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p r e f a c e

Of all human activities, mathematics is one of the oldest. 
Mathematics can be found on the cuneiform tablets of the 
Mesopotamians, on the papyri of the Egyptians, and in texts from 
ancient China, the Indian subcontinent, and the indigenous cul-
tures of Central America. Sophisticated mathematical research was 
carried out in the Middle East for several centuries after the birth 
of Muhammad, and advanced mathematics has been a hallmark 
of European culture since the Renaissance. Today, mathematical 
research is carried out across the world, and it is a remarkable fact 
that there is no end in sight. The more we learn of mathematics, 
the faster the pace of discovery.

Contemporary mathematics is often extremely abstract, and the 
important questions with which mathematicians concern them-
selves can sometimes be difficult to describe to the interested 
nonspecialist. Perhaps this is one reason that so many histories 
of mathematics give so little attention to the last 100 years of dis-
covery—this, despite the fact that the last 100 years have probably 
been the most productive period in the history of mathematics. 
One unique feature of this six-volume History of Mathematics is 
that it covers a significant portion of recent mathematical history 
as well as the origins. And with the help of in-depth interviews 
with prominent mathematicians—one for each volume—it is 
hoped that the reader will develop an appreciation for current 
work in mathematics as well as an interest in the future of this 
remarkable subject.

Numbers details the evolution of the concept of number from 
the simplest counting schemes to the discovery of uncomputable 
numbers in the latter half of the 20th century. Divided into three 
parts, this volume first treats numbers from the point of view of 
computation. The second part details the evolution of the concept 
of number, a process that took thousands of years and culminated 
in what every student recognizes as “the real number line,” an 
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extremely important and subtle mathematical idea. The third part 
of this volume concerns the evolution of the concept of the infi-
nite. In particular, it covers Georg Cantor’s discovery (or creation, 
depending on one’s point of view) of transfinite numbers and his 
efforts to place set theory at the heart of modern mathematics. The 
most important ramifications of Cantor’s work, the attempt to axi-
omatize mathematics carried out by David Hilbert and Bertrand 
Russell, and the discovery by Kurt Gödel and Alan Turing that 
there are limitations on what can be learned from the axiomatic 
method, are also described. The last chapter ends with the discov-
ery of uncomputable numbers, a remarkable consequence of the 
work of Kurt Gödel and Alan Turing. The book concludes with 
an interview with Professor Karlis Podnieks, a mathematician of 
remarkable insights and a broad array of interests.

Probability and Statistics describes subjects that have become cen-
tral to modern thought. Statistics now lies at the heart of the way 
that most information is communicated and interpreted. Much of 
our understanding of economics, science, marketing, and a host 
of other subjects is expressed in the language of statistics. And for 
many of us statistical language has become part of everyday dis-
course. Similarly, probability theory is used to predict everything 
from the weather to the success of space missions to the value of 
mortgage-backed securities.

The first half of the volume treats probability beginning with 
the earliest ideas about chance and the foundational work of 
Blaise Pascal and Pierre Fermat. In addition to the development 
of the mathematics of probability, considerable attention is given 
to the application of probability theory to the study of smallpox 
and the misapplication of probability to modern finance. More 
than most branches of mathematics, probability is an applied dis-
cipline, and its uses and misuses are important to us all. Statistics 
is the subject of the second half of the book. Beginning with the 
earliest examples of statistical thought, which are found in the 
writings of John Graunt and Edmund Halley, the volume gives 
special attention to two pioneers of statistical thinking, Karl 
Pearson and R. A. Fisher, and it describes some especially impor-
tant uses and misuses of statistics, including the use of statistics 
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in the field of public health, an application of vital interest. The 
book concludes with an interview with Dr. Michael Stamatelatos, 
director of the Safety and Assurance Requirements Division in 
the Office of Safety and Mission Assurance at NASA, on the ways 
that probability theory, specifically the methodology of probabi-
listic risk assessment, is used to assess risk and improve reliability.

Geometry discusses one of the oldest of all branches of mathe-
matics. Special attention is given to Greek geometry, which set the 
standard both for mathematical creativity and rigor for many cen-
turies. So important was Euclidean geometry that it was not until 
the 19th century that mathematicians became willing to consider 
the existence of alternative and equally valid geometrical systems. 
This 19th-century revolution in mathematical, philosophical, and 
scientific thought is described in some detail, as are some alter-
natives to Euclidean geometry, including projective geometry, 
the non-Euclidean geometry of Nikolay Ivanovich Lobachevsky 
and János Bolyai, the higher (but finite) dimensional geometry of 
Riemann, infinite-dimensional geometric ideas, and some of the 
geometrical implications of the theory of relativity. The volume 
concludes with an interview with Professor Krystyna Kuperberg 
of Auburn University about her work in geometry and dynamical 
systems, a branch of mathematics heavily dependent on ideas from 
geometry. A successful and highly insightful mathematician, she 
also discusses the role of intuition in her research.

Mathematics is also the language of science, and mathematical 
methods are an important tool of discovery for scientists in many 
disciplines. Mathematics and the Laws of Nature provides an over-
view of the ways that mathematical thinking has influenced the 
evolution of science—especially the use of deductive reasoning in 
the development of physics, chemistry, and population genetics. It 
also discusses the limits of deductive reasoning in the development 
of science.

In antiquity, the study of geometry was often perceived as identi-
cal to the study of nature, but the axioms of Euclidean geometry 
were gradually supplemented by the axioms of classical physics: 
conservation of mass, conservation of momentum, and conserva-
tion of energy. The significance of geometry as an organizing 
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principle in nature was briefly subordinated by the discovery 
of relativity theory but restored in the 20th century by Emmy 
Noether’s work on the relationships between conservation laws 
and symmetries. The book emphasizes the evolution of classi-
cal physics because classical insights remain the most important 
insights in many branches of science and engineering. The text 
also includes information on the relationship between the laws 
of classical physics and more recent discoveries that conflict with 
the classical model of nature. The main body of the text con-
cludes with a section on the ways that probabilistic thought has 
sometimes supplanted older ideas about determinism. An inter-
view with Dr. Renate Hagedorn about her work at the European 
Centre for Medium-Range Weather Forecasts (ECMWF), a lead-
ing center for research into meteorology and a place where many 
of the concepts described in this book are regularly put to the test, 
follows.

Of all mathematical disciplines, algebra has changed the most. 
While earlier generations of geometers would recognize—if not 
immediately understand—much of modern geometry as an exten-
sion of the subject that they had studied, it is doubtful that earlier 
generations of algebraists would recognize most of modern alge-
bra as in any way related to the subject to which they devoted their 
time. Algebra details the regular revolutions in thought that have 
occurred in one of the most useful and vital areas of contemporary 
mathematics: Ancient proto-algebras, the concepts of algebra that 
originated in the Indian subcontinent and in the Middle East, the 
“reduction” of geometry to algebra begun by René Descartes, the 
abstract algebras that grew out of the work of Évariste Galois, the 
work of George Boole and some of the applications of his algebra, 
the theory of matrices, and the work of Emmy Noether are all 
described. Illustrative examples are also included. The book con-
cludes with an interview with Dr. Bonita Saunders of the National 
Institute of Standards and Technology about her work on the 
Digital Library of Mathematical Functions, a project that mixes 
mathematics and science, computers and aesthetics.

New to the History of Mathematics set is Beyond Geometry, 
a volume that is devoted to set-theoretic topology. Modern 
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 mathematics is often divided into three broad disciplines: analy-
sis, algebra, and topology. Of these three, topology is the least 
known to the general public. So removed from daily experience 
is topology that even its subject matter is difficult to describe in 
a few sentences, but over the course of its roughly 100-year his-
tory, topology has become central to much of analysis as well as an 
important area of inquiry in its own right.

The term topology is applied to two very different disciplines: set-
theoretic topology (also known as general topology and point-set 
topology), and the very different discipline of algebraic topology. 
For two reasons, this volume deals almost exclusively with the 
former. First, set-theoretic topology evolved along lines that were, 
in a sense, classical, and so its goals and techniques, when viewed 
from a certain perspective, more closely resemble those of subjects 
that most readers have already studied or will soon encounter. 
Second, some of the results of set-theoretic topology are incor-
porated into elementary calculus courses. Neither of these state-
ments is true for algebraic topology, which, while a very important 
branch of mathematics, is based on ideas and techniques that few 
will encounter until the senior year of an undergraduate education 
in mathematics.

The first few chapters of Beyond Geometry provide background 
information needed to put the basic ideas and goals of set- 
theoretic topology into context. They enable the reader to better 
appreciate the work of the pioneers in this field. The discoveries 
of Bolzano, Cantor, Dedekind, and Peano are described in some 
detail because they provided both the motivation and foundation 
for much early topological research. Special attention is also given 
to the foundational work of Felix Hausdorff.

Set-theoretic topology has also been associated with nationalism 
and unusual educational philosophies. The emergence of Warsaw, 
Poland, as a center for topological research prior to World War 
II was motivated, in part, by feelings of nationalism among Polish 
mathematicians, and the topologist R. L. Moore at the University 
of Texas produced many important topologists while employing 
a radical approach to education that remains controversial to this 
day. Japan was also a prominent center of topological research, 
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and so it remains. The main body of the text concludes with some 
applications of topology, especially dimension theory, and topolo-
gy as the foundation for the field of analysis. This volume contains 
an interview with Professor Scott Williams, an insightful thinker 
and pioneering topologist, on the nature of topological research 
and topology’s place within mathematics.

The five revised editions contain a more comprehensive chro-
nology, valid for all six volumes, an updated section of further 
resources, and many new color photos and line drawings. The 
visuals are an important part of each volume, as they enhance 
the narrative and illustrate a number of important (and very 
visual) ideas. The History of Mathematics should prove useful as 
a resource. It is also my hope that it will prove to be an enjoyable 
story to read—a tale of the evolution of some of humanity’s most 
profound and most useful ideas.
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i n t r o d u c t i o n

algebra n.
1.  a generalization of arithmetic in which letters representing 

numbers are combined according to the rules of arithmetic
2.  any of various systems or branches of mathematics or logic 

concerned with the properties and relationships of abstract 
entities (as complex numbers, matrices, sets, vectors, groups, 
rings, or fields) manipulated in symbolic form under opera-
tions often analogous to those of arithmetic

—from Merriam-Webster’s Collegiate Dictionary, 11th Edition 
(© 2003 by Merriam-Webster, Incorporated  

[www.Merriam-Webster.com])

Algebra is one of the oldest of all branches of mathematics. Today 
it is also one of the most abstract. Consider the following impor-
tant algebraic theorem first proved by the French mathematician 
Augustin-Louis Cauchy (1789–1857):

Let the letter G denote a finite group. Let N represent the 
number of elements in G. Let p represent a prime number. If p 
divides N, then G has an element of order p.

To many people without a background in mathematics, it is not 
clear what this statement means or even if it means anything at 
all. But Cauchy’s theorem reveals an important property shared by 
every group that is comprised of a finite collection of objects. The 
theorem is important because groups are central to modern algebra.

When contemporary mathematicians speak of algebra, they 
usually use the term in a way that is very different from what 
most of us understand the word algebra to mean. To be sure, all 
branches of mathematics have become increasingly abstract, but 
those mathematicians who study geometry, for example, continue 
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to study properties that most people would—with some prompt-
ing—still recognize as geometric, and probability, no matter how 
advanced the treatment, still concerns itself with the odds that 
some event will occur. But modern algebra is completely divorced 
from the subject most learn about in school.

For thousands of years, algebra consisted solely of expanding the 
list of problem-solving algorithms—a list of procedures similar 
in concept to the quadratic formula. But much of contemporary 
algebra focuses on identifying and describing the logical structures 
upon which mathematics is built. It is now clear that identifying 
and exploiting these structures is just as important for mathemati-
cal and scientific progress as the development of new algorithms. 
Algebra, Revised Edition describes the history of both strands of 
algebraic thought.

Chapters 1 and 2 describe some of the earliest progress in alge-
bra. Mathematicians in Mesopotamia, Egypt, China, and Greece 
all contributed to this early period—although there was more 
progress in Mesopotamia, China, and Greece than in Egypt.

Chapter 3 describes the research that was conducted in present-
day India, the Mideast, and North Africa. From the Indian sub-
continent came important breakthroughs in algebraic techniques 
and a more inclusive concept of what constitutes a solution to an 
algebraic equation. Mathematicians in the Mideast and North 
Africa were the first to adopt a logically rigorous approach to 
algebra.

Chapter 4 describes how European mathematicians, after 
absorbing the work of their predecessors, began to use letters to 
represent numbers. They sought an abstract visual language that 
would generalize arithmetic and enable them to develop a theory 
of equations.

Chapter 5 describes how mathematicians of the European 
Enlightenment further developed the language of algebra. 
Coordinate systems were first widely adopted at this time and 
served as a bridge between the formerly separate branches of 
geometry and algebra. The result was a new field of mathematics, 
analytic geometry, and progress in both geometry and algebra was 
accelerated.
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Chapters 6 and 8 describe the beginnings of what is now often 
called “modern” algebra. The origins of modern algebra date to 
the 19th century. It was during this time that mathematicians 
began to notice the same logical structures embedded in many 
different mathematical systems. Mathematical structures called 
groups were the first to be described and exploited, but the iden-
tification and study of other logical structures soon followed. This 
type of mathematical research continues to occupy the attention 
of many mathematicians today. Much of the material in chapter 8 
is new to this edition.

Finally, chapter 7 describes Boolean algebra, which was devel-
oped in the first half of the 19th century by George Boole. 
Boolean algebra is important, in part, because its results are used 
in the design of computer chips. Perhaps more important from the 
point of view of a history of algebra is Boole’s insistence that the 
proper subject matter of mathematics is the relationships that exist 
among abstract symbols. His heightened sense of rigor was a rev-
elation to his contemporaries, and many, including the mathema-
tician and philosopher Bertrand Russell, now assert that modern 
mathematics began with the work of George Boole.

In addition to an expanded chronology, an updated glossary, 
and new additions to the section on further reading, the sec-
ond edition contains an interview with Dr. Bonita Saunders, a 
research mathematician at the National Institute of Standards 
and Technology (NIST), about her work in creating the Digital 
Library of Mathematical Functions. Her work is an elegant blend 
of algebra, geometry, and computer graphics with applications to 
the physical sciences.

Algebra has become the language of engineering, science, and 
mathematics. It is doubtful that many of the basic concepts upon 
which these subjects are founded could now be expressed without 
algebraic notation. Modern life depends on algebra, and develop-
ing an appreciation for the history of algebra is an important part 
of understanding how that dependence has evolved and why alge-
bra is so important today.
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1
the first algebras

How far back in time does the history of algebra begin? Some 
scholars begin the history of algebra with the work of the Greek 
mathematician Diophantus of Alexandria (ca. third century c.e.). 
It is easy to see why Diophantus is always included. His works 
contain problems that most modern readers have no difficulty 
recognizing as algebraic.

Other scholars begin much earlier than the time of Diophantus. 
They believe that the history of algebra begins with the math-
ematical texts of the Mesopotamians. The Mesopotamians were 
a people who inhabited an area that is now inside the country of 
Iraq. Their written records begin about 5,000 years ago in the 
city-state of Sumer. The Mesopotamians were one of the first, 
perhaps the first, of all literate civilizations, and they remained at 
the forefront of the world’s mathematical cultures for well over 
2,000 years. Since the 19th century, when archaeologists began to 
unearth the remains of Mesopotamian cities in search of clues to 
this long-forgotten culture, hundreds of thousands of their clay 
tablets have been recovered. These include a number of math-
ematics tablets. Some tablets use mathematics to solve scientific 
and legal problems—for example, the timing of an eclipse or the 
division of an estate. Other tablets, called problem texts, are 
clearly designed to serve as “textbooks.”

Mesopotamia: The Beginnings of Algebra
We begin our history of algebra with the Mesopotamians. Not 
everyone believes that the Mesopotamians knew algebra. That 
they were a mathematically sophisticated people is beyond doubt. 
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They solved a wide variety of mathematical problems. The dif-
ficulty in determining whether the Mesopotamians knew any 
algebra arises not in what the Mesopotamians did—because 
their mathematics is well documented—but in how they did it. 
Mesopotamian mathematicians solved many important problems 
in ways that were quite different from the way we would solve 
those same problems. Many of the problems that were of interest 
to the Mesopotamians we would solve with algebra.

Although they spent thousands of years solving equations, the 
Mesopotamians had little interest in a general theory of equa-
tions. Moreover, there is little algebraic language in their methods 
of solution. Mesopotamian mathematicians seem to have learned 
mathematics simply by studying individual problems. They moved 
from one problem to the next and thereby advanced from the 

Ruins of a massive mud-brick Mesopotamian temple called a ziggurat. For 
3,000 years, Mesopotamia was one of the most mathematically advanced 
civilizations on the planet. Remnants of Mesopotamian mathematics 
remain in the way we measure angles (in degrees) and time (in minutes 
and seconds).
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simple to the complex in much the same way that students today 
might learn to play the piano. An aspiring piano student might 
begin with “Old McDonald” and after much practice master the 
works of Frédéric Chopin. Ambitious piano students can learn the 
theory of music as they progress in their musical studies, but there 
is no necessity to do so—not if their primary interest is in the area 
of performance. In a similar way, Mesopotamian students began 
with simple arithmetic and advanced to problems that we would 
solve with, for example, the quadratic formula. For this reason 
Mesopotamian mathematics is sometimes called protoalgebra or 
arithmetic algebra or numerical algebra. Their work is an impor-
tant first step in the development of algebra.

It is not always easy to appreciate the accomplishments of the 
Mesopotamians and other ancient cultures. One barrier to our 
appreciation emerges when we express their ideas in our notation. 
When we do so it can be difficult for us to see why they had to work 
so hard to obtain a solution. The reason for their difficulties, how-
ever, is not hard to identify. Our algebraic notation is so powerful 
that it makes problems that were challenging to them appear almost 
trivial to us. Mesopotamian problem texts, the equivalent of our 
school textbooks, generally consist of one or more problems that 
are communicated in the following way: First, the problem is stated; 
next, a step-by-step algorithm or method of solution is described; 
and, finally, the presentation concludes with the answer to the 
problem. The algorithm does not contain “equals signs” or other 
notational conveniences. Instead it consists of one terse phrase or 
sentence after another. The lack of symbolic notation is one impor-
tant reason the problems were so difficult for them to solve.

The Mesopotamians did use a few terms in a way that would 
roughly correspond to our use of an abstract notation. In par-
ticular they used the words length and width as we would use the 
variables x and y to represent unknowns. The product of the 
length and width they called area. We would write the product 
of x and y as xy. Their use of the geometric words length, width, 
and area, however, does not indicate that they were interpreting 
their work geometrically. We can be sure of this because in some 
problem texts the reader is advised to perform operations that 
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involve  multiplying length and width to obtain area and then add-
ing (or subtracting) a length or a width from an area. Geometrically, 
of course, this makes no sense. To see the difference between 
the brief, to-the-point algebraic symbolism that we use and the 
very wordy descriptions of algebra used by all early mathematical 
cultures, and the Mesopotamians in particular, consider a simple 
example. Suppose we wanted to add the difference x − y to the 
product xy. We would write the simple phrase

xy + x − y

In this excerpt from an actual Mesopotamian problem text, the 
short phrase xy + x − y is expressed this way:

Length, width. I have multiplied length and width, thus obtain-
ing the area. Next I added to the area the excess of the length 
over the width.

(Van der Waerden, B. L. Geometry and Algebra in Ancient 
Civilizations. New York: Springer-Verlag, 1983. Page 72. 

Used with permission)

Despite the lack of an easy-to-use symbolism, Mesopotamian meth-
ods for solving algebraic equations were extremely advanced for 
their time. They set a sort of world standard for at least 2,000 years.

Translations of the Mesopotamian algorithms, or methods of 
solution, can be difficult for the modern reader to appreciate. Part 
of the difficulty is associated with their complexity. From our point 
of view, Mesopotamian algorithms sometimes appear unnecessar-
ily complex given the relative simplicity of the problems that they 
were solving. The reason is that the algorithms contain numerous 
separate procedures for what the Mesopotamians perceived to be 
different types of problems; each type required a different method. 
Our understanding is different from that of the Mesopotamians: 
We recognize that many of the different “types” of problems per-
ceived by the Mesopotamians can be solved with just a few differ-
ent algorithms. An excellent example of this phenomenon is the 
problem of solving second-degree equations.
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Mesopotamians and Second-Degree Equations
There is no better example of the difference between mod-
ern methods and ancient ones than the difference between our 
approach and their approach to solving second-degree equations. 
(These are equations involving a polynomial in which the highest 
exponent appearing in the equation is 2.) Nowadays we under-
stand that all second-degree equations are of a single form:

ax2 + bx + c = 0

where a, b, and c represent numbers and x is the unknown whose 
value we wish to compute. We solve all such equations with a 
single very powerful algorithm—a method of solution that most 
students learn in high school—called the quadratic formula. The 
quadratic formula allows us to solve these problems without giv-
ing much thought to either the size or the sign of the numbers 
represented by the letters a, b, and c. For a modern reader it hardly 
matters. The Mesopotamians, however, devoted a lot of energy to 
solving equations of this sort, because for them there was not one 
form of a second-degree equation but several. Consequently, there 
could not be one method of solution. Instead the Mesopotamians 
required several algorithms for the several different types of 
second-degree equations that they perceived.

The reason they had a more complicated view of these problems 
is that they had a narrower concept of number than we do. They 
did not accept negative numbers as “real,” although they must 
have run into them at least occasionally in their computations. 
The price they paid for avoiding negative numbers was a more 
complicated approach to what we perceive as essentially a single 
problem. The approach they took depended on the values of a, b, 
and c.

Today, we use negative numbers, irrational numbers, and even 
imaginary numbers. We accept all such numbers as solutions to 
second-degree equations, but all of this is a relatively recent his-
torical phenomenon. Because we have such a broad idea of num-
ber we are able to solve all second-degree algebraic equations with 
the quadratic formula, a one-size-fits-all method of solution. By 



6  ALGEBRA

contrast the Mesopotamians perceived that there were three basic 
types of second-degree equations. In our notation we would write 
these equations like this:

x2 + bx = c
x2 + c = bx
x2 = bx + c

where, in each equation, b and c represent positive numbers. This 
approach avoids the “problem” of the appearance of negative 
numbers in the equation. The first job of any scribe or mathemati-
cian was to reduce or “simplify” the given second-degree equation 
to one of the three types listed. Once this was done, the appropri-
ate algorithm could be employed for that type of equation and the 
solution could be found.

In addition to second-degree equations the Mesopotamians 
knew how to solve the much easier first-degree equations. We 
call these linear equations. In fact, the Mesopotamians were 
advanced enough that they apparently considered these equations 
too simple to warrant much study. We would write a first-degree 
equation in the form

ax + b = 0

where a and b are numbers and x is the unknown.
They also had methods for finding accurate approximations for 

solutions to certain third-degree and even some fourth-degree 
equations. (Third- and fourth-degree equations are polynomial 
equations in which the highest exponents that appear are 3 and 4, 
respectively.) They did not, however, have a general method for 
finding the precise solutions to third- and fourth-degree equa-
tions. Algorithms that enable one to find the exact solutions to 
equations of the third and fourth degrees were not developed 
until about 450 years ago. What the Mesopotamians discovered 
instead were methods for developing approximations to the solu-
tions. From a practical point of view an accurate approximation 
is usually as good as an exact solution, but from a mathematical 
point of view the two are quite different. The distinctions that we 
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make between exact and approximate solutions were not impor-
tant to the Mesopotamians. They seemed satisfied as long as their 
approximations were accurate enough for the applications that 
they had in mind.

The Mesopotamians and Indeterminate Equations
In modern notation an indeterminate equation—that is, an equa-
tion with many different solutions—is usually easy to recognize. If 
we have one equation and more than one unknown then the equa-
tion is generally indeterminate. One of the most famous examples 
of an indeterminate equation from Mesopotamia can be expressed 
in our notation as

x2 + y2 = z2

The fact that that we have three variables but only one equation 
is a good indicator that this equation is probably indeterminate. 

Cuneiform tablet, Plimpton 322—this tablet is the best known of all 
Mesopotamian mathematical tablets; its meaning is still a subject of 
scholarly debate.
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And so it is. Geometrically we can interpret this equation as the 
Pythagorean theorem, which states that for a right triangle the 
square of the length of the hypotenuse (here represented by z2) 
equals the sum of the squares of the lengths of the two remaining 
sides. The Mesopotamians knew this theorem long before the birth 
of Pythagoras, however, and their problem texts are replete with 
exercises involving what we call the Pythagorean theorem.

The Pythagorean theorem is usually encountered in high school 
or junior high in a problem in which the length of two sides of a 

clay tablets and electronic calculators

The positive square root of the positive number a—usually written as 
√a—is the positive number with the property that if we multiply it by itself 
we obtain a. Unfortunately, writing the square root of a as √a does not 
tell us what the number is. Instead, it tells us what √a does: If we square 
√a we get a.

Some square roots are easy to write. In these cases the square root 
sign, √, is not really necessary. For example, 2 is the square root of 4, 
and 3 is the square root of 9. In symbols we could write 2 = √4 and 3 
= √9 but few of us bother.

The situation is a little more complicated, however, when we want to 
know the square root of 2, for example. How do we find the square root 
of 2? It is not an especially easy problem to solve. It is, however, equiva-
lent to finding the solution of the second-degree equation

x2 – 2 = 0

Notice that when the number √2 is substituted for x in the equation we 
obtain a true statement. Unfortunately, this fact does not convey much 
information about the size of the number we write as √2.

The Mesopotamians developed an algorithm for computing square 
roots that yields an accurate approximation for any positive square 
root. (As the Mesopotamians did, we will consider only positive square 
roots.) For definiteness, we will apply the method to the problem of 
calculating √2.

The Mesopotamians used what we now call a recursion algorithm to 
compute square roots. A recursion algorithm consists of several steps. 
The output of one step becomes the input for the next step. The more 
often one repeats the process—that is, the more steps one takes—the 
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right triangle are given and the student has to find the length of 
the third side. The Mesopotamians solved problems like this as 
well, but the indeterminate form of the problem—with its three 
unknowns rather than one—can be a little more challenging. The 
indeterminate version of the problem consists of identifying what 
we now call Pythagorean triples. These are solutions to the equa-
tion given here that involve only whole numbers.

There are infinitely many Pythagorean triples, and Mesopo-
tamian mathematicians exercised considerable ingenuity and 

closer one gets to the exact answer. To get started, we need an “input” 
for the first step in our algorithm. We can begin with a guess; they did. 
Almost any guess will do. After we input our initial guess we just repeat 
the process over and over again until we are as close as we want to be. 
In a more or less modern notation we can represent the Mesopotamian 
algorithm like this:

OUTPUT = 1/2(INPUT + 2/INPUT)

(If we wanted to compute √5, for example, we would only have to 
change 2/INPUT into 5/INPUT. Everything else stays the same.)

If, at the first step, we use 1.5 as our input, then our output is 1.416̄ 
because

1.416̄  = 1/2(1.5 + 2/1.5)

At the end of the second step we would have

1.414215 . . . = 1/2(1.416̄  + 2/1.416̄)

as our estimate for √2. We could continue to compute more steps in 
the algorithm, but after two steps (and with the aid of a good initial 
guess) our approximation agrees with the actual value of √2 up to the 
millionth place—an estimate that is close enough for many practical 
purposes.

What is especially interesting about this algorithm from a modern 
point of view is that it may be the one that your calculator uses to com-
pute square roots. The difference is that instead of representing the 
algorithm on a clay tablet, the calculator represents the algorithm on an 
electronic circuit! This algorithm is as old as civilization.
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 mathematical sophistication in finding solutions. They then 
compiled these whole number solutions in tables. Some simple 
examples of Pythagorean triples include (3, 4, 5) and (5, 12, 13), 
where in our notation, taken from a preceding paragraph, z = 5 
in the first triple and z = 13 in the next triple. (The numbers 3 
and 4 in the first triple, for example, can be placed in either of the 
remaining positions in the equation and the statement remains 
true.)

The Mesopotamians did not indicate the method that they used 
to find these Pythagorean triples, so we cannot say for certain 
how they found them. Of course a few correct triples could be 
attributed to lucky guesses. We can be sure, however, that the 
Mesopotamians had a method worked out because their other solu-
tions to the problem of finding Pythagorean triples include (2,700, 
1,771, 3,229), (4,800, 4,601, 6,649), and (13,500, 12,709, 18,541).

The search for Pythagorean triples occupied mathematicians in 
different parts of the globe for millennia. A very famous general-
ization of the equation we use to describe Pythagorean triples was 
proposed by the 17th-century French mathematician Pierre de 
Fermat. His conjecture about the nature of these equations, called 
Fermat’s last theorem, occupied the attention of mathematicians 
right up to the present time and was finally solved only recently; 
we will describe this generalization later in this volume. Today the 
mathematics for generating all Pythagorean triples is well known 
but not especially easy to describe. That the mathematicians in 
the first literate culture in world history should have solved the 
problem is truly remarkable.

Egyptian Algebra
Little is left of Egyptian mathematics. The primary sources 
are a few papyri, the most famous of which is called the Ahmes 
papyrus, and the first thing one notices about these texts is that 
the Egyptians were not as mathematically adept as their neigh-
bors and contemporaries the Mesopotamians—at least there is 
no indication of a higher level of attainment in the surviving 
records. It would be tempting to concentrate exclusively on 
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the Mesopotamians, the Chinese, and the Greeks as sources 
of early algebraic thought. We include the Egyptians because 
Pythagoras, who is an important figure in our story, apparently 
received at least some of his mathematical education in Egypt. 
So did Thales, another very early and very important figure in 
Greek mathematics. In addition, certain other peculiar charac-
teristics of Egyptian mathematics, especially their penchant for 
writing all fractions as sums of what are called unit fractions, can 
be found in several cultures throughout the region and even as 
far away as China. (A unit fraction is a fraction with a 1 in the 
numerator.) None of these commonalities proves that Egypt 
was the original source of a lot of commonly held mathematical 
ideas and practices, but there are indications that this could be 
true. The Greeks, for example, claimed that their mathematics 
originated in Egypt.

Egyptian arithmetic was considerably more primitive than that of 
their neighbors the Mesopotamians. Even multiplication was not 
treated in a general way. To multiply two numbers together they 
used a method that consisted of repeatedly doubling one of the 
numbers and then adding together some of the intermediate steps. 
For example, to compute 5 × 80, first find 2 × 80 and then double 
the result to get 4 × 80. Finally, 1 × 80 would be added to 4 × 80 to 
get the answer, 5 × 80. This method, though it works, is awkward.

Egyptian algebra employed the symbol heap for the unknown. 
Problems were phrased in terms of “heaps” and then solved. To 
paraphrase a problem taken from the most famous of Egyptian 
mathematical texts, the Ahmes papyrus: If 1 heap and 1/7 of a heap 
together equal 19, what is the value of the heap? (In our nota-
tion we would write the corresponding equation as x + x/7 = 19.) 
This type of problem yields what we would call a linear equation. 
It is not the kind of exercise that attracted much attention from 
Mesopotamian mathematicians, who were concerned with more 
difficult problems, but the Egyptians apparently found them chal-
lenging enough to be worth studying.

What is most remarkable about Egyptian mathematics is that it 
seemed to be adequate for the needs of the Egyptians for thousands 
of years. Egyptian culture is famous for its stunning architecture 
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and its high degree of social organization and stability. These were 
tremendous accomplishments, and yet the Egyptians seem to have 
accomplished all of this with a very simple mathematical system, a 
system with which they were apparently quite satisfied.

Chinese Algebra
The recorded history of Chinese mathematics begins in the 
Han dynasty, a period that lasted from 206 b.c.e. until 220 c.e. 
Records from this time are about 2,000 years younger than many 
Mesopotamian mathematics texts. What we find in these earliest 
of records of Chinese mathematics is that Chinese mathemati-
cians had already developed an advanced mathematical culture. It 
would be interesting to know when the Chinese began to develop 
their mathematics and how their ideas changed over time, but 
little is known about mathematics in China before the found-
ing of the Han dynasty. This lack of knowledge is the result of a 
deliberate act. The first emperor of China, Qin Shi Huang, who 
died in the year 210 b.c.e., ordered that all books be burned. This 
was done. The book burners were diligent. As a consequence, lit-
tle information is available about Chinese mathematical thought 
before 206 b.c.e.

One of the first and certainly the most important of all early 
surviving Chinese mathematical texts is Nine Chapters on the 
Mathematical Art, or the Nine Chapters for short. (It is also known 
as Arithmetic in Nine Sections.) The mathematics in the Nine 
Chapters is already fairly sophisticated, comparable with the math-
ematics of Mesopotamia. The Nine Chapters has more than one 
author and is based on a work that survived, at least in part, the 
book burning campaign of the emperor Qin Shi Huang. Because it 
was extensively rewritten and enlarged, knowing what the original 
text was like is difficult. In any case, it is one of the earliest extant 
Chinese mathematical texts. It is also one of the best known. It was 
used as a math text for generations, and it served as an important 
source of inspiration for Chinese mathematicians.

In its final form the Nine Chapters consists of 246 problems 
on a wide variety of topics. There are problems in taxation, 
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surveying, engineering, and geometry and methods of solution 
for determinate and indeterminate equations alike. The tone of 
the text is much more conversational than that adopted by the 
Mesopotamian scribes. It is a nice example of what is now known 
as rhetorical algebra. (Rhetorical algebra is algebra that is expressed 
with little or no specialized algebraic notation.) Everything—the 
problem, the solution, and the algorithm that is used to obtain 
the solution—is expressed in words and numbers, not in math-
ematical symbols. There are no “equals” signs, no x’s to repre-
sent unknowns, and none of the other notational tools that we 
use when we study algebra. Most of us do not recognize what a 
great advantage algebraic notation is until after we read prob-
lems like those in the Nine Chapters. These problems make for 
fairly difficult reading for the modern reader precisely because 
they are expressed without the algebraic symbolism to which we 
have become accustomed. Even simple problems require a lot of 
explanatory prose when they are written without algebraic nota-
tion. The authors of the Nine Chapters did not shy away from using 
as much prose as was required.

Temple built during the Han dynasty—Chinese mathematics flourished 
during the Han dynasty.
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Aside from matters of style, Mesopotamian problem texts and 
the Nine Chapters have a lot in common. There is little in the 
way of a general theory of mathematics in either one. Chinese 
and Mesopotamian authors are familiar with many algorithms 
that work, but they express little interest in proving that the algo-
rithms work as advertised. It is not clear why this is so. Later 
Mesopotamian mathematicians, at least, had every opportunity 
to become familiar with Greek mathematics, in which the idea of 
proof was central. The work of their Greek contemporaries had 
little apparent influence on the Mesopotamians. Some historians 
believe that there was also some interaction between the Chinese 
and Greek cultures, if not directly, then at least by way of India. If 
this was the case, then Chinese mathematics was not overly influ-
enced by contact with the Greeks, either. Perhaps the Chinese 
approach to mathematics was simply a matter of taste. Perhaps 
Chinese mathematicians (and their Mesopotamian counterparts) 
had little interest in exploring the mathematical landscape in the 
way that the Greeks did. Or perhaps the Greek approach was 
unknown to the authors of the Nine Chapters.

Another similarity between Mesopotamian and Chinese math-
ematicians lay in their use of approximations. As with the 
Mesopotamians, Chinese mathematicians made little distinction 
between exact results and good approximations. And as with 
their Mesopotamian counterparts, Chinese mathematicians devel-
oped a good deal of skill in obtaining accurate approximations 
for square roots. Even the method of conveying mathematical 
knowledge used by the authors of the Nine Chapters is similar to 
that of the Mesopotamian scribes in their problem texts. Like the 
Mesopotamian texts, the Nine Chapters is written as a straightfor-
ward set of problems. The problems are stated, as are the solu-
tions, and an algorithm or “rule” is given so the reader can solve 
the given problem for himself or herself. The mathematics in the 
Nine Chapters is not higher mathematics in a modern sense; it is, 
instead, a highly developed example of “practical” mathematics.

The authors of the Nine Chapters solved many determinate equa-
tions (see the sidebar Rhetorical Algebra for an example). They 
were at home manipulating positive whole numbers,  fractions, and 
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rhetorical algebra

The following problem is an example of Chinese rhetorical algebra taken 
from the Nine Chapters. This particular problem is representative of the 
types of problems that one finds in the Nine Chapters; it is also a good 
example of rhetorical algebra, which is algebra that is expressed without 
specialized algebraic notation.

In this problem the authors of the Nine Chapters consider three types 
or “classes” of corn measured out in standard units called measures. 
The corn in this problem, however, is not divided into measures; it is 
divided into “bundles.” The number of measures of corn in one bundle 
depends on the class of corn considered. The goal of the problem is 
to discover how many measures of corn constitute one bundle for each 
class of corn. The method of solution is called the Rule. Here are the 
problem and its solution:

There are three classes of corn, of which three bundles of 
the first class, two of the second and one of the third make 
39 measures. Two of the first, three of the second and one of 
the third make 34 measures. And one of the first, two of the 
second and three of the third make 26 measures. How many 
measures of grain are contained in one bundle of each class?

Rule. Arrange the 3, 2, and 1 bundles of the three classes 
and the 39 measures of their grains at the right.

Arrange other conditions at the middle and at the left. With 
the first class in the right column multiply currently the middle 
column, and directly leave out.

Again multiply the next, and directly leave out.
Then with what remains of the second class in the middle 

column, directly leave out.
Of the quantities that do not vanish, make the upper the fa, 

the divisor, and the lower the shih, the dividend, i.e., the divi-
dend for the third class.

To find the second class, with the divisor multiply the mea-
sure in the middle column and leave out of it the dividend for 
the third class. The remainder, being divided by the number of 
bundles of the second class, gives the dividend for the third 
class. To find the second class, with the divisor multiply the 
measure in the middle column and leave out of it the dividend 
for the third class. The remainder, being divided by the  number 

(continues)
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even negative numbers. Unlike the Mesopotamians, the Chinese 
accepted the existence of negative numbers and were willing to 
work with negative numbers to obtain solutions to the problems 

of bundles of the second class, gives the dividend for the 
second class.

To find the first class, also with the divisor multiply the mea-
sures in the right column and leave out from it the dividends 
for the third and second classes. The remainder, being divided 
by the number of bundles of the first class, gives the dividend 
for the first class.

Divide the dividends of the three classes by the divisor, and 
we get their respective measures.

(Mikami, Yoshio. The Development of Mathematics in China and Japan. New 
York: Chelsea Publishing, 1913)

The problem, which is the type of problem often encountered in junior 
high or high school algebra classes, is fairly difficult to read, but only 
because the problem—and especially the solution—are expressed rhe-
torically. In modern algebraic notation we would express the problem 
with three variables. Let x represent a bundle for the first class of corn, 
y represent a bundle for the second class of corn, and z represent a 
bundle for the third class of corn. In our notation the problem would be 
expressed like this:

 3x + 2y + z = 39
 2x + 3y + z = 34
 x + 2y + 3z = 26

The answer is correctly given as 9 1/4 measures of corn in the first 
bundle, 4 1/4 measures of corn in the second bundle, and 2 3/4 mea-
sures of corn in the third bundle.

Today this is not a particularly difficult problem to solve, but at the 
time that the Nine Chapters was written this problem was for experts 
only. The absence of adequate symbolism was a substantial barrier to 
mathematical progress.

rhetorical algebra 
(continued)
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that interested them. In fact, the Nine Chapters even gives rules 
for dealing with negative numbers. This is important because 
negative numbers can arise during the process of solving many 
different algebraic problems even when the final answers are 
positive. When one refuses to deal with negative numbers, one’s 
work becomes much harder. In this sense the Chinese methods for 
solving algebraic equations were more adaptable and “modern” 
than were the methods used by the Mesopotamians, who strove to 
avoid negative numbers.

In addition to their work on determinate equations, Chinese 
mathematicians had a deep and abiding interest in indeterminate 
equations, equations for which there are more unknowns than 
there are equations. As were the Mesopotamians, Chinese math-
ematicians were also familiar with the theorem of Pythagoras and 
used the equation (which we might write as x2 + y2 = z2) to pose 
indeterminate as well as determinate problems. They enjoyed 
finding Pythagorean triples just as the Mesopotamians did, and 
they compiled their results just as the Mesopotamians did.

The algebras that developed in the widely separated societies 
described in this chapter are remarkably similar. Many of the 
problems that were studied are similar. The approach to problem 
solving—the emphasis on algorithms rather than a theory of equa-
tions—was a characteristic that all of these cultures shared. Finally, 
not one of the cultures developed a specialized set of algebraic 
symbols to express their ideas. All these algebras were rhetorical. 
There was one exception, however. That was the algebra that was 
developed in ancient Greece.
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2
greek algebra

Greek mathematics is fundamentally different from the math-
ematics of Mesopotamia and China. The unique nature of Greek 
mathematics seems to have been present right from the outset in 
the work of Thales of Miletus (ca. 625 b.c.e.–ca. 546 b.c.e.) and 
Pythagoras of Samos (ca. 582 b.c.e.–ca. 500 b.c.e.). In the begin-
ning, however, the Greeks were not solving problems that were 
any harder than those of the Mesopotamians or the Chinese. In 
fact, the Greeks were not interested in problem solving at all—at 
least not in the sense that the Mesopotamian and Chinese math-
ematicians were. Greek mathematicians for the most part did not 
solve problems in taxation, surveying, or the division of food. 
They were interested, instead, in questions about the nature of 
number and form.

It could be argued that Chinese and Mesopotamian mathemati-
cians were not really interested in these applications, either—that 
they simply used practical problems to express their mathematical 
insights. Perhaps they simply preferred to express their math-
ematical ideas in practical terms. Perhaps, as it was for their Greek 
counterparts, it was the mathematics and not the applications that 
provided them with their motivation.

There is, however, no doubt about how the Greeks felt about 
utilitarian mathematics. The Greeks did not—would not—express 
their mathematical ideas through problems involving measures 
of corn or the division of estates or any other practical language. 
They must have known, just as the Mesopotamian and Chinese 
mathematicians knew, that all of these fields are rich sources of 
mathematical problems. To the Greeks this did not matter. The 
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Greeks were interested in mathematics for the sake of mathemat-
ics. They expressed their ideas in terms of the properties of num-
bers, points, curves, planes, and geometric solids. Most of them 
had no interest in applications of their subject, and in case anyone 
missed the point they were fond of reciting the story about the 
mathematician Euclid of Alexandria, who, when a student inquired 
about the utility of mathematics, instructed his servant to give the 
student a few coins so that he could profit from his studies. 

Another important difference between Greek mathematicians 
and the mathematicians of other ancient cultures was the distinc-
tion that the Greeks made between exact and approximate results. 
This distinction is largely absent from other mathematical cul-
tures of the time. In a practical sense, exact results are generally no 
more useful than good approximations. Practical problems involve 
measurements, and measurements generally involve some uncer-
tainty. For example, when we measure the length of a line segment 
our measurement removes some of our uncertainty about the 
“true” length of the segment, but some uncertainty remains. This 
uncertainty is our margin of error. Although we can further reduce 

The ruins of the Lyceum, the school where Aristotle taught. Mathematics was 
an integral part of Greek philosophical thought. (History of Macedonia Blog)
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our uncertainty with better measurements, we cannot eliminate all 
uncertainty. As a consequence, any computations that depend on 
this measurement must also reflect our initial imprecision about 
the length of the segment. Our methods may be exact in the sense 
that if we had exact data then our solution would be exact as well. 
Unfortunately, exact measurements are generally not available.

The Greek interest in precision influenced not only the way 
they investigated mathematics; it also influenced what they inves-
tigated. It was their interest in exact solutions that led to one of the 
most profound discoveries in ancient mathematics.

The Discovery of the Pythagoreans
Pythagoras of Samos was one of the first Greek mathematicians. 
He was extremely influential, although, as we will soon see, we 
cannot attribute any particular discoveries to him. As a young 
man Pythagoras is said to have traveled widely. He apparently 
received his mathematics education in Egypt and Mesopotamia. 
He may have traveled as far east as India. Eventually he settled 
on the southeastern coast of what is now Italy in the Greek city 
of Cortona. (Although we tend to think of Greek civilization as 
situated within the boundaries of present-day Greece, there was a 
time when Greek cities were scattered throughout a much larger 
area along the Mediterranean Sea.)

Pythagoras was a mystic as well as a philosopher and mathemati-
cian. Many people were attracted to him personally as well as to 
his ideas. He founded a community in Cortona where he and his 
many disciples lived communally. They shared property, ideas, 
and credit for those ideas. No Pythagorean took individual credit 
for a discovery, and as a consequence we cannot be sure which of 
the discoveries attributed to Pythagoras were his and which were 
his disciples’. For that reason we discuss the contributions of the 
Pythagoreans rather than the contributions of Pythagoras himself. 
There is, however, one point about Pythagoras about which we 
can be sure: Pythagoras did not discover the Pythagorean theorem. 
The theorem was known to Mesopotamian mathematicians more 
than 30 generations before Pythagoras’s birth.
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At the heart of Pythagorean 
philosophy was the maxim “All 
is number.” There is no better 
example of this than their ideas 
about music. They noticed that 
the musical tones produced by 
a string could be described 
by whole number ratios. They 
investigated music with an 
instrument called a mono-
chord, a device consisting of 
one string stretched between 
two supports. (The supports 
may have been attached to a 
hollow box to produce a rich-
er, more harmonious sound.) The Pythagorean monochord had a 
third support that was slid back and forth under the string. It could 
be placed anywhere between the two end supports.

The Pythagoreans discovered that when the third support divided 
the length of the string into certain whole number ratios, the 
sounds produced by the two string segments were harmonious or 
consonant. This observation indicated to them that music could be 
described in terms of certain numerical ratios. They identified these 
ratios and listed them. The ratios of the lengths of the two string 
segments that they identified as consonant were 1:1, 1:2, 2:3, and 
3:4. The ratio 1:1, of course, is the unison: Both string segments 
are vibrating at the same pitch. The ratio 1:2 is what musicians now 
call an octave. The ratio 2:3 is the perfect fifth, and the ratio 3:4 is 
the perfect fourth. The identification of these whole number ratios 
was profoundly important to the Pythagoreans. They believed that 
everything—all human creations, the natural world, and mathemat-
ics—could be expressed via whole number ratios.

The Pythagoreans worshipped numbers. It was part of their 
beliefs that certain numbers were invested with special proper-
ties. The number 4, for example, was the number of justice and 
retribution. The number 1 was the number of reason. When they 
referred to “numbers,” however, they meant only what we would 

A monochord, a device used by the 
Pythagoreans to investigate the 
relationships that exist between 
musical pitches and mathematical 
ratios
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call positive, whole numbers, that is, the numbers belonging to 
the sequence 1, 2, 3, . . . (Notice that the consonant tones of the 
monochord were produced by dividing the string into simple whole 
number ratios.) They did not recognize negative numbers, the num-
ber 0, or any type of fraction as a number. Quantities that we might 
describe with a fraction they would describe as a ratio between two 
whole numbers, and although we might not make a distinction 
between a ratio and a fraction, we need to recognize that they did. 
They only recognized ratios.

To the Pythagoreans the number 1 was the generator of all 
numbers—by adding 1 to itself often enough they could obtain 
every number (or at least every number as they understood 
the concept). What we would use fractions to represent, they 
described as ratios of sums of the number 1. A consequence of 
this concept of number—coupled with their mystical belief that 
“all is number”—is that everything in the universe can be gener-
ated from the number 1. Everything, in the Pythagorean view, 
was in the end a matter of whole number arithmetic. This idea, 
however, was incorrect, and their discovery that their idea of 
number was seriously flawed is one of the most important and 
far-reaching discoveries in the history of mathematics.

To understand the flaw in the Pythagorean idea of number we turn 
to the idea of commensurability. We say that two line segments—we 
call them L1 and L2—are commensurable, if there is a third line seg-
ment—we call it L3—with the property that the lengths L1 and L2 are 
whole number multiples of length L3. In this sense L3 is a “common 
measure” of L1 and L2. For example, if segment L1 is 2 units long and 
L2 is 3 units long then we can take L3 to be 1 unit long, and we can 
use L3 to measure (evenly) the lengths of both L1 and L2. The idea 
of commensurability agrees with our intuition. It agrees with our 
experience. Given two line segments we can always measure them 
and then find a line segment whose length evenly divides both. This 
idea is at the heart of the Pythagorean concept of number, and that 
is why it came as such a shock to discover that there existed pairs of 
line segments that were incommensurable, that is, that there exist 
pairs of segments that share no common measure!

The discovery of incommensurability was a fatal blow to the 
Pythagorean idea of number; that is why they are said to have tried 
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to hide the discovery. Happily, 
knowledge of this remarkable 
fact spread rapidly. Aristotle 
(384–332 b.c.e.) wrote about 
the concept and described 
what is now a standard proof. 
Aristotle’s teacher, Plato (ca. 
428–347 b.c.e.), described 
himself as having lived as an 
animal lives—that is, he lived 
without reasoning—until he 
learned of the concept.

