~ LCAB. 
3. Then x = AD is a root of the equation. 
[Proof: Take E on CD such that EA = ED and note that DE = 
EA = AC = a and that the angles are as indicated in the fig
ure. Then x = 2acos(o), b = a cos(3o) , and the familiar relation 
cos(3o) = 4cos3 (o) - 3cos(o) coincides with the given equation.] 

The construction shows that Viete did not choose the constitutive problems 
because they were particularly easy to construct; indeed instances of the same 
constitutive problem (case (2) in Equations 4.8 and 4.9) required essentially 

15The corresponding condition for the a and b as in Equations 4.7 - 4.9 is: 2a > or < 3V3b; 
see also Section 10.3. 

16 [Viete 1593] Props 25 and 16, pp. 403-404, 416-417. 
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Figure 4.7: General angular section 

different constructions depending on the ratio of a and b. Rather than relating 
to constructional aspects the "constitutive problems" reflect a wish to keep 
equation theory in close correspondence with proportion theory. This aspect 
remained characteristic in the Vietean school; as late as 1702 Ozanam mentioned 
the "constitutive problems" in a work on algebra. 17 

4.3 Angular sections 

The general problem of the section of an angle is: 

Problem 4.7 (General angular section) 
Given: An angle 'P and a ratio p (see Figure 4.7); it is required to divide 'P in 
two angles 'PI and 'P2 such that 'PI : 'P2 = p. 

For the ratios 1 : 1, 1 : 2, 1 : 3,· .. ,1 : k,··· the corresponding problems are 
the bisection, trisection, etc., or in general the multisection of the angle that 
is, the division of an angle in 2, 3, 4,···, k + 1, ... equal parts. A rational 
ratio p : q leads to a division in aliquot parts, which can of course be performed 
by first multisecting the angle in p + q parts. If no supposition is made about 
the rationality or irrationality of the given ratio, we have the general angular 
section. In the special case that the given angle 'P is 3600 , the multisection is 
the same as the construction of regular polygons. 

17[Ozanam 1702] p. 224. 
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Bisecting an angle was a plane problem, the construction was given in Euclid's Plane angular 
Elements 1-9. Multisection of an angle in 2k parts could be done by repeated sections 
bisection and was therefore plane as well. 18 Constructions by plane means of 
regular 3-, 4-, 5-, 6-, and 15-sided regular polygons were in Euclid's Elements. 19 

Classical Greek mathematicians recognized that trisecting an angle was a Solid angular 
solid problem; it was indeed one of the three "classical problems." Also the sections 
construction of a regular heptagon was recognized as solid in antiquity.20 We 
have seen a classical trisection above in Construction 3.9. In the early mod-
ern period the trisection attracted much less attention than the problem of two 
mean proportionals. One reason was that no treatment of the trisection existed 
comparable to Eutocius' list of 12 constructions of two mean proportionals. Also 
it seems that early modern geometers more often met solid problems reducible 
to two mean proportionals than problems reducible to trisection. On the other 
hand, the algebraic aspects of angular sections received considerable attention, 
especially through Viete's exploration of the equations for the successive multi-
sections.21 

As we have seen above, Pappus classified the general angular section (Prob- Line-like 
lem 4.7) as a line-like problem and solved it by means of the quadratrix (cf. Con- angular 
struction 3.4); it could also be solved by the Archimedean spiral. sections 

4.4 Mean proportionals 

If line segments a, Xl, X2,"', Xk, b were in continued proportion, Le., Proportionals 

a: Xl = Xl : X2 = ... = Xk-1 : Xk = Xk : b , (4.11) 

the Xl, X2,'" ,Xk were called the k "mean proportionals" between a and b. 
Algebraically this implied 

(4.12) 

Once the first, Xl, of k mean proportionals between two given line segments a 
and b was known, all others could be constructed by repeated application of 
the Euclidean construction 4.1 of the third proportional. Thus finding k mean 
proportionals was the geometrical equivalent of extracting the (k + 1)-th root. 
Constructing one (or the) mean proportional of a and b was a standard plane 
construction (4.2), and, by inserting mean proportionals between previously 

18By means of Galois theory it can be proved that all other rational angular sections of a 
general angle are non-plane. 

19 Elements IV-2, -6, -11, -15, -16, respectively; based on these any polygon with 2n , 3.2n , 

5.2n, and 15.2n could be constructed by plane means. The possibility that other regular 
polygons than these might be so constructible seems not to have been considered before 
Gauss did so in 1796. 

2oCf. [Hogendijk 1984J. 
21Cf. [Viete 1615bJ. 
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constructed proportionals one could construct 3, 7, 15 or in general 2n -1 mean 
proportionals by straight lines and circles. 22 

Finding two mean proportionals, and its application in doubling the cube, 
were solid problems; in the previous chapters we have seen several constructions 
of two mean proportionals (Constructions 2.2, 2.3, 2.6, 3.1, 3.6). Another spe
cial solid mean proportionals problem enjoyed some renown in the early modern 
period, namely, the case in which k = 11 and b = 2a. If b is the length of a 
string, these mean proportionals are the string lengths of 11 equal semitones 
between the string's tone and its octave. Evidently, the determination of 11 
mean proportionals can be reduced to that of two mean proportionals because 
if Xl ... Xn are the mean proportionals, then X4 and Xs are the two mean pro
portionals between a and b, and once these are known the others can be inserted 
by repeated construction of single mean proportionals. Barbour reports that the 
first mathematically precise definition of equal semitones (and thereby of the 
equal temperament) was given in 1577 by Salinas, who explained the connection 
with the geometrical problem of mean proportionals. He was aware that the 
problem required other than the Euclidean constructions and explained that in
struments ("mesolabes" 23) such as the one suggested by Eratosthenes should be 
used. After Salinas, mean proportionals and instruments to construct them were 
regularly mentioned in theoretical works on music in connection with problems 
of temperament. 24 

Stevin also studied the 11 mean proportionals between a and 2a in connection 
with equal temperament. 25 

In one of the commentaries in his Euclid edition of 1589 Clavius gave an 
approximate construction of two mean proportionals. He had devised this con
struction by, in a sense, inverting a general procedure he had devised for con
structing sequences of line segments in continued proportion. This procedure 
employed plane means only; it was as follows: 

Construction 4.8 (Line segments in continued proportion - Clav
ius)26 
Given: line segments a and b, a > b (see Figure 4.8); it is required to find line 
segments u, v, w, ... and X, y, Z, ••. such that b : a = a : X = x: y = y : Z = ... 
and a : b = b : u = u : v = v : w = .. '. 

Construction: 
1. Draw a circle with diameter OA = a; draw a chord OB = band 

22By means of Galois theory it can be proved that for all k =I 2n - 1 the problem of 
constructing k mean proportionals is not plane. 

23Cf. Chapter 2 Note 34. 
24Cf. [Barbour 1961] in particular pp. 49-55. Barbour refers to [Salinas 1577] p. 173, and 

mentions among others [Zarlino 1571], [Zarlino 1588]' [Mersenne 1636], and [Kircher 1650] 
as works in which the mean proportionals problem is discussed in connection with musical 
temperament. 

25[Stevin 1955-1966] vol. 5, pp. 440-443; cf. [Cohen 1984] pp. 55-57. 
26 [Euclid 1589] pp. 778-779. 
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Figure 4.8: Clavius' construction of line segments in continued proportion 

draw BA; prolong OB and ~A. 
2. Take P, R, T,'" on OA and Q, S,'" on OB such that BP -.l OA, 
OQ = OP, QR -.l OA, OS = OR, ST -.l OA, etc. 
3. Take E, C, I"" on OB prolonged and F, H,'" on OA prolonged 
such that AE -.l OA, OF = OE, FC -.l OA, OH = OC, HI -.l OA 
etc. (Here Clavius used the symmetrical lower half of the figure to 
help drawing the perpendiculars more precisely.) 
4. u = OP, v = OR, w = OT, ... and x = OE, y = OC, z = 01 
... are the required lines. 
[Proof: By similarity of triangles and the constructed equalities.] 

Clavius' use of a symmetrical figure illustrates his concern for precision in the 
practical execution of geometrical constructions; we will see this endeavor also 
in his construction of the quadratrix discussed in Section 9.2. 

By inverting this procedure Clavius arrived at a construction about which he Clavius' 
wrote: 

From this we can find without much difficulty two mean proportion
als between two given straight lines, not completely geometrical it 
is true, but as it were by trial and repetition of the same procedure 
again and again until we have reached what we want to find. 27 

27[Euclid 1589] p. 780: "Ex his sine magno labore inter duas rectas datas reperiemus duas 

approximate 
construCtion of 
two mean 
proportionals 



74 4. The early modern tradition of geometrical problem solving 
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Figure 4.9: Clavius' construction of two mean proportionals 

His construction employed a ruler which had to be turned until an appropriate 
configuration was reached. It was as follows: 

Construction 4.9 (Two mean proportionals - Clavius)28 
Given: two line segments a and b (a> b) (see Figure 4.9); it is required to find 
their two mean proportionals x and y. 

Construction: 
1. Draw a circle with diameter OA = a; take OR = bon OA; take 
RU -L 0 A with U on the circle. 
2. Apply a ruler to 0; it intersects the circle and RU in Band Q, 
respectively; the perpendicular through B intersects OA in P. 
3. Move the ruler around 0, whereby Q, B, and P move as well, 
until OQ = OP. 
4. In this position x = OB and y = OQ are the required mean 
proportionals. 
[Proof: Draw BA; the triangles L,OAB, 60BP, and 60QR are 
similar and OP = OQ, so OA : OB = OB : OP = OQ : OR, i.e., 
a : x = x : y = y : b.] 

The two constructions are of particular interest because both as to configura
tion (the adjustable angle AOB, the series of perpendiculars to the sides of 

medias proportionales, non quidem geometriee omnino, sed quasi attentando et praxim ipsam 
iterum atque iterum repetendo, donee id, quod quaerimus, assequamur." 

28[Euclid 1589] p. 33. 
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the angle), and as to purpose (inverting the construction of proportionals to 
find mean proportionals) they are akin to the famous "Mesolabum" (Instru
ment 16.3) consisting of sliding rulers which Descartes later described in his 
Geometry and which was crucial in the development of his ideas about con
struction, cf. Sections 16.4 and 24.2. 

In Section 2.5 I quoted Rivault's remark of 1615 about the problem of two Villalpando's 
mean proportionals: "Nobody left this stone unturned." Indeed the problem "proportiona
was easily the most famous of the early modern tradition of geometrical prob- trix" 
lem solving. Over and again the classical constructions from Eutocius' list were 
presented and new ones were added. We find the results of this activity even at 
such unlikely places as the learned comments of the Jesuit fathers Prado and 
Villalpando on the prophet Ezechiel. The third volume of that work, written by 
Villalpando and published in 1604, contained a substantial chapter on propor-
tionality and the determination of mean proportionals. The author considered 
the chapter of importance for the discussion of the system of weights and mea-
sures current at Ezechiel's time. He incorporated two constructions of two mean 
proportionals by means of specially constructed curves which he called "propor-
tionatrices.,,29 From a remark of Richard30 we may surmise that in writing 
the mathematical parts Villalpando had received substantial help from another 
member of his Society, Christoph Grienberger. 

Villalpando's (or Grienberger's) constructions provide examples of the use 
of special curves, which themselves were constructed pointwise. I discuss the 
first.31 The construction of the curve was as follows: 

Construction-Definition 4.10 ("First proportionatrix" - Villalpando)32 
Given: a line segment OB with a point.A on it such that OB = 20A (see 
Figure 4.10); upon the axis 0 B a curve, called the "first proportionatrix," is 
constructed pointwise. 

1. Draw semicircles with diameters 0 A and 0 B. 
2. Draw an arbitrary chord OC in the larger semicircle; it intersects 
the smaller one in D. 
3. Take OE = OD along OA; take F on OC such that EF = OE. 
4. F will be on the "first proportionatrix." 
5. Repeat steps 2-4 for other chords OC to find more points F on 
the curve. 

29 [Prado & Villalpando 1596-1605]; the mathematical part is in vol. 3, pp. 249-328; the 
constructions are on pp. 289-290. 

30 [Euclid 1645], last page of the "Argumentum librorum huius tomi," where Richard men
tioned Grienberger, "cuius sunt omnia circa pondera et centrum gravitatis quae in suis de 
Templo Salomonico commentariis congessit Villalpandus etiam e nostra Societate." Richard 
supplemented his 1645 Euclid edition with a treatise of his own "Liber de inventione duarum 
rectarum linearum continue proportionalium inter duas rectas, ex antiquis geometris et recen
tioribus," pp. 545-563; in which he gave Villalpando's constructions. 

31The second is discussed in [Ulivi 1985]. 
32 [Prado & Villalpando 1596-1605] vol. 3, pp. 289-290. 
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B G A E o 

Figure 4.10: Construction of the "first proportionatrix" - Villalpando 

6. Draw a smooth curve BF F FO through all constructed points F; 
this curve is the "first proportionatrix." 33 

Villalpando's The proportionatrix could be used for constructing two mean proportionals 
construction of because it has the following property (cf. Figure 4.10): Let FG be drawn ~ OB, 

two mean then 
proporiionals OB: OC = OC: OF = OF: OG , (4.13) 

that is, OC and OF are two mean proportionals between 0 Band OG. Indeed 
from'the similarities of the triangles f:,OBC, f:,OFG, and f:,OEH (with H on 
OF such that EH ~ OF) it follows that OB : OC = OF : OG = OE : OH 
(*). Now, by construction, OE = OD, OE = EF whence OH = HF, and 
OD = DC. Hence, OE: OH = OD : OH = 20D: 20H = OC: OF (**). 
Combining * and ** yields the required proportionality 4.13. 

Obviously, this proportionality was the reason for devising the proportiona
trix; because of it the curve could serve for constructing two mean proportionals. 
Villalpando explained the procedure: 

Construction 4.11 (Two mean proportionals - Villalpando)34 
Given: two line segments a and b, a < b (see Figure 4.11) and a "first propor-

33The equation of the curve in polar coordinates is r = 2a cos2 'P and in rectangular coordi
nates (x 2 + y2)3 = 4a2 x4 . 

34 [Euclid 1645]. pp. 545-563 
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a----------------------------
b-----------------------------------------

Figure 4.11: Construction of two mean proportionals by the "first proportiona
trix" - Villalpando 

tionatrix" drawn with respect to axis OAB; it is required to construct the two 
mean proportionals x and y of a and b. 

Construction: 
1. Draw a line through 0 making any angle with OB; mark OJ = a 
and OJ = b along that line; draw J B; draw a line through I parallel 
to JB, it intersects OB in C. 
2. Draw a line through C perpendicular to OB, it intersects the 
proportionatrix in F. 
3. Mark K and L on CB with OK = OF and OL = OC; draw lines 
through K and L parallel to JB, they intersect OJ in M and N, 
respectively. 
4. x = OM and y = ON are the required mean proportionals. 
[Proof: a : x : y : b = OC : OK : OL : OB = OC : OF 
OC : OB; the last four line segments are in continued proportion 
(cf. Equation 4.13), hence so are a, x, y, and b.] 

Any point F on the proportionatrix yields two mean proportionals between Curves devised 
the corresponding OC and 0 B. If F moves along the curve, the ratio OC : 0 B for 
assumes all possible values (smaller than 1 : 1). Thereby the curve as it were constructions 
embodies the solutions of all possible two mean proportionals problems. This 
property was the basis of the curve's use and apparently the only reason for its 
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introduction. Classical and early modern geometry presented several instances 
of curves introduced in a similar manner for the solution of one particular prob
lem. The cissoid of Diocles (again for two mean proportionals, cf. Definition 3.5) 
and the conchoid of Nicomedes (for neusis, cf. Sections 3.6 and 4.6) are exam
ples; as I noted earlier (Section 3.2), it seems that similarly the origin of the 
quadratrix lay in the endeavor to solve angular sections. 

The introduction of curves for solving particular problems raises the question 
in how far such curves can be considered to achieve the required solution. The 
question is especially poignant in the example of Villalpando's proportionatrix; 
the curve was rather obvious (given the problem) but not simple. Only a finite 
number of its points were actually constructed, the others were obtained by 
drawing a line smoothly through the constructed ones. Villalpando did not 
discuss in how far these interpolated points could legitimately be used in the 
construction of two mean proportionals. Thus the use of the curve implied 
the assumption that by finding a finite number of quadruples of line segments 
in continued proportion one had in fact found all such quadruples. Such an 
assumption was practically a petitio principii. 

It is clear that, in ways such as the one exemplified by Villalpando's con
struction, any problem gives rise to its own constructing curve (or curves), and 
thus the possibilities of introducing such curves are infinite; the activity could 
easily become vacuous. It appears indeed that prominent mathematicians of 
the early modern period required more of the constructing curves they intro
duced than that they encompassed all instances of the problem. Yet the exercise 
might be otherwise profitable, as is illustrated by Renaldini, who as late as 1670 
proudly presented a set of curves, respectfully named after the Medici's. These 
curves were generated much in the same way as Villalpando's, for the special 
purpose of constructing roots of various types of equations.35 

Finding k mean proportionals between two line segments was also called di
viding, or cutting, a ratio in k + 1 equal parts. Thus if, e.g., a, Xl, X2, X3, X4, 

X5, X6, b were in continued proportion, 

(4.14) 

the ratio a : Xl was called half the ratio a : X2 and one seventh part of the ratio 
a : b; and X3 was said to divide the ratio a : b in aliquot parts of which the one, 
a : X3 was 3/7-ths of a : b, and the other, X3 : b, 4/7-ths. 

The conception and terminology concerning the partition or section of ratios 
explained above suggests an analogy between mean proportionals and angular 
sections. Pappus presented the general section of an angle as a line-like problem, 
solvable by means of the quadratrix or the spiral (cf. Construction 3.4). Each 
of these curves related partitions of a straight line segment to corresponding 
partitions of an angle. It is noteworthy that, apparently, no classical mathe
matician pursued the analogy of angular sections and mean proportionals by 
introducing a curve, traced by some combination of motions, which similarly 

35[Renaldini 1670]; the "Lineae Mediceae" are introduced pp. 12 sqq. 
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related partitions of a straight line segment to corresponding partitions of a 
ratio. A curve like that would have been logarithmic or exponential in nature. 36 

Descartes seems to have been the first to consider such a curve; he called it 
the "linea proportionum" and he mentioned it in his notes of c. 1619,37 but he 
did not pursue the subject; the logarithmic curve began to be discussed among 
mathematicians around 1640.38 

4.5 Area and content problems 

With the term "area and content problems" I denote, for the sake of this Euclidean area 
overview and not because such a class was explicitly recognized by classical or problems 
early modern geometers, the problems that generalized some Euclidean trans-
formations of rectilinear areas, notably: 

Problem 4.12 (Parallellogrammic application - Euclid)39 
Given: A rectilinear figure F, a line segment a, and an angle 'P; it is required to 
construct a parallellogram with angle 'P, one side equal to a, and equal in area 
to F. 

Problem 4.13 (Quadrature of rectilinear figures - Euclid)40 
Given: a rectilinear figure F; it is required to construct a square equal in area 
to F. 

Problem 4.14 (Transformation into figure of given shape - Euclid)41 
Given: two rectilinear figures F and G, it is required to construct a rectilinear 
figure H similar to F and equal in area to G. 

Problem 4.12 asked to position a given rectilinear area as a parallellogram along 
a given line segment. Problem 4.13 was the quadrature of rectilinear areas, 
it asked to construct a square equal to the given area. Problem 4.14 was a 
generalization, reducing to 4.13 when F is taken to be a square. 

Stevin devoted two books (IV and V) of his Geometrical problems of 158342 Stevin and 
to the exploration of the three-dimensional analogs of the area problems just content 
mentioned. The first generalized Problem 4.14. He found that the general- problems 
ization depended on the determination of two mean proportionals. Hence, at 

361n the case of the exponential curve y = eX, for instance, a partition of the segment [a, bJ 
by points, say, Xl, ... X4 in five equal parts yields four mean proportionals Yl, ... Y4 between 
ea and eb. 

37 cf. Section 16.5. 
38Cf. [Loria 1902J p. 542. 
39[Euclid ElementsJ 1-45; the enunciation in the Elements does not require the line segment 

a to be given beforehand; but from the use of the previous construction (1-44) it is clear that a 
can indeed be given and that Euclid intended the construction to be interpreted in that way. 

40 Elements II-14. 
41 Elements VI-25. 
42 [Stevin 1583J. 
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Figure 4.12: Addition of similar solids - Stevin 

the beginning of the book he gave a construction of two mean proportionals, 
namely, Hero's (cf. Problem 2.2), mentioning that no "geometrical" construction 
was available.43 In book V he proceeded to a further generalization, probably 
inspired by Elements VI-31. Euclid's proposition stated that if similar recti
linear figures were erected on the sides and the hypotenuse of a right-angled 
triangle, the one on the hypothenuse was equal in area to the two remaining 
figures together. The result could readily be interpreted as a construction prob
lem, namely: given two similar rectilinear figures A and B, to construct a third 
similar figure C equal in area to A and B together. Stevin's problem was the 
three-dimensional analog. It may serve here as an example of how solid problems 
were reduced to the standard construction of two mean proportionals. 

Construction 4.15 (Addition of similar solids - Stevin)44 
Given: two similar solids A and B with homologous sides a and b (see Fig
ure 4.12); it is required to construct a similar solid X equal in content to the 
sum of the contents of A and B. 

Construction: 
1. Construct a line segment c satisfying a : b = b : c. 
2. Construct a line segment d satisfying a : b = c: d. 
3. Construct (by Hero's construction 2.2 given previously) two mean 
proportionals x and y between a and a + d, so a : x = x : y = y : 

43[Stevin 1583] Book IV, Problem 1, pp. 85-86. 
44[Stevin 1583] Book V, Problem 2, pp. 108-114. 



4.6 Neusis problems 81 

(a + d). 
4. With x as homologous side construct a solid X similar to the 
given solids; X is the required solid. 
[Proof: The contents are proportional to the cubes a3 , b3 , and x3 . 

Now x3 = a2(a+d) = a3 +a x ad = a3 + abc = a3 +b x ac = a3 +b3 , 

hence the content of X is the sum of the contents of A and B.J 

Problems of the same type can be found in Clavius' Practical geometry of 1604, 
for instance, a cubature generalizing Problem 4.13: given a parallelepiped, to 
construct a cube equal in content; Clavius reduced the construction to that of 
two mean proportionals.45 

4.6 Neusis problems 

The general neusis problem (cf. Problems 2.4 and 3.7) was solid. Its origin The general 
probably lay in an early period of classical Greek geometry during which the neusis problem 
use of a marked ruler that could be shifted over the plane was accepted for 
constructional purposes, alongside the use of ruler and compass.46 Two proce-
dures of constructing the neusis problem have been mentioned in the previous 
chapters (Constructions 2.5 and 3.8). Its role as a solid standard problem has 
been discussed above (Section 4.2). 

Greek geometers had recognized that in special cases neusis problems were A plane neusis 
plane. Ghetaldi dealt with one such special case in his Apollonius revived of problem 
1607: 

Construction 4.16 (Special neusis between a circle and a line - Ghetaldi)47 

Given: a semicircle with diameter OA = a (see Figure 4.13), a line L inter
secting the prolongation of 0 A perpendicularly in B, with 0 B = b, and a line 
segment c; it is required to find a line through 0, intersecting the semicircle and 
the line L in F and C, respectively, and such that FC = c. 

Construction: 
1. Draw a semicircle with diameter OB; draw AC perpendicularly 
to OB with C on the semicircle; draw ~C. 
2. Draw BCD with CD = ~c; draw OD. 
3. Draw a circle with center D and radius DC; its intersection with 
OD is E. 
4. Take F on the given semicircle such that OF = OE (Ghetaldi 
proved that 0 E < 0 A so that this can be done, I omit that proof); 

45[Clavius 1604] Book VIII, Prop. 38, p. 416; cf. also the construction of solid figures en
larged in a given ratio, Book VI, Prop. 17, pp. 305-306. 

46Por the history of the neusis procedure in antiquity see a chapter by Heath in 
[Archimedes nd] pp. c-cxxii, and [Knorr 1986]' index s.v. "neusis" (e.g. p. 34). 

47[Ghetaldi 1607bj Probl. 2 Casus 1, pp. 5-6. 
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Figure 4.13: Special neusis between a circle and a line - Ghetaldi 
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prolong OF, it intersects L in C. 
5. OFC is the required line, that is, FC = c. 
[Proof: Draw F A and prolong 0 D, its second intersection with the 
circle around D is H. Because iOCB is right, OC is tangent to 
the circle ECH. Hence sq.(OC) = rect.(OE, OH). Also sq.(OC) = 
rect.(OB,OA), so rect.(OB,OA) = rect.(OH,OE) (*). Moreover 
6.0F A rv 6.0BC, so OA : OF = OC: OB, hence rect.(OB, OA) = 
rect.(OF,OC) (**). Combining (*) and (**) yields rect.(OH, OE) = 
rect.(OF, ~C); but OE = OF, so OH = OC, and FC = EH = c.] 

In Apollonius revived Ghetaldi did not explain how he arrived at this con
struction. However, in his comprehensive work on analysis and synthesis On 
mathematical resolution and composition48 of 1630 he went over many of the 
problems he had solved in earlier publications and added the relevant analyses, 
including the one for the present problem. I explain this analysis in the next 
chapter (Analysis 5.3). 

4.7 Reconstructing classical texts 

The example from Ghetaldi illustrates a particular interest shared by many 
early modern geometers: the reconstruction of lost classical mathematical texts. 
The main source of inspiration for these reconstructions was the seventh book 
of Pappus' Collection, which contained a list of twelve ancient works by Aris
taeus,49 Euclid,50 Apollonius,51 and Eratosthenes,52 together forming what 
Pappus called the "domain of analysis.,,53 Only two of these works54 were 
extant around 1600, but Pappus gave enough information about the six lost 
treatises of Apollonius for mathematicians to attempt to reconstruct their con
tents. Thus in the seventeenth century Snellius, Ghetaldi, Anderson, Viete, 
and Fermat published reconstructions of the following Apollonian treatises: On 
the cutting off of a ratio,55 On the cutting off of an area,56 On determinate 
section,57 On contacts,58 Vergings,59 and Plane loci. 6o 

Ghetaldi's Apollonius revived was a characteristic example of this reconstruc-

48[Ghetaldi 1630J 
49 Solid loci, five books. 
50 Data, one book, Porisms, three books, Surface loci, two books. 
51 Conics, On the cutting off of a mtio, On the cutting off of an area, On determinate 

section, On contacts, Vergings and Plane loci. 
52 On means, two books. 
53 [Pappus CollectionJ opening sections of book VII, pp. 477 sqq., d. [Pappus 1986J pp. 82 

sqq. and 66-70. 
54 Euclid's Data, d. Chapter 5 Note 8 and Apollonius' Conics, d. Note 86. 
55 [Snellius 1607J. 
56 [Snellius 1607J. 
57[Snellius 1608J. 
58[Viete 1600J. 
59[Ghetaldi 1607J, [Ghetaldi 1613], [Anderson 1612J 
60 [Fermat IsagogeJ. 
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tional activity. He published its first volume in 1607. Ghetaldi concluded from 
Pappus' information that Apollonius' Vergings had dealt with particular cases 
of neusis between two circles and between a circle and a straight line.61 For the 
neusis between two circles he considered the special cases in which the pole of 
the neusis was in one of the points of intersection of the circles with their com
mon diameter. For the neusis between a circle and a straight line he took the 
pole to be in one of the intersections of the circle with its diameter perpendicular 
to the line (this was Construction 4.16 discussed above). In these special cases 
the neusis problem turned out to be plane. The problems called for the further 
distinction of many different cases, some of which were solvable only when the 
length to be inserted (c in the example) satisfied certain conditions. Ghetaldi 
set himself the task to deal with all the separate cases, to determine the condi
tions of solvability, and to provide the constructions. The volume published in 
160762 was not a full reconstruction; in the case of the neusis between two circles 
Ghetaldi only gave a sketch of the solution, claiming lack of time and pressure 
of friends as an excuse to publish an incomplete treatment. The missing parts 
were then supplied by Anderson in 1612,63 but they did not satisfy Ghetaldi and 
so in 1613 he published the second volume of Apollonius revived64 containing 
his own treatment of the case he had merely sketched earlier; his treatment was 
indeed more complete than Anderson's. 

4.8 Division of figures 

In its general form the figure division problem is as follows: 

Problem 4.17 (Division of figures) 
Given: a rectilinear plane figure F, a point P, or a line l, and a ratio p; it is 
required to draw a line through P or parallel to L, dividing F in two parts Fl 
and F2 such that Fl : F2 = p. 

This problem is plane. 
Division problems were a popular theme in books on geometry in the six

teenth and seventeenth century. Their study even acquired a special name: 
"geodesics.,,65 The tradition went back to a work by Euclid On divisions, which 
was mentioned by Proclus. For the complicated history of that text I refer to 
Archibald's introduction to his reconstruction of it.66 The sources for the early 
modern activity were a translation of a partial Arabic version published by Dee 
and Commandino 1570,67 and a section in Leonardo of Pisa's The practice of 

61Cf. [Knorr 1986] pp. 298~302 and [Pappus 1986] pp. 527~534. 
62[Ghetaldi 1607]. 
63[Anderson 1612]. 
64 [Ghetaldi 1613]. 
65Cf. [Clavius 1604] p. 263 where Clavius explains the term. 
66[Archibald 1915] pp. 1~ 18. 
67[Dee & Commandino 1570]. 
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Figure 4.14: Division of a triangle - Clavius 

geometry of 1220 most probably based on manuscripts of the Euclidean treatise 
of Greek or Arabic origin.68 

Being plane, division problems were less difficult than their analogs, the gen
eral angular section and the division of ratios. Nevertheless, the constructions 
could be rather involved because many distinctions had to be made according 
to the particular shape of F and the position of P or L with respect to F. 

My example of an area division problem is the relatively simple case where An example 
F is a triangle, P lies outside it and p = 1 : 1. It was treated by Clavius in his from Clavius 
Practical geometry of 1604, where he gave the following construction: 

Construction 4.18 (Triangle division - Clavius)69 
Given: a triangle ABC and a point D (see Figure 4.14); it is required to con
struct a line through D that divides the triangle in equal parts. (Clavius dealt 
with the case in which the line DA divides the triangle in parts of which the left 
hand one is larger than the right hand one.) 

Construction: 
1. Draw a line through D parallel to C B; it intersects AC prolonged 
in E; bisect AC in F. 

68 Leonardo's treatise was first published in print in the nineteenth century: 
[Fibonacci 1857-1862] vol. 2, pp. 1-224; the section on division of figures is on pp. 110-148. 

69[Clavius 1604] Book VI, Prop. 12, pp. 294-295. 
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2. Take C on AC such that CC is the fourth proportional of ED, 
CB and CF (i.e. ED: CB = CF: CC). 
3. Determine the mean proportional d of C E and CC (i.e. C E : d = 

d: CC). 
4. Find H on CA such that rect.(CH,CH) = sq.(d) (Clavius re
ferred here to his Construction 4.3). 
5. DH is the required line, i.e. !:"CIH = ~!:"ABC. 
[Proof: Draw D H, it intersects C B in I. Because of 3 and 4 
we have rect.(CH,CH) = sq. (d) = rect.(CE,CC). Hence HC : 
CC = CE : CH; so (HC + CC) : CC = (CE + CH) : CH, 
that is CH : CC = HE: CH = ED : CI (by similar triangles). 
So, using 2, rect.(CI, CH) = rect.(ED, CC) = rect.(CF, CB) = 
rect.(~AC, CB). Therefore, by a direct consequence of Elements VI-
23 which Clavius had derived in an earlier proposition, !:"C I H = 
~!:"ABC·l 

I use this example in Section 22.2 to illustrate Descartes' procedure of algebraic 
analysis and geometrical construction. 70 

A solid In Proposition 4 of the second book of his Sphere and Cylinder Archimedes 
division dealt with a solid division problem: to cut a sphere by a plane into parts with a 
problem prescribed ratio. Archimedes did not provide a full construction but reduced the 

problem to one about a certain division of a line segment. His commentator Eu
tocius supplied three constructions, one which he thought could be Archimedes' 
own, one by Dionysidorus, and one by Diodes. All three constructions employed 
the intersection of conics - a parabola and a hyperbola in the first two cases, 
a hyperbola and an ellipse in the last.71 The problem seems not to have at
tracted much attention in the early modern period, but at a rather late date it 
inspired Huygens to work out a construction in which he reduced the problem 
to a trisection. It was as follows: 

Construction 4.19 (Division of a sphere - Huygens)72 
Given: a sphere with center 0 and radius r, and a ratio a : b, a > b (see Fig
ure 4.15 which shows a great circle of the sphere); it is required to construct a 
point H on a diameter AB of the sphere such that the plane through H per
pendicular to the diameter divides the sphere in two parts which have the given 
ratio. 

Construction: 
1. Extend AB to both sides and mark points C and D such that 
CA= AO =OB = BD = r. 

70 A variant of the triangle division problem, the so-called quadrisect ion (division of a 
triangle by two perpendicular lines into four equal parts) attracted interest around 1700, 
cf. [Hofmann 1960]. 

71 [Eutocius CommSphrCyl] pp. 626-666; cf. [Archimedes nd] pp. 62-79. 
72[Huygens 1654] Problem 1 of the Problema tum quorundam illustrium constructiones, 

pp. 181-190, cf. p. 102 for the genesis of Huygens' construction. 
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Figure 4.15: Division of a sphere - Huygens 

2. Mark a point E on CO such that DE: CE = a: b; draw through 
B a chord BF of the circle with BF = OE. 
3. Trisect arc BF and draw chord FG subtending a third part of 
the arc. 
4. Mark H on CO such that OH = FG. 
5. The plane through H perpendicular to AB divides the sphere in 
the required ratio. 
[Proof: Call OH = x. From Prop. II-2 of Archimedes' Sphere and 
Cylinder, which expresses the volume of a segment of a sphere in 
terms of its base circle, its height, and the radius of the sphere, it 
follows that the volumes of the two parts of the sphere in this case 
are to each other as (2r3 + 3r2x - x3 ) : (2r3 - 3r2x + x3 ). This 
ratio should be equal to a : b. Hence x should satisfy the equation 
x3 - 3r2x + 2r3 :+: = O. This is the equation for the chord of l of 

an arch whose chord is 2r:+: (cf., e.g., Construction 4.6). Now it 

follows from 2 that 0 E = 2r :+:. The construction of x = 0 H = 
FG as the chord of one third of the arch spanned by BF = OE 
ensures that x indeed satisfies the equation.73] 

In presenting this construction Huygens mentioned the classical solutions by 
the intersection of conics and made it clear that he preferred the one with 

73Huygens formulated his proof entirely in geometrical language, involving a separate lemma 
equivalent to the trisection equation; but the main steps in his proof are the same as here. 
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the trisection: "And this method of construction for solid problems seems in 
a way the simplest and best suited for use.,,74 Although presented in classical 
geometrical style, it is likely that Huygens found the construction with help of 
Descartes' algebraic results on the trisection (cf. Section 26.6).75 

4.9 Triangle problems 

Regiomontanus' Triangle problems formed another distinct subfield within the early modern 
On triangles tradition of geometrical problem solving. In a triangle problem, some (in general 

three) elements of a plane triangle were given and it was required to determine 
the triangle itself (that is, its sides and angles). The problems originated in the 
context of trigonometry; they were treated by Regiomontanus in the first two 
books of his On triangles of 1533 (cf. also Section 7.2). Regiomontanus dealt 
with many different triangle problems, from simple ones like the case that three 
sides were given,76 to such complicated cases as the determination of a triangle 
given the lengths of a bisectrix of one angle and the lengths of the parts in which 
that bisectrix divides the opposite side.77 

A triangle 
problem solved 

byalgebm 

Two of these problems acquired a certain notoriety in the later tradition be
cause Regiomontanus had been unable to find their geometrical construction 
and had instead calculated the sides and angles of the triangle for specific nu
merical examples, deriving and solving the algebraic equation for one of the 
unknown line segments. In the first problem 78 he proceeded as follows: 

Analysis 4.20 (Triangle problem - Regiomontanus) 79 

Given: line segments c, h, and a mtio d : e; it is required to find a triangle 
ABC with base AB = c, height CD = h and a : b = d : e, where a and b are the 
sides BC and AC, respectively. 

Analysis: "Until now this problem has withstood solution in geo
metrical manner, but we shall try to solve it by the art of "res" and 
"census.",,80 Take, for example, d : e = 5 : 3 (hence DB > AD), 
h = 5 and c = 20. 
1: Take E on DB with AD = DE, call EB = 2x. 
2. Then AD = 10 - x and DB = 10 + x. 

74[Huygens 1654J p. 45: "Atque haec construendi ratio in soIidis problematibus quo-
dammodo simpIicissima videtur atque ad usum maxime accomodata." 

75Cf. the related manuscripts in [Huygens 1888-1950J vol. 12 pp. 9-12, 16-18. 
76[Regiomontanus 1533J Book I Problems 42-47. 
77[Regiomontanus 1533J Book II Prop. 30 pp. 136-139. 
78The second problem was: given the height h, the difference b - a of the sides, and the 

difference C2 - Cl of the parts C2 and Cl in which the height divides the base c, to construct 
the triangle (Book II Problem 23). 

79[Regiomontanus 1533J Book II Prop. 12 p. 51. 
80[Regiomontanus 1533J p. 51: "Hoc problema geometrico more absolvere non Iicuit 

hactenus sed per art em rei et census id efficere conabimur." The terms "res" and "census" 
denoted the unknown and its square. 
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Figure 4.16: A triangle problem -- Regiomontanus 

3. b2 = AC2 = AD2 + CD2 = (10 - x)2 + h2 = x2 - 20x + 125. 
4. Similarly a2 = BC2 = x2 + 20x + 125. 
5. b2 : a2 = 9 : 25 yields 16x2 + 2000 = 680x. 
6. "Hence the rules of the art will show us what remains to be done. 
The line BE which I posed to be 2 "res" will emerge as known .... "81 

Regiomontanus assumed his readers knew how to solve the quadratic equation 
in step 5. He was aware that in general such a solution in numbers would yield 
an approximate solution, not a geometrical one and from his words it appears 
that he felt defeated by the lack of a geometrical solution in the form of a general 
construction. However, as we will see (Section 7.2), he was not impressed by 
the advantages of exact over approximate solutions. 

The result makes clear that for Regiomontanus algebra was still linked pri
marily with numbers and that general algebraic procedures could only be stated 
in terms of specific numerical examples. These two features of the "art of res 
and census" prevented him from translating the procedure of solving the equa
tion (especially the root extraction it involved) into a construction by straight 
lines and circles. Regiomontanus' solution thus illustrates an obstacle against 
an easy merging of algebra and geometry; I discuss such obstacles in general in 
Section 6.4. 

81 "Quamobrem quod rest at , praecepta artis docebunt. Linea ergo GE quam posui 2 res 
nota redundabit ... " [Regiomontanus 1533] p. 51. 
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Figure 4.17: Construction of Regiomontanus' triangle problem - Viete 

Viete's The two problems whose geometrical constructions eluded Regiomontanus 
construction were plane, as appears from the fact that Regiomontanus found quadratic equa

tions. ' Several writers dealt with the two problems later,82 some praising the 
decision to use algebra, others providing constructions and analyses. Viete, for 
instance, added an appendix to his The French Apollonius of 1600, entitled 
"On the problems whose geometrical construction Regiomontanus said he did 
not know.,,83 Viete gave constructions and proofs but we don't have the analy
ses by which he reached them. His construction of Regiomantanus' first problem 
was as follows: 

Construction 4.21 (Triangle problem - Viete )84 

Given: two line segments c and h, and a ratio d : e (see Figure 4.17); it is 
required to construct a triangle with base c, height h, and sides a, b, such that 
a : b = d : e. [Viete notes a condition: If c is divided into two segments Cl and 
C2 such that C2: Cl = d: e, then CIC2 should be ~ h(c2 -cd, where c = Cl +C2.) 

Construction: 

82[Nonius 1567] pp. 269T -271v (they are Nonius' problems nrs 46 and 51; in a passage 
introducing the first of these he mentions Regiomontanus' recourse to Algebra in support 
of the scientific stature of "esta subtilissima arte de Algebra"); [Viete 1600] pp. 339-342, 
"Appendicula I De problematis quorum geometricam constructionem se nescire ait Regio
montanus:" [Ghetaldi 1607] pp. 7-9; [Cyriacus 1616]; [Anderson 1617] (cf. [Grisard 1969]); 
[Anderson 1619] pp. 9-15; cf. also [Garibaldi 1992] pp. 183-186. 

83Cf. Note 82. 
84[Viete 1600] p. 340. 
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1. Take AB = C; bisect AB in F; draw GF perpendicular to AB 
with GF = h; draw HG II AB. 
2. Take I on AB such that AI : IB = e : d (thus AI and IB are 
the Cl and C2 of the condition); draw J I perpendicular to AB with 
Jon HG; prolong JI. 
3. Take K on J I prolonged such that J I x I K = AI x I B (hence 
IK=~). 
4. Bisect I K in L; draw a semicircle with diameter I K and center 
L. 
5. Prolong GF; it intersects the semicircle in two points M and N 
or it touches the circle in one point N [because IF = ! (C2 - Cl) ~ 
!~ = !IK=IL]. 
6. Draw N I; its prolongation intersects HG in C; draw AC and 
CB. 
7. AC B is the required triangle. 
[Proof: AB = C and CO = h by 1. Draw KN; now CI: JI = IK: 
IN because of similarity of triangles, hence C I x IN = J I x I K = 
AI x IB (by 3). So the points C, N, A, and B are on one circle; 
draw that circle; its centre is on G F (because G F bisects chord AB 
perpendicularly); arcAN = arcN B, so LACI = LICB and therefore 
(by Elements VI-3) AC : CB = AI : lB. Now AI : IB = e : d by 
2, so AC : CB = e : d as required.] 

From the construction and proof it seems likely that Viete arrived at this con
struction by a classical rather than an algebraic analysis of the problem.85 

4.10 Varia 

Under "Varia" I add one example of a construction by reduction to one of The normal to 
Viete's standard solid problems discussed above in Section 4.2. It is the prob- a parabola 
lem of constructing a normal to a given parabola through a given point outside 
the parabola. In the Collection Pappus had criticized Apollonius' solution of 
"the problem about the parabola in the fifth book of the Conics" for using solid 
means although a plane construction was possible (cf. Section 3.4). The first 
four books of the Conics were available in print since the middle of the sixteenth 
century.86 Books V-VII, however, which came to the West via an Arabic trans-
lation, remained inaccessible until well into the seventeenth century.87 Hence 
Apollonius' own construction of the problem was not known. But from Pap-
pus' statement and from the information about book V that was available, it 

850n the distinction between these two kinds of analysis see the next chapter. Viete may 
well have arrived at his construction by realizing that the bissectrix of the angle at C cuts the 
base in segments AI and IB such that AI : IB = b : a = e : d (Elements VI-3), hence the 
point I can be constructed. Moreover, OC: CI = IK : CN, hence h X IK = CI X IN. By 
Elements III-35 CI X IN is equal to AI X IB and is therefore known; consequently, IK can 
be constructed. The rest of the construction then follows easily. 

86[Apollonius 1537) and [Apollonius 1566). 
87For the complicated history of their publication see [Apollonius 1990) vol. 1 pp. xiv-xxvii. 
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Figure 4.18: Construction of a perpendicular to a parabola -- Anderson 

was clear that Pappus' criticism concerned precisely the problem of finding a 
perpendicular to a parabola through a given point outside the parabola. 

Anderson's In 1619 Anderson published a solution of the problem. He did not see the 
construction possibility of using the given parabola as means of construction88 and con

cluded that Pappus had been wrong in claiming that the problem was plane. 
He provided a construction by reduction to one of Viete's solid "constitutive" 
problems: 

Construction 4.22 (Perpendicular to a parabola - Anderson)89 
Given: a point A, a parabola, not through A, with vertex 0, vertical axis and 
latus rectum c = OC; it is required to draw a line through A intersecting the 
parabola perpendicularly. [Anderson distinguished several cases depending on 
the position of A with respect to 0; I give only the first case he treated, which 
assumed that A was below 0 and that the vertical distance of A to 0 was 
smaller than ~c; there are some calculation errors in his argument, which I have 
corrected.] 

Construction: 
1. Draw AB horizontally, with B on the axis; call AB = p and 

88ef. Section 3.4; it seems that Huygens was the first to suggest this possibility and by it to 
justify, or at least explain, Pappus' criticism. He did so in a passage added by Van Schooten 
to the 1659 edition of Descartes Geometry, cf. [Huygens 1888-1950] vol. 1 pp. 242-243 and 
vol. 14 pp. 420-422. 

89 [Anderson 1619] pp. 25-27. 
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OB=q. 
2. Construct the mean proportional a of c and ~c - q (Le., c : a = 
a: (~c-q)). 
3. Construct the fourth proportional b of ~c - q, ~c and p [Le., 
(~c-q):~c=p:b]. 
4. Now solve the following (Vietean) standard problem (cf. Prob
lem 4.5 above): Find three line segments x, y, and z such that a, x, 
y, and z are in continued proportion and x + z = b. 
5. The segment x is the ordinate DE of the point E in which the 
required line intersects the parabola; determine E and draw the per
pendicular AE to the parabola. 
[Proof: Anderson's proof was based on his analysis of the problem 
which I discuss in the next chapter (cf. Analysis 5.9 and Construc
tion 5.10), so I omit a proof here.] 

Anderson did not give the construction of the Vietean standard problem to 
which he had now reduced the parabola problem. He merely stated90 that it 
was of the same kind as the problem of two mean proportionals and that it 
could be constructed by neusis or by motion, similar to Plato's construction 
of two mean proportionals by means of gnomons (cf. Construction 2.3). He 
also suggested that the reader might prefer reducing the cubic equation by a 
reduction analogous to Cardano's formulas91 to the determination of cubic roots, 
that is, the determination of two mean proportionals (which can indeed be done 
in this case). 

4.11 Heuristics and analysis 

In most of the examples discussed in this chapter I have not explained how Heuristics 
the construction and its proof were found. In leaving out this information I kept often not 
close to the spirit of the texts; in many cases the authors themselves did not explained 
discuss how they had found the constructions. Sometimes their readers could 
plausibly guess from the proof or from the construction itself how the author had 
found it. But for the more complicated constructions, such as Clavius' division of 
the triangle, Viete's solution of Regiomontanus' problem, and Ghetaldi's neusis, 

90 [Anderson 1619] p. 27. 
91 I use the term "Cardano's formulas" for formulas which represent the method for solving 

cubic equations published by Cardano in his The great art of 1545 ([Cardano 1545] Ch. 11, 
d. [Cardano 1966] pp. 249-251). Cardano attributed the formula to Scipione Ferro. In modern 
terms the method may be summarized as follows: Any cubic equation x 3 +ax2 +bx+c = 0 can 
be reduced (by the substitution x ---> x-a/3) to a form without quadratic term: x 3 +px+q = OJ 
one root of the latter equation is given by 

( 4.15) 

Cardano's method became generally known among mathematicians in the second half of the 
sixteenth century, cf., e.g., [Kline 1972] pp. 263-266. 
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only the expert insider would be able to reconstruct the reasoning that led the 
author to the construction. 

Mathematical writers could have various reasons for omitting explanations 
of how they arrived at their constructions. The paradigm classical works as 
Euclid's Elements and Apollonius' Conics were written in the same apodictical 
style. In fact several early modern mathematicians concluded from these works 
that the classical style of solving problems actually required to conceal the 
methods by which the solutions were foundY2 Not infrequently it would suit an 
author's purpose to conform to that classical style and to show his skill without 
sharing it. In other cases geometers might find it difficult to formulate how they 
arrived at constructions because their heuristic procedures were insufficiently 
formalized. 

Yet, although the usual style of presentation did not call for explicit heuris
tics, there was a strong interest in it. From classical sources early modern 
geometers knew that the ancients had developed analytical methods for finding 
constructions of problems. But it was believed that, partly because of the syn
thetic style of presenting mathematics and partly because of a deliberate wish 
to keep methods secret, most knowledge about classical analytical methods had 
been lost.93 The lack of good analytic methods was recognized and new meth
ods were devised. These attempts culminated in Descartes' analytical use of 
algebra. In the next chapter I discuss various pre-Cartesian methods of analysis 
and give examples. 

92Thus Viete wrote in his Isagoge: "So a skillful geometer, although thoroughly versed in 
analysis, conceals the fact, and, concentrating on the accomplishment of the task, proposes and 
explains his problem as synthetic." ([Viete 1591] p. 10: "Itaque artifex Geometra, quanquam 
Analyticum edoctus, illud dissimulat, et tanquam de opere efficiundo cogitans profert suum 
syntheticum problema, et explicat.") 

93 Descartes, for instance, remarked in the Rules: "we are well aware that the geometers 
of antiquity employed a sort of analysis which they went on to apply to the solution of 
every problem, though they begrudged revealing it to posterity." ([Descartes Rules] p. 373, 
translation quoted from [Descartes 1985-1991] vol. 1, p. 17). 



Chapter 5 

Ear ly modern methods of 
analysis 

5.1 Introd uction 

Two kinds of analysis were distinguished in early modern geometry: the clas- Pappus' 
sical and the algebraic. 1 The former method was known from examples in clas- account of the 
sical mathematical texts2 in which the constructions of problems were preceded method of 
by an argument referred to as "analysis;" in those cases the constructions were analysis 
called "synthesis." Moreover, a few classical sources3 spoke in general about 
this arrangement. The most important of these texts was the opening of the 
seventh book of Pappus' Collection; I quote this passage here in full: 

Now, analysis is the path from what one is seeking, as if it were 
established, by way of its consequences, to something that is estab
lished by synthesis. That is to say, in analysis we assume what is 
sought as if it has been achieved, and look for the thing from which it 
follows, and again what comes before that, until by regressing in this 
way we come upon some one of the things that are already known, 
or that occupy the rank of a first principle. We call this kind of 
method "analysis," as if to say anapalin lysis (reduction backward). 
In synthesis, by reversal, we assume what was obtained last in the 

IThus in Book V, Ch. IV, pp. 330--343 of [Ghetaldi 1630] Ghetaldi treated a number of 
problems that he considered beyond the force of algebra and that he therefore solved "by the 
method which the ancients used in analysing and synthesizing all problems" ("Methodo, qua 
veteres in resolvendis et componendis omnibus problematibus utebantur" p. 330). 

2 Notably: Book II of Archimedes' Sphere and Cylinder together with the commentaries of 
Eutocius on Propositions II-I and 11-4, and Pappus' Collection. Furthermore, Euclid's Data 
was recognized as a collection of theorems useful in the analysis of plane problems. 

3Primarily the passages in Pappus' Collection discussed below; also a scholium to Elements 
XIII"I~5, which in the Renaissance was attributed to Theon (cf. [Euclid 1956] vol. 3 pp. 442~ 
443). In his Isagoge Viete referred to the definition of analysis in the scholium and attributed 
it to Theon ([Viete 1591] p. 1, [Viete 1983] p. 11). 
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analysis to have been achieved already, and, setting now in natural 
order, as precedents, what before were following, and fitting them 
to each other, we attain the end of the construction of what was 
sought. This is what we call "synthesis." 

There are two kinds of analysis: one of them seeks after the 
truth, and is called "theorematic." In the case of the theorematic 
kind, we assume what is sought as a fact and true, then, advancing 
through its consequences, as if they are true facts according to the 
hypothesis, to something established, if this thing that has been es
tablished is a truth, then that which was sought will also be true, 
and its proof the reverse of the analysis; but if we should meet with 
something established to be false, then the thing that was sought 
too will be false. In the case of the problematic kind, we assume 
the proposition as something we know, then, proceeding through its 
consequences, as if true, to something established, if the established 
thing is possible and obtainable, which is what mathematicians call 
"given," the required thing will also be possible, and again the proof 
will be the reverse of the analysis; but should we meet with some
thing established to be impossible, then the problem too will be 
impossible. 4 

The passage is difficult to understand and has led to a discussion on its meaning, 
which, as far as I can see, remains inconclusive.5 Unsurprisingly, early modern 
mathematicians did not develop a unique interpretation of it either. However, 
one may say that, in combination with the extant classical examples of analyses, 
the passage in Pappus led to a view, generally shared by seventeenth-century 
mathematicians, according to which classical analysis was a procedure for find
ing constructions of problems or proofs of theorems in which the concept of 
"given" played a central role. This analysis was to be completed by another 
procedure, called synthesis, differing from the analysis with respect to the di
rection of the argument. I come back to the difference of direction of argument 
in analysis and synthesis below in connection with some of the examples (Sec
tion 5.3). 

In the quoted passage Pappus made a distinction between theoretical and 
problematical analysis, the one leading to a proof of a theorem, the other leading 
to the construction of a problem. It should be remarked, however, that virtually 
all examples of analyses in the classical literature were analyses of problems, and 
the corresponding syntheses were constructions; there were no clear cut exam
ples of the analysis of theorems.6 It appears that early modern mathematicians 

4[Pappus Collection] opening sections of book VII, pp. 477-478 (vol. 2). The translation 
above is from [Pappus 1986], vol. 1, pp. 82-85; for variant translations see [Heath 1921] vol. 2, 
pp. 400-401 and [Knorr 1986] pp. 354-357. 

5See in particular [Gulley 1958]' [Mahoney 1968]' [Hintikka & Remes 1974], [Knorr 1986], 
and [Behboud 1994]. 

6 Knorr argues convincingly ([Knorr 1986]) that Pappus' notion of an analysis of theorems is 
in fact "entirely gratuitous" (p. 358) and that the extant examples of analyses of theorems are 
"trivial" (p. 378, note 102) apart from two examples in Pappus, which still are unconvincing 
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were not interested in formal analyses of theorems.7 

For plane problems the method of analysis by means of the concept "given" Classical 
was codified in Euclid's Data (literally "givens," I refer to the work as Data), analysis 
of which a Latin translation was available in print since 1505.8 I explain the 
procedure below in connection with Construction 5.2. 

However, most classical examples of analyses concerned solid problems. These 
analyses served either to find a standard solid problem to which the construction 
of the problem at hand could be reduced, or to find the conics by whose inter
section the construction was to proceed. Instances of the first kind were in the 
propositions II-I and II-4 of the Sphere and cylinder9 in which Archimedes re
duced the (solid) problems he was dealing with to others which he assumed 
solved (in the case II-I: the determination of two mean proportionals) or 
promised to deal with later (in the case II-4). Instances of analyses serving 
to find constructing conics occurred in Eutocius' commentary to Proposition II
I, containing the famous list of 12 constructions of two mean proportionals. lO 

Two of these constructions (those atributed to Menaechmus) used the intersec
tion of conics; they were preceded by an analysis in which these conics were 
found as loci. ll Other examples of such analyses were in Eutocius' comment on 
Proposition II-4 of Sphere and Cylinder. 12 

Early modern geometers showed considerable interest in the classical method 
of analysis and were in general familiar with its terminology and techniques, at 
least as far as necessary for analyzing plane problems. 

Algebra13 entered geometry through its use in the analysis of problems and Analysis by 
from c. 1590 the development of this analytical use of algebra can be identified algebra 
as the principal dynamics (cf. Section 1.5) within the early modern tradition of 
geometrical problem solving. 

From 1591 onward Viete consciously and explicitly advocated the use of 
algebra as an alternative method of analysis, applicable in geometry as well as in 
arithmetic. The method consisted in reducing the problem to an equation, which 

as examples of theorematic analysis. 
71 am aware of only one example of such an interest, namely Van Schootens Treatise 

on devising geometrical proofs from algebmic calculations ([Schooten 1661]). Most of the 
propositions in this tract concern problems and constructions, but there are some geometrical 
theorems (typically one equivalent to the equality tan2a = l~~:~f(J whose proofs Van 
Schooten derived algebraically. 

8[Euclid 1505]; the Greek text was first published in 1625, [Euclid 1625]. 
9[Archimedes SphrCyl] pp. 57-58, 62-65. 

10[Eutocius CommSphrCyl] pp. 588-620. 
11 In my presentation of one of Menaechmus' constructions, Construction 3.1 above, I have 

omitted the analysis. 
12[Eutocius CommSphrCyl], pp. 626-666; Eutocius gave three solutions of the problem by 

the intersection of conics; one, he suggested, might be Archimedes' own, the two others were 
by Dionysidorus and by Diocles; the first and third of these also contained an analysis. 

13To be precise, algebra involving unknowns and indeterminates, cr. the explanation of my 
use of the terms "algebra" "geometry," and "analysis" in Section 6.3. 
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for the usual geometrical problems would be an equation in one unknown. 14 

This equation was to be reduced to some standard form, corresponding to a 
standard construction. If the equation was quadratic the standard construction 
was a plane one; if its degree was higher the construction was a solid or an 
even more complex one. 15 This use of algebra in geometry had been pioneered 
by some Renaissance mathematicians before 1590, but it was Viete's conscious 
identification of this method with analysis that brought it into the center of 
attention. Descartes' method for geometry, although considerably different and 
more extensive than Viete's, was nevertheless based on the same conception of 
the use of algebra: reduce problems to equations and seek their construction 
from these equations, rewritten in standard form. 

There is one part of classical analysis that on retrospect seems the most 
amenable to algebraic formulation; this is the determination of two construct
ing conics as loci for two properties shared by the required point. In the classical 
examples of such analyses the properties were relations involving the ordinates 
and abscissae of the conics; these relations were equivalent to quadratic equa
tions in two unknowns. Thus the material for an algebraic characterization of 
curves was as it were readily available. In fact, however, this type of analytical 
procedure played a limited role in the creation of the early modern algebraic 
method of analysis. Viete was not interested in constructing solid problems by 
intersection of conics and therefore did not explore the possibility of formulating 
an algebraic equivalent. Even Descartes, who did develop the method of char
acterizing loci by equations in two unknowns, did not arrive at this conception 
via the classical analytical method of finding the constucting conics for solid 
problems. The only mathematician who elaborated an algebraic analysis based 
on the classical analysis by loci was Fermat, but his method had less influence 
than Descartes'. I return to this aspect of early modern analytical methods in 
Section 13.1. 

Table 5.1 gives an overview of the methods of analysis mentioned above and 
discussed in the next sections. 

5.2 Classical analysis of plane problems 

The classical method of analysis is best introduced by a simple example of an 
analysis with the pertaining synthesis, for which I choose Ghetaldi's solution of 
a triangle problem in his Collection of various problems of 1607. 

Analysis 5.1 (Triangle problem - Ghetaldi)16 
Given: two line segments a and d, and an angle "I (see Figure 5.1); it is required 
to construct a triangle with base c, vertex angle "I, sides a and b, and such that 
c- b = d. 

14Viete did not apply algebra to locus problems. 
15Viete did not explore the possibility for higher-degree equations to be reducible; the 

importance of irreducibility for construction was first realized by Descartes, cf. Section 27.3. 
16[Ghetaldi 1607] Problem XVI, pp. 41-42. 
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Classical analysis Algebraic analysis 

Plane By the concept of "given" - By reducing the problem to an 
problems Section 5.2 equation in one unknown -

Sections 5.3 and 5.4 

Solid By the concept of "given:" By reducing the problem to an 
problems reducing the problem to a equation in one unknown and 

standard one or determining then either (a) reducing the 
the constructing conics as equation to a standard solid 
loci - Section 5.5 problem or (b) using equations 

in two unknowns to find the 
constructing conics -
Section 5.6 

Table 5.1: Early modern methods of analysis 

Analysis: 
1. "Factum iam sit" - "Let it be done" and let the triangle be ABC; 
let AC be prolonged to D such that AD = c, then CD = c - b = d; 
Let DB be drawn. 
2. The side BC = a is given in position and in magnitude;17 LBCA 
is given, so LBC D is given too. 
3. Since BC is given in position and magnitude, so (Data 29) CD 
is given in position. 
4. The line segment CD is also given in magnitude (for it is equal 
to d), so (Data 27) the point D is given. 
5. The point B is also given, so (Data 26) BD is given in position 
and magnitude. 
6. Hence triangle CDB is given, so LCDB is given. 
7. Now LCDB = LDBA because AD = AB; hence (Data 29) AB 
is given in position and therefore (Data 25) the point A is given in 
position. 
8. Hence (Data 26) AB and AC are also given in magnitude. 
9. Thus the triangle ABC is given. 
[Summary The point A is found to be "given" in 7, the sides band 
c in 8; the side a and the points Band C are given from the outset; 
hence the triangle is given.] 

Construction 5.2 (Triangle problem - Ghetaldi) 
Given etc.: see Analysis 5.1. 

Construction (Synthesis) (the numbers of the steps correspond 
to those in the analysis.): 

17See below for an explanation of the terms "given in position" and "given in magnitude," 
and for the references to the Data. 
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D 

A B 

a ______________________ ___ 
d ___ _ 

Figure 5.1: Analysis and synthesis of a triangle problem ~ Ghetaldi 

1-2. Draw BC = a. 
3. Draw angle "( at C, prolong the other side. 
4. Take CD = d along the other side. 
5. Draw BD. 
6-7. At B, draw an angle equal to LCDB with one side along BD; 
the other side intersects DC prolonged in A. 
8. ABC is the required triangle. 
[Proof: By construction CB = a and LBCA = "(; BA = DA so 
c = b + d or c - b = d.] 

Role of the The example illustrates two characteristic features of a classical analysis of a 
concept problem: it proceeded by means of a concept "given," and it was performed with 
"given" respect to a figure in which the required elements were supposed to be drawn 

already. The latter was indicated by such phrases as "factum jam sit," "let it 
be done," which served as a standard reminder that the subsequent argument 
was an analysis. The at-first-sight contradictory approach, namely to assume 
a problem solved in order to find its solution, was seen as the essential feature 
of analytical reasoning. In the supposed figure some elements were given at the 
outset; some were directly constructible from those originally given, and some 
required more steps. The analysis used a kind of shorthand, codified largely 
in Euclid's Data, for finding the constructible ("given") elements in the figure. 
The geometer used that shorthand as it were to plot a path from the primary 
given elements to the elements he ultimately wanted to construct. 
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In the Data Euclid distinguished between three modes of being given: given Euclid's Data 
in magnitude, given in position, and given in kind. The first two modes occur 
in the example above. Geometrical entities (line segments, angles, rectilinear 
figures) were "given in magnitude" if, as Euclid phrased it: "we can assign 
equals to them," 18 19 The third mode applied to rectilinear figures (triangles, 
polygons); such a figure could be "given in kind", which meant that its angles 
and the ratios of its sides were given, but not its size. Thus if a figure was given 
in kind, this meant that another figure similar to it could be placed anywhere 
in the plane. For ratios there was only one mode of being given: a ratio was 
given if a ratio equal to it could be obtained,2o which meant in effect that two 
magnitudes could be produced whose ratio was equal to the given ratio. 

Euclid's Data contained some 100 propositions of the form "If A is given in 
mode Cl, then B is given in mode (3." In all these propositions the consequent 
(B) was constructible by straight lines and circles from the antecedent (A). 
These propositions, then, provided the steps by which the geometer planned 
the route from the given elements to the required ones. Once that route was 
planned, the construction could be written out along the same path, as we saw 
in Ghetaldi's construction. 

In illustration I quote the propositions from the Data21 to which Ghetaldi 
referred in his analysis: 

Data 25: If two lines22 given in position intersect, the point at which 
they intersect each other is also given in position. 
Data 26: If the extremities of a straight line will have been given in 
position, the straight line will be given in position and in magnitude. 
Data 27: If one extremity of a straight line given in position and 
magnitude will have been given, the other extremity will also be 
given. 
Data 29: If from a straight line given in position and from a point 
given therein there is drawn a straight line making a given angle, 
the line so drawn is given in position. 

One notes that in Ghetaldi's problem the three given elements (a, d, ')') were 
given in magnitude. Nevertheless, Ghetaldi started his analysis (cf. step 2) with 
the assumption that one of them, namely the side a, was given in position as 
well. He could do so because it was required to construct any triangle with the 
given properties, so he was free to assume an arbitrary position in the plane for 
one of the elements given in magnitude. 

Once a route from the given to the required elements was planned in the anal-

18[Euclid Data] Def. 1 (in Ito's translation, [Euclid 1980] p. 55): "Spaces, Jines and angles 
are said to be given in magnitude, when we can assign equals to them." 

19[Euclid Data] Def. 4. 
20[EucJid Data] Def. 2. 
21 [Euclid Data] 25-27, 29, translation quoted from [Euclid 1980] pp. 94-99. 
22It appears from later items in the Data (e.g. 39) that both straight Jines and circles are 

meant here. 

Direction of 
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ysis by means of the Data, the geometer could proceed to the synthesis, i.e., the 
actual construction, by writing out the separate construction steps along that 
route. In the case of our example the synthesis proceeded along the same steps 
and in the same direction as the analysis. Nevertheless, as we have seen at the 
beginning of this chapter, the locus classicus on analysis, Pappus' explanation 
at the beginning of Collection VII, stressed that the arguments in analysis and 
synthesis were each other's reverse. Modern commentators have also seen this 
reversal of argument as crucia1.23 It appears, however, that the actual prac
tice of analysis as we find it in classical and early modern sources calls for a 
more nuanced view. Beyond the fact that analysis started with the assumption 
of the required, its direction of argument was not so definite. In Ghetaldi's 
case the directions in both analysis and synthesis were exactly the same. In 
the actual analytical argument (as opposed to the formal analysis written down 
after success) probably both directions occurred. Characteristically, the heuris
tic procedure of a "problematical" analysis would start arguing at any place 
that looked promising as a link in the chain which ultimately was to connect 
the "given" and the "required." Afterward the geometer might well choose to 
present the analysis thus found in a consistent order. In the case of analysis on 
the basis of the Data the obvious order was the same as that of the synthesis, 
namely from the given to the required, and that is what we find in Ghetaldi's 
case. In the analysis by means of algebra the situation was different. There 
at least the first part of the analysis, which argued from the problem to the 
equation, had a direction opposite to that of the synthesis. This will become 
clear in the next example. 

5.3 Algebraic analysis of plane problems 

In his On mathematical resolution and composition24 Ghetaldi discussed, at 
great length, both the classical and the algebraic analysis of problems. He took 
the occasion to explain the analyses of many problems whose constructions he 
had published earlier without analysis. Among these was the special neusis 
problem whose construction, from Apollonius revived of 1607, I discussed in the 
previous chapter (Construction 4.16). It is a good example of a simple algebraic 
analysis in Vietean style. 

23Cf. [Heath 1921] vol. 2, p. 401, [Klein 1968] pp. 154-155, 259--260, [Mahoney 1968] 
pp. 326-327, [Hintikka & Remes 1974]' pp. 7-21, [Knorr 1986] pp. 348-360. 

24[Ghetaldi 1630]; resolutio and compositio were the Latin terms for analysis and synthesis. 
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L 

o 

c 

Figure 5.2: Special neusis between a circle and a line - Ghetaldi 

Analysis 5.3 (Special neusis between a circle and a line - Ghetaldi)25 

Given: a semicircle with diameter OA = a, a line L intersecting the prolon
gation of OA perpendicularly in B with OB = b, and a line segment c (see 
Figure 5.2, I use letters corresponding to those of Figure 4.13); it is required to 
find a line through 0, intersecting the semicircle and the line L in F and G, 
respectively, and such that FC = c. 

Analysis: 
1. "Sit iam factum:" let OF be called x, let AF be drawn. 
2. By similar triangles: x: a = b : (x + c), hence x 2 + xc = abo 

3. Therefore x = J ~ + ab - ~c, hence x is "given." 

Construction 5.4 (Special neusis between a circle and a line - Ghetaldi)26 
Given etc.: see Analysis 5.3. 

25[Ghetaldi 1630J Book III, Problem VII, Casus 1, pp. 118-120. Because the notational 
aspects of Ghetaldi's Vietean style are lost in my presentation, I give one example of it; the 
result in step 3 of the analysis is expressed as follows (the letters correspond by x = A, 
a = D, b = G, c = B): "Et explicata aequatione L.V.(BQ ~ + D in G) - B ~ aequabitur 
A." (L.V. stands for "latus universalis" indicating that the root has to be extracted from 
the whole of what follows; Q stands for "quadratus"). Ghetaldi formulated the result also in 
prose with reference to a figure: "Recta cuius quadratum aequale est quadrato dimidiae CD 
& rectangulo AOB, contracta dimidia CD aequalis est recta OC. Datur ergo OC quaesita." 
(I have changed the letters so as to fit the figure.) 

26[Ghetaldi 1607bJ, Problem II, Casus 1, pp. 5-6, also in [Ghetaldi 1630J p. 120. 
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L 

G 

o 

c 

Figure 5.3: Special neusis between a circle and a line - Ghetaldi 

Construction: (The construction is the same as Construction 4.16; 
the numbers do not correspond to those of the analysis; I note be
tween brackets the algebraic interpretation of each step.) 
1. Draw (see Figure 5.3) a semicircle with diameter OB; draw AC 
perpendicularly to OB with C on the semicircle; draw OC [construc
tion of OC = Jab]. 
2. Draw BCD with CD = !c [construction of CD = !c perpendic-

ular to ~C]; draw OD [OD = v'CD2 + OC2 = .j(!c)2 + ab]. 
3. Draw a circle with centre D and radius DC; its intersection with 

OD is E [subtraction of ED =!c from OD = .j(!C)2 +ab; hence 

OE=x]. 
4. Take F on the given semicircle such that OF = OE [placing 
OF = x in position] (here I omit Ghetaldi's proof that OE < OA); 
prolong OF, it intersects L in C. 
5. OFC is the required line, that is, FC = c. 
[Proof: See Construction 4.16.] 

Ghetaldi also dealt with the case in which the line L intersects the given cir
cle; its analysis led to the same equation (now with b < a), the construction 
was, mutatis mutandis, the same.27 Ghetaldi used this construction in solving 

27[Ghetaldi 1607b] Problem 2, Casus 4 p. 14; also in [Ghetaldi 1630] Book III, Problem VI, 
Casus 4, pp. 126~127. 
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another problem which I discuss below (Analysis 5.5 and Construction 5.6). 
The example illustrates the procedure of the algebraic analysis of plane prob

lems as codified by Viete: The problem was assumed solved; one unknown ele
ment was chosen, which, if known, would provide the solution; it was called x (or 
rather A, in the Vietean choice of letters); the required relations were translated 
into algebraic formalism and transformed until an equation for x was reached; 
the equation was solved, that is, an explicit expression for x was derived; finally 
this expression was translated into a construction. In the translation square 
roots of sums of second degree terms were constructed by means of appropriate 
right triangles. In later examples we will see several variants of this method. 

Unlike in the first example, the present construction did not retrace the steps Direction of 
of the analysis; in fact these steps did not occur in the construction at all, so the arguments 
one could speak neither of the same nor of opposite directions in analysis and in algebraic 
synthesis. In the case of analysis by algebra the question of the directions of analysis 
the argument is more complicated than simple equality or reversal. The whole 
procedure consisted of three or four distinct parts: 

A: The derivation of the algebraic equation from the problem. 

A': If possible, the algebraic solution of the equation, that is, find
ing an explicit algebraic expression for the unknown. Otherwise, if 
necessary, a rewriting of the equation into some standard form. 

B: The construction of the problem based on the expression found 
in A', or, if such an expression was lacking or uninformative, on 
the basis of the equation found in A (if necessary reduced to some 
standard form). 

C: The proof that that construction was correct. 

Items A and A' constituted the analysis. Here one started with the assumption 
that the problem was already solved, and so in a sense one argued from the un
known, the x, toward the given elements, namely the constants and parameters 
that occur in the final expression for x in A', or failing that, in the coefficients 
of the equation in A. Part B, the construction, started from the given elements 
and operated on them in the manner indicated by the explicit expression in A' 
or by the structure of the coefficients in the equation found in A (for an ex
ample of an analysis in which part A' is lacking see Analysis 5.9 below). Thus 
the direction of the synthesis was opposite to that of the analysis, but it did 
not retrace the steps of the analysis. The construction used the equation or 
its solution, but not the way it was derived in the analysis. In the case of the 
proof, part C, the elements of the analysis did recur, but not necessarily in their 
original order, and in combination with arguments from the construction. 

It is worth noting that in Ghetaldi's solution part B of the procedure consti- From the 
tuted the whole, fairly complicated construction. Thus the example illustrates equation to the 
a crucial point, namely that the algebraic analysis of a problem (parts A and construction 
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A') did not directly provide its geometrical solution, the construction. The step 
from A or A'to B, from the algebraic solution, or the equation, to the con
struction, was neither simple nor trivial. This point will be important in my 
interpretation of Descartes' mathematical achievements below (cf. Section 20.2). 

Esthetics Ghetaldi's works contained hundreds (counting all the separate cases he dis-

A plane 
problem 
defying 

algebraic 
analysis 

tinguished) of constructions like the one just discussed. As a result the modern 
reader experiences his mathematics as enormously laborious and boring. Yet 
there is an attempt at elegance to be discerned in Ghetaldi's constructions; he 
tried as much as possible to combine the different steps of a construction in one 
figure, using the minimum number of auxiliary lines and circles. If he had made 
the separate steps in separate drawings, the matter would have been structurally 
more clear, but the construction would have been less direct and simple. The 
use of algebra in the way later introduced by Descartes actually induced such 
a separation in different steps, performed, if at all, in different figures. In such 
a,n approach no place was left for elegance of the sort attempted by Ghetaldi. 

5.4 Ghetaldi: algebraic analysis limited 

My next example, a classical analysis of a plane neusis problem, is again from 
Ghetaldi's On mathematical resolution and composition of 1630. Ghetaldi chose 
the classical style in this case because he considered the problem not amenable 
to algebraic treatment. 28 Since he knew the Vietean algebraic analysis, the 
example helps us to see where the limitations of this approach lay. Ghetaldi 
reduced the problem to a plane neusis that he had already solved, namely the 
neusis presented in previous example (Analysis 5.3), but for the alternative case 
in which the line L intersected the circle. Ghetaldi proceeded as follows: 

Analysis 5.5 (Special neusis between two lines - Ghetaldi)29 
Given: a line segment b and a rhombus OACB with LBOA = <p (see Fig
ure 5.4), AB = a; side OA is prolonged; it is required to construct a line through 
B, intersecting AC in D, and OA prolonged in E such that DE = b. 

Analysis: 
1. Assume the problem solved. Consider the circle through A, D 
and E; BA prolonged intersects the circle in G. Consider the bisec
trix of LEAD, it intersects the circle in F; line GF intersects DE 
in H. The diagonals AB and OC of the rhombus are perpendicular, 

28 Cf. Note 1. 
29[Ghetaldi 1630J Book V, Ch. IV Prob. I, pp. 330-333. Ghetaldi had published the con

struction without the analysis in his Apollonius revived ([Ghetaldi 1607bJ Probl. III, pp. 17-
19). This work contained Ghetaldi's reconstruction of Apollonius' lost work on neusis. It was 
based on Pappus' remarks about Apollonius' treatise in [Pappus ColiectionJ VII Props 70-72 
pp. 603-608 (in [Pappus 1986J pp. 202-205). Pappus mentioned the present problem there, 
provided a lemma on which its solution could be based, and gave an explicit construction, 
attributed to one Heraclitus, for the special case of the problem in which the rhombus is a 
square. See also Note 33 below. 
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E 

b 

B c 

Figure 5.4: Special neusis between two lines - Ghetaldi 

AF is parallel to OC, so AF -1 BAG; hence GF is a diameter of 
the circle. LDAF = LF AE, so arcDF = arcF E; and because FG 
is a diameter, DH = HE and DE -1 GF. 
2. Now DE is given in magnitude (it is equal to b) and we may 
consider DE given in position as well if we consider the rhomb given 
in magnitude only.3o (Note how Ghetaldi used the relativity of the 
concepts "given in position" and "given in magnitude" in order to 
change the problem from one in which a line segment of given mag
nitude has to be positioned with respect to a rhombus given in po
sition, to one in which a rhombus given in magnitude has to be 
positioned with respect to a line segment given in position.) 
3. LDAE is given in magnitude (= <p) because the rhombus is given. 
4. So (Data Def. 831 ) the arc DE is given in magnitude and position, 
and hence the whole circle as well. 
5. The line that perpendicularly bisects DE is given in position be
cause DE is given in position (Data 29). 
6. So its intersections G and F with the circle are given (Data 25). 

30 "Et quoniam recta DE data est magnitudine, cum sit aequalis datae b; intelligatur ipsa 
DE, positione quoque data, nulla positionis rombi dati habit a ratione, tanquam non esset 
positione datus; hoc modo liberum est datae rectae lineae b aequalem alteram DE positione 
et magnitudine datam exponere" p. 331 (letters changed). 

31 In Ito's translation, [Euclid 1980] p. 57): "Segments [of circles] are said to be given in 
position and in magnitude, when the angles in them are given in magnitude and the bases of 
the segments are given in position and magnitude." 
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Figure 5.5: Special neusis between two lines - Ghetaldi 

7. Consider GAB; AB = a so AB is given in magnitude; A is on 
the circle, B is on the line DE, DE is perpendicular to the diame
ter through G. So GAB can be constructed by plane means as the 
special neusis (between a circle and a line) of the previous example 
(namely the neusis of a line segment a between the circle G D F E 
and the line ED, with pole G on the diameter perpendicular to DE 
- note that a similar situation occurred in Analysis 5.3, although 
in that case the given line did not intersect the circle). So GAB is 
given in position too. 
8. The rhomb can be completed from AB so the whole figure is given 
in position and magnitude. 

Construction 5.6 (Special neusis between two lines - Ghetaldi) 
Given etc.: see Analysis 5.5. 

Construction (The numbers of the steps correspond to those in the 
analysis.) : 
1. Let (see Figure 5.5) GAGB be the given rhombus. 
2. In an auxiliary figure, draw DE = b. 
3-4. Draw an arc on DE such that the peripheral angle on DE is 
equal to 'P (by Elements III-33); complete the circle; prolong ED. 
5-6. Draw the diameter that bisects DE; it intersects the circle in 
G and F. 

E 
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7. By the special neusis between a circle and a straight line (variant 
of Analysis 5.3), draw GAB with A on the circle, B on DE prolonged 
and AB = a; draw AE. 
8. In the given rhombus prolong OA to E such that AE is equal to 
the segment AE in the auxiliary figure; draw BE; it intersects AC 
in D. 
9. BDE is the required line. 
[Proof: the proof follows from the analysis.] 

Ghetaldi did not explain why he thought that the algebraic method could not Algebraic 
be applied in this case. In the Vietean approach, which Ghetaldi used, one would analysis 
select a suitable unknown line segment (in this case AD would be an obvious 
candidate) and derive an equation for it. It may well be that Ghetaldi tried to do 
so and failed because that approach leads to a fourth-degree equation and thus 
suggests that the problem is solid, whereas it was known from Pappus that the 
problem was plane. In fact the quartic polynomial involved is decomposable into 
two quadratic factors,32 but in the Vietean approach there was little interest in 
the decomposition of equations and so we may well suppose that Ghetaldi gave 
up the algebraic approach. It should be noted that Descartes chose precisely 
the present neusis problem (for the case that the rhombus is a square) as an 
example for explaining the necessity of and the techniques for decomposing 
reducible fourth-degree equations.33 

32 Setting CD = x, DE = b, OA = c, and ccos({J = d, the equation can be found as follows: 
The triangles 6ADE and 6CDB are similar, hence b : (c - x) = x : BD (*). In triangle 
6CDB BD2 = x 2 + c2 - 2xccos({J = x2 + c2 - 2dx (**). Eliminating BD from (*) and (**) 
and reordering yields the equation 

(5.1) 

The fourth-degree polynomial on the left-hand side can be written as the product of two 
quadratic polynomials, and correspondingly the equation reduced to the following two 
quadratic equations: 

0, (5.2) 

x 2 - (c + d - .j(c - d)2 + b2)x + c2 O. 

As the coefficients in the two quadratic equations involve square roots only, they can be con
structed by plane means from the given b, c, and d and hence all solutions of Equation 5.1 can 
be constructed by plane means. (Note that this construction-relevant reduction of the fourth
degree equation involves a concept of reducibility, which is different from the present-day 
concept. In the modern sense of the term Equation 5.1 is not reducible because the decom

position in Equation 5.2 involves .j(c - d)2 + b2 and hence requires a quadratic extension of 
the ground field. See Section 27.3 for a more detailed discussion of reducibility in the context 
of geometrical problem solving.) 

33Cf. Note 29 of the present Chapter, Construction 27.1, and Sections 27.3 and 27.4. See 
also [Brigaglia & Nastasi 1986] pp. 112-115, 120--131 for further particulars about the history 
of this problem. 
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5.5 Classical analysis of solid problems 

As in the case of a plane problem, classical analysis of a solid problem (cf. Ta
ble 5.1) started from the assumption that the problem was solved, located the 
given elements of the figure, and identified the point whose construction was re
quired. Then there were basically two procedures. The first consisted of finding 
elements in the figure which, would be known if some standard solid problem 
were solvable (for instance, two mean proportionals between two given line seg
ments). If the required point could be constructed by plane means from these 
auxiliary known elements, then the problem was reduced to the standard solid 
problem. Archimedes' analyses to propositions II-I and II-4 of the Sphere and 
cylinder were of this kind.34 The other analytical procedure consisted in identi
fying two properties of the required point, and showing that the points satisfying 
anyone of these properties constituted two loci. If these loci were conics and 
if they could be considered known, then their point or points of intersection, 
among which the required point, were known as well, and the construction could 
be performed by the intersection of the conics thus found. Pappus' Collection 
contained several analyses of this kind.35 

There are very few, if any, formal analyses of either kind in the early modern 
literature. We have seen many examples of solutions of solid problems by reduc
tion to standard problems in the previous chapters, but in these cases no formal 
analyses were given. It appears that the construction of solid problems by the 
intersection of conics, although recognized as a method of classical standing, was 
very little practiced before Fermat and Descartes. The only examples I know are 
in Commandino's notes to his edition of the Collection, where he elaborated on 
Pappus' trisection by a hyperbola and a parabola,36 and Van Roomen's solution 
of the Apollonian tangency problem. In his note Commandino stayed very near 
to Pappus' text and did not clearly separate analysis and construction. Van 
Roomen's argument is more illustrative. 

Van Roomen's Van Roomen did not present his argument as a formal analysis, but in struc-
analysis of ture it clearly was an analysis. The principal idea of his argument was: 

Apollonius' 
roblem Analysis 5.7 (Tangency problem - Van Roomen)37 

p Given: three circles CI , C2, C3 with centers 0 1, O2 , 0 3 and radii r1, r2, r3 
(see Figure 5.6); it is required to construct a circle C tangent to all three given 
circles. 

Analysis: 
1. Assume the problem solved and consider C externally tangent 
to all three circles. (One of the two cases of external tangency is 

34 Cf. Section 5.1 Note 9. 
35Pappus' neusis construction (Construction 3.8), for instance, was preceded by such an 

analysis, cr. [Pappus Collection] IV-31 (§36) p. 210. 
36[Pappus 1660], pp. 102-104; commentary to IV-34. 
37 [Raomen 1596] pp. 11-13. 
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Figure 5.6: Van Roomen's analysis of Apollonius' tangency problem 

illustrated in the figure; Van Roomen listed and treated all possible 
cases of internal and external tangency and relative position of the 
given circles.) 
2. As C is tangent to C1 and C2, 001-002 = r1 -r2; call 0 10 2 = d. 
3. By Apollonius' Conics III-51 all points whose distances to the two 
given points 0 1 and O2 have a constant difference r1 - r2 are on (one 
branch of) a hyperbola H whose center is on the middle of 0 10 2 , 

whose latus tmnsversum38 b is equal to r1 - r2 and is situated along 
0 10 2, and whose latus rectum a is equal to the fourth proportional 
of b, (d - b), and (d + a) (the other branch occurs when C1 and C2 

touch C internally) ;39 H is therefore known. 
4. Similarly the centers of circles that touch C1 and C3 are on a 
known hyperbola H'. 
5. The center 0 of the required circle C is in one of the points of 
intersection of the two hyperbolas and is therefore known too; its 
radius r satisfies r = 001 - r1 and is also known. 

Construction 5.8 (Tangency problem - Van Roomen)40 
Given etc.: see Analysis 5.7. 

38Cf. Note 7 of Chapter 3 for the meaning of the terms latus tmnsversum and latus rectum. 
39 prop. III-51 of Apollonius' Conics states a property of the hyperbola from which Van 

Roomen's statement follows by inversion. 
40[Roomen 1596] pp. 11-13. 
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Construction: 
1. With parameters as derived in the analysis, construct the hy
perbolas H and H' related to the circle pairs C1. C2 and C2 , C3 
respectively. 
2. With the appropriate point of intersection of the hyperbolas 
as center and the appropriate radius draw the required circle that 
touches all three given circles. 
[Proof: Proof follows from the analysis.] 

For the actual drawing of the hyperbolas Van Roomen referred to standard 
works on conics: 

Various methods of drawing conic sections are given by various writ
ers, so the method to draw them has to be taken from authors who 
have written on conic sections. For us it is enough to have solved 
the problem.41 

Van Roomen studied the Apollonian tangency problem in response to a challenge 
by Viete,42 and Viete was not impressed by the solution, for he knew that 
the problem could be solved by plane means, so that Van Roomen could be 
charged with what Pappus had called a "sin" among geometers, namely to solve 
a problem with inappropriate means. In his reaction to Van Roomen Viete did 
not spare words in pointing that out (cf. Section 10.4). 

5.6 Algebraic analysis of solid problems 

Similarly to the classical analysis of solid problems, there were two distinct 
ways of analyzing a solid problem by means of algebra. Each started with 
deriving the equation (in one unknown) of the problem. The one used this 
equation to reduce the construction to a standard construction, the other (which 
was not practiced until Fermat) used it to find the equations (in two unknowns) 
of the constructing conics. The next two examples illustrate both approaches. 

The first example concerns the construction of the normal to a given parabola 
through a given point outside the parabola. I have discussed the significance 
of that problem and Anderson's construction of it above (Construction 4.22). 
Here is the analysis in Vietean style by which Anderson found the construction: 

Analysis 5.9 (Perpendicular to a parabola - Anderson)43 
Given: a point A (see Figure 5.7), a pambola, not through A, with vertex 0, 

41 [Roomen 1596] p. 18: "Conicas porro sectiones ducendi ratio varia it variis traditur, ideo 
ratio earundem ducendarum ex authoribus qui de Conicis sectionibus egerunt, petenda est. 
Nobis namque sufficit problema solvisse." 

42Three years earlier Van Roomen had challenged mathematicians with the problem of solv
ing a certain equation of degree 45 ([Roomen 1593]); Viete solved this problem in [Viete 1595] 
and proposed the Apollonian tangency problem as a counter challenge. Van Roomen published 
the solution discussed here in [Roomen 1596]; Viete criticized it in [Viete 1600]. 

43[Anderson 1619] pp. 25-27. 
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Figure 5.7: The perpendicular to a parabola - Anderson 

vertical axis and latus rectum c = OC; it is required to draw a line through A 
intersecting the parabola perpendicularly. [I give the case that A is below 0 and 
the vertical distance of A to 0 is smaller than !c.] 

Analysis: 
1. "Factum jam sit" - assume the problem solved; Let AEF be the 
required perpendicular intersecting the parabola in E and its axis in 
F; ED is the ordinate of E; call ED = x and OD = w; let AB be 
drawn horizontally, with B on the axis; call AB = p and OB = q. 
2. By the Apollonian theory of the parabola and its tangents one 
finds that x2 = cw and DF = !c. 
3. The triangles EDF and ABF are similar, hence x : p = !c : 

(w + !c - q); inserting w = x; yields 

1 x2 1 1 2 2 1 
x' p = -c' (- + -c - q) = -c . (x + c( -c - q)) . 

. 2'c 2 2' 2 ' 

a proportionality in which x is the only unknown. 
4. The proportionality is equivalent to one of Viete's standard solid 
problems (cf. Section 4.2). Anderson here referred to an earlier pub
lication44 in which he had discussed the Vietean standard equations 
and problems. The proportionality can be rewritten as a cubic equa-

44[Anderson 1615]. 
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tion: 
3 1 1 2 

X + c( 2"c - q)x = 2"c p. 

5. This corresponds (cf. Equations 4.7 (1) and 4.9 (1)) to the stan
dard equation x3 +a2x = a2b and the standard problem: given a and 
b, to find X, y and z such that a : X = x : y = y : z, and x + z = b. 
6. In order to achieve the construction, it remains to determine line 
segments a and b such that a2 = c( ~c - q) and a2b = ~C2p. The 
first relation implies that a is the mean proportional of c, and ~c - q. 

1 

From the two relations it follows that b = r2cP , hence b is the fourth 
2 c-q 

proportional of ~c - q, ~ c and p. So both a and b can be determined 
by standard Euclidean constructions. 

Construction 5.10 (Perpendicular to a parabola - Anderson) 
Given etc.: see Analysis 5.9. 

Construction: (I repeat Construction 4.22, indicating the steps in 
the analysis corresponding to it; my numbering of the items does 
not match the one in the analysis.) 
1. Draw AB horizontally, with B on the axis; call AB = p and 
OB=q. 
2. Construct the mean proportional a of c and ~c - q (Le., c : a = 
a:(~c-q)). 
3. Construct the fourth proportional b of ~c - q, ~c and p (i.e., 
(~c - q) : ~c = p : b) (steps 2 and 3 implement the relations of step 
6 in the analysis). 
4. Now solve the following (Vietean) standard problem (cf. Prob
lem 4.5 above): Find three line segments x, y, and z such that a, x, 
y, and z are in continued proportion and x + z = b (cf. step 5 of the 
analysis). 
5. The segment x is the ordinate DE of the point E in which the 
required line intersects the parabola; determine E and draw the per
pendicular AE to the parabola. 
[Proof: The proof follows the analysis.] 

Viete himself did not use his algebraic techniques for finding conics by whose 
intersection a solid problem could be solved, nor did his immediate followers 
do so. A reason for this comparative indifference toward construction by conics 
may have been that Viete chose neusis rather than the intersection of curves as 
basic means for solving solid problems. Fermat seems to have been the first to 
use Vietean algebra for finding the loci by whose intersection problems were to 
be solved (cf. Section 13.1). Probably in 1636 he wrote the tract Introduction 
to plane and solid loci (following common practice, I refer to it by the first 
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Figure 5.8: Two mean proportionals - Fermat 

word of its title, Isagoge )45 to which he added an Appendix containing the 
solution of solid problems by loci. 46 In the Appendix he explained how the 
equations (in two unknowns) of the conic sections needed in a construction 
could be derived from the cubic or fourth-degree equation (in one unknown) to 
which the problem first was reduced in the manner taught by Viete. Fermat did 
so by introducing a second unknown and deriving two quadratic relations that 
the two unknowns satisfy. The Appendix gave only one fully worked example 
(the others only explain the algebraic part of the process). It is the construction 
of two mean proportionais - not the most original example but it does make 
Fermat's approach clear: 

Analysis 5.11 (Two mean proportionals - Fermat)47 
Given: two line segments a and b, a < b (see Figure 5.8); it is required to find 
their two mean proportionals x and y (x < y). 

Analysis: 
1. Assume the problem solved; the smaller mean proportional x 
satisfies the equation 

x3 = a2b . 

Putting each term equal to axy yields 

(1) x 2 = ay , 

45[Fermat IsagogeJ; on the dating of the Isagoge cf. [Mahoney 1994J p. 405. 
46[Fermat Appendix], from 1636 or 1637, cf. [Mahoney 1994J pp. 405-406. 
47[Fermat AppendixJ pp. 105-107. 
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and 
(2) xy = ab, 

"hence the problem will be done by a hyperbola and a parabola." 
(Fermat here referred to the Introduction in which equations for 
conic sections were explained.) 
2. Let then, with respect to perpendicular axes OX and OY, x = OA 
and y = AB. 
3. From equation (1) it follows that B is on a parabola with vertex 
0, latus rectum a, and axis OY. 
4. As to equation (2): take C arbitrarily on OX and draw CD per
pendicularly with CD x OC = abo Now draw a hyperbola through 
D with asymptotes OX and OY; this hyperbola will be "given in 
position" and pass through B. 
5. But the parabola described earlier is also "given in position" and 
passes through B, therefore, the point B is "given in position" and if 
from B we draw the perpendicular BA, A will be given in position, 
and therefore the required x = OA as well. 
6. "Therefore the two mean proportionals are found by the intersec
tion of a parabola and a hyperbola." 
[The construction (draw the conics, draw the ordinate BA of their 
point of intersection, BA = y, OA = x) and its proof were now 
obvious to Fermat.] 

Fermat added a variant argument, starting from the equivalent fourth-degree 
equation 

X4 = a2bx, 

which leads, by setting both terms equal to a2y2, to 

x 2 = ay and bx = y2 , 

each defining a parabola. He noted that the two constructions thus found were 
precisely those by conics in Eutocius' list of constructions of mean proportion
als (the ones by Menaechmus, cf. the first of these, Construction 3.1, which 
indeed is the same as the construction derived above). At this point Fermat 
explained the advantage of his method over Viete's approach to geometrical 
problems leading to a fourth-degree equation. Viete's reduced this equation to 
a third-degree one and then constructed the roots of this equation by neusis 
or by the reduction to one of the Vietean standard problems. This reduction 
(basically Ferrari's method48 ) was algebraically rather cumbersome (and was 
not made easier by the flourish of neologisms with which Viete had adorned 
it). But if one decided to construct by the intersection of conics, this procedure 
was superfluous; one could derive the equations of the conics directly from the 
fourth-degree equation.49 Fermat proceeded to describe a general procedure for 

48See Note 18 of Chapter 10. 
49See also the quotation in Section 13.1. 
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deriving the equations of the constructing conics for any third- or fourth-degree 
equation. He also explained how this procedure could be adapted to yield a 
construction by the intersection of a parabola and a circle. I return to these 
constructions in Section 13.1. 

The basic assumptions of Fermat's approach were that quadratic loci are 
given by their equations, and that once two such loci were given, their point of 
intersection was given too. In the Introduction Fermat had shown by examples 
how the parameters of the conics could be determined from their equations, 
so that, by the Apollonian theory of conics, they could be constructed50 once 
their equations were known. On the second assumption Fermat remained silent; 
apparently he accepted this classical way of determining points by intersection 
without question. 

5.7 Conclusion 

The examples in the present chapter may serve to illustrate the diversity Diversity and 
of the early modern practice of geometrical analysis. They should also show obstacles 
that the development of algebraic methods of analysis - the principal dynam-
ics within the early modern tradition of geometrical problem solving - was not 
a straightforward process. There was a quite powerful alternative analytical 
method, the classical one, which featured the effective use of a fundamental no-
tion in the geometry of constructions, namely the concept of "given." Moreover, 
in several ways the algebraic techniques did not immediately correspond to the 
requirements of geometrical problem solving. In particular, as Ghetaldi's treat-
ment of the special neusis between a circle and a line (Analysis 5.3) makes clear, 
the geometrical demarcation between plane and solid problems did not corre-
spond to a natural or easily recognizable demarcation between the pertaining 
equations. Nor was the translation of the results of algebraic analysis in terms 
of geometrical constructions uncomplicated. 

Apart from these technical difficulties of using algebra in the analytical prac
tice, there were more fundamental obstacles. These concerned the traditional 
dividing lines between arithmetic, geometry, and algebra. They form the subject 
of the next two chapters. 

50Cf. Chapter 3, Note 32. 



Chapter 6 

Arithmetic, geometry, 
algebra, and analysis 

6.1 Introduction 

The adoption of algebraic methods of analysis induced a gradual fusion of Matters of 
arithmetic, algebra, and geometry, which in turn gave rise to a number of tech- fusion 
nical, terminological, and conceptual questions. The fusion also spurred issues 
of legitimation, in particular the question whether it was allowed to use num-
bers in geometry. The present chapter deals with the technical, terminological, 
and conceptual questions; the issues of legitimation are the subject of Chap-
ter 7. We find the first successful merging of the fields of algebra, arithmetic, 
and geometry in the work of Viete; Chapter 8 explains how Viete overcame the 
obstacles and the legitimation issues involved. 

