




K. Andersen, Aarhus
D. Buchwald, Pasadena

J.Z. Buchwald, Cambridge, Mass.

M. Folkerts, München

H.J.M. Bos, Utrecht

Science Networks . Historical Studies
Founded by Erwin Hiebert and Hans Wußing

Edited by Eberhard Knobloch, Helge Kragh and Erhard Scholz

Editorial Board:

P. Galison, Cambridge, Mass.

K. Chemla, Paris

E.A. Fellmann, Basel

I. Grattan-Guinness, London

U. Bottazzini, Roma

J. Gray, Milton Keynes

S.S. Demidov, Moskva

R. Halleux, Liège
S. Hildebrandt, Bonn

W. Purkert, Bonn

Ch. Meinel, Regensburg

A.I. Sabra, Cambridge, Mass.
D. Rowe, Mainz

Ch. Sasaki, Tokyo
R.H. Stuewer, Minneapolis

J. Peiffer, Paris

H. Wußing, Leipzig
V.P. Vizgin, Moskva

Volume 41



Ad Meskens

Travelling 

Arithmetic

Mathematics - 
The Fate of Diophantos'



 

the copyright owner must be obtained.  

Printed on acid-free paper

www.birkhauser-science.com

ISBN 978-3-0346-0642-4 e-ISBN 978-3-0346-0643-1
DOI 10.1007/978-3-0346-0643-1

Department Bedrijfskunde,

Verschansingstraat 29

Ad Meskens

2000 Antwerpen

Artesis Hogeschool Antwerpen

Belgium

© Springer Basel AG 2010

Cover design: deblik

Fig. 1.1 © Stephen Chrisomalis, published with kind permission. All drawings by Paul Tytgat, with 
kind permission.

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is 

Springer Basel AG is part of Springer Science + Business Media

concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, 
reproduction on microfilms or in other ways, and storage in data banks. For any kind of use permission of 

Cover illustration: From Waller Ms de-00215, August Beer: Über die Correction des Cosinusgesetzes bei der 
Anwendung des Nicol’schen Prismas in der Photometrie, after 1850. With friendly permission by The Waller 
Manuscript Collection (part of the Uppsala University Library Collections). 

e-mail: ad.meskens@artesis.be

Library of Congress Control Number: 2010935851

Lerarenopleiding en Sociaal Werk

mailto:meskens@artesis.be
http://www.birkhauser-science.com


Contents

Preface vii

1 Arithmetic and the beginnings of algebra 1
1.1 In the beginning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Classical Greece . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 The Greek written heritage . . . . . . . . . . . . . . . . . . . . . . 15
1.4 Numbers in Classical Greece . . . . . . . . . . . . . . . . . . . . . . 16
1.5 All is number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 Alexandria ad Aegyptum 27
2.1 The capital of memory . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Diophantos’ Alexandria . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3 Education and the culture of paideia . . . . . . . . . . . . . . . . . 35
2.4 Heron of Alexandria: a Diophantine precursor? . . . . . . . . . . . 37

3 Diophantos and the Arithmetika 43
3.1 The manuscripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2 Diophantos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3 The book On Polygonal Numbers and the lost books . . . . . . . . 49
3.4 Symbolism in the Arithmetika . . . . . . . . . . . . . . . . . . . . . 52
3.5 The structure of a Diophantine problem . . . . . . . . . . . . . . . 57
3.6 The Arithmetika . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.7 The algebra of the Arithmetika . . . . . . . . . . . . . . . . . . . . 78
3.8 Interpretations of algebra in the Arithmetika . . . . . . . . . . . . 88
3.9 Negative numbers? . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4 Sleeping beauty in the Dark Ages 103
4.1 The sins of the Fathers. . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.2 From Alexandria to Baghdad . . . . . . . . . . . . . . . . . . . . . 107
4.3 The Byzantine connection . . . . . . . . . . . . . . . . . . . . . . . 113
4.4 Diophantos reinvented: Fibonacci . . . . . . . . . . . . . . . . . . . 117



vi Contents

5 New vistas 123
5.1 Printed by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5.2 Wherefore art thou number? . . . . . . . . . . . . . . . . . . . . . 125
5.3 From the rule of coss to algebra . . . . . . . . . . . . . . . . . . . 128

6 Humanism 133
6.1 Trait d’union: Bessarion and the humanists . . . . . . . . . . . . . 133
6.2 Diophantos goes north: Regiomontanus . . . . . . . . . . . . . . . . 135

7 Renaissance or the rebirth of Diophantos 139
7.1 Xylander: A sphinx to solve a riddle . . . . . . . . . . . . . . . . . 139
7.2 Coincidence of traditions: Rafael Bombelli . . . . . . . . . . . . . . 142
7.3 The great art: Guillaume Gosselin . . . . . . . . . . . . . . . . . . 146
7.4 The marvel is no marvel: Simon Stevin . . . . . . . . . . . . . . . . 150

8 Fair stood the wind for France 155
8.1 Diophantos’ triangles: François Viète and the New Algebra . . . . . 155
8.2 Emulating the Ancients: Claude-Gaspar Bachet de Méziriac . . . . 161
8.3 This margin is too small. . . . . . . . . . . . . . . . . . . . . . . . . 166

9 Coda: Hilbert’s tenth problem 171

10 Stemma 173

Bibliography 177

Index 201



Preface

Anyone studying the work of Diophantos of Alexandria is immediately confronted
with three questions: ‘Who was Diophantos?’, ‘How large was his algebraic knowl-
edge?’ and ‘To what extent are Diophantos’ writings unique within the classical
mathematical corpus?’
Unfortunately, none of these questions can be answered satisfactorily. Not only
is there scant biographical evidence to go on, but the Diophantine corpus also
remains rather elusive. Depending on one’s position, it lends itself to either mini-
mization or hineininterpretierung. Nonetheless, Diophantos’ writings have, along-
side the work of Heron, come to occupy a special position within the Greek math-
ematical corpus. Or rather within the known ancient mathematical corpus. This
qualification is not unimportant, particularly as nearly all of our knowledge of
ancient mathematics has come to us via copies, implying that it is to an extent
filtered by the choices and judgments of mediæval scribes.
Be that as it may, Diophantos’ Arithmetika, despite its relative isolation within
the classical Greek corpus, represents a phase in the evolution from a syntactic to
a symbolic algebra, which we may refer to as syncoptic algebra. In the opening
chapters, we shall therefore focus first on the development of algebra in Egypt and
Babylon before attempting to formulate answers to the aforementioned questions.
Subsequently, we shall consider how the Arithmetika influenced the work of Pierre
de Fermat.
The classic English study in this field is still Sir Thomas Heath’s translation of
Diophantos’ six Greek books. However, since the publication of this seminal work,
many new facts have come to light, not in the least through the discovery of some
Arabic manuscripts. It would therefore seem worthwhile to provide an updated
account of our understanding of Diophantos and his writings.

The idea for this study came to me during my work on sixteenth-century
Netherlandish algebra, more in particular the writings of Simon Stevin, who trans-
lated four of the six Greek Diophantos books into French. This first and foremost
provided the inspiration for a new Dutch translation (the first, in fact, in over 250
years) of the Greek books of the Arithmetika. This Dutch version was produced
by my wife, a classical scholar. In addition to the translation, however, we felt
it necessary also to explain the mathematics. Our edition, published by Antwerp
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mathematics. He can provide a full-length translation of the original text and leave
the interpretation to the reader, or he can render the text in modern mathematical
notation, or he can use a semi-symbolic notation that some argue can capture the
flavour of the ancient text while also offering the conciseness of modern notation.
The latter option, however, would leave the reader with such cumbersome formu-
lae as: √ @A (�a,�b) =@A (a, b), which a contemporary mathematician would
immediately translate as

√
a2b2 = ab.

We feel that such a semi-symbolic notation fails on both counts: it is too far re-
moved from the original flavour of the text as well as its mathematical content,
and consequently there is a risk it will merely alienate the modern reader from
the essence of Diophantos. We have therefore chosen instead to cite the origi-
nal text where appropriate and to indicate which pitfalls may present themselves
when reading it. However, as excessive citing would become tedious and distract
the modern reader, we also rely on anachronistic mathematical formulae. We feel
this approach offers closer insight into the thinking underlying the writings dis-
cussed here, while also doing full justice to their ancient authors’ accomplishments.
Although the contemporary reader must always bear in mind the Italian adage
traduttore traditore – in respect of both the translation of the ancient text and
its mathematical reformulation – we believe that the combination of text and for-
mulae provides a good basis for a better understanding of the Arithmetika and
related texts, as well as the issues that ancient mathematicians faced in noting
down their work.

In the ten-or-so years it has taken to conclude this study, we have been sup-
ported by many people and institutions. Over this period, we have contracted
debts of gratitude we can hardly contemplate ever being able to repay adequately.
We were also fortunate enough to see our Dutch translation of Diophantos being
awarded the Jan Gillis prize of the Royal Flemish Academy of Belgium for Science
and the Arts, which provided the necessary funds for further research. We are
also indebted to Artesis University College for their support through a scientific
project grant and for their permission to use parts of our introduction to the Dutch
Diophantos translation in this monograph. The present study would never have
materialized either without the cooperation of various libraries, particularly the
library of the Teacher Training College of the Artesis University College Antwerp,
the Erfgoedbibliotheek Hendrik Conscience (Antwerp) and Museum Plantin More-

University College Press (now Artesis University College Antwerp Press) in 2006,
therefore has a special layout: the right-hand pages contain the translation, while
the left-hand pages provide a mathematical elucidation in modern notation1. This
is preceded by an introduction, which –due to space restrictions– had to be short-
ened, leaving us with the feeling that Diophantos and the fate of his books merited
a more extensive account. One thing led to another, and hence this monograph.

There are essentially three ways a contemporary author can render ancient

1Heath’s translation is in fact a compromise between a translation of the Greek text and a
retranslation into mathematical symbolism, which has left us with neither a good edition, nor
good mathematics. Nonetheless, it succeeds brilliantly in bringing across the Diophantine flavour.
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Chapter 1

Arithmetic and the beginnings
of algebra

1.1 In the beginning. . .
The origins of arithmetic and algebra are shrouded in the mists of time. It is well
known that even the simplest problem in arithmetic can give rise to expressions
that we would refer to as equations. All early societies for which we have a written
record show evidence of such algebraic problems and their solutions.
The Babylonian and Egyptian civilizations, which have some bearing on the issue
at hand, are no exceptions. In Babylonian and Egyptian texts alike, we encounter
simple mathematical problems, often relating to the division of possessions. This
evidence, like that from many other cultures, seems to confirm that a centrally
governed state relies on two prerequisites: grain to feed the people and mathemat-
ics to distribute it fairly1.

Few documents from ancient Egypt –or Greece for that matter– have sur-
vived, mainly because the Egyptians wrote on papyrus. To make a papyrus roll,
the stem of the papyrus plant (Cyperus papyrus) was stripped of its outer rind.
The remaining sticky fibrous inner pith was then cut into small pieces measuring
about 40 cm, which were subsequently split lengthwise. The papyrus strips were
soaked in water and then placed alongside one other, overlapping slightly, so that
they could be glued together with a thin floury paste. Another layer of strips was
laid transversely. The mould was then put under a press for a couple of days. The
separate pieces were glued together into strips of about 10 m long and 20 to 30
cm high.

1See J. HØYRUP(1994), pp.45-88, R.K. ENGLUND(2001), D.J. MELVILLE(2002), A. IM-
HAUSEN(2003), pp.93ff.

A. Meskens, Travelling Mathematics - The Fate of Diophantos’ Arithmetic, Science Networks.
Historical Studies 41, DOI 10.1007/978-3-0346-0643-1_1, © Springer Basel AG 2010

1



2 Chapter 1. Arithmetic and the beginnings of algebra

In a dry climate like that of Egypt, papyrus is stable, formed as it is of highly
rot-resistant cellulose; storage in humid conditions however can result in moulds
attacking and eventually destroying the material2. However, even in favourable
climatic conditions, Egyptian papyrus remained vulnerable to other dangers, in-
cluding rodents.

Three distinct kinds of script were used in ancient Egypt: hieroglyphic, hi-
eratic and demotic. The earliest of the three, hieroglyphic script, was developed
as early as 3250 B.C. Hieratic notation emerged in the twenty-sixth century B.C.
as a shorthand for hieroglyphic. It developed into many regional variants and, by
the late eight century B.C., writing in the Nile Delta had diverged from that in
the Upper Nile. From this northern variant of hieratic script developed demotic
script, which became the prevailing notation in the Late and Ptolemaic periods
and would survive up to around 450 A.D.3
Each of the Egyptian scripts had its own system for writing numerals. Demotic nu-
meric script diverges structurally from its hieratic and hieroglyphic counterparts.
The latter two are structurally similar to Roman numerical system, except that
they were strictly decimal, i.e. without a quinary sub-base4. The demotic numeric
system on the other hand had a decimal base, with signs for each multiple of
each positive integer power of ten, and it was written from right to left5. We can
therefore see this positional system as an intermediate step between an additive
notation and a decimal position system.

Figure 1.1 Demotic numerals (from S. Chrisomalis (2003))

2About the making of papyrus and its preservation see R. PARKINSON & S. QUIRKE(1995)
and W.E.H. COCKLE(1983).