It is significant that the 
Greeks so readily accepted 
the proof of the concept of 
incommensurability because 
that acceptance shows just 
how early truly abstract rea-
soning began to dominate 
Greek mathematical think-
ing. They were willing to 
accept a mathematical result 
that violated their worldview, 
their everyday experience, 
and their sense of aesthetics. 
They were willing to accept 
the idea of incommensura-
bility because it was a logi-
cal consequence of other, previously established, mathematical 
results. The Greeks often expressed their understanding of the 
concept by saying that the length of a diagonal of a square is 
incommensurable with the length of one of its sides.

Incommensurability is a perfect example of the kind of result that 
distinguished Greek mathematical thought from the mathematical 
thought of all other ancient cultures. In a practical sense incommen-
surability is a “useless” concept. We can always find a line segment 
whose length is so close to the length of the diagonal of the square 
as to be indistinguishable from the diagonal, and we can always 

Two lengths are commensurable if 
they are whole number multiples of a 
third length. For example, segments 
L2 and L3 are commensurable 
because L2 = 2L1 and L3 = 3L1. 
Segment L1 is called a common 
measure of L2 and L3. Not every 
pair of lengths is commensurable. 
The side of a square and its diagonal, 
for example, share no common 
measure; these segments are called 
incommensurable.

Openmirrors.com
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choose this segment with the additional property that its length and 
the length of a side of the square share a common measure. In a 
practical sense, commensurable lengths are always sufficient.

In a theoretical sense, however, the discovery of incommensu-
rability was an important insight into mathematics. It showed that 
the Pythagorean idea that everything could be expressed in terms of 
whole number ratios was flawed. It showed that the mathematical 
landscape is more complex than they originally perceived it to be. 
It demonstrated the importance of rigor (as opposed to intuition) 
in the search for mathematical truths. Greek mathematicians soon 
moved away from Pythagorean concepts and toward a geometric 
view of mathematics and the world around them. How much of this 
was due to the discoveries of the Pythagoreans and how much was 
due to the success of later generations of geometers is not clear. In 

the incommensurability of √2

The proof that the length of a diagonal of a square whose sides are 1 unit 
long is incommensurable with the length of a side of the square is one of 
the most famous proofs in the history of mathematics. The proof itself is 
only a few lines long. (Note that a square whose side is 1 unit long has a 
diagonal that is √2 units long. This is just a consequence of the Pythagorean 
theorem.) In modern notation the proof consists of demonstrating that there 
do not exist natural numbers a and b such that √2 equals a/b. The following 
nonexistence proof requires the reader to know the following two facts:

1. If a2 is divisible by 2 then a2/2 is even.

2. If b2 (or a2) is divis ble by 2 then b (or a) is even.

We begin by assuming the opposite of what we intend to prove: We 
suppose that √2 is commensurable with 1—that is, we suppose that √2 can 
be written as a fraction a/b where a and b are positive whole numbers. We 
also assume—and this is critical—that the fraction a/b is expressed in lowest 
terms. In particular, this means that a and b cannot both be even numbers. 
It is okay if one is even. It is okay if neither is even, but both cannot be even 
or our fraction would not be in lowest terms. (Notice that if we could find 
integers such that √2 = a/b, and if the fraction were not in lowest terms 
we could certainly reduce it to lowest terms. There is, therefore, no harm 
in assuming that it is in lowest terms from the outset.) Here is the proof:
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any case Greek mathematics does not turn back toward the study of 
algebra as a separate field of study for about 700 years.

Geometric Algebra
The attempt by the Pythagoreans to reduce mathematics to the 
study of whole number ratios was not successful, and Greek math-
ematics soon shifted away from the study of number and ratio and 
toward the study of geometry. The Greeks did not study geometry 
only as a branch of knowledge; they used it as a tool to study every-
thing from astronomy to the law of the lever. Geometry became 
the language that the Greeks used to describe and understand the 
world about them. It should come as no surprise, then, that the 
Greeks also learned to use the language of geometry to express 

Suppose a/b = √2.

Now solve for b to get
a/√2 = b

Finally, square both sides. 
a2/2 = b2

This completes the proof. Now we have to read off what the last 
equation tells us. First, a2 is evenly divisible by 2. (The quotient is b2.) 
Therefore, by fact 2, a is even. Second, since a2/2 is even (this follows 
by fact 1) b2—which is a2/2—is also even. Fact 2 enables us to conclude 
that b is even as well. Since both a and b are even our assumption that 
a/b is in lowest terms cannot be true. This is the contradiction that we 
wanted. We have proved that a and b do not exist.

This proof resonated through mathematics for more than 2,000 
years. It showed that intuition is not always a good guide to truth in 
mathematics. It showed that the number system is considerably more 
complicated than it first appeared. Finally, and perhaps unfortunately, 
mathematicians learned from this proof to describe √2 and other 
similar numbers in terms of what they are not: √2 is not expressible 
as a fraction with whole numbers in the numerator and denominator. 
Numbers like √2 came to be called irrational numbers. A definition of 
irrational numbers in terms of what they are would have to wait until the 
late 19th century and the work of the German mathematician Richard 
Dedekind.
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ideas that we learn to express algebraically. We call this geometric 
algebra, and it is an important part of the mathematical legacy 
of the ancient Greeks. Today the principal source of Greek ideas 
about geometric algebra is the set of books entitled Elements by 
Euclid of Alexandria, who lived in Alexandria, Egypt, in the third 
century b.c.e.

Little is known about Euclid. We do not know when he was 
born or when he died. We know that the institution where Euclid 
worked—it was called the Museum—was home to many of the most 
successful Greek mathematicians of the time. We know that many 
of the mathematicians who lived and worked at the school were 
born elsewhere. Perhaps the same can be said of Euclid.

Euclid is best remembered for having written one of the most 
popular textbooks of all time. Called Elements, it has been trans-
lated into most of the world’s major languages over the last 2,000 
years. In recent years it has fallen out of favor as a textbook, but 

Greek ruins in Alexandria, Egypt. Most of Greek mathematics was 
created outside of present-day Greece. Alexandria occupies an especially 
important place in the history of Greek mathematics.
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algebra made visible

Today one of the first ideas 
that students learn as they 
begin to study algebra is that 
“multiplication distributes over 
addition.” This is called the 
distributive law and in symbols 
it looks like this:

x(y + z) = xy + xz

Though most of us eventually 
succeed in learning this rule, 
few of us could give a reason 
why it might be true. The very first proposition that Euclid proves in 
book II of the Elements is exactly this statement, but it is expressed in 
the language of geometrical algebra. More than 2,000 years ago Euclid 
expresses the distr butive law in the following words:

If there be two straight lines, and one of them be cut into any 
number of segments whatever, the rectangle contained by the 
two straight lines is equal to the rectangles contained by the 
uncut straight line and each of the segments.

(Euclid. Elements. Translated by Sir Thomas L. Heath. Great Books of the 
Western World, vol. 11. Chicago: Encyclopaedia Britannica, 1952.)

See the pictorial version of Euclid’s statement. Notice that the illustra-
tion shows three rectangles, two smaller ones and a large one. (The 
large rectangle is made of the four outside line segments. The smaller 
rectangles lie inside the large one.) All three rectangles have the same 
height. We use x to represent the height of each of the rectangles. The 
rectangle on the left has length y and the rectangle on the right has 
length z. The length of the largest rectangle is y + z. Now we recall the 
formula for the area of a rectangle: Area = length × width. Finally, we 
can express the idea that the area of the largest rectangle equals the 
area of the two smaller rectangles by using the algebraic equation given. 
When the distributive law is expressed geometrically the reason that it 
is true is obvious.

Diagram of Euclid’s proof that xy + 
xz = x(y + z)
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many high school treatments of plane geometry are still only 
simplified versions of parts of Euclid’s famous work. To describe 
the Elements solely as a textbook, however, is to misrepresent its 
impact. The type of geometry described in Euclid’s textbook—
now called Euclidean geometry, though it was not Euclid’s inven-
tion—dominated mathematical thought for 2,000 years. We now 
know that there are other kinds of geometry, but as late as 200 
years ago many mathematicians and philosophers insisted that 
Euclidean geometry was the single true geometry of the universe. 
It was not until the 19th century that mathematicians began to 
realize that Euclidean geometry was simply one kind of geometry 
and that other, equally valid geometries exist.

The Elements was written in 13 brief books. Of special interest to 
us is the very brief book II, which lays out the foundations of geo-
metric algebra. In book II we see how thoroughly geometric thinking 
pervaded all of Greek mathematics including algebra. For example, 
when we speak of unknowns, x, y, and z, we generally assume that 
these variables represent numbers. Part of learning elementary alge-
bra involves learning the rules that enable us to manipulate these 
symbols as if they were numbers. Euclid’s approach is quite different. 
In Euclid’s time “variables” were not numbers. Euclid represented 
unknowns by line segments, and in his second book he establishes 
the rules that allow one to manipulate segments in the way that we 
would manipulate numbers. What we represent with equations, 
Euclid represented with pictures of triangles, rectangles, and other 
forms. Geometric algebra is algebra made visible.

Much of the geometry that one finds in the Elements is performed 
with a straightedge and compass. This is constructible mathematics 
in the sense that the truth of various mathematical statements can 
be demonstrated through the use of these implements. Though it 
would be hard to imagine simpler implements, the Greeks used 
these devices successfully to investigate many important mathemati-
cal ideas. But as with any set of techniques, the use of the straight-
edge and compass has its limitations. Although it is not immediately 
apparent, certain classes of problems cannot be solved by using 
straightedge and compass techniques. In fact, some of the most 
famous mathematical problems from antiquity are famous precisely 
because they cannot be solved with a straightedge and compass.
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There are three classical geometry problems that are very impor-
tant in the history of algebra. Their importance in geometry is that 
they remained unsolved for more than 2,000 years. They were not 
unsolved because they were neglected. These problems attracted 
some of the best mathematical minds for generation after genera-
tion. Interesting mathematical ideas and techniques were discov-
ered as individuals grappled with these problems and searched for 
solutions, but in the end none of these mathematicians could solve 
any of the three problems as originally stated, nor could they show 
that solutions did not exist. The problems are as follows:

Trisecting the angle: Given angle 
ABC, use a straightedge and compass 
to construct angle ABD so that the 
measure of angle ABD is one-third 
that of the measure of angle ABC.

Problem 1: Given an arbitrary 
angle, divide the angle into 
three equal parts, using only a 
straightedge and compass.

Squaring the circle: Given a circle and 
using only a straightedge and compass, 
construct a square of equal area.

Problem 2: Given a circle, 
construct a square having the 
same area as the circle, using 
only a straightedge and compass.
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Notice that each problem has the same restriction: using only 
a straightedge and compass. This is critical. It is also critical to 
remember that the Greeks were not interested in approximate 
solutions to these problems. The Greeks could have easily con-
structed highly accurate approximations to a third of an angle, a 
squared circle, and a cube with a volume approximately twice 
as large as the given cube—and all with only a straightedge and 
compass. But  approximations were not their goal. These ancient 
Greek geometers were searching for a method that would in 
theory give them the exact solution—not a good approximation to 
the solution—to each of the three problems.

These three problems are probably more important in the history 
of algebra than in the history of geometry. In algebra the search 
for the solutions of these problems gave birth to a new concept of 
what algebra is. In the 19th century, after some extraordinary break-
throughs in algebraic thought, these problems were disposed of once 
and for all. Nineteenth-century mathematicians discovered that the 
reason these problems had remained unsolved for 2,000 years is that 
they are unsolvable. Remember: This was proved by using algebra, 
not geometry. The ideas required to prove that these problems are 
unsolvable represented a huge step forward in the history of algebra.

The geometric algebra described by Euclid was logically rigor-
ous, but it was too simple to be very useful. Elementary results 

Doubling the cube: Given a cube 
and using only a straightedge and 
compass, construct a second cube that 
has precisely twice the volume of the 
original cube.

Problem 3: Given a cube, find 
the length of the side of a new 
cube whose volume is twice 
that of the original cube. Do 
this using only a straightedge 
and compass.
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had been obtained by sophisticated techniques. The reliance on 
formal, very sophisticated geometric reasoning made it difficult to 
extend the ideas described by Euclid. A new approach to algebra 
was needed.

Diophantus of Alexandria
Diophantus is often described as the father of algebra. He was, 
perhaps, the only one of the great Greek mathematicians to devote 
himself fully to the study of algebra as a discipline separate from 
geometry. We know little of his life. The dates of his birth and death 
are unknown. We do know that he lived in Alexandria, Egypt. It is 
generally believed that he was alive during the third century c.e., 
but even this is not certain; some scholars believe that he was alive 
during the second century c.e., and some believe that he was alive 
during the fourth century c.e. What are thought to be the facts of 
his life are usually summed up in this ancient mathematics problem:

God granted him to be a boy for the sixth part of his life, and 
adding a twelfth part to this, He clothed his cheeks with down; 
He lit him the light of wedlock after a seventh part, and five 
years after his marriage He granted him a son. Alas! Late-born 
child; after attaining the measure of half his father’s life, chill 
Fate took him. After consoling his grief by this science of num-
bers for four years he ended his life.

(Reprinted by permission of the publishers and the Trustees of  
Loeb Classical Library from Greek Anthology: Volume V, Loeb 

Classical Library. Volume L 86, translated by W. R. Paton, 
Cambridge, Mass.: Harvard University Press, 1918)

By solving the (linear) equation that is described in the problem, 
we learn that Diophantus lived to be 84 years old.

Diophantus’s contribution to algebra consists of two works, the 
more famous of which is entitled Arithmetica. The other is On 
Polygonal Numbers. Neither work exists in its entirety. Arithmetica 
originally consisted of 13 volumes. Six volumes were preserved in 
the original Greek, and in the 1970s previously unknown Arabic 
translations of four more volumes were discovered. Even less of 
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On Polygonal Numbers has come down to us; it is known through 
a set of excerpts.

Arithmetica is arranged much as the Nine Chapters and the 
Mesopotamian problem texts are. It is essentially a long list of 
problems. The exception occurs at the beginning of the first vol-
ume, in which he attempts to give an account of the foundations 
of algebra. This is historic because it is the first time that anyone 
tried to do this.

With respect to the number system that he uses, he describes 
rational numbers—numbers that can be represented as fractions 
with whole numbers in the numerator and the denominator—and 
negative numbers. He gives rules for working with negative num-
bers, and he seems comfortable enough with this system. But when 
solving problems, he clearly prefers solutions that are nonnegative.

Unlike the Nine Chapters and the other books mentioned pre-
viously, Arithmetica is largely devoid of nonmathematical refer-
ences. There are no references to the division of corn, the height 
of a tree, or the area of a field, and approximate solutions, no 
matter how accurate, are not acceptable to Diophantus. In this 
sense Arithmetica is more philosophical than practical. Although 
Diophantus certainly knows about incommensurable (irrational) 
numbers, he does not consider them to be acceptable solutions to 
any of his equations. 

Another important contribution that Diophantus makes to alge-
bra is his use of symbolism. All of the works that we have examined 
so far, whether written in Mesopotamia, Egypt, or China, were of 
a rhetorical character—that is, everything is expressed in words. 
This format tends to hinder progress in mathematics because it 
obscures the ideas and techniques involved. Diophantus intro-
duced abbreviations and some symbols into his work. We call this 
mixture of abbreviations, words, and a few symbols syncopated 
algebra. Diophantus’s syncopated algebra lacks the compact form 
of contemporary algebraic equations. It is not especially easy to 
read, but he went further toward developing a specialized system 
of symbols than any of his predecessors.

The problems that Diophantus studied often had multiple solu-
tions. The existence of multiple solutions for a single problem 
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would immediately catch the eye of any contemporary mathema-
tician, but Diophantus usually seems not to care. If he can find 
even one solution he seems content. Did he know that in some 
cases other solutions exist? It is not always clear. On the other 
hand, Diophantus is very interested in how a solution is found, 
and he sometimes describes more than one method for solving 
the same problem. It is clear that algorithms are a primary focus 
for him.

It is tempting to see in Diophantus’s exhausting list of problems 
and solutions the search for a rigorous theory of algebraic equa-
tions that is analogous to the highly developed system of geom-
etry that the Greeks had developed centuries earlier. If that was 
his goal, he did not achieve it. There is no overarching concept 
to Diophantus’s algebra. It is, instead, a collection of adroitly 
chosen problems, whose solutions more often than not depend 
on a clever trick rather than a deeper theoretical understanding. 
Nevertheless, Arithmetica served as a source of insight and inspira-
tion for generations of Islamic and European mathematicians. And 
about 1,500 years after Diophantus wrote Arithmetica, his work 
inspired the French mathematician Pierre de Fermat to attempt to 
generalize one of the problems that he found in Arithmetica about 
representing one square as the sum of two squares. This gave 
rise to what is now called Fermat’s last theorem, one of the most 
famous of all mathematical problems and one that was not solved 
until late in the 20th century.

Greek algebra—whether it is like that found in Elements or in 
Arithmetica—is characterized by a higher level of abstraction than 
that found in other ancient mathematically sophisticated cultures. 
Both the choice of problems and method of presentation were 
unique among the cultures of antiquity, and the Greek influence 
on future generations of Arab and European mathematicians was 
profound. New approaches to algebra that were eventually devel-
oped elsewhere, however, would prove to be equally important.
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3
algebra from india to 

northern africa

The tradition of Greek mathematical research ended in the 
third century c.e. with the death of Hypatia (ca. 370–415) in 
Alexandria. Hypatia was a prominent scholar and mathemati-
cian. She wrote commentaries on the works of Diophantus, 
Apollonius, and Ptolemy, but all of her work has been lost. We 
know of her through the works and letters of other scholars of 
the time. Hypatia was murdered in a religious dispute. Shortly 
thereafter many of the scholars in Alexandria left, and mathemati-
cal research at Alexandria, the last of the great Greek centers of 
learning, ended.

Mathematics, however, continued to develop in new ways and in 
new locations. In the Western Hemisphere the Mayan civilization 
was developing a unique and advanced form of mathematics. We 
know of some of their accomplishments, but most of their work 
was destroyed by Spanish conquerors in the 16th century. Another 
new and important center of mathematical research developed on 
the Indian subcontinent, but before examining the accomplish-
ments of these mathematicians it is important to say a few words 
about terminology.

The mathematical tradition that developed on the Indian sub-
continent during this time is sometimes called Indian mathemat-
ics. It was not created entirely in what is now India. Some of it 
arose in what is now Pakistan, and, in any case, India was not 
united under a central government during the period of inter-
est to us. There was no India in the modern sense. There are 
some histories of “Indian” mathematics that use the term Hindu 
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mathematics, but not all of the mathematicians who contributed to 
the development of this mathematical tradition were themselves 
Hindu. There are no other terms in general use. We use the 
terms Indian mathematics and Hindu mathematics interchangeably 
because they are the two common names for this mathematical 
tradition, but neither term is entirely satisfactory. We look for-
ward to the time when better, more descriptive terminology is 
developed to describe the accomplishments of this creative and 
heterogeneous people.

There are widely varying claims made about the history of 
Indian mathematics. Some scholars think that a sophisticated 
Hindu mathematical tradition goes back several thousand years, 
but the evidence for this claim is indirect. Very few records from 
the more remote periods of Indian history have survived. Some of 
the earliest records of Indian mathematical accomplishments are 
the Sulvasutras, a collection of results in geometry and geometric 
algebra. The dating of these works is also a matter of dispute. 
Some scholars believe that they date to the time of Pythagoras, but 
others claim they were written several centuries after Pythagoras’s 
death. Mathematically the Sulvasutras are, in any case, not espe-
cially sophisticated when compared with the Hindu works that are 
of most interest to us. In fact, it is their simplicity that is the best 
indicator that they preceded the works for which we do have reli-
able dates.

Despite their simplicity, the Sulvasutras contain many qualities 
that are characteristic of much of the Indian mathematical tradi-
tion. It is important to review these special characteristics, because 
Indian mathematics is quite distinct from that of the other math-
ematically sophisticated cultures that preceded it. Moreover, even 
when there is overlap between the mathematics of India and that of 
ancient Greece or Mesopotamia, it is clear that Indian mathemati-
cians perceived mathematics differently. The mathematics of the 
Indians is often compared unfavorably to Greek mathematics, but 
such comparisons are not especially helpful. Hindu mathematics is 
better appreciated on its own terms. Mathematics occupied a dif-
ferent place in the culture of the Hindus than it did in the culture 
of the Greeks.
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One characteristic of Hindu mathematics is that almost all of 
it—problems, rules, and definitions—is written in verse. This is 
true of the Sulvasutras and virtually all later works as well. Another 
characteristic property that we find in the Sulvasutras as well as 
later Hindu mathematics is that there are no proofs that the rules 
that one finds in the texts are correct. Ancient Indian texts contain 
almost no mathematical rigor, as we understand the term today. 
The rules that one finds in these texts were sometimes illustrated 
with one or more examples. The examples were sometimes fol-
lowed with challenges directed to the reader, but there was little 
in the way of motivation or justification for the rules themselves. 
This was not simply a matter of presentation. The mathematicians 
who created this highly imaginative approach to mathematics 
must have had only a minimal interest in proving that the results 
they obtained were correct, because mistakes in the texts them-
selves often went unnoticed. Many of the best Hindu works con-
tain a number of significant errors, but these works also contain 
important discoveries, some of which have had a profound effect 
on the entire history of mathematics.

Another important difference between Indian mathematics and 
the mathematics of other cultures with advanced mathematical 
traditions is that other cultures perceived mathematics as a sepa-
rate field of study. In the Indian cultural tradition, mathematics 
was not usually treated as an independent branch of knowledge. 
There are very few ancient Sanskrit texts devoted solely to math-
ematics. Instead mathematical knowledge was usually conveyed 
in isolated chapters in larger works about astronomy. Astronomy 
and religion were very much intertwined in the classical culture of 
the Indian subcontinent. To many of the most important Hindu 
mathematicians, mathematics was a tool for better understanding 
the motions and relative locations of objects in the night sky. It 
was not a separate academic discipline.

Brahmagupta and the New Algebra
The astronomer and mathematician Brahmagupta (ca. 598–ca. 670) 
was one of the most important of all Indian mathematicians. Not 
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much is known about his life. It is known that he lived in Ujjain, 
a town located in what is now central India. In Brahmagupta’s 
time Ujjain was home to an important astronomical observatory, 
and Brahmagupta was head of the observatory. Brahmagupta’s 
major work is a book on astronomy, Brahma-sphuta-siddhānta (The 
opening of the universe). Written entirely in verse, Brahmagupta’s 
masterpiece is 25 chapters long. Most of the book contains infor-
mation about astronomical phenomena: the prediction of eclipses, 
the determination of the positions of the planets, the phases of the 
Moon, and so on. Just two of the chapters are about mathematics, 
but those two chapters contain a great deal of important algebra.

Brahmagupta’s work, like that of other Hindu mathematicians, 
contains plenty of rules. Most are stated without proof; nor does 
he provide information about how he arrived at these rules or why 
he believes them to be true. Many rules are, however, followed 
by problems to illustrate how the rules can be applied. Here, for 
example, is Brahmagupta’s “rule of inverse operation”:

Sundial at the ancient observatory at Ujjain. For centuries, Ujjain was an 
important center for astronomical research. The unusual structures in the 
background were created to facilitate the making of accurate astronomical 
measurements.
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Multiplier must be made divisor; and divisor, multiplier; posi-
tive, negative and negative, positive; root [is to be put] for 
square; and square, for root; and first as converse for last.

(Brahmagupta and Bhaskara. Algebra with Arithmetic and 
Mensuration. Translated by Henry Colebrook. London: John 

Murray, 1819)

By modern standards this is a fairly terse explanation, but by 
the standards of the day it was comparatively easy reading. To 
understand why, it helps to know that Brahmagupta, like many 
Indian mathematicians, probably grew up reading just this type 
of explanation. Indian astronomical and mathematical knowledge 
was generally passed from one generation to the next within 
the same family. Each generation studied astronomy, math-
ematics, and astrology and contributed to the family library. 
Brahmagupta’s father, for example, was a well-known astrologer. 
Mathematical writing and astronomical writing were important 
parts of Brahmagupta’s family tradition. He would have been 
accustomed to this kind of verse, but he advanced well beyond 
what he inherited from his forebears.

One of the most important characteristics of Brahmagupta’s 
work is his style of algebraic notation. It is, like that of Diophantus, 
syncopated algebra. Syncopated algebra uses specialized symbols 
and abbreviations of words to convey the ideas involved. For 
instance, Brahmagupta used a dot above a number to indicate a 
negative number. When formulating an equation containing one 
or more unknowns, Brahmagupta called each unknown a different 
color. His use of colors is completely analogous to the way that we 
are taught to use the letters x, y, and z to represent variables when 
we first learn algebra. To simplify his notation he preferred to use 
an abbreviated form of each color word. One section of his book 
is even called Equations of Several Colors.

One consequence of his notation is that his mathematical prose 
is fairly abstract, and this characteristic is important for two rea-
sons. First, a condensed, abstract algebraic notation often makes 
mathematical ideas more transparent and easy to express. Second, 
good algebraic notation makes adopting a very general and inclu-
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sive approach to problem solving easier, and generality is just what 
Brahmagupta achieved.

Brahmagupta considered the equation that we would write as  
ax + by = c, where a, b, and c are integers (whole numbers), called 
coefficients, that could be positive, negative, or zero. The letters x 
and y denote the variables that are meant to represent whole num-
ber solutions to the equation. Brahmagupta’s goal was to locate 
whole numbers that, when substituted for x and y, made the equa-
tion a true statement about numbers.

Brahmagupta’s very broad understanding of what a, b, and c 
represent stands in sharp contrast with the work of Diophantus. 
Diophantus preferred to consider only equations in which the 
coefficients are positive. This required Diophantus to break 
Brahmagupta’s single equation into several special cases. If, for 
example, b was less than 0 in the preceding equation, Diophantus 
would add -b to both sides of the equation to obtain ax = -by + c. 
(If b is negative, -b is positive.) This equation, with the b trans-
posed to the other side, was a distinct case to Diophantus, but 
Brahmagupta, because he did not distinguish between positive and 
negative coefficients, had to consider only the single equation ax + 
by = c. This allowed him to achieve a more general, more modern, 
and more powerful approach to the solution of algebraic equa-
tions. Furthermore, he accepted negative numbers as solutions, a 
concept with which his Greek predecessors had difficulty.

This highly abstract approach to the solution of algebraic equa-
tions is also characteristic of Brahmagupta’s work with second-
degree algebraic equations. When he solved second-degree 
algebraic equations, also called quadratic equations, he seemed to 
see all quadratic equations as instances of the single model equa-
tion ax2 + bx + c = 0, where the coefficients a, b, and c could repre-
sent negative as well as nonnegative numbers. Brahmagupta was 
willing to accept negative solutions here as well. He also accepted 
rational and irrational numbers as solutions. (A rational number can 
be represented as the quotient of two whole numbers. An irrational 
number is a number that cannot be represented as the quotient 
of two whole numbers.) This willingness to expand the number 
system to fit the problem, rather than to restrict the problem to 
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fit the number system, is characteristic of much of the best Indian 
mathematics.

Finally, Brahmagupta was interested in indeterminate equa-
tions. (An indeterminate equation is a single equation, or a system 
of equations, with many solutions.) When considering these types 
of problems he attempted to find all possible solutions.

Brahmagupta’s work is algorithmic in nature. To Brahmagupta 
learning new math meant learning new techniques to solve equa-
tions. Today many of us think of mathematics as the search for 
solutions to difficult word problems, but mathematics has always 
been about more than finding the right solutions. The Greeks, for 
example, were often more concerned with discovering new proper-
ties of geometric figures than they were with performing difficult 
calculations. Brahmagupta was familiar with other approaches to 
mathematics, but he was motivated by problems that involved dif-
ficult calculations. He wanted to find calculating techniques that 
yielded answers, and he had a very broad idea of what constituted 
an answer. The Brahma-sphuta-siddhānta was quickly recognized 
by Brahmagupta’s contemporaries as an important and imaginative 
work. It inspired numerous commentaries by many generations of 
mathematicians.

Mahavira
The mathematician Mahavira (ca. 800–ca. 870), also known as 
Mahaviracharya, was one of those inspired by Brahma-sphuta-
siddhānta (Compendium of the essence of mathematics). Mahavira 
lived in southern India. He was an unusual figure in the history 
of Hindu mathematics. He was not, for example, a Hindu. He 
was a member of the Jain religion. (Jainism is a small but cultur-
ally important religious sect in present-day India.) He was not 
an astronomer. His book, called Ganita Sara Samgraha, is the 
first book in the Indian mathematical tradition that confines its 
attention to pure mathematics. It is sometimes described as a 
commentary on Brahmagupta’s work, but it is more than that. 
Mahavira’s book is an ambitious attempt to summarize, improve 
upon, and teach Indian mathematical knowledge as he understood 
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it. Mahavira’s book was very successful. It was widely circulated 
and used by students for several centuries.

There are traditional aspects of Mahavira’s book. As with 
Brahmagupta’s great work, Brahma-sphuta-siddhānta, Mahavira’s 
book is written in verse and consists of rules and examples. The 
rules are stated without proof. Coupled with his very traditional 
presentation is a very modern approach to arithmetic. It is pre-
sented in a way that is similar to the way arithmetic is taught today.

In addition to his presentation of arithmetic, Mahavira dem-
onstrated considerable skill manipulating the Hindu system of 
numeration: He constructed math problems whose answers read 
the same forward and backward. For example: 14287143 × 7 = 
100010001. (Notice that the answer to the multiplication prob-
lem is a sort of numerical palindrome.) He was also interested in 
algebraic identities. (An identity is a mathematical statement that 
is true for all numbers.) An example of one of the identities that 
Mahavira discovered is a3 = a(a + b)(a − b) + b2 (a − b) + b3. These 
kinds of identities sometimes facilitate calculation. They also dem-
onstrate how various algebraic quantities relate one to another.

Word problems were also important to Mahavira. He included 
numerous carefully crafted problems in Ganita Sara Samgraha. 
Some of the problems are elementary, but some require a fair bit 
of algebra to solve.

Mahavira exercises his algebraic insights on two other classes 
of problems. In one section of the book he studies combinatorics. 
Combinatorics, which generally requires a fairly extensive knowl-
edge of algebra, deals with the way different combinations of 
objects can be chosen from a fixed set. It is the kind of knowledge 
that is now widely used in the study of probability. He shows, for 
example, that the number of ways r objects can be chosen from a 
set containing n objects is

n (n − 1) (n − 2) . . . (n − r + 1)
————————————— 

 r (r − 1) (r − 2) . . . 2 · 1

where we have written his result in modern notation. This is an 
important formula that is widely used today.
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The second class of algebra problems is geometric in origin. 
In Mahavira’s hands even the geometry problems—and there 
are a number of them—are just another source of algebraic 
equations. For example, he attempts to find the dimensions of 
two triangles with the following properties: (1) the areas of the 
triangles are equal and (2) the perimeter of one is twice that of 
the other. This problem leads to some fairly sophisticated alge-
bra and is a nice example of an indeterminate problem—it has 
many solutions.

More generally, there are several points worth noting about 
Mahavira’s work. First, like Brahmagupta’s work, Mahavira’s 
writings are a highly syncopated approach to algebra. (Algebra is 
called syncopated when it is expressed in a combination of words, 
abbreviations, and a few specialized symbols.) Second, the empha-
sis in much of the book is on developing the techniques necessary 
to solve algebraic problems. It is a tour de force approach to solv-
ing various types of equations, but he provides no broader context 
into which we can place his results. Each problem stands on its 
own with no consideration given to a broader theory of equations. 
Third, there are no proofs or carefully developed logical argu-
ments. He shows the reader results that he believes are important, 
but he often does not show the reader why he considers the results 
correct. His ideas are creative, but because of his lack of emphasis 
on mathematical proofs when he makes an error, even a glaring 
error, he sometimes fails to catch it. For example, when he tries to 
compute the area of an ellipse, he gets it wrong. Given the level 
of mathematics in Mahavira’s time, this was admittedly a difficult 
problem. Perhaps he could not have solved the problem by using 
the mathematics available at the time, but with a more rigorous 
approach to the problem he might have been able to discover what 
the answer is not.

Bhaskara and the End of an Era
The discoveries of Brahmagupta, Mahavira, and many other 
mathematicians in the Indian tradition probably found their high-
est expression in the work of the mathematician and astronomer 
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Bhaskara (1114–ca. 1185). Bhaskara, also known as Bhaskaracharya 
and Bhaskara II, was the second prominent Indian mathematician 
of that name. (We will have no reason to refer to the first.) Bhaskara 
was born in southern India, in the city of Bijapur in the same gen-
eral region in which Mahavira was born. Unlike Mahavira, but like 
Brahmagupta, Bhaskara was an astronomer. He eventually moved 
to Ujjain, where he became head of the astronomical observatory 
there. It was the same observatory that Brahmagupta had directed 
several centuries earlier.

Bhaskara’s main work, Siddhānta Siromani (Head jewel of accu-
racy), is a book about astronomy and mathematics. It is divided 
into four sections, covering arithmetic, algebra, the celestial 
sphere, and various planetary calculations. Like the other texts 
we have considered, the Siddhānta Siromani is written in verse, 
although Bhaskara also provides an additional section written in 
prose that explains some of the mathematics found in the main 
body of the work. Sanskrit scholars have praised Bhaskara’s work 
both for the quality of its poetry and for its mathematical content.

Bhaskara uses a highly syncopated algebraic notation. He solves 
a variety of determinate and indeterminate equations, and he is 
open to the possibility that the solutions to the equations that he 
solves may be negative as well as positive, and irrational as well 
as rational. He looks at very general first- and second-degree 
algebraic equations and seems comfortable with coefficients that 
are negative as well as positive. He even suggests special rules for 
doing arithmetic with certain irrational numbers. In many ways 
the work that Bhaskara did on second-degree algebraic equations 
is identical to work that high school students do today. Although 
this point may sound elementary, it was not. Mathematicians took 
millennia to extend their idea of number, their idea of solution, 
and their computational techniques to solve these types of equa-
tions. Furthermore, there are many aspects of Bhaskara’s work 
with algebraic equations that were not surpassed anywhere in the 
world for several centuries.

The Leelavati and the Bijaganita, the two sections of his work 
that are mathematical in nature, are full of word problems to 
 challenge the reader. One problem describes a bamboo plant, 32 
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cubits long, growing out of 
level ground. The wind springs 
up and breaks the plant. The 
top of the plant falls over, and 
the tip of the plant just touches 
the ground at a distance of 16 
cubits from the base of the 
stalk. Bhaskara challenges the 
reader to compute the distance 
above the ground at which the 
stalk snapped. Interestingly, 
this same problem can also 
be found in ancient Chinese 
mathematical literature. (The 
answer is that the stalk snapped 
12 cubits above the ground.)

Bhaskara’s interest in the 
technical issues involved in 
solving particular equations 
allowed him to make great 
progress in special cases, and 
his work with the quadratic 

equation was very general, but in most cases, the progress that 
Bhaskara achieves is incremental progress. He absorbs the work 
of his predecessors and extends it. Most of what he did, from his 
use of verse, to his indifference to the concept of proof, to his 
choice of problems, and to his preference for algebraic as opposed 
to geometric methods, is reminiscent of the work of Indian math-
ematicians who preceded him. What distinguishes his work is 
that it is generally more advanced than that of his predecessors. 
He expresses his ideas with greater clarity. His approach is more 
general, that is, more abstract, and so he sees more deeply into 
each problem. Finally his work is more complete. The Siddhānta 
Siromani influenced many generations of mathematicians. It 
was a major achievement. It is sometimes described as the most 
important mathematical text to emerge from the classical Indian 
mathematical tradition.

A problem by Bhaskara: Before the 
plant broke it was 32 cubits tall. 
After it breaks the distance from the 
top of the plant (now on the ground) 
to the base is 16 cubits. At what 
height did the break occur?
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Islamic Mathematics
The origins of Indian mathematics, Egyptian mathematics, and 
Mesopotamian mathematics, to name three prominent exam-
ples, lie thousands of years in the past. Records that might help 
us understand how mathematics arose in these cultures are 

poetry and algebra

It is an oft-repeated remark that in a poem, the poetry is the part that is 
lost in translation. If this is true for translations of verse between modern 
languages, the “loss of poetry” must be even more pronounced when 
ancient Sanskrit verse is translated to modern English. Nevertheless, 
skillful translations are the only means that most of us have of appreciat-
ing the poetry in which the mathematicians of ancient India expressed 
themselves. Here are two word problems, originally composed in verse 
in Sanskrit, by Bhaskara (followed by solutions using modern notation):

1.) One pair out of a flock of geese remained sporting in the 
water, and saw seven times the half of the square-root of the 
flock proceeding to the shore tired of the diversion. Tell me, 
dear girl, the number of the flock.

The algebraic equation to be solved is (7/2)√x = x − 2.
The solutions to the equation are x = 16 and x = 1/4.
The only reasonable solution to the word problem is x = 16.

2.) Out of a heap of pure lotus flowers, a third part, a fifth and 
a sixth, were offered respectively to the gods Siva, Vishńu and 
the Sun; and a quarter was presented to Bhaváníi. The remain-
ing six lotuses were given to the venerable preceptor. Tell 
quickly the whole number of flowers. (ibid.)

The algebraic equation to be solved is

x x− + + +
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The solution is x = 120.

(Brahmagupta and Bhaskara. Algebra with Arithmetic and Mensuration. 
Translated by Henry Colebrook. London: John Murray, 1819)
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 sometimes too sparse to provide much insight. This is not the case 
with Islamic mathematics.

Historically Islamic culture begins with the life of Muhammad 
(570–632). Historical records are reasonably good. We can refer 
to documents by Islamic historians as well as their non-Muslim 
neighbors. We know quite a bit about how mathematics in gen-
eral, and algebra in particular, arose in the Islamic East, and this 
is important, because within 200 years of the death of the Prophet 
Muhammad great centers of learning had been established. A new 
and important mathematical tradition arose. This new tradition 
had a profound influence on the history of mathematics: Algebra 
was the great contribution of Islamic mathematicians. But the 
term Islamic mathematics must be used with care.

Islamic mathematics is the term traditionally given to the math-
ematics that arose in the area where Islam was the dominant 
religion, but just as the term Hindu mathematics is not entirely 

The Great Mosque at Samarra was built about 60 miles (96 km) from 
Baghdad, which was where al-Khwārizmı̄ made his home, at about the 
time that the mathematician lived.
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satisfactory, neither is Islamic mathematics quite the right term. 
Although Islam was the dominant religion in the region around 
Baghdad in what is now Iraq when algebraic research flourished, 
Jews and Christians also lived in the area. For the most part, they 
were free to practice their religions unmolested. Although most 
of the prominent mathematical scholars of the time followed the 
Islamic faith, there was also room for others at even the most 
prominent institutions of higher learning. A number of Christian 
scholars, for example, helped to translate the ancient Greek 
mathematical texts that were stored at the House of Wisdom in 
Baghdad, one of the great centers of learning at the time. There 
was a notable 10th-century Jewish mathematician who published 
“Islamic” mathematics named Abu ‘Otman Sahl ibn Bishr, ibn 
Habib ibn Hani; and one of the most prominent mathematicians 
of his day, Ali-sabi Thabit ibn Qurra al-Harrani, was a Sabean, a 
member of a sect that traced its roots to a religion of the ancient 
Mesopotamians. Despite this diversity, Islamic mathematics is the 
name often given to this mathematics because the Islamic faith had 
a strong cultural as well as religious influence.

Sometimes this mathematics is called Arabic, but not all the 
mathematicians involved were Arabic, either. Of the two choices, 
Arabic or Islamic mathematics, Islamic mathematics seems the 
more accurate description. Islam affected everything from gov-
ernmental institutions to architectural practices. So we adopt the 
common practice of calling our subject Islamic mathematics, even 
though math, in the end, has no religious affiliation.

The history of Islamic mathematics begins in earnest with the 
life of al-Ma’mūn (786–833). Although al-Ma’mūn is an impor-
tant figure in the history of algebra, he was no mathematician. 
He is best remembered for his accomplishments as a political 
leader. He was the son of the caliph Hārūn ar-Rashı̄d. (The 
caliphs were absolute rulers of their nations.) Ar-Rashı̄d had 
another son, al-Ma’mūn’s half brother, named al-Amı̄n. After 
the father’s death the two brothers, al-Ma’mūn and al-Amı̄n, led 
their respective factions in a brutal four-year civil war over suc-
cession rights to the caliphate. In the end al-Amı̄n lost both the 
war and his life.
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As caliph, al-Ma’mūn proved to be a creative, if ruthless, politi-
cal leader. He worked hard, though not entirely successfully, to 
heal the division that existed between the Shı̄’ite and Sunnite sects 
of Islam. In Baghdad he established the House of Wisdom, an 
important academic institution where Greek texts in mathemat-
ics, science, and philosophy were translated and disseminated. 
When these works could not be obtained within the caliphate, 
he obtained them from the libraries of Byzantium, a sometimes-
hostile power. He established astronomical observatories, and he 
encouraged scholars to make their own original contributions. His 
work bore fruit. A new approach to algebra developed in Baghdad 
at this time.

Al-Khwārizmı̄ and a New Concept of Algebra
A number of mathematicians responded to al-Ma’mūn’s words 
of encouragement and contributed to the development of a new 
concept of algebra. Mathematically speaking, it was a very cre-
ative time. One of the first and most talented mathematicians was 
named Mohammed ibn-Mūsā al-Khwārizmı̄ (ca. 780–ca. 850). 
Al-Khwārizmı̄ described what happened in these words:

[al-Ma’mūn] has encouraged me to compose a short work on 
Calculating by (the rules of) Completion and Reduction, confin-
ing it to what is easiest and most useful in arithmetic.

(Al-Khwārizmı̄, Mohammed ibn-Mūsā. Robert of Chester’s 
Latin Translation of the Algebra of al-Khwārizmı̄. Translated by 

Karpinski, Louis C. New York: The Macmillan Company, 1915)

Al-Khwārizmı̄’s approach to algebra was new and significant, but 
many of the results that he obtained were not. Nor was he the only 
mathematician of his time to use the new approach. In recent his-
torical times scholars have discovered the work of another Islamic 
mathematician, Abd-al-Hamid ibn-Turk, who wrote a book 
about algebra that was similar to al-Khwārizmı̄’s. This second 
text was written at about the same time that al-Khwārizmı̄’s work 
was published. The existence of Abd-al-Hamid’s book indicates 
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that some of the mathematical ideas described by al-Khwārizmı̄ 
may not have originated with him. In that sense, al-Khwārizmı̄ 
may, as Euclid was, have been more of a skilled expositor than 
an innovator. There is not enough information to know for sure. 
Nevertheless al-Khwārizmı̄’s book had the greatest long-term 
influence. Even the author’s name became part of the English 
language. Al-Khwārizmı̄’s name was mispronounced often enough 
in Europe to take on the form algorismi, and this word was later 
shortened to the words algorithm, a specialized method for solving 
mathematical problems, and algorism, the so-called Arabic system 
of numerals. Furthermore, the second word in the title of one 
of al-Khwārizmı̄’s books, Hisāb al-jabr wa’l muqābala, eventually 
found its way into English as the word algebra.

Al-Khwārizmı̄’s book Hisāb al-jabr wa’l muqābala has little in 
common with those of Brahmagupta and Diophantus. For one 
thing, the problems that he solves are for the most part less 
advanced. Second, he avoids solutions that involve 0 or negative 
numbers. He avoids problems in indeterminate analysis—that is, 
problems for which multiple solutions exist—and he writes with-
out any specialized algebraic notation. Not only does he avoid the 
use of letters or abbreviations for variables, he sometimes even 
avoids using numerals to represent numbers. He often prefers 
to write out the numbers in longhand. Even the motivation for 
Al-Khwārizmı̄’s book was different from that of his predecessors. 
Diophantus seems to have had no motivation other than an inter-
est in mathematics. Brahmagupta’s motivation stemmed from his 
interest in mathematics and astronomy. But al-Khwārizmı̄ wrote 
that al-Ma’mūn had encouraged him to develop a mathematics 
that would be of use in solving practical problems such as the “dig-
ging of canals” and the “division of estates.”

Much of the first half of al-Khwārizmı̄’s book Hisāb al-jabr is 
concerned with the solution of second-degree algebraic equa-
tions, but his method is not nearly as general as Brahmagupta’s. 
Unlike Brahmagupta, he does not perceive all quadratic equa-
tions as instances of a single general type. Instead, what we would 
call “the” quadratic equation he perceived as a large number of 
separate cases. For example, he considers quadratic equations, 
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such as x2 = 5x, and he identifies the number 5 as a solution. (We 
would also recognize x = 0 as a solution, but al-Khwārizmı̄ does 
not acknowledge 0 as a legitimate solution.) Because he uses rhe-
torical algebra, that is, an algebra devoid of specialized, algebraic 
symbols, his description of the equation x2 = 5x and its solution 
take some getting used to:

A square is equal to 5 roots. The root of the square then is 5, 
and 25 forms its square which, of course, equals five of its roots.

(Al-Khwārizmı̄, Mohammed ibn-Mūsā. Robert of Chester’s 
Latin Translation of the Algebra of al-Khwārizmı̄. Translated by 

Karpinski, Louis C. New York: The Macmillan Company, 1915)

He plods his way from one special case to the next, and in 
this there is nothing new. At first it seems as if al-Khwārizmı̄, 
as his predecessor Brahmagupta and his far-away contemporary 
Mahavira did, sees algebra simply as a collection of problem-solv-
ing techniques. But this is not so. After establishing these results 
he shifts focus; it is this shift in focus that is so important to the 
history of algebra. After solving a number of elementary problems, 
he returns to the problems that he just solved and proves the cor-
rectness of his approach. In the field of algebra this is both new 
and very important.

Al-Khwārizmı̄’s tool of choice for his proofs is geometry, but 
he is not interested in geometry as a branch of thought in the 
way that the ancient Greeks were. He is not interested in studying 
geometry; he wants to use it to provide a proof that his algebraic 
reasoning was without flaws. Recall that it was the lack of proofs 
in Hindu algebra that made it so difficult for those mathematicians 
to separate the true from the false. Al-Khwārizmı̄, by contrast, 
wanted to build his algebra on a solid logical foundation, and he 
was fortunate to have a ready-made model of deductive reasoning 
on hand: the classics of Greek geometry.

The geometry of the Greeks would certainly have been familiar 
to al-Khwārizmı̄. Throughout his life the translators associated 
with the House of Wisdom were busy translating ancient Greek 
works into Arabic, and there was no better example of careful 
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mathematical reasoning available anywhere in the world at this 
time than in the works of the Greeks. Their works are filled with 
rigorous proofs. Al-Khwārizmı̄ had the concept for a rigorous 
algebra and a model of mathematical rigor available. It was his 
great insight to combine the two into something new.

Al-Khwārizmı̄’s interest in developing procedures for computing 
with square roots also bears mentioning. He begins with the very 
simplest examples, among them the problem of multiplying the 
square root of 9 by the number 2. Here is how he describes the 
procedure:

Take the root of nine to be multiplied. If you wish to double the 
root of nine you proceed as follows: 2 by 2 gives 4, which you 
multiply by 9, giving 36. Take the root of this, i.e. 6, which is 
found to be two roots of nine, i.e. the double of three. For three, 
the root of nine, added to itself gives 6.

(Al-Khwārizmı̄, Mohammed ibn-Mūsā. Robert of Chester’s 
Latin Translation of the Algebra of al-Khwārizmı̄. Translated by 

Karpinski, Louis C. New York: The Macmillan Company, 1915)

In our notation we express this idea as 2√9 = √4 · 9 = √36 = 6, 
which again emphasizes the importance and utility of our modern 
system of notation. He extends this simple numerical example into 
several more general algebraic formulas. For example, we would 
express one of his rhetorical equations as follows: 3√x = √ 9x.

It is not clear why al-Khwārizmı̄ avoided the use of any sort of 
algebraic symbolism. Without any specialized algebraic notation 
his work is not easy to read despite the fact that he is clearly a 
skilled expositor. Al-Khwārizmı̄’s work had an important influence 
on the many generations of mathematicians living in the Near 
East, Northern Africa, and Europe. On the positive side, his con-
cept of incorporating geometric reasoning to buttress his algebraic 
arguments was widely emulated. On the negative side, his highly 
rhetorical approach would prove a barrier to rapid progress. What 
is most important is that Al-Khwārizmı̄’s work established a logical 
foundation for the subject he loved. His work set the standard for 
rigor in algebra for centuries.
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Omar Khayyám, Islamic Algebra at Its Best
The astronomer, poet, mathematician, and philosopher Omar 
Khayyám (ca. 1050–1123) was perhaps the most important of all 
Islamic mathematicians after al-Khwārizmı̄. Omar was born in 
Neyshābūr (Nishāpūr) in what is now northeastern Iran. He also 
died in Neyshābūr, and between his birth and death he traveled a 
great deal. Political turbulence characterized Omar’s times, and 
moving from place to place was sometimes a matter of necessity.