The study of the questions mentioned above is complicated by the fact that 
the terms "arithmetic," "algebra," "geometry," and "analysis" have modern 
meanings that are downright misleading if used in describing sixteenth- and 
seventeenth-century developments. It is therefore useful to fix terminology in 
these matters, and to do so I have to specify other terms as well, such as "mag
nitude," "indeterminate," and "operation." With these terminological matters 
settled it is possible to identify the main obstacles that stood in the way of a 
smooth merging of arithmetic, geometry, algebra, and analysis. 

6.2 Terminology 

During the early modern period mathematical terminology was in flux; new Terms and 
terms were introduced and old ones changed their meaning. Yet, in describing their meaning 
the conceptual developments that form the subject matter of my study, I need 
a reasonable constancy of the meanings of my terms. Moreover, for some math-
ematical subjects that I want to consider, there were no terms at all. Thus I 

H. J. M. Bos, Redefining Geometrical Exactness
© Springer Science+Business Media New York 2001
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cannot restrict myself to the terminology of the period, nor can I claim to use 
that terminology in the meaning it had for its early modern users. On the other 
hand, I cannot use mathematical terms in their present-day meanings either, 
because, as will become clear below, these meanings often are far removed from 
the conceptions that the terms evoked in the early modern period. 

In choosing the mathematical terminology for the present study I have tried 
to remain close to early modern usage. However, I use mathematical terms pri
marily as analytical tools for describing and explaining developments in earlier 
mathematical thought. I explain below the senses in which I want the main 
terms to be understood - in these explanations I do appeal to present-day 
mathematical understanding. In each case I indicate separately in how far my 
use of a term corresponds to its use (if such occurred) during the period c. 1580 
~ c. 1650. 

Number I begin with the principal mathematical entities number, geometrical mag-
nitude, magnitude in general, and ratio. I use the term number to refer to 
natural or rational positive numbers, and irrational positive numbers in as far 
as they occurred at the time in numerical context. This meaning of the term 
corresponds roughly to its use in the period. The term number was primarily 
understood in the classical sense of a multitude of units; this concept concerned 
discrete entities and was thereby essentially different from the concept of ge
ometrical magnitudes such as line segments. Although rational fractions were 
not multitudes of units, they were usually accepted as numbers, and so were 
the relatively few irrational numbers which occurred in the writings of the pe
riod. Even fewer were the occurrences of imaginaries such as 0; their status 
(number or not) was left undecided. In the later seventeenth and eighteenth 
centuries the discrete concept of number fused gradually with the continuous 
concept of magnitude, but in the period before 1650 such a fusion of the two 
concepts was very rare. 

Magnitude With the term geometrical magnitude I refer to line segments, plane figures, 
and solid figures, in as far as they were considered as to their size. This use of the 
term corresponds to the classical Greek conception of geometrical magnitude, 
which was generally known and widely accepted in the sixteenth and seventeenth 
centuries. Geometrical magnitudes of the same kind (the same dimension) could 
be added and subtracted in some sense; they coud be compared as to size, and 
pairs of such magnitudes had a ratio. This adding, subtracting, comparing, and 
forming of ratios did not presuppose a numerical value of the size (length, area, 
volume); adding was joining, subtracting was cutting off, or taking away the 
smaller from the larger, comparing meant deciding which of two line segments 
(areas, solids) was the longer (larger), equal meant equally long (or large). The 
size of a line segment was not a number expressing the measure of its length 
with respect to some unit, but its magnitude, which it shared with congruent 
line segments. There were no negative magnitudes, nor a magnitude zero. 
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With the term abstract magnitude I refer to mathematical entities that, like Abstract 
geometrical magnitudes, could be joined, separated, and compared, but whose magnitude 
further nature was left unspecified. The concept of such magnitudes was classi-
cal, but around 1600 it was something of a novelty, especially if combined with 
the notion that the operations on such magnitudes could be treated abstractly. 
The exploration of these ideas was called "universal mathematics" ("mathesis 
universalis" or similar expressions). 

Since opinions differed on whether numbers were magnitudes, I indicate 
explicitly those cases in which numbers were indeed considered as magnitudes. 

In its classical sense the term ratio referred neither to a number nor to a mag- Ratio 
nitude but to a relation with respect to size between two magnitudes of the same 
kind or between two numbers. This interpretation of the term (due to Eudoxus 
and codified in Def. V -3 of the Elements) was the common one in the early 
modern period. I use the term in the same sense. It should be noted, however, 
that in the late Medieval and Renaissance periods an alternative approach to 
ratios had been explored, which understood them in terms of "denominations." 1 

The denomination of a ratio of two numbers was its expression in simplest form 
as a rational number. Thus the denomination of the ratio of 44 to 14 was 3~. 
Some mathematicians assumed that these denominations could somehow be ex-
tended so as to apply for all ratios, including the irrational ones (which arose 
in particular when ratios of geometrical magnitudes were considered). Thus 
Campanus, inspired by Jordanus, interpreted the theories of ratio in Elements 
V (for magnitudes) and VII (for numbers) as essentially the same. During the 
sixteenth century, with the appearance of improved editions of the Elements, it 
became clear that Campanus' interpretation was based on distorted texts, and 
that the Euclidean theory of ratios of numbers was essentially different from the 
theory of ratios of geometrical or abstract magnitudes. However, the attempts 
to understand ratios in terms of their denomination, together with a habituation 
to the use of irrational roots in algebra, nourished the idea that by considering 
ratios (irrational or not) as numbers, the complicated definition of equality of 
ratios in Elements V and the intricacies of the theory of irrationals in Elements 
X would become superfluous. Ramus strongly advocated this idea; it was taken 
over in various degree by several mathematicians. The issue remained alive un-
til well into the seventeenth century as is witnessed by a debate on the matter 
between Wallis and Barrow in the 1660s.2 

Notwithstanding these attempts to change the classical conception of ratio, 
the early modern mathematicians, including those willing to take over Ramus' 
ideas, knew the classical concept of ratio and were aware of the controversial 
nature of the alternative. 

In the following I use the term operation in an extended sense comprising Operations on 
numbers 

lOn the denomination theory of ratios and proportions see [Murdoch 1963]' [SyUa 1984] 
and [Sasaki 1985]. 

2Cf. [Sasaki 1985]. 
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addition, multiplication, etc., but also geometrical procedures such as construc
tions. During the period under discussion there was no general term used in 
this sense, nor, it seems, was there a general concept corresponding to it. 3 

Numbers, magnitudes, and ratios were submitted to operations. The princi
pal operations for numbers, to which I refer as "arithmetical operations" (cf. Ta
ble 6.1), were addition, subtraction, multiplication, division, square root ex
traction, and the extraction of higher-order roots. Root extraction is a kind of 
equation solving (namely the equation xn = a); extending this notion I consider 
the solution of polynomial equations in one unknown with numerical coefficients 
as an arithmetical operation as well; this will be useful in studying the transfer 
of the arithmetical operations to geometry. Certain operations could be per
formed (Le., calculated) exactly, others, in general, only approximatively. The 
first group comprised addition, subtraction, multiplication, and division; I will 
refer to these four as the "primary arithmetical operations". The second group 
comprised root extraction and the solution of equations in general; apart from 
special cases, these operations essentially involved approximative calculations. 
The nature of the operations from the second group was algebraic, in the sense 
that (cf. Section 6.3) an unknown was determined from a given relation between 
one or more of its powers and some given numbers. The primary arithmetical 
operations, together with square root extraction, correspond to the "plane" con
structions, Le., those that can be performed by straight lines and circles; I will 
refer to this group as the "quadratic algebraic operations" . 

The above operations did not involve a change of kind or dimension of the 
objects, that is, they operated on numbers (or equations with numerical coef
ficients) and their results were numbers as well. There was one operation that 
did involve a change of kind, namely, taking the ratio of two numbers. 

Geometrical In geometry the primary operations were the constructions, codified in the first 
operations three postulates of the Elements (constructions by circles and straight lines), 

or introduced for special purposes (in particular for problems that could not 
be constructed by circles and straight lines). These operations were performed 
upon line segments. Two line segments could be joined (analogous to adding), 
and a subsegment of a segment could be cut off (analogous to subtracting); 
these operations could be executed by means of plane constructions. 

Two line segments a and b could be combined to form a rectangle rect( a, b) 
with sides a and b. This operation was in some respects analogous to multi
plying numbers in arithmetic; however, it differed from multiplication in that 
the result, a rectangle, was of a different dimension than the original factors, 
whereas the product of two numbers was again a number. Consequently, there 
was no unit element with respect to the formation of rectangles, in contrast to 
the multiplication of numbers for which 1 was the unit element. One operation 
resembled, in some respects, the division of two numbers. This was the "applica
tion" of a rectangle (or, in general, a plane rectilinear figure) A to a line segment 

3In particular the modern connotation of the term operation as referring to functions of 
one or more variables is inapplicable in the early modern period. 
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NUMBERS and the OPERATIONS acting on them 

Numbers: natural or rational positive numbers, and irrational positive numbers in as far as 
they were used at the time in numerical context. 
All operations were executed (if they could be) by calculation, i.e., by numerical algorithms. 
There was a unit element, namely, the number 1. 

Operation Not a- Exact Change of Analogous 
tion in kind or operation(s) on 
this dimension geometrical 
study magnitudes 

Adding two numbers + Yes No Joining 

Subtracting a (smaller) - Yes No Cutting off 
number from a number 

Multiplying two numbers x Yes No Making a rectangle 

Dividing two numbers / or -:- Yes No Forming a ratio; 
applying a rectangle 

Extracting the square root r- No No Taking the mean 
of a number proportional 

Solving a quadratic No Plane constructions 
equation with numerical 
coefficients 

Extracting a higher-order r- No No Taking several (k - 1) 
root of a number mean proportionals 

Solving cubic and No Solid or higher-order 
higher-order equations with constructions 
numerical coefficients 

Forming the ratio of two : Yes Forming a ratio 
numbers 

Table 6.1: Numbers 
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GEOMETRICAL MAGNITUDES and the OPERATIONS acting on them 

Geometrical magnitudes: line segments, plane figures, and solid figures considered as to their 
size. 
The magnitudes were supposed "given in magnitude" (Section 5.2), i.e., they (or elements 
equal to them) could be located at will with respect to other given elements. 
All operations were executed (if they could be) by geometrical constructions. 
Geometrical magnitudes were not numbers; there was no unit element. 

Operation Exact (i.e., Change of Analogous 
constructible by kind or operation(s) on 
straight lines and dimension numbers 
circles) 

Joining two line segments, Yes for line segments No Adding 
or two plane figures, or two and rectilinear plane 
solid figures figures, otherwise no 

(cf. Construction 4.15) 

Cutting off a subsegment Yes for line segments No Subtracting 
from a line segment, or a and rectilinear plane 
plane subfigure from a figures, otherwise no 
plane figure, or a solid 
subfigure from a solid figure 

Making a rectangle with Yes Yes Multiplying 
sides equal to two line 
segments (notation in this 
study: rect.(·, .), sq.( . )) 

Applying a rectangle (or Yes Yes Dividing 
rectilinear figure) along a 
line segment 

Forming a ratio of two line Yes Forming a ratio 
segments or of two plane 
figures or of two solids 
(notation: ":") 

Plane constructions Yes Algorithms 
involving +, -, x, 
/, and r only 

Non-plane constructions No Algorithms 
involving the 
solution of third-
or higher-order 
equations 

Table 6.2: Geometrical magnitudes 
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a. It meant the construction of a line segment b such that rect(a, b) = A; that 
is, A was placed along a in the form of a rectangle with equal area. The applica
tion of rectilinear areas could be performed by plane means. The operation was 
similar to dividing numbers in the sense that to given figure A and line segment 
a it supplied a line segment b such that rect(a, b) = A. However, unlike the 
division of numbers, this operation involved magnitudes of different dimensions, 
namely, a two-dimensional figure and a line segment. 

The application of areas made it possible to join (add) and cut off (sub
tract) rectilinear plane figures by plane constructions. Indeed, by Elements 1-45 
(cf. Problem 4.12), two rectilinear plane figures A and B could be applied to 
the same line segment e, yielding line segments a and b such that rect( e, a) = A 
and rect(e, b) = B. Having the same side e, these rectangles could be joined 
or cut off by forming rect(e,a + b) and rect(e, a - b), respectively, where a ± b 
denotes the results of joining a and b or cutting b from a. Joining or cutting off 
curvilinear plane figures could in general not be performed by plane means. 

Like pairs of numbers, pairs of geometrical magnitudes of the same dimension 
had ratios. 

As mentioned above, the early modern period witnessed an interest in a "uni- Operations on 
versal mathematics" in which operations such as the arithmetical or geometrical abstract 
ones were applied to magnitudes independently of their nature. Viete was the magnitudes 
first to elaborate such a theory; I discuss it in more detail in Chapter 8, where I 
also give a table for the Vietean operations on abstract magnitudes (Table 8.1). 

The most important operation for ratios was compounding. Compounding Operations on 
the ratios a : band b : c produced the ratio a : c. In general, two ratios a : b and ratios 
P : Q, in which a and b were not necessarily of the same kind of magnitude as 
P and Q, could be compounded by determining a magnitude c of the same kind 
as a and b and such that P : Q = b : C; the compounded ratio of a : band P : Q 
was then equal to the compounded ratio of a : band b : c, and therefore equal to 
a : c. The operation was defined independently of the arithmetical, algebraic, 
or geometrical operations. However, the compounding of ratios presupposed 
the possibility of finding a magnitude c as above, that is, it presupposed the 
existence (for the definition) and the constructibility (for the execution of the 
operation) of the fourth proportional of three magnitudes P, Q, and b of which 
the first two were of the same kind. Neither the existence nor the constructibility 
of the fourth proportional are obvious for geometrical magnitudes other than 
line segments or rectilinear plane figures. 4 

If ratios are numerically expressed as fractions, compounding them corre
sponds to multiplying the fractions. Yet in the early modern period compound
ing ratios was not seen as a kind of multiplication. From the terminology it 
appears that the operation was rather seen as akin to adding. For instance, if 

4For further information about the question of the existence of the fourth proportional see 
[Becker 1933], [Mueller 1981] pp. 127, 138-139. 
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RATIOS and the OPERATIONS acting on them 

Ratios: relations with respect to size between two magnitudes of the same kind or between 
two numbers. 
A ratio was considered known if its two terms were known. 
All operations in this table acted on (one or two) ratios and produced one ratio. 
Notation in this study: ":". 

Operation Analogous operation(s) on Analogous operation(s) on 
numbers geometrical magnitudes 

Compounding two ratios Multiplying two fractions Adding two magnitudes 

Dividing a ratio in equal Partition of a number Dividing a line segment 
parts; general section of a (plane figure, solid) in 
ratio equal parts; or in two parts 

with given ratio and 
Determining mean 
proportionals 
(ef. Section 4.4) 

Adding two ratios via Adding two fractions 
their denomination 

Table 6.3: Ratios 

a : b was equal to b : c, the compounded ratio a : c was called the "double" of 
the ratio a : b. 5 

Within the tradition of studying (primarily rational) ratios in terms of their 
"denomination" (cf. Section 6.2) another concept of adding ratios occurred, 
whereby the sum of two ratios was equal to the ratio represented by the sum of 
their denominations. In terms of numerical fractions this operation corresponds 
to addition. 

Arithmetical The similarity of adding or subtracting numbers and joining or taking away 
and geometrical magnitudes was recognized and put to good use in practical geome

geometrical try, where lengths and areas were routinely expressed as numbers with respect to 
operations certain unit measures. Multiplication and division of numbers were akin to the 
compared formation of rectangles from line segments and the application of areas along 

a line segment. However, because of the changes in dimension involved, the 
analogy was less obvious. In the employment of numbers in practical geometry, 
the change of dimension was dealt with by the introduction of corresponding 
ilnits of lengths and area (as, for example, the yard and the square yard); with 
respect to such units the area of a rectangle was equal to the product of its sides. 
However, as I discuss in more detail in Section 6.4, there were strong conceptual 
obstacles against accepting this numerical interpretation of multiplication for 
geometrical magnitudes. On the other hand, in his algebra for abstract mag
nitudes Viete used the analogies in such a way that the arithmetical and the 
geometrical operations could be interpreted as instances of the same abstract 
operations in different contexts. 

5Cf. Section 4.4. 
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The tradition of treating ratios in terms of their "denomination" (cf. Sec
tion 6.2) did conceive ratios to some extent as (fractional) numbers. However, 
most mathematicians adhered to the conception that a ratio was not a quan
tity but a relation, so that forming a ratio between magnitudes was essentially 
different from a division. 

Thus we see that, apart from the cases of addition and subtraction, there 
was no straightforward analogy between the operations on numbers and those 
on magnitudes. Mathematicians were strongly aware of the differences and the 
orthodox view at the beginning of the early modern period was that geometrical 
operations applied to geometrical magnitudes only and arithmetical operations 
only to numbers. We will see in Chapter 8 how Viete created an approach to 
the algebraic operations that fully accepted these classical views. 

It will be useful explicitly to distinguish between unknowns, indeterminates, 
and variables. I use the term unknowns to refer to those mathematical objects 
that, in an arithmetical or geometrical problem, were required to be determined, 
by calculation or by construction. With the term indeterminates I refer to math
ematical objects involved in a theorem, a problem, or an algorithm, whose par
ticular values or sizes were inessential for the proof of the theorem, the construc
tion and proof of the problem, or the execution of the algorithm. That is, the 
proof was valid and the construction or the algorithm could be performed for any 
(appropriate) values or sizes of the indeterminates. Thus in the classical problem 
of determining two mean proportionals (cf. Problem 2.1) the two given lengths 
were the indeterminates, the two mean proportionals were the unknowns. In 
general solution procedures for equations, as x4 + ax3 + bx2 + ex + d = 0, x was 
the unknown and the coefficients a, b, etc., were the indeterminates. 

I use the term variable only in connection with a mathematical object in
volving one or more degrees of freedom. The archetypal object of that kind was 
the curve. Any point on the curve had its ordinate, abscissa, subtangent, etc.; 
these were variables; they varied (as to magnitude and as to position) according 
to the point on the curve to which they belonged. A variable, it should be 
stressed, was not a function in the modern sense, because it did not involve 
an "independent variable" of which it would be a function. 6 Variables were 
not unknowns because they were not required to be determined, nor were they 
indeterminates. In a strict formal sense one might consider indeterminates as 
variables, considering, for instance, the sides a, b, and e of a generic triangle as 
variables involved in the totality of triangles seen as a three-dimensional object; 
but such a conception was alien to early modern mathematics. 

The terms unknown, indeterminate, and variable are of recent date and it is 
not possible to locate early modern terms near to the meanings I specified. Yet 
the corresponding concepts were implicitly present in early modern mathemat
ics, and I trust that my use of the terms is clarifying. 

I also use to the opposites of the terms "unknown," "indeterminate" and 

6ef. [Bos 1974b] pp. 5-12. 

Unknowns, in
determinates, 
and variables 

"Known," 
"given, " 
"determined, " 
"constant" 
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"variable" discussed above, namely: known or given, determined, and constant. 
The terms "known" and "given" were actually used in the early modern pe
riod, especially in the practice of analysis. "Given" were the entities that, in 
a problem or a theorem, were assumed given from the outset in such a way 
that operations and comparisons could be performed on them, cf. Section 5.2. 
Usually the theorem or problem was studied in sufficient generality for the ac
tual values of the given elements to be nonessential, hence the "given" elements 
often had the role of indeterminates. In analysis procedures, "known" was used 
as synonymous with "given:" in the process of solving a problem the unknown 
was, in a sense, made "known." 

With respect to "determinate," the opposite of "indeterminate," it should 
be remarked that in arithmetic numbers could be determinate independently, 
whereas geometrical magnitudes like lengths could only be determined in their 
relation to other magnitudes assumed known or given.7 

"Constants" or "invariables," which I mention only for completeness, oc
curred with respect to objects involving one or more degrees of freedom; they 
were variables that, with respect to the special object under investigation (a 
curve for instance), happened to be constant (in magnitude, not in position). 
In the parabola, for instance, the "subnormal," that is the line segment along 
the axis between ordinate and normal, was constant; in all other curves it was 
variable. 

6.3 Arithmetic, geometry, algebra, analysis 

With terminology fixed as above I can now articulate the meaning of the 
terms arithmetic, geometry, algebra, and analysis (and arithmetical, geometri
cal, algebraical, analytical) as used in the present study to describe and char
acterize mathematical subfields, studies, arguments, and procedures from the 
early modern period. 

Arithmetic refers to the mathematical theory and practice that dealt with 
numbers. 

Geometry refers to the mathematical theory and practice that dealt with 
geometrical magnitudes. Unless expressly indicated (for instance by referring 
to practical geometry), the theory and practice involved no unit measures and 
the geometrical magnitudes were not represented by numbers expressing their 
measures with respect to these units. 

7Natural numbers have an individuality that line segments or other geometrical magnitudes 
lack. The number 21, for instance, is uniquely determined by its name, by its position in 
the sequence of numbers or by its decomposition in prime factors; by these properties it is 
distinct from all other natural numbers. Line segments lack properties by which single ones 
can be uniquely determined; they acquire their individuality only in relation to others. It is 
tempting to speculate that this difference in individuality between numbers and line segments 
made (and perhaps still makes) it more difficult to imagine an indeterminate number than an 
indeterminate line segment. I have not been able to translate this speculation into explanatory 
argument concerning early modern mathematics, so I restrict myself to mentioning its appeal. 
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Algebra refers to those mathematical theories and practices that involved 
unknowns and/or indeterminates, employed the algebraic operations, involved 
equations, and dealt either with numbers or with geometrical magnitudes or 
with magnitudes in an abstract more general sense. In as far as it dealt with 
numbers, algebra was part of arithmetic. Algebra dealing with (geometrical or 
abstract) magnitudes presupposed (tacitly or explicitly) a redefinition of the 
algebraic operations so as to apply to such magnitudes. 

Analysis comprises mathematical methods for finding the solutions (in ge
ometry: the constructions) of problems or the proofs of theorems,8 doing so by 
introducing unknowns. In geometry (cf. Chapter 5) analysis could involve the 
use of algebra; if no algebra was used, I speak about "classical analysis." 

It should be noted that, used in this way, the terms do not induce a sub
division of mathematical activity in mutually disjoint classes. Geometry and 
arithmetic are disjoint because the former is about geometrical magnitude and 
the latter about number. Algebra and arithmetic overlap in the theory and 
solution of numerical equations; that field also constitutes the overlap of arith
metic and analysis. The overlap of geometry and algebra consists of those parts 
of geometry where algebraic operations (interpreted as applying to geometrical 
magnitude) and equations are used. The overlap of analysis and geometry con
sists of the overlap of algebra and geometry, together with classical geometrical 
analysis. 

In fixing my terminology as above I have tried to remain as near to the early Early modem 
modern usage of the terms arithmetic, algebra, geometry, and analysis' as is meaning of the 
compatible with the requirement of keeping their meaning constant throughout terms 
my study. The main difference between my use and the early modern one 
was that during the seventeenth century analysis gradually became practically 
synonymous with algebra (later the meanings of the two terms diverged again). 

In the distinctions above I have not considered the presence or absence of Symbols and 
symbols and notation because that is an aspect of communication rather than notation 
of conception. Until c. 1590 algebra was almost exclusively performed in the 
context of numbers and featured symbolic notation only for the primary arith-
metical operations, for root extraction, for equality, and for the unknown and 
its powers.9 In prose statements indeterminate numbers (such as coefficients of 
equations) were indicated by special terms (e.g., "the number of the things" for 
the coefficient of the linear term of an equation lO ), but there were no symbols 
for them and in calculations they were replaced by chosen numbers ("exam-
ple numbers" one might say); the reader was supposed to understand that the 
procedures were valid also for other values of these numbers. Although the 

8The latter case seldom occurred - cf. Chapter 5 Note 6. 
9 As one of the terms for the unknown was "cosa," the signs for the unknown and its 

powers were called "cossie" symbols, and by extension algebra was called the cossic art, 
cf. [Tropfke 1980J pp. 374-378. 

10 "Numerus rerum," cf., e.g., [Cardano 1545] Ch XI, Rule, p. 98 (Witmer translates this as 
"the coefficient of x"). 
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use of single letter symbols for numerical indeterminates was pioneered by Jor
danus in the twelfth century,l1 it was hardly ever, if at all, practiced in later 
Middle Ages and Renaissance. Effectively, the use of letter symbols for both 
unknowns and indeterminates was introduced in algebra by Viete in the 1590s; 
fl." we will see he did so in an abstract, non-numerical context. In geometry, 
in contrast, indeterminates had been designated by letters (or pairs of letters) 
since antiquity. 

In view of the intense developments in mathematics since the early modern 
period, it is not surprising that the meanings discussed above are markedly dif
ferent from the modern meanings of the terms arithmetic, algebra, analysis, and 
geometry. I note in particular that the "structural" connotation (groups, rings, 
fields, etc.) of the term algebra is entirely modern, and that the restriction of 
the term analysis to parts of mathematics involving infinitesimal or limit pro
cesses dates from the late eighteenth century. Also, the modern mathematician 
is used to connect the term geometry with linear, affine, or projective spaces 
over the real numbers, the complex numbers, or some other field. These con
cepts of space are recent; early modern geometry studied space as the obvious 
abstract mathematical object corresponding to the physical space known from 
direct experience, and considered within that space geometrical configurations 
and magnitudes as described above. 

6.4 Obstacles to the merging of arithmetic, 
geometry, algebra, and analysis 

The gradual fusion of arithmetic, algebra, and geometry that accompanied the 
adoption of algebraic methods of analysis was not an easy process; there were 
obstacles, related to the fundamental differences between numbers and aritmet
ical calculation, on the one hand, and geometrical magnitudes and construction, 
on the other hand. 

The difference between numbers and geometrical magnitudes appeared most 
pointedly in the matter of irrationality and incommensurability. Classical Greek 
mathematicians had realized that the system of natural numbers was insufficient 
for adequately representing geometrical magnitude, even if one were allowed to 
divide the unit - which in effect is equivalent to introducing rational numbers. 
Any attempt to use numbers for representing geometrical magnitude exactly 
(as opposed to approximatively) required the introduction of new, "irrational" 
numbers. Such numbers (in particular irrational roots) had been introduced 
by medieval Arabic writers in order to extend the applicability of the algebraic 
operations and the rules for solving numerical equations. They were readily 
taken over in the European medieval and Renaissance texts on algebra. Yet 
mathematicians were aware that their status as numbers (in the classical sense) 

was problematical. Numbers like v'2 or \13 + v'2 were indeed called irrational 

11 [Nemore NumDat]. 
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or "surd," because they had no expressible (Le., rational) ratio to the numerical 
unit. The insufficiency of rational numbers and the awareness of the doubtful 
status of irrational numbers formed a considerable obstacle against accepting 
numbers as adequate medium to deal with or to represent geometrical magni
tudes. 

Another obstacle against the merging of arithmetical and geometrical meth- Multiplication 
ods was the dimensional interpretation of the operations in geometry. Unlike and division 
multiplication and division in arithmetic, which started and ended with num-
bers, the analogous geometrical operations, applied to line segments, yielded 
rectangles and ratios. This circumstance lent conviction to the orthodox opin-
ion that the realms of arithmetic and geometry were fundamentally different 
and that therefore the use of numbers (other than for practical purposes) was 
inappropriate in geometry. 

The difference between arithmetic and geometry as to the interpretation of Calculational 
the operations is even more marked if we compare the arithmetical operations, and 
that is, calculations, with geometrical operations in general, that is, with con- constructional 
structions. Analogous computations and constructions differed strongly, both in complexity 
secondary aspects, such as complexity, and in more fundamental aspects, such 
as exactness. 

An example may illustrate these differences. Consider the determination of 
the height h of a triangle ABC whose basis c and sides a, b are given in mag
nitude. The geometrical construction of h is straightforward (see Figure 6.1): 
Draw a line segment AB equal to c, draw circles around A and B with radii b 
and a, respectively; these circles intersect in C and C'; draw CC', it intersects 
AB (prolonged if necessary) in D; h = CD is the required height. The calcu
lation of h, if a, b, and c are given as numbers, proceeds as follows: Compute 
s = a+~+c; then compute h by the formula 

h = 2 vi s( s - a)( s - b) (s - c) 
c 

(6.1) 

Clearly the calculation is more complex than the construction; it involves a 
square root extraction, several multiplications, and a division. Moreover, the 
construction hardly requires explanation or proof whereas the formula underly
ing the calculation is not self-evident at all. 

The example of the height of the triangle also illustrates a fundamental dis- Numerical and 
parity of calculation and construction: there is no direct analogy between exact geometrical 
calculations and exact constructions. The construction of h employs no other exactness 
means of construction than circles and straight lines and is therefore exact ac-
cording to the strictest interpretation of geometrical exactness. The calculation 
of h, however, involves a square root extraction and is therefore in general not 
exact but approximate. The geometrical procedures consisting of combinations 
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Figure 6.1: Construction of the height of a triangle with given sides 

of constructions by straight lines and circles correspond to arithmetical proce
dures involving the primary arithmetical operations and square root extraction; 
but in arithmetic the latter operation is not exact, it leads to irrational numbers, 
which can only be approximated. On the other hand, the group of the exact 
operations in arithmetic (+, -, x, --;-) does not correspond to any naturally 
distinguishable sub collection of the geometrically exact constructions. 

6.5 Conclusion 

What could The discussion above has indicated the various obstacles to the merging of 
algebra offer to algebra and geometry. But even if these were considered surmountable, what 

geometry? could algebra, in its late sixteenth-century stage of development, offer to geome
try? It could deal with unknowns, it could write down in sufficiently symbolized 
form equations representing relations between an unknown, its powers, and num
bers, the latter serving as "example numbers" for illustrating general procedures 
of calculation. There was no symbolic technique for dealing with indeterminate 
numbers. 12 The cossic symbols for the unknown and its powers were slowly 
being replaced by notations featuring numbers indicating the degree. 13 

Algebra did offer rules for the solution of equations. In the case of quadratic 
equations these rules could in principle be interpreted in terms of constructions 

12Cf. note 11. 
13Notably by Bombelli and Stevin. 
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by straight lines and circles. The rules for third- and fourth-degree equations 
were too complicated for geometrical interpretation. Moreover, in special cases 
(the "casus irreducibiles,,14) they gave rise to "imaginary" numbers.15 It was 
known that in such cases roots did exist, but the extant rules for calculating 
them led to imaginaries, whose interpretation was a major conceptual difficulty, 
not solved, in fact, until the nineteenth century.16 In contrast, the geometrical 
problems corresponding to the casus irreducibiles were reducible to the trisection 
of angles and did not involve conceptual difficulties, nor did they suggest the 
necessity of introducing anything "imaginary." 

An algebra beset with such restrictions and uncertainties held little promise Geometry 
for geometry, in which the use of indeterminate lengths, adequately represented more adequate 
symbolically by letters or pairs of letters, was standard, and in which classical for general 
analysis dealt competently with unknowns. Indeed with respect to indetermi- arguments 
nates geometry was in the advantage, as is illustrated by the fact that it was 
called in to help algebra rather than the other way around. Thus Cardano used 
the geometrical configuration of a cube divided by three planes into two smaller 
cubes and six rectangular prisms, to prove the binomial theorem for third pow-
ers. Lacking symbols for indeterminate numbers, he could not write the rule as 
(a + b)3 = a3 + 3a2b + 3ab2 + b3 and prove it by twice multiplying (a + b) in 
itself. Apparently he considered an example worked out for particular numbers 
insufficient proof. So for generality he turned to geometry, which did provide 
indeterminates, in this case the edge a + b of the cube and its two parts a and 
b.17 

In introducing his "new algebra" for general (including geometrical) problem 
solving, Viete was probably inspired by the example of Diophantus rather than 
by the results of sixteenthth century algebra. Descartes' well-known description 
(in the Discourse) of the algebra he learned at school as 

so confined to certain rules and symbols that the end result is a 
confused and obscure art which encumbers the mind, rather than a 
science which cultivates it18 

is another indication that algebra was seen as an unlikely source of help for 
geometry. 

Thus the adoption of algebraic methods of analysis in geometry was in several An improbable 

14 Namely, third-degree equation with three real roots; for these equations the Cardano 
formulas (see Note 91 of Chapter 4) involve square roots of negative quantities. 

15Imaginaries also occurred in applying the rules for quadratic equations, but that was not 
conceptually puzzling, they were signs that no solution existed. Thus Ghetaldi explained 
([Ghetaldi 1630]' Book V, Ch. II pp. 314 sqq), "how impossible problems are recognized" 
("Quomodo Problemata impossibilia cognoscantur"); the examples he gave were problems 
that led to quadratic equations with negative or imaginary roots. 

16Cf. [Kline 1972] pp. 265-266. 
17[Cardano 1545] Ch. VI; [Cardano 1966] vol. 4 pp. 235-236, [Cardano 1968] pp. 52-53. 
18[Descartes 1985-1991] vol. 1 pp. 119-120. 

phenomenon 
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respects an improbable phenomenon. The step, usually seen as concentrated in 
Viete's new algebra and Descartes' innovation of geometry, is generally, and 
with good reason, recognized as a very important event in the development 
of mathematics. To us it may also seem a natural and an obvious one. But 
such an impression would be based too much on the hindsight of successful 
algebraic geometry and on a historiography that commonly treats the emergence 
of analytic geometry in the seventeenth century as merely laudable, rather than 
as enigmatic. Viewed from the perspective of the late sixteenth century, it was 
not at all obvious that algebra should be of use as a tool for geometrical analysis. 



Chapter 7 

Using numbers in geometry 
Regiomontanus and 

Stevin 

7.1 Introduction 

The obstacles to the merging of arithmetic, geometry, algebra, and analysis, Numbers in 
discussed in the previous chapter, were primarily of conceptual nature. I now geometry 
turn to a question on a different level that also played a role in the fusion process, 
namely whether it was legitimate to use numbers in geometry. 

Because it concerned legitimation, this question was akin to the issue of 
legitimate construction, which is the main theme of my study. However, it will 
become clear (cf. Section 7.5) that in the early modern period the connection 
between the two issues was less close than might at first be expected. Therefore, 
a detailed survey of the contemporary arguments about the legitimacy of using 
numbers in geometry is not necessary for my inquiry. The aim of the present 
chapter is to explain the issue, to provide some instances of arguments about 
it voiced by early modern mathematicians, and to assess its relation to the 
interpretation of exactness of geometrical constructions. 

Throughout the sixteenth century algebraic techniques were developed and Approximation 
used primarily for solving problems about numbers. As a result the legitimacy or extension 
of the geometrical use of algebra was bound up with the question of whether 
it was allowed to use numbers in geometry. Although in practical geometry 
numbers were in general use, mathematicians concerned with the conceptual 
foundations of pure geometry felt that there were considerable barriers to this 
use; number was classically considered to be integer or rational only, and it 
was well known that the rational numbers alone were insufficient to deal with 
geometrical magnitudes such as line segments. 

H. J. M. Bos, Redefining Geometrical Exactness
© Springer Science+Business Media New York 2001



136 7. Using numbers in geometry - Regiomontanus and Stevin 

The rational numbers are insufficient for dealing with geometrical magni
tude; they cannot exactly represent situations involving incommensurable pairs 
of line segments. On the other hand, rational numbers are an excellent means 
for representing geometrical situations approximately to any required degree 
of precision. Using rational numbers in geometry implies that either one ac
cepts approximate rather than exact representation, or one somehow extends 
the rational number system with sufficient new numbers capable of represent
ing incommensurable magnitudes. Both alternatives for using numbers in pure 
geometry have fundamental impediments: either the loss of exactness or the 
introduction of undefined entities. 

Sixteenth-century mathematical literature provides examples of either al
ternative. Two authors in particular held and spiritedly defended archetypical 
opinions on the use of numbers in geometry: Regiomontanus, who was willing 
to sacrifice exactness, and Stevin, who was convinced that the number concept 
was potent enough to deal with continuous geometrical magnitude. 

7.2 Regiomontanus 

Practical Numbers and arithmetic were used and applied as a matter of course in such 
geometry practical disciplines as trigonometry and surveying. One assumed a unit length 

(Regiomontanus used the term "mensura famosa" 1 ); lengths, areas, and volumes 
were expressed as numbers with respect to the unit length or the corresponding 
unit square and unit cube. Because the measurement of line segments with re
spect to the unit involved instrumental and observational errors, the results of 
the numerical calculations of practical geometry were not exact. In his influen
tial textbook of trigonometry On triangles,2 posthumously published in 1533, 
Regiomontanus felt called to explain this matter and, despite their approximate 
nature, to defend the use of numbers as equally, if not more, effective and valid 
in geometry than abiding to the restrictive requirement of pure geometrical 
exactness. 

"On triangles" Regiomontanus wrote On triangles in the terminology and structure of Eu-
clid's Data (cf. Section 5.2), using the concept "given" or "known" in enunciat
ing his propositions. This arrangement required an explanation of these concepts 
in the context of numbers; Regiomontanus provided it in the first definition of 
the book: 

A quantity will be called known if the principal measure, or any arbi
trarily assumed measure, measures it according to a known number.3 

The subsequent definitions made clear that Regiomontanus meant the "known" 
numbers to be integers or rational fract~ons. Thus a known quantity had a 

lCf. Note 3. 
2 [Regiomontanus 1533]. 
3[Regiomontanus 1533] p. 30 (facs. p. 7): "Cognita vocabitur quantitas, quam mensura 

famosa, aut pro lib ito sumpta secundum numerum metitur notum." I have modified Hughes' 
translation of the passage. 
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rational ratio to the principal measure, and to show that a quantity was known 
meant to show that this ratio could be found, i.e., calculated. 

Predictably, with this definition the irrationals presented a difficulty. Regio- Irrationals 
mont anus confronted it in Proposition 2 of book I: 

The side of a known square will not remain unknown.4 

The number expressing the length of the side should be the mean proportional 
number between 1 and the number expressing the area. But if the latter number 
was not a square, the mean proportional number did not exist. Regiomontanus 
resolved this difficulty by adjusting the definition of "known quantities": 

However, it often happens that the numbers by which we measure 
our squares are not squares; therefore, in order that we will not re
main ignorant of the near truth (as are all things knowable by man), 
we will henceforth use the term "known quantity" in a looser sense 
than we defined it at the beginning. So we will by the same term call 
any quantity known if it is either precisely known or almost equal 
to a known quantity; for in my opinion it is more beautiful to know 
what is near the truth than to ignore the truth itself completely. 
There is virtue not only in hitting the mark but also in coming close 
to it.5 

Anticipating the question why he did not define known quantities in this way 
from the beginning, he explained that this would have made the reader confused 
and suspicious: 

Above I did not want to define a known quantity in this manner 
by both precision and closeness, fearing that my definition, using an 
ambiguous term as closeness, would become suspect to the reader. 
For we are used to take the precise as true and we would hardly 
satisfy the reader by taking closeness to truth as a definition.6 

Regiomontanus then explained what to do when the number expressing the area 
was non-square: approximate the number by a square (integer or fraction) to any 
desired degree of precision, then accept the root of that square as representing 
the side: 

4[Regiomontanus 1533] p. 34 (facs. p. 9): "Quadrati noti costa non ignorabitur." 
5[Regiomontanus 1533] p.34 (facs. p. 9): "Cum autem saepenumero accidat numeros se

cundum quos quadrata nostra metimur esse non quadratos ne prorsus ignoremus propinquum 
veritati (ut sunt scibilia humana) laxius posthac utemur vocabulo quantitatis notae, quam 
initio diffinierimus. Quantitatem igitur omnem quae aut nota praecise fuerit, aut notae quan
titati ferme aequalis, univoce notam appellabimus. Pulchrius equidem arbitror scire propin
quum veritati, quam veritatem ipsam penitus negligere: non modo enim contingere metam, 
verumetiam propinque accedere virtuti dabitur." 

6[Regiomontanus 1533] p. 34 (facs. p. 9): "Non libuit autem hoc pacta superius diffinire 
quantitatem notam per praecisum et propinquum, ne suspecta lectori diffinitio nostra reddere
tur, fluctuante vocabulo propinqui id agente: nam etsi praecisum pro vero ponere soleamus, 
propinquum tamen veritati vix diffinitionem lectori satis facturam accipiet." 
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Just as our non-square number is close to the square number we 
have assumed, so also is the side of our given square close to the 
precisely known side of the assumed square, and therefore the side 
of our square will be considered known. 7 

Later on Regiomontanus followed the same line of argument with respect to 
the trigonometric functions; thus Proposition 1-278 stated that, if two sides of a 
rectangular triangle are known, the two acute angles are known as well, because 
they can be determined with sufficient precision by means of a table of sines. 

Significance Regiomontanus' textbook was very infiuential,9 so we may assume that his 
defense of numbers in geometry was generally known and that it supported 
those who considered numbers as proper and effective means for geometrical 
investigations. Still the frank admission of the approximate character of nu
merical procedures and the avoidance of the question concerning the nature 
of irrationals made it clear that Regiomontanus' approach, although consistent 
and elegant in its own way, was not compatible with the usual requirements of 
exactness of pure geometry. 

7.3 Stevin 

Elements X By the end of the sixteenth century calculations involving square roots of 
non-square numbers had become so common that, at least in arithmetical and 
algebraic practice, these irrationals were in effect considered and treated as 
numbers. The indifference to the more subtle questions concerning irrationality 
implied in this practice agreed well with the view, put forth by Ramus and taken 
over in various degrees by several mathematicians, that geometry ought to be 
the art of measuring well, lO rather than the pure and strict science exemplified 
in the theoretical books of Euclid's Elements. From that point of view it was 
especially book X of the Elements, with its classification of irrational ratios, 
which appeared over-theoretical and pointless. Ramus had disqualified the book 
on these grounds, calling it a "cross for torturing noble minds," 11 and since then 
the uselessness of Elements X became a kind of partisan slogan of those who 
favored the use of irrational numbers to simplify matters in geometry. 

Simon Stevin provided one of the most articulate statements of this point of 
view, including an explicit reformulation of Elements X in terms of irrational 

7[Regiomontanus 1533] p. 34 (facs. p. 9): "Quemadmodum autem numerus non quadratus 
noster, numero quadrato assumpto propinquus est, ita et costa quadrati nostri costae alterius 
quadrati praecise cognitae propinqua, et ideo nota habebitur." 

8[Regiomontanus 1533] pp. 64~66 (facs. pp. 24~25). 
9Cf. [Zinner 1968], p. 320 for sixteenth-century editions of the book. 

lOCf. for instance [Verdonk 1969]. 
11 [Ramus 1599] p. 252 (beginning of book 21): "Equidem toto decimo libro studiose et 

accurate considerato nihil aliud judicare potui quam crucem in eo fixam esse, qua generosae 
mentes cruciarentur. Quare omni studio diligentiaque connitendum nobis est, ut ista claris
sime evolvantur, miseraque et funesta crux evertatur et prosternatur, at que in perpetuum 
affiigat ur." 
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numbers, serving to show that in those terms the substance of the book was 
simple and easy. 

Stevin did so in his Arithmetic12 of 1585. The book contained a vigorous Irrationals are 
vindication of numbers as valid and appropriate means to deal with continuous numbers 
magnitude, in particular geometrical magnitude. At the outset Stevin claimed 
that number was not discontinuous13 and was therefore adequate for dealing 
with continuous quantities such as length or area. He claimed that all square, 
cubic, and higher roots of all numbers existed as numbers, and he went on 
to refute some standard arguments to the contrary. His reasoning14 may be 
summarized as follows: 

The square root of 8 is a part of 8, and parts are of the same material 
("matiere") as the whole; the material of 8 is number, hence v's is a number 
as well as 8. Those who deny that v's and other such roots are numbers call 
them "absurd, irrational, irregular, inexplicable, surd, etc." 15 because v's is in
commensurable with respect to "arithmetical numbers" (Le., rational numbers) 
such as 2, 3, etc. But incommensurability concerns the relation of two things, 
not the things themselves; the incommensurability is not caused by v's, so there 
is no reason to call v's absurd any more than to call 2 or 3 absurd. Indeed a 
sphere and a cube are dissimilar, but it is absurd to say that this is the fault 
either of the sphere or of the cube. Some refer to Euclid, who in Elements X16 

defined some lines as rational and others as irrational, but that is an empty 
appeal to authority, because Euclid defined earlier that any line segment could 
be chosen as rational, so one might as well chose the diameter of the square with 
side 2 to be rational, which would make v's rational and 2 or 3 irrational. If 
challenged to explain what is v's ells, Stevin would ask what ~ ell is, and if his 
adversary would refer to Elements VI-9 (construction of aliquot parts of a line 
segment), Stevin would refer to Elements VI-13 and construct v's ells as the 
mean proportional between line segments of length 1 and 8 ells, respectively. 
However, there are no constructions corresponding to cube roots (or two mean 
proportionals) so would Stevin accept that cubic roots of non-cube numbers are 
surd, irrational, etc.? No, the lack of a legitimate geometrical construction for 
cubic roots is not the fault of number but of geometry: 

What we proved for v's will be understood as well for rand 
whatever other roots; it is true that we cannot legitimately cut off 
from any line its cubic root (because the two mean proportionals 
between two given lines are not yet geometrically found) whereas we 
can cut off its square root, but that is not the fault of the numbers; 

12 [Stevin 1585]; the reformulation of Elements X occurs as an appendix (pp. 189-201) of the 
third part of the book, entitled "traicte des incommensurables grandeurs avec une appendice de 
l'explication du dixiesme livre d'Euclide:" the appendix does not occur in the much abridged 
edition of the Arithmetique in [Stevin 1955-1966]. 

13[Stevin 1585] p. 4: "Que nombre n'est poinct quantite discontinue." 
14[Stevin 1585] pp. 30--37. 
15[Stevin 1585] p. 33: "absurds, irrationels, irreguliers, inexplicables, sourds, etc." 
16Stevin here refered to the definitions now numbered 3 and 4. 
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for in numbers we easily achieve that which we know not how to do 
in lines. 17 

Stevin did not explain here which numerical methods of root extraction he had 
in mind, thus smoothing over the difficulty that such methods are approximate 
rather than exact. 

Turning to the use of irrational numbers, Stevin stated that the "absurd" 
idea that they would be absurd had obscured the doctrine of incommensurable 
magnitudes so that 

... many have developed such a horror of the difficulty of the tenth 
book of Euclid (which treats ot this matter) that they call it the 
cross of mathematicians, too hard a matter for digestion, and they 
perceive no use at all in it. 18 

But by a reformulation of the book's content in terms of irrational numbers 
Stevin would make the matter easy and clear. Thus Stevin went further than 
those who valued useful geometry with numbers more than theoretical geometry 
as exemplified in book X; he affirmed that numbers could indeed take over that 
part of pure geometry and make it easy. 

Exactness Later on in the Arithmetic Stevin argued against those who were willing 
to avoid the issue of irrationals and restrict themselves to rational numbers, 
because ultimate precision was pointless in the practice of measuring. We may 
discern here an echo of Regiomontanus' argument. In answer Stevin stated 
(be it without other argument than authority) his adherence to exactness in 
mathematics: 

one might ask as well why the operations of geometry, as the El
ements of Euclid, are made to the utmost perfection; but as that 
seems unworthy of answering, because of the absurdities following 
from its converse (for those perfect operations provide perfect un
derstandings and these are the source of the perfect and admirable 
effects that mathematics produces) so much for that one. 19 

17[Stevin 1585] p. 36: "Ce que no us avons demonstre de v's, sera aussi entendu de V(3) 
[Stevin's sign for a cubic root], et aut res racines quelquonques: car combien que de toute 
ligne ne pouvons legitimement couper racine cubique (a cause que les deux lignes moiennes 
proportionelles entre deux lignes donnees, ne sont encore geometriquement inventees) comme 
faisons racine carree, cela n'est pas la coulpe des nombres; car ce qu'en lignes ne sc;avons faire, 
nous l'achevons par nombres facilement." 

18[Stevin 1585] pp. 36-37: " .. .la difficulte du dixiesme livre d'Euciide (qui traicte de ceste 
matiere) est a plusieurs devenu en horreur, voire iusques a l'appeller la croix des mathemati
ciens, matiere trop dure a digerer, et en laquelle n'apperc;oivent aucune utilite." 

19 [Stevin 1585] pp. 169-170: "on pourroit dire pareillement, pourquoi les operations de 
Geometrie, comme les elemens d'Euciide, sont faistes par l'extreme perfection; Mais comme 
cela ne semble pas digne de responce, a cause des absurditez suivantes de son contraire (car 
telles parfaictes operations, donnent parfaictes intelligences, qui sont causes des parfaicts et 
admirables effects que produict la Mathematique) ainsi de cestui ci." 
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It is easy for the modern reader to spot the weakness of Stevin's argument: Significance 
the absence of a definition of number with respect to which the existence of such 
numbers as v'8 could be proven. However, such precision came to mathematics 
only in the late nineteenth century, so Stevin's defence of numbers may well have 
seemed, although perhaps not ultimately convincing, yet strong and legitimate 
enough. The issue of the legitimacy of using numbers in geometry, however, 
remained undecided as appears from a later polemic on the matter. 

7.4 A later discussion 

Ludolph Van Ceulen, not surprisingly for his love of numerical calculation Van Ceulen 
culminating in a value of 7r of record precision, considered geometry no forbidden 
territory for numbers. He died in 1610, leaving several mathematical treatises 
in manuscript. With the help of Willebrord Snellius his widow Adriana Symons 
published a compilation of six of these in a Dutch as well as a Latin version. 
For the latter Snellius provided the translation and added introductions and 
commentaries. 

Snellius favored the free use of numbers but knew that it was a sensitive issue; 
he used the dedication of the third part of the book to defend Van Ceulen's 
approach. The passage starts thus: 

You see here, most illustrious Sir, these books on various problems, 
in which we deal with some geometrical problems in such a way that 
occasionally we also allow numbers to be associated with this subtle 
subject. For number is the accurate mediator of all measure, ratio 
and proportion.2o 

Snellius explained that magnitudes are best expressed by numbers because num
ber is easily divisible ad infinitum, whereas it is difficult to actually divide geo
metrical magnitude in small parts. He even suggested that this might have been 
Aristotle's opinion expressed in an often quoted passage from the Metaphysics 
in which arithmetic was claimed to be more exact than geometry.21 Hence the 
usefulness of numbers, including irrational ones; if alone because - here the 
slogan duly recurs - they make Elements X superfluous: 

For that reason we ought not to deny the philomaths the use of 
numbers, and especially irrational and surd numbers, such as illus
trated in these books; the more so as it should be clear to anyone 
how useless in practice is that Pythagorean distinction of irrationals 
in thirteen species to which Euclid devotes the whole of the tenth 

20[Ceulen 1615b] p. 84: "En itaque tibi vir Amplissime hosce problematum variorum libros, 
in quibus quorundam Geometricorum problematum tractationem ita exhibemus, ut quan
doque numeros quoque in hujus subtilitatis societatem admiserimus. Est enim numerus omnis 
commensus, rationis et proportionis accuratus interpres." 

21Snellius' interpretation seems unfounded; cf. Heath's discussion of the passage (Metaph. 
Book I Ch. 2 (982a)) and related ones in [Heath 1949] pp. 4-5. 

Snellius on the 
status of 
numbers 
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book of the Elements, because the general laws of that numeration 
have no value at all if we want to determine the species of this or 
that number. 22 

Snellius elaborated on the theme: 

Therefore I relax and stop wondering about the usefulness of the 
tenth book: for there is no element at all among those species that 
is cited or used anywhere in Archimedes, Apollonius, Serenus, Theo
dosius, Menelaus, Ptolemy, Theon, Eutocius, Diophantus and even 
in Euclid himself outside the Elements. ... and although these 
things may be preserved as subtleties in the mathematical library, 
yet, as they are of little use, they have to be separated from the 
elementary books.23 

Kepler's Snellius' words - we do not know what Van Ceulen himself thought of the 
reaction matter - show that the issue of the status of numbers was alive, as appears 

also from a reaction published four years later by Kepler, who was enraged 
by Snellius' statements. He saw the infiltration of number into geometry as an 
attack, destabilizing the structure and disdaining the harmony of pure geometry. 
I deal with Kepler's views in more detail in Chapter 11; here one passage from 
his reaction may suffice. Referring to the "cross for tormenting noble minds," 
which Ramus had detected in book X,24 he wrote: 

"Is it only a cross fastened to our talents?" I say, to those who 
molest the inexpressibles with numbers, that is by expressing them. 
But I deal with those kinds not with numbers, not by algebra, but 
by mental processes of reasoning, because of course I do not need 
them in order to draw up accounts of merchandise, but to explain 
the causes of things. 25 

22[Ceulen 1615bJ p. 84: "Earn ob causam numerorum, maxi me irrationalium et surdorum 
usum istus [sicJ libris illustratum philomatis invidere non debuimus: idque adeo tanto magis, 
ut clarum cuilibet sit, quantopere ad usum inutilis sit Pythagorea illa (alogias) in tredecim 
species distributio, in qua Euclides, totum 10 Elementorum librum occupavit, cum generales 
istae numerationis leges nihil pensi habeant ad quamnam speciem hie vel ille numerus sit 
referendus." 

23[Ceulen 1615bJ p. 84: "ideo que de utilitate libri decimi minus sollicitum mirari desino: 
nullum enim inter eas species elementum extat quod usquam in Archimede, Apollonio, Sereno, 
Theodosio, Menelao, Ptolomaeo Theone, Eutocio, Diophanto, ipsoque adeo Euclide extra 
element a vel citetur vel usum ullum habeat .... [crux igitur quaedam istic tantum defixa est, 
quae solo calculo in abaco facillime tollatur:J et quamvis ista tanquam subtilia in Mathematiea 
bibliotheca conservari possint: attamen ut minus utilia a (stoicheios) segregari debent [nam si 
ista usum habeant, totum hoc genus, cujus ille liber particulam duntaxat aliquam explicandam 
sibi sumit haud dubie plus longe reconditae eruditionis et scientiae complectetur.]" 

24Cf. Note 11. 
25 [Kepler 1937-1975J pp. 18-19: "Crux tan tum defixa est ingeniis? Equidem iis, qui nu

meris, hoc est effando vexant Ineffabilia. At ego has species tracto non numeris, non per 
Algebram, sed ratiocinatione Mentis; sane quia iis mihi non est opus ad subducendas Ra
tiones mercatuum, sed ad explicandas rerum causas." Translation quoted from [Kepler 1997J 
p. 13; the first sentence is a quotation from [Ramus 1569J p. 258. 
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7.5 Conclusion 

The discussions on the acceptability of numbers in geometry mentioned so Construction 
far concerned primarily the compatibility of number and geometrical magnitude; not at issue 
the main alternatives involved were: approximation, introduction of irrational 
numbers, or avoiding the use of numbers in geometry altogether. These alter-
natives did not relate to questions of the exactness of geometrical constructions. 
On that issue the protagonists of the debate did not disagree strongly. Re-
giomontanus showed little interest in geometrical construction in his book on 
triangles, Ramus and Stevin accepted a restriction of legitimate geometrical 
construction to those by straight lines and circles in so far as they considered 
the known constructions of two mean proportionals ungeometrical;26 Snellius 
agreed with Pappus' classification of constructions;27 Kepler, as we will see 
(Chapter 11), rejected all non-plane constructions as ungeometrical. 

During most of the sixteenth century algebraic methods were used only in Algebra 
solving numerical problems and were considered as directly linked to numbers. dissociated 
Therefore, the doubts about the geometrical legitimacy of numbers constituted from numbers 
an additional obstacle against the merging of algebra and geometry. Neverthe-
less, algebraic methods of analysis were created and adopted within the early 
modern tradition of geometrical problem solving; they even provided what I 
have called the principal dynamics in this field. This, however, did not imply 
that the resistance to the use of numbers in pure geometry was overcome; rather, 
algebraic methods were dissociated from numbers and redefined to fit geometry. 
This approach was first developed by Viete. 

26Cf. Note 29. 
27 Cf. [Snellius 1621] pp. *1 v sqq. 



Chapter 8 

Using algebra - Viete's 
analysis 

8.1 Introduction 

By 1600 ViE:lte had worked out a consistent and effective apparatus for using Defining the 
algebra in both numerical and geometrical contexts. He had circumvented the algebraic 
issue of numbers in geometry by defining the algebraic operations independently operations 
of whether they applied to numbers or to non-numerical quantities (such as 
line segments or other geometrical magnitudes), thus legitimizing the use of 
algebra in geometry while retaining the conviction that geometrical magnitude 
and number were essentially different. Viete called this system "new algebra" 
or "specious logistics." 

Descartes was to address the same issue -. the definition of the algebraic 
operations as applied to geometrical magnitude - some 40 years later, solving 
it in a manner essentially different from Viete's. His approach will be discussed 
in Part II (cf. in particular Chapter 21). In the mean time Van Ceulen proposed 
an interesting but incomplete approach to the same question, which featured 
some elements of the approach Descartes adopted later. I discuss it at the end 
of the present chapter. 

8.2 Viete's "New Algebra" 

Several sixteenth-century mathematicians knew how to interpret algebraic Restoring 
equations geometrically as theorems or problems. They used this interpretation analysis 
primarily in showing the generality and correctness of algebraic relations and 
procedures for solving equations. l However, it was Viete who first introduced 

IThe best known example is Cardano's use of a cube to prove the equivalent of the algebraic 
relation (a + b)3 = a3 + b3 + 3ab(a + b), cf. Note 17 of Chapter 6. In book II of his Algebm 
([BombeUi 1572]) Bombelli gave geometrical equivalents of several cubic equations (e.g., x3 + 
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and promoted the idea that algebra was the proper method for the analysis of 
problems both in geometry and in the theory of numbers. 

Viete's2 inspiration was Diophantus,3 whose use of unknowns in the Arith
metic4 he saw as the key to a general method of analysis, which, he thought, had 
been known to classical mathematicians and was lost, but could be restored. He 
expounded his reconstruction of this analysis in a series of treatises, together 
forming what he called the Book of the restored mathematical analysis or the 
new algebra and whose outline he sketched in the first of these treatises, the 
Introduction to the analytic art (In artem analyticen isagoge) of 1591 (to which 
I n~fer as the Isagoge). 5 The Isagoge closed with the following proud statement: 

Finally the analytic art, endowed, at last, with its three forms of 
zetetics, poristics and exegetics, claims for itself the greatest problem 
of all, which is TO LEAVE NO PROBLEM UNSOLVED.6 

Thus Viete's analysis - as Descartes' later - was a universal method for 
solving problems. Its main tool was algebra. Viete introduced a tripartite di
vision of the analytical process, creating neologisms, based on existing Greek 
terms, to distinguish them: zetetics, poristics, and exegetics or rhetics.7 Viete 
saw these parts of analysis as related to the consecutive phases in the interplay 
between the problems themselves, the algebraic methods, and the actual solu
tion of the problems. Zetetics was the art of translating a problem, be it an 
arithmetical or a geometrical one, into one or more algebraic equations in one 

6x = 20 on pp. 286-288) explaining a geometrical construction of the roots by means of 
shifting gnomon procedures similar to the construction of two mean proportionals attributed 
to Plato (Construction 2.3). 

2Some of the ideas on Viete presented here have been published before in 
[Bos & Reich 1990J and [Bos 1993J; relevant secondary sources on Viete are: [Klein 1968], 
the introduction in [Viete 1973], [Egmond 1985], [Brigaglia & Nastasi 1986], [Freguglia 1988J 
pp. 67-104, [Freguglia 1989], [Giusti 1992], [Garibaldi 1992], [Stefano 1992J. 

3Cf. [Viete 1591J p. 10 ([Viete 1983J p. 27). 
4[Diophantus ArithmeticaJ; first printed edition [Diophantus 1575J. In his 

[Viete 1593-1600J Viete incorporated a large number of propositions from the Arithmetica. 
5Viete announced the list of the treatises constituting the planned "Opus restitutae math

ematicae analyseos seu algebra nova" in [Viete 1591J (cf. [Egmond 1985J pp. 367-368, the 
list is not incorporated in the edition of the Isagoge in [Viete 1646J nor in the translation 
in [Viete 1983]). He gave the list in its logical order, but he did not keep to that order in 
publishing; he postponed the more technical items. By 1593 five treatises had appeared, one 
more came out in 1600, the remaining three were published posthumously. The list is as 
follows: (1) Isagoge [Viete 1591J; (2) Ad logisticen speciosam notae priores [Viete 1631bJ; (3) 
Zeteticorum libri quinque [Viete 1593-1600J; (4) De aequationum recognitione et emendatione 
tmctatus duo [Viete 1615J; (5) De numerosa potestatum ad exegesin resolutione [Viete 1600bJ; 
(6) EfJectionum geometricarum canonica recensio [Viete 1593bJ; (7) Supplementum geome
triae [Viete 1593J; (8) Ad angularium sectionum analyticen theoremata [Viete 1615bJ; (9) 
Variorum de rebus mathematicis responsorum liber VIII [Viete 1593bJ. 

6[Viete 1591J p. 12: "Denique fastuosum problema problematum ars Analytice, triplicem 
Zetetices, Poristices et Exegetices formam tandem induta, jure sibi adrogat, Quod est, NUL
LUM NON PROBLEMA SOLVERE" (translation based on the one in [Viete 1983J p. 32). 

7[Viete 1591J p. 1 ([Viete 1983J pp. 11-12): "zetetice," "poristice," "exegetice," "rhetice:" 
Viete retained the Greek declension of his neologisms. 
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or more unknowns. The interpretation of "poristics" is difficult. The relevant 
sections in the Isagoge admit various translation and interpretations. Viete did 
not use or discuss the term in later treatises, apart from two passages in the 
The supplement to geometry and one in Book VIII of various replies on mathe
matical matters where he mentioned results derived "in poristics."s However, it 
seems safe to assume on the basis of these passages that Viete's poristics, as the 
middle phase of the analytical process, concerned techniques of transforming 
algebraic proportionalities and equalities, and that Viete envisaged to present 
these techniques independently of whether some of the quantities involved were 
unknown and others not. Finally exegetics, also called rhetics, was the art of 
deriving the arithmetical or geometrical solutions from the equations supplied 
by zetetics and, if necessary, transformed to amenable forms by poristics. 

Viete did not see the algebra, which was to be the essential tool in his analysis, Abstract, 
as a technique concerning numbers, but as a method of symbolic calculation con- "specious" 
cerning abstract magnitudes. In elaborating this conception he created symbolic algebra 
procedures of calculation applying to magnitudes irrespectively of their nature 
(number, geometrical magnitude, or otherwise - note that he considered num-
ber to be a kind of magnitude). For this purpose he introduced letter symbols 
for indeterminates as well as unknowns. Although letter symbols for indetermi-
nates were common in geometry and had occasionally been used in arithmetic 
(notably by Jordanus9), Viete was the first to employ letter symbols for general 
indeterminates. This was not a self-evident step because it raised the question 
of the status and nature of these general indeterminate magnitudes and of the 
operations performed on them. It is clear from his writings that this question 
was a serious one for Viete. His answer is difficult to reconstruct precisely,10 but 
in outline it may be summarized as follows. In his "new algebra" mathematical 
entities such as numbers, line segments, figures etc., whether known, unknown, 
or indeterminate, were considered only in their aspect of being a magnitude, 
abstracted from their actual nature. Viete himself spoke of "in species," "in 
form" or "in kind," calling his new algebra a "calculation regarding forms," or 
"regarding species:" he also used the term "specious logistics" 11 - which I take 
over in the sequel. Thus his specious logistics dealt with abstract magnitudes 
symbolically represented by letters. 

8[Viete 1593] pp. 244 and 245 ([Viete 1983] pp. 395 and 396), [Viete 1593b] p. 353. See 
also Reich and Gericke's discussion of the terms zetetics, poristics exegetics and rhetics in 
[Viete 1973] pp. 22-23 and 31, Witmer's note 6 on p. 12 of [Viete 1983]' and [Garibaldi 1992] 
p. 170. Witmer cites translations of Viete's definition of poristics by Vaulezard, Vasset, Durret, 
Ritter, and Smith, which differ considerably. Both Witmer and Reich and Gericke suggest that 
the words "in poristics" in The supplement to geometry might refer to a treatise Ad logisticem 
speciosam notae posteriores, a no longer extant sequel to the Notae priores ([Viete 1631] and 
[Viete 1631b]). 

9Cf. Chapter 6 Note 11. 
IOCf. [Viete 1973] pp. 26-27. 
llCf. [Viete 1591]: "Logisticen sub specie" (p. 1), "Logistice numerosa est quae per numeros, 

Speciosa quae per species seu rerum formas exhibitur, utpote per alphabetica element a" (p.4); 
cf. [Viete 1983] pp. 13 and 17. 
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An algebra for abstract magnitudes required an appropriate reinterpretation 
of the arithmetical and algebraic operations. As we have seen in Section 6.2, 
there are important dissimilarities between the multiplication of numbers and 
the multiplication of line segments, so in order to arrive at a consistent inter
pretation of multiplication for abstract magnitudes, a choice had to be made. 
Viete chose to be inspired by geometry. Geometrical multiplication involved a 
change of dimension; the product of two line segments was a rectangle, that is, 
a magnitude of a different kind than the original line segments. Viete accepted 
this dimensional aspect of multiplication. However, in geometry the highest di
mension for magnitudes was the dimension of space itself, so products of more 
than three line segments defied interpretation. Viete did not want to take over 
this aspect, and his abstract conception of magnitude enabled him to avoid 
it. In his conception any species of magnitude was accompanied by a scale of 
successive higher-dimensional species of magnitudes, constituted in analogy to 
the first three geometrical dimensional magnitudes - line, area, solid - but 
continued ad infinitum. Viete used the term "degree" 12 for these higher dimen
sional species and refered to their sequence with words derived from "scalae" 
(stairs, ladder),13 I refer to such a sequence of species of magnitudes as a "scale." 
Within one scale only magnitudes of the same degree could be compared, added, 
or subtracted. This constituted the "law of homogeneity," 14 which Viete consid
ered fundamental to his new algebra. Multiplication linked the degrees within 
one scale in the way suggested by geometry: the product of two magnitudes of 
the first degree was of the second degree, the successive powers of a first-degree 
magnitude ran through all the degrees, etc. Viete described the degrees with 
terms inspired by geometry. 

8.3 The "New Algebra" as a formal system 

While considering abstract magnitudes Viete could obviously not specify how 
a multiplication (or any other operation) was actually performed but only how 
it was symbolically represented. Thereby the "specious" part of his new algebra 
was indeed a fully abstract formal system implicitly defined by basic assump
tions about magnitudes, dimensions, and scales as explained above, and by 
axioms concerning the operations. The operations were addition, subtraction, 
multiplication, division, root extraction, and the formation of ratios. 15 It will 
be useful to list these assumptions and axioms explicitly (cf. Table 8.1). They 

12[Viete 1591] p. 2: "gradus:" Witmer translates "grade" [Viete 1983] p. 15. 
13Thus the successive powers of one magnitude of the first dimension (d. the second of the 

assumptions and axioms mentioned below) were called "magnitudines scalares" [Viete 1591] 
p. 3; Witmer translates "scalar magnitudes" [Viete 1983] p. 16. 

14 [Viete 1591] p. 2: "lex homogeneorum," Witmer translates more literally: "law of homo
geous terms" [Viete 1983] p. 15. 

15Viete's specious algebra may indeed be considered as the first occurrence in mathematics 
of a fully abstract formal system with some complexity. In modern structural terms it could 
be characterized as a graded ring in which the modules are continuous semigroups and in 
which only the homogeneous elements are considered. 
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are as follows: 16 

1. The law of homogeneity: Only magnitudes of the same kind 
(which implies that they have the same dimension) can be com
pared, added, and subtracted (the smaller from the larger). 
2. Within one scale of magnitudes there is an element, called "side" 
or "root" 17 that by multiplication in itself successively generates 
magnitudes of all dimensions within the scale; this induces a num
bering of the dimensions as successive degrees. 
3. Within one scale of magnitudes any two magnitudes can be mul
tiplied; the dimension of the product is the sum of the dimensions of 
the factors. Division is the inverse operation to multiplication; aEY 

magnitude can be divided by a magnitude of smaller dimension, the 
dimension of the quotient is the difference of the two dimensions. 
4. Multiplication is commutative; addition and multiplication inter
act distributively. 
5. Any two magnitudes of the same dimension have a ratio satisfy
ing the usual rules for ratios and proportionalities. Proportionali
ties can be transformed into equivalent equalities by the equivalence 
a : b= e : d ¢:} ad = be. 

With respect to the comparison of Viete's system with that of Descartes it 
is important to note that Viete introduced no unit element with respect to 
multiplication. Viete did not consider ratios as magnitudes but as relations. A 
ratio was not the result of a division of two magnitudes of the same dimension, 
but a relation that two such magnitudes had with respect to their size. In 
adopting this classical conception of ratio Viete rejected the idea that ratios 
(including irrational ones) could be understood and treated as numbers. As we 
have seen, this idea had been explored in connection with the study of ratios 
in terms of their "denomination," and some mathematicians, notably Ramus, 
regarded it as the means to avoid the intricacies of treatment of irrational ratios 
in Elements V and X (cf. Sections 6.2 and 7.3). 

Viete indicated the successive powers of the "side" (d. item 2 above) by Terminology 
the terms "square," "cube," "square-square," "square-cube," etc. 18 Indetermi- and notation 
nate magnitudes of the same dimensions as the side, the square etc. were called 
"length" or "width," "plane," "solid," "plane-plane," "plane-solid," etc. 19 Viete 
then proceeded to introduce rules of symbolic notation and rules for the manip-
ulation of equations involving abstract magnitudes. He used (capital) letters to 
represent the magnitudes, together with a terminological system to indicate the 
dimension. If relevant, he distinguished between unknown and indeterminate (or 

16The list summarizes Chapters 2-4 (pp. 1-8) of [Viete 1591] ([Viete 1983] pp. 14-23). 
17 "Latus," "radix." 
18[Viete 1591] p. 3: "latus, quadratum, cubus, quadrato-quadratum, quadrato-cubum, ... 

"- Viete continued to the 9th dimension. 
19[Viete 1591] p. 3: "1. Longitudo latitud6ve. 2. Planum. 3. Solidum. 4. Plano-planum. 

5. Plano-solidum .... " 
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ABSTRACT MAGNITUDES and the OPERATIONS acting on them -
According to Viete 

Abstract magnitudes: magnitudes that could be joined, separated, and compared, but whose 
further nature was left unspecified; they were represented by letters. 
All operations were performed abstractly, that is, they were represented symbolically. 
There was no unit element. 

Operation Vietean Change of Corresponding Corresponding 
notation dimension operation(s) on operation(s) on 

numbers geometrical 
magnitudes 

Adding two + No Adding Joining 
magnitudes of the 
same dimension 

Subtracting two - No Subtracting Cutting off 
magnitudes of the 
same dimension 

Multiplying two in dim(A in B) Multiplying Making a 
magnitudes of equal = dimA + rectangle 
or different dimB 
dimensions 

Dividing a - dim(~) = Dividing Applying a 
magnitude by dimA-dimB rectangle 
another of lower 
dimension 

Forming a ratio of No The ratio was Forming a ratio Forming a ratio 
two magnitUdes of special a relation, 
the same dimension symbol not a 

magnitude 

Extracting square "Latus" dim(Latus Root extraction Determining 
or higher-order or [order k] M) the side of a 
(k-th) roots of "Radix:" = (dimM)jk square, a cube, 
magnitudes whose order etc. (NB not 
dimension is a indicated determining 
multiple of k by 'q', 'c' mean 

etc. proportionals 
because they 
have the same 
dimension) 

Solving equations Solving Constructing 
equations problems 

Table 8.1: Abstract magnitudes - Viete 
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given) magnitudes by using vowels for the former and consonants for the latter. 
He usually took an unknown, A, as the "side" generating, by multiplication in 
itself, the sequence of magnitudes mentioned in item 2 above; these he denoted 
as "A, A quad., A cub., A quad.quad.," etc. Indeterminate magnitudes were in 
principle indicated by single letters with an indication (sometimes abbreviated) 
of the dimension, for instance: "B planum, C solidum, D plano-planum," etc .. 

As the magnitudes were unspecified, the execution of the operations could 
not be specified either; the magnitudes were merely represented by letters and 
the operations were executed abstractly, namely by expressing their result in 
words or in notation. The operations were denoted by "plus" or "+," "minus" 
or "-," "in" (for multiplication), and the horizontal bar for division. In general 
Vii~te used few symbols apart from these, whereby his equations are often nearer 
to sentences than to formulas. A characteristic Vietean equation, in translation, 
reads as: 

X squared times thrice E minus E cubed will be equal to X squared 
times B.20 

This is the equation for the trisection of an angle; in a circle of radius X, E is 
the unknown chord subtending a third of the given angle whose chord is B. In 
modernized notation the equation is: 

(8.1) 

where E is the unknown. 

It may be noted that Viete assumed division to be possible within one scale Existence 
of magnitudes (cf. item 3 above). Thus implicitly he presupposed that for any questions 
magnitudes a and b with dim b > dim a there is a magnitude x such that ax = b. 
In modern terms this presupposition implies (as is easily seen) that within one 
scale the sets Mn consisting of the magnitudes of dimension n are isomorphic 
- which most likely conforms to Viete's idea of magnitude. 

In Viete's dimensional interpretation, root extraction can only be performed 
on magnitudes with appropriate dimension. The cubic root of a three-dimensional 
magnitude D sol. was the one-dimensional magnitude A, satisfying A cub. = D 
sol. Viete probably assumed that, provided the magnitudes were continuous, 
such an A did exist, but he made no general statements on this issue. His gen
eral symbolic calculus was independent of whether radicals or roots of equations 
existed. The actual effectuation of root extraction or equation solving did not 
belong to specious logistics; these procedures depended on the special nature of 
the magnitudes. If the magnitudes were numbers, extracting a cubic root was a 
numerical, in general merely approximate, procedure; if they were geometrical, 
cube root extraction required some construction procedure, involving two mean 
proportionals; for abstract magnitudes the actual effectuation of the extraction 
of cubic roots was meaningless. 21 

20[Viete 1615b] pp. 301: "X quadratum in E ter, minus E cubo, aequetur X quadrato in 
B." Cf. [Viete 1983] p. 445. 

21Thus in a passage on mean proportionais in [Viete 1631b] (Prop. 5 p. 15, cr. [Viete 1983] 
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8.4 The "New Algebra" and the operations 
of arithmetic and geometry 

The Viete usually reserved the term specious logistics for that part of his new 
effectuation of algebra that dealt with abstract magnitude and in which therefore no assump-

operations tions could be made about the actual effectuation of the algebraic operations. 
But the new algebra was developed to serve in the solution of problems in either 
arithmetic or geometry and for that purpose the operations had actually to be 
performed. The double link between the actual operations and specious logis
tics was provided by zetetics and exegetics or rhetics. Zetetics translated the 
arithmetical or geometrical problems under consideration in the general terms 
of specious logistics. In exegetics or rhetics the results gained by applying the 
general methods of specious logistics were retranslated back in the context of 
the original problems, arithmetical or geometrical as the case might be. This di
vision of tasks among the parts of analysis implied that there was no "specious" 
exegetics or rhetics. In arithmetical context the exegetics interpreted the final 
equation provided by specious logistics as a numerical one and calculated its 
solution, whereas in geometrical context exegetics derived from this equation a 
geometrical construction of the problem. 

Three of Viete's treatises concern exegetics, two in geometrical and one in 
numerical context. The numerical treatise was On the numerical resolution of 
powers for exegetics,22 which explained the algorithms for root extraction and 
the solution of numerical third-degree equations. 

Geometrical The first of the geometrical exegetic treatises, A canonical survey of geo-
exegetics metrical constructions23 concerned the geometrical effectuation of the algebraic 

operations as far as they could be achieved by the Euclidean means of con
struction, circles and straight lines. Line segments a and b could be added 
and subtracted; their product, a rectangle with the sides a and b (rect.(a, b)), 
could be formed. To any rectangle with sides a and b an equal square could be 
constructed by taking the mean proportional c of a and b; if rect.(a, b) was to 
be divided by some line segment d, the third proportional e of d and c (Le., e 
satisfying d : c = c : e) was the quotient. 24 Viete then proceeded to the solution 
of quadratic equations, that is, the geometrical construction of their roots; one 
of his constructions was discussed above (Construction 4.4). 

Viete's Euclidean effectuations of the quadratic operations were neither new 
nor subtle, but his treatise on the subject testified to the thoroughness with 
which he pursued his program of a general logistics with various exegetics de
pending on the nature of the magnitudes. 

pp. 36-37) Viete explained that a series of, say, four mean proportionals between two one
dimensional magnitudes A and B could be "exhibited" by: A, q'A4B, q'A3B2, q'A2B3, 
q' AB4, B (his sign for if was "Latus qc." for "Latus quadrato cubum"). He did not at that 
point discuss whether these radicals existed and how they were to be achieved. 

22[Viete 1600b]. 
23[Viete 1592]. 
24[Viete 1592] Props 1-6, pp. 229-231, [Viete 1983] pp. 371-374. 
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In the second treatise on geometrical exegetics, The supplement to geome
try,25 Viete turned to the construction of geometrical problems whose analysis, 
by zetetics and poristics, led to third- or fourth-degree equations. He proved 
that all such problems could be reduced either to the trisection of an angle 
or to the determination of two mean proportionals between two line segments; 
he gave constructions of these problems by neusis. I return to these Vietean 
constructions in Chapter 10. 

Viete's new algebra constituted the first major development in the principal A new urgency 
dynamics within early modern geometrical problem solving: the introduction about 
of algebraic methods of analysis. This development necessitated a rethinking constructions 
of the methods of construction. Algebraic analysis made clear the extent and 
some of the structure of the class of non-plane problems. No longer could 
these problems be seen as exceptional cases to be dealt with when and if they 
occurred; for advanced geometrical problem solving they were the rule rather 
than the exception. 

On the other hand, the new analysis gave no guidance in choosing construc
tions and interpretating their exactness. For instance, the property of one of 
the two mean proportionals between two line segments a and b, was adequately 
expressed by the equation 

(8.2) 

as well as by the explicit algebraic expression of the root of this equation: 

(8.3) 

But when it came to constructing this mean proportional these equations gave 
no direct help. Even when, as here, an explicit algebraic expression could be 
given for the root, the question remained how x was to be constructed; the 
translation of the algebraic symbol of a cubic root into a geometrical procedure 
was not a self-evident matter. I explain Viete's approach to these questions in 
Chapter 10. 

8.5 The significance of Viete's "New Algebra" 

Viete's work constituted a most important step in the development of sym- Symbolic 
bolic algebra; the great abstractness of his system and his introduction of letters representation 
to represent indeterminates combine to justify such an assessment. Yet Viete underestimated 
himself appears to have underestimated the value of symbolic representation; 
his love was in words and sentences, not in abbreviations and symbols. He was a 
prolific creator of technical terms, preferably of Greek origin. He did not invent 
new symbols and used only a few (mainly +, -, and the quotient bar), relying 
rather on abbreviations in those cases where the typography did not allow him 
to write out the technical terms in full (with their correct declension). As a 

25 [Viete 1593]. 
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result Vi?~te's algebra was yet rather involved as regards mathematical formula
tion and thereby he and his followers did not harvest the full versatility, clarity, 
and power that algebra could have provided. However, this was caused by in
complete symbolization rather than by any obstacle intrinsic in the system; in 
particular, the dimensional interpretation of the magnitudes and the resulting 
necessity of homogeneity did not produce the complexity. 

Also in another sense Viete and his early followers did not gather all the 
benefits of his symbolic algebra - they did not apply it to the study of curves. 
The first to do so were Fermat and Descartes, more than forty years after 
Viete began publishing his new methods. Descartes' first motivation to do so 
concerned locus problems (cf. Chapter 19). Fermat (cf. Section 13.1) stated the 
correspondence between equations in two unknowns and curves in the context 
of constructing solid problems by the intersection of conics. He used equations 
to describe these conics; apart from that, he only employed techniques that 
were available already to Viete. Had Viete opted, in the classical manner, for 
construction by the intersection of curves, he might well have been led to the 
relation between curves and equations. Thus we may consider Viete's adoption 
of the neusis as postulate to supplement geometry and his interest in special 
problems and standard forms of equations in one unknown, as reasons for a 
delay in the development of analytic geometry. 

A proliferation of terminological subtleties, an underestimation of symbolic 
notation, and an interest deflected from curves, were obstacles for a full deploy
ment of the powers of algebra within the Vietean school. Yet this should not 
detract from the value of Viete's achievement. By introducing the use of let
ter symbols for general indeterminate and unknown magnitudes, Viete provided 
mathematics with what was to become the most essential means of communicat
ing mathematical argument. The importance of this event can hardly be overes
timated. Moreover, his "new algebra" was an abstract and daring mathematical 
creation, totally untypical of the period, elaborated with great consistency and 
thoroughness. It strikes the late-twentieth-century reader as remarkably mod
ern in its abstract axiomatic approach, and it testifies to Viete's deep awareness 
of the foundational issues of mathematics. Indeed, it seems that in his case, 
as in Descartes' later, few if any of the epigones appreciated the philosophical 
motivation and subtleties of the system their master had created. 

8.6 Another approach: Van Ceulen 

In his Geometry of 1637 Descartes gave an alternative approach to introducing 
algebra into geometry. Like Viete he did not use the number concept as vehicle 
for the merging of algebra and geometry, but redefined the algebraic operations 
so as to be applicable outside the domain of numbers. Like Viete, he also realized 
and elaborated the consequences of his innovation with respect to the concept 
of construction. However, Descartes avoided the requirement of homogeneity 
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and the resulting scales of successive dimensions. He did so - as we will see 
(Chapter 21) - by introducing a unit segment. 

In view of the two different approaches, it is of interest here to discuss a 
third, less elaborate attempt to use algebraic operations in geometry, which was 
chronologically intermediate between the two others. The author of the attempt 
was Van Ceulen, and it was published in the work, discussed above (Section 7.4), 
which Snellius edited after his death. The title of the volume well indicated the 
interest of its author in the numerical, the algebraical, as well as the geometrical 
approach to problems: 

Arithmetical and geometrical elements, with their uses in solving var
ious geometrical problems, partly by the tracing of lines only, partly 
by irrational numbers, sine tables and algebra. 26 

The third book of this work contained an attempt27 to explore the correspon
dence between the arithmetic of irrational numbers of the form a + Vb (with a 
and b rational numbers) and the geometry of line segments. Van Ceulen intro
duced a unit length ("famosa mensura," cf. above Section 7.2) to relate lengths 
to numbers, but he realized that the algebraic operations still had to be trans
lated into geometrical ones, that is, into constructions. Thus he showed that, 
given the unit, any length a + Vb could be constructed (by straight lines and 
circles), and that, conversely, when any such length was given, the unit could 
be constructed. He then proceeded to explain the geometrical equivalents of the 
arithmetical operations. Addition and subtraction were obvious. Multiplication 
involved the unit. 

Van Ceulen's treatment of multiplication is interesting, if alone because Des- Multiplication 
cartes later adopted another one. He formulated it as a problem: 

Problem. The rectangle, formed by two lines whose lengths are 
defined with respect to an assumed unit, has to be applied along 
that unit. 28 

Thus the unit played a role in Van Ceulen's interpretation of multiplication; the 
product of two line segments a and b was not the rectangle with sides a and b but 
a rectangle with the same area and one side equal to the unit. The other side 
of this rectangle was, as geometers well knew, the fourth proportional between 
the unit, a and b. Van Ceulen's solution of the problem is a construction of 
that fourth proportional, but not the usual Euclidean one of Elements VI-12. 
Van Ceulen did not use symbols for indeterminate numbers and therefore had 
to explain the operation by an example, for which he chose the numbers 3 and 
VI9. He gave the following construction. 

26[Ceulen 1615b]. 
27[Ceulen 1615b] pp. 105 sqq. 
28[Ceulen 1615b] p. 112, Prop. 33: "Rectangulum a duabus lineis in assumpta mensura 

longitudine definitis comprehensum ad ejusdem unitatem applicare." 
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A B 

1-
3--

"'/19---

Figure 8.1: Multiplication of line segments - Van Ceulen 

Construction 8.1 (Multiplication of line segments - Van Ceulen)29 
Given: a unit length (see Figure 8.1) and two segments of lengths 3 and JI9, 
respectively. It is required to construct a line segment with length equal to the 
product of 3 and v'I9. 

Construction: 
1. Mark AO = 3 and OB = v'I9 along a line. 
2. Along any other line through 0 mark OC equal to the unit. 
3. Draw a circle through A, B, and C; it intersects CO prolonged 
in D. 
4. OD is the required line (that is, the rectangle with length OD 
and unit width is equal to the rectangle with sides of length 3 and 
v'I9). 
[Proof: By Elements III-35 rect(OA, OB) is equal to rect(OC, OD).] 

In the example the length of the resulting segment is 3v'I9. Yet Van Ceulen 
did not take the step of stating that therefore the product of the two segments 
OA and OB would be equal to the segment OD. And Snellius added a rather 
confusing note30 to the effect that the product of two line segments certainly 
was an area and not a line.31 

29 [Ceulen 1615b] p. 112-113. 
30[Ceulen 1615b] p. 113. 
31 Remarkably, Bombelli had used a similar construction based on Elements 111-35 and on 

the use of a unit length for a geometrical interpretation of solving the equation ax = b. He did 



Conclusion: numbers, algebra, and geometrical construction 157 

Proceeding in this way Van Ceulen achieved a complete correspondence be- Significance 
tween quadratic irrational numbers and line segments in geometrical figures gen-
erated by Euclidean constructions starting from the unit length. He applied it to 
various problems, and used it in his fourth book for calculating the quadratic ir-
rationals occurring in various geometrical configurations. Snellius provided this 
fourth book with a title suggesting that numbers could replace classical geo-
metrical analysis: "On the numerical solution of geometrical data.,,32 This title 
may have contributed to Kepler's anger about the book (cf. above Section 7.4). 

Van Ceulen's treatise shows that the issue of correlating the algebraic and 
the geometrical operations remained alive in the period between Viete and Des
cartes. Apparently Viete's consistent separation between numbers and geometry 
was too high a price for Van Ceulen to pay for the use of algebra; he favored a 
more direct connection by the introduction of a unit length. On that basis he 
worked out the geometrical constructions corresponding to the quadratic alge
braic ones, but he did not pursue the matter to higher-order equations and thus 
was not confronted with questions of construction beyond circles and straight 
lines. 

8.7 Conclusion: numbers, algebra, 
and geometrical construction 

We have seen that, rather than introducing numbers into geometry, math- Number and 
ematicians prefered redefining the algebraic operations so as to apply for geo- construction 
metrical magnitude. Consequently the issue of construction remained alive -
introduction of numbers would have made construction superfluous by reduc-
ing geometrical problem solving to calculation. Yet on a longer time scale the 
transfer of algebra into geometrical context was part of the process whereby 
number infiltrated and finally took over geometry, in the sense that geometry 
came to be the study of spaces over number fields or fields in general. How-
ever, this process, which did entail a considerable loss of interest in geometrical 
constructions and their exactness, was hardly, if at all, in evidence in the early 
modern period, and the debates on construction were virtually independent of 
the discussions on the introduction of number into geometry. 

Not only did the the issue of construction remain alive while algebraic meth- Reconsidering 
ods of analysis were introduced in geometry, this introduction - the principal construction 
dynamics within the field of geometrical problem solving - actually induced a procedures 
new concern about constructional procedures. In conclusion of this chapter I 
summarize the principal aspects of this development. 

First, from an algebraic point of view there was no reason for a restriction 
to quadratic operations, that is, to operations that could be performed geomet-

so in a projected fourth book of his Algebm; this fourth book, however, was not published at 
the time. [Bombelli 1572] only contained books 1-3, books 4 and 5 remained in manuscript 
until 1929 (cf. [Bombelli 1929]). For details see [Giusti 1992], pp. 309-311. 

32[Ceulen 1615b] pp. 137-183: "De (dedomenoon) geometricorum per numeros solutione." 
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rically by means of straight lines and circles. Geometrical equivalents had to be 
found for cube root extraction and in general the solution of higher-degreeequa
tions. Thus geometers were forced to choose methods for constructing beyond 
straight lines and circles and to legitimate their choices. 

Second, the algebraic translation of geometrical problems into equations in
troduced a new method of surveying and classifying these problems. One aspect 
of this was the tendency within the Vietean school to search for matching sets 
of standard geometrical problems and standard equations. In general such clas
sifications of problems and equations made clear what the extent should be of 
a complete theory of geometrical construction: To solve "all problems" entailed 
dealing with all polynomial equations in one unknown. Geometrical problem 
solving in its full generality meant finding geometrical procedures to construct 
the roots of any equation. We will see that Descartes fully realized this extent 
of the program of geometry. 

Third, there was an interaction between the choice of methods of construc
tion and the algebraic study of curves. Pappus had advocated construction by 
intersection of curves. But his book also paid considerable attention to alter
native constructions, such as by neusis or reduction to standard problems, and 
these alternatives were more popular in the decades after the publication of the 
Collection. As we have seen, Viete's lack of interest in construction by conics 
may well have delayed the development of analytic geometry. 

Fourth, it should be noted that although the adoption of algebraic methods 
made questions about construction acute and pressed for generality in their 
investigation, it did not provide clues for the interpretation of exactness with 
respect to geometrical construction. Here the principal dynamics in their field 
forced geometers to forge new answers but it provided no guidance. In the next 
chapters I review the reactions of various mathematicians to that challenge. 



Chapter 9 

Clavius 

9.1 Introduction 

Having reviewed in the previous five chapters the early modern tradition of Principal 
geometrical problem solving, the emergence of algebraic analysis as the principal methodological 
dynamics in that field, and the questions of legitimation that were raised in questions 
relation to this process, I now turn to the actual debates on the interpretation about 
of geometrical exactness with respect to constructions. construction 

After the appearance of Commandino's edition of Pappus' Collection in 1588, 
the principal methodological questions with respect to geometrical construction 
were clear (cf. also Section 3.7). Constructions should be performed by geomet
rically acceptable means and they should be as simple as possible. Thus the 
questions were: 

A. Which means of construction are acceptable in geometry for solv
ing problems that cannot be solved by straight lines and circles? 
B. How should the constructions by acceptable means be classified 
according to simplicity? 

Pappus' classification, his precept, and the examples of constructions in his work 
had articulated these questions and had provided answers, be it that Pappus' 
practices of construction were not always consistent with his general statements. 
Nevertheless, by the 1590s the discussions on geometrical exactness had a defi
nite object and a clear structure. The object was geometrical construction, and 
the questions of acceptability and simplicity provided the structure. 

The next chapters sketch the pre-Descartes debates on the exactness of 
constructions by presenting the opinions of five mathematicians that represent 
archetypal positions with respect to the interpretation of exactness. The present 
chapter introduces the first of these mathematicians, Clavius; the others are 
Viete, Kepler, Molther, and Fermat. I discuss the debates in a more general 
way in Chapters 14 and 28. 
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Christoph Clavius (1537-1612) was one of the most influential mathemati- Clavi1 
cians around 1600. Several of his constructions have been discussed in earlier constl 
chapters (Constructions 4.3, 4.8, 4.9, 4.18). His strength was in editing and 
commenting on classical texts and in composing textbooks. The textbooks, 
although not very innovative, were solid and comprehensive. His works were 
widely used throughout the seventeenth century; Descartes, for instance, was 
taught mathematics from Clavi us' works. 1 

At a number of places in these books Clavius dealt with geometrical con
structions and the criteria for accepting them as genuinely geometrical. In his 
treatment of the matter we recognize the first effects of the Collection, be it that 
he was inspired by Pappus' constructions themselves rather than by his clas
sification and precept. Clavius' arguments on geometrical exactness had much 
more precision than earlier ones such as those discussed in Chapter 2, and he 
was the first to take up a theme that was to become crucial later on, namely, 
the legitimacy of various methods of generating curves, in particular tracing by 
motion and pointwise construction. 

The most informative item in Clavius' work with respect to construction 
was a small treatise on the quadratrix, composed in 1588-1589. His textbook 
on practical geometry of 1604 also contained relevant remarks. In the present 
chapter I confine myself to these two sources and use them to assess Clavius' 
interpretation of the exactness of geometrical constructions. 

9.2 The treatise on the quadratrix 

Publication In 1574 Clavius published an edition of Euclid's Elements with notes and ad-
ditions. 2 It was a successful work and a second, much enlarged edition appeared 
in 1589.3 A year before,4 Clavius had read the passages on the quadratrix in 
book IV of Pappus' Collection (cf. Section 3.2). These inspired him to compose 
a small separate treatise on this curve, which he inserted after the sixth book 
of the Elements. 5 The treatise was also incorporated in his Practical Geometry 
of 1604.6 Both the Euclid edition and the Practical Geometry were reprinted 
in Clavius' Mathematical Works of 1611-1612, so that the treatise even recurs 
twice in that work. 7 

Clavius gave his treatise the title: 

On the amazing nature of a certain curved line, by help of which a 
figure of arbitrarily many equal sides can be inscribed in a circle, and 

ICf. [Milhaud 1921]' p. 235. 
2[Euclid 1574]. 
3[Euclid 1589]. 
4Cf. [Euclid 1589], vol. 1, p. 894: "Forte superiori anno incidi in librum 4 Pappi Alexandrini 

.... " Clavius may have read the passage in the printed edition [Pappus 1588J or in one of 
the then extant manuscripts, d. Chapter 3, Note 1. 

5[Euclid 1589], vol. 1, pp. 894-918. 
6[Clavius 1604] pp. 359-370. 
7[Clavius 1611-1612] vol. 1, pp. 296-304; vol. 2, pp. 188-194. 
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the circle can be squared, and many other things can be performed, 
very pleasing to know.8 

As the title indicated, Clavius claimed no less than having found the gen- The quadmtrix 
uinely geometrical constructions of all regular polygons, and the quadrature of 
the circle. In the treatise he also gave the construction of the general angular 
section. His starting point was Pappus' treatment of the quadratrix in Book IV 
of the Collection; the constructions he gave were basically the same as Pappus' 
(cf. Definition 3.3, Construction 3.4 and Equation 3.2). What Clavius added 
was an argument why these constructions should be considered as genuinely ge-
ometrical. As the constructions presupposed the quadratrix to be given, he had 
to explain how that curve could be traced, or otherwise given, in a geometrically 
acceptable manner. Pappus had defined the curve by specifying a procedure for 
tracing it by motion, but his remarks about this procedure suggested that its 
geometrical status was dubious. Clavius described Pappus' construction and 
explained the objections to it reported by Pappus, notably the alleged petitio 
principii in the definition (cf. Section 3.2 and Note 15 of Chapter 3). 

Clavius accepted the objections and concluded that if a better, truly geomet- Clavius' 
rical9 construction of the quadratrix could be given, its use in solving problems construction of 
would be legitimized. He proceeded to provide a construction of the curve that the quadmtrix 
he deemed geometrical. It was a pointwise construction (and not a very sur-
prising one, given the definition of the curve): 

Construction 9.1 (Quadratrix - Clavius)lO 
Given: a square OACB (see Figure 9.1); it is required to construct the quadmtrix 
within the square. 

Construction: 
1. Draw the quarter arc BA. 
2. Bisect BO and CA in D and E, respectively; draw DE; bisect arc 
BA in F, draw OF, OF intersects DE in G; G is on the quadratrix. 
3. Bisect BD and CE in D' and E', respectively; draw D'E'; bisect 
arc B F in F'; draw OF'; OF' intersects D' E' in G'; G' is on the 
quadratrix. 
4. Repeat this procedure with other segments and corresponding 
arcs until sufficiently many points on the quadratrix are determined. 
5. "The quadratrix line should be drawn through these points in an 
appropriate way, so as not to be sinuous, but it should at all times 

8[Euclid 1589] vol. 1, p. 894: "De mirabilia natura lineae cuiusdam inflexae, per quam et 
in ci'rculo figura quotlibet laterum aequalium inscribitur, et circulus quadratur, et plura alia 
scitu iucundissima perficiuntur." Compare the remarks on Clavius' treatise in [Gabe 1972] 
pp. 120-128 and [Mancosu 1996] pp. 74-77. 