3A. IMHAUSEN(2003), p.3, S. CHRISOMALIS (2003) & (2010), pp 54-56.
4On hieroglyphic and hieratic numerals, see L.N.H. BUNT et al.(1976), pp.1-41, G. ROBINS

& C. SHUTE(1987), M. KLINE(1972), pp.15-18.
5S. CHRISOMALIS(2003),(2004) & (2010), On demotic mathematical papyri, see R.A. PAR-

KER(1972).



1.1. In the beginning. . . 3

For example: = 24, = 452, = 305.
Although the system is hardly ever mentioned in histories of mathematics,

it may well have had a significant impact on numerical notations in the Eastern
Mediterranean region6, including Greece, as will become clear in our discussion of
Ionian numerals.

The nature of Egyptian mathematical problems may be characterized as
numerical, rhetorical and algorithmical. They are numerical because they invari-
ably use concrete numbers. They are rhetorical because no symbolism is used in
formulating the operations. And they are algorithmical because the solution is
formulated as a sequence of instructions7.
Egyptian mathematical papyri are either table texts or problem texts. Table texts
consist of mathematical data, such as fractions or square roots, arranged in lists.
These data are used for solving mathematical problems. Problem texts, on the
other hand, put forward mathematical exercises, with or without a practical back-
ground or application, and their solutions.
The small body of surviving Egyptian documents with mathematical texts can be
divided into three distinct groups8.
The first group consists of two papyri and some scattered fragments9. These doc-
uments are written in hieratic script, dating back to the earlier part of the second
millennium B.C. The second and third groups date back to the Hellenistic and
Roman periods and are in demotic and Greek respectively.

The most complete Egyptian document in the first group of mathematical
texts is the Rhind Mathematical Papyrus (also known as the Ahmes Papyrus),
which dates from the middle of the sixteenth century B.C.10 The text contains
eighty-four mathematical problems and it is a typical recombination text11. While
it is mathematical in content, it was probably intended as an instruction manual
for administrators.
The other papyrus is Papyrus Moscow, which was discovered at an unknown lo-
cation. It contains twenty-five mathematical problems12.

6On this subject, see S. CHRISOMALIS(2003), (2004) and his seminal study (2010).
7A. IMHAUSEN(2002), p.149.
8J. FRIBERG(2006).
9L.N.H. BUNT et al.(1976), pp.1-41, G. ROBINS & C. SHUTE(1987), A.M. WILSON(1995),

pp.19-52.
10The document was named after Alexander Henry Rhind, who purchased it in 1858 in Thebes.

Rhind, a Scottish scholar, lived in Egypt for health reasons. After his death in 1863, the papyrus
was acquired by the British Museum. The copyist of the papyrus identifies himself as Ahmose
and mentions that he is writing in the fourth month of the inundation season in the year 33 of
the reign of King Ausenes (Apophis). This would put him in the middle of the sixteenth century
B.C. See G. ROBINS & C. SHUTE(1987), esp. p.11, for the history of the text.

11Recombination text is a term coined by J. Friberg to indicate texts containing exercises
compiled from other texts. They were arranged in collections of comparable exercises.

12The Moscow Mathematical Papyrus is also known the Golenischev Mathematical Papyrus,
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Nearly all Old Egyptian problems are linear, solved with the method of du-
plication and halving. All quadratic equations are of the type ax2 = b.
Multiplication was done by repeated duplications and by addition of the relevant
products.

For instance13:

12 x 12 (part of problem 32 from Rhind)
1 12
2 24

/4 48
/8 96

Now 12 = 4 + 8, so
12 x 12 = 48 + 96

= 144

A slash was used to indicate terms that were to be added.

Fractions were calculated by using unit fractions14, and written as, say,
7
29

=
1
6

+
1
24

+
1
58

+
1
87

+
1

232
= 6 + 24 + 58 + 87 + 232

By way of example, we give the solution method for a simple problem from Rhind
papyrus (problem 24)15:

An amount added to its one-seventh equals 19. What is the amount?

Suppose x = 7,
we find 7 + 7.7 = 8
So 8 has to be multiplied as many times to give 19, which multiplied by
7 gives the desired result.

It is found that 8 has to be multiplied by
19
8[

19
8

]
= 2 + 4 + 8

7.
(
2 + 4 + 8

)
= 16 + 2 + 8[

= 16 5
8

]
after its first owner, Egyptologist Wladimir Golenischev. It later entered the collection of the
Pushkin State Museum of Fine Arts in Moscow, where it has remained to this day. It probably
dates back to the Eleventh Dynasty of Egypt (ca. 2050-1990 B.C.). See V.V. STRUVE & B.
TURAEV(1930).

13S. COUCHOUD(1993), p.108, G. ROBINS & C. SHUTE(1987), p. 39.
14The use of unit fractions in calculations was a commonly applied technique in both Greece

and Rome. See also D.W. MAHER & J.F. MAKOWSKI(2001).
15G. ROBINS & C. SHUTE(1987), pp. 37-38, S. COUCHOUD(1993), pp.113-114, A. IM-

HAUSEN(2003b), pp.41 and 206.
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Test:
16 + 2 + 8 + 7

(
16 + 2 + 8

)
= 19

The problem is essentially a problem of the type ax = b and hence it can be
solved on the basis of proportionality. To this end, the Egyptians used the rule of
false value. If a given value does not yield the solution, proportionality dictates
that the real value is easily calculated using the rule of three. In this example,
7 is inserted in the first step in place of the unknown, which yields 8. Since the

desired number is 19, 8 is multiplied by
19
8

. Consequently, the initially proposed

value must also be multiplied by this number, which gives the solution 16 5
8 .

Papyri Rhind and Moscow suggest that Egyptian mathematics was not well
developed. However, it would be unfair to judge ancient Egyptian mathematics on
the basis of just a few very ancient sources.
For instance, in the fragmentary Papyrus Berlin16, dating back to the Middle
Kingdom and written in hieratic script, we encounter the equivalent to systems of

equations of the type
{
x2 + y2 = a2

y = bx
.

Obviously, the solution was not given in a formal language, but rather in the shape
of an example. The formulation of the problem is interesting, because it is an early
predecessor to a Diophantine problem (II.8). Problem 1 of Papyrus Berlin reads17:

Two quantities are given. One is
1
2

+
1
4

of the other.
The sum of the squares with these quantities as sides is 100.
What are the quantities?

Take a square with 1 as its side. Then the other square has
1
2

+
1
4

as
its side.
The area of the first square is 1, and the area of the second square is
1
2

+
1
16

.

The sum of the areas is 1 +
1
2

+
1
16

.

The square root of this sum is 1 +
1
4

and the square root of 100 is 10.

Divide 10 by 1 +
1
4
.

16Papyrus Berlin 6619 is an ancient Egyptian papyrus document from the 19th dynasty (13th
century B.C.). This papyrus was found at the Saqqara burial ground in the early 19th century. It
contains ancient Egyptian mathematical and medical knowledge, including the first known doc-
umentation concerning pregnancy test procedures. See en.wikipedia.org/wiki/Berlin_papyrus

17See S. COUCHOUD(1993), pp.131-134, A. IMHAUSEN(2003b), pp.49-50, 53 and 359.
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This yields 8, which is the first quantity.

Multiply 8 by
1
2

+
1
4
, which yields 6, the other quantity.

Again, the solution relies on the rule of false value. The choice of the data is
interesting, because 82 + 62 = 102. So what the Egyptians were effectively doing
here was dividing a given square into two other squares. Clearly the compiler of
the exercise must have known that there are special triplets for which Pythagoras’
theorem holds.
The second exercise of Papyrus Berlin equals the sum of two squares, the second
of which is three-quarters of the first, to 400. The solution is of course 16 and 12
((2.8)2 + (2.6)2 = (2.10)2). In fact, apart from the factor, the exercise is identical
to the previous one.

The second group of mathematical manuscripts, written in demotic script,
show a mathematical evolution that is in line with that observed in comparable
other societies.
The most important, and possibly oldest, document of this group is Papyrus Cairo,
dating back to the third century B.C.18

Typical problems in this papyrus are pole-against-the-wall and reshaping-
rectangle problems. In the first kind of problem, the top of a pole of length d,
leaning against a wall, slides down a distance p, so that its base moves out from
the wall a corresponding distance s. Two of the parameters d, h, s are known, the
third needs to be found. Obviously, the solution requires the use of Pythagoras’
theorem. Problems such as these have a long tradition and appear in various guises
in many different cultures19.
In reshaping-rectangle problems, the question is: if the width (or height) of a rect-

angle is decreased by a fraction
1
n

, then by which fraction should the height (resp.
width) be increased in order to keep the area constant?
Papyri such as this one may have had a considerable impact on early Greek math-
ematics. After all, this was the period when Euclid worked in Alexandria.

Whereas our knowledge of Egyptian mathematics is rather limited, we know
quite a lot about Babylonian mathematics, because the Babylonians wrote on clay
tablets20. Clay tablets, unlike papyrus, are not biodegradable and therefore more
likely to withstand the passing of time.
Although we speak of Babylonian mathematics –in reference to Babylon, one of
the most influential cities in the Middle East– the term is somewhat misleading.

18P. Cairo J.E. 89127-30, 8913. It has a legal code on the recto and some forty mathematical
problems on the verso. It was dated on paleological grounds from a study of the legal text. See
D. MELVILLE(2004), p.155, J. FRIBERG (2006), pp.105-106.

19For a detailed analysis of this type of problem in Egyptian and Babylonian mathematics,
see D.J. MELVILLE(2004).

20The seminal text on the subject is J. HØYRUP(2002).
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Unlike Egypt, Mesopotamia was not a stable culture. The oldest cultures in
Mesopotamia, the region between the Tigris and the Euphrates, were those of
the Sumerians and the Akkadians. Their reign is referred to as the Old Baby-
lonian period (before 1600 B.C.), an era that is relatively well documented in
cuneiform writings. Then came the Hittites, Assyrians, Chaldeans, Medes and Per-
sians. Sometimes these cultural transitions were peaceful, resulting in a more or
less continuous evolution of mathematics among other things. At other times they
were violent, resulting in breaks in the written tradition. There are, for example,
very few written sources from the Kassite era (ca. 1600-1200 B.C.). Moreover, from
the twelfth century onward, new technologies for writing were introduced: ink on
perishable materials for Aramean and wax-covered wooden tablets for cuneiform
writing. Consequently, as in the case of ancient Egypt, few written records from
this period have survived.
In 330 B.C., the Middle East was conquered by Alexander the Great. Although
his empire was short-lived, it was the beginning of an era of Greek domination
that would last until the Arab conquests in the seventh century.

The Sumerians had developed an abstract form of writing based on cuneiform
symbols. These symbols were imprinted with a stamp in wet clay, which would
subsequently be baked in the sun.
Of the 500000 such clay tablets that have been excavated, around 500 are of math-
ematical interest. Some 160 tablets containing problems have been published thus
far, the vast majority of which date back to the Old Babylonian era21. Some tablets
contain information that is of indirect relevance to the history of mathematics. For
instance, some Old Babylonian mathematical texts deal with various quantities in
the context of the digging of a canal22. Interestingly, in the past decade or so, a
number of school tablets have been described, including some with mathematical
content23. These tablets give us an insight into the education of administrators.
Metrology ran right through the curriculum, beginning with memorization of or-
dered lists of metrologically related objects up to contextualized metrology in
model contracts. Calculations belonged to the advanced curriculum. Mathemati-
cal problems were taken from “textbooks” –now referred to as problem texts– often
containing quite similar questions with numerical answers.

Most of these mathematical tablets –like the Egyptian papyri– are either
table texts or problem texts. Although the tablets usually date back to the Ham-
murapi Dynasty (18th-16th centuries B.C.) and the Seleucid period (3rd-2nd cen-
turies B.C.), the oldest originated in the twentieth century B.C. It is from these
documents that we know the Babylonians were already able to solve quadratic
equations around 2000 B.C.24

21E. ROBSON(1999), pp.7-8.
22See K. MUROI(1992), J. FRIBERG(2003).
23E. ROBSON(2002).
24I. BASHMAKOVA & G. SMIRNOVA(2000), pp.1-2.
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Unlike the Egyptian texts, which contain routine problems with no apparent con-
nection, the Babylonian texts often present us with carefully arranged problems
in increasing order of difficulty25. Babylonian mathematics originated and evolved
in a practical setting: the orally based surveyor’s algebra and the bureaucratic
culture of accounting26. The legacy of this origin is that the unknown is rendered
with a context word, such as length (x ), width (y) or area (xy).

Linear equations and systems of linear equations represented no great chal-
lenge to the Babylonians. Although the texts only show the calculations, it is not
difficult to discern the underlying algorithm of the combination method27.

Babylonian Modern

7 x 4 = 28

 l +
b

4
= 7

l + b = 10

⇒
{

4l + b = 28
l + b = 10

28− 10 = 18 3l = 18

18 x
1
3

= 6 length l = 6

10− 6 = 4 width b = 10− 6 = 4

Square roots are found in the calculations of diagonals of rectangles, the so-
called square-side rule28. More often than not, the answer is given without an
explanation, but we can deduce from these solutions that the formula relied upon
was :

d = l +
b2

2l

in which d stands for the diagonal, l for the length and b for the width of the
rectangle. The result is of course an approximation of the square root, which gets
more accurate if b is much smaller than l29.

25This may be a little unfair on the Egyptians, as we are comparing a large set of Babylonian
tablets with about half a dozen Egyptian papyri.