Omar was educated in Neyshābūr, where he studied mathemat-
ics and philosophy. As a young man he moved about 500 miles 
(800 km) to Samarqand, which at the time was a major city, located 
in what is now Uzbekistan. It was in Samarqand that he became 

a problem and a solution

The following is a problem that was posed and solved by al-Khwārizmı̄ 
in his algebra. It is a nice example of rhetorical algebra, that is, algebra 
expressed entirely in words and without the use of specialized algebraic 
symbols.

If you are told, “ten for six, how much for four?” then ten is the 
measure; six is the price; the expression how much implies 
the unknown number of the quantity; and four is the number of 
the sum. The number of the measure, which is ten, is inversely 
proportionate to the number of the sum, namely, four. Multiply, 
therefore, ten by four, that is to say, the two known proportion-
ate numbers by each other; the product is forty. Divide this by 
the other known number, which is that of the price, namely, six. 
The quotient is six and two-thirds; it is the unknown number, 
implied in the words of the question how much? it is the quan-
tity, and inversely proportionate to the six, which is the price.

(Al-Khwārizmı̄, Mohammed ibn-Mūsā. Robert of Chester’s Latin Translation of 
the Algebra of al-Khwārizmı̄. Translated by Louis C. Karpinski, New York: The 
Macmillan Company, 1915)

In our notation al-Khwārizmı̄ solved the problem that we would express 
as 10/6 = x/4.



Algebra from India to Northern Africa  53

well known as a mathematician. Later he accepted an invitation to 
work as an astronomer and director of the observatory at the city 
of Esfahan, which is located in central Iran. He remained there 
for about 18 years, until the political situation became unstable 
and dangerous. Funding for the observatory was withdrawn, 
and Omar moved to the city of Merv, now Mary, in present-day 
Turkmenistan. During much of his life Omar was treated with 
suspicion by many of his contemporaries for his freethinking and 
unorthodox ideas. He wrote angrily about the difficulty of doing 
scholarly work in the environments in which he found himself, but 
in retrospect he seems to have done well despite the difficulties.

Omar described algebra, a subject to which he devoted much of 
his life, in this way:

By the help of God and with His precious assistance, I say that 
Algebra is a scientific art. The objects with which it deals are 
absolute numbers and measurable quantities which, though 
themselves unknown, are related to “things” which are known, 
whereby the determination of the unknown quantities is pos-
sible. Such a thing is either a quantity or a unique relation, 
which is only determined by careful examination. What one 
searches for in the algebraic art are the relations which lead 
from the known to the unknown, to discover which is the object 
of Algebra as stated above. The perfection of this art consists in 
knowledge of the scientific method by which one determined 
numerical and geometric quantities.

(Kasir, Daoud S. The Algebra of Omar Khayyám. New York: 
Columbia University Press, 1931. Used with permission)

This is a good definition for certain kinds of algebra even today, 
almost a thousand years later. The care with which the ideas in 
the definition are expressed indicates that the author was a skilled 
writer in addition to being a skilled mathematician, but he is gen-
erally remembered as either one or the other. In the West, Omar 
Khayyám is best remembered as the author of The Rubáiyát of 
Omar Khayyám, a collection of poems. This collection of poems 
was organized, translated into English, and published in the 19th 
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century. It has been in print 
ever since and has now been 
translated into all the major 
languages of the world. The 
Rubáiyát is a beautiful work, 
but Omar’s skill as a poet was 
not widely recognized in his 
own time, nor is it the trait for 
which he is best remembered 
in Islamic countries today.

Omar’s contemporaries 
knew him as a man of extraor-
dinarily broad interests. 
Astronomy, medicine, law, 
history, philosophy, and math-
ematics were areas in which 
he distinguished himself. He 
made especially important 
contributions to mathematics 
and to the revision of the cal-
endar. His revision of the cal-

endar earned him a certain amount of fame because the calendar 
in use at the time was inaccurate in the sense that the calendar year 
and the astronomical year were of different lengths. As a conse-
quence over time the seasons shifted to different parts of the cal-
endar year. This variability made using the calendar for practical, 
seasonal predictions difficult. Correcting the calendar involved 
collecting better astronomical data and then using this data to 
make the necessary computations. This is what Omar did. It was 
an important contribution because his calendar was extremely 
accurate, and its accuracy made it extremely useful.

In the history of algebra, Omar Khayyám is best remembered 
for his work Al-jabr w’al muqābala (Demonstration concerning the 
completion and reduction of problems; this work is also known as 
Treatise on demonstration of problems of algebra). The Al-jabr 
w’al muqābala is heavily influenced by the ideas and works of 
Al-Khwārizmı̄, who had died two centuries before Omar wrote 
his algebra. As with al-Khwārizmı̄, Omar does not see all qua-

A small group of scientists, of which 
Omar Khayyám was the most 
prominent member, devised the 
Jalali calendar. With some modest 
modifications, this has become today’s 
Persian calendar (pictured above).
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dratic equations as instances of the single equation ax2 + bx + c = 0. 
Instead, he, too, divides quadratic equations into distinct types, for 
example, “a number equals a square,” which we would write as x2 = 
c; “a square and roots equal a number,” which we would write as x2 
+ bx = c; and “a square and a number equal a root,” which we would 
write x2 + c = x. (He made a distinction, for example, between x2 + 
bx = c and x2 + c = bx because Omar also prefers to work with posi-
tive coefficients only.)

Omar even borrows al-Khwārizmı̄’s examples. He uses the same 
equation, x2 = 5x, that al-Khwārizmı̄ used in his book, and there 
are the by-now standard geometric demonstrations involving the 
proofs of his algebraic results. All of this is familiar territory and 
would have seemed familiar even to al-Khwārizmı̄. But then Omar 
goes on to consider equations of the third degree—that is, equa-
tions that we would write in the form ax3 + bx2 + cx + d = 0.

Omar classifies third-degree equations by using the same general 
scheme that he used to classify equations of the second degree, and 
then he begins to try to solve them. He is unsuccessful in finding 
an algebraic method of obtaining a solution. He even states that 
one does not exist. (A method was discovered several centuries 
later in Europe.) Omar does, however, find a way to represent the 
solutions by using geometry, but his geometry is no longer the 
geometry of the Greeks. He has moved past traditional Euclidean 
geometry. Omar uses numbers to describe the properties of the 
curves in which he is interested. As he does so he broadens the 
subject of algebra and expands the collection of ideas and tech-
niques that can be brought to bear on any problem.

Omar’s synthesis of geometric and algebraic ideas is in some 
ways modern. When he discusses third-degree algebraic equa-
tions, equations that we would write as ax3 + bx2 + cx + d = 0, he 
represents his ideas geometrically. (Here a, b, c and d represent 
numbers and x is the unknown.) For example, the term x3, “x 
cubed,” is interpreted as a three-dimensional cube. This gives him 
a useful conceptual tool for understanding third-degree algebraic 
equations, but it also proves to be a barrier to further progress. 
The problem arises when he tries to extend his analysis to fourth-
degree equations, equations that we would write as ax4 + bx3 + cx2 
+ dx + e = 0. Because he cannot imagine a four-dimensional figure, 
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his method fails him, and he questions the reality of equations of 
degree higher than 3.

To his credit Omar was aware of the close relationship between 
algebraic equations and the number system. However, his narrow 
concept of number prevented him from identifying many solu-
tions that Hindu mathematicians accepted without question. This 
may seem to be a step backward, but his heightened sense of rigor 
was an important step forward. There are important relationships 
between the degree of an algebraic equation and the properties 
of the numbers that can appear as solutions. (The degree of an 
equation is the largest exponent that appears in it. Fourth-degree 
equations, for example, contain a variable raised to degree 4, and 
no higher power appears in the equation.) In fact, throughout 
much of the history of mathematics it was the study of algebraic 
equations that required mathematicians to consider more carefully 
their concept of what a number is and to search for ways in which 
the number system could be expanded to take into account the 
types of solutions that were eventually discovered. Omar’s work 
in algebra would not be surpassed anywhere in the world for the 
next several centuries.

The work of al-Khwārizmı̄ and Omar exemplifies the best 
and most creative aspects of Islamic algebra. In particular, their 
synthesis of algebra and geometry allowed them to think about 
algebraic questions in a new way. Their work yielded new insights 
into the relations that exist between algebra and geometry. They 
provided their successors with new tools to investigate algebra, 
and they attained a higher standard of rigor in the study of alge-
bra. Although Indian mathematicians sometimes achieved more 
advanced results than their Islamic counterparts, Indian math-
ematicians tended to develop their mathematics via analogy or 
metaphor. These literary devices can be useful for discovering 
new aspects of mathematics, but they are of no use in separating 
the mathematically right from the mathematically wrong. Islamic 
mathematicians emphasized strong logical arguments—in fact, 
they seemed to enjoy them—and logically rigorous arguments 
are the only tools available for distinguishing the mathematically 
true from the mathematically false. It is in this sense that the 
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algebra developed by the Islamic mathematicians is—especially 
during the period bracketed by the lives of al-Khwārizmı̄ and 
Omar—much closer to a modern conception of algebra than is 
that of the Indians.

leonardo of pisa

There was one prominent European mathematician during the period 
in which Islamic mathematics flourished. He received his education in 
northern Africa from an Islamic teacher. As a consequence, he owed 
much of his insight to Islamic mathematics. He was the Italian mathema-
tician Leonardo of Pisa, also known as Fibonacci (ca. 1170–after 1240). 
Leonardo’s father, Guglielmo, was a government official in a Pisan 
community situated in what is now Algeria. During this time Leonardo 
studied mathematics with a Moor. (The Moors were an Islamic people 
who conquered Spain.) From his teacher he apparently learned both 
algebra and the Hindu base 10 place-value notation. He later wrote that 
he enjoyed the lessons. Those lessons also changed his life.

As a young man Leonardo traveled throughout North Africa and the 
Middle East. During his travels he learned about other systems of nota-
tion and other approaches to problem solving. He eventually settled 
down in Pisa, Italy, where he received a yearly income from the city.

Leonardo produced a number of works on mathematics. He described 
the place-value notation and advocated for its adoption. His efforts 
helped to spread news of the system throughout Europe. (Leonardo only 
used place-value notation to express whole numbers. He did not use the 
decimal notation to write fractions.) His description of the Indian system 
of notation is his most long-lasting contribution, but he also discovered 
what is now known as the Fibonacci series, and he was renowned for 
his skill in algebra as well. He studied, for example, the equation that we 
would write as x3 + 2x2 + 10x = 20. This equation was taken from the 
work of Omar Khayyám. In his analysis Leonardo apparently recognizes 
that the solution he sought was not a simple whole number or fraction. 
He responds by working out an approximation—and he recognizes that 
his answer is an approximation—that is accurate to the ninth decimal 
place. Leonardo, however, expressed his answer as a base 60 fraction. 
Unfortunately Leonardo does not explain how he found his answer, an 
approximation that would set the European standard for accuracy for the 
next several centuries.
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4
algebra as a theory  

of equations

Art, music, literature, science, and mathematics flourished in 
Europe during the Renaissance, which had its origins in 14th-
century Italy and spread throughout Europe over the succeeding 
three centuries. Just as art, music, and science changed radi-
cally during the Renaissance, all pre-Renaissance mathematics 
is profoundly different from the post-Renaissance mathematics 
of Europe. The new mathematics began with discoveries in 
algebra.

Many of the best European mathematicians of this period 
were still strongly influenced by the algebra of al-Khwārizmı̄, 
but in the space of a few years Italian mathematicians went 
far beyond all of the algorithms for solving equations that had 
been discovered anywhere since the days of the Mesopotamians. 
Mathematicians found solutions to whole classes of algebraic 
equations that had never been solved before. Their methods of 
solution were, by our standards, excessively complicated. The 
algorithms developed by Renaissance era mathematicians were 
also difficult and sometimes even counterintuitive. A lack of 
insight into effective notation, poor mathematical technique, 
and an inadequate understanding of what a number is some-
times made recognizing that they had found a solution difficult 
for them. Nevertheless, many problems were solved for the 
first time, and this was important, because these problems had 
resisted solution for thousands of years.

The new algorithms also exposed large gaps in the understand-
ing of these mathematicians. To close those gaps they would have 
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to expand their concept of number, their collection of problem 
solving techniques, and their algebraic notation. The algebraic 
solution of these new classes of problems was a major event in 
the history of mathematics. In fact, many historians believe that 
the modern era in mathematics begins with publication of the 
Renaissance era algebra book Ars magna, about which we will have 
more to say later.

To appreciate what these Renaissance era mathematicians 
accomplished, we begin by examining a simple example. The 
example is a quadratic equation, an algebraic equation of second 
degree. The remarks we make about quadratic equations guide our 
discussion of the more complicated equations and formulas used 
by the mathematicians of the Renaissance. Our example is taken 
from the work of al-Khwārizmı̄. He was an expert at this type of 
problem, but because his description is a little old-fashioned, and 
because we also want to discuss his problem in modern notation, 
we introduce a little terminology first. A quadratic, or second-
degree, equation is any equation that we can write in the form 
ax2 + bx + c = 0. In this equation, the letter x is the unknown. The 
number or numbers that, when substituted for x, make the equa-
tion a true statement are called the roots of the equation, and the 
equation is solved when we find the root or roots. The letters a, b, 
and c are the coefficients. They represent numbers that we assume 
are known. In the following excerpt, al-Khwārizmı̄ is describing 
his method of solving the equation x2 + 21 = 10x. In this example 
the coefficient a equals 1. The coefficient b is -10. (Al-Khwārizmı̄ 
prefers to transpose the term -10x to the right side of the equation 
because he does not work with negative coefficients.) Finally, the 
c coefficient equals 21. Here is al-Khwārizmı̄’s method for solving 
the equation x2 + 21 = 10x:

A square and 21 units equal 10 roots. . . . The solution of this 
type of problem is obtained in the following manner. You take 
first one-half of the roots, giving in this instance 5, which mul-
tiplied by itself gives 25. From 25 subtract the 21 units to which 
we have just referred in connection with the squares. This gives 
4, of which you extract the square root, which is 2. From the half 
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of the roots, or 5, you take 2 away, and 3 remains, constituting 
one root of this square which itself is, of course, 9.

(Al-Khwārizmı̄, Mohammed ibn-Mūsā. Robert of Chester’s 
Latin Translation of the Algebra of al-Khwārizmı̄. Translated by 

Karpinski, Louis C. New York: The Macmillan Company, 1915)

Al-Khwārizmı̄ has given a rhetorical description of an applica-
tion of the algorithm called the quadratic formula. Notice that 
what al-Khwārizmı̄ is doing is “constructing” the root, or solu-
tion of the equation, from a formula that uses the coefficients of 
the equation as input. Once he has identified the coefficients he 
can, with the help of his formula, compute the root. We do the 
same thing when we use the quadratic formula, although both 
our formula and our concept of solution are more general than 
those of al-Khwārizmı̄. In fact, we learn two formulas when we 
learn to solve equations of the form ax2 + bx + c = 0. The first is
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are the formulas that allow us to identify the roots of a quadratic 
equation provided we know the coefficients.

Various rhetorical forms of these formulas were known to 
al-Khwārizmı̄ and even to Mesopotamian mathematicians. They 
are useful for finding roots of second-degree equations, but they 
are useless for computing the roots of an equation whose degree 
is not 2. Until the Renaissance, no one in the history of humankind 
had found corresponding formulas for equations of degree higher 
than 2. No one had found a formula comparable to the quadratic 
formula for a third-degree equation, that is, an equation of the 
form ax3 + bx2 + cx + d = 0, where a, b, c, and d are the coefficients. 
This was one of the great achievements of the Renaissance.

There is one more point to notice about the preceding formulas 
for determining the solutions to the second-degree equations: 
They are exact. These formulas leave no uncertainty at all about 
the true value for x. We can compare these formulas with the solu-
tion that Leonardo of Pisa obtained for the third-degree equation 
given in the preceding chapter. His approximation was accurate 
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to the billionth place. This is far more accurate than he (or we) 
would need for any practical application, but there is still some 
uncertainty about the true value for x.

From a practical point of view, Leonardo completely solved his 
problem, but from a theoretical point of view, there is an impor-
tant distinction between his answer and the exact answer. His 
approximation is a rational number. It can be expressed as a quo-
tient of two whole numbers. The exact answer, the number that he 
was searching for, is an irrational number. It cannot be expressed as 
a quotient of two whole numbers. Leonardo’s solution was, for the 
time, a prodigious feat of calculation, but it fails to communicate 
some of the mathematically interesting features of the exact solu-
tion. Leonardo’s work shows us that even during the Middle Ages 
there were algorithms that enabled one to compute highly accu-
rate approximations to at least some equations of the third degree, 
but there was no general algorithm for obtaining exact solutions 
to equations of the third degree.

The New Algorithms
The breakthrough that occurred in Renaissance Italy was unre-
lated to finding useful approximations to algebraic equations. It 
involved the discovery of an algorithm for obtaining exact solu-
tions of algebraic equations.

The discovery of exact algorithms for equations of degree higher 
than 2 begins with an obscure Italian academic named Scipione 
del Ferro (1465–1526). Little is known of del Ferro, nor are 
scholars sure about precisely what he discovered. Some historians 
believe that he was educated at the University of Bologna, but 
there are no records that indicate that he was. What is certain is 
that in 1496 he joined the faculty at the University of Bologna as 
a lecturer in arithmetic and geometry and that he remained at the 
university for the rest of his life.

Uncertainty about del Ferro’s precise contribution to the history 
of algebra arises from the fact that he did not publish his ideas and 
discoveries about mathematics. He was not secretive. He appar-
ently shared his discoveries with friends. Evidently he learned 
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how to solve certain types of cubic equations. These equations 
had resisted exact solution for thousands of years, so del Ferro’s 
discovery was a momentous one. Del Ferro did not learn how to 
solve every cubic equation, however.

To appreciate the difficulties that they faced, it is important to 
keep in mind that European mathematicians of del Ferro’s time 
did not use negative coefficients, so they did not perceive a cubic 
equation as a single case as we do today. Today we say that a cubic 
equation is any equation that can be written in the form ax3 + bx2 + 
cx + d = 0. But where we see unity, they saw a diversity of types of 
cubic equations. They classified equations by the side of the equals 
sign where each coefficient was written. Where we would write a 
negative coefficient they carefully transposed the term containing 
the negative coefficient to the other side of the equation so that 
the only coefficients they considered were positive. For example, 

Ancient buildings in Bologna, Italy. During the Renaissance, Bologna 
was an important center for mathematical research. (EdLab at Teachers 
College, Columbia University)
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they looked at the equations x3 + 2x = 1 and x3 = 2x + 1 as separate 
cases. Furthermore, they would also consider any cubic equation 
with an x2 term, such as x3 + 3x2 = 1, as a case separate from, say, x3 
+ 2x = 1, because the former has an x2 term and no x term, whereas 
the latter equation has an x term but no x2 term. The number of 
such separate cases for a third-degree equation is quite large.

Although we cannot be sure exactly what types of cubic equa-
tions del Ferro solved, many scholars believe that he learned to 
solve one or both of the following types of third-degree algebraic 
equations: (1) x3 + cx = d and/or (2) x3 = cx + d, where in each 
equation the letters c and d represent positive numbers. Whatever 
del Ferro learned, he passed it on to one of his students, Antonio 
Maria Fior.

News of del Ferro’s discovery eventually reached the ears of 
a young, creative, and ambitious mathematician and scientist 
named Niccolò Fontana (1499–1557), better known as Tartaglia. 
Tartaglia was born in the city of Brescia, which is located in 
what is now northern Italy. 
It was a place of great wealth 
when Tartaglia was a boy, but 
Tartaglia did not share in that 
wealth. His father, a postal 
courier, died when Tartaglia 
was young, and the family was 
left in poverty. It is often said 
that Tartaglia was self-taught. 
In one story the 14-year-old 
Tartaglia hires a tutor to help 
him learn to read but has 
only enough money to reach 
the letter k. In 1512, when 
Tartaglia was barely a teen-
ager, the city was sacked by 
the French. There were wide-
spread looting and violence. 
Tartaglia suffered severe saber 
wounds to his face, wounds 

Niccolò Fontana, also known as 
Tartaglia. His discovery of a method 
for solving arbitrary third-degree 
equations had a profound effect on the 
history of mathematics. (Smithsonian 
Institution)
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that left him with a permanent speech impediment. (Tartaglia, a 
name which he took as his own, began as a nickname. It means 
“stammerer.”)

When Tartaglia heard the news that del Ferro had discovered 
a method of solving certain third-degree equations, he began the 
search for his own method of solving those equations. What he 
discovered was a method for solving equations of the form x3 + px2 
= q. Notice that this is a different type of equation from those that 
had been solved by using del Ferro’s method, but both algorithms 
have something important in common: They enable the user to 
construct solution(s) using only the coefficients that appear in the 
equation itself. Tartaglia and del Ferro had found formulas for 
third-degree equations that were similar in concept to the qua-
dratic formula.

When Tartaglia announced his discovery, a contest was arranged 
between him and del Ferro’s student, Antonio Maria Fior. Each 
mathematician provided the other with a list of problems, and 
each was required to solve the other’s equations within a specified 
time. Although he initially encountered some difficulty, Tartaglia 
soon discovered how to extend his algorithm to solve those types 
of problems proposed by Fior, but Fior did not discover how to 
solve the types of problems proposed by Tartaglia. It was a great 
triumph for Tartaglia.

Tartaglia did not stop with his discoveries in algebra. He also 
wrote a physics book, Nova Scientia (A new science), in which he 
tried to establish the physical laws governing bodies in free fall, a 
subject that would soon play an important role in the history of 
science and mathematics. Tartaglia had established himself as an 
important mathematician and scientist. He was on his way up.

It is at this point that the exploits of the Italian gambler, phy-
sician, mathematician, philosopher, and astrologer Girolamo 
Cardano (1501–76) become important to Tartaglia and the history 
of science. Unlike del Ferro, who published nothing, Cardano 
published numerous books describing his ideas, his philosophies, 
and his insights on every subject that aroused his curiosity, and 
he was a very curious man. He published the first book on prob-
ability. As a physician he published the first clinical description of 
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typhus, a serious disease that is transmitted through the bite of 
certain insects. He also wrote about philosophy, and he seemed to 
enjoy writing about himself as well. His autobiography is entitled 
De propria vita (Book of my life). In the field of algebra, Cardano 
did two things of great importance: He wrote the book Ars magna 
(Great art), the book that many historians believe marks the start 
of the modern era in mathematics, and he helped an impoverished 
boy named Lodovico Ferrari (1522–65).

At the age of 14 Ferrari applied to work for Cardano as a servant, 
but unlike most servants of the time, Ferrari could read and write. 
Impressed, Cardano hired him as his personal secretary instead. 
It soon became apparent to Cardano that his young secretary had 
great potential, so Cardano made sure that Ferrari received an 
excellent university education. Ferrari learned Greek, Latin, and 
mathematics at the university where Cardano lectured, and when 
Ferrari was 18, Cardano resigned his post at the university in favor 
of his former secretary. At the age of 18 Ferrari was lecturing in 
mathematics at the University of Milan.

Meanwhile Tartaglia’s success had attracted Cardano’s attention. 
Although Tartaglia had discovered how to solve cubic equations, 
he had not made his algorithm public. He preferred to keep it 
secret. Cardano wanted to know the secret. Initially he sent a 
letter requesting information about the algorithm, but Tartaglia 
refused the request. Cardano, a capable mathematician in his own 
right and a very persistent person, did not give up. He continued 
to write to Tartaglia. They argued. Still Tartaglia would not tell, 
and still Cardano persisted. Their positions, however, were not 
equal. Tartaglia, though well known, was not well off. By contrast, 
Cardano was wealthy and well connected. He indicated that he 
could help Tartaglia find a prestigious position, which Tartaglia 
very much wanted. Cardano invited Tartaglia to his home, and, in 
exchange for a promise that Cardano would tell no one, Tartaglia 
shared his famous algorithm with his host.

It was a mistake, of course. Tartaglia is said to have recognized 
his error almost as soon as he made it. Cardano was of no help 
in finding Tartaglia a position, but with the solution to the third-
degree equation firmly in hand, Cardano asked his former servant, 
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secretary, and pupil, Ferrari, to solve the general fourth-degree 
equation, and Ferrari, full of energy and insight, did as he was 
asked. He discovered a formula that enabled the user to construct 
the root(s) to a fourth-degree equation using only the coefficients 
that appeared in the equation itself. Now Cardano knew how to 
solve both third- and fourth-degree equations, and that is the 
information Cardano published in Ars magna.

Tartaglia was furious. He and Cardano exchanged accusations 
and insults. The whole fight was very public, and much of the 
public was fascinated. Eventually a debate was arranged between 
Tartaglia and Ferrari, who was an intensely loyal man who never 
forgot who gave him help when he needed it. It was a long debate, 
and it did not go well for Tartaglia. The debate was not finished 
when Tartaglia left. He did not return. Tartaglia felt betrayed and 
remained angry about the affair for the rest of his life.

In some ways Cardano’s Ars magna is an old-fashioned book. It 
is written very much in the style of al-Khwārizmı̄: It is a purely 
rhetorical work, long on prose and bereft of algebraic notation. 
That is one reason that it is both tedious and difficult for a modern 
reader to follow. In the manner of al-Khwārizmı̄, Cardano avoids 
negative coefficients by transposing terms to one side of the equa-
tion or another until all the numbers appearing in the equation 
are nonnegative. In this sense, Ars magna belongs to an earlier age.

The significance of Ars magna lies in three areas. First, the solu-
tions that arose in the course of applying the new algorithms were 
often of a very complicated nature. For example, numbers such 
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Cardano derives in his book for a fourth-degree equation, inspired 
many mathematicians to reconsider their ideas of what a number 
is. This turned out to be a very difficult problem to resolve, but 
with the new algorithms, it was no longer possible to avoid asking 
the question.

Second, Cardano’s book marks the first time since the 
Mesopotamians began pressing their ideas about quadratic equa-
tions into clay slabs that anyone had published general methods 
for obtaining exact solutions to equations higher than second 
degree. Algebra had always seemed to hold a lot of promise, but its 
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algebra as a tool in science

During the Renaissance great progress was made in obtaining exact 
solutions to algebraic equations. There was a certain excitement asso-
ciated with the work of Tartaglia, Ferrari, and others because these 
mathematicians were solving problems that had resisted solution for 
millennia. There was also a highly abstract quality to their work: It was 
now possible to solve fourth-degree equations, for example, but oppor-
tunities to use fourth-degree equations to solve practical problems were 
not especially numerous.

There was, however, another trend that was occurring during the 
Renaissance, the application of algebra to the solution of problems in 
science. There is no better example of a scientist’s reliance on algebra 
as a language in which to express ideas than in the work of the Italian 
scientist, mathematician, and inventor Galileo Galilei (1564–1642).

One of Galileo’s best-known books, Dialogues Concerning Two New 
Sciences, is filled with algebra. It is not a book about algebra. It is a book 
about science, in which Galileo discusses the great scientific topics of 
his time: motion, strength of materials, levers, and other topics that lie at 
the heart of classical mechanics. To express his scientific ideas he uses 
a rhetorical version of an algebraic function.

In the following quotation, taken from Dialogues, Galileo is describing 
discoveries he had made about the ab lity of objects to resist fracture:

Prisms and cylinders which differ in both length and thickness 
offer resistances to fracture . . . which are directly proportional 
to the cubes of the diameters of their bases and inversely pro-
portional to their lengths.

(Galileo Galilei. Dialogues Concerning Two New Sciences. Translated by Henry 
Crew and Alfonso de Salvio. New York: Dover Publications, 1954)

Galileo is describing the physical characteristics of real objects with 
algebraic functions. Unfortunately he lacks a convenient algebraic nota-
tion to express these ideas.

In his use of algebra, Galileo was not alone. During the Renaissance 
scientists discovered that algebra was often the most convenient 
way that they had to express their ideas. The synthesis that occurred 
between algebra and science during the Renaissance accelerated 
interest in algebra. It probably also accelerated progress in science 

(continues)
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actual utility had been limited because mathematicians knew only 
enough algebra to solve relatively simple problems. The problems 
that were solved by the Mesopotamian, Chinese, Indian, and 
Islamic mathematicians were by and large simple variations on a 
very small group of very similar problems. This changed with the 
publication of Ars Magna.

Finally, Cardano’s book made it seem at least possible that simi-
lar formulas might exist for algebraic equations of fifth degree and 
higher. This possibility inspired many mathematicians to begin 
searching for algorithms that would enable them to find exact 
solutions for equations of degree higher than 4.

François Viète, Algebra as a Symbolic Language
Inspired by the very public success of Tartaglia and Ferrari and the 
book of Cardano, the study of algebra spread throughout much of 
Europe. One of the first and most obvious barriers to further prog-
ress was the lack of a convenient symbolism for expressing the new 
ideas, but this condition was changing, albeit in a haphazard way. 
Throughout Europe various algebraic symbols were introduced. 
Mathematicians in different geographical or linguistic regions 
employed different notation. There were several symbols pro-

because it made new abstract relations between different properties 
more transparent and easier to manipulate. Algebra as a symbolic lan-
guage was gaining prominence in mathematics. As notation improved 
and insight deepened into how algebra could be used, algebraic nota-
tion became the standard way that mathematicians expressed their 
ideas in many branches of mathematics. Today algebra has so thorough-
ly permeated the language of mathematics and the physical sciences 
that it is doubtful that the subject matter of these important disciplines 
could be expressed independently of the algebraic notation in which 
they are written.

algebra as a tool in science 
(continued)
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posed for what we now know as an equals sign (=). There were also 
alternatives for +, -, ×, and so on. It took time for the notation to 
become standardized, but all of these notational innovations were 
important in the sense that they made algebra easier. Rhetorical 
algebra can be slow to read and unnecessarily difficult to follow. 
Ordinary everyday language, the kind of language that we use in 
conversation, is not the right language in which to express algebra, 
and the higher the level of abstraction becomes, the more difficult 
the rhetorical expression of algebra is to read. Nor was the lack of 
a suitable notation the only barrier to progress.

Algebra is about more than symbols. Algebra is about ideas, and 
despite the creativity of del Ferro, Tartaglia, Ferrari, and others, 
the algebra of much of the 16th century was similar in concept to 
what Islamic mathematicians had developed centuries earlier. For 
most mathematicians of the time, algebra was still about finding 
roots of equations. It was a very concrete subject. The equation 
was like a question; the numbers that satisfied the equation were 

Ancient Poitiers, France. Viète studied law at the University of Poitiers, 
but he soon turned his attention to mathematical research. (Middlebury 
College, Language Schools, Graduate Program)
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the answers. A successful mathematician could solve several dif-
ferent types of equations; an unsuccessful mathematician could 
not. At the time algebra was a collection of problem-solving tech-
niques. It was the search for formulas. The formulas might well 
be complicated, of course, but the goal was not. One of the first 
mathematicians to understand that algebra is about more than 
developing techniques to solve equations was the French math-
ematician François Viète (1540–1603).

Viète was born into a comfortable family in Fontenay-le-Comte, 
a small town located in the west of France not far from the Bay of 
Biscay. He studied law at the University of Poitiers. Perhaps his 
initial interest in law was due to his father, who was also a lawyer, 
but the legal profession was not for Viète. Within a few years of 
graduation he had given up on law and was working as a tutor 
for a wealthy family. His work as a tutor was a quiet beginning 
to an eventful life. As with many French citizens, Viète’s life was 
profoundly influenced by the political instability that long plagued 
France. For Viète, the cause of the turmoil was religious tension 
between the Roman Catholic majority and the Protestant minor-
ity, called Huguenots. Viète’s sympathies lay with the Huguenots.

While he was working as a tutor, Viète began his research into 
mathematics. He left his job as a tutor in 1573, when he was 
appointed to a government position. Fortunately for mathematics, 
in 1584 he was banished from government for his Huguenot sym-
pathies. Viète moved to a small town and for five years devoted 
himself to the study of mathematics. It was, mathematically speak-
ing, the most productive time of his life.

Viète understood that the unknowns in an algebraic equation 
could represent types of objects. His was a much broader view of an 
equation than simply as an opportunity to find “the answer.” If the 
unknown could represent a type or “species” of object, then alge-
bra was about relationships between types. Viète’s higher level of 
abstract thought led to an important notational breakthrough. It 
is to Viète that we owe the idea of representing the unknown in an 
equation with a letter. In fact, in his search for more general pat-
terns Viète also used letters to represent known quantities. (The 
“known quantities” are what we have been calling coefficients.) 
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Although we have been using this notation since the beginning of 
this volume—it is hard to talk about algebra without it—histori-
cally speaking, this method of notation did not begin until Viète 
invented it.

Viète’s method was to use vowels to represent unknown quanti-
ties and consonants to represent known quantities. (This is not 
quite what we use today; today we let letters toward the end of 
the alphabet represent unknowns and letters toward the begin-
ning of the alphabet represent known quantities). Notice that by 
employing letters for the coefficients Viète deprives himself of 
any hope of finding numerical solutions. The compensation for 
this loss of specificity is that the letters made it easier for Viète to 
see broader patterns. The letters helped him identify relationships 
between the various symbols and the classes of objects that they 
represented.

Though some of Viète’s ideas were important and innova-
tive, others were old-fashioned or just plain awkward. Viète was 
old-fashioned in that he still had a fairly restricted idea of what 
constituted an acceptable solution. As had his predecessors, Viète 
accepted only positive numbers as legitimate solutions.

Viète had an unusual and, in retrospect, awkward idea for how 
unknowns and coefficients should be combined. He interpreted 
his unknowns as if there were units attached to them. We have 
already encountered a similar sort of interpretation. Recall that 
Omar Khayyám had conceptual difficulties in dealing with fourth-
degree equations because he interpreted an unknown as a length. 
For Omar an unknown length squared represented a (geometric) 
square, an unknown length cubed was a (three-dimensional) cube, 
and as a consequence there was no immediate way of interpreting 
an unknown raised to the fourth power. In a similar vein, Viète 
required all terms in an equation to be “homogeneous” in the 
sense that they all had to have the same units. The equation that 
we would write as x2 + x = 1, an equation without dimensions, 
would have made little sense to Viète since it involved adding, for 
example, a line segment, x, to a square, x2. Instead Viète insisted 
on assigning dimensions to his coefficients so that all terms had 
the same dimensions. For example, he preferred to work with 
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equations like A3 − 3B2A = B2D. This was very important to him, 
although in retrospect it is hard to see why. Succeeding genera-
tions of mathematicians perceived his requirement of homogene-
ity as a hindrance and abandoned it.

Viète’s work was a remarkable mixture of the old and the new, 
and with these conceptual tools he began to develop a theory of 
equations. Although he knew how to solve all algebraic equations 
up to and including those of the fourth degree, he went further 
than simply identifying the roots. He was, for example, able to 
identify certain cases in which the coefficients that appeared in 
the equations were functions of the equation’s solutions. This is, 
in a sense, the reverse of the problem considered by Tartaglia and 
Ferrari, who found formulas that gave the solutions as functions 
of the coefficients. This observation allowed Viète to begin mak-
ing new connections between the coefficients that appeared in the 
equation and the roots of the equation.

Viète also began to notice relationships between the degree of 
the equation and the number of roots of the equation. He demon-
strated that at least in certain cases, the number of roots was the 
same as the degree of the equation. (He was prevented from draw-
ing more general conclusions by his narrow conception of what a 
number, and hence a solution, is.)

All of these observations are important because there are many 
connections between the solutions of an algebraic equation and 
the form of the equation. It turns out that if one knows the coef-
ficients and the degree of the equation then one also knows a 
great deal about the roots, and vice versa. Then as now, the exact 
solutions (roots) of an equation were sometimes less important to 
mathematicians than other, more abstract properties of the equa-
tion itself. Viète may well have been the first mathematician to 
think along these lines.

Viète eventually returned to government service, but he did not 
abandon his mathematical studies. He was a successful cryptogra-
pher during a war between France and Spain—so successful that 
the Spanish king complained to the pope that the French were 
using sorcery to break the Spanish codes. Viète also wrote books 
about astronomy and trigonometry, and he wrote about the three 
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classical, unsolved problems of ancient Greece: trisection of an 
angle, squaring of a circle, and doubling of a cube. (During Viète’s 
life, these problems had become fashionable again, and claims 
were made that all three of the problems had been solved. Viète 
rightly showed that all of the new proofs were faulty and that the 
problems remained unsolved.) Viète, a lawyer by training, was 
one of the most forward-thinking mathematicians of his time. His 
insights into algebra permanently and profoundly changed the 
subject.

Thomas Harriot
Very little is known of Thomas Harriot (1560–1621) before he 
enrolled in Oxford University. After he graduated, however, he 
became a public figure because of his association with Sir Walter 
Raleigh (ca. 1554–1618). Today, Raleigh is best remembered as 
an adventurer and writer. He sailed the Atlantic Ocean, freely 
confusing the national good with his own personal profit, and he 
attempted to establish a colony on Roanoke Island in present-day 
North Carolina. He sailed to present-day Guyana in search of 
gold to loot. He wrote about his adventures, and the stories of his 
exploits made him a popular figure with the general public and 
with Queen Elizabeth I, who became his patron and protector.

Walter Raleigh was also a serious student of mathematics. He 
was not, apparently, an insightful mathematician, but he knew 
enough to hire Thomas Harriot, who was probably the best math-
ematician in England at the time. Raleigh was interested in the 
mathematical problems associated with navigation, and Harriot, 
who was active in a number of scientific and technical areas, spent 
a good deal of his time researching how best to use observations 
of the Sun and stars to determine one’s latitude as accurately as 
possible.

In addition to his work for Raleigh, Harriot was a creative sci-
entist with an intense interest in the progress of science and math-
ematics. In some ways, Harriot was a more modern mathematician 
than Viète. His algebraic notation was simpler than Viète’s and his 
concept of number broader than that of his French contemporary. 
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In particular, Harriot accepted positive, negative, and imaginary 
roots as solutions to algebraic equations, although he had only a 
vague idea of what an imaginary number is. His broader concept 
of solution enabled him to make an interesting and very important 
observation about polynomials and their roots.

Since antiquity, mathematicians interested in algebra had sought 
to solve the following problem: Given a polynomial, find the 
roots. Harriot introduced what might be called an inverse to the 
ancient problem: Given a collection of numbers, find a polynomial 
with those numbers as roots.

To see how this works, suppose that we are given the numbers 
a, b, and c. Harriot discovered that he could write a third degree 
polynomial with these numbers as roots. Here, in modern nota-
tion, is his solution: (x − a)(x − b)(x − c). Multiplied out, this 
expression can be written as x3 − (a + b + c)x2 + (ab + bc + ac)x − abc. 
Harriot’s was an important observation for two reasons.

First, recall that the product of several numbers can equal zero 
only if at least one of the numbers is zero. Consequently, the poly-
nomial (x − a)(x − b)(x − c) equals zero only when x equals a, or b, 
or c. Second, the expression x3 − (a + b + c)x2 + (ab + bc + ac)x − abc 
shows how each coefficient can be written using only the roots 
of the polynomial. Once Harriot’s observations about the inverse 
problem were generalized they would prove very useful to future 
generations of mathematicians.

Harriot might have exercised as much influence over the devel-
opment of algebra as Viète if he had taken time to publish his 
results, but he did not. His early years were spent working for 
Raleigh, and his later years were in continual turmoil because of 
his former association with Raleigh. King James I, who succeeded 
Elizabeth I upon her death, disapproved of Raleigh’s adventurism. 
Soon Raleigh was accused of conspiring to overthrow James and 
imprisoned. Harriot, tarnished by his association with Raleigh, 
spent a brief time in jail and encountered difficulty in finding fur-
ther support for his work. For 40 years, Harriot had made impor-
tant discoveries in mathematics and science, but he had published 
nothing, and so his discoveries were not widely known. Shortly 
before he died of cancer he asked a friend to sort through his work 
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and arrange it for publication. Eventually a single book entitled 
Artis analyticae praxis was published describing some of Harriot’s 
work. It is through this one slim volume that we know of Harriot’s 
accomplishments in algebra.

Albert Girard
Near the end of Harriot’s life, the Flemish mathematician and engi-
neer Albert Girard (1590–1633) was active in mathematics. Girard 
was educated at the University of Leiden, in Holland, and for a 
time he worked with the Flemish scientist, mathematician, and 
engineer Simon Stevin. During his own time, Girard was known as 
a military architect, designing fortifications and the like, but today 
he is better remembered for an interesting observation—but not a 
proof—about the nature of algebraic equations. Girard correctly 
hypothesized that every polynomial of degree n has n roots.

To appreciate what was new about Girard’s hypothesis, recall 
that al-Khwārizmı̄ and Viète only accepted positive roots as valid 
roots. Consequently, for them it was false that every polynomial of 
degree n has n roots. In order for Girard’s conjecture to be true, 
one must be willing to accept negative numbers and even com-
plex numbers as roots. This was part of the problem: Even if one 
accepted that Girard’s conjecture was correct, its meaning was not 
entirely clear because no one had a very detailed understanding of 
the number system.

Another way of understanding Girard’s guess is by analogy 
with the set of natural numbers. Each natural number belongs to 
exactly one of the following three sets: the set of all prime num-
bers, the set of all composite numbers, or the set consisting of the 
number 1. (The number 1 constitutes its own class; it is neither 
prime nor composite.) A prime number is only divisible by itself 
and 1. The first five prime numbers, for example, are 2, 3, 5, 7, 
and 11. Any natural number larger than 1 that is not prime is 
called a composite number. Every composite number can always 
be written as a product of prime numbers. The number 462, for 
example, is composite, and it can be written as the product of four 
primes: 462 = 2 × 3 × 7 × 11. Consequently, prime numbers are 
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like  building blocks. From the set of prime numbers, every natural 
number greater than 1 can be “constructed.” Or to put it another 
way: Any natural number greater than 1 can be written as a prod-
uct of primes.

Essentially, Girard speculated that linear factors—that is, 
expressions of the form (x − a)—have the same function in the 
set of all polynomials that prime numbers have in the set of all 
natural numbers. To appreciate Girard’s conjecture in more 
modern notation, suppose that we are given a polynomial of the 
form xn + an − 1x

n − 1 + an − 2x
n − 2 + . . . + a2x

2 + a1x + a0. (Recall that the 
ajs are real numbers, and the x js represent the variable x raised to 
the power j, where j is always a natural number.) Girard asserted 
that there exist n linear factors (x − r1)(x − r2), . . . (x − rn) such that 
when they are multiplied together one obtains the given polyno-
mial. The resulting equation, which is a generalization of Harriot’s 
observation, looks like this:

xn + an − 1x
n − 1 + an − 2x

n − 2 + . . . + a2x
2 + a1x + a0 

= (x − r1)(x − r2)(x − r3) . . . (x − rn − 1)(x − rn)

At the time, this was a very hard statement to prove. Given an 
arbitrary polynomial, no one knew how to prove that the neces-
sary linear factors existed, and no one knew the nature of the roots 
that appear on the right side of the equation. Today, it is relatively 
easy to show that the linear factors exist; we have a much keener 
appreciation of the difficulties involved in finding the linear fac-
tors, and we have a much clearer understanding of the nature of 
the roots that appear in the factors.

Girard hypothesized that every polynomial of degree n has n roots. This 
is equivalent to the hypothesis that every polynomial of degree n can be 
written as a product of n linear factors.
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To better appreciate how an incomplete understanding of the 
number system proved to be a barrier to progress in the study 
of algebraic equations, recall that complex numbers are defined 
as numbers of the form a + bi, where a and b are real numbers, 
and the letter i represents a number with the property that 
i2 = −1. But this modern definition of a complex number, a defini-
tion that most students now encounter in their high school math 
class, was of little help to mathematicians of Girard’s time. They 
examined equations such as x4 + 1 = 0, and they could see that √i 
was a root of this polynomial, but could √i be written in the form 
a + bi? Is √i a complex number? Today, we know the answer is yes, 
but in Girard’s time no one knew the answer. No one knew how 
to expand the number system until it contained all solutions to all 
algebraic equations.

With the work of del Ferro, Tartaglia, and Ferrari on the 
one hand, and Viète, Harriot, and Girard on the other, math-
ematicians were faced with two very different paths for research. 
Mathematicians could search (and some did search!) for algo-
rithms that would enable them to write the roots of polynomials 
of degree higher than four using only the coefficients that appear 
in the polynomials. This type of research was an extension of the 
discoveries of del Ferro, Tartaglia, and Ferrari. After two centuries 
of additional effort, the efforts of these mathematicians culmi-
nated in the surprising discovery that such algorithms do not exist. 
Alternatively, mathematicians could develop the necessary con-
cepts to prove Girard’s conjecture that every polynomial of degree 
n can be written as a product of linear factors. Some of the best 
mathematical minds of the next two centuries would work on this 
problem. It was solved almost as soon as a modern representation 
of the complex number system was developed.

The Fundamental Theorem of Algebra
Approximately two centuries separated Girard’s inspired guess 
that every polynomial can be written as a product of linear factors 
and the first proof that he had guessed correctly. Many prolific 
and successful mathematicians tried their hand at producing a 
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proof, and a modest amount of progress was made. Typical of the 
times were the efforts of the Swiss mathematician and scientist 
Leonhard Euler (1707–93), who proved that every polynomial of 
degree less than or equal to six could be written as a product of lin-
ear factors. Euler believed that the result was generally true—that 
is, that every polynomial could be written as a product of linear 
factors—but he was unable to prove it.

By the end of the 18th century, few mathematicians had any 
doubt that every polynomial could be written as a product of lin-
ear factors, but they were unable to show it. But mathematics is 
a deductive science. No result can be accepted as true unless it is 
proved true. The statement that every polynomial can be written 
as a product of linear factors cannot be accepted simply because 
it is true for every polynomial that has been examined. There are 
infinitely many polynomials. Most are of a degree so high that it 
is impossible to write the largest exponent appearing in the poly-
nomial. It is just too large. Consequently, the situation cannot be 
resolved by examining individual cases. The statement must be 
shown to be a logical consequence of the axioms that form the 
basis of the subject. This was accomplished early in the 19th cen-
tury—most famously by the German mathematician and scientist 
Carl Friedrich Gauss (1777–1855).

Gauss showed mathematical promise at a young age and was 
awarded a stipend by the duke of Brunswick. The stipend made it 
possible for Gauss to go through high school and university and 
to earn a Ph.D. His proof of what is now called the fundamental 
theorem of algebra was part of his Ph.D. thesis. It was his first 
proof, and there were some gaps in it, but it was a great step 
forward.

Gauss’s proof of this important result did not lead him to a job 
immediately after graduation. However, he did not want a job. He 
preferred to study, and he was able to act independently because 
the stipend that he received from the duke continued for several 
years after he was awarded the Ph.D. During this time he devoted 
himself to his own mathematical research. He obtained a job as 
director of the astronomical observatory at Göttingen University 
only after the duke died and his stipend was discontinued. Gauss 
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remained in his position as director of the observatory for his 
entire working life.

Despite the many discoveries Gauss made throughout his life, 
the fundamental theorem of algebra was an especially important 
idea for him. As we mentioned, his first attempt at proving the 
fundamental theorem of algebra, the attempt that earned him a 
Ph.D., had several gaps in it. He later revised the proof to cor-
rect its initial deficiencies. In fact Gauss never stopped tinkering 
with the fundamental theorem of algebra. He later published a 
third proof, and when he wanted to celebrate the 50th anniversary 
of receiving his Ph.D., he published a fourth proof. Each proof 
approached the problem from a slightly different perspective. He 
died not long after publishing his fourth proof, his mathematical 
career bracketed by the fundamental theorem of algebra.

Gauss’s eventual success in developing a completely rigorous 
proof of the fundamental theorem was due, in part, to his firm 
grasp of the nature of complex numbers. It is no coincidence that 
he was also one of the first mathematicians to develop a clear, 
geometrical interpretation of the complex number system. Gauss 
represented the complex number system as points on a plane. 
Each complex number a + bi is interpreted as a point (a, b) in the 
so-called complex plane (see the accompanying figure, on page 
80). This geometric representation of the complex number system 
is the one that is in common use today. Gauss was not the only 
person to have this particular insight. Though the idea seems 
simple enough, it was a very important innovation. This is demon-
strated by the fact that after centuries of work, two of the earliest 
individuals to discover this clear and unambiguous interpretation 
of the complex number system also discovered proofs of the fun-
damental theorem of algebra.