9[Euclid 1589] vol. 1, p. 895: "geometrice." 
lO[Euclid 1589] vol. 1, pp. 895-896. 
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Figure 9.1: Pointwise construction of the quadratrix - Clavius 

continue smoothly, making no bents or angles anywhere." 11 

6. To construct point H, the intersection of the quadratrix with 
the axis OA (which cannot be among the points G constructed in 
5) mark points below OA laying symmetrically with points on the 
quadratrix above the axis near H; draw a curved line through these 
points on both sides; its intersection with OA gives H "without 
noticeable error, that is, an error which can be detected by the 
senses." 12 

[Proof: The construction employs the property of the quadratrix 
expressed in Equation 3.1.] 

Like the construction of the cissoid and the proportionatrix (Definitions 4.10, 
3.5) discussed above, this construction of the quadratrix is a pointwise construc
tion, that is, a procedure whereby arbitrarily many points, evenly spaced along 
the curve, can be found. 

9.3 The geometrical status of the construction 

Such, then, was the construction that in 1589 seemed so convincingly geomet-

11 [Euclid 1589] vol. 1, p. 896: "per ea puncta quadratrix linea congruenter ducenda est, ita 
ut non sit sinuosa, sed aequabiliter semper progrediatur nullum efficiens gibbum, aut angulum 
alicubi." 

12[Euclid 1589] vol. 1, p. 896: "sine notabili errore, qui scilicet sub sensum cadat." 
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rical to its author that he dared advance the claim to have solved the classical 
problems of squaring the circle, dividing the angle, and constructing regular 
polygons. The claim was far-reaching, it implied an extension of the arsenal of 
legitimately geometrical means of construction and thereby a new interpretation 
of geometrical exactness. Not surprisingly, Clavius felt the need to justify this 
step. 

Clavius' principal argument was that his construction was more accurate 
than Pappus' procedure of tracing the curve by motion. However, the terms he 
used in describing how the curve should actually be drawn, make clear that he 
did not claim absolute precision for his own construction. Moreover, he later 
added a variant of the construction from which it appears once more that he 
aimed at great but not at ultimate precision. In this variant construction 13 
Clavius skilfully avoided intersections of straight lines and circles under small 
angles, thus steering clear from situations in which the use of a ruler and a 
compass gave notably imprecise results. 

Clavius further claimed that, as to precision, his construction compared 
favorably with the usual pointwise constructions of conic sections. These con
structions were performed by repeatedly determining a mean proportional, 14 
and Clavius considered the construction of a mean proportional (cf. Construc
tion 4.2) as less precise than the bisections he used in finding points on the 
quadratrix. He concluded: 

Hence unless someone wants to reject as useless and ungeometrical 
the whole doctrine of conic sections which Apollonius of Perga has 
pursued with such acuity of mind that because of that he has been 
called a great geometer . . . one is forced to accept our present 
description of the line as entirely geometrica1.15 

And, he added, not only would Apollonius' work be repudiated by reject
ing pointwise constructions,16 but also the achievements of Archimedes and 

13The addition of the variant construction occurs in the re-edition of the Elements in 1603 
([Euclid 1603]) and in the Practical Geometry [Clavius 1604] p. 361; it also occurs in both 
versions of the quadratrix treatise in [Clavius 1611-1612] (vol. 1, p. 297 and vol. 2, p. 190). 

14cf. Note 16. 
15 [Euclid 1589] vol. 1, pp. 897-898, the full text is: "Haec igitur est descriptio quadratricis, 

quae geometrica appellari potest, quemadmodum et conicarum sectionum descriptiones, quae 
per puncta etiam fiunt, ab Apollonio traditur, geometricae dicuntur, cum tamen magis errori 
sint obnoxiae, quam nostra descriptio, propter inventionem plurimarum linearum mediarum 
proportionalium, quae ad earum descriptiones sunt necessariae, quibus in quadratricis de
scriptione opus non est. Quare nisi quis tot am sectionum conic arum doctrinam quam tanto 
ingenii acumine Apollonius Pergaeus persecutus est, ut propterea magnus geometra apella
tus sit, reiiecere velit tanquam inutilem et non geometricam, ... admittere omnino cogetur 
descriptionem hanc nostram quadratricis lineae, ut geometricam." 

16In fact, Clavius was wrong in attributing pointwise constructions to Apollonius; in the 
Conics the construction of the conic sections is performed by the intersection of a cone 
and a plane. However, Apollonius gave properties of the conics that could be readily 
translated into pointwise constructions, and in his commentary Eutocius indeed provided 
such pointwise constructions ([Apollonius Conics] 1-20-21; for Eutocius' commentaries see 
[Apollonius 1891-1893] vol. 2, pp. 232-235); the commentary was available in Commandino's 
edition [Apollonius 1566]. Eutocius' pointwise procedure indeed involved repeated construc-
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Menaechmus, who both used conics, not to mention the great usefulness of these 
curves in gnomonics; moreover, the conchoid of Nicomedes, useful in finding two 
mean proportionals, was also constructed pointwise. 17 Remarkably, Clavius did 
not refer to Pappus' classification or his precept in his defense of the pointwise 
constructed quadratrix. 

Clavius' later In 1589 Clavius presented his case with conviction and confidence; he an-
views nounced his construction of the quadratrix as "geometrice" 18 ("geometrical"), 

and he stated without qualifications that by means of the curve it was possible 
to square the circle, 

a matter which until the present day has kept the minds of mathe
maticians in suspense. 19 

Later Clavius was more cautious about the geometrical status of the pointwise 
construction of the quadratrix. When he reprinted the treatise in his Practical 
Geometry of 1604, he wrote that the pointwise construction of the quadratrix 
was not fully geometrical 

but it is more accurate than all others which I could find until now, 
so by using it in practice we could hardly miss our goal. 20 

And where in 1589 he had written: 

This then is a description of the quadratrix that can be called geo
metrical in the same way as the descriptions of conic sections,21 

he now added a cautious "quodammodo": 

This then is a description of the quadratrix which is in a certain way 
[quodammodo] geometrical... 22 

In the Mathematical Works of 1611-1612 the "quodammodo" was inserted in 
both versions of the treatise. 

tion of geometric means. 
17In the relevant passages of Eutocius ([Eutocius CommSphrCyl] pp. 615-620) and Pappus 

([Pappus Collection] IV-22 (§§ 26-27) pp. 185-187) the conchoid is not constructed pointwise, 
but by a tracing procedure (cf. Section 2.4). Clavius himself gave a pointwise construction of 
the curve in his [Clavius 1604] pp. 301-304. 

18[Euclid 1589] vol. 1, p. 494. 
19[Euclid 1589] vol. 1, p 494: "Quae res ad hunc usque diem animos mathematicorum tenuit 

suspensos." 
20[Clavius 1604] p. 359: "accuratior tamen est omnibus aliis quas hactenus videri potui, ita 

ut practice a scopo aberrare non possimus." 
21 [Euclid 1589] p. 897: "Haec igitur est descriptio quadratricis, quae geometrica appellari 

potest, quemadmodum et conicarum sectionum descriptiones." 
22[Clavius 1604] p. 362: "Haec igitur est descriptio lineae quadratricis geometrica quo

dammodo, quemadmodum et conicarum descriptiones." Elsewhere (p. 362) he made a similar 
change: "admittere omnino cogetur hanc descriptionem nostram quadratricis lineae esse quo
dammodo geometricam" - the "quodammodo" was not there in the 1589 text. 
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It seems, then, that Clavius' belief in the geometrical legitimacy of his con
struction of the quadratrix lasted for only a short period; by 1604 he had re
turned to the usual sixteenth-century view on construction: truly geometrical 
methods for trisecting the angle, finding two mean proportionals, and squaring 
the circle had not (yet) been found. In the section on two mean proportionals in 
the Practical Geometry, for instance, he discussed the classical solutions from 
Eutocius' list "although till the present day nobody has truly and geometrically 
found the two mean proportionals between two given straight lines.,,23 True to 
his appreciation for practical precision he presented the constructions attributed 
to Hero, Diocles, and Nicomedes in some detail because he considered them to 
be "the handier, easier ones, less liable to error.,,24 Clavius conceded that the 
other constructions from the list were "most ingenious and subtle,,25 but he did 
not explain them. The constructions by Diocles and Nicomedes employed the 
cissoid and the conchoid, respectively; Clavius added pointwise constructions 
for these curves.26 

We do not know why precisely Clavius withdrew the claim that by his point- Why Clavius' 
wise construction of the quadratrix the angular sections and the circle quadra- change of 
ture could geometrically be performed. The treatise generated at least some mind? 
discussion; in 1592 Van Roomen, for instance, wrote to Clavius, politely but 
with some disappointment, that the construction was attractive but of no help 
in calculations. But Van Roomen did not comment on the geometrical status 
of Clavius' procedure.27 In a book on cyclometry published in 161628 Lans-
bergen referred to Clavi us' attempt to overcome the classical objections against 
the quadratrix by a pointwise construction. He suggested that the great Greek 
mathematicians would have been aware of the possibility to construct the curve 
in such a way and that Clavius himself would have to admit that the very point 
of intersection of the quadratrix and the axis could not be constructed in this 
way. 

9.4 Clavius' interpretation of geometrical 
exactness 

As we have seen, in most of his works Clavius displayed a rather traditional Idealization of 

23[Clavius 1604] p. 297: " ... quamvis nemo ad hunc usque diem, vere ac geometrice duas 
medias proportionales inter duas rectas datas invenerit." Elsewhere in the Pmctical Geometry 
(p. 399) the trisection received a similar comment; it was much studied but "until the present 
day not solved geometrically by anybody" ("Neque ab ullo ad hunc usque diem geometrice 
est solutum"). 

24[Clavius 1604] p. 297: "quos commodiores, facilioresque et errori minus abnoxios iudicav-
imus." 

25[Clavius 1604] p. 297: "quamvis acutissimis subtilissimisque." 
26[Clavius 1604] pp. 297-304. 
27[Bockstaele 1976] p. 94. 
28[Lansbergen 1616] pp. 37-38. 

practice 



166 9. Clavius 

attitude to geometrical exactness: he gave no positive criteria for geometri
cal legitimacy and he maintained that the classical problems had not yet been 
geometrically solved. During a brief period, however, inspired by Pappus' treat
ment of the quadratrix (but not, apparently, by his classification and precept) 
Clavius held a more exposed (and more interesting) view, defending a new in
terpretation of the exactness of geometrical constructions. Although he did not 
formulate his position explicitly, we may characterize it as the assumption that 
criteria of exactness in pure geometry should be parallel to criteria of precision 
in geometrical practice. 

Thus Clavius took practical precision as guideline for deciding on geometrical 
exactness and therefore his approach belongs to the category that in Section 1.6 
I have called "idealization of practical methods." Yet he did not explain why the 
criteria of pure and practical geometry should be parallel. In fact, the distinction 
between practical and pure geometry remained opaque in his arguments. We 
will see in Chapter 12 a more explicit justification of the passage from practical 
precision to pure geometrical exactness, provided by Molther in 1619. 

Influence Interesting though Clavius' venture was, its direct influence on later math-
ematicians was presumably limited, especially because he soon mitigated his 
statements. Yet his treatise probably helped to generate an interest in the 
pointwise construction of those curves that themselves served the construction 
of particular geometrical problems. Indeed Clavi us' attempt to legitimate con
structions involving curves ~ in his case the quadratrix ~ showed that if one 
did not accept authority or mere postulate as a basis for such a legitimation, 
the legitimatory arguments should concern the process of generating the con
structing curves. Descartes was the first to pursue this line of argument in great 
depth. He was aware of Clavius' treatise and, as we will see in Section 24.3, 
probably several of his arguments arose in direct critical reflection on Clavius' 
pointwise construction of the quadratrix. 



Chapter 10 

Viete 

10.1 A new postulate 

In Chapter 8 I have discussed Viete's crucial role in the creation and un- Treatises on 
derstanding of algebraic methods of analysis. The present chapter is devoted construction 
to his ideas about construction. As we have seen, Viete· considered problem 
solving by means of algebra as consisting of three parts, zetetics, poristics, and 
exegetics. Construction belonged to the exegetical part of geometrical problem 
solving. Two of Viete's treatises were specially devoted to geometrical exegetics, 
namely, A canonical survey of geometrical constructions l and The supplement 
of geometry.2 I therefore first deal with Viete's opinion on construction as 
expressed in these works. 

The Canonical survey concerned quadratic equations only; the constructions A new 
in that case were classical Euclidean. The Supplement of geometry dealt with postulate 
geometrical problems that led (by zetetics and poristics) to third- or fourth-
degree equations. Here the Euclidean constructions no longer sufficed; Viete 
confronted the methodological question of construction beyond straight lines 
and circles. He presented an answer and the importance he attached to this 
answer is reflected in the title of the treatise: Geometry was in need of a "sup-
plement:" the reason was precisely the absence of means of construction beyond 
straight lines and circles. Earlier, at the end of his programmatic introductory 
treatise, the Isagoge of 1591, Viete had announced how that defect should be 
amended: 

In order that, so to say, geometry itself supplies a deficiency of geom
etry in the case of cubic and biquadratic equations, he [the learned 
analyst] assumes, when dealing with cubes and squared squares, that 
it is possible 

1 [Viete 1592]. 
2[Viete 1593]. 
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to draw, from any given point, a straight line intercepting 
any two given lines, the segment included between the two 
lines being prescribed beforehand, and possible. 

This being conceded (it is, moreover, not a difficult assumption) 
famous problems that have heretofore been called irrational can be 
solved artfully: the mesographic problem, that of the trisection of an 
angle, finding the side of a heptagon, and all others that fall within 
those formulae for equations in which cubes, either pure or affected, 
are compared with solids and fourth powers with plano-planes.3 

The assumption was not new: it was the classical "neusis": Given two lines, a 
point 0 and a segment a, to draw a straight line through 0 intersecting the two 
lines in points A and B such that AB = a (cf. Problem 2.4 and 3.7). New was 
that Viete emphatically gave it the position of a postulate and decided to use 
it as the preferred construction beyond straight lines and circles. By accepting 
it as a postulate Viete circumvented the question of how the neusis was to be 
effectuated; it was, he implied, as obviously possible a procedure as drawing 
straight lines and circles. In particular the postulate status made reference to 
construction by conics or higher-order curves superfluous. Thus Viete's choice 
constituted a significant deviation from Pappus' precept which prescribed that 
solid problems, including neusis, should be reduced to "solid" constructions, 
that is, construction by the intersection of conic sections (cf. Section 3.6). 

10.2 A supplement to geometry 

The neusis The opening sentence of A supplement to geometry took up the line indicated 
postulate at the end of the Isagoge: 

To supply the defect of geometry, let it be conceded 

To draw a straight line from any point to any two given 
lines, the intercept between these being any possible prede
fined distance. 4 

3[Viete 1591J p. 12: "Ad Cubos et Quadrato-quadrata postulat [sc. Analysta edoctusJ, ut 
quasi Geometria suppleatur Geometriae defect us, A quo vis puncto ad duas quasvis lineas rec
tam ducere interceptam ab iis praefimto possibili quocumque intersegmento. Hoc concesso (est 
autem (aitema) non (dusmechanon)) famosiora, quae hactenus (aloga) dicta fuere, problemata 
solvit (entechnoos), mesographicum, sectionis anguli in tres partes aequales, inventionem lat
eris Heptagoni, ac alia quotcumque in eas aequationum formulas incidunt, quibus Cubi solidis, 
Quadrato-quadrata Plano-planis, sive pure sive cum adfectione, comparantur." (The transla
tion is a modified version of [Viete 1983J p. 32.) On the interpretation of the term "possible" 
see Note 4. 

4 [Viete 1593J p. 240: "Ad supplendum Geometriae defectum, concedatur A quovis puncto 
ad duas quasvis lineas rectam ducere, interceptam ab iis praefinito possibili quocumque inter
segmento." (Cf. the translation in [Viete 1983J p. 388.) By adding the word "possible" Viete 
evidently wanted to exclude cases in which no solution of the neusis existed. Such absence of 
solutions might occur if the segment had to be located in the same quadrant as the pole of 
the neusis or if a segment had to be inserted between a circle and a line outside the circle. 
In these cases the segment has to be larger than a certain minimum value. In the cases oc-
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Viete explained that the given lines could be either two straight lines or one 
circle and a straight line. 

Viete added a few short paragraphs with further comments.s He mentioned 
that Nicomedes' conchoids were probably devised in order to perform the neu
sis construction and that Archimedes accepted the postulate without question. 
But, he wrote, Archimedes had also accepted the tracing of parabolas and spi
rals, and he went on to criticize Archimedes' use of the spiral in rectifying the 
circle. He then added that it would be better to postpone further discussion of 
these matters until after the explanation of angular sections - but I have not 
been able to locate such a discussion in Viete's published work. The comments 
did not explicitly deal with the status of the postulate, indeed Viete provided 
hardly any justification of this status. Yet his readers could easily interpret the 
critical tone toward Archimedes' use of the spiral as casting doubt as well on 
his and Nicomedes' use of curves like the parabola and the conchoid. 

The main aim of A supplement to geometry was to show the power of the neu- Main result 
sis postulate. Viete did so by proving an elegant and striking result; he showed 
that any geometrical problem leading to a third- or fourth-degree equation could 
be reduced to either finding two mean proportionals between two given lines, or 
to trisecting a given angle. The result established the true centrality of the two 
classical problems within a large class of non-plane problems. Through Pappus' 
Collection it was known that both these classical problems could be constructed 
by a neusis (cf. Constructions 2.6 and 3.9), and thus by supplementing geom-
etry with the neusis postulate all problems leading to equations of degree less 
than five were duly brought within the power of legitimate geometry.6 We will 
see (cf. Section 16.4) that the central position of the two classical problems, 
constructing two mean proportionals and trisecting an angle, was an important 
theme in Descartes' early studies on construction. 

As Viete's neusis constructions for two mean proportionals and trisection were Trisection and 

curring in A supplement to geometry solutions do exist. - Note that the terminology here 
provides evidence that construction in early modern mathematics did not concern existence 
(cf. Section 1.1); existence is here presupposed and still constructibility is postulated. 

5 [Viete 1593] p. 240, [Viete 1983] pp. 388-389. 
6It is of interest to restate Viete's result in terms of real extensions of the field Q of rational 

numbers. We may identify the set of numbers constructible by straight lines and circles as the 
smallest real extension field K of Q such that a E K and a > 0 implies Va E K. The set of 
numbers constructible by straight lines, circles, and the construction of two mean proportionals 
is the smallest extension field M of K such that for all a E M also ijii E M. Similarly, the 
set of numbers constructible by straight lines, circles, and trisection is the smallest extension 
field T of K such that for all a E T with -1 < a < 1 the trisection equation 4x3 - 3x = a 
(cf. the proof of Construction 4.6) has three distinct roots in T. In these terms Viete's result 
may be rephrased as stating that any real root of a third- or fourth-degree equation is either 
in M or in T. It is easily seen that the intersection of M and T is equal to K; so Viete's 
division of solid problems into those that are constructible by two mean proportionals and 
those that are constructible by trisection is in fact a division into mutually exclusive classes. 
- I assume that the results mentioned in this note, which are not difficult to derive, can be 
found in recent algebraic literature, but I have been unable to locate a discussion of them. 
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Figure 10.1: Construction of two mean proportionals by neusis - Viete 

crucial in his theory of geometrical exegetics, I discuss them both. Viete did 
not take over the neusis constructions from Pappus' Collection but presented 
others, both closely related to classical procedures. His construction of two 
mean proportionals was as follows: 

Construction 10.1 (Two mean proportionals - Viete)7 
Given: two line segments a and b (a < b) (see Figure 10.1); it is required to 
find their two mean proporiionals x and y. 

Construction: 
1. Draw a circle with center 0 and diameter b; draw a cord AB = a; 
prolong AB to both sides; take Be = a on AB prolonged; draw 
CO; draw AD II CO. 
2. By neusis, draw EFO through 0, intersecting BA prolonged and 
AD in E and F, respectively, such that EF = ~b. 
3. EFO intersects the circle in G and H. 
4. x = EG and y = EA are the two required mean proportionals. 
[Proof: In Proposition 48 of the Supplement Viete had considered 
(see Figure 10.2) two straight lines through a point E intersecting a 
circle in points A, B, H, and G, respectively. Call AB = a, GH = b, 
EG = x, and EA = y. The proposition asserted that if xy = ab (or 
equivalently a : x = y : b), then a : x = x : y = y : b, that is, 

7[Viete 1593] Prop. 5 (p. 243) (Tr. [Viete 1983] pp. 392-394). 
8[Viete 1593] p. 242, [Viete 1983] p. 392. 
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E 

Figure 10.2: Proposition used in the construction 

x and yare the two mean proportionals of a and b. He proved 
Prop. 4 straighforwardly by means of a corollary to Elements III-
36 from which it follows that x(x + b) = y(y + a). Now in the 
constructed figure (Figure 10.1) the neusis implies EF = b/2 = GO, 
hence x = EG = FO. By similarity EF : EA = FO : AG, so 
b/2 : y = x: 2a, whence xy = abo By Prop. 4, then, x and yare the 
two mean proportionals of a and b.] 

A comparison with Nicomedes' construction of two mean proportionals (Con
struction 2.6, Figure 2.6) reveals that Viete's construction is basically the same; 
if one removes the circle and turns the figure over 180 degrees one arrives at 
a configuration much similar to the one below line GK in Nicomedes' figure, 
and the steps in the construction correspond. Viete used the circle in his proof 
of the construction, which is different from Nicomedes'. Viete did not refer to 
Nicomedes; he may have found the construction and the proof independently 
or he may have thought the alternative proof important enough to consider the 
whole construction as independent of Nicomedes'. 

For trisecting angles Viete gave the following neusis construction: 

Construction 10.2 (Trisection - Viete)9 
Given: an angle 'ljJ (see Figure 10.3); it is required to find an angle <p equal to 
one third of'ljJ. ' 

9[Viete 1593] Prop. 9, pp. 245-246 tr. [Viete 1983] p. 398. 
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D 
a 

Figure 10.3: Trisection by neusis - Viete 

Construction: 
1. Draw a circle with center 0 and radius a, and mark the horizontal 
diameter AOB; prolong AB to the left; take C on the circle such 
that LCOB is equal to the given angle 'ljJ. 
2. By neusis, draw DEC through C intersecting AB prolonged and 
the circle in D and E, respectively, such that DE = a. 
3. Draw EO. 
4. Then <p = LEOA will be the required angle; that is, LEOA = 
lLCOB. 
[Proof: DE = EO = OC; the triangles DEO and EOC are 
isosceles; LOEC = 2<p, hence LEOC = 7r - 4<p, so LCOB = 
7r - (<p + (7r - 4<p)) = 3<p.j 

Note that Viete did not prefer neusis between straight lines over neusis between 
straight line and circle; his trisection is of the latter type and from Pappus' 
Collection he could have taken a trisection by neusis between straight lines 
(cf. Construction 3.9). 

It is also noteworthy that in the Book of Lemmas, which may in part be 
of Archimedean origin,lO there is a proposition (nr 8) stating (cf. Figure 10.4) 
that if a chord CE in a circle with radius a is prolonged to D, with ED = 
a, and DAOB is the diameter through D, then arcCB = 3(arcAE). Viete's 
construction is based on precisely this theorem. However, the Book of Lemma's 

lO[Archimedes Lemmas); cf. [Archimedes nd) p. xxxii. 
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a 
D 

Figure 10.4: Angles in ratio 1 : 3 - Archimedes 

arrived late in Western Europe through Arabic translations and the first Latin 
edition appeared as late as in 1659,11 so probably Viete found the construction 
himself. 

10.3 The construction of roots of third- and fourth
degree equations 

It will be useful to study in somewhat more detail how Viete argued that Standard cubic 
any problem leading to a third- or fourth-degree equation could be reduced to equations 
either a construction of two mean proportionals or a trisection. He did so in the 
final proposition of the Supplement to geometry. His argument is characteristic 
for his particular mixture of algebraic analysis and geometrical construction. 

In Section 4.2 I discussed Viete's standard solid problems corresponding to 
the following set of standard cubic equations (cf. Equation 4.7): 

x 3 + a2x 

x3 _ a2x 

a2 x _ x3 

a2b, (1) 

a2b, (2) 

a2b, (3) 

(10.1) 

(with a, b > 0). Together with the equation x3 = a2b, corresponding to the 
problem of two mean proportionals, they were a complete set in the sense that 

llcr. [Archimedes nd] p. xxxii. 
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any cubic equation could be reduced to one of them by removing the quadratic 
term; the three different forms in Equation 10.1 arise because Viete only con
sidered positive coefficients. The standard problems corresponding to these 
equations were formulated in terms of four proportional line segments. Viete 
did not provide constructions of these three problems, but he suggested that 
other problems could be reduced to them. 

In the Supplement to geometry Viete considered variant forms of the last 
three equations which made it easier to introduce further case distinctions. 
These were: 12 

x 3 + 3a2x 2a2b, (1) (10.2) 

x 3 - 3a2x 2a2b, b > a > 0 , (2.1) 

x 3 - 3a2x 2a2b , a > b > 0 , (2.2) 

3a2x - x 3 2a2b, b > a > 0 , (3.1) 

3a2x - x 3 2a2b , a > b > 0 . (3.2) 

Viete did not consider the cases in which a = b; he realized, no doubt, that 
then one root is a or -a, and the equation can be reduced to a quadratic and 
a linear one. I note that (cf. Note 12) the distinctions a < or > b correspond 
to the now familiar conditions (~)3 < or > (~)2, which, for a cubic equation 
x 3 + px + q = 0, distinguish the "casus irreducibilis" (three real roots, complex 
numbers under the cubic root signs in the Cardano-formula, cases 3.2, 4.2) from 
the opposite case (one real and two complex roots, no complex numbers under 
the cubic root signs in the Cardano-formula, cases 2,3.1,4.1).13 

12Proposition 25 (pp. 256-257) of [Viete 1593J (tr. [Viete 1983J p. 416-417). The argument 
is given in a very condensed way and it is not quite complete. I have modernized Viete's 
exposition by translating his prose statements and his formulas into formulas of more modern 
style. I have retained, however, Viete's use of positive magnitudes only. For easier comparison 
I have used the expressions 3a2 and 2a2b for the coefficients in all equations. Viete himself 
used these only in cases (2.2) and (3.2) (these are the ones related to trisection); he described 
the other cases in general terms. Case (2.1), for example, was formulated as follows (p. 257): 

Adfectos vero cubos sub latere negate ita demum reduci ad puros, cum solidum, 
11 quo adficitur cubus, negatur de cubo, & praeterea triens plani coefficientis 
cum latere adficiens solidum, cedit quadrato semissis latitudinis oriundae ex 
adplicatione adfecti cubi ad praedictum trientem. 

This may be translated as (I have added between square brackets the interpretation in terms 
of equations): 

Cubes affected at the sides negatively [x3 - Px = QJ can thus be reduced to 
pure ones [y3 = RJ, if the solid by which the cube is affected [PxJ is subtracted 
from the cube, and moreover if the third of the plane that together with the side 
makes the affecting solid [PI3J cedes to [<J the square of the half of the side 
[(~S)2J that would arise from the application of the affected cube to the said 

third [S = P~3J. 
SO the condition is .if < (~ P~3)2, equivalent to the familiar condition (.if)3 < (!f)2. If we 

rewrite the inequality in the form of 10.2, i.e., taking P = 3a2 , Q = 2a2 b, the condition is 
(a2)3 < (a2b)2, equivalent to a < b, so this is case (2.1). 

13See Note 91 of Chapter 4. 
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Viete did not make a distinction between cases (3.1) and (3.2), his formu
lation suggested that the equation 3a2x - x3 = 2a2b is reducible to trisection 
for any values of a and b. The omission may be related to the fact that in case 
(3.1) the only real root is negative and Viete only considered positive roots. 

Viete claimed, with reference to his Treatise on the understanding of equa
tions,14 that cases (1) and (2.1) could be reduced to "pure cubes," that is, to an 
equation x3 = a2b, that is solved by constructing the two mean proportionals 
of a and b. 15 

Viete then showed that in cases (2.2) and (3.2) a root can be found by angle 
trisection. He did so by providing explicit constructions; I have presented one of 
these (for case 3.2) above (cf. Construction 4.6) as an example of a construction 
by trisection. 

Referring to the same treatise he had stated at the beginning of his argu
ment that all fourth-degree equations can be reduced to third-degree ones via 
quadratic equations16 and that third-degree equations can be reduced to forms 
lacking the quadratic term, that is, to one of the cases in Equation 10.2 above. 
The geometrical p;ocedures corresponding to these reductions could be per
formed by straight lines and circles. As a result the construction of the roots of 
any fourth- or third-degree equation could be reduced to the construction of the 
roots of the standard third-degree equations and could therefore be performed 
by straight lines and circles together with either a trisection or a construction 
of two mean proportionals, and therefore, by straight lines, circles, and neusis. 

Viete's result relied heavily on the algebraic results in Treatise on the un- The algebraic 
derstanding of equations. This treatise, however, was published in 1615 only. reductions 
His immediate readers could not consult itP Nevertheless, algebraists would 
be familiar with the results at that time; the standard solution of third- and 
fourth-degree equations by the rules of Ferrari 18 and Cardano relied on the 
reduction of fourth-degree equations to third-degree ones, and of third-degree 
equations to standard forms without quadratic term. For the latter, Cardano's 

14Published only much later: [ViHe 1615]. 
15He referred to the procedure for solving third-degree equations, which has become known 

as "Viilte's method." In the case of x 3 + 3a2 x = 2a2b (his first example, here abbreviated and 
modernized), he solved the auxiliary quadratic equation y2 + 2a2 bY = a6, determined y from 

2 2 
y3 = Y (this is the "pure cube") and showed that x = !!:.:...=.1L.. solved the original equation. 

y 
Cf. [Viilte 1615] pp. 149-150 (tr. [Viilte 1983] pp. 286-289). 

16The reference is to Viilte's method for solving fourth-degree equations in [Viilte 1615] 
pp. 140-148 (tr. [ViHe 1983] pp. 266-286). It consisted in the reduction (I abbreviate and use 
modern notation) of the equation x4 + ax2 + bx + c = 0 (i) to the two equations x 2 + xy + 
~y2 + ~a - * = 0 (ii) and y6 + 2ay4 + (a - 4c)y2 + b2 = 0 (iii). The reduction is achieved by 

determining an expression F(y) in y such that inserting x 2 + xy + F = 0 into (i) eliminates x. 
17Some mathematicians, such as Ghetaldi and Anderson (who saw [Viilte 1615] through the 

press), had earlier access to Viilte's manuscripts; it is unclear whether these manuscripts were 
known in wider circles. 

181n his The great art of 1545 Cardano published, with due acknowledgment, the rule found 
by Ferrari for reducing a fourth-degree equation to a third-degree one; [Cardano 1545] Ch. 39 
(pp. 235-253 of [Cardano 1968]), cf. the presentations of the rule in [Kline 1972] pp. 267~268 
and [Troptke 1980] pp. 452-453. 
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rule19 provided expressions for the roots in terms of square and cubic roots. As 
I noted above, the cases in which the square roots lead to imaginary quantities 
were covered precisely by Viete's trisection solution; in the remaining cases, the 
cubic roots indeed corresponded to "pure cubes" . 

It should be remarked that Viete did not note the fact that all the necessary 
transformations can be performed by the usual Euclidean means of construction 
~ an essential step in his argument ~ let alone that he actually spelled out 
the geometric equivalents to these transformations. Thereby his proof of the 
constructibility, by neusis, of roots of third- and fourth-degree equations was 
highly abstract. In particular the proof does not imply a feasible unified general 
construction applicable for the whole class of problems leading to third- and 
fourth-degree equations. We will see (Chapter 17) that Descartes found such a 
construction in the 1620s. 

Solid problems Viete did not explicitly mention one important consequence of his main 
result, namely, that all geometrical problems leading to equations of degree less 
than five were either "plane" or "solid" in terms of Pappus' classification, that 
is, that they could be constructed by straight lines, circles, and conic sections. 
The consequence would be obvious to those familiar with the Collection because 
that work contained a "solid" construction of the neusis. Thus it seems likely 
that by 1600 informed mathematicians would be aware of this consequence.20 

10.4 Further statements by Viete on construc
tions 

"Book VIII of The Supplement to geometry, then, presented a clear-cut and definite posi-
various replies tion in the matter of geometrical construction: non-plane constructions were to 

" be performed by neusis, legitimated by a new geometrical postulate. The Sup
plement appeared in 1593. In the same year Viete also published a volume on 
various mathematical subjects, the Book VIII of various replies on mathematical 
matters. Here he touched upon several matters concerning construction, such 
as mean proportionals and the use of the quadratrix and the spiral. He stated 
that construction by shifting rulers was mechanical and therefore not geometri
cal; for instance, he referred to one such construction of a regular heptagon by 
Franc;ois Foix de Candale as "accurate, but not geometrical." 21 He stressed that 
the usual postulates of geometry did not allow construction of cubic equations: 

Geometry admits no cubic equations at all within the limits of its 

19See Note 91 of Chapter 4. 
20 The converse of this consequence, namely, that all solid problems in Pappus' sense lead 

to equations of degree less than five, applies as well, because the intersection of two conics 
(implied in Pappus' criterion for solid problems) leads to a fourth-degree equation. However, 
an argument to this effect could only be formulated when a general theory of the equations 
of conic sections was available, that is, after Descartes' Geometry. 

21 [Viete 1593b] p. 359: "accuratam, sed non geometricam." 
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usual postulates.22 

Still Viete was interested in constructions outside the traditional restriction to 
"plane" constructions; the Book VIII of various replies on mathematical matters 
contained substantial sections on the spiral and the quadratrix and their use in 
squaring the circle and dividing angles. Like Clavius (to whom he did not refer) 
Viete gave a pointwise construction of the quadratrix, but he did not claim (as 
Clavius had done, cf. Section 9.2) that such a construction legitimated the use 
of the curve in solving geometrical problems. However, he did claim that it 
was possible to derive theorems about the curves. Thus he wrote on the use of 
spirals in squaring the circle: 

Although the spirals are not described in the way of true knowledge, 
and neither are their tangents found in that way, still we can reason 
truly about questions of how large the angles are in the case of 
tangents, how large the lines are that are subtended by these angles, 
and thus art helps mechanics and mechanics helps art. This I wanted 
to show in this chapter, as well as a good method to square the 
circle as near to the true value as one wishes; it is a not too difficult 
method and I don't think that a more general and artful method 
can be proposed.23 

The fact that mathematicians may derive true theorems about figures they 
cannot construct in a strictly legitimate fashion was later also remarked and 
discussed by Kepler (cf. Section 11.3). 

In the treatises on his "new algebra,,24 Viete did not explicitly mention the "Apollonius 
construction of solid problems by the intersection of conics. He did so in his from Gaul" 
Apollonius from Gaul of 1600,25 but there he did not refer to neusis construc-
tions. So we have no text in which he directly compared the two methods of 
construction. 

In 1595 Viete had proposed the Apollonian tangency problem ~ to find the 
circle that is tangent to three given circles ~ at the end of his own solution of 
the famous problems posed by Van Roomen (one of these problems required the 
solution of a 45-degree equation).26 Van Roomen took up the challenge and gave 
a solution of the Apollonian problem by the intersection of conics, not believing 
that a solution by straight lines and circles could be found. 27 I have given Van 

22 [Viete 1593b] p. 362: "Omnino aequalitates cubicas non adgnoscit Geometria suis contenta 
solitis postulatis." 

23[Viete 1593b] p. 393: "Etsi non describantur volutae, neque tangantur (kat epistemonikon 
logon), attamen quanti sint anguli in volutarum contactu, quantaeve rectae, quae iis angulis 
subtenduntur, ratiocinamur (epistemonikoos), et (mechaniken) juvat (technike), (techniken 
mechanike), ut hoc capite placet exemplificari, et quadrandi circulum tam proxime quam 
placuerit vero, methodum bene paratam, neque (dusmechanon) exhibere, qua haud scio an 
alia possit proponi generalior et artificiosior." 

24Cf. Note 5 of Chapter 6. 
25 [Viete 1600]. 
26Van Roomen had proposed his problems in [Roomen 1593] (fol. **iijV); Viete countered 

by proposing the Apollonian tangency problem in [Viete 1595] p. 324. 
27 [Roomen 1596]. 
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Roomen's construction in Section 5.5 (Analysis 5.7, Construction 5.8). However, 
as Viete knew, the problem could in fact be solved by straight lines and circles, 
and so he took Van Roomen to task in his Apollonius from Gaul,28 published 
in 1600. He gave the plane construction of the Apollonian problem and in the 
preface of the book he dwelled upon the status of constructions by intersection 
of conics, such as the one Van Roomen had given. He stated plainly that in his 
opinion these constructions could not be accepted as truly geometrical solutions 
of problems. The argument gave him the occasion for some stylistic flourish: 

When I proposed the philomaths to solve Apollonius' problem about 
the circle that has to be drawn tangent to three given ones, I meant 
it to be constructed in the geometrical way (illustrious Adrianus), 
not mechanically. So when you hit the circle by hyperbolas you miss 
the mark. For in geometry hyperbolas are not described in the way 
of true knowledge. Menaechmus doubled the cube by parabolas, 
Nicomedes by conchoids, but is the cube thereby doubled geomet
rically? Dinostratus squared the circle by the inordinate winding 
curve [Le., the quadratrix] Archimedes by the ordinate one [Le., the 
spiral], but is the circle thereby geometrically squared? No geome
ter would make that proposition. Euclid and all his disciples would 
raise in protest. Therefore illustrious Adrianus, Belgian Apollonius 
if you want, your work is in vain; the problem I proposed is plane 
but you have dealt with it as a solid one, so you have not established 
the meeting of hyperbolas which you assume in your procedure, nor 
could you do so except in the case that the asymptotes of these hy
perbolas are parallel. 29 And besides, the ancients have always been 
wary of drawing conic sections in the plane ~ therefore, do away 
with your mixed lines and take from an Apollonius reborn at the 
shores of the Aquitanian Ocean the construction that accords with 
the art and with true knowledge. 30 

It should be remarked that if Viete had only wanted to rebut Van Roomen's 
construction, he would not have needed the arguments against conics; he could 

28[Viete 1600J. 
29In that case the intersection of the hyperbolas can be found by straight lines and circles. 
30[Viete 1600J p. 325: "Problema Apollonii de describendo circulo, quem tres dati con-

tingant (clarissime Adriane) geometrica ratione construendum proposui (filomatheisi), non 
mechanica. Dum itaque circulum per hyperbolas tangis, rem acu non tangis. Neque enim 
hyperbolae describuntur in geometric is (kat' epistemonikon logon). Duplicavit cubum per 
parabolas Menechmus, per conchoidas Nicomedes, an igitur duplicatus est geometrice cubus? 
Quadravit circulum per volutam inordinatam Dinostratus, per ordinatam Archimedes, an ig
itur geometrice quadratus est circulus? Id vero nemo pronunciabit Geometra. Reclameret 
Euclides et tota Euclideorum schola. Ergo clarissime Adriane, ac si placet Apolloni Belga, 
quoniam Problema quod proposui planum est, tu vero ceu solidum explicasti, neque ideo oc
cursum hyperbolarum, quem ad factionem tuam adsumis, firmasti, neque etiamnum potes 
firmare, quoniam revera si asymptoti fuerint parallelae, erit irritus labor, et alioqui conicas 
sectiones in plano describere semper veriti sunt antiqui, missas fac lineas mixtas, et jam ab 
Apollonio ad ripas Oceani Aquitanici exsuscitato ultro accipe (techniken kai epistemoniken 
cheirourgian)." 
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simply have censured him for committing the "sin" of constructing a plane 
problem by solid means. It is tempting, therefore, to read in these lines the 
reason why Viete preferred neusis over construction by conic sections: Euclid 
would protest and the ancients thought conics difficult to trace, perhaps more 
difficult than performing a neusis, of which Viete had stated in the Isagoge 
that it was "not difficult.,,31 However, the text does not entirely justify such 
an interpretation; it may well be that the arguments were more inspired by 
Van Roomen's solution than by a definite point of view about constructions in 
general - after all, Viete had not stated these arguments against curves when 
he introduced the neusis in the Isagoge and A supplement to geometry. 

Viete did not restrict his geometrical investigations to problems leading to Angular 
cubic and biquadratic equations. Indeed, as mentioned earlier, one of his claims sections 
to fame was that he solved a 45th-degree equation proposed by Van Roomen.32 
This equation related to angular sections (cf. Section 4.3). One of the trea-
tises belonging to Viete's planned Book of the restored mathematical analysis 
or the new algebra was devoted to angular sections.33 Angular sections, as well 
as mean proportionals, were types of problems that, if translated into algebra, 
could lead to equations of any degree. In the early modern tradition of geomet-
rical problem solving they provided the only examples of problems leading to 
equations of degrees higher than four. In the Isagoge Viete had claimed that 
his new method could solve "the greatest problem of all, which is to leave no 
problem unsolved.,,34 One would therefore expect that Viete expressed himself 
somewhere, and especially in connection with angular sections, on the question 
how to construct beyond neusis. As far as I could ascertain, however, Viete did 
not leave any statements about this matter. It seems that his interest in the 
angular section problem was predominantly algebraic. 

10.5 Viete's interpretation of geometrical exact
ness 

Having surveyed Viete's statements on geometrical construction I may now Classifying 
summarize his ideas on what I have called the interpretation of exactness in geo- non-plane 
metrical problem solving. Viete saw the restriction to constructions by straight problems 
lines and circles as a defect of geometry and claimed that this defect should be 
remedied by introducing a new postulate. In choosing the postulate he opted 
against the intersection of conics, thus disregarding Pappus' canon and pre-
cept; instead he adopted the neusis construction as new postulate. By applying 
his "new algebra" as analytical tool he was able to characterise and classify a 
large class of non-plane geometrical problems, namely, those leading to third-
and fourth-degree equations. He showed that these problems were reducible 

31Cf. Note 3. 
32Cf. Note 26. 
33[Viete 1615b] cf. Chapter 8, Note 5. 
34Cf. Chapter 8 Note 6. 
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either to two mean proportionals or to trisection, and he proved that, within 
geometry supplemented by the neusis postulate, they were geometrically con
structible. The result is indeed beautiful. It showed that algebra, combined 
with a carefully formulated position on construction, provided a well-structured 
and interesting extension of the Euclidean geometrical procedures. However, 
Vi{~te did not address the question of how to proceed beyond the possibilities of 
neusis. 

Context: Viete formulated his ideas about construction in the context of his new anal-
Viete's ysis. The grand structure of his analytic program of problem solving, with a 

progmm zetetics introducing algebra, a poristics dealing with proportionalities and equa
tions, and an exegetics requiring the constructional procedures corresponding to 
equations, forced him to devote attention to the question of construction. Thus 
Viete's case clearly illustrates how the principal dynamics within the early mod
ern tradition of geometrical problem solving, namely, the adoption of algebraic 
analysis as a tool for geometry, demanded new approaches to the concept of 
construction. 

Viete's reasons Viete adduced few if any explicit arguments for assuming the neusis postu-
late and rejecting other procedures; we can hardly count the qualification "not 
difficult" for the neusis as substantial support, and the comments on the use of 
conics in the answer to Van Roomen were written long after Viete had made his 
choices and may well have been induced primarily by their polemical context. 
Why, then, did he choose the neusis postulate in his interpretation of exactness 
of constructions beyond straight lines and circles? 

Adopting the neusis postulate meant choosing against the classical alterna
tive of constructing by the intersection of conics and higher-order curves. It 
may be that Clavius' attempt to legitimate the quadratrix had failed to con
vince Viete and had made him aware that construction by curves begged the 
question of how to construct these curves. We may also look for an explanation 
in connection with the possibilities of algebraic analysis of curves. As I remarked 
earlier (cf. Section 8.5) the algebraic representation of curves by equations in 
two unknowns is absent in Viete's work, although all the algebraic prerequisites 
for such a conception were present. This conception, the key idea of what is now 
called analytic geometry, is first found with Fermat and Descartes, motivated by 
the analytic treatment of locus problems and of construction by curves. Viete 
seems not to have been interested in locus problems. It may be that in the 
matter of construction he decided against the use of curves because he did not 
immediately see how his new algebra could be applied to curves. And even if 
the decision was not induced in this way, it certainly steered the course of his 
later researches away from the possibilities of representing curves by equations. 

Thus we may tentatively link the negative side of his choice - the rejection 
of construction by curves - to a distrust of curves and to a failure to see the 
possibilities of algebraic analysis for dealing with curves. As to the positive side 
- the selection of the neusis as one single powerful postulate - I think the 
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explanation must be sought in the structure of the theory Viete was creating. 

Indeed, the Vietean texts analyzed in the present chapter and in Chapter 8 Legitimating 
strongly suggest that the main reason for Viete to adopt the neusis postulate lay significant 
in a wish to provide the field of non-plane geometrical problems with a relatively results 
simple postulational base, rather than a conviction that neusis was intrinsically 
the true and obvious next postulate after the Euclidean ones. It appears from 
the Isagoge that by the time he started publishing his series of treatises the 
structure of his theory of non-plane geometrical problems had taken definite 
form; he had seen the central position of the two classical problems of trisection 
and finding two mean proportionals, he had identified a large class of problems 
that could be reduced to these two, namely, those reducible to third- or fourth-
degree equations, and he knew that both classical problems could be reduced to 
neusis. Choosing the neusis as additional constructive postulate was clearly the 
simplest way to secure the foundations of these well-structured and significant 
results. Seen in this light, it is understandable that Viete adduced no explicit 
arguments for choosing his new postulate; the arguments lay in the results that 
the postulate legitimated. Thus Viete's approach to the interpretation of exact-
ness of geometrical construction represents the attitude that in the classification 
of Section 1.6 I have termed the "appreciation of the resulting mathematics." 



Chapter 11 

Kepler 

11.1 Constructibility and creation 

In 1619 Kepler published his Five books on world harmony, the grand synthesis "On world 
of his cosmic theories based on his vision of a harmonic creation. 1 It contained a harmony" 
profound analysis of the concept of constructibility, as well as a precise and sharp 
criticism of the constructional practices of contemporary geometers and their 
use of algebra. For Kepler the issue was of central philosophical importance, 
and for that reason his analysis of constructional exactness in geometry was 
both more detailed and more critical than any in his period. 

The key concept of Kepler's philosophy was harmony.2 Harmony underlay Harmony 
God's creation; the ability of the mind to recognize harmony was man's key for 
understanding the creation. Harmony was fundamentally mathematical, and 
geometry was the field in which harmonies could be recognized and known. 
Kepler related these harmonies in particular to the five Platonic solids and to 
the regular triangles, squares, pentagons, and hexagons that form the faces 
of these solids. The ratios of the sides of these polygons to the diameters of 
their circumscribed circles, were the crucial elements in Kepler's mathematics of 
harmony. They were harmonious ratios, and they could be known because these 
regular polygons could be constructed within a given circle by the Euclidean 
means of straight lines and circles. The regular heptagon, in contrast, was not 
knowable because it could not be constructed by straight lines and circles. 3 

Harmonious ratios were knowable, unharmonious ones were not. As Kepler Knowable 

1 [Kepler 1619]; I quote from the edition of this work in [Kepler 1937~ 1975] taking the 
translations from [Kepler 1997]. 

2Cf. [Field 1988]. 
3Kepler's did not actually prove that the heptagon was not constructible by straight lines 

and circles - the means for such proofs became available only in the nineteenth century. His 
arguments, [Kepler 1937~ 1975] pp. 47~55 consisted of criticism of the extant constructions. 
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equated knowable with constructible, the question of demarcation between con
structible and nonconstructible geometrical figures was essential. Moreover, it 
was necessary for Kepler's argument that this demarcation should be strongly 
restrictive. If the class of harmonious ratios were too large, the interpretation of 
their occurrence in nature as signs of God's deliberate choices would be mean
ingless. To allow any means of construction beyond straight lines and circles 
would extend the class of ratios and harmonious figures (no longer, for instance, 
excluding the heptagon); hence, these means had to be rejected. 

11.2 Kepler's demarcation of geometry 

Harmonious The case for a restrictive demarcation of geometry was clearly stated in the 
proportions opening sentence of the Prooemium of Book I: 

We must seek the causes of the harmonic proportions in the divisions 
of a circle into equal aliquot parts, which are made geometrically and 
knowably, that is, from the constructible regular plane figures. I thus 
considered that to start with it should be intimated that the features 
which distinguish geometrical objects to the mind are today, as far 
as is apparent from published books, totally unknown. 4 

Definitions What was needed, Kepler continued, was a detailed exposition of the concepts 
of constructibility in accordance with the original intentions of Euclid, as ex
plained by Proclus and in general misunderstood by all other mathematicians. 
Kepler gave such an explanation in book 1,5 showing which regular polygons 
were constructible, and how these could be further distinguished into different 
classes. The relation between knowable and constructible was articulated in the 
seventh and eighth definitions of Book 1. Knowing was measuring by a known 
measure. A magnitude was measurable if its ratio to the basic measure was ra
tional. Lines that could be measured by a basic measure (in the case of regular 
polygons, the diameter of the given circle) and areas that could be measured by 
the square of the basic measure were knowable. All further figures that could 
be formed "by some definite geometrical connection" from measurable lines and 
areas were knowable as well: 

VII Definition. In geometrical matters, to know is to measure by a 
known measure, which known measure in our present concern, the 
inscription of Figures in a circle, is the diameter of the circle. 
VIII Definition. A quantity is said to be knowable if it is either itself 
immediately measurable by the diameter, if it is a line; or by its [the 

4 [Kepler 1937-1975] p. 15: "Cum a divisionibus circuli in partes aliquotas aequales, quae 
fiunt geometrice et scientifice, hoc est, it figuris plan is regularibus demonstrabilibus, sint nobis 
petendae causae proportionum harmonicarum: illud initio significandum duxi, differentias 
rerum geometricarum mentales, hod ie, quantum apparet in libris editis, in solidum ignorari." 
(Translation quoted from [Kepler 1997] p. 9.) 

5In particular Props 30-50, [Kepler 1937-1975] pp. 34-64. 
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diameter's] square if a surface; or the quantity in question is at 
least formed from quantities such that by some definite geometrical 
connection, in some series [of operations] however long, they at last 
depend upon the diameter or its square .... 6 

Thus knowable magnitudes could have an irrational ratio to the basic measure, 
but only if these magnitudes were constructed in a certain and geometrical way, 
that is, by Euclidean means. 

Within the class of knowable objects Kepler introduced a further subdivision 
according to a degree of knowability, related to the classification of irrationals in 
Euclid's Elements X. As I am here primarily concerned with the demarcation 
between knowable and not knowable (constructible and not constructible). I 
don't discuss this further subdivision. 

11.3 Constructibility and existence 

Inevitably within this line of argument, Kepler was confronted with the ques- The regular 
tion of the status of non-knowable figures. He provided a detailed discussion of heptagon 
the matter in Proposition 45 (book I), 7 which claimed that the regular heptagon 
could not be constructed by circles and straight lines. The regular heptagon 
was not knowable; but Kepler did not question its existence. Knowability or 
constructibility did not coincide with existence. Although nobody could ever 
construct a regular heptagon, such a figure might exist, formed by accident 
perhaps: 

So no Regular Heptagon has ever been constructed by anyone know
ingly and deliberately, and working as proposed; nor can it be con
structed as proposed; but it can well be constructed fortuitously; 
yet it is, all the same [logically] necessary that it cannot be known 
whether the figure has been constructed or no.8 

One could speak about the properties of a regular heptagon, but these were Properties of 
conditional properties. Kepler considered himself here in philosophically and non
theologically dangerous waters; a friend even advised him to leave the arguments constructible 
out. He did not do so and stated that there might exist non-knowable entities, figures 

6[Kepler 1937-1975] pp. 21-22: "VII. Definitio. Scire in geometricis, est mensurare per 
notam mensuram; quae mensura nota in hoc negocio inscriptionis figurarum in circulum, 
est diameter circuli. VIII. Definitio. Scibile dicitur, quod vel ipsum per se immediate est 
mensurabile per diametrum, si linea; vel per ejus quadratum, si superficies: vel quod formatur 
ad minimum ex tali bus quantitatibus, certa et geometrica ratione, quae quantumcunque longa 
serie, tandem tamen it diametro, ejusve quadrato dependeant .... " (translation quoted from 
[Kepler 1997] p. 19.) 

7[Kepler 1937-1975] pp. 47-56. 
8[Kepler 1937-1975] p. 50: "Itaque nullum unquam regulare septangulum it quoquam con

structum est, sciente et volente, et ex proposito agente: nec construi potest ex proposito: 
sed bene fortuito construi posset: et tamen ignorari necesse est, sit ne constructum an non." 
(Translation quoted from [Kepler 1997] p. 66.) 



186 11. Kepler 

not even knowable to God, which still had knowable properties. Kepler called 
them conditional entities ("Entia conditionalia"): 

Now it is appropriate to put a word in here for Metaphysicians in 
connection with this algebraic treatment: let them consider if they 
can take anything over from it to explain its Axioms, since they say 
that which does not exist [a Non-entity] has no characteristics and 
no properties. For here, indeed, we are concerning ourselves with 
Entities susceptible of knowledge; and we correctly maintain that the 
side of the Heptagon is among Non-Entities that are not susceptible 
of knowledge. For a formal description of it is impossible; thus 
neither can it be known by the human mind, since the possibility of 
being constructed is prior to the possibility of being known: nor can 
it be known by the Omniscient Mind by a simple eternal act: because 
by its nature it is among unknowable things. And yet this which is 
not a knowable entity has some properties which are susceptible of 
knowledge; just as if [they were] conditional Entities. For if there 
were a Heptagon inscribed in a circle, the proportion of its sides [to 
the semidiameter] would have such properties. Let this indication 
suffice.9 

In the margin of this passage we read: 

In case it should be supposed that these comments are blasphemous. 
One of my friends, a very practiced mathematician, thought they 
could be left out. But nothing is more habitual among Theologians 
than to claim that things are impossible if they involve a contradic
tion: and that God's knowledge does not extend to such impossible 
things, particularly since these formal ratios of Geometrical entities 
are nothing else but the Essence of God; because whatever in God is 
eternal, that thing is one inseparable divine essence: so it would be 
to know Himself as in some way other than He is if He knew things 
that are incommunicable as being communicable. And what kind of 
subservient respect would it be, on account of the inexpert who will 
not read the book, to defraud the rest.lO 

9[Kepler 1937-1975] pp. 55: "Illud autem obiter monendi sunt metaphysici occasione hujus 
cossae; considerent, si quid hinc transsumere possint ad explicationem illius axiomatis, cum 
non entis nullae dicuntur esse conditiones, nullae proprietates. Nam hie quidem versamur nos 
in entibus scientialibus; et pronunciamus reete, quod latus sept anguli sit ex non entibus; puta 
scientialibus. Cum enim sit impossibilis ejus formalis descriptio; neque igitur sciri potest it 
mente humana, cum scientiae possibilitatem praecedat description is possibilitas: neque scitur 
a Mente Omniscia actu simplici aeterno: quia sua natura ex inscibilibus est. Et tamen hujus 
non entis scientialis sunt aliquae proprietates scientiales; tanquam entia conditionalia. Si enim 
e sse t septangulum descriptum in circulo, laterum ejus proportio tales haberet affeetiones. 
Sufficiat monuisse." (Translation quoted from [Kepler 1997] p. 74; I modified the translation 
of "conditionalia".) 

lD[Kepler 1937-1975] p. 55: "Haec ne blaspheme dicta putentur, omitti posse censuit am
icorum unus, mathematum peritissimus. Atqui nihil est vulgatius apud theologos quam im
possibilia esse, quae contradictionem involvunt: et Dei scientiam ad talia impossibilia se non 
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11.4 Kepler's criticism of non-plane construc
tions 

Kepler was well aware that mathematicians did not keep to the strong de- Figures studied 
marcation of geometry he advocated and that constructional means other than for their own 
straight lines and circles were freely used to trisect angles, find mean propor- sake 
tionals, and construct regular heptagons. He referred to Pappus' classification 
of problems in this connection and emphasized that Pappus accepted plane, 
solid, and line-like problems all as geometrical, whereas he (Kepler) restricted 
the qualification "geometrical" to Pappus' class of plane problems. 11 He claimed 
that the figures dealt with by non-plane means were studied not for their own 
sake but for certain external purposes. Constructible regular figures, in contrast, 
were studied for their own sake as Archetypes of harmony.12 

Kepler offered little direct argument to explain why the Euclidean means of Legitimacy of 
construction, straight lines and circles, were legitimately geometrical and cer- Euclidean 
tain. He invoked the authority of Euclid and Proclus, and argued that the means 
whole structure of the Euclidean Elements was based on the restriction to con-
struction by straight lines and circles; removing this restriction would lead to 
the disintegration of the structure. He blamed his contemporaries for doing so: 
Ramus by his disregard for the theory of irrationals and for the Platonic solids 
in Elements X and XIII, and Snellius and others by rejecting Elements X as 
useless (cf. Section 7.4).13 He wrote: 

Ramus removed the form from Euclid's edifice, and tore down the 
coping stone, the five solids. By their removal every joint was loos
ened, the walls stand split, the arches threatening to collapse. Snel
lius therefore takes away the stonework as well, seeing that there is 
no application for it except for the stability of the house which was 
joined together under the five solids. 14 

In fact both Ramus and Snellius acknowledged the special status of constructions 
with straight lines and circles in geometry.15 Yet Kepler rightly saw that the 
willingness of his contemporaries to study non-plane procedures and to introduce 

extendere, praesertim cum hae formales rerum geometricarum rationes nihil sint aliud, quam 
ipsa essentia Dei; quia quicquid in Deo est ab aeterno, id una individua est essentia divina: 
esset igitur seipsum quodammodo alium scire, quam est; si quae sunt incommunicabilia, sciret 
ut communicabilia. Et quae haec adulatio, propter imperitos librum non lecturos, defraud are 
caeteros." (Translation quoted from [Kepler 1997] p. 74.) 

11 [Kepler 1937-1975] p. 59. 
12[Kepler 1937-1975] p. 19. 
13[Kepler 1937-1975] pp. 15-19. 
14[Kepler 1937-1975] p. 19: "Ramus aedificio Euclideo formam ademit, culmen proruit, 

quinque corpora; quibus ablatis, compages omnis dissoluta fuit, stant muri fissi, fornices in 
ruinam minaces: Snellius igitur etiam caementum aufert, ut cujus nisi ad soliditatem domus 
sub quinque figuris coagmentatae nullus est usus." (Translation quoted from [Kepler 1997] 
p. 13.) 

15For Ramus, cf. Section 2.5; For Snellius cf. Section 14.3. 
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numbers and algebra into geometry undermined the classical authority for a 
restriction to construction by circles and straight lines. 

Kepler was more articulate about his reasons for rejecting constructions be
yond straight lines and circles. In a critical analysis of various methods of angle 
trisection16 he identified, much more explicitly than had been done before, all 
the assumptions that were implied in the usual constructions of solid problems. 
He discussed in particular Pappus' trisection. In the Collection Pappus had 
given a trisection by a neusis and a construction of the neusis by the intersec
tion of a circle and a hyperbola, that is, by solid means (Constructions 3.9 and 
3.8 respectively). Kepler combined these two constructions and criticized them. 
He argued as follows. 17 

The crucial step in the construction as given by Pappus was the following: 
Given two intersecting straight lines and a point outside them, draw a hyperbola 
through the point with the given lines as asymptotes (cf. step 3 of Construc
tion 3.8). Kepler questioned the possibility of drawing this hyperbola. If one 
followed Apollonius' way of constructing conics,18 one had to find, in the space 
surrounding the given plane, the positions of the top and the base circle of a 
cone, and determine the intersection of that cone with the plane. As Kepler for
mulated it, one had to incline a cone in such a way that it produced the required 
hyperbola. Kepler rejected this procedure as non-scientific because it remained 
unclear how this positing of a cone in space could be done. The procedure was 
"solid" and Kepler considered Pappus' solid and line-like procedures as ungeo
metrical. He then turned to the alternative: to draw the hyperbola in the plane. 
To do so one could construct arbitrarily many points of the hyperbola or one 
could try to trace the curve by some motion. In the latter case the procedure 
was line-like in Pappus' classification because it was by such motions that curves 
like the quadratrix were traced; this method should therefore also be rejected. 
Pointwise construction was no acceptable alternative either because the curve 
segments between the constructed points would still have to be traced by some 
line-like procedure. 

Thus to Kepler all three standard ways of constructing curves - intersection 
of solids, tracing by motion, and pointwise construction - were geometrically 
unacceptable, at least if these curves were to serve as means to produce knowable 
figures. 

In this context Kepler again articulated the distinction between existence and 
constructibility. He admitted that the required hyperbola existed and was even 
unique, but that, he claimed, was not at issue. What was required was that the 
hyperbola be made, be constructed. And for the actual construction, the usual 
methods ordered him to do things that could not scientifically be done, such 

16 [Kepler 1937-1975] Book I Prop. 46 pp. 56-61. 
17[Kepler 1937-1975] pp. 59-60. 
18 [Apollonius Conics] 1-52-60. 
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as inclining a cone in space or drawing a curve through points by some tracing 
motion. He wrote: 

But because we are not investigating what it will be, once the con
struction is carried out, but rather by what means, in order to give it 
existence, a thing not yet constructed is to be constructed: accord
ingly, we get nothing more from the Solid and Line-like Problems 
of the ancients, as far as obtaining knowledge of the required lines 
is concerned, than we got before from the Analytical method of the 
moderns. There is clearly only one line of a Hyperbola [that lies] 
between the given Asymptotes, passes through the given point, and 
can be drawn in their plane. But when it is not yet drawn, I am 
required to adjust the inclination of the Cone over the point of ap
plication until it [the hyperbola] comes into being and is drawn: 
alternatively, not using the Cone, I am required to change the con
struction lines that plot the Hyperbola by repeatedly finding points, 
until the curve is long enough: and the parts that lie between the 
points I have plotted I am required to suppose to have been plotted 
also: in either case, I am required to pass over by a single act or mo
tion something which potentially involves infinite division; so that 
by this passage something may be attained which is concealed in 
that potential infinity, without the light of perfect knowledge, which 
the problems the ancients dubbed Plane do have. 19 

11.5 Kepler's objections to algebraic methods 

Kepler also dealt with the algebraic approach to geometrical problems, or, Cossie 
as he referred to it, the use of "cossic" methods. 2o Van Roomen, Viete, Burgi, methods 

19[Kepler 1937-1975] p. 60: "At quia non de hoc quaerimus, quid sit, re jam facta, sed 
quomodo, ut sit quidque, res nondum facta, sit facienda demum: ideo nihilo plus habemus 
ex problematibus solid is et linearibus veterum, quod ad quaesitam linearum scientiam fa
ciat; quam priiIs ex doctrina analytica modernorum. Est sane una sola hyperbolae linea, 
inter asymptotos positas, per punctum propositum, in earum plano ductilis. At ea nondum 
ducta, conum jubeor tantisper inclinare super puncto applicationis, donec existat ilia, duc
taque sit: vel sine cono, lineas, quae hyperbolam delineant per continuata puncta, jubeor 
tantisper mutare, donec satis prolongata sit hyperbola: et quae partes inter facta puncta 
cadunt intermediae, eas jubeor imaginari factas: jubeor utrinque, id quod est potestate divi
sionis infinitae, actu seu motu uno transire; ut hoc transitu etiam id attingatur, quod latet in 
ilia infinitate potestativa, sine perfectae scientiae luce, qualem habent problemata a veteribus 
plana cognominata." ('Translation quoted from [Kepler 1997] p. 87; I changed "Linear" into 
"Line-like." ) 

20 The relevant passages are on pp. 50-55, 57-58 of [Kepler 1937-1975]. Kepler had earlier 
questioned the use of algebra in geometry: in [Kepler 1615] pp. 111-113, he proposed two ge
ometrical problems and challenged "cossists" such as Van Roomen, to try their art, predicting 
that they would find equations involving three or even five continuous proportionals (that is 
third- or fifth degree equations) which would be useless in finding a geometrical solution. Van 
Roomen actually died in 1615 but Anderson took up the challenge, cf. F. Hammer's notes on 
pp. 518-523 in de Werke edition. 
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and others had studied algebraic equations satisfied by the sides of regular poly
gons. 21 Kepler saw the "Cossic art" primarily as a method for solving numerical 
problems; he did not refer to Viete's more sophisticated use of algebraic meth
ods for general abstract magnitudes. He acknowledged the value of the cossic 
methods for finding useful inequalities or approximations and for calculating 
trigonometric tables. But the method had no value in genuinely geometrical 
study: 

... the former [the use of equations] is particularly excellent and no
ble in this semimechanical Cossa, but base and degraded in geometry 
which produces knowledge .... 22 

In the case of non-plane problems, scientific knowledge could not be attained 
by geometrical methods nor by algebra. Kepler argued this point extensively 
and in doing so he gave one of the first explicit and critical discussions of the 
relation between algebra and geometry. He related his arguments to certain 
equations for the side of the regular heptagon derived by Jobst Burgi. 23 One of 
these was (in modern notation):24 

(11.1) 

x being the side of a regular heptagon inscribed in a circle with radius 1. Kepler 
interpreted the equation in terms of a continued proportion: in the series of seven 
proportionals, the first two of which were the radius and the side respectively 
of a regular heptagon, (i.e., 1, x, x 2, x 3, x4, x 5, x 6), 7 times the first together 
with 7 times the fifth was equal to 14 times the third and once the seventh. 

Objections Kepler then gave five separate arguments in support of his view that algebra, 
against in particular equations, did not provide the means to solve non-plane problems 

equations in in geometry. First he remarked that, although the equation implied a property 
geometry of the side of the heptagon, it did not offer a method to find that side. The 

proposition stating that the property applied in the case of a regular heptagon 
was geometrical and provable, but the important question was in how far the 
knowledge of that property made the side of the heptagon known. As long as 
the heptagon itself was not yet known, the property was of little value: 

21The famous 45th degree equation which Van Roomen proposed in [Roomen 1593] 
(cf. Chapter 10 Note 26) originated in such studies; Viete dealt with the subject in 
[Viete 1615b]; on Burgi's algebraic studies cf. M. Caspar's notes in [Kepler 1973] pp. 370-
373. 

22[Kepler 1937-1975] p. 58: " ... illud imprimis excellens et nobile est in hac cossa semime
chanica, degener vera et abjectum in Geometria scientifica ... " (Translation quoted from 
[Kepler 1997] p. 84.) 

23 Kepler had also corresponded with Van Roomen about these equations, 
cf. [Bockstaele 1976] pp. 289-291 and [Kepler 1937-1975] vol. 15 p. 244. 

24[Kepler 1937-1975] p. 52. 
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... but since I do not yet have that proportion described by geomet
rical means: therefore I waited for someone to explain to me how to 
set up that proportion first.25 

But how am I to represent the relationship, by what Geometrical 
procedure? No other means of doing it are afforded me save using 
the proportion I seek; there is a circular argument: and the un
happy Calculator, robbed of all Geometrical defenses, held fast in 
the thorny thicket of Numbers, looks in vain to his algebra. This 
is one distinction between Algebraic and Geometrical determina
tions. 26 

Kepler then noted a second objection:27 the argument leading to the equation 
essentially presupposed the quantity to be discrete rather than continuous, and 
was based on a particular choice of the unit (namely as half the diameter). 
Geometrical reasoning, did not in this way depend on discreteness and choice 
of unit, numbers were never used for irrational geometrical quantities. I have 
noted this objection of Kepler against the use of numbers in geometry above in 
Section 7.4. 

A third objection of Kepler concerned the fact that the equation had more 
than one solution.28 Kepler noted that not only the side of a heptagon satisfied 
the equation but also any of its diagonals. Thus, as far as the equation was con
cerned, no distinction could be made between side and diagonal, which Kepler 
considered alien, even repellent, to the geometer. 29 

Kepler's fourth objection was that if, as in this case, the unknown was irra
tional, the equation, based on calculations with numbers, could never provide 
more than approximations. Approximations did not provide the kind of knowl
edge the geometer seeks: 

Fourth, assuming that a single proportion would [suffice to] define 
what is required; I am not told how to bring the matter to a conclu
sion but only how to stalk the quarry, from a distance .... this is not 
to know the thing itself but only something close to it, either greater 
or less than it; and some later calculator can always get closer to 
it [still]; but to none it is ever given to arrive at it exactly. Such 

25[Kepler 1937-1975] p. 52: " ... sed cum earn proportionem nondum habeam ullo geomet
rico actu descriptarn: illud igitur expectabam, ut quis me doceret prius illam proportionem 
constituere." (Translation quoted from [Kepler 1997] p. 70.) 

26[Kepler 1937-1975] p. 53: "At quomodo repraesentabo affectionem, quo actu geomet
rico? Nullo alio id doceor facere, quam usurpando proportionem, quam quaeroj principium 
petitur: et miser calculator, destitutus omnibus geometriae praesidiis, haerens inter spineta 
numerorum, frustra cossam suam respectat. Hoc unum est discrimen inter cossicas et inter 
geometricas determinationes." (Translation quoted from [Kepler 1997] p. 71.) 

27[Kepler 1937-1975] p. 53. 
28[Kepler 1937-1975] pp. 53-54. 
29[Kepler 1937-1975] p. 53: "illud maxime mirum est (quanvis geometrarn praecipue ab

sterreat)." 
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indeed are all quantities which are only to be found in the proper
ties of matter of a definite amount; and they do not have a knowable 
construction by which in practice they might be accessible to human 
knowledge. 3D 

Kepler added a fifth argument31 relating the equation to the construction of 
mean proportionals. The argument, however, is difficult to interpret and I leave 
it aside here. 

Kepler concluded his criticism of the use of algebra in constructing regular 
polygons as follows: 

So we conclude that these Algebraic Analyses make no contribution 
to our present concerns; nor do they set up any degree of knowledge 
that can be compared with what we discussed earlier.32 

The arguments Surveying Kepler's objections to using algebraic methods in geometry, we 
may conclude that they were strong and pertinent as far as constructions were 
concerned. His first argument pointed to the fundamental restriction of using 
algebra in geometry: equations and algebraic expressions representing unknown 
line segments do not themselves constitute solutions, i.e., constructions of geo
metrical problems, nor do they automatically provide such constructions. 

However, in other respects Kepler's objections reveal an underestimation of 
the conceptual power of algebra. His third argument concerned the fact that an 
equation (usually) has more than one root and does not itself provide means to 
distinguish between these roots. But the same applies for geometrical problems 
with multiple solutions. So the objection does not bring more than the first 
one, namely, that an equation is not a solution but still a problem, and Kepler's 
wonder about multiple roots seems to indicate some lack of familiarity with 
equations. 

Kepler's second and fourth arguments related to the idea that numbers, 
being discrete, did not belong in geometry, which concerned continuous quantity. 
We have seen (cf. Sections 7.2, 7.3, 7.4) that this idea was widely discussed 
around 1600. However, Viete had shown, well before the publication of On 
world harmony, that the rejection of numbers from geometry did not necessarily 
obstruct the geometrical use of algebra. 

Comparison Kepler's arguments invite a comparison with Viete's ideas on construction 
with Viele and the use of algebra. Indeed Viete had dealt with the same issues and arrived 

30 [Kepler 1937-1975] p. 54: "Quarto, posito, quod una sola proportio faciat imperatum; 
illam non doceor absolvere, sed saltern venari eminus. ... Hoc non est scire rem ipsam, 
sed saltern aliquid proxime majus vel minus; potestque semper posterior aliquis computator 
approximare magis; pervenire ad punctum ipsum, nulli unquam datur." (Translation quoted 
from [Kepler 1997] p. 72.) 

31 [Kepler 1937-1975] pp. 54-55. 
32 [Kepler 1937-1975] p. 55: "Concludimus igitur, analyses istas cossicas, alienas esse a 

praesenti contemplatione; nee ullum constituere gradum scientiae, cum iis comparabilem, 
quos explicavimus in superioribus." (Translation quoted from [Kepler 1997] p. 74.) 
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at a contrary conclusion, namely, that algebra was an appropriate means for use 
in geometry. Rather than accepting a restriction to numerical subject matter, 
Viete had realized that algebra could be applied to magnitude in general, and 
to do so he had elaborated a profound reinterpretation of the basic algebraic 
concepts. Like Kepler, Viete realized that an equation in itself was no solution. 
But rather than seeing this as an unanswerable objection, he had elaborated 
the further "exegetic" procedures for deriving geometrical constructions from 
algebraic equations. 

Kepler did not refer to Viete; it is unclear whether he was familiar with the 
Vietean treatises. Even if he was, he might have refrained from referring to them 
because Viete did accept construction beyond straight lines and circles. More
over, Viete's arguments were formulated with ornate terminology in the context 
of a grand theoretical structure, which may have prevented the separate ideas 
to become clear. In contrast, the polemical context of Kepler's argumentation 
made him formulate the point that equations were not equivalent to solutions 
in a much more precise and challenging way than Viete ever did. 

11.6 Kepler's interpretation of geometrical ex
actness 

Kepler summed up the conclusion of his discussion of contemporary con- A restrictive 
structional practice beyond straight lines and circles by a metaphor: there was point of view 
no scientific way to cross the frontier between plane and solid problems, the 
bridge over the water was broken, the shores of the two territories remained 
disconnected. The metaphor occurred in connection with the problem of two 
mean proportionals: 

For if a proportion between solids is not given in a form such as 
[a ratio between] two cubic numbers: we cannot, as an intellectual 
procedure, measure the proposed solid in terms of another known 
one: because two intermediate proportionals cannot be constructed 
exactly in the plane: though they may be present in the cubes, yet 
there is no passage from the plane figures to form any of those cubes 
without the two means: [it is] as if the bridge were broken. 

And for finding two mean proportionals some give instructions to 
use Geometrical motion, thereby ordering one to do something that 
is useless for achieving certainty through an appropriate Geomet
rical act: indeed Pappus himself gives instructions that use Conic 
sections, to be produced with the help of two [mean] proportionals, 
although the Cone itself is a solid. So we are always assuming what 
is required to prove; and the bridge lies on the other bank.33 

33[Kepler 1937-1975J p. 61: "Nam nisi solidorum proportio fuerit data talis, qualis est inter 
duos numeros cubicos: mensurare solidum propositum alia solido noto non poterimus, ad 
mentem informandam: quia duae intermediae proportion ales exacte in plano constitui non 
possunt: in cubis etsi possunt inesse, at it planis ad cubos illos quoscunque formandos, non 
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The basis for Kepler's restrictive interpretation of geometrical exactness was 
philosophical; he needed the classification of ratios that resulted from the strict 
adherence to Euclidean constructions; any extension would explode his theory 
of harmony. Thus he took an orthodox and very restrictive view in the matter 
of geometrical constructions: only those by straight linAs and circles were gen
uinely geometrical. Compared with the ideas of his contemporaries, Kepler's 
interpretation of geometrical exactness was unusually rigid. 

Clearly Kepler's strategy in defense of his interpretation of exactness was what 
in Section 1.6 I have called appeal to authority and tradition. His authorities 
were classical: Euclid and Proclus. The former had, he claimed, established the 
proper geometrical approach to construction, namely, the restriction to straight 
lines and circles, in his Elements; the latter had provided the arguments for this 
approach in his commentary to the Elements. 

Kepler's strategy was not successful. For all his strong words and images, 
Kepler convinced few, if any, geometers to refrain from dealing with higher-order 
problems and from searching for solutions that could be considered exact. 

datur transitus sine ipsis duabus mediis, veluti ponte abrupto. 
Et duas medias proportionaies invenire, docent alii per mot urn geometricum, imperantes 

quod est impraestabiie, quoad certitudinem actus geometrici adaequati: docet et ipse Pappus, 
per sectiones conicas, beneficio duarum proportionalium expediendas, cum et conus sit solidum 
quid. Ita semper principium petitur; et pons jacet in adversa ripa." (Translation quoted from 
[Kepler 1997] p. 88, slightly modified.) The margin title of this passage reads: "Duas medias 
proportionales scientifice invenire impossibile." 



Chapter 12 

Molther 

12.1 The Delian Problem 

In the same year as Kepler's World harmony a book by a much lesser known Molther's book 
mathematician was published in Frankfurt. It was entitled 

The Delian problem of doubling the cube, that is, given any solid, 
to make a similar solid in a given ratio, by means of the second 
Mesolabum, by which two continuously proportional means can be 
obtained. Now at last easily and geometrically solved after innu
merous attempts of the most eminent mathematicians. The history 
of the problem is given first and some results are added about the 
trisection of an angle, the construction of a heptagon, the quadra
ture of the circle and two very convenient designs of proportional 
instruments. 1 

About its author, Johannes Molther, little is known. 2 The Delian Problem of 
1619 was his only mathematical book. It contained a number of neusis construc
tions for two mean proportionals. These constructions were not new; they were 
the same as, or at least very similar to, the ones given by Pappus, Archimedes, 
and Viete. Molther did not explicitly present the constructions themselves as 
original; but he did claim that he was the first to prove conclusively that the 
neusis construction was truly geometrical. In his opinion a convincing argument 
for the geometrical legitimacy of neusis constructions had not yet been given, 

1 [Molther 1619] titlepage: "Problema Deliacum de cubi duplicatione, hoc est de quorum
libet solidorum, interventu Mesolabii secundi, quo duae capiantur mediae continue propor
tionales sub data ratione similium fabrica. Nunc tandem post infinitos praestantissimorum 
mathematicorum conatus expedite et geometrice solutum. Ubi historia problematis praemit
titur, et simul nonnulla de angUli trisectione, heptagoni fabrica, circulique quadratura et 
duabus commodissimis instrumentorum proportionum formis inserentur." Doubling the cube 
was called the "Delian problem" because of a tradition that people from Delos were once told 
by an oracle to double their altar. 

2Molther, born in 1591, was professor of Medicine at Marburg, his date of death is unknown; 
cf. [Bos 1993bJ p. 29. 
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and so, by presenting such an argument, he could claim that he had for the 
first time really solved the problems of doubling the cube and constructing two 
mean proportionals. 

Legitimation As to mathematical techniques the book was unoriginal, occasionally coming 

Against earlier 
constructions 

near to plagiarism. The historical interest of the book lies in the arguments 
about the legitimacy of constructions. Molther based these arguments on an 
analysis of how draftsmen achieved precision in using instruments. His further 
reasoning may be summarized as saying that exactness in pure geometry is the 
mental analogue of the practical precision in applying instruments such as rulers 
and compasses. 

We have met this idea in Clavius' legitimation of his construction of the 
quadratrix. Clavius, however, did not elaborate the argument further, nor did 
he fully maintain it in later publications. It seems indeed that Molther's book is 
the only early modern text in which this approach to geometrical legitimation 
is expounded in great detail. It is, thereby, an extreme example of the interpre
tation of exactness that I have termed "idealization of practical methods," and 
for that reason his arguments deserve to be discussed in my present study. 

12.2 Arguments 

In the first, historical sections of the book Molther critically reviewed earlier 
attempts to construct two mean proportionals. In Molther's opinion, none of 
these constructions was truly geometrical. Some of them used curves, which 
were traced by machines or constructed pointwise; neither method could be 
accepted as fully geometrical. Other constructions were impractical, merely 
approximate, or just false. Among all the constructions Molther preferred that 
of Nicomedes by means of the conchoid (cf. Construction 2.6), because this curve 
could be traced more easily than the conics or the cissoid, and also because its 
pointwise construction (here he referred to Clavius, who gave such a construction 
of the conchoid in his Practical Geometry3) was simple and practical. Yet, curves 
as the conchoid were not traced in a truly geometrical way, and it was still an 
open problem 

how the required positionings of such lines could be performed at one 
stroke without other instruments than those which the geometer is 
perfectly allowed to use, with such truth and precision that they 
would also sustain the scrutiny of reason.4 

Thus Molther's criteria, as far as he articulated them in his historical survey, 
concerned precision and accuracy. He explicitly rejected the use of curves that 
were merely constructed pointwise or traced by instruments. 

3Cf. Chapter 9 Note 17 of Chapter 9. 
4[Molther 1619] p. 25: "(~) quomodo eiusmodi linearum requisitae applicationes Geomet

rice sine alia quam Geometrae absolute concesso instrumento, mox prima actione praestaren
tur tanta veritate ac praecisione ut etiam rationis censuram sustinerent." 
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At the end of the historical introduction Molther announced his own method Molther's 
for finding two mean proportionals in the following terms: 

We, however, have finally realized that the business of this problem 
which was explored through many centuries and which left the most 
ingenious of mortals at a loss, is really so smooth, easy, obvious, 
ready and evident, that it has by right to be counted as the next 
postulate, because it meets the very terms for a legitimate postulate; 
hence it does not at all require a belaboured construction and proof, 
as difficult problems do, but, as a principle clear in itself, it needs 
only a simple explanation, after which anyone can understand it and 
give it its due assent. 5 

So Molther's solution was simple and direct indeed. He claimed that the neusis 
construction could be accepted as a postulate in geometry on the same level 
as the traditional postulates that canonized the usual Euclidean constructions, 
and that therefore the duplication problem could indeed be solved geometrically 
by means of neusis. 

Now this was precisely what ViEte had done (cf. Section 10.2) in his Sup
plement of geometry. But Viete had given no arguments why the neusis should 
be given postulate status. For Molther that was the heart of the matter, which 
may explain how easily he dismissed Viete's work in his survey of earlier con
structions: 

With all his subtlety Viete gathered nothing that could withstand 
criticism.6 

12.3 Molther's justification of the postulate 

solution: the 
neusis 
postulate 

The crux of Molther's reasoning was the argument that neusis construction The postulate 
was as obviously possible and acceptable in geometry as the construction of 
straight lines and circles by a ruler and a compass. The first chapter of his book 
was devoted to that argument. It opened with the formulation of the postulate: 

It is postulated that, given two lines and a point in position in the 
same plane, a line can be drawn through that point such that the 
segment intercepted on that line by the two given lines is equal to 
another straight line given in length.7 

5[Molther 1619J p. 27: "At vero nos rem istam exploratae per plurima secula difficul
tatis, in qua mortalium ingeniosissimi haesitarunt, ita expeditam, facilem, obviam, parabilem 
promtamque dudum animadvertimus, ut quia hasce Postulati legitimi conditiones obtinet, 
Postulatus sit proxima meritoque annumeranda, adeo ut nequaquam ceu Problema contentio
sum anxiam constructionem et demonstrationem requirat, sed tanquam Principium per se 
manifest urn, levi contenta sit explicatione, qua adhibita it quolibet capi et assensum meriri 
possit." 

6[Molther 1619J p. 26: "Subtillissimus Viet a nihil quod censuram sustineret venatus est." 
7[Molther 1619J p. 29: "Postuletur, duabus lineis punctoque in eodem plano situ datis, ut e 

puncto isto linea recta applicetur, cuius portio a lineis illis intersect a alteri rectae longitudine 
datae sit aequalis." 
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Figure 12.1: Neusis - Molther 

Performing a Molther then explained the procedure for performing a neusis. His description 
neusis of it can be summarized in the form of a construction: 

Construction 12.1 (Neusis - Molther)8 
Given lines land m intersecting in 0, a point A and a length a (see Figure 12.1); 
it is required to construct the straight line ABC intersecting land m in Band 
C, respectively, such that BC = a. 

Construction: 
1. Take a ruler and mark points D and E on it with distance a. 
2. Move the ruler over the plane in such a way that it slides along 
the point A and that the point D on the ruler moves along the given 
line l. 
3. Stop that motion at the moment that the point E is on the line 
m; then draw a straight line along the ruler; it intersects land m in 
Band C, respectively. 
4. ABC is the required line. 

Legitimation To justify the status of postulate for the neusis, Molther analyzed the proce-
dure at great length, arguing that each of its steps was legitimately geometrical. 
Since the first Euclidean postulate established the tracing of straight lines, the 
ruler, by which this was done, was a geometrical instrument. Moreover, such 

8[Molther 1619] pp. 29-30. 
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rulers could be made very precise, for instance, by making them of metal or by 
folding a piece of paper. The segment DE = a could be marked on the ruler 
by a compass, which was also a geometrical instrument. The required nwve
ments of the ruler could be performed with great precision. This precision was 
guaranteed by our senses, which could judge whether the ruler remained along 
A during the motion and whether the point D moved along the given line l. 
It was also by the senses that the geometer decided to stop the motion at the 
moment that the point E lay on the second given line m. Thus these procedures 
essentially involved motion and the judgment and action of the geometer to stop 
that motion when the required position is reached. Molther argued that both 
motion and the testimony of the senses were implicitly assumed in the usual 
Euclidean postulates: 

For we have to use sense [sc. in performing a neusis] to move the 
ruler and to assess whether it is placed in the way as postulated: be
cause what can be clear by itself should not be made known through 
any demonstration. For in the other case [sc. the Euclidean postu
lates] we assess in no other way than by sense whether a ruler is 
duly posited along the two points, from one of which to the other 
a straight line can be drawn according to the postulate; similarly 
whether the given interval with which a circle is to be described is 
justly contained in a compass; and again similarly whether the one 
leg of the compass is rightly placed in the given centre around which 
the circle is to be drawn. Certainly one sees with the same ease 
whether the ruler is along the point A and at the same time whether 
the point C on the ruler is at the line l and the point B on it at the 
line m.9 

Molther pointed out that it was precisely the role of the senses that underlay 
the distinction between axioms and postulates. Axioms regarded the mind; 
postulates, "principles of construction" 10 as Molther called them, regarded the 
senses. 

Despite his detailed analysis of the procedure by which geometers actually Pure geometry 
draw lines, it was not Molther's view that geometry coincided with the physical 
actions of draftsmen. He left room for a step of idealization from practice to pure 
geometry. He argued that also in the abstract mental world of pure geometry 
the usual Euclidean postulates required motion and the testimony of the senses 
(in this case the inner senses), and that therefore the neusis construction, using 

9 [Molt her 1619] pp. 33-34: "Sensu enim advertendum et agnoscendum sitne Regula ita 
ut postulatur applicata: quia nulla demonstratione id innotescat, quod per se liquidum esse 
potest. Quemadmodum alias haud aliter quam sensu cognoscimus sitne Regula ad duo puncta, 
e quorum uno ad alterum trahi postulatur Recta, debite applicata: sitne intervallum pro 
Circulo describendo datum Circini apertura iuste comprehensum: sitne pes Circini alter in 
centro dato circa quod gyranda est Peripheria, recte posit us. Nempe eadem facilitate protinus 
cernitur, sitne Regula iuxta punctum A simulque Regulae punctum C in linea /, et Regulae 
punctum B in linea m." (Letters changed to correspond to Construction 12.1.) 

lO[Molther 1619] p. 34: "Principia fabricandi." 
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the same motions and the same testimony of the senses, should be granted the 
same postulate status in pure geometry. 

Molther stressed that motion was very common within pure geometry; a line 
was generated by motion of a point; spheres, cones, and cylinders were generated 
by the motion of circles and straight lines. Even if one considered pure geometry 
as an action of the mind alone based on postulates, constructions still had to 
be performed in the mind by an inner sense, and this was done by procedures 
idealized from the actual physical construction procedures. Indeed, the analysis 
of the role of motion and the senses in the actual physical procedure served to 
help the inner sense to perform the neusis abstractly in the mind as easily as 
it performed the mental operations corresponding to the use of a ruler and a 
compass. Therefore, neusis should be accepted as a postulate in pure abstract 
geometry. Molther formulated this argument as follows: 

But if someone would judge that geometry at its most pure should be 
practiced just by action of the mind and based only on its postulates, 
then even he would idealize, by mathematical abstraction, the ideas 
of a material ruler, or a compass, and he would grasp these ideas 
in his mind so that rulers and compasses would do their work by 
an interior sense in the imagination. And thus it would be easy to 
imagine thinkingly the process of which we have shown how it is 
performed in reality. 11 

Instruments Although Molther probably considered his arguments about the acceptability 
of the neusis in pure geometry as his most important contribution, he also 
presented some practical fruits of his investigation, namely, an instrument and 
a procedure that he had devised for neusis construction. 12 The instrument was 
a combination of rulers sliding along each other with points and pins adjustable 
as required (cf. Figure 12.2); the procedure employed a cord along which the 
given distance Be = a was marked and which, while being kept straight, was 
moved along the plane such that it wrapped about a pin in the given pole A 
and such that one of the given points on it followed one of the given lines; the 
required position of the line was reached at the moment that the other point on 
the cord coincided with the second given line. 

Solid Molther concluded the first chapter with two solid constructions. The first 13 

constructions was a trisection by neusis. It was a variant of (and probably inspired by) the 
neusis construction that occurs in Pappus' Collection (cf. Construction 3.9); 

11 [Molther 1619] p. 36: "Si quis autem existimet oportere puram puram [sic] Geometriam 
sola mentis actione, etiam secundum Postulata sua, exerceri; is quoque Regulae Circini ma
terialis ideas (afairesei) Mathematica abstrahat et mente complectatur, ut in Phantasia per 
sensum interiorem Regulae ac Circini opera raciant. Sic enim proclive fuerit cogitando illud 
fingere, quod quomodo reipsa praestetur monstravimus." 

12[Molther 1619] pp. 38-39. 
13[Molther 1619] pp. 40-45. 
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Figure 12.2: Molther's instrument and his procedure for neusis construction, 
Delian problem pp. 38-39 
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Figure 12.3: Construction of two mean proportionals - Molther 

Molther modified the construction slightly to make it easier in practice. The 
second14 was a constru~tion of the regular heptagon by means of a curve (intro
duced for this special purpose and constructed pointwise) which Molther called 
the "Heptagon tracing spiral" . 

12.4 The "Mesolabum" 

The The second chapter of Molther's book was devoted to the Mesolabum proper, 
construction that is, to the construction of two mean proportionals. The construction and 

the proof given by Molther were essentially the same as Viete's (cf. Construc
tion 10.1), but Molther omitted any reference. For easier reference I repeat the 
construction here: 

Construction 12.2 (Two mean proportionals - Molther) 15 

Given two line segments a and b (a < b) (see Figure 12.3); it is required to find 
their two mean proportionals x and y. 

Construction: 
1. Mark points A, B, C, D along a straight line such that AB = 
BC = CD = a. 
2. Construct two congruent isosceles triangles AEB and CFD, with 

14[Molther 1619J pp. 45-48, on the "Helix (heptagoonografousa)." 
15[Molther 1619J pp. 51-58. 
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AE = EB = CF = FD = ~b; draw BF. 
3. By neusis (Molt her here refers to his postulate) from E between 
the lines BF and AD, construct the line EGH with intercept GH = 

~b. 
4. x = EG and y = BH are the required mean proportionals. 
[Proof: See Construction 10.1.] 

In the remainder of the book Molther discussed various more or less related Other topics 
topics, such as an approximate quadrature of the circle by means of mean pro-
portionals (equivalent to 7r = V3I), the duplication of the cube, the various 
legends around that problem, and the construction of a solid similar to a given 
solid and with its volume in a given ratio to the given solid, a problem reducible 
to two mean proportionals. 16 

12.5 Molther's interpretation of geometrical ex
actness 

Molther's legitimation of the neusis construction belongs to the category "ide- No 
alization of practice." It was elaborated in considerable detail. Yet it was incom- demarcation 
plete in that it did not take up the issue of the demarcation between legitimate 
and illegitimate procedures in geometry. Should all motions and all testimonies 
of the senses be accepted, in idealized form, in pure geometry? And if not, 
how should the demarcation be drawn between acceptable and unacceptable 
procedures? Molther did not address these questions. He seems to have been 
preoccupied more by the solvability of one famous problem (and by the triumph 
to be gained by solving it) than by the issue of construction and demarcation 
in general. He did not discuss line-like problems nor the construction of such 
curves as the quadratrix or the spiral. Actually, he may not have been aware 
of problems, other than the quadrature of the circle, which could not be solved 
by straight lines, circles, and neusis. 

It is unlikely that Molther exerted much influence; there is hardly any docu- Interest 
mentable interest in his book. 17 Yet he followed a line of argument that, witness 
Clavius' adoption of it earlier, had a certain appeal, invoking, as it did, an ob-
vious parallel between pure and practical geometry. We may therefore assume 
that the arguments have occurred, in various degrees of sophistication, to a 
number of early modern geometers. Thus Molther's attempt at legitimizing ge
ometrical procedures is of interest because it made explicit the tacit arguments 
and also the weaknesses involved in a rather natural approach with respect to 
the interpretation of geometrical exactness. 

16This problem was mentioned in he title of the book. Clavius had dealt with it in his 
Pmctical Geometry, cf. Note 45 of Chapter 4. 

17The only 17th century reference I have found is in [Mersenne 1636] p. 68. 
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We may locate the basic weakness of the approach in the fact that preci
sion in practice is a matter of degrees, whereas the interpretation of exactness 
requires a strict demarcation between exact or geometrical, on the one hand, 
and inexact or ungeometrical, on the other hand. It is true that Molther made 
no attempt at formulating a strict demarcation. But he shifted the earlier, Eu
clidean demarcation between exact and non-exact, and thereby his reasoning 
begged the question of where this demarcation would ultimately be located. 
The interpretation of exactness by idealization of practice involves an attempt 
to derive a strict demarcation from a gradual qualitative scale; such an attempt 
necessarily implies an arbitrary and thereby unconvincing choice. 



Chapter 13 

Fermat 

13.1 Geometrical problems and their analysis 

Viete, Fermat, and Descartes were the main protagonists in the creation Little interest 
and adoption of algebraic analysis as a tool for geometry. As explained in the in exactness of 
general introduction (cf. Section 1.5), I consider this development as the princi- constructions 
pal dynamics within the early modern tradition of geometrical problem solving. 
Yet Fermat figures less prominently in my story than Viete, and much less so 
than Descartes. The reason is that, although Fermat was strongly interested in 
the new analysis, and applied it in various mathematical areas, he showed little 
concern about geometrical constructions and their exactness. 1 

When Fermat had learned about Descartes' methods of analysis, he often 
took a polemical position toward them; therefore, a discussion of the relevant 
later writings of Fermat is better left until after the explanation, in Part II, of 
Descartes' approach to construction and geometrical exactness (Section 29.2). 
For my present purpose it suffices here to discuss Fermat's contributions to 
the analytical techniques of geometrical problem solving dating from the period 
before he became acquainted with Descartes' results. 

The Fermatian documents relevant to his early ideas about geometrical prob- Documents 
lem solving are: 2 1 a geometrical fragment concerning the "three line-locus," 
from the period 1629-1636;3 2 the restitution of Apollonius' treatise on plane 
loci4 from c. 1636 of which copies are known to have circulated in Paris by the 
end of 1637; 3 a proposition about the parabola5 from or just before 1636; 4 

lCf. [Bos 1996b]. 
2For the dates of these documents I rely on Mahoney's chronology, [Mahoney 1994] pp. 403-

411. 
3 "Loci ad tres lineas demonstratio," first published in [Fermat 1891-1922] vol. 1, pp. 87-91. 
4 "Apollonii Pergaei libri duo de locis planis restituti" first published in [Fermat 1679] 

pp. 12-43, also in [Fermat 1891-1922] vol. 1, pp. 3-51. 
5 "Propositio D. de Fermat circa parabolen," first published in [Fermat 1679] pp. 144-145, 

also in [Fermat 1891-1922] vol. 1, pp. 84-87. 
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the Introduction to plane and solid loci,6 of early 1636, which circulated among 
Parisian mathematicians by the end of 1637; 5 an appendix to the previous 
item, concerning solid problems, from 1636 or later;7 and 6 the solution, from 
1636, of a problem proposed by Etienne Pascal.s 

Classical From these writings it appears that Fermat knew the tradition of geometrical 
analysis and problem solving well and could apply both the classical and the modern, Vietean, 

loci methods of analysis. The problem proposed by Etienne Pascal (item 6 above) 
was a triangle problem: Consider a triangle ABC with sides a, b, c and angles 
0:, {3, 'Y and let h be the perpendicular from A to BC; let the angle 'Y and 
the ratio h : (b - c) be given; it is required to find the triangle "in kind" 
(the data determine the triangle up to similarity). Fermat gave an analysis in 
classical style (cf. Section 5.1), showing that the problem was plane, gave the 
construction, proposed variant triangle problems for others to solve, warned 
that some of them were non-plane, and showed himself to be aware of Pappus' 
precept by adding that that those which were plane should not be solved by 
solid means.9 

Fermat's reconstruction of an Apollonian treatise (item 2 above) shows that 
he shared another concern common within the early modern tradition of geo
metrical problem solving, namely, the restitution of the classical works on anal
ysis mentioned by Pappus (cf. Section 4.7). However, the topic of the treatise, 
namely, loci, had not attracted much interest earlier. In this respect also Fer
mat's note on the three-line locus (item 1 above) marks a novel interest within 
geometrical problem solving. 