26E. ROBSON(2001), p.170.
27L.N.H. BUNT et al.(1976), pp.51-52.
28J. FRIBERG(2006), p.82. The rule is of course equivalent to Pythagoras’ theorem and states

that the square on the diagonal is equal to the sum of the squares on the length and the width
of the rectangle.

29This has a mathematical basis:

if b << l then
√

l2 + b2 =

√
l2

(
1 +

b2

l2

)
≈ l

(
1 +

b2

2l2

)
= l +

b2

2l
.

For a detailed explanation of Babylonian square-root extraction, see D. FOWLER & E. ROB-
SON(1998), pp.370-373.
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Babylonian texts merely provide numerical examples. Nevertheless, they
serve as models for a solution method for a particular type of equation. The
underlying algorithms are easily discerned. The Babylonians knew that quadratic
equations had two distinct, but basically equivalent, solutions. Negative solutions,
however, were not considered.
For example30

Babylonian algorithm Modern

Length plus width is 14. Area is
45. What are the length and the
width?

Find two numbers of which the
sum is 14 and the product is 45.

Take half the sum of the length
and width (the half-sum): 7

Two numbers that have a sum 14
can be written as 7+x and 7−x,
from which

(7− x)(7 + x) = 45
Square the half-sum: 49 ⇔ 49− x2 = 45
Subtract the area: 4 ⇔ x2 = 4
Take the square root: 2 ⇔ x = 2
Length is
half-sum + square root: 9
Width is
half-sum - square root: 5

The numbers are 5 and 9.

Systems of equations leading to quadratic equations can be divided into two
groups31: {

x± y = a
xy = b

{
x± y = a
x2 + y2 = b

Quite often, problems are posed in which a number is sought whose sum with
its reciprocal is a given number.

This leads to a system of equations:
{

xy = 1
x+ y = b

which of course can be

solved by a quadratic equation:

x(b− x) = 1⇔ x2 − bx+ 1 = 0

The solution of this equation is given step by step:

calculate
(
b

2

)2

, then

√(
b

2

)2

− 1, leading to the solution
b

2
±

√(
b

2

)2

− 1.

30L.N.H. BUNT et al.(1976), p 52. Diophantos’ I.27 is the same problem, but with indetermi-
nate sum and product.

31K. VOGEL(2004), pp.226-227.
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One of the ways of reaching a general solution for the quadratic equation
t2 + bt+ a = 0 is by writing it as a system32:

Given the system
{
xy = a
x+ y = b

Then
x+ y

2
=
b

2
⇒

(
x+ y

2

)2

=
(
b

2

)2

⇒
(
x+ y

2

)2

−xy =
(
b

2

)2

−a

Now
(
x+ y

2

)2

− xy =
(
x− y

2

)2

.

Whence
(
x− y

2

)2

=
(
b

2

)2

− a

and
x− y

2
=

√(
b

2

)2

− a.

Now


x =

x+ y

2
+
x− y

2
=

b

2
+

√(
b

2

)2

− a

y =
x+ y

2
− x− y

2
=

b

2
−

√(
b

2

)2

− a

As in Egyptian texts, we find problems relating to the division of a square into
two other squares, for which the ratio is given. And, like in the Egyptian sources,
we encounter pole-and-reed problems, to be solved on the basis of Pythagoras’
theorem.
More importantly, however, there are also purely mathematical exercises, without
any immediately apparent practical merit. Among the mathematical texts from
Susa is a document designated TMS1, the first problem in which seems to ask
for the radius of a circumscribed circle to a given triangle33. The height and the
front of the triangle are respectively h = 40 and s = 60. Because the triangle is
equilateral, it consists of two right-angled triangles of the (3, 4, 5) type. The values
for r (the radius of the circumscribed circle) and of q (the distance from the base
to the centre of the circle) are solutions for the system of equations:{

r2 − q2 =
(s

2

)2

r + q = h

32A procedure also followed by Diophantos in I.27.
33J. HØYRUP(2002), pp.265-268, J. FRIBERG(2006), pp.138-139, P. DAMEROW(2001),

pp.287-288.
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The first equation can also be written as (r − q)(r + q) =
(s

2

)2

and substituting

the second equation, we find (r − q)h =
(s

2

)2

.
The system then becomes: r − q =

(s
2

)2

h
= p

r + q = h

⇒


r =

h+ p

2
q =

h− p
2

The tablet known as Plimpton 322, which has been dated back to between
1900 and 1600 B.C., features a table with numbers that seem to relate to Pythag-
orean triplets. The tablet consists of four columns with 15 rows of data written
in a mixture of Sumerian and Akkadian. The two central columns are entitled the
square of the diagonal and the square of the short side, although the figures are
the lengths of the sides of these squares34.
Tablet IM 67118 contains another predecessor of Diophantine problems35. The
age of the tablet is known, as the scribe mentions he wrote it during the reign
of Ibalpiel II of Eshnunna (fl. 1780-1760 B.C.). It contains a problem that asks
for the sides of a rectangle with diagonal 1;15 (= 75)36 and area 45. The solution
is provided in a characteristic way: calculation and intermediate results are given
until finally the solution, 45 and 1;00 (= 60), is arrived at. The problem can be
written algebraically as {

x2 + y2 = a2

xy = b

Evidently Pythagoras’ theorem was known to the Babylonians, at least at an al-
gorithmic level37.

The Babylonians even succeeded in solving certain types of cubic equations.
They constructed tables for n3 + n2, with the aid of which equations of the type
ax3 + bx2 = c can be solved38.

34For a recent discussion and interpretation of Plimpton 322, see E. ROBSON(2001).
35In book 6, Diophantos deals with right-angled triangles with sides in rational numbers and

satisfying conditions. In problems 3 and 4, the additional condition is
1

2
ab ±m = α2, where a

and b are the lengths of the perpendiculars and m is an arbitrary number. Hence m = 0 is also
solved, which is a restricted version of the problem posed here.

36Babylonian figures are sexagesimal, numbers before the semicolon separates are multiples of
sixty. Thus 1;15 = 1*60 + 15 = 75.

37For a detailed analysis of the evidence on Pythagoras’ theorem in Mesopotamia, see P.
DAMEROW(2001).

38J.J. JOSEPH(1992), p.207, J. HØYRUP(2002), p.149-154.
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Indeed:
ax3 + bx2 = c

⇔
(ax
b

)3

+
(ax
b

)2

=
ca2

b3

Put t =
ax

b
then t3 + t2 =

ca2

b3
.

By looking up the value n for which n3 +n2 equals
ca2

b3
the solution for

x can be calculated.

On the inheritance from these two cultures, Classical Greece would erect a mathe-
matical monument that continues to casts its shadow forward to this day, namely
deductive mathematics.

1.2 Classical Greece
When we speak of Greece, we tend to think of the Peloponnesian mainland and
the myriad of islands scattered across the Ionian Sea. In classical times, however,
the Greek sphere of influence was often much broader. Greek culture spread out
to Southern Italy and Sicily in the west, to Asia Minor in the east, and to the Nile
Delta in the south. It reached its zenith at the time of Alexander the Great, whose
empire included the whole of the Middle East and parts of India and stretched
out as far as Afghanistan.
In 332-331 B.C., Alexander founded a city that still bears his name: Alexandria39,
the ancient centre of learning. Up to the Arab conquests of the seventh century,
this city was home to some of the most remarkable mathematicians of the era –
including Diophantos.
After Alexander’s death, his empire became the scene of a power struggle between
his generals. Some tried to establish their own realms in one of the many Persian
satraps, and the most ambitious even attempted to seize power throughout the
Empire. Eventually, the Greek mainland became an arena for fighting between the
city-states and Macedonia.
Ptolemy secured his position in Egypt and became the founder of the Ptolemaic
dynasty. Greeks and Macedonians formed the ruling class and the backbone of
the army and the bureaucracy. Under their rule, Alexandria became the most im-
portant trade hub in the known world. It was also under the Ptolemies that a
university and a museum with a library were established, making Alexandria the
centre of scientific activity in Ancient society.
Seleucus captured the territory stretching out from the Aegean to India, including
the coveted prizes of Syria and Mesopotamia. Seleucus and his successors would
establish numerous Macedonian and Greek settlements. New settlers soon mixed
with the indigenous populations. The ruling classes and their cities became Hel-
lenized, while the countryside remained Aramean. Hellenization was a deliberate

39On the foundation of Alexandria: R. CAVENAILLE(1972), M. WOOD(2001), pp.82-83.
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policy on the part of the Seleucid dynasty, and it proved particularly successful in
Syria. Antioch became the largest Greek city after Alexandria.
Asia Minor remained the centre of Greek culture. The old cities on the Ionian coast
grew larger, wealthier and more powerful than ever before. Pergamum developed
into a centre of learning to rival Alexandria.
In a sense, then, from 300 B.C. onwards, the mathematics of both Egypt and
the Seleucid Empire were “Greek”. In this book, however, we shall, in line with
common practice, limit the term “Greek mathematics” to the mathematics that
originated in the Greek sphere of influence in the Mediterranean.

It is clear that Greek mathematics was influenced by Babylonian and Egyp-
tian sources. To what extent this was the case is, however, a different matter.
Herodotos, for example, writes40:

For this reason Egypt was intersected. This king also (they said)
divided the country among all the Egyptians by giving each an equal
parcel of land, and made this his source of revenue, assessing the pay-
ment of a yearly tax. And any man who was robbed by the river of part
of his land could come to Sesostris and declare what had happened;
then the king would send men to look into it and calculate the part
by which the land was diminished, so that thereafter it should pay in
proportion to the tax originally imposed. From this, in my opinion, the
Greeks learned the art of measuring land; the sun clock and the sundial,
and the twelve divisions of the day, came to Hellas from Babylonia and
not from Egypt.41

Thales42, Pythagoras, Demokritos and many other Greek mathematicians from
the pre-Alexandrian era are all believed to have travelled to Egypt to learn their
art. According to Plato, mathematics, which he understood to encompass arith-
metic, logistic and astronomy, originated in Egypt in the vicinity of the Greek
colony of Naukratis43.

40Herodotos, The Histories, II.109.
41A similar picture is painted by Proklos in his Commentary on Euclid’s Elements, Book I:

“[. . . ] it was, we say, among the Egyptians that geometry is generally held to have been dis-
covered. It owed its discovery to the practice of land measurement. For the Egyptians had to
perform such measurements because the overflow of the Nile would cause the boundary of each
person’s land to disappear. [. . . ] And so, just as the accurate knowledge of numbers originated
with the Phoenicians through their commerce and their business transactions, so geometry was

andrews.ac.uk/Extras/Proclus_history_geometry.html
42“Geometry was originally invented by the Egyptians, it was brought to the Greeks by Thales”,

Heron, Definitions, 136,1; “It was Thales, who, after a visit to Egypt, first brought this study
to Greece. Not only did he make numerous discoveries himself, but laid the foundations for
many other discoveries on the part of his successors, attacking some problems with greater
generality and others more empirically.”, Proklos, Commentary on Euclid’s Elements, Book I.
See http://www-history.mcs.st-andrews.ac.uk/Extras/Proclus_history_geometry.html

43Plato, Phaedrus 274c-274d:

discovered by the Egyptians for the reason we have indicated.” See http://www-history.mcs.st-

http://www-history.mcs.st-andrews.ac.uk/Extras/Proclus_history_geometry.html
http://www-history.mcs.st-andrews.ac.uk/Extras/Proclus_history_geometry.html
http://www-history.mcs.st-andrews.ac.uk/Extras/Proclus_history_geometry.html
http://www-history.mcs.st-andrews.ac.uk/Extras/Proclus_history_geometry.html
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Whether there was indeed ever such a direct influence from Babylonia is
questionable. The first Greek philosopher to visit Babylon would appear to have
been Demokritos, after 449 B.C. This was during a peaceful interlude in the series
of wars between Greece and Persia. It was undoubtedly through these Graeco-
Persian wars that the Greeks learnt about Persian engineering and associated
mathematics and vice versa. On the other hand, there is no evidence for a direct
Babylonian influence on Greece insofar as concerns “pure” mathematics44. Some
writers do however suggest that such an influence existed between Babylon and
Egypt, and that the Greeks became acquainted with Babylonian mathematics via
this detour, without ever acknowledging this45.

It has become almost proverbial that Greece is the cradle of science and pure
mathematics, with geometry and Euclid’s Elements in particular as its pinnacle.
However, the question arises whether the Greeks themselves also held this view.
In fact, they almost certainly did not, as they regarded arithmetic to be supe-
rior to geometry46. Of course, Greek mathematics was not very different from its
Mesopotamian and Egyptian counterparts. Yet our image of a Greek mathemati-
cian is that of an elderly man occupying himself with the pursuit of knowledge for
its own sake. Arguably the only element of truth in the previous sentence is the
word man. The schools of the Ionian seaboard, reputed to be the first Greek sci-
entific academies, developed their theories in close association with practice. The
example that perhaps comes closest to reality is that of Archimedes. The image
that is portrayed of him is, for that matter, comparable to that of a Renaissance
engineer-cum-mathematician à la Galileo or Stevin.
Archimedes was what we might call an engineer, involved in, among other things,
the design and construction of military equipment. In a sense he was also a merce-
nary, selling his formidable intellectual powers to the ruler of Syracuse. According
to one account, he was killed as he tried to approach a Roman camp with some of
his inventions after the fall of Syracuse. If true, then never in the field of human
history has so much been lost to so many by one overzealous guard.
There are other examples of the close link between mathematics and engineer-
ing in ancient Greece: Eupalinos of Magara tunnelled through the Kastro hill on
the isle of Samos, digging from both sides and meeting in the middle. The en-
gineering tradition is also attested by Philo of Byzantium, who appears to have
discussed military applications of catapults with the rulers of Alexandria. Heron
and Diophantos, despite the seemingly theoretical appearance of the latter’s work,
fit seamlessly into this tradition.