Another early proof of the fundamental theorem of algebra was 
given by Jean Robert Argand (1768–1822). Argand was Swiss-
born. He was a quiet, unassuming man. Little is known of his 
early background or even of his education. We do know that he 
lived in Paris and worked as a bookkeeper and accountant, that he 
was married and had children, and that as much as he enjoyed the 
study of mathematics, it was for him just a hobby.
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Argand was not especially aggressive in making himself known 
to other mathematicians. In 1806 he published a thin mathemat-
ics book at his own expense. In it one finds two of the most 
important ideas of the time: a geometrical representation of the 
complex numbers and a proof of the fundamental theorem of 
algebra. Because the book was published anonymously, years later, 
when the work had finally attracted the attention of some of the 
best mathematicians of the day, a call went out for the unknown 
author to identify himself and claim credit for the ideas contained 
in the work. It was only then that Argand stepped forward to 
identify himself as the author. He later published a small number 
of additional papers that commented on the work of other authors 
or elaborated on the ideas contained in his original, anonymously 
published book.

Argand’s geometric representation of the complex numbers is 
today known as the Argand diagram. It is the interpretation of 
the complex numbers that students learn first when introduced 

Every complex number can be represented as a point on the complex plane.
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to the subject. His proof that every algebraic equation of degree 
n with complex coefficients has n roots would also seem familiar 
to students interested in more advanced algebra. His approach 

the importance of polynomials

For much of the history of the human race, mathematicians have worked 
to understand the mathematical structure of polynomials. They have 
developed algorithms to find the roots of polynomials, they have devel-
oped algorithms that allow them to approximate the roots of polynomials, 
and they have studied the mathematical relationships that exist between 
algebraic (polynomial) equations and their roots. The study of polynomials 
has motivated the development of many important mathematical ideas.

Polynomials also play an important role in scientific and engineering 
computations. In many of the mathematical equations that arise in these 
disciplines, the unknown is not a number but a function. That function 
may represent the path of a rocket through space or, in meteorology, 
the position of a high-pressure front as it moves across Earth’s surface. 
Equations that have functions, instead of numbers, for solutions are 
often exceedingly difficult to solve. In fact, as a general rule, the precise 
solutions are often imposs ble to calculate. The strategy that applied 
scientists adopt, therefore, is to construct a function that approximates 
the exact solution. A polynomial, or a set of polynomials, is often the 
ideal choice for an approximating solution. There are two main reasons 
polynomials are so widely used.

First, polynomials are well-understood mathematical functions. In addi-
tion to the fundamental theorem of algebra there are a host of other theo-
rems that describe their mathematical properties. These theorems enable 
scientists and engineers to calculate with polynomials with relative ease.

Second, there are many polynomials to choose from. This means 
that in many problems of practical importance there are sufficiently 
many polynomials to enable the scientist or engineer to calculate a very 
accurate approximation to the solution by using only polynomials. This 
method is often used despite the fact that the exact solution to the 
equation in which they have an interest is not a polynomial at all.

These two facts have been known to mathematicians since the 19th 
century, but the computational difficulties involved in calculating the 
desired polynomials often made applying these ideas too difficult. With 
the advent of computers, however, many of the computational difficulties 
disappeared, so that from a practical point of view polynomials are now 
more important than ever.
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to proving the fundamental theorem is similar to a common 
modern proof.

The fundamental theorem of algebra is the culmination of 
a theory of equations that began with the work of ancient 
Mesopotamian scribes pressing triangular shapes into slabs of wet 
clay on the hot plains of Mesopotamia thousands of years ago. 
It illuminates basic connections between polynomials and the 
complex number system. It does not solve every problem associ-
ated with polynomials, of course. There were still questions, for 
example, about the computational techniques needed to approxi-
mate the roots of polynomials and about the role of polynomials 
in broader classes of functions. Furthermore special classes of 
polynomials would eventually be identified for their utility in 
solving practical computational problems in science and engineer-
ing. (This research would be further accelerated by the invention 
of computers.) And, finally, the fundamental theorem itself sheds 
no light on why the methods that had proved so useful for find-
ing the roots of algebraic equations of degree less than 5 would, 
in general, prove ineffective for finding the roots of equations of 
degree 5 or more. Nevertheless the fundamental theorem shows 
how several properties of polynomials that had been of interest to 
mathematicians for the last 4,000 years are related.

•   It relates the degree of an equation to the number of its 
solutions.

•   It demonstrates that,  in theory, any polynomial can be 
factored.

•   It  shows  that  the  complex number  system contains  all 
solutions to the set of all algebraic equations.

Research into algebra did not end with the fundamental theorem 
of algebra, of course; it shifted focus from the study of the solu-
tions of polynomials toward a more general study of the logical 
structure of mathematical systems.
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5
algebra in geometry 

and analysis

In the 17th century mathematicians began to express geometric 
relationships algebraically. Algebraic descriptions are in many 
ways preferable to the geometric descriptions favored by the 
ancient Greeks. They are often more concise and usually easier 
to manipulate. But to obtain these descriptions, mathematicians 
needed a way of connecting the geometric ideas of lines, curves, 
and surfaces with algebraic symbols. The discovery of a method 
for effecting this connection—now called analytic geometry—had 
a profound impact on the history of mathematics and on the his-
tory of science in general.

In order to appreciate the importance of applying algebraic 
methods to the study of geometry, it helps to know a little about 
how the ancient Greeks studied curves. The Greek mathematician 
Apollonius of Perga (ca. 262 b.c.e.–ca. 190 b.c.e.), for example, 
was one of the most successful of all Greek mathematicians, and 
his major work, called Conics, was entirely devoted to the study of 
four curves: the ellipse, the circle, which is closely related to the 
ellipse, the parabola, and the hyperbola. These are the so-called 
conic sections.

Apollonius described each of the conic sections as the intersec-
tion of a plane with a double cone. (A double cone looks like two 
ice cream–like cones joined together at their respective vertices. 
Here is how Apollonius described a double cone: Begin with a 
circle and a point directly above the center of the circle. Call the 
point P. Next imagine a line passing through P and some point on 
the circle. Now pivot the line through the point P in such a way 
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that it remains in contact with the circle. The line will trace out a 
double cone in space. The exact shape of the cone will depend on 
the distance between the point P and the center of the circle.) If 
the plane cuts all of the way across a single cone, then the result 
is a circle or an ellipse. A circle is produced when the cone’s line 
of symmetry makes a right angle with the plane; change the angle 
slightly and the result is an ellipse. If the plane cuts across the cone 
in such a way that it is parallel with a line that passes through P 
and remains in contact with the cone, then the result is a parabola. 
Finally, if the plane cuts both the upper and lower cones, the result 

is a hyperbola.
The preceding description 

of the conic sections is very 
wordy because it uses no alge-
bra. Instead, it describes these 
curves in the same way that 
Apollonius understood them, 
which, when compared with 
modern methods, is a very 
awkward way indeed. But 
Apollonius’s geometric con-
struction was typical of the 
way that the Greeks described 
all the curves that they stud-
ied—a method of description 
so awkward that although the 
Greek mathematical tradition 
spanned six centuries, they 
studied only about one dozen 
curves. Their dependence on 
diagrams and complicated 
sentences proved a barrier 
to progress, and that barrier 
remained in place for more 
than 1,000 years.

Coordinate systems were 
what enabled mathematicians 

A philosopher and scientist as well as 
a mathematician, Descartes revealed 
connections between algebra and 
geometry that contributed to progress 
in both fields in his Discours de 
la Methode. Its publication marks 
the beginning of a new era in 
mathematics.
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to surmount what the 17th-century mathematician René Descartes 
called “the tyranny of the diagram.” By establishing a correspon-
dence between points on a plane and ordered pairs of numbers, 
mathematicians were able to express planar curves (geometry) 
as relations between variables (algebra). Most of us become so 
familiar with coordinate systems at such an early age that we fail 
to appreciate their importance. But coordinate systems enabled 
mathematicians to interpret algebraic statements in the language 
of geometry and sometimes solve algebraic problems using geo-
metric methods. Coordinate systems also enabled mathematicians 
to express geometric problems in the language of algebra, and 
when they did so they discovered that difficult geometry problems 
sometimes had simple algebraic solutions. Progress in one branch 
of mathematics led to progress in the other. The result of this 
effort was what we now call analytic geometry. The foundational 
concepts of analytic geometry were proposed almost simultane-
ously by two 17th-century mathematicians, René Descartes and 
Pierre de Fermat.

René Descartes
The French mathematician, scientist, and philosopher René 
Descartes (1596–1650) was one of the more colorful characters in 
the history of mathematics. Although we will concentrate on his 
ideas about mathematics, his contributions to several branches of 
science are just as important as his mathematical innovations, and 
today he is perhaps best remembered as a philosopher.

Descartes’s mother died when he was an infant. His father, a 
lawyer, ensured that Descartes received an excellent education. As 
a youth Descartes displayed a quick intellect, and he was described 
by those who knew him at the time as a boy with an endless series 
of questions. He attended the Royal College at La Flèche and 
the University of Poitiers, but the more education he received, 
the less pleasure he seemed to derive from it. Given his academic 
record this is a little surprising. He was a talented writer who 
demonstrated a real gift for learning languages. He also displayed 
an early interest in science and math. The Royal College, where 
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he received his early education, accommodated his idiosyncrasies: 
The rector at the school allowed Descartes to spend his mornings 
in bed. Descartes enjoyed lying in bed thinking, and he apparently 
maintained this habit for most of his life. Nevertheless by the time 
he graduated from college he was confused and disappointed. He 
felt that he had learned little of which he could be sure. It was a 
deficiency that he spent a lifetime correcting.

After college Descartes wandered across Europe for a number of 
years. On occasion he enlisted in an army. This was not an uncom-
mon way for a young gentleman to pass the time. He claimed that 
as a young man he enjoyed war, though there are conflicting opin-
ions about how much time he spent fighting and how much time 
he spent “lying in” each morning. (Ideas about military discipline 
have changed in the intervening centuries.) In addition to his mili-
tary adventures, Descartes took the time to meet intellectuals and 
to exchange ideas. This went on for about a decade. Eventually, 
however, he settled in Holland, where he remained for almost two 
decades, writing and thinking.

Holland was a good place for Descartes. His ideas were new 
and radical, and like most radical ideas, good and bad, Descartes’s 
ideas were not especially popular. In a less tolerant country, he 
would have been in great danger, but because he was under the 
protection of the Dutch leader, the prince of Orange, he was safe 
from physical harm. Though he was not physically attacked for his 
ideas, there was a period when his books were banned.

During his stay in Holland Descartes applied himself to explor-
ing and describing his ideas in mathematics, science, and phi-
losophy. In mathematics his major discoveries can be found in the 
book Discours de la méthode (Discourse on method), especially in 
an appendix to this work that describes his ideas on geometry. It 
is in the Discours that Descartes makes the necessary connections 
between geometry and algebra that resulted in a new branch of 
mathematics. It is also in this book that he developed most of the 
algebraic symbolism that we use today. With very few exceptions, 
Descartes’s algebra resembles our algebra. (The reason is that 
our algebra is modeled on Descartes’s.) Most modern readers can 
understand Descartes’s own equations without difficulty.
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One of Descartes’s simpler and yet very important contribu-
tions was to reinterpret ideas that were already known. Since 
the days of the ancient Greeks, an unknown was associated with 
a line segment. If we call the unknown x, the product of x with 
itself was interpreted as a square. This is why we call the symbol 
x2 “x squared.” This geometric interpretation had been a great 
conceptual aid to the Greeks, but over the intervening centuries 
it had become a barrier to progress. The difficulty was not with 
x2 or even x × x × x, written x3 and called “x cubed.” The symbol 
x3 was interpreted as a three-dimensional cube. The problem 
with this geometric interpretation was that it required one to 
imagine a four-dimensional “cube” for the product of x with 
itself four times, a five-dimensional cube for the product of x 
with itself five times, and so forth. This impeded understand-
ing. The great mathematician Omar Khayyám, for example, was 
unable to assign a meaning to a polynomial of degree 4, because 
he was not able to see past this type of geometric interpretation 
of the symbol x4.

Descartes still imagined the variable x as representing a line 
segment of indeterminate length. His innovation was the way he 
imagined higher powers of x and, more generally, the geometric 
interpretation he gave products. Descartes, for example, simply 
imagined x, x2, x3, x4, and so forth, as representing lengths of line 
segments, and products of two different variables, x and y, as rep-
resenting the length of a third line segment of length xy instead of 
a rectangle of area xy as the Greeks and their successors had imag-
ined. To make the idea palatable, he described it geometrically (see 
the sidebar Descartes on Multiplication).

Today, Descartes’s name is used to describe a particular type of 
coordinate system, the Cartesian coordinate system. As with all 
coordinate systems—and over the intervening centuries scien-
tists, engineers, and mathematicians have created many different 
coordinate systems—the Cartesian system is a method for estab-
lishing a correspondence between points and numbers. A two-
dimensional Cartesian system is formed by identifying a special 
point, which is called the origin, and a line passing through the 
origin, which we will call the x-axis. A second point on the x-axis 
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is used to establish a direction and a distance. The distance from 
the origin to this second point is taken as one unit, and the direc-
tion one travels from the origin to the second point identifies the 
direction of increasing x. The line that passes through the origin 
and is perpendicular to the x-axis is the y-axis. By convention, 
the positive direction on the y-axis is determined by that of the 
x-axis: Rotate the x-axis 90 degrees about the origin in a coun-
terclockwise direction, and the rotated x-axis will be pointing in 
the direction of increasing y. Often distances along the y-axis are 
measured according to the same scale as distances along the x-axis, 
but this is not necessary, and sometimes it is advantageous to use 
a different scaling along the y-axis. Once the origin, the axes, and 

descartes on multiplication

In more modern terminology, 
the Greeks established a cor-
respondence between the 
length of line segments and 
what we would call real num-
bers. A number of magnitude 
x would be represented by 
a segment of length x. The 
product of two numbers x 
and y was represented as a 
rectangle with the segment 
of length x forming one side 
of the rectangle and the seg-

ment of length y forming the other. This works well until one wants to 
consider products of numbers u, v, x, and y. Most of us have a difficult 
time picturing a way of orienting line segments of length u, v, x, and y so 
as to form a four-dimensional rectangular solid.

Descartes’s innovation was to use triangles rather than rectangles 
and imagine all products as simply line segments of the appropriate 
length. We use the accompanying diagram to paraphrase Descartes’s 
ideas on multiplication. Suppose

•  the distance from A to B is one unit long

Descartes’s geometric interpretation of 
the operation of multiplication
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the scaling have been determined, a unique pair of numbers—the 
x and y coordinates—can be placed in correspondence with each 
point on the plane, and every point on the plane can be placed in 
correspondence with a unique pair of numbers. Questions about 
points can now be rephrased as questions about ordered pairs of 
numbers and vice versa. Conceptually similar Cartesian coordi-
nate systems can be used to describe three-dimensional space, 
which requires an ordered triplet of numbers, four-dimensional 
space, which requires an ordered “four-tuple” of numbers, and 
so forth. Cartesian coordinate systems are often described as one 
of Descartes’s important contributions, but the situation is more 
complicated.

•  the distance from A to C is x units long and

•  the distance from B to D is y units long

and construct a segment passing through D that is parallel to the line 
AC. Segment DE is this parallel line segment. The triangles ABC and 
DBE are similar, so the ratios of their corresponding sides are equal. In 
symbols this is written as

AC/1 = DE/BD

or using x and y in place of AC and BD, respectively,

x/1 = DE/y

or, finally, solving for DE, we get

xy = DE

With this diagram Descartes provided a new and more productive geo-
metric interpretation of arithmetic.

Descartes’s innovation freed mathematicians from the limiting ideas of 
Greek and Islamic mathematicians about the meaning of multiplication 
and other arithmetic operations. He also showed that the requirement 
of homogeneity that had made using Viète’s algebra so awkward was 
unnecessary.
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Descartes’s understanding of analytic geometry was profoundly 
different from ours. We acknowledge his contribution by calling the 
most common of all coordinate systems in use today the Cartesian 
coordinate system, but Descartes made little use of Cartesian coor-
dinates. To be sure, he recognized the value of coordinates as a tool 
in bridging the subjects of algebra and geometry, but he generally 
used oblique coordinates. (In an oblique coordinate system, the 
coordinate axes do not meet at right angles.) Furthermore because 
he questioned the reality of negative numbers, he refrained from 
using negative coordinates. As a consequence Descartes restricted 
himself to what we would call the first quadrant, that part of the 
coordinate plane where both coordinates are positive. He did, 
however, recognize and exploit the connection between equations 
and geometric curves, and this was extremely important.

In Descartes’s time conic sections—ellipses, parabolas, and 
hyperbolas—were still generally described as Apollonius had 
described them. Descartes explored the connections between the 
geometric descriptions of conic sections and algebraic equations. 
He did this by examining the connections between geometry and 
the algebraic equation y2 = ay − bxy + cx − dx2 + e. (In this equation 
x and y are the variables and a, b, c, d, and e are the coefficients.) 
Depending on how one chooses the coefficients one can obtain 
an algebraic description of any of the conic sections. For example, 
if a, b, and c are chosen to be 0 and d and e are positive, then the 
equation describes an ellipse. If, on the other hand, a, b, d, and e 
are taken as 0 and c is not 0 then the graph is a parabola. Descartes 
went much further in exploring the connections between algebra 
and geometry than any of his predecessors, and in doing so he 
demonstrated how mathematically powerful these ideas are.

What, in retrospect, may have been Descartes’s most important 
discoveries received much less attention from their discoverer than 
they deserved. Descartes recognized that when one equation con-
tains two unknowns, which we call x and y, there is generally more 
than one solution to the equation. In other words, given a value for 
x, we can, under fairly general conditions, find a value for y such 
that together the two numbers satisfy the one equation. The set 
of all such solutions as x varies over some interval forms a curve. 
These observations can be made mathematically precise, and the 
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precise expression of these ideas is often called the fundamental 
principle of analytic geometry. Descartes knew the fundamental 
principle of analytic geometry, but he seems to have considered it 
less important than some of the other ideas contained in his work.

The fundamental principle of analytic geometry is important 
because it freed mathematicians from the paucity of curves that 
had been familiar to the ancient Greeks. Descartes had discovered 

A page from Descartes’s Discours showing how similar Descartes’s algebraic 
notation is to modern notation (Courtesy of University of Vermont)
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a method for generating infinitely many new curves: Simply write 
one equation in two variables; the result, subject to a few not-very-
demanding conditions, is another new curve. Descartes went even 
further. A single equation that involves exactly three variables—
x, y, and z, for example—in general, describes a surface. This is 
called the fundamental principle of solid analytic geometry, and 
it, too, was known to Descartes. Today this is recognized as a very 
important idea, but its importance does not seem to have been rec-
ognized by Descartes. He gives a clear statement of the principle 
but does not follow it with either examples or further discussion. 
He understood the idea, but he did not use it.

The principles of analytic and solid geometry, so clearly enunci-
ated by Descartes, were important because they pointed to a way 
of greatly enriching the vocabulary of mathematics. Conic sec-
tions and a handful of other curves, as well as cylinders, spheres, 
and some other surfaces, had been studied intensively for millen-
nia, in part because few other curves and solids had mathematical 
descriptions. Descartes’s insights had made these restrictions a 
thing of the past. His algebra and the fundamental principles of 
analytic geometry and solid geometry changed the development of 
mathematics in a fundamental way.

Descartes’s discoveries in science, mathematics, and philosophy 
eventually attracted the attention of the queen of Sweden. Queen 
Christina invited him to become a member of her court, and 
Descartes accepted. Descartes was not a man who liked the cold. 
Nor did he like to get up early in the morning. (He had maintained 
his habit of spending his mornings in bed throughout his life.) On 
his arrival in September, Descartes must have been dismayed to 
learn that Queen Christina liked to receive her instruction from 
her new philosopher at five in the morning. Descartes died in the 
cold of a Swedish December, less than five months after arriving at 
the queen’s court.

Pierre de Fermat
The French mathematician and lawyer Pierre de Fermat (1601–
65) also discovered analytic geometry, and he did so independently 
of René Descartes. Little is known of Fermat’s early life. He was 



Algebra in Geometry and Analysis  93

educated as a lawyer, and it was in the field of law that he spent 
his working life. He worked in the local parliament in Toulouse, 
France, and later he worked in the criminal court. We also know 
that he had an unusual facility with languages. He spoke sev-
eral languages and enjoyed reading classical literature. He is best 
remembered for his contributions to mathematics, which were 
profound.

Today much of what we know of Fermat is derived from the 
numerous letters that he wrote. He maintained an active corre-
spondence with many of the leading mathematicians of his time. 
His letters show him to be humble, polite, and extremely curious. 
He made important contributions to the development of probabil-
ity theory, the theory of numbers, and some aspects of calculus, as 
well as analytic geometry. Mathematics was, however, only one of 
his hobbies.

One activity that Fermat shared with many of the mathemati-
cians of his time was the “reconstruction” of lost ancient texts. By 
the early 17th century some of the works of the ancient Greek 
mathematicians had again become available. These were, for the 

Ancient (and modern) Beaumont de Lomagne, France, birthplace of Pierre 
de Fermat (Office of Tourism, Beaumont de Lomagne)
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most part, the same texts with which we are familiar today. Most 
of the ancient texts, however, had been lost in the intervening 
centuries. Although the works had been lost, they had not been 
forgotten. The lost works were often known through commentar-
ies written by other mathematicians. The ancient commentaries 
described the work of other mathematicians, but often they were 
much more than simple descriptions. Sometimes a commen-
tary contained corrections, suggestions, or alternative proofs of 
known results; on occasion, the commentaries even contained 
entirely new theorems that extended those appearing in the work 
that was the subject of the commentary. Other times, however, a 
commentary simply mentioned the title of a work in passing. In 
any case, much of what we know about Greek mathematics and 
Greek mathematicians we know through the commentaries. It had 
become fashionable among mathematicians of the 17th century to 
try to reconstruct lost works on the basis of information gained 
from these secondary sources. Fermat attempted to reconstruct 
the book Plane Loci by Apollonius on the basis of information con-
tained in a commentary written by the Greek geometer Pappus of 
Alexandria.

We will never know how close Fermat was in his reconstruction 
of the original, but the effort was not wasted. While attempting 
the reconstruction Fermat discovered the fundamental principle 
of analytic geometry: Under very general conditions, a single 
equation in two variables describes a curve in the plane.

As Descartes did, Fermat worked hard to establish algebraic 
descriptions of conic sections. Hyperbolas, ellipses, and parabolas 
were, after all, the classic curves of antiquity, and any attempt to 
express geometry in the language of algebra had at least to take 
these curves into account in order to be successful. Fermat was 
extremely thorough in his analysis. Again as Descartes did, he 
analyzed a very general second-degree equation in the variables x 
and y. Fermat’s method was to manipulate the equation until he 
had reduced it to one of several standard forms. Each standard 
form represented a class of equations that were similar in the sense 
that each equation in the class could be transformed into a stan-
dard form via one or more elementary operations. (The standard 
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fermat’s last theorem

One of Fermat’s most famous 
insights is his so-called last 
theorem. This problem, which 
was finally solved late in the 
20th century, is one of the 
most famous problems in the 
history of mathematics. It can, 
however, be understood as 
a generalization of a much 
older problem, the problem of 
finding Pythagorean triples. A 
Pythagorean triple is a set of 
three natural numbers with the 
property that if each number 
of the triple is squared then 
the sum of the two smaller 
squares equals the largest 
square. For example, the set 
(3, 4, 5) is a Pythagorean triple 
because, first, each number in 
the triple is a natural number, 
and, second, the three num-
bers satisfy the equation x2 + y2 = z2, where we can let x, y, and z rep-
resent 3, 4, and 5, respectively. Another way of understanding the same 
problem is that we have represented the number 25, which is a perfect 
square, as the sum of two smaller perfect squares, 9 and 16. There are 
infinitely many Pythagorean triples, a fact of which the Mesopotamians 
seemed fully aware. (The Mesopotamians’ work on Pythagorean triples 
is discussed in chapter 1.)

The generalization of the idea of Pythagorean triples of interest to 
Fermat involved writing natural numbers greater than 2 in place of the 
exponent in the equation x2 + y2 = z2. The resulting equation is xn + 
yn = zn, where n belongs to the set {3, 4, 5, . . .}. When n is equal to 
3 we can interpret the problem geometrically: We are searching for 
three cubes, each of which has an edge that is an integral number of 
units long, such that the volume of the largest cube equals the sum of 
the two smaller volumes. When n is greater than 3 we can describe 
the problem in terms of hyper-cubes, but in higher dimensions there is 

The sum of the areas of the two 
smaller squares equals the area of 
the largest square. The lengths of 
the sides of the triangle on which the 
squares are constructed are in the 
ratio 3:4:5.

(continues)
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form of the equation depended on the initial values of the coef-
ficients.) Finally, Fermat showed that each of these standard forms 
described the intersection of a plane with a double cone. He had 
found a correspondence between a class of curves and a class of 

no easy-to-visualize generalization of the two- and three-dimensional 
interpretations.

Fermat’s goal, then, was to find a triplet of natural numbers that satis-
fies any one of the following equations x3 + y3 = z3, x4 + y4 = z4, x5 + y5 
= z5, . . . He was unable to find a single solution for any exponent larger 
than 2. In fact, he wrote that he had found a wonderful proof that there 
are no solutions for any n larger than 2, but the margin of the book in 
which he was writing was too small to contain the proof of this discov-
ery. No trace of Fermat’s proof has ever been discovered, but his cryptic 
note inspired generations of mathematicians, amateur and professional, 
to try to develop their own proofs. Before World War I a large monetary 
prize was offered, and this inspired many more faulty proofs.

Throughout most of the 20th century mathematicians proved that 
solutions did not exist for various special cases. For example, it was 
eventually proved that if a solution did exist for a particular value of n, 
then n had to be larger than 25,000. Most natural numbers, however, are 
larger than 25,000, so this type of result hardly scratches the surface. 
In the late 20th century, Fermat’s theorem was finally proved by using 
mathematics that would have been entirely unfamiliar to Fermat. The 
British-born mathematician Andrew Wiles devised the proof, which is 
about 150 pages long.

Wiles and many others do not believe that Fermat actually had a 
proof. They think that the proof that Fermat thought he had discovered 
actually had an error in it. This kind of thing is not uncommon in a dif-
ficult logical argument; Wiles himself initially published an incorrect 
proof of Fermat’s theorem. Nevertheless, unlike most of his succes-
sors, Fermat was an epoch-making mathematician. As a consequence 
it would be wrong to discount completely the possibility that he had 
found a valid proof using only mathematics from the 17th century, but 
it does not seem likely.

fermat’s last theorem
(continued)
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equations. This analysis was an important illustration of the utility 
of the new methods.

As Descartes did, Fermat used coordinates as a way of bridging 
the separate disciplines of algebra and geometry. Fermat, too, was 
comfortable using oblique coordinates as well as what we now call 
Cartesian coordinates.

Fermat and Descartes were each well aware of the work of 
the other. They even corresponded with each other through the 
French priest and mathematician Marin Mersenne (1588–1648). 
Mersenne was a friend of both men and a talented mathemati-
cian in his own right. In addition he opened his home to weekly 
meetings of mathematicians in the Paris area and worked hard to 
spread the news about discoveries in mathematics and the sciences 
throughout Europe.

Despite the many similarities in their work on analytic geom-
etry and the fact that they both made their discoveries known to 
Mersenne, Descartes had much more influence on the develop-
ment of the subject than did Fermat. One reason was that Fermat 
did not publish very much. In fact, Fermat only published a 
single paper during his lifetime. It was only later that his writings 
were collected and made generally available. Moreover, unlike 
Descartes, who had a flair for good algebraic notation, Fermat 
used the older, more awkward notation of François Viète.

Fermat’s principal mathematical interest, however, was number 
theory, not analytic geometry. Although he tried to interest oth-
ers in problems in the theory of numbers, Fermat was largely 
unsuccessful. For the most part, he worked on his favorite subject 
alone. His isolation, however, seemed to pose no barrier to cre-
ative thinking. He discovered a number of important results as 
well as a famous conjecture called Fermat’s last theorem (see the 
sidebar).

The New Approach
Descartes and Fermat developed a new symbolic language that 
enabled them to bridge the gap that had separated algebra from 
geometry. This language contributed to progress in both fields. 
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Algebraic operations represented the manipulation of geometric 
objects, and geometric manipulations could now be expressed in 
a compact, algebraic form. Descartes and Fermat had made an 
important conceptual breakthrough, and unlike many other new 
mathematical ideas, these ideas were immediately recognized by 
their contemporaries as valuable.

Mathematicians interested in geometry exploited the funda-
mental principles of analytic and solid geometry to develop new 
ways of describing old curves and surfaces. They also explored the 
properties of entirely new curves and surfaces. The exploration 

polar coordinates

It would be difficult to over-
estimate the effect of intro-
ducing coordinate systems 
into mathematics. For the 
first time, algebraic equations 
could be associated with 
graphs and graphs could be 
analyzed algebraically, and 
often the transition from geom-
etry to algebra and from alge-
bra to geometry was easy. 
Coordinate systems were a 
key factor in rapid progress 
in both algebra and geometry 
because a new insight into one 
discipline often translated into 
a new insight into the other.

Since Descartes introduced 
his coordinates, researchers 
have invented many other 

coordinate systems. Each system is a different way of “organizing” 
space. The choice of coordinate system depends on the needs of the 
researcher. One of the most widely used non-Cartesian coordinate 
systems is called the polar coordinate system. It is an alternative way of 
placing coordinates on the plane.

Polar coordinates provide still 
another way to visualize complex 
numbers. Each method of displaying 
complex numbers reveals something 
new about the numbers themselves.
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of geometry from an algebraic point of view and the application 
of geometry to algebra challenged many fine mathematicians. 
Descartes and Fermat had opened up a new mathematical land-
scape, and for several generations thereafter, mathematicians 
worked to extend the ideas and techniques that Descartes and 
Fermat had pioneered.

The geometric interpretation of algebraic quantities also influ-
enced other branches of mathematics and science. Perhaps most 
importantly, the language of analytic geometry, somewhat modi-
fied and augmented, became the language of analysis, that branch 

A polar coordinate system requires a point, O, which corresponds to 
the origin, and a single ray emanating out from O, which we will call l1. 
To identify a point P that is different from O, first specify the distance 
from O to P. If r represents the distance from O to P, then the set of all 
points that are r units away from O is a circle of radius r with O as its 
center. Consequently, knowing r only allows us to conclude that P is one 
of the points on the circle. Next extend a ray from O to P. Call this ray lθ. 
The Greek letter θ represents the angle (measured counterclockwise) 
that is formed by l1 and lθ. The unique point where lθ intersects the circle 
of radius r center O is the point P. Each pair of coordinates (r, θ) deter-
mines a unique point on the plane. (See the diagram.)

Polar coordinates also enable us to represent complex numbers in a 
way different from that of the Argand diagram. Recall from page 80, every 
complex number z can be represented on the Argand diagram in the form 
a + bi, where a and b are real numbers. To convert this representation to 
a polar representation, notice that the distance from the origin to a + bi 
is √a2 + b2 . (This is just the Pythagorean theorem.) Call this distance r. 
To complete the representation, we use the fact that eiθ identifies a point 
on the unit circle. (The “unit circle” is the circle of radius 1 centered at the 
origin.) If a ray is drawn from O through eiθ, that ray, which we will again 
call lθ, makes an angle of θ radians with l1. (Radians are just another set 
of units for measuring angles. The conversion factor is determined by 
the equation 360° = 2π radians.) The expression reiθ is, therefore, that 
point on the complex plane that lies r units away from O along the ray lθ. 
It is called the polar representation of a complex number. (The angle θ 
is called the argument of the complex number. Refer, for example, to the 
interview with Dr. Bonita Saunders in the Afterword on page 187.)
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of mathematics that arose out of calculus. Calculus was discovered 
twice, once by the British physicist and mathematician Sir Isaac 
Newton (1643–1727), and again independently by the German 
philosopher, mathematician, and diplomat Gottfried Wilhelm 
Leibniz (1646–1716).

The new analysis enabled the user to solve problems in geome-
try and physics that had previously been too difficult. In fact, early 
in the development of analysis certain problems in geometry that 
Descartes himself had believed to be unsolvable were solved. The 
techniques the analysts used often required a great deal of analytic 
geometry. Newton, for example, invented and employed a number 
of coordinate systems to facilitate his study of both physics and 
geometry. Some of these coordinate systems have proved to be 
more important than others, but in every case they were exten-
sions of the concepts of Descartes and Fermat: Each coordinate 
system established a correspondence between ordered sets of real 
numbers and (geometric) points. Each coordinate system served 
as a bridge between the magnitudes of geometry—those continu-
ally varying quantities, such as length, area, and volume—and the 
numbers and symbols of algebra.

Newton often interpreted the variables that arose in his studies 
as representing geometric magnitudes. In his studies of physics, 
however, Newton sometimes interpreted variables as quantities 
of another sort: forces, accelerations, and velocities. We take 
symbolic notation for granted today, but the symbolic language 
 developed by some of these mathematicians contributed sub-
stantially to progress in the mathematical and physical sciences. 
Newton’s notation was, however, only a modest extension of 
the notation used in the analytic geometry of his time. Newton 
absorbed the ideas of Descartes and Fermat and used these ideas 
throughout his work. He managed to develop a new branch of 
mathematics that used their notation, but he did not contribute 
much new notation himself.

Leibniz, who was much more gifted in languages than was 
Newton, greatly extended the notation of Descartes and Fermat 
to create a highly expressive symbolic language that was ideally 
suited to the new mathematics. He used this notation to express 
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the ideas of analysis in a much more sophisticated way than that of 
Newton. He, too, generally interpreted the symbols that arose in 
his study of calculus as geometric or physical quantities. It was one 
of Leibniz’s great accomplishments to extend the language of ana-
lytic geometry until it fit the problems in which he had an interest.

The role of good notation is sometimes expressed by saying that 
with good notation the pencil becomes as smart as the holder. To 
see the difference that good algebraic notation makes, knowing 
something about the early history of calculus is helpful. British 
mathematicians were more heavily influenced by Newton than 
they were by Leibniz. They considered it a matter of national 
honor to use the notation of their countryman. Unfortunately 
for them, Newton’s notation was not expressive enough to be 
especially useful. In continental Europe, however, mathematicians 
wholeheartedly adopted Leibniz’s notation, which was far superior 
to that of Newton. Leibniz devised his symbols to embody sev-
eral basic concepts of calculus in order to communicate his ideas 
more effectively. This system facilitated discovery both for him 
and for those who followed. As a consequence calculus initially 
evolved much more slowly on the British Isles than it did on the 
Continent.

Today Leibniz’s notation is still used in analysis, and the inter-
pretation of algebraic symbols as geometric magnitudes or as 
physical quantities is still one of the basic conceptual tools of the 
geometer and the analyst. So thoroughly have algebraic notation 
and language pervaded geometry and analysis that it is doubtful 
whether mathematicians who specialize in these subjects could 
express their discoveries without the use of algebraic notation. 
But this was just the beginning. Algebra changed radically more 
than once in the years following the revolution of Descartes and 
Fermat.
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6
the search for  
new structures

Early in the 19th century the nature of algebra changed again. 
Extraordinary new ideas were introduced. They changed the 
nature of every branch of mathematics that depends on algebra—
and today every branch of mathematics depends on algebra. They 
caused mathematicians to perceive their subject in new ways, and 
this new perspective enabled them to imagine and solve entirely 
new kinds of problems.

When the new algebra was first introduced, its importance was not 
generally recognized. Some of the first groundbreaking papers were 
dismissed because the reviewers, who were among the best math-
ematicians of their day, did not understand the ideas involved. To 
those responsible for the innovations, however, the power of the new 
ideas and techniques was apparent. Some of the first applications of 
the new algebra involved solving some of the oldest, most intractable 
problems in the history of mathematics. For example, the new alge-
bra enabled mathematicians to prove that the three classic problems 
of antiquity, the squaring of the circle, the trisection of the angle, and 
the doubling of the cube (all performed with a straightedge and com-
pass) are unsolvable. In addition, they showed that the problem of 
finding an algorithm for factoring any fifth-degree polynomial—an 
algorithm similar in spirit to the one that Tartaglia discovered in the 
16th century for factoring a third-degree polynomial—could not be 
solved because the algorithm does not exist.

These very important discoveries were made under very difficult 
conditions. We often forget how important disease and violence 
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were in shaping much of the 
history of Europe. Their role 
is revealed in their effects on 
the lives of these highly cre-
ative mathematicians. These 
young people lived short, 
hard lives. They faced one 
difficulty after another as best 
they could, and they never 
stopped creating mathemat-
ics. On the night before he 
expected to die, the central 
figure in this mathematical 
drama, a young mathemati-
cian named Évariste Galois, 
spent his time hurriedly writ-
ing down as much of what 
he had learned about math-
ematics as possible so that his 
insights, which were wholly 
unrecognized during his brief 
life, would not be lost.

Broadly speaking the math-
ematical revolution that 
occurred in algebra early in 
the 19th century was a move 
away from computation and 
toward the identification and 
exploitation of the structural 
underpinnings of mathematics. Underlying any mathematical 
system is a kind of logical structure. Often the structure is not 
immediately apparent, but research into these structures has 
generally proved to be the most direct way of understanding the 
mathematical system itself. About 200 years ago mathematicians 
began to identify and use some of these structures, and they have 
been busy extending their insights ever since.

Beginning in the 19th century, 
mathematicians became increasingly 
preoccupied with the identification 
and study of algebraic “structures,” 
a term used to denote abstract 
algebraic concepts shared by very 
different-looking mathematical 
systems. (ImageF1)
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Niels Henrik Abel
The Norwegian mathematician Niels Henrik Abel (1802–29) was 
one of the first and most important of the new mathematicians. 
As with many 17th-, 18th-, and 19th-century mathematicians, 
he was the son of a minister. The elder Abel was also a politi-
cal activist, and he tutored Niels at home until the boy was 13 
years old. Niels Abel attended secondary school in Christiania, 
now called Oslo. While there, he had the good fortune to have 
a mathematics teacher named Bernt Holmboe, who recognized 
his talent and worked with him to develop it. Under Holmboe’s 
guidance Abel studied the works of earlier generations of math-
ematicians, such as Leonhard Euler, as well as the mathematical 
discoveries of his contemporaries, such as Carl Friedrich Gauss. 
In addition to exposing Abel to some of the most important 
works in mathematics, Holmboe also suggested original prob-
lems for Abel to solve. Abel’s ability to do mathematics even at 
this young age was stunning.

Abel’s father died shortly before his son was to enroll in uni-
versity. The family, not rich to begin with, was left impoverished. 
Once again, Holmboe helped. He contributed money and helped 
raise additional funds to pay for Abel’s education at the University 
of Christiania. Still under the tutelage of Holmboe, Abel began 
to do research in advanced mathematics. During his last year at 
the university, Abel searched for an algorithm that would enable 
him to solve all algebraic equations of fifth degree. (Recall that an 
algebraic equation is any equation of the form anx

n + an − 1x
n − 1 + . . . 

+ a1x + a0 = 0, where the aj are numbers, called coefficients, and the 
xj is the variable x raised to the jth power. (Throughout the rest of 
this chapter, we will always suppose that all coefficients appearing 
in all polynomials that we consider are rational numbers.) The 
degree of the equation is defined as the highest exponent appear-
ing in the equation. A second-degree, or quadratic, equation, for 
example, is any equation of the form a2x

2 + a1x + a0 = 0.) Abel 
thought that he had found a general solution for all such equa-
tions, but he was quickly corrected. Far from being discouraged, 
he continued to study algebraic equations of degree greater than 4.
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After graduation Abel wanted to meet and trade ideas with the 
best mathematicians in Europe, but there were two problems to 
overcome. First, he did not speak their languages; second, he had 
no money. With the help of a small grant he undertook the study 
of French and German so that he could become fluent enough to 
engage these mathematicians in conversation. During this time he 
also proved that there was no general algebraic formula for solving 
equations of the fifth degree.

Recall that centuries earlier Niccolò Fontana, also known as 
Tartaglia, had found an algorithm that enabled him to express 
solutions of any third-degree algebraic equation as a function 
of the coefficients appearing in the equations. Shortly thereafter 
Lodovico Ferrari had discovered an algorithm that enabled him 
to express solutions of any fourth-degree equation as functions of 
the coefficients. Similar methods for identifying the solutions to 
all second-degree equations had been discovered even earlier.

What had never been discovered—despite much hard work by 
many mathematicians—were similar methods that could enable 
one to express the roots of arbitrary equations of degree higher 
than 4 as functions of the coefficients. Abel showed that, at least in 
the case of fifth-degree equations, the long-sought-after formula 
did not exist. This, he believed, was a demonstration of his talent 
that would surely attract the attention of the mathematicians he 
wanted to meet. In 1824 he had the result published in pamphlet 
form at his own expense, and in 1825 he left Norway with a small 
sum given him by the Norwegian government to help him in his 
studies.

He was wrong about the pamphlet. He sent his pamphlet to 
Carl Friedrich Gauss, but Gauss showed no interest. This is 
puzzling since Abel had just solved one of the most intractable 
problems in mathematics. Although Gauss was no help, during 
the winter of 1825–26, while in Berlin, Abel made the acquain-
tance of the German mathematician August Leopold Crelle, 
the publisher of a mathematics journal. Abel and Crelle became 
friends, and subsequently Crelle published a number of Abel’s 
papers on mathematics, including his work on the insolubility of 
fifth-degree equations. Abel also traveled to Paris and submitted 
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a paper to the Academy of Sciences. He hoped that this would 
gain him the recognition that he believed he deserved, but again 
nothing happened. Throughout much of his travel Abel had 
found it necessary to borrow money to survive. He eventually 
found himself deeply in debt, and then he was diagnosed with 
tuberculosis.

Abel returned to Norway in 1827. Still heavily in debt and 
without a steady source of income, he began to work as a tutor. 
Meanwhile news of his discoveries in algebra and other areas of 
mathematics had spread throughout the major centers of mathe-
matics in Germany and France. Several mathematicians, including 
Crelle, sought a teaching position for him in the hope of providing 
Abel with a better environment to study and a more comfortable 
lifestyle. Meanwhile Abel continued to study mathematics in the 
relative isolation of his home in Norway. He died before he was 
offered the job that he so much wanted.

Évariste Galois
Today the French mathematician Évariste Galois (1811–32) is 
described as a central figure in the history of mathematics, but 
during his life he had little contact with other mathematicians. 
This, however, was not for lack of trying. Galois very much 
wanted to be noticed.

Évariste Galois was born into a well-to-do family. Nicolas-
Gabriel Galois, his father, was active in politics; Adelaide-Marie 
Demante, his mother, taught Galois at home until he was 12 years 
old. Because Évariste Galois was dead before his 21st birthday—
and because the last several years of his life were extremely turbu-
lent—it is safe to say that he received much of his formal education 
from his mother. In 1823 Galois enrolled in the Collège Royal de 
Louis-le-Grand. Initially he gave no evidence of a particular talent 
for mathematics. Soon, however, he began to do advanced work in 
mathematics with little apparent preparation. By the time he was 
16 he had begun to examine the problem of finding roots to alge-
braic equations. This problem had already been solved by Abel, 
but Galois was not aware of this at the time.
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Galois was off to a good start, 
but his luck soon took a turn 
for the worse. He submitted 
two formal papers describing 
his discoveries to the Academy 
of Sciences in Paris. These 
papers were sent to the French 
mathematician Augustin-
Louis Cauchy (1789–1857) for 
review. Cauchy was one of the 
most prominent mathemati-
cians of his era. He certainly 
had the imagination and the 
mathematical skill required to 
understand Galois’s ideas, and 
a positive review or recom-
mendation from Cauchy would 
have meant a lot to Galois. 
Cauchy lost both papers. This 
occurred in 1829, the same 
year that Galois’s father com-
mitted suicide. Eight months later, in 1830, Galois tried again. He 
submitted another paper on the solution of algebraic equations 
to the Academy of Sciences. This time the paper was forwarded 
to the secretary of the academy, the French mathematician and 
Egyptologist Joseph Fourier (1768–1830). Fourier died before any 
action was taken on Galois’s paper. The paper that was in Fourier’s 
possession was lost as well. Meanwhile Galois had twice applied for 
admission to the École Polytechnique, which had one of the best 
departments of mathematics in France. It was certainly the school 
to attend if one wanted to work as a mathematician. Both times 
Galois failed to gain admission.

Galois shifted his emphasis and enrolled in the École Normale 
Supérieure. He hoped to become a teacher of mathematics, but 
as his father had, Galois became involved in politics. Politics was 
important to Galois, and he was not shy about making his ideas 
known. At the time this activity involved considerable personal risk.

Évariste Galois. Before his death at 
the age of 20, he completely changed 
the nature of algebraic research and 
the history of mathematics. (Michael 
Avandam)
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France had been embroiled in political instability and violence 
since before Galois was born: The French Revolution began in 
1789. It was followed by a period of political terror, during which 
thousands of people were executed. The military leader and later 
emperor Napoléon Bonaparte eventually seized power and led 
French forces on several ultimately unsuccessful campaigns of 
conquest. The results were the defeat of the French military and 
Napoléon’s imprisonment in 1815. Napoléon’s defeat did nothing 
to resolve the conflict between those who favored monarchy and 
those who favored democracy. Galois was one of the latter. In 
1830 the reigning French monarch, Charles X, was exiled, but he 
was replaced with still another monarch. The republicans—Galois 
among them—were disappointed and angry. Galois wrote an arti-
cle expressing his ideas and was expelled from the École Normale 
Supérieure. He continued his activism. He was arrested twice for 
his views. The second arrest resulted in a six-month jail sentence.

Despite these difficulties Galois did not stop learning about 
mathematics. In 1831 he tried again. He rewrote his paper and 
resubmitted it to the academy. This time the paper fell into the 
hands of the French mathematician Siméon-Denis Poisson (1781–
1840). In the history of mathematics, Poisson, like Cauchy and 
Fourier, is an important figure, but with respect to his handling of 
Galois’s paper, the best that can be said is that he did not lose it. 
Poisson’s review of Galois’s paper was brief and to the point: He 
(Poisson) did not understand it. Because he did not understand it, 
he could not recommend it for publication. He suggested that the 
paper be expanded and clarified.

This was the last opportunity Galois had to see his ideas in print. 
In 1832 at the age of 20 years and seven months, Galois was chal-
lenged to a duel. The circumstances of the duel are not entirely 
clear. Romance and politics are two common, and presumably 
mutually exclusive, explanations. In any case Galois, although he 
was sure he would not survive the duel, accepted the challenge. 
He wrote down his ideas about algebra in a letter to a friend. The 
contents of the letter were published four months after Galois 
died in the duel. This was the first publication in the branch of 
mathematics today known as Galois theory.
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Galois Theory and the Doubling of the Cube
To convey some idea of how Galois theory led to a resolution of 
the three classical unsolved problems in Greek geometry we exam-
ine the problem of doubling the cube. Originally the problem was 
stated as follows: Given a cube, find the dimensions of a second 
cube whose volume is precisely twice as large as the volume of the 
first. If we suppose that the length of an edge on the first cube is 
one unit long, then the volume of the first cube is one cubic unit: 
Volume = length × width × height. The unit might be a meter, an 
inch, or a mile; these details have no effect on the problem. If the 
volume of the original cube is one cubic unit then the problem 
reduces to finding the dimensions of a cube whose volume is two 
cubic units. If we suppose that the letter x represents the length of 
one edge of the larger cube, then the volume of this new cube is x3, 
where x satisfies the equation x3 = 2. In other words, x = 3√2, where 
the notation 3√2 (called the cube root of 2) represents the number 
that, when cubed, equals 2. The reason that the problem was so 
difficult is that it called for the construction of a segment of length 
3√2 unit using nothing but a straightedge and compass. It turns out that 
this is impossible.

To show that it is not possible to construct a segment of length 
3√2 we need two ideas. The first idea is the geometric notion of 
a constructible number. The second is the algebraic notion of a 
field. We begin with an explanation of a constructible number.

We say that a number x is constructible if given a line segment 
one unit long, we can construct a line segment x units long using 
only a straightedge and compass. (From now on when we use 
the word construct, we mean “construct using only a straightedge 
and compass.”) A straightedge and compass are very simple 
implements. There is not much that can be done with them. 
We can, for example, use the compass to measure the distance 
between two points by placing the point of the compass on one 
geometric point and adjusting the compass so that the other 
point of the compass is on the second geometric point. This cre-
ates a “record” of the distance between the points. Also if we are 
given a line, we can use the compass to construct a second line 
perpendicular to the first. Besides these there are a few other 
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basic techniques with which every geometry student is familiar. 
All other geometric constructions are some combination of this 
handful of basic techniques.

Some numbers are easy to construct. For example, given a seg-
ment one unit long, it is easy to construct a segment two units 
long. One way to accomplish this is to extend the unit line seg-
ment, and then use the compass to measure off a second line 
segment that is one unit long and placed so that it is end to end 
with the original unit segment. This construction proves that the 
number 2 is constructible. In a similar way, we can construct a seg-
ment that is n units long where n is any natural number. Our first 
conclusion is that all natural numbers are constructible.