Fermat's interest in loci is related to one issue in which he adopted an ap
proach different from Viete's, namely, the construction of solid problems. Be
fore Fermat and Descartes, few early modern mathematicians practiced the 
construction of solid problems by conic sections (cf. Section 5.5). Viete had 
supplemented geometry with the neusis construction as a new postulate to deal 
with solid problems. Fermat returned to the classical approach in this matter, 
adopting construction by means of conic sections as the proper way of dealing 
with solid problems. In classical analysis the conics by which a solid problem 
should be contructed were found as loci (cf. Section 5.1 and Table 5.1). Fer
mat's interest in loci and conics as means of construction led him to explore the 
potential of Vietean algebra for dealing with loci and conic sections, and this in 
turn led him to what later was recognized as the principle of analytic geometry: 
the relation between curves and equations in two unknowns. 

6 "Ad locos pianos et solidos isagoge," [Fermat Isagoge] first published in [Fermat 1679] 
pp. 1-8. 

7 "Appendix ad Isagogen topicam, continens solutionem problematum solidorum per locos," 
[Fermat Appendix] first published in [Fermat 1679] pp. 9-11. 

8 "Solutio problematis a Domino Pascal propositi," [Fermat 1891-1922] vol. 1, pp. 70-74 
(first published in 1779 in an edition of Pascal's Oeuvres). 

9[Fermat 1891-1922] vol. 1, p. 74: "Sed observandum in quaestionibus de triangulis, 
quoties problema poterit solvi per plana, non recurrendum ad solida. Quod quum norint 
viri doctissimi, supervacuum fortasse subit addiddisse." 
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The main document in which Fermat established the relation between curves, "Isagoge" 
loci, and equations is the famous Introduction (item 4 above). Apart from stat-
ing the relation generally,10 he showed explicitly in the Introduction that equa-
tions of first or second degree in two unknowns correspond to plane loci (Le., 
straight lines and circles) or solid loci (Le., parabolas, hyperbolas, and ellipses). 
For detailed discussions of the Introduction I refer to the standard secondary 
sources. ll For my present purpose I need only describe the way in which Fer-
mat derived the constructions of the loci from the pertaining equations in two 
unknowns. 12 In the case of the straight line he argued in classical fashion that if 
the axis and the origin are given in position and the coefficients of the equation 
are given in magnitude, the locus is given in position. He did not explicitly 
refer to Euclid's Data, trusting his reader to recognize from the terminology 
of "givens" that he based his arguments on the propositions of that book. He 
did not specify the further synthesis, that is, the construction. A similar tacit 
reference, now to Apollonius' Conics, underlay his treatment of the non-linear 
cases (he distinguished several forms of quadratic equations). Again he showed 
that if the coordinate axes were given in position and the coefficients of the 
equation were given in magnitude, the defining parameters of the conics were 
given in position (the vertex and the axis) and in magnitude (the latus rectum 
and the latus transversum). Evidently he assumed the reader to know how to 
find in the Conics the construction of the conic section on the basis of these 
data; 13 he did not specify these constructions. 

The Introduction explained how algebraic analysis could be used to solve "Appendix" 
locus problems. In the Appendix (item 5 above) to the Introduction Fermat 
applied the new technique to the solution of solid problems. He assumed that 
the problem was already reduced to a third- or fourth-degree equation in one 
unknown. As the proper solution of solid problems was their construction by the 
intersection of conic sections, the program of the Appendix required that Fermat 
show how, given a third- or fourth-degree equation in one unknown x, one could 
find two second-degree equations in two unknowns x and y, such that the conic 
sections represented by these equations intersected in one or more points that 
yielded the roots of the original equation. Fermat saw that this situation would 
be achieved if the unknowns x and y were taken to be the coordinates of the 
points of intersection of the conics. Thus the question was reduced to finding a 
system of two quadratic equations in x and y equivalent to the original equation 
in x in the sense that eliminating y from the system would result in the original 
equation. These quadratic equations then exhibited the plane or solid loci by 

lOThe statement, which is usually considered as the first formulation of the principle of 
analytical geometry, occurs at the beginning of the treatise ([Fermat Isagoge] p. 91): "Quoties 
in ultima aequalitate duae quantitates ignotae reperiuntur, fit locus loco et terminus alterius 
ex iIIis describit Iineam rectam aut curvam." ("Whenever two unknowns are found to remain 
in the final equation we have to do with a locus and the extremity of the second of these 
describes a straight line or a curve."). 

11 In particular [Mahoney 1994] pp. 76-92. 
12 [Fermat Isagoge] pp. 91-103. 
13Namely Conics 1-52-58, cf. Note 32 of Chapter 3. 
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which the solid problem was to be constructed. 
In the Appendix Fermat indeed achieved the program outlined above. In 

Section 5.6, Analysis 5.11, I have used Fermat's analysis of the two mean pro
portionals problem as an example of the resulting algebraic method of analysis 
involving loci. The mean proportionals problem served as a specific example in 
the Appendix. Fermat also explained a general method, applicable to all third
and fourth-order equations. He did not present this method explicitly in its 
full generality, because it involves case distinctions depending on whether the 
coefficients are positive or negative. Instead Fermat gave two examples that il
lustrated the two techniques he used to adjust to the various cases. I present the 
method here explicitly using indeterminates, which may be positive or negative: 

Analysis 13.1 (Any solid problem -- Fermat)14 
Given: any solid problem reduced to a third- or fourth-degree equation in x; it 
is required to find the equations of two plane or solid loci whose intersections 
determine x. 

Analysis: 
1. Assume the equation reduced to the form 

X4 = a + bx + cx2 , 

by elimination of the third-degree term. 
2. Add -2dx2 + d2 to each side (d will be adjusted later): 

(x2 - d)2 = a + bx + (c - 2d)x2 + d2 . 

3. Equate each side to e2 y2 (e positive, to be adjusted later) and 
reduce the first equation; this yields: 

ey, 

(2d - c)x2 + e2 y2 ; 

The first equation represents a parabola. Take d such that 2d - c > 0 
and take e2 = 2d - c; then the second equation represents a circle. 
4. The problem is solved by drawing the parabola and the circle. 

Some 45 years earlier Viete had achieved the reduction of all solid problems to 
either the trisection of an angle or the determination of two mean proportionals. 
Because both these classical problems could be constructed by neusis, he had 
proposed to supplement geometry by a new postulate legitimating the neusis as 
a geometrical construction procedure. However, as I noted in Section 10.3, Viete 
proved the reducibility in principle only, he did not provide explicit construc
tions for fourth-degree equations. Thus Fermat's analysis of the general solid 
problem constituded a marked improvement on Viete's; it provided an explicit 
construction, and it did not require the complicated algebraic manipulations 
involved in reducing fourth- to third-degree equations. Fermat was well aware 
of the importance of his improvement. He commented: 

14 [Fermat Appendix] pp.104-105. 
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Forget, therefore, Viete's climactic parapleroses 15 by which he re
duces quartic equations to quadratics by means of cubic equations 
with a squared root. For, as has been shown, quartic and cubic 
equations can henceforth be solved with the same elegance, ease and 
brevity; nor, do I think, can they be solved any more elegantly.16 

The assessment was entirely justified. Yet Fermat was not the first to achieve 
this improvement; at least some 10 years earlier Descartes had found a similar 
procedure to construct any solid problem by the intersection of a parabola and 
a circle. I discuss his construction in Chapter 17. 

13.2 Concluding remarks 

The few aspects of Fermat's mathematics discussed above may suffice to Problem 
characterize his position and role in the early modern tradition of geometrical solving 
problem solving. He was fully conversant with the themes and techniques cur-
rent in the tradition. He solved Pascal's triangle problem by classical analytical 
techniques, but his main interest concerned the new Vietean analysis. Here his 
interest in classical locus problems and his adoption (contrary to Viete) of con-
struction by the intersection of conics, led him to an essential improvement of the 
solution of solid problems. More still: this combination of interests induced him 
to elaborate the relation between equations in two unknowns and curves, and to 
state, in great generality, the central principle of analytic geometry. These fun-
damental contributions to algebraic analysis gave a new impetus to the principal 
dynamics within the tradition of geometrical problem solving. However, Des-
cartes' new techniques, created simultaneously and publicized more effectively, 
came to overshadow the Fermatian innovations. 

There are few passages in Fermat's writings dealing explicitly with the in- Interpretation 
terpretation of constructional exactness. In connection with Pascal's triangle of exactness 
problem he reminded his readers of Pappus' precept, which he stated as a matter 
of course. He also adopted the construction of solid problems by the intersection 
of curves as self-evident without further justification. Indeed, Fermat's interest 
lay primarily in analysis, much less in the constructions required in the syn-
thesis of geometrical problems; he usually left it to the reader to work out the 
constructions from the analysis. His attitude toward the interpretation of exact-
ness, then, is best characterized as an appeal to authority related to indifference 
about the issue of construction. 

Fermat's attitude was more than a mere preference for analytical questions; 
he accepted algebraic analysis as an autonomous mathematical topic indepen-

15This is Viete's term for the reduction of fourth-degree equations to third-degree ones 
discussed in Note 16 of Chapter 10. 

16[Fermat Appendix] p. 107: "Abeant igitur climacticae illae pampleroses Vietaeae, quibus 
aequationes quadratoquadraticas reducit ad quadraticas per medium cubicarum abs radice 
plana. Pari enim elegantia, facilitate et brevitate solvuntur, ut jam patuit, perinde quadrato
quadraticae ac cubicae quaestiones, nec possunt, opinor, elegantius." 
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dent from geometry or arithmetic. In the early decades of the seventeenth cen
tury this was an uncommon attitude; it rather characterizes a concern belonging 
to the period 1650-1750, in which (cf. Section 1.3) analysis, now including in
finitesimal analysis, emancipated itself as a separate mathematical discipline, 
separate from geometry and with its own subject matter. In this respect Fer
mat's attitude was remarkably advanced. 



Chapter 14 

Geometrical problem 
solving - the state of the 
art c. 1635 

14.1 Introduction 

The present chapter concludes my discussion of the early modern tradition The field 
of geometrical problem solving before Descartes. Problem solving constituted 
the primary context of Descartes' geometrical studies to which Part II is de-
voted. His contributions, however, changed the theory and practice of geomet-
rical problem solving in so fundamental a manner that they eclipsed many of 
the techniques, concepts, and concerns of the earlier tradition. It is therefore 
appropriate to conclude Part I by a sketch of the state of the art of geomet-
rical problem solving around 1635, that is, just before Descartes published his 
innovations (and also before Fermat's new techniques began to circulate among 
cognoscenti) . 

The domain of problems constituting the subject matter of the tradition of 
geometrical problem solving has been surveyed in Chapter 4. The list of problem 
types given there (cf. Table 4.1) applies for the period up to and including the 
mid 1630s. 

Geometrical problems generated considerable mathematical activity in the 
period between the publication of Pappus' Collection in 1588 and that of Descar
tes' Geometry in 1637. To illustrate the extent of this activity I have collected in 
Table 14.1 the titles of books published in this period that contained substantial 
sections devoted to geometrical problem solving. I do not claim completeness 
for the list nor correctness in detail ~ for that reason the items from the table 
that are not discussed elsewhere in my study are omitted from the bibliography. 

H. J. M. Bos, Redefining Geometrical Exactness
© Springer Science+Business Media New York 2001
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1588 1600 
*Pappus Mathematicae collectiones Pesaro 
1589 
*Pappus Mathematicae collectiones Venice 
1591 
*Viete In artem analyticen isagoge Tours 
1592 
*Viete Canonica recensio Tours 
1593 
*Van Roomen Ideae mathematicae Antwerp 
*Viete Supplementum geometriae Tours 
*Viete Variorum responsorum l, VIII Tours 
*Viete Zeteticorum libri quinque Tours/Paris, 
(1593-1600) 
1594 
*Scaliger Mesolabium Leiden 
*Scaliger Cyclometrica elementa duo Leiden 
*Scaliger Appendix ad cyclometrica Leiden 
Viete Munimen adversus nova cyclometrica 
Paris 
1595 
Christmann De quadratura circuli Frankfurt 
Viete Pseudo-Mesolabum Paris 
*Viete Ad problema . .. responsum Paris 
1596 
Van Ceulen Vanden Circkel Delft 
*Van Roomen Problema Apolloniacum 
Wiirzburg 
*Prado & Villalpando In Ezechielem 
explanationes Rome (1596-1605) 
1597 
Van Roomen In Archimedis circuli 
dimensionem expositio et analysis Wiirzburg 
1599 
*Benedetti Speculationum liber Venice 
Ramus Arithmetica ... geometria Frankfurt 
*Ramus Scholae mathematicae Frankfurt 

Sems & Dou Van het gebruyck der 
geometrische instrumenten Leiden 
*Viete Apollonius Gallus Paris 
*Viete De numerosa potestatum ad exegesi1 
resolutione Paris 
1602 
*Pappus Mathematicae Collectiones Pesaro 
1603 
Dybvad In geometriam Euclidis 
. . . demonstratio linealis Arnhem 
Dybvad in geometriam Euclidis 
... demonstratio numeralis Leiden 
Ghetaldi Propositiones de parabola Rome 
1604 
*Clavius Geometria Practica Rome 
1605 
Diirer Institutiones geometricae Arnhem 
Van Roomen Mathesis Polemica Frankfurt 
1607 
*Ghetaldi Variorum problematum collectio 
Venice 
*Ghetaldi Apollonius redivivus Venice 
Ghetaldi Supplementum Apollonii Galli Ve 
*Snellius (Peri logou apotomes ... ) resus( 
geometria Leiden 
1608 
*Roth Arithmetica philosophica Niirnberg 
*Snellius Apollonius Batavus Leiden 
1609 
Van Roomen Mathematicae analyseos 
Triumphus Leuven 
1611 
*Clavius Opera Mathematica Mainz 
(1611-1612) 
Clavius Refutatio cyclometricae Iosephi 
Scaligeri Mainz (1611-1612) 
1612 
*Anderson Supplementum Apollonii rediviv 
Paris 
Cardinael 100 Geometrische Questien 
Amsterdam 

Table 14.1: Books published 1588-1635 and containing substantial sections de
voted to geometrical problem solving (items marked * are mentioned in the 
bibliography) 



1613 
*Ghetaldi Apollonius redivivus Venice 
1615 
*Anderson (Aitologia) Paris 
Van Ceulen Van den Cirkel Leiden 
*Van Ceulen De arithmetische en geometrische 
fondamenten Leiden 
*Van Ceulen Fundamenta arithmetica et 
geometrica Leiden 
Viete De aequationum recognitione et 
emendatione Paris 
Viete Ad angularium sectionum analyticen 
theoremata Paris 
1616 
*Cyriacus Problemata duo Paris 
*Van Lansbergen Cyclometria nova 
Middelburg 
1617 
*Anderson Brevis diakrisis Paris 
Snellius Eratosthenes Batavus Leiden 
1619 
*Anderson Exercitationes mathematicae Paris 
*Van Ceulen De circulo Leiden 
*Kepler Harmonices mundi libri V Linz 
*Molther Problema Deliacum Frankfurt 
1620 
Ramus Meetkonst Amsterdam 
1621 
Landroni Instrument pour construire ... les 
sections coniques Thrin 
*Snellius Cyclometricus Leiden 
1623 
Bruni Frutti Singolari della Geometria Vicenza 
1624 
Viete Opus restitutae mathematicae analyseos 
seu algebra nova Paris 
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1625 
*Euclid Data Paris 
Schwenter Geometria Practica Niirnberg 
1629 
*Girard Invention nouvelle en algebre 
Amsterdam 
1630 
*Ghetaldi De resolutione et compositione 
Rome 
Vasset L'algebre nouvelle de Mr Viete Paris 
Vaulezard La nouvelle algebre de Mr Viete 
Paris 
Viete Introduction en l'art analytic Paris 
Viete L' algebre nouvelle Paris 
Viete Les cinq livres des zetetiques Paris 
Vaulezard Examen de la traduction ... des 
cinq livres des zetetiques de M. Viete Paris 
1631 
Bruni Dell' Armonia Astronomica et 
Geometrica Vicenza 
Harriot Artis analyticae praxis London 
Leotaud Elementa geometriae practica 
"Dolae" 
Oughtred Arithmeticae in numeribus et 
speciebus institutio London 
Vaulezard Examen de la traduction faicte par 
Antoine Vasset Paris 
*Viete Isagoge ... logistice speciosa Paris 
* Viete Logistice speciosa Paris 
1634 
Metius Manuale arithmetice et geometrice 
practice Amsterdam 
Stevin Les oeuvres mathematiques Leiden 
Herigone Cursus seu mundus mathematicus 
Paris (1634-1644) 
1635 
Viete Isagoge Leiden 
1636 
*Mersenne Harmonie universelle Paris 
Viete Algebre Paris 

Table 14.2: Table continued 
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14.2 Principal dynamics: algebraic analysis 

Class and The main changes within the tradition of geometrical problem solving over 
degree the period c. 1588 ~ c. 1635 were occasioned by what I have called the principal 

dynamics within the field: the creation and adoption of algebraic methods of 
analysis. The classification of problems into "plane," "solid," and "line-like" 
ones was originally based on the kinds of curves necessary for their construc
tion. By 1635 the technique of translating geometrical problems into algebraic 
equations was widely known, and the classification was more often related to the 
degrees of these equations than to the nature of the curves needed in the con
struction of the problems. The relation between the geometrical constructibility 
of a problem and the degree of the corresponding equation is not a straightfor
ward one (it depends on the reducibility of the equation) and by 1635 it was 
not fully understood. 

Problems leading to equations of first or second degree were known to be 
plane. Thus for instance Ghetaldi noted in 1607: 

Problems which can be algebraically explained can be geometrically 
constructed as long as their equations remain within the confines of 
squares. l 

However, sometimes the analysis of a plane problem could lead to an equation 
of higher degree than 2. In Section 5.4 I have argued that Ghetaldi probably 
was confronted with this phenomenon in dealing with a neusis problem that was 
known to be plane and that nevertheless led to an equation of fourth degree. 
Descartes was the first to realize that this discrepancy related to the reducibility 
of the equation. 

Another sign that the role of reducibility of equations was not completely 
understood is the conviction expressed by some mathematicians, that problems 
leading to cubic equations were ipso facto solid. Thus when Kepler asked Van 
Roomen by letter about the constructibility of regular polygons with 7, 9, 11, 
or 13 sides, Van Roomen gave the pertaining equations and remarked: 

Of these, the second is simply cubic, the others can be resolved into 
cubic ones. Hence, if you accept the axiom proposed by the most 
expert analysts, namely that cubic equations cannot be solved by 
geometrical means, you have the conclusion you asked for. 2 

Apart from the question of reducibility, the construction of problems lead
ing to cubic and quartic equations had been fully explored by Viete (cf. Sec
tion 10.3). He had shown in particular that any such problem could be reduced 

1 [Ghetaldi 1607] p. 5: "At problemata, quae algebraice explicari possunt, dummodo 
quadratorum metam aequationes non excedunt, possunt quoque et geometrica ratione con
strui." 

2[Bockstaele 1976] p. 290: "Ex hisce, secunda aequatio est mere cubica, reliquae in cu
bicas resolvuntur. Quod si itaque axioma hoc a peritissimis analistis propositum admittas, 
aequationes videlicet cubicas a geometris non resolvi, jam conclusum est quod quaeris." 
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to a neusis and that therefore they were indeed solid in the original sense, be
cause a neusis could be realized by the intersection of conics. As I have noted in 
Section 10.3 (Note 20), a proof that conversely all problems which were solid in 
the classical sense led to equations of degree four, was beyond Viete's interest. 

Pappus had classified all problems beyond the solid ones as line-like, to be Higher-order 
solved by curves such as the cissoid, the conchoid, the spiral, and the quadratrix. problems 
In algebraic terms this class splits into two: problems whose equation is of 
degree> 4 and those that lead to no algebraic equation at all. Using Cartesian 
terminology, I call a problem "supersolid" if it is line-like in Pappus' sense and 
leads to an algebraic equation. Descartes was to demonstrate (cf. Chapter 26) 
that such problems could be constructed by the intersection of pairs of algebraic 
curves (at least one of which had to be of degree> 2). I know of no higher-
order algebraic curves that were introduced before Descartes to solve supersolid 
problems. The conchoid and the cissoid, which are higher-order curves, were 
originally introduced to solve solid problems, namely, the neusis and the two 
mean proportionals problem. 

It appears that the only supersolid problems extant in the tradition around 
1635 concerned higher-order angular sections and mean proportionals. The 
higher-order mean proportionals, leading to equations xn = abn - 1, were alge
braically uninteresting. There was more excitement in the algebraic approach 
to angular sections. Several mathematicians derived algebraic equations in this 
respect. To give one (the most influential) example: Viete derived the following 
equations (in modern notation):3 

c x 

d 2 - x 2 

C 3x-x3 

d 2 - 4x2 + x4 

C 5x - 5x3 + x 5 (14.1 ) 

d 2 - 9x2 + 6x4 - x6 

C 7x - 14x3 + 7x5 - x 7 

d 2 - 16x2 + 20x4 - 8x6 + x 8 

C 9x - 30x3 + 27x5 - 9x7 + x 9 

in which c is the arc of a given angle within a circle of radius 1, d is the arc of the 
complement of the given angle, and the successive x's are the arcs of the given 
angle, its half, its third, its fourth, etc., parts. Viete explained the recursive 
relations by which the coefficients of the further equations could be found. 

The relevance of these equations to geometrical construction, and hence to 
problem solving, was slight. Mathematicians knew that some of the higher-order 
angular sections were plane or solid, despite the high degree of the corresponding 

3 [Viete 1615b] pp. 294-297, cf. [Viete 1983] pp. 432-434; many variants of these equations, 
valid for other choices of the unknown, are mentioned in Viete's texts. 
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equations; but they did not study the reducibility of these equations. Nor did 
they try to find geometrical constructions in the supersolid cases. The algebraic 
study of the angular sections seems to have been inspired rather by the use of 
the equations for calculating rational approximate values and by the intriguing 
recursive relations among the coefficients of the equations. Thus the higher
order angular sections did not contribute to any innovation in the matter of 
exact geometrical construction beyond solid means. 

The main example of a line-like but not supersolid problem was, of course, 
the quadrature of the circle. Others were the general angular section and the 
general section of a ratio (cf. Sections 4.3 and 4.4). It seems that Descartes was 
the first to realize that these problems were characterized by the fact that they 
could not be reduced to algebraic equations. 

14.3 Construction 

Although by 1635 Pappus' precept was well known, no mathematician felt 
bound to the procedures of construction by the intersection of curves, which 
underlay this precept. The classical Greek texts known by 1635 provided many 
other construction procedures for non-plane problems, and new ones had been 
developed by early modern authors. Indeed, by the time Descartes developed his 
ideas about geometry, there was a confusing variety of methods of construction 
for non-plane problems. 

In Section 4.1 (cf. in particular Table 4.2) I have classified these methods 
in four groups: approximate procedures, intersection of conics, intersection of 
other curves, and reduction to standard problems. The interest in approximate 
geometrical procedures (as opposed to approximate numerical ones) appears to 
have diminished during the first decades of the seventeenth century. Eutocius' 
list of constructions for two mean proportionals (cf. Section 2.4) described some 
special instruments devised for performing such approximate constructions, one 
for the construction of two mean proportionals attributed to Plato and one, 
attributed to Eratosthenes, for constructing any number of mean proportionals. 
By 1635 these instruments were well known but there was little active interest in 
them. Nor was there much interest in devising new such instruments; Molther 
(Chapter 12) was an exception, and he actually considered his procedure not as 
approximate but as legitimately geometrical. 

The construction of solid problems by the intersection of conics was prac
ticed very little; Van Roomen's solution of the Apollonian tangency problem 
(cf. Construction 5.8) was one of the few occurrences (and as it turned out an 
unnecessary one, because the problem was plane). When Descartes divulged 
his newly discovered construction of two mean proportionals by the intersection 
of a parabola and a circle c. 1625 (cf. Chapter 17), he was one of the first to 
take up this classical approach to solid problems and to reach an essentially new 
result. 

There was more interest in the creation of special curves (rather than the 
conics) for solving solid or line-like problems. Villalpando's curves for mean 
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proportionals (Definition 4.10) and Molther's spiral for constructing regular 
heptagons (Section 12.3) provide examples of this interest. The quadratrix and 
the spiral were well known by 1635 and mathematicians were aware that if one 
accepted these curves as means of construction, all angular sections could be 
performed. No new curves were devised for that purpose, nor were logarithmic 
curves introduced to solve in a similar line-like fashion the general problem of 
mean proportionals and the division of ratios. 4 

Most early modern constructions of non-plane problems consisted of a reduc
tion to certain standard problems, often without further reference to any par
ticular method for constructing these. As to solid problems the most common 
procedure was to reduce them either to two mean proportionals or to trisection. 
Of these it appears that the former occurred more often than the latter, but 
that was not, of course, because of preference, but because, apparently, prob
lems reducible to two mean proportionals were in the majority among the solid 
problems that were treated. The reduction of solid problems to a neusis seems to 
have been little practiced, although the possibility of this reduction was known 
and considered significant, witness Viete's and Molther's choice of neusis as an 
extra postulate. In Section 4.2 I mentioned the Vietean concept of "consti
tutive problems" corresponding to certain standard equations. Solid problems 
were sometimes reduced to these constitutive problems (cf. Construction 4.22). 

The procedures of construction that employed the intersection of curves begged Construction 
the question of how these curves themselves were to be constructed. As we have of curves 
seen, several early modern geometers considered this question. By 1635 the 
main procedures for constructing curves were: generation by the intersection of 
surfaces (as the conic sections), tracing by combinations of motions (as the qua-
dratrix), tracing by special instruments, and pointwise construction. All these 
methods were of classical origin. 

It appears, however, that if a problem was constructed by the intersection 
of curves, the construction of these curves was not seen as part of the construc
tion of the problem. Rather, the constructing curves were assumed to be given 
beforehand (the quadratrix, the spiral, or such new curves as Villalpando's pro
portionatrix), or they were assumed constructible without further explanation 
(as was the case with the conics). 

Some mathematicians did refer to instruments for tracing the conic sections 
necessary in solving solid probems. The general idea about these instruments 
seems to have been that they were not very practicable and that in any practice, 
such as making sundials or plates of astronomical instruments, better precision 
could be reached by pointwise constructions of the curves. Mydorge, for in
stance, claimed that pointwise constructions were the best in practice.5 A letter 

4Cf., however, Section 16.5. 
5Mydorge devoted the second book of [Mydorge 1631] to "The geometrical description 

of conics in the plane by points" ("De geometrica conicarum linearum in plano per puncta 
descriptione") pp. 83-134; in a "monitum" at the beginning of the book (p. 81) Mydorge 
stated that tracing conics by instruments produced unsatisfactory results. 
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from 1592 of Van Roomen to Clavius contains an informative reference to this 
practice of pointwise curve construction: 

Among other things I started to draw Gemma's astrolabe by points, 
but I did not finish the job because it is a general astrolabe; I started 
to calculate the distances of all the intersection points of meridians 
and parallels from the centre and the pole of the astrolabe, in order 
that in this way the construction of this general astrolabe would be 
easier. I also found a geometrical way, and indeed a very easy one, 
to find these intersection points.6 . 

Snellius on Mydorge's remarks and Van Roomen's report concerned the practical side of 
constructing curve tracing. In fact there was little explicit debate on the question of how in 

curves pure geometry the curves that served as means of construction should be con
structed themselves. Clavius' attempt at legitimizing the pointwise construction 
of the quadratrix had produced some debate and had proved unconvincing. Ke
pier, as we have seen, altogether rejected the construction of curves other than 
circles or straight lines. 

A somewhat more extensive discussion can be found in Snellius' work on 
cyclotomy of 1621. It is a good example of the level of argument on the issue at 
that time. In his address to the reader 7 he discussed the quadrature of the circle 
and used the occasion to discuss geometrical construction by the intersection of 
curves and Pappus' precept. In this connection he explained the generation of 
line-like curves: they were traced by the point of intersection of two curves that 
moved along a (plane or curved) surface.8 He mentioned the classical interest 
in spirals, the quadratrix, and other curves for the purpose of construction. He 
noted that these curves were difficult to trace. 

Snellius stated that motion in pure geometry was imaginary in the sense 
that it was conceived in the mind of the geometer. In devising such imaginary 
motions the pure geometer might show great cleverness, but the motions did 
not lead to operations by ruler and compass and hence they were not really 
usable in geometry. Neither could pointwise construction really be accepted 
as geometrical in Snellius' opinion. Mathematicians who did so compared the 
procedure with pointwise construction of conic sections, but that showed they 
didn't know the classical authors who always considered pointwise construction 
as a last resort, to be tried only when all legitimate plane and solid means had 
failed. 9 

6[Bockstaele 1976] p. 98: "Inter caetera incaepi licet non perfecerim Astrolabium Gemmae, 
quia catholicum est, per puncta delineare; sicque incepi calculari omnium punctorum in qui bus 
concurrunt meridiani et paralleli, distantias, a centro et polo astrolabii, ita ut facilius sit futura 
hoc pacta Astrolabii illius catholici constructio. Inveni quoque rationem geometricam eamque 
facillimam eadem puncta concursuum inveniendi." 

7[Snellius 1621] pp. * 1 v sqq. 
8[Snellius 1621] p. * * 2T: "quae ... ex duarum linearum in una superficie sese intersecan

tium motu et communis sectionis vestigio delineantur." 
9[Snellius 1621] p. * * 5v : "At cum earn delineationem cum conicis sectionibus conferunt, 

audaciae etiam imprudentiam addunt, et nimium secure in veterum script is versati umbras 
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14.4 Interpretation of exactness 

In the· previous chapters I have analyzed in some detail the OpInIOnS of Various 
Clavius, Viete, Kepler, Molther, and Fermat on geometrical, and in particular arguments 
constructional, exactness. In this section I mention various other contemporary 
opinions on the matter. 

Pappus' distinction between plane, solid, and line-like problems became 
quickly known after 1588; from the early 1600s mathematicians referred to it as 
a matter of course. A characteristic example is Anderson writing on trisection: 

Pappus explains in book 4 of the Collection how to trisect a rectilin
eal angle by means of hyperbolas or the conchoid of Nicomedes, by 
which it is established that the proposed problem may be classified 
as what the ancient called solid or even line-like. lO 

Mathematicians often invoked Pappus' term "sin" ("peccatum") or equivalents 
in reference to solving problems by inappropriate means. Thus Anderson noted, 
writing about the problem of the perpendicular to the parabola: 

It was considered no light offence for someone to solve a plane prob
lem by means of conics or line-like curves. ll 

And Mersenne referred to Pappus' precept, extending it somewhat, when he 
wrote in his Universal Harmony about the construction of mean proportionals: 

Now the ancients, as Pappus reports, were of the opinion that it was 
a great fault to solve by solid or line-like loci a problem which by 
its nature could be solved by plane loci only. Therefore, similarly, 
I consider it no less a fault to solve by line-like loci, or by intricate 
movements, or by approximative tracing, a problem which by its 
nature can be solved by solid loci. 12 

It was generally agreed that there was an essential difference between plane 
and non-plane problems. The difference was usually expressed by saying that for 
non-plane problems the true geometrical solution had not yet been found, and 
that the extant constructions were not sufficiently geometrical because they were 

rerum non res ipsa aestimarunt. Nam illud quidem genus semper postremum est habit urn, 
ut re desperata ad (grammikas epistasis) tanquam sac ram anchoram confugerent. Cum enim 
neque per plana neque per solida quaesiti solutionem legitimam assequi possent, tum istis 
demum locus erat, tanquam re omnibus modis desperata." 

10 [Anderson 1619] p. 29: "Angulum vero rectiIineam trisecare sive per hyperbolas, sive con
choidem Nicomedis, docuit Pappus lib. 4. Collectionum Mathematicarum, ex quibus problema 
propositum ad (sterea) sive etiam (grammika) veteribus sic dicta referri posse constat." 

11 [Anderson 1619] p. 24: "Nee leviter peccatum existimasse, si quis problema planum, per 
conicas vellinearia absolvisset." 

12[Mersenne 1636] p. 408 of the separately paginated Traite des instruments a chordes: 
"Or comme les Anciens, au rapport de Pappus, ont estime que c'estoit une grande faute de 
resoudre par les Iieux solides, ou Iineaires, un Probleme, qui de sa nature pouvoit estre resolu 
par les seuls Iieux plans: i'estime semblablement que la faute n'est pas moindre, de resoudre 
par des Iieux Iineaires, ou par des mouvements impliquez, ou par des descriptions a tastons, 
un Probleme, qui de sa nature peut estre resolu par les lieux solides." 
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mechanical. For instance, Rivault wrote, in a separate treatise on mean propor
tionals inserted in his 1615 edition of Archimedes' works, that all constructions 
of two mean proportionals found until now were manual procedures ... 

But procedures performed by hand are a horror in true geometry.13 

All these procedures should be considered mechanical 

because a large part of them is based on mechanical instruments and 
the others don't perform the construction in a geometrical manner, 
although thereafter they do provide a geometrical proof.14 

It was often explained why certain constructions were ungeometrical. Yet 
positive criteria to distinguish genuinely geometrical procedures were hardly 
ever formulated explicitly. Snellius was an exception; at several places he men
tioned ruler and compass as essential for truly geometrical construction. The 
quadrature of the circle, he wrote, was not yet found 

authoratively and by ruler and compass according to the rules of the 
art15 

and neither, he noted elsewhere, were the regular polygons of seven or nine sides 
constructed 

in a geometrical way by ruler and compass. 16 

It was known from classical sources that angular sections and the quadrature 
of the circle could be found if the quadratrix and the spiral were accepted as 
given. The general opinion on these curves in the early modern period, especially 
after Clavius' ultimately unconvincing attempt at legitimizing the quadratrix, 
appears to have been that their use in constructions was ungeometrical. More
over, they were considered as unsuitable for any practical use.17 

An interesting dissident opinion on geometrical exactness was held by Van 
Lansbergen, who wrote (among other things) on cyclometry and tried to remove 
the image of crankiness which this field had acquired because of the many false 
quadratures of the circle that had been proposed.18 Van Lansbergen also dealt 
with that quadrature and gave a limit process by which ever more precise bounds 
for 7r could be given. He then argued that his procedure was geometrically 

13[Archimedes 1615] p. 92: "Abhorrent vero (ta cheirourgemata) a vera geometria." 
14[Archimedes 1615] p. 92: "cum pars magna eorum mechanicis instrumentis nitatur, reliqui 

(kataskeuen) quidem non geometrice absolvunt, tamen deinceps geometrice demonstrant." 
15[Ceulen 1615] p. 118: "apodictice et secundum artis praecepta per circinum et regulam." 
16[Ceulen 1619] Praef. jjiT: "geometrica ratione per circinum et regula." 
17Thus Van Roomen wrote in 1692 to Clavius about the quadratrix and its use for squar

ing the circle: "placet quidem, sed ca1culum promovere non potest, verum necessum est per 
inscriptionem et circumscriptionem fieri" ([Bockstaele 1976] p.93) and, on its use for con
structing regular polygons: "sed cum praxin illam diligenter examinassem, earn scopo meo 
videlicet ca1culo inutilem esse inveni" (ibid.) p.94. 

18[Lansbergen 1616], the argument is in the four page dedication at the beginning of the 
book. 



14.5 Conclusion 221 

acceptable as the true solution of the quadrature. 19 His reason was that all the 
other approximations, though correct as approximations, left a finite margin, 
whereas in his procedure any degree of precision could be reached. Hence, his 
procedure (not the values it provided) constituted the exact geometrical solution 
of the problem. 

14.5 Conclusion 

In 1588 the publication of Pappus' Collection had provided a new impetus The state of 
to the interest in geometrical problem solving. Soon afterward the writings the art 
of Viete set in motion the principal dynamics in the field: the creation and 
elaboration of algebraic methods of analysis. By 1635, however, the acceleration 
in the developments seems lost; Ghetaldi's magnum opus ([Ghetaldi 1630]) is 
characteristic for the post-Vietean, pre-Cartesian state of the art: a proliferation 
of special studies on special problems, several, but unstructured methods of 
analysis, and little interest in elaborating the new algebraic techniques beyond 
their application to solid problems. 

Thus geometrical problem solving at that time presents the image of a field 
waiting for essential breakthroughs. As a very brief summary of the discus
sions of the previous and the present chapter (and with the hindsight of later 
developments) we may identify three issues as principally in need of such break
throughs. 

First, the number of available procedures of construction beyond the plane 
means of straight lines and circles had grown considerably, while no gener
ally accepted order of preference or precedence among these procedures had 
emerged. Thus the objectives of problem solving had becoine opaque and the 
practice lacked a clear direction. Second it was realized that the use of al
gebraic methods of analysis involved the relations among problems, equations 
and constructions, but the general nature of these relations was not well under
stood. Third, essential progress in problem solving required a more definite and 
refined interpretation of the exactness of constructional procedures than had 
been developed within the tradition. 

In 1637 Descartes' Geometry appeared; it provided the ideas and concepts 
for these breakthroughs. Part II of my study is devoted to the development of 
these Cartesian ideas and techniques. 

19[Lansbergen 1616] p. 22. 
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Chapter 15 

Introduction to Part II 

15.1 Descartes, construction, and exactness 

The present, second, part of my study is devoted to Descartes' ideas on Subject and 
geometrical construction and exactness. In the General Introduction I sketched themes 
the structure of the story of construction (Section 1.3) as consisting of two 
periods and one central figure, Descartes. As in Part I, my primary subject is 
geometrical construction, and my main objective is to understand the processes 
involved in the interpretation of mathematical exactness. In the early modern 
period Descartes was the key figure with respect to these issues. His Geometry 
of 1637 was to be the dominating influence in mathematics for more than 50 
years. It was, as I will show, largely motivated by the need, as perceived by its 
author, for a more precise and reasoned definition of exactness in geometry. 

A study of Descartes' geometrical achievements involves many themes: his 
mathematical ideas and results as such, their origins and their chronology, the 
philosophical context and motivations of his investigations, and the relation 
of his ideas and results to their mathematical context. These themes will be 
discussed in detail in the following chapters. By way of introduction, I briefly 
survey them here. 

It should be noted that the present Part II is not an overall study of Descartes' Note 
mathematics, but an inquiry into his ideas on geometrical construction and 
exactness. For instance, I do not deal with his study on polyhedra l nor with 
his method of tangents. Although most of the contents of the Geometry is 
covered in the next chapters, the emphasis I have placed on the different parts 
is determined by the special aim of my research and would probably have been 
different had I wanted to represent Descartes' mathematical work in its entirety. 

1 [Descartes 1987]. 
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15.2 Mathematical ideas and results 

Geometry Descartes expounded his doctrine of geometry in his Geometry of 1637. The 
work constituted a turning point in the development of the conceptions of con
struction and exactness in geometry. It was a strongly programmatic book, 
based on a distinct vision of geometry. Descartes saw geometry primarily as the 
art of solving geometrical problems; thus he placed his work explicitly within 
the early modern tradition of geometrical problem solving. The program he 
had set himself, and which to a large extent he fulfilled in the Geometry, was to 
provide a complete method for solving geometrical problems. The method was 
twofold, comprising an analytical and a synthetical part. It covered, Descartes 
maintained, all geometrical problems, for which he accordingly provided a full 
classification, extending and modifying Pappus' classification. He also gave a 
classification of curves. Finally, he defined and defended a strict demarcation 
of geometry, separating legitimately geometrical objects and procedures from 
non-geometrical or, as he termed them, "mechanical" ones. 

Analysis Descartes adopted algebra as the principal technique for geometrical analysis. 
A problem was to be reduced to an equation of appropriate form; on the basis of 
this equation the geometrical solution, that is, the construction, was to be found. 
By 1637, this was a well-tested approach, especially through Viete's "specious 
logistics." Descartes did not take over Viete's particular choice of the letter 
symbols and notations in algebra, but introduced his own. He also adopted 
a different interpretation of the algebraic operations in geometry, introducing 
a unit length and thereby, in principle, avoiding the Vietean requirement that 
equations be homogeneous. Moreover, he realized that for achieving the proper 
geometrical solution of a problem, that is, its simplest possible construction, 
the final equation should be irreducible. Accordingly, he classified problems 
according to the degree of the irreducible equation (in one unknown) to which 
they could be reduced by his analytical method. 

Construction Starting from the result of the analysis of a problem, the synthetical part 
of Descartes' general method provided the solution, that is, the construction 
of the problem. The claim to solve all problems forced Descartes to explore 
possibilities of construction beyond the classical "plane" and "solid" means, 
and to develop a canon of construction of essentially wider range than earlier 
ones, in particular, Viete's. Establishing such a canon required a definite choice 
of the means of construction, an interpretation of their hierarchy with respect 
to simplicity, and a clear demarcation between these means and others deemed 
unacceptable in geometry. 

Following classical Greek usage, Descartes adopted curves as means of con
struction. This interpretation of the constructional procedure required a de
marcation between geometrically acceptable and non-acceptable curves and a 
classification of the former as to simplicity. Descartes asserted that the geo
metrically acceptable curves were precisely those with algebraic equations; all 
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others he called "mechanical" and he excluded them from geometry proper. He 
further asserted that geometrically acceptable curves were simpler in as much as 
the algebraic degrees of their equations were lower; accordingly, he introduced 
a classification of algebraic curves on the basis of their degrees. Thus Descar
tes' doctrine of geometrical construction prescribed that problems should be 
constructed by the intersection of algebraic curves of lowest possible degree. 
Together, these assertions constituted Descartes' interpretation of exactness in 
geometry. Descartes based his choices and assertions about construction on de
liberate and deep considerations concerning the nature of exact knowledge in 
geometry, the tracing of curves by motion, and their construction by other pro
cedures. His new approach to construction eclipsed almost all earlier ideas on 
the subject such as those discussed in Part I, and it became the starting point for 
virtually all later construction-related arguments in geometry and infinitesimal 
analysis. 

The analytical part of Descartes' method served to reduce problems to al
gebraic equations, hence the synthetic part had to provide procedures for con
structing the roots of these equations. Descartes implemented this technical 
part of the method for equations of degrees 1-2, 3-4, and 5-6. For each of these 
classes he decided on a certain standard form of the equation, provided meth
ods to reduce any equation of degree ::; 6 to the corresponding standard form, 
and gave standard constructions of the roots of the standard equations. He was 
convinced that his approach could be extended to cover equations of arbitrary 
degrees, but he left the extension beyond the sixth degree to his followers. 

Descartes chose algebra as a tool for analysis in geometry, but the existing Algebra 
algebraic techniques were insufficient for his purposes. Two requirements in 
his program for problem solving in particular necessitated the development of 
new algebraic techniques: irreducibility and the transformation of equations to 
standard forms. The final equation to which a problem was reduced had to 
be irreducible, and, for reasons related to the particular choice of construct-
ing curves in the standard constructions of the roots, Descartes required rather 
special standard forms of the equations. He therefore had to elaborate a consid-
erable number of new algebraic techniques concerning the reduction of equations 
and their transformation into special forms. Almost all Descartes' contributions 
to the algebraic theory of equations are directly related to these two issues. 

In the framework of his general doctrine of solving geometrical problems Des- Analytic 
cartes developed algebraic methods for dealing with curves, in particular the geometry 
technique of associating an equation in two unknowns to a curve. This tech-
nique, which made it possible to study properties of curves in terms of properties 
of their equations, is now generally recognized as the characteristic constituent 
of analytic geometry or coordinate geometry; as a result Descartes' Geometry 
is often considered and studied as the origin of analytic geometry. In retrospect 
such a view has some justification; it was certainly by the influence of the Ge-
ometry that the study of curves via their equations became a wide-spread and 
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highly successful mathematical practice. However, the Geometry itself, and the 
ideas that shaped it, can only be understood if it is recognized that the book's 
primary aim was to provide a general method for geometrical problem solving 
and not to establish a technique for studying curves. 

Episodes and The Cartesian themes mentioned so far have to be considered in their chrono-
periods logical development. As to Descartes' own mathematical ideas the available 

source material suggests a distinction of a small number of episodes and periods. 
These are: a) The years 1618-1620 with the first very stimulating intellectual 
exchanges with Beeckman; b) the subsequent six or seven years with as central 
result the construction of solid problems by a parabola and a circle; c) the pe
riod of the final redaction of the Rules for the direction of the mind2 c. 1628; d) 
the subsequent eight or nine years with as central event the first investigation of 
Pappus' problem in 1631-1632; e) the period of writing the Geometry in 1637; 
and f) the period after the Geometry. 

The Rules of 1628 and the first studies on Pappus' problem of 1631-1632 have 
a special significance in the development of Descartes' geometrical thinking. The 
Rules document a frustration that Descartes experienced at the time of writing, 
namely, his inability to extend the means of geometrical problem solving beyond 
plane and solid problems. The studies on Pappus' problem provided the key 
ideas to overcome this obstacle and arrive at the doctrine of geometry formulated 
in the Geometry. 

15.3 Philosophical and mathematical context 

A Descartes' mathematics was a philosopher's mathematics. From the earliest 
philosopher's documented phase in his intellectual career, mathematics was a source of in
mathematics spiration and an example for his philosophy, and, conversely, his philosophical 

concerns strongly influenced his style and program in mathematics. 
The question of the influence of Descartes' mathematics upon his philosophy 

has a long tradition in Cartesian studies. I don't address that question here; it 
extends by far the limitations of the present study. However, I do address the 
converse question of the influence of his philosophical concerns on his mathe
matics. Moreover, I occasionally use information that his philosophical writings 
provide about the development of his mathematical thought. 

Method The two main philosophical concerns that informed Descartes' mathematics 
were method and exactness. Descartes' only mathematical publication, the 
Geometry, was an appendix to a philosophical treatise on the method "of rightly 
conducting one's reason and seeking the truth in the sciences," the Discourse on 
method.3 Thereby Descartes presented his treatise explicitly as an elaboration 
of such a method for a special field, namely, geometry. We may therefore expect 

2 [Descartes Rules] 
3[Descartes 1637b]; cf. [Descartes 1985-1991] vol. 1, p. 111. 
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that his methodical choices in mathematics were guided to a certain extent by 
philosophical considerations. 

For Descartes the aim of methodical reasoning was to find truth and cer- Exactness 
tainty. In geometrical context this quest concerned what I refer to by the term 
"exactness." Because the precise nature of exactness, especially exactness of 
constructions, was an unresolved issue at the time, Descartes applied all his 
philosophical depth and tenacity to the interpretation of geometrical exactness. 
As a result his ideas on the matter were of essentially higher quality and wider 
scope than those of his predecessors. Descartes indeed provided the most sys
tematically reasoned interpretation of constructional exactness in geometry in 
the early modern period. His interpretation involved a few crucial choices such 
as using curves as means of construction and demarcating between geometrical 
and non-geometrical curves. Here, as in the case of method, it will be of interest 
to assess how his philosophical ideas guided these choices. 

In Chapter 1 (Sections 1.3 and 1.5) I have identified the contexts of the devel- Geometrical 
opments regarding geometrical construction, and the principal dynamics within problem 
these contexts. In the period c. 1590 - c. 1650 the context was the early mod- solving 
ern tradition of geometrical problem solving and the principal dynamics was the 
creation and adoption of (finite) algebraic analysis as a tool for geometry. In 
the period c. 1635 - c. 1750 the context was the investigation of curves by finite 
and infinitesimal analysis, and the principal dynamics was the emancipation of 
analysis from its geometrical context. The publication of Descartes' Geometry 
occurred in the overlap of the two periods, and the book was one of the main 
motors of the dynamics of the second period. Yet, as mentioned above, I find 
that in its aim, structure, and substance Descartes' book, as well as his earlier 
studies, belonged essentially to the context of the first period, and only by its 
later influence to the second. Consequently, I study Descartes' achievements 
concerning geometrical construction primarily in the context of the early mod-
ern tradition of geometrical problem solving, dealing with his investigations of 
curves mainly in as far as they were related to problem solving. 



Chapter 16 

Construction and the 
interpretation of exactness 
in Descartes' studies of 
c. 1619 

16.1 The general art to solve all problems 

In 1618 Descartes met Isaac Beeckman in Breda. From their association pre- The letter to 
cious documents have survived, in particular five letters! that Descartes wrote Beeckman 
to Beeckman in early 1619. In the second of these, dated 26 March 1619, Des-
cartes formulated a program for his future investigations. The text is deservedly 
famous;2 it shows how Descartes at an early age charted his scientific quest with 
remarkable clarity and determination. For my present purpose the text has ad-
ditional value because Descartes formulated his program entirely in terms of a 
classification of mathematical problems with respect to their solution by calcu-
lation or construction. Thus the letter to Beeckman provides a natural starting 
point of my inquiry into the development of Descartes' ideas about construction. 

The letter opened with a reference to four inventions Descartes had made by The text 
means of what he called his new instruments. The inventions concerned angular 
sections and the solution of certain types of cubic equations; I return to these 

1 Descartes to Beeckman 24-1-1619 ([Descartes 1964-1974] vol. 10, pp. 151-153)' 26-III-1619 
(ibid. pp. 154-160), 20-IV-1619 (ibid. pp. 161), 23-IV-1619 (ibid. pp. 162-164), 29-IV-1619 
(ibid. pp. 164-166); cf. also Beeckman to Descartes, 6-V-1619 (ibid. pp. 167-169). The text of 
the letters has survived because Beeckman copied them in the Journal he kept. This journal 
was discovered in 1905 by C. de Waard (cf. [Descartes 1964-1974] pp. 17-18), who later edited 
the the complete journal, cf. [Beeckman 1939--1953]. 

2Cf. [Shea 1991] p. 44, see also [Costabel 1969] and [Costabel 1983] on the early mathe
matical studies of Descartes. 
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results below in Section 16.4. Then followed the formulation of a scheme of 
what Beeckman later, when he copied the letter into his Journal,3 called 

The much desired general art to solve all problems.4 

I quote the section here in full: 

And to tell you quite openly what I intend to undertake, I do not 
want to propound a Short art as that of Lullius,5 but a completely 
new science by which all questions in general may be solved that 
can be proposed about any kind of quantity, continuous as well as 
discrete. But each according to its own nature. In arithmetic, for 
instance, some questions can be solved by rational numbers, some by 
surd numbers only, and others can be imagined but not solved. For 
continuous quantity I hope to prove that, similarly, certain problems 
can be solved by using only straight or circular lines, that some prob
lems require other curves for their solution, but still curves which 
arise from one single motion and which therefore can be traced by 
the new compasses, which I consider to be no less certain and geo
metrical than the usual compasses by which circles are traced; and, 
finally, that other problems can only be solved by curved lines gener
ated by separate motions not subordinate to one another; certainly 
such curves are imaginary only; the well known quadratrix line is 
of that kind. And in my opinion it is impossible to imagine any
thing that cannot at least be solved by such lines; but in due time 
I hope to prove which questions can or cannot be solved in these 
several ways: so that hardly anything would remain to be found in 
geometry. This is truly an infinite task, not for a single person. In
credibly ambitious; but through the dark confusion of this science 
I have seen some kind of light, and I believe that by its help I can 
dispel darkness however dense.6 

3Cf. Note 1. 
4[Descartes 1964-1974] vol. 10, p. 156, note: "Ars generalis ad omnes quaestiones solvendas 

quaesita." 
5 A reference to the Ars brevis (composed 1308), the strongly combinatorial philosophical 

method of Raymond Lull. 
6 [Descartes 1964-1974] vol. 10, pp. 156-158: "Et certe, ut tibi nude aperiam quid mo

liar, non Lullij Artem brevem, sed scientiam penitus novam tradere cupio, qua generaliter 
solvi possint quaestiones omnes, quae in quolibet genere quantitatis, tam continuae quam 
discretae, possunt proponi. Sed unaquaeque iuxta suam naturam: ut enim in Arithmetica 
quaedam quaestiones numeris rationalibus absolvuntur, aliae tantum numeris surdis, aliae 
denique imaginari quidem possunt, sed non solvi: ita me demonstraturum spero, in quanti
tate continua, quaedam problemata absolvi posse cum solis lineis rectis vel circularibus; alia 
solvi non posse, nisi cum alijs lineis curvis, sed quae ex unico motu oriuntur, ideoque per 
novos circinos duci possunt, quos non minus certos existimo & Geometricos, quam communis 
quo ducuntur circuli; alia denique solvi non posse, nisi per lineas curvas ex diversis motibus 
sibi invicem non subordinatis generatas, quae certe imaginariae tantum sunt: talis est linea 
quadratrix, sat is vulgata. Et nihil imaginari posse existimo, quod saltern per tales lineas solvi 
non possit; sed spero fore ut demonstrem quales quaestiones solvi queant hoc vel ilIo modo 
& non altero: adeb ut pene nihil in Geometria supersit inveniendum. Infinitum quidem opus 
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Problems About About 
discrete magnitude continuous magnitude 

First class Problems (numerical Plane problems solvable by 
equations) whose solutions straight lines and circles 
are rational numbers 

Second Problems (numerical Non-plane problems solvable 
class equations) whose solutions by curves that can be traced 

are "surd" (i.e., irrational) by one single motion 
numbers 

Third Problems (numerical Problems solvable only by 
class equations) that can be certain special curves that 

imagined but that have no cannot be traced by one 
(real numbers as) solution single motion 

Table 16.1: The classification of problems in Descartes' letter to Beeckman 

16.2 The classification of problems 

It will be useful to analyze this text in considerable detail. The classification Discrete 
of scientific questions that Descartes advanced in the letter may be represented magnitude 
schematically as in Table 16.1. In accordance with terminology introduced in 
Section 6.2 I use the term "magnitude" for Descartes' "quantity." I first dis-
cuss the questions concerning discrete magnitude; in the next section I turn 
to those concerning continuous magnitude. In formulating his classification of 
questions concerning discrete magnitude, Descartes restricted himself to arith-
metic - he evidently assumed that all questions about discrete magnitude could 
be reduced to arithmetical problems. He distinguished three classes of these: 7 

problems whose solutions were rational numbers, those whose solutions were 
"surd" numbers, that is, irrational roots of rational numbers, and finally prob-
lems that could be imagined but that had no solutions. Apparently the first two 
classes concerned algebraic equations in one unknown, with positive roots that 
might be rational or irrational. 8 So we may assume that the remaining third 
class also referred to equations, but now without positive, rational, or irrational 
roots. As it is very unlikely that Descartes knew that equations can have pos-
itive roots that are not expressible by radicals, two possibilities remain for the 

est, nec unius. Incredibile quam ambitiosum; sed nescio quid luminis per obscurum hujus sci
entiae chaos aspexi, cujus auxilio densissimas quasque tenebras discuti posse existimo." The 
translation is mine; the translation in [Descartes 1985-1991] vol. 3 pp. 2-3 is more free and I 
disagree with its rendering of some technical terms. 

7 Gabe has pointed out ([Gabe 1972] p. 117-118) the similarity of Descartes' distinction to 
the classification of problems as to their solvability, which Clavius gave in Chapter 14 of his 
Algebm ([Clavius 1608]). 

8Descartes may also have thought of systems of equations reducible to one equation in 
one unknown. It seems unlikely that he had Diophantine equations in mind, because their 
solutions are essentially restricted to rational numbers. 
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third class: equations with negative roots and equations with complex roots. 
The first possibility has to be rejected because it is clear from his treatment of 
equations in the letter to Beeckman and in the Private refiections9 that, like 
his contemporaries, Descartes disregarded equations that admit only negative 
roots.lO The third class, then, referred to equations with complex roots. 

The idea of a special kind of number, involving the square roots of negative 
numbers, had been suggested by some sixteenth-century algebrists in connection 
with the solution of quadratic and cubic equations. Cardano discussed in his 
Great art of 1545 the problem of finding two numbers with sum 10 and product 
40, which led to the quadratic equation ll 

x(1O-x)=40. (16.1 ) 

Applying standard rules he found as roots 

5 + J -15 and 5 - J -15 . (16.2) 

About J -15 Cardano wrote that one had to "imagine" it, and that it was a 
"sophistical" quantity.12 

In his Algebra of 1572 Bombelli gave a more substantial discussion of number 
expressions involving square roots of negative numbers. He did so in connection 
with the so-called "casus irreducibilis" of cubic equations. In that case Car
dano's method of solution 13 led to roots of negative quantities, although the 
examples Bombelli gave evidently admitted real solutions. Bombelli discussed 
in particular the equation14 

x3 = 15x + 4, (16.3) 

which obviously had a solution x = 4, and for which Cardano's algorithm led 
to an expression involving square roots of negative quantities: 

(16.4) 

Taking over Cardano's terminology Bombelli called these numbers "sophistical" 
and investigated how one could calculate with them. 15 He noted that 

~2±J-121=2±R, (16.5) 

9See Note 17. 
lOCf. [Descartes 1964-1974J vol. 10 pp. 155-156 (letter to Beeckman 26-III-1619); Descartes 

took over the then standard distinction of three forms of the quadratic equation, namely (in 
modern notation), x2 = ax + b, x2 = ax - b, and x 2 = b - ax, with a and b positive; he did 
not consider the case x 2 + ax + b = 0, obviously because it had no positive solution. Nor did 
Descartes accept negative solutions later when he wrote the Geometry. 

11 Here and in the passage on Bombelli below I have modernized the notation. 
12[Cardano 1966J vol. 4, Cap. 37, Regula 2, p. 287: "ideo imaginaberis Rx.m.15. 

" ... huic quantitati, quae vere est sophistica ... :" cf. [Cardano 1968J p. 219. 
l3See Note 91 of Chapter 4. 
14 [Bombelli 1966J pp. 223-225. 
15[Bombelli 1966] p. 133: "la quale parera a molti pili tosto sofistica che reale." 
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so that the algorithm indeed yielded x = 4 as solution, although by a detour 
involving uninterpretable imagined quantities like the square roots of negative 
quantities. 

If we compare these earlier algebraic results with Descartes' statements in his The third class 
letter to Beeckman, it appears that Cardano's problem, leading to the quadratic of questions 
equation 16.1, fits Descartes' description of the third class of problems well; one (discrete) 
can imagine the problem - to find two numbers with sum 10 and product 40 
- but not the solution. The more advanced treatment of complex numbers in 
Bombelli's argument about cubic equations does not fit Descartes' description, 
because Bombelli's cubic equation had a real solution. Most probably, then, 
Descartes had quadratic equations without real roots in mind and his term 
"imagine" might be an echo of Cardano's use of the same term. 16 

16.3 Problems about continuous magnitude 

Descartes assumed in his letter that problems about discrete magnitude were Geometry 
essentially arithmetical. . Similarly, in stating that questions about continu- paradigm of 
ous magnitude could be solved either by straight lines and circles or by other continuous 
curves, he implicitly assumed that such questions were essentially geometri- magnitude 
cal. Thus continuous magnitude was primarily geometrical magnitude, and 
problems about such quantities in general required the determination, that is, 
the construction, of certain line segments. The ideas that line segments were 
the archetypal form of continuous magnitude, that consequently geometry was 
the paradigm science of continuous magnitude, and that construction was the 
essential method of problem solving, remained central elements in Descartes' 
philosophy of mathematics. 

The identification of scientific problems about continuous magnitude with ge- The 
ometrical problems enabled Descartes to classify them. The letter to Beeckman classification 
shows that he did so by modifying Pappus' classification. For Pappus the es-
sential demarcation lay between the plane and solid problems, on the one hand. 
and the line-like ones, on the other hand (cf. Section 3.2); Descartes shifted that 
demarcation line. In Descartes' and Pappus' classifications the first class was 
the same, it consisted of the "plane" problems, which were to be constructed 

161t is not known whether Descartes studied Cardano's or Bombelli's works; he probably 
acquired his basic algebraic knowledge from Clavius' Algebra ([Clavius 1608]), which, however 
did not discuss roots of negative numbers. In the notes that Beeckman entered in his journal 
on occasion of Descartes' visit in October 1628, there occurs a short passage from which it 
appears that by that time Descartes had come to use the term "imaginary" for numbers: "Ir
rationales numeros, qui aliter explicari non possunt, explicat [sc. Descartes] per parabolam; 
nominat autem quasdam radices veras, quasdam implicatas, id est minores quam nihil, quas
dam imaginarias, id est omnino inexplicabiles; ac videt ex tabula vulgari, quot aliqua aequatio 
radices habere possit quarum una sit quaesita." ([Descartes 1964-1974] vol. 10 pp. 335.) In 
the Geometry (cf. Section 27.1) Descartes used the term "imagined" for the non-real roots of 
equations, stating that an n-th degree equation had n real or imaginary roots. 
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by straight lines and circles. But Descartes' second class covered more than 
Pappus'; it consisted of all non-plane problems that were solvable by the inter
section of curves that could be traced by one single motion. Descartes referred 
in particular to curves traced by a certain kind of instruments that he called 
"new compasses" and that he described in his personal notes; I discuss these 
compasses and the curves traced by them in the next section. 

As the letter makes clear, he allowed other curves than the conic sections, 
so his second class consisted of more problems than Pappus' "solid" ones. Des
cartes considered the problems in his second class, and their solutions, no less 
geometrical than the plane ones. For him the essential demarcation lay between 
these problems and others that he could not accept as certain and geometri
cal. The essential difference between the two kinds of problem concerned the 
generation of the curves that were used in their construction. The curves gen
erated by the usual compass and by Descartes' "new compasses" were traced 
by one single motion; therefore, they were acceptable. If, however, the solution 
of a problem could only be achieved by a curve whose tracing involved several 
motions that were not mutually subordinated, then the problem belonged to 
the third class and the procedure was not certain and geometrical. Descartes 
deemed such curves "only imaginary:" the quadratrix was an example. In Sec
tion 16.5 I return to these imaginary curves and to Descartes' assertion that for 
any problem such a curve could be imagined. 

The assertion implied that the classification was complete: any problem that 
did not belong to te first or second class, belonged to the third. The problems 
in each class were solvable (be it that only in the first two classes the solutions 
were properly geometrical) and so Descartes could claim that, if his program 
was completed, hardly anything would remain to be found in geometry. 

Descartes' words suggested that he saw the classification for continuous mag
nitude as analogous to that for discrete magnitude. The classifications did in
deed correspond in the sense that they were both tripartite, that in both cases 
the first class contained the elementary problems, the second class the more 
advanced problems, and the third class the problems whose solution involved 
conceptual difficulties indicated by the term "imaginary." 

But there was little more than that to the analogy. For the third class of 
arithmetical problems the conceptual difficulty had to do with roots of nega
tive numbers, whereas for the third class of geometrical problems the difficulty 
concerned the motions by which the constructing curves were traced. With 
modern hindsight these two classes do not correspond either; the one has to do 
with complex numbers, the other (cf. Section 16.5) with transcendental curves. 
Nor did the first two classes in the two classifications of problems correspond; 
the solution of a plane geometrical problem, for instance, might well involve 
quadratic irrationalities so that from the arithmetical standpoint the problem 
would belong to the second class (cf. Section 6.4). It is not clear in how far 
Descartes realized the essential difference of the two ultimate classes, but he 
was certainly aware that the other classes did not precisely correspond. We 
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may therefore conclude that he did not see the analogy of the two classifications 
as completely strict. 

16.4 The "new compasses" 

In his letter to Beeckman Descartes referred to instruments for tracing curves. The "Private 
Another Cartesian document from the same period sheds more light on these reflections" 
"new compasses" and the related ideas about curve tracing. It is the text known 
as "Cogitationes Privatae" (Private reflections), which has come down to us by 
a somewhat tortuous route. 17 In a number of passages of these personal notes 
Descartes sketched instruments which he called "new compasses" and which 
were to be used for angular sections, mean proportionals, and the solution of 
certain types of cubic equations. 18 Thus we may assume that they were the same 
as the ones referred to in the letter to Beeckman. These instruments served to 
trace curves and the tracing motion they produced is well characterized as aris-
ing "from one single motion" (cf. the quotation in Section 16.1). Some other 
passages of the Private reflections concerned the tracing of curves by separate, 
not mutually subordinated motions. These passages may serve to explain what 
Descartes had in mind when he related the classification of problems about con-
tinuous magnitude to the nature of the motions that trace the curves necessary 
for their constructions. 

Three "new compasses" are mentioned in the Private reflections, one for The "new 
trisecting angles and two for solving certain cubic equations. I first discuss the compass" for 
compass for angular sections. Descartes' figure and text illustrated the case of trisection 
trisection, but he made it clear that he envisaged further obvious adaptations 
of the instrument to serve for dividing angles in 4, 5, 6, etc., equal parts. 

Instrument 16.1 (Trisector - Descartes)19 

Four rulers (see Figure 16.1) OA, OB, ~C, and OD, are connected 
in the point 0, around which each can turn. Four equal rods EI, 
F j, GI, H J, with length a, can turn around the points E, F, G, 
H, which are on the four arms at distance a from O. The rods are 

17[Descartes CogPriv]; the text, dating from 1619~1620, was among the papers of Descartes 
which Clerselier kept and of which Leibniz made copies in 1676. These papers are no longer 
extant. Leibniz' copies were published in 1859-1860 by Foucher de Careil who had found 
them among the Leibniz manuscripts in the Hannover library; he probably devised the title 
"Cogitationes Privatae." Foucher de Careil's edition of the text was particularly unsatisfactory 
because he had not recognized the cossic signs as such, whereby much of the mathematical 
content became meaningless. When the editors of the Oeuvres de Descartes prepared the 
reedition of these texts in the 1890s and 1900s, they found that Leibniz' copy was no longer in 
the Hannover library. In the absence of both the original and Leibniz' copy, the editors, with 
help of Gustaf Enestrom, reconstructed the text on the basis of Foucher de Careil's text and 
inner mathematical logic; the resulting text is the now accepted version of the Cogitationes 
Privatae. 

18See also [Serfati 1993]. 
19[Descartes CogPriv] p. 240: "Circinus ad angulum in quotlibet partes dividendum." 
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Figure 16.1: Instrument for trisection ~ Descartes 

pairwise joined in hinges at I and J; the hinges themselves can move 
freely along OB and ~C. It is easily seen that by this arrangement, 
the two arms OA and OD can form any angle within a large range 
and that the three inner angles AOB, BOC, and COD will always be 
equal; hence the instrument can serve to trisect any angle. Variants 
of the instrument with more intermediate arms and rods can be used 
for dividing angles in 4, 5, 6, etc., equal parts. 

The curve KLJM indicated in Figure 16.1 is the one traced 
by the point J when the angle DOA increases from 0 degrees (the 
theoretical maximum is 180°). It is a sixth-degree curve.20 Note 
that, if a point J' on the curve is given, the position of the instrument 
(Le., the location of the arms) for which the hinge J coincided with 
J' can be constructed by ruler and compass [J (= J') is given, so 
OC is given too, OB can be found by bisecting LCOA, etc.]. Thus 
the curve K LJ M in a sense incorporates all possible positions of the 
instrument. 

Descartes did not envisage to trisect angles by directly applying his instrument. 
Rather he intended to use the instrument to trace the curve K LJ M and to use 
the curve for trisecting any angle. The procedure was as follows: 

20Its equation is 4a4x2 = (x2 + y2)(x2 + y2 - 2a2); in polar coordinates: r = 2acos(a/2). 
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Figure 16.2: Trisection - Descartes 

Construction 16.2 (Trisection - Descartes)21 
Given: an angle D'OA' (see Figure 16.2); it is required to trisect it. 

Construction: 
1. Apply the instrument with the arm OA along the axis OA'; move 
the arm OD from position OA outward; a tracing pin fixed at J 
traces the curve K LM. 
2. Mark off OH' = a on OD'; draw a circle around H' with radius 
a; it intersects the curve K LM in J'. 
3. Draw OJ'; then LD'OJ' = lLD'OA', so the angle is trisected. 
[Proof: Immediate by the constitution of the instrument.] 

The two instruments for solving certain cubic equations were adaptations of The 
an instrument that Descartes did not directly discuss in the Private reflections mesolabum 
but that, we may conclude from the text, he had already devised earlier. We 
know the instrument better from the Geometry in which he discussed it in detail. 
I refer to this instrument as "the mesolabum.,,22 It was based on the simple 

21 [Descartes CogPriv] pp. 240-241. 
22In the Cogitationes Privatae Descartes referred to a curve described by one point in 

the instruments for solving cubic equations as the "curve of the mesolabum compass" 
([Descartes CogPriv]: p. 238-239: "linea circini-mesolabi"). It is the curve traced by the 
point F in Construction 16.4 below. That curve serves no function for solving the cubic 
equations; its use is in finding two mean proportionals by the mesolabum as explained in 
the Geometry. We may therefore conclude that in 1619 Descartes had already devised the 
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Figure 16.3: Line segments in geometrical progression 

consideration that in an array as in Figure 16.3 of consecutive perpendiculars 
between the arms 0 A and 0 B of an angle the segments intercepted along the 
arms are in geometrical progression. Thus, with letters as in the figure: 

e:x=x:y=y:z=z:u=u:v=v:w=w:··· . (16.6) 

Hence, if we fix e and let LBOA increase from 0 degrees, x will take all possible 
values ~ e and the corresponding configurations will yield all possible increasing 
geometric progressions starting with e. In particular, if a numerical interpre
tation is adopted and e is taken to be equal to 1, the geometric progression 
becomes 1, x, x2 , x3 , etc., and equations in x can be interpreted as relations 
between the line segments along the arms 0 A and 0 B. Descartes' instrument 
translated this idea into a mechanism. I describe the instrument on the basis of 
the figure from the Geometry. 

Instrument 16.3 (Mesolabum - Descartes)23 

Y Z and Y X are rulers movable around Y (see the facsimile in Fig
ure 16.4). At B on YX a ruler BC is fixed perpendicularly to YX. 
A number of rulers CD, EF, GH are adjusted along YZ; they can 
slide along the ruler Y Z while remaining perpendicular to it; there 
are similar moving rulers DE and FG along YX. When YZ is fixed 

mesolabum and that he devised the compasses for cubic equations as adaptations of it. 
23 [Descartes 1637] pp. 317-319, 370-371. 
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Figure 16.4: Descartes' mesolabum (Geometry p. 318) 

and Y X is turned such that the angle XY Z increases, BC is sup
posed to push CD along Y Z; CD in turn pushes DE along Y X, 
DE pushes EF, etc. At all instants during that motion the lines 
BC, CD, DE, EF, FG, GH will be connected and thus mark a 
series of segments YB, YC, YD, YE, YF, YG, YH, in continuous 
proportion along the arms Y Z and Y X. 

The dotted curves in the figure are described by the points D, F, 
and H, respectively when the angle XY Z increases from 0 to c. 90 
degrees. Note that, in the same way as in Instrument 16.1, each of 
these curves incorporates all possible positions of the instrument, in 
the sense that from each point on them the corresponding positions 
of the arms and rulers can be constructed by ruler and compass. 

Similarly to the trisection procedure, Descartes used the curves rather than the 
instrument itself for determining mean proportionals. The procedure for finding 
two mean proportionals was as follows: 

Construction 16.4 (Two mean proportionals - Descartes)24 
Given: two line segments e and a, e being equal to Y B in the mesolabum (see 
Figures 16.4 and 16.5, the letters correspond); it is required to construct the two 
mean proportionals x and y between e and a. 

Construction: 

24[Descartes 1637] pp. 317-319, 369-371. 
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Figure 16.5: Construction of two mean proportionals - Descartes 

1. Use the mesolabum to trace the curve ADD' described by the 
point D. 
2. Mark off a = Y E along Y Z; draw a semicircle with diameter Y E; 
it intersects the curve ADD' in D. 
3. Draw Y D; mark Y B = e along it; draw BC .1 Y B. 
4. The segments x = Y C and y = Y D are the required two mean 
proportionals, i.e., e : x = x : y = y : a. 
[Proof: Draw CD and DE; DE .1 YD because D is on the semi
circle; DC .1 Y Z because of the generation of the curve ADD'; the 
result follows from the similarity of the relevant triangles.] 

Although e was fixed, this construction could also be used to find two mean 
proportionals between any pair of line segments f and g: Take a such that 
f : g = e : a; construct x and y as above; find u and v such that e : f = x : u = 
y : v = a : g; then u and v are the required mean proportionals between f and 
g. 

The curves traced by points F and H in Descartes' figure of the mesolabum 
(Figure 16.4) could be used to construct four and six mean proportionals, re
spectively; the corresponding semicircles were also indicated in the figure. The 
further generalization of the instrument was obvious. 

Universality of It is noteworthy that the trisector and the mesolabe have a certain univer
the two sality that can hardly have escaped Descartes' notice. Viete had shown (cf. Sec

instruments 
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Figure 16.6: The first variant of the mesolabum 

tion 10.3) that all solid problems could be reduced to either the construction 
of two mean proportionals or the trisection of an angle. The only problems 
beyond the solid ones that were discussed in the literature at the time were 
angular sections (beyond trisection), mean proportionals (beyond two), and the 
quadrature of the circle. Therefore, in their general form the two instruments, 
together with the ruler and the compass, took care of all known geometrical 
problems except the quadrature of the circle. By 1619 Descartes may well have 
cherished the hope or the conviction that there were no other geometrical prob
lems, and that therefore all problems not related to the quadrature of the circle 
would be solvable by the curves traced by his instruments. 

In the Private reflections Descartes described two variants of the mesolabum Variants of the 
designed for solving special cubic equations. The idea behind these instruments mesolabum 
was the following: If e is taken to be the numerical unit, then the mesolabum 
marks a series of proportionals e, x, x2 , x 3 , etc., along its arms (see Figure 16.3). 
If, for any a, the instrument can be opened so that (see Figure 16.4) CE = a, 
then we have x 3 = Y E = YC + CE = x + a, so x = YC is the solution of the 
equation 

x3 = x+a. (16.7) 

Descartes' first variant of the mesolabum25 is an adaptation meant to implement 
this possibility. Descartes retained the fixed ruler DE (Figure 16.6) and the 

25[Descartes CogPriv] pp. 234~237. 
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Figure 16.7: Solving x3 = x + a with the first variant of the mesolabum 

second sliding ruler FG, but he replaced the first sliding ruler by a sliding 
system of parallel rulers FE and H I J at distance a from each other by a 
beam El, which could slide along OA (probably he meant the distance to be 
adjustable). While the compass was opened, the point K of intersection of FG 
and H J traced a curve;26 this curve intersected the horizontal axis in L. If now 
it was required to solve Equation 16.7, the angle AOB was opened whereby the 
points E, F, and G slid along the arms to positions E', F', and G'. The sliding 
process was stopped when G' coincided with L; the resulting configuration of 
the compass provided the required root x = OE'. 

The second variant27 was meant to solve the equation 

(16.8) 

In this case the text is very unclear. Enestrom, who provided notes to the 
mathematical passages in the edition of the text, suggested that Descartes made 
a mistake, adding a system like F EH I J in the previous case (Figure 16.6) along 
the arm 0 B and thus in fact solving X4 = x2 + d. Another interpretation, 
keeping to the equation Descartes mentioned but involving a more complicated 
instrument, seems possible to me, namely, that Descartes envisaged additional 

26The text here has "stylo c mob iii" ([Descartes CogPriv] p. 235 line 12), which I suggest 
to read as "stylo e mobili." The point c, corresponding to I in Figure 16.4, does not trace a 
curve as it remains on the horizontal axis; the point e, however, corresponding to K in my 
figure, does trace the curve that Descartes obviously had in mind. 

27[Descartes CogPriv] pp. 238-240. 



16.5 The geometrical status of curve tracing 245 

parts of the instrument, not drawn in the figure, in order to transfer x3 = OC 
from the arm 0 A to the arm 0 B. This would locate the difference x3 - x 2 along 
OB in the same way as x3 - x was located along OA in the first instrument, 
and thus the second instrument would serve analogously for solving the equation 
x3 = x2 +a. 

In both cases Descartes made it clear that the instruments were used to 
trace curves that in their turn were used to construct the solutions. Compared 
with the mesolabum itself the two variants were less versatile; the curve traced 
by the mesolabum could serve for determining two mean proportionals between 
the unit e and any other magnitude, whereas in the case of the two variants 
each value a required its own curve to be traced. However, Descartes did not 
comment on this lack of generality of the variants. 

The Private reflections also contain passages on the algebraic solution of 
certain classes of cubic equations. Descartes wrote the equations by means of 
cossic symbols in the style of Clavius' Algebra, adding a sign for an undetermined 
coefficient. In particular he used substitutions of the form x = ay to make one 
coefficient equal to a given number or two coefficients equal to each other. 28 In 
these explorations he made many mistakes both conceptual and calculational; 
in fact these passages show that by 1619 Descartes was comparatively a stranger 
to algebra. 

16.5 The geometrical status of curve tracing 

The "compasses" from the Private reflections illustrate what Descartes meant The second 
by curves "that originate from one single motion." Evidently the single motion class of 
was the turning of one arm of the compass while the other arm remained fixed. problems 
This motion determined the motions of the other parts of the instrument, in (continuous) 
particular that of the pin tracing the curve. The letter to Beeckman shows that 
Descartes considered this tracing procedure to be as exact and geometrical as the 
tracing of straight lines and circles. Thus all curves traced by the mesolabum, 
the trisector, and their variants could be used for solving problems from Descar-
tes' second class. These curves were meant to determine higher-order ahgular 
sections and mean proportionals. Hence, as I noted earlier, Descartes' second 
class of problems about continuous magnitude was larger than the classical class 
of solid problems. 

Descartes claimed in his letter to Beeckman that all remaining problems could Tracing 
be solved by special curves, which, however, could not be traced by motions such "imaginary" 
as provided by the new compasses. These curves were traced by separate mo- curves 
tions not subordinated to each other; they were "only imaginary." Descartes 
mentioned the quadratrix29 as an example. The passage in which he mentioned 

28[Descartes CogPriv] pp. 234, 236-237, 244-245; the sign for an undetermined coefficient 
was O. Descartes discussed such substitutions later in the Geometry, cf. Section 27.2. 

29lt seems likely that Descartes knew about the quadratrix from Clavius' treatise on it 
(cf. Section 9.2), if not from Pappus' Collection itself (cf. Section 3.2), or from [Viete 1593b] 
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Figure 16.8: The "linea proportionum" - Descartes 

the quadratrix30 concerned another curve, which he called the linea propor
tionum. Descartes studied the latter curve in connection with free fall and with 
compound interest. In the figure which Descartes considered (cf. Figure 16.8), 
OB is a time axis, OA is a debt, which after time OD has grown to DE and 
after time OB to BG. The curve AEG is the linea proportionum. Evidently 
Descartes had the curve in mind with the property that any sequence of equally 
spaced ordinates (dividing the line segment 0 B in equal parts) is a geometric 
sequence increasing from OA to BG, for that is how a debt increases under 
compound interest.31 Presumably Descartes realized that the curve could be 
used for finding mean proportionals; the equally spaced ordinates are mean pro
portionals between OA and BG. In modern terms the linea proportionum is 

(d. Section lOA); in a later letter of 13-XI-1629 to Mersenne ([Descartes 1964-1974] vol. 1 
pp. 69-75) he referred to Clavius with respect to the quadratrix. See also [Gabe 1972] pp. 113-
132. 

30 [Descartes CogPriv] pp. 222-223. 
31This interpretation is based on Descartes' text: "Ad talia pertinet quaestio de reditu 

redituum. G.v., mutuo accepi OA; post tempus OB, debeo BC; post tempus OD, debebam 
tantum DE, si AEC ducta sit linea proportionum." ([Descartes CogPriv] pp. 222-223. I have 
changed the letters; they now correspond to those in Figure 16.8.) The figure in the edition 
of the text in [Descartes 1964-1974] is not in full agreement with the interpretation as the 
curve is drawn with its convex side toward the axis, contrary to the graph of a debt under 
compound interest. However, in view of the history of the text (d. Note 17) I think that this 
discrepancy may well have arisen somewhere in the editing process. 
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Figure 16.9: The quadratrix 

the exponential curve with equation 

(16.9) 

Like the quadratrix, the linea proportionum is a transcendental curve. As we 
will see (cf. Chapter 24), Descartes later arrived at the conclusion that algebraic 
curves were acceptable in geometry, and that non-algebraic curves were not. But 
by 1619 Descartes had not yet developed the idea of a correspondence between 
a curve and an equation; his arguments about curves like the quadratrix and 
the linea proportionum, and about their difference from other curves, concerned 
the manner in which they were traced. 

Descartes wrote: 

The linea proportionum should be associated with the quadratrix; 
the latter curve indeed arises from two motions that are not subor
dinated to each other, one circular and one straight.32 

Descartes referred here to the usual generation of the quadratrix by motion 
as given by Pappus (cf. Construction 3.3). The "circular" and the "straight" 
motions were those of the radius DB and the side Be, respectively (cf. Fig
ure 16.9), whose intersection E traced the quadratrix BEED. These motions 
were uniform and such that in the time radius needed to sweep a quarter of the 

32[Descartes CogPriv] pp. 222-223: "Linea proportionum cum quadratrice conjungenda: 
oritur enim [quadratrix] ex duobus motibus sibi non subordinatis, circulari et recto." 
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circle, the side traversed the full square. Descartes claimed that these motions 
could not be subordinated to each other, and that similarly the linea propor
tionum could not be described by two mutually subordinated motions. In the 
1619 documents Descartes did not argue explicitly why the two tracing motions 
for the quadratrix could not be mutually subordinated or be generated by one 
single motion. But he discussed the curve also in the Geometry and there he 
explained that the subordination of circular to rectilinear motion necessary for 
tracing the quadratrix presupposed the knowledge of the ratio of the circum
ference and the diameter of a circle. But that ratio, he claimed, could never be 
known because it was a ratio between curved and straight lines.33 I return to 
this argument in Section 24.2 below. 

Descartes did not return to the linea proportionum in later studies and it is 
not clear in how much detail he analyzed the kinematical tracing of the curve. 
However, he may well have realized that if the motion along the axis (0 B in 
Figure 16.8) was uniform, the corresponding motion perpendicular to the axis 
should have a velocity that varied proportionally to the corresponding abscissa. 
It is difficult to see how an instrument could effectuate this combination of 
motions. So Descartes may well have concluded that the linea proportionum 
could not be traced by instruments with the same certainty as the curves for 
multisecting angles and for determining mean proportionals were traced by his 
"new compasses." 

The mesolabum, its variants, and the linea proportionum concerned mean 
proportionals; the trisector, its variants, and the quadratrix concerned angular 
sections. There was a certain analogy between the two problem types of which 
Descartes certainly was aware. Angular section meant dividing a given angle; 
similarly, the determination of mean proportionals was seen as a division prob
lem. Finding n mean proportionals between two line segments a and b meant 
dividing the ratio a : b in n + 1 equal parts in the sense explained in Section 4.4. 
The analogy between the two problems has its counterpart in the two corre
sponding curves that feature two analogous properties: If (cf. Figure 16.10) a 
segment OF along the axis corresponds, in the case of the quadratrix, to an 
angle () or, in the case of the linea proportionum, to a ratio (Y, then any division 
of OF in equal parts induces a division of () or (Y in as many equal parts (angles 
or ratios, respectively). 

Apart from the section of an angle in n equal parts (which includes the sec
tion in parts with a rational ratio p : q), the quadratrix can also be used for the 
"general section" of an angle in two parts with a given, not necessarily rational, 
ratio 0:. This construction was explained in Pappus' Collection (cf. Construc
tion 3.4). It is possible that Descartes considered the analogous general section 
of ratios and the possibility to construct such sections by means of the linea 
proportionum. However, the passage on the linea proportionum in the notes of 
1619 is too brief to conclude whether or not he did so. Hence I do not include 

33 [Descartes 1637] p. 317. 
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Figure 16.10: Quadratrix and linea proportionum. Of = ff' = f'F; OA : 
fe = fe : f'e' = f'e' : FE (linea proportionum); LAOe = LeOe' = Le'OE 
(quadratrix) . 
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this problem in my further discussion of Descartes' third class of problems.34 

The third class We have seen that Descartes' mesolabum, the trisector, and their variants 
of problems were intended to draw curves by means of which any number of mean prop or-

(continuous) tionals between two given lines and any number of equal parts of a given angle 
could be constructed. As these curves were traced in an exact and geomet
rical way, these problems belonged to Descartes' second class. With respect 
to angular sections the border line between the second and the third class of 
problems lay between the divisions of an angle in equal parts and the general 
section of the angle. (In the case of sections of a ratio the borderline would also 
lay between the mean proportionals and the general section of a ratio but, as 
said above, we do not know whether Descartes considered this general section.) 
None of the variants of the trisector provided a curve for the general section of 
an angle; this problem required the quadratrix or the spiral for its geometrical 
construction. But Descartes considered the quadratrix insufficiently exact and 
precise and classified problems solved by this curve, in particular the general 
section of an angle, in his third class of problems. I have argued in Section 3.2 
that the generation of the quadratrix (and the spiral) by combined motions was 
probably found as a direct translation of the angular section problem in kine
matic terms: the motions install a direct relation (an isomorphism one might 
say) between the divisions of the side of a square and the division of the quarter 
arc within the square. The curve thus as it were embodies all possible instances 
of angular sections. 

The situation resulting from Descartes' classification is a remarkable one: 
dividing an angle in equal parts required ever more complicated but (accord
ing to Descartes) sufficiently exact and precise curves traced by variants of the 
trisector. The general angular section requires the quadratrix, a curve that 
straightforwardly represented the relation involved in dividing an angle accord
ing to a given ratio. Yet this problem was relegated to the third class. Here it 
is illuminating to recall Descartes' statement, in his letter to Beeckman, that 

34In analogy with the general section of the angle one may also consider a general section 
of a ratio. In the interpretation which saw compounding ratios as addition, the sum of a : X 

and x : b was a : b and the determination of x was seen as a section of a : b in two parts. In 
some cases the parts of a ratio were considered to have themselves a ratio; thus (d. Section 4.4 
Equation 4.14) if 

a : Xl = Xl : X2 = X2 : X3 = X3 : X4 = X4 : X5 = X5 : X6 = X6 : b , (16.10) 

X3 was said to divide the ratio a : b in parts of which the one, a : X3 was 3/7-ths of a : b, 
and the other, X3 : b, 4/7-ths, so the ratio of the ratios a : X3 and X3 : b was 3 : 4. In the 
14th century Oresme had pioneered a generalization of this concept of a ratio of two ratios to 
cover all ratios (rather than only those occurring in sequences of continued proportionals). It 
is easily seen that the concept, if made explicit, would be a logarithmic one, namely (a: b)* : 
*( c : d) = :~: ~-:~::, where * : * denotes the ratio of ratios. With such an extended conception 
of division, a general section of ratio can be envisaged, analogous to the the general section of 
an angle. These sections of ratios can be effectuated by means of the linea proportionum: the 
section of the ratio OA : Be (see Figure 16.8) according to a given ratio a can be performed 
by constructing a point t" on 0 B such that 0 t" : t" B = a and drawing the ordinate t" e" 
of t"; then 0 A : t" e" and t" e" : Be are the required parts of the ratio 0 A : Be. 
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nothing can be imagined "that cannot at least be solved by such lines.,,35 Ev
idently he meant that, in the same way as the general angular section, any 
problem could be translated in terms of a correspondence embodied by a curve. 
Hence any problem was solvable if the pertaining curve were given. But the 
case of the quadratrix also showed that, although such a curve could readily be 
imagined, it might be difficult to conceive a method to trace or construct it and 
unacceptable to assume it as given. Precisely here Descartes had to articulate 
the demarcation between his second and third classes of problems, because for 
solving a problem he required more than merely imagining a constructing curve; 
in order to qualify as proper means of geometrical solution, the curves should 
be available at least as effectively as the curves traced by the "new compasses." 

There is another consideration that may illuminate Descartes' demarcation 
between his second and third problem classes. If he accepted the quadratrix 
as means of construction for angular sections, the "new compasses" would be 
superfluous. Moreover, the whole intricate inner structure of the bisection, 
trisection etc., of angles would be lost if they were reduced, via the quadratrix, 
to the simple bisection, trisection etc. of line segments. The compasses for 
angular sections, on the contrary, retained a suggestive differentiation within 
each problem type; the increasing complexity of the curves they traced related to 
the increasing difficulty of the corresponding angular sections. A similar loss of 
structure would result from discarding the variants of the mesolabum and using 
the linea proportionum for all mean proportionals. I am inclined to believe that 
Descartes' rejection of the quadratrix and the linea proportionum as means of 
construction was caused in part by a tacit, or perhaps subconscious, realization 
that their acceptance would, so to speak, spoil the game of geometrical problem 
solving by trivializing intricate questions. 

16.6 Conclusion - Descartes' vision of geome
try c. 1619 

The letter to Beeckman and the relevant passages from the Private refiec- Geometry 
tions enable us to characterize the first documented phase of Descartes' thinking 
about geometry, construction, and the interpretation of exactness. He held that 
in geometry constructions should be performed by the intersection of straight 
lines and curves. The curves were acceptable as means of construction if they 
could be traced by instruments such as the ruler, the compass, or the "new 
compasses." These new compasses featured combinations of motions that were 
subordinated to each other in such a way that the resulting tracing could be 
characterized as one continuous motion; the subordination was the key crite-
rion for the acceptability of the resulting curves. The quadratrix and the linea 
proportionum did not satisfy this criterion. 

This conception of construction entailed a more precise classification of prob
lems than the classical one formulated by Pappus. Descartes, as it were, ordered 

35Cf. Note 6. 
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and subdivided Pappus' class of "line-like" problems. He realized that there was 
a large class of problems more complicated than the solid ones but still geomet
rically solvable by means of curves such as those traced by the new compasses. 
For Descartes the essential demarcation lay between these problems and those 
that were only solvable by the quadratrix and similar curves. 

The 1619 documents do not yet show a particular interest in analysis, in 
methods for finding the constructions. Nor was algebra as prominent as it 
would become later in Descartes' thinking. He devised instruments for the 
geometrical solution of equations, but there are no signs that he considered 
equations as prototype for all geometrical problems. It is difficult to say in how 
far Descartes at the time. was aware of Viete's analysis, but if so, he had not 
realized the force of its central idea, namely, to reduce problems to algebraic 
equations. 

Philosophical The influence of Descartes' philosophical ideas on his mathematics primarily 
aspects concerned the programmatic and methodological aspects. We will see in the 

following chapters how these interests were later combined with the concerns 
for certainty and exactness. 

The letter to Beeckman shows that Descartes saw mathematical problems 
as a paradigm for all scientific problems. Those about discrete magnitude were 
analogous to the problems in arithmetic and those concerning continuous mag
nitude to the problems in geometry. His statements mainly concerned the latter 
category and thus his program for a "completely new science" was modeled to 
a large extent upon the early modern tradition of geometrical problem solving. 
In particular, he argued about the aims and the methodological questions of 
the new science from analogy with geometry, whose primary aim was problem 
solving by construction. 

The analogy to mathematical, primarily geometrical, problems, with their 
full classification, entailed a particular feature of Descartes' vision of the new 
science, namely its completeness. It was a science "by which all questions in 
general may be solved." Descartes' programmatic vision was not open-ended; 
the new science, although "an infinite task, not for a single person," was in an 
important sense finite and could in principle be completed. 

Originality Although it is difficult to determine precisely the influences Descartes under-
went in his early mathematical formation, we may assess globally the novelty of 
his ideas at the time. The notion of solving equations by instruments was not 
particularly new and Descartes' algebraic technique was decidedly below the 
standard of the time. The instruments for trisection and mean proportionals do 
not strike one as particularly novel within the tradition of geometrical problem 
solving. The former translated an obvious idea into a mechanism and for the 
latter Descartes might have been inspired by a passage in Clavius' Euclid edition 
in which a similar arrangement of a variable angle and adjustable perpendicu
lars is suggested for an approximate construction of mean proportionals.36 More 

36[Euclid 1589] pp. 778~779; I have discussed the procedure above, Construction 4.8. 
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novel was his insistence that the problems were not to be constructed directly 
by the instruments but indirectly by the curves that the instruments traced. 

The methodological ideas Descartes formulated in his letter to Beeckman 
were decidedly new. His criteria and his classification of geometrical problems 
and procedures went beyond the classical ideas and made these more precise. 
His arguments about the difference between curves like the quadratrix, on the 
one hand, and the curves traced by the new compasses, on the other hand, were 
also new; he was to work them out more fully later. 

By 1619 Descartes adopted the attitude to the interpretation of geometri- Interpretation 
cal exactness, which in Section 1.6 I characterized as appeal to authority and of exactness 
tradition; he took over the classical construction by curves. He did, however, 
formulate a conviction that he would keep throughout the further development 
of his geometrical thinking, namely, that in geometry curves were to be accepted 
or rejected on the basis of the motions or combinations of motions by which they 
were traced (and not on the basis of other ways of generating curves such as the 
intersection of surfaces or the definition as loci). 



Chapter 17 

Descartes' general 
construction of solid 
problems c. 1625 

17.1 The construction of roots of third- and 
fourth-degree equations 

While in Paris in 1625-1626 Descartes communicated to some mathemati- Sources 
cians a construction (without proof) of two mean proportionals by means of 
a parabola and a circle. 1 One of the recipients was Mydorge, who devised a 
proof of the construction and showed it to Descartes. Later, in 1632, Mersenne 
sent Descartes another proof, provided by Roberval. 2 Mersenne published Des-
cartes' construction (without mentioning his name) and Roberval's proof in his 
Universal harmony in 1636.3 Meanwhile Descartes had met Beeckman again 
in 1628. At that occasion Descartes showed him the construction, the proof by 
Mydorge, and a general construction of the roots of any third- or fourth-degree 
equation also by means of a parabola and a circle. Beeckman copied these in 
his Journa1.4 About the general construction he noted: 

Mr Descartes values this invention so much that he avows never to 
have found anything more outstanding, indeed that nothing more 
outstanding has been found by anybody. 5 

ICf. especially [Mersenne 1933-1986] vol. 1 pp. 256-259 and [Descartes 1964-1974] vol. 10 
pp.651-659. 

2Cf. Descartes to Mersenne, end June 1632, [Descartes 1964-1974] vol. 1, pp. 254-257. 
3[Mersenne 1636] Livre IV, pp. 407-412; the Latin edition of the book contained a less 

elaborated version ([Mersenne 1636b], Liber IV, Prop. II, pp. 146-147). The French text of 
the passage is published in the sources mentioned in Note 1 above. 

4 [Beeckman 1939-1953] pp. 136-139, the passage is also published in [Descartes 1964-1974] 
vol. 10, pp. 342-346. 

5[Beeckman 1939-1953] p. 139, cf. [Descartes 1964-1974] vol. 10 p. 346: "Hanc inventionem 
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Figure 17.1: Construction of the roots of third- and fourth-degree equations -
Descartes 

It seems that Beeckman was the only one to whom Descartes showed the general 
construction, until, in 1637, he published it in the Geometry as the standard con
struction of the roots of third- and fourth-degree equations (Construction 26.1). 

The construction that Descartes showed to Beeckman was as follows: 

Construction 17.1 (Roots of third- and fourth-degree equations 
Descartes)6 
Given a third- OT fourth-degree equation:7 x4 = ±px2 ± qx ± T; it is required to 
construct its roots. 

Construction: 
1. Draw a parabola with vertical axis, vertex A as highest point, 
and latus rectum 1 (see Figure 17.1). 
2. If the sign of p is +, then take AB = l¥ from A down along 
the axis; if that sign is - and p < 1, then take AB = l;p from A 

tanti facit D. des Chartes, ut fateatur se nihil unquam preastantiiIs invenisse, imo a nemine 
unquam praestantiiIs quid inventum." 