Socrates:I heard, then, that at Naukratis, in Egypt, was one of the ancient gods of that
country, the one whose sacred bird is called the ibis, and the name of the god
himself was Theuth. He it was who [274d] invented numbers and arithmetic
and geometry and astronomy, also draughts and dice, and, most important
of all, letters.

44See E. ROBSON(2005).
45W. KNORR(2004), p.355, J. FRIBERG(2006).
46J. MANSFELD(1998), pp.83-84, 90.
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1.3 The Greek written heritage

Despite our seemingly extensive knowledge of Greek mathematics, we have fewer
original documents dating back to the Greek era than to Babylonian times. This
is due to two factors: firstly, like the Egyptians, the Greeks wrote on degradable
papyrus; and secondly, the large libraries where Greek knowledge was stored were
destroyed in the course of history. The truth of the matter is, therefore, that to-
day we possess just a few scraps of papyri testifying to ancient Greek mathematics.

The Greeks wrote on papyri in columns. They used non-accentuated capital
letters without spacing between words. There were no fixed rules for hyphenating
at the end of a line. Accents or other indications to clarify ambiguities were only
slow to develop during the Alexandrian period. Accentuated Greek, with small
and capital letters and with word spacing, was not introduced until the Byzantine
period. It should therefore be kept in mind that, when placing accents, subsequent
scribes may have had to choose between possible alternative readings, implying
that we, too, are in fact reading an interpretation of the original.

Papyrus scrolls tore easily, yet they remained in use for a very long time. The
earliest codices date back to the second century A.D., the most recent to the sixth
century. A codex consisted of foliated papyrus leaves or (from the fourth century)
parchment.
No complete papyrus scrolls from the Greek mainland are known, apart from some
‘baked’ copies47. The fact that we nonetheless know so many works from Antiq-
uity is thanks to three factors. First and foremost, many scrolls were copied and
preserved as codices in Byzantine and European convents and abbeys. Not only
were the Greek versions of the Bible and philosophical treatises copied, but so too
were numerous other works, covering a variety of topics. The only (almost) fully-
preserved copy of an Ancient cookery book, for example, was found at the Abbey
of Fulda48. Secondly, after the conquest of the North African coasts by the Arabs,
many of the Greek treatises were translated into Arab. By about 1000, these Arab
works had also been translated into Latin. Lastly, during the Humanist revival of
the fifteenth century, which almost coincided with the advance of the Turks toward
Constantinople, the Italians purchased numerous Greek codices in the shrivelling
Byzantine Empire. The Turkish advance also prompted many Byzantine scholars
(who may be regarded as the direct heirs to the Graeco-Roman tradition) to flee
to Italy and elsewhere in Europe.

The earliest known Greek treatises date back to the fourth or fifth centuries.
More often than not, we encounter them on palimpsests. Papyrus was a very pre-
cious material, so when a text had lost its relevance, it was sometimes erased in

47A ‘baked’ copy is a carbonized scroll that can be scrutinized scientifically, albeit with con-
siderable difficulty. Moreover, much of the information contained in the documents is generally
lost in the process. See M. GIGANTE(1979), G. CAVALLO(1983).

48See among others N. VAN DER AUWERA & A. MESKENS(2001).
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order that the papyrus could be reused. Traces of the original texts remain visible,
though, and can be made legible by modern techniques.

1.4 Numbers in Classical Greece

The ancient Greeks (or better: those who wrote Greek) used Herodianic and Ionic
numerals side by side. The former notation is a mixed additive-multiplicative sys-
tem, the basic symbols in which are:

| = 1,Γ = 5,∆ = 10,H = 100, X = 1000,M = 10000

The symbol for one is simply a stroke, as in many scripts. The other symbols
are the first letters of words. Γ is not a gamma, but an older representation of pi,
as an abbreviation for penta, five. ∆ stands for deka, H for hekaton, X for kiloi
and M for myrioi.
Numbers were generally written additionally, as in X∆∆∆ = 1030, but occasion-
ally also in an multiplicative fashion, e.g. Γ∆ = 5.10 = 50.
In this way more complex numbers can be written, e.g. XXΓH∆∆∆Γ|| = 2637.
The system was widely used throughout the Greek world and it is commonly en-
countered on amphorae49.

The Ionian system is semi-positional. Letters of the alphabet are used to
represent figures and multiples (< 10) of powers of ten.

1 2 3 4 5 6 7 8 9
α β γ δ ε ϛ ζ η θ

10 20 30 40 50 60 70 80 90
ι κ λ µ ν ξ o π ϟ

100 200 300 400 500 600 700 800 900
ρ σ τ υ ϕ χ ψ ω ϡ

1000 2000 3000 4000 5000 6000 7000 8000 9000
,α ,β ,γ ,δ ,ε ,ϛ ,ζ ,η ,θ

As there are only twenty-four characters in the Greek alphabet, older char-
acters were used for the remaining three figures: ϛ = stigma/vau = 6, ϟ = koppa
= 90 and ϡ = sampi = 900.

49See M. LANG(1956), next to M. N. TOD(1913) and (1979), about variants in the inscriptions
on the various islands.
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From the sixth century B.C. onward, the two systems were used side by
side. Which of the two was most prevalent at one time would appear to have
depended on whoever was the most dominant power: the Ionian cities or Athens.
The earliest reliable evidence of the use of the Ionian system is on a crater dating
back to around 575 B.C., the beginning of a period of Ionic cultural dominance
that would last for about a century. Subsequently, between 475 and 325 B.C., the
numerals were used only sporadically. The system did not disappear altogether, but
it became marginalised when the Herodianic notation was readopted, as Athens
gained in influence and Ionia’s supremacy waned. Then, from the Alexandrian
period onward, the Ionic numerals came in vogue again: they were preferred over
the acrophonic numerals throughout the Greek world, with the exception of the
Athenian polis. The Ionian system would remain in use in the Greek-speaking
world until the fall of the Byzantine Empire. Stephen Chrisomalis asserts that the
notation originated in Asia Minor as early as the sixth century B.C.50 He further
argues that the structure of the system was directly derived from the structure
of the demotic numerals. These were in general use in Egypt in the sixth century
B.C., when Ionian traders set up an empórion at Naukratis in the western Nile
Delta (ca. 625 B.C. – see p. 2).

In principle, the system could cope with numbers up to 999. Multiples of a
thousand were represented by the addition of a dash in front of the letters. Larger
numbers were written using a mixed Ionic-Herodianic system,

e.g. M
β

= 2.10000 = 20000, or as β.
Here are some further examples:

κδ = 24, υνβ = 452, τη = 305,

M
κβ

, αχoγ = κβ., αχoγ = 221673

Note that there is no place holder if a certain power of ten is not present.

Like the Egyptians, the Greeks wrote their fractions as a sum of unit frac-
tions. Later, they began to write them as coupled numerals, whereby the distinc-
tion between nominator and denominator could be represented in different ways.

For example,
2
3

was written as β′γ”γ” or
β
γ.

The latter notation is not a fraction with nominator and denominator, but
rather an abbreviation51. This remark is not without importance for the study of
Diophantos, for it is not at all clear whether or to what extent the Diophantine
corpus has been affected by such corruptions.

50S. CHRISOMALIS(2003)
51See D.H. FOWLER(1987), pp.263-268. Fowler suggests that these abbreviations provided

the inspiration for the new notation of the Italian abacists and that they, through the use of
later copies, corrupted our view of Greek arithmetical notation.
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Although, traditionally, historians consider Greek mathematics to begin with
Thales, the earliest mathematicians where we find traces of algebraic reasoning are
Pythagoras and his followers. It is in their work that our notion of rational num-
bers originates.
The Pythagoreans attributed most of their ideas to Pythagoras himself, making
it virtually impossible to separate Pythagoras’ teachings from later additions. It
would appear Pythagoras (ca. 570-500 B.C.) fled the island of Samos either be-
cause of the tyranny of Polykrates or for fear of the Persians. It was the beginning
of a peripatetic life that would lead him to Egypt, Crete and Delos (ca. 525 B.C.).
He eventually opened his school in Kroton, a Greek colony on the shores of south-
ern Italy.
The Pythagoreans assumed that all natural phenomena could be expressed as
numbers. It was one of the greatest achievements of the Pythagoreans to rec-
ognize and emphasize that mathematical concepts, like number and geometrical
constructions, are in fact abstractions, ideas of the mind, which have to be sepa-
rated from the real-world objects52. It is to Plato that we owe the philosophical
notion of mathematical ideas existing independently from reality. When consider-
ing a triangle, we are in fact considering the creation of an Idea of the ideal or
essential triangle, which no drawn triangle can emulate. It is only in a Platonic
view that a triangle really exists. Any triangle we draw is disfigured by the fact
that each point and each line has a certain thickness, thereby shattering the very
concept of a triangle.

The Pythagoreans depicted numbers as pebbles or dots in the sand. It seemed
natural to them to associate a point or a pebble with the number 1. It was with
pebble arithmetic, or ψῆφοι, that mathematicians tried to solve summation prob-
lems53.

They would then classify the numbers according to the shapes of the pebbles.
The numbers 1, 3, 6, 10, . . . were referred to as triangular, because they can be ar-
ranged into a triangular shape. 1, 4, 16, 25, . . . were, for obvious reasons, regarded
as square numbers. The Pythagoreans thus noticed that the sum 1+2+3+ . . .+n
leads to a triangular arrangement.
A standard method for obtaining summations seems to have been to make config-
urations with gnomons. For instance, it is obvious that, when equilateral gnomons
of 1, 3, 5, 7, ... are put together in a ψῆφοι-configuration, their sum will be (see
fig.1.2 left) ∑n

i=1(2i+ 1) = (n+ 1)2.

52On Pythagorean philosophy see e.g. R. NETZ(2005)
53For detailed descriptions, see T.L. HEATH(1981), H.J. WASCHKIES(1989). In one cunei-

form tablet (AO6484) from Seleucid times (dated early second century B.C.), similar algorithms
are used, indicating the practice may have been widespread. See J. HØYRUP(2000b), pp.3-6.
There is, however, no reason to suppose that the practice originated in Mesopotamia.
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Figure 1.2
∑n

i=1(2i + 1) = (n + 1)2 (l) and
∑n

i=1 2i = n(n− 1) (r).

On the other hand
n∑

i=1

2i = n(n− 1).

Looking at the figure (fig. 1.2 right), which is composed of two equal triangular
numbers (in this case 10) that are arranged into a rectangle with surface area
n(n+ 1) (here 4.5), it can be deduced that

n∑
i=1

i =
1
2
n(n+ 1).

Similarly, they noted that square numbers are the sum of two consecutive trian-
gular numbers, an observation that can be generalized:

1
2
(n− 1)n+

1
2
n(n+ 1) = n2.

It is however doubtful that the Pythagoreans ever proved this generalization.

The Pythagoreans also looked for a rule to identify what we call Pythagorean
triples. A Pythagorean triple consists of three numbers which are the sides of a
right-angled triangle. This implies that they were at least aware of Pythagoras’

theorem. They knew that for n odd
(
n,
n2 − 1

2
,
n2 + 1

2

)
is just such a triple54.

This can be easily shown using ψῆφοι-arithmetic.
In the proof of

∑
(2i− 1) = n2, all gnomons represent an uneven num-

ber and each gnomon (every odd number) is used exactly once when
constructing a square.
Moreover, a square of an odd number is an odd number.

54The ascription of this method to the Pythagoreans is due to Proklos. See T.L.
HEATH(1981)I, p.80
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Figure 1.3 Pebble-arithmetic proving 32 + 42 = 52.

Therefore, the square of an odd number n can be made into a gnomon.

This gnomon can be added to a ψῆφοι-square with side
n2 − 1

2
, making

it a square with side
n2 + 1

2
, which proves the property.

In this way some solutions for the equation x2 + y2 = z2 are found, though
not all, as there is in fact an infinitude of solutions. Nonetheless, it is more than
ψῆφοι-arithmeticians may have hoped for: starting from a particular case, they
found a general way for identifying solutions. These solutions are of course integer
solutions to the equation.

Now what would happen in a special case55 such as 2x2 = z2? The equation
says that there are two equal squares with side x that, when put together, make
another square with side z. Obviously x < z < 2x (since x2 < 2x2 = z2 < 4x2).
Then z = x+ u for some positive u smaller than x and 2x2 = (x+ u)2.
In ψῆφοι-arithmetic, this would mean laying out two squares (see fig. 1.4) . A square
is subtracted from one of the given squares in such a manner that a gnomon of
width u remains. This gnomon is laid next to the other initial square. Obviously
this will not fit, as two squares with side u are lacking. The lacking part will then
need to be constructed out of the pebbles of the subtracted square with side x−u.
Therefore 2u2 = (x− u)2.

We conclude that, if there is a solution (m,n) to the equation 2x2 = z2,
there will be an integer number, smaller than m, for which twice the square is
again a square. Therefore, there are infinitely many numbers between m and 1
whose square is again a square. Obviously this is impossible. Consequently the
equation cannot be solved.