We can also use our straightedge and compass to represent 
the addition, subtraction, multiplication, and division of natural 
numbers. To add two natural numbers—which we call m and n—
we just construct the two corresponding line segments—one of 
length m and one of length n—and place them end to end. The 
result is a line segment of length m + n. In a similar way we can 
represent the difference of the numbers n—m: To accomplish 
this we just measure “out” n units, and “back” m units. It is also 
true, although we do not show it, that given any two natural 
numbers m and n, we can construct a line segment of length mn 
and a line segment of length m/n, provided, of course, that n is 
not 0. What this indicates is that every rational number is con-
structible.

Some irrational numbers are also constructible. We can, for 
example, use a straightedge and compass to construct a square 
each of whose sides is one unit long. The diagonal of the square 
is of length √2 units long, as an application of the Pythagorean 
theorem demonstrates. This shows that √2 is also a construct-
ible number. We can even construct more complicated-looking 
numbers. For example, because √2 is constructible, we can also 
construct a line segment of length 1 + √2. We can use this segment 
to construct a square with sides of length 1 + √2. The diagonal 
of this square is of length √6 + 4√2, as another application of the 
Pythagorean theorem shows. This proves that this more compli-
cated-looking number is constructible as well. These processes 
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can be repeated as many times as desired. The result can be some 
very complicated-looking numbers. The question then is, Can 3√2 
be constructed by some similar sequence of steps?

If we can show that 3√2 is not constructible then we will have 
demonstrated that it is impossible to double the cube by using a 
straightedge and compass as our only tools. To do this we need the 
algebraic concept of a field.

We define a field as any set of numbers that is closed under addi-
tion, subtraction, multiplication, and division except we must 
explicitly exclude division by zero. (Division by zero has no mean-
ing.) By closed we mean that if we combine any two numbers in 
the set through the use of one of the four arithmetic operations, 
the result is another number in the set. For example, the rational 
numbers form a field because no matter how we add, subtract, or 
multiply any pair of rational numbers the result is another ratio-
nal number, and if we divide any rational number by a nonzero 
rational number the result is another rational number. Similarly, 
the set of real numbers forms a field. There are also many dif-
ferent fields that contain all of the rational numbers but do not 
contain all of the real numbers. These “intermediary” fields are 
the ones that are important to proving the impossibility of dou-
bling the cube.

To see an example of one of these intermediary fields, consider 
the set of all numbers of the form a + b√2, where a and b are chosen 
from the set of rational numbers. No matter how we add, subtract, 
multiply, or divide two numbers of the form a + b√2 the result is 
always another number of the same form. This field is called an 
extension of the rational numbers. We say that we have adjoined √2 
to the rational numbers to obtain this extension. Every number in 
the field consisting of √2 adjoined to the rational numbers, which 
we represent with the symbol Q(√2), is constructible. (Notice that 
when b = 0 the resulting number is rational. This shows that the 
field of rational numbers is a subfield of Q(√2)—that is, the field of 
rational numbers is a proper subset of Q(√2).)

Having created the extension Q(√2) we can use it to make an 
even larger field by adjoining the square root of some element 

(text continues on page 114)
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doubling the cube with a straightedge  
and compass is impossible

Using the information in the text, we can show how the “new algebra” 
can be used to complete the proof that it is impossible to construct 3√2 
with a straightedge and compass. To appreciate the proof one needs to 
keep in mind two facts:

1. The number 3√2 is irrational.

2.  The graph of the polynomial y = x3 − 2 crosses the x-axis 
only once.

Here is the proof: Suppose that we adjoin √k1, √k2, √k3, . . ., √kn to the 
field of rational numbers, one after another, in the same way that √2 and 
then √a + b√2 are adjoined to the rational numbers in the main body of 
the text. Our hypothesis is that if we adjoin enough of these numbers to 
the field of rational numbers, we eventually create a field that contains 
3√2. (We can use this hypothesis to create two contradictions that prove 
that doubling the cube with a straightedge and compass is impossible.)

We begin our work with the rational numbers, which we represent 
with the letter F0. By fact 1, 
3√2 does not belong to F0 
so we have to adjoin at least 
one number to F0 in order that 
our new field will contain 3√2. 
We adjoin √k1 to the rational 
numbers where k1 belongs 
to F0 but √k1 does not. We 
get a new field that we call 
F1. (Every number in F1 is of 
the form a + b√k1, where a, 
b, and k1 are chosen from F0, 
the field of rational numbers.) 
Next we choose k2 from F1 
and then adjoin √k2 to F1 to 
create a new field, which we 
call F2. (The numbers in F2 are 
of the form c + d√k2, where 
c and d represent numbers 
taken from F1.) We continue 
the process until we reach Fn, 
which is obtained by adjoining 
√kn to the field Fn − 1. The ele-

-2

The graph of the equation y = x3 − 
2. Notice that the graph crosses the 
x-axis only once.
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ments in Fn are of the form p + q√kn, where p, q, and kn belong to the 
field Fn − 1. (The fields are like traditional Russian matryoshka dolls, each 
one fitting inside a slightly larger one, beginning with the smallest, the 
field of rational numbers, and ending with the largest, Fn.) We assume 
that each time we adjoin some √kj it makes the field to which we adjoin 
it bigger. In other words, we suppose that it is never the case that √kj 
belongs to Fj − 1, the field from which kj was drawn. (Otherwise every 
number of the form e + f√kj would be in Fj − 1 and we would not have 
made Fj − 1 bigger by adjoining √kj to it.) Finally we assume that we stop 
as soon as we have a field that contains 3√2. This means that Fn contains 
3√2 but Fn − 1 does not.

To prove that the cube cannot be doubled by using a straightedge and 
compass, we work with the equation 3√2 = p + q√kn. This equation must 
be true for some numbers p, q, and kn in the field Fn − 1 because we have 
assumed that 3√2 lies in Fn and every number in Fn can be written in this 
form. We use this equation for 3√2 to obtain two contradictions. The con-
tradictions show that the hypothesis that 3√2 belongs to Fn is impossible.

The computations go like this: Cube both sides of the equation 3√2 
= p + q√kn—that is, multiply each side by itself three times—to get 2 = 
(p3 + 3q2kn) + (3p2q + b3kn)√kn. Now consider (3p2q + b3kn), the coef-
ficient of √kn. 

•  Contradiction 1:  If  (3p2q + b3kn) is not equal to 0, then we 
can solve for √kn in terms of numbers that all belong to the 
field Fn − 1. Since Fn − 1 is a field we conclude that √kn belongs 
to Fn − 1 and our assumption that Fn is bigger than Fn − 1 was in 
error. This is the first contradiction. 

•  Contradiction 2:  If  the number  (3p2q + b3kn) equals 0, then 
cube the number p − q√kn to get (p3 + 3q2kn) − (3p2q + 
b3kn)√kn. Since (3p2q + b3k) is 0 it must be the case that 
p − q√kn is also a cube root of 2. [Because if (3p2q + b3kn) 
is 0 then both the cube of p − q√kn and the cube of p + q√kn 
are equal, and we have already assumed that p + q√kn is the 
cube root of 2.] Therefore, the graph of y = x3 − 2 must cross 
the x axis at p − q√kn and at p + q√kn. This contradicts fact 
number 2.

The situation is hopeless. If we assume that (3p2q + b3kn) is not 0 we 
get a contradiction. If we assume that (3p2q + b3kn) is 0 we get a con-
tradiction. This shows that our assumption that we could construct 3√2 
was in error, and we have to conclude that 3√2 is not constructible with 
a straightedge and compass. This is one of the more famous proofs in 
the history of mathematics.
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of Q(√2). The element we adjoin is of the form √a + b√2. Every 
number in this field has the form c + d√a + b√2, where c and d 
are chosen from Q(√2) and a + b√2 is positive. We can do this as 
often as we want. Each new field can be chosen so that it is larger 
than the previous one. Every number in each such extension is 
 constructible, and conversely, every constructible number belongs 
to a field that is formed in this way.

To complete the proof we need only show that no matter how 
many times we extend the rational numbers in the manner just 
described, the resulting field never contains the number 3√2. The 
proof uses the concept of field and requires us to complete a few 
complicated-looking multiplication problems and recall a bit of 
analytic geometry (see the sidebar for details).

Algebraic Structures
Some fields are smaller than others. To repeat an example 
already given, the field of rational numbers is “smaller” than the 
field defined as Q(√2), because every number in Q(√2) is of the 
form a + b √2 where a and b are rational numbers; if we consider 
the case where b is 0 and a is any rational number, then it is 
apparent that Q(√2) contains every rational number. However, 
when b = 1 and a = 0, we can see that Q(√2) also contains √2, 
which is not rational. Because the rational numbers are a proper 
subset of Q(√2), we can say that the field of rational numbers is 
a subfield of Q(√2).

For each algebraic equation there is always a smallest field 
that contains all the roots of the equation. This is the field we 
obtain by adjoining the smallest possible set of numbers to the 
set of rational numbers. This field, which is determined by the 
roots of the polynomial of interest, is important enough to have 
its own name. It is called the splitting field. Depending on the 
polynomial, the splitting field can have a fairly complicated 
structure. The numbers that make up the field can sometimes be 
difficult to write down; they are usually not constructible; and 

(text continued from page 111)
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as with all the fields that we consider, the splitting field contains 
infinitely many numbers. Furthermore, it must be closed under 
the four arithmetic operations: addition, subtraction, multiplica-
tion, and division. Fields are complicated objects. It was one of 
Galois’s great insights that he was able to rephrase the problem 
of solving algebraic equations so that it was simple enough to 
solve. His solution involved another type of algebraic structure 
called a group.

The idea of a group is one 
of the most important ideas in 
mathematics. There are many 
kinds of groups. We can cre-
ate an example of a symmetry 
group by cutting a square out 
of the center of a piece of 
paper. Suppose that, by mov-
ing clockwise about the square, 
we number each of the exterior 
corners as shown. Suppose, 
too, that we number the cor-
responding interior corners 
so that when we replace the 
square inside the square hole, 
each number on the square 
matches up with its mate (see 
Figure A).

If we now rotate the square 
90° clockwise about its center, 
the number 1 on the square 
matches up with the number 
2 on the hole. The number 
2 on the square matches the 
number 3 on the hole, and so 
on (see Figure B).

If we rotate the square 180° 
clockwise out of its original 

Figure A, the identity permutation

Figure B, a 90° clockwise rotation
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position, we get a new con-
figuration (see Figure C).

There are two other rota-
tions of interest. One entails 
rotating the square 270° clock-
wise—this yields a fourth con-
figuration (see Figure D)—and 
the last rotation entails rotat-
ing the square 360° clockwise 
(see Figure A again). Notice 
that making the last rotation 
has the same effect as not 
moving the square at all.

All four of these rotations 
form a group because taken 
together they exhibit the fol-
lowing four properties, which 
are the defining properties of 
a mathematical group:

1.  One rotation followed 
by another yields a 
third.

2.  Rotations are associa-
tive in the sense that 
if π1, π2, and π3 are 
three rotations, then 
they obey the associa-
tive law—namely, π1 ° (π2 ° π3) = (π1 ° π2) ° π3, where the 
symbol “ ° ” means that two rotations are combined by 
first performing the rotation on the right of the pair and 
then performing the rotation on the left member of the 
pair. The associative law means that it does not matter 
whether we first combine π2 and π3 and then combine 
π1 with π2 ° π3—this is the left side of the equation—or 
whether we combine π1 with π2 and then combine π1 ° 
π2 with π3 as is done on the right side of the equation.

Figure D, a 270° clockwise rotation

Figure C, a 180° clockwise rotation
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3.  The set of rotations associated with the square has an 
“identity rotation,” which is usually represented with 
the letter e. When combined with any other rota-
tion, the identity rotation leaves the other rotation 
unchanged. In symbols: e ° π = π ° e = π. (The identity 
rotation, which means rotating the square 0°, is analo-
gous to the number zero in the group of real numbers 
under the operation of addition.)

4.  Finally, for each rotation, another rotation exists that 
undoes the work of the first. This second rotation is 
called the inverse of the first. For example, rotation by 
270° is the inverse of rotation by 90°.

The four-element group described in the previous paragraph is 
also a subgroup—that is, it is a group that is part of a larger group 
of symmetries of the square. We can get more symmetries in our 
group by “reflecting” the square about a line of symmetry. Physically 
this can be accomplished by flipping the square over along one of 
its lines of symmetry. For example, we can flip the square along a 
line connecting two opposite corners. Under these circumstances 
two corners of the square remain motionless while the other two 
corners swap places. If, for 
example, we reflect the square 
about the line connecting the 
corners 1 and 3, then corners 
2 and 4 of the square change 
places while 1 and 3 remain 
motionless (see Figure E). This 
configuration (corners 1 and 
3 fixed and corners 2 and 4 
exchanged) is new; we cannot 
obtain this reflection through 
any sequence of rotations, but 
it is not the only reflection 
that we can generate. We can 
obtain still another configura-
tion of the square within its 

1

3

Figure E, a reflection of the square 
about the line connecting corners 1 
and 3
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hole by reflecting the square 
about its other diagonal (see 
Figure F). There are two other 
reflections—each is obtained by 
reflecting the square about lines 
passing through the center of 
the square and the midpoint 
of a side. We omit the details. 
Allowing all possible combina-
tions of rotations and reflec-
tions gives us a larger group 
than the group of rotations. (Of 
course, there are mathematical 
formulas that do the same thing 
that we are doing with paper, 
but the mathematical methods 
are simply a symbolic substitute for rotating the square through 
multiples of 90° and reflecting it about its axes of symmetry.)

The group of symmetry transformations of the square can also 
be interpreted as a group of permutations of the integers 1, 2, 3, 
and 4. A permutation group acts on a set of objects—in this case 
numbers—and changes their order. Rotation of the square by 90 
degrees, for example, when applied to the set (1, 2, 3, 4) yields (4, 
1, 2, 3). The outside numbers on the diagram show the original 
order, and the inside numbers show the new (or permuted) order. 
(See Figure B, page 115.)

Similarly, the reflection shown in Figure F permutes (1, 2, 3, 4) 
so that we obtain (3, 2, 1, 4). Mathematically, it does not matter 
whether we represent what we are doing as a group of symmetry 
transformations of the square or as a group of permutations of the 
numbers 1, 2, 3, and 4. The group of symmetry transformations 
and the corresponding group of permutations are two instances 
of the same abstract group. In what follows, we use permutation 
groups, but we could just as easily talk about symmetry groups of 
various geometric figures.

So far we have examined only the permutations obtainable by 
rotating and reflecting a square, but we can generate other, very 

Figure F, a reflection of the square 
about the line connecting corners 2 
and 4
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different, permutation groups by using other geometric figures. 
Depending on the figures we choose to study, the permutation 
groups we generate may have more or fewer elements than the 
permutation group associated with the square. The subgroups 
associated with each permutation group also depend on the group 
that we study. Galois did not invent permutation groups, but he 
did find an extraordinarily creative use for them.

Galois noticed that to each (infinite) splitting field there cor-
responds a unique (finite) permutation group. The algebraic 
structure of two splitting fields is “the same” if they have the same 
permutation group. Even better, the permutation group contains 
important information about the splitting field and the algebraic 
equation from which the field is obtained. In particular, an alge-
braic equation can be solved if the permutation group has a certain 
structure. If the permutation group lacks this structure then there 
is no algorithm analogous to those discovered by Tartaglia and 
Ferrari that would enable one to solve the equation.

It might seem as if Galois simply swapped the difficulties of 
working with algebraic equations for the difficulties of working 
with splitting fields, then swapped the problems he encountered 
with splitting fields for a new set of problems associated with per-
mutation groups. There is, however, a real advantage to studying 
the permutation group instead of the splitting field or the algebra-
ic equation: The group problem is simple enough to solve. Unlike 
the splitting fields, which have four operations and infinitely 
many numbers, each permutation group has only one operation 
and finitely many elements. Galois swapped a harder problem for 
an easier problem. The group problem was manageable; the field 
problem was not.

This is an example of what is meant by structure in mathematics. 
Each splitting field has many properties in common with other 
fields—that is why they are all called fields—but there are differ-
ences between the fields as well. These finer points of structure 
are determined by the nature of the roots that are adjoined to 
the rational numbers in order to get the splitting field. The finer 
points of structure in the field determine the properties of the per-
mutation group. In this sense the structure of the group reflects 
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the structure of the field, but, because the group is easier to under-
stand, solving problems associated with the field by studying its 
associated permutation group becomes possible.

Our description of Galois’s work is a modern one. It describes 
how we see what Galois did, but it almost certainly does not 
describe Galois’s own view of his work. Galois used permutation 
groups as a tool in order to better understand algebraic equations. 

the importance of group theory

Group theory occupies a central place in contemporary mathematics. 
The four axioms that define a group have been supplemented in various 
ways to produce many different classes of groups. Some groups con-
sist of finitely many elements; some have infinitely many elements; some 
are “finitely generated,” which means that there is a finite subset of the 
group, which we can call g1, g2, . . . , gn, such that every element in the 
group can be represented as a product of powers of these n elements; 
and other groups are not finitely generated. Mathematicians have stud-
ied many special classes of groups, and many types of groups have not 
yet been thoroughly studied.

But the importance of group theory extends far beyond algebra 
because the group structure can be found imbedded in many different 
“systems,” both in and outside mathematics. Sometimes the existence 
of the group structure is evident—the set of all integers under the 
operation of addition, for example, is a system with a group structure—
but other times the group structure is less obvious. In geometry, for 
example, Euclid asserted that two triangles are congruent when one 
triangle can be moved so that it coincides with the other. This state-
ment is not quite precise enough for modern mathematicians, but once 
it is made precise it can be proved that the set of all such motions 
forms a group, which is now called the group of Euclidean transforma-
tions. Euclidean geometry can, in fact, be characterized as the study 
of exactly those properties of a figure that remain unchanged by the 
group of Euclidean transformations. Other geometries have their own 
somewhat different transformation groups associated with them, and 
each transformation group has its own peculiar algebraic properties. 
By comparing transformation groups, one can determine how various 
geometries are related to each other. Group theory is an important tool 
in the study of geometry.
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The object of his study was algebraic equations, not groups. It 
must have been more or less obvious to him as it is obvious to 
most people who work with permutation groups that all permuta-
tion groups share the four simple properties that define a group. 
(These properties are listed on page 116 in the discussion of the 
group of symmetry transformations of the square.) And Galois, 
who was one of the most inventive mathematicians of his era, must 

Group theory is useful in science as well. The special theory of relativ-
ity, for example, makes a number of exotic predictions about the nature 
of space and time and the ways that space and time are related, but the 
physical theory can be described in terms of a particular (mathematical) 
group called the group of Lorentz transformations. Mathematically, the 
special theory of relativity, which is most closely associated with the 
work of the German-born American physicist Albert Einstein (1879–
1955), can be summarized by saying that the laws of nature are invariant 
with respect to the group of Lorentz transformations. A physical inter-
pretation of the group of Lorentz transformations is that they reveal how 
measurements made in one inertial reference frame apply to a different 
inertial reference frame. (An observer’s reference frame is the coordi-
nate system most natural to the observer. A reference frame is inertial 
when it is moving at constant velocity.) Loosely speaking, the Lorentz 
transformations, which are named after the Dutch physicist Hendrik 
Antoon Lorentz (1853–1928), enable observers in different reference 
frames to view the world as others see it.

In chemistry, symmetry groups can be associated with many mol-
ecules. The symmetry group of a particular molecule is the largest 
group of spatial transformations that leaves the molecule in the same 
volume of space after the transformation as it was before. The idea is 
similar to the symmetry group associated with the square. (That group 
is described in figures A through F in this chapter.) The symmetry group 
carries information about the shape of the molecule, and it also carries 
information about the chemical properties of the molecule. The study of 
these groups is an important part of theoretical chemistry.

It would be hard to overstate the importance of group theory to 
the development of contemporary mathematics and science. Groups 
are some of the most fundamental logical structures in mathematics 
and nature, and they provide a framework in which many fundamen-
tal questions about mathematics and science can be asked and 
answered.
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have recognized that all four of these very general statements are 
true, but he regarded these statements in a much narrower way 
than contemporary mathematicians. Today, mathematicians con-
sider abstract groups, sets composed of elements represented by 
letters, and they suppose that there exists an operation on this set 
of letters, and they suppose that under this operation the letters 
combine according to the four group axioms. (They might also 
impose some other conditions depending on the problem they are 
considering.)

Groups can be used as tools to understand specific systems. This 
is what Galois did, but today they are also used to model classes 
of systems. Research into group theory can reveal facts about all 
of the systems that share a particular group structure—no matter 
how different-looking the systems are. Or to say the same thing 
in a slightly different way: Any facts that one can deduce from the 
study of an abstract group will apply to every system with the same 
group structure.

The mental leap that mathematicians made in passing from indi-
vidual instances of groups to the study of abstract groups is similar 
to what an archaeologist does when studying the architecture of 
a vanished civilization for the first time. The first building that 
the archaeologist studies is always described in particulars such 
as, “This building used structural elements made from a certain 
material. The elements in the building were of a certain thick-
ness. They were placed at specific points within the structure. 
They were joined in a certain way.” But after the archaeologist 
has studied the ruins of many such buildings, it becomes possible 
to make very broad statements about the building practices of the 
civilization such as, “The buildings of this time period utilized 
the following materials. Structural elements were joined using the 
following techniques, etc.” The general statements summarize the 
knowledge obtained from many particular observations.

Throughout the 19th century, mathematicians operated like our 
archaeologist encountering the first few buildings. They studied 
many different mathematical systems, and they discovered that 
groups were present in many of these systems. Originally, they 
concentrated on the specifics of the system and used groups as 
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tools to further their understanding. They did not see the “big 
picture.” They did not usually see the group structure as some-
thing that was worth studying in its own right. But early in the 
20th century, mathematicians began to formulate more general 
statements about the structure of mathematical systems. The sys-
tems might be sets of numbers or polynomials or some other set 
of objects, and the operation might be addition or multiplication 
or some other operation entirely. After they had accumulated 
enough examples, they sought to isolate the properties shared by 
all of these systems and study only those shared properties. The 
result was a series of statements that were true for all such systems. 
Much of modern algebra now focuses on uncovering and under-
standing the logical architecture of mathematics, and groups are a 
big part of that architecture.

The discovery of these group methods—even in a limited way—
required an especially creative mathematical mind. Galois’s ideas 
represented a huge leap forward in mathematical thinking, and 
it would be some time before other mathematicians caught up. 
Today groups are one of the central concepts in all of mathematics. 
They play a prominent role in geometry, analysis, algebra, prob-
ability, and many branches of applied science as well. The search 
for the structures that underlie mathematics, and the search for 
criteria—analogous to Galois’s permutation groups—that enable 
mathematicians to determine when two structures are really “the 
same” are now central themes of algebraic research. In many ways 
these ideas are responsible for the ever-increasing pace of math-
ematical progress. What we now call modern, or abstract, algebra 
begins with the work of a French teenager almost 200 years ago.
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7
the laws of thought

Algebra changed radically more than once during the 19th century. 
Previously Descartes had interpreted his variables as magnitudes, 
that is, lengths of line segments. He used algebra as a tool in his 
study of geometry. Leibniz and Newton had interpreted the vari-
ables that arose in their computations as geometric magnitudes or 
as forces or accelerations. On the one hand, these interpretations 
helped them state their mathematical questions in a familiar con-
text. They enabled Newton and Leibniz to discover new relation-
ships among the symbols in their equations, so in this sense these 
interpretations were useful. On the other hand, these interpreta-
tions were not necessary. One can study the equations of interest to 
Descartes, Newton, and Leibniz without imposing any extramath-
ematical interpretation on the symbols employed. At the time no 
one thought to do this.

In the 19th century mathematicians began to look increasingly 
inward. They began to inquire about the true subject matter of 
mathematics. The answer for many of them was that mathematics is 
solely concerned with relationships among symbols. They were not 
interested in what the symbols represented, only in the rules that gov-
erned the ways symbols are combined. To many people, even today, 
this sounds sterile. What is surprising is that their inquiries about 
relationships among symbols resulted in some very important, practi-
cal applications, the most notable of which is the digital computer.

Aristotle
This new and more abstract concept of mathematics began in 
the branch of knowledge called logic. Early in the 19th century, 
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logic was synonymous with the 
works of the Greek philoso-
pher Aristotle (384 b.c.e.–322 
b.c.e.). Aristotle was educated 
at the academy of the philoso-
pher Plato, which was situated 
in Athens. He arrived at the 
academy at the age of 17 and 
remained until Plato’s death 
20 years later. When Plato 
died, Aristotle left Athens 
and traveled for the next 12 
years. He taught in different 
places and established two 
schools. Finally he returned 
to Athens, and at the age of 
50 he established the school 
for which he is best remem-
bered, the Lyceum. Aristotle 
taught there for the next 12 
years. The Lyceum was a place that encouraged free inquiry and 
research. Aristotle himself taught numerous subjects and wrote 
about what he discovered. For Aristotle all of this abruptly ended 
in 323 b.c.e.,when Alexander the Great died. There was widespread 
resentment of Alexander in Athens, and Aristotle, who had been 
Alexander’s tutor, felt the wrath of the public directed at him after 
the death of his former student. Aristotle left Athens under threat 
of violence. He died one year later.

Part of Aristotle’s contribution to logic was his study of some-
thing called the syllogism. This is a very formal, carefully defined 
type of reasoning. It begins with categorical statements, usually 
called categorical propositions. A proposition is a simple state-
ment. “The car is black” is an example of a proposition. Many 
other expressions are not categorical propositions. “Do you wish 
you had a black car?” and “Buy the black car” are examples of 
statements that are not propositions. These types of sentences are 
not part of Aristotle’s inquiry. Instead his syllogisms are defined 
only for the categorical proposition.

This statue of Aristotle is a Roman 
copy of a Greek original. Aristotle’s 
ideas about logic were central to 
Western thinking for 2,000 years. 
(Ludovisi Collection)
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A categorical proposition is a statement of relationship between 
two classes. “All dogs are mammals” is an example of a categorical 
proposition. It states that every creature in the class of dogs also 
belongs to the class of mammals. We can form other categorical 
propositions about the class of dogs and the class of mammals. 
Some are more sensible than others:

•  “Some dogs are mammals.”

•  “No dogs are mammals.”

•  “Some dogs are not mammals.”

are all examples of categorical propositions. We can strip away the 
content of these four categorical propositions about the class of 
dogs and the class of mammals and consider the four general types 
of categorical expressions in a more abstract way:

•  All x’s are y’s.

•  Some x’s are y’s.

•  No x’s are y’s.

•  Some x’s are not y’s.

Here we can either let the xs represent dogs and the ys represent 
mammals or let the letters represent some other classes. We can 
even refrain from assigning any extramathematical meaning at all 
to the letters.

We can use the four types of categorical propositions to form 
one or more syllogisms. A syllogism consists of three categorical 
propositions. The first two propositions are premises. The third 
proposition is the conclusion. Here is an example of a syllogism:

•  Premise 1: All dogs are mammals.

•  Premise 2: All poodles are dogs.

•  Conclusion: All poodles are mammals.
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We can form similar sorts of syllogisms by using the other three 
types of categorical propositions.

Aristotle’s writings were collected and edited by Andronicus of 
Rhodes, the last head of Aristotle’s Lyceum. This occurred about 
three centuries after Aristotle’s death. The Organon, as Andronicus 
named it, is the collection of Aristotle’s writings on logic. It 
became one of the most influential books in the history of Western 
thought.

Aristotle’s ideas on logic were studied, copied, and codified by 
medieval scholars. They formed an important part of the edu-
cational curriculum in Renaissance Europe. In fact, the Organon 
formed a core part of many students’ education into the 20th 
century. But the syllogism tells us little about the current state of 
logic. Its importance is primarily historical: For about 2,000 years 
the syllogism was the principal object of study for those interested 
in logic. Many scholars thought that, at least in the area of logic, 
Aristotle had done all that could be done. They believed that in 
the area of logic no new discoveries were possible.

There is no doubt that Aristotle made an important contribution 
to understanding logic, because his was the first contribution. In 
retrospect, however, Aristotle’s insights were very limited. Logic 
is more than the syllogism, because language is more than a set of 
syllogisms. Logic and language are closely related. We can express 
ourselves logically in a variety of ways, and not every set of logical 
statements can be reduced to a collection of syllogisms. Aristotle 
had found a way of expressing certain logical arguments, but his 
insights are too simple to be generally useful.

George Boole and the Laws of Thought
The 20th-century British philosopher and mathematician Bertrand 
Russell wrote that modern, “pure” mathematics began with the 
work of the British mathematician George Boole (1815–64). Not 
everyone agrees with Russell’s assessment, but there can be little 
doubt that Boole, a highly original thinker, contributed many 
insights that have proved to be extremely important in ways both 
theoretical and practical. The following famous quotation, taken 
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from his article “Mathematical Analysis of Logic,” strikes many 
contemporary readers as radical in that he insists that mathematics 
is about nothing more than relationships among symbols:

They who are acquainted with the present state of the theory 
of Symbolical Algebra, are aware, that the validity of the pro-
cesses of analysis does not depend upon the interpretation of the 
symbols which are employed, but solely upon the laws of their 
combination. Every system of interpretation which does not 
affect the truth of the relations supposed, is equally admissible, 
and it is thus that the same process may, under one scheme of 
interpretation, represent the solution of a question on the prop-
erties of numbers, under another, that of a geometrical problem, 
and under a third, that of a problem of dynamics or optics. This 
principle is indeed of fundamental importance; and it may with 
safety be affirmed, that the recent advances of pure analysis 
have been much assisted by the influence which it has exerted in 
directing the current of investigation.

(Boole, George. Mathematical Analysis of Logic: being 
an essay towards a calculus of deductive reasoning. 

Oxford: B. Blackwell, 1965)

Despite Boole’s assertion that mathematics is about nothing more 
than symbolic relationships, Boole’s insights have since found 
important applications, especially in the area of computer chip 
design.

Boole was born into a poor family. His father was a cobbler, who 
was interested in science, mathematics, and languages. His inter-
est in these subjects was purely intellectual. He enjoyed learning, 
and he put his discoveries to use by designing and then creating 
various optical instruments; telescopes, microscopes, and cam-
eras were all produced in the elder Boole’s workshop. As a youth 
George Boole helped his father in the workshop, and it was from 
these experiences presumably that he developed an interest in the 
science of optics, a subject about which he wrote as an adult.

Despite their poverty, the Booles sent their son to various 
schools. These schools were not especially distinguished, but he 
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learned a great deal from his 
father, and he supplemented 
all of this with a lot of inde-
pendent study. He read about 
history and science; he enjoyed 
biographies, poetry, and fic-
tion; and as many of the math-
ematicians described in this 
history did, Boole displayed 
an unusual facility with lan-
guages. While a teenager, and 
despite a good deal of adver-
sity, he learned Latin, Greek, 
French, Italian, and German. 
His interest in learning lan-
guages began early. At the age 
of 14 he translated a poem 
from Latin to English and had 
the result published in a local 
newspaper. The publication of 
the translation set off a minor 
controversy when one reader 
wrote to the newspaper to question whether anyone so young 
could have produced such a skillful translation. Boole was clearly 
an outstanding student, but his formal education was cut short.

In 1831 when Boole was 16, his father’s business became bank-
rupt. The penalties for bankruptcy were more serious then than 
they are now, and George Boole left school to help his family. He 
got a job, first as an assistant teacher, and later as a teacher. It was 
at this time that he began to concentrate his energy on learning 
mathematics. He later explained that he turned toward mathemat-
ics because at the time he could not afford to buy many books, and 
mathematics books, which required more time to be read, offered 
better value. Throughout this period of independent study Boole 
went through several teaching jobs. At the age of 20 when he had 
saved enough money, he opened his own boarding school in his 
hometown of Lincoln.

George Boole, founder of Boolean 
algebra. When he first proposed his 
ideas they were interesting but not 
especially practical, but 80 years later 
they were essential to the development 
of the computer. (MAA Mathematical 
Sciences Digital Library)
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It is a tribute to his intellectual ambition and his love of math-
ematics that despite moving from job to job and later establishing 
and operating his own school, Boole found enough time to learn 
higher mathematics and to publish his ideas. He also began to 
make contacts with university professors so that he could discuss 
mathematics with other experts. Eventually Boole was awarded 
the Royal Society of London’s first Gold Medal for one of his 
mathematics papers.

Boole never did attend college. His formal education ended per-
manently when he left school at the age of 16. Not everyone has the 
drive to overcome this kind of educational isolation, but it seemed 
to suit Boole. Boole’s language skills enabled him to read impor-
tant mathematical works in their original languages. He developed 
unique insights in both mathematics and philosophy. Soon Boole 
turned away from the type of mathematics that would have been 
familiar to every mathematician of Boole’s time and directed his 
energy toward discovering what he called the “laws of thought.”

Boole’s inquiry into the laws of thought is a mathematical and 
philosophical analysis of formal logic, often called symbolic logic, 
logic, or, sometimes, logistic. The field of logic deals with the 
principles of reasoning. It contains Aristotle’s syllogisms as a very 
special case, but Boole’s inquiry extended far beyond anything that 
Aristotle envisioned. Having developed what was essentially a new 
branch of mathematics, Boole longed for more time to explore 
these ideas further. His duties at his own school as well as other 
duties at other local schools were enough to keep him very busy 
but not very well off. When Queen’s College (now University 
College) was established in Cork, Ireland, Boole applied for a 
teaching position at the new institution. Between the time that he 
applied and the time that he was hired, three years passed. He had 
despaired of ever being offered the position, but in 1849 when he 
finally was, he accepted it and made the most of it.

Boole remained at Queen’s College for the rest of his life. He 
married, and by all accounts he was extremely devoted to his wife. 
He was apparently regarded with both affection and curiosity by 
his neighbors: When Boole met anyone who piqued his curiosity, 
he immediately invited that person to his home for supper and 
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conversation. He is often described as someone who was kind, 
generous, and extremely inquisitive. Boole died after a brief illness 
at the age of 49.

Boolean Algebra
Boole’s great contribution to mathematics is symbolic logic. Boole 
sought a way of applying algebra to express and greatly extend 
classical logic. Recall that Aristotle’s syllogisms were a way of 
making explicit certain simple logical relations between classes 
of objects. Boole’s symbolic logic can do the same thing, but his 
concept of logic greatly extended Aristotle’s ideas by using cer-
tain logical operators to explore and express the relations between 
various classes. His approach to logic depended on three “simple” 
operators, which we (for now) denote by AND, OR, and NOR. 
Over the intervening years, mathematicians have found it conve-
nient to modify some of Boole’s own ideas about these operators, 
but initially we restrict our attention to Boole’s definitions. For 
purposes of this exposition it is sufficient to restrict our attention 
to careful definitions of the operators AND and OR.

Definition of AND: Given two classes, which we call x and y, the 
expression xANDy denotes the set of all elements that are common 
to both the classes x and y. For example, if x represents the class 
of all cars and y represents the set of all objects that are red, then 
xANDy represents the class of all red cars. This notation is hardly 
satisfactory, however, because Boole was interested in developing 
an algebra of thought. As a consequence Boole represented what 
we have written as xANDy as the “logical product” of x and y, 
namely, xy. This leads to the first unique aspect of Boole’s algebra. 
Because the set of all elements common to the class x is the class x 
itself—that is, xANDx is x—Boole’s algebra has the property that 
xx = x or, using exponents to express this idea, x2 = x. By repeat-
ing this argument multiple times we arrive at the statement xn = 
x, where n represents any natural number. This equation does not 
hold true in the algebra that we first learn in junior and senior 
high school, but that does not make it wrong. It is, in fact, one 
of the defining properties of Boolean algebra. Finally, notice that 



132  ALGEBRA

with this definition of a logical product, the following statement is 
true: xy = yx. That is, the elements that belong to the class xANDy 
are identical to the elements that belong to the class yANDx.

Definition of OR: Boole’s definition of the operator OR is differ-
ent from that used in Boolean algebra today, but it coincides with 
one common usage of the word or. To appreciate Boole’s defini-
tion of the operator OR, imagine that we are traveling through 
the country and arrive at a fork in the road. We have a decision to 
make: We can turn left or we can turn right. We cannot, however, 
simultaneously turn both left and right. In this sense, the word or 
is used in a way that is exclusive. We can take one action or the 
other but not both. Boole defined the OR operator in this exclu-
sive sense. Given two classes, which we call x and y, the expression 
xORy means the set of elements that are in x but not in y together 
with the set of elements that are in y but not in x. In particular, the 
class xORy does not contain any elements that are in both x and y. 
If we again let x represent the class of all cars, and y represent the 
class of all objects that are red, then the class xORy contains all 
cars that are not red and every object that is red provided it is not 
a car. As we have written xORy, Boole used the expression x + y. 
Notice that with this interpretation of the symbol + it is still true 
that x + y = y + x. (We emphasize that Boole’s definition of the OR 
operator is different from the definition in common use today. See 
the section Refining and Extending Boolean Algebra later in this 
chapter for a discussion of the difference.)

The axioms for Boole’s algebra can now be expressed as follows. 
A Boolean algebra is, according to Boole, any theory that satisfies 
the following three equations:

1. xy = yx

2. x(y + z) = xy + xz

3. xn = x, where n is any natural number

The first and third axioms have already been discussed. The 
meaning of the second axiom can best be explained via a Venn 
diagram (see the accompanying illustration).
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The roles of the numbers 0 
and 1 are especially important 
in Boole’s algebra. The num-
ber 0 represents the empty set. 
If, for example, x represents 
the set of diamonds and y 
represents the set of emeralds, 
then xy, the set of objects 
that are both diamonds and 
emeralds, is empty—that is, 
with this interpretation of x 
and y, xy = 0. For Boole, the 
number 1 represents the uni-
verse under consideration, that 
is, the entire class of objects 
being considered. If we con-
tinue to let x represent the set 
of diamonds and y the set of 
emeralds, and if, in addition, 
we let 1 represent the set of 
all gemstones then we obtain 
the following three additional 
equations: (1) 1x = x, (2) 1y = y, 
and (3) x(1 − y) = x, where the 
expression (1 − y) represents all the objects in the universal set that 
are not emeralds, so that the class of diamonds AND the class of 
gems that are not emeralds is simply the class of diamonds.

Recall that in the excerpt from Boole quoted at the begin-
ning of this chapter, he explicitly states, “. . . the validity of the 
processes of analysis does not depend upon the interpretation of 
the symbols which are employed.” Having established the basic 
properties of his algebra, he is free to interpret the symbols in any 
manner convenient. This is important because there was another 
interpretation that Boole had in mind, and this interpretation has 
since become very important as well. To appreciate Boole’s second 
interpretation, we imagine some proposition, which we call X, 
and we let the letter x represent the times when proposition X is 

Venn diagram demonstrating that in 
Boolean algebra x(y + z) = xy + xz. 
Note that y + z is the horizontally 
shaded area, and x(y + z) is the 
intersection of the horizontally shaded 
area with x. Alternatively, xy is the 
area common to the disc x and the 
disc y, xz is the area common to the 
disc x and the disc z, and xy + xz is 
the union of xy and xz minus their 
common area. Therefore, x(y + z) = 
xy + xz.
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true. Because a proposition is either true or false—it cannot be 
both true and false—the expression 1 − x must represent those 
times when X is false. For example, suppose we let X represent 
the statement “It is raining.” Because we let x represent the times 
when statement X is true, x represents those times when it actu-
ally is raining. The expression 1 − x holds when the statement X is 
false: That is, 1 − x represents those times when it is not raining.

In a similar way we can interpret the logical product and the 
logical sum. If we have two propositions—we represent them with 
X and Y—then we can let the letter x represent those times when 
proposition X is true and y represent those times when proposition 
Y is true. The logical product xy now represents those times when 
propositions X and Y are simultaneously true. For example, let X 
represent the proposition “It is raining” and let Y represent the 
statement “It is windy.” The expression xy represents those times 
when it is simultaneously rainy and windy.

In a similar way, the logical sum x + y represents those times 
when, according to Boole, either proposition X is true or proposi-
tion Y is true, but not when they are simultaneously true. In our 
weather example, x + y represents those times when it is either 
windy or rainy but not both.

Keep in mind that this in no way changes Boole’s algebra. 
According to Boole, mathematics is only about the relationships 
among symbols, so from a mathematical perspective the interpre-

tation that we place on the 
symbols is irrelevant. From 
the point of view of applica-
tions, however, the interpre-
tation that we place on the 
symbols means everything, 
because it determines how we 
use the algebra. Boole’s alter-
native interpretation of his 
algebraic symbols as repre-
senting true and false values 
has important applications. It 
enables one to calculate the 
true or false values associated Truth table for the operation AND
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aristotle and boole

For more than 2,000 years Aristotle’s treatment of logic was not modi-
fied in any significant way. For Western scholars Aristotle’s logic was the 
only type of logic. When propositions are written in ordinary language, 
understanding why they arrived at this conclusion is not difficult. Written 
rhetorically, Aristotle’s syllogisms have no obvious generalizations. This 
changed entirely with the work of Boole. Boole’s insights enabled him 
to show that Aristotle’s conception was not only limited but also easily 
extended. Once Aristotle’s treatment of the syllogism was expressed 
by using Boole’s algebra, it was seen to be a particularly simple set of 
computations, and Aristotle’s insights were seen to be a very small part 
of a much larger algebraic landscape.

In the following we list Aristotle’s four categorical propositions. Each 
proposition is followed, in parentheses, by the same expression using 
Boole’s algebra. Following Boole, we use the letter v to represent a 
nonempty class of objects:

•  All x’s are y’s. (xy = x)

•  Some x’s are y’s. (v = xy)

•  No x’s are y’s. (xy = 0)

•  Some x’s are not y’s. (v = x(1 − y))

Notice that each proposition has been expressed as a simple algebraic 
equation.

Using Boole’s algebra, we can express any syllogism via a set of 
algebraic equations. To illustrate, we rewrite the syllogism given near the 
beginning of this chapter involving mammals, dogs, and poodles. This 
requires three equations. Each line of the syllogism is written in words 
followed, in parentheses, by an algebraic equation that expresses the 
same idea. We let the letters m, d, and p represent mammals, dogs, and 
poodles, respectively.

•  Premise 1: All dogs are mammals. (dm = d)

•  Premise 2: All poodles are dogs. (pd = p)

•  All poodles are mammals. (pm = p)

Notice that if we multiply the first equation by p we get pdm = pd, but pd 
equals p by the second equation. All that remains for us to do is write p 
in place of pd on the left and right in the equation pdm = pd. This yields 
the conclusion of the syllogism, namely, pm = p. This example shows 
how a syllogism can be reduced to an algebraic computation.
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with a question or even a chain of equations. Engineers use these 
ideas to design logic circuits for computers.

Boole’s applications of his algebra centered on the theory of 
probability and the philosophy of mind. Both applications are of 
a philosophical nature, and they are not well remembered now, 
principally because Boole’s work in these two areas, although 
intellectually interesting, did not uncover much that was new even 
at the time. The principal application of Boolean algebra, which 
involves the design of computer hardware and software, would not 
be discovered until the 20th century.

Refining and Extending Boolean Algebra
Boole’s conception was an important step forward, but it con-
tained some logical problems of its own. The first difficulty was 
identified and corrected by the British logician and economist 
William Stanley Jevons (1835–82). The difficulty arises in the 
course of computations.

In mathematics—especially pure mathematics—the method by 
which we arrive at a solution is at least as important as the solution 
itself. When solving a math problem, any sequence of steps should 
have the property that each step can be logically justified. To express 
the same idea in a different way: There should be a mathemati-
cal reason for every step in the solution. This was not the case in 
Boole’s own version of Boolean algebra, and much of the difficulty 
centered around Boole’s definition of the OR operator.

Recall that given two classes of objects, which we call x and 
y, Boole defined x + y to mean that class of objects that belongs 
to x or to y but not to both. The problem with this definition is 
that as one uses Boole’s algebra to solve problems, one sometimes 
encounters expressions such as x + x. To obtain this expression, we 
just substitute the letter x for the letter y in the first sentence of 
this paragraph. We get that x + x is that class of objects that belongs to 
x or to x but not to both. This is meaningless. Although Boole found 
ways to manipulate the expressions to obtain valid results, from 
a logical point of view his definition is not entirely satisfactory. 
Jevons proposed a new definition for the OR operator, and it is his 
definition that is in general use today.
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Jevons defined the OR operator inclusively: Given two classes, 
which we call x and y, the expression xORy means the set consist-
ing of all objects in x together with all objects in y. In particular, 
Jevons defined OR so that if an object is both in x and in y it also 
belongs to xORy. An object fails to belong to xORy only when it 
fails to belong to x, and it fails to belong to y. The main advantage 
of Jevons’s definition is that it allows us to attach a reasonable 
definition to the expression x + x: The set of objects belonging 
to the class xORx equals the class x itself. Admittedly this sounds 
stilted, but it allows us to attach a meaning to the expression x + 
x that is logically satisfactory. In particular, this definition enables 
us to write the equation x + x = x. This is a different sort of equa-
tion than the one we encounter in our first algebra courses, but it 
parallels Boole’s own equation for logical multiplication, namely, 
x2 = x. This new definition of the OR operator straightened out 
many of the logical difficulties that had arisen in computing with 
Boole’s algebra.

Notice, too, that in the equations x + x = x and x2 = x the only 
coefficient to occur is 1. Furthermore if we search for roots of the 
equation x2 − x = 0, we find that the only roots are the numbers 
0 and 1. In other words, these equations enable us to restrict our 
attention to just two numbers.

The latter half of the 19th century saw several further extensions 
and refinements of Boole’s 
algebra, but Boole’s central 
concepts remained valid. Of 
special interest was the work 
of the German mathematician 
Ernst Schröder (1841–1902), 
who developed a complete set 
of axioms for Boolean alge-
bra. (Boole’s axioms, listed 
previously, were incomplete.)

Axioms are a “bare bones” 
description of a mathemati-
cal system in the sense that 
everything that can be learned 
about a mathematical system, 

Truth table for the modern version of 
the operation OR
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whether that system is, for example, Boolean algebra or Euclidean 
geometry, is a logical consequence of the axioms. In this sense 
mathematicians concern themselves with revealing facts that are, 
logically speaking, right before their eyes. The axioms always 
contain all of the information that one can learn about a system. 
The problem is that the information is not displayed in an obvi-
ous way. Any nonobvious statement that can be deduced from a 
set of axioms is called a theorem. Most mathematicians occupy 
themselves with deducing new theorems from theorems that have 
already been proved; this is the art of mathematical discovery. 
Unfortunately knowing that statement B is, for example, a logical 
consequence of statement A gives no insight into whether or not 
statement A is true.

Fortunately there is a final reason why any theorem is true. The 
ultimate reason that each theorem in a mathematical system is true 
is that it can be deduced as a logical consequence of the axioms that 
define the system. The axioms are the subject. It is no exaggeration 
that, mathematically speaking, one can never be completely sure 
of anything until a set of axioms that define the subject has been 
stated. Finally, a logically consistent set of axioms for any branch 
of mathematics is important because it ensures that it is possible 
to develop the mathematics in such a way that no statement can 
be proved both true and false. Placing Boole’s algebra on a firmer 
logical foundation was Schröder’s contribution.

In the sense that he axiomatized Boolean algebra, Schröder 
completed the subject: He put Boolean algebra into the logical 
form that we know today. Of course, many new theorems have 
been proved in the intervening century or so since Schröder’s 
death, but the theorems were proved in the context of Schröder’s 
axioms. Logicians, philosophers, and a few mathematicians were 
quick to recognize the value of Boole’s insights. His ideas provided 
a conceptual foundation that enabled the user to examine more 
closely the relationships that exist between logic and mathemat-
ics. Many mathematicians, inspired by Boole’s work, went on to 
do just that. This is one implication of Boole’s discoveries, but 
Boolean algebra has had a more immediate impact on our lives 
through its use in the design of computer circuitry.
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Boolean Algebra and Computers
Boole knew nothing about computers, of course. He died 15 years 
before the invention of the lightbulb, and the first electronic digi-
tal computer began operation in 1946—more than 80 years after 
his death. Nevertheless the design of computer chips is one of the 
most important applications of Boolean algebra. Boolean expres-
sions produce one of the values, which we can call true and false 
or zero and one. Two digits are all that are necessary to express 
ideas in binary code. (Binary code is a way of coding information 
that depends on precisely two symbols, which, for convenience, 
are often represented by the digits 0 and 1.)

To appreciate how this works, we can imagine a computer that 
performs three functions. First, the computer reads an input 
file consisting of a string of binary digits. (The input file is the 
information that the computer has been programmed to process.) 
Second, the computer processes, or alters, the input file in accor-
dance with some preprogrammed set of instructions. Third, the 

Computer chips represent Boolean algebra in silicon. (Georgia Tech)
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computer displays the results of these manipulations. This is the 
output file, which we can imagine as consisting of binary code as 
well. (Of course, the binary output is usually rewritten in a more 
user-friendly format, but the details of this reformatting process 
do not concern us here.) The output file is the reason we buy the 
computer. It represents the answer, the work performed by the 
machine on the input file.