6As transcribed by Beeckman in 1628-29, [Descartes 1964-1974] vol. 10. pp. 344-346. I 
have corrected a mistake in the case distinctions with respect to the sign of the coefficient p. 

7The text in Beeckman's Journal has no algebraic symbols and gives the equation in words: 
"Primo praeparetur aequatio ita ut remaneat biquadratum aequale + vel minus certo numero 
quadratorum, + vel - certo numero radicum, et plus vel minus certo numero absoluto." 
[Descartes 1964-1974] vol. 10, p. 344. 
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down along the axis; if the sign is - and p > 1, then take AB = P; 1 
upward along the axis; finally if the sign is - and p = 1, take B = A.8 

3. Take BC = ~ perpendicular to the axis either to the right or to the 
left (the choice is left to the geometer executing the construction). 
4. If the sign of r is +, then take a line segment CD = JCA2 + r; 
if it is -, then take9 CD = JCA2 - r. 
5. Draw a circle with center C and radius CD; it intersects the 
parabola in points E; draw perpendiculars EF to the axis.lO 
6. If the sign of q is -, then the segments EF for which EC intersects 
the axis represent the positive roots, the others the negative ones; if 
the sign of q is +, then the segments EF for which E is at the same 
side of the axis as C represent the positive roots and the others the 
negative ones. 
[Proof (modern): The parabola has equation y = x 2 • Let the center 
C of the circle have coordinates (a, b) and let its radius be C; its 
equation is (x - a)2 + (y - b)2 = c2, and the x coordinates of the 
points of intersection satisfy the equation x4 = (2b -1)x2 + (2a)x + 
(c2 - a2 - b2). Hence if we chose a, b, and c such that 2b - 1 = ±p, 
2a = ±q, and c2 = ±r + a2 + b2, the points of intersection of the 
circle and the parabola will yield the roots; Descartes' construction 
does precisely that.] 

Descartes was aware that any third- or fourth-degree equation could be reduced 
to the standard form presupposed in the construction; this reduction was at 
that time a standard algebraic technique. 11 Thus his construction was indeed 
general. 

If this general procedure is applied to the problem of determining two mean Origin of the 
proportionals, the resulting construction is the same as the one12 that Descartes construction 
showed to some mathematicians in 1625~ 1626. However, we do not know when 
Descartes found the two constructions nor whether he found the general one 
earlier or later than the special one. Because of the close relationship between 
the general and the special constructions I am inclined to believe that they were 
found at approximately the same time, which I indicate as "c. 1625." 13 

SHere I have corrected a mistake of Descartes or a copying error of Beeckman. In the text 
the case that the sign of p is ~ is subdivided as to whether the "difference between the unit 
and the number of squares," i.e. 11 - pi, is < 1, > 1 or = 1. That distinction is incorrect, as 
can be checked easily; reading p instead of 11 - pi leads to the correct distinction. 

9Descartes noted that CA2 - r will be positive because otherwise all roots would be imag
inary - apparently he assumed that at least one root was real. 

lOHere Descartes noted that there are as many intersections as there are roots, not counting 
an intersection in the vertex. 

llViete explained the technique in [Viete 1615J pp. 127-132 (tr: [Viete 1983J pp. 236-246). 
12Cf. Note 3. 
13Describing Descartes' meeting with Faulhaber in Uim, Lipstorp suggested in 1653 that 

as early as 1620 Descartes had found the general construction (cf. [Descartes 1964-1974J 
vol. 10 pp. 252-253). De Waard (cf. [Mersenne 1933-1986J vol. 1 p. 258 note 4) and Milhaud 
([Milhaud 1921J pp. 75-76) concluded that Descartes had actually shown the construction to 
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It is unlikely that Descartes explained the way he found the construction 
of two mean proportionals when he showed it to mathematicians in Paris. At 
any rate the published texts by Mydorge and Roberval14 do not provide clues. 
Their proofs are synthetical, and it appears to be impossible to reconstruct a 
feasible analysis corresponding to the lines of these synthetic proofs. 

It may be that Descartes arrived at the general construction by the method 
of indeterminate coefficients. The proof which I have added above shows that 
such a technique leads directly to the construction. Moreover, in his notes 
to the 1659 Latin edition of the Geometry Van Schooten added a derivation 
of the construction by indeterminate coefficients. 15 However, it may also be 
that Descartes found the general solution by successive generalizations of his 
construction of two mean proportionals. 

Importance According to Beeckmanl6 Descartes saw his general construction at the time 
as his most significant achievement in geometry. Mersenne prefaced the pub
lication of Descartes' construction of two mean proportionals by parabola and 
circle by an argument l7 that may well have reflected Descartes' own reasons for 
valuing the result so highly. First Mersenne quoted Pappus' statement that it 
was an error in geometry to construct with inappropriate means. He stated that 
few contemporary mathematicians constructed solid problems by conic sections. 
Menaechmus had provided two such constructions of two mean proportionals, 
one by parabola and hyperbola, the other by two parabolas. Descartes' con
struction used not two but only one conic, and a most simple one at that, 
namely, the parabola. It was therefore, Mersenne concluded, an improvement 
as compared with the classical ones. We may well assume that Descartes consid
ered these arguments applicable even more to his general construction of roots 
of third- and fourth-degree equations, because with that construction he had 
found at one stroke the simplest possible construction for any solid problem. 

Viele's and When Descartes' general construction was published in 1637, Fermat had also 
Fermat's found a general construction of third- and fourth-degree equations by means of 

constructions a parabola and circle, but he had not published it. In dealing with Fermat's 
result (cf. Section 13.1, Analysis 13.1) I have compared the construction of solid 
problems by a parabola and circle to the earlier Vietean solution of solid prob
lems and listed the advantages of the former method. Viete had shown that 

Faulhaber. Later commentators have treated Lipstorp's statement with caution. Shea does 
not want to date the invention before 1620 but considers it possible that Descartes referred to 
the construction when he wrote in March 1620 "I have begun to understand the foundations 
of a marvellous invention" ([Descartes 1964-1974] vol. 10 p. 179; [Shea 1991] p. 57). Costa
bel has suggested that the construction of two mean proportionals could have been found as 
a modification of Menaechmus' construction; he gave 1628 as probable date for the general 
construction, cf. [Descartes 1977] pp. 309-313. 

14Cf. Note 2. 
15[Descartes 1659-1661] vol. 1 pp. 323-324; it is a note to the passage on p. 391 of 

[Descartes 1637]. 
16Cf. Note 5. 
17[Descartes 1964-1974] vol. 10 pp. 653-655, cf. Note 3. 
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all geometrical problems that were reducible to equations of third or fourth de
gree could be solved by neusis. Thus Viete's result covered the same class of 
problems as Fermat's and Descartes'. However (cf. Section 10.3), Viete gave 
explicit constructions only for third-degree equations; for fourth-degree ones he 
asserted the constructibility on the basis of algebraic manipulations (in partic
ular the methods to reduce the algebraic solution of fourth-degree equations 
to third-degree ones); he did not translate the transformations into construc
tional procedures, probably because he realized that these would be unwieldy. 
Thus his result was for a large part an abstract proof of constructibility, not 
an actual construction. Fermat realized that his own approach avoided all the 
algebraic complications of Viete's, but he gave only an analysis and left it to 
his readers to work out the construction. By 1625 Descartes had already found 
such an explicit method of construction. When it was published in 1637, it was 
clearly recognizable as new and as more powerful and simpler than the methods 
available in print. 

17.2 Descartes' geometrical ideas c. 1625 

A comparison of the construction of the roots of third- and fourth-degree Algebra and 
equations with the results from c. 1619 discussed in the previous chapter re- instruments 
veals some important changes in Descartes' ideas about geometry. The most 
evident of these was that by 1625 algebra had become more important and 
instruments less. Although we do not know exactly how Descartes found his 
general construction, it is clear from the result that he had become much more 
familiar with algebraic manipulations than when, in the Private reflections, he 
speculated about instruments to solve cubic equations. 

No doubt the constructions also convinced Descartes of the importance of 
reducing problems to equations. Thus a central element of Descartes' doctrine 
of geometry, not yet explicitly present in the 1619 texts, had now entered: 
problems should be reduced to equations; the equations should then provide 
the constructions. This tenet was not new in 1625, Viete had advocated it since 
c. 1590. By adopting it Descartes linked up with what I have called the principal 
dynamics within the early modern tradition of geometrical problem solving: the 
creation and adoption of algebraic analysis as a tool for geometry. 

In 1619 Descartes hoped to achieve generality via instruments: the trisector, Generality 
which could be modified to serve for other angular sections, and the mesolabum, 
which could be extended so as to provide any number of mean proportionals. 
Although the new construction by parabola and circle did not extend beyond 
the solid problems, it did provide the solution of all solid problems, and its sim-
plicity and effectiveness may well have suggested to Descartes that the means 
for further generalization lay in algebra rather than in instruments. Moreover, 
the construction suggested an essential unification in the art of geometrical 
problem solving compatible with Pappus' classification of problems. Linear 
and quadratic equations corresponded to plane problems solvable by straight 
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lines and circles; third- and fourth-degree equations corresponded to solid prob
lems and were now covered by one simple general construction employing the 
parabola as the only non-plane means. The result clearly suggested to pro
ceed by searching for an equally elegant and convincing concord of geometry 
and algebra for higher-order problems and equations. In the years after 1625 
Descartes indeed proceeded in this direction, but the simplicity of his general 
construction for solid problems proved unattainable in the case of higher-order 
problems. 

The texts relating to the construction by parabola and circle contain no ex
plicit remarks about its exactness. It seems that Descartes accepted without 
question the use of a parabola in constructing solid problems. Apparently the 
authority of Pappus' canon of construction was sufficient legitimation for this 
approach. Already in Descartes' earlier ideas about construction with the new 
instruments there was a move from the instruments themselves as means of 
construction to the curves traced by the instruments. In the construction with 
the parabola and circle, the question how the parabola was traced or otherwise 
produced was not discussed. Later Descartes devoted much attention to the 
proper methods of tracing the curves that were used in constructions. 



Chapter 18 

Problem solving and 
construction in the "Rules 
for the direction of the 
mind" (c. 1628) 

18.1 The Rules 

I now turn to the Rules for the direction of the mind (Regulae ad directionem The "Rules" 
ingenii) , 1 Descartes' unfinished attempt to formulate rules of reasoning, dating, and 
in its final form, from c. 1628. The Rules, written in Latin, were not published mathematics 
during his lifetime. The work has great relevance for the understanding of 
Descartes' mathematical thought because the rules he formulated were to a 
large extent inspired by mathematics. The question in what ways mathematics, 
and in particular the idea of a "universal mathematics" inspired the Rules has 
been treated extensively in the literature on Descartes2 and I don't deal with 
it here. Rather I discuss a more restricted, and in a way reverse question, 
namely: what do the Rules tell us about Descartes' mathematical ideas at the 
time, in particular concerning geometrical construction and the interpretation 
of exactness. 

Descartes' treatise contains 21 rules. Apart from the last three, each rule is Structure of 
formulated in one or a few sentences and is followed by a lengthy explanation. the text 
The first 12 rules deal with the actions of the mind necessary for dealing me-
thodically with questions and for achieving solid and true judgments; they are 

1 [Descartes Rules]. 
2See in particular the notes by J .L. Marion in [Descartes 1977] pp. 156-158, 160-164 and 

302-309, and further: [Crapulli 1969], [Israel 1990], [Mittelstrass 1978], [Mittelstrass 1979], 
[Pasini 1992]' [Schuster 1980], [Serfati 1994]' and [Tamborini 1987]. 
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not specifically mathematical. At the end of the explanation of the twelfth rule 
Descartes sketched the structure he had in mind for his treatise. He charac
terized the first 12 rules as dealing with what he called "simple propositions," 
whose truth could be directly intuited by a well-prepared mind. Two further 
sets of 12 rules were to follow, one about problems that "can be understood 
perfectly, even though we do not know the solutions to them," another about 
problems that "are not perfectly understood."3 Descartes added that questions 
of the former kind occurred primarily in arithmetic and geometry. However, the 
Rules break off in the middle of the second set of 12 rules; Rules 19-21 lack the 
explanatory texts. 

M athesis The Rules can be seen as an elaboration of the ideas explained in the letter to 
universalis Beeckman of March 1619 (cf. Chapter 16). The "new science" which Descartes 

envisaged in that letter unified all scientific problems by noting that they all 
dealt with quantities, either discrete or continuous. Arithmetic and geometry 
then functioned as the prototype sciences for the two kinds of problem, respec
tively, and they provided a classification for each kind. In the Rules Descartes 
also reduced reasoning to problem solving, and he made a further step toward 
the unification of all scientific problems. He explained (in the commentary to 
the fourth rule) that arithmetic, geometry, and such sciences as astronomy, mu
sic, optics, and mechanics, had in common that they studied "numbers, shapes, 
stars, sounds, or any other object whatever," and that therefore they dealt with 
questions of "order and measure." Thus the foundation of these sciences lay in 
a "universal mathematics" (mathesis universalis) that dealt abstractly with "all 
the issues that can be raised concerning order and measure irrespective of the 
subject matter.,,4 

Geometry In Descartes' vision of the "mathesis universalis" (or at least in the method 
of reasoning he outlined in the Rules) the unifying element was geometry as 
the theory of spatial extension. All problems could be reduced to problems 
about magnitude, and geometry provided the best frame for representing the so
reduced problems. If they concerned discrete quantity, they could be represented 
as problems about plane configurations of points; if continuous quantity was 
involved, lengths and areas were the appropriate means of representation. This 
spatial (essentially two-dimensional) representation served the mental faculty 
of the "imagination," which Descartes essentially saw as a screen on which the 
mind could model figures, operate on them, and inspect the results of such 
operations. Thus the fourteenth rule was: 

3 [Descartes Rules] pp. 428-429: 
etiamsi illarum solutio ignoretur:" 
[Descartes 1985-1991] p. 50. 

"propositiones simplices:" "intelliguntur perfecte, 
"non perfecte intelliguntur:" translations from 

4 [Descartes Rules] p. 378: "in numeris, vel figuris, vel astris, vel sonis, aliove quovis ob
jecto:" "ordo et mensura:" "mathesis universalis:" "id omne ... quod circa ordinem et 
mensuram nulli speciali materiae addictam," translations from [Descartes 1985-1991] vol. 1 
p.19. 
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The problem should be re-expressed in terms of real extension of 
bodies and should be pictured in our imagination entirely by means 
of bare figures. Thus it will be perceived much more distinctly by 
our intellect. 5 

And in the explanation of the rule Descartes wrote: 

The final point to note is this: if we are to imagine something, and 
are to make use, not of the pure intellect, but of the intellect aided by 
images depicted in the imagination, then nothing can be ascribed to 
magnitudes in general which cannot also be ascribed to any species 
of magnitude. 

It is easy to conclude from this that it will be very useful if 
we transfer what we understand to hold for magnitudes in general 
to that species of magnitude which is most readily and distinctly 
depicted in our imagination. But it follows from what we said in Rule 
Twelve that this species is the real extension of a body considered in 
abstraction from everything else about it save its having a shape.6 

Thus Descartes' ideas about the constitution of the imagination and about its Algebra 
role in human understanding gave geometry a central place as paradigm science 
of order and measure. Viete and others had recognized algebra as the key to 
analytical methods in geometry, and Descartes himself had realized its power in 
his general construction of solid problems. Naturally, then, algebra also played 
a crucial role in the Rules; a large part of the treatise may be characterized as 
Descartes' endeavor philosophically to understand the application of algebraic 
methods in solving problems about magnitudes in general. 

18.2 The arithmetical operations 

The second part of the Rules dealt with the preparation of problems for From problem 
analysis by algebra. Rules 13-15 taught how to strip a problem of its superfluous to equation 
aspects, to find and enumerate its simplest constituent parts, to reduce it to a 
problem about extension, that is, about geometrical magnitude, to use figures 
for representing it distinctly to the mind, and, if necessary, to draw the figures 
on paper as aids to the imagination. 

5 [Descartes Rules] p. 438: "Eadem est ad extensionem realem corporum transferenda, 
et tota per nudas figuras imaginationi proponenda: ita enim longe distinctius ab intellectu 
percipietur," translation quoted from [Descartes 1985-1991] vol. 1 p. 56). 

6[Descartes Rules] pp. 440--441: "Ut vera aliquid etiam tunc imaginemur, nec intellectu 
puro utamur, sed spedebus in phantasia depictis adjuto: notandum est denique, nihil did de 
magnitudinibus in genere, quod non etiam ad quamlibet in specie possit referri. 

Ex quibus facile conciuditur, non parum profuturum, si transferamus ilia, quae de magni
tudinibus in genere did intelligemus, ad ilIam magnitudinis speciem, quae omnium facillime 
et distinctissime in imaginatione nostra pingetur: hanc vera esse extensionem realem corporis 
abstract am ab omni alio, quam quod sit figurata, sequitur ex dictis ad regulam duodecimam," 
translation quoted from [Descartes 1985-1991] vol. 1 p. 58. 
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The next rules (16-21) described in general terms the technique of translat
ing a problem into an equation. Descartes explained the successive steps of this 
process: use short symbols to denote the elements of a problem that have to be 
kept in mind (16); disregard whether the terms are known or unknown and find 
their interrelations (17); use the four operations addition, subtraction, multipli
cation, and division in noting down these interrelations as equations (18); search 
for equations, as many as there are unknown terms (19); apply (20) a further 
procedure (Descartes noted that he would explain this procedure later, but the 
extant version of the Rules does not contain such an explanation; most probably 
he envisaged a method for testing whether the equation was reducible); reduce 
the equations to a single one of lowest possible degree (rule 21) .... And here 
the Rules break off. The sequel one would expect, namely, rules for deriving 
the solution of the problem from the equation arrived at in Rule 21, is absent. 

The extant text suggests that by the time Descartes broke off writing the 
Rules he had become aware of two fundamental questions concerning the use 
of algebra he was exploring, namely, the interpretation of the arithmetical and 
algebraic operations for general magnitudes, and the derivation of the solution 
of a problem from its equation. In the Rules he answered the former question 
partially, but left the latter unanswered. 

As to the introduction of arithmetical and algebraic operations in geome
try, Descartes faced the question of the legitimacy of introducing numbers and 
algebra into geometry. This question was much discussed around 1600 (cf. Chap
ter 7); the most extreme answer had been given by Stevin, who claimed that 
number was continuous quantity and that there was no essential difference in 
subject-matter between arithmetic and geometry (Section 7.3). Descartes how
ever, having given to geometry the role of paradigm science of continuous quan
tity, could not adopt such an extreme position, so he found himself faced with 
the question Viete had earlier attacked, namely, to reinterpret the arithmetical 
and algebraical operations so as to apply to geometrical magnitude. 

Viete (cf. Sections 8.2 and 8.3) had adopted a dimensional interpretation of 
the operations; the product of two line segments was a rectangle, the product of 
three a rectangular block, and he allowed higher abstract dimensions for prod
ucts of more than three factors. Later, in his Geometry, Descartes introduced a 
unit line segment and gave a non-dimensional interpretation in which the prod
uct of two or more line segments was again a line segment (cf. Section 21.1). 
In the Rules he made use of a unit but did not fully remove the dimensional 
aspects of magnitudes. 

Descartes introduced7 a unit length and a unit square (see Figure 18.1); 
I denote them by e and E, respectively, the side of E is e. He represented 

7Rules 15 and 18, [Descartes Rules] pp. 453-454, 461-468, cf. [Descartes 1985-1991] pp. 65-
66,71-76. After Descartes' visit to him in 1628 (cf. Section 17.1), Beeckman wrote in his Jour
nal a note "Algebrae Des Cartes specimen quoddam" ([Beeckman 1939-1953] vol. 3 pp. 95-97, 
also published in [Descartes 1964-1974] vol. 10, pp. 333-335). The first part of this note ex
plains the representation of numbers and magnitudes by means of line segments or rectangles 
in the same way as in Rules 15 and 18. 
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Figure 18.1: The interpretation of arithmetical operations in the Rules 

magnitudes either as line segments or as rectangles with width e and considered 
these representations as equivalent. Thus the line segment l and the rectangle 
with length I and width e were interchangeable. Addition and subtraction were 
performed by joining or removing either the line segments or the rectangles. For 
multiplication, the factors had to be interpreted as line segments, say a and b. 
To find their product the rectangle with sides a and b had to be transformed into 
a rectangle C with width c and equal in area to rect (a, b). The length c of C, 
or equivalently the rectangle C itself, was the product of a and b. Similarly for 
dividing two magnitudes, the dividend had to be interpreted as a rectangle and 
the divisor as a line segment. Thus dividing d by f (with d and f line segments) 
one should first form the rectangle D = d x e, then transform this rectangle into 
rectangle of equal area and width f; the other side of this rectangle, say g, was 
the required quotient d/ f, as indeed D = d x e = f x g. 

Descartes noted that these operations depended on transformations of rect-
angles: 

In this way, the entire business is reduced to the following problem: 
given a rectangle, to construct upon a given side another rectangle 
equal to it. The merest beginner in geometry is of course perfectly 
familiar with this; nevertheless I want to make the point, in case it 
should seem that I have omitted something.8 

8 [Descartes Rules] p. 468: "Ita enim totum hoc negotium ad talem propositionem reducitur: 
dato rectangulo, aliud aequale construere supra datum latus. 
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And there the commentary ends, it does not contain the promised explanation, 
only the enunciations of rules 19-21 follow. It is clear, however, which method 
Descartes had in mind: the construction of the fourth proportional by Elements 
VI-12 (cf. Construction 4.1). In the multiplication of a and b above, the product 
c is such that rect (a, b) = rect (c, e), hence (by Elements VI-16) c is the fourth 
proportional of e, a and b. Similarly in the division of d by j, the quotient 9 
is such that rect(f,g) = rect(d,e), hence (again by Elements VI-16) 9 is the 
fourth proportional of d, e, and f.9 

18.3 The algebraic operations 

Root At the end of the extant Rules, the preparations were completed for the ap-
extraction plication of the primary arithmetical operations to general magnitudes. The 

obvious next step in the program was the extension to the algebraic operations: 
root extraction and solving equations generally. Descartes considered root ex
traction as a kind of division, and therefore he briefly discussed it after his 
explanation of division in the commentary to Rule 18. He wrote: 

As for those divisions in which the divisor is not given but only 
indicated by some relation, as when we are required to extract the 
square root or the cube root etc., in these cases we must note that 
the term to be divided, and all the other terms, are always to be 
conceived as lines which form a series of continued proportionals, 
the first member of which is the unit, and the last the magnitude to 
be divided. We will explain in due course how to find any number 
of mean proportionals between the latter two magnitudes. For the 
moment we must be content to point out that we are assuming that 
we have not quite done with these operations, since in order to be 
performed they require an indirect and reverse movement of the 
imagination, and at present we are dealing only with problems which 
are to be treated in the direct manner. 10 

Quod etiamsi vel Geometrarum pueris sit tritum, placet tamen exponere, ne quid videar 
omisisse." Translation quoted from [Descartes 1985-1991J vol. 1 p. 76.) 

9 Anticipating the explanation in Section 21.1 I note that if we add the Euclidean construc
tion of the fourth proportional to the explanation given in the Rules, and remove the double 
interpretation of magnitudes as both line segments and rectangles, we arrive precisely at the 
definitions of multiplication and division as given later in the Geometry. 

lO[Descartes RulesJ p. 467: "In illis autem divisionibus, in quibus divisor non est datus, 
sed tantum per aliquam relationem designatus, ut cum dicitur extrahendam esse radicem 
quadratam vel cubicam etc., tunc notandum est, terminum dividendum et alios omnes sem
per concipiendos esse ut lineas in serie continue proportionalium existentes, quarum prima 
est unitas, et ultima est magnitudo dividenda. Quomodo autem inter hanc et unitatem 
quotcumque mediae proportionales inveniendae sint, dicetur suo locoj et jam monuisse suf
ficiat, nos supponere tales operationes hic nondum absolvi, cum per motus imaginationis 
indirectos et reflexos faciendae sintj et nunc agimus tantum de quaestionibus directe percur
rendis." Translation quoted from [Descartes 1985-1991J vol. 1 pp. 75.) 
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Thus Descartes interpreted the n-th root of a line segment a as the first of n-1 
mean proportionals between the unit e and a. If we call the root x, we have 

e . x - x . x 2 - - xn - 1 . a . - . - ... - ., (18.1) 

so xn = a. His terminology shows that he considered finding x as a kind of 
division of a, one in which the divisor itself was not given, but a relation was 
indicated which the divisor had to satisfy. In the case of the square root of 
a, the unknown divisor was x and it had to satisfy the relation e : x = x : a. 
Descartes' text admits a still wider interpretation of "division:" he may have 
had in mind any given relation between the unknown divisor and its powers, 
that is, any equation in x. Thereby both root extraction and the solution of 
equations became a kind of division. A related conception can be found in 
Stevin's work, who considered equation solving as a generalized procedure of 
taking fourth proportionals. 11 

Although he saw root extraction as a kind of division, Descartes also did Root 
indicate one crucial difference between the two operations: contrary to division, extraction 
root extraction required "an indirect and reverse movement of the imagination," different from 
and he added that "at present we are dealing only with problems which are to be arithmetical 
treated in the direct manner." 12 It may be that Descartes had in mind to treat operations 
root extraction and the solution of equations in the third set of 12 rules and 
considered them as problems that "are not perfectly understood" (cf. Note 3 
above). This would be in keeping with the passage in Rule 20 where Descartes 
referred to certain operations whose treatment he postponed (cf. Section 18.1). 
These operations probably served to reduce the equations to lower degree by 
splitting off factors; they were therefore divisions by unknown divisors. 

It should be noted that the distinction which Descartes intended to make 
between the second and the third dozen of rules was an arithmetical rather than 
a geometrical one. Addition, subtraction, multiplication, and division belonged 
to the second dozen rules. Root extraction and the determination of mean pro
portionals required "an indirect and reverse movement of the imagination" and 
were therefore postponed to the third. This division corresponds to rationality 
and irrationality in arithmetic: the four primary arithmetical operations pro
duce only rational numbers, but root extraction generally leads to irrationals. 
In geometry, where the operations are constructions, the first meaningful divi
sion is between operations that can or cannot be performed by straight lines 
and circles. Some root extractions (square roots in particular) remain inside 
this boundary, others (cube roots for instance) are outside. It was around this 
distinction that Descartes met with an essential obstacle13 in his program. 

11 [Stevin 1585] pp. 264-266, cf. [Stevin 1955-1966] vol. 2 pp. 581-583; the passage is entitled 
"La raison pourquoi no us appellons reigle de trois, ou invention de quatriesme proportionel 
des quantitez; ee que vulgairement se diet equation des quantitez." 

12Cf. Note 10. 
13Cf. Section 6.4. 
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18.4 Comparison with Viete's "new algebra" 

At this point it is appropriate to compare Descartes' program with Viete's 
"new algebra," which claimed "to leave no problem unsolved" (cf. Section 8.2 
and Chapter 10) and was thereby similar to Descartes' project of the Rules. 
The two scholars differed both in their motivation and in their approach to 
mathematics. Viete started from algebra, he did not attempt to move outside 
mathematics, and, despite the "nullum non problema solvere," he was not overly 
concerned about the completeness of his method. Descartes started from sci
entific problems and their complete classification; only later he acknowledged 
algebra as the means to classify and analyze; and later still, by the time he wrote 
the Geometry, he arrived at, in principle, a complete method for geometry. 

On the other hand, with respect to the structure of their programs, there are 
notable similarities between Viete's and Descartes' endeavors. Both took sym
bolic algebra (Viete's specious logistics) as the general method. Both realized 
the necessity of reinterpreting the algebraic operations in geometrical context, 
and although their interpretation differed with respect to dimensionality, they 
both rejected a simple identification of number and continuous magnitude. Des
cartes' procedure for translating a problem into an equation (Rules 16-21) cor
responded to Viete's Zetetics; his geometrical interpretation of the arithmetical 
operations and the abandoned interpretation of root extraction corresponded to 
geometrical exegetics that Viete had worked out in his treatises on plane and 
solid geometrical constructions. We will see (Section 20.2) that in the final form 
of Descartes' geometrical doctrine (as expressed in the Geometry) the structural 
analogy with Viete's tripartite analysis (Zetetics, Poristics, and Exegetics) was 
even more marked. 

18.5 Obstacles in the program of the Rules 

The We do not know how far Descartes had elaborated the program of the Rules 
significance of before he abandoned it, but it seems likely that he proceeded to some extent in 

non-plane the direction suggested by the text we have. I surmise that in doing so he was 
constructions confronted with the question how the mind could perform operations like root 

extraction, and in general the solution of equations, with appropriate clarity 
and distinctness. Here arithmetic gave no guidance; numerical procedures only 
provided approximations. Geometry, however, did provide methods, namely, 
constructions, and Descartes had realized this; when he wrote that the "merest 
beginner" could deal with the transformation of areas,14 he implicitly referred 
to a Euclidean construction. Moreover, geometrical constructions matched Des
cartes' conception of the imagination, because they operated upon line segments 
in the two-dimensional plane. But the classical means of construction, straight 
lines and circles, were known to be insufficient for general mean proportionals, 
and a fortiori for the general solution of equations. Thus the argument under
lying the Rules led, naturally and cogently, to the geometrical question: how 

14ef. Note 8. 
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to construct beyond the power of straight lines and circles? For Descartes, fol
lowing this line of argument, the question, already central in the early modern 
tradition of geometrical problem solving, now acquired an additional philosoph
ical significance: it appeared that a general set of rules of reasoning based on 
geometry as paradigm science of magnitude, required a convincing canon for 
constructions beyond straight lines and circles. 

We have seen in the previous chapter that Descartes had achieved an im- Crucial issues 
portant result in solving non-plane problems: his general construction of solid in higher-order 
problems by the intersection of a parabola and a circle. But the realization of construction 
the significance of higher-order construction would make him the more aware 
that his procedure for solid problems, however advanced with respect to the 
then available methods in geometry, left a principal methodological question 
unanswered. He still lacked two essential ingredients for extending his result 
to a general method for constructing all problems that could be reduced to an 
equation. In the first place there was no argument, apart from classical author-
ity, why construction with parabola and circle could pass the stern criteria of 
clarity and distinctness that Descartes required. And secondly it was not at all 
obvious how one should proceed for higher-order equations, that is, for the prob-
lems that did not belong to Pappus' class of solid problems and that yet should 
legitimately belong to geometry. Which curves should be used for their con-
struction? Not the conics because they were not potent enough to serve beyond 
solid problems. Nor the quadratrix, the spiral, or the like, because Descartes 
kept to his opinion that these curves were to be rejected from geometry.15 What 
was needed was an effective demarcation between acceptable and unacceptable 
curves. Descartes' remarks about "an indirect and reverse movement of the 
imagination" involved in root extraction suggest that he would try to link the 
acceptability of constructions to the motions involved in their execution, that 
is, to the tracing of the constructing curves. But the Rules contain no argu-
ments on this issue; in 1628 Descartes left the questions about the legitimacy of 
higher-order constructions open. Indeed, it appears that their difficulty formed 
the main obstacle in the program for the Rules and thereby the principal reason 
for Descartes not to pursue his project. A few years later, however, the Pappus 
problem provided the occasion for Descartes to take up these questions again 
and at that time (as we will see in the next chapter) he came further.16 

Especially in their incompleteness the Rules show how strongly Descartes' Interpretation 
philosophical concerns influenced the development of his mathematics. It was of exactness 
precisely his philosophical program, with its definite aims of clarity, method, 
and completeness, that made him realize the lacunae both in his mathemati-
cal techniques and in his understanding of the interrelation between algebra, 

15Cf. Descartes' letter to Mersenne of 13-XI-1629, [Descartes 1964-1974] vol. 1 pp. 69-75, 
in particular pp. 70-71. 

16 A similar explanation of the obstacle which prevented Descartes from finishing the Rules 
was proposed by Schuster, cf. [Schuster 1980], pp. 78-79. 
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geometrical problem solving, and problem solving in general. One of these la
cunae concerned the interpretation of geometrical exactness: how to construct 
beyond the power of straight lines, circles, and conic sections. His theory of 
the imagination provided the criteria that such operations had to satisfy: they 
were to be performed by the imagination, through direct or indirect movements 
in a two-dimensional space, in such a way that the mind can gain certain and 
indubitable cognition of them. 17 

By 1628 Descartes' view was that constructions in geometry should be per
formed by means of curves. The philosophical ideas of the Rules, in particular 
the "movement of the imagination" involved in higher-order algebraic opera
tions, suggested the importance of the motions by which these curves could be 
generated; these motions were to be submitted to the test of mental clarity 
that would demarcate between acceptable and non-acceptable curves. Hence
forth the acceptability of tracing motions was the key element of Descartes' 
interpretation of geometrical exactness. 

Thus the Rules illustrate a strong interaction between Descartes' ideas in 
philosophy and those in mathematics. The 1620s, with the Rules as culmina
tion, may have been the period in the development of Descartes' thought during 
which this interaction was strongest. In Descartes' later formulation of rules for 
the guidance of the mind in his Discourse, 18 the analogy with the mathematical 
method is much less strict than in the Rules. It may well be that in working 
out the answer to the questions that were left unanswered in the Rules, Des
cartes realized that such a strict analogy was untenable and that the doctrine 
of geometrical construction was less easily generalized to serve general philo
sophical problem solving than he had hoped earlier. Thus we may date in the 
late 1620s the beginning of a gradual separation of the ways of Descartes the 
mathematician and Descartes the philosopher. 

17 Cf. Rule 2, [Descartes RulesJ p. 362: "Circa ilia tantum objecta oportet versari, ad quorum 
certam et indubitatam cognitionem nostra ingenia videntur sufficere." ("We should attend 
only to those objects of which our minds seem capable of having certain and indubitable 
cognition" [Descartes 1985-1991J vol. 1 p. 10. 

18 [Descartes 1637bJ. 



Chapter 19 

Descartes' first studies of 
Pappus' problem (early 
1632) 

19.1 Golius' challenge 

Sometime in late 1631 the Dutch mathematician and philologist Jacob Van Texts 
Gool (Golius) suggested to Descartes that he should try his new method in 
solving the problem, mentioned by Pappus, of the locus to three, four, or more 
lines. This is the problem that, through Descartes' treatment of it in the Ge
ometry, has become famous as "Pappus' problem." The texts of two lettersl 
of Descartes to Golius about the problem have survived. From the one, writ-
ten January 1632, it appears that he had sent Golius an "ecrit" (manuscript) 
containing his solution of the problem, and that he hoped to receive comments. 
The cerit itself is lost, but Descartes' first letter contained an addition to it. 
In the second letter, dated February 2, 1632, Descartes merely expressed his 
gratitude for Golius' "favorable judgment" upon his solution of the problem. 

As will become clear in the next section, it is probable that Descartes 
achieved most of his results about the problem in early 1632. In the Geom
etry he very effectively used these results to show the technical power of his 
new method in solving a difficult geometrical problem of great classical stand
ing. But the confrontation with Pappus' problem gave Descartes more than just 
an occasion to develop his new mathematical techniques and convince himself of 
their power. The letters of 1632, together with the passages on Pappus' problem 
in the Geometry, strongly suggest that Golius' challenge gave him the ideas by 
which he could overcome the obstacles blocking his progress at the time'he left 
the Rules unfinished, and that enabled him to achieve a complete doctrine of 

1 Descartes to Colius, January 1632, [Descartes 1964-1974] vol. 1 pp, 232-236; Descartes 
to Colius, 2 February 1632, ibid. pp. 236-242, 
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geometrical construction. 

A In Chapter 23 I give a detailed analysis of Descartes' treatment of Pap-
reconstruction pus' problem in the Geometry. In the present chapter I discuss some results 

about special cases of Pappus' problem, which, I conjecture, Descartes found in 
early 1632. I also suggest how these results could have given him the principal 
ideas of his later doctrine of construction. My conjectures2 are based on indi
rect evidence mostly from technical aspects of Descartes' published solution of 
the problem. These technical aspects will be dealt with in Chapter 23, so for 
some of the statements in the present chapter the evidence will be presented 
later. Moreover, I discuss the content of the addition to Descartes' letter in 
connection with the question of the demarcation of geometry in Chapter 24 
(Sections 24.5 and 24.6). I adopt this fragmented presentation because other
wise either the chronology would be broken, or much technical material would 
have to be explained here, which is more naturally dealt with in the chapters 
about the Geometry. 

19.2 Pappus' problem 

The problem Pappus' problem was a locus problem. That is, it required the determination 
of a curve all of whose points shared a certain given property. Pappus mentioned 
the problem in his Collection noting that mathematicians at his time had not 
achieved a full solution. 

The problem is as follows: 3 

Problem 19.1 (Pappus' problem)4 
Given n stmight lines Li in the plane (see Figure 19.1), n angles (}i, and a line 
segment a. For any point P in the plane, the oblique distances di to the lines Li 
are defined as the (positive) lengths of segments that are dmwn from P toward 
Li making the angle (}i with L i . It is required to find the locus of points P for 
which a certain mtio, involving the di and depending on the number of lines, is 
equal to a given constant mtio {j. The relevant mtios are: 

For 3 lines: di d2d3 (19.1 ) 

For 4 lines: d1d2 d3d4 (19.2) 

For 5 lines: d1d2d3 ad4d5 (19.3) 

For 6 lines: d1d2d3 d4d5dij (19.4) 

In general for an even 

2In [Bos 1992] I have elaborated these conjectures in more detail than I will present them 
here or in the subsequent chapters. 

31 use modern notation here to represent the problem; Descartes (and of course Pappus) 
did not use indices and expressed the coefficients explicitly with respect to a figure. In his 
formulation Descartes certainly meant the generality which modern notation can express. 

4 [Pappus Collection] pp. 507-510; cf. [Pappus 1876-1878] vol. 2, pp. 676-681 and 
[Pappus 1986] vol. 1 pp. 118-123. 
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Figure 19.1: Pappus' problem 

number 2k of lines: 

and for an uneven 

number 2k + 1: 

(19.5) 

(19.6) 

I call the loci of Pappus' problem "Pappus curves" or "Pappus loci," and spe
cial instances of Pappus' problem "Pappus problems," if necessary indicating 
the number of given lines ("five-line Pappus problem," "Pappus problem in k 
lines").5 

In the Rules Descartes had explained that the first step in solving a problem Deriving the 
was to derive its equation (Rules 19-21, cf. Section 18.2), which in the case of a equations 
locus problem would involve two unknowns. Doubtlessly, then, his first action in 
solving the problem presented by Colius was to try to derive such equations. In 
the Geometry Descartes described the general procedure of deriving the equa-
tions; it was as follows (see Section 23.2 for a more detailed discussion):6 

Analysis 19.2 (Pappus' problem)7 
Given and required: see Problem 19.1. 

5Note that in Pappus' presentation the three-line locus is actually a four-line locus in the 
special case that two lines coincide. In analogy with the five-, seven-, etc., line loci one would 
expect the ratio dld2 : ad3' 

6The remarks in Note 3 apply also here. 
7[Descartes 1637] pp. 31G--314, 323 sqq .. 
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Analysis: 
1. Assume a coordinate system (see Figure 19.1) with its origin at 
the intersection of L1 and one of the other lines (L3 in the figure), 
its X-axis along L1 and its ordinate angle equal to (it; with respect 
to this system d1 = y. 
2. By employing the similarity of the relevant triangles, for any point 
P with coordinates x and y, the corresponding di can be written as 

(19.7) 

in which the coefficients O:i, {3i and "Ii are constant ratios expressed 
in terms of appropriate constant segments along the Li determined 
by the given position of these lines and the given angles (Ji; hence, 
the O:i, {3i, and "Ii are known. 
3. The constancy of the given ratio 8 can now be expressed as an 
equation: 

Y(O:2X + {32Y + "(2)'" = (19.8) 

= 8(a) (O:IX + {3IY + "Iz)(O:H1 X + {31+1Y + "IHI}'" 

(l = k + 1 if there are 2k lines, l = k + 2 if there are 2k + 1). The 
factor a on the right-hand side only occurs if the number of lines is 
uneven; 8 is the given constant value of the ratio. 

The techniques of this derivation are straightforward enough to assume that 
Descartes achieved it as early as in 1632. This supposition is corroborated by 
the fact that Descartes explicitly referred to equations in his letter to Golius.8 

Moreover, the classification he undertook in that letter (cf. Section 24.5) suggests 
that he had seen the general relation between the degree of the equation and 
the number of given lines. This relation follows immediately from the analysis 
sketched above: if the number of lines is increased by two, then the degree is 
increased by one. 

Special cases We maya fortiori assume that in 1632 Descartes was able to derive the 

The five-line 
problem 

equations in special cases of the problem arising for simple regular configurations 
of the given lines. It seems likely that he studied such special cases, both because 
that is a sensible strategy and because in the Geometry one such special case 
was extensively discussed (cf. Section 23.4). Descartes called it the simplest case 
in five lines; it featured four parallel equidistant lines and one perpendicular. 
Analogous configurations of two or three parallel lines and one perpendicular 
will also appear in the sequel of my argument. 

19.3 Descartes' earliest solution of the five-line 
problem reconstructed 

In the letter to Golius Descartes stated explicitly that all Pappus curves could 

8[Descartes 1964-1974] vol. 1 p. 234. 
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Figure 19.2: Pappus' problem in five lines 

be traced by certain well-regulated motions.9 What results could have inspired 
this statement? Neither in the letter nor in the Geometry did Descartes provide 
an explicit method for tracing all Pappus curves by motions. As we will see, 
the statement that Pappus curves (or, in general, algebraic curves) can be so 
traced recurs in the Geometry, but the argument given there was not directly 
tied to Pappus' problem. I conjecture that Descartes came to the statement on 
the basis of a solution, found in 1632, of the Pappus problem with respect to 
four parallel and one perpendicular lines. The problem was as follows: 

Problem 19.3 (Pappus' problem in five lines)lO 
Given (see Figure 19.2) four parallel, equidistant lines L 1,···, L4 (for easy refer
ence assumed to be vertical and with distance a), and one line L5 perpendicular 
to them. It is required to find the locus of points whose perpendicular distances 
di to Li satisfy 

(19.9) 

For reasons to be explained more fully in Chapter 23 below,l1 I conjecture A motion 
that in 1632 Descartes argued as follows: Let P be a point on the locus and tracing the 
consider the line 0 PQ with Q on L3. Let R be the intersection of L3 and the curve 

9Cf. Note 16 
lO[Descartes 1637] pp. 335-338. 
llCf. also my article [Bos 1992]. 
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line through P parallel to L5 . If we call QR = z, we have 

Moreover, the condition of the problem implies 

or 
d5 : d1 = d2d4 : ad3 • 

Combining Equations 19.10 and 19.12 yields 

(19.10) 

(19.11) 

(19.12) 

(19.13) 

Now z is equal to the distance PS of P to a horizontal line LQ through Q. 
Calling this distance dQ, we have 

(19.14) 

which means that the point P lies on a three-line Pappus locus12 with respect 
to the three lines L2, L4, and LQ. Such a three-line locus is (as we will see) a 
parabola with axis along L3 . If now OQ is conceived as a ruler turning around 
o and forcing Q to move along L3, the line LQ moves up or down and, because 
L2, and L4 are verticals, one may conceive the system of three lines LQ, L2 and 
L4 as moving up and down with Q. Hence so does the three-line locus: the 
parabola moves up and down together with LQ, and throughout the motion the 
point P on the Pappus curve is at the intersection of the ruler and the parabola. 

As noted, the argument supposes that the three-line locus in question is 
a parabola. We may well assume that Descartes studied the relevant three
line loci, either in their own right (because he may naturally have started with 
studying simple special cases) or once he had seen that he could reduce the 
five-line locus to a three-line one; The relevant three-line loci were those with 
two parallel lines L1 and L2 and one perpendicular L3. Descartes would realize 
that there were essentially two types of such three-line loci, namely: 

type 1: 

type 2: 

d1d2 = cd3 , 

d1d3 = cd2 • 

(19.15) 

(19.16) 

Moreover, he could easily find (with or without analytic methods) that the first 
type (see Figure 19.3) yields a parabola through the intersections of L3 with L1 
and L 2 ; its axis is the vertical equally distant from Ll and L 2 . Similarly, the 
second type yields a rectangular hyperbola through the intersection of L3 with 
L2; L1 is its vertical asymptote and its horizontal asymptote lies at distance c 
from L 3 . In the case of Equation 19.14 the three-line problem is of the first type 
with distance between L1 and L2 equal to 2a and c = a. 
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The The arguments about the five-line locus sketched above imply the procedure 
construction for tracing the locus, which Descartes explained in the Geometry: 

by tracing 
Construction 19.4 (Five-line locus - Descartes)13 
Given and required: see Problem 19.3. 

Construction: 
1. Consider (see Figure 19.4) a parabola UVU with vertical axis 
along L3 and latus rectum equal to a (which means that its equa
tion in rectangular coordinates u and v as indicated in the figure is 
au = v2 ). The parabola can move up and down while keeping its 
axis along L 3 . Moving with it is a point Q on the axis inside the 
parabola with distance a to the vertex V. 
2. Consider also a straight line OQ that can turn around the inter
section 0 of L1 and L5 while Q moves along L3. 
3. During the combined motion the points P of intersection of the 
parabola and the straight line move over the plane; they trace a new 
curve TOPT TPT (consisting of two branches); this curve is the 
required five-line locus. 
[Proof: During the process the coordinates u and v satisfy au = v2 . 

Now a + v = d4 and a - v = d2 from which it follows that v2 = 
a2 - d2d4 (1). Moreover, because the triangles PRQ and OWP 
along OQ are similar and QR = QV - V R = a - u, it follows that 
(a - u) : d3 = d5 : d1 , whence au = a2 - ad3 d5 /d1 (2). Equat
ing the expressions (1) and (2) for au and v2 , respectively, yields 
ad3 d5 = d1d2d4 .] 

As mentioned, this tracing procedure is precisely the one Descartes presented in 
the Geometry as the procedure to trace the solution of the special case of Pappus' 
problem in five lines. The curve played a crucial role in Descartes' theory of 
geometrical construction (cf. Section 26.3); it is a third-degree curve which later 
acquired the name "Cartesian parabola." Descartes himself gave no explanation 
at all of how he had found the tracing procedure. I consider the appearance 
of precisely this tracing procedure in the Geometry as the main evidence for 
my reconstruction of Descartes' endeavors concerning Pappus' problem in early 
1632. 

19.4 The "turning ruler and moving curve" pro
cedure 

The procedure The method of curve tracing used in the construction above is an instance of 
what henceforth I call the "turning ruler and moving curve" procedure. Special 
cases of this procedure occur at several places in the Geometry. All these cases 

12In the sense of the analogon to the fifth-, seventh-, etc., line case; cf. Note 5. 
13[Descartes 1637] p. 337. 
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Figure 19.5: The "turning ruler and moving curve" procedure 

involve a curve C moving in one fixed direction and a ruler turning around a 
fixed point 0 (see Figure 19.5). The two motions are interrelated via a point 
Q whose position with respect to C is fixed, which means that Q partakes in 
the rectilinear motion of C; the ruler connects 0 with Q. During the combined 
motion the point or points P of intersection of the ruler and the curve trace a 
new curve G' (possibly consisting of several branches). 

There is another instance of the turning ruler and moving curve procedure A four-line 
in the Geometry that, although Descartes did not mention this, very probably problem 
had a direct relation with a Pappus problem. This is the case in which the 
moving curve is a straight line. Descartes showed14 that the resulting curve is 
a hyperbola. In the light of my reconstruction of the solution of the five-line 
locus, it is of interest to note that also in this case the procedure may have 
arisen in the solution of a Pappus problem, namely, the problem for four lines, 
three of which are equidistant and parallel, and the fourth perpendicular: 

Problem 19.5 (A Pappus problem in four lines) 
Given three equidistant lines L 1, L 2 , L3 , one line Lo perpendicular to these, and 
a mtio 8 (cf. Figure 19.6). It is required to determine the curve whose points P 
satisfy 

(19.17) 

14[Descartes 1637] pp. 319-322. 
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Figure 19.6: A Pappus problem in four lines 

Here an argument analogous to the one in the case of the special five-line locus 
proceeds as follows: The point 0 can be chosen on either L2 or L3 , assume it is 
on L2 , Q must then be on L 1• Setting z = QR = PS we have z : d1 = do : d2 ; 

eliminating d1 and d2 leads to 
(19.18) 

This is, one could say, a two-line locus, with z equal to the distance dQ of P to a 
line LQ through Q parallel to Lo. In other words, Equation 19.18 implies that P 
is on the locus of points whose distances from LQ and Ll have a constant ratio 
D. This locus is a straight line intersecting L3 in T, T being at the same height 
as Q. This straight line moves up and down with Q. Thus if U is its intersection 
with L1, the distance QU is constant and so is the angle at U. The four-line 
locus is therefore traced by a turning ruler and moving curve procedure with 
OQ as the ruler and the straight line UT as moving curve. This is precisely the 
generation of an hyperbola by the turning ruler and moving curve procedure 
that Descartes gave in the Geometry. 15 

The two solutions reconstructed above, whose end results occurred in the 
Geometry as curve tracing procedures, essentially consist in reducing the given 
Pappus problem to a related Pappus problem in a smaller number of lines. The 
latter problem is recognized by considering the proportionalities that arise when 
a line is drawn from a point on the locus to an intersection of the transversal 

15See Note 14. 
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with one of the other given lines. The turning ruler and moving curve procedure 
is the direct kinematic interpretation of that reduction. 

It should be added that, although Descartes probably used algebraic analysis 
from the beginning in attempting to solve Pappus' problem, the reconstructed 
arguments in the solutions above do not depend on the knowledge of the equa
tions of the curves. They can be achieved entirely without the help of algebra. 
Moreover, I have not been able to devise a purely algebraic line of arguments 
leading in a natural way from the problems to the turning ruler and moving 
curve procedures for tracing the solution curves. 

19.5 The significance of Pappus' problem 

As I have argued, there is good reason to assume that Descartes solved Classification 
some special four- and five-line loci by the reduction explained above and its and 
kinematic interpretation. I suggest that this combination of a reduction of the demarcation 
problem to one of a simpler type, and the kinematic method to generate intri-
cate curves from simpler ones, has been decisive in the formation of Descartes' 
ideas on geometry, on its proper demarcation, and on its legitimate methods of 
construction. 

Here the letter to Golius, with the addition to the "ecrit," provides important 
evidence. I discuss that text in more detail in Section 24.1, suffice it here to 
note that it concerned Pappus loci and the classification of curves. Descartes 
wrote that all Pappus loci could be traced by "one single continuous motion 
completely determined by a number of simple relations:" 16 he claimed that 
curves which could be traced in this way were acceptable in geometry, whereas 
curves as the spiral and the quadratrix could not be traced in this way and were 
therefore excluded; and he stated that the Pappus curves could be classified 
according to their complexity, which depended on the number of given lines. 
These statements are readily explained on the basis of my conjecture on the 
nature of Descartes' early solution of Pappus' problem. The turning ruler and 
moving curve procedure would suggest the idea of a hierarchy of curves, higher
order loci being generated iteratively by the motion of lower-order ones. It 
is likely that in early 1632 Descartes knew the equations of the Pappus loci, 
and noted the parallelism between the degree of the equation, the number of 
given lines, and the complexity of the tracing motions. The freedom of choice 
in the position of the given lines and his understanding of the formation of the 
equations of the resulting loci would convince Descartes of the great extent of the 
class of Pappus curves; quite possibly he could have formed the idea (actually 
formulated in the Geometryl7) that any curve equation could occur among the 
equations for Pappus curves. 18 Thus I conjecture that the confrontation with 
Pappus' problem in early 1632 suggested to Descartes a number of crucial ideas 

l6[Descartes 1964-1974] vol. 1 p. 233: " ... describi possunt unico motu continuo, et omni 
ex parte determinato ab aliquot simplicibus relationibus." 

l7[Descartes 1637] p. 308. 
l8The idea is incorrect; d. Section 24.5, Note 36. 
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about geometry, namely: (1) that curves should be accepted in geometry in 
so far as they were traced by geometrically legitimate motions; (2) that these 
legitimately traced curves were precisely the Pappus curves; (3) that Pappus 
curves were precisely the ones that admitted polynomial equations; and (4) 
that therefore the totality of geometrically acceptable curves could be classified 
equivalently by the complexity of the tracing motion, the degree of the equation, 
and the number of given lines in the pertaining Pappus problem. In Section 24.6 
I discuss how these ideas relate to the ones expressed later in the Geometry. 

I conjecture that Descartes arrived at these ideas by optimistic generalization 
of the tracing methods he found for the simple four- and five-line loci. I consider 
it very unlikely that Descartes actually found a general method for tracing 
Pappus loci. The reason is that it seems very difficult to find such a method19 

and, perhaps more important, that no such method occurs in the Geometry, 
where it would, as we will see, have been very functional. 

In the years between 1632 and 1637 Descartes probably realized that he 
could not find a general method for tracing Pappus curves, and as a result he 
downplayed the connection between curve tracing and Pappus' problem when 
he came to write the Geometry. However, he retained the conviction that ac
ceptable curves should be traceable by definite acceptable motions. We will see 
below (Section 24.1) how he argued for this conviction in the Geometry. 

My reconstruction above of Descartes' findings in early 1632 may also uncover 
something of the thrill that he must have experienced while dealing with Pappus' 
problem. No doubt the first results seemed very exciting to him: Pappus loci 
had algebraic equations and, because of the variability of the data, any algebraic 
equation would correspond to some Pappus locus. It seemed also that all Pappus 
curves were traceable by coordinated motions. Thus the class of traceable, 
acceptable curves turned out to be large, but at the same time classifiable both 
in terms of the special nature of the tracing motions and in terms of their 
equations. Curve tracing provided a sound reason for abandoning a restriction 
to circles and straight lines and extending the arsenal of constructing curves far 
beyond the conic sections and the special curves the ancients used in solving 
solid problems. At the same time the curves that Descartes had rejected from 
the very beginning, the spiral and the quadratrix, were indeed excluded; they 
solved no Pappus problem; moreover, they were traced by motions whose mutual 
relation was indeterminate, and that was exactly what made their generation 
different from that of the Pappus curves. 

Descartes' later realization that the tracing methods for the simple four- and 
five-line loci could not effectively be generalized to arbitrary Pappus problems 
must have been a considerable disappointment. A failure to establish tracing 
methods for all Pappus curves meant that an essential element of Descartes' 
theory of geometry lacked direct proof, namely, the assertion that all algebraic 

19The first proof that any algebraic curve can be traced by a linkage was given by Kempe 
more than two centuries after Descartes ([Kempe 1876]). 
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curves were traceable by acceptable continuous motion and that conversely all 
curves so traceable were algebraic. In Chapter 24 I discuss how Descartes later 
dealt with this defect. 

Pappus' problem was extensively treated in the Geometry, but there it served Catalyst 
primarily as a didactic device to explain Descartes' new methods, with the addi-
tional advantage of classical appeal and prestige. I claim that in the development 
of Descartes' thinking on geometry the problem was much more than an appeal-
ing example. It was the crucial catalyst; it provided him, in 1632, with a new 
ordered vision of the realm of geometry and it shaped his convictions about the 
structure and the proper methods of geometry. 

At the time Descartes wrote the Rules, the analytical part of the program 
for geometry was clear; problems should be translated into algebra and reduced 
to equations. But the synthetical part, how to arrive from the equation to the 
construction, was far from transparent, while the philosophical setting, with its 
emphasis on completeness of the method, only made the matter more urgent. 
Construction should be by curves. But the acceptable curves should be con
vincingly demarcated from the unacceptable ones, they should be ordered as to 
simplicity and there should be enough of them to construct all problems. The 
study of Pappus' problem in 1632 provided the ingredients for the answers to 
these questions: Curve tracing as exemplified by the turning ruler and moving 
curve procedure was to be the criterion for acceptability; it excluded curves like 
the spiral and the quadratrix. Acceptable curves were precisely those that had 
algebraic equations; the degree of the equations corresponded to the simplicity 
of the tracing motion. The iteration of the turning ruler and moving curve 
procedure ensured the availability of sufficient curves to solve all problems. We 
will see that in the Geometry Descartes indeed suggested using the solution 
curve of the five-line locus as means to construct the next class of problems 
beyond the solid ones (cf. Section 26.3); no doubt the choice was inspired by 
the fact that this curve was generated, through the turning ruler and moving 
curve procedure, from the parabola, which itself served for the construction of 
solid problems. 

Thus the solution of Pappus' problem, with its suggestive correspondence A breakthrough 
between the algebraic and the geometrical properties of the acceptable curves, 
held great promise for the completion of the synthetic part of the program. Until 
c. 1630 the programmatic side of Descartes' ideas was still largely in keeping 
with the classical ideas on construction and the more recent ones on analysis 
by means of algebra. The episode of Pappus' problem provided the necessary 
ingredients for a breakthrough. In elaborating these Descartes developed truly 
independent and original ideas. The result was Descartes' mature doctrine of 
geometry, which we find in the Geometry. 



Chapter 20 

The Geometry, 
introduction and survey 

20.1 Descartes' geometrical ideas c. 1619-1637 
- a recapitulation 

The documents from c. 1619 discussed in Chapter 16 make clear that from c. 1619 
early on Descartes viewed the scientific enterprise with a strong programmatic 
interest. His program encompassed the whole of science, which he saw primarily 
as a problem solving endeavor, with arithmetical and geometrical problems as 
paradigms. Thus he formulated his programmatic ideas (in the letter to Beeck-
man) by giving a classification of problems concerning continuous and discrete 
quantity and by defining the nature of the solutions to be achieved in each class. 
We may consider the program as Descartes' earliest interpretation of what it 
meant to solve scientific problems exactly. The starting point of his interpre-
tation of exactness was classical Greek geometry; geometrical problem solving 
meant construction by the intersection of curves and his classification of prob-
lems can be seen as a modification of Pappus'. He singled out the manner of 
tracing by motion as the primary criterion for the acceptability of curves; reg-
ular motions such as those provided by the "new compasses" (cf. Section 16.4) 
were acceptable; other motions, such as the ones generating the quadratrix or 
the linea proportionum, were, if not rejectable, at least of lower status. 

Although by 1620 Descartes had some algebraic interests and even endeavored c. 1625 
to find new means of solving cubic equations, algebra had no central place in 
his conception of science or even of mathematics. In 1625 this situation had 
changed. By means of algebraic techniques he had achieved a phenomenal result: 
the general solution of third- and fourth-degree equations by the intersection 
of a parabola and a circle. Probably this result, rather than the writings of 
contemporary practitioners of specious algebra, convinced him of the importance 

H. J. M. Bos, Redefining Geometrical Exactness
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of algebra as analytical method: to reduce problems to equations. As to the 
synthesis, i.e., the solution of geometrical problems, he kept to the classical 
conception of construction by the intersection of curves. 

c. 1628 The Rules of c. 1628 mark the stage in the development of Descartes' thought 
in which his mathematical and philosophical interests were linked most closely. 
He took up his programmatic ideas of c. 1619, included algebra as principal 
means of analysis, and attempted to work out the program with special concern 
for method, completeness, and exactness. He realized that a serious enquiry 
into the applicability of algebra to general fields of knowledge required an inter
pretation of the algebraic operations independently of the number concept and 
valid for magnitudes in general. Taking extension as the prototype of continuous 
magnitude, he worked out such an interpretation of the primary arithmetical 
operations for geometrical magnitudes (in particular line segments and areas). 
His interpretation was different from the one accepted in the Vietean school. For 
the primary arithmetical operations the Euclidean constructions with straight 
lines and circles sufficed, but for general root extraction and the construction of 
roots of equations other means were necessary. In the Rules Descartes did not 
proceed to the interpretation of these higher algebraic operations; he broke off 
the project precisely at the point where he was forced to discuss these. 

The project of the Rules, then, confronted Descartes with the problem of 
construction beyond the usual plane means. For the first step, third- and fourth
degree equations, he had a construction by the intersection of a parabola and 
a circle; but because equations could have any degree, he evidently needed a 
more general procedure, not impeded by restrictions on the degree. If the circle 
and parabola construction was to be incorporated in it, that general procedure 
should involve construction by the intersection of curves, and this raised the 
question of which curves beyond the parabola should be chosen for constructions. 
Apparently by 1628 Descartes had yet no answer to that question. 

c. 1632 Writing the Rules had led Descartes in a natural way to questions about 
curves, their acceptability for use in constructions, and their classification. I 
have argued above that the study of Pappus' problem in 1632 supplied new 
and effective ideas on these matters. The tracing methods that Descartes found 
for some Pappus curves linked up with his earlier ideas about acceptable and 
non-acceptable curve tracing. Moreover, the Pappus problem, the equations 
it gave rise to and the tracing procedures he found, suggested a hierarchy of 
curves in which the degree of the equation was a measure of the complexity of 
the tracing motion and thereby of the complexity (or simplicity) of the curve. 
Descartes found one curve in particular, the Cartesian parabola, which, because 
the parabola was employed in its tracing and because he considered its tracing 
particularly simple, was the obvious candidate for serving as the constructing 
curve for the class of problems after the solid ones. In sum, the study of Pappus' 
problem provided Descartes with the last missing ingredients for the interpre
tation of exactness of geometrical constructions, which he later presented in the 
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Geometry. 

20.2 The questions still open before 1637 

The Geometryl served as an illustrative essay accompanying the Discourse on Method 
the method. Descartes did not explicitly discuss the links between the method 
of the Geometry and the general rules of methodical thinking expounded in the 
Discourse. Yet, for instance, the second and third of the four rules expounded in 
Part 2 of the Discourse2 might easily be seen as exemplified by the procedures 
of analysis and synthesis, respectively, as detailed in the Geometry. 

Indeed the method of the Geometry consisted of: 

A. An analytic part, using algebra to reduce any problem to an 
appropriate equation; 

and 

B. A synthetic part, finding the appropriate construction of the 
problem on the basis of the equation. 

For both parts Descartes developed new ideas and techniques. Some of these 
he had acquired in the period before c. 1632, but a number of questions were 
still open. In the present section I use the analysis-synthesis division to survey 
and discuss the methodological questions whose final answers Descartes had to 
forge before or during the writing of the Geometry. 

The final elaboration of the analytic part of Descartes' geometrical method Analysis: from 
posed mainly technical questions. Translating problems into algebraic equations problem to 
involved recognizing geometrical relations as algebraic ones. That is, it implied equation 
the question whether algebraic operations as addition and multiplication could 
be interpreted so as to apply to geometrical objects such as line segments. Here 
Descartes could start from the interpretation of the primary arithmetical opera-
tions that he had elaborated in the Rules (cf. Section 18.2). The interpretation 
presented in the Geometry differed from the earlier one in that the dimensional 
aspect was removed and that it included the algebraic operations as well. I 
discuss it in Chapter 21. 

Descartes' doctrine of construction stipulated (see below) that the construct- Analysis: 

1 For valuable further information and alternative opinions on Descartes' Geometry I preparing the 
refer (without attempt at completeness) to: [Boyer 1959]' [CostabeI1969], [Forbes 1977], equations 
[Freguglia 1981]' [Galuzzi 1985], [Giusti 1990], [Grosholz 1991], [Israel 1997], [ltard 1956], 
[Jullien 1996], [Mancosu 1992] pp. 65-91, [Lachterman 1989] pp. 124-205, [MoHand 1976], 
and [MoHand 1991]. 

2[Descartes 1637b] pp. 18-19; cf. the translation in [Descartes 1985--1991] vol. 1, p. 120: 
"The second, to divide each of the difficulties I examined into as many parts as possible and 
as may be required in order to resolve them better. The third, to direct my thoughts in an 
orderly manner, by beginning with the simplest and most easily known objects in order to 
ascend little by little, step by step, to knowledge of the most complex, and by supposing some 
order even among the objects that have no natural order of precedence." Cf. also Note 7 of 
Chapter 20. 
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ing curves should be simplest possible in the sense of having lowest possible de
gree. To achieve this, the problem itself should be reduced to an algebraic equa
tion (in one unknown) of lowest possible degree. Moreover, Descartes' standard 
constructions presupposed the problems to be reduced to equations of certain 
standard forms. He therefore needed algebraic techniques to ascertain whether 
equations in one unknown could be reduced to equations of lower degree, and 
to transform such equations into certain standard forms. Several of these tech
niques had to be elaborated anew for the completion of the analytic part of his 
method. Descartes was probably aware of the need for such techniques when he 
composed the Rules, but his terminology there3 suggests that he had not yet 
fully appreciated the complexity of the matter. In the Geometry he did provide 
the necessary algebraic techniques; they are discussed in Chapter 27 below. 

The analytic part of the method translated a problem into an equation, but 
an equation was not a solution. Mathematicians of the sixteenth century had 
developed explicit formulas, or algorithms, such as those of Cardano4 and Fer
rari,5 for calculating the roots of third- and fourth-degree equations. But in 
the so-called "casus irreducibilis" the interpretation of these formulas was still 
dubious because they involved square roots of negative quantities. No general 
formulas were available for the roots of equations of degrees higher than four; 
the search for these seems to have started late in the seventeenth century (and 
stopped in the early nineteenth with Abel's proof that they do not exist). More
over, even if formulas for the roots were available and interpretable, these, in 
general, did not provide geometrical constructions. For example (as mentioned 
earlier in connection with Viete, Section 8.2), the problem of two mean propor
tionals could readily be reduced to an equation, namely, x 3 = a2b; this equation 
had an explicit algebraic solution, x = M, but the Cubic root sign did not 
give any guidance about how such a root could be geometrically constructed. 
Algebraically the problem might be considered solved by the explicit formula, 
geometrically it was not. 

The fact that algebra does not provide geometrical constructions merits em
phasis because too often Descartes' contribution to geometry is presented as 
the brilliant removal of cumbersome geometrical procedures by simply applying 
algebra. 6 In fact, algebra could only do half of the business, it could provide 
the analysis and reduce problems to equations. The other half of the job, the 
synthesis, the geometrical construction of the roots of the equations, remained 
to be done. 

The synthetic part of Descartes' program presented the most profound ques-

3In particular the conception of reduction as a kind of division, cf. Section 18.3. 
4See Note 91 of Chapter 4. 
5See Note 18 of Chapter 10. 
6Thus Kline, for instance, writes: " ... Descartes solved geometric construction problems 

by first formulating them algebraically, solving the algebraic equations, and then constructing 
what the solutions called for ... " [Kline 1972] p. 317. 
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tions. They concerned the conception of geometrical construction itself, in other 
words the interpretation of constructional exactness. That interpretation re
quired a demarcation of the class of curves acceptable for use in constructions 
and a criterion to judge the simplicity of these curves. As we have seen, Descar
tes' final ideas about this matter were probably formed during or shortly after 
his investigation of Pappus' problem: acceptable curves were traced by accept
able motions; they were precisely those that had algebraic equations; they were 
simpler in as much as their degree was lower. But the precise arguments for 
this position were still lacking, while possibly an early optimistic expectation 
that the techniques for solving Pappus' problem would straightforwardly pro
vide these arguments later proved untenable. Thus Descartes had to forge new 
arguments on this matter; they are dealt with in Chapter 24 below. 

After finding and justifying the demarcation of the class of constructing Synthesis: 
curves and the criterion of simplicity, Descartes had to provide the construc- standard 
tions themselves. He divided the problems into classes defined by the degrees constructions 
of their corresponding equations. He gave (at least in principle) for each class a 
standard form of the equation and a standard construction by which any prob-
lem of that class could be constructed. But Descartes also had to decide which 
constructing curves were to be used in the standard constructions. The plane 
problems, leading to linear or quadratic equations, were easily incorporated; the 
standard constructions, by straight lines and circles, which Descartes gave for 
these problems were appropriate but not particularly new. Obviously he wished 
to incorporate his result of 1625, the construction of all third- and fourth-degree 
equations by a parabola and a circle as one of the standard constructions. That 
construction covered all solid problems. The challenging question was how to 
proceed beyond the solid problems. Here higher-order curves than the conics 
were needed. These had to be acceptable as constructing curve and simplest 
possible with respect to the class of problems they were to solve. From the 
Rules we may conclude that by 1628 Descartes did not realize the difficulty of 
this question, if indeed he was aware of it. Considerable intellectual effort was 
still needed to arrive at the doctrine of construction presented 'in the Geometry. 
In Chapters 25 and 26 I discuss this doctrine and the standard constructions. 

20.3 The structure of the Geometry 

As the presentation of Descartes' achievements in the next chapters does not Survey of 
follow the order he chose himself in composing the Geometry, it is useful to contents 
present here a schematic survey of the contents of the book. The survey makes 
clear how strongly the structure of the Geometry is determined by Descartes' 
program of redefining exactness in geometry and providing a complete doctrine 
of construction in accordance with his new interpretation of exactness. For 
further clarification I have presented the content of the Geometry in tabular 
form - see Table 20.l. 

The Geometry consists of three books. Book I is about geometrical analysis 
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and construction in the methodologically unproblematical case of plane prob
lems. It introduces the geometrical interpretation of the algebraic operations 
+, -, x, 7, and square root extraction, explains the full canon of problem solv
ing in the case of plane problems, and presents the general analysis of Pappus' 
problem. 

Books II and III are about higher-order problem solving; they contain Des
cartes' new interpretation of exactness of geometrical construction. This inter
pretation involves a demarcation between acceptable and non-acceptable curves 
and a criterion of simplicity. Accordingly, Book II is about curves and their 
acceptability in geometry, and Book III is about the criterion of simplicity and 
its technical implications. 

Book II opens with the explanation of the demarcation between curves that 
are acceptable in geometry and curves that are not. Then follows a full solution 
of Pappus' problem in three and four lines, and a discussion of two special cases 
of the problem in five lines. After this, Descartes returns to the acceptability 
of curves and discusses in that context the various methods of tracing curves. 
The remaining part of Book II is devoted to the use of curve equations in find
ing normals and tangents, the study of ovals, and three-dimensional geometry. 
These are important passages for their later influence on the development of 
analytic geometry and the calculus. They are, however, not closely related to 
construction and exactness, and therefore I do not discuss them in the present 
study. 

Book III deals with simplicity of problems, solutions, and curves, and gives 
Descartes' standard non-plane constructions. In order that the constructions be 
simplest possible, that is, that the degrees of the constructing curves be lowest 
possible, the equations in one unknown have to be reduced to their irreducible 
components. Moreover, Descartes' standard constructions require these equa
tions to be of certain standard forms. Consequently, Descartes provides in the 
first part of Book III an extensive algebraic study of properties and transforma
tions of equations in one unknown (among them the famous "rule of signs"). In 
the second part of Book III he presents the standard constructions for equations 
of third and fourth degree (by the intersection of a parabola and a circle) and for 
those of fifth and sixth degree (by the intersection of a Cartesian parabola and a 
circle). He ends his essay with the (overconfident) statement that it should now 
be clear how to extend the canon of construction to equations of ever higher 
degree. 

The table Table 20.1 illustrates the structure of the Geometry. 7 Descartes himself gave 
margin titles of sections, thus dividing his three books in 9, 19, and 32 sections, 
respectively. In the table I adopt a thematic subdivision of the books in fewer 
parts. This subdivision and the characterizations in Column 2 of the table (and 
the codes in Column 1) are mine. Columns 3 and 4 give the page references 
for the parts in the Geometry itself ([Descartes 1637]) and in its edition in the 
Oeuvres ([Descartes 1964-1974] vol. 6), respectively. 

71 have published the table earlier in [Bos 1990] p. 357 (p. 44 of ed. in [Bos 1993c]). 
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Book I: Plane problems Geometrie Oeuvres 
pp: vol. 6 pp: 

I-A Geometrical interpretation of the 297~300 369~372 

operations of arithmetic 

I-B Problems, equations, construction of 300~304 372~376 

plane problems 

I-C Pappus' problem; deriving the equation, 304~315 377~387 

cases in which the problem is plane 

Book II: Acceptability of curves 

II-A Acceptable curves, their classification 315~323 388~396 

II-B Pappus' problem continued, solution of 323~339 396~411 

the three- and four-line problem, plane 
and solid loci, simplest case of the 
five-line locus 

II-C Acceptability of pointwise construction 339~341 411~412 

of curves and construction by strings 

II-D Equations of curves, their use in finding 341~352 412~424 

normals 

II-E Ovals for optics 352~368 424~440 

II-F Curves on non-plane surfaces 368~369 440~441 

Book III: Simplicity of curves and 
of constructions 

III-A Acceptability of curves in constructions, 369~371 442~444 

simplicity 

III-B Equations and their roots 371~380 444~454 

III-C Reduction of equations 380~389 454~464 

III-D Construction of the roots of third- and 389~402 464~476 

fourth-degree equations, solid problems 

III-E Construction of the roots of fifth- and 402~413 476~485 

sixth-degree equations, "supersolid" 
problems 

Table 20.1: The structure of the Geometry 



Chapter 21 

Algebraic operations 
geometry 

21.1 Descartes' interpretation 

• In 

In the first two pages of the Geometry Descartes presented his method for Quadratic 
applying algebraic operations to line segments. The method was new, although operations 
it combined elements that had been extant for some time. Descartes introduced 
a. unit line segment, and defined the quadratic operations! for line segments 
by constructions in such a way that the results of the operations were again 
line segments. For addition and subtraction the obvious corresponding proce-
dures were the joining and removing of line segments. Multiplication, division, 
and square root extraction were to be performed by combining the Euclidean 
constructions of fourth and mean proportionals (Elements VI-12, 13, cf. Con-
structions 4.1 and 4.2) with the adoption of a unit. This led to the following 
definitional constructions: 

Construction-Definition 21.1 (Multiplication of line segments)2 
Given a unit length e and two line segments a and b (see Figure 21.1), a line 
segment c is constructed, equal (by definition) to the product of a and b. 

Construction: 
1. Draw two lines intersecting in 0 under any angle; mark off OE = e 
on one of the lines. 
2. Mark OA = a along the line on which OE is marked; mark 
o B = b along the other line. 
3. Draw EB and draw a line through A parallel to EB, it intersects 
the other line in C. 

1 In the sens{! of Section 6.2: addition, subtraction, multiplication, division, square root 
extraction, and the solution of quadratic equations. 

2[Descartes 1637] p. 298. 

H. J. M. Bos, Redefining Geometrical Exactness
© Springer Science+Business Media New York 2001
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c 

b 

A o L-____ ~e ____ ~ ______ ~_ 
- a -

Figure 21.1: Multiplication of line segments 

4. The product ab of a and b is now defined to be the segment 
c=OC. 

Construction-Definition 21.2 (Division of two line segments)3 
Given a unit length e and two line segments f and g (see Figure 21.2), a line 
segment h is constructed, equal (by definition) to the quotient of f and g. 

Construction: 
1. Draw two lines intersecting in 0 under any angle; mark off OE = e 
on one of the lines. 
2. Mark OG = g along the line on which OE is marked; mark 
OF = f along the other line. 
3. Draw FG and draw a line through E parallel to FG, it intersects 
the other line in H. 
4. The quotient f / g of f and g is now defined to be the line segment 
h=OH. 

Construction-Definition 21.3 (Square root of a line segment)4 
Given a unit length e and a line segment a (see Figure 21.3); a line segment b 
is constructed, equal (by definition) to the square root of a. 

3[Descartes 1637] p. 298. 
4 [Descartes 1637] p. 298. 



21.1 Descartes' interpretation 295 

G o L-__________ ~ ______ ~_ 

g 

Figure 21.2: Division of two line segments 
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A o E 
a e 

Figure 21.3: Square root of a line segment 
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Construction: 
1. Mark points A, 0, E along a line (with 0 between A and E), 
such that OE = e and OA = a. 
2. Draw a semicircle with diameter AE; draw a line through 0 
perpendicular to AE, it intersects the semicircle in B. 
3. The square root yfa of a is now defined to be the line segment 
b=OB. 

Higher-order Descartes interpreted higher-order roots as mean proportionals.5 However, he 
root extraction postponed the geometrical effectuating of higher root-order extraction, writing: 

postponed 

Line segments, 
not numbers 

I say nothing here about the cubic root, nor about the others, be
cause it will be more convenient to deal with them later.6 

This crucial sentence is usually overlooked when Descartes' interpretation of 
the algebraic operations is expounded in the secondary literature; thus the im
pression is given that at the outset of the Geometry Descartes effected, by a 
few simple constructions, a complete correspondence between algebra and ge
ometry.7 He did not and he was aware of it. Obviously, the reason for the 
postponement was that cubic or higher-order roots could not in general be con
structed by straight lines and circles. Hence, Descartes could deal with the root 
extractions only after having explained how to construct beyond the Euclidean 
means of construction. Indeed it was only in the last book of the Geometry 
that Descartes found it "convenient" to deal with cubic and higher-order roots 
(cf. Chapter 26). 

With the risk of being repetitive I stress once more (cf. Sections 6.4,8.2, and 
18.2) that in Descartes' interpretation the algebraic operations as applied in 
geometry did not concern numbers but geometrical magnitudes, namely, line 
segments. Although he did introduce a unit line segment, he did not identify 
line segments with their numerically expressed lengths. Thus he avoided the 
identification of the geometrical continuum with the numerical one, undoubt
edly because of the conceptually problematical status of irrational numbers. 
Both rational and irrational numbers did occur in the Geometry, namely, as 
factors, terms, or solutions of equations. In the majority of cases these numbers 
were rational and stood for rational scalar factors or for line segments defined 
as rational multiples of the unit.8 Occasionally Descartes discussed equations 

5[Descartes 1637J p. 298: " ... trouver une, ou deux, ou plusieurs moyennes proportionelles 
entre I'unite, et quelque autre ligne; ce qui est Ie mesme que tirer la racine quarree, ou cubique, 
etc." 

6 [Descartes 1637J p. 298: "Ie ne dis rien icy de la racine cubique, ny des autres, it cause 
que i'en parleray plus commodement cy apres." 

7 Cf. Chapter 20 Note 6. 
8It is easily seen that Descartes' use of the unit in the definition of the multiplication of 

line segments ensures that 3a, the result of joining three copies of the line segment a, is the 
same as (3e)a, the result of mUltiplying the line segment 3e with the line segment a. 
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whose coefficients or roots were irrational numbers, but these usually illustrated 
the solution of geometrical problems.9 Needless to say that there are no tran
scendental numbers in the book. 

21.2 Comparison with ear Her interpretations 

At this point it is useful to compare Descartes' approach to the use of al
gebra in geometry with some earlier interpretations of the quadratic algebraic 
operations when used outside numerical calculations. 

In classical Greek geometry (cf. Section 6.2) line segments and areas could 
be combined in manners analogous to the ways in which the primary arith
metical operations combine numbers. Thus two line segments a and b could 
be joined (analogous to addition) or the one cut off from the other (analogous 
to subtraction), they could form a rectangle with sides a and b (analogous to 
multiplication), or a ratio a : b (analogous to division in the case of factors of 
equal dimension). An area A could be "applied" to a line segment a, which 
meant finding a line segment b such that rect(a, b) = A (analogous to division 
of factors of unequal dimension); similarly an area could be made into a square, 
which meant finding a line segment c such that sq(c) = A (analogous to root 
extraction). Early modern mathematicians generally accepted this dimensional 
interpretation of the arithmetical and quadratic algebraic operations in geome
try. 

Viete (cf. Chapter 8) generalized this classical interpretation to apply for 
the letter symbols of his specious logistics. These letter symbols represented 
magnitudes of various dimensions (in analogy with line segments, areas, solids, 
but extended to abstract higher dimensions as well). Consequently, the expres
sions and equations in Viete's algebra had to be homogeneous and of integer 
dimension.lO As in the classical interpretation, the meaning of an expression 
in Viete's specious logistics did not depend on the choice of a unit, indeed the 
device of a unit line segment did not occur in Viete's algebra. 

The main and crucial difference between Descartes' interpretation (as given 
in the Geometry) and the classical and Vietean ones was that Descartes, by 
introducing a unit, removed the necessity for formulas to be homogeneous. In 
his new interpretation the formula ab + c, for line segments a, b, c, did not 
denote a non-interpretable sum of an area and a line but simply the sum of two 

9 A characteristic example was the equation x4 - 17x2 - 20x - 6 = 0, with solutions 2 ± V7 
and -2 ± y'2, [Descartes 1637] pp. 385-386. Here the context was clearly geometrical; the 
example illustrated the phenomenon that a problem may lead to a fourth-degree equation and 
still be plane, that is, solvable with straight lines and circles. In another example, Ibid. p. 379, 
the coefficients were irrational numbers: x 3 - v'3x2 + ~x - !-r v'3 = O. The example showed 

a method to remove the irrationals from the coefficients by the substitution y = v'3x. This 
substitution (y2 = 3x2) is more likely to arise in a geometrical than in a numerical context. 

lOExpressions with non-integer dimension, such as via and ifti (with reference to a line 
segment a) did not occur in Viete's algebra because k-th roots could only be extracted from 
k-dimensional quantities. Descartes' interpretation did allow these expressions; see below. 

Classical 
geometry and 
Viele's 
interpretation 

Homogeneity 
eliminated 
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Figure 21.4: Descartes' interpretation of a2 

line segments, because by the definition of multiplication ab was a line segment 
as well as c. By removing the homogeneity requirement Descartes avoided the 
conceptual difficulties of a dimensional interpretation that had caused Viete to 
introduce infinitely many abstract higher dimensions for each kind of quantity. 

Role of the Thus the introduction of a unit simplified the use of algebra in geometry con-
unit ceptually in so far as dimensions higher than three were avoided. It should be 

remarked, however, that it introduced a complicating factor of its own, namely, 
that the operations were no longer uniquely determined. In the classical inter
pretation the result of a multiplication, a division, or a root extraction did not 
depend on the choice of a unit. If a, b, and c were line segments, a2 was the 
unique square with side a. JOJj was the uniquely determined side of a square 
equal in area to a rectangle with sides a and b; that side was known to be equal 
to the mean proportional of a and b. For Viete acb was the uniquely determined 
side of a rectangle that was equal in area to the rectangle with sides a and b 
and whose other side was c; it was known that, consequently, a: was the fourth 
proportional of c, a, and b. 

This uniqueness was lost in Descartes' new interpretation. Consider, for 
instance, the meaning of a2 for a line segment a. If the unit e happened to 
be chosen smaller than a, then Descartes' construction yielded an a2 that was 
larger than a (cf. Figure 21.4), but if the unit e was chosen larger than a, then 
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a2 < a. 11 Descartes explained that the choice of the unit was arbitrary. Most 
often a geometrical situation (in particular the kind of configurations occurring 
in the early modern geometrical problems) did not suggest an obvious unique 
choice of a unit. Thus Descartes' new interpretation introduced an essential 
arbitrariness. Descartes did not explicitly discuss this feature. In fact, as will 
become clear in Section 21.3, he mostly avoided the choice of a unit and worked 
with homogeneous formulas. 

In the Rules (cf. Section 18.2) Descartes had interpreted the product of Interpretation 
two line segments a and b as the rectangle rect(a, b). But by considering a in the "Rules" 
rectangle with unit width e as equivalent to its length, rect(e, l) '::::' l, he could 
in principle reduce any result of the algebraic operations to either an area or 
a line segment. Thus at that time his interpretation was still dimensional and 
required homogeneity in some sense, but it avoided the necessity of introducing 
(as Viete had done) magnitudes of dimensions higher than three. Moreover, in 
the Rules Descartes used the relation (cf. Figure 18.1) 

rect(a, b) = rect(e, c) '::::' c, (21.1) 

in which c is the fourth proportional of e, a, and b. In the Geometry Descartes 
defined the product of a and b immediately as equal to this fourth proportional 
c, constructed according to the standard Euclidean construction of the fourth 
proportional. Thus the interpretation of the operations given in the Geometry 
can be seen as the natural successor to the one in the Rules, derived from it 
by incorporating the reduction of rectangles to line segments in the definitional 
constructions. 

The introduction of a unit in situations where calculations were needed in Van Ceulen 
geometry was not at all new. We have seen (cf. Section 7.2) how, for instance, 
Regiomontanus employed such a unit in his theory of triangles. However, in most 
cases the introduction of the unit implied the introduction of numbers as well 
and that was not what Descartes did. As to the use of a unit in non-numerical 
context there was, as we have seen in Section 8.6, at least one precursor of 
Descartes, namely, Van Ceulen, whose posthumous Foundations,12 published 
in 1615, contained an interpretation of the quadratic algebraic operations that 
used a unit length and thereby considered products and quotients of line seg-
ments as line segments. Van Ceulen based his constructions on Elements III-35 
(Cf. Construction 8.1). Moreover, Van Ceulen dealt only with line segments 
constructible by Euclidean means, thus restricting himself to line segments cor-
responding to quadratic irrational numbers. The main difference between his 
and Descartes' interpretation was that Descartes based his operations on differ-
ent Euclidean constructions, and that he realized the necessity of extending the 
interpretation beyond quadratic algebra. 

llThe phenomenon was noted by Debeaune; see Note 14. 
12[Ceu\en 1615J and [Ceulen 1615bJ. 
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It is quite possible that Descartes knew Van Ceulen's book. It is less likely 
that his interpretation of the operations owed much to Van Ceulen. The idea of 
using a unit length was readily suggested by practical geometry (cf. Section 7.2) 
and the earlier form of Descartes' interpretation as extant in the Rules much 
more suggests a direct elaboration of this idea than an inspiration from Van 
Ceulen's somewhat idiosyncratic geometrical interpretation of the operations 
with quadratic irrationals. 

21.3 The actual interpretation of the algebraic 
operations in the Geometry 

Boldness Descartes' reinterpretation of the algebraic operations has deservedly become 
famous in the history of mathematics. However, that fame is based primarily 
on the boldness of his removal of homogeneity and dimensionality, not on the 
way he applied his new approach. In fact, despite the emphatic presentation of 
the new interpretation of the algebraic operations at the beginning of his book, 
he hardly ever applied it. 13 When dealing with actual geometrical problems 
he seldom introduced a unit and as a result the formulas he arrived at were 
dimensionally homogeneous. This applied, for instance, throughout his long 
treatment of Pappus' problem (cf. Section 23.3). 

Compatibility The fact that Descartes used two different interpretations of the algebraic 
operations in geometry raises the question whether these interpretations were 
compatible. The compatibility is not obvious because the one interpretation 
depended on the choice of a unit and the other did not. Descartes himself did not 
mention this question. However, one of the first commentators of the Geometry, 
Debeaune, devoted a considerable section of his "Notes" to the dependence of 
products of line segments on the unit. He showed by examples that, despite 
this dependence, the results in Descartes' interpretation of the operations were 
compatible with the results of the dimensional interpretation. He concluded 
with the advice in general to leave the unit undetermined and calculate with 
homogeneous formulas unless a unit was explicitly provided at the outset. 14 The 
advice precisely summarized Descartes' practice in the Geometry. 

l3The interpretation of multiplication and division by means of a unit was not used in the 
Geometry at all. The interpretation of root extraction occurred occasionally in the third 
book, but alternative interpretations were used much more often. Indeed the first square 
root occurring after the explanation of root extraction concerned the solution of the equation 
x 2 = ax + b2 (which Descartes denoted homogeneously, writing b2 rather than simply b, 

d. Construction 22.1). Its solution involved the root J ~a2 + b2 . Descartes did not interpret 
this root by means of the unit, but classically (and indeed much more naturally) as the 
hypothenuse of a right-angled triangle with sides ~a and b. 

l4[Debeaune 1649], pp. 107-112 in the edition [Descartes 1659-1661] vol. 1. Debeaune dis
cussed the products b2 , bd, and d2 (for line segments b and d) and showed that if these were 
determined in Descartes' manner by means of a unit, their ratios were the same as in the 
classical dimensional interpretation. He also presented an example involving two different 
units, showing geometrically that the line segments representing the squares a2 , b2 , and c2 of 
the sides a, b, and c of a rectangular triangle did depend on the choice of the unit, but that 
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The two interpretations are indeed compatible. To be precise: whenever a 
formula denotes a line segment in the classical dimensional interpretation, then 
Descartes' interpretation will yield the same line segment, independently of the 
choice of the unit. The reason is that in these cases the constructions always 
consist of pairs of operations each involving the unit, and in these pairs the 
dependence of the unit in the one operation is canceled in the other. Consider, 
for instance, J(ib. Dimensionally interpreted this is a well-defined line segment, 
the mean proportional between a and b; it is independent of the choice of a unit. 
Interpreted according to Descartes J(ib is the square root, to be constructed by 
Construction 21.3, of a line segment, which itself is the product of two line 
segments a and b, constructed by 21.1. Both constructions involve the unit e 
and in each of them the result of the construction is dependent on the choice of 
e. But in their combination the unit e cancels. 15 

It is difficult to assess the significance of Descartes' silence about the com- Significance 
patibility of his new interpretation of the algebraic operations and the classical 
one. It seems that he was simply not aware of the problem, perhaps because 
in practical geometry different units were used apparently without giving rise 
to problems of compatibility. I find Descartes' omission striking and suggestive 
of a certain carelessness about the matter; it suggests that he considered his 
interpretation of the quadratic algebraic operations as a necessary preliminary 
formality for his method rather than as an important contribution to geometry 
and algebra. The fact that he himself hardly ever used his new interpretation 
points in the same direction. Descartes probably saw the other achievements 
of the Geometry, notably the geometrical interpretation of higher-order root 
extraction and the solution of equations generally, as much more momentous 
than his interpretation of the quadratic algebraic operations. 

the relation a2 + b2 = c2 remained valid whichever unit was chosen. 
15 According to Construction 21.1, the product c of a and b is the fourth proportional of e, a 

and b, so e : a = b : c, hence rect(e, c) = rect(a, b). According to Construction 21.3, the square 
root d of c is the mean proportional of e and c, that is, e : d = d : c, hence sq(d) = rect(e, c). 
So the two definitions involved in the expression d = v'ab imply sq(d) = rect.(a,b), which 
means that d does not depend on e. A similar argument applies in the case of ~ and in 
general to all formulas that, dimensionally interpreted, denote line segments. 



Chapter 22 

The use of algebra in 
solving plane and 
indeterminate problems 

22.1 Problem, equation, construction 

Having settled the geometrical interpretation of the elementary and the From problem 
quadratic operations at the beginning of the Geometry, Descartes dealt with to equation 
the application of these operations in solving plane problems and in dealing 
with indeterminate problems that could be reduced to plane ones. It is in-
structive to analyze in some detail the interplay of algebra and geometry in his 
approach to these problems. 

He first explained how any problem could be translated into an equation. He 
did so in the sixth section of the first book of the Geometry, which was entitled 

How one should arrive at the equations that serve for solving the 
problems. 1 

The section2 contained an elaboration of the procedure described in Rules 16-21 
of the Rules (cf. Section 18.2): One should start by assuming that the problem 
was solved3 and consider a figure incorporating the solution. One should de
note line segments in that figure by letters, chosing a, b, c, ... for the given or 
otherwise known ones, and z, y, x,··· for the as yet unknown ones. Then one 
should collect the given and required relations between these line segments and 
express these as equations. One should try to find as many equations as there 
were unknowns, which in the usual cases would be possible. If that appeared 
impossible, it was a sign that the problem was not fully determined. I return 

1 [Descartes 1637] p. 300: "Comment il faut venir aux Equations qui servent a resoudre les 
problesmes." 

2[Descartes 1637] pp. 300-302. 
3The classical opening of an analysis procedure; cf. Section 5.2. 

H. J. M. Bos, Redefining Geometrical Exactness
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to that case in Section 22.3. Then one had to eliminate all but one of the un
knowns, arriving at an equation in the one remaining unknown, such as, for 
instance (they are Descartes' own examples,4 note that he chose homogeneous 
equations and considered the letters to denote positive quantities): 

z b, (22.1) 
Z2 -az + bb, 
z3 +az2 + bbz - c3 , 

z4 az3 - c3 z + d4 . 

Descartes stressed that one should use "all the divisions that are possible" to 
arrive at the simplest possible equation.5 These divisions referred to methods to 
reduce equations by splitting off factors, which Descartes explained later in book 
III; I return to them in Section 27.3. With the final equation thus reached, the 
analytical part of the method was completed, what remained was the synthesis, 
that is, the construction. 

Having explained the general procedure to translate a geometrical problem 
into an equation, Descartes proceeded to the obvious next step: to translate an 
equation into a solution, that is, into a geometrical construction of its roots. 
In book I he restricted himself to plane problems for which, he asserted, the 
final equation was linear or quadratic. Descartes did not deal explicitly with 
the construction of roots of linear equations; he probably considered the proce
dure to be obvious from the constructions for multiplication and division. He 
distinguished three types of quadratic equations, depending on the signs of the 
coefficients, namely (note again that he wrote the equations homogeneously and 
that he assumed the given line segments a and b to be positive):6 

(22.2) 

x 2 -ax + b2 

x 2 ax - b2 ; 

in each case he gave a construction of the root or roots (he disregarded negative 
roots). For illustration, here is his construction for the first case: 

Construction 22.1 (Root of x 2 = ax + b2 ) 7 

Given two line segments a and b (see Figure 22.1), it is required to construct a 
line segment x satisfying x 2 = ax + b2 . 

4[Descartes 1637] p. 301, it is not clear why he added the plus sign to the term az2 . 

5[Descartes 1637] p. 302: " ... pourvu qu'en demeslant ces Equations on ne manque point 
a se servir de toutes les divisions, qui seront possibles, on aura infalliblement les plus simples 
termes, ausquels la question puisse estre reduite." 

6[Descartes 1637] pp. 302-303. Note that Descartes implicitly assumed that any positive 
two-dimensional constant could be considered as a square. In geometrical problems such 
constants would generally arise as rectangles, which indeed, by Construction 21.3, could be 
equated to a square. 

7[Descartes 1637] pp. 302-303. 
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a ---------------
b-----

Figure 22.1: Construction of the root of x2 = ax + b2 

Construction: 
1. Draw a right angled triangle AOB with OA = !a, OB = band 
LAOB = 900 • 

2. Draw a circle with center A and radius !a. 
3. Prolong AB; the prolongation intersects the circle in C. 
4. x = BC is the required line segment. 
[Proof: BA intersects the circle in D; by Elements III-36 (cf. Con
struction 4.3) BC·BD = OB2 , Le., x(x-a) = b2 , so x 2 = ax+b2 .] 

The constructed x is the positive root of the equation; the other root is nega
tive and therefore plays no role. Descartes provided no separate proof of this 
construction. In the tradition of problem solving it was known; it occurred in 
Clavius' Euclid edition and I have discussed it above (Construction 4.3 of a 
segment x satisfying x(x - a) = b2 ). Descartes added that x could be expressed 
as 

1 ~ x = -a + -a2 + b2 . 
2 4 

(22.3) 

It is noteworthy that Descartes presented this relation as a corollary of the 
construction (it follows from CB = CA + AB) and not as the formula resulting 
from an algebraic procedure for solving the equation. 
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C L-___ -\-__ ~ B 

Figure 22.2: Division of a triangle 

22.2 An example 

With the constructions for the quadratic equations Descartes had given a 
complete description of his method of problem solving as far as plane problems 
were concerned. He gave no special example but went on directly to discuss the 
Pappus problem, which is indeterminate; its solutions form a locus. It will be 
instructive, however, to pause and apply Descartes' method to a characteristic 
plane problem. For that purpose I take the triangle division problem whose 
solution by Clavius we saw in Section 4.8 (Construction 4.18). We have no 
evidence that Descartes ever discussed or solved this problem. What follows is 
my own application of Descartes' method to the triangle division problem. I 
follow the procedures that Descartes prescribed: 

Problem 22.2 (Triangle division)8 
Given a triangle ABC (see Figure 22.2) and a point D outside the triangle, it 
is required to draw a line through D dividing the triangle in two equal parts. 

The application of Descartes' procedure to this problem consists of an analysis 
and a construction: 

Analysis 22.3 (Triangle division) 
Given etc.: cf Problem 22.2. 