55For a detailed discussion, see H.-J. WASCHKIES(1989), pp.272-275.
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Figure 1.4 Pebble-arithmetic proving the impossibility of 2x2 = z2.

It is easy to understand the procedure:

We know that
m2 = m2 − 2mu+ u2 + 2mu− u2

= (m− u)2 + 2mu− u2

Now if 2m2 = n2 then n = m+ u, for some u < m
because m2 < 2m2 = n2 < 4m2.
Then:

2m2 = m2 +m2 = m2 + (m− u)2 + 2mu− u2

= (m+ u)2

⇒ m2� + (m− u)2 + 2mu� − u2 = m2� + 2mu� + u2

⇒ (m− u)2 = 2u2

Which again proves the proposition.

This Pythagorean pebble arithmetic would develop into ἀριθμητική or the
theory of numbers, which is to be distinguished from λογιστική or the art of calcu-
lation. In Plato, this distinction is not always clear. He frequently refers to both,
as if they were overlapping parts of the same mathematical field. At other times,
he draws a fine line between them. By the first century B.C., theoretical logistic
had come to refer to the subfield of mathematics that occupies itself with artificial
calculations about numbered collections56. Problems of logistic might have dealt
with cattle weights, for example, and the most complex would involve indetermi-
nate equations of the first degree57.

56D.H. FOWLER(1992b), pp.105-117.
57T.L. HEATH(1981)I, pp. 12-16.
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Another way of looking at numbers is to consider them as expressions of
the length of –straight– lines (or any other quantity associated with geometrical
figures, e.g. area, volume. . . ). In this sense, it is natural that the Pythagoreans
considered only positive integers as numbers. A fraction is a ratio of a length. Such
ratios were called commensurable if both lengths could be expressed by a common
unit. According to legend, philosophical problems presented themselves when the
Pythagoreans discovered that some lengths are incommensurable58. Some scholars
have argued that this issue was central to Greek mathematics, which had up to that
point identified number with geometry. With the discovery of incommensurables,
this identification was supposedly shattered. The Greeks therefore restricted the
consideration of numerical ratios to commensurables, until a satisfactory theory of
proportions was provided by Eudoxos. However, there are very few reasons other
than the preoccupations of contemporary philosophers to believe there actually
was ever a Grundlagenkrise.
According to Aristotle, the Pythagoreans used a reductio ad absurdum to prove
the incommensurability of

√
2 and 1. It is open to debate whether this is true or

merely an apocryphal attribution. Be that as it may, the proof is now a classic
case for anyone studying the nature of numbers59.

Let the ratio of the hypotenuse to the perpendiculars of an isosceles
right triangle be

a

b
and let a and b be the smallest possible numbers

with which this ratio can be expressed. Therefore gcd(a, b) = 1.
According to the Pythagorean theorem a2 = 2b2.
So a2 is an even number, from which a is an even number, because the
square of an odd number is odd.
Now gcd(a, b) = 1 so b has to be odd. Let a = 2c then a2 = 2b2 = 4c2,
so b2 = 2c2, which makes b even. But we proved that b is odd, therefore
there is a contradiction.

Although Plato and Aristotle are regarded as the foremost Ancient philoso-
phers, their direct influence on mathematics is modest. Still, their indirect impact
is not to be underestimated. In a number of books, Plato stresses the importance

58The story that the Pythagoreans discovered incommensurability seems to originate with
Iamblichus, On the Pythagorean Life 18(88) and a scholion to Euclid’s tenth book: “It is well
known that the man who first made public the theory of irrationals perished in a shipwreck in
order that the inexpressible and unimaginable should ever remain veiled. And so the guilty man,
who fortuitously touched on and revealed this aspect of living things, was taken to the place
where he began and there is for ever beaten by the waves.” (see T.L. HEATH(1981)I, p.154).

59Plato, Thaetetus 147d:
Theaetetus:Theodorus here was drawing some figures for us in illustration of roots, show-

ing that squares containing three square feet and five square feet are not
commensurable in length with the unit of the foot, and so, selecting each one
in its turn up to the square containing seventeen square feet and at that he
stopped. Now it occurred to us, since the number of roots appeared to be
infinite, to try to collect them under one name, [147e] by which we could
henceforth call all the roots.

Aristotle, Prior Analytics I.234a 23-30, A. WASSERSTEIN(1958).
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of the study of mathematics. Legend has it that the entrance to Plato’s Academy
bore the inscription: ‘Let no one ignorant of geometry enter here! ’.

Eudoxos was undoubtedly the most important mathematician of Plato’s
Academy. To him we owe the theory of ratios of commensurable and incommen-
surable quantities. Eudoxos also introduced the concept of magnitude. It stood for
notions such as angle, length, time . . . , which can vary continuously but which
are finite. What he in fact did was to avoid the concept of number, which, unlike
magnitude, is a discrete set. His theory laid the foundations for manipulating in-
commensurable magnitudes and for breakthroughs in geometry. However, on the
basis of the available evidence, we cannot but conclude that Eudoxos did not con-
sider the concept of incommensurability60. Eudoxos did not assign a numerical
value to a magnitude, but instead defined a ratio of magnitudes and a proportion.
A proportion is an equality of two ratios, which thus allowed him to use com-
mensurable and incommensurable magnitudes. Despite no numerical value being
assigned to ratios, the approach made it possible to compare different ratios. Eu-
doxos’ starting point was that two magnitudes have a ratio if a multiple of one
of the magnitudes can be found that is larger than the other (i.e. a : b exists if
there are numbers m,n such that ma > b and a < nb). This proposition is one of
Euclid’s definitions in book V and one of Archimedes’ axioms.

The Eudoxan theory can be found in Elements V61. In this book, Euclid
defines when four magnitudes are proportional or, as we would put it, when two
ratios are equal. The beauty of this definition is that it is not necessary to consider
the proportions of the same kinds of magnitude. Thus a and b may be the volume
of a sphere, while c and d are the cubes of their radii.

If a, b, c and d are four given magnitudes, and if m and n are positive
integers, then the ratio a : b is equal to the ratio c : d if

1. If ma > nb then mc > nd

2. If ma = nb then mc = nd

3. If ma < nb then mc < nd
If there exist whole numbers m and n such that ma > nb and mc < nd
then a : b is larger than c : d.

Obviously this definition only makes sense in the case of incommensurables. If the
magnitudes are commensurable, then condition (2) suffices, as both ratios would
then be equal to the rational number n/m. The subtlety of the argument is that
(2) is never satisfied for incommensurate magnitudes and that the equality then
follows from (1) and (3).

60D.H. FOWLER(1994), p.224.
61According to a scholion to book V, “[s]ome say [the general theory of proportion] is the

discovery of Eudoxos”. T.L. HEATH(1956)II, p.112.



24 Chapter 1. Arithmetic and the beginnings of algebra

Consider, for instance,
√

2
1

=
√

6√
3
. It is clear that there are no integers that satisfy

the relation m
√

2 = n.1, which also means that m
√

6 = n
√

3 cannot be true.

These Eudoxan definitions provide a solid basis for deducing further number
theory theorems, often in a geometric fashion, without having to revert explicitly
to irrational numbers.
Therefore it is doubtful that a genuine ‘horror irrationalis’ ever materialized. Dio-
phantos, on the other hand, would shy away from incommensurables or irrational
numbers. Although we shall make some comparisons to show the marked difference
in style and content, we shall not go into the theory of numbers as propounded by,
for example, Euclid, because this particular topic has no bearing on the issue at
hand. Euclid’s theory of numbers is geometric, not arithmetic, in nature. However,
some of its terminology may be useful to us62.
As we have already noted, magnitude (μέγεθος) is a finite continuous quantity. A
number or integer (άριθμός) is a collection of units, but a unit is not a number. A
ratio (λόγος) is a comparison of homogeneous quantities in respect of size. A pro-
portion (αναλογία) is an equality of two ratios. Two magnitudes are commensurable
(σύμμετρα) with each other if they have a common measure that divides each an
exact integral number of times. Otherwise they are incommensurable (άσύμμετρα).
In Euclid Elements X, lines are called expressible or rational if they are commen-
surate with a given line, whether in length or in square. That is to say, if the
given line has length a, then both 2a and

√
2a are expressible lines in terms of the

given line. Also, the square of the given line is considered, and those areas that
are commensurate with it are likewise called expressible63. In arithmetic treatises,
such as the Arithmetika, the terms expressible and commensurable are used as
synonyms.

1.5 All is number

It has been held that the Pythagoreans considered everything to be expressible as
number. But what is number? This question shall present itself on several occasions
in the course of this book.
Euclid and Diophantos tell us that number (arithmos) is composed of a multitude
of units64. Such a definition is easy to understand if we refer to ψῆφοι-arithmetic,

62Based on W. KNORR(1975), p.15.
63The term expressible line was coined by David Fowler(1987), pp.167-172, to avoid having to

translate with rational, where this term does not correspond with the present-day usage. The orig-
inal meaning of ῥητός is “that which can be expressed”. L. SÉCHAN & P. CHANTRAINE(1950),
p. 1718. Also T.L. HEATH(1956) III, p. xx.

64Euclid, Elements VII, def 1 & 2: “Definition 1: A unit is that by virtue of which each of the
things that exist is called one. Definition 2: A number is a multitude composed of units.”
Diophantos, I, introduction: “But also besides these things, as you know that all numbers are
composed of some multitude of units, it is clear that (their) progression exists without bound. . . ”.



1.5. All is number 25

but what about rationals and irrationals? To be able to answer this question, we
need to consider the meaning of the terms logistic (λογιστική, calculating) and
arithmetic (αριθμητική, counting) in Greek philosophical thought65.
Socrates, for example, says the following about arithmetic66

[S]uppose someone asked me about one or other of the arts which
I was mentioning just now: Socrates, what is the art of numeration? I
should tell him, [451b] as you did me a moment ago, that it is one of
those which have their effect through speech. And suppose he went on
to ask: With what is its speech concerned? I should say: With the odd
and even numbers, and the question of how many units there are in
each.

And on logistic:

And if he asked again: What art is it that you call calculation? I
should say that this also is one of those which achieve their whole effect
by speech. And if he proceeded to ask: With what is it concerned?
I should say–[451c] in the manner of those who draft amendments in
the Assembly–that in most respects calculation is in the same case as
numeration, for both are concerned with the same thing, the odd and
the even; but that they differ to this extent, that calculation considers
the numerical values of odd and even numbers not merely in themselves
but in relation to each other.

Despite the distinction made in this passage, Plato often treats the terms logistic
and arithmetic as synonyms. In some cases he even introduces metric (μετρήτική),
the art of measuring, in the same terms. How, then, should we interpret these
notions when encountered in Greek texts? There is no consensus on this matter
among philosophers, and perhaps not surprisingly so, as we are in fact considering
texts spanning a period of almost a millennium, so that subtle changes in meaning
are quite likely to present themselves. However, philosophers have tended to draw
a line between theoretical and practical logistic. The former is seen to refer to that
kind of artificial calculation that mathematicians tend to devise about number
collections, such as cattle or . . . pebbles. Obviously this would resemble number
theory as we understand it. Practical logistic, on the other hand, is the arithmetic
of merchants and craftsmen.
Theoretical logistic seems to be the origin of problems concerning the nature of
numbers, primarily because the Greeks did not distinguish between the cardinal
number of a set and the set itself. The members of the set were referred to as
units, which added to the confusion with the number ‘1’.

65This paragraph is in large measure based on J. KLEIN(1992), pp.3-149, D. FOWLER(1987),
pp.106-117 and M. CAVEING(1982), pp.758-796.

66Plato, Gorgias, 451a-c.
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Now is it possible to divide the unit?
Theon of Smyrna notes that67:

the one, when it is divided within the realm of sense, is on the one
hand diminished as a body, and is, once the cutting up has taken place,
divided into parts which are smaller than it, while on the other hand,
as a number, is augmented.

The apparent paradox immediately holds the key to the division of unity. Whereas,
after an object is divided, each part is smaller than the object itself, there are sev-
eral pieces rather than one object.
The division of unity is therefore obtained, not by counting the object, but by
counting the pieces. It would appear this is precisely what the Greeks did when

considering the fraction
1
n

. They took a collection of n + 1 elements, because it
is composed of unity, being the n-th part of n, and n. The ‘1’ of the collection
therefore is the n-th part of the remaining collection of n elements.
Obviously practical mathematicians were not concerned with these frivolities of
philosophy, so they had little qualms about using fractions. After all, experience
had told them that unity can indeed be divided: one amphora of wine makes many
glasses of wine. . .
It has been argued by J. Høyrup68 that mathematicians tend to care more about
conquering new mathematical ground than about consolidating philosophically
what they already possess. To put it bluntly, philosophy and practice are at odds.
Diophantos, too, got caught in the middle. In his introduction, he asserts that all
numbers are composed of some multitude of units, while in problem I.23 he refers

to
50
23

as 50 of 23rds and
150
23

as 150 of the said part69. Moreover, in G IV.31, he

merrily divides unity into two numbers, which obey certain relations. Mathemat-
ical necessity always wins over philosophy in Diophantos’ Arithmetika.

67J.KLEIN(1992),pp. 39-40
68J. HØYRUP(2004), p.144.
69See p. 45 for the conventions on the numbering of the Diophantine books.