The middle step, the processing part of this sequence, is the step 
in which we are interested. The processing takes place via a set of 
electronic circuits. By an electronic circuit we mean any structure 
through which electricity can flow. Circuits are manufactured in 
a variety of sizes and can be made of a variety of materials. What 
is important is that each circuit is capable of modifying or regu-
lating the flow of electrical current in certain very specific ways. 
The actual control function of a circuit is affected through a set 
of switches or gates. The gates themselves are easily described in 
terms of Boolean operators.

There are several types of gates. They either correspond to or can 
be described in terms of the three common Boolean operators, the 
AND, OR, and NOT operators. (The NOT operator reverses the 
value of the variable. The value of NOT-true is false, for example, 
and the value of NOTx is (1-x) as discussed in the section Boolean 
Algebra.) The names of the gates are even derived from Boolean 
algebra: There are AND-gates, OR-gates, and NOT-gates. By 
combining Boolean operators we also obtain two other common 
types of gates: NAND-gates and NOR-gates. Each type of gate 
regulates the flow of electric current subject to certain conditions.

The idea is that there is a very low-level current flowing through 
each circuit. This current is constant and has no effect on whether 
the gate is “open” or “closed.” When, however, the voltage of 
the input current rises above a certain prespecified level, the gate 
is activated. The level of voltage required to activate the gate is 
called the threshold voltage.

To see how Boolean algebra comes into play, we describe the 
AND-gate and the OR-gate. An AND-gate has two inputs, just 
as the Boolean operator AND has two arguments or independent 
variables. In the case of the AND-gate, we can let x represent the 
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voltage at one input and y represent the voltage at the other input. 
When the voltage x and the voltage y simultaneously exceed the 
threshold voltage, the AND-gate allows current to pass from one 
side to the other. If, however, the voltage in either or both of the 
inputs falls below the threshold voltage, current does not pass to 
the other side of the gate. It is in this sense that the AND-gate is a 
physical representation of Boole’s own AND operator. Instead of 
classes of objects, or binary digits, however, the AND-gate oper-
ates on electric current.

Similarly the OR-gate is designed to be inclusive, just as the more 
modern version of the Boolean operator OR is defined inclusively: 
If either x or y is true, then xORy is also true. The OR-gate oper-
ates on two inputs. We can represent the voltage in one input with 
the letter x and the voltage in the second input with the letter y. If 
either x or y is at or above the threshold voltage then the OR-gate 
allows the current to pass. Otherwise, the current does not pass.

The five gates—the AND-, OR-, NOT-, NOR-, and NAND-
gates—modify input in the form of electric currents to produce a 
new pattern of electrical currents as output. One can interpret the 
changes in current pattern—or what is the same thing, the state of 
the gates—as information, but this is an additional interpretation 
that is placed on the configuration of circuits. There could be no 
better physical representation of Boolean algebra than the logic 
circuits of a computer.

George Boole’s exposition of Boolean algebra is contained in a 
pamphlet, “Mathematical Analysis of Logic” (1847), and a book, 
An Investigation into the Laws of Thought on Which Are Founded 
the Mathematical Theories of Logic and Probabilities (1854). In these 
works we find not just a new branch of mathematics, but also a new 
way of thinking about mathematics. Boole’s approach was delib-
erately more abstract than that of his predecessors. This highly 
abstract approach, far from making his algebra useless, made his 
algebra one of the most useful of all mathematical innovations. 
The most important practical applications of Boole’s philosophical 
and mathematical investigations would not be apparent, however, 
until about a century after “Mathematical Analysis of Logic” was 
published.
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8
the theory of matrices 

and determinants

Many new types of algebraic structures have been defined and stud-
ied since the time of Galois. Today, in addition to groups and fields, 
mathematicians study algebraic structures called rings, semigroups, 
and algebras to name a few. (Here algebra refers to a particular type 
of mathematical object.) Each structure is composed of one or 
more sets of objects on which one or more operations are defined. 
The operations are rules for combining objects in the sets. The sets 
and operations together form a structure, and it is the goal of the 
mathematician to discover as much as possible about the logical 
relationships that exist among different parts of the structure.

In this modern approach to algebra the nature of the objects 
in the set is usually not specified. The objects are represented by 
letters. The letters may represent numbers, polynomials, or some-
thing else entirely, but usually no interpretation is placed on the 
letters at all. It is only the relationships that exist among objects 
and sets of objects—not the objects and sets themselves—that are 
of interest to the mathematician.

One of the first and most important of these “new” mathemati-
cal structures to receive the attention of mathematicians was the 
algebra of matrices. Matrices are tables of numbers or symbols. 
They combine according to some of the same rules that numbers 
obey, but some of the relationships that exist between matrices are 
different from the analogous relationships between numbers.

An important part of the theory of matrices is the theory of 
determinants. Today a determinant is often described as a function 
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of a matrix. For example, if the elements in the matrix are num-
bers, then—provided the matrix has as many rows as columns—we 
can, in theory, use those elements to compute a number called 
the determinant. The determinant reveals a great deal of useful 
information about the (square) matrix. If a matrix represents a 
system of equations, for example, then the determinant can tell us 
whether or not there exists a single solution to the system. In the-
ory we can even use determinants to compute solutions to systems 
of equations (although, as we will soon see, the work involved in 
doing so is usually enormous—too much work to make it a practi-
cal approach to problem solving).

The theory of matrices and determinants has proved to be one 
of the most useful of all branches of mathematics. Not only is 
the theory an important tool in the solution of many problems 
within the field of mathematics, it is also one of the most useful 
in science and engineering. One reason is that this is the type 
of mathematics that one must know in order to solve systems of 
linear equations. (A linear equation is an equation in which every 
term is either the product of a number and a variable of the first 
power or simply a number. For example, x + y = 1 is a linear 
equation, but x2 + y = 1 is not because the x term is raised to the 
second power.)

Most of us are introduced to systems of linear equations while 
we are still in junior or senior high school. These are “small” 
systems, usually involving two or three independent variables. We 
begin with small systems because the amount of work involved 
in solving systems of linear equations increases rapidly as the 
number of variables increases. Unfortunately these small systems 
fail to convey the tremendous scope of the subject. Today many 
mathematicians, scientists, and engineers are engaged in solving 
systems of equations involving many thousands of independent 
variables. The rush to develop computer algorithms that quickly 
and accurately solve ever-larger systems of equations has attracted 
the attention of many mathematicians around the world. The his-
tory of matrices, determinants, and related parts of mathematics, 
however, begins long before the advent of the computer.
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Early Ideas
Today when determinants and matrices are taught, matrices are 
introduced first, and determinants are described as functions of 
matrices. But historically determinants were discovered almost 
200 years before mathematicians began to study matrices.

The Japanese mathematician Seki Köwa, also known as Takakazu 
(1642–1708), was the first person to discover the idea of a determi-
nant and investigate some of the mathematics associated with this 
concept. Seki was born into a samurai warrior family, but at an early 
age he was adopted by a family of the ruling class. When Seki was 
age nine a family servant who knew mathematics introduced him to 
the subject. He demonstrated mathematical talent almost immedi-
ately, and later in life Seki became known as the Arithmetical Sage. 
Today he is often described as the founder of Japanese mathemat-
ics. This is something of an exaggeration. There was mathematics 
in Japan before Seki. Nevertheless he was certainly an important 
person in the history of Japanese mathematics.

The Arithmetical Sage published very little work during his 
life. In fact, as was the custom in Japan at the time, he disclosed 
much of his work to only a select few. As a consequence much 
of what we know about his discoveries is secondhand or third-
hand. Some scholars attribute a great many accomplishments 
to him: an (unproved) version of the fundamental theorem of 
algebra, discoveries in the field of calculus, complex algorithms 
for discovering solutions to algebraic equations, and more. Other 
scholars attribute quite a bit less. It is certain, however, that Seki 
discovered determinants, because his writings on this subject are 
well known.

Seki’s ideas on determinants are fairly complex, and he used 
them in ways that would be difficult to describe here. A simpler 
approach to determinants was discovered independently in Europe 
about 10 years after Seki made his initial discovery. The German 
mathematician and philosopher Gottfried Leibniz (1646–1716) 
was the second person to discover what we now call determinants.

Leibniz was one of the more important figures in the history 
of mathematics. He is one of two creators of the calculus, and he 
made a number of important discoveries in other areas of math-
ematics. He discovered, for example, the base 2 number system. 
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With respect to determinants, Leibniz indicated that he was 
sometimes required to solve a set of three linear equations involv-
ing two variables. Such a system may or may not have a solution. 
Leibniz discovered that the determinant could be used to establish 
a criterion for the existence or nonexistence of a solution.

In modern notation we might represent a system of three equa-
tions in two unknowns as follows:

a11 + a12x + a13y = 0

a21 + a22x + a23y = 0

a31 + a32x + a33y = 0

The letters aij represent numbers called coefficients. All the coef-
ficients on the left side of the column of “equals” signs can be 
viewed as part of a table. In that case the first index—the i-index—
indicates the row in which the number appears, and the second 
index—the j-index—indicates the column. (The coefficient a12, for 
example, belongs to the first row and the second column.) Notice 
that the first column contains no variables.

Leibniz’s system of equations contains more equations—there 
are three of them—than there are variables; there are only two 
variables. When the number of equations exceeds the number 
of variables, the possibility exists that there are simply too many 
constraints on the variables and that no values for x and y can 
simultaneously satisfy all the equations. Mathematicians today call 
such a system—a system for which there are no solutions—over-
determined. But even when there are more equations than there 
are variables, it is still possible that solutions exist. What Leibniz 
discovered is a criterion for determining whether such a system 
of equations is overdetermined. His criterion is very general, 
and it does not involve computing the solutions to the equations 
themselves. Instead it places a constraint on the numbers in the 
table of coefficients. The key is using the aij to compute a number 
that we now call the determinant. Leibniz wrote that when the 
determinant of this type of system is 0, a solution exists. When 
the determinant is not 0, there are no values of x and y that can 
simultaneously satisfy all three equations. In addition Leibniz 
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understood how to use determinants to calculate the values of the 
variables that would satisfy the system of equations.

Leibniz had made an important discovery: He had found a way 
to investigate the existence of solutions for an entire class of prob-
lems. He did this with a new type of function, the determinant, 
that depends only on the coefficients appearing in the equations 
themselves. He described his discoveries in letters to a colleague, 
but for whatever reason he did not publish these results for a wider 
audience. In fact Leibniz’s ideas were not published for more than 
150 years after his death. As a consequence his ideas on determi-
nants were not widely known among the mathematicians of his 
time and had little impact on the development of the subject.

Mathematicians again began to look at determinants as a tool in 
understanding systems of equations about 50 years after Leibniz 
first described his discoveries. Initially these ideas were stated and 
proved only for small systems of variables that in modern notation 
might be written like this:

a11x + a12y + a13z = b1

a21x + a22y + a23z = b2

a31x + a32y + a33z = b3

The notation is similar to what Leibniz used. The differences are 
that (1) here there are three equations in three variables and (2) 
the bi represent any numbers.

Part of the difficulty that these mathematicians had in applying 
their insights about determinants to larger systems of equations is 
that their algebraic notation was not good enough. Determinants 
can be difficult to describe without very good notation. The cal-
culation of determinants—even for small systems—involves quite 
a bit of arithmetic, and the algebraic notation needed to describe 
the procedure can be very complicated as well. For example, the 
determinant of the system in the previous paragraph is

a11a22a33 + a12a23a31 + a13a21a32

− a31a22a13 − a32a23a11 − a33a21a12
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(The general formula for computing determinants of square 
matrices of any size is too complicated to describe here. It can, 
however, be found in any textbook on linear algebra.)

Notice that for a general system of three equations in three 
unknowns the formula for the 3 × 3 matrix given in the preceding 
paragraph involves 17 arithmetic operations, that is, 17 additions, 
subtractions, and multiplications. Computing the determinant of 
a general system of four equations and four unknowns involves 
several times as much work when measured by the number of 
arithmetic operations involved.

In 1750 the Swiss mathematician Gabriel Cramer (1704–50) 
published the method now known as Cramer’s rule, a method 
for using determinants to solve any system of n linear equations 
in n unknowns, where n represents any positive integer greater 
than 1. Essentially Cramer’s rule involves computing multiple 
determinants. Theoretically it is a very important insight into the 
relationships between determinants and systems of linear equa-
tions. Practically speaking Cramer’s rule is of little use, because it 
requires far too many computations. The idea is simple enough, 
however. For example, in the system of equations given three para-
graphs previous, the solution for each variable can be expressed as 
a fraction in which the numerator and the denominator are both 
determinants. The denominator of the fraction is the determinant 
of the system of equations. The numerator of the fraction is the 
determinant obtained from the original system of equations by 
replacing the column of coefficients associated with the variable 
of interest with the column consisting of (b1, b2, b3). In modern 
notation we might write the value of x as

x

b a a
b a a
b a a
a a a
a a a

=

1 12 13

2 22 23

3 32 33

11 12 13

21 22 233

31 32 33a a a
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where the vertical lines indicate the determinant of the table of 
numbers inside. (One consequence of this formula is that it fails 
when the denominator is zero. But the denominator is the deter-
minant of the original system of equations. It can be shown that a 
unique solution for the system exists if and only if the denomina-
tor is not zero.) A more computational approach to expressing the 
value of x looks like this:

             b1a22a33 + a12a23b3 + a13b2a32 − b3a22a13 − a32a23b1 − a33b2a12   x = ———————————————————–——————
         a11a22a33 + a12a23a31 + a13a21a32 − a31a22a13 − a32a23a13 − a33a21a12

Writing out the solution in this way for a system of five equations 
with five unknowns would take up much of this page.

Putting the computation aside, it can be helpful to think of 
Cramer’s rule as a function of coefficients. The values of the 
function are the solutions to the equations. In concept, Cramer’s 
rule is similar to the quadratic formula, which enables the user 
to compute the solutions to equations of the form ax2 + bx + c = 
0 using only the numbers a, b, and c, the coefficients that appear 
in the equation. In other words, the quadratic formula allows one 
to identify x in terms of a, b, and c. Large systems of linear equa-
tions—and here we confine our attention to n linear equations 
in n unknowns—have many more coefficients than a quadratic 
equation and so the function is more complicated, but Cramer’s 
rule enables the user to identify x1, x2, . . . , xn in terms of a11, a12, 
a13, . . . , a21, a22, a23, . . . , ann, b1, b2, b3, . . . , bn.

In the years immediately following the publication of this meth-
od of solution, mathematicians expended a great deal of effort 
seeking easier ways to compute determinants for certain special 
cases as well as applications for these ideas. These ideas became 
increasingly important as they found their way into physics.

Spectral Theory
New insights into the mathematics of systems of linear equations 
arose as mathematicians sought to apply analysis, that branch of 
mathematics that arose out of the discovery of calculus, to the 
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study of problems in physics. The three mathematicians who 
pointed the way to these new discoveries were all French: Jean 
le Rond d’Alembert (1717–83), Joseph-Louis Lagrange (1736–
1813), and Pierre-Simon Laplace (1749–1827). All three math-
ematicians contributed to the ideas about to be described; of the 
three d’Alembert was the first.

Jean le Rond d’Alembert was the child of an artillery officer and 
a marquise. His birth mother abandoned him on the steps of the 
Parisian church of Saint Jean le Rond (where he got his name). 
He was adopted by the wife of an artisan who raised him as her 
own. He lived with her until her death—48 years later. When he 
later achieved prominence as a scientist, he spurned his biological 
mother’s attempts to make contact with him.

D’Alembert’s biological father never acknowledged his pater-
nity, but he made sure that his son had sufficient money for a first-
rate education. In college d’Alembert studied theology, medicine, 
and law, but he eventually settled on mathematics. Surprisingly, 
d’Alembert taught himself mathematics while pursuing his other 
studies, and except for a few private lessons he was entirely self-
taught.

Soon after beginning his mathematical studies, d’Alembert dis-
tinguished himself as a mathematician, a physicist, and a person-
ality. Never hesitant to criticize the work of others, d’Alembert 
lived a life marked by almost continuous controversy as well as 
mathematical and philosophical accomplishments. In his own 
day, d’Alembert was probably best known as the coeditor of the 
Encyclopédie with Denis Diderot. This was one of the great works 
of the Enlightenment.

With respect to systems of linear equations, d’Alembert was 
interested in developing and solving a set of equations that would 
represent the motion of a very thin, very light string along which 
several weights were arrayed. With one end tied to a support, 
the weighted string is allowed to swing back and forth. Under 
these conditions the motion of the string is quite irregular. Some 
mathematicians of the time believed that the motion was too com-
plicated to predict. D’Alembert, however, solved the problem for 
small motions of the string.
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The analytical details of d’Alembert’s solution are too compli-
cated to describe here, but the algebra is not. Broadly speaking 
d’Alembert reduced his problem to what is now known as an 
eigenvalue problem. A general eigenvalue problem looks like this:

As mathematicians uncovered connections between the eigenvalues of 
matrices and problems in astronomy, progress was accelerated in both 
algebra and astronomy. (NASA-JPL)
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a11x + a12 y + a13z = λx

a21x + a22 y + a23z = λy

a31x + a32 y + a33z = λz

In d’Alembert’s problem the unknowns, here represented by the 
letters x, y, and z, represented functions rather than numbers, but 
this distinction has no bearing on the algebra that we are inter-
ested in discussing.

This system of linear equations is different from the others we 
have considered in three important ways:

1.  The unknowns, x, y, and z, appear on both sides of each 
equation.

2.  The number represented by the Greek letter λ, or 
lambda, is also an unknown. It is called an eigenvalue 
of the system of equations.

3.  The goal of the mathematician is to find all eigenvalues 
as well as the solutions for x, y, and z that are associated 
with each eigenvalue. Each eigenvalue determines a 
different set of values for x, y, and z.

The problem of determining the eigenvalues associated with each 
system of equations is important because eigenvalues often have 
important physical interpretations.

D’Alembert discovered that the only reasonable solutions to his 
equations were associated with negative eigenvalues. Solutions asso-
ciated with positive eigenvalues—that is, solutions associated with 
values of λ greater than 0—were not physically realistic. A solution 
associated with a positive eigenvalue predicted that once the string 
was set in motion, the arc along which it swung would become larg-
er and larger instead of slowly “dying down” as actually occurs. The 
observation that eigenvalues had interesting physical interpretations 
was also made by other scientists at about the same time.

Pierre-Simon Laplace and Joseph-Louis Lagrange reached simi-
lar sorts of conclusions in their study of the motion of the planets. 
Their research also generated systems of linear equations, where 
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each unknown represented a function (as opposed to a number). 
They studied systems of six equations in six unknowns because at 
the time there were only six known planets. Laplace and Lagrange 
discovered that solutions associated with positive eigenvalues pre-
dicted that small perturbations in planetary motion would become 
ever larger over time. One consequence of Laplace’s and Lagrange’s 
observation is that any solution associated with a positive eigen-
value predicted that over time the solar system would eventually 
fly apart. Lagrange rejected positive eigenvalues on the basis of 
physical reasoning: The solar system had not already flown apart. 
Laplace ruled out the existence of positive eigenvalues associated 
with his system of equations on mathematical grounds. He proved 
that in a system in which all the planets moved in the same direc-
tion, the eigenvalues must all be negative. He concluded that the 
solar system is stable—that is, that it would not fly apart over time.

Notice the similarities between the model of the solar system and 
the weighted string problem of d’Alembert. In each case solutions 
associated with positive eigenvalues were shown to be “nonphysi-
cal” in the sense that they did not occur in nature. The connection 
between algebraic ideas (eigenvalues) and physical ones (weighted 
strings and planetary orbits) spurred further research into both.

To convey the flavor of the type of algebraic insights that 
Lagrange and Laplace were pursuing, consider the following 
eigenvalue problem taken from one of the preceding paragraphs. 
It is reproduced here for ease of reference.

a11x + a12 y + a13z = λx

a21x + a22 y + a23z = λy

a31x + a32 y + a33z = λz

Notice that we can subtract away each term on the right from 
both sides of each equation. The result is

(a11 − λ)x + a12 y + a13z = 0

a21x + (a22 − λ)y + a23z = 0

a31x + a32 y + (a33 − λ)z = 0
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This is a new set of coefficients. The coefficient in the upper left 
corner is now a11 − λ instead of simply a11. The middle coefficient 
is now a22 − λ instead of a22, and similarly the coefficient in the 
lower right corner is now a33 − λ instead of a33. The other coef-
ficients are unchanged. From this new set of coefficients a new 
determinant can be computed. (We can, in fact, use the formula 
already given for 3 × 3-matrices on page 146: Simply substitute a11 
− λ, a22 − λ, a33 − λ for a11, a22, and a33 in the formula.) The result 
is a third-degree polynomial in the variable λ. This polynomial is 
called the characteristic polynomial, and its roots are exactly the 
eigenvalues of the original system of linear equations.

The discovery of the characteristic polynomial established an 
important connection between two very important branches of 
algebra: the theory of determinants and the theory of algebraic 
equations. Laplace and Legendre had discovered the results for 
particular systems of equations, but there was as yet no general 
theory of either determinants or eigenvalues. Their work, how-
ever, pointed to complex and interesting connections among the 
theory of determinants, the theory of algebraic equations, and 
physics. This very rich interplay of different areas of mathematics 
and science is such a frequent feature of discovery in both fields 
that today we sometimes take it for granted. At the time of Laplace 
and Legendre, however, the existence of these interconnections 
was a discovery in itself.

The work of d’Alembert, Laplace, and Legendre gave a great 
impetus to the study of eigenvalue problems. Investigators wanted 
to understand the relationships that existed between the coef-
ficients in the equations and the eigenvalues. The result of these 
inquiries was the beginning of a branch of mathematics called 
spectral theory—the eigenvalues are sometimes called the spectral 
values of the system—and the pioneer in the theoretical study of 
these types of questions was the French mathematician Augustin-
Louis Cauchy (1789–1857).

Cauchy was born at a time when France was politically unstable. 
This instability profoundly affected both his personal and his 
professional life. First the French Revolution of 1789 occurred. 
While Cauchy was still a boy, the revolution was supplanted by 
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a period called the Reign of Terror (1793–94), a period when 
approximately 17,000 French citizens were executed and many 
more were imprisoned. In search of safety, Cauchy’s family fled 
Paris, the city of his birth, to a village called Arcueil. It was in 
Arcueil that Cauchy first met Laplace. Lagrange and Laplace were 
friends of Cauchy’s father, and Lagrange advised the elder Cauchy 
that his son could best prepare himself for mathematics by study-
ing languages. Dutifully Cauchy studied languages for two years 
before beginning his study of mathematics.

By the age of 21, Cauchy was working as a military engineer—at 
this time Napoléon was leading wars against his European neigh-
bors—and pursuing research in mathematics in his spare time. 
Cauchy wanted to work in an academic environment, but this goal 
proved difficult for him. He was passed over for appointments 
by several colleges and worked briefly at others. He eventually 
secured a position at the Académie des Sciences in 1816. There he 
replaced the distinguished professor of geometry Gaspard Monge, 
who lost the position for political reasons.

In July of 1830 there was another revolution in France. This 
time King Charles X was replaced by Louis-Philippe. As a con-
dition of employment Cauchy was required to swear an oath of 
allegiance to the new king, but this he refused to do. The result 
was that he lost the academic post that had meant so much to him. 
Cauchy found a position in Turin, Italy, and later in Prague in 
what is now the Czech Republic. By 1838 he was able to return to 
his old position in Paris as a researcher but not as a teacher: The 
requirement of the oath was still in effect, and Cauchy still refused 
to swear his allegiance. It was not until 1848, when Louis-Philippe 
was overthrown, that Cauchy, who never did swear allegiance, was 
able to teach again.

All biographies of Cauchy indicate that he was a difficult man, 
brusque and preachy. This is another reason that he often did not 
obtain academic appointments that he very much desired. This pat-
tern proved a source of frustration throughout his life. Even toward 
the end of his career, after producing one of the largest and most 
creative bodies of work in the history of mathematics, he still failed 
to gain an appointment that he sought at the Collège de France.
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Today there are theorems and problems in many branches of 
mathematics that bear Cauchy’s name. His ideas are fundamental 
to the fields of analysis, group theory, and geometry as well as 
spectral theory. After his death his papers were collected and pub-
lished. They fill 27 volumes.

One of Cauchy’s earliest papers was about the theory of deter-
minants. He revisited the problems associated with determinants 
and eigenvalues several times during his life, each time adding 
something different. We concentrate on two of his contributions, 
which we sometimes express in a more modern and convenient 
notation than Cauchy used.

Cauchy wrote determinants as tables of numbers. For example, 
he would write the determinant of the system of linear equations

a11x + a12 y + a13z = b1

a21x + a22 y + a23z = b2

a31x + a32 y + a33z = b3

as the table of numbers

a11 a12 a13

a21 a22 a23

a31 a32 a33

The coefficients a11, a22, a33 lie along what is called the main 
diagonal. Cauchy proved that when all the numbers in the table 
are real and when the table itself is symmetric with respect to the 
main diagonal—so that, for example, a12 = a21—the eigenvalues, 
or roots of the characteristic equation, are real numbers. This was 
the first such observation relating the eigenvalues of the equa-
tions to the structure of the table of numbers from which the 
determinant is calculated. Part of the value of this observation is 
that it enables the user to describe various properties of the eigen-
values without actually computing them. (As a practical matter, 
computing eigenvalues for large systems of equations involves a 
great deal of work.)
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Cauchy also discovered a kind of “determinant arithmetic.” 
In modern language he discovered that when two matrices are 
multiplied together in a certain way—see the sidebar Matrix 
Multiplication—the determinant of the product matrix is the prod-
uct of the determinants of the two matrices. In other words, if A 
and B are two square arrays of numbers, then det(A × B) = det(A) 
× det(B), where det(A) is shorthand for “the determinant of A.” 
These theorems are important because they hint at the existence 
of a deeper logical structure.

To better appreciate what “deeper logical structure” means, it 
helps to think about Euclidean geometry and what it means to 
study Euclidean geometry. What do students study when they 
study Euclidean geometry? A part of Euclidean geometry is devot-
ed, for example, to the study of triangles, but not every property of 
a triangle is geometric. Euclidean geometry is not concerned, for 
example, with how far from the edge of a blackboard or computer 
screen the triangle appears; nor does it matter how the triangle 
is tilted. These properties are not geometric. Instead, Euclidean 
geometry is concerned solely with those properties of a triangle 
that do not change when, for example, the triangle is rotated 
or translated. (A translation means that the triangle is moved so 
that its sides remain parallel to their original orientation.) These 
motions are called Euclidean motions (or Euclidean transforma-
tions), and so one can characterize Euclidean geometry as the 
study of those properties of figures that are invariant under the 
set of all Euclidean motions. Lengths are preserved under trans-
lations and rotations, for example, and so are the measures of 
angles. These properties of the triangle are, therefore, geometric 
in Euclidean geometry. In non-Euclidean geometries these prop-
erties may not be geometric.

In a similar sort of way, Cauchy had begun to identify properties 
of matrices and determinants that are invariant when the matrices 
undergo certain kinds of transformations. This idea is important 
because it is often the case that two algebraic descriptions of the 
same object look different but are in some sense the same. An 
equation, for example, can be imagined as a kind of description. 
It describes a set of numbers—the set of numbers that satisfy 
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the equation. The equation is not invariant under multiplication 
because multiplication of each term by any number (different 
from zero or one) will change every term in the equation. The 
solutions, however, are invariant under multiplication, because 
multiplying both sides of the equation by any nonzero number 
will leave the solution set unchanged. Invariant properties are 
fundamental properties, and Cauchy had begun the process of 
enumerating those properties of matrices, their determinants, and 
their associated characteristic polynomials that are invariant when 
the coefficients of the matrices are transformed in certain ways. To 
describe the specifics of these transformations would take us too 
far afield, but identifying the transformations and the properties 
that they leave unchanged is always a major step forward in any 
program of algebraic research—then as now. The mathemati-
cian studies exactly those properties of a system that are invariant 
under a specified class of transformations. Cauchy’s insights into 
these matters form an important part of the foundations of spec-
tral theory.

The Theory of Matrices
Credit for founding the theory of matrices is often given to the 
English mathematician Arthur Cayley (1821–95) and his close 
friend the English mathematician James Joseph Sylvester (1814–
97), but others had essentially the same ideas at roughly the same 
time. The German mathematicians Ferdinand Georg Frobenius 
(1849–1917) and Ferdinand Gotthold Max Eisenstein (1823–52) 
and the French mathematician Charles Hermite (1822–1901) are 
three mathematicians who also made discoveries similar to those 
of Cayley and Sylvester. Eisenstein, in fact, seems to have been the 
first to think of developing an algebra of matrices. He had been 
studying systems of linear equations of the form

a11x + a12 y + a13z = b1

a21x + a22 y + a23z = b2

a31x + a32 y + a33z = b3
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and began to consider the possibility of analyzing the mathemati-
cal properties of what is essentially the “skeleton” of the equation, 
the table of coefficients that today we would write as

a a a
a a a
a a a

11 12 13

21 22 23

31 32 33

















Although this idea may seem similar to that of Cauchy’s tables of 
coefficients, it is not. It is true that Cauchy used tables of numbers, 
but he used them as an alternate way of representing the determi-
nant function. Eisenstein contemplated the possibility of develop-
ing an algebra in which the objects of interest were not numbers, 
or the determinant function, or even polynomials, but rather 
matrices. Unfortunately he died before he could follow up on these 
ideas. In this discussion we follow the usual practice of emphasizing 
Cayley’s and Sylvester’s contributions, but it would, for example, be 
possible to describe the history of matrix algebra from the point of 
view of Frobenius, Eisenstein, and Hermite as well.

A great deal has been written about Cayley and Sylvester as 
researchers and as friends. Each distinguished himself in math-
ematics at university, Cayley at Trinity College, Cambridge, and 
Sylvester at Saint John’s College, Cambridge. Cayley’s early aca-
demic successes led to increased opportunities at college as well as 
a stipend. Sylvester’s early successes proved to be a source of frus-
tration. He was barred from a number of opportunities because of 
discrimination—he was Jewish—and he left Saint John’s without 
graduating. He would eventually receive his degrees in 1841 from 
Trinity College, Dublin.

When it came time to find employment as mathematicians, nei-
ther Cayley nor Sylvester found much in the way of work. Cayley 
solved the problem by becoming a lawyer. Sylvester, too, became 
a lawyer, but his route to the legal profession was more circuitous. 
In 1841 he left Great Britain and worked briefly on the faculty at 
the University of Virginia. He left the university several months 
later after an altercation with a student. Unable to find another 
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position in the United States, he returned to London in 1843 to 
work as an actuary. While working as an actuary, Sylvester tutored 
private pupils in mathematics, and it was during this time that he 
tutored the medical pioneer Florence Nightingale in mathematics. 
(Nightingale was a firm and early believer in the use of statistics 
to evaluate medical protocols.) Finally, in 1850 Sylvester turned 
to the legal profession to earn a living. That same year while 
they were both working as lawyers Cayley and Sylvester met and 
formed a lifelong friendship.

Cayley worked as a lawyer for 14 years before he joined the 
faculty at Cambridge in 1863. Sylvester worked as a lawyer for 
five years until he found a position at the Royal Military Academy, 
Woolwich. Cayley, a contemplative man, remained at Cambridge 
for most of the rest of his working life. The exception occurred 
when he spent a year at Johns Hopkins University in Baltimore, 
Maryland, at Sylvester’s invitation. By contrast Sylvester remained 
at Woolwich for 15 years and then, in 1876, moved back to the 
United States to work at Johns Hopkins University. (Sylvester 
played an important role in establishing advanced mathematical 
research in the United States.) In 1883 Sylvester returned to the 
United Kingdom to work at Oxford University.

Although they were both creative mathematicians their approach-
es to mathematics were quite different. Cayley spoke carefully and 
produced mathematical papers that were well reasoned and rig-
orous. By contrast, Sylvester was excitable and talkative and did 
not hesitate to substitute his intuition for a rigorous proof. He 
sometimes produced mathematical papers that contained a great 
deal of elegant and poetic description but were decidedly short on 
mathematical rigor. Nevertheless his intuition could usually be 
shown to be correct.

The theory of determinants, spectral theory, and the theory of 
linear equations had already revealed many of the basic proper-
ties of matrices before anyone conceived of the idea of a matrix. 
Arthur Cayley remarked that logically the theory of matrices pre-
cedes the theory of determinants, but historically these theories 
were developed in just the opposite order. It was Cayley, author of 
“A Memoir on the Theory of Matrices,” published in 1858, who 



160  ALGEBRA

first described the properties of matrices as mathematical objects. 
He had been studying systems of equations of the form

a11x + a12 y = u

a21x + a22 y = v

(Notice that in this set of equations the variables x and y are the 
independent variables and the variables u and v are the dependent 
variables.) Apparently in an effort to streamline his notation he 

simply wrote 
a a
a a

11 12

21 22







, a shorthand form of the same equation 

that preserves all of the information.
Having defined a matrix he began to study the set of all such 

matrices as a mathematical system. The most useful and richest 
part of the theory concerns the mathematical properties of square 
matrices of a fixed size—they are called the set of all n × n matri-
ces, where n represents a fixed natural number greater than 1. In 
what follows we restrict our attention to 2 × 2 matrices for sim-
plicity, but similar definitions and results exist for square matrices 
of any size.

Matrix addition is defined elementwise. Given a pair of 2 × 2 

matrices, which we can represent with the symbols 
a a
a a

11 12

21 22





 and 

b b
b b

11 12

21 22






, the sum of these two matrices is a b a b

a b a b
11 11 12 12

21 21 22 22

+ +
+ +






. (The

difference of the two matrices is simply obtained by writing a 
subtraction sign in place of the addition sign.) With this definition 

of matrix addition the matrix 0 0
0 0






 plays the same role as the 

number 0 in the real number system. (Notice that the set of matri-
ces of the same size—the set of 2×2 matrices, for example—form 
a group under the operation of addition.)

Cayley also defined matrix multiplication. The definition of 
matrix multiplication is not especially obvious to most of us, but 
to Cayley it was a simple matter because he and others had used 
this definition in the study of other mathematics problems, even 
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before he had begun the study of matrices (see the sidebar Matrix 
Multiplication).

There are differences between matrix arithmetic and the arith-
metic of numbers that we learn in grade school. One significant 
difference is that multiplication is not commutative: That is, the 
order in which we multiply two matrices makes a difference. 
Given two matrices, which we represent with the letters A and B, 
it is generally false that AB and BA are equal. Ordinary multiplica-
tion of numbers, by contrast, is commutative: 3 × 4 and 4 × 3, for 
example, represent the same number.

Another significant difference between matrix multiplication and 
the multiplication of numbers is that every number (except zero) 
has a multiplicative inverse. To appreciate what this means, recall 
that if the letter x represents a number other than zero, there is 
always another number, which we can write as x-1, such that x × x-1 
= 1. To be sure, the set of all n × n matrices has a matrix that cor-
responds to the number 1. This matrix, which is called the identity 
matrix and is usually represented by the capital letter I, has 1s along 
its main diagonal and zeros elsewhere. (Recall the main diagonal 
consists of those entries of the form a1,1, a2,2, . . . , an,n.) When the 
identity is multiplied by any matrix A, the result is A—in other 
words, IA = A and AI = A—and this, of course, is exactly what hap-
pens when a number is multiplied by the number 1. But there are 
some (nonzero) n × n matrices with no multiplicative inverse, or to 
put it another way, for some n × n matrices A, there is no matrix A-1 
such that A × A−1 = I. (Notice that because not every n × n matrix 
has an inverse, the set of all nonzero n × n matrices cannot form a 
group under multiplication because one of the group axioms is that 
every element in the set must have an inverse.)

There is an additional operation that one can perform in matrix 
arithmetic that connects the theory of matrices with ordinary 
numbers: Not only can one compute the product of two n × n 
matrices; it is also possible to multiply any matrix by a num-
ber. For example, if the letter c represents any number then the 

 product of c and the matrix 
a a
a a

11 12

21 22





 is ca ca

ca ca
11 12

21 22






.
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Cayley also investigated polynomials in which the variables that 
appear in the polynomial represent matrices instead of numbers. 
His most famous result is the relationship between a square matrix 
and its characteristic polynomial. On page 153, we described the 
characteristic polynomial of a matrix. Cayley showed that if the 
matrix is written in place of the variable in the characteristic poly-
nomial and the indicated operations are performed, the result is 
always the 0 matrix. In other words, each matrix satisfies the equa-
tion obtained by setting its characteristic polynomial to 0, so it is 
sometimes said that every matrix is a root of its own characteristic 
polynomial. This is called the Hamilton-Cayley theorem after 
Cayley and the Irish mathematician and astronomer Sir William 
Henry Rowan Hamilton (1805–65), who discovered the same 
theorem but from a different point of view.

In symbols, the Hamilton-Cayley theorem looks like this: Let A 
be a square n × n matrix. Let anλ

n + an − 1λ
n − 1 + . . . + a1λ + a0 be its 

characteristic polynomial, then anA
n + an − 1A

n − 1 + . . . a1A + a0 I = 0, 
where the symbol zero represents the n × n matrix that has zeros 
for all its entries.

Cayley was a prominent and prolific mathematician, but his 
work on matrices did not attract much attention inside Great 
Britain. Outside Great Britain it was unknown. Consequently 
many of his ideas were later rediscovered elsewhere. In the 1880s, 
James Joseph Sylvester, who in the intervening years had become 
one of the most prominent mathematicians of his time, turned his 
attention to the same questions that Cayley had addressed about 
three decades earlier. Whether Sylvester had read Cayley’s old 
monograph or rediscovered these ideas independently is not clear. 
In any case Sylvester’s work had the effect of drawing attention to 
Cayley’s earlier discoveries—a fact that seemed to please Sylvester. 
He always spoke highly of his friend—he once described Cayley’s 
memoir on matrices as “the foundation stone” of the subject—
but in this case Sylvester’s prominence and his emphasis on the 
contributions of Cayley had the effect of obscuring the work of 
Frobenius, Eisenstein, Hermite, and others.

Sylvester did more than rediscover Cayley’s work, however. 
Sylvester had made important contributions to the theory of 
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matrix multiplication

Matrix multiplication is defined for square matrices of a fixed but arbitrary 
size in such a manner that many of the laws that govern the arithmetic 
of ordinary numbers carry over to the matrix case. In what follows we 
restrict our attention to 2 × 2 matrices, but similar definitions apply to 
any n × n matrix.

Let the matrix
 

c c
c c

11 12

21 22





 

represent the product of the matrices a a
a a

11 12

21 22





 

and b b
b b

11 12

21 22






. Each number cij is obtained by combining the ith row of 

the “a-matrix” with the jth column of the “b-matrix” in the following way:

a a
a a

b b
b b

a b11 12

21 22

11 12

21 22

11 1





× 





= 11 12 21 11 12 12 22

21 11 22 21 21 21

+ +
+ +

a b a b a b
a b a b a b a222 22b







For example, to compute c12, which is equal to a11b12 + a12b22, multiply 
the first entry of the first row of the a-matrix by the first entry of the sec-
ond column of the b-matrix, then add this to the product of the second 
entry of the first row of the a-matrix multiplied by the second entry of the 
second column of the b-matrix. Here are some consequences of this 
definition of multiplication:

1.  The matrix 1 0
0 1






, usually denoted as I, plays the same role 

  as the number 1 in the real number system in the sense that 
AI = IA = A for all 2 × 2 matrices.

2.  If we let A, B, and C represent any three n × n matrices, 
then multiplication “distributes” over addition, just as in ordi-
nary arithmetic: A(B + C) = AB + AC.

3.  If we let A, B, and C represent any three n × n matrices, the 
associative property applies: A(BC) = (AB)C.

4. Matrix multiplication is not usually commutative: AB ≠ BA.

How did this definition of multiplication arise? Mathematicians, Cayley 

among them, had already studied functions of the form
 
z

a y a
a y a

=
+
+

11 12

21 22

. 

(continues)
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determinants for decades, and he had learned how to use deter-
minants to investigate a number of problems. In a sense he had 
become familiar with many of the problems that are important 
to the theory of matrices before discovering matrices themselves. 
(Sylvester himself coined the term matrix.)

Sylvester was interested in the relationships that exist between 
a matrix and its eigenvalues. He discovered, for example, that if A 
represents an n × n matrix and λ is an eigenvalue of A, then λj is an 
eigenvalue of the matrix Aj, where Aj represents the matrix product 
of A multiplied by itself j times. He produced other results in a 
similar vein. For example, suppose the matrix A has an inverse. Let 
A-1, represent the inverse of the matrix A so that A-1 × A equals the 
identity matrix, that is, the matrix with 1s down the main diagonal 
and 0s elsewhere. Let λ represent an eigenvalue of A; then λ-1—
also written as 1/λ—is an eigenvalue of A-1.

The work of Cayley, Sylvester, and others led to the develop-
ment of a branch of mathematics that proved to be very useful in 
ways that they could not possibly have predicted. For example, 
in the early years of the 20th century, physicists were searching 
for a way of mathematically expressing new ideas about the inner 

If we take a second function of the same form, say,
 
y

b x b
b x b

=
+
+

11 12

21 22

, and
 

we write
 

b y b
b x b

11 12

21 22

+
+  

in place of y in the expression for z, and finally 

perform all of the arithmetic, we obtain the following expression: 

z
a b a b x a b a b

a b a
=

+( ) + +( )
+

11 11 12 21 11 12 12 22

21 11 222 21 21 21 22 22b x a b a b( ) + +( ) . Compare this with the entries in the
 

product matrix already given. The corresponding entries are identical. It 
is in this sense that matrix multiplication was discovered before matrices 
were discovered!

matrix multiplication 
(continued)
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workings of the atom. These were the early years of that branch 
of physics called quantum mechanics. It turned out that the theory 
of matrices—developed by Cayley, Sylvester, Frobenius, Hermite, 
and Eisenstein in the preceding century—was exactly the right 
language for expressing the ideas of quantum mechanics. All the 
physicists needed to do was use the mathematics that had been 
previously developed. The theory of matrices proved useful in 
other ways as well.

Emmy Noether and the Theory of Rings
Mathematicians’ understanding of algebra as a mathematical 
discipline changed radically in the 20th century. For millennia 
equations were the subject matter of algebra. Mathematicians 
used algebra to state equations, and they used algebra to develop 
algorithms for solving equations. During the 19th century, they 
developed concepts and techniques that revealed when certain 
algorithms did not exist. (See the accounts of the work of Abel and 
Galois in chapter 6.) As the 19th century drew to a close, math-
ematicians became increasingly preoccupied with using algebra to 
make broad statements about the properties of systems of polyno-
mials, systems of matrices, and the properties of specific number 
systems. Today, however, a different conception of what it means 
to do algebraic research prevails. One of the most influential pio-
neers in the new algebra was the German mathematician Emmy 
Noether (1882–1935).

Emmy Noether demonstrated a talent for languages and math-
ematics. Her original intention was to teach foreign languages at 
a secondary school, and she received certifications in French and 
English. Eventually, however, she turned her attention to mathe-
matics. (Her father, Max Noether, was a prominent mathematician 
who taught at Erlangen University.) Emmy received a Ph.D. from 
Erlangen University, but at that time women were barred from 
becoming university faculty members. Occasionally, she taught at 
Erlangen in place of her father, but she did so without pay. Her math-
ematical talents had, however, been recognized by David Hilbert 
and Felix Klein, two of the most  prominent  mathematicians in the 
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world at the time. Both were 
on the faculty at Göttingen 
University, which for genera-
tions had been home to some 
of the world’s most success-
ful mathematicians. Although 
Hilbert and Klein petitioned 
the university to waive its rules 
and hire Noether as a fac-
ulty member, they were ini-
tially unsuccessful. Instead, she 
taught classes under Hilbert’s 
name. Her stature as a math-
ematician continued to grow, 
however, and soon mathema-
ticians from around the world 
went to Göttingen to hear 
her lectures. Finally, the uni-
versity relented, and Noether 
became a faculty member at 
Göttingen. She remained at 
Göttingen until the National 

Socialist German Workers’ Party (Nazi Party) came to power. 
Noether, who was Jewish, left Germany for the United States. She 
found a position at Bryn Mawr College in late 1933, and in 1935 
she died from complications following surgery.

Early in her career, Noether’s best-known contribution was in 
the area of mathematical physics. (At Hilbert’s request she had 
investigated a question relating to the theory of relativity.) But her 
first interest was algebra. To appreciate part of her contribution 
in this area, it helps to know that some of her earliest research 
involved the decomposition of polynomials—that is, she studied 
the problem of representing higher degree polynomials as prod-
ucts of lower order polynomials. (The polynomial x3 − 1 can, for 
example, be factored using only real numbers as (x − 1)(x2 + x + 1). 
If complex numbers are allowed then it can be factored as (x − 1)
(x + [1 + 3i]/2)(x + [1 − 3i/2].) The decompositions that are pos-

Emmy Noether, whose abstract 
approach to the study of algebra 
revolutionized how mathematicians 
everywhere understood the 
subject (Special Collections 
Department, Bryn Mawr College)
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sible depend upon the numbers that one is willing to accept as 
roots and the numbers that appear as coefficients. She was also 
interested in the factorization of integers. (Every integer can be 
written [factored] as a product of prime numbers. The number 
24, for example, can be factored as 23 × 3, and the number 33 
can be factored as 3 × 11. Prime numbers are their own factors.) 
Factoring integers and factoring polynomials have a lot in com-
mon. One of Noether’s great insights was to identify what these 
two different-looking systems (and others!) have in common and 
to study an abstract model of all such systems. The name for this 
abstract model is a ring. Noether did not “discover” rings. Other 
mathematicians before her had used the concept to study integers 
and polynomials. What Noether did was to introduce the study of 
abstract rings, which were generalized models of classes of specific 
mathematical systems.

To understand Noether’s insight, consider, for example, the set 
of polynomials with rational numbers as coefficients, and consider 
the set of integers. We will represent the set of all such polynomi-
als with the letter P, and we will represent the set of all integers 
with the letter Z. Both sets have a lot in common. The following 
is a list of some of their commonalities:

1.  The set P forms a group under the operation of addi-
tion and so does the set Z. (The group axioms as they 
apply to the symmetry group of a square are listed on 
pages 116–117, or see the glossary.)

2.  For both P and Z, addition is commutative, which is 
another way of saying that it is always true that a + b = b 
+ a whether a and b represent integers or polynomials.

3.  If two elements of P are multiplied together, the result 
is another element of P, and if two elements of Z are 
multiplied together, the result is another element in Z.

4.  Multiplication of elements in both sets is associative, 
which is another way of saying that it is always true 
that a × (b × c) = (a × b) × c, whether a, b, and c represent 
integers or polynomials.
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5.  Multiplication distributes over addition, which is 
another way of saying that it is always true that a × (b + 
c) = a × b + a × c whether a, b, and c represent integers 
or polynomials.

Noether’s idea was to consider an arbitrary set, which we can 
represent as {a, b, c, . . .}, and two operations defined on this set. 
Let the “+” sign denote one of the operations and the “×” sign 
denote the other operation. We can say that these signs repre-
sent addition and multiplication, although this is just a matter 
of convenience since we do not know what, if anything, the 
letters in the set represent. We suppose that under these opera-
tions, conditions 1–5 are satisfied. The resulting mathematical 
“structure” is called a ring, and conditions 1–5 are the axioms 
that define a particular type of ring called an “associative ring.” 
(We can, if we choose, change the axioms somewhat to obtain 
different types of rings—other axioms can be added depending 
on the needs of the researcher—but as a matter of definition 
conditions 1 through 5 must be satisfied in order for the object 
to be called a ring.)

Noether discovered that rings have a rich mathematical struc-
ture in the sense that she could prove many theorems about any set 
that satisfies the ring axioms. At first glance, this might not seem 
to be significant since she was proving theorems about relation-
ships among sets of letters. This activity requires a certain mental 
agility, but it might seem to be no more significant than solving a 
crossword puzzle. What makes Noether’s approach important is 
that what is true of an abstract ring—for example, an abstract asso-
ciative ring—is true for every mathematical system that conforms 
to the axioms that define an abstract associative ring. The set P of 
all polynomials with rational coefficients, the set Z of integers, the 
set of all n × n matrices with the operations defined earlier (the n 
in “n × n matrices” is fixed but arbitrary so, for example, the list 
includes the set of all 2 × 2 matrices and the set of all 1,000 × 1,000 
matrices), and the set of all even integers under the usual defini-
tions of addition and multiplication are examples of associative 
rings. Many other examples exist. By studying an abstract associa-
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tive ring, Noether was able to make important statements about 
the logical structure of all associative rings.