81 have published the following Cartesian solution of the triangle division problem in 
[Bos 1990] pp. 353-356 (pp. 40-43 in ed. [Bos 1993c]) and [Bos & Reich 1990] pp. 206-212. 
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~-------,<=--------"B 

EL--_____ ~ 

Figure 22.3: Triangle division - analysis 

Analysis: 
1. Assume the problem solved (see Figure 22.3 - for easier com
parison I use the same figure and lettering as in my rendering of 
Clavius' solution, cf. Figure 4.14) and let the required line through 
D intersect AC in Hand BC in I (we study the case that the divid
ing line through D intersects the sides AO and BO; the other cases 
can be treated in the same way); draw a line through D parallel to 
BC, it intersects AO prolonged in E. 
2. Give names (letters) to the known elements in the figure: OA = b, 
CB = a, AB = c, ED = p, CE = q; and to the unknown elements: 
OJ = u and CH = z. 
3. Identify the given and required relations: Because DE is drawn 
parallel to BC and D is given we have, by similar triangles, U : p = 
z: (q + z), which can be written as an equation: 

pz = u(q + z); (22.4) 

furthermore, it is required that the line through D divides the tri
angle in equal parts, hence f::.CHI = ~L':,.ABC, which implies, by 
Elements VI-23, that uz : ab = 1 : 2 or, written as an equation, 

1 
uz = -ba' 

2 ' 

we have now as many equations as unknowns. 

(22.5) 
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4. Eliminate one unknown, namely u; this leads to 

2 ~ba ~ba z =-z+-q, 
p p 

(22.6) 

an equation in one unknown of second degree. 

We have now arrived at the end of the analysis; the problem is translated into 
an equation in one unknown of the type 

Z2 = Iz+ l. (22.7) 

Descartes' standard construction of the root of this equation has been described 
above (Construction 22.1). In order to apply that construction we need first to 

lba 2 lba 
construct the line segments I and g. Now I = ~ and 9 = ~q = Iq, whence 

9 = ffq. If we should follow Descartes' prescribed method to the letter, we 
should choose a unit and apply the Constructions 21.1-21.3 to find I and g. 
However, the right-hand sides of the equations 

I 

9 

.!.ba 
_2_ 

P 

Jfq, 

(22.8) 

(22.9) 

dimensionally interpreted, denote line segments and therefore the result of their 
construction is independent of the choice of the unit (cf. Section 21.3 and Note 15 
of Chapter 21). For I the easiest construction is obtained by choosing the unit 
e equal to p, for 9 by choosing e = q. In fact the constructions then reduce to 

the ones to which the classical interpretation of these formulas would lead: ~ 
is the fourth proportional of p, ~b, and a, and ffq is the mean proportional of 
I and q. A strict adherence to Descartes' procedures would force us to choose 
one unit (after all he did not explain that in these cases any unit leads to the 
same result) so that either I or 9 or both would be obtained by an unnecessarily 
complicated construction. It seems likely that neither Descartes nor his readers 
would stick to the letter here but that they would adjust the units (or follow 
the classical interpretation), which leads to the following construction: 

Construction 22.4 (Triangle division) 
Given etc: cl. Problem 22.2. 

Construction: 
1. Bisect b to find ~b. 
2. Determine the fourth proportional of p, ~b, and a, or, equivalently, 
the product of ~b and a according to Construction 21.1 taking p as 
unit; that is (see Figure 22.4): draw two lines Land M intersect
ing in a point 0; take p and ~b along L and a along M; connect 
the endpoints of p and a by a line; draw a parallel line through the 
endpoint of ~b, its intersection with M marks the endpoint of the 
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M 

a 

L 

o \b/2 p 

f ~ C B 

g 

Figure 22.4: Triangle division - construction 

required line I. 
3. Determine the mean proportional 9 of I and q, or, equivalently, 
construct 9 = v'l by taking q as unit; that is: join q and I along 
a straight line; draw a semicircle with diameter q + I; draw a per
pendicular to the diameter from the point where q and I meet; the 
intercept between that point and the circle is the required segment 
g. 
4. Having constructed I and 9 we can now apply Descartes' Con
struction 22.1 for finding the roots of Equation 22.7 z2 = Iz + 92 : 

Mark I and 9 along two perpendicular lines from the point of inter
section (see Figure 22.4); draw a circle with I as diameter; connect 
the endpoint of 9 and the center of the circle by a line and prolong 
that line until it meets the circle; the resulting line segment is the 
required root z. 
5. Draw C1 = z in the original triangle and connect 1 and D; D1 is 
the required line dividing the triangle in two equal parts. 
[Proof: I omit the proof, which follows easily from the analysis.] 

We may now gather the conclusions to be drawn from the exercise of ap- Comments on 
plying Descartes' method of analysis to a characteristic plane problem from the the example 
tradition of geometrical problem solving. The method indeed provides a con-
struction, in fact, it leads to precisely the same construction as Clavius had 
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found (cf. 4.18).9 I have noted that if Descartes' approach is followed to the 
letter, the resulting construction is more complicated than Clavius' because we 
are then obliged to introduce a non-functional unit length in the construction 
of the multiplication or the square root. 

The correspondence to Clavi us' construction would be less marked had we 
chosen other unknowns in the analysis or eliminated differently. However, one 
soon convinces oneself that the choice of u and z as unknowns is the most natural 
one; and eliminating z rather than u leads to a quadratic equation of the second 
type in Equation 22.2 with coefficients differing from those in Equation 22.6 
merely in that the roles of p and q are interchanged. Hence, the construction in 
that case is not much different from the one given here. 

Our example also shows a particular difference between the analytical and 
the synthetical part of Descartes' procedure. The analysis, leading from problem 
to equation, was not determinate; there was some room for choice in selecting 
the unknowns and the order of their elimination. The synthesis, however, was 
completely determined and automatic, it consisted of applying standard con
structions for the algebraic operations and standard constructions of the roots 
of equations. 

Descartes could extend the analytical part of the procedure to higher-order 
problems without essential change. But the synthetic part of the solution of 
higher-order problems (equations) was much more difficult; it required new 
standard construction procedures for all higher-order equations, and these pro
cedures in turn required a new interpretation of constructional exactness. Much 
of the contents of Books II and III of the Geometry is devoted to that new in
terpretation; it will be discussed in Chapters 24-26. 

22.3 Indeterminate problems 

Reduced to In the majority of problems from the early modern tradition of geometrical 
pointwise problem solving Descartes' analysis would indeed lead to an equation in one 

construction unknown whose roots would correspond to the finitely many solutions of the 
problem. However, for some problems the final equation involved two or more 
unknowns. In that case the problem was indeterminate; it admitted an infinity 
of solutions. Descartes' approach to these problems was to reduce them to 
determinate ones by choosing arbitrary values for some of the unknowns: 

And one should find as many such equations as there are supposed 
to be unknown lines. But if so many cannot be found, and nothing 
of what is required in the problem has been left out of consideration, 
this shows that the question is not entirely determined. In such a 
case one may choose at will known lines for each unknown line to 
which there corresponds no equation. IO 

9Step 1 of Clavi us' construction corresponds to the introduction of the line segments p, q, 
and ~b, step 2 to the determination of J, step 3 to the determination of g, and step 4 to the 
determination of z; the techniques applied for these determinations are exactly the same. 

10 [Descartes 1637] p. 300: "Et on doit trouver autant de telles Equations, qu'on a suppose 
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Of such indeterminate problems Descartes considered primarily those with two 
unknowns.u In that case the solutions form a one-dimensional locus in the 
plane, a straight line or a curve, and Descartes' procedure supplied two coor
dinates (one chosen and one constructed) of a pOint on the curve. In this way 
arbitrarily many points on the curve could be found, and thus the curve could 
be constructed point by point. 12 Only in the case of the three- and four-line 
Pappus problem and in two other special cases of Pappus' problem did Descartes 
suggest a construction of a locus as curve (rather than as collection of points) j 
these cases will be discussed in the next chapter. 

de !ignes, qui estoient inconnuiis. Oubien s'il ne s'en trouve pas tant, et que nonobstant on 
n'omette rien de ce qui est desire en la question, cela tesmoigne qu'elle n'est pas entierement 
determinee. Et lors on peut prendre a discretion des !ignes connuiis, pour toutes les inconnuiis 
ausqu'elles ne correspond aucune Equation." 

11 In a short section at the end of book II ([Descartes 1637] pp. 368-369; II-F in Table 20.1) 
Descartes discussed curves on non-plane surfaces; he did not, however, remark that such a 
surface corresponds to an equation in three unknowns. 

l 2Cf. [Descartes 1637] p. 313, where Descartes described the procedure in relation to a 
Pappus problem: " ... on peut prendre a discretion l'une des deux quantites inconnues x ou 
y, et chercher I'autre par cete Equation .... Mesme prenant successivement infinies diverses 
grandeurs pour la ligne y, on en trouvera aussy infinies pour la ligne x, et ainsi on aura une 
infinite de divers poins, . . . par Ie moyen desquels on descrira la !igne courbe demandee." 



Chapter 23 

Descartes' solution of 
Pappus' problem 

23.1 The problem 

Descartes first studied Pappus' problem during late 1631 and early 1632, Locus problems 
on the instigation of Golius. In Chapter 19 I argued that the confrontation 
with the problem was decisive for the final stage of the development of his 
programmatic ideas on geometry. I now turn to his treatment of the problem 
in the Geometry, where he used it as the central example for illustrating his 
techniques and showing their power. 

Pappus' problem was a locus problem, that is, an indeterminate problem 
whose infinitely many solutions form a one-dimensional locus.1 Such loci are 
curves (or sometimes straight lines). Descartes' primary approach to locus prob
lems was (cf. Section 22.3) to find a pointwise construction of the locus. He 
prescribed assuming arbitrary values for one of the two unknowns in the final 
indeterminate equation, and to determine the corresponding values for the other 
unknown by the methods suitable for determinate problems. The pairs of val
ues thus constructed were coordinates of points on the locus. In principle, any 
number of such points could be determined; hence, the result of this procedure 
was a pointwise construction of the required locus.2 

I recall that Pappus' problem is as follows (cf. Problem 19.1):3 The problem 

lCf. Descartes' own characterization of locus problems, [Descartes 1637] pp. 334-335: "Car 
ces Heux ne sont autre chose, sinon que lors qu'il est question de trouver quelque point auquel 
il manque une condition pour estre entierement determine." 

2Cf. Table 4.2 item 3.2 and Notes 10 and 12 of Chapter 22. 
3Cf. also Notes 3 and 5 of Chapter 19. 

H. J. M. Bos, Redefining Geometrical Exactness
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Figure 23.1: Pappus' problem 

Problem 23.1 (Pappus' problem)4 
Given n straight lines Li in the plane (see Figure 23.1), n angles Oi, and a line 
segment a. For any point P in the plane, the oblique distances di to the lines Li 
are defined as the (positive) lengths of segments that are drawn from P toward 
Li making the angle Oi with L i . It is required to find the locus of points P for 
which a certain ratio, involving the di and depending on the number of lines, is 
constant. The relevant ratios are: 

For 3 lines: d2 
1 d2d3 (23.1) 

For 4 lines: d1d2 d3d4 (23.2) 

For 5 lines: d1d2d3 ad4d5 (23.3) 

For 6 lines: d1d2d3 d4d5d6 (23.4) 

In general for an even 

number 2k of lines: d1 ... dk dk+1'" d2k , (23.5) 

and for an uneven 

number 2k + 1: d1 ... dk+1 adk+2 ... d2k+1 . (23.6) 

4[Pappus Collection] pp. 507-510; cf. [Pappus 1876-1878] vol. 2, pp. 676-681 and 
[Pappus 1986] vol. 1 pp. 118-123. 
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23.2 The general solution: equations and con
structions 

Descartes' solution of the problem as developed in the Geometry started in Equations 
the first book5 with the general derivation of the equation of the locus. I have 
briefly sketched his procedure in Section 19.2; I now analyze it in more detail. 
Descartes introduced a coordinate system with its origin 0 at the intersection 
of L1 and one of the other lines (L3 in the figure), its X-axis along L1 and its 
ordinate angle equal to (h. With respect to that system d1 is equal to y. He 
showed that for any point P with coordinates x and y, each di could be written 
as 

(23.7) 

in which the ai, f3i, and 'Yi were constants expressed in terms of ratios of line 
segments determined by the ()i and the segments along the lines Li between their 
points of mutual intersection;6 because the ()i and the positions of the lines Li 
in the plane were given, the ai, f3i, and 'Yi were known.7 Descartes was aware 
that if all the lines Li are parallel, the x did not occur in the equation, because 
d1 = y, di = f3iY + 'Yi for all i > l. 

The requirement that the given ratio (cf. Equations 23.5 and 23.6) be con
stant leads to the equation: 

with 1 = k + 1 or k + 2 depending on the number of given lines, a = a for an 
uneven number of lines and = 1 otherwise, and 8 is the given constant value 
of the ratio. These are polynomial equations8 in x and y (or in y alone if the 

5[Descartes 1637] pp. 310-314. 
6Thus to express d3 in x and y Descartes considered the triangles OAB and CP B (A and B 

are the intersections of the extension of d1, with L1 and L3 respectively, C is the intersection 
of d3 with L3); he noted that although P was unknown, the angles of these triangles, and 
thereby the ratios of their sides, were known. Thus if AB : OA = A and CP : BP = J-t, A 
and J-t are known and d3 = J-tBP = J-t(Y + AB) = J-t(y + AX) = J-ty + J-tAX. Descartes wrote the 
ratios not as single letters but as ratios between constant line segments; thus for the J-t and A 
above he wrote c : Z and b : z, respectively. Note that, contrary to Descartes' usual practice, 
z denoted an indeterminate, not an unknown. 

7[Descartes 1637] p. 312; see below, Equations 23.13 and 23.14 for the case of the three
and four-line locus. 

8If the problem is taken in its strict classical sense, the d i , as well as the line segment a 
and the ratio 8, should be interpreted as positive, whence the equation should be 

ly(a2x + fhy + ')'2)···1 = 8la(alx + {31Y + ')'1)(al+1 x + {31+1Y + ')'1+1)···1 , (23.9) 

which is equivalent to 

(23.10) 

The solution of one Pappus problem, therefore, consists of two curves. For a given set of n 
straight lines the collection of Pappus loci with respect to these lines and arbitrary constant 
values for the ratio thus constitutes a one-parameter family of curves represented by the 
equation 

(23.11) 
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Number of given Degree of the Highest power Case of parallel 
lines equation of x in the given lines; 

equation degree of the 
equation in y 

3 2 2 2 

4 2 2 2 

5 3 2 3 

6 3 3 3 

Table 23.1: Pappus' problem - the degrees of the equations 

given lines are parallel). As all di are linear in x and/or y, the degrees of these 
equations depend on the number of given lines. Descartes did not explicitly 
note these dependencies, but it appears from his further statements about the 
constructibility of points on the loci that he was aware of them. They are listed 
in Table 23.1. 

Constructions On the basis of the numbers in Table 23.1 Descartes was able to make gen-
eral statements about the means of construction (plane, solid, or higher-order) 
necessary in the pointwise construction of the loci. Points on the loci could be 
constructed (cf. Section 22.3) by giving arbitrary values to y and constructing 
the corresponding xs as root(s) of the resulting equations. Choosing fixed val
ues for y had the advantage that in the case of five, seven, nine, etc., lines, the 
resulting equations had degrees two, three, four, etc., whereas for fixed values 
of x the degrees were higher, namely, three, four, five, etc. The special cases 
in which all given lines were parallel led, as is easily seen, to equations in one 
unknown only, namely y. The resulting loci consisted of straight lines parallel 
to the given ones; the positions of these lines were determined by the roots of 
this equation in y. 

The degrees of the final equations in x, or, for parallel lines, in y, are listed 
in the last two columns of Table 23.1. These degrees determined by what means 
the roots could be constructed. Descartes explained the relation between degree 
and constructibility in the third book of the Geometry (cf. Chapter 26), but 
anticipating his results there, he classified in the first book the cases of Pappus' 

where {j now ranges over all (positive and negative) values. Usually Descartes started by 
considering one point on the locus and adjusted the coordinate system such that its x and y 
coordinates were positive. He then read off the values of the coefficients ai, !3i, Ii from the 
figure and tacitly assumed that the expressions thus gained applied generally. Moreover, he 
usually took the constant {j to be 1. The effect of these choices was that in dealing with a 
Pappus problem he considered one solution curve only. Yet the figures he provided suggest 
that he was well aware of the other solutions and realized that an obvious adjustment of the 
equation would produce them. 



N umber of given lines: 

3, 4, 5 but not 5 parallel 

5 parallel, 6, 7, 8, 9 but 
not 9 parallel 

9 parallel, 10, 11, 12, 13 
but not 13 parallel 
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Degree of the 
equation in one 
unknown: 

2 

3 or 4 

5 or 6 

etc. 

Points on the locus 
constructible by: 

plane means (circles and 
straight lines) 

solid means (conic 
sections) 

circles and a curve "only 
one degree more 
composite than the 
conics" 

Table 23.2: Pappus' loci - pointwise constructibility 

problem according to the means necessary for their pointwise construction. I 
summarize his classification9 in Table 23.2. Descartes postponed the explanation 
of the expression "a curve only one degree more composite than the conics:" 10 

he had the "Cartesian parabola" in mind, cf. Section 26.3. 
These results concluded the first book of the Geometry. They convincingly 

illustrated the power of Descartes' method by surveying the various cases of 
a difficult problem, classifying these, and determining the status as to con
structibility of each class. 

23.3 The three- and four-line Pappus problem 

However impressive, the result reached at the end of Book I was a classifi- The problem 
cation only, it did not provide the actual constructions. In Book II Descartes 
dealt in much more detail with one Pappus problem, namely, the problem in 
three or four lines: 

Problem 23.2 (Pappus' problem in three and four lines)l1 
Given four stmight lines Li in the plane (see Figures 23.1 and 23.2, the problem 
"in three lines" arises if two of the given lines coincide) and four angles ()i. For 
any point P in the plane, the oblique distances di to the lines Li are defined as 
in Problem 23.1. It is required to find the locus of points P for which 

(23.12) 

9[Descartes 1637J pp. 313-314. 
lO[Descartes 1637J p. 314: " ... une Jigne, qui n'est que d'un degre plus composee que les 

sections coniques, en la fru;on que i'expJiqueray cy apres." 
11 [Descartes 1637J pp. 324-334 
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Figure 23.2: Pappus' problem in four lines (Geometry p. 309) 

Equation 23.12 implies that Descartes took the given ratio 6 to be equal to 1; 
he did not comment on this point, in fact his analysis can be easily adjusted to 
other values of {j. 

In dealing with the three- and four-line locus Descartes did not pursue the 
approach by pointwise constructions; rather he provided constructions of the 
loci based on Apollonius' theory of conic sections. Descartes dealt with almost12 

all variants of the three- and four-line locus, and he presented his results in the 
classical form of constructions with proofs. His presentation was rather involved 
because of the many case distinctions he made. Descartes did not explain how 
he had arrived at the construction, but from the construction and the proof it 
is clear that he had used some indeterminate coefficient procedure. 

I illustrate his analysis and construction by following one case, the one in 
which the locus is an ellipse. Afterward I briefly reconstruct the indeterminate 
coefficients method by which he probably found it. 

The equation Descartes had explained the method for deriving the equation of the locus in 
the first book (cf. Analysis 19.2). Now he introduced letters for the unknowns 
and the various given parameters in the four-line Pappus problem as follows13 

12Cf. Note 18. 
13Contrary to the procedure explained in Section 1.7, I have not changed Descartes' letter

ing, partly because there are so many letters that some complexity cannot be avoided, partly 
to facilitate comparison with the original, which, because the Geometry is readily available, 
more readers may want to do than in the case of my other sources. I retain the notation L;. 
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(see Figure 23.2): 

x AB (23.13) 

y BC 
z:b AB:BR 
z:c CR:CD 

k AE 
z:d BE:BS 
z:e CS:CF 

AG 
z:f BG:BT. 

Note that z was not an unknown but an indeterminate serving as common term 
in all the given ratios. He then expressed14 the segments CB, CF, CD, and CH 
in terms of the known and unknown line segments introduced in Equation 23.13: 

CB y (23.14) 

CF 
ezy + dek + dex 

Z2 

CD cyz + bcx 
Z2 

CH 
gzy + fgl- fgx 

Z2 

From these results, which were already given in Book I, the equation of the curve 
was readily calculated by inserting the values above in the defining property 
CB x CF = CD x CH of the locus:15 

2 (cfglz - dekz2)y - (dez2 + cfgz - bcgz)xy + bcfglx - bcfgx2 

y = 3 2 . (23.15) 
ez - cgz 

Descartes then introduced further letters for abbreviation: 16 

2m 
cf glz - dekz2 

(23.16) 
ez3 - cgz2 

2n dez2 + cfgz - bcgz 
z ez3 - cgz2 

for the given lines and di for the distances; later on I introduce new coordinates u and v and 
letters r, t, and s for certain terms and line segments; they do not overlap with Descartes' 
lettering. 

14Cf. Note 6. 
15 [Descartes 1637] p. 325. Descartes did not separately discuss the case in which ez3 - cgz2 

is zero, which leads to an equation without y2-term; cf. Note 18 below. 
161 have added a minus sign in the left-hand term of the last equation, where the text has 

;; ([Descartes 1637] p. 326). However, as Tannery has remarked (cf. [Descartes 1964-1974] 

vol. 6 p. 399), Descartes calculated further as if the left-hand term was -;::. In their translation 
Smith and Latham stick to the + sign, whereby their formulae don't agree with those of the 
original. 
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o 
-2mn bcfgl --+ ----;;---'--=--~ 

z ez3 - cgz2 

-p n2 bcfg 
m Z2 ez3 - cgz2 . 

(23.17) 

Note that Descartes did not introduce a unit length (cf. Section 21.3); as a 
result all his equations were homogeneous. Inserting the abbreviations and 
solving with respect to y, Equation 23.15 became17 

y = m - '!!.x + .1 m2 + ox - ~x2 , 
Z V m 

(23.18) 

which constituted the end result of the analysis of the three- and four-line prob
lem. 

The Descartes then turned to the construction of the locus on the basis of this 
construction equation. He did so by constructing, within the given configuration of lines, 

a conic section whose position and parameters depended on the coefficients of 
Equation 23.18. For the actual construction of this conic section he refered 
to the classical constructions of conic sections with given center, diameter di
rection, ordinate angle, and parameters as explained in Apollonius' Conics. 
He then proved that the constructed conic section was the required locus by 
showing that its equation coincided with the equation of the locus (Le., equa
tion 23.18). The total argument (construction and proof) implied an almost 
complete18 proof that all quadratic equations in two unknowns represent conic 
sections and that therefore all three- and four-line loci are conic sections. It also 
implied a classification of the different cases (straight line, parabola, hyperbola, 
ellipse, circle). 

Reading Descartes' argument is complicated by the fact that his terminol
ogy was based on the assumption that all letters in formulas denoted positive 
magnitudes and that therefore it was only the sign of a term in an equation that 
determined whether it should be added or subtracted. For instance in step 1 
of Construction 23.3 below Descartes took BK = m along BC downward from 
B "because here there is +m," and he stated that K should be taken upward 
from B "if there had been -m." This formulation ignored the possibility that 
m itself could be negative, whereas the definition of m in Equation 23.16 not 
at all excluded that possibility. Descartes was surely aware that terms such as 
m could turn out to be negative, but his terminology was not developed far 
enough to distinguish between the sign preceding a term and the positivity (or 
negativity) of that term. 

17[Descartes 1637] p. 326. 
18 Actually, as he noted himself in a letter to Debeaune of 20 II 1639 ([Descartes 1964-1974] 

vol. 2 p. 511), he had overlooked the case in which the coefficient of y2 in the equation of the 
curve is zero; d. Note 15 above. In the letter he stated (correctly) that in that case the locus 
is a hyperbola; he also claimed that one of its asymptotes was parallel to the line AB, which 
is incorrect; it should be BG. 
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Lo 
A 

Figure 23.3: Pappus' problem in four lines - construction in the case of an 
ellipse 

In rendering his construction and proof I paraphrase only one of the cases 
he distinguished, namely, the one in which the locus was an ellipse. It was as 
follows: 

Construction 23.3 (Pappus' problem in three or four lines - case 
ellipse) 19 

Given and required: see Problem 23.2; the analysis of the problem has led to 
Equation 23.18. 

Construction: 
1. (Construction of the point (I) for which x = 0 and y = m.) Draw 
a line L~ II L1 (see Figure 23.32°) intersecting BC in K and such 
that BK = m (K taken below B because of + sign of m, see above); 
take point I on it such that I K = x. 
(Descartes took the line BC as generic ordinate. The point I is 
independent of the value of x and therefore well defined; LBAI is 
equal to the given angle (h between d1 and L 1, and AI = m. It 

19[Descartes 1637] pp. 327-332. 
20 The figure is adapted from Descartes' figure in [Descartes 1637] p. 327. The locus is there 

drawn as a circle; I have stressed the generality of the case by drawing an explicit ellipse. I 
have removed the letters that don't occur in the argument and I have added the Li to indicate 
the given and constructed straight lines, the x and y that Descartes did not incorporate in 
the figure, and the u and v that I use in rendering the argument. 
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is not clear why Descartes didn't introduce the point I directly by 
taking AI = m on a line through A parallel to the ordinate direction 
BG.) 
2. (Construction of the straight line along which the diameter of the 
ellipse is situated.) Draw a straight line Lo through I, intersecting 
BK at L such that I K : K L = z : n. 
(Lo passes through the center of the ellipse hence its part within 
the ellipse is a diameter; the ordinates remain parallel to BG, the 
ordinate angle, therefore, is equal to LAI L. With BG = y we have 
LG = y-BK +KL = y-m+¥, and therefore (cf. Equation 23.18) 

LG= Jm2+ox- ~x2. (23.19) 

LG is the ordinate of the ellipse with respect to the diameter along 
Lo and the ordinate angle LAIL.) 
2a. (Classification) Descartes noted at this point that if the square 
root in Equation 23.19 was zero, the locus coincided with the straight 
line Lo, and that if the root could be extracted (meaning m2 + ox
~x2 = (O:X+,8)2 for some 0: and ,8), the locus was "another straight 
line not harder to find than I L." 21 He then claimed that in all other 
cases the locus would be a conic section, namely:22 a parabola if 
the term ~X2 was zero, a hyperbola if that term was preceded by 
the sign +, an ellipse if preceded by a -, and, in particular, a circle 
if LILC was a right angle and a2m = pZ2. Descartes' construction 
and his proof for the ellipse was as follows: 
3. (Construction of the center.) Introduce a new parameter a de
fined by K L : I L = n : a; then, because K L = ~x, the abscissa I L 
along Lo measured from I is ;x. Take M on Lo with 1M = ~~r;; 
M is the center of the ellipse. 
4. (Construction of the parameters.) Take t = ;: vi 0 2 + 4pm as 

latus transversum and r = ~ vi 0 2 + 4pm as latus rectum of the el
lipse.23 
5. (Construction of the ellipse.) Use the constructions from Apol
lonius' Conics24 to construct an ellipse with center M, diameter 
along Lo, ordinate angle equal to LAIL, latus rectum r, and latus 
transversum t. This ellipse is the required locus. 
(Apollonius' construction, to which Descartes referred explicitly, pro
ceeds by locating a cone in space that intersects the plane according 

21 [Descartes 1637] p. 328: "une autre ligne droite qui ne seroit pas plus malaysee a trouver 
qu'IL." He did not work out this (degenerate) case in more detail and did not note that the 
solution would actually consist of two straight lines. 

22[Descartes 1637], cf. the remark on Descartes' terminology above. 
23The letters rand t are mine and 1 have simplified the expressions; Descartes gave them 

2 2 2 4 2 3 J 2 2 4m~z2 . as a 0 m + a m and 0 Z + respectively. ppzr- --p;2 --;;-r a' 

24Propositons 1-52--60 of [Apollonius Conics] contain the constructions of the conic sections; 
Props. 56-58 concern the ellipse. 
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the required ellipse.) 
Proof:25 

6. Take from M towards I a distance along Lo equal to half the 
latus transversum, call its endpoint N; so N M = ~t. N is the ver
tex of the ellipse corresponding to the diameter along Lo. Consider 
point C as on the ellipse. The Apollonian theory of conics yields the 
relation 

(23.20) 

in which u is the abscissa N L measured from the vertex N, v the 
ordinate LC, r the latus rectum, and t the latus transversum (cf. Fig
ure 23.3, detail). 
7. Now insert for u the values used in the construction, taking 
x = IK, y = BC: 

u NL=(NM-IM+IL)= (23.21 ) 
1 aom a 
-t- -- + -x. 
2 2pz z 

Inserting this result in Equation 23.20 leads, after some calculation, 
to 

(23.22) 

Hence, 

LC = v = J m 2 + ox - ~ x 2 • (23.23) 

8. As LC = y - m + ~x (see 2) Equation 23.23 yields 

y = m - ?!:.X + J m2 + ox - ~X2 • 
Z m 

(23.24) 

Hence the points on the ellipse satisfy the equation of the locus de
rived in the analysis (Le., Equation 23.18), so the locus is an ellipse. 

The formulas and the argument of Descartes' proof strongly suggest that Derivation of 
he found the construction as follows by means of a indeterminate coefficients the solution 
procedure. From the equation of the curve 

y = m - ~x + J m 2 + ox - .!!...x2 , 
z m 

Descartes could recognize the line defined by 

25[Descartes 1637] pp. 332-333. 

n 
y = m--x 

z 

(23.25) 

(23.26) 
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as the diameter of the curve; items 1 and 2 of his construction locate this diame
ter (Lo) with respect to the given straight lines and fix the point I corresponding 
to x = O. The abscissae as measured from I along the diameter then are ~x 
with a as introduced in 3. Calling u the abscissa as measured from a vertex of a 
conic along the diameter, and v the corresponding ordinate, r the latus rectum, 
and t the latus transversum, the general equation of the conic is 

(23.27) 

Now u = (a/z)x - s for some line segment s, so the right-hand side of Equa
tion 23.27 can be considered as a second-degree polynomial in x. But we also 
have v = y - m + (n/z)x, hence it follows from Equation 23.25 that 

(23.28) 

Equating the coefficients of the powers of x on the right-hand sides of Equa
tions 23.27 and 23.28 provides three equations from which r, t, and s can be 
determined; the location of M also follows immediately. The values found are 
precisely the ones Descartes used in his construction and proof. 

Significance Descartes realized that his solution of the general three- and four-line locus 
problem had a significance beyond the special sphere of the Pappus problems. 
He wrote at the end of his solution: 

Finally, because all equations of degree not higher than the second 
are included in the discussion just given, not only is the problem 
of the ancients relating to three or four lines completely solved, but 
also the whole problem of what they called the composition of solid 
loci, and consequently that of plane loci, since they are included 
among the solid loci. ... The ancients attempted nothing beyond 
the composition of solid loci, and it would appear that the sole aim 
of Apollonius in his treatise on the conic sections was the solution 
of problems of solid loci. 26 

The reference is to the introduction of the third book of Apollonius' Conics 
where "many surprising theorems" are announced, "that are useful for the syn
theses of the solid loci and for the diorisms." Solid loci27 were curves obtained 

26[Descartes 1637] p. 334-335: "Au reste a cause que les equations, qui ne montent que 
iusques au quarre, sont to utes comprises en ce que ie viens d'expliquer; non seulement Ie 
problesme des anciens en 3 et 4 !ignes est icy entierement acheve; mais aussy tout ce qui 
appartient a ce qu'ils nommoient la composition des lieux so!ides; et par consequent aussy a 
celie des lieux plans, a cause qu'i1s sont compris dans les solides .... Mais Ie plus haut but 
qu'ayent eu les anciens en cete matiere a este de parvenir a la composition des lieux so!ides: 
Et il semble que tout ce qu'Apolionius a escrit des sections coniques n'a este qu'a dessein de 
la chercher." 

27 Cf. A.Jones' essay "The loci of Aristaeus, Euclid, and Eratosthenes" in his Pappus edition, 
[Pappus 1986] vol. 2 pp. 573-599; the two short quotations above are from his translation ibid. 
p.585. 
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by the intersection of spheres, cylinders, or cones with planes, so they were conic 
sections. The synthesis of these loci was necessary in the solution of solid prob
lems (cf. Section 5.5). Once the analysis of such a problem had revealed that 
the required point was on two solid loci, each defined by a certain property, the 
synthesis (construction) of the problem required that these loci were in fact con
structed. This meant that the nature of the locus (ellipse, hyperbola, parabola) 
had to be determined and that a vertex had to be given in position, together 
with the direction of the corresponding diameter, while the ordinate angle, the 
latus rectum, and the latus transversum had to be given in magnitude. Given 
these elements the loci could indeed be constructed by Propositions 1-52-60 of 
Apollonius' Conics. Thus the synthesis of solid loci consisted in the determina
tion, given the locus-property, of the nature of the conic, its diameter, ordinate 
angle, vertex (or center), latus rectum, and latus transversum. This was indeed 
precisely what Descartes did. 

When presenting his general results on Pappus' problem in Book I, Descartes Constructibility 
had concentrated on the constructibility of points on the locus by plane, or solid, 
or higher-order means (cf. Table 23.2). However, such pointwise constructions 
beg the question in what sense they provide the whole locus. In his treatment 
of Pappus' problem in three and four lines, discussed above, Descartes achieved 
the required locus by Apollonian constructions, which did provide the whole 
conic section, namely, as the intersection figure of a cone and a plane. Thus in 
a sense his solution in this case was stronger than in the general case. On the 
other hand, Apollonius' constructions presupposed the possibility of locating a 
cone in a prescribed position with respect to a plane. This is not a method of 
construction that immediately presents itself to the mind as clear and distinct. 
The more evident alternative was to generate a curve by motions in the plane. 
As we will see in the next section, Descartes solved some instances of the five-line 
locus by specifying such a generation of the locus. It is remarkable that in the 
case of the three- and four-line locus he did not do so. He may have considered it 
superfluous to work out a complete method of tracing conic sections by motion, 
knowing several instances of such procedures; elsewhere in the Geometry he 
gave a tracing procedure for the hyperbola (cf. Section 19.4, Problem 19.5) and 
referred to the familiar one (by means of strings) for the ellipse (cf. Section 24.4). 
However this may have been, the solution of the three- and four-line locus raised 
the question of the relative acceptability of the various ways of generating curves 
in geometry. We will see in Chapter 24 that Descartes devoted a considerable 
part of his book to this issue. 

23.4 Pappus' problem "in five lines" 

After dealing with the general case of the three- and four-line problem Des- The problem 
cartes gave the solution of two special cases of the five-line problem, namely, and the 
what he called the "simplest case in five lines" and a variant of that case. The equation 
former was the special problem, which, if my conjecture in Chapter 19 is valid, 
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I 

~~----- a -~ 

Figure 23.4: Pappus' problem in five lines 

led Descartes to the turning ruler and moving curve procedure and inspired 
several new ideas in the development of his doctrine of construction. The locus 
in this case was the "Cartesian parabola" which played a central role in the 
Geometry. For convenience I repeat the formulation of the problem as given in 
Chapter 19 (Problem 19.3): 

Problem 23.4 (Pappus' problem in five lines)28 
Given (see Figure 23.4) four parallel, equidistant lines Lb···, L4 (distance a), 
and one line L5 perpendicular to them. It is required to find the locus of points 
whose perpendicular distances di to Li satisfy 

(23.29) 

In the Geometry Descartes first derived the equation of the locus. Taking d3 = y, 
d5 = x, and hence d1 = 2a - y, d2 = a - y, d4 = a + y, he found: 

axy = (2a - y)(a - y)(a + y) = y3 - 2ay2 - a2y + 2a3 . (23.30) 

The Descartes then provided the construction of the curve by the turning ruler 
construction and moving curve procedure, which I discussed above in Section 19.3 (Construc

tion 19.4): 

28[Descartes 1637) pp. 335-338. 
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----- a - > 

Figure 23.5: Tracing the five-line locus 

Construction 23.5 (Five-line locus - Descartes )29 
Given and required: see Problem 23.4. 

Construction: 

T 

1. Consider (see Figure 23.5) a parabola UVU with vertical axis 
along L3 and latus rectum equal to a (which means that its equa
tion in rectangular coordinates u and v as indicated in the figure is 
au = v2 ). The parabola can move up and down while keeping its 
axis along L3 . Moving with it is a point Q on the axis inside the 
parabola with distance a to the vertex V. 
2. Consider also a straight line OQ that can turn around the inter
section 0 of L1 and L5 while Q moves along L3 . 

3. During the combined motion the points P of intersection of the 
parabola and the straight line move over the plane; they trace a new 
curve TO PT T PT (consisting of two branches); this curve is the 
required five-line locus. 
[Proof: During the process the coordinates u and v satisfy au = v2 . 

Now a + v = d4 and a - v = d2 from which it follows that v2 = 
a2 - d2d4 (1). Moreover, because the triangles PRQ and OWP 
along OQ are similar and QR = QV - VR = a - u, it follows that 
(a - u) : d3 = d5 : d1, whence au = a2 - ad3d5 /d1 (2). Equat
ing the expressions (1) and (2) for au and v2 , respectively, yields 

29[Descartes 1637) p. 337. 
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ad3d5 = d1d2d4 .] 

It should be noted that this construction does not follow from the analysis. 
The equation that Descartes had derived for the curve, Equation 23.30, did not 
suggest in any obvious way the tracing procedure of the construction. Nor did 
Descartes explain how he had found the procedure (or even that finding it was 
not a straightforward matter). 

In Chapter 19 I conjectured that Descartes found the construction by the 
turning ruler (OP) and moving parabola (UVU) , discussed above, through a 
certain reduction of the five-line locus to a three-line one, and that for some time 
he hoped to find similar tracing methods for all Pappus curves. In the Geom
dry he made some remarks about possible generalizations of the construction, 
which corroborate my conjecture because they concern the generalization of the 
tracing procedure to cases in which the given lines are in different configurations 
than the one given in the special five-lines problem. Descartes stated that the 
procedure could be modified to apply also (1) if the distances di were not per
pendicular, (2) if the transversal line L5 were not perpendicular either, and (3) 
if the four parallel lines were no longer equidistant.3o Remarks (1) and (2) are 
readily explained if we assume that he was thinking of the derivation of the con
struction I conjectured in Section 19.3 (Equations 19.11-19.14): Taking oblique 
rather than perpendicular distances only affects the value of a in the equation 
ad3d5 = d1d2d4 • The derivation of the construction, however, does not depend 
on the particular value of a, so statement (1) follows as an obvious generaliza
tion. Similarly, it is easily seen that the derivation can be adjusted to the case 
of non-equidistant parallels, whence statement (3). If, as in statement (2) the 
transversal is not perpendicular (cf. Figure 23.6), one can take the d1,"', d4 par
allel to it, by which the same proportionalities as in Equations 19.10 and 19.12 
apply and analogously the problem is reduced to a three-line locus with respect 
to two vertical lines and one oblique transversal. It is not difficult to derive that 
this three-line locus is a parabola with vertical axis and passing through the 
two points of intersection of LQ ,L2 and L4. We can, therefore, also understand 
statement (2) as an obvious corollary to the construction as found according to 
my conjecture. 

In a further comment on the five-line locus in the Geometry, Descartes 
claimed (4) that the tracing procedure would apply also in some instances of 
the five-line problem in which the four lines are not paralle1.31 In order to ap
ply the procedure as explained in Chapter 19 the lines L2 and L4 have to be 
parallel (otherwise the moving three-line locus would change its shape) and L1 
and L3 have to be parallel (otherwise the basic proportionality introduced by 
the ruler no longer applies), but the two pairs of parallels need not have the 

30 [Descartes 1637J pp. 338-339: "Or encore que les paralleles donnees AB, JR, ED, et GF 
ne fussent point esgalement distantes, et que GA ne les couppast point a angles droits, ny 
ausy lea !ignes tirees du point C vers elles, ce point C ne laisseroit pas de Be trouver tousiours 
en une !igne courbe, qui seroit de cete mesme nature. Et il s'y peut aussy trouver quelquefois, 
encore qu'aucune des !ignes donnees ne soient paralleles." 

31Cf. the last sentence of the quotation in Note 30. 
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a --> 

Figure 23.6: Five-line locus with oblique transversal 

same direction. Descartes may have seen this and he may have had this case in 
mind when writing down his comment. For arbitrary positions of the given five 
lines, however, the turning ruler and moving curve procedure does not apply. 
Perhaps Descartes' statement is to be considered as an echo of the hopes he 
may have had about the procedure, namely, that with suitable adjustments it 
would cover any position of the given lines. That hope may have been based 
on generalizations as the one we have in the present comment, untenable in its 
generality but suggestive and hopeful. 

23.5 The "simplest" five-line locus 

In the Geometry Descartes repeatedly asserted that the case of the five-line Locus depends 
locus which yielded the Cartesian parabola, was the simplest case.32 The state- on order of the 
ment is usually interpreted to mean that the configuration of four equidistant di 

parallels and one perpendicular transversal is the simplest of five lines (after 
the one of five equidistant parallellines).33 However, this configuration of lines 

32Cf., e.g., the margin title of the section on the five-line locus, [Descartes 1637J p. 335: 
"QueUe est la premiere et la plus simple de toutes les lignes courbes qui servent en la question 
des anciens quand eUe est proposee en cinq lignes." 

33This is how Newton interpreted Descartes' claim when he criticised it as one of the errors 
of the Geometry, cf. [Newton 1967-1981J vol. 4 pp. 336-345. He argued that by analogy 
the parabola or the hyperbola, originating as loci with respect to two parallel lines and one 
perpendicular transversal (cf. Figure 19.3), would be the simplest second-degree curve, simpler, 
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gives rise to several types of Pappus curves, only one of which was singled out as 
the simplest by Descartes. Thus the usual interpretation is incomplete because 
it leaves Descartes' further choice unexplained. 

If we consider four given parallel lines L1,"', L4 and one perpendicular 
transversal L5 and denote the corresponding distances in the way introduced 
above, the general Pappus problem with respect to these lines is 

(23.31 ) 

in which (i,j, k, l, m) is any permutation of the numbers 1"",5. Descartes' 
curve arises in the particular case ad3d5 = d1d2d4 . Descartes' choice is not the 
most obvious one among the possible permutations, nor are the curves arising 
in the other permutations in any obvious sense similar to the one he chose. It is 
therefore of interest to study the various loci defined by Equation 23.31 in order 
to understand, if possible, Descartes' choice and his assertion that his curve 
in particular was the simplest. I have analyzed this question elsewhere; in the 
following I summarize the results of that analysis, referring for a more-detailed 
explanation and for the calculations to my earlier publication. 34 

The possible types of the five-line problem can be divided into two categories 
depending on the position of the factor d5 in the equation. Denoting d5 by Y 
(cf. Figure 23.7 and 23.8; note that Descartes denoted d5 by x), the two cate
gories are: 

Category I: 

Category II: 

Descartes' case belongs to category I. 

(23.32) 

(23.33) 

For category I the possible permutations yield, if we disregard symmetries,35 
essentially two loci; they are drawn in Figure 23.7. The one to the left is 
the curve which Descartes proposed (i.e., the Cartesian parabola); the other is 
different in that one of its branches has two local extremes.36 For the loci of 
Category II there are (again disregarding symmetries) four different types (see 
Figure 23.8).37 

A further analysis,38 shows that in each of these cases an argument similar to 

therefore, than the circle, which he considered absurd. 
34 [Bos 1992] pp. 78-90. 
35That is: the symmetry with respect to the X-axis and the symmetry with respect to a 

vertical (the latter is obtained by numbering the lines from right to left); thus aydl = d2d3d4, 
-aydl = d2 d3 d4 and ayd4 = dld2 d3 are considered the same. 

36In Newton's classification of cubics both curves belong to the class of "tridents" or "Carte
sian parabolas" because both have an equation of the form xy = Ax3 + Bx2 + ex + D, 
cf. [Newton 1967-1981] vol. 7 pp. 630-631, Figure 76. I use the term "Cartesian parabola" to 
refer exclusively to the type proposed by Descartes. 

37The four types of Category II, coresponding to items a-d of the figure, are lIa: ad3d4 = 
ydld2; lIb: ad2d4 = ydld3; IIc: ad2d3 = ydld4; lId: ad1d4 = yd2d3' 
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Figure 23.7: The five-line problem -loci of Category I 

...... 

d v 

Figure 23.8: The five-line problem - loci of Category II 
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the one I conjectured in Chapter 19 leads to a turning ruler and moving curve 
construction of the locus. For Category I the moving curves are parabolas with 
axes parallel to L 1; their motion is also parallel to L 1• For Category II the 
curves are hyperbolas with one asymptote parallel to L 1; also their motion is 
parallel to L 1. 

Thus, if Descartes had considered other versions of Equation 23.31 than 
the one he discussed in the Geometry, he would have encountered a number of 
variants of the turning ruler and moving curve procedure. We may then ask 
whether the one he chose was in some sense the simplest. Now the cases of 
Category I involve the motion of a parabola parallel to its axis, and it seems 
natural to consider that motion simpler than the one of a hyperbola moving 
parallel to one of its asymptotes. On that criterion the simplest case would be 
of Category I rather than II. Within Category I a difference in the two relevant 
turning ruler and moving curve procedures may be observed, namely, that in the 
case singled out by Descartes the point (Q in Figure 23.5), which connects the 
motion of the ruler to the motion of the parabola, is on the axis of the parabola, 
whereas in the other case it lies at some distance from the axis,39 which gives, 
one might say, a certain imbalance to the corresponding tracing motion. 

Thus there is a sense in which the five line problem Descartes chose to expose 
in the Geometry is indeed the simplest one. And even if we do not suppose that 
Descartes has surveyed all possibilities, it may well be that he saw some of them 
and chose the simplest of those. 

23.6 Another five-line locus 

The text At some stage of his studies of Pappus' problem Descartes actually studied 
loci of the Category II introduced in the previous section. We know this because 
after his solution of what he called the simplest problem in five lines he inserted 
in the Geometry a short and rather cryptic remark about the Pappus locus given 
by40 

(23.34) 

He wrote: 

The required point lies on a curve of different nature, namely, a curve 
such that, all the ordinates to its axis being equal to the ordinates 
of a conic section, the segments of the axis between the vertex and 
the ordinates bear the same ratio to a certain given line as this 
line bears to the segments of the axis of the conic section having 
equal ordinates. I cannot say that this curve is less simple than the 

38For details see [Bos 1992] pp. 83-87. 
39This argument is explained in more detail in [Bos 1992]. 
40 Descartes formulated the problem in words, [Descartes 1637] p. 339: "Mais si lorsqu'il y 

en a 4 ainsi paralleles, et une cinquiesme qui les traverse: et que Ie parallelepipede de trois 
des lignes tin\es du point cherche, I'une sur cete cinquiesme, et les 2 autres sur 2 de celles qui 
sont parallelesj soit esgal a celuy, des deux tirees sur les deux aut res paralleles, et d'une autre 
ligne donnee." 
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preceding; which nevertheless I believed should be taken as the first, 
since its description and calculation are somehow easier.,,41 

Descartes left the permutation of the distances unspecified; thereby his for- Comments 
mulation covers all problems of Category II. As I mentioned above, Descartes 
could have found a procedure for tracing the loci by a turning ruler and a mov-
ing hyperbola. However, although the passage does mention the reduction to 
a conic section, it does not at all suggest tracing by motion. There are several 
possible interpretations of this text,42 none of which, however, explicitly relates 
to a procedure similar to the one of my conjecture. I like to see Descartes' 
remarks on this five-line locus as an echo of some intermediate, primarily alge-
braic, investigation of the problem, undertaken sometime after the completion 
of the "ecrit" mentioned in Section 19.1, perhaps as a result of doubts about the 
generality of the earlier solution. The uncertainty, voiced in the final sentence 
of the passage, about whether, after all, this curve or the other is the simplest, 
seems to me an indication of such doubts. 

23.7 Clarity and concealment 

Descartes' solution of Pappus' problem as presented in the Geometry was Power and 
impressive indeed and well suited to convince his readers of the power of his virtuosity 
new method and of his own virtuosity in handling it. The conclusions Descartes 
reached about the solvability of the problem in general for any number of lines 
showed that he had definitely extended his method to the realm beyond the 
classical solid problems. He did not fail to stress the classical standing of the 
problem and its relation to the ancient method of analysis. Classical analysis 
had been restricted by the difficulty of the composition of solid loci - a difficulty 
now solved as a corollary to Descartes' solution of Pappus' problem. 

The discussion above of Descartes' solution of Pappus' problem also illus- Secrecy 
trates the curious mixture of clarity and concealment in the Geometry. On 
one level the book was indeed a treatise on method; it explained with great 
clarity a new method for finding the solution of geometrical problems. This 
clarity applied in particular to the analytical part of the method, the procedure 
leading from the problem to the equation. On a deeper level, however, Des-
cartes' attitude to his readers might almost be called secretive. This secrecy 
concerned primarily the heuristics of the synthetic side of the method, the way 

41 [Descartes 1637] p. 339: "Ce point cherche est en une ligne courbe d'une autre nature, 
a s<;avoir en une qui est telle, que toutes les lignes droites appliquees par ordre a son diame-
tre est ant esgales a celles d'une section conique, les segmens de ce diametre, qui sont entre 
Ie sommet et ces lignes, ont mesme proportion a une certaine ligne donnee, que cete ligne 
don nee a aux segmens du diametre de la section conique, ausquels les pareiIIes lignes sont 
appliquees par ordre. Et ie ne s<;aurois veritablement dire que cete ligne soit moins simple 
que la precedente, laquelle iay creu toutefois devoir prendre pour la premiere, a cause que la 
description, et Ie calcul en sont en quelque fa<;on plus faciles." 

42Cf. [Bos 1992] pp. 89-90. 
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Descartes had found the constructions he proposed. He explained and proved 
the constructions of the four-line loci clearly enough, but he remained silent on 
how he determined the location and the parameters of the conic sections from 
their equation; apodictically, he only gave the values and proved them to be 
the correct ones. The method behind his findings. which, as noted above, was 
probably some kind of indeterminate coefficients technique, was not explained. 43 

Similarly, although the tracing procedure of the five-line locus by turning ruler 
and moving parabola was exposed in detail, no clarification was offered of how 
Descartes had found it. We will find the same uncommunicative attitude later 
with respect to the standard constructions of solid and higher-order problems. 

One important aspect of Pappus' problem that also remained concealed in 
the Geometry was its role in providing the ingredients of Descartes' classification 
of curves and his demarcation of geometry. In the next chapter I discuss what 
Descartes wrote on these issues. 

43 Apparently Descartes referred to this omission in his letter to Mersenne of March 31, 1638 
([Descartes 1964-1974] vol. 2 p. 83): "Mais Ie bon est, touchant cette question de Pappus, que 
je n'en ay mis que la construction et la demonstration entiere, sans en mettre toute I'analyse." 



Chapter 24 

Curves and the 
demarcation of geometry 
the Geometry 

24.1 The demarcation 

• In 

I now come to a crucial issue in Descartes' geometrical doctrine: the demar- "Geometrical" 
cation of geometry. 1 His program required a reinterpretation of geometrical ex- and 
actness concerning constructions. Constructions were to be performed by means "mechanical" 
of curves; they had to be geometrically acceptable and as simple as possible. curves 
Consequently, his new doctrine had to provide clear answers to the following 
two questions: 

A. Which curves are acceptable as means of exact construction in 
geometry? 

and 

B. When is one curve simpler than another? 

I will discuss the second question in Chapter 25. The first question concerned 
the demarcation between exact, geometrical procedures, on the one hand, and 
non-exact, non-geometrical ones on the other. Descartes gave such a demarca
tion in terms of the curves used in the procedures. He distinguished between 
"geometrical" and "mechanical" curves; the former were acceptable in geometry, 
in particular for use in constructions, the latter were not. In effect, his distinc
tion was straightforward: "geometrical" curves were those that, with respect to 
rectilinear coordinates, had an algebraic equation; all ethers (in particular the 
spiral and the quadratrix). were "mechanical." This Cartesian demarcation of 
geometry had a great influence in the second half of the seventeenth century, 

1 I have dealt with many of the themes of the present chapter in [Bos 1981]. 

H. J. M. Bos, Redefining Geometrical Exactness
© Springer Science+Business Media New York 2001
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especially as the background for discussions on the exactness of various methods 
for tracing curves. 2 

The curves that Descartes allowed in geometry are now called "algebraic," 
the others "transcendental." Leibniz introduced these terms for Descartes' "geo
metrical" and "mechanical" as part of his own re-interpretation of mathematical 
exactness, thereby removing the implication that the latter class of curves should 
be excluded from true geometry.3 For Descartes, however, the demarcation was 
not fundamentally algebraic. Behind his answer - algebraic vs. non-algebraic 
- lay an argument of considerable complexity. The present chapter deals with 
that argument. 

Acceptable The principal text on the demarcation of geometry is at the beginning of Book 
curves II of the Geometry; its margin title is 

Which curved lines can be admitted in geometry. 4 

Descartes' criterion for accepting a curve concerned the manner of its tracing. 
I argued in Chapter 19 that the confrontation with Pappus' problem in 1632 
strengthened his idea that curves were to be accepted in geometry on the basis 
of the methods used to trace them. It also gave him the conviction that ac
ceptable curves were precisely those that had algebraic equations. However, an 
argument for this equivalence was lacking. Simply postulating that geometry 
should be restricted to algebraic curves was not convincing, for why should alge
bra provide a criterion for the demarcation of geometry? The question was too 
crucial for such a facile answer. The matter was further complicated by the fact 
that, besides tracing by motion, he had to consider two other ways of generating 
or representing curves, namely, pointwise construction and tracing procedures 
involving strings. For each of the three methods for generating curves Descartes 
had to formulate criteria that excluded the spiral, the quadratrix, and similar 
curves, while including the algebraic curves. He took these questions very seri
ously indeed, and in my opinion his arguments about them, although ultimately 
inconclusive, form the deepest and most impressive part of the intellectual effort 
that produced the Geometry. 

Survey of the Descartes did not collect all his arguments in one particular section of the 
arguments Geometry, nor were all his arguments as explicit as one could wish. Before 

analyzing the various relevant passages of the Geometry it is useful to give 
a schematic survey of Descartes' reasoning; this is done in Table 24.1. The 
arrows in the table ( ... A ~ B ~ E ~ D ~ A ... ) indicate how a proof that 
the algebraic curves are precisely those that are acceptable in geometry can 
be reconstructed from Descartes' statements: A Curves traced by coordinated 
continuous motions are acceptable in geometry; B curves that are acceptable 

21 have dealt with some of these discussions in [Bos 1987], [Bos 1988] and [Bos 1996]. 
3Cf. [Breger 1986], pp. 122~ 123. 
4[Descartes 1637] pp. 315: "QueUes sont les !ignes courbes qu'on peut recevoir en Geome

trie:" the pertaining text is on pp. 315~319. 
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in this sense have algebraic equations; E if a curve has an equation, it can be 
constructed by a generic pointwise construction, that is, a pointwise construction 
in which in principle any point of the curve may occur among those constructed; 
D if a curve admits a generic pointwise construction, it can also be traced by 
coordinated continuous motion. A, B, E, and D, in this order, combine to a 
proof that acceptable curves are precisely the ones that have algebraic equations. 

I now analyze Descartes' arguments about these questions of demarcation in 
more detail; I follow the order indicated by the left column in Table 24.1. 

24.2 Curves traced by motion 

For Descartes the primary criterion for accepting curves as geometrical was 
whether they could be traced by what in A in the table I have called "coordi
nated continuous motion." Descartes formulated his views on acceptable curves 
at the beginning of the second book of the Geometry. He started by criticizing 
the ancient geometers for not classifying problems and curves beyond solid prob
lems and conic sections, respectively. Moreover, they had rejected other curves 
because they were "mechanical," that is, traced by a machine. But, Descartes 
wrote, circles and straight lines are also traced by machines and yet they were 
accepted in geometry. The precision with which a curve could be understood 
should be the criterion in geometry, not the precision with which it could be 
traced by hand or by instruments. Nor were the classical Euclidean postulates 
sufficient argument for excluding curves, because the ancient geometers them
selves were prepared to go further, by postulating, for instance, that a curve 
could be generated by the intersection of a cone and a plane. Descartes' own 
criterion was, he claimed, easier than that: 

nothing else need be supposed than that two or several lines can 
be moved one by the other and that their intersections mark other 
lines.5 

Perhaps, Descartes wrote, the ancients did not quite accept conic sections as 
geometrical but such a restriction had to be rejected, and 

... it seems very clear to me that if we make the usual assumption 
that geometry is precise and exact, while mechanics is not, and if we 
think of geometry as the science which furnishes a general knowledge 
of the measurement of all bodies, then we have no more right to 
exclude the more complex curves than the simpler ones, provided 
they can be conceived of as described by a continuous motion or by 
several successive motions, each motion being completely determined 
by those which precede; for in this wayan exact knowledge of the 
measure of each is always obtainable.6 

5[Descartes 1637] p. 316: "Et il n'est besoin de rien supposer pour tra.c;er toutes les !ignes 
courbes, que je pretens icy d'introduire; sinon que deux ou plusieurs !ignes puissent estre 
meues l'une par l'autre, et que leurs intersections en marquent d'autres." 

6[Descartes 1637] p. 316: " ... il est, ce me semble, tres clair, que prenant comme on 
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Descartes' arguments paraphrased and quoted above enable us to reconstruct Criteria for 
his primary criteria for the tracing motions to produce acceptable curves. They acceptable 
were: (1) that the moving objects were themselves straight or curved lines, motion 
(2) that the tracing point was defined as the intersection of two such moving 
lines, (3) that the motions of the lines were continuous (which Descartes did 
not specify further), and (4) that they were strictly coordinated by one initial 
motion. I use the term "coordinated continuous motion" for curve tracing move-
ment satisfying these criteria. I illustrate these criteria below by the example of 
the mesolabum; the "turning ruler and moving curve procedure" (Section 19.4) 
provides another instance of coordinated continuous motion. 

Obviously the motion criteria summarized a manner of conceiving or imag
ining a motion, and a resulting curve, which Descartes accepted as sufficiently 
clear and distinct to count as certain. In this sense the criteria implemented 
Descartes' first rule of method from the Discourse: 

... never to accept anything as true if I did not have evident knowl
edge of its truth: that is, carefully to avoid precipitate conclusions 
and preconceptions, and to include nothing more in my judgements 
than what presented itself to my mind so clearly and distinctly that 
I had no occasion to doubt it.7 

It is also clear that in referring to methods of tracing curves, Descartes did not 
envisage the actual physical processes of tracing on paper or other surfaces, but 
the mental processes by which the mind contemplated the generation of curves 
by motion. The instruments such as those described in the Geometry were not 
meant to be made and used, but to be contemplated and thus to be helpful 
for the mind in intuiting the tracing process and in determining whether it was 
sufficiently clear and distinct to accept the resulting curve as geometrical. 

One of the instruments Descartes used in the Geometry to illustrate the kind The 
of tracing he envisaged was the device, later called "Descartes' Mesolabum," for "mesolabum" 
constructing mean proportionals;8 I discussed it above in Chapter 16 (cf. In-
strument 16.3). The instrument is often reproduced (not least for its pictorial 
appeal) in studies about Descartes' mathematics. The curves AB, AD, AF, 
and AH, traced by the Mesolabum (cf. Figure 24.1), satisfied the four criteria 

fait pour Geometrique ce qui est precis et exact, et pour Mechanique ce qui ne l'est pas; 
et considerant la Geometrie comme une science, qui enseigne generalement a connoistre les 
mesures de tous les cors, on n'en doit pas plutost exclure les lignes les plus composees que les 
plus simples, pourvu qu'on les puisse imaginer estre descrites par un mouvement continu, ou 
par plusieurs qui s'entresuivent et dont les derniers soient entierement regles par ceux qui les 
precedent. Car par ce moyen on peut tousiours avoir une connaissance exacte de leur mesure." 
Cf. [MoHand 1976] for a detailed discussion of these arguments, in particular of whether they 
accurately reflected the ideas of the "ancient geometers." 

7[Descartes 1637b] p. 18 " ... de ne recevoir iamais aucune chose pour vraye, que ie ne la 
connusse evidemment estre teHe: c'est a dire, d'eviter soigneusement la Precipitation, et la 
Prevention; et de ne comprendre rien de plus en mes iugemens, que ce qui se presenteroit si 
c1airement et si distinctement a mon esprit, que ie n'eusse aucune occasion de Ie mettre en 
doute;" translation quoted from [Descartes 1985-1991] vol. 1 p. 120. 

8 [Descartes 1637] pp. 317-319, 370-371. 
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Figure 24.1: Descartes' Mesolabum (Geometry p. 318) 

for acceptable motion formulated above. The moving parts were straight lines; 
the curves were traced by the points B, D, F, and H, which were points of 
intersection of the moving straight lines; the motions of the lines were continu
ous; and they were all coordinated by the initial movement of turning the ruler 
Y X around the fixed point Y. Descartes noted that, although these curves 
were successively more complicated, their manner of tracing remained clear and 
distinct, and therefore they should be accepted in geometry: 

But I do not see what could prevent us from conceiving the descrip
tion of the first [Le., the curve traced by D] as clearly and distinctly 
as that of the circle, or at least as that of the conic sections, nor what 
could prevent us from conceiving the second one and the third one 
and all the others, which one can describe equally well as the first 
one; nor therefore what could prevent us from accepting all these 
curves in the same manner, to serve the speculations of geometry. 9 

Descartes then explained that the equations of these curves were the best means 
to classify them: 

9[Descartes 1637] pp. 318-319: "Mais je ne voy pas ce qui peut empescher, qu'on ne con
coive aussy nettement, et aussy distinctement la description de cete premiere, que du cercie, 
ou du moins que des sections coniques; ny ce qui peut empescher, qu'on ne concoive la sec
onde, et la troisiesme, et toutes les autres, qu'on peut descrire, aussy bien que la premiere; 
ny par consequent qu'on ne les recoive toutes en mesme fa<;on, pour servir aux speculations 
de Geometrie." 
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I could present here several other ways of tracing and concelvmg 
curved lines which would be increasing in complexity by degrees to 
infinity. But for comprising together all those that are in nature 
and for distinguishing them by order in certain classes, I know no 
better way than to say that all the points of those which one may 
call geometrical, that is, of those that are subject to precise and 
exact measurement, necessarily have some relation to all the points 
of one straight line which can be expressed by an equation, the same 
for all points. 10 

This passage is of importance because it contains the argument (marked B 
in Table 24.1) that acceptable curves have algebraic equations. Geometrically 
acceptable curves were traced and conceived in the manner illustrated by the 
Mesolabum; they were "subject to precise and exact measurement" and hence 
they admitted an algebraic equation. It should be noted that at this point 
Descartes did not claim that, conversely, every algebraic equation (in two un
knowns) described a geometrical curve. 

Descartes did not further explain his statement that acceptable curves had 
algebraic equations. In several examples he calculated the equations of accept
ably traced curves (for instance, the hyperbola traced by a turning ruler and 
moving straight linell and the Cartesian parabola traced by a turning ruler 
and moving parabola12) and these calculations illustrated that curves traced by 
acceptable motions indeed have algebraic equations. 

The "mechanical" curves such as the spiral and the quadratrix were defined Tracing non
by certain tracing procedures. Evidently Descartes had to argue that the rna- geometrical 
tions involved in these procedures were not coordinated continuous motions in curves 
the sense explained above. We have seen (Definitions 3.2 and 3.3) how the spiral 
and the quadratrix were generated by combinations of rectilinear and circular 
motions. In these cases Descartes stated that the coordination of the two mo-
tions could not be measured and therefore could not be conceived with sufficient 
clarity and distinction. Thus he wrote about the spiral and the quadratrix that 
they 

. . . in truth only belong to mechanics, and are not at all among 
those which I think should be accepted here, because one imagines 
them described by two separate movements, between which there is 
no relation at all that one could measure exactly.13 

lO[Descartes 1637J p. 319: "Ie pourrois mettre icy plusieurs autres moyens pour tracer et 
conllevoir des !ignes courbes, qui seroient de plus en plus composees par degres a l'infini. Mais 
pour comprendre ensembles toutes celies, qui sont en la nature, et les distinguer par ordre en 
certaines genres; ie ne sllache rien de meilleur que de dire que tous les poins, de celies qu'on 
peut nommer Geometriques, c'est a dire qui tombent sous quelque mesure precise et exacte, 
ont necessairement quelque rapport a tous les poins d'une ligne droite, qui peut estre exprime 
par quelque equation, en tous par une mesme." 

11 [Descartes 1637J pp. 319-322, cf. also Section 19.4 Problem 19.5. 
12[Descartes 1637J p. 337, cf. Construction 23.5. 
13 [Descartes 1637J p. 317 " ... la Spirale, la Quadratrice, et semblables, qui n'appartienent 
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The absence of a measurable relation ("raport") of the motions is the essential 
point here; both for the quadratrix and the spiral the two movements could 
in principle be coordinated in such a way that the one determined the other, 
namely, by a string mechanism such as the one I illustrate in Section 24.4 below 
(Instrument 24.1). When Descartes spoke about measuring the relation of the 
motions, he evidently thought of the ratio of their velocities or the ratio of the 
distances traversed by each in equal time intervals. In the case of the quadratrix, 
as in that of the spiral, the two velocities involved in tracing the curve had no 
exactly measurable "raport:" measuring their relation would involve comparing 
the lengths of straight and curved lines, in particular those of the diameter and 
the circumference of a circle. Descartes returned to this argument some pages 
later in connection with the tracing of curves by instruments involving strings 
(see Section 24.4). He argued that one should not accept lines in geometry 
which resemble strings 

. . . that is to say which are sometimes straight and sometimes 
curved, because the proportion between straight lines and curves 
is not known, and, I even believe, will never be known to man, and 
therefore one cannot conclude anything exact and certain on that 
basis. 14 

Thus the separation between geometrical and non-geometrical curves, funda
mental in Descartes' vision of geometry, rested ultimately on his conviction 
that proportions between curved and straight lengths cannot be known exactly. 
This, in fact, was an old doctrine, going back to Aristotle. 15 The central role 
of the incomparability of straight and curved in Descartes' geometry was the 
reason why the first rectifications of algebraic (Le., for Descartes: geometrical) 
curvesl6 in the late 1650s were so revolutionary: they undermined a cornerstone 
of the edifice of Descartes' geometry. 

24.3 Pointwise construction of curves 

From the In his solution of the general Pappus problem, Descartes had shown how the 
equation to a equation of a curve implied the possibility, in principle, of constructing arbi

pointwise trarily many points on it (cf. Section 23.2). If the given polynomial equation 
construction was F(x, y) = 0, one could choose an arbitrary value Xl for X and solve the re

sulting equation in one unknown F(XI' y) = 0 geometrically, that is, one could 

veritablement qu'aux Mechaniques, et ne sont point du nombre de celles que ie pense devoir 
icy estre receues, a cause qu'on les imagine descrite par deux mouvemens separes, et qui n'ont 
entre eux aucun raport qu'on puisse mesurer exactement ... " 

14[Descartes 1637] pp. 340-341: " ... !ignes qui semblent a des cordes, c'est a dire qui 
devienent tantost droites et tantost courbes, a cause que la proportion, qui est entre les droites 
et les courbes, n'estant pas connue, et mesme ie croy ne Ie pouvant estre par les hommes, on 
ne pourroit rien conclure de lit qui fust exact et assure." 

15Cf. [Heath 1949] pp. 140--142. 
16These rectifications were achieved around 1658, independently by Van Heuraet, Neile, and 

Fermat; cf. [Baron 1969] pp. 223-228. 
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construct its root or roots YI,I,"', YI,k' (Note that Descartes here assumed 
that the roots of any polynomial equation could be constructed geometrically, 
but that was indeed what he claimed to achieve in Book III of the Geometry, 
cf. Section 26.4 and 26.5.) Thereby the points on the curve with coordinates 
(Xl, Yl,i) could be constructed and the procedure could be repeated for other 
values X2, X3, .•. of X, yielding arbitrarily many points on the curveP By this 
process of pointwise construction one could determine a net of points distributed 
along the curve with any required density. Moreover, because the Xi could be 
chosen arbitrarily, in principle any point of the curve could occur among those 
constructed. I use the term "generic pointwise construction" for pointwise con
structions that have this property of randomness; Descartes used the property 
to distinguish these pointwise constructions from others which he deemed less 
acceptable. 

Provided a complete method for constructing roots of algebraic equations 
was available (and Descartes claimed so), any algebraic curve could be con
structed generically pointwise in this way. Thus his results implied the state
ment marked E in Table 24.1, namely that any curve which admits an algebraic 
equation can be achieved by a generic pointwise construction. 

The obvious difference between tracing curves by motion and constructing Objections 
them pointwise was that the former produced all points of the curve, while against 
the latter only produced a (possibly large) number of such points. We have pointwise 
seen how Clavius struggled with this aspect when he argued that his pointwise constructions 
construction of the quadratrix was "geometrical" (Section 9.3) and how Kepler 
criticized pointwise construction because the parts of the curve between the 
constructed points remained unconstructed (Section 11.4). 

The question whether or not a procedure achieved all points of a curve was 
important in connection with the use of curves in constructions. This use was 
based on the assumption that if two constructing curves (or straight lines) were 
given, their point or points of intersection were given as well. For curves traced 
by motion this assumption was warranted by the continuity of the motion. 
But if, as in the case of pointwise construction, only a number (however large) 
of points of a curve were given, it was not at all obvious that its points of 
intersection with any other curve were also given. Consider, for instance, two 
ellipses C and D, both generically constructible pointwise (cf. Figure 24.2). For 
any arbitrarily chosen abscissa X, the corresponding points P on the ellipses 
could be exactly constructed. However, a point I of intersection could only 
occur among the so-constructed points if by accident its abscissa X I was chosen, 
and one could never be certain whether or not that choice had been made. 

Yet Descartes argued that if a curve could be produced by a generic pointwise 
construction, it could also be traced by coordinated continuous motion (item 
D in Table 24.1). He did so while explaining the difference between generic 
pointwise constructions and pointwise constructions employed for "mechanical" 
curves such as the quadratrix. 

17The notation here is mine, cf. Note 3 of Chapter 19. 
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c 

Figure 24.2: Intersection of pointwise constructible curves 

Pointwise Descartes knew that curves such as the quadratrix18 and the spiral can be 
construction of constructed pointwise (cf. Section 16.5 in particular Note 29). So he had to 

non- explain in what sense these procedures differed from the ones that yielded "ge
geometrical ometrical" curves. He did so in a section of Book II whose margin title was 

curves 
Which are the curved lines that one describes by finding many of 
their points and that can be accepted in geometry. 19 

Descartes wrote: 

It is worthy of note that there is a great difference between this 
method of finding different points to trace a curved line [sc. the 
pointwise construction of Pappus curves], and that used for the spiral 
and similar curves. For with the latter one does not find indifferently 
all points of the required curve, but only those points which can be 
determined by a simpler measure than is required for the generation 
of the curve itself. Therefore, strictly speaking, one does not find 
anyone of its points, that is, not one of those which are so properly 
points of the curve that they cannot be found except by means of 
it. On the other hand there is no point on the curves which are of 

180n Descartes' knowledge and opinion on the quadratrix see also [Gabe 1972] in particular 
pp. 123-128. 

19 [Descartes 1637] p. 340: "QueUes sont les !ignes courbes qu 'on descrit en trouvant plusieurs 
de leurs poins, qui peuvent estre receues en Geometrie." 
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use for the proposed problem [the Pappus problem] that could not 
occur among those which are determined by the method explained 
above. And because this method of tracing a curved line by finding 
a number of its points taken at random is only applicable to curves 
that can also be described by a regular and continuous motion, one 
may not exclude it entirely from geometry. 20 

Earlier, in 1629, Descartes had expressed the same ideas in a letter to Mersenne, 
prompted by a report of the latter on a procedure for the general multisection of 
angles that had been explained to him.21 From Descartes' remarks (Mersenne's 
letter is lost) it appears that the procedure involved a cylinder, a string, and 
a spiral curve. Probably, then, the procedure was a variant of the multisection 
of the angle by means of the spiral that Pappus had described (cf. Construc
tion 3.4). At least Descartes came to that conclusion and suggested a method for 
tracing a spiral by means of a string wound off from a cylinder; I return to that 
method in the next section. Descartes further commented that the procedure 
Mersenne described, although very precise in practice, was not geometrical. It 
implicitly used the spiral, which, like the quadratrix, could neither be traced by 
sufficiently interdependent motions nor generated by sufficiently general point
wise constructions. For the pointwise construction of the quadratrix Descartes 
referred to Clavius' Euclid edition, which shows that in his comments above he 
had Clavius' pointwise construction of the quadratrix in mind (cf. Construc
tion 9.1). Indeed Clavius' construction did not find "indifferently all points" 
but only points corresponding to divisions of the right angle that could be 
constructed by Euclidean means. Descartes made a sharp distinction between 
pointwise constructions such as these and the generic ones. The latter, unlike 
the former, could in principle yield any point on the curve. The distinction 
is indeed one between the particular and the generic; Descartes' remark that 
the constructed points on the quadratrix do not belong to "those which are so 
properly points of the curve that they cannot be found except by means of it" 
is a very apt characterization of the fact that they are not generic points of the 
curve. 

The last sentence in the quotation above shows that Descartes saw an analogy Generic 

20 [Descartes 1637] pp. 339-340: "Mesme il est a propos de remarquer, qu'il y a grande 
difference entre cete fac;on de trouver plusieurs poins pour tracer une ligne courbe, et celIe 
dont on se sert pour la spirale, et ses semblables. Car par cete derniere on ne trouve pas 
indifferemment tous les poins de la ligne qu'on cherche, mais seulement ceux qui peuvent 
estre determines par quelque mesure plus simple, que celIe qui est requise pour la composer, 
et ainsi a proprement parler on ne trouve pas un de ses poins. C'est a dire pas un de ceux 
qui luy sont tellement propres, qu'ils ne puissent estre trouves que par elIe: Au lieu qu'il n'y 
a aucun point dans les lignes qui servent en la question proposee, qui ne se puisse rencontrer 
entre ceux qui se determinent par la fac;on tantost expliquee. Et pourceque cete fac;on de 
tracer une ligne courbe, en trouvant indifferemment plusieurs de ses poins, ne s'estend qu'a 
celles qui peuvent aussy estre descrites par un mouvement regulier et continu, on ne la doit 
pas entierement reietter de la Geometrie." 

21The relevant passages are in Descartes' letters to Mersenne of 08/10/1629 and 13/11/1629, 
[Descartes 1964-1974] vol. 1 pp. 22-32 (esp. pp. 25-26) and pp. 69-75 (esp. pp. 70-71), re-

pointwise 
construction 
acceptable in 
geometry 
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between generic pointwise construction of curves and their tracing by coordi
nated continuous motion. In curve tracing the continuity of the motion ensured 
that each point of the curve was generated; in generic pointwise construction, at 
least in principle, each point could be constructed. He considered the analogy 
significant enough to base on it the conclusion, marked D in Table 24.1, that 
curves generated by generic pointwise constructions could also be traced by co
ordinated continuous motion ("this method of tracing ... is only applicable to 
curves that can also be described by a regular and continuous motion"). He 
gave no further argument. 

At the beginning of Book II Descartes formulated the conclusion that generic 
pointwise constructions of curves were acceptable in geometry on a par with trac
ing by coordinated continuous motion. Further on in the Geometry Descartes 
repeatedly introduced curves by a generic pointwise construction, even without 
considering their equations. Thus the ovals22 (treated in the section marked II-E 
in Table 20.1) were introduced by (generic) pointwise constructions; equations 
were not mentioned. 

The arguments Such were Descartes' intricate arguments about accepting or rejecting curves 

Acceptable use 
of strings 

as geometrical. I have located in particular the round of arguments (Table 24.1 
A ----; B ----; E ----; D ----; A) which combine to prove that the algebraic curves are 
precisely those that are acceptable in geometry. Descartes took these questions 
very seriously, and one may well admire the depth he achieved in treating this 
matter. Especially the arguments about pointwise construction, with their in
tuition of the difference between particular and generic points of a curve, are 
impressive. 

24.4 Curves traced by means of strings 

Immediately after the arguments on pointwise construction Descartes dealt 
with another method for generating curves, namely, tracing procedures involv
ing strings. He used this mode of generating curves later in the section on the 
"ovals," as an alternative to generic pointwise construction. 23 But he probably 
realized that strings could also be used to combine rectilinear and circular mo
tions so as to trace curves like the quadratrix or the spiral, which he wanted 

spectively. 
22The ovals that Descartes discussed on pp. 352-368 of the Geometry were curves whose 

surfaces of revolution provided shapes for lenses with the property that light rays coming from 
one point converged, after entering the lens, to another point (and variants of this property). 
Descartes explained how these ovals could be constructed when the positions of the light 
source and the converging point, and the refracting index of the lens material, were given. In 
the Dioptrics - the first "essay" in [Descartes 1637bj - he had discussed combinations of 
lenses with spherical, ellipsoid and/or hyperboloid surfaces that effectuate the same optical 
effects. He noted there (p. 110) the possibility of achieving these effects by single lenses of 
more complicated shape, but postponed their treatment to the Geometry; these were the 
ovals. Descartes considered them less suitable for the actual production of lenses. For further 
information on the Cartesian ovals see [Garibaldi 1991J and [Hara 1985J. 

23[Descartes 1637J pp. 356-357. 
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to exclude. Hence curve tracing with strings required a separate clarification of 
the demarcation between geometrical and non-geometrical curves. 

Descartes discussed this matter in a section with the margin title 

And which curves that one describes by means of a string can be 
accepted [in geometry].24 

He wrote there: 

Nor should we reject the method in which a string or a loop of thread 
is used to determine the equality of or the difference between two 
or more straight lines which can be drawn from each point of the 
required curVe to certain other points or towards certain other lines 
at certain angles. We have used this method in the Dioptrique to 
explain the ellipse and the hyperbola. It is true, though, that one 
cannot accept in geometry any lines which are like strings, that is to 
say which are sometimes straight and sometimes curved, because the 
proportion between straight lines and curves is not known, and, I 
even believe, will never be known to man, and therefore one cannot 
conclude anything exact and certain on that basis. Nevertheless, 
because in these constructions one uses strings only to determine 
straight lines whose lengths are perfectly known, this should not be 
a reason for rejecting them. 25 

Descartes referred to the familiar construction of the ellipse by means of a string 
fixed in the two foci, and a variant of this method, generating the hyperbola; he 
discussed these in more detail in his Dioptrics. 26 He considered these tracing 
methods acceptable because the strings were used merely to ensure a certain 
relation between straight lines (for instance that their sum was constant). 

In the previous section I mentioned a method for the general angular section The spiral 
about which Mersenne corresponded with Descartes in 1629. Descartes did not traced by using 
describe the procedure in detail, but in 1650 Christiaan Huygens sketched in his a string 
notebook an instrument that exactly corresponds to the remarks in the letter 
to Mersenne (cf. Note 21). It may very well be that he had heard about it 

24[Descartes 1637] p. 340: "Quelles sont aussy celles qu'on descrit avec une chorde, qui 
peuvent y estre receues." 

25[Descartes 1637] pp. 340-341: "Et on n'en do it pas reietter non plus, celie ou on se sert 
d'un fil, ou d'une chorde repliee, pour determiner l'ega!ite ou la difference de deux ou plusieurs 
lignes droites qui peuvent estre tirees de chasque point de la courbe qu'on cherche, a certains 
autres poins, ou sur certaines autres !ignes a certains angles. Ainsi que nous avons fait en 
la Dioptrique pour exp!iquer l'Ellipse et I'Hyperbole. Car encore qu'on n'y puisse rec;evoir 
aucunes !ignes qui semblent a des chordes, c'est a dire qui devienent tantost droites et tantost 
courbes, a cause que la proportion, qui est entre les droites et les courbes, n'estant pas connue, 
et mesme ie croy ne Ie pouvant estre par les hommes, on ne pourroit rien conclure de Iii qui 
fust exact et assure. Toutefois a cause qu 'on ne se sert de chordes en ces constructions, que 
pour determiner des !ignes droites, dont on connoist parfaitement la longeur, cela ne doit point 
faire qu'on les reiette." I quoted part of this passage above, see Note 14. 

26[Descartes 1637b] pp. 90 and 102. 
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Figure 24.3: Huygens' spiral tracing machine, from a manuscript of 1650 

from Descartes himself, who was a frequent guest in the Huygens mansion when 
Christiaan grew up.27 I discuss it here as an example of a procedure in which 
strings change from curved to straight during the motion. 

Instrument 24.1 (Spiral tracing instrument - Huygens)28 

1. C (see Figure 24.3) is a flat circular disk fixed upon the paper 
with its center at B; FA is a ruler which can turn around B; a 
string H - E - A - D is fixed to the disk at H, slung around the 
disk and guided via A to B; at the string's end at B a tracing pin 
D is attached. 
2. If the ruler is turned uniformly counter-clockwise; the string winds 
up around the disk and the tracing pin D is drawn uniformly along 
the ruler in the direction of A. 
3. During that motion, the pin D traces the spiral. 
[Proof The ruler FA turns uniformly around B; at the same time the 
tracing pin D moves uniformly along FA, hence (cf. Definition 3.2) 
D traces a spiral.] 

27It may be noted in this connection that Besson's treatise on instruments and machines 
([Besson 1582] pp. 5v-6r) contains a machine for tracing the Archimedean spiral in which the 
two movements are interrelated by a screw mechanism; the text claims this arrangement to 
be better than the use of strings. 

28[Huygens 1888-1950] vol. 11, p. 216. 
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Here clearly parts of the string change from straight to curved during the motion. 
Descartes considered that aspect of the procedure as geometrically unacceptable 
because, as we have seen above (Section 24.2), he was convinced that the ratio 
of straight and curved lines could never be known. 

24.5 The demarcation of geometry before 1637 

From his letter to Beeckman and the other mathematical documents dis- c. 1619 -
cussed in Chapter 16 we know that already in 1619 Descartes classified geomet- c. 1630 
rical constructions according to the curves used in them. Beyond straight lines 
and circles he envisaged the use of curves "which arise from one single motion 
and which therefore can be traced by the new compasses, which I consider to 
be no less certain and geometrical than the usual compass by which circles are 
traced."29 He realized that the class of such curves contained more than only the 
conic sections; but he considered the quadratrix and the linea proportionum to 
be outside that class. At the time he did not reject these curves from geometry; 
indeed he claimed that by their use "hardly anything would remain to be found 
in geometry.,,30 However, he considered these curves as "only imaginary" and 
intimated that for any problem one could imagine a curve of that kind by which 
it could be solved. As I explained in Section 16.5 the quadratrix could indeed be 
seen as specially made for angular sections. In the letter to Beeckman Descartes 
set himself the task to demarcate precisely between, on the one hand, problems 
that can only be solved by such "imaginary" curves and, on the other hand, 
problems solvable by curves arising from one single motion. He also intended to 
classify the latter problems according to the curves used in their construction. 
As we have seen, that task he successfully completed in the Geometry. 

The Rules of 1628 did not contain further arguments on the construction of 
problems by curves, but we know from the letters to Mersenne discussed above31 
that by 1629 Descartes was convinced that constructions by means of the spiral 
or the quadratrix were not geometrical because they could not be traced by 
sufficiently coordinated motions or by generic pointwise constructions. 

Golius' challenge in 1631 to solve Pappus' problem made Descartes rethink The letter to 
the issue. We have seen in Section 23.1 that he wrote down a sketch of a Golius, 1632 
classification of curves in a letter to Golius. The sketch was an addition to 
the "ecrit" he had sent earlier (and which is lost). After the survey above of 
Descartes' ideas on the demarcation of geometry and the classification of curves 
in the Geometry it is useful to return to the 1632 document and analyze it in 
order to see whether it provides clues for the understanding of the development 
of Descartes' thought on the matter before 1637. 

The text of the addition may be paraphrased as follows (see also Table 24.2): 

29See Note 6 of Chapter 16. 
30 Ibid. 
31See Note 21 and Instrument 24.1. 
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Number (n) of given lines Number (k) of Degree (d) of the 
in the Pappus problem "simple relations" equation 

3, 4 2or3 ~2 

5, 6, 7, 8 3 or 4 ~4 

9, 10, 11, 12 5 or 6 ~6 

etc. 

Table 24.2: Concerning Descartes' classification of curves, 1632 

For any position of the given lines, the solution of a Pappus problem 
is a curve that can be traced by "one single continuous motion com
pletely determined by a number of simple relations." 32 "Simple rela
tions" are "those which involve only one geometrical proportion.,,33 
The number (k) of these simple relations depends on the number 
(n) of lines in the problem: if n ~ 4, then k = 2 or k = 3; if n ~ 8, 
then k = 3 or k = 4; if n ~ 12, then k = 5 or k = 6; etc. Conversely, 
any curve traced by a single continuous motion determined by k 
simple relations is a solution of a Pappus problem in n lines where, 
if k ~ 2, then n ~ 4; if k ~ 4, then n ~ 8; etc. The requirement 
of tracing !>y one continuous motion excludes curves like the spiral 
and the quadratrix because their description involves unrelated mo
tions. The requirement that the motion should be determined by 
simple relations excludes a further class of curves, as yet unnamed. 
Finally, the number of simple relations in the tracing motion induces 
a classification of the remaining, not excluded curves; the first class 
consists of the conics, the second one contains, apart from some spe
cial curves mentioned in the ecrit,34 many others as well, too many 
to enumerate. 35 

32Cf. Note 35 below: ". .. unico motu continuo, et omni ex parte determinato ab aliquot 
simplicibus relationibus." 

33Cf. Note 35 below: " ... illas ... quarum singulae non nisi singulas proportiones Geo
metricas involvunt." 

340r so I interpret the "supra" in the text, see Note 35. 
35Descartes to Golius, January 1632, [Descartes 1964-1974J vol. 1 pp. 233-234. The classi

fication is in Latin (the rest of the letter in French); its full text is: "Datis quotcunque rectis 
lineis, puncta omnia ad illas iuxta tenorem quaestionis relata, contingent unam ex lineis quae 
describi possunt unico motu continuo, et omni ex parte determinato ab aliquot simplicibus 
relationibus; nempe, it duo bus vel tribus ad summum, si rectae positione datae non sint plures 
quam quatuor; it tribus vel quatuor relationibus ad summum, si rectae positione datae non sint 
plures quam octo; it quinque vel sex, si datae rectae non sint plures quam duodecim, atque ita 
in infinitum. Et vice versa nulla talis linea potest describi, quin possit inveniri positio aliquot 
rectarum, ad quas referantur infinita puncta, iuxta tenorem quaestionis, quae illam contingent. 
Quae quidem rectae non erunt plures quam quatuor, si curva descripta non pendeat it pluribus 
quam duo bus simplicibus relationibusj nec plures quam octo, si curva non pendeat it pluribus 
quam quatuor relationibusj et sic consequenter. Hic autem simplices relationes illas appello, 
quarum singulae non nisi singulas proportiones Geometricas involvunt. Atque haec linearum 

I 
I 
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Unfortunately, the key terms "single continuous motion," "simple relation," Interpretation 
and "geometrical proportion" in this text defy precise interpretation. It is 
tempting to suppose that these terms, and the numbers Descartes mentioned, 
correlated to algebraic properties of the equations of the Pappus curves, in par-
ticular their degree or the number of linear factors on their left- and right-hand 
sides. However, as Table 24.2 shows, Descartes' number of simple relations did 
not fully correspond to the degree, nor could the discrepancy easily be attributed 
to a mistake or oversight. Also, if Descartes had the degree of the equation in 
mind when writing about the number of simple relations, it is difficult to un-
derstand why he grouped the given numbers of lines in fours (n ~ 4, n ~ 8, 
n ~ 12, etc.) rather than in twos. Hence Descartes' "simple relations," involv-
ing, as he wrote "only one geometrical proportion," cannot refer to the linear 
(first-degree) terms of the equation. 

Although it seems impossible to reconstruct what precisely Descartes meant 
by "a single continuous motion determined by a number of simple relations," 
the structure of the text allows some more global conclusions. When he wrote 
the letter, Descartes believed that any Pappus curve was traceable by such 
a single continuous motion determined by a number of simple relations, and 
conversely that any curve so traceable was the solution of some Pappus problem. 
I have argued earlier (Section 19.2) that he knew how to derive the equations 
of Pappus curves. It seems also that he had already come to the conclusion 
that conversely all algebraic curves were Pappus curves.36 Furthermore, he 
envisaged a classification of these curves according to the number of given lines, 
which number he thought to correspond somehow to the number of "simple 
relations" determining the tracing motion. The last few sentences of the text 
show that Descartes believed that the requirement of a single continuous motion 
excluded curves as the quadratrix and the spiral, and that the requirement that 
the tracing motion be determined by simple relations excluded a further class 
consisting of curves that nobody yet had named. It is difficult to imagine which 
curves Descartes had in mind here; it may well be that his remark was prompted 
by the assumption that the two criteria for curves to be acceptable induced two 
classes of unacceptable curves. 

quaesitarum definitio est, ni fallor, adaequata et sufficiens. Per hoc enim quod dicam illas 
unico motu continuo describi, excludo Quadratricem et Spirales, aliasque eiusmodi, quae non 
nisi per duos aut plures motus, ab invicem non dependentes, describuntur. Et per hoc quod 
dicam illum motum ab aliquot simplicibus relationibus debere determinari, alias innumeras 
excludo, quibus nulla nomina, quod sciam, sint imposita. Denique per numerum relationum 
singula genera definioj atque ita primum genus solas Conicas Sectiones comprehendit, secun
dum verb praeter illas quas supra explicui, continet alias quam plurimas, quas longum esset 
recensere." 

36The words "et vice versa ... contingent" (cr. Note 35) point in that directionj cr. Sec
tion 19.5, in particular Note·17. The result was never challenged during the early modern 
periodj for a proof that it is incorrect see [Bos 1981] pp. 332-338. 
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24.6 The development of Descartes' ideas 
on demarcation 
between 1632 and 1637 

In Table 24.3 I have collected the ideas from the 1632 text and added the 
corresponding ideas from the Geometry as discussed above. Both the 1632 text 
and the Geometry contained the concept of curve tracing by acceptable kinds 
of motion and the idea that curves not so traceable, such as the spiral and the 
quadratrix, had to be excluded. But in 1637 the nature of the motions was less 
precisely defined, in particular the "simple relations" were no longer mentioned. 

Pappus curves and the way they could be traced were essential in the 
1632 text. They were less so in the Geometry; Descartes showed that Pap
pus curves were algebraical by showing how their equations could be derived, 
and he claimed that any algebraic equation could occur as the equation of some 
Pappus curve. But these statements did not serve as arguments in support of 
the demarcation, nor in support of the equivalence of geometrical and algebraic 
curves. 

In the 1632 text Descartes distinguished two kinds of excluded curves. The 
distinction is not mentioned in the Geometry; in 1637 Descartes offered no 
further structure within the class of curves that were excluded; they were all 
"mechanical." 

Reconstruction The most striking difference between the two stages in Descartes' thinking 
about classification of curves and the demarcation of geometry is that in 1632 
Descartes connected curve tracing directly to Pappus' problem, whereas in the 
Geometry the link between the two was very indirect. The comparison suggests 
the following reconstruction of the development of Descartes' ideas and insights 
about Pappus' problem and the demarcation of geometry: When first studying 
the problem in early 1632, he thought that for any Pappus curve he would be able 
to derive an explicit specification of the motion by which it could be traced. On 
the basis of that conviction he elaborated and refined his earlier programmatic 
and structural ideas about geometry, in particular the tenet that curves are to be 
accepted in or rejected from geometry on the basis of the nature of the motions 
that trace them. He formulated these ideas in the addition to the "ecrit." 
Later he realized that his motion solution of Pappus' problem was incomplete. 
However, he retained the programmatic and structural ideas about geometry 
and he tried to save the arguments for it. The result was that in the Geometry 
Pappus' problem was no longer linked to curve tracing and that Descartes had 
to give up classifying acceptable curves on the basis of properties of the tracing 
motion. In general he was forced to base his methodological arguments on the 
equations of curves rather than on the procedures for tracing them. Yet several 
elements of his original arguments about explicit curve tracing were retained in 
the Geometry, where in fact they no longer served much purpose. 
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Curves 1632 1637 

Curves traced by Acceptable motion is Acceptable motion is 
acceptable motion characterized as "one characterized as "a 

single continuous motion continuous motion or by 
completely determined by several successive 
a number of simple motions, each motion 
relations:" curves not so being completely 
traceable are excluded. determined by those 

which precede:" curves 
not so traceable are 
excluded. 

Pappus curves The class of Pappus The class of Pappus 
curves coincides with the curves coincides with the 
class of curves that can class of algebraic curves. 
be traced by acceptable 
motion; it is an extensive 
class. 

Algebraic curves [Not mentioned All algebraic curves are 
explicitly.] Pappus curves; because 

they allow generic 
pointwise construction 
they are also traceable 
by acceptable motion. 

Excluded curves Some curves, such as the The excluded curves are 
spiral and the quadratrix, called "mechanical:" 
are excluded by the examples: the quadratrix 
requirement of a single and the spiral. 
continuous motion; others 
are excluded by the 
requirement of motion 
determined by simple 
relations; such curves are 
as yet unnamed. 

Table 24.3: The ideas on classification and demarcation 
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In the next chapter we will see that also with respect to the classification of 
"geometrical" curves as to simplicity Descartes developed ideas that he probably 
acquired while studying Pappus' problem but which in 1637 he formulated in 
algebraic terms independently of that context. 



Chapter 25 

Simplicity and the 
classification of curves 

25.1 The classification 

In the previous chapter I analyzed Descartes' answer to the first of two crucial The classes 
questions that his new doctrine of geometry had to address. These questions 
were: 

A. Which curves are acceptable as means of exact construction in 
geometry? 

and 

B. When is one curve simpler than another? 

I now turn to the second question. 
Descartes divided the "geometrical" curves in successive classes ("genres"). 

The relevant text is at the beginning of Book II (IIA in Table 20.1), after 
the passage, (quoted in Section 24.2), in which Descartes explained that the 
equations of curves were the best means for classifying them. Descartes then 
wrote: 

If this equation contains no term of higher degree than the rectangle 
of two unknown quantities, or the square of one, the curve belongs 
to the first and simplest class. 1 

Descartes took this class to contain circles, parabolas, hyperbolas, and ellipses, 
he did not mention straight lines. 

But when the equation contains one or more terms of the third or 
fourth dimension in one or both of the unknown quantities (for it 

1 [Descartes 1637] p. 319: "Et que lorsque cete equation ne monte que iusques au rectangle 
de deux quantites indeterminees, oubien au quarn~ d'une mesme, la ligne courbe est du premier 
et plus simple genre ... " 

H. J. M. Bos, Redefining Geometrical Exactness
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requires two unknown quantities to express the relation of one point 
to another) the curve belongs to the second class; and if the equation 
contains a term of the fifth or sixth degree in either or both of the 
unknown quantities the curve belongs to the third class, and so on 
indefinitely. 2 

Thus curves of degrees one and two formed the first class, those of third- and 
fourth-degree the second, etc. The same classification was implicit in Descartes' 
letter to Golius of 1632, where, as we have seen (Section 24.5) he grouped the 
Pappus loci according to whether the number of given lines was :S 4, :S 8, :S 12, 
etc., which corresponded to degrees :S 2, :S 4, :S 6, etc. 

Descartes gave one explicit argument for this classification of curves by pairs 
of degrees, namely, that it was based on the fact that fourth-degree problems 
("difficultes") could always be reduced to third-degree ones, and sixth-degree 
problems to fifth-degree ones.3 It is difficult to interpret this statement. First 
of all it is incorrect. Descartes obviously referred to the fact that fourth-degree 
equations (in one unknown) can be reduced to third-degree ones by procedures 
such as Ferrari's4 or Viete's,5 whereas third-degree equations withstood all at
tempts to reduce them to second-degree ones. He then generalized this pattern 
to higher degrees, although no procedure for reducing sixth-degree equations to 
fifth-degree ones was known at the time, and, as we now know, there are no 
such procedures. Yet the generalization apparently seemed plausible enough to 
Descartes to accept it without further proof. 