Chapter 2

Alexandria ad Aegyptum

2.1 The capital of memory

From the time of Alexander the Great, Alexandria ad Aegyptum1, the Hellenic
capital of Egypt designed by Deinokrates, was a centre of learning.
It was situated at the westernmost tributary of the Nile, along its widest chan-
nels, and seemed destined after Alexander’s destruction of Tyre to become the
dominant centre of trade between the Mediterranean, the Nile Valley, Arabia and
India. Ideally located at the crossroads of these cultures, it attracted people from
everywhere and could rightly be called the world’s first cosmopolitan metropolis.
The city was oblong-shaped: about 4 miles at its longest and about a mile wide2.
The streets were laid out in a checkerboard pattern, with two large thoroughfares
that almost bisected the city. Off the mainland, in the harbour of Alexandria, lay
the isle of Pharos with its famous lighthouse. The island was almost connected
to the shore by a long finger of land, a promontory known as Lochias, which
stretched out towards the east. A causeway called the Heptastadium was built
from the mainland, thus closing the bay toward the west.

The tongue of land on which the city stood made it singularly adapted to its
purpose as a commercial and military centre. Lake Mareotis, which bounded the
city to the south, served both as a wet dock and as a general harbour for inland
navigation along the Nile valley. Economically, it was the largest market in the
inhabited world3 and the commercial hub of the Eastern Mediterranean. In the
pre-Roman era, the city’s economy declined temporarily, but it would soon recover
and prosper again under the Romans. Egypt’s agrarian economy was focused on
Alexandria, with its stockpiles of grain destined for export. Other export products

1Alexandria by Egypt, not in Egypt.
2Pliny, The Natural History, 5.11 and Strabo, Geography, XVII, I, 8.
3Strabo, Geography, XVII, I.13.

A. Meskens, Travelling Mathematics - The Fate of Diophantos’ Arithmetic, Science Networks.
Historical Studies 41, DOI 10.1007/978-3-0346-0643-1_2, © Springer Basel AG 2010
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Figure 2.1 Ancient Alexandria

included papyrus, book scrolls, glasswork, jewelry, fragrance and medicine.
The harbour also offered military benefits: it was large enough to accommodate
large fleets, while its narrow entrance made it easy to defend.

According to Strabo, Alexandria’s famed salubrious atmosphere was attrib-
utable to its location, in between the sea and Lake Mareotis, which was filled
annually by waters from the Nile4. Galen also believed that the regular replen-
ishment of the lake prevented pestilences, which he associated with marshes of
stagnant waters. However, the waters would eventually recede, creating a fertile
breeding ground for disease-carrying mosquitoes. Obviously there is no reason to
imagine that the autumnal outbreaks of pestilential fevers (= malaria) described
by sixteenth-century local physicians, and which were associated with the propin-
quity of Lake Mareotis, might have been absent in Antiquity5.

The population of Alexandria is assumed to have been close to half a million6.
The city was divided into three districts: the Jewish quarter, the Greek quarter
or Brucheion, and the Egyptian quarter or Rhakotis. After 31 B.C., the Romans,
who occupied the Greek quarter, became the fourth ethnic group. The Jewish
quarter had its own walls and gates, as hostilities between Greeks and Jews were
common.

4Strabo, Geography, XVII, I.7 “When a large quantity of moisture is exhaled from swamps,
a noxious vapour rises, and is the cause of pestilential disorders. But at Alexandreia, at the
beginning of summer, the Nile, being full, fills the lake also, and leaves no marshy matter which
is likely to occasion malignant exhalations".

5W. SCHEIDEL(2001), p.79.
6W. SCHEIDEL(2001), p.184.
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The Royal or Greek quarter contained the most important public buildings, lush
gardens and the Royal Palaces. It is here that the far-famed Library and Museum
were located.

The Museum, or Temple of the Muses, is believed to have been erected under
Ptolemy I (367-283 B.C.)7. It was a semi-religious research institution based on
the model of the Athenian Academy and Lyceum and devoted to the cult of the
Muses. Contrary to the Academy and the Lyceum, however, it was under gov-
ernment control. The Museum was apparently located within the palace walls8.
Not all members of the Museum are known, nor whether the institution had a
continuous existence. However, we do encounter some famous names among its
librarians: Apollonios of Samothrace, Eratosthenes (the mathematician and scien-
tist), Aristophanes, and Aristarchos of Rhodes9. The members were not obliged
to teach, but it seems likely that most were surrounded by a group of students.
It was at the Museum that the first attempts at literary criticism were made.
The librarians were painfully aware that the texts they received were imperfect in
various ways. Therefore, they indicated possible corruptions, standardized texts,
and developed a number of reading aids, such as punctuation and accentuation.
From 38 onward, membership was a kind of award bestowed upon civil servants
and high-ranking officers10. There is no detailed account of daily life at the Mu-
seum at any time in its history. Indirect evidence, mostly relating to Kings and
Emperors11, comes from authors such as Strabo and Athenaeus, or from imperial
biographies.
A covered marble colonnade connected the Museum with an adjacent stately build-
ing: the famous Library known as the Alexandrina12.

7E.A. PARSONS(1952), pp.83 ff., P.M. FRASER(1972), pp.312 ff.
8“The Museum is also part of the Royal Quarters, having a public walk (peripaton), seating

chamber (exedra), and a large building containing the dining-hall of the men of learning (philol-
ogon andron) who participate in the Museum. This group of men have common property as well
as a priest in charge of the Museum, appointed in former times by the Kings, and nowadays by
the Emperor.” Strabo, Geography, XVII, I.8.

9E.A. PARSONS(1952), p.116, L. REYNOLDS & N. WILSON(1974), p.8, R. Mac-
LEOD(2000), p.6.

10See for example N. LEWIS(1963).
11Emperor Claudius (10 B.C.-54 A.D.), for example, had a new wing added to the institution:

“At last he [=Claudius] even wrote historical works in Greek, twenty books of Etruscan History
and eight of Carthaginian History. Because of these works there was added to the old Museum
at Alexandria a new one called after his name, and it was provided that in the one his Etruscan
History should be read each year from beginning to end, and in the other his Carthaginian, by
various readers in turn, in the manner of public recitations.” Suetonius, Life of Claudius, 42.

12For an account of the history of the Library, see E.A. PARSONS(1952). Excellent brief
overviews can be found in D. DELIA(1992), M. EL-ABBADI(1990/92) and K. STAIKOS &
T. CULLEN(2004), pp.157-245. Other works, some of which tend to adopt a strong literary
perspective, include L. CANFORA et al (1988).
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The library of Alexandria was supposedly erected by Ptolemy II (309-247 B.C.),
although no ancient account of its establishment exists13. Estimates of the size of
the library collection vary from 400000 to 700000 volumes, though the distinction
between books, scrolls and chapters is not always entirely clear14. The Library is
said to have held Greek, Roman, Jewish, Persian, Ethiopian, Babylonian, Phoeni-
cian and Indian writings, and its collection seems to have grown so rapidly that
part of it had to be housed in the temple of Serapis or Serapeum, in the Rhakotis
district15.
However, R. Bagnall 16 feels these numbers are grossly exaggerated. We know of
only about 450 Greek authors, which, at an average of fifty scrolls each, makes
31250 scrolls. The cited figures are ten times greater, implying that we know just
10% of the classical authors. This, argues Bagnall, seems highly unlikely. On the
other hand, the suggested physical space needed to store the number of scrolls is
quite reasonable17. Also, we know that Seneca reproached Livy for showing regret

13Diogenes Laertius 4.1, 5.51. The Alexandrian library was certainly not the first of its kind.
Assurbanipal, for example, had previously established a library in Niniveh, which at its height
seems to have held some 30000 tablets. See also D.T. POTTS in R. MacLEOD(2000). Pergamum
is said to have had a library once comparable in size to the Alexandrina, possibly containing up
to 200000 scrolls. It is believed by some that competition with the library of Pergamum led to
a veritable bookhunt. The Seleucids built a library in Antioch about which little is known. E.A.
PARSONS(1952), pp.29 & 49.

14Flavius Josephus, Antiquities of the Jews, 12.11, Aulus Gellius, Attic Nights, 7.17.
15Tacitus, History, 4.84, Tertullian, Apologeticum, 18, Epiphanius, De Mensuris et Ponderibus,

11, J.S. McKENZIE, S. GIBSON & A.T. REYES(2004), pp.99-100.
16R. BAGNALL(2002)
17We can estimate the physical size of the Library from these numbers. Suppose that a papyrus

scroll has a length of 10 m and a width of 30 cm. Further suppose that, when rolled up, the
‘empty’ part in the middle has a radius of 1 cm, and that the thickness of the papyrus is 1 mm. To
simplify calculations, let us assume that the spiral formed by the papyrus can be approximated
by a series of cylinders for which Rn+1 = Rn + 1 [mm]. A scroll would then have a diameter of
about 114 mm, or just over 10 cm. The surface area of the base of the cylinder formed by the
rolled-up scroll is 0.0102 m2. Assuming that about 70% of the storage space is actually taken in
by the scrolls, then each scroll occupies an average of 0.0145 m2 in space. Further assuming there
are 400000 scrolls, we find the storage space would have to have an area of 5800 m2. Imagine
that the scrolls were stored on shelving measuring 10 m in length and 3 m in height, or 30 m2.
Dividing 5800 by 30, we arrive at 193 shelving units, which we round off to 200. Finally, assuming
that a combination of two shelving units occupy a breadth of about 1 m (including sufficient
space between them to allow access), we arrive at a floor area of 1000 m2 or 10 m by 100 m.
By comparison, at the presumed site of the Serapeum, 19 shelving rooms of about 4 m by 3 m
were found. Under the same assumptions, we have 4 × 2 shelves, 3 metres deep. Multiplied by
19, we arrive at 1368. Divide this number by 0.0145 and we find nearly 95000 scrolls. Even if the
figure was only about half this estimate, that is still a sizable collection. If the Serapeum was
indeed a daughter library, then the number of volumes in the collection of the library as a whole
may have run into six figures.
The figure of 50000 suggested here is very close to that mentioned by John Tzestzes, a twelfth-
century Byzantine scholar, in a scholion to Plautus. He claims there were 42800 volumes in the
outer library, and that the palace library contained 400000 mixed volumes [=unsorted] and 90000
volumes and digests. Tzestzes repeated these numbers in Prolegomena to Aristophanes. See E.A.
PARSONS(1952), pp.106 ff.
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at the destruction of 40000 (forty thousand) volumes in the Alexandrine wars18,
which suggests that the total collection must have been considerably greater. In
47 B.C., Caesar ordered the torching of the Egyptian fleet. Nearby warehouses
and the (or a) library also caught fire and perished19. Mark Anthony allegedly
had 200000 books transferred from the Pergamum library as compensation20.
Estimates for the third century, when a large part of the library was possibly
destructed, vary from between 200000 and 40000021.

Whatever the size of the collection of the Library, its grandeur must have
been awe-inspiring. Agents of Ptolemy III scoured the Mediterranean for books, an
enterprise which would be repeated by Baghdad caliphs and Roman pontiffs alike.
It made Alexandria pivotal in the ancient scholarly world, giving its scientist and
literati an unparallelled access not only to Greek books, but also to Babylonian,
Jewish and Egyptian writings. Among the scholars reputed to have visited or to
have been invited to either the Museum or the Library are Euclid, Archimedes,
Eudoxos, Aristarchos of Samos (the astronomer) and Hipparchos.
Its reputation was still intact in the second century, when emperor Domitian sent
scribes to Alexandria to copy books that had been lost in the Roman library22.

Contrary to popular myth, the Alexandrian library was not destroyed by the
Arabs. It was rather destroyed and rebuilt on several occasions. The most de-
structive event arguably took place in 272, when the civil tension that had always
been present in the city escalated and turned violent. Alexandria’s walls were torn
down and the Greek quarter, with its Library and Museum, was left in ruins. The

18R.S BAGNALL(1993), p.351; “Forty thousand books were burned at Alexandria; let someone
else praise this library as the most noble monument to the wealth of kings, as did Titus Livius,
who says that it was the most distinguished achievement of the good taste and solicitude of
kings.” Seneca, De tranquilitate animi, 9 5.

19Amminianus informs us in his Roman History (written around 353-378) that 70000 books
perished. Amminianus Marcellinus, Historiae XXII, 16.13. E. A. PARSONS(1952), pp.304-307,
suggests that it was not the library that went up in flames but a warehouse, where 40000 scrolls
had been stored for shipment to Rome.

20A. MEASSON(1994), pp.32-36. “Again, Calvisius, who was a companion of Caesar, brought
forward against Antony the following charges also regarding his behaviour towards Cleopatra: he
had bestowed upon her the libraries from Pergamum in which there were two hundred thousand
volumes.” Plutarch, Antony, 58.4.

21“So being asked in our presence how many myriads there are of books, he answered—-‘Over
twenty myriads, O king: and I shall endeavour to have the rest made up to fifty myriads in a
short time.” Eusebius of Caesarea, Praeparatio Evangelica, 350b, “Ptolemaeus was a great lover
of literature. With the help of Demetrius of Phalerum and other distinguished men, he used the
royal funds to buy books from all over the world, and gathered them in two libraries in Alexandria.
The outer library had 42,800 volumes; the library inside the palace complex had 400,000 mixed
volumes, and 90,000 unmixed single volumes. Callimachus later compiled a catalogue of these
books.” Johannes Tzetzes, Prologomena de Comoedia, 20.