Early in the 20th century, mathematicians were faced with an 
incredible array of different-looking systems. A discovery about 
the property of one system might also apply to other similar sys-
tems, but this was not always clear because there was no rigorous 
definition of what “similar” meant. What Emmy Noether did—at 
least in algebra, at least for rings—was to introduce a different 
way of looking at mathematical systems. She demonstrated that 
many concrete systems of numbers, polynomials, and matrices, for 
example, had enough in common that they could be adequately 
represented by a single abstract model. Theorems that were 
proved within the context of the model also applied to all of the 
systems that the model represented. She did not just generate 
new knowledge about algebra, she introduced a new conception 
of algebra. Algebra became concerned with the study of abstract 
“structures,” models that represented classes of concrete objects.

Nicolas Bourbaki and Mathematical Structure
Modern mathematics has been heavily influenced by Nicolas 
Bourbaki. Paul Halmos, an important mathematician in his own 
right, called Bourbaki “. . . one of the most influential mathemati-
cians of the 20th century.” But Halmos’s tribute was only partly 
serious. Although Bourbaki produced a number of important and 
influential books, including a landmark text on algebra, Bourbaki 
did not exist. Nicolas Bourbaki is a pseudonym for a group of 
French mathematicians. Despite—or perhaps because of—chang-
es in membership, the group continued to publish for decades. 
(Members were supposed to quit at age 50.)

The Nicolas Bourbaki group began to meet in the mid-1930s 
with the goal of producing a text on calculus that would “. . . 
define for 25 years the syllabus for the certificate in differential 
and integral calculus . . .” Driven by the perception that France 
had fallen behind Germany in mathematical research, the original 
Bourbaki project included some of the best mathematicians of 
the era, including Henri Cartan (1904–2008), Jean Dieudonné 
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(1906–92), and Andre Weil (1906–98) among others. Nicolas 
Bourbaki was supposed to be a collaborative effort at producing 
mathematical works that emphasized modern concepts. Members 
would occasionally meet face-to-face, and they regularly published 
an in-house newsletter that enabled the participants to exchange 
ideas and debate about the best way to proceed on each project.

The group produced articles and books. Among the books was 
a 10-volume set called Eléments de mathématique, which included 
the following titles: Theory of Sets, Algebra, General Topology, 
Functions of a Real Variable, Topological Vector Spaces, Integration, Lie 
Groups and Lie Algebras, Commutative Algebra, Spectral Theories, and 
Differential and Analytic Manifolds. Among the articles was an oft-
quoted work entitled, “The Architecture of Mathematics.” This 
article raised a question that is still debated today: Is mathematics 

Faced with an increasingly diverse collection of mathematical objects 
and logical structures, members of the Nicolas Bourbaki group sought to 
identify unifying concepts. (Stewart Dickson)
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a single branch of knowledge or has it become a “tower of Babel” 
comprised of numerous disciplines isolated from each other by 
disparate methods, goals, and vocabulary? Most mathematicians 
would agree that it is better if experts in different branches of 
mathematics can communicate across their areas of expertise. In 
this way, they can exchange ideas, recognize common problems, 
and share common solutions, but as mathematics has become 
increasingly specialized this has become harder to accomplish. 
The unity of the field could be maintained, according to Bourbaki, 
by emphasizing the axiomatic method in the discovery of math-
ematical truth and by placing a greater emphasis on the role of 
mathematical structures. The existence of such structures enables 
mathematicians to simplify.

One sometimes hears criticism of the abstract nature of math-
ematics—that it is unnecessarily complicated. Mathematicians’ 
emphasis on symbolic language as opposed to plain prose, for 
example, is sometimes characterized as confusing. Why use a 
symbol when a word will do? But this criticism stems from a mis-
understanding about the nature of mathematics. Mathematicians 
must be precise when they say something if they are to say any-
thing meaningful, and they have learned through experience that 
an abstract language is the simplest way to present mathematical 
ideas precisely. One page of algebraic symbols may be worth 100 
pages of plain prose—assuming that the ideas can be expressed in 
plain prose at all.

An abstract approach to mathematics is not just simpler; it is also 
conceptually more powerful. Theorems proved about one abstract 
mathematical structure apply to all instances of that structure. 
What Noether had done with rings, Bourbaki attempted to impose 
across all of mathematics. By attempting to identify (or create) a 
mathematical architecture that would reveal how different branch-
es of mathematics are related to each other, they hoped to demon-
strate that mathematics is a conceptually unified whole, a universe 
of the mind, and not just a jumbled collection of isolated results.

Not only was it necessary, therefore, to create and exploit 
models of classes of systems—groups, rings, fields, and so on—it 
was also necessary to specify how these conceptual models were 
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related to each other. Some mathematical groups, for example, 
are more general than others. Recall that in the discussion of the 
symmetry transformations of the square (see chapter 6) there was 
a subgroup, the group of rotations, that was “nested” within the 
larger group. One could say, therefore, that the group of sym-
metry transformations of the square has a richer structure than 
the group of rotations of the square. Many other examples of 
this nesting phenomenon exist within the class of groups, within 
the class of rings, and within the class of fields. But every ring 
contains a group and every field contains a ring. Consequently, 
there are important relations between the class of groups and the 
class of rings, between the class of groups and the class of fields, 
and between the class of rings and the class of fields. And there 
are other algebraic structures in addition to the ones mentioned 
here. (There is not enough space in this book to discuss them all.) 
Explicitly identifying how these structures and classes of struc-
tures are related to each other is an enormous task, but if it can 
be accomplished, it will be easier to understand how ideas in one 
branch of mathematics apply to other branches of mathematics. It 
will be easier to see mathematics as a unified whole.

Although Bourbaki emphasized the role of structure and even 
developed criteria for delineating relationships between struc-
tures, their program was not especially successful in developing 
an overarching theory of mathematical structure. Another theory, 
called category theory, has superseded Bourbaki’s ideas about 
structure. (A description of category theory requires too much 
mathematical background to be given here.) It is too soon to say, 
however, whether or not category theory will reveal a unifying 
structure or set of structures that apply across all of mathemat-
ics; whether or not it will prove to be an all-embracing theory in 
which each discipline has its own place and its own set of relation-
ships with other disciplines.

The Problem Solvers
Because a great deal of academic algebraic research is concerned 
with the study of abstract groups, rings, fields, and other algebraic 
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objects, it is easy to lose sight of the fact that many mathematicians 
continue to work full-time developing better algorithms. They are 
the problem solvers, the intellectual descendants of Brahmagupta, 
al-Khwārizmı̄, and Tartaglia. The difference is that the equations 
(and the algorithms) have changed.

Computation has always been an important part of mathematics. 
It remains important today, but now most computations are per-
formed by computers. Consequently, the search for better algo-
rithms usually means the search for better computer algorithms. 
Computers process and store information in ways that are quite 
different from the ways that people perform these same tasks, and 
the best algorithms make essential use of these differences. In 
addition, the types of problems that computers solve are different 
from the types of problems that people solve.

Systems of linear equations are of special interest to researchers 
who concentrate on so-called numerical methods. In concept, the 
linear systems studied by researchers have the same properties as 
the linear systems that students learn to solve in junior and senior 
high school. A model for a three-variable system can be written 
like this:

a11x + a12 y + a13z = b1

a21x + a22 y + a23z = b2

a31x + a32 y + a33z = b3

or it can be written in matrix form like this:

 (8.1)

    

a a a
a a a
a a a

x
y
z

11 12 13

21 22 23

31 32 33
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The a11, a12, . . . appearing in the 3 × 3 matrix are called the coef-
ficients of the matrix. They are numbers. The b1, b2, and b3 also 
represent numbers. The x, y, and z are the “unknowns.” What is 
new about the systems of linear equations used in modern scientific 
computations is their size. The systems studied by contemporary 
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researchers are so large that no person could ever write one down—
never mind solve it. Such large systems require their own special-
ized algorithms. Not that the techniques used to solve small systems 
of equations—the types we learn in school—are “wrong.” In theory, 
the same techniques that are used to solve small systems can also be 
used to solve large ones, but while the techniques used to solve small 
systems are conceptually correct, they are seldom useful in solving 
larger systems. The techniques that are used to solve systems of 
equations by hand are just too slow and too labor intensive—even 
for a computer—when they are applied to very large systems of 
equations.

Any engineer, scientist, or mathematician who requires a state-
of-the-art computer to solve a problem is usually allocated a fixed 
amount of time to obtain a solution. The reason is that other 
researchers are waiting to use the same computer. The supply of 
powerful computers is limited, and demand for access to these 
machines is strong. If an algorithm is inefficient, then a research-
er’s problem may not be solved in the allocated time—in which 
case it might not be solved at all—or one problem may be solved 
when two could have been solved. Solving problems as efficiently 
as possible can mean the difference between success and failure for 
a program of research.

One important class of algorithms, for example, is the class of 
sparse matrix techniques. Many scientific and engineering problems 
produce very large systems of linear equations in which most of 
the coefficients are zero. Sparse matrix techniques have no mean-
ing for the systems of linear equations that one encounters in 
high school because those systems have so few coefficients that it 
hardly matters whether some of the coefficients are zero or not. 
But when there are many millions of coefficients, sparse matrix 
techniques can mean the difference between solving the problem 
and not solving it.

Sparse matrix techniques are used both to store and to manipu-
late matrices. The storage techniques are called compression 
techniques. A simple example of a matrix compression technique 
would be to store only the numbers a11, a22, and a33 instead of the 
entire sparse matrix
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The techniques become more sophisticated as the sparse matrices 
become less ordered.

There are also a variety of methods for solving problems involv-
ing sparse matrices. The goal of these algorithms is to exploit the 
sparse structure of the matrix. To better appreciate why special-
ized algorithms are necessary, consider the problem of solving a 
system of linear equations in which the matrix has n columns and 
n rows. The number of entries in such a matrix is n2. If we count 
the number of simple arithmetic operations—that is, the number 
of additions, subtractions, multiplications, and divisions—needed 
to compute the inverse of an n × n matrix, the number of opera-
tions is roughly proportional to n3. When n equals 3, as it does 
in equation 8.1, we might compute the inverse to the matrix, 
and then multiply both sides of the equation by the inverse. The 
result would be an equation with the variables isolated on one side 
and the answers on the other. By hand, this is a lot of work, but 
students all around the world do this everyday in linear algebra 
classes. (To be clear about the procedure just described, in one 
dimension it looks like this: The equation corresponding to equa-
tion 8.1 would be ax = b, and the solution, which is obtained by 
multiplying both sides of the equation by the “1 × 1 matrix” a–1, is 
x = b / a. A similar sort of procedure is possible when a represents 
an n × n matrix with a nonzero determinant and b and x are n × 1 
matrices. We omit the details of how this is done.)

Now consider a problem that involves a matrix with 1,000 rows 
and 1,000 columns. If this problem were written out, it would look 
like equation 8.1 but much bigger. It would, for example, have 
1,000 variables instead of three. (A problem involving 1,000 vari-
ables is a small problem by contemporary standards.) The number 
of entries in a 1,000 × 1,000 matrix is 1 million, and the number 
of operations needed to compute the inverse of such a matrix is 
roughly proportional to 1,000 × 1,000 × 1,000, or 1 billion. If the 
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number of variables again increased by a factor of 10, the number 
of operations needed to compute the inverse would increase by 
a factor of about 1,000. It would, therefore, be proportional to 1 
trillion. The larger the problem, the more critical it is, therefore, 
to use the best possible algorithms. The work increases rapidly as 
the number of variables increases, and if the matrix is sparse, the 
use of sparse matrix techniques becomes critical to obtaining a 
solution in the allotted time.

Another aspect of contemporary computational mathemat-
ics that extends the ideas described in this book concerns the 
development of new types of coordinate systems. To see why new 
coordinate systems are necessary, recall that a great deal of clas-
sical mathematics is concerned with the visualization of functions 
defined over sets containing infinitely many points. Part of the 
reason for mathematicians’ preference for infinite sets over finite 
ones is that infinite point sets often simplify the study of functions. 
But computers do not make use of the infinite. They only require 
that there are “enough” points to complete the computation, and 
a finite number of points is always sufficient for computation. 
Often the only points that the computers use are “grid points,” 
those points where coordinate lines cross. (Imagine a plane with a 
Cartesian coordinate system, then the grid points could be exactly 
those points with integer coordinates.)

If the grid points with integer coordinates are too far apart for a 
particular application, they can be supplemented by drawing addi-
tional lines parallel to the y-axis and passing through the points 
(m/n, 0) and with lines parallel to the x-axis and passing through 
the points (0, m/n), where n is a fixed natural number greater than 
1 and m is any integer. At the points where these lines intersect 
each other, additional grid points are created. In theory, this 
method of introducing more grid points always works provided 
n is large enough. One can always create enough grid points to 
enable the computer to produce an accurate picture of the func-
tion in question. In practice, however, the method fails because it 
is terribly inefficient. As more points are introduced, the amount 
of computation required to evaluate the function at all of the grid 
points rises rapidly—too rapidly for the method to be practical.



The Theory of Matrices and Determinants  177

The key to creating an efficient coordinate system is to intro-
duce additional grid points only where they are needed. In a 
region where a function changes very slowly, a few grid points are 
all that is required to create an accurate visualization of the graph 
of the function. By contrast, in a region where a function changes 
rapidly—its graph may contain, for example, many oscillations 
in a small region or a single sharp isolated cusp—the computed 
graph will fail to reveal the presence of these features if the grid 
points are spaced too far apart. The computation will fail for the 
same reason one cannot convey the tempo of a piece of music 
with a single snap of the fingers—there is not enough information 
to draw firm conclusions. Consequently, the coordinate system 
must be adapted to the specific function under consideration. 
Grid points must be placed far apart in regions where the func-
tion changes slowly, and they must be densely packed in regions 
where the function changes rapidly. Coordinate systems with this 
property are called adaptive, and the techniques used to create the 
adaptive systems are called numerical grid generation techniques.

Today, there is a branch of mathematics specifically concerned 
with the creation of adaptive coordinate systems. Individuals con-
cerned with establishing the necessary algorithms (and proving 
that the algorithms have the necessary properties) are the intellec-
tual successors to Descartes and Fermat, the first mathematicians 
to recognize the utility of coordinate systems in the study of func-
tions. (See, for example, the interview with Dr. Bonita Saunders 
in the Afterword.)

Numerical algorithms for computers are highly specialized. The 
language, the techniques, and the concepts that researchers use 
in the development of these algorithms are understood by a rela-
tively small number of individuals, but most of us are somewhat 
familiar with the numerical simulations that result when these 
techniques are used in conjunction with powerful computers. 
Sometimes we see the simulations on television or on the Web or 
we see photographs in books. Combustion engineers, meteorolo-
gists, biochemists, aerospace engineers, and many others use these 
simulations in two essential ways. First, the simulations are used 
to gain insight into the phenomena that each researcher seeks to 
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model. Second, the simulations also enable engineers and scien-
tists to better understand the limitations of their models by com-
paring the outcomes of their simulations to experimental results. 
It is no exaggeration to say that contemporary scientific progress 
would be impossible without these highly specialized algorithms.

An adaptive coordinate system on a rectangular region punctured by a large 
and a small hole. It is used to calculate the effects of heating around the 
edge of the larger hole. Notice the coordinate system is highly irregular. In 
particular, the coordinate lines are dense in areas of rapid change and less 
dense elsewhere. This coordinate system enables the investigator to efficiently 
use the power of the computer. The creation of such coordinate systems is an 
important discipline within applied mathematics. (www.sandia.gov)



179

conclusion

Mathematics is unique in the way that it progresses. To see the 
difference, compare mathematics with science. Contemporary 
astronomers do not much concern themselves with what ancient 
Greek astronomers thought, because they know that most of what 
ancient Greek astronomers thought was true is false. Modern 
astronomy has replaced ancient astronomy. By contrast, what 
Greek mathematicians proved true 2 millennia ago is still true 
today. It has not been replaced; nor will it be replaced. The reason 
is that in mathematics logic is the only criteria by which truth is 
judged. Mathematically speaking, if something is logical it is cor-
rect. A future logical deduction cannot prove a previous logical 
deduction was incorrect. The situation is different for scientists. 
They may produce logical results, but their discoveries must also 
agree with the world as it is revealed by experiment. Mathematics 
is under no such restriction. Science grows in a (more or less) 
linear way. New results replace old ones. Mathematics grows 
like a quilt. One patch is added to another—no replacement, just 
accumulation.

Algebra is as old as civilization. Every civilization that has left 
written records has left records of algebraic calculations, some 
more sophisticated than others, and for most of history algebra 
was concerned with equations. Mathematicians sought better ways 
to state equations and to solve them. This aspect of algebra is still 
important. Many mathematicians are developing software that 
efficiently solves huge or complicated systems of equations. New 
breakthroughs in hardware require innovations in software and 
vice versa. The mathematics is complex and the results are aston-
ishing. The scale of these calculations would have been inconceiv-
able to mathematicians even a few generations ago, and much of 
modern life depends on the continued success of these mathemati-
cians. Algebra as a collection of algorithms is a mathematical tradi-
tion that dates back to the mathematicians of Mesopotamia who 
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carefully pressed the results of their computations into slabs of wet 
clay and the mathematicians of ancient China who recorded their 
results in the form of elegantly drawn characters.

In the 20th century, many mathematicians turned their atten-
tion to the development and study of generalized models of 
mathematical systems. They sought to identify what was essential 
in a class of systems and to discard the rest. The essential parts 
were stated in the form of axioms, and once the axioms were 
determined, the act of mathematical discovery was “reduced” to 
drawing logical conclusions from the axioms. Examples of these 
axiomatic systems include abstract groups, rings, and fields. So 
successful was this approach that it has become the major preoc-
cupation of academic mathematicians. The creation and study of 
abstract models have led to a simplification of mathematics. Many 
formerly disparate branches of mathematics are now perceived as 
applications of certain basic principles applied to specific systems. 
Without the simplification made possible by this higher level of 
abstraction, contemporary mathematics would just be a jumble of 
disconnected results.

Today some have turned their attention to the development 
of abstract models that would be powerful enough to reveal the 
structure of mathematics as a whole. The search for these larger 
structures has, so far, only been partly successful, but the fact 
that mathematicians can conceive of the question and achieve 
some success in formulating an answer shows just how far alge-
bra has progressed. Progress in algebra is, as it has always been, 
an essential component of progress in science, engineering, and 
mathematics.
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afterword

an interview with  
dr. bonita saunders on 
the digital library of 

mathematical functions

Dr. Bonita Saunders is a 
research mathematician at the 
National Institute of Standards 
and Technology (NIST), one of 
the primary federal centers for 
research in the physical sciences. 
She is a graduate of the College 
of William and Mary, and she 
received her Ph.D. from Old 
Dominion University. While 
studying for her Ph.D., she 
performed research at NASA’s 
Langley Research Center on the 
application of numerical grid 
generation to problems in com-
putational fluid dynamics. She 
has published extensively on the 
subjects of numerical grid gen-
eration and on techniques for 
the visualization of functions. This interview took place on February 
11, 2010.

Dr. Bonita Saunders (Dr. Bonita 
Saunders)
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Tabak: Could you tell me a little bit about NIST and the work 
that you do there?

Saunders: NIST is a governmental agency that falls under the 
Department of Commerce. Its mission is to develop measure-
ment standards and technology that help U.S. industries com-
pete—whether it’s within the country or globally. I’m a research 
mathematician in the Mathematical and Computational Sciences 
Division, which comes under the Information Technology 
Laboratory. My duties are basically to develop software and 
design techniques that facilitate the solving of problems in the 
mathematical and physical sciences and to consult with the other 
laboratories at NIST.

Tabak: What caught my eye about the work that you do at NIST 
was the research you have done on visualizing functions—in partic-
ular, the Digital Library of Mathematical Functions (DLMF). What 
was the motivation for compiling this “dictionary” of functions?

Saunders: The DLMF is actually a handbook containing the for-
mulas, properties, and graphs of mathematical functions impor-
tant in the physical sciences. There are two parts to it. There’s the 
digital library part of it, which will be freely available on the web, 
and the book version, which will be called the NIST Handbook of 
Mathematical Functions. It is designed to replace another hand-
book of mathematical functions that’s still widely used—the 
NBS Handbook of Mathematical Functions, edited by Abramowitz 
and Stegun and published in 1964 by the National Bureau of 
Standards (NBS), the former name of NIST.

Tabak: I’m familiar with it.

Saunders: And even though the book goes all the way back to 
1964 and really hasn’t been changed much over the years, it’s still 
one of the most cited publications to come out of NIST or NBS. 
It’s still used by the physical sciences community. There was a 
push within the community—especially within the physics com-
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munity—for an update of the book. It was decided that we would 
not only update it, but completely rewrite it, expand it, and also 
put it on the Web as a digital library.

The authors of the chapters—just as in the original hand-
book—come from many different places. They are mathemati-
cians, physicists, and engineers from all over the United States 
and abroad who are key experts on the definitions and properties 
of the functions. The project is a pretty big endeavor. The edit-
ing, organization, and initial validation of the chapters—and the 
design and construction of the digital library, which includes a 
mathematical search engine and interactive visualizations—were 
done at NIST. An international team of experts is responsible for 
the final validation of the chapters.

Tabak: Could you talk a little bit about the applications for these 
functions and how you chose the functions that are included?

Saunders: It’s kind of interesting to look at the original handbook. 
You have these high-level mathematical functions that arise as 
solutions to physical problems—

Tabak: First, could you explain what you mean by a “high-level” 
mathematical function?

Saunders: High-level mathematical functions are also called 
special functions. Some examples would be Bessel functions, Airy 
functions, hypergeometric functions, or orthogonal polynomials. 
When trying to solve partial differential equations that model 
some kind of physical process, a researcher might discover that 
the equations reduce to simpler equations. The form or structure 
of the new equations may suggest that a particular mathematical 
function is the solution. 

By looking at the definition and properties of the function in 
the Handbook the researcher can determine whether that is the 
case. If correct, the scientist may not only have an exact solu-
tion to his problem, but also gain qualitative information about 
how the solution behaves—where its value is zero, if and where 
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it blows up, where its maximum and minimum values are. This 
may give the scientist more information than simply solving the 
initial equations on a computer. Even if the new equations don’t 
exactly match those of the special function, this initial analysis 
may still give the scientist clues about what to look for when 
trying to solve the original equations numerically, that is, on a 
computer.

Tabak: So the functions are used in meteorology? Fluid dynam-
ics? Aeronautics?

Saunders: Practically any area where physical phenomena are 
modeled by equations. For instance, the Airy functions come up in 
the field of optics—solving problems in that area. Bessel functions 
can be found in applications involving heat conduction, hydrody-
namics, and computational fluid dynamics.

Tabak: Have there been many changes in the list of functions 
between the 1964 edition of the Handbook and today’s?

Saunders: Most of the functions that are in the ’64 edition are 
in the current edition, but some new functions have been added. 
In the original edition there were a lot of tables of values. Now 
that you can use many computer packages to get as many values 
of a function as you want, most of the tables have been taken out. 
While the original edition was about 1,000 pages, the new edition 
was expected to be much smaller, but there was so much additional 
information that the new edition is also close to 1,000 pages.

Tabak: When they computed values for the functions in 1964, 
they computed values at regularly spaced grid points. I gather 
that is not what you are doing now. Could you talk a little about 
numerical grid generation—what that involves and why you do it?

Saunders: Probably most computations would still be done over a 
regularly spaced grid, but I used numerical grid generation to cre-
ate accurate graphs of the functions. While the original handbook 
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contains very few graphs, the new handbook will have more than 
400 color graphs and the digital version, close to 500. The digital 
library will also have more than 200 interactive 3-D visualizations 
of function surfaces.

So the grid generation comes up in trying to make the graphs 
and visualizations as accurate as possible. You want the data to be 
accurate, but you also want the graph or the plot to be accurate. 
To ensure data accuracy, we compute the function several differ-
ent ways using whatever software or available information that we 
have—commercial codes, FORTRAN code, or even the chapter 
author’s personal code. We then compare the results and try to 
determine the cause of any discrepancies.

Once we know the data are accurate, we also want the plot to 
be realistic.

Tabak: Yes—

Saunders: Because you can have accurate data and still not have a 
graph that really shows the key features of that function—

Tabak: And how would that happen? How could you have accu-
rate data and yet have a graph that was inaccurate?

Saunders: Suppose you try to plot a function over variables x and 
y with a standard commercial package. If you select the function 
and simply ask for a plot over a given x-range and y-range, you 
may get a surface plot that misses key areas. For example, if the 
function being plotted represents the absolute value of another 
function it might have a sharp cusp where the value is zero. If 
there are not enough data points near the cusp, you may not see 
it. If there is a point where the function has a pole—that is, the 
function goes off to infinity—how does the package show that? 
It can’t show infinity. It has to stop somewhere. The area around 
a pole usually looks similar to a stove pipe that goes on forever. 
Some packages automatically choose a height, cut off the stove 
pipe, and cover it. This makes it look like the covered area is part 
of the function. Other packages just connect whatever points are 
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in the vicinity of the pole. When there are several poles this can 
create a jagged effect that looks like a mountain range.

We wanted to make sure we brought out the key features of each 
function and made the graphs look as accurate as possible—show-
ing cusps, zeros, poles, branch cuts (where the function splits into 
multiple values). So basically, that’s where the grid generation 
comes in. I design a grid that brings out those key features, and I 
compute the value of the function at the grid points to obtain the 
graph. And so how do I know where the key features are?

Tabak: Yes, I was going to ask—

Saunders: A variety of ways. I may do an initial computation of 
the function using a package. If I see an area where it looks like 
there might be something, then I investigate that area more care-
fully. I may also talk to the chapter author or read the author’s 
draft to get information about poles, branch cuts or whatever. It’s 
an exploration. You’re trying to get as much information as you 
possibly can.

Once I have that information I have an idea for how the grid 
should look. If I am going to capture a cusp, I have to find the 
location of the zeros—where the function is equal to zero. I make 
sure those points are on the grid. If there’s a pole, or if the values 
of the function become very large (or small) on the region over 
which I want to compute the function, I try to decide at what 
height I want to stop the function. Do I want it to go up to 5, or 
20, or 30? Then I compute the contour of the function for that 
height. For example, if I choose a maximum height of, let’s say, 10 
then I compute the locations where that function will have a value 
of 10, and I use that contour to create a boundary for the grid that 
I will use to compute the function over.

Tabak: So the grid lies on the plane like curves on a topographi-
cal map?

Saunders: That’s exactly what you have. For example, to bring 
out the features of the Airy function I chose a very short height—
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about 3. So I compute the contour curves for a height of 3, and 
then I connect those curves so that I have a closed boundary. So 
instead of computing the function over a rectangular boundary, I 
compute it over a boundary that has the contour shapes in it. It 
gives me a nice clipping of the function, a nice smooth cut, and I 
don’t have to worry about a ragged edge at the top. The contour 
for a pole will usually look like a small circle and probably be in 
the interior of the domain. That means my grid will have a hole 
in it. When I compute the function over the grid, the function 
surface will be clipped so that I get a nice smooth cut at the height 
I selected. This produces a graph that is more accurate, less con-
fusing, and aesthetically more pleasing.

Tabak: So just to be sure that I understand: The coordinate sys-
tem that you use for a function will look like a topographical map. 
Some lines run around the sides of features—like lines running 
around the sides of mountains on a map—and these are lines of 
constant height. And some lines run down the sides of the features 
like lines running down the sides of the mountains. Then you 
compute the values of the function at the points where the lines 
intersect?

Saunders: That’s the general idea. It’s a little more complex than 
that. What you are saying would probably take more time. What 
I’m doing is something called numerical grid generation. Basically, 
that’s the development of curvilinear coordinate systems. Do you 
know about polar coordinate systems?

Tabak: Sure.

Saunders: A polar coordinate system is basically a curvilinear 
coordinate system, where you have a mapping from a rectangle to 
a circle. The rectangle has coordinates r and θ (theta)—that is, x 
= r cos θ and y = r sin θ—so on the rectangle you have the axis of 
the r and θ, and on the other side, on the physical side, you have 
x and y. You can think of this rectangle as being mapped to the 
circle. Your lines of constant r map to concentric circles on the 
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other side, and your lines of constant θ are mapped to rays ema-
nating from the center of the circle. Numerical grid generation is 
a generalization of that idea. You have a mapping, that is, a func-
tion, where you have a rectangle or square, mapped to something 
that has an arbitrary shape. So I set up my mapping so that I’m 
mapping my rectangle to whatever shape I want—the domain with 
the contour boundary, for instance.

Now as I set up this mapping the question is, “How do I fill in 
the coordinate lines on the contour-shaped domain?” Well, my 
mapping is made of splines, which are functions that are piecewise 
polynomials. It maps a square to the contour-shaped domain over 
which I want to compute the special function. Let’s say I call the 
coordinates for the square domain, c and d, and the coordinates 
for the contour-shaped domain, x and y. In a similar fashion as 
the polar coordinate system, lines of constant c or d values on the 
square are mapped to lines (or they may look like curves) on the 
contour-shaped domain. The lines will cross each other to produce 
what looks like a net, or grid. The points of intersection are called 
the grid points. Each (c,d) ordered pair on the square is mapped 
to an (x,y) ordered pair on the contour-shaped domain. The grid 
generation mapping must be carefully defined so that the grid lines 
do not intersect adjacent lines or overlap the domain boundary.

Once I have the grid on the contour-shaped domain, I compute 
the special function at the grid points to obtain the plot data for 
the graph. So I will have a list of x, y, and z values where z is the 
value of the special function at the ordered pair (x,y).

Tabak: If this were the 1960s, you would stop here and publish a 
table of numbers, right? This is your table. But this is an adaptive 
table—adapted to the individual function. So in an area where the 
function behaves in a complicated way the table of values would 
cluster in that area, and then the data would spread out over areas 
where the function varies less?

Saunders: It’s somewhat adaptive now, and I’m trying to make it 
more so. That is basically the idea. Where I have a cusp—a place 
where the surface comes to a sharp point at a zero—I will have 
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more points there so you can really see that and try to make sure 
that a grid point actually hits the location of the zero. Near a pole 
the surface may rise or decrease very quickly, so you probably need 
more points around there. Yes, that’s the idea.

Tabak: OK.

Saunders: This concept of numerical grid generation actually 
comes from computational fluid dynamics. Numerical grid gener-
ation was my area of research for my Ph.D. dissertation. I studied 
this as a graduate researcher at NASA Langley Research Center. 
This technique is actually used to develop boundary fitted grids to 
solve partial differential equations for aerodynamic problems. For 
example, numerical grid generation has commonly been used to 
study the design of airfoils—you know, a cross section of a wing?

Tabak: Right.

Saunders: For the two-dimensional study of flow past a wing they 
designed a grid with an airfoil shape in the middle. The grid points 
are concentrated near the boundary of the airfoil. They use the 
grid to solve partial differential equations that model the motion 
of the air as the wing moves through it.

When we started looking at the problem of trying to develop 
accurate grids for graphing, I realized that it was actually just a 
numerical grid generation problem—that I could use the same 
techniques that I used for problems in computational fluid dynam-
ics in this problem of graphing. This was a win-win situation for 
me. I was able to do more research in grid generation and also do 
work that helped NIST at the same time.

Tabak: Now you have the grid. The next step is to turn the values 
on the grid into a surface?

Saunders: I used the grid to produce a table of ordered triples 
(x,y,z). So I now have a table of values that can be plotted to pro-
duce a surface.
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Tabak: At this point in the process, we can imagine it as a three-
dimensional space with a finite number of points in it, right? The 
points on the surface?

Saunders: Right. Our next step was to figure out a way to put 
the data into a file format that could be viewed on the Web. After 
doing some research and talking to people at NIST who knew 
something about developing Web-based graphics, we decided to 
use VRML (Virtual Reality Modeling Language) and later X3D 
(Extensible 3D). These formats are specially made for displaying 
and manipulating 3-D objects on the Web. We collaborated with 
NIST computer scientists who were able to develop routines to 
translate our data into the VRML and X3D file formats. These 
formats are recognized by special browsers and plug-ins that users 
can download for free. With the VRML/X3D browser the user 
can not only display the surface, but also perform several interac-
tive maneuvers—rotate the surface, zoom in and out, or use any of 
the custom features we have included. For example, the user can 
change the scale of the surface in the x-, y-, or vertical direction. 
Scaling down close to 0 in the vertical direction yields a special 
type of contour plot called a density plot. And our cutting plane 
feature allows the user to see the intersection curves that develop 
when a plane moves through the surface.

Tabak: I had read about that. It reminds me of the way that the 
ancient Greeks generated their conic sections. They imagined the 
cone and then they would cut it with a plane to get their curve, 
right?

Saunders: Right.

Tabak: These software packages allow you, essentially, to connect 
the points and produce a surface. Now you have a surface. But 
these are transcendental functions so the values are approximate 
and the surface is a continuum, but you’ve calculated the surface 
from a finite collection of points. That’s a lot of approximations. 
So after you’ve done all of this work—and I know that you have 
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produced many of these visualizations—how do you know that the 
surfaces are correct? How do you check your work?

Saunders: The same way that I figure out what I’m looking for. 
I look at all the information that I have about the function. Even 
though high-level math functions can be very complicated, they 
tend to be fairly smooth in most regions. Anomalies tend to stand 
out. Also, you always have an approximation; you just want to 
make sure that the accuracy of the approximation is acceptable. 
You actually have a little more freedom when it comes to a graph 
or visualization of a function because the level of detail that your 
eye can detect is limited. The number of digits needed for a pre-
cise graph of a function is usually far fewer than the number of 
digits of accuracy needed to use the function in calculations to 
solve a problem. Once you get past a certain point, adding more 
digits of accuracy to the data points won’t give a more accurate 
picture to the eye. That’s why my primary concern is to find out 
where the key features—poles, zeros, and branch cuts—are and 
make sure those features are presented clearly.

Tabak: So the finished product will look like a landscape and your 
software allows you to move over the landscape and look at it from 
certain points of view or to look at some region more closely or 
from further away. Is that a fair characterization?

Saunders: Yes, basically. Except in this case it will look like you 
are moving the surface. We have also put in fixed viewpoints that 
you can cycle through. And we color the surface two ways. One 
color map is designed so that the color on the surface changes with 
the height of the function—

Tabak: I caught that scheme, but I didn’t understand the second 
scheme.

Saunders: The other way we color it is according to the argu-
ment of the function. These functions have complex values, and 
complex numbers can also be written in the form a + ib = reiθ, and 
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θ is the argument, also called the phase. The color at a particular 
surface point is then based on the argument of the function at that 
point. There is also a four-color scheme where the surface color 
identifies the quadrant in which the phase angle lies.

Tabak: When is this project scheduled to be completed?

Saunders: Very soon.

Tabak: Is that right?

Saunders: The book version is already at the publisher. They’re 
trying to get it ready, and we want the Web site to be ready at the 
same time—probably within two or three months.

Tabak: Congratulations. It’s nice that it will be ready to view when 
people read this interview. (laughter)

Saunders: It is being published by Cambridge University Press.

Tabak: This was very interesting. I especially enjoyed learning 
how all of these ideas come together to produce a finished prod-
uct. Thank you very much for your time and your expertise.

Saunders: Thank you.
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c h r o n o l o g y

ca. 3000 b.c.e.
Hieroglyphic numerals are in use in Egypt.

ca. 2500 b.c.e.
Construction of the Great Pyramid of Khufu takes place.

ca. 2400 b.c.e.
An almost complete system of positional notation is in use in Meso-
potamia.

ca. 1650 b.c.e.
The Egyptian scribe Ahmes copies what is now known as the Ahmes 
(or Rhind) papyrus from an earlier version of the same document.

ca. 585 b.c.e.
Thales of Miletus carries out his research into geometry, marking 
the beginning of mathematics as a deductive science.

ca. 540 b.c.e.
Pythagoras of Samos establishes the Pythagorean school of phi-
losophy.

ca. 500 b.c.e.
Rod numerals are in use in China.

ca. 420 b.c.e.
Zeno of Elea proposes his philosophical paradoxes.

ca. 399 b.c.e.
Socrates dies.

ca. 360 b.c.e.
Eudoxus, author of the method of exhaustion, carries out his 
research into mathematics.
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ca. 350 b.c.e.
The Greek mathematician Menaechmus writes an important work 
on conic sections.

ca. 347 b.c.e.
Plato dies.

332 b.c.e.
Alexandria, Egypt, center of Greek mathematics, is established.

ca. 300 b.c.e.
Euclid of Alexandria writes Elements, one of the most influential 
mathematics books of all time.

ca. 260 b.c.e.
Aristarchus of Samos discovers a method for computing the ratio of 
the Earth-Moon distance to the Earth-Sun distance.

ca. 230 b.c.e.
Eratosthenes of Cyrene computes the circumference of Earth.

Apollonius of Perga writes Conics.

Archimedes of Syracuse writes The Method, On the Equilibrium of 
Planes, and other works.

206 b.c.e.
The Han dynasty is established; Chinese mathematics flourishes.

ca. c.e. 150
Ptolemy of Alexandria writes Almagest, the most influential astron-
omy text of antiquity.

ca. c.e. 250
Diophantus of Alexandria writes Arithmetica, an important step 
forward for algebra.

ca. 320
Pappus of Alexandria writes his Collection, one of the last influential 
Greek mathematical treatises.
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415
The death of the Alexandrian philosopher and mathematician 
Hypatia marks the end of the Greek mathematical tradition.

ca. 476
The astronomer and mathematician Aryabhata is born; Indian 
mathematics flourishes.

ca. 630
The Hindu mathematician and astronomer Brahmagupta writes 
Brahma Sphuta Siddhānta, which contains a description of place-
value notation.

ca. 775
Scholars in Baghdad begin to translate Hindu and Greek works 
into Arabic.

ca. 830
Mohammed ibn-Mūsā al-Khwārizmı̄ writes Hisāb al-jabr wa’l 
muqābala, a new approach to algebra.

833
Al-Ma’mūn, founder of the House of Wisdom in Baghdad, Iraq, 
dies.

ca. 840
The Jainist mathematician Mahavira writes Ganita Sara Samgraha, 
an important mathematical textbook.

1086
An intensive survey of the wealth of England is carried out and 
summarized in the tables and lists of the Domesday Book.

1123
Omar Khayyám, the author of Al-jabr w’al muqābala and the Rubái-
yát, the last great classical Islamic mathematician, dies.

ca. 1144
Bhaskara II writes the Lilavati and the Vija-Ganita, two of the last 
great works in the classical Indian mathematical tradition.
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ca. 1202
Leonardo of Pisa (Fibonacci), author of Liber abaci, arrives in Europe.

1360
Nicholas Oresme, a French mathematician and Roman Catholic 
bishop, represents distance as the area beneath a velocity line.

1471
The German artist Albrecht Dürer is born.

1482
Leonardo da Vinci begins to keep his diaries.

ca. 1541
Niccolò Fontana, an Italian mathematician, also known as Tarta-
glia, discovers a general method for factoring third-degree alge-
braic equations.

1543
Copernicus publishes De revolutionibus, marking the start of the 
Copernican revolution.

1545
Girolamo Cardano, an Italian mathematician and physician, pub-
lishes Ars magna, marking the beginning of modern algebra. Later 
he publishes Liber de ludo aleae, the first book on probability.

1579
François Viète, a French mathematician, publishes Canon math-
ematicus, marking the beginning of modern algebraic notation.

1585
The Dutch mathematician and engineer Simon Stevin publishes 
“La disme.”

1609
Johannes Kepler, author of Kepler’s laws of planetary motion, pub-
lishes Astronomia nova.

Galileo Galilei begins his astronomical observations.
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1621
The English mathematician and astronomer Thomas Harriot dies. 
His only work, Artis analyticae praxis, is published in 1631.

ca. 1630
The French lawyer and mathematician Pierre de Fermat begins a 
lifetime of mathematical research. He is the first person to claim to 
have proved “Fermat’s last theorem.”

1636
Gérard (or Girard) Desargues, a French mathematician and engi-
neer, publishes Traité de la section perspective, which marks the begin-
ning of projective geometry.

1637
René Descartes, a French philosopher and mathematician, pub-
lishes Discours de la méthode, permanently changing both algebra 
and geometry.

1638
Galileo Galilei publishes Dialogues Concerning Two New Sciences 
while under arrest.

1640
Blaise Pascal, a French philosopher, scientist, and mathematician, 
publishes Essai sur les coniques, an extension of the work of Desargues.

1642
Blaise Pascal manufactures an early mechanical calculator, the Pas-
caline.

1654
Pierre de Fermat and Blaise Pascal exchange a series of letters about 
probability, thereby inspiring many mathematicians to study the 
subject.

1655
John Wallis, an English mathematician and clergyman,  
publishes Arithmetica infinitorum, an important work that pres-
ages calculus.
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1657
Christiaan Huygens, a Dutch mathematician, astronomer, and 
physicist, publishes De ratiociniis in ludo aleae, a highly influential 
text in probability theory.

1662
John Graunt, an English businessman and a pioneer in statistics, 
publishes his research on the London Bills of Mortality.

1673
Gottfried Leibniz, a German philosopher and mathematician, con-
structs a mechanical calculator that can perform addition, subtrac-
tion, multiplication, division, and extraction of roots.

1683
Seki Köwa, Japanese mathematician, discovers the theory of 
determinants.

1684
Gottfried Leibniz publishes the first paper on calculus, Nova metho-
dus pro maximis et minimis.

1687
Isaac Newton, a British mathematician and physicist, publishes 
Philosophiae naturalis principia mathematica, beginning a new era in 
science.

1693
Edmund Halley, a British mathematician and astronomer, under-
takes a statistical study of the mortality rate in Breslau, Germany.

1698
Thomas Savery, an English engineer and inventor, patents the first 
steam engine.

1705
Jacob Bernoulli, a Swiss mathematician, dies. His major work on 
probability, Ars conjectandi, is published in 1713.

1712
The first Newcomen steam engine is installed.
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1718
Abraham de Moivre, a French mathematician, publishes The Doc-
trine of Chances, the most advanced text of the time on the theory 
of probability.

1743
The Anglo-Irish Anglican bishop and philosopher George Berkeley 
publishes The Analyst, an attack on the new mathematics pioneered 
by Isaac Newton and Gottfried Leibniz.

The French mathematician and philosopher Jean Le Rond 
d’Alembert begins work on the Encyclopédie, one of the great works 
of the Enlightenment.

1748
Leonhard Euler, a Swiss mathematician, publishes his Introductio.

1749
The French mathematician and scientist Georges-Louis Leclerc, 
comte de Buffon publishes the first volume of Histoire naturelle.

1750
Gabriel Cramer, a Swiss mathematician, publishes “Cramer’s rule,” 
a procedure for solving systems of linear equations.

1760
Daniel Bernoulli, a Swiss mathematician and scientist, publishes his 
probabilistic analysis of the risks and benefits of variolation against 
smallpox.

1761
Thomas Bayes, an English theologian and mathematician, dies. His 
“Essay Towards Solving a Problem in the Doctrine of Chances” is 
published two years later.

The English scientist Joseph Black proposes the idea of latent heat.

1769
James Watt obtains his first steam engine patent.
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1781
William Herschel, a German-born British musician and astrono-
mer, discovers Uranus.

1789
Unrest in France culminates in the French Revolution.

1793
The Reign of Terror, a period of brutal, state-sanctioned repres-
sion, begins in France.

1794
The French mathematician Adrien-Marie Legendre (or Le Gen-
dre) publishes his Éléments de géométrie, a text that influences math-
ematics education for decades.

Antoine-Laurent Lavoisier, a French scientist and discoverer of the 
law of conservation of mass, is executed by the French government.

1798
Benjamin Thompson (Count Rumford), a British physicist, pro-
poses the equivalence of heat and work.

1799
Napoléon seizes control of the French government.

Caspar Wessel, a Norwegian mathematician and surveyor, pub-
lishes the first geometric representation of the complex numbers.

1801
Carl Friedrich Gauss, a German mathematician, publishes Disqui-
sitiones arithmeticae.

1805
Adrien-Marie Legendre, a French mathematician, publishes Nouvelles 
méthodes pour la détermination des orbites des comètes, which contains the 
first description of the method of least squares.

1806
Jean-Robert Argand, a French bookkeeper, accountant, and math-
ematician, develops the Argand diagram to represent complex 
numbers.
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1812
Pierre-Simon Laplace, a French mathematician, publishes Théorie 
analytique des probabilités, the most influential 19th-century work on 
the theory of probability.

1815
Napoléon suffers final defeat at the battle of Waterloo.

Jean-Victor Poncelet, a French mathematician and the “father of pro-
jective geometry,” publishes Traité des propriétés projectives des figures.

1824
The French engineer Sadi Carnot publishes Réflexions sur la puis-
sance motrice du feu, wherein he describes the Carnot engine.

Niels Henrik Abel, a Norwegian mathematician, publishes his 
proof of the impossibility of algebraically solving a general fifth-
degree equation.

1826
Nikolay Ivanovich Lobachevsky, a Russian mathematician and “the 
Copernicus of geometry,” announces his theory of non-Euclidean 
geometry.

1828
Robert Brown, a Scottish botanist, publishes the first descrip-
tion of Brownian motion in “A Brief Account of Microscopical 
Observations.”

1830
Charles Babbage, a British mathematician and inventor, begins work 
on his analytical engine, the first attempt at a modern computer.

1832
János Bolyai, a Hungarian mathematician, publishes Absolute Science 
of Space.

The French mathematician Évariste Galois is killed in a duel.

1843
James Prescott Joule publishes his measurement of the mechanical 
equivalent of heat.
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1846
The planet Neptune is discovered by the French mathematician 
Urbain-Jean-Joseph Le Verrier from a mathematical analysis of the 
orbit of Uranus.

1847
Georg Christian von Staudt publishes Geometrie der Lage, which 
shows that projective geometry can be expressed without any con-
cept of length.

1848
Bernhard Bolzano, a Czech mathematician and theologian, dies. 
His study of infinite sets, Paradoxien des Unendlichen, is first pub-
lished in 1851.

1850
Rudolph Clausius, a German mathematician and physicist, pub-
lishes his first paper on the theory of heat.

1851
William Thomson (Lord Kelvin), a British scientist, publishes “On 
the Dynamical Theory of Heat.”

1854
George Boole, a British mathematician, publishes Laws of Thought. 
The mathematics contained therein makes possible the later design 
of computer logic circuits.

The German mathematician Bernhard Riemann gives the historic 
lecture “On the Hypotheses That Form the Foundations of Geom-
etry.” The ideas therein play an integral part in the theory of relativity.

1855
John Snow, a British physician, publishes “On the Mode of Com-
munication of Cholera,” the first successful epidemiological study 
of a disease.

1859
James Clerk Maxwell, a British physicist, proposes a probabilistic 
model for the distribution of molecular velocities in a gas.

Charles Darwin, a British biologist, publishes On the Origin of Spe-
cies by Means of Natural Selection.
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1861
Karl Weierstrass creates a continuous nowhere differentiable 
function.

1866
The Austrian biologist and monk Gregor Mendel publishes his ideas 
on the theory of heredity in “Versuche über Pflanzenhybriden.”

1872
The German mathematician Felix Klein announces his Erlanger 
Programm, an attempt to categorize all geometries with the use of 
group theory.

Lord Kelvin (William Thomson) develops an early analog com-
puter to predict tides.

Richard Dedekind, a German mathematician, rigorously estab-
lishes the connection between real numbers and the real number 
line.

1874
Georg Cantor, a German mathematician, publishes “Über eine 
Eigenschaft des Inbegriffes aller reelen algebraischen Zahlen,” a 
pioneering paper that shows that all infinite sets are not the same 
size.

1890
The Hollerith tabulator, an important innovation in calculating 
machines, is installed at the United States Census for use in the 
1890 census.

Giuseppe Peano publishes his example of a space-filling curve.

1894
Oliver Heaviside describes his operational calculus in his text Elec-
tromagnetic Theory.

1895
Henri Poincaré publishes Analysis situs, a landmark paper in the 
history of topology, in which he introduces a number of ideas that 
would occupy the attention of mathematicians for generations.
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1898
Émile Borel begins to develop a theory of measure of abstract sets 
that takes into account the topology of the sets on which the mea-
sure is defined.

1899
The German mathematician David Hilbert publishes the definitive 
axiomatic treatment of Euclidean geometry.

1900
David Hilbert announces his list of mathematics problems for the 
20th century.

The Russian mathematician Andrey Andreyevich Markov begins 
his research into the theory of probability.

1901
Henri-Léon Lebesgue, a French mathematician, develops his 
theory of integration.

1905
Ernst Zermelo, a German mathematician, undertakes the task of 
axiomatizing set theory.

Albert Einstein, a German-born American physicist, begins to pub-
lish his discoveries in physics.