The second difficulty with Descartes' statement is that he did not make 
clear why a pattern observed in a classification of equations in one unknown 
(equations related to problems) should apply for equations in two unknowns 
(equations of curves). Possibly he based this step on the pattern akin to the 
one he gave for the pointwise construction of Pappus curves (cf. Table 23.2 and 
Section 24.3): To construct a Pappus curve with (2n -1 )th or 2nth-degree equa
tion F(x, y) = 0, Descartes prescribed choosing a number of ordinate values Yi 
and to construct the roots of the corresponding equations F(x, Vi) = 0 in one 
unknown; these equations are at most of degree 2n - 1 or 2n. According to Des
cartes' canon of construction, to be discussed in the next chapter (Sections 26.4 

2[Descartes 1637] p. 319: "Mais que lorsque l'equation monte iusques a la trois ou qua
triesme dimension des deux, ou de l'une des deux quantites indeterminees, car il en faut 
deux pour expliquer icy Ie rapport d'un point a un autre, elle est du second: et que lorsque 
l'equation monte iusques a la 5 ou sixiesme dimension, elle est du troisiesme; et ainsi des 
autres a l'infini." 

3[Descartes 1637] p. 323: "Au reste ie mets les !ignes courbes qui font monter cete equation 
[sc. the equation of the curve] iusques au quarre de quarre, au mesme genre que celles qui ne 
la font monter que iusques au cube. Et celles dont l'equation monte au quarre de cube, au 
mesme genre que celles dont elle ne monte qu'au surso!ide. Et ainsi des autres. Dont la raison 
est qu'il y a reigle generale pour reduire au cube toutes les difficultes qui vont au quarre de 
quarre, et au surso!ide toutes celles qui vont au quarre de cube, de fa<;on qu'on ne les doit 
point estimer plus composees." 

4See Note 18 of Chapter 10. 
5Cf. Note 16 of Chapter 10. 
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and 26.5), the roots of (2n - l)th- and 2nth-degree equations are constructed 
by one and the same standard construction. Thus with respect to pointwise 
construction, curves of degrees 2n - 1 and 2n were of the same complexity and 
could therefore be considered as belonging to the same class. It should be noted 
that Descartes' canon of construction, and hence the argument above, did not 
require a reduction of 2n-degree equations (in one unknown) to 2n - I-degree 
ones, which Descartes, as we saw above, claimed to be possible. Thus, if he had 
the argument suggested above in mind when he decided to classify curves by 
pairs of degrees, his incorrect statement about the possibility of such a reduction 
was unnecessary. 

There is, however, no direct textual evidence that Descartes adopted the 
argument via pointwise construction as basis for his classification of curves. It 
may well be that he simply grouped curves according to pairs of degrees because 
he had already done so with problems. 

It should be noted that Descartes did not consider curves belonging to the 
same class as equally simple. As we will see (Sections 26.3 and 26.4) he used 
a third-degree curve, namely, the Cartesian parabola, for the construction of 
fifth- and sixth-degree equations and claimed that equations of degree seven 
and eight could be solved by using a fourth-degree curve. Had he considered 
third- and fourth-degree curves equally simple, these choices of procedures would 
have had little sense. Thus Descartes did not essentially use his classification of 
curves by pairs of degrees; rather he used a classification by single degrees. The 
terminology of "genres" was confusing and hardly functional. 

25.2 Simplicity, tracing, and degree 

Descartes' primary criterion for acceptability of curves was geometrical, it Choosing the 
related to the motions by which they were traced. His criterion for classification, simplest 
however, was algebraic, namely, the degree of the curve. The different nature of constructing 
these criteria raises the question how he saw the relation between the simplicity curve 
of curves, their degrees, and the tracing procedures by which they could be 
generated. In the opening sentences of the third book Descartes referred to the 
simplicity of tracing: 

While it is true that every curve which can be described by a con
tinuous motion should be accepted in geometry, this does not mean 
that we should use at random the first one that we meet in the con
struction of a given problem. We should always choose with care 
the simplest curve that can be used in the solution of a problem.6 

Yet in the subsequent sente~ces he rejected tracing as a criterion for simplicity: 

6[Descartes 1637] pp. 369-370: "Encore que toutes les !ignes courbes, qui peuvent estre 
descrites par quelque mouvement regulier, doivent estre receues en la Geometrie, ce n'est pas 
a dire qu'it soit permis de se servir indifferemment de la premiere qui se rencontre, pour la 
construction de chasque problesme: mais il faut avoir soin de choisir tousiours la plus simple, 
par laquelle it soit possible de Ie resoudre." 
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But it should be noted that the simplest means not merely the one 
most easily described, nor the one that leads to the easiest demon
stration or construction of the problem, but rather the one of the 
simplest class that can be used to determine the required quantity. 7 

In connection with this statement Descartes returned to the Mesolabum. At 
the beginning of Book II he had introduced this instrument to explain that the 
curves it traced, although successively more complex, were all equally accept
able in geometry (cf. Instrument 16.3, Figures 16.4 and 24.1, and Section 24.2). 
Now he noted that, although these curves doubtlessly provided the easiest con
structions of mean proportionals and an immediate proof of the correctness 
of that construction, nevertheless, they were not the appropriate constructing 
curves, because they were not of lowest possible class. With obvious reference 
to Pappus' dictum on the "sin" committed by geometers when failing to use the 
simplest possible means of construction (cf. Section 3.4), Descartes stated that 
using these curves was an error ("faute") in geometry: 

But the curve AD is of the second class,8 while it is possible to find 
two mean proportionals by the use of the conic sections, which are 
curves of the first class. Again, four or six mean proportionals can 
be found by curves of lower classes than AF and AH respectively. 
It would therefore be a geometric error to use these curves. On 
the other hand, it would be a blunder to try vainly to construct a 
problem by means of a class of lines simpler than its nature allows. 9 

A reversal It is important to pause and note the strangeness of these passages. Descar-
tes first encouraged the reader to follow an obvious line of thought: to prefer the 
curves traced by the Mesolabum over any other curves for constructing mean 
proportionals, because they were most simply traced and they provided direct 
proof of the correctness of the construction. And then, by a sudden reversal of 
direction, he blocked this line of thought and ordered, without argument, that 
nevertheless one should employ curves of lowest possible degree. Our study of 

7[Descartes 1637] p. 370: "Et mesme il est a remarquer, que par les plus simples on ne 
doit pas seulement entendre celles, qui peuvent Ie plus aysement estre descrites, ny celles 
qui rendent la construction, ou la demonstration du Problesme propose plus facile, mais 
principalement celles, qui sont du plus simple genre, qui puisse servir a determiner la quantite 
qui est cherchee." 

8Descartes did not give the equations of the curves traced by the Mesolabum. They are 
(cf. Figures 16.4 and 24.1): 

(25.1) 

The degrees of the successive curves (starting with the one traced by D) are 4, 8, 12, etc., and 
thus their "genres" are 2, 4, 6, etc. 

9[Descartes 1637] p. 371: "Mais pourceque la !igne courbe AD est du second genre, et qu'on 
peut trouver deux moyenes proportionelles par les sections coniques, qui sont du premier; et 
aussy pourcequ'on peut trouver quatre ou six moyenes proportionelles, par des !ignes qui ne 
sont pas de genres si composes, que sont AF, et AH, ce seroit une faute en Geometrie que de 
les y employer. Et c'est une faute aussy d'autre coste de se travailler inutilement a vouloir 
construire quelque problesme par un genre de !ignes plus simple, que sa nature ne permet." 
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his earlier thoughts on construction makes clear that the reader whom Des
cartes addressed here was his earlier self, who, at the time of the letter to 
Beeckman, explored the idea of universal instruments, the "new compasses," 
the mesolabum for mean proportionals and the multisector for angular sections. 
These instruments were conceived to supplement or even complete the arsenal 
for geometrical problem solving; the curves they traced were simple and the 
design of the instruments made the proofs evident and elementary. But the 
Descartes of the Mesolabum and the multisector was later confronted with the 
difficulty of generalizing the kinematic approach and he experienced the power 
of algebra and the structural wealth of Pappus' problem; as a result he reversed 
his earlier line of thought from the kinematical devices of curve tracing to the 
symbolic devices of equations. The reversal was indeed a choice for the strength 
and structural appeal of algebra, and thereby against the intuitive cogency of 
the kinematic interpretation of constructional procedures. That cogency was 
not lessened, no arguments against it had arisen. The passages quoted above 
contain, as it were, Descartes' amende honorable for this essential reversal in 
the development of his thoughts on geometry.lO 

25.3 Simplest possible curves and equations 

With the degree as criterion of simplicity two further questions remained: Simplicity for 
How to choose the simplest curve among those of the same degree? And: what fixed degree 
about curves (such as the circle among the conics), which, as means of construc-
tion, were less powerful than most other curves in the same class? Descartes 
did not explicitly discuss the first question. He chose the parabola for con-
structing the roots of third- and fourth-degree equations, and for those of fifth-
and sixth-degree he used a special third-degree curve, the Cartesian parabola. 
These choices suggest that Descartes preferred curves that were simple in more 
than only the sense of having lowest possible degree. We have seen in connec-
tion with the 1625 version of Descartes' construction of the roots of third- and 
fourth-degree equations that the parabola was considered the simplest conic sec-
tion (cf. Section 17.1). The Cartesian parabola also featured a simplicity within 
its class: Descartes considered it to be the simplest Pappus locus for five given 
lines (cf. Section 23.4). However, Descartes did not explicitly formulate further 
criteria of simplicity than the degree of the curve. 

Descartes did discuss the fact that among curves of the same degree there Exceptional 
could be particular ones that were essentially less powerful in constructions curves 
than the others. The obvious example was the circle, which as to its degree 
belonged to Descartes' first class of curves, but which had less constructive power 

lOThe acceptance of the algebraic degree, rather than a more geometrical criterion, as the 
measure of simplicity was criticized by several later mathematicians, for instance, Newton and 
Jakob Bernoulli, d. [Bos 1984] pp. 358-366. 
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than the other conic sections. ll Indeed, for constructing solid problems a non
circular conic was required. Descartes investigated whether this phenomenon 
also occurred in the higher classes of curves. His formulations can only be 
interpreted as consistent if we assume that he thought of single-degree classes 
instead of classes of paired degrees. He wrote that within one class in principle 
all curves were equally complex and therefore could "serve for determining the 
same points and for constructing the same problems," 12 except some essentially 
simpler curves whose power did not extend that far .13 He mentioned the circle 
and, within the second class, the "ordinary conchoid which takes its origin 
from the circle." 14 Descartes apparently referred here to an observation he had 
made earlier in the Geometry, 15 namely, that the conchoid could be traced by a 
turning ruler and a moving circle. 16 He also knew that in classical geometry the 
conchoid served to perform the neusis construction (cf. Construction 2.5), and 
that all solid problems could be constructed by neusis. He may have concluded 
from this that the conchoid was nearer to the first class of curves, the conics, 
than to the class to which it belonged by virtue of its degree (which is four). 

25.4 Reducibility 

In a general method for constructing the roots of an n-th degree equation, 
the product of the degrees of the constructing curves must be at least equal to 
n. This is a consequence of the fact, proved by Bezout (1779), that two curves of 
degrees m and n, respectively, intersect, in general, in m x n points. It is likely 
that Descartes was aware of this fact - the practice of elimination suggests it 
rather clearly - but he did not formulate it, let alone that he proved it. He 
was certainly aware of one consequence of the fact, namely, that in order to 
find constructing curves of minimal degree the equation to which the problem 
is reduced should have minimal degree as well. 

Yet in the practice of analysis it could easily happen that a geometrical 
problem was reduced to an equation with unnecessarily high degree, for instance, 
if trivial or otherwise known solutions entered as roots. In that case the equation 
was reducible, that is, it could be written as 

F(x)G(x) = 0, (25.2) 

11 In a later argument ([Descartes 1637J pp. 401-402, cf. Note 49 of Chapter 26) Descartes 
related the constructional superiority of non-circular conic sections over circles to the fact 
that a circle has only one curvature, whereas the curvature along a non-circular conic varies; 
I return to this argument in Section 26.6. 

12[Descartes 1637J p. 323: " ... en sorte qu'elles peuvent servir a determiner les mesmes 
poins, et construire les mesmes problesmes ... " 

13 Ibid.: "qui n'ont pas tant d'estendue en leur puissance." 
14 Ibid.: "Conchoide vulgaire, qui a son origine du cercle." 
15[Descartes 1637J p. 322. 
16Descartes did not explain his observation but if (cf. Figure 2.3) one considers a circle with 

center F and radius a as the curve moving along CD, and EG as the ruler moving around 
o and guiding the circle via point F, then this turning ruler and moving curve procedure 
produces precisely the conchoid. 
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where the roots of F were the additional ones and those of G provided the es
sential solutions of the problem. 17 The trivial or known additional roots would 
typically be given line segments in the figure or line segments constructible by 
straight lines and circles from the given ones (for instance, the hypotenuse of 
a right-angled triangle whose two other sides are given). This implied that the 
coefficients of F, and hence also those of G, could be constructed by straight 
lines and circles from those of the original equation. Descartes realized that 
his method should safeguard against inadvertently arriving at a reducible equa
tion. He therefore provided algebraic techniques for checking whether the final 
equation was reducible and, if so, to find its irreducible components. These tech
niques constitute a large part of Descartes' contribution to the algebraic theory 
of equations to which Chapter 27 is devoted; I discuss them in Section 27.3. 

25.5 Conclusion 

The preceding sections have shown how in the case of the classification of Infiltration of 
curves, in the same way as with the demarcation question discussed in the algebra 
previous chapter, Descartes finally adopted algebraic criteria, abandoning ear-
lier attempts to classify according to methods of tracing. The process may be 
described as an infiltration of algebraic thinking into the interpretation of geo-
metrical exactness. It is indeed a natural process: the intuitive understanding 
of geometrical exactness, especially with respect to construction and motion, 
is diffuse and not easily translated into a formal ordered mathematical struc-
ture; algebra, on the other hand, with its ordering of equations by their degrees, 
offers attractive formal structure. Forced, by his programmatic approach, to 
make choices, but failing to find convincing geometrical arguments on which 
to base them, Descartes could do little but to turn to algebra. Here, at least, 
the choices were clear, and apparently in the end this was sufficient reason for 
Descartes to accept the absence of clear arguments why geometrical exactness 
should be interpreted through algebraic criteria. 

With these choices on acceptability and simplicity of curves Descartes had 
finally achieved a complete interpretation of exactness with regard to geometri
cal procedures of construction. The technical result was Descartes' final canon 
of geometrical construction to which I now turn. 

17 Another kind of reducibility arises if the equation can be written as F(G(x)) = ° with 
degree G > 1. In that case the construction can be split in two lower-degree ones: F(y) = 0, 
yielding roots Yi, and G(x) = Yi. Descartes did not discuss this case separately. Cf. Note 24 
of Chapter 27 and [Bos 1984] pp. 342-343. 



Chapter 26 

The canon of geometrical 
construction 

26.1 The "construction of equations" 

In the first book of the Geometry Descartes explained how to construct the Beyond the 
roots of quadratic equations. In order to move on to higher degrees he had to fourth degree 
elaborate the interpretation of constructional exactness in the way explained in 
the previous chapters. In the present chapter I discuss the final result of this 
interpretation, Descartes' general canon for geometrical construction. Taking 
over terminology developed after Descartes (cf. Section 29.3) I use the term 
"construction of an equation" for the procedure of geometrically constructing 
the roots of an algebraic equation in one unknown. 

By 1628 Descartes had simple and convincing constructions of the roots of 
equations of degrees 1-4. Especially, the general construction for equations of 
third and fourth degree by means of a parabola and a circle (cf. Chapter 17, 
Construction 17.1) was beautiful and constituted a marked improvement of 
the then extant methods. Yet a complete theory of geometrical construction 
demanded more, namely, a method for constructing any equation, whatever its 
degree. As we have seen, the writing of the Rules probably confronted Descartes 
with the need for such a general method of constructing equations, but at that 
time he had no answer. 

In the Geometry Descartes provided an answer. It consisted of a general con- Inspimtion 
struction of the roots of fifth- and sixth-degree equations and the claim that from Pappus' 
this construction, together with the one for third- and fourth-degree equations, problem 
sufficiently indicated how the technique could be extended to higher-order equa-
tions. The construction for fifth- and sixth-degree equations used a circle and a 
Cartesian parabola, the latter generated by the procedure of a turning ruler and 
a moving parabola. I have argued earlier (cf. Chapter 19) that these ingredients, 
the Cartesian parabola, the procedure of its tracing, and the suggestive possi-
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bilities of iteration and reduction, were the fruits of Descartes' earlier studies of 
Pappus' problem. The Cartesian parabola, the locus in the simplest case of the 
five-line problem, was arguably the simplest curve beyond the conic sections; 
it was therefore natural to choose it as constructing curve for the next class of 
equations, those of degrees five and six. The fact that the curve was traced by 
the motion of a parabola provided additional reason to consider it as the suc
cessor of the parabola itself in the construction of the next group of equations. 
Moreover, the generation of the Cartesian parabola by the turning ruler and 
moving parabola procedure suggested generalizability: by iteration one might 
find the successive standard curves to be used in the construction of successive 
classes of equations of increasing degree. 

Once the Cartesian parabola was chosen as constructing curve, the remain
ing task was calculation, which Descartes pursued until he had worked out the 
construction of fifth- and sixth- degree equations by the intersection of a Carte
sian parabola and a circle. The exercise (which I discuss in more detail below) 
gave him. the conviction that the process could be iterated for seventh- and 
eight-degree equations, etc. But he did not pursue the matter further - he 
merely stated that it would be easy to proceed in the same manner indefinitely. 

26.2 The standard construction of third- and 
fourth-degree equations 

Descartes gave his standard constructions of equations of degree higher than 
two in the second half of Book III of the Geometry (sections III D-E in Ta
ble 20.1). The construction for third- and fourth-degree equations! was basi
cally the same as the one he found c. 1625 and showed to Beeckman in 1628; 
I have discussed the latter in Section 17.1 (Construction 17.1). The version in 
the Geometry differed from the earlier one mainly in that it used another way 
of dealing with + / - case distinctions and that a proof was added. 

Descartes assumed that the second term of the equation was removed in the 
usual fashion2 and wrote the equation as3 

4 3 
Z = * . apzz . aaqz . a r . (26.1 ) 

The third-degree equation was subsumed in this form, namely, for r = o. The 
"*" meant that a term was missing; the "." stood for either a + or a -. Taking 
a as the unit, he rewrote the equation in non-homogeneous form: 

4 
Z = * . pzz . qz . r . (26.2) 

Descartes took p, q, and r to be positive line segments and kept track of the 
+ / - distinctions by expressions as "if there is +p in the equation," "if there is 

1 [Descartes 1637J pp. 389-395; the margin title of the section is: "Facon generale pour 
construire tous les problesmes solides, reduits a une Equation de trois ou quatre dimensions." 

2Cf. Chapter 27 Equation 27.8. 
3 [Descartes 1637J p. 390. 
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Figure 26.1: Descartes' standard construction of fourth-degree equations 

-r ," etc. 4 I write his equation as 

(26.3) 

with IFI = p, IQI = q, IRI = r; Descartes' sign distinctions then correspond to 
marking P, Q, and R along directed axes according to whether they are positive 
or negative. I use this convention in my summary of the construction and in 
my Figure 26.1; I explain the details of his case distinctions in footnotes. For 
illustration I add, in Figure 26.2, the four drawings that Descartes needed to 
deal with the different cases. 

Descartes' construction can now be summarized as follows: 

Construction 26.1 (Roots of a fourth-degree equation)5 
Given the equation x4 = Px2 + Qx + R, it is required to construct its roots. 

Construction: 
1. Describe (see Figure 26.1) a parabola with vertical axis, latus 
rectum equal to 1, and vertex A as highest point (this implies that 
with respect to coordinate axes as drawn in the figure, its equation 
is y = x2 ). 

4E.g. [Descartes 1637] p. 391: "s'il y a +p." 
5[Descartes 1637] pp. 389--395. 

The 
construction 
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2. Mark D on the vertical axis such that (oriented according to di
rections as indicated) AD = !(p + 1). 
3. Draw DE = !Q horizontally from D in the direction correspond
ing to its sign. 

4. Construct a line segment EH equal to J~(l + P)2 + iQ2 + R 
and draw a circle around E with its radius equal to that line seg
ment.6 

5. The circle intersects (or touches) the parabola in at most four 
points G, F, ... ; draw perpendiculars GK, FL, ... to the axis from 
each of these points. 
6. The segments GK, FL, ... , with signs as indicated by their di
rection, are the roots of the equation. 
[Proof: Descartes proved the correctness of the construction by set
ting G K = x and calculating the value of the distance EG in two 
ways, one using that G was on the parabola, the other that G was 
on the circle; equating both expressions he arrived at the original 
equation.7 Streamlined as to case distinctions in the same way as 
above, the proof comes down to the following: Put GK = x and 
AK = y, then y = x2 because G is on the parabola. G is also on the 
circle with center E whose coordinates are YE = !(P+1), XE = !Q; 
the equation of the circle is x2 - Qx + y2 - (P + l)y = R. Inserting 
y = x 2 one finds from this the equation X4 = Px2 + Qx + R as 
required.] 

In his text corresponding to item 3 Descartes left it to the reader to chose a 
direction for DE = ~Q; he afterwards adjusted directions by statements as "at 
the same side of the axis as E if there is +q in the equation."s In his figures 
(cf. Figure 26.2) he consistently drew DE to the left, which meant that he had 
to interpret the horizontal direction to the right as positive if the sign of q in 
the equation was negative and vice versa. 

Descartes noted that the circle might fail to intersect or touch the parabola 
in any point, which meant 

that there is no root at all in the equation either true or false, and 
that they are all imaginary. 9 

6Descartes performed the construction of the line segment EH explicitly (see the dotted 

lines in the drawings of Figure 26.2), using the fact that EA = vi i (1 + P)2 + iQ2. If r = 0 
(the case of the cubic equation), the circle passes through A. If r i- 0, the construction 
of the radius involves the unit and is perfomed by constructing right-angled triangles. The 
construction differs according to whether R is positive or negative. 

7He did so only for one of his case distinctions (namely, +p, -q, and +r) and left the other 
cases to the reader. 

BE.g. [Descartes 1637] p. 393: " ... si la quantite q est marquee du signe +, les vrayes 
racines seront celles de ces perpendiculaires, qui se trouveront du mesme coste de la parabole, 
que E Ie centre du cercle ... " 

9[Descartes 1637] p. 393: " ... cela tesmoigne qu'il n'y a aucune racine ny vraye ny fausse 
en I'Equation, et qu'elles sont toutes imaginaires." 
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Figure 26.2: The standard construction of fourth-degree equations (Geometry 
pp. 390-392) 
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He did not comment on the possibility that the value under the root sign might 
be negative. In the case of the cubic equation the intersection at A corresponded 
to the solution x = 0, introduced by raising the equation to the fourth degree. 
Descartes went on to discuss special cases and examples, to which I will return 
in Section 26.6. 

26.3 The standard construction for fifth- and 
sixth-degree equations 

For constructing fifth- and sixth-degree equations10 Descartes again presup
posed a standard form of the equation, this time not with a removed second 
term but with alternating coefficients: 

(26.4) 

(p, q, "', v > 0).11 The alternating coefficients ensured that all real roots 
were positive.12 Descartes furthermore assumed q > (~)2. The assumptions 
ensured (as will become clear below) that the denominators of fractions in the 
further calculations were different from zero and that square roots were ex
tracted only of positive quantities. Moreover, the choice of the standard form 
as in Equation 26.4 avoided complicated + / - case distinctions such as those 
in the construction of third- and fourth-degree equations. In earlier sections 
of Book III (part III-C of Table 20.1) Descartes had shown that any fifth- or 
sixth-degree equation could indeed be rewritten in this standard form by trans
formations corresponding to plane constructions. I return to his arguments in 
the next chapter, in particular in connection with the substitution x = y - a 
(Equation 27.9). 

The Descartes' construction was as follows: 
construction 

Construction 26.2 (Roots of a sixth-degree equation)13 
Given a sixth-degree equation y6 - mi + qy4 - ry3 + sy2 - ty + v = 0, with 
p, q, ... v > 0 and q > (~) 2 , it is required to construct its roots. 

Construction: 
1. Draw (see Descartes' original figure represented in Figure 26.3) 
a Cartesian parabola 14 Q AC N by the turning ruler (AE turning 

lO[Descartes 1637J pp. 402-411; the margin of this section is: "Facon generale pour constru
ire tous les problesmes reduits a une Equation qui n'a point plus de six dimensions." 

11 In the following presentation I keep to Descartes' own use of letters both for the algebraic 
quantities and for the points in the figure. 

12For negative values of y the left-hand side is > 0; the result also agrees with Descartes' 
signrule, see Section 27.1. 

13[Descartes 1637J pp. 402-411. See also the presentations of this construction in White
side's note in [Newton 1967-1981J vol. 1 p. 495, Note 15, in [Rabue11730J pp. 566-577, and 
in [Galuzzi 1996J. 

14Descartes drew only one branch of the curve; the other is not involved in the construction. 
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Figure 26.3: The standard construction of sixth-degree equations (Geometry 
p.404) 
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around A) and moving parabola (CDF moving along the axis BED) 
procedure,15 adjusting the parameters AB, DE, and the latus rec
tum n of the parabola (see Figure 26.3) as: 

AB P (26.5) = 2' 

n V-t +q_ p2 
..jV 4 ' 

(26.6) 

DE 
2..jV 

(26.7) = 
pn 

(Because of the assumptions about the coefficients, the quantities 
under the root signs are positive. Descartes took the axis of the 
parabola vertical, its vertex upward, and AB to the left of the ver
tical. These choices implied that he took the horizontal direction to 
the left and the vertical direction downward as positive directions. 
Accordingly I further describe his construction assuming an x, y
coordinate system along BO and BA, respectively. The directions 
of the line segments, which Descartes indicated explicitly, then cor
respond to the positive/negative signs in the algebraic expressions.) 
2. Draw a circle with radius p around a point I with coordinates 
XI,YI (XI = BH, YI = IH), adjusting these values as follows: 

t 2..jV 
(26.8) YI -----

2ny'v pn 
m . r pt 

(26.9) XI 
n2 ' wIth m = 2' + Vv + 4y'v , 

p2 t S + p..jV m2 
(26.10) --- +-

2n..jV n2 n4 . 

(Descartes explained that if the right-hand side of Equation 26.10 
was negative, the roots of the given equations were "imaginary" -
see below. Note that each of the lengths16 in Equations 26.5-26.10 
can be constructed by straight lines and circles.) 
3. The y-coordinates CG, N R, QO, ... of the points of intersection 17 
C, N, Q, ... of the circle and the Cartesian parabola are the required 
roots of the equation. 
[Proof: Descartes proved the correctness of this construction by 
considering a point of intersection C (with coordinates X and y) and 

15 After giving the present construction Descartes noted that if this tracing seemed cumber
some ([Descartes 1637] pp. 407: "Que si la fa<;on de tracer la ligne ACN par Ie mouvement 
d'une Parabole vous semble incommode ... "), one could adopt a pointwise construction of 
the Cartesian parabola, which he then explained. 

16 All expressions apart from the one for p2 were given explicitly by Descartes; for p2 he 
described an equivalent construction. 

17Note that Descartes did not mark the fourth intersection, near C, in his figure. 
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the pertaining line segment CM = GH. Now CM = XI - X, and 
because C is both on the circle and on the Cartesian parabola, C M 
can be expressed in two ways in terms of y and constants. Equating 
the two expressions yields the original equation in y, so that the 
y-coordinate of C is indeed a root of the equation.] 

Descartes stated that in this way all roots were found and that if the two curves 
intersected in less than six points, the remaining roots were "imaginary." If the 
curves did not intersect at all, all roots were "imaginary," and the same applied 
if the value for p2 in Equation 26.10 was negative. 18 

Because all the roots were positive, only one branch of the Cartesian parabola 
was actually used in the construction, namely, the branch with the local extreme. 
As a consequence, a circle might intersect that branch of a Cartesian parabola 
in as many as six points. This feature, explicitly mentioned by Descartes,19 was 
considered paradoxical by Roberval, who objected to it in 1638.20 

Descartes did not explain how he found the values of the parameters OM, How the 
n, etc. It is likely that he did so by writing out the equations of the Carte- construction 
sian parabola and the circle with X I, YI, p, and OM, n, PV, respectively, as was found 
undetermined parameters,21 eliminating x, and equating the coefficients of the 
resulting sixth-degree equation in y to -p, q, -T, etc. If we perform that pro-
cedure, we find indeed the values given in the construction. Moreover, it turns 
out that the easiest elimination of y proceeds by twice expressing (XI - x)2 in 
terms of y, first using the equation of the Cartesian parabola and then that of 
the circle. In Descartes' proof of the construction the value corresponding to 
(XI - X)2 plays a similar central role, which supports the assumption that he 
found the construction by the procedure with undetermined parameters. 22 

It should be stressed that Descartes could only find the present construction The choice of 
after having decided that a sixth-degree equation should be constructed by a the Cartesian 
Cartesian parabola and a circle, and that the values to be adjusted were the parabola 

18For Descartes' use of the term "imaginary" cf. Section 27.l. 
19[Descartes 1637] p. 406; in Descartes' figure on p. 404 there were only four intersections. 
2oCf. [Descartes 1964-1974] vol. 2 pp. 103-115 (Roberval contre Descartes, April 1638), in 

particular p. 114, and ibid. pp. 154-169 (Descartes to Mersenne 3-VI-1638) in particular 
pp. 156-157. Roberval thought that the circle would intersect the positive branch of the 
Cartesian parabola in at most four points, the other two being provided by the other branch. 
Descartes denied this and explained that for the example in the figure he had chosen a case 
in which two roots were imaginary because otherwise the intersections of the circle and the 
branch of the Cartesian parabola would be so oblique as to make the points of intersection 
indistinguishable. 

21Such a version ofthe equation of the Cartesian parabola occurs in the Geometry in another 
context, namely, Descartes' use of the curve as an example for the application of his method 
of determining normals (Part II D in Table 20.1). 

22In his notes in the 1659-1661 edition of the Geometry (cf. Note 15 of Chapter 17) Van 
Schooten showed how Descartes' construction of third- and fourth degree equations could be 
derived by a method of indeterminate coefficients. He added that the construction of fifth
and sixth-degree equations could be found in a similar way. 
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three parameters in the turning ruler and moving parabola procedure for trac
ing the Cartesian parabola, together with the three parameters that determine 
the position and the size of the circle. Evidently the decision was not based 
solely on algebraic considerations about the equations of these curves. If one 
starts without any premises and asks which two types of algebraic curves with 
sufficiently low degrees and a sufficient number of adjustable parameters are 
the best for constructing a sixth-degree equation, the choice is large and in no 
natural way is one guided to the Cartesian parabola. Indeed, even if one accepts 
that one of the curves should be a circle, the curves 

(26.11) 

provide a simpler alternative (as to the form of the equation) and the required 
elimination procedure in this case is certainly not more complicated than for the 
Cartesian parabola. These arguments support the conclusions already reached 
above, namely, that Descartes first decided on the Cartesian parabola as con
structing curve for fifth- and sixth-degree equations, and apparently was pre
pared to accept considerable algebraic complication in working out that choice. 

26.4 Constructing equations of higher degree 

Descartes was convinced that the construction procedures discussed above 
could be generalized to apply for equations of ever higher degrees. He stated so 
at the end of the book: 

Furthermore, having constructed all those [sc. problems] that are 
plane by letting a circle intersect a straight line, and all those that 
are solid by letting, again, a circle intersect a parabola, and finally all 
those that are one degree more complex by letting a circle intersect 
a curve one degree more complex than the parabola; one needs only 
to follow the same way to construct all those that are more complex 
to infinity. For with mathematical progressions it is so that once one 
has the first two or three terms, the others are not difficult to find. 23 

However, he gave no further particulars. Probably he envisaged that equations 
of degrees 2n -1 and 2n should be constructed by the intersection of a circle and 
a curve Cn of degree n; C1 was a straight line, C2 a parabola, C3 a Cartesian 
parabola, and generally (for n > 2) Cn was related to Cn -1 in the same way 
as the Cartesian parabola was related to the parabola, that is, that Cn was 

23[Descartes 1637J p. 413: "Puis outre cela qu'ayant construit tous ceux [sc. problemsJ qui 
sont plans, en coupant d'un cercle une ligne droite; et tous ceux qui sont solides, en coupant 
aussy d'un cercle une Parabole; et enfin tous ceux qui sont d'un degre plus composes, en 
coupant tout de mesme d'un cercle une ligne qui n'est que d'un degre plus composee que 
la Parabole; il ne faut que suivre la mesme voye pour construire tous ceux qui sont plus 
composes a l'infini. Car en matiere de progressions Mathematiques, lorsqu'on a les deux ou 
trois premiers termes, il n'est pas malayse de trouver les autres." 
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generated by a turning ruler and moving curve procedure with Cn - 1 as the 
moving curve.24 

It is difficult to judge how seriously Descartes meant the remark that the 
generalization to higher order was "not difficult to find." He certainly considered 
himself able to work out the extension to higher degrees as far as he wanted, 
but he was equally certain that he had other more important things to do. 25 On 
the other hand, he warned an enthusiastic reader of the Geometry who thought 
of working out the construction for seventh- and eighth-degree equations that 
perhaps there would be more difficulties in the project than one might have 
foreseen. 26 

It should be noted that Descartes' standard constructions and their gener
alization to higher degrees as detailed above are not smoothly compatible with 
his classification of curves by pairs of degrees (cf. Section 25.1). For successive 
classes of problems, grouped by pairs of degrees, the degree of the corresponding 
second constructing curve, is raised by one: straight line, parabola, Cartesian 
parabola, "etc." In this connection a classification of curves by degrees would 
be much more natural than Descartes' classification by pairs of degrees. 

Descartes' construction of fifth- and sixth-degree equations is, at least in Status of the 
modern eyes, remarkably complex. The determination of the parameters - not construction 
to speak of the tracing of the Cartesian parabolas themselves - requires so 
many intermediate constructions that it is difficult to conceive this procedure 
as the standard solution of a whole class of equations and the starting point 
for generalizations to higher degrees. It is therefore important to stress that 
Descartes himself considered the construction, and its supposed generalizability 
to higher degrees, as the crowning achievement within his theory of geometry. 27 

Nor was Descartes alone in this appreciation of the construction; in fact, the 
canon of construction that he codified in the Geometry soon became, with only 
slight modifications, the paradigm of constructing in geometry. Indeed Descar-
tes' canon carried so much conviction that in a relatively short time span it 
made mathematicians accept all algebraic curves and all problems leading to 
algebraic equations as solvable in principle and thereby of accidental interest 
only. 

24This interpretation of Descartes' intention was expressed by a number of later seventeenth
century mathematicians, e.g., [Kinckhuysen 1660] pp. 63-65, [Hire 1679] p. 111, and 
[Bernoulli 1688] p. 349; cf. [Bos 1984] p. 345. 

258ee for instance his remarks in a letter to Mersenne of January 1638, [Descartes 1964-1974] 
vol. 1 pp. 492-493. 

26Cf. Descartes to Haestrecht (?), October 1637, [Descartes 1964-1974] vol. 1 pp. 458-460, 
in particular p. 460: " ... mais it cause qu'il s'y trouvera peut-estre plus de difficultez que 
vous n'en avez preveu ... " 

27 Cf. [Descartes 1637] p. 413 and [Descartes 1964-1974] vol. 1, p. 492 (letter to Mersenne, 
January 1638). 
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26.5 The canon of construction 

The canon I am now able to formulate the canon of construction that Descartes presented 

Later changes 
of the canon 

in his Geometry. It was, as has become clear in the preceding sections, as follows: 

Construction in geometry should be performed by the intersection 
of curves. The curves had to be geometrically acceptable and sim
plest possible for the problem at hand. Geometrically acceptable 
curves were precisely the algebraic ones; their simplicity was to be 
determined by their degrees. With these premises the procedure for 
constructing problems was: 

1. Confronted with a problem, the geometer should first translate it 
into its algebraic equivalent, that is, an equation. 
2. If the equation involved one unknown only, the problem was a 
normal construction problem. In order to get the simplest construc
tion, the geometer should reduce the equation to an irreducible one. 
3. Then he should rewrite it in a certain standard form appropriate 
to the standard construction to be used. 
4. In the case of equations of degrees six or less, the geometer could 
use standard constructions explicitly given by Descartes. These 
constructions then provided the geometrical solution of the origi
nal problem. 
5. In the case of higher-degree equations, he should work out a 
higher-order analog for Descartes' standard constructions. Descar
tes claimed that it should not be difficult to do so. 
6. If the equation arrived at in 1 contained two unknowns, the prob
lem was a locus problem. The geometer could construct points on 
the locus by choosing an arbitrary value for one of the unknowns and 
dealing with the resulting equation (in which there was only one un
known left) according to items 2-5, thus finding the corresponding 
value (or values) of the second unknown; the corresponding point 
(or points) on the locus could then be constructed. 

This canon pervaded much of the geometrical thinking in the hundred years 
after the publication of the Geometry. It remained unchanged in that period, 
apart from two aspects. The first was that mathematicians challenged the tenet 
that the simplicity of a curve corresponded to its degree. Several alternative 
criteria were suggested, but none of these were convincing enough to really 
replace the degree. 28 The second feature of the canon that was not taken over 
was the implicit suggestion that one of the constructing curves should always be 
a circle. In the system for choosing the degrees of the constructing curves that 
I'Hopital published in 1707, equations of degree 8 were to be constructed by two 
curves of degree 3, rather than, as Descartes had suggested, a circle and a curve 
of degree 4.29 Jakob Bernoulli argued that strict compliance with Descartes' 

28Cf. [Bos 1984] pp. 358-366. 
29 [H6pital 1707] pp. 346-347, cf. [Bos 1984] p. 349. 
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Figure 26.4: Descartes' trisection by the standard construction (Geometry 
p.396) 

rules led to constructing curves that had no natural relation to the problem at 
hand; he preferred curves naturally suggested by the problem even if these had 
higher degrees than necessary. 30 

26.6 Special Cases 

I now turn to various special topics which Descartes discussed in connection Two mean 
with his standard higher-order constructions. After explaining the standard proportionals 
construction of third- and fourth-degree equations, he first dealt with the two and trisection 
most obvious examples: he showed that both the determination of two mean 
proportionals and the trisection could be constructed by applying the general 
construction to the appropriate equations. Determining two mean proportionals 
between two line segments a and b led to the equation x3 = a2b; trisection of an 
angle to the equation x3 = 3x - a (in which a was the chord subtending the arc 
of the given angle in a circle with radius 1). For both cases Descartes explicitly 
elaborated the resulting construction.31 

Descartes' trisection provides a clear example of how the standard construc
tion of third- and fourth-degree equations (Construction 26.1) was applied to a 
special equation. It was as follows: 

30[BernouJli 1695J pp. 670-675; cf. [Bos 1984J pp. 358-359. 
31[Descartes 1637J pp. 395-396 (two mean proportionais) and pp. 396-397 (trisection). 
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Construction 26.3 (Trisection by standard construction)32 
Given the angle LNOP drawn within a circle with radius 1 and center 0 (see 
Figure 26.4); it is required to trisect LNOP. 

Analysis: 
1. Because the angle NOP is given, its chord N P is given as well, 
call N P = q; assume LNOP trisected by the lines OQ and OT; 
OQ intersects N P in R; draw a line through Q parallel to OT, its 
intersection with NP is S; draw the chords NQ, QT, and TP of the 
three equal parts of LNOP; call NQ = z, if z is constructed, the 
problem is solved. 
2. It is easily seen that the triangles f::::.ONQ, f::::.NQR and I'::,QRS 
are similar, hence, NO: NQ = NQ: QR = QR: RS, or 1 : z = z : 
Q R = Q R : RS, so RS = z3. 
3. It is also easily seen that N P = 3N R - SR and that N R = 
NQ, hence, q = 3z - z3; thereby the problem is reduced to the 
construction of the root or roots of the equation 

Z3 = 3z - q. (26.12) 

Construction (The numbers correspond to those in the standard 
Construction 26.1.) Multiplying the given equation 26.12 by z gives 
z4 = 3z2 - qz; comparing with the standard equation (26.3) x4 = 
Px2 + Qx + R yields P = 3, Q = -q, and R = 0; applying the 
standard construction leads to the following steps: 
1. Draw (see the fasimile of Descartes' figure in Figure 26.4) a 
parabola with vertical axis, latus rectum equal to 1, and vertex A as 
highest point. 
2. Mark D on the axis below A such that AD = ~(P + 1) = 2. 
3. Draw DE = ~Q = -~q horizontally to the left from D. 
4. Draw EA and draw a circle through A with center in E. (Be-

cause R = 0 the radius Vt(1 + P)2 + tQ2 of the circle is equal to 

yI(AD)2 + (DE)2, that is, to EA.) 
5. The circle intersects the parabola in the points A, g, G, and F; 
draw the corresponding perpendiculars g k, G K, and F L to the axis. 
(The perpendicular at A is 0 and corresponds to the root introduced 
by increasing the degree of the equation to 4.) 
6. The positive roots of the trisection equation are z = kg, z = KG; 
the negative one is z = -FL. (Thus the trisecting point Q on the 
arc NP is found by taking NQ = kg. Descartes notes that taking 
NV = z = KG corresponds to trisecting the complement arc NV P, 
and that FL is equal to the sum of kg and KG.) 
[Proof: The proof is implied in the proof of the general construc
tion.] 

32[Descartes 1637] pp. 396-397. 
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In the subsequent sections Descartes dealt with a result explained by Viete in Solid problems 
his Supplement to geometry of 1593,33 namely, that the solution of any third- or reduced to 
fourth-degree equation could be reduced to either the determination of two mean mean 
proportionals or to a trisection. He did not refer to Viete; rather he took the proportionals 
occasion to comment upon Cardano's formula34 for the root of a cubic equation. or to trisection 
He argued35 as follows: Solid problems led to third- or fourth-degree equations; 
the latter could be reduced to second-degree ones by means of certain third-
degree ones.36 In third-degree equations the quadratic term could be removed. 
Thus ultimately any solid problem could be reduced to an equation of the form37 

z3 = pz + Q . (26.13) 

Descartes then made a distinction corresponding to 

1: (Q/2)2 > (p/3)3 and 2: (Q/2)2 < (p/3)3 (26.14) 

(he did not comment on the case of equality) and discussed the two cases sep
arately. If the first condition held, the solution could be expressed by a rule 
"whose invention Cardano attributes to someone by the name of Scipio Fer
reus,,,38 namely,39 

(26.15) 

Indeed condition 1 of Equation 26.14 guaranteed that the quantities under the 
square root signs were positive, whereas in the case of condition 2 they were neg
ative. (The latter case was known among algebraists as the "casus irreducibilis" 
in which Cardano's formula did not provide solutions because it involved unin
terpretable square roots of negative quantities (cf. Section 16.2, Equations 16.3-
16.4).) Thus, if condition 1 applied, the problem required the determination of 
cubic roots, that is, the determination of two mean proportionals between 1 
and the (given) quantity under the cubic root sign. This, as Descartes had just 
shown, could be done by means of a conic section, namely, a parabola.4o 

33[Viete 1593J. d. Sections 10.2 and 10.3. 
34See Note 91 of Chapter 4. 
35[Descartes 1637J pp. 397-400; the margin title of this section is: "Que tous les problesmes 

solides se peuvent reduire a ces deux constructions." 
36Descartes probably had Ferrari's method in mind (d. Note 18 of Chapter 10), it is not 

clear whether he was aware of Viete's method (d. Chapter 10, Note 16). In the context of 
his techniques for checking reducibility, he had himself provided an alternative method that 
I discuss below in Section 27.3. 

37 As above with IFI = p and IQI = q. Descartes here distinguished three cases according to 
the signs + or - on the right-hand side of the equations, leaving out the case z3 = -pz - q 
because he implicitly assumed that at least one solution was positive. 

38[Descartes 1637J p. 398: "la reigle dont Cardan attribue !'invention a un nomme Scipio 
Ferreus," that is, Scipione Ferro, see Note 91 of Chapter 4. At present the result is usually 
called Cardano's formula. 

39[Descartes 1637J pp. 398, 399; there are some printing mistakes in the three variants of 
the formula that Descartes gave. 

40 [Descartes 1637J p. 398: " ... sans avoir besoin des sections coniques pour autre chose, 
que pour tirer les racines cubiques de quelque quantite, donnees, c'est a dire, pour trouver 
deux moyennes proportionelles entre ces quantites et l'unite." 
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Figure 26.5: Construction of third-degree equation by reduction to trisection 

In the case of condition 2 of Equation 26.14, Descartes showed (by giving the 
construction explicitly) that the solution of Equation 26.13 could be reduced to 
a trisection. Before discussing his further arguments about Cardano's solution 
(Equation 26.15) I give Descartes' reduction to trisection, that is, his construc
tion of the roots of z3 = pz + Q (with (Q/2)2 < (p/3)3) under the assumption 
that it is possible to trisect any angle. 

It suffices to give one of the two cases he presented; I take the case41 Z3 = 
pz - q, with the condition (q/2)2 < (p/3)3: 

Construction 26.4 (Roots of third-degree equation, by reduction to 
trisection)42 
Given the equation z3 = pz - q, with p, q positive and (1)2 < (~)3, it is required 
to construct its roots. 

Construction: 
1. Draw (see Figure 26.5) a circle with center 0 and radius VI. 
2. Draw a chord AB oflength i in the circle (this is possible because 

the given inequality implies ~ < 2.jf). 
3. Take (by trisection) two points C and C' on the two arcs defined 
by AB such that arcAC = arc~C Band arcAC' = arc1C' B . 

4. Draw the chords AC and AC'. 

41The other case was Z3 = +pz + q with (q/2)2 < (p/3)3. 
42[Descartes 1637] pp. 397-400. 
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5. AC and AC' are the two positive roots of the equation. 43 
[Proof: Descartes gave no proof. Deriving the trisection equation 
as in the analysis of Construction 26.3 but with radius prather 
than 1 leads to z3 = 3p2 Z - ap2; adjusting p and a to the coefficients 
of the given equation Z3 = pz - q yields the values p = Jp/3 and 
a = 3q/p used in the construction.] 

As we have seen, Cardano's formula (Equation 26.15) was the basis of Descar- Critique of 
tes' demonstration that all solid problems were reducible to either the determi- Cardano's 
nation of two mean proportionals or the trisection of an angle. He also argued formula 
that his result was an essential improvement as compared with Cardano's alge-
braic result. For equations Z3 = Pz+Q satisfying condition 1 in Equation 26.14, 
Descartes had given a geometric solution while the formula gave an algebraic 
one. For equations satisfying condition 2 Cardano's formula gave no solution 
(because it'involved cubic roots of negative quantities); whereas Descartes did 
provide a solution, but a geometrical, not an algebraic one. The question, then, 
was in how far geometrical solutions (Le., constructions or reductions to stan-
dard constructions) were better than algebraic ones (expressions of the roots 
involving radicals). Descartes first noted that the cubic roots involved in Car-
dano's formula, even if the quantity below the root sign was real, presupposed a 
geometrical interpretation: ijA was the side of a cube whose content was known 
(namely A). This interpretation was 

... in no respect more understandable or simpler than expressing 
them [sc. the roots] by means of the relation which they bear to 
the chords of certain arcs or portions of circles, whose triplicate is 
given.44 

Moreover, Descartes stated, one could easily create a new algebraic symbol 
denoting the chord of the third of an arc on a given chord; with such a symbol 
the expression of the roots of a third-degree equation in the "casus irreducibilis" 
would be considerably simpler than Cardano's.45 He did not, however, develop 
this possibility.46 

43 Although Descartes did not explicitly mention it here, his treatment of the other case 
makes clear that he knew that the third root was negative with absolute value equal to 
AG + AG', cf. Construction 26.3 item 6. 

44[Descartes 1637] p. 400: "Au reste il est a remarquer que cete fa<;on d'exprimer la valeur 
des racines par Ie rapport qu'elles ont aux costes de certains cubes dont il n'y a que Ie contenu 
qu'on connoisse, n'est en rien plus intelligible, ny plus simple, que de les exprimer par Ie 
rapport qu'elles ont aux subtendues de certains arcs, ou portions de cercles, dont Ie triple est 
donne." 

45 [Descartes 1637] pp. 400-401: "Mesme ces termes sont beaucoup moins embarasses que les 
autres, et ils se trouveront beaucoup plus cours si on veut user de quelque chiffre particulier 
pour exprimer ces subtendues, ainsi qu'on fait du chiffre ,,;c. pour exprimer Ie coste des 
cubes." 

46Using such a symbol would lead to expressions such as the following. Let ~(a) denote 
the chord of the third of the arc with chord a in a circle with radius 1. The result of Con
struction 26.4 can then be expressed as follows: If p and q are positive and (~)2 < (~)3, then 

z = v1~ep'JJ) is a root of the equation z3 = pz - q. 
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The role of the Descartes used the result about the reducibility of solid problems to mean 
conic section proportionals and trisections in an explanation why solid problems in general 

could not be solved by straight lines and circles only, and why at least one non
degenerate conic section was necessary for their construction. The passage47 is of 
interest because it was, as far as I know, the earliest attempt to prove or explain 
the impossibility of constructing certain problems (such as the trisection) with 
certain means (such as straight lines and circles). 

Descartes noted that both the determination of two mean proportionals and 
the trisection required the determination of two points: the two endpoints of the 
mean proportionals or the two dividing points that trisected an arc. For that 
requirement the curvature ("courbure" 48) of a circle was insufficient because the 
points of a circle had only one simple relation ("rapport") to a single point, in 
this case to the circle's center. Therefore the circle could only provide solutions 
of problems that required the determination of one point, such as bisecting an 
angle or determining one mean proportional. On the other hand, the curvature 
of a (nondegenerate) conic always depended on two different things, and there
fore a conic sufficed for constructing problems that required the determination 
of two points.49 Similarly, Descartes claimed,5o problems depending on the de
termination of four mean proportionals or the section of an angle in five equal 
parts required a curve essentially more complicated than a conic. 

Probably Descartes had focal properties in mind when he wrote about the 
two "things" ("choses") involved in the curvature of conics as opposed to the 
single relation (to the center) involved in the curvature of a circle. One may 
say that he saw the variability of the curvature as the essential feature that 
determined the power of curves in solving problems. 

Such a conception of the variability of the curvature along a noncircular and 
non-degenerate conic section would also explain an assertion Descartes made at 
the beginning of the section on the standard construction of third- and fourth
degree equations, namely that any part, however small, of a conic would suffice 
for constructing solid problems. 51 He may have intuited that, given any part of 
a conic section along which the curvature varied, one might, by plane means, 
adjust the problem at hand in such a way that the available range of curvature 
provided the construction. However, Descartes left it at qualitative arguments; 
he did not work these out into a strict proof. 52 

47[Descartes 1637J pp. 401-402; the margin title of the passage is: "Pourquoy les problesmes 
solides ne peuvent estre construits sans les sections coniques, ny ceux qui sont plus composes 
sans quelques autres !ignes plus composees." 

48Note that Descartes did not quantify the concept, this happened later in the seventeenth 
century. 

49The argument is on pp. 401-402 of [Descartes 1637J; it ends: "Au lieu que la courbure des 
sections coniques, dependant tousiours de deux diverses choses, peut aussy servir a determiner 
deux poins differens." 

50 [Descartes 1637J p. 402. 
51 [Descartes 1637] pp. 389-390: " ... on peut tousiours en [sc. a third- or fourth-degree 

equation] trouver la racine par l'une des trois sections coniques, laquelle que ce soit ou mesme 
par quelque partie de l'une d'elles, tant petite qu'elle puisse estre; en ne se servant au reste 
que de lignes droites, et de cercles." 

52In the second edition of his Mesolabum ([Sluse 1668]) Sluse sketched a convincing proof 
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After the explanation of the general construction of the roots of fifth- and Special 
sixth-degree equations by means of the Cartesian parabola and a circle, Descar- higher-order 
tes applied it to the problem of finding four mean proportionals between line problems 
segments a and b.53 He added the remark that similarly the general rule pro-
vided easy constructions for the division of an angle in five equal parts and the 
construction of regular 11- and 13-gons. 

Thus Descartes' program was completed, he had indeed fulfilled the "incredi- Algebraic 
bly ambitious" task formulated in his letter to Beeckman less than twenty years techniques 
before. In my presentation of the canon of construction, however, I have left 
out the algebraic techniques related to reducibility and transformations. The 
next chapter deals with these issues. 

that solid problems can be solved by any given conic; he was motivated to do so by a discussion 
in letters with Huygens on the assertions of Descartes; see [Bos 1985] pp. 153, 156. 

53 [Descartes 1637] pp. 411-412. The pertaining equation was x5 - a4 b = 0, which Descartes 
changed into the required standard form (Equation 26.4) by multiplying with x and substitut
ing x = y-a; the result was y6 -6ay5+ 15aay4-20a3y3+ 15a4yy-(6a5+a4b)y+a6+a5b = O. 



Chapter 27 

The theory of equations 
the Geometry 

• In 

27.1 Character of the theory and key ideas 

Before completing his canon of construction in the last part of the Geome- Themes 
try's third book, Descartes provided the necessary theory of equations in one 
unknown (sections III B-C in Table 20.1). In the present chapter I give a brief 
overview of his results. 

Descartes' canon of geometrical construction required the constructions to 
be geometrical and simplest possible. These geometrical requirements induced 
algebraic ones: The problem had to be reduced to an equation that (1) was 
irreducible and (2) had a certain standard form. Thus, in order to avoid the 
twofold error of either constructing with too complicated means or trying to 
construct with too simple means, l the geometer needed a general theory of 
equations and a number of techniques to perform the necessary transformations 
and reductions. 

Because of its special geometrical motivation, Descartes' theory of equations 
centered on three themes: roots of equations (their number and their signs), 
transformations of equations by linear substitutions, and reducibility of equa
tions. The interest in the signs and the number of roots related to construction 
by the intersection of curves; the roots were constructed as ordinates of points of 
intersection and their signs were determined by the position of the intersections 
with respect to the relevant axis. Moreover, in Descartes' standard construction 
for sixth-degree equations, it was essential that all real roots were positive. The 
transformations of equations by linear substitutions were necessary for show
ing that any equation could be transformed to the appropriate standard form. 
Techniques for determining whether equations were reducible were necessary to 

ICr. Descartes' statement at the beginning of his sections on equations, [Descartes 1637J 
p. 371: "Or affin que ie puisse icy donner quelques reigles, pour eviter l'une et l'autre de ces 
deux fautes, il faut que ie die quelque chose en general de la nature des Equations ... " 

H. J. M. Bos, Redefining Geometrical Exactness
© Springer Science+Business Media New York 2001
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detect cases in which plane problems led to equations of degree higher than 
two (or solid problems to equations of degree higher than four, etc.). These 
equations had to be recognized as reducible and accordingly reduced to arrive 
at the proper simplest possible construction. 

Descartes' theory of equations contained no proofs. He merely stated a num
ber of assertions about polynomial equations, their degrees, their coefficients, 
and their roots; he suggested that the attentive reader could find their proofs 
easily.2 In several cases we may be fairly sure that he had no formal proof (as, 
e.g., in the case of the "sign rule," see below); it is impossible to decide whether 
he was aware that his assertions were not always simply obvious. 

It seems that most of Descartes' insights in the theory of equations3 were 
based on the assumption that in principle any polynomial could be decomposed 
in linear factors: 

(27.1 ) 

where the Xi were positive. In this decomposition the Xi were the roots of the 
equation, "true" roots if the sign was -, "false" roots if the sign was +.4 He 
stated that an equation of degree n had at most n true or false roots; he showed 
how, if one of its roots, Xl, was known, an equation could be reduced to one of 
lower dimension by polynomial division by (x ± xt); and he stated the rule of 
signs. All these statements seem to have been based on the assumption of de
composability into linear factors, and Descartes illustrated them with examples 
where such a decomposition indeed applied. 

Only later in the text, in a short paragraph between the section on trans
formations and the one on reducibility, he mentioned the fact that the decom
position as in Equation 27.1 was not always possible. He wrote 

2 At the end of the section Descartes wrote, [Descartes 1637] p. 389: "Au reste i'ay omis icy 
les demonstrations de la plus part de ce que iay dit a cause qu'elles m'ont semble si faciles, que 
pourvu que vous prenies la peine d'examiner methodiquement si iay failly, elles se presenteront 
a vous d'elles mesme: et il sera plus utile de les apprendre en cete fa<;on, qu'en les Iisant." 

3The question of the origin of Descartes' algebraic ideas is an enigmatic one. Descartes 
himself did not acknowledge any debt to earlier writers; in particular, he denied being influ
enced by Viete's work. It has been noted that his treatment of equations in the Geometry 
shows similarities with the approaches developed by Roth, Faulhaber, Girard, and Harriot. 
These algebraists shared a particular interest in the decomposition of polynomials into factors; 
relevant statements by Roth, Girard, and Harriot are often mentioned as part of the prehis
tory of the fundamental theorem of algebra ([Tropfke 1980] pp. 489, 492 refers to [Roth 1608] 
p. BIV, [Girard 1629] pp. E4r-E4v, and [Harriot 1631] pp. 3 If.). In his recent biography 
of Faulhaber, Schneider has called attention to the "stupendous similarities" ("erstaunliche 
Ubereinstimmungen" [Schneider 1993] pp. 104 and 107) between Descartes' theory of equa
tions and parts of Faulhaber's Miracula Arithmetica ([Faulhaber 1622]). However, the extent 
of Descartes' familiarity with this approach, and especially the significance of a possible meet
ing with Faulhaber in 1619-1620 appears to be very difficult to assess. Schneider's book gives 
an up to date discussion of this theme (op. cit. pp. 171-198.); cf. also [Schneider 1991] and 
[Manders 1995]. 

4 [Descartes 1637] p. 372. 
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For the rest neither the false nor the true roots are always real, 
sometimes they are only imaginary, that is to say that one may 
always imagine as many in any equation as I have said, but that 
sometimes there is no quantity corresponding to those one imagines.5 

As an example he gave the equation6 

x3 - 6x2 + 13x - 10 = 0 , (27.2) 

with one real root (namely 2) and two imaginary ones. Together with the decom
position of Equation 27.1 these remarks about imaginary roots form Descartes' 
version of the fundamental theorem of algebra. 7 

Descartes also used the term "imaginary" in the letter to Beeckman of 1619 Imaginary 
(cf. Section 16.2) and we have seen that its use there can tentatively be linked roots 
with Cardano's use of the term "imagine" in relation to square roots of negative 
numbers. Descartes was no doubt well aware that his "imaginary" roots involved 
square roots of negative quantities, and he may have chosen the term for that 
reason. The meaning of the term in the present context may be best rendered 
as: imagined and introduced for the purpose of making rules general. 

It is more difficult to relate the term to Descartes' ideas about the function 
of the "imagination" in the achievement of knowledge, as expressed in the Rules 
(cf. Section 18.1). There the imagination appeared primarily as the mental fac
ulty to form and contemplate two-dimensional images. But in the Geometry 
Descartes stated that no real quantities corresponded to the imaginary roots, so 
it seems that his use of the term here referred more to the symbolic representa
tion of relationships by formulas than to the picturing of the real extension of 
bodies in the "imagination." 

Descartes also explained his "sign rule" in connection with the decomposition Sign rule 
of polynomials in linear factors. He formulated it as follows: 

From this [the fact that if Xo is a root of F(x) = 0, the polynomial 
F(x) is divisible by (x - xo)] it can be concluded also how many 
true roots there can be in each equation, and how many false ones. 
Namely: there can be as many true ones as there are changes in the 
signs + and -, and as many false ones as two + signs or two - signs 
follow each other.8 

5[Descartes 1637] p. 380: "Au reste tant les vrayes racines que les fausses ne sont pas 
tousiours reelles; mais quelquefois seulement imaginaires; c'est a dire qu'on peut bien tousiours 
en imaginer autant que iay dit en chasque Equation, mais qu'il n'y a quelquefois aucune 
quantite, qui corresponde a celles qu'on imagine." 

6[Descartes 1637] p. 380. 
7Cf. Note 3. 
8[Descartes 1637] p. 373: "On connoist aussy de cecy combien il peut y avoir de vrayes 

racines, et combien de fausses en chasque Equation. A s<;avoir il y en peut avoir autant 
de vrayes, que les signes + et - s'y trouvent de fois estre changes; et aut ant de fausses 
qu'il s'y trouve de fois deux signes + ou deux signes - qui s'entresuivent." Cf. also 
[Bartolozzi & Franci 1993]. 
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Descartes gave no proof. It may well be that he found the rule while studying 
the form of the equations required in his construction of fifth- and sixth-degree 
equations. This standard form (Equation 26.4), with alternating signs for the 
coefficients, ensured that no root could be negative; Descartes' sign rule can be 
seen as a generalization of this phenomenon. 

27.2 The transformations 

Standard To achieve the standard forms for quadratic equations (Equations 22.2), no 
forms special transformations were required. Third- and fourth-degree equations had 

to be rewritten as (cf. Equation 26.2) 

(27.3) 

(x3-term removed, p, q, and r positive or zero). Fifth- and sixth-degree ones 
had to be brought in the form (cf. Equation 26.4) 

(27.4) 

(alternating coefficients, p, q, r, s, t, v positive and unequal to zero, q > (~)2). 

Substitutions Descartes gave the techniques necessary for rewriting arbitrary equations in 
and their use these standard forms. Most of these techniques involved a linear substitution of 

the form 
x=ay+a. (27.5) 

I now survey these substitutions, specifying in each case its precise form, Des
cartes' description of its effect, and its purpose within the canon of construction. 

The substitution 
x= -y (27.6) 

had the result that the false (positive) roots of the equations became true (neg
ative) and the true ones false. 9 

The substitution 
x=y±a (27.7) 

could be used to increase or decrease the roots without knowing them; when 
the true roots were increased, the false roots were decreased and vice versa. 10 

Descartes illustrated the effects of substitutions 27.6 and 27.7 by several exam
ples. They served as introductory explanation of the special substitutions that 
followed. 

9[Descartes 1637) p. 373: "De plus il est ayse de faire en une mesme Equation, que toutes 
les racines qui estoient fausses devienent vrayes, et par mesme moyen que toutes celles qui 
estoient vrayes devienent fausses ... " 

lO[Descartes 1637) p. 374 (margin title): "Comment on peut augmenter ou diminuer les 
racines d'une Equation, sans les connoistrej" ibid. p. 375 (margin title): "Qu'en augmentant 
les vrayes racines on diminue les fausses, et au contraire." 
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The substitution a 
x = y ± - (27.8) 

n 

served to remove the second termll in an equation xn ± axn- 1 + ... = 0; it was 
used for achieving the standard form of third- and fourth-degree equations and 
also in the technique for checking the (ir ) reducibility of fourth-degree equations 
(see Section 27.3). 

The substitution 
x=y-a (27.9) 

had the result that "all false roots become true while the true roots do not 
become false," if the constant a was chosen larger than the "largest false root." 12 
Descartes claimed that in the resulting equation no successive coefficients had 
the same sign and that, if a was chosen sufficiently large, the first coefficients 
of the resulting equation yn - pyn-l + qyn-2 - ... = 0 satisfied q > (~)2. 
He evidently based this claim on an inversion of the sign rule (if there are no 
negative roots, there are no successive pairs of coefficients with equal sign). The 
argument is wrong (counterexample: x 2 + 2x + 2 = 0). The claims themselves 
are correct. 13 The procedure was necessary for arriving at the standard form 
for sixth-degree equations (Equation 27.4). Descartes claimed further that, 
although the false roots were unknown, it was easy to estimate their value and 
choose a larger value; he added an example. 14 

The same substitution 
x =y-b (27.10) 

also achieved that, as Descartes expressed it, all places in the equations were 
filled,15 which meant that none of the coefficients was zero; Descartes explained 
that, if x = y - a yielded an equation in which one of the coefficients was equal 
to zero, the choice of a constant b just slightly larger than a would lead to an 
equation of the required form. Descartes mentioned in particular that the con
stant term of an equation could thus be made unequal to zero; the standard form 
(Equation 26.5) of the sixth-degree equation indeed presupposed the constant 
term to be unequal to zero. At this point he also explained that an (n - l)th
degree equation can be transformed in an nth-degree one by multiplying through 
with x. These two techniques enabled him to transform a fifth-degree equation 
in an appropriate sixth-degree one: multiplication with x yielded a sixth-degree 

11 [Descartes 1637] p. 376 (margin title): "Comment on peut oster Ie second terme d'une 
Equation." 

12[Descartes 1637] p. 377 (margin title): "Comment on peut faire que toutes les fausses 
racines d'une Equation devienent vrayes, sans que les vrayes devienent fausses." 

13They can be proved by writing out the new coefficients as functions of a, and considering 
their behavior for large a, cf. [Galuzzi 1996] pp. 323-324. 

14Descartes may have had in mind an estimate like the following, which is easily derived: 
if the degree is n, the first coefficient is 1 and all coefficients are smaller than 10k , then 
the absolute value of a root cannot be larger than lOk+n . The example ([Descartes 1637] 
pp. 377-378), however, is difficult to interpret. 

15[Descartes 1637] p. 378 (margin title): "Comment on fait que toutes les places d'une 
Equation soient remplies." 
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equation with constant term zero, a further substitution x = y - b made this 
term unequal to zero. 

The substitutions 
x = cy and x = y/c (27.11) 

served to multiply or divide the roots without knowing them, to remove fractions 
from the coefficients of an equation, and in some cases to remove irrational 
coefficients.16 Descartes explained the procedure by an example; he transformed 
the equation 

3 r,; 2 26 8 
x - v3x + -x - -- = 0 

27 27V3 
(27.12) 

by the substitution x = y/V3 into 

3 2 26 8 
y - 3y + gY - "9 = 0 , (27.13) 

and by a further substitution Y = z/3 into 

Z3 - 9z2 + 26z - 24 = 0 . (27.14) 

The substitutions in Equation 27.11 could also be used to "make the known 
quantity of one term of an equation equal to any other quantity," 17 i.e., to give 
any required value to one of the coefficients (while keeping the first coefficient 
equal to 1). Descartes here gave the example 

(27.15) 

in which the change of the coefficient b2 into 3a2 is achieved by the substitution 
f3a2 . ld· Y = x V V, Yle mg 

(27.16) 

The purpose of this technique is unclear. It reminds one, however, of Descartes' 
algebraic study of cubic equations in the Private reflections of 1619 (cf. Sec
tion 16.4) in which Descartes explored the effects of a substitution x = ay. 

Actually the substitutions x = cy and x = y/c cannot remove irrational 
factors from the coefficients in all cases. For instance, if the irrational factor V3 
occurs in the coefficients of x and x2 of Equation 27.12, it cannot be removed 
by a substitution as in Equation 27.11. Descartes seems to have been aware of 
this impossibility.18 It appears from his further practice in the Geometry that 
Descartes assumed that the final equation could be achieved with first coefficient 

16[Descartes 1637J p. 379: "De plus on peut, sans connoistre la valeur des vrayes racines 
d'une equation, les multiplier, ou diviser toutes, par telle quantite connue qu'on veut. . .. 
Ce qui peut servir pour reduire a des nombres entiers et rationaux, les fractions, ou souvent 
aussy les nombres sours, qui se trouvent dans les termes des equations." 

17[Descartes 1637J p. 380 (margin title): "Comment on rend la quantite connue de l'un des 
termes d'une Equation esgale a telle autre qu'on veut." 

18He speaks of removing irrationals "as far as possible;" cf. Note 27. 
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equal to 1. He did not explicitly mention this point, he may have considered it 
"easy to find" (cf. Note 27).19 

27.3 Reducibility 

For understanding Descartes' theory of the reducibility of equations it is 
necessary to consider the general form of equations resulting from geometrical 
problems. 

Descartes' canon instructed the geometer to reduce a problem to an equa
tion in one unknown (cf. Section 26.5). To do so the given elements in the 
geometrical configuration about which the problem was posed were denoted by 
letters (from the beginning of the alphabet); in the resulting equation they ap
peared as indeterminates. There was one unknown only, hence, the coefficients 
were known in the geometrical sense (cf. Section 5.2), which meant that they 
could be constructed by straight lines and circles from the given elements of 
the initial figure. Thus, for instance, if the only given elements in a problem 
were the sides a and b of a rectangle, the coefficients of the resulting equation 
could well involve a square root like va2 + b2 , because the diagonal of a given 
rectangle was constructible by plane means and therefore also given. However, 
the coefficients could not involve a cube root like M as a factor, because even 
if a and b were given, their two mean proportionals M and M were not 
given; they could not be constructed from a and b by straight lines and circles. 
Similarly, multiples aa of a given element a were also given if a was a rational 
number or an irrational number resulting from rational numbers by (possibly 
repeated) square-root extraction. If, in particular, the only given element of 
a configuration was a unit element e and the equation was written inhomoge
neously by taking e = 1, then all coefficients of the resulting equations were 
rational numbers or irrational numbers involving square-root extraction only. 

Consequently, an equation resulting from a geometrical problem by following 
the Cartesian canon of problem solving had the form 

(27.17) 

in which the Ai were algebraic expressions in terms of rational numbers and 
indeterminates (a, b, etc.); these expressions involved no other algebraic oper
ations than the rational operations and square-root extraction.2o I should add 
that Descartes himself did not express this conclusion explicitly; I do not know 
whether it was ever formulated later.21 

I9It can be done, for a polynomial equation Axn + ... = 0, by the substitution x = y/A, 
combined with a multiplication by An-I. 

20In modern terms, the theory concerns the ring L[x] of polynomials with coefficients in L, 
the field L being an extension by real square-root adjunctions of the field Q(a, b,· .. ) consisting 
of all rational functions of the indeterminates a, b, .. '. 

2I The matter lost its interest when polynomial equations were no longer seen as primarily 
related to geometrical construction problems; this happened at the latest by the middle of the 
eighteenth century; cf. Section 29.3. 
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The reducibility of equations was a crucial concept in Descartes' canon of 
problem solving, because, as I will illustrate in the next section by an example 
from the Geometry, there were usually several ways to choose the unknown in 
a problem, and the resulting equations differed according to this choice. In 
particular it could happen that for one choice the equation was of second degree 
(the problem therefore plane) whereas for another choice the equation turned out 
to be of degree higher than 2. The geometer who took the second choice might 
conclude that the problem was not plane, thereby committing what Pappus had 
called the "sin" of solving a plane problem by inappropriate means. Descartes 
had come to the conclusion that, if a plane problem led to an equation of 
higher degree than two, then this equation was reducible to a quadratic one.22 
Hence, a test for reducibility of higher-order equations was necessary to avoid 
inappropriate choices of means of construction on the basis of the degree of 
the equation. Descartes used here a concept of reducibility different from the 
modern one and therefore his ideas and techniques have to be discussed in some 
detail. 

Descartes formulated his theory of reducibility in the form of a series of 
techniques with examples;23 in my presentation I give the techniques in general 
terms (formulas) and I discuss his main example afterward in Section 27.4. 

Descartes did not explicitly define reducibility of equations but from his 
methods we may conclude (cf. Section 25.4) that he considered an equation 
F(x) = 0 to be reducible24 if the polynomial F(x) could be written as a product 
G(x)H(x) of two lower-degree polynomials G and H whose coefficients could be 
constructed by straight lines and circles from the coefficients of F. 25 Because 
the real roots of quadratic equations were constructible by straight lines and 
circles, a quadratic equation was reducible, in Descartes' construction-related 
sense of the term, if (and only if) its roots were real. 

In the final part of the section on the theory of equations (III-C in Ta
ble 20.1) Descartes mainly discussed the reducibility of third- and fourth-degree 
equations. The margin titles of the relevant sections make clear their construc
tion oriented nature: 

"The reduction of cubic equations when the problem is plane:" 
"Which problems are solid when the equation is cubic:" 
"The reduction of equations with four dimensions when the problem 
is plane, and which are those that are solid." 26 

22Descartes formulated this conclusion (without argument) with respect to third- and 
fourth-degree equations, but it appears that he was convinced it applied in general; cf. the 
quotation in Note 33. 

23[Descartes 1637] pp. 380-389, d. item III-C in Table 20.l. 
24 As mentioned in Note 17 of Chapter 25, another kind of reducibility arises in equations of 

the form F(G(x)) = o. As will become clear below, d. Equation 27.19, Descartes knew this 
phenomenon, but he did not separately discuss it. 

25In modern terms and notation as in Note 20 this means that the polynomial F from L[x] 
is reducible over some extension M of L formed by adjunction of real square roots. 

26[Descartes 1637] p. 380: "La reduction des Equations cubiques lorsque Ie problesme est 
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For checking the reducibility of third-degree equations arising from geomet- Third-degree 
rical problems Descartes prescribed first applying the substitutions he had ex- equations 
plained earlier and various other means "easy to find," to reduce the equation 
"as far as will be possible" to an equation whose coefficients involved no irra-
tional or fractional numbers. 27 He then claimed that if the resulting equation 
was of third degree and if it was reducible, one of its roots was a factor of the 
constant term. Hence, if none of these factors was a root, the equation was 
irreducible.28 

It is not clear how Descartes arrived at this condition of reducibility; in fact, 
it is difficult to determine what the condition meant. 29 At this point30 Descartes 
explained the technique of dividing two polynomials. 

For fourth-degree equations Descartes suggested the same technique - check- Fourth-degree 
ing the factors of the constant term - to find constructible roots and reduce equations 
the equation to a third- or lower-degree one. He also discussed the case that 
the fourth-degree polynomial decomposed in two quadratic factors.31 To check 
if reduction can be achieved in that way he suggested first to remove the second 

plan:" ibid. p. 383: "Quels problesmes sont solides, lorsque I'Equation est cubique:" "La 
reduction des Equations qui ont quatre dimensions, lorsque Ie problesme est plan. Et quels 
sont ceux qui sont solides." 

27[Descartes 1637] pp. 380-381: "Or quand pour trouver la construction de quelque prob
lesme, on vient a une Equation, en laquelle la quantite inconnue a trois dimensions; premiere
ment si les quantites connues, qui y sont, contienent quelques nombres rompus, il les faut 
reduire a d'autres entiers, par la multiplication tantost expliquee; Et s'ils en contienent de 
sours, il faut aussy les reduire a d'autres rationaux, autant qu'il sera possible, tant par cete 
mesme multiplication, que par divers autres moyens, qui sont asses faciles a trouver." 

28[Descartes 1637] p. 381: "Puis examinant par ordre toutes les quantites, qui peuvent 
diviser sans fraction Ie dernier terme, il faut voir, si quelqu'une d'elles, iointe avec la quantite 
inconnue par Ie signe + ou -, peut composer un binome, qui divise toute la somme; et si cela 
est Ie problesme est plan, c'est a dire il peut estre construit avec la reigle et Ie compas ... " 
and p. 383: "Mais lorsqu'on ne trouve aucun binome, qui puisse ainsi diviser toute la somme 
de l'equation proposee , il est certain que Ie problesme qui en depend est solide." 

291f F is a polynomial with integer coefficients and first coefficient equal to 1, and if the 
equation F(x) = 0 has a rational root Xo, then this root is itself an integer and it divides the 
constant term of F; thus in that case F(x) = G(x)(x-xo) for some polynomial G with integer 
coefficients. This theorem, which can easily be proved by elementary means, implies Descartes' 
condition if reducibility is interpreted as factorization with integer coefficients. Indeed if a 
cubic polynomial with integer coefficients x3 + Ax2 + Bx + C is reducible in this sense, one of 
its factors is a linear one, x - P, with P a factor of C. However, the concept of reducibility 
involved in the theorem above is different from Descartes' construction-related conception of 
reducibility. As explained earlier, a polynomial equation F(x) = 0 is reducible in Descartes' 
sense if it can be factored as G(x)H(x) = 0 in which the coefficients of the polynomials G and 
H are constructible by ruler and compass from those of F. Thus (cf. Notes 20 and 25) the 
coefficients of the polynomial F are in an extension L of Q(a, b, ... ) and those of its factors 
G and H are in a further extension M of L, both extensions being formed by adjunction of 
square roots. In this situation the concept of integer is ambiguous and it is unclear what it 
means to check all the factors of the constant term. Indeed the rings arising from the ring of 
integers in Q( a, b, ... ) by adjunction of square roots lack unique prime factorization. I have 
not been able to formulate a theorem in modern terms that is convincingly analogous to what 
Descartes meant here; as a result I do not know whether and in what sense it is true. 

30[Descartes 1637] pp. 381-383. 
31 [Descartes 1637] pp. 383-387. 
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term:32 

X4 + Px2 + Qx + R = 0 . (27.18) 

He then considered the following cubic equation in y2: 

(27.19) 

If the latter equation was reducible, then, by his earlier argument discussed 
above, some factor S of the constant term Q2 was a root of Equation 27.19 as 
a cubic equation in y2 and hence Yl = vis was a root of the equation. In that 
case, Descartes asserted, the left-hand side of Equation 27.18 could be written 
as product of two quadratic factors: 

whereby (because Yl was constructible) the problem was shown to be plane. 
Descartes added that if Equation 27.19 was not reducible, one could be sure 
that the original problem was not plane but solid. 33 

Descartes did not explain the origin of Equation 27.19, but from his examples 
it appears that he found it by a method of undetermined coefficients. Indeed if 
one writes 

X4 + Px2 + Qx + R = (x2 - yx + u)(x2 + yx + v) , (27.21) 

and eliminates u and v from the equations that result by comparing coefficients, 
one arrives at Equation 27.19 for y2 and at the decomposition in Equation 27.20. 

The procedure showed the reducibility of fourth-degree equations to third
degree ones to which Descartes had referred earlier as an argument for grouping 
curves in classes with degrees 3-4, 5-6, etc. (cf. Section 25.1). The reduction 
is usually considered as an important contribution by Descartes to the alge
braic solution of equations,34 on a par with similar reductions by Ferrari35 and 
Viete.36 Yet it should be noted that the procedures did not facilitate the al
gebraic solution of equations, either in this case or when Descartes discussed 
Ferrari's reduction. Here the reduction served the technique of determining 
whether an apparently solid problem was in fact plane; when he referred to Fer
rari's reduction, it was to prove that all solid problems could be reduced to the 

32As elsewhere in the Geometry, Descartes took the coefficients to be positive and allowed 
both + and - signs in the equations, explaining at some cost of words the behavior of the 
signs in the different cases. In representing his equations together with his case distinctions I 
use the convention introduced in Section 26.2 (Equation 26.3). 

33[Descartes 1637] pp. 384-385: "Apres que l'equation est ainsi reduite a trois dimensions, 
in faut chercher la valeur d'yy par la methode desia expliqueej et si celie ne peut estre trouvee, 
on n'a point besoin de passer outrej car il suit de lit infalliblement, que Ie problesme est solide." 
Cf. Note 22. 

34Cf. [Tropfke 1980] p. 458. 
35See Note 18 of Chapter 10. 
36Cf. [Viete 1615] pp. 149-150 (translation: [Viete 1983] pp. 286-289)j cf. Note 15 of Chap

ter 10. 
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two geometrical problems of the trisection and the determination of two mean 
proportionals. Descartes was in fact little interested in the algebraic solution of 
equations; his primary interest was a geometrical one. 

As to the reducibility of higher-order equations Descartes merely stated37 Higher-order 
that one should check in a similar manner (that is, presumably, by undetermined equations 
coefficients and/or by checking the factors of the constant term) whether the 
polynomial can be written as the product of two polynomials, working through 
all possible cases for the degrees of the factors. 

27.4 Descartes' example: a problem from Pap
pus 

In presenting the techniques for transforming and decomposing equations A reducible 
Descartes gave various examples, most of them with numerical coefficients. He equation 
presented one example with indeterminate coefficients, namely, the equation 

(27.22) 

which first appeared in connection with the use of the substitution for removing 
the second term of an equation (Equation 27.8).38 In this case x = z + !a 
yielded 

(27.23) 

Then Descartes used this equation to illustrate the test of reducibility into 
quadratic factors (Equations 27.18-27.21) The pertaining cubic in y2 turned 
out to be39 

(27.24) 

The reader had met this equation two pages before where Descartes used it to 
illustrate the method for finding linear factors of a cubic polynomial by checking 
the factors of the constant term. In this case the factorization of the constant 
term was 

(27.25) 

and Descartes showed that a2 + c2 was a root of Equation 27.24 as a cubic in y2. 

Setting y~ = a2 + c2 he arrived, following the general rule (cf. Equation 27.21), 
at the decomposition of Equation 27.23 into two quadratic equations (note that 
the coefficients involve square roots but remain constructible by straight lines 

37[Descartes 1637] p. 389. 
38[Descartes 1637] p. 377. 
39[Descartes 1637] p. 384. 
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and circles from the given line segments a and c) 

(27.26) 

(27.27) 

Descartes noted that the two roots of the Equation 27.26 were40 

(27.28) 

and hence two roots of Equation 27.22 "for the finding of which we performed 
all these operations,,41 are known: 

1 
x = Z +,2a. (27.29) 

Only after all these operations Descartes explained why he had chosen Equa
tion 27.22 as an example: it occurred in the analysis of a problem from Pappus' 
Collection. Descartes explained the problem and gave Pappus' construction: 

Construction 27.1 (Plane neusis problem - Pappus)42 
Given a square OABC with side a, and a length c (see Figure 27.1); the side 
CB of the square is prolonged; it is required to construct a straight line through 
o intersecting AB and C B prolonged such that the interval between the inter
sections is equal to c. 

Construction: 
1. Mark OD = c along OC; draw AD [AD = v'a2 + c2]. 

2. Prolong OA until E, with AE = AD. 
3. Draw a semicircle on diameter OE; it intersects CB prolonged in 
F. 
4. OF is the required line; it intersects AB in C and CF = c. 
[Proof: Descartes gave no direct proof; Pappus first derived the 
equality 

(27.30) 

He did so by noting that t:.BFC is similar to t:.AOC, which it
self is congruent to t:.H F E (this folows easily from the equali
ties of angles indicated in the figure); hence FE = OC. Because 

40Descartes did not discuss the roots of the second equation; they are z = - ~ v'a2+C2 ± 
J -~a2 + ~c2 - ~av'a2 + c2; for c < 2v'2a these roots are, in Descartes' terms, imaginary. 

41 [Descartes 1637] p. 387: " ... pour la connaissance de laquelle nous avons fait toutes ces 
operations ... " 

42 [Pappus Collection] VII, Props 71-72, pp. 605-608; in [Pappus 1986] pp. 202-205; con
struction as in [Descartes 1637] p. 387. 
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Figure 27.1: Plane neusis problem - Pappus 

LGAE = LEFG = 90°, the points G, A, E, F are on a circle, 
whence OG· OF = OA· OE (*). Because 60FE is a right-angled 
triangle and FE = OG, we have (OA + AE)2 = OF2 + FE2 = 
OF2 + OG2 = (OG + GF)2 + OG2 = 20G2 + 20G· GF + GF2 = 
20G· OF + GF2. (**). Equations (*) and (**) combined yield 
(OA + AE)2 - GF2 = 2(OA· OE) from which it follows that 
AE2 = OA2 + GF2, Le., Equation 27.30. 
Now by construction AE2 = AD2 = OA2 + OD2, from which, in 
combination with Equation 27.30 it follows that GF = OD, as re
quired.] 

Descartes then explained that this particular construction could have been found 
by following his canon, namely, by choosing AE (cf. Figure 27.1) as unknown 
and deriving the pertaining equation.43 But, as he noted, that choice of the 
unknown was not an obvious one, it was more natural to choose BG or AG. He 

43With x = AE and GF = c, Equation 27.30 in Pappus' proof yields the equation 
x 2 = a2 + c2 , which is of second degree, showing that the problem is indeed plane; the 
resulting construction is the same as Pappus'. Descartes suggested that this equation for 
x = AE, though simple, was difficult to find; indeed one would have to argue along the lines 
of Pappus' proof, which, for an analysis, is rather complicated. Yet Pappus probably found 
the construction by such an analysis. 
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then showed that the latter choice, x = AG, led precisely to Equation 27.22,44 
which, with help of all the techniques of transformation and reduction, was 
reduced to Equations 27.28 and 27.29, from which a plane construction could 
easily be derived. Descartes did not give this construction explicitly. 

The example was well chosen for illustrating the need to check for reducibil
ity; otherwise, one would not notice the reducibility of the fourth-degree equa
tion 27.22 and one would construct x by the (solid) parabola and circle con
struction, which was inferior to Pappus' plane construction. Thus Descartes' 
techniques indeed prevented the geometer from committing the "sin" of con
structing with insufficiently simple means. 

Another reason why the example was well chosen was its position in the 
literature. Although Descartes made no other references than to Pappus, it 
seems likely that he was aware of the problem's status within the early modern 
tradition of geometrical problem solving. According to Pappus it was one of the 
problems treated by Apollonius in his lost treatise on neusis; it was known to be 
plane; Ghetaldi had given an alternative (also plane) construction arrived at by 
classical analysis;45 he had also claimed that the problem could not be solved 
by algebra. 46 Descartes might well have argued that if others would try to solve 
it by his new methods, they might arrive at the fourth-degree equation, forget 
the reducibility argument, and conclude that the new method was not powerful 
enough. It was a challenge which he could hardly ignore. 

27.5 Conclusion 

In connection with Descartes' "new compasses" from 1619 I have noted that 
he was then comparatively a stranger to algebra (cf. Section 16.4). No longer so 
in 1637! He had successfully tackled the conceptual problem of reinterpreting the 
algebraic operations so as to apply for general magnitudes, and he had developed 
a versatile new notation incorporating indeterminates as well as unknowns. In 
both respects he had chosen approaches different from the prevailing ones of 
Viete. On top of that, as the present chapter shows, he had achieved a clear 
and effective general conception of equations and he had developed a series of 
techniques for transforming equations and for investigating their reducibility. 

Yet it appears that Descartes was not interested in algebra for its own sake. 
The fascination with equations, as evident in the work of algebraists like Van 
Roomen and Viete (especially their studies on the equations related to angular 

44Call (see Figure 27.1) AG = x and OG = v and note that (a - x) ; c = x; v (similarity of 
6BGF and 6AGO) and that v2 = a2 + x 2 (because 60AG is right angled); eliminating v 
from these two equations and rewriting yields the equation x4 - 2ax3 + (2a2 - c2 )x2 - 2a3 x + 
a4 = 0, i.e., Equation 27.22. 

45In fact Ghetaldi treated the variant in which the square OABC is a rhombus; I have 
discussed his analysis and his construction in Section 5.4 (Analysis 5.5 and Construction 5.6). 

4BCf. Section 5.4 The problem and its history is discussed in detail in 
[Brigaglia & Nastasi 1986J; see in particular pp. 125-127 for a discussion of Descartes' 
solution. 
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sections), was absent in Descartes' investigations. Each of the special algebraic 
techniques he explained in the Geometry had its purpose within the geometrical 
rationale of the book and was not developed further than necessary for that 
purpose. We may therefore characterize Descartes' algebra as subservient to 
geometry, more precisely to the canon of construction that Descartes elaborated 
in order to solve "all the problems of geometry." 



Chapter 28 

Conclusion of Part II 

28.1 Forces and obstacles 

In the previous chapters I have followed the development of Descartes' ideas The Geometry 
about geometry from 1619 till 1637. That year saw the publication of the as endpoint 
Geometry in which Descartes formulated his convictions about geometrical ex-
actness, presented his canon for geometrical problem solving, and explained the 
techniques of algebraic analysis he had developed for translating problems into 
equations and for constructing the roots of these equations. After 1637 Des-
cartes occasionally returned to geometrical matters but he did not essentially 
develop the results reached in the Geometry - it appears that he considered 
his project of geometrical investigation completed.! In the letter to Beeckman 
of 1619 he had written that he intended to achieve a "completely new science 
by which all questions in general may be solved,,;2 this goal he now had reached 
for geometry, the science which from the beginning inspired his vision of the 
scientific method. 

So this is the point to conclude the present study - there will be an epi
logue on developments emanating from the Geometry in Chapter 29. I do not 
recapitulate the main findings of the previous chapters; for that purpose I refer 
to Chapters 14, 15, 20 and 26. My primary interest has been to describe the 
development of Descartes' geometrical ideas and the genesis of the Geometry. 
In the present concluding chapter I focus on the principal dynamics of these de
velopments, the main forces and impediments which stimulated and obstructed 
them. In that connection I also highlight a number of issues which, I feel, need 
some final emphasis. 

lCf. e.g. Descartes to Plempius, 3-X-1637, [Descartes 1964-1974] pp. 409-412, i.p. p. 411: 
"Non ignoro Geometriam meam paucissimos lectores habituram; nam cum ea scribere neglex
erim quae ab aliis sciri suspicabar, et paucissimis verbis multa (imo omnia quae unquam in 
ilia scientia poterunt inveniri) vel complecti vel saltern attingere sim conatus, lectores non 
modo peritos eorum omnia quae hactenus in Geometria et Algebra cognita fuere, sed etiam 
valde laboriosos, ingeniosos et attentos desiderat." 

2Cf. Section 16.1, Note 6. 

H. J. M. Bos, Redefining Geometrical Exactness
© Springer Science+Business Media New York 2001
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The creation and adoption of (finite3 ) algebraic analysis as a tool for geom
etry constituted the principal dynamics of the developments within the early 
modern tradition of geometrical problem solving discussed in Part 1. The inter
pretation of constructional exactness was an important issue for the practition
ers of geometrical problem solving before Descartes, but it did not constitute a 
stimulating force within the tradition. 

In the case of Descartes the dynamical balance was different; the potential 
of algebraic analysis for geometry and the challenge of the questions of method 
and of geometrical exactness were stimuli of comparatively equal strength for 
his geometrical achievements. 

28.2 Descartes' transformation of the art of ge
ometrical problem solving 

Breakthroughs From the publication of Pappus' Collection till c. 1635 the main impetus for 
the developments in the field of geometrical problem solving was the new use 
of algebraic methods. However, by 1635 these developments had lost momen
tum, and I characterised (cf. Section 14.5) the field at that time as waiting for 
essential breakthroughs with respect to the following three issues: (1) clarifying 
the general objective of problem solving by unifying, ordering, and if neces
sary extending the procedures for construction beyond the use of circles and 
straight lines, (2) understanding the relations between problems, equations and 
constructions, in order to direct the procedures of algebraic analysis, and (3) 
establishing a clear and complete interpretation of constructional exactness. 

The characterisation, of course, is based on hindsight: these were the issues 
for which Descartes provided effective answers. By his answers the stagnation 
was lifted, the field acquired new incentives and new directions. Descartes in
deed transformed the art of geometrical problem solving and this transformation 
may best be summarised according to the three issues mentioned above. 

Construction In the Geometry Descartes proposed the following canon of construction 
(cf. Section 26.5): Constructions should be performed by the simplest possible, 
geometrically acceptable curves. To be acceptable the curves had to be alge
braic; simplicity was measured by the degree. Descartes' standard constructions 
showed how, in principle, proper constructions could be achieved for any prob
lem, that is, for any equation in one unknown. 

The canon indeed offered a clear and complete general objective for the 
field of geometrical problem solving. It explained and ordered the algebraic 
techniques necessary for arriving at constructions of problems and it strongly 
suggested that by basically straightforward iterative algebraic procedures all 
geometrical problems could be solved. Not only did he present solutions for all 
problems leading to equations of degree ::; 6, he also theoretically charted the 

3 Cf. Chapter 1 Note 17. 
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complete frontier area of higher-order problem solving, be it without actually 
exploring the terrain. 

The clarity provided by Descartes' canon of problem solving primarily con
cerned the solution of ordinary problems, leading to equations in one unknown. 
The canon was less definite with respect to the construction of curves. Descartes 
showed that all geometrically acceptable curves could in principle be constructed 
pointwise, namely by the repeated solution of ordinary problems. He also ar
gued that pointwise construction was equivalent to tracing by well coordinated 
motion. However, his arguments for this equivalence were not completely per
suasive, and several passages from the Geometry implied that tracing methods 
provided more appropriate knowledge of curves than pointwise construction. 
Yet Descartes did not offer a general technique for finding tracing methods for 
curves with given equation. As a result the Geometry left a certain ambivalence 
about the merit of equations for representing curves. 

Descartes' theory of equations, discussed in Chapter 27, shows his awareness Algebraic 
of the complexity of the relations between problems, equations and construc- analysis 
tions. Since Viete, the translation of geometrical requirements into algebraic 
language was well understood. Descartes realized that this translation was in 
fact insufficient for directing the algebraic procedures involved in geometrical 
problem solving; it had to be supplemented by techniques to check whether the 
resulting equations were reducible and to reduce them if necessary. He provided 
such techniques, as well as the methods to transform equations into forms suited 
for the standard constructions which he also provided. These techniques were 
based on a deep, if tacit, understanding of equations in general. Yet it was not 
from a purely algebraic interest that Descartes acquired this understanding; all 
his new algebraic techniques served the purpose of geometrical construction. 

Descartes' mature interpretation of geometrical exactness, as given in the Geometrical 
Geometry, was based on the premise that construction should be performed by exactness 
the intersection of simplest possible algebraic curves. He sustained this premise 
by complex and perceptive arguments concerning the requirements for clear and 
distinct knowledge about motion and curves. The various interpretations of 
constructional exactness previously proposed within the early modern tradition 
of geometrical problem solving had been restricted, little persuasive and on the 
whole ineffectual. In contrast, Descartes' interpretation covered in principle all 
problems, it was argued with seriousness and depth, and it sustained an effective 
canon of construction. Thus it put the arguments about exactness on a higher 
qualitative level. 

28.3 The path to the Geometry 

Descartes' geometrical interpretation of the algebraic operations and his new Dynamics and 
algebraic techniques provided the technical basis of his transformation of the chronology 
art of geometrical problem solving. But the transformation involved more than 
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algebraic innovations; it crucially depended on Descartes' long standing interest 
in method, and on his philosophical approach to geometrical exactness. As men
tioned above, the potential of algebraic analysis for geometry and the challenge 
of the questions of method and geometrical exactness were stimuli of compar
atively equal strength for Descartes' geometrical achievements. In the present 
section I review the development of Descartes' geometrical thinking with par
ticular emphasis on the aspects of method and exactness. 

I briefly recall the chronology of Descartes' geometrical findings (cf. Sec
tion 20.1). By 1620 he had developed a clear programmatic vision for a 'new 
science' in which arithmetical and geometrical problem solving provided the 
paradigm for classifying and solving scientific problems in general. In geometry 
he explored the implications of using instruments which generalized the work
ings of rulers and compasses. At that time he was apparently little aware of 
the potential of algebra for geometrical analysis. However, by c. 1625 he had 
become aware of the effectiveness of algebraic analysis, as is evident from his 
general construction of the roots of third- and fourth-degree equations. In the 
Rules, written in the 1620's and abandoned after 1628, Descartes attempted to 
elaborate the epistemological base of his program, exploring in particular the 
certainty of the mental processes corresponding to the algebraic operations. His 
study of Pappus' problem in the winter of 1631-32 gave him new ideas about 
higher-order construction and the relation between curves, their equations and 
the methods to trace them. In the subsequent years these ideas developed into 
Descartes' mature interpretation of geometrical exactness and the correspond
ing canon of geometrical problem solving which he presented in the Geometry 
in 1637. 

Expectations It is of interest to consider Descartes' path towards his mature conception 
of geometry in terms of his earlier expectations. Measured against his own 
programmatic statements his achievements were great, but incomplete. In two 
instances Descartes gave up essential earlier ambitions. First, when abandoning 
the Rules he relinquished the hope that the elementary steps in certain, scientific 
reasoning could be identified with the basic algebraic operations applied to 
continuous or discrete magnitudes. Secondly, in the period between 1632 and 
1637 he gave up the hope of developing explicit curve tracing methods which 
would convincingly and directly show that all algebraic curves could be traced 
by coordinated continuous motions and vice versa. In both cases he had to 
abandon expectations and to adjust his program or strategy accordingly. 

The Rules These adjustments should not be considered as failures to find the right 
answers; rather it appears that in the directions Descartes had in mind, there 
were no answers to be found. 