22“At the beginning of his rule he neglected liberal studies, although he provided for having
the libraries, which were destroyed by fire, renewed at very great expense, seeking everywhere
for copies of the lost works, and sending scribes to Alexandria to transcribe and correct them.”
Suetonius, The Life of Domitian, 20.
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library’s deathblow seems to have been dealt during the troubles of 39123.
Unlike the rest of Egypt, which has a dry climate, Alexandria’s climate is Mediter-
ranean. As we have previously mentioned, papyrus does not preserve well in such
conditions. Had the papyri not been replaced with copies on a regular basis, texts
from the age of the Ptolemies would not have survived until the seventh century,
or they would, at the very least, have deteriorated beyond repair or legibility. It
is more likely that climate, bugs, mice and deterioration acted as a slow fire that
gradually consumed the library holdings than that they were destroyed by Chris-
tian mobs or Arab conquerors.
Moreover, according to written sources, no fewer than twenty-three earthquakes
struck the Egyptian coast between the years 320 and 1303, including a particu-
larly severe one during the summer of 365. Over time, the harbour floor dropped
more than 20 feet, so that the Royal Quarters, where the Museum was located,
effectively collapsed and sunk beneath the waves.

Whether or not the Library was ever as grand as some ancient writers would
have it, its fabled existence alone was enough to feed the imagination of notable
book collectors during the Renaissance. It was this imagination that laid the foun-
dation for the literary rebirth of many ancient writers, Diophantos included.

2.2 Diophantos’ Alexandria

The only thing we can be reasonably sure of in the case of Diophantos is that he
lived in Alexandria under Roman rule, most probably somewhere during the third
century, though we cannot date him even to within several decades. Consequently,
we do not know either whether he was ever required to pay the high taxes imposed
by Augustus or whether he lived through or died during the pestilence that raged
during the reign of Emperor Gallienus.

After Octavian had defeated Mark Anthony’s forces at Actium and recon-
quered Egypt, he founded a new town in the Nile Delta, just east of Alexandria. It
was called Nicopolis. Having bitter memories of Alexandria and Egypt, he imposed
high taxes on their populations. He also put Egypt under direct imperial supervi-
sion, so that he controlled the food supply to Rome. His successors however would
impose less harsh regimes. Under the Caesars, Alexandria was actually leniently
governed, for it was in their interest to be popular in the city that commanded
the largest granaries of Rome. The canal between the Nile and the Red Sea, which
served a similar purpose as the present day Suez Canal, was redug. Goods from
Asia were transported along the Nile to Alexandria, making it the world’s princi-
pal commodities market. Most of the Caesars had some kind of relationship with
Alexandria24. The first important change in their polity was introduced by the

23See also D.H. FOWLER(1987) and C. JACOB(1998).
24The city was favoured by Claudius, who added a wing to the Museum (see footnote 11).

Claudius also had to deal with animosity between Greek and Jewish inhabitants of Alexandria.
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Emperor Severus in 196. The Alexandrian Greeks were no longer formidable, and
Severus accordingly restored their senate and municipal government. He also or-
namented the city with a temple of Rhea and with a public bath, the Thermae
Septimianae.

Alexandria did suffer terribly, though, after a visit from Caracalla in 215. Al-
though he was greeted with hecatombs, he ordered the massacre of Alexandria’s
youth of military age in retribution for the fact that he had been mocked in the
city in previous years 25.

Under Roman authority, Alexandria had previously enjoyed peace and sta-
bility. However, as imperial authority became more and more fragmented in the
mid-third century, political stability in the city deteriorated. In the last quarter of
the third century, Alexandria lost its predominance in Egypt. The native Egyptian
population, reinforced by Arabian immigrants, had become a turbulent force.
Diocletian’s siege and subsequent capture of Alexandria in 298 seems to have been
a watershed in the city’s history. Throughout the autumn and Spring of 297/8,
Diocletian, rather uncharacteristically, laid siege to the city in an attempt to crush
the Egyptian rebellion centred around the cities of Alexandria and Coptos, who
had backed the usurper Lucius Domitius Domitianus and his successor Aurelius
Achilleus26.
During the reign of Gallienus, Alexandria appears to have been struck by a pesti-
lence27, but it is not clear whether this was a particularly fierce outbreak of malaria
or another infectious disease to which Egypt, and Alexandria in particular, was
prone because of its position at the crossroads of civilizations.

Religiously, Alexandria was a curious mix, where Eastern and Western faiths
met, crashed or blended28. Alongside Judaism, the cult of Serapis was widespread
in Alexandria and indeed throughout Egypt. It was in itself an amalgam of re-
ligious practices, originating in the need to make Egyptian religious traditions
more accessible to the Greeks. According to this cult, the sacred bull Apis, after
its death, merged its divine characteristics with those of the god Osiris. In Alexan-

He warned them of the possible consequences if they forced the benevolent ruler to take action
(H. BOTERMANN(1996), pp.107-114, B. LEVICK (1990), pp.89 and 182-185.). Nero intended
to visit Alexandria, but never set sail, because of an ominous portent (Suetonius, Nero, 19).
Alexandria also served as the headquarters of Vespasian (C. Tacitus, Historiae, 3.48) during
the civil wars that preceded his accession. Struck by a dearth, the city was supplied with corn
by Trajan (C. Plinius the Younger, Panegyricus, 31). And in 122, Alexandria was visited by
Hadrian, who provided a graphic picture of the population (Vopiscus, Saturninus, 8).

25“Then he betook himself to Alexandria, and here he called the people together into the
gymnasium and heaped abuse on them; he gave orders, moreover, that those who were physically
qualified should be enrolled for military service. But those whom he enrolled he put to death,. . . ",
Spartianus, Caracalla 6, see also Dion. Cassius LXVIII.22 and Herodianus IV.8-9.

26Eutropius IX.22
27Eusebius, Historia Ecclesiastica XXII, (ca. 263) W. SCHEIDEL(2001) does not record any

particular pestilence for this period.
28On religion in Roman Egypt, see D. FRANKFURTER (1998).
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dria, as we have seen, the temple of Serapis also served as a book repository for
the main Library29. Although it remained an impressive structure, it endured al-
ternating periods of prosperity and neglect. Around 181, the temple was destroyed
by fire, in just one incident during which many manuscripts must have perished.
It was later rebuilt on an even grander scale.
The presence of so many religions meant that unrest was never far away in this,
arguably the most polyglot of Roman cities. Things did not improve when a new
and unsettling religion made its appearance in Alexandria: Christianity. Chris-
tianity came to Alexandria relatively early, under the influence of, among other
things, the presence of a large Hellenized Jewish community. It was supposedly
introduced by St. Mark. From the time of Nero onwards, Christians would have to
endure sporadic local and sometimes Empire-wide persecution. Alexandria, true
to its reputation, saw the emergence of the first centres of Christian learning, such
as the Cathechetical School, which –despite the persecutions– would continue to
gain in influence in subsequent centuries30. The Christian Church began to thrive
from around the mid-third century31, but it was not until Constantine emerged
as sole ruler that Christianity truly won the day.

Alexandria’s position as the capital of the East was undermined when, in 324,
Emperor Constantine decided to found a new city bearing his name. Constantino-
ple would become the new seat of power in the Roman Empire. Alexandria’s grain
ships would no longer feed Rome, but the new capital.

So, assuming that Diophantos lived in the third century, he may well have
been a witness to Caracalla’s cruel treatment of Alexandria, the rise of Christian-
ity, Diocletian’s siege and the persecution of the Christians.

29On the cult of Serapis, other pagan religions and early Christianity see A.K. BOW-
MAN(1986), 167ff.

30P. SCHAFF, H. WACE & A.C. McGIFFERT (s.d.), p.345, footnote 1506.
31In 200, Severus’ imperial edict forbade all subjects in the Empire to “make Jews or Chris-

tians" (i.e. to convert people to either Judaism or Christianity). After his death (211), the
persecutions stopped and the Church grew in numbers and in wealth. Under Decius (249-251),
the profession of Christianity was denounced as incompatible with the requirements of the state.
The persecutions were put to an end after his death, only to resurface again under Valerian
(257-261). After Valerian’s capture by the Persians, his son Gallienus issued an Edict of Tol-
eration (F. CONYBEARE(1914), see also Eusebius, Historia Ecclesiastica, III. 17 (Domitian),
VI.1 (Severus), VI.28 (Maximinus), VII.1 (Decius and Gallus) VII.10 (Valerian), VII.13 &23
(Lucinius)).
Alexandria entered the late Roman period as the centre of a concerted rebellion against imperial
authority, which had to be suppressed by the emperor Diocletian (284-306) himself. The begin-
ning of the fourth century witnessed the start of Diocletian’s ‘Great Persecution’ of Christians.
It seems Egypt may have suffered more heavily than other areas, as one of the most fanatical
anti-Christian persecutors, Sossianus Hierocles, held the office of prefect of Egypt (A.K. BOW-
MAN(1986), p. 45.). After Diocletian had retired from public life, a tetrarchy was organized,
with ultimately Maximinus and Constantine as Augusti and Galienus and Lucinius as Caesars.
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2.3 Education and the culture of paideia

Diophantos was undoubtedly part of, or at least very well acquainted with, the
culture of paideia. Originally, the term meant “child-rearing”, but it eventually
became synonymous with “culture”, the purely intellectual maturation and assim-
ilation of the educational values acquired through schooling32. Paideia became a
much more embracing concept, that could be understood as a code of behaviour, a
way of life and of networking. It was acquired through an education that not only
taught literature, but also allowed men of culture to master a behavioural code33.
Regardless of their religious allegiance, men of standing were expected to partic-
ipate in political and cultural life. Alexandria offered both, and at a high level
of sophistication. The Museum and the Library naturally attracted prominent in-
tellectuals, including scholars and authors, and many others used to send epistles
or treatises to their friends and peers in the city. While these were not always
intended for general circulation, it was common for the recipient to have them
copied and sent to his circle of friends34.
This culture did not change significantly after Christianity had come to promi-
nence35, but the new faith did add an ethos of hope.

Our general picture of education in Graeco-Roman Egypt is relatively clear36.
However, the aspect of science and mathematics teaching is frequently ignored by
authors on this topic.
For those not fortunate enough to receive private tuition, education began at an
elementary school, which would not necessarily have been housed in a building. It
may well have been in open air in the shadow of a tree. The goals of this education
were modest, focusing on basic reading and writing skills. Arithmetic teaching fol-
lowed the same basic structure it had done for over two thousand years. Pupils
were familiarized with the basic operations: adding, subtracting, multiplying and
dividing. Adding may have proceeded orally, by finger reckoning or by means of
an abacus37.
In specialized scribal schools, the acquisition of a deeper knowledge of multiplica-
tion and division was an integral part of the curriculum, as one might expect. Just
as in Babylon, students also acquired metrological expertise: they were familiar-
ized with weights, measures conversions and the monetary system. A book such
as Heron’s Definitions fits into this picture very neatly.

32R. CRIBIORE(2001), pp. 243-244.
33See E.J. WATTS(2006), p.2, pp.12-19.
34E.J. WATTS(2006), p.154.
35S. RAPPE(2001) on the incorporation of pagan elements into Christian education.
36This description is largely based on R. CRIBIORE(2001).
37Pupils were often required to recite simple additions in monotonous chants. G.

CRIBIORE(2001), p.181. On finger reckoning, see B. WILLIAMS & R.S. WILLIAMS(1995);
on the abacus, see R. NETZ(2002b).
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Secondary education for the rich seems to have had a rhetorical focus. Students
were taught the virtues and ideals to which one was expected to aspire. These
were embodied in Greek and Roman literature alike. The Trojan hero Aeneas,
for example, embodied the Roman ideals of duty and patriotism. The attempt of
Greek Alexandria to emulate the Athenian model of education may have provided
an incentive for the study of mathematics.
Higher education – at least during the Empire– seems to have been organized in
the Musea. Although, as previously noted, members of the Alexandrian Museum
were not obliged to teach, they did have students. Other Musea existed outside
Alexandria, including at Ephesus and Smyrna. By the end of the fourth century,
the word Museum had become synonymous with school38.

Strikingly, most Greek mathematicians lived and worked in Alexandria: Eu-
clid, Erasthotenes, Heron, Ptolemy, Pappos, Theon . . . This may give rise to the
rather misleading perception that there was a veritable concentration of math-
ematicians in the city. After all, we must not forget that we are looking at a
timeframe of many centuries. Moreover, there is no evidence to suggest that there
was any such thing as an Alexandrian school of mathematics39. It may just be
one of those ironies of history that only texts by Alexandrian mathematicians did
fortuitously survive40.
While mathematicians enjoyed a high degree of social visibility, be it as land sur-
veyors, artisans or indeed astrologers, they –and hence their texts– were equally
clearly influenced by general social and cultural trends. One of these trends was
that intellectuals and authors were becoming increasingly interested in classifica-
tions and rearrangements of previous knowledge, and they developed a predilection
for commentaries and epitomes41.

Despite the fact that many scholars believe that, by the fourth century, the
teaching of mathematics had become either non-existent or limited to an elemen-
tary curriculum that was in every way subordinate to philosophy42, it always
remained part of the ideal programme of general culture. Indeed, the picture that
emerges from the history of science is that, far from being invisible, mathematics
was held in high esteem. The rise of Christianity did not change that. On the
contrary, the new faith incorporated maths into its own educational programme.
The theologian and teacher Origen (185-ca. 254), at the Cathechetical School, is
known to have taught a Christian interpretation of physics, astronomy and geom-
etry, whatever that may have encompassed.

38H.-I. MARROU(1948), pp.285-287.
39See for example G. ARGOUD(1994).
40See B.VITRAC(2008), p 531.
41S. CUOMO(2000), pp.48-56 and (2001), pp.249 ff.
42See for example M.L. CLARKE(1971) and D. PINGREE(1994). As already noted by S.

CUOMO(2000), p.46, neither Euclid nor Nicomachus are elementary texts, yet they were part
of the curriculum.



2.4. Heron of Alexandria: a Diophantine precursor? 37

The teaching profession was not exclusively in male hands. Women in Hel-
lenistic Egypt participated openly in society and tried to make a name for them-
selves in various professions. Some of the women known to have taught at the
higher levels of education are Hermione, Agallis and Hypatia43.

2.4 Heron of Alexandria: a Diophantine precur-
sor?

Heron of Alexandria is one of the few known applied mathematicians of Antiquity.
The name Heron was however rather common, so that it is hard to tell precisely
which references are actually to Heron the mathematician. This makes him a rather
elusive figure. Moreover, much of his work does not survive in its original form.
It has been edited, altered and compiled so often that it is extremely difficult to
distinguish Heron’s hand from others, not to speak of the derivative or imitative
works that are often attributed to him. This has resulted in an intricate web of
more or less genuine and spurious manuscripts, and hence it should come as no
surprise that the authorship of many of these works is disputed. To complicate
matters further, some of his treatises have not been passed on to us in Greek.
Mechanica, for example, survives only in an Arabic translation, while Optica is
known to us only in Latin.

It is equally difficult to date Heron. Otto Neugebauer has argued that the
‘recent eclipse’, which Heron refers to, may be that observed in Alexandria on 13
March 6244. From this he concludes that Heron must have lived in the second
half of the first century. This is corroborated by Dimitros Sakalis’s research, which
contains an in-depth study of words and phraseology used by Heron45. He also
provides some indirect evidence, based on other sources. Galen seems to criticize
Heron’s work, without referring to him, but in the same phraseology46. Vitruvius
(first century) does not mention Heron, although he refers to quite a few math-
ematicians and engineers. Moreover, he refers to mechanisms that are inferior to
Heron’s contraptions47. The oldest Hebrew geometry, the Mishnat ha-Middot , dat-
ing from the middle of the second century, was strongly influenced by the Heronian
corpus48. Lastly, Proklos mentions that Heron was younger than Menelaos, who
lived ca. 100.
In his works, Heron uses graecicized Latin words that only began to appear in the

43R. CRIBIORE(1996), pp.22-23.
44O. NEUGEBAUER(1938). However, N. SIDOLI (2005), pp. 250-252 puts it that Heron

may have used a hypothetical eclipse. He argues that two other eclipses observed in Alexandria
namely, in 133 B.C. and 3 B.C. tie in better with Heron’s data.

45D. SAKALIS(1972).
46D. SAKALIS(1972), pp. 11-15.
47D. SAKALIS(1972), pp. 15-25.
48D. SAKALIS(1972), pp. 158-26.
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first century49, which reinforces the argument that he lived either in the second
half of the first century or at the beginning of the second50.
Heron’s writings fall into many categories. He is, for example, one of our most
important ancient sources on pneumatics, instruments and war engines. However,
we shall restrict ourselves to his mathematical work51, which, unlike his work on
pneumatics, has received relatively little in-depth scholarly attention.
His writings reveal him to have been a well-educated mathematician, although his
theoretical explanations are sometimes weak. But despite this shortcoming, he is
an essential figure in the practical mathematics tradition that started in Baby-
lonia. Furthermore, it would be a mistake to assume that practical mathematics
was not an essential part of Greek mathematics as a whole.

Metrika is Heron’s most important work. It is an introduction to practical
geometry and measurement. Book I deals with plane geometry and builds freely on
Euclid and Archimedes. The book is essentially constructed around three formulae:
an iterative algorithm for the calculation of the square root of a number, the so-
called Heronic formula52 for the area of a triangle and the property that the area of
a circle segment is larger than four thirds of the area of the inscribed triangle with
the same base and height. Book II elaborates on the volumes of cones, cylinders,
parallelepipeds, pyramids, frusta and Platonic solids. The volume of the sphere is
determined to be two-thirds of the circumscribed cylinder. Book III discusses how
figures can be divided into figures of a given ratio.
Definitions contains 133 definitions on geometrical terms, beginning with points
and lines etc.
Geometrika would appear to be a different version of the first chapter of Metrika,
founded entirely on exercises. Although it is clearly based on Heron’s work, it is
doubtful whether he was in fact the author.
Stereometrika deals with three-dimensional objects and is at least based on the
second chapter of Metrika. Again, though, the original text is believed to have
been altered considerably by later editors. Moreover, its two constituting books
would appear to be different versions of the same work.
Mensurae is concerned with the measurement of a variety of objects. It is related
to both Metrika and Stereometrika, but this book, too, is thought to be mainly

49For instance, πάσσον for passus and μίλιον for milia. See D. SAKALIS(1972), p.160.
50However, to illustrate the difficulty in dating Heron as a result of later additions, we also refer

to the following examples. In Geometrika 21.26 and Stereometrika 1.21.3, a certain Patricius is
mentioned. Patricius is identified as the Lydian expert in divination who was killed by Valens ca.
371 (T. MARTIN(1854), p. 220). In Stereometrika 2 54 we read: ‘These [= the measures] were
fixed under Modestus, who was praetorian prefect at the time.”. S. CORCORAN(1995) identifies
Modestus as Domitius Modestus, who was praetorian prefect of the East under Valens from 369
to 377.

51The following description of the mathematical works is based on J.J. O’CONNOR & E.F.
ROBERTSON (1999g).

52If A is the area of triangle with sides a, b and c and s =
a + b + c

2
then A2 = s(s− a)(s− b)(s− c).
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the work of a later editor.
The Definitions, like Diophantos’ Arithmetika, are dedicated to a certain

Dionysios, a very common name in Antiquity. Paul Tannery believed the two
Dionysii to be one and the same person53, but this was before Heron could be
dated to the first century. Bearing this in mind, Markus Asper54 concludes that
Heron’s Dionysios may be identified as Dionysios Glaukon. According to the Suida,
this Dionysios was a student of Chaedemon, the Alexandrian librarian, whom he
would succeed55. Dionysios would become a companion to all emperors from Nero
to Trajan. He became the director of libraries and secretary responsible for corre-
spondence, embassies and rescripts.

Of course, this identification will only stand if one accepts that Definitions
was, at least in part, written by Heron. This attribution was already called into
question by Hultsch and is further contested by Knorr56. On the grounds of style
and genre, as well as the shared dedication to Dionysios, Knorr concludes that
Definitions is closely associated with or may even have been written by . . . Dio-
phantos!
Indeed, most Heronian writings have prefaces that basically follow a consistent
format. The preface to Definitions diverges from this pattern. However, like Arith-
metika, it deals with the order of exposition and the pedagogical strategy57.

Consider, for example, the closing thoughts of both texts (Knorr’s transla-
tion):

Definitions: in this wise (houtôs) the subject matter will be well
surveyable (eusynoptoi) for you.

Arithmetika: in this wise (houtôs) the elements will be well
traversable (euodenta) for beginners.

If we accept Knorr’s attribution and add to this Lucio Russo’s thesis58, the whole
history of Euclid’s Elements may be shattered. According to Russo, Euclid did
not include the first seven definitions in his treatise, leaving fundamental entities
undefined. In the Imperial Age, Euclid’s choice could not be understood and the
absence of definitions seemed to be a lacuna. As a remedy, Russo suggests, Heron
first wrote his schoolbook Definitions and subsequently a list of Heron’s work was
compiled and inserted into Euclid’s text. However, this would mean, at least in
Knorr’s view, that the Euclidean definitions are in fact . . . Diophantine!

53P. TANNERY et al.(1912-1940)II, pp 535-538.
54M. ASPER(2001).
55Suida delta 1173, translated by Malcolm Heath.http://www.stoa.org/sol/
56W. KNORR(1993), esp. pp. 184-188.
57See also J. MANSFELD(1998), pp 55-57.
58L. RUSSO(2004), pp.320-327, esp. p.324.

http://www.stoa.org/sol
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It is in the Heronian corpus that we find some interesting indeterminate
problems. These were not written by Heron, but added subsequently to Metrika.
Heiberg included this collection of problems in his edition of Geometrika, creating
the impression that they are genuine Heronian problems59.

Find two rectangular areas such that the area and the perimeter
are three times as large.

The problem is equivalent to
{
u+ v = n(x+ y)
xy = n.uv

I do it like this, the cube of 3 is 27 n3

which taken twice is 54 2n3

If I deduct unity I find 53 2n3 − 1
The first side thus is 53 feet x = 2n3 − 1
the other 54 feet y = 2n3

For the other rectangle 53 plus 54 is
107
which multiplied by 3 [= 321, n(x+ y)
321 - 3] which is 318 feet n(x+ y)− n = u
One of the sides therefore is 318 feet u = 2n(2n3 − 1)
the other 3 feet v = n
The area of the first is 954 feet
of the other 2862 feet

A possible explanation (as attributed to H. Zeuthen by T.L. Heath60) for this
procedure is as follows: the problem is indeterminate, so start with a hypothesis,
e.g. v = n.
Then n(x+ y) = n+ u, so u is a multiple of n, say nz and n(x+ y) = n+ nz or
x+ y = 1 + z.
The second equation of the system yields:

xy = n3z
xy = n3(x+ y)− n3

xy − n3x− n3y = −n3

xy − n3x− n3y + n6 = n6 − n3

(x− n3)(y − n3) = n3(n3 − 1)

with an obvious solution x− n3 = n3 − 1 and y − n3 = n3,
which yields the solution:{

x = 2n3 − 1
y = 2n3 and

{
u = 2n(2n3 − 1)
v = n

59Unfortunately, Geometrika was published in volume IV of Heron’s works, while Heiberg
explains his editorial method in volume V, thus adding to the confusion.

60T.L. HEATH (1981), pp.444-445.
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Although algebraically correct, one may wonder whether this method was
ever used by pre-Heronian mathematicians. It presupposes a large theoretical al-
gebraic knowledge. Therefore, we suggest that it was found by means of another,
most probably empirical, method.



Chapter 3

Diophantos and the
Arithmetika

3.1 The manuscripts
Editing a classical text usually requires finding manuscripts and determining the
variants and their interrelations. The aim of the editor is to approximate as closely
as possible to the “original” through the comparison of existing manuscripts and
papyrus fragments1. This is referred to as the direct tradition. In the case of Dio-
phantos, this has been admirably done by André Allard in a hard-to-find edition2.
Diophantos, as we intend to demonstrate, is an elusive figure about whom we now
little more than that he probably lived in the third century. Just one complete
work is definitely attributable to him. Another has been preserved only partially,
and three further attributions are speculative. Clearly Diophantos, like Euclid,
was a compiler, yet none of his sources are known. For some ancient writers, we
possess more or less contemporary sources, that is to say papyri or ostraca from
the Graeco-Roman period in Egypt, which can usually be dated to within about
fifty years. One such group is closely associated with Euclid’s Elements3. Another
deals with commercial arithmetic or stereometry4. None, though, is in any way
associated with Diophantos.

1S. ROMMEVAUX et al. (2001), p. 221. With reference to the Elements, Ken SAITO(2009)
asserts (p. 810): “If we seriously want to argue about the content of the Elements, we should
first try to establish the original text through such manuscripts as we possess; and if we cannot
establish it, we should at least recognize the extent to which the surviving text resembles the
original.”

2A. ALLARD(1980).
3D.H. FOWLER(1987), pp.206-216.
4J. FRIBERG(2006), pp.193 ff.

A. Meskens, Travelling Mathematics - The Fate of Diophantos’ Arithmetic, Science Networks. 43
Historical Studies 41, DOI 10.1007/978-3-0346-0643-1_3, © Springer Basel AG 2010
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Moreover, we have to take into consideration the minusculization which ev-
ery Greek text underwent in Byzantium5. The standard script for books in the
Early Middle Ages was the uncial letter. Uncial script reached maturity in the
fourth century and underwent little change after that. It was however slow and
the size of the letters greatly restricted the quantity of text per page. This be-
came problematic when relatively cheap papyrus grew quite scarce after the Arab
conquest of Egypt and had to be replaced with much more expensive parchment.
Not surprisingly, then, a new and more economical script was soon introduced.
Known as the minuscule script, it had already been in use among scribes and ac-
countants. Minuscule was compact and could be executed comparatively quickly.
By the tenth century, uncial script was used only for special, liturgical books.
In the course of the ninth century, manuscripts in uncial script were transliter-
ated into minuscule, but on a newly introduced material: paper. In this process
of transliteration, numerous errors were introduced, primarily due the misreading
of letters that were hard to distinguish in uncial script. This is not unimportant
for texts such as Euclid’s Elements or Diophantos’ Arithmetika where a single
letter, assigned to a point or number, can be crucial for a correct understanding.
The largest part of the known Greek literature has come to us in transliterated
form. In most cases, it is assumed that all extant manuscripts derive from a single
archetypal minuscule copy from an uncial