1906
Marian Smoluchowski, a Polish scientist, publishes his insights into 
Brownian motion.

1908
The Hardy-Weinberg law, containing ideas fundamental to popula-
tion genetics, is published.

1910
Bertrand Russell, a British logician and philosopher, and Alfred 
North Whitehead, a British mathematician and philosopher, pub-
lish Principia mathematica, an important work on the foundations of 
mathematics.
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1913
Luitzen E. J. Brouwer publishes his recursive definition of the con-
cept of dimension.

1914
Felix Hausdorff publishes Grundzüge der Mengenlehre.

1915
Wacław Sierpiński publishes his description of the now-famous 
curve called the Sierpiński gasket.

1917
Vladimir Ilyich Lenin leads a revolution that results in the founding 
of the Union of Soviet Socialist Republics.

1918
World War I ends.

The German mathematician Emmy Noether presents her ideas on 
the roles of symmetries in physics.

1920
Zygmunt Janiszewski, founder of the Polish school of topology, 
dies.

1923
Stefan Banach begins to develop the theory of Banach spaces.

Karl Menger publishes his first paper on dimension theory.

1924
Pavel Samuilovich Urysohn dies in a swimming accident at the age 
of 25 after making several important contributions to topology.

1928
Maurice Frechet publishes his Les espaces abstraits et leur théorie con-
sidérée comme introduction à l’analyse générale, which places topologi-
cal concepts at the foundation of the field of analysis.
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1929
Andrey Nikolayevich Kolmogorov, a Russian mathematician, pub-
lishes General Theory of Measure and Probability Theory, establishing 
the theory of probability on a firm axiomatic basis for the first 
time.

1930
Ronald Aylmer Fisher, a British geneticist and statistician, pub-
lishes Genetical Theory of Natural Selection, an important early 
attempt to express the theory of natural selection in mathematical 
language.

1931
Kurt Gödel, an Austrian-born American mathematician, publishes 
his incompleteness proof.

The Differential Analyzer, an important development in analog 
computers, is developed at Massachusetts Institute of Technology.

1933
Karl Pearson, a British innovator in statistics, retires from Univer-
sity College, London.

Kazimierz Kuratowski publishes the first volume of Topologie, which 
extends the boundaries of set theoretic topology (still an important 
text).

1935
George Horace Gallup, a U.S. statistician, founds the American 
Institute of Public Opinion.

1937
The British mathematician Alan Turing publishes his insights on 
the limits of computability.

Topologist and teacher Robert Lee Moore begins serving as presi-
dent of the American Mathematical Society.

1939
World War II begins.

William Edwards Deming joins the United States Census Bureau.
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The Nicolas Bourbaki group publishes the first volume of its Élé-
ments de mathématique.

Sergey Sobolev elected to the USSR Academy of Sciences after 
publishing a long series of papers describing a generalization of the 
concept of function and a generalization of the concept of deriva-
tive. His work forms the foundation for a new branch of analysis.

1941
Witold Hurewicz and Henry Wallman publish their classic text 
Dimension Theory.

1945
Samuel Eilenberg and Saunders Mac Lane found the discipline of 
category theory.

1946
The Electronic Numerical Integrator and Calculator (ENIAC) 
computer begins operation at the University of Pennsylvania.

1948
While working at Bell Telephone Labs in the United States, Claude 
Shannon publishes “A Mathematical Theory of Communication,” 
marking the beginning of the Information Age.

1951
The Universal Automatic Computer (UNIVAC I) is installed at 
U.S. Bureau of the Census.

1954
FORmula TRANslator (FORTRAN), one of the first high-level 
computer languages, is introduced.

1956
The American Walter Shewhart, an innovator in the field of quality 
control, retires from Bell Telephone Laboratories.

1957
Olga Oleinik publishes “Discontinuous Solutions to Nonlinear 
Differential Equations,” a milestone in mathematical physics.
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1965
Andrey Nikolayevich Kolmogorov establishes the branch of math-
ematics now known as Kolmogorov complexity.

1972
Amid much fanfare, the French mathematician and philosopher 
René Thom establishes a new field of mathematics called catastro-
phe theory.

1973
The C computer language, developed at Bell Laboratories, is essen-
tially completed.

1975
The French geophysicist Jean Morlet helps develop a new kind of 
analysis based on what he calls “wavelets.”

1980
Kiiti Morita, the founder of the Japanese school of topology, pub-
lishes a paper that further extends the concept of dimension to 
general topological spaces.

1982
Benoît Mandelbrot publishes his highly influential The Fractal 
Geometry of Nature.

1989
The Belgian mathematician Ingrid Daubechies develops what has 
become the mathematical foundation for today’s wavelet research.

1995
The British mathematician Andrew Wiles publishes the first proof 
of Fermat’s last theorem.

JAVA computer language is introduced commercially by Sun 
Microsystems.

1997
René Thom declares the mathematical field of catastrophe theory 
“dead.”
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2002
Experimental Mathematics celebrates its 10th anniversary. It is a ref-
ereed journal dedicated to the experimental aspects of mathemati-
cal research.

Manindra Agrawal, Neeraj Kayal, and Nitin Saxena create a brief, 
elegant algorithm to test whether a number is prime, thereby solv-
ing an important centuries-old problem.

2003
Grigory Perelman produces the first complete proof of the Poin-
caré conjecture, a statement about some of the most fundamental 
properties of three-dimensional shapes.

2007
The international financial system, heavily dependent on so-called 
sophisticated mathematical models, finds itself on the edge of col-
lapse, calling into question the value of the mathematical models.

2008
Henri Cartan, one of the founding members of the Nicolas Bour-
baki group, dies at the age of 104.
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g l o s s a r y

algebra (1) a mathematical system that is a generalization of 
arithmetic, in which letters or other symbols are used to represent 
numbers; (2) the study of the formal relations between symbols 
belonging to sets on which one or more operations has been defined

algebraic equation an equation of the form anx
n + an–1x

n–1 + . . . 
+ a1x + a0 = 0 where n can represent any natural number, x repre-
sents the variable raised to the power indicated, and aj, which (in 
this book) always represents a rational number, is the coefficient by 
which xj is multiplied

algorithm a formula or procedure used to solve a mathematical 
problem

analytic geometry the branch of mathematics that studies geom-
etry via algebraic methods and coordinate systems

axiom a statement accepted as true that serves as a basis for deduc-
tive reasoning

characteristic equation an algebraic equation associated with the 
determinant of a given matrix with the additional property that the 
matrix acts as a root of the equation

coefficient a number or symbol representing a number used to 
multiply a variable

combinatorics the branch of mathematics concerned with the 
selection of elements from finite sets and the operations that are per-
formed with those sets

commensurable evenly divisible by a common measure. Two 
lengths (or numbers representing those lengths) are commensurable 
when they are evenly divisible by a common unit
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complex number any number of the form a + bi where a and b are 
real numbers and i has the property that i2 = –1

composite number a whole number greater than 1 that is not prime

conic section any member of the family of curves obtained from 
the intersection of a double cone and a plane

coordinate system a method of establishing a one-to-one corre-
spondence between points in space and sets of numbers

deduction a conclusion obtained by logically reasoning from gen-
eral principles to particular statements

degree of an equation for an algebraic equation of one variable, 
the largest exponent appearing in the equation

determinant a particular function defined on the set of square 
matrices. The value of the determinant is a real or complex number

determinant equation an equation or system of equations for 
which there exists a unique solution

eigenvalue the root of a characteristic equation

ellipse a closed curve formed by the intersection of a right circular 
cone and a plane

field a set of numbers with the property that however two numbers 
are combined via the operations of addition, subtraction, multiplica-
tion, and division (except by 0), the result is another number in the set

fifth-degree equation an algebraic equation in which the highest 
exponent appearing in the equation is 5

fourth-degree equation an algebraic equation in which the highest 
exponent appearing in the equation is 4

fundamental principle of analytic geometry the observation that 
under fairly general conditions one equation in two variables defines 
a curve
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fundamental principle of solid analytic geometry the observa-
tion that under fairly general conditions one equation in three vari-
ables defines a surface

fundamental theorem of algebra the statement that any polyno-
mial of degree n has n roots

geometric algebra a method of expressing ideas usually associated 
with algebra via the concepts and techniques of Euclidean geometry

group a set of objects together with an operation analogous to 
multiplication such that (1) the “product” of any two elements in the 
set is an element in the set; (2) the operation is associative, that is, for 
any three elements, a, b, and c in the group (ab)c = a(bc); (3) there is an 
element in the set, usually denoted with the letter e, such that ea = ae 
= a where a is any element in the set; and (4) every element in the set 
has an inverse, so that if a is an element in the set, there is an element 
called a–1 such that aa–1 = e

group theory the branch of mathematics devoted to the study of 
groups

hyperbola a curve composed of the intersection of a plane and both 
parts of a double, right circular cone

identity the element, usually denoted with the letter e, in a group 
with the property that if g is any element in the group, then eg = ge = g

indeterminate equation an equation or set of equations for which 
there exist infinitely many solutions

integer any whole number

invariant a property of a mathematical system that remains 
unchanged when the elements that comprise the system are trans-
formed according to some rule. Whether a property is invariant or 
not depends on the transformation rule. The discovery and exploita-
tion of invariants is an important part of mathematical research

irrational number any real number that cannot be expressed as a/b, 
where a and b are integers and b is not 0
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linear equation an algebraic equation in which every term is a 
number or a variable of degree 1 multiplied by a number

matrix a rectangular array or table of numbers or other quantities

natural number the number 1, or any number obtained by adding 
1 to itself sufficiently many times

one-to-one correspondence the pairing of elements between two 
sets, A and B, such that each element of A is paired with a unique ele-
ment of B and to each element of B is paired a unique element of A

parabola the curve formed by the intersection of a right circular 
cone and a plane that is parallel to a line that generates the cone

polynomial a mathematical expression consisting of the sum of 
terms of the form axn, where a represents a number, x represents a 
variable, and n represents a nonnegative integer

prime number a natural number greater than 1 that is—among the 
set of all natural numbers—evenly divisible only by itself and 1

Pythagorean theorem the statement that for a right triangle the 
square of the length of the hypotenuse equals the sum of the squares 
of the lengths of the remaining sides

Pythagorean triple three numbers each of which is a natural 
number such that the sum of the squares of the two smaller numbers 
equals the square of the largest number.

quadratic equation See second-degree equation.

quadratic formula a mathematical formula for computing the roots 
of any second-degree algebraic equation by using the coefficients that 
appear in the equation

rational number any number of the form a/b, where a and b are 
integers and b is not 0

real number any rational number or any number that can be approx-
imated to an arbitrarily high degree of accuracy by a rational number
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rhetorical algebra algebra that is expressed in words only, without 
specialized algebraic symbols

ring a set of objects on which two operations, often called addition 
and multiplication, are defined. Under addition, the set forms a com-
mutative group. Under multiplication, the elements in the set satisfy 
the following two properties: (1) the product of any two elements in 
the set is another element in the set, and (2) multiplication is associa-
tive. Addition and multiplication are related through the distributive 
law: a × (b + c) = a × b + a × c. Sometimes other conditions are imposed 
in addition to these.

root for any algebraic equation any number that satisfies the equa-
tion

second-degree equation an algebraic equation in which the high-
est exponent appearing in the equation is 2

sparse matrix a matrix in which most of the coefficients appearing 
in the matrix are zero

spectral theory the study that seeks to relate the properties of a 
matrix to the properties of its eigenvalues

syllogism a type of formal logical argument described in detail by 
Aristotle in the collection of his writings known as The Organon

symmetry transformation a change, such as a rotation or reflec-
tion, of a geometric or physical object with the property that the 
spatial configuration of the object is the same before and after the 
transformation

syncopated algebra a method of expressing algebra that uses 
some abbreviations but does not employ a fully symbolic system of 
algebraic notation

third-degree equation an algebraic equation in which the highest 
exponent appearing in the equation is 3

unit fraction a fraction of the form 1/a, where a is any integer except 
zero
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Publications, 1985. An articulate, not very technical overview of 
many important mathematical ideas.

———. Mathematics in Western Culture. New York: Oxford Uni-
versity Press, 1953. An excellent overview of the development of 
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Western mathematics in its cultural context, this book is aimed at 
an audience with a firm grasp of high school-level mathematics.

McLeish, John. Number. New York: Fawcett Columbine, 1992. A 
history of the concept of number from Mesopotamia to modern 
times.

Pappas, Theoni. The Joy of Mathematics. San Carlos, Calif.: World 
Wide/Tetra, 1986. Aimed at a younger audience, this work searches 
for interesting applications of mathematics in the world around us.

Pierce, John R. An Introduction to Information Theory: Symbols, Signals 
and Noise. New York: Dover Publications, 1961. Despite the sound 
of the title, this is not a textbook. Among other topics, Pierce, 
formerly of Bell Laboratories, describes some of the mathematics 
involved in encoding numbers and text for digital transmission 
or storage—a lucid introduction to the topics of information and 
algebraic coding theory.

Reid, Constance. From Zero to Infinity: What Makes Numbers Interest-
ing. New York: Thomas Y. Crowell, 1960. A well-written overview 
of numbers and the algebra that stimulated their development.

Schiffer, M. and Leon Bowden. The Role of Mathematics in Science. 
Washington, D.C.: Mathematical Association of America, 1984. 
The first few chapters of this book, ostensibly written for high 
school students, will be accessible to many students; the last few 
chapters will find a much narrower audience.

Smith, David E., and Yoshio Mikami. A History of Japanese Math-
ematics. Chicago: Open Court, 1914. Copies of this book are still 
around, and it is frequently quoted. The first half is an informative 
nontechnical survey. The second half is written more for the expert.

Stewart, Ian. From Here to Infinity. New York: Oxford University 
Press, 1996. A well-written, very readable overview of several 
important contemporary ideas in geometry, algebra, computabil-
ity, chaos, and mathematics in nature.

Swetz, Frank J., editor. From Five Fingers to Infinity: A Journey 
through the History of Mathematics. Chicago: Open Court, 1994. 
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This is a fascinating, though not especially focused, look at the 
history of mathematics. Highly recommended.

Swetz, Frank. Sea Island Mathematical Manual: Surveying and Math-
ematics in Ancient China. University Park: Pennsylvania State Uni-
versity Press, 1992. The book contains many ancient problems in 
mathematics and measurement and illustrates how problems in 
measurement often inspired the development of geometric ideas 
and techniques.

Tabak, John. Numbers: Computers, Philosophers, and the Search for 
Meaning. New York: Facts On File, 2004. More information about 
how the concept of number and ideas about the nature of algebra 
evolved together.

Thomas, David A. Math Projects for Young Scientists. New York: 
Franklin Watts, 1988. This project-oriented text is an introduc-
tion to several historically important geometry problems.

Yaglom, Isaac M. Geometric Transformations, translated by Allen 
Shields. New York: Random House, 1962. Aimed at high school 
students, this is a very sophisticated treatment of “simple” geom-
etry and an excellent introduction to higher mathematics. It is also 
an excellent introduction to the concept of invariance.

Zippin, Leo. The Uses of Infinity. New York: Random House, 1962. 
Contains lots of equations—perhaps too many for the uninitiat-
ed—but none of the equations is very difficult. The book is worth 
the effort required to read it.

ORIGINAL SOuRCES

It can sometimes deepen our appreciation of an important math-
ematical discovery to read the discoverer’s own description. 
Often this is not possible, because the description is too techni-
cal. Fortunately there are exceptions. Sometimes the discovery 
is accessible because the idea does not require a lot of technical 
background to appreciate it. Sometimes the discoverer writes a 
nontechnical account of the technical idea that she or he has dis-
covered. Here are some classic papers:
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Ahmes. The Rhind Mathematical Papyrus: Free Translation, Commen-
tary, and Selected Photographs, Transcription, Literal Translations, 
translated by Arnold B. Chace. Reston, Va.: National Council of 
Teachers of Mathematics, 1979. This is a translation of the big-
gest and best of extant Egyptian mathematical texts, the Rhind 
papyrus (also known as the Ahmes papyrus). It provides insight 
into the types of problems and methods of solution known to one 
of humanity’s oldest cultures.

Al-Khwārizmı̄, Mohammed ibn-Mūsā. Robert of Chester’s Latin trans-
lation of the Algebra of al-Khwārizmı̄, with an introduction, critical 
notes, and an English version of Louis Charles Karpinski. Norwood, 
Mass.: Norwood Press, 1915. Various versions of this impor-
tant original work are still around. It can be found in academic 
libraries and on the Internet. The algebra is simple, but it is 
still hard to read because of the absence of algebraic symbols. 
Al-Khwārizmı̄’s book changed history.

Boole, George. Mathematical Analysis of Logic. In The World of Math-
ematics, vol. 3, edited by James R. Newman. New York: Dover 
Publications, 1956. This is a nontechnical excerpt from one of 
Boole’s most famous works. Although there is no “Boolean alge-
bra” in this article, it contains Boole’s own explanation for what he 
hoped to gain from studying the laws of thought.

Brahmagupta and Bhascara. Algebra, with Arithmetic and Mensura-
tion. Translated by Henry Colebrook. London: John Murray, 
1819. Although it was first published almost 200 years ago, copies 
of this book can be found in most academic libraries, and it is also 
available on the Internet. It is interesting to see these great minds 
struggle to create a new way of thinking.

Descartes, René. The Geometry. In The World of Mathematics, vol. 1, 
edited by James Newman. New York: Dover Publications, 1956. 
This is a readable translation of an excerpt from Descartes’s own 
revolutionary work La Géométrie.

Euclid. Elements. Translated by Sir Thomas L. Heath. Great Books 
of the Western World. Vol. 11. Chicago: Encyclopaedia Britannica, 
1952. See especially book I for Euclid’s own exposition of the 
axiomatic method, and read some of the early propositions in this 
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volume to see how the Greeks investigated mathematics without 
equations.

Galilei, Galileo. Dialogues Concerning Two New Sciences. Translated 
by Henry Crew and Alfonso de Salvio. New York: Dover Publica-
tions, 1954. An interesting literary work as well as a pioneering 
physics text. Many regard the publication of this text as the begin-
ning of the modern scientific tradition. And in it one can find 
Galileo seeking to use algebraic language.

Hardy, Godfrey H. A Mathematician’s Apology. Cambridge, Eng-
land: Cambridge University Press, 1940. Hardy was an excellent 
mathematician and a good writer. In this oft-quoted and very brief 
book Hardy seeks to explain and sometimes justify his life as a 
mathematician.

Keyser, Cassius J. The Group Concept. In The World of Mathematics, 
vol. 4, edited by James R. Newman. New York: Dover Publica-
tions, 1956. Keyser was a successful 20th-century American math-
ematician. The language in this article is stilted and old-fashioned, 
but look past matters of style to read his beautiful description of 
geometric “shape” as that property that is invariant under a group 
of similarity transformations.

Mathematics: Its Content, Methods, and Meaning. Vols. 1 and 3, edited 
by A. D. Aleksandrov, A. N. Kolmogorov, and M. A. Lavrent’ev, 
and translated by S. H. Gould and T. Bartha. Mineola, N.Y.: 
Dover Publications, 1999. This three-volume set, now available as 
a single enormous volume, consists of a collection of survey arti-
cles written for the well-informed layperson by some of the great 
mathematicians of the 20th century. Chapters 3 and 4 in volume 
1 are written by the Russian mathematician B. N. Delone and 
discuss analytic geometry and the theory of algebraic equations. 
Chapter 16, which is written by the Russian mathematician D. K. 
Faddeev discusses linear algebra. Highly recommended.

Mikami, Yoshio. The Development of Mathematics in China and Japan. 
New York: Chelsea Publishing, 1913. This book can still be found 
in most academic libraries and because it is now in the public 
domain it is freely available on the Web. It is a well-written book 
about an important topic.
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Poincaré, Henri. Mathematical Creation. In The World of Mathematics, 
vol. 4, edited by James R. Newman. New York: Dover Publica-
tions, 1956. Poincaré was one of history’s most successful mathe-
maticians. In particular, he made a number of important contribu-
tions to group theory, mathematical physics, topology, and philos-
ophy. He also liked to write popular articles about mathematics. 
This is one of them.

Russell, Bertrand. Mathematics and the Metaphysicians. In The World 
of Mathematics. Vol. 3, edited by James Newman. New York: 
Dover Publications, 1956. An introduction to the philosophical 
ideas upon which mathematics is founded written by a major con-
tributor to this field.

INTERNET RESOuRCES

Mathematical ideas are often subtle and expressed in an unfamiliar 
vocabulary. Without long periods of quiet reflection, mathemati-
cal concepts are sometimes difficult to appreciate. This is exactly 
the type of environment one does not usually find on the Web. 
To develop a real appreciation for mathematical thought, books 
are better. That said, the following Web sites are some good 
resources.

Eric Weisstein’s World of Mathematics. Available online. URL: 
http://mathworld.wolfram.com/. Accessed January 15, 2010. 
This site has brief overviews of a great many topics in math-
ematics. The level of presentation varies substantially from topic 
to topic.

Fife, Earl, and Larry Husch. Math Archives. “History of Mathemat-
ics.” Available online. URL: http://archives.math.utk.edu/topics/
history.html. Accessed January 15, 2010. Information on math-
ematics, mathematicians, and mathematical organizations.

Gangolli, Ramesh. Asian Contributions to Mathematics. Available 
online. URL: http://www.pps.k12.or.us/depts-c/mc-me/be-as-ma.
pdf. Accessed January 15, 2010. As its name implies, this well-
written online book focuses on the history of mathematics in Asia 
and its effect on the world history of mathematics. It also includes 
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information on the work of Asian Americans, a welcome contribu-
tion to the field.

Heinlow, Lance, and Karen Pagel. “Math History.” Online Resource. 
Available online. URL: http://or.amatyc.org. Accessed January 15, 
2010. Created under the auspices of the American Mathematical 
Association of Two-Year Colleges, this site is a very extensive col-
lection of links to mathematical and math-related topics.

Howard, Mike. Introduction to Crystallography and Mineral Crystal 
Systems. Available online. URL: http://www.rockhounds.com/
rockshop/xtal/. Accessed January 15, 2010. The author has 
designed a nice introduction to the use of group theory in the 
study of crystals through an interesting mix of geometry, algebra, 
and mineralogy.

The Math Forum @ Drexel. The Math Forum Student Center. 
Available online. URL: http://mathforum.org/students/. Accessed 
January 15, 2010. Probably the best Web site for information 
about the kinds of mathematics that students encounter in their 
school-related studies. You will find interesting and challenging 
problems and solutions for students in grades K-12 as well as a 
fair amount of college-level information.

O’Connor, John L., and Edmund F. Robertson. The MacTutor His-
tory of Mathematics Archive. Available online. URL: http://www.
gap.dcs.st-and.ac.uk/~history/index.html. Accessed January 15, 
2010. This is a valuable resource for anyone interested in learning 
more about the history of mathematics. It contains an extraor-
dinary collection of biographies of mathematicians in different 
cultures and times. In addition it provides information about the 
historical development of certain key mathematical ideas.

PERIODICALS

+Plus

URL: http://pass.maths.org.uk

A site with numerous interesting articles about all aspects of 
high school math. They send an e-mail every few weeks to their 
subscribers to keep them informed about new articles at the site.



224  ALGEBRA

Parabola: A Mathematics Magazine for Secondary Students

Australian Mathematics Trust 
University of Canberra 
ACT 2601 
Australia

Published twice a year by the Australian Mathematics Trust in 
association with the University of New South Wales, Parabola is 
a source of short high-quality articles on many aspects of mathe-
matics. Some back issues are also available free online. See URL: 
http://www.maths.unsw.edu.au/Parabola/index.html.

Scientific American

415 Madison Avenue 
New York, NY 10017

A serious and widely read monthly magazine, Scientific American 
regularly carries high-quality articles on mathematics and mathe-
matically intensive branches of science. This is the one “popular” 
source of high-quality mathematical information that you will 
find at a newsstand.
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fields  111, 113–115, 119
fifth (musical interval)  21
fifth-degree equations  

104, 105
fifth-degree polynomials  

102
Fior, Antonio Maria  63, 

64
first algebras  1–17

Chinese  12–17
Egyptian  10–12
Mesopotamian  1–10

first-degree equations  6
Fisher, Ronald Aylmer  

206c
Fontana, Niccolò 

(Tartaglia)  63, 63–66, 
102, 196c

Fontenay-le-Comte, 
France  70

FORTRAN (FORmula 
TRANslator)  207c

Fourier, Joseph  107, 108
fourth (musical interval)  21
fourth-degree equations

algorithms  6, 65–66, 
105, 108

Ferrari’s solution  66
Khayyám’s studies  

55–56
Mesopotamian 

approximations  6–7
Fractal Geometry of Nature, 

The (Mandelbrot)  208c
fractions  11, 14, 22, 

147–148
Frechet, Maurice  205c
French Revolution  108, 

153, 200c
Frobenius, Ferdinand 

Georg  157, 162, 165
function(s)

continuous nowhere 
differentiable  203c

coordinate systems for  
176–177, 187

describing real objects 
with  67

high-level mathematical  
183–184

Sobolev’s definition  
207c

as solutions to 
equations  81

as unknowns  152
Functions of a Real Variable 

(Nicolas Bourbaki 
group)  170

fundamental principle of 
analytic geometry  
91–92, 94, 98

fundamental principle of 
solid analytic geometry  
92, 98

fundamental theorem of 
algebra  77–82

G
Galilei, Galileo  67, 196c, 

197c
Gallup, George Horace  

206c

Galois, Évariste  106–111, 
201c

Galois theory  108–
111, 114

groups in work of  115, 
119–123

last writings  103
life of  106–108

Galois, Nicolas-Gabriel  
106

Galois theory  108–111, 
114

Ganita Sara Sangraha 
(Mahavira)  40–42, 195c

gates (electronic circuits)  
140

Gauss, Carl Friedrich  
78–79, 104, 105, 200c

general theory of 
equations  2, 17, 42

general theory of 
mathematics  14

General Theory of Measure 
and Probability Theory 
(Kolmogorov)  206c

General Topology (Nicolas 
Bourbaki group)  170

Genetical Theory of Natural 
Selection (Fisher)  206c

geometric algebra  25–31
geometrical 

representations, of 
complex numbers  79, 80, 
80

geometric constructions, 
of numbers  109–111

Geometrie der Lage (Staudt)  
202c

geometry. See also analytic 
geometry

and algebra in Greek 
mathematics  25–31

and algebra in Islamic 
mathematics  56

and analysis  100
Euclidean  28, 120, 

156
group theory in  120
in al-Khwārizmı̄’s 

proofs  50–51
Mahavira’s studies  42
plane  28
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straightedge and 
compass techniques  
28–30

and third-degree 
equations  55

Geometry and Algebra in 
Ancient Civilizations (Van 
der Waerden)  4

Girad, Albert  75–77
Gödel, Kurt  206c
Göttingen University  78, 

166
graphs  185–187
Graunt, John  198c
Great Mosque at Samarra  

46
Great Pyramid of Khufu  

193c
Greek Anthology (Paton)  31
Greek mathematics  18–33, 

179, 195c
conic sections  83–84
Diophantus’s studies  

31–33
and distributive law  27
in Fermat’s studies  

93–94
geometric algebra  

25–31
and incommensurabil-

ity of [square root]2  
24, 25

Indian v.  35
in al-Khwārizmı̄’s 

proofs  50–51
origin  11
proofs in  14, 23
of Pythagoreans  20–25

grid points  176, 177
groups  115–123

abstract  122
nesting  172
permutation  118–123
properties  xvii, 

116–117
and reflection of a 

square  117–118
and rotation of a 

square  115–117
and subgroups  117
symmetry  115–116, 121

group theory  120–122

Grundzüge der Mengenlehre 
(Hausdorff)  205c

Gugliemo (father of 
Fibonacci)  57

H
Halley, Edmund  198c
Halmos, Paul  169
Hamilton, Sir William 

Henry Rowan  162
Hamilton-Cayley theorem  

162
Han dynasty  12, 13, 194c
Hardy-Weinberg law  204c
Harriot, Thomas  73–75, 

197c
Hārūn Ar-Rashı̄d  47
Hausdorff, Felix  205c
heap (Egyptian algebraic 

symbol)  11
Heaviside, Oliver  203c
Hermite, Charles  157, 

162, 165
Herschel, William  200c
high-level mathematical 

(special) functions  
183–184

Hilbert, David  165, 166, 
204c

Hindu mathematics  
34–35, 41. See also Indian 
mathematics

Hisāb al-jabr wa’l muqābala 
(al-Khwārizmı̄)  49, 195c

Histoire naturelle (Leclerc)  
199c

Hollerith tabulator  203c
Holmboe, Bernt  104
homogeneity  71–72, 89
House of Wisdom  47, 48, 

50, 195c
Huguenots  70
Hurewicz, Witold  207c
Huygens, Christiaan  198c
Hypatia  34, 195c
hyperbolas  84. See also 

conic sections

I
ibn-Turk, Abd-al-Hamid  

48
identities, algebraic  41

identity matrix  161, 164
imaginary numbers  5, 74
impossibility proof  

112–113
inclusive definition, OR 

operator  136–137
incommensurability  

22–25, 23, 32
indeterminate equations  

7–10, 13, 17, 40, 42, 49
Indian mathematics  

34–45
Bhaskara’s studies  

42–45
Brahmagupta’s studies  

36–40
Islamic v.  56, 57
Mahavira’s studies  

40–42
and poetry  45
Sulvasutras  35–36

inertial reference frames  
121

infinite sets  176
input files  139
integers, polynomials and  

167–168
Integration (Nicolas 

Bourbaki group)  170
intermediary fields  111
intervals, musical  21
Introductio (Euler)  199c
intuition  24, 25
invariant properties, of 

determinants and 
matrices  156–157

inverses  37–38, 161, 164
Investigation into the Laws of 

Thought on Which Are 
Founded the Mathematical 
Theories of Logic and Prob-
abilities, An (Boole)  141

irrational numbers
approximations of  25, 

61
constructibility of  

110–111
Diophantus’s view of  32
in Indian mathematics  

39, 43
in second-degree 

equations  5
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Islamic mathematics
Indian v.  56, 57
Khayyám’s studies  

52–57
al-Khwārizmı̄’s studies  

48–52
Leonardo of Pisa’s 

studies  57
rhetorical algebra  52

J
Jainism  40
Jalali calendar  54, 54
James I (king of England)  

74
Janiszewski, Zygmunt  

205c
Japanese mathematics  

144
Japanese school of 

topology  208c
JAVA (computer language)  

208c
Jevons, William Stanley  

136–137
Johns Hopkins University  

159
Joule, James Prescott  201c

K
Kayal, Neeraj  209c
Kepler, Johannes  196c
Khayyám, Omar  52–57, 

71, 87, 195c
al-Khwārizmı̄, Mohammed 

ibn-Mūsā  48–52
and Cardano  66
Hisāb al-jabr wa’l 

muqābala  49, 195c
and Khayyám  54–57
quadratic equations of  

59–60
Klein, Felix  165, 166, 

203c
known quantities  71
Kolmogorov, Andrey 

Nikolayevich  206c, 
208c

Kolmogorov complexity  
208c

Kuratowski, Kazimierz  
206c

L
Lagrange, Joseph-Louis  

149, 151–154
Langley Research Center  

181
Laplace, Pierre-Simon  

149, 151–154, 201c
Lavoisier, Antoine-

Laurent  200c
laws of thought  127–131
Lebesgue, Henri-Léon  

204c
Leelavati, of Siddhānta 

Siromani (Bhaskara II)  
43

Legendre, Adrien-Marie 
(or Le Gendre)  200c

Leibniz, Gottfried  100, 
101, 124, 144–147, 198c, 
199c

length  3–4
Lenin, Vladimir Ilyich  

205c
Leonardo da Vinci  196c
Leonardo of Pisa 

(Fibonacci)  57, 60–61, 
196c

letters, for unknowns  
70–71

Le Verrier, Urbain-Jean-
Joseph  202c

Liber abaci (Fibonacci)  
196c

Liber de ludo aleae 
(Cardano)  196c

Lie Groups and Lie Algebras 
(Nicolas Bourbaki 
group)  170

Lilavati (Bhaskara II)  
195c

linear equations  6, 143. 
See also systems of linear 
equations

line segments
and constructible 

numbers  109–111
in Descartes’s 

multiplication  88, 89
incommensurable  

22–23
unknowns as  87

Lobachevsky, Nikolay 
Ivanovich  201c

logic
Aristotle’s studies  

124–127, 135
in Boolean algebra  

131–141
and Boole’s laws of 

thought  127–131
and computers  

139–141
in Islamic mathematics  

56, 57
logical product, in Boolean 

algebra  131–132, 134
logical structures, of 

mathematical systems  
103

logical sum, in Boolean 
algebra  132, 134

logic circuits  136
London Bills of Mortality  

198c
Lorentz, Hendrik Antoon  

121
Lorentz transformations  

121
Louis-Philippe (king of 

the French)  154
Lyceum  19, 125, 127

M
Mac Lane, Saunders  207c
Mahavira 

(Mahaviracharyan)  
40–42, 195c

al-Ma’Mun  47–49, 195c
Mandelbrot, Benoît  208c
Markov, Andrey 

Andreyevich  204c
Massachusetts Institute of 

Technology  206c
“Mathematical Analysis of 

Logic” (Boole)  128, 141
mathematical structures  

102–123
Abel’s studies  104– 

106
for algebra  114–123
Bourbaki’s  169–172
and doubling the cube  

109–114
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Galois’s studies  11, 
106–111

and group theory  120, 
121

theory of  172
mathematical systems. See 

systems, mathematical
“Mathematical Theory of 

Communication, A” 
(Shannon)  207c

mathematics
general theory of  14
pure  40

matrices  142, 157–165
addition of  160
and coefficients  173, 

174
and determinants  

142–143
and eigenvalues  164
identity  164
inverse of  164
multiplication of  156, 

160–161, 163–164
sparse  174–176
square  143, 147, 

160–164
theory of  142, 143, 

157–162, 164–165
for three-variable 

system  173
as variables for 

polynomials  162
matrix product  164
Maxwell, James Clerk  

202c
Mayan mathematics  34
measurements  19–20
“Memoir on the Theory of 

Matrices, A” (Cayley)  
159–160

Menaechmus  194c
Mendel, Gregor  203c
Menger, Karl  205c
Mersenne, Marin  97
Mesopotamian 

mathematics  1–10
algorithms in  179–180
indeterminate 

equations  7–10
positional notation  

193c

problems and notation  
1–4

problem texts v. Nine 
Chapters  14, 16–17

and second-degree 
equations  5–7

Method, The (Archimedes 
of Syracuse)  194c

mistakes, in Indian 
mathematics  36

modern algebra  123. See 
also algebraic structures

Moivre, Abraham de  199c
Monge, Gaspard  154
monochord  21, 21
Moon-Earth distance  

194c
Moore, Robert Lee  206c
Moors  57
Morita, Kiiti  208c
Morlet, Jean  208c
motion

planets  151–153
strings  149–151

Muhammad (prophet of 
Islam)  46

multiple solutions, 
problems with  32–33

multiplication
and analytic geometry  

88, 89
Descartes on  88, 89
and distributive law  

27
Egyptian  11
of integers and polyno-

mials  167–168
logical product  131–

132, 134
of matrices  156, 160–

161, 163–164
of natural numbers  

110
of square roots  51

multiplicative inverses  161
music  3, 21

N
NAND-gates  141
Napoléon I Bonaparte 

(emperor of the French)  
108, 154, 200c, 201c

National Institute of 
Standards and 
Technology (NIST)  
181, 182

National Socialist 
German Worker’s Party  
166

natural numbers  75–76, 
110

Nazi Party  166
NBS Handbook of 

Mathematical Functions 
(Abramowitz and 
Stegun)  182–184

negative coefficients  
62–63

negative eigenvalues  151, 
152

negative numbers
and al-Khwārizmı̄’s 

studies  49
Arithmetica 

(Diophantus)  32
Chinese mathematics  

14, 16–17
Descartes’s studies  90
Indian mathematics  

38, 39, 43
Mesopotamian 

mathematics  5, 6
as roots of polynomials  

75
Neptune  202c
nesting, of groups  172
new algebra  102–103, 112
Newcomen steam engine  

198c
Newton, Sir Isaac  100, 

101, 124, 198c, 199c
Nicolas Bourbaki group  

169–172, 207c, 209c
Nightingale, Florence  

159
Nine Chapters on the 

Mathematical Art (Nine 
Chapters)  12–17

Arithmetica v.  32
Mesopotamian 

problem texts v.  14, 
16–17

rhetorical algebra  13, 
15–16
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NIST (National Institute 
of Standards and 
Technology)  181, 182

NIST Handbook of 
Mathematical Functions  
182

Noether, Emmy  165–169, 
166, 171, 205c

Noether, Max  165
nonexistence proofs  24
NOR-gates  141
NOR operators  131
North African 

mathematics. See Islamic 
mathematics

NOT-gates  140, 141
NOT operators  140
Nouvelles méthodes pour 

la determination des 
orbites des comètes 
(Legendre)  200c

Nova methodus pro maximis 
et minimis (Leibniz)  
198c

Nova Scientia (Fontana)  64
number(s). See also specific 

types
and algebraic equations  

56
closed sets  111
complex. See complex 

numbers
constructible  109–111
imaginary  5, 74
irrational. See 

irrational numbers
multiplication of 

matrices by  161
natural  75–76, 110
negative. See Negative 

numbers
prime  75–76, 167, 

209c
Pythagorean 

conception  21–22
rational. See rational 

numbers
Renaissance 

conception  66
variables as  28

number theory  97
numerical algebra  3

numerical grid generation  
184–186, 188–191

numerical simulations  
177–178

O
oblique coordinates  90, 97
octave  21
Old Dominion University  

181
Oleinik, Olga  207c
On Polygonal Numbers 

(Diophantus)  31–32
“On the Dynamical Theory 

of Heat” (Thomson)  202c
“On the Hypotheses That 

Form the Foundations of 
Geometry” (Riemann)  
202c

“On the Mode of 
Communication of 
Cholera” (Snow)  202c

On the Origin of Species by 
Means of Natural Selection 
(Darwin)  202c

operations. See also specific 
operations

for algebraic objects  
142

inverse  37–38
and rings  168

operators
in Boolean algebra  

131–132, 136–137
and gates of circuits  

140, 141
Oresme, Nicholas  196c
Organon (Aristotle)  127
OR-gates  140, 141
origin, Cartesian 

coordinate system  87
OR operators  132, 136–

137, 140, 141
output file  140
overdetermined systems  

145
Oxford University  73

P
palindromes, numerical  41
Pappus of Alexandria  94, 

194c

parabolas  84. See also 
conic sections

Paradoxien des Unendlichen 
(Bolzano)  202c

Pascal, Blaise  197c
Pascaline  197c
Paton, W. R.  31
Peano, Giuseppe  203c
Pearson, Karl  206c
Perelman, Grigory  209c
perfect intervals (music)  

21
permutation groups  

118–123
Philosophiae naturalis 

principia mathematica 
(Newton)  198c

physics, analysis and  100, 
101

place-value notation  57
plane geometry  28
Plane Loci (Appollonius)  

94
planets, motion of  

151–153
Plato  23, 125, 194c
Plimpton 322  7
poetry, Indian 

mathematics and  45
Poincaré, Henri  203c
Poincaré conjecture  209c
Poisson, Siméon-Denis  

108
Poitiers, France  69
polar coordinates  98, 98, 

99, 187–188
poles  185–186, 189
Polish school of topology  

205c
polynomials

characteristic  153, 162
decomposition of  

166–167
degree of  75–77
fifth-degree  102
in fundamental 

theorem of algebra  
82

importance of  81
and integers  167–168
and linear factors  

76–78
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matrices as variables  
162

negative roots  75
and second-degree 

equations  5
third-degree  74, 102

Poncelet, Jean-Victor  201c
positive eigenvalues  151, 

152
precision  20, 171
premises, in syllogisms  

126
prime numbers  75–76, 167
Principia mathematica 

(Russell & Whitehead)  
204c

problem solving
in 16th century  69–70
Chinese  14
early algebras  17, 18
Egyptian  11
Greek  18
by al-Khwārizmı̄  49
Mesopotamian  2–3

problem texts  1, 3, 14, 
16–17, 32

product
logical  131–132, 134
matrix  164

proof(s)
distributive law  27
for doubling the cube  

112–113
Fermat’s last theorem  

96
fundamental theorem 

of algebra  78–82
Greek  14, 23
incommensurability of 

diagonal of a square  
24, 25

Indian  36, 41, 50–51
al-Khwārizmı̄’s  50–51
Mesopotamian and 

Chinese view  14
nonexistence  24

prose  43. See also 
Rhetorical algebra

protoalgebra  3
Ptolemy of Alexandria  34, 

194c
pure mathematics  40

Pythagoras of Samos  11, 
18, 20–21, 193c

Pythagoreans  20–25, 193c
Pythagorean theorem  8, 

9, 17, 20, 110
Pythagorean triples  9, 10, 

95–96

Q
Qin Shi Huang (emperor 

of China)  12
quadratic equations. See 

second-degree equations
quadratic formula  xviii, 5
quantum mechanics  165
Queen’s College  130

R
radians  99
Raleigh, Sir Walter  73, 74
rational numbers

as approximations of 
irrational  61

in Arithmetica 
(Diophantus)  32

constructibility of  110
field of  111, 114
in Indian mathematics  

39, 43
ratios  21, 22
real numbers  111
recursion algorithms  8, 9
reference frame  121
reflection of a square  

117–118
Réflexions sur la puissance 

motrice du feu (Carnot)  
201c

Reign of Terror  154, 200c
relativity theory  121
Renaissance mathematics

algorithms  58–59, 
61–66, 68

number conception  
66

and science  67–68
second-degree 

equations  59–60
rhetorical algebra  52

algebraic symbols v.  
69

in Ars magna  66

of al-Khwārizmı̄  
50–52, 60

in Nine Chapters  13, 
15–16

Rhind papyrus  193c
Riemann, Georg Friedrich 

Bernhard  202c
right triangles  8, 9
rigor, in mathematics  36, 

51
rings  167–169
Roanoke Island, North 

Carolina  73
roots

in Boolean algebra  137
and coefficients  72
constructing  60
and degree of equation  

72
Galois’s studies  106
of polynomials  74–77
of quadratic equations  

59
and structure  119

rotation of a square  
115–117

Royal College at La Flèche  
85–86

Royal Military Academy  
159

Royal Society of London  
130

Rubáiyát of Omar Khayyám, 
The (Khayyám)  53–54, 
195c

rules
in Indian mathematics  

37–38, 41
of inverse operation  

37–38
in Nine Chapters  15

Russell, Bertrand  127, 
204c

S
Sabeans  47
Saint John’s College  158
Saunders, Bonita  181, 

181–192
Savery, Thomas  198c
Saxena, Nitin  209c
Schröder, Ernst  137, 138
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science. See also specific 
fields

algebra in  67–68
group theory in  121
progress in 

mathematics v.  179
second-degree equations

Bhaskara II’s studies  
43, 44

Brahmagupta’s studies  
39–40

for conic sections  94
form of  104
Khayyám’s studies  

54–55
al-Khwārizmı̄’s  49–50
and Mesopotamians  

5–7
in Renaissance v. 

Islamic mathematics  
59–60

Seki Köwa (Takakazu)  144
sets  111, 133, 176
Shannon, Claude  207c
Shewhart, Walter  207c
Siddhānta Siromani 

(Bhaskara II)  43–44
Sierpiński, Wacław  205c
Sierpiński gasket  205c
simulations, numerical  

177–178
Smoluchowski, Marian  

204c
Snow, John  202c
Sobolev, Sergey  207c
solar system model  152
solid analytic geometry, 

fundamental principle of  
92, 98

sparse matrices  174–176
special functions  183–184
special theory of relativity  

121
Spectral Theories (Nicolas 

Bourbaki group)  170
splines  188
splitting fields  114–115, 

119
square

incommensurability of 
diagonal of  23–25

reflection of  117–118

rotation of  115–117
symmetry 

transformations  
115–118

square matrices  143, 147, 
160–164

square roots  8, 9, 14, 51
squaring, of circles  29, 29, 

30, 73, 102
Staudt, Karl Georg 

Christian von  202c
Stegun, Irene  182–184
Stevin, Simon  75, 196c
straightedge and compass 

techniques  28–30, 
109–110

strings, motion of  
149–151

structures  103. See also 
algebraic structures

subfields  111
subgroups  117, 119
subtraction  110
Sulvasutras  35–36
sum, logical  132, 134
Sun-Earth distance  194c
Sun Microsystems  208c
surfaces  92, 189–191
syllogisms  125–127, 131, 

135
Sylvester, James Joseph  

157–159, 162, 164–165
symbolic language

in analytic geometry  
97–101

in calculus  100–101
Diophantus’s  32
al-Khwārizmı̄’s  51
and precision  171
Viète’s  68–73

symbolic logic  130, 131
symbols, mathematic  124, 

128
symmetry groups  115–

118, 121
symmetry transformations  

115–118, 172
syncopated algebra  32, 38, 

42, 43
systems, mathematical

classes of  122, 171–172
group structure  120

and logical structures  
103

models  122, 180
overdetermined  145
structure of  123

systems of linear equations
d’Alembert’s studies  

151
algorithms  173–174
Cauchy’s studies  

155–157
Cramer’s studies  

147–148
Eisenstein’s studies  

157–158
Laplace and Lagrange’s 

studies  151–152
Leibniz’s studies  143, 

145–147

T
table of coefficients  155, 

158
Takakazu (Seki Köwa)  144
Tartaglia. See Fontana, 

Niccolò
Thabit ibn Qurra 

al-Harrani, Ali-sabi  47
Thales of Miletus  11, 18, 

193c
theorems  xvii, 138
Théorie analytique des 

probabilités (Laplace)  
201c

Theory of Sets (Nicolas 
Bourbaki group)  170

third-degree equations
algorithms  105
exact solutions  61–66, 

68
Khayyám’s studies  55
Mesopotamian 

approximations  6–7
in Renaissance 

mathematics  60
third-degree polynomials  

74
Thom, René  208c
Thompson, Benjamin 

(Count Rumford)  200c
Thomson, William (Lord 

Kelvin)  202c, 203c
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three-variable systems  
173–174

tones, musical  21
Topological Vector Spaces 

(Nicolas Bourbaki 
group)  170

Topologie (Kuratowski)  
206c

Traité de la section perspec-
tive (Desargues)  197c

Traité des propriétés des 
figures (Poncelet)  201c

translation, of triangles  
156

Treatise on demonstration of 
problems of algebra 
(Khayyám)  54, 195c

triangles  8, 9, 88, 89, 156
Trinity College  158
trisection, of angles  29, 

29, 30, 73, 102
true values  133, 134, 136, 

139
truth table  134, 137
Turing, Alan  206c

u
“Über eine Eigenschaft 

des Inbegriffes aller 
reelen algebraischen 
Zahlen” (Cantor)  203c

Ujjain, India  37, 37, 43
uncertainty, in 

measurements  19–20
Union of Soviet Socialist 

Republics (USSR)  205c
United States Census 

Bureau  203c, 206c, 207c
unit fractions  11
Universal Automatic 

Computer (UNIVAC I)  
207c

universal set  133
University of Bologna  61
University of Christiania  

104

University of Leiden  75
University of Milan  65
University of Pennsylvania  

207c
University of Poitiers  70, 

85
University of Virginia  

158
unknowns

Descartes’s 
representation  87

Euclid’s rules for  28
functions as  152
heaps  11
Khayyám’s representa-

tion  71, 87
as line segments  87
Viète’s representation  

70–71
Uranus  200c, 202c
Urysohn, Paul 

Samuilovich  205c
USSR Academy of 

Sciences  207c

V
Van der Waerden  4
variables

in Brahmagupta’s 
solutions  39

Euclid’s rules for  28
interpretations of  124
matrices as  162
in systems of linear 

equations  145–148
three-variable system  

173–174
Venn diagram  132–133, 

133
verse, in Indian 

mathematics  36–38, 43
“Versuche über 

Pflanzenhybriden” 
(Mendel)  203c

Viète, François  70–74, 
196c

Vija-Ganita (Bhaskara II)  
195c

Virtual Reality Modeling 
Language (VRML)  190

VRML (Virtual Reality 
Modeling Language)  
190

W
Wallis, John  197c
Wallman, Henry  207c
Waterloo, battle of  201c
Watt, James  199c
“wavelets”  208c
Weierstrass, Karl  203c
Weil, Andre  170
Wessel, Caspar  200c
Whitehead, Alfred North  

204c
whole numbers  9, 10, 14, 

21, 24
width  3–4
Wiles, Andrew  96, 208c
word problems  41, 43–45. 

See also rhetorical algebra
World War I  205c
World War II  206c

X
X3D (Extensible 3D)  190
x-axis  88
x coordinate  89

Y
y-axis  88
y coordinate  89

Z
Zeno of Elea  193c
Zermelo, Ernst  204c
zero

in Boolean algebra  
133

as determinant  145
division by  111

ziggurat  2
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