In the case of the Rules his program required the elaboration of clear and dis
tinct procedures, consisting of movements of geometrical objects (line segments 
or rectangles) in the plane, equivalent to algebraic operations. For addition, 
subtraction, multiplication and division these could be found, although they 
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involved the difficult question of the dimension jumps in the case of multiplica
tion and division. But Descartes' studies of the relations between geometrical 
problems and algebraic equations had made him aware that solving problems 
required more than ~erely adding, subtracting, multiplying and dividing. What 
was necessary as well was equation solving, that is, square root extraction, gen
eral root extraction and solving equations generally. Square root extraction 
was equivalent to determining a mean proportional, which involved, as Descar
tes termed it in the Rules, dividing by an unknown divisor. The performance 
of this operation in the plane involved more than the movement of line seg
ments and rectangles which served for performing the elementary arithmetical 
operations; it required a geometrical construction by the intersection of circles 
and straight lines. Descartes may have considered the motions involved in this 
construction sufficiently clear and distinct to be acceptable, but he must have 
realized that square roots were not enough to solve problems generally; higher
order root extraction was also required - not to mention the solution of general 
higher-order equations - and the geometrical constructions corresponding to 
these operations involved the intersection of curves at least as complicated as 
the conics. Such procedures could hardly be considered as immediately obvious 
to the intellect contemplating their execution in the imagination. 

No doubt the episode made him realize how complex was the geometrical 
interpretation of the algebraic operations and of the solution of equations. It also 
showed him the importance of motion processes in geometrical constructions. 
Thus the results of the Rules provided him with a basis from which to build 
up his later interpretation of the algebraic procedures. But a loss accompanied 
this gain: he had to give up the high ambitions of the Rules and he had to 
loosen the links between geometry and general scientific reasoning; his pursuit 
of geometry became an independent program. 4 

Could he have maintained his earlier program? The question comes down to 
a technical mathematical one: Are there motion procedures for achieving roots 
of polynomial equations which may be imagined in such a clear and distinct way 
as to be immediately convincing and acceptable? Later research has produced 
some procedures for mechanically achieving roots of equations, 5 but these clearly 
do not satisfy Descartes' criteria. The question, then, has to be answered in the 
negative; in other words, Descartes was compelled to abandon his expectations 
by the force of mathematical circumstances. 

The experience with the Rules forced Descartes to give up the hope of inter- Tracing 
preting all scientific problem solving as equivalent to geometrical or arithmetical algebraic 
problem solving. If the conjecture which I elaborated in Chapter 19 is correct, curves 
a similarly discouraging experience later compelled him to rely more on algebra 
in his geometry than fitted his earlier ambitions. 

Descartes' first studies of Pappus' problem in 1631-1632 showed that all loci 
which satisfied the requirement of a Pappus problem were algebraic curves. I 

4Cf. Section 18.5. 
5Cf. the instruments surveyed in [Frame 1943-1945J. 
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have argued that Descartes probably believed that these loci could be traced by 
the iteration of the 'turning ruler and moving curve' procedure. This tracing 
method he deemed acceptable in geometry and he considered it as essentially 
different from the methods by which curves such as the quadratrix and the 
spiral were generated and which he considered unacceptable in true geometry. 
He found a strict correspondence between the number of given lines in a Pappus 
problem and the degree of its solution, and he probably believed that the degree 
also directly related to the number of iterations necessary to trace the locus. 
Moreover, he convinced himself that any algebraic curve was a locus to some 
Pappus problem, and could therefore be traced by motions which he deemed 
acceptable. 

Thus the episode of Pappus' problem suggested a ready and convincing an
swer to the demarcation question of geometry: geometrically acceptable curves 
were precisely the algebraic curves; they were acceptable because they could be 
traced by acceptable motions; these motions were simpler in as much as the 
degree of the curve was lower; construction in geometry should be performed by 
the intersection of acceptable, i.e. algebraic, curves of lowest possible degree. 

However, in working out this vision of geometry Descartes found it impos
sible to argue directly that any algebraic curve could be traced by the motions 
which he considered geometrically acceptable. Thus one cornerstone of his edi
fice, namely the identification of geometrical acceptability with algebraicity and 
simplicity with the algebraic degree, remained without direct proof; the argu
ment for it in the Geometry (cf. Section 24.1), though impressive, was ultimately 
unconvincing. In fact Descartes' demarcation of geometry was persuasive by its 
simplicity rather than by the arguments he provided. In that sense Descartes 
came to rely more on algebra than fitted his earlier convictions; algebra pro
vided a formulation of the demarcation whose simplicity concealed the absence 
of direct geometrical argument. 

Here, as earlier in the case of the Rules, we may ask whether Descartes could 
have kept to his earlier program and built the demarcation directly on the nature 
of the motions which trace algebraic curves. Again the question comes down to 
a technical mathematical one: are there procedures for tracing algebraic curves 
which involve linkages of rulers like in Descartes' Mesolabe or in the 'turning 
ruler and moving curve' procedure and which are structurally analogous to the 
equations of the curves? The structural analogy should involve in particular a 
correspondence between the degree of the equation and the complexity of the 
procedure; preferably the tracing procedure should be an iterative one, and the 
number of iterations should correspond to the degree. 

As far as I know, the mathematical literature from Descartes till the present 
offers only one general procedure for tracing (segments of) algebraic curves, 
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the one devised by Kempe and published in 1876.6 We may conclude from the 
intricacy and the late date of Kempe's method that a general tracing method for 
algebraic curves was not within Descartes' reach, let alone one which satisfied 
his further criteria. 

The arguments above imply that the adjustments which Descartes had to Failures? 
make in his programs cannot reasonably be considered as failures. Yet we may 
ask whether Descartes himself saw the adjustments as failures, and whether his 
readers noticed the absence of the results which Descartes had hoped for. 

Although the modification of his program after giving up the Rules was a 
significant one, it is difficult to imagine that Descartes considered it as a failure. 
He loosened the links between general scientific reasoning and geometry and 
he pursued the latter as an independent program; but these changes did not 
hamper him in the further elaboration of his philosophical program, nor did 
they affect the basic tenets of his philosophical program such as the criteria for 
certain understanding. 

The Rules were not effectively published before 1701 (a Dutch translation 
appeared in 1684). Descartes' earlier private texts on his program for a general 
science remained unknown for much longer. In his published writings Descartes 
stressed the importance of mathematics as a source of inspiration for his ideas 
and he published his Geometry as an 'essay' of the new method. Thus his 
contemporaries could not be aware that in an earlier phase the link between 
algebraic procedures and the general method for the direction of the mind had 
been much closer and that Descartes had been forced to modify his hopes and 
expectations in this respect. 

As to the absence of general methods for tracing algebraic curves it should be 
noted that readers of the Geometry, notably in the circle around Van Schooten, 
showed a lively interest in the curve tracing methods; Van Schooten's own trea
tise on tracing conics7 provides a characteristic example of this interest. Yet it 
appears that the question of a general tracing method for all algebraic curves 
did not attract attention. Nor was Descartes criticised for failing to provide such 
a general method in support of his demarcation of geometry. When, later, the 
demarcation was challenged, notably by Leibniz, it was not because a general 
tracing method was lacking. Rather the dissatisfaction with the Cartesian inter
pretation of geometrical exactness was caused by its exclusion of non-algebraic 
curves whose importance became more and more recognized in post 1637 math
ematics. 

6[Kempe 1876]. Kempe substitutes x = a cosO+bcos<p, y = acos(O -7r/2) +bcos(<p -7r/2) 
in the equation F(x, y) = ° of the given algebraic curve, which yields 

C + ~Ar,s cos(r<p + sO + a) = 0; * 
a and b are constants, a = 7r/2 or 0, p and r are integers, Ap,r and C are constants depending 
on the coefficients of F. He then constructs a concatenation of separate linkages. Each 
corresponds to a summand in (*); its type and dimension are determined by the values of r, 
s, Ar,s and a. Kempe then proves that if a point at the beginning of the linkage system is 
moved along a straight line, a point at the end of the system describes the required curve. 

7[Schooten 1646]. 
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Dissatisfaction? Descartes ultimately based his demarcation of geometry and his classifica-
tions of problems and curves on the simplicity of algebra rather than on direct 
arguments about curve tracing. He elaborated his canon of construction in detail 
only for lower-degree equations and merely claimed that it would be easy to pro
ceed. Was his satisfied with the result? The closing sentences of the Geometry 
certainly did not bespeak dissatisfaction, nor are there later statements which 
suggest disappointment about the outcome of his geometrical program. Yet I 
find the question compelling because the reliance on algebra and the complexity 
of the standard constructions appear to be incompatible with the requirements 
of clarity and distinctiveness which are so fundamental in Descartes' thinking. 
It is not at all clear why the simplicity of algebra should carry the same intuitive 
clarity and distinctiveness as the simplicity of motions which Descartes invoked 
in his examples of geometrically acceptable curve tracing. And Descartes' stan
dard constructions were algebraically simple only with respect to the degree 
of the constructing curves. Apart from that they involved very complicated 
algebraic manipulations whose geometrical effectuation, though not difficult in 
principle, was far from simple. Indeed the construction for 5th- and 6th-degree 
equations seems hardly convincing as canonical solution for a class of geomet
rical problems. Descartes may have believed that, as he stated at the end of 
the Geometry, it was possible to find general constructions for higher-order 
equations in the same way, but it seems highly unlikely that he expected these 
constructions to be simple, elegant or otherwise satisfactory as solutions. 

I raise the question of Descartes' own appraisal of his final results on demar
cation and construction because his situation with respect to these issues was a 
remarkable one. Not merely was he confronted with questions to which he could 
not find the answers; indeed there were no answers. The obviously rational and 
meaningful questions: 'What is exactness in geometry?' and: 'When is a ge
ometrical problem adequately solved?' turned out to be unanswerable. These 
questions were the geometrical versions of the general question 'When do we 
know?'. Hence within the very science he had taken as paradigm for scientific 
understanding, Descartes was confronted with an instance in which it appeared 
that the decisive philosophical question 'When do we know?' had no answer. 

We do not know whether Descartes was aware of this implication of his theory 
of construction and the demarcation of geometry. Yet it is important to point 
out how near he was to a realization that decisive philosophical questions may 
be without answers, and that in particular the question of when the thinking 
mind has reached the truth may be unanswerable. Such a realization would be 
at variance with the most fundamental tenet of Descartes' rational philosophy, 
namely that there is a method for finding the truth in the sciences. Clearly, if 
Descartes consciously realized this consequence of his geometrical explorations 
it must have been a highly disturbing experience. 

I may add that, personally, I find it likely that to some extent Descartes 
realized these implications and was disturbed by them. Thus I sense a strain of 
tragedy blended with the evident greatness and success in the story of Descar
tes' geometrical investigations. His philosophical acumen made him understand 
better than any of his mathematical contemporaries the problems involved in 
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applying algebraic analysis to the practice of geometrical problem solving. It 
forced him to explore in depth the questions (of simplicity and exactness) in
volved in the creation of a general canon of geometrical construction. Doing 
so he entered an area where straightforward generalization of geometrical ar
guments (concerning curve tracing in particular) proved impossible and where 
algebra allowed no adequate translation of geometrical criteria and provided no 
effective alternatives either. He came through by accepting algebraic criteria 
more generally than would have fitted his earlier convictions and by leaving to 
others the laborious (if not impossible) task of elaborating general higher-order 
constructions. This was success at a price, and I find it probable that Descartes 
was aware of the price. 

The fact that his success had a price does not diminish the greatness of Des
cartes' geometry as intellectual achievement - on the contrary, the combination 
of success and adjustment to the loss of earlier expectations makes it the more 
admirable and impressive. 

28.4 Descartes and the interpretation of exact
ness 

In his Geometry Descartes redefined geometrical exactness. In Chapter 1 I Attitudes and 
have categorized a number of attitudes and strategies which mathematicians strategies 
may adopt in dealing with the interpretation of exactness. I now discuss the 
question how Descartes' redefinition of geometrical exactness fits in this classi-
fication. The categories I introduced were (cf. Section 1.6): 

1 Appeal to authority and tradition 

2 Idealization of practical methods 

3 Philosophical analysis of the geometrical intuition 

4 Appreciation of the resulting mathem,atics 

5 Refusal, rejection of any rules 

6 N on-interest 

Before turning to Descartes I summarize what I wrote earlier about the attitudes 
and strategies towards exactness adopted by Pappus, Clavius, Viete, Kepler, 
Molther and Fermat. 

As far as we can reconstruct it from his Collection, Pappus' attitude to the Pappus, 
interpretation of exactness of geometrical constructions was ambivalent (cf. Sec- Clavius, Viete 
tion 3.4). On the one hand he found it important not only to explain the clas-
sification of problems (plane, solid and line-like) but also to warn that it was 
a "considerable sin" among geometers to present solutions inappropriate to the 
class of the problem. He supported this precept with a clear appeal to tradi-
tion in geometry and to the anonymous authority of the "ancients". For the 
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early modern mathematical audience, the authority of Pappus himself added 
to the strength of this argument. On the other hand, elsewhere in the Collec
tion he presented, apparently without restraint, several solutions of problems 
which violated the very precept he gave in connection with the classification of 
problems. 

To his early modern readers, Pappus' passages on the "sin" made more 
impression than the fact that he himself 'sinned' too; I have found no references 
to this inconsistency in the texts from the tradition of geometrical problem 
solving, whereas there were many references to the "sin". 

We find the first explicit early modern discussion of exactness in geometrical 
constructions in Clavius' treatise of 1589 on the quadratrix (d. Chapter 9). He 
asserted that his pointwise construction of the quadratrix was acceptable in 
pure, exact geometry because in practice the corresponding constructions, by 
ruler and compass, were very precise. The assumption implicit in this argument 
was that pure geometry was an idealization of practical geometry and that 
therefore exactness of geometrical constructions should be analogous to precision 
in practical geometry. Clavius further strengthened his argument with an appeal 
to authority (Apollonius, Archimedes and Menaechmus) and tradition. 

Viete epitomized an approach to the interpretation of exactness totally dif
ferent from Clavius' (cf. Chapter 10). He realized that his 'new algebra' provided 
a means to classify the totality of solid problems and chart their dependence 
upon two basic constructions: the trisection and the determination of two mean 
proportionals. These were solid problems whose standard constructions were 
then generally considered to be 'mechanical' and not geometrical. Thus, in or
der to incorporate his new results within the confines of legitimate geometry, 
the status of these basic constructions had to be reassessed; an argument was 
needed to assert their exactness. Viete provided such an argument: He gave the 
neusis construction (by means of which both the trisection of an angle and the 
determination of two mean proportionals could be performed) the status of a 
postulate. Thus he remedied, in one stroke of his pen, a defect of geometry and 
legitimized his newly discovered results on solid problems. He did not support 
this legitimation by arguments; in a way he simply asserted the authority of 
the geometer, in particular himself, to lend postulate status to certain powerful 
results. Viete's attitude and strategy were simple: the quality of the resulting 
mathematics justified the geometer's choices. 

Viete's aim was to enlarge the domain of legitimate geometry. Kepler provides 
us with an example of an interpretation of exactness with the opposite purpose, 
namely to defend the strict adherence to the Euclidean postulates which le
gitimized no other constructions than those by circles and straight lines. His 
choice for this restrictive interpretation of constructional exactness was induced 
by his philosophy of harmony (cf. Chapter 11); constructibility in the strict 
Euclidean sense provided a demarcation between harmonic and non-harmonic 
ratios without which his philosophy would lose its meaning. His attitude to 
the interpretation of exactness was based on extra-mathematical, in this case 
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philosophical, considerations. He defended his choice in the matter by appeal 
to tradition and authority, in particular the authority of Euclid and Proclus. 
To this he added an acute analysis of the available methods of higher-order 
construction showing that none of them was convincingly certain. 

In his book of 1619 on the Delian problem Molther treated the interpretation 
of constructional exactness with much less depth than Kepler. He addressed 
the question with the candid simplicity of an amateur; the exactness of neu
sis constructions had not yet been convincingly established and fame could be 
gained by doing so, so he did it. His strategy was the idealization of practice, 
which he elaborated a bit further than Clavius. While Clavius simply noticed 
the practical precision of his constructions, Molther attempted to idealize the 
practical operations with instruments into a kind of mental operationalism in 
which motion was a legitimate ingredient of geometry and the geometer's inner 
sense could regulate the motions of abstract rulers and stop them exactly at the 
moment in which a required position had been obtained. 

Fermat (cf. Chapter 13) had little if any interest in questions of geometrical 
exactness. When he decided to choose the intersection of conics - rather than 
the neusis as Viete had done - for constructing solid problems, he did so as a 
matter of course, sufficiently legitimized by the classical authority, for instance 
of Pappus. 

Descartes redefined geometrical exactness in his Geometry. In the previ- Descartes 
ous chapters his attitude to the matter of exactness, the canon of geometrical 
construction which he elaborated and his strategy for convincing his audience 
about his choices have been discussed in considerable detail. Descartes created 
a new position for himself in the spectrum: the 'philosophical analysis of the 
geometrical intuition' as basis of the interpretation of geometrical exactness. 
In the post-classical development of mathematics no philosophical analysis of 
mathematical understanding had been developed with such profundity and at 
the same time with such strong direct consequences for the practice of mathe-
matics. 

But it was not only the nature of his choice which made Descartes' position 
a special one. He was much more intensely concerned about the interpreta
tion of geometrical exactness than the other mathematicians of his time, with 
the possible exception of Kepler, whose philosophical starting point, however, 
implied a restrictive interpretation and thereby precluded a further analysis of 
the geometrical intuition. As a result Descartes' arguments were of an essen
tially higher intellectual quality than those of the other mathematicians I have 
discussed. Also, his interpretation of exactness, together with the canon of ge
ometrical construction based on it, effectively eclipsed the earlier approaches 
to geometrical construction and set a standard which informed mathematical 
thinking about construction for about a century to come. 
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28.5 Success and failure in the interpretation of 
exactness 

In order to arrive at a further assessment of Descartes' interpretation of 
exactness it is useful to ask whether the classification and the examples we have 
been discussing, admit conclusions about the relative efficacy of the various 
strategies.8 

It appears that the least successful of the strategies was 'idealization of prac
tical methods', exemplified by Clavius' pointwise construction of the quadratrix 
and Molther's instruments for legitimating the neusis construction. As inter
pretations of the exactness of geometrical procedures they were unconvincing. 
Clavius himself eventually lost faith in his arguments and I know of no mathe
maticians who accepted Molther's legitimation. Moreover, Clavius and Molther 
did not open up new mathematical territories by their arguments; the construc
tions by means of the quadratrix were already known from Pappus and the 
constructions legitimized by Molther's arguments were known from Pappus and 
Viete. As I noted in Section 12.5 the essential weakness of the idealization of 
practice as an interpretation of exactness is that it attempts to derive a strict 
demarcation - pure geometry or not - from an essentially continuous quality 
namely the precision of practical procedures. 

The categories which I termed 'Appreciation of the resulting mathematics' 
and 'non interest' (combined, if necessary, with 'appeal to authority and tra
dition') may be qualified as successful strategies. Among my examples these 
categories are represented by Viete and Fermat. Their interpretations of ex
actness accompanied new and significant mathematical achievements. Char
acteristically for this approach, Viete and Fermat used few, if any, explicit 
arguments in defending their interpretations of exactness (the neusis postulate 
in Viete's case, the choice of conics as constructing curves in Fermat's); their 
results were sufficient justification. Although the postulate status of the neusis 
was little discussed, Viete's approach to solid problems was very influential in 
the seventeenth-century Vietean tradition of geometrical problem solving. Fer
mat's analytical method for finding the constructing conics of solid problems, 
although overshadowed later by Descartes' approach, constituted a significant 
starting point for the analytical study of curves. 

It appears that the success of the two strategies 'appreciation of the resulting 
mathematics' and 'non interest', is related to a fundamental implied message 
which they have in common: don't spend too much effort on matters of principle 
such as exactness, but move on and let your effort be judged on its mathematical 
results. If the results are indeed interesting enough, then it is an effective 
strategy to take the hurdle of redefining exactness by a simple postulational 
approach. 

BIn [Bos 1993] I have discussed this question in somewhat more detail, taking into account 
some additional examples concerning the interpretation of the exactness of curve constructions 
c.1700. 
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Descartes' approach to the interpretation of exactness was the 'philosoph- Descartes' 
ical analysis of the geometrical intuition'. The question whether or not this strategy 
approach should be counted as a successful strategy is more involved that in 
the two cases discussed above. There is no doubt that the Geometry was highly 
influential on the technical mathematical level. But for Descartes, unlike Viete 
and Fermat, the interpretation of exactness was not merely a hurdle to be taken 
quickly before presenting an interesting mathematical structure. For him the 
redefinition of exactness and the demarcation of geometry were matters of the 
first importance. Was he successful in convincing his audience of his views? In 
a sense he was; his demarcation of geometry - the rejection of all non-algebraic 
curves - was generally acknowledged, if not accepted, and it was even anchored 
in the mathematical terminology: 'geometrical curves' was the term by which 
algebraic curves were designated during the period c. 1650 - c. 1750. How-
ever, in the 1650's one of the cornerstones of Descartes' demarcation, namely 
the belief that ratios between curved and straight line segments could never be 
found, was invalidated by the first rectifications of algebraic curves. Moreover, 
many mathematicians started exploring the realm of non-algebraic curves which 
Descartes had banished from geometry. Those mathematicians who kept to Des-
cartes' demarcation of geometry mostly accepted it as dogma and showed little 
interest in the way how Descartes had based it on the certainty of the intuition 
of combined motions. The second essential element of Descartes' redefinition of 
exactness, namely the tenet that the simplicity of a curve was determined by 
its degree, was not generally accepted.9 

Thus Descartes' philosophical analysis of the geometrical intuition attracted 
very little active interest. His audience eagerly accepted the system of geometry 
he presented (the analytical techniques and classifications concerning geometri
cal problem solving and the study of algebraic curves) but generally disregarded 
the philosophical ideas that had been so fundamental in creating the system. 
Indeed one may wonder whether the success of the Geometry wouldn't have 
been almost the same if Descartes had adopted the strategy 'appreciation of 
the resulting mathematics' in writing the book, just spelling out the canon of 
construction and the demarcation of geometry as postulates and concentrating 
on the wealth of technical results he could offer. I think the preceding chapters 
have sufficiently proved that Descartes could not have done so; his mathematics 
was a philosopher's mathematics and in that mathematics one cannot postulate 
without argument. But the reception of the book revealed a disparity between 
the aims of the writer and the effects of the book. Descartes' aim was to give 
geometry its definitive form. That aim, though exalted, was essentially conser
vative; Descartes' view of geometry as the art of solving geometrical problems 
was based on the contemporary tradition of geometrical problem solving, which 
by the 1630's was no longer a vigourous field and was soon afterwards super
seded by other mathematical interests. Yet the influence of the Geometry was 
far from conservative; on the contrary, it was the most innovative treatise in 
mathematics of the first half of the seventeenth century. 

9Cf. Notes 24, 28 and 29 of Chapter 26. 
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The Geometry, then, exerted its innovative influence despite the conserva
tive methodological interest which guided its author and which is so strongly 
reflected in its structure. Thus Descartes' approach to the interpretation of 
exactness was not an effective strategy if we look at the reception of his philo
sophical analysis of the geometrical intuition. Was it an ineffectual strategy? If 
so, then certainly not of the somewhat shallow kind we met in the examples of 
Clavius and Molther. Descartes' strategy suffered defeat in the sense that he 
failed to convince the mathematical community of his philosophy of the math
ematical understanding; but it was a glorious defeat because of the intellectual 
quality of the arguments and because of the wealth of new mathematics which 
Descartes worked out in pursuing his objective of giving geometry its definitive 
form. 

And here again, as at the end of my sketch above of Descartes' path to 
the Geometry, I perceive a tragic element in Descartes' mathematical quest. 
As I speculated there, he may have come near to an intimation that the ba
sic question 'When do we know?' could be unanswerable (cf. Section 28.4). 
In addition, he encountered little interest and less understanding for his pro
gram of securing the certainty of mathematics by a philosophical analysis of 
the geometrical understanding. Again one may wonder: could he have pro
moted his ideas more successfully? I think not. It seems -- but this impression 
should be checked by further study of historical examples - that the absence 
of success is inherent to the strategy 'philosophical analysis of the geometrical 
intuition', particularly if the resulting interpretation of exactness is a restrictive 
one (excluding the transcendental curves in Descartes' case). Methodological 
restrictions of· mathematics, however solidly rooted in tradition, authority or 
philosophical argument, tend to fade, and they fail when interesting mathemat
ics appears to await investigation beyond the frontiers of orthodoxy. As far 
as Descartes' redefinition of geometrical exactness extended the frontiers (by 
admitting all algebraic curves) it was easily taken over; his restrictive precept 
(algebraic curves only) did not stop later seventeenth-century mathematicians 
to explore the realm of transcendental curves and in due time the philosoph
ically inclined (Leibniz in this case) provided the arguments for incorporating 
these curves within legitimate geometry. 

28.6 What does exactness mean? 

An exact Let me now return to the question raised at the beginning of this book 
science (Section 1.1): What does exactness mean in mathematics? I have investigated 

the meaning independently of the term 'exactness', focusing on the conglomer
ate of qualities of mathematical procedures common to such terms as 'correct', 
'acceptable', 'legitimate', 'rigorous', 'precise', 'certain', 'exact', and 'properly 
mathematical'.l0 In that sense 'exactness' has enjoyed no fixed interpretation; 
several times in history the requirements for mathematical procedures to be 

lOCf. Section 1.2 Note 6. 



28.6 What does exactness mean? 413 

exact have been readjusted in answer to developments within or around math
ematics. I have reported on the early modern discussions on exactness with 
respect to geometrical problem solving. The interpretations of exactness which 
were proposed proved unsatisfactory in the long run - none of them acquired a 
lasting place among the rules of mathematics. Yet they were important at the 
time; they gave direction and structure to the research in geometry and algebraic 
analysis. Moreover, in the case of Descartes, the questions around geometrical 
exactness constituted one of the main forces that shaped the development of his 
geometrical ideas. Indeed the program and the structure of the Geometry was 
to a large extent determined by the endeavor to redefine geometrical exactness. 

The importance of the interpretation of exactness as a factor in the devel
opment of early modern mathematics does not imply that there was clarity and 
consensus about the matter. Exactness was a fluid concept; there was often a 
tension between orthodoxy and practice and for the historian the attitudes and 
strategies of the protagonists are at least as informative and revealing as their 
actual ideas and arguments. The interpretation of exactness was an ongoing 
concern, with all the associated fluctuations and unclarities. But mathemati
cians were actively concerned about exactness and in that sense the mathematics 
of the period I've been describing may rightly be considered an exact science. 



Chapter 29 

Epilogue 

29.1 Pre-Cartesian geometrical problem solving 

In Chapter 1 I structured the story of geometrical construction in early Construction 
modern mathematics by distinguishing two overlapping periods, c. 1590 - c. 1650 ~ the end of a 
and c. 1635 - c. 1750. I dealt with the first period in Part 1. The overlap of period 
the two periods was dominated by Descartes, whose ideas on construction I 
discussed in Part II. (The second period is not treated in the present study. 1 ) 

Thus I have now reached the end of the first period, the era (cf. Section 1.5) 
of the early modern tradition of geometrical problem solving. In this epilogue I 
draw the lines of influence emanating from that tradition, concentrating on the 
concept of construction and the interpretation of exactness. 

The epilogue is meant primarily as a sketch of the aftermath of the ideas 
and techniques discussed in the previous chapters; it may also serve as an intro
duction to the second period in the history of the concept of construction and 
as a survey of themes for further research. 

By 1635 (cf. Chapter 14) the first generation of mathematicians active in the With and 
early modern tradition of geometrical problem solving had passed away. In their without algebra 
time the major innovation in the field was Viete's use of his new algebra. Some 
mathematicians, Clavi us , for instance, paid no attention to this innovation; 
Kepler even rejected the use of algebra in geometry. But it seems that by 1635 
the practice of geometrical problem solving without algebra (exemplified by 
Clavius' division of a triangle, Construction 4.18), and the pertaining classical 
method of analysis by the concept of "given" (cf. Sections 5.2 and 5.5), had 
vanished from the scene of active mathematical investigation. It is, however, of 
interest to explore how much of the techniques of this non-algebraic approach 
to geometry nevertheless remained known in the period after 1635, for instance, 

1 I have studied aspects of that period in [Bos 1974]' [Bos 1984]' [Bos 1985], [Bos 1987]' 
[Bos 1988], [Bos 1989], [Bos 1993], [Bos 1996]. 
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in connection with the recovery and restitution of ancient Greek mathematical 
treatises. 

Viete's use of algebra in geometry was promoted and developed by a small 
but active group of mathematicians (in particular, Anderson and Ghetaldi).2 
Thus started a Vietean tradition that was soon enriched by Fermat's techniques 
for studying curves by their equations. Although later overshadowed by Carte
sian geometry, it remained alive throughout the seventeenth century; a typical 
representative was Sluse.3 The main characteristics of the tradition were the 
adherence to Vietean notation and to homogeneity of equations, and a tendency 
to interpret and classify equations (in one unknown) in terms of corresponding 
geometrical problems involving proportionalities (cf. Section 4.4). Thus the con
cept of "constitutiv€ problems" for classes of equations can be traced to as late 
as 1702.4 A special study of this Vietean influence on later seventeenth-century 
geometrical conceptions may provide an important addition to our understand
ing of the mathematics of that period. 

29.2 Early reactions to the Geometry 

Overall It is hardly possible to overestimate the impact of Descartes' Geometry on 
influence later mathematics. The core of its influence consisted in the spread of Descartes' 

insights and techniques about the relation between curves and their equations 
or, more generally, about the interplay between figures and formulas. With
out these insights and techniques the later seventeenth-century developments in 
mathematics (the infinitesimal calculus, the exploration of non-algebraic curves) 
are unthinkable. 

My analysis of the Geometry in the preceding chapters has shown, however, 
that Descartes' main motivation in writing the book was not to expose the 
equivalence of curve and equation. Rather, it was to provide an exact, complete 
method for solving "all the problems of geometry." This program informed the 
structure and a large part of the contents of the book. Thus, as I stated in 
Section 28.5, the main influence of the book did not concur with its program. 
Indeed the Geometry exerted its main influence despite its primary motivation.5 

Because my interest in the present study is primarily in those aspects of the 
Geometry that were germane to Descartes' program, I concentrate here on the 
reception and the aftermath of the ideas and techniques related to construction 
and the interpretation of exactness. 

Acclaim and During Descartes' lifetime the Geometry evoked a relatively small number 
criticism of reactions. Shortly after its appearance a small group of Dutch mathematical 

amateurs enthusiastically studied the book; their activity resulted in a short 

2Van Ceulen's exploration of the use of (quadratic) algebra in solving geometrical problems 
(cf. Section 8.6) apparently attracted no interest. 

3Cf. [Bos 1985J. 
4Cf. Note 17 of Chapter 4. 
5Cf. [Bos 1990J p. 368 (p. 52 in ed. [Bos 1993cJ). 



29.2 Early reactions to the Geometry 417 

introductory treatise that circulated in manuscript.6 It was written by one or 
more members of the group, but Descartes saw it and apparently approved. 
In the fall of 1643 Descartes had the pleasure of witnessing how the Princess 
Elizabeth had learned enough from his Geometry to successfully apply the new 
method to Apollonius' problem.7 In recognition of the quality of her solution 
he wrote down for her a detailed account of his own ideas about how to choose 
the known and the unknown elements of a problem so as to arrive at the sim
plest equations.8 Frans Van Schooten, who had been involved in preparing the 
Geometry for the press, kept a lively interest in it; he wrote a large number of 
explanatory notes, and translated the text into Latin. This work formed the ba
sis of his 1649Latin edition of the Geometry, which, apart from Van Schooten's 
annotations, also included a sizable collection of short notes to the work by Flo
rimond DebeauneY The 1649 edition,lO published one year before Descartes' 
death, marked the beginning of the effective spread of his geometrical ideas and 
techniques. 

Debeaune wrote his notes to the Geometry shortly after it appeared. In 
February 1639 Descartes received a copy of the notes; in a return letter he 
expressed his appreciation for the openness with which Debeaune approached 
the novelties of the Geometry. 11 

Descartes praised Debeaune's open attitude because he felt that in most 
other reactions from France such an attitude was painfully lacking. The Geom
etry indeed provoked acrimonious disputes with French mathematicians. There 
was an extended epistolary debate (via Mersenne) with Fermat, first on Descar
tes' derivation of the law of refraction in the Dioptrics12 and later on Fermat's 
method of extreme values and its relation to Descartes' tangent method as 
explained in the Geometry.13 The tone in this debate was bitter; it was set pri
marily by Descartes who was extremely sensitive about his intellectual property 
and about his reputation as a mathematician and natural philosopher. Rober
val and Beaugrand, who had their own grudges against Descartes, also entered 
the dispute. They directed their attacks particularly against the Geometry and, 
based on elementary misunderstandings and misinterpretations, accused Des
cartes of plagiarism (from Viete and Harriot) and algebraic incompetence. 14 

A striking feature of these first reactions to the Geometry, both positive No interest in 
and negative, is the lack of interest in Descartes' overall program for geometry. Descartes' 
Descartes wanted to institute, once and for all, the proper canon of geometrical progmm 
construction and to provide a complete analytical method by which all problems 

6[Anonymus Caleul]. 
71 discussed the problem in Part I, see Construction 5.8. 
SDescartes to Elizabeth, November 1643, [Descartes 1964~ 1974] vol. 4, pp. 45~50. 
9[Debeaune 1649]. 

lO[Descartes 1649]. 
11 Descartes to Debeaune, 20 II 1639, [Descartes 1964~ 1974] vol. 2 pp. 51O~523, esp. 510. 
12The first "essai" accompanying the Discourse, cf. [Descartes 1637b]. 
13Cf. three letters of Descartes to Mersenne from January 1638 (?), [Descartes 1964~1974] 

vol. 1 pp. 481~486, 486~496, and 499~504. 
14Cf. [Descartes 1964~1974] vol. 2, pp. 82, 103~115, 457~461, and 508~509. 
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of geometry could be solved. Most of the reactions during his lifetime concerned 
elementary algebraic techniques, notation, homogeneity (Debeaune started his 
Notes with a lengthy comment on Descartes' use of a unit line segmentI5 ), and 
the determination of normals and tangents. 

Three episodes in the discussions between Descartes and his contemporaries 
about the Geometry, however, came near to the methodological core of the 
Geometry and should therefore be briefly discussed here. They were: a comment 
by Roberval on the construction of equations, a treatise by Fermat on how to 
choose the proper constructing curves, and Descartes' own confrontation with 
problems concerning transcendental curves. 

Roberval Soon after the Geometry had appeared, Roberval criticized the crowning tech-
nical achievement in Descartes' program, the construction of the roots of sixth
degree equations. The construction (Construction 26.2) used only one branch 
of the Cartesian parabola. Roberval claimed that no circle could intersect this 
branch in more than four points, whereas a sixth-degree equation could have 
six real roots. He explained the situation by assuming that the remaining two 
roots would appear through the circle's intersections of the second branch of the 
Cartesian parabola. Descartes refuted the comment easily by an explicit exam
ple. 16 Yet the episode is of interest because it shows how new the domain of 
higher-order curves was; the phenomenon of a circle intersecting a convex curve 
in more than four points was unusual and apparently in conflict with primary 
intuitions about curves. 17 

Fermat Fermat commented on Descartes' canon of problem solving in a treatise, the 
Tripartite dissertation, which he probably wrote in the early 1640s. Descartes 
never saw the treatise; it remained in manuscript until 1679.18 Fermat had come 
to the conclusion that according to Descartes' canon of construction the roots 
of equations of degree 2n and 2n - 1 should be constructed by curves of degrees 
2n - 3 and 2n - 4. It is not clear how he arrived at this conclusion; Descartes' 
own ambiguity about his classification of curves by "genres" (cf. Section 25.1) 
may have played a role. The numbers in Fermat's interpretation fit for fifth
and sixth-degree equations (n = 3), which Descartes indeed constructed by 
curves of degree 3 (the Cartesian parabola) and 2 (the circle). But Fermat's 
numbers do not apply for Descartes' constructions of lower-degree equations. 
Moreover, as I have argued above (Section 26.4), Descartes probably envisaged 
the construction of equations of degrees 2n - 1 and 2n by one curve of degree n 

15Cf. Note 14 of Chapter 21. 
16Cf. "Roberval contre Descartes', April 1638, [Descartes 1964-1974] vol. 2 pp. 103-115, 

and Descartes to Carcavi 17 VIII 1649, ibid. vol. 5 pp. 391-401, esp. pp. 397-399. 
17 As late as 1713 Rolle used the term "paradox" for the phenomenon that two graphs, both 

concave and increasing, may intersect each other in arbitrarily many points, cf. [Bos 1984] 
p. 369, note 83. 

18[Fermat DissTrip], on its date cf. [Mahoney 1994] p. 130, note 94; excerpts of it were 
published in 1657 (cf. ibid. p. 141, note 110), the full text appeared in the Varia Opem of 
1679. 
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(traced by some iteration of the "turning ruler and moving curve" procedure) 
and one of degree 2, namely a circle. Fermat's interpretation suggested that 
Descartes used constructing curves of too high degree; he stressed this negative 
judgment by invoking Pappus' precept: 

Certainly it is an offence against the more pure Geometry if one 
assumes too complicated curves of higher degrees for the solution of 
some problem, not taking the simpler and more proper ones; for it 
has often been declared already, both by Pappus and by more recent 
mathematicians, that it is a considerable error in geometry to solve 
a problem by means that are not proper to it. 19 

Fermat intended to show that he could do better than Descartes. He presented 
a general procedure that, for any given equation of degree 2n or 2n - 1 in one 
unknown, supplied the equations of two curves of degree n, by whose intersec
tions the roots could be found. In terms of the simplicity of curves, as measured 
by the degree, this procedure was clearly better than what Fermat thought 
Descartes meant, but worse than what Descartes probably did mean. 

Fermat concluded his treatise by giving examples of equations with degree n 
whose roots could be constructed by means of curves of degrees of the order of 
.;n. He expressed the importance of this result by saying that, if such equations 
could be found for arbitrarily large degree n, there existed problems "whose 
degree has to the degrees of the curves used in [their] construction a ratio larger 
than any given ratio,,20 - a result meant to dwarf Descartes' achievement, for 
which, in Fermat's opinion, this ratio, would become 1 for large n. It was in 
this connection that Fermat mentioned (and needed) his famous conjecture that 
numbers of the form 22k + 1 are prime.21 

It is unlikely that, had Descartes seen Fermat's treatise, a constructive dis
cussion between the two would have ensued. Descartes would probably have 
been put off because Fermat adopted the least favorable interpretation of the 
scheme for the degrees in the canon of construction. But more important, Fer
mat did not show any interest in the programmatic aspects of the book. He 
accepted without further question that curves were simplest and appropriate for 

19[Fermat DissTrip] p. 121: "Puriorem certe Geometriam offend it qui ad solutionem cu
jusvis problematis curvas compositas nimis et graduum elatiorum assumit, omissis propriis et 
simplicioribus, quum jam saepe et a Pappo et a recentioribus determinatum sit non leve in 
Geometria peccatum esse quando problema ex improprio solvitur genere." 

20 [Fermat DissTrip] p. 131: "problema construemus cujus gradus ad gradum curvarum 
ipsius solutionem inservientum rationem habet data quavis majorem." 

2lFermat took n = 22k + 1 for k = 1, 2, 3, etc., and considered the equations xn = an- 1b 
(these are the equations for the first of n - 1 mean proportionals between a and b). For 

shortness I write / = 22k - 1 , so n = /2 + 1. Fermat then considered two curves with the 
equations xl+1 = ylb and xl-1y = al , respectively. Eliminating y from the two equations leads 

to X l2 +1 = al2 b, that is, xn = an-lb. Hence the x-coordinates of the points of intersection 
of the two curves satisfy the original equation. - In the context of the construction of roots 
of equations it was essential for Fermat to find large n's that were prime, because for non
prime n the equation xn = an-lb is reducible. As is well known, Euler later refuted Fermat's 

conjecture by showing that 225 +1 is not prime. 
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a class of problems if they were algebraic and had lowest possible degree. On 
that basis he directed his critical attention solely to the techniques in Descar
tes' book and used the occasion to show his algebraic skill and his knowledge 
of arcane number theoretical results. He disregarded Descartes' arguments for 
his canon of higher-order geometrical problem solving, in particular the philo
sophical and kinematical arguments that Descartes had developed in order to 
justify this interpretation. Fermat gave no thoughts to the question how curves 
were geometrically generated. For him the intersection of algebraic curves was 
simply a matter of eliminating one unknown from a pair of equations; finding 
constructing curves for a given equation was the inverse operation: finding two 
equations from which by elimination the given equation would result. 

The pattern of response to the Geometry exemplified in Fermat's treatise, 
concentration on technical algebraic results and disregard for methodological 
aspects, was to be repeated by many seventeenth-century readers of the book. 

The cycloid One of the key elements of Descartes' geometrical doctrine was the demar-

Debeaune's 
problem 

cation between truly geometrical curves, on the one hand, and non-geometrical 
ones ("mechanical" in Descartes' terminology), on the other hand. He asserted 
that the generation of mechanical curves by motion was so inexact that certain 
knowledge about them could not be achieved. Hence these curves ought not to 
be used in solving geometrical problems. When he formulated these principles, 
he knew few examples of such curves; apart from the classical quadratrix and 
spiral, he probably had gained some insights about the logarithmic curve and 
he may have known about the cycloid. 

Soon after the Geometry appeared Descartes found himself studying two 
"mechanical" curves in considerable detail. The first was the cycloid. In April 
1638 Mersenne wrote to Descartes about Roberval's quadrature of the cycloid 
and related problems such as the determination of tangents to the curve. Des
cartes checked the quadrature, provided a proof, and solved the problems. 22 It 
turned out, he wrote to Mersenne, that neither in the proof nor in the solutions 
of the problems could he use the methods from the Geometry. Instead he de
veloped an ingenious but ad hoc approach to the problem. He also realized why 
his method was not applicable: the curve was not "geometrical." 

It should also be noted that the curves described by rolling circles are 
entirely mechanical lines and belong to those which I have rejected 
from my Geometry; that is why it is no wonder that their tangents 
cannot be found by the rules I put in it.23 

Shortly after his encounter with the cycloid, the discussions in Parisian math-

22Mersenne to Descartes 28 IV 1638, [Descartes 1964-1974J vol. 2 pp. 116-122; Descartes 
to Mersenne 25 V, 27 VII and 23 VIII 1638, ibid. pp. 134-153, 253-280, and 307-343. 

23Descartes to Mersenne 23 VIII 1638, [Descartes 1964-1974J vol. 2 p. 313: "II faut aussy 
rernarquer que les courbes descrites par des rouletes sont des !ignes entierernent rnechaniques, 
et du nornbre de celles que i'ay reietes de rna Geornetrie; c'est pourquoy ce n'est pas rnerveille 
que leur tangentes ne se trouvent point par les regles que i'y ay rnises." 
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ematical circles confronted Descartes with another "mechanical" curve. De
beaune had circulated a number of problems, one of which required the deter
mination of a curve from a given property of its tangents. In modern terms the 
problem implies the solution of a first-order differential equation; it was one of 
the first of its type to arise in mathematics. Later seventeenth-century math
ematicians referred to the type as "inverse tangent problems." In the case of 
Debeaune's problem the required curve was a logarithmic one. Descartes gave 
two solutions, both of which he considered insufficient. One was a approxima
tive procedure that yielded points lying arbitrarily close to the curve; the other 
specified a kinematic process by which the curve could be traced. The first 
was insufficient because it only supplied approximations. The motion specified 
in the other solution was a combination of two rectilinear motions, one with 
constant velocity and the other with a velocity inversely proportional to 1 - s, 
s being the distance traversed by the first motion.24 Descartes commented: 

But I believe that these two movements are so incommensurable 
that they cannot be regulated by each other in an exact way; and 
therefore that this line belongs to those which I have rejected from 
my Geometry as being only Mechanical, which is the reason why I 
am no longer surprised that I could not find it by the other artifice 
which I had used, because that only applies to geometricallines.25 

Thus, again, Descartes encountered a problem that transcended the power Limitations 
of the methods of the Geometry; and, again, he had to conclude that the reason 
why these methods were inapplicable lay in the non- "geometrical," that is, the 
non-algebraic nature of the curve. 

Yet, uninteresting these problems were not; hardly a year after banning 
curves like the cycloid from geometry Descartes was sufficiently captivated by 
them to spend considerable energy in their study. It is remarkable how accu
rately these two encounters with transcendental curves marked the limitations of 
Descartes' new approach to geometry: it did not cover quadrature problems, its 
method for determining tangents only applied to algebraic curves and it was of 
little help for the general problem of determining a curve from its tangents. The 
fact that these problems crossed Descartes' path so soon after the appearance 
of the Geometry was almost symbolic; it foreshadowed the turn mathematicians 
were soon to make toward problems that fell outside the domain and the power 
of Descartes' new methods. In the second half of the seventeenth century the 
tradition of geometrical problem solving, which had so strongly informed Des
cartes' geometrical doctrine, moved to a peripheral position in mathematics, 
whereas quadratures, tangents, inverse tangent problems, and transcendental 

24Descartes to Debeaune 20 II 1639, [Descartes 1964-1974] vol. 2 pp. 510-523, esp. pp. 514-
518. On Debeaune's problem see also [Whiteside 1960-1962] pp. 368-370 and [Scriba 1961]. 

25[Descartes 1964-1974] vol. 2 pp. 517: "Mais ie croy que ces deux mouvemens sont tellement 
incommensurables, qu'ils ne peuvent estre reglez exactement l'un par l'autre; et ainsi que 
cette ligne est du nombre de celles que i'ay rejettees de rna Geometrie, comme n'estant que 
Mechanique; ce qui est cause que ie ne m'estonne plus de ce que ie ne l'avois pu trouver de 
l'autre biais que i'avois pris, car il ne s'etend qu'aux lignes Geometriques." 
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curves dominated the center of activity; indeed they inspired the creation of the 
differential and integral calculus. 

29.3 The construction of equations 

The early reactions to the Geometry show that Descartes' methodological 
and philosophical arguments on geometry attracted little interest. Yet the re
sulting canon of problem solving, and the related algebraic techniques, were 
accepted by many mathematicians, especially through the two Latin editions 
of the Geometry. Stripped of its philosophical and methodological components 
(exactness, acceptability of curves and constructions, interrelation of geometry 
and algebra), and expressed in modern notation, Descartes' doctrine of problem 
solving reduces to the following general problem: 

Problem 29.1 (Construction of Equations)26 
Given: an equation in one unknown 

H(x) = anxn + an_lxn- 1 + ... + alx + ao = 0, (29.1) 

it is required to find two algebraic curves If> and r of minimal degrees, such that 
all (real) roots of the equation H(x) = 0 occur as X-coordinates of the points of 
intersection of If> and r. 
As these coordinates are determined by eliminating y from the two equations of 
If> and r, the requirement becomes: 
To find two polynomial equations in two unknowns with minimal degrees 

F(x, y) = 0 and G(x, y) = 0 

such that the roots of H(x) = 0 occur among the roots of 

RF,C(X) = 0 , 

(29.2) 

(29.3) 

in which RF,c is the resultant of F and G, that is, the polynomial resulting from 
eliminating y from the two equations in 29.2. 

The problem deviates from Descartes' examples in the sense that later geometers 
usually did not assume a circle for one of the constructing curves, but rather 
two curves of approximately the same degree. 

Problem 29.1 was called the construction of the equation H(x) = 0 and the 
general theory about how to find the required curves or equations was called 
the Construction of Equations. 27 From c. 1650 to c. 1750 the construction 
of equations constituted a small but recognizable mathematical research pro
gram; a considerable number of books devoted substantial sections to the sub
ject and prominent mathematicians, such as Fermat, de la Hire, Newton, Jakob 
Bernoulli, I'Hopital, Euler, and Cramer, contributed to it. During the second 
half of the seventeenth century the construction of equations absorbed the Vi
etean tradition in geometrical problem solving. After 1750 the subject gradually 
slipped into oblivion and died. 

26Cf. [Bos 1984] p. 343. 
27 cr. Section 26.1 
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I have given elsewhere28 a survey of this mathematical subfield, its devel- Rise and 
opment and its later decline. With Descartes, the construction of equations decline 
was the natural outcome of a comprehensive program for geometrical problem 
solving by means of algebraic analysis. In particular, it provided the trans-
lation of geometrical criteria of adequacy of constructions into algebra, based 
on Descartes' own interpretation of geometrical exactness. In algebraic terms 
the "construction" of an equation was adequate if the constructing curves were 
algebraic and of minimal degree. Precisely here lay the reason for the subject's 
eventual decline and death: the algebraic formulation of the geometrical cri-
teria was both too liberal (for one equation H(x) = 0 there were many pairs 
of curves <J> and r that satisfy the requirements) and ultimately unconvincing 
(especially the tenet that the simplicity of curves should be measured by their 
degrees was often criticized - but no workable alternative criterion of geomet-
rical simplicity was found). The construction of equations made sense as long 
as mathematicians realized its original geometrical motivation. But few mathe-
maticians adopted Descartes' philosophical rationale for the procedure and later 
attempts to provide alternative geometrical motivations of the procedure failed. 
But as a purely algeb.raic problem the construction of equations made little 
sense. Thus, together with the geometrical criteria, the subject lost its meaning 
and died. 

For further details I refer to my earlier study. Here let it suffice to note that 
the "construction of equations" was the main mathematical field that, be it 
in a primarily technical sense, developed the program and the exactness-related 
concerns of the Geometry. It was a solid but rather unimaginative mathematical 
venture and, as such, an ambivalent heir to Descartes' imposing philosophical 
doctrine of geometry. Its fate shows that Descartes' interpretation of geometrical 
exactness was ultimately unconvincing and lacked sufficient innovative power 
to stay alive. Thus the development of the construction of equations in the 
century after the publication of the Geometry actualized the tragedy of which, 
as I suggested in the previous chapter (cf. Section 28.3), Descartes may have 
had some premonition when he felt himself forced to accept algebraic rather 
than geometrical criteria in his interpretation of exactness. 

29.4 The interpretation of exactness 

The "construction of equations" remained a peripheral enterprise in mathe- The 
matics. But DesGartes' doctrine of construction also affected the core of math- investigation 
ematical activity after 1650. The most vigorous and productive mathematical of curves after 
developments in that period occurred in connection with curves. Curves were 1650 
of central importance within mathematics; their investigation by finite and in-
finitesimal analysis was the context for the creation of the differential and in-
tegral calculus by Newton and Leibniz. Curves were also the medium through 
which advanced mathematical methods could be applied in astronomy, mechan-
ics, optics, and natural science generally. 

28[B08 1984]. 
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In Chapter 1 I have characterized the principal dynamics within the study 
of curves as "the emancipation of (finite and infinitesimal) analysis from its 
geometrical context," or the "de-geometrization of analysis." Analysis in that 
period meant the use of algebraic formalisms, including notations for limit
related operations such as integration and differentiation. 

This analysis proved to be a very powerful tool for solving problems. The 
most consequential of these were quadratures and inverse tangent problems 
(evolving gradually to their analytical analogs: integration and the solution 
of differential equations). These problems often had non-algebraic curves as 
their solutions and thus mathematicians had to decide how to represent these 
curves, that is,29 how to identify the curve in question in such a way that 
other mathematicians would consider it adequately determined and the problem 
thereby properly solved. It was here that Descartes' ideas on construction and 
exactness exerted a marked influence on the study of curves. The influence 
was two-sided; Descartes' achievements facilitated the understanding and use 
of algebra as analytical tool, but his authority impeded the acceptance of non
algebraic relations and curves. 

Around 1700 mathematicians had internalized Descartes' doctrine to such a 
degree that the construction of algebraic curves was generally considered to be 
elementary and uninteresting. After that time such constructions were hardly 
ever spelled out in detail ~ a mere statement of the form "construct the curve 
with this equation" sufficed. Explicit references to Descartes were seldom given, 
yet the presupposed procedure obviously was Descartes' generic pointwise con
struction of algebraic curves (cf. Sections 23.2 and 24.3), based on the assump
tion that the roots of any equation (in one unknown) could be constructed. 
Thus fairly soon after Descartes' Geometry mathematicians were so far habitu
ated to algebraic curves that the equation of such a curve no longer presented a 
problem (how to construct the curve with that equation); rather it represented 
an object (the curve with that equation). 

The habituation to non-algebraic curves took more time. This was partly 
because the representation of such curves was far from trivial; there were (at 
least until c. 1700) very few notational means available to express their equa
tions. In the absence of analytical means of representation, a non-algebraic 
curve could only be imagined and talked or written about in terms of a geomet
rical procedure to construct or trace it. In the case of non-algebraic curves these 
procedures involved combinations of motions, or pointwise constructions, which 
Descartes had expressly banned from genuine geometry because, in the case of 
non-algebraic curves, they did not provide proper knowledge of the objects. 

A number of mathematicians felt that a reinterpretation of geometrical ex
actness was needed, overcoming the obstacle of the restrictive Cartesian ortho
doxy. Thus in the second half of the seventeenth century Descartes' ideas about 
genuine geometrical knowledge induced a new debate on the interpretation of 
exactness in connection with the proper representation of non-algebraic curves. 

29Cf. Section 1.3. 
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I have argued elsewhere30 that a study of the arguments in and the origins Similarity of 
of the debate on the representation of curves is essential for understanding the the debates on 
process by which analysis gradually became independent of its strong roots in exactness 
geometrical imagery. 

I hope to show in later relevant studies that the debate on the interpretation 
of exactness of construction and representation of curves in the period c. 1635 -
c. 1750 followed a course similar to that of the debate on constructing geometri
cal problems in the period c. 1590 - c. 1650. In my present study I have used a 
distinction of archetypical attitudes and strategies of mathematicians confronted 
with the interpretation of mathematical exactness (cf. Section 1.6). The same 
attitudes were evident in the later debate on the representation of curves; some 
mathematicians argued by idealizing practical methods, some appealed to au
thority, etc. In both cases also the debates were inconclusive. What remained of 
Descartes' forcefully argued canon of construction was merely the tacit convic
tion that algebraic relations in geometry did not present problems with respect 
to exact knowledge. Similarly the later arguments about the proper represen
tation of non-algebraic curves by geometrical constructions lost their urgency, 
while, in the first half of the eighteenth century, mathematicians gradually ac
cepted analytical expressions as sufficient representation of curves. Yet, despite 
their inconclusiveness, the two debates decisively influenced the direction of 
mathematical research in the two periods. 

29.5 Conclusion - metamorphoses 

The sections above show that the story of construction in the early modern Geometrical 
period is one of perpetual change. Indeed its main message seems to me to problem 
be that nothing remains quite the same in mathematics. Therefore the present solving 
epilogue is appropriately concluded by a brief overview of the principal meta-
morphoses that have occurred with respect to the concept of construction in the 
early modern period. 

The early modern tradition of geometrical problem solving underwent a re
markable metamorphosis. First, primarily through Viete's "new algebra," it 
changed from a mainly geometrical endeavor to a largely algebraic one. Then 
Descartes' reinterpretation of the concept of construction practically reduced 
geometrical problem solving to a single algebraic problem: the "construction 
of equations." As a result, the endeavor moved from a central to a peripheral 
position in mathematics. In this position it stayed alive for about a century and 
then disappeared for lack of meaning. All these changes - algebraization, re
duction to one problem, shift to a peripheral position, and demise - were linked 
to what I have called the principal dynamics in the tradition up to Descartes, 
namely, the creation and adoption of (finite) analysis as a tool for geometry. 
Indeed the final demise of the "construction of equations" can be understood as 
a belated reaction to the introduction of finite analysis as a tool in geometry; 
ultimately the original geometrical aims of the field - genuinely geometrical 

30[B08 1974]' [B08 1987], [B08 1988], and [Bos 1996J. 
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solution of all plane and higher-order problems - could not be translated into 
algebraic terms, and thereby the endeavor lost its meaning. 

The investigation of curves, which was the context of the developments con
cerning the concept of construction in the second period, c. 1635 - c. 1750, 
also underwent a strong metamorphosis, but different from geometrical prob
lem solving. Until around 1700, curves were studied by means of finite and 
infinitesimal analysis, but they were considered known or understood only if a 
geometrical construction procedure was explicitly formulated. Gradually math
ematicians became less concerned about these constructions; they learned to 
understand the curves from their equations. As a result, after 1700 the central 
object in this endeavor was no longer the curve but the analytical expression 
(formula) that represented the curve. It was taken for granted that from this 
expression a construction of the curve could be derived; to do so was no longer 
seen as necessary or enlightening. Habituation to analytical expressions made 
the focus shift from explicitly constructed curves to relations between variables 
explicitly or implicitly defined by analytical equations. I have called this pro
cess the "de-geometrization" of analysis, or the emancipation of analysis from 
its geometrical context. This was the principal dynamics in the field and, as in 
the case of geometrical problem solving, it completely transformed the aims and 
the criteria of adequacy in the field. Yet, contrary to the case of geometrical 
problem solving, these changes did not result in a shift to a peripheral posi
tion and subsequent oblivion. Indeed, the analytical study of relations between 
variables became the very core of eighteenth-century mathematics. 

The present discussion of metamorphoses of mathematical fields invites a 
comment on analytic geometry. Descartes' Geometry gave to mathematics the 
insight that a curve and its equation are in a sense equivalent; this insight 
is usually considered to be the essence of analytic geometry. How, then, did 
analytic geometry fare among the different shifts of analytical and geometrical 
endeavors discussed above? 

The relation between a curve and its equation was crucial in the develop
ments in mathematics after Descartes. However, there was no recognizable 
subfield of mathematics that coincided with what at present is called analytic 
geometry, and therefore the question of its development does not arise. This 
is not surprising because "analytic geometry," like "calculus," is a category of 
mathematical topics defined not by active research but by didactical practice, 
notably the twentieth-century practice of propaedeutic mathematics teaching at 
universities. 

The changes, discussed above, in the two contexts in which the concept of 
geometrical construction functioned show that the concept itself also underwent 
a profound metamorphosis. Starting from the appearance in print of Pappus' 
classification of problems in 1588, the concept was made more precise, it was 
extended beyond the confines of solid problems, and it was also extended to 
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cover the construction of curves. Descartes codified the concept for problems 
leading to polynomial equations (in one unknown) and for algebraic curves. 
Later mathematicians explored means to construct non-algebraic curves and 
thereby - contra Descartes - to legitimize them. 

An even more fundamental change occurred in the role of the concept of 
construction. At first, construction was the exclusive means to solve problems 
(in geometry) and to know objects (like curves). It was, thereby, the principal 
instrument to attain mathematical understanding and certainty. This crucial 
role it lost; by 1750 analytical expressions provided as much certainty and un
derstanding to mathematicians as the earlier constructions. Thus the decline 
of constructions mirrored the rise of analytical expressions and equations: By 
1650 an equation was a problem whose solution was a construction; by 1750 
problems as well as their solutions were couched in terms of equations or ana
lytical expressions. As a result the criteria of adequacy for solutions had to be 
redefined, and they were. 

Together with the concept of construction, the interpretation of exactness Interpretation 
underwent a metamorphosis in the early modern period. For a time Pappus' of exactness 
precept was the standard interpretation of geometric exactness and debates 
occurred about the legitimacy of non-plane constructions. Descartes settled 
and practically silenced these debates by his interpretation of constructional 
exactness. This interpretation soon became an orthodoxy, adopted or opposed 
without much interest in Descartes' philosophical arguments for it. Attempts 
to reinterpret constructional exactness so as to include the non-algebraic curves 
did not lead to a new canon of construction. Rather they accompanied a process 
of habituation by which mathematicians came to accept analytical expressions 
as sufficiently exact to represent the objects. 

It is of interest to consider the forces behind the metamorphoses in early Dynamics 
modern mathematics discussed above. The principal dynamics consisted in the 
introduction of analytical methods. But one should note two other forces at 
work whose influence in the development of mathematics were considerable. 
The one was habituation. By habituation, the equations of analysis lost their 
character of problem or task (namely: construct the roots of, or the curve defined 
by the equation) and acquired the status of a solution or answer (the roots of 
this equation, the curve defined by this equation). The transition occurred not 
because mathematicians learned essentially new things about the equations, but 
because they became so used to analytical expressions that they accepted them 
as answers. 

The other force at work is what I would call the erosion of restrictive method
ologies. Kepler's restriction of geometry to plane constructions, however con
scientiously derived from authority and convictions about the harmony of the 
creation, did not restrain later mathematicians in exploring non-plane construc
tions. Also Descartes' interpretation of exactness, diligently based on philosoph
ical convictions, was a restrictive one; non-algebraic relations were beyond the 
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confines of legitimate geometry. Yet it did not take mathematicians long to 
overcome the Cartesian inhibition and explore the realm of non-algebraic rela
tions. These transgressions of restrictive interpretations of exactness illustrate 
the success of the strategy which I have called "Appreciation of the resulting 
mathematics' (cf. Section 1.6). In other words, if the mathematics beyond is 
alluring, the border will be crossed, whatever restrictive methodology guards it. 
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This list refers only to the formal presentations of the items in Proposition-form; 
for further references to these and other problems, analyses, etc., see the subject 
index. 

2.1 Problem Two Mean Proportionals ................................. 27 
2.2 Construction Two Mean Proportionals - Heron ................... 28 
2.3 Construction Two Mean Proportionals - Plato ................... 29 
2.4 Problem Neusis .................................................... 31 
2.5 Construction Neusis by means of a conchoid - Nicomedes ........ 31 
2.6 Construction Two Mean Proportionals - Nicomedes .............. 33 
3.1 Construction Two mean proportionals - Menaechmus ............ 38 
3.2 Construction-Definition Spiral- Archimedes ................... 40 
3.3 Construction-Definition Quadratrix - Pappus .................. 40 
3.4 Construction General angular section - Pappus ................... 43 
3.5 Construction-Definition Cissoid - Diocles ....................... 45 
3.6 Construction Two mean proportionals - Diocles .................. 46 
3.7 Problem Neusis .................................................... 53 
3.8 Construction Neusis - Pappus .................................... 54 
3.9 Construction Trisection - Pappus ................................ 55 
4.1 Construction Fourth Proportional - Euclid ....................... 62 
4.2 Construction Mean proportional - Euclid ........................ 63 
4.3 Construction Scholium to Elements III-36 - Clavius .............. 65 
4.4 Construction x2 - ax = b2 - ViE:lte ................................ 66 
4.5 Problem Standard solid problems - Viete ......................... 68 
4.6 Construction Root of a cubic equation - Viete .................... 69 
4.7 Problem General angular section ................................... 70 
4.8 Construction Line segments in continued proportion 

- Clavius .......................................................... 72 
4.9 Construction Two mean proportionals - Clavius .................. 74 
4.10 Construction-Definition "First proportionatrix" 
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- Villalpando ...................................................... 75 
4.11 Construction Two mean proportionals - Villalpando .............. 76 
4.12 Problem Parallellogrammic application - Euclid ................... 79 
4.13 Problem Quadrature of rectilinear figures - Euclid ................ 79 
4.14 Problem Transformation into figure of given shape - Euclid ....... 79 
4.15 Construction Addition of similar solids - Stevin .................. 80 
4.16 Construction Special neusis between a circle and a line 

~- Ghetaldi ......................................................... 81 
4.17 Problem Division of figures ........................................ 84 
4.18 Construction Triangle division - Clavius .......................... 85 
4.19 Construction Division of a sphere - Huygens ..................... 86 
4.20 Analysis Triangle problem - Regiomontanus ....................... 88 
4.21 Construction Triangle problem - Viete ........................... 90 
4.22 Construction Perpendicular to a parabola - Anderson ............ 92 
5.1 Analysis Triangle problem - Ghetaldi ............................. 98 
5.2 Construction Triangle problem - Ghetaldi ........................ 99 
5.3 Analysis Special neusis between a circle and a line - Ghetaldi .... 102 
5.4 Construction Special neusis between a circle and a 

line - Ghetaldi .................................................... 103 
5.5 Analysis Special neusis between two lines - Ghetaldi ............. 106 
5.6 Construction Special neusis between two lines - Ghetaldi ........ 108 
5.7 Analysis Tangency problem - Van Roomen ...................... 110 
5.8 Construction Tangency problem - Van Roomen ................. 111 
5.9 Analysis Perpendicular to a parabola - Anderson ................ 112 
5.10 Construction Perpendicular to a parabola - Anderson ........... 114 
5.11 Analysis Two mean proportionals - Fermat ...................... 115 
8.1 Construction Multiplication of line segments - Van Ceulen ...... 155 
9.1 Construction Quadratrix - Clavius .............................. 161 
10.1 Construction Two mean proportionals - Viete ................... 170 
10.2 Construction Trisection - Viete ................................. 171 
12.1 Construction Neusis - Molther .................................. 198 
12.2 Construction Two mean proportionals - Molther ................ 202 
13.1 Analysis Any solid problem - Fermat ............................ 208 
16.1 Instrument Trisector - Descartes ................................ 237 
16.2 Construction Trisection - Descartes ............................. 238 
16.3 Instrument Mesolabum - Descartes .............................. 240 
16.4 Construction Two mean proportionals - Descartes .............. 241 
17.1 Construction Roots of third- and fourth-degree 

equations - Descartes ............................................. 256 
19.1 Problem Pappus' problem ........................................ 272 
19.2 Analysis Pappus' problem ......................................... 273 
19.3 Problem Pappus' problem in five lines ............................ 275 
19.4 Construction Five-line locus - Descartes ........................ 278 
19.5 Problem A Pappus' problem in four lines ......................... 279 
21.1 Construction-Definition Multiplication of line segments ......... 293 
21.2 Construction-Definition Division of two line segments .......... 294 
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21.3 Construction-Definition Square root of a line segment .......... 294 
22.1 Construction Root of x 2 = ax + b2 .......•.................••..•. 304 
22.2 Problem Triangle division ......................................... 306 
22.3 Analysis Triangle division ......................................... 306 
22.4 Construction Triangle division ................................... 308 
23.1 Problem Pappus' problem ........................................ 313 
23.2 Problem Pappus' problem in three and four lines .................. 317 
23.3 Construction Pappus' problem in three or four lines 

-- case ellipse ...................................................... 321 
23.4 Problem Pappus' problem in five lines ............................ 326 
23.5 Construction Five-line locus - Descartes ........................ 326 
24.1 Instrument Spiral tracing instrument - Huygens ................. 348 
26.1 Construction Roots of a fourth-degree equation ................... 365 
26.2 Construction Roots of a sixth-degree equation .................... 368 
26.3 Construction Trisection by standard construction ................. 375 
26.4 Construction Roots of third-degree equation, by 

reduction to trisection .............................................. 378 
27.1 Construction Plane neusis problem - Pappus .................... 394 
29.1 Problem Construction of Equations ............................... 422 

The items arranged as to methods of construction: 

A. Constructions of problems 

By circles and straight lines: 4.1, 4.2, 4.3, 4.4, 4.8, 4.16, 4.18, 4.21, 5.2, 5.4, 5.6, 
8.1, 21.1, 21.2, 21.3, 22.1, 22.4, 27.1. 

By shifting rulers: 2.2, 2.3, 12.1. 

By approximation: 4.9. 

By the intersection of conic sections: 3.1 (parabola-hyperbola), 3.8 (circle
hyperbola), 17.1 (circle-parabola), 26.1 (idem), 26.3 (idem). 

By neusis: 2.6, 3.9, 10.1, 10.2, 12.2. 

By special curves: 2.5 (conchoid), 3.4 (quadratrix), 3.6 (cissoid), 4.11 (propor
tionatrix), 16.2 (curve traced by trisector), 16.4 (curve traced by mesolabum), 
4.6. 

By reduction to trisection: 4.19, 26.4. 

By reduction to constructing two mean proportionals: 4.15. 

By reduction to a Vietean standard solid construction: 4.22, 5.10, 5.8. 

By intersection of higher-order curves: (circle-cartesian parabola) 26.2. 

B. Constructions of curves 

Pointwise: 3.5 (cissoid), 4.10 (proportionatrix), 9.1 (Quadratrix). 

By combination of motions: 3.2 (spiral), 3.3 (quadratrix). 

By the intersection of moving curves: (turning ruler and moving parabola): 19.4 
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(five lines locus), 23.5 (idem), 19.4 (idem). 

By reduction to Apollonius' construction by the intersection of a cone and a 
plane: 23.3 (ellipse), 23.3 (idem). 
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Ramus, 34, 37, 121, 138, 142, 143, 

149, 187, 212, 213, 449 
Regiomontanus, 88-90, 93, 

135-138, 140, 143, 299, 
449 

Reich, 146, 147, 306, 437, 451, 453 
Remes, 96, 102,444 
Renaldini, 78, 449 
Richard, 75, 441 
Ringelberg, 25 
Ritter, 147 
Rivault, 34, 75, 220, 434 
Roberval, 255, 258, 371, 417, 418, 

420 
Rolle, 418 
Roomen, 110-112, 165, 177-180, 

189, 190, 212, 214, 216, 
218, 220, 396, 449 

Roth, 212, 384, 449 

Salignac, 35 
Salinas, 72, 449 
Sasaki, 121, 450 

Scaliger, 26, 36, 212, 450 
Schneider, 384, 450 
Schooten, 92, 97, 258, 371, 405, 

417,439,440,450,453 
Schuster, 261, 269, 450 
Schwenter, 213 
Scriba, 421, 450 
Sems, 212 
Serenus, 142 
Serfati, 237, 261, 450 
Shea, 231, 258, 450 
Sluse, 36, 380, 416, 450, 451 
Smith, 147, 319, 440 
Snel, see Snellius 
Snellius, 83, 141-143, 155-157, 187, 

212, 213, 218, 220, 451 
Sporus, 42, 43, 52 
Stefano, 146, 451 
Stevin, 34, 61, 72, 79, 80, 132, 135, 

136, 138-141, 143, 213, 
264, 267, 451 

Sylla, 121, 451 

Tamborini, 261, 451 
Tanner~ 319, 440, 442 
Theodosius, 142 
Theon, 95, 142 
Toomer, 434 
Treweek, 37, 451 
Tropfke, 129, 175, 384, 392,451 

Ulivi, 75, 452 

Valla, 27, 452 
Vasset, 147, 213 
Vaulezard, 147, 213 
Verdonk, 138, 452 
Viete, 9, 10, 17, 20, 21, 36, 59, 61, 

65-71, 83, 90-95, 97, 98, 
102, 105, 112-116, 119, 
125-127, 130, 133, 134, 
143, 145-159, 167-181, 
189, 190, 192, 193, 195, 
197, 202, 205, 206, 208, 
209,212-215,217,219, 
221, 226, 242, 245, 252, 



257-259, 263, 264, 268, 
288, 297-299, 356, 377, 
384, 392, 396, 401, 
407-411,415-417,425, 
452,453 

Villalpando, 61, 75, 76, 78, 212, 
216, 217, 448 

Waerden, 42, 453 
Wallis, 121 
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Werner, 27 
Whiteside, 368, 421, 447, 453 
Witmer, 129, 147, 148, 438, 453 

Yoder, vii 

Zarlino, 72, 453 
Zeuthen, 7, 49, 453 
Zinner, 138, 453 



Subject Index 

algebra, 4, 17, 19-21, 90, 97, 119, 
128-130, 132-133, 190, 
263, 336, 359, 361, 
383-397, see operations 

as analytical tool in geometry, 
5, 9, 10, 12, 14, 19, 21, 88, 
94, 97-99, 102-109, 
112-117, 133-135, 143, 
145, 146, 153-158, 167, 
173, 180, 183, 189-193, 
205, 207, 208, 214-216, 
227, 229, 259, 263, 264, 
268, 286-288, 303-311, 
336, 361, 396-397, 
400-402, 415-416, 423, 
424 

cossic, 129, 189-190 
fundamental theorem of 

algebra, 384-385 
fusion with geometry and 

arithmetic, 89, 119, 
130-133 

letter algebra, 10 
sign rule (Descartes), 385-386 
specious, abstract, 147, 148, 

285 
symbolic, 153, 154, 268 
Viete's "new algebra" , 

145-154, 167-181, 206, 
268, 297-298, 408, 425 

analysis, 5, 10, 17, 59, 62, 83, 86, 
93-117,119,129-130, 
146, 206, 209, 221, 226, 
263, 283, 286-288, 309, 
310, 424, see algebra, see 
List of Problems, p. 429 

as part of a formal solution, 
18, 19, 83, 95, 100, 376 

classical, 21, 65, 83, 91, 95, 
97-102, 106-108, 110-112, 
129, 133, 145-146, 157, 
206, 333, 396, 415 

direction of argument in, 96, 
101-102, 105 . 

finite, 10, 12, 14, 423-426 
infinitesimal, v, vii, 3, 10-12, 

14, 130, 210, 227, 229, 
290, 416, 422-424, 426 

its emancipation from 
geometry, 5, 10, 12, 14, 
229, 424, 426 

of theorems, 96, 97 
approximation, see construction 

methods; exactness; 
operations 

arithmetic, 17, 21, 97, 119, 
128-131, 141, 232, 233, 
262, 268, see operations; 
algebra 

calculus, see analysis 
casus irreducibilis (of cubic 

equations), 174, 234, 288, 
377, 379 

circle, see constructions; problem 
classification, see problems; curves 
compass, see construction; ruler 
constructibility, 7, 26, 56, 100, 125, 

169, 183-185, 187, 188, 
214, 217, 259, 316, 317, 
325, 408, see existence 

construction, v-vii, 3-6, 8, 9, 
11-14,16-17, 19-20,24, 
36, 48, 50, 56-57, 93-95, 
98, 102, 105, 117, 127, 
153-155,157-159, 167, 
173, 176, 180, 181, 183, 
192-194,205,209, 
216-218, see List of 
Problems, p. 429 

and representation, v, 3-6, 
8-13, 16, 20, 22 

by approximation, 61, 431 
by circles and straight lines, 4, 

24-25, 36, 37, 61, 122, 431 
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by intersection of conics, 37, 
40, 61, 98, 110, 154, 158, 
206, 216, 380, 431 

by neusis, 53, 61, 81, 167-168, 
431 

by reduction to neusis, 153, 
175 

by reduction to standard 
constructions, 61, 431 

by reduction to trisection, 71, 
153, 175, 431 

by reduction to two mean 
proportionals, 71, 153, 
175,431 

by ruler and compass, 4 
by shifting rulers, 28, 61, 431 
by special curves, 37, 61, 

77-78,431 
methods of, 61, 431 

construction of curves 
tracing by (combination of) 

motion(s), 160, 227, 236, 
237, 245-251, 285, 286, 
289, 336-343, 346, 349, 
350, 352, 353, 357-404 

tracing by special instruments, 
see instrument 

tracing by strings, 336, 337, 
346-349 

tracing by the intersection of 
moving curves, 218, 337 

tracing by the turning ruler 
and moving curve 
procedure, 278-281, 283, 
328, 333, 334, 360, 363, 
372, 373, 404, 419 

construction of equations, 9, 363, 
418, 422, 423, 425, see 
problem 

context, 14 
context (historiographical 

category), vi, 13, 14, 59, 
211,229,423,426 

continued proportion, 46, 66, 68, 
71, 78, 190, 250, 266, see 
problem 

curve 
Cartesian parabola, 278, 286, 

290, 317, 326, 329, 330, 
341, 357, 359, 363, 364, 
368, 370-373, 381, 418 

cissoid, 38, 44-47, 51, 52, 61, 
78, 162, 165, 196, 215 

conchoid, 28, 30, 31, 33, 38, 
51, 52, 61, 78, 164, 165, 
169, 178, 196, 215, 219, 
360 

cossoid, 45 
cycloid, 420, 421 
ellipse, 39, 51, 86, 207, 318, 

320-323, 325, 343, 347, 
355 

hyperbola, 39, 40, 49, 51, 52, 
54-56, 61, 86, 110-112, 
116, 178, 188, 189, 207, 
219, 258, 276, 279, 280, 
320, 322, 325, 329, 332, 
333, 341, 347, 355 

linea proportionum, 79, 
246-248, 250, 251, 285, 
349 

oval, vi, 290, 291, 346 
parabola, 39, 40, 49, 51, 60, 

61, 86, 91-93, 110, 
112-114,116,117,128, 
169,178,205,207-209, 
212, 216, 219, 228, 235, 
255-260, 269, 276, 278, 
283, 285, 286, 289, 290, 
320, 322, 325, 327~329, 
332, 334, 341, 355, 359, 
363-366, 370, 372, 373, 
376, 377, 396 

proportionatrix, 61, 75-78, 
162, 217 

quadratrix, 38, 40, 42-44, 50, 
52, 56, 61, 71, 73, 78, 
160-166, 176-178, 180, 
188, 196,203,215,217, 
218, 220, 232, 236, 
245-248, 250-253, 269, 
281-283, 285, 335, 336, 



341-346, 349-353, 404, 
408, 410, 420 

spiral, 25, 38, 40, 43, 44, 49, 
50, 52, 56, 61, 71, 78, 169, 
176-178, 203, 215, 217, 
218, 220, 250, 269, 
281-283, 335, 336, 341, 
342, 344-353, 404, 420 

spiral (Molther), 202, 217 
tractrix, 7 

curves, 4, 9-10, 335-354, see 
construction of curves; 
construction methods 

acceptable, 226, 227, 251, 253, 
269, 270, 281-283, 285, 
286,289-291,335-341, 
351, 352, 355, 357, 361, 
374,400, 401, 422 

algebraic, 10, 11, 215, 227, 
247, 275, 283, 336, 341, 
342,346,351-353, 
372-374, 401-405, 411, 
412, 420, 421, 424, 427 

and equations, 11, 154, 206, 
207, 209, 227, 340, 352, 
355, 359, 402, 416, 426 

classification of, 226, 227, 281, 
282, 286, 334, 349-352, 
355-361, 373, 392, 406, 
418 

conic sections, 39, 51, 324 
construction of, see 

construction of curves 
generation of, see construction 

of curves 
geometrical, 229, 335-336, 

342, 344, 346, 347, 352, 
354, 355, 411, 420 

imaginary, 232, 236, 245-248, 
349 

investigation by analysis, vii, 
10, 14, 229, 410, 423-424, 
426 

line-like, 56, 218, 219 
logarithmic, 7, 217 
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mechanical, 335-336, 341, 343, 
352, 353, 420 

Medici, 78 
on non-plane surfaces, vi, 291, 

311 
Pappus curves, 273-276, 281, 

282, 286, 328, 330, 344, 
351-353, 356 

representation of, v, 4-5, 
10-11, 20, 180,401, 425 

tracing of, see construction of 
curves 

transcendental, v, 236, 336, 
412, 416, 418, 421, 422, 
424 

demarcation of geometry, see 
geometry 

determinate, 128, see known 
dimension, see magnitude; 

operation; homogeneity 
dynamics, see principal dynamics 

early modern tradition of 
geometrical problem 
solving, vi, vii, 4, 9, 10, 
14, 15, 20, 21, 59, 60, 62, 
75, 88, 97, 117, 143, 153, 
157, 159, 179, 180, 205, 
206, 209, 211, 214, 221, 
226, 229, 252, 259, 269, 
309, 310, 396, 400, 401, 
408, 411, 415, 421, 425 

equation, see construction; 
operation; problems 

indeterminate, 313 
equations, see casus irreducibilis 

reducibility of, 98, 109, 214, 
216, 226, 227, 264, 290, 
291, 304, 360-361, 374, 
377, 383, 384, 389-394, 
396,401 

reduction to standard form, 
66, 98, 99, 105, 227, 257, 
288, 374, 383 
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exactness, vi, 3, 5, 6, 8, 13, 36, 56, 
131-132, 136, 140, 229, 
338, 399, 401, 406, 
412-413 

and approximation, 6, 89, 130, 
136, 140, 191 

interpretation of, vi, 6-8, 
10-15, 21, 56, 57, 59, 62, 
135, 158, 165-166, 
179-181, 193-194, 
203-204, 209, 210, 
219-221, 225, 227, 231, 
251, 253, 260, 269-270, 
288-289, 310, 335, 361, 
400-402,405, 407-412, 
416, 423-425, 427-428 

strategies in the interpretation 
of exactness, vi, 11, 
15-17,407,410-413,425 

strategy: appeal to authority 
and tradition, 15, 16, 194, 
209, 407-410 

strategy: appreciation of the 
resulting mathematics, 
15, 16, 181, 407, 408, 410, 
411,428 

strategy: idealization of 
practical methods, 15, 16, 
166, 203-204, 407-410 

strategy: non-interest, 15, 17, 
209, 407, 409, 410 

strategy: philosophical 
analysis of the 
geometrical intuition, 15, 
16, 407, 409, 411, 412 

strategy: refusal, rejection of 
any rules, 15, 17, 407 

exegetics, 146, 147, 152, 153, 167, 
170, 180, 193, 268 

existence, 7, 26, 36, 57, 125, 141, 
151, 169, 185, 188, 189 

extension (of number concept), 135 
extension (spatial), 262, 263, 286, 

385 
extra-mathematical questions, vi, 

7-8, 15, 22, 408 

fraction, see ratio; numbers 
function, 10, 19, 122, 127 

geodesics, 84 
geometry, 17, 21, 37, 59, 119, 122, 

128-133, 135, 138, 141, 
183, 190, 226-227, 232, 
235, 251-253, 262-264, 
268, 269, 282, see 
methodology; algebra; 
algebra 

algebraic, 134 
analytic, v, vi, 12, 19, 134, 

154, 158, 180, 206, 207, 
209, 227-228, 290, 426 

classical (Greek), 3, 4, 7, 16, 
59, 81, 285, 297, 360 

demarcation of, vi, 8, 11, 25, 
36, 184-185, 203, 226, 
247, 269, 335-354, 
404-406,408,410,411, 
428 

modern, 130, 157 
practical, 126, 128, 135-136, 

160, 166, 203, 300, 301, 
408 

pure, 6, 7, 16, 135, 136, 138, 
140, 142, 143, 166, 196, 
199, 200, 203, 218, 220, 
225, 408, 410, 419 

given, 3, 4, 96, 97, 99-102, see 
analysis, see 
indeterminate 

in kind, 101 
in magnitude, 99, 101, 107 
in position, 99, 101, 107 

gnomonics, 164 

habituation, 12, 121, 424, 426, 427 
harmony, 24, 142, 183, 184, 187, 

194, 408, 427 
heptagon, see problem 
heptagon (constructibility of), 71, 

168, 176, 183-187, 190, 
191 

heuristics, 93, 94, 102, 333 



homogeneity, 19, 148-149, 154-155, 
226, 297-300, 304, 320, 
416, 418, see magnitude; 
equations 

imaginary, 218, 236, 385, see 
curves; numbers; roots 

imagination, 200, 262, 263, 
266-270, 385, 403 

indeterminate, 17, 19, 97, 119, 
127-130, 132, 133, 147, 
149, 151, 153-155, 208, 
315, 319, 389, 396, see 
given; problems; 
equations; method 

instrument, 16, 24, 28, 34, 38, 48, 
50, 52, 56, 196, 198, 199, 
216, 259, 338, 339, 402, 
410, see List of Problems, 
p.429 

"new compasses" (Descartes), 
236, 237, 260, 359 

for constructing mean 
proportionals, 48, 72 

for tracing a conchoid, 51 
for tracing a conchoid 

(Nicomedes, 30 
for tracing a conchoid 

(Nicomedes), 30, 33 
for tracing a spiral (Huygens), 

347, 348 
for tracing conic sections, 217 
mesolabum, 72 
mesolabum (Descartes), 75, 

239-243, 245, 252, 259, 
339-341, 358, 359 

mesolabum (Eratosthenes), 35, 
48, 216 

neusis (Molther), 200 
trisection (Descartes), 

237-239, 242, 245, 252, 
259, 359 

knowable, 137, 183-186, 188, 192 
known, 3-8, 10, 16, 40, 89, 

126-128, 136-138, 147, 
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183-186, 190, 193, 199, 
248, 264, 287, 303, 342, 
347, 349, 389, 426, see 
analysis, see determinate 

legitimation, vi, 23-36, see 
exactness 

locus, see curves; problem; 
problems 

logistics, see specious logistics 

magnitude, 119-121, 126, 141, 147, 
148, 150, 233, 262, 263, 
269,286,396 

magnitudes, see operations; given 
continuous, 26, 120, 136, 139, 

151, 233, 235-237, 268 
dimension of, 125, 148, 149, 

154 
discrete, 233-234 
geometrical, 120, 123, 124, 

126, 128, 130, 150 
homogeneity of, 149, 154 
incommensurable, 11, 130, 

136, 140 
negative, 120 

mathesis universalis, 121, 125, 261, 
262 

mean proportionals, see problem 
mesolabum, see instrument 
method, 228-229, 286-287, 399, 

400, 402, see construction 
methods 

of indeterminate coefficients, 
258,318,323, 334, 371, 
393 

philosophical, 228, 232, 270, 
339, 405, 406 

methodology 
historiographical, 13 
in geometry, 21, 49, 62, 159, 

167, 252, 253, 269, 287, 
352, 412, 418, 420, 422 

in mathematics, 5, 12, 252, 
412, 427, 428 

modernity, 154 
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motions, see construction of 
curves; tracing 

neusis, see construction methods; 
postulate; problem 

normal, see problem 
notation, 18-20, 103, 124, 126, 

129-130, 149-151, 226, 
396, see operations 

number, 120-121, 123, 130, 
141-142, 145, 150, 
157-158, 264, 268, 286, 
296,297 

complex, 130, 174, 234-236 
individuality of, 128 
natural, 130 
rational, 130 
real, 130 
transcendental, 297 

numbers 
imaginary, 133, 176, 235 
irrational, 120, 123, 130-132, 

137-141, 143, 155, 157, 
232, 267, 296, 297, 299, 
300 

use in geometry, 119, 126, 131, 
135-143, 145, 157, 188, 
191, 192, 264 

operation 
adding, 120, 122-126, 

148-150, 152, 250, 265, 
267, 287, 293, 297, 402 

applying a rectangle, 122-124, 
126, 150, 155, 265 

compounding ratios, 125, 126, 
250 

cutting off, taking away, 
removing, 120-126, 150, 
265, 293, 297 

dividing, 19, 122-127, 131, 
148-151, 266, 267, 293, 
294, 297, 298, 300, 402 

extracting a square root, 122, 
123, 132, 266-267, 269, 
293, 297, 300, 403 

extracting an nth root, 71, 
122, 123, 148, 150, 151, 
286, 296-298, 300, 301, 
403 

forming a ratio, 120, 123, 124, 
127, 148, 150 

forming a rectangle, 19, 
122-124, 126, 131, 148, 
150, 152, 155, 264, 297, 
299 

joining, 120-126, 150, 265, 
293, 297 

multiplication, 19, 122-126, 
131, 148-151, 155-156, 
265-267, 287, 293, 
296-298, 300, 402 

section of a ratio, 78, 126, 216, 
248, 250 

solving an equation, 122-124, 
150 

subtracting, 120, 122-126, 
148-150, 152, 265, 267, 
293, 297, 402 

operations, 121-127 
algebraic, 122, 145, 148, 152, 

154, 155, 157 
arithmetical, 121-122, 

126-127, 148, 152-153 
effect on dimension, 122-124, 

126, 150 
exact vs approximate, 122, 

123, 131, 132 
geometrical, 19, 122-127, 

152-153, 157 
geometrical interpretation of 

algebraic, 152-157, 
293-301 

on magnitudes, 125, 148-150 
on ratios, 125-126 
primary arithmetical, 122, 132 
quadratic algebraic, 122, 297, 

301 

poristics, 146, 147, 153, 167, 180, 
268 



postulate, 7, 8, 17, 51, 166, 168, 
197, 199, 200, 336, 408, 
410,411 

neusis, 17, 154, 167-169, 
179-181, 197-198,200, 
206, 208, 217, 408, 410 

postulates 
Euclidean, 4, 7, 17, 24, 25, 51, 

122, 176, 181, 197-200, 
338,408 

precept, Pappus', about solving 
problems, 16, 20, 48-50, 
52, 53, 159, 160, 164, 166, 
168, 179, 206, 209, 216, 
218, 219, 258, 390, 407, 
408, 419, 427 

precept, Pappus, about solving 
problems, 112 

principal dynamics, vii, 9, 10, 13, 
14,21,97,117,143, 153, 
157-159, 180, 205, 209, 
214, 221, 229, 259, 399, 
400, 424-427 

problem, see List of Problems, 
p.429 

2n - 1 mean proportionals, 60, 
72 

n mean proportionals, 9, 48, 
78,217,243,250,259,266 

11 mean proportionals, 60, 72 
addition of similar solids, 60, 

61, 80 
angular section, 43, 44, 60, 61, 

70-71,78, 169, 179, 
215-217, 220, 231, 237, 
243, 245, 248, 250, 251, 
259, 345, 349, 359, 397 

angular section (general), 43, 
52, 60, 70, 71, 85, 161, 
216, 250, 251, 345, 347 

Apollonius' tangency problem, 
110-112,177,216 

bisection, 52, 60, 70, 71, 163, 
251 

constructing a regular 
heptagon, 60, 71, 168, 
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176,183-187, 190, 191, 
195, 202, 217, 220 

constructing a regular 
nonagon, 60, 220 

constructing a regular 
pentagon, 60 

construction of regular 
polygons, 52, 60, 70, 71, 
161, 163, 183, 184, 190, 
192, 214, 220 

cubature of polyhedra, 60, 81 
division of a sphere, 60, 61, 

86-88 
division of a triangle, 61, 

85-86, 93, 306-310, 415 
division of plane rectilinear 

figures, 60_ 
duplication of the cube, 27, 

35,60,72,178,195-197 
four mean proportionals, 381 
fourth proportional, 47, 61, 62, 

125, 155, 266, 267, 298, 
299, 301, 308 

height of a triangle, 131 
lines in continued proportion, 

72,78 
mean proportionals, 25, 60, 

71-79,179,215,216,237, 
241, 248, 339 

neusis, 28-34, 37, 48-56, 60, 
61, 67, 68, 78, 81-83, 93, 
110, 114, 116, 153, 158, 
168-173,175-177, 
179-181,188, 195, 
197-200, 203, 206, 208, 
215,217,259, 360, 396, 
408-410 

normal to a parabola, 49, 60, 
91-93, 112-114 

Pappus' problem, 228, 269, 
271-283, 286, 289-291, 
300, 306, 313-334, 336, 
342, 345, 349-352, 354, 
359, 363-364, 402-404 

Pappus' problem in five lines, 
275, 278, 290, 314, 
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325-333 394-396 
Pappus' problem in four lines, the mean proportional, 27, 

273, 279, 290, 311, 314, 60-63, 71, 137 
317-325 third proportional, 62, 63, 71 

Pappus' problem in three three mean proportionals, 60 
lines, 273, 290, 311, 314, triangle problem (E. Pascal, 
317-325 209 

parallellogrammic application, triangle problem (E. Pascal), 
79 206,209 

quadrature of rectilinear triangle problem (Ghetaldi), 
figures, 60, 79 98 

quadrature of the circle, 23, triangle problem 
25-26, 35, 36, 38, 60, 161, (Regiomontanus), 88 
165, 195, 203, 216, 218, triangle problem (Viete), 61, 
220, 221, 243 90 

quadrature of the cycloid, 420 trisection, 23, 27, 43, 48, 51, 
root(s) of a cubic equation, 61, 52,54-56,60,61,67-71, 

66, 68, 69, 93, 116, 123, 86-88, 110, 133, 151, 153, 
133, 152, 153, 169, 165, 168, 169, 171-176, 
173-176,207-209,227, 180, 181, 188, 195, 200, 
234, 255-259, 288, 291, 208,217,219,237-239, 
359, 363-368, 402 243, 251, 375-380, 393, 

root(s) of a fifth- or sixth- 408 
degree equation, 368 two mean proportionals, 9, 23, 

root(s) of a fifth- or 26-36, 38-56, 60, 61, 67, 
sixth-degree equation, 68, 71-76, 115, 139, 153, 
227, 291, 359, 363, 372, 165, 169, 170, 180, 181, 
418 193, 195, 202, 208, 215, 

root(s) of a quadratic 217,220,241,243,255, 
equation, 65, 66, 132, 152, 288, 375, 377, 379, 393, 
227, 234, 304, 308, 363 408 

root(s) of a quartic equation, problems, see early modern 
133, 169, 176,207-209, tradition of geometrical 
227, 255-259, 288, 291, problem solving 
359, 363-368, 402 "classical", 23, 27 

similar figures with given area and content problems, 60, 
areas, 60, 79, 80 79-81 

similar solids with given classification by Descartes 
contents, 203 (1619), 231, 233-235, 237, 

special neusis between a circle 250, 251, 262, 268, 285 
and a line, 60, 61, 81, 84, classification by Descartes 
93, 102-105, 108, 117 (1637), 226, 406 

special neusis between two classification by Pappus, 20, 
circles, 60, 84 37-48, 56, 57, 59, 60, 143, 

special neusis between two 159, 164, 176, 187, 188, 
lines, 60, 106-109, 214, 214, 215, 219, 226, 235, 



251, 259, 285, 407, 426 
classification by Viete, 

179-180,408 
classification of, 158, 214, 215, 

402 
constitutive - Viete, 60, 61, 

66-70,92,93,174,217, 
416 

division of figures, 60, 84-88, 
430 

indeterminate, 303, 306, 310, 
311,313 

inverse tangent problems, 4, 5, 
9, 421, 424 

locus problems, 4, 154, 180, 
206, 20~ 209, 311, 313, 
374, see 
problem-Pappus' 
problem 

plane, solid, and line-like, 
37-38, 60, 61, see 
problems-classification 
by Pappus 

quadrature of curves, v, 9, 10, 
421, 424 

rectification of curves v 342 " , 
411 

reduced to equations, 97-99, 
105, 226, 227, 252, 259, 
269, 283, 286-288, 374, 
383,389 

standard, 60, 62-70, 216 
triangle problems, 60, 88-91 

programs in mathematics 
Descartes' (early), 231, 236, 

252, 267-268, 270, 
285-287, 402-404 

Descartes' (in the Geometry), 
158, 226, 227, 283, 
287-289, 335, 352, 361, 
381, 402, 403, 413, 
416-418 

Viete's, 59, 65, 152, 158, 180, 
268 

proof, 3, 7-8, 57, 96, 384, see 
construction 
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as part of a formal solution 
19, 105 

proportional, see instrument; 
problem 

, 

quadrature, see problem; problems 
quantity, see magnitude 

ratio, 121, 126 
denomination of, 121, 126, 

127, 149 
Eudoxian theory of, 121 

ratios, see operation 
irrational, 121, 138, 149, 185 

reducibility, see equations 
reduction, see equations; 

construction methods 
representation, see curves 
rhetics, 146, 147, 152 
roots 

imaginary, 120, 133, 235, 257, 
366, 370, 371, 385, 394 

irrational, 121, 130, 191, 233 
ruler and compass, see 

construction methods 

simplicity, 226, 289, 290, 329-332, 
355-361, 374, 383, 400, 
see construction 

solution, see equation; problems 
specious logistics, 145-148, 151, 

152, 226, 268, 297, see 
algebra 

straight line, see construction 
methods 

symbols, see algebra 
synthesis, 83, 96, 99, 287-289, 310, 

see analysis 
as part of a formal solution, 95 
direction of argument in 96 , , 

101-102,105 
of loci, 325 

tangents and normals to curves 
(Descartes), vi, 225, 290, 
417,418,420,421 
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terminology, 12, 17, 18, 119, 120, 
129, 130, 149 

theorem, see analysis 
tracing, see construction of curves 
trigonometry, 88, 136 

unit element, 122-124, 149, 150, 
154-157, 226, 264, 293, 
296-301, 308, 310, 320, 
418 

unit measure, 120, 126, 128, 136 

unknown, 5, 17, 19, 88, 97, 
127-130, 132, 133, 137, 
146, 147, 149, 151, 154, 
191, 192, 264, 303, 315, 
319,396 

variable, 127, 128, 426 

Whig interpretation of history, 5 

zetetics, 146, 147, 152, 153, 167, 
180,268 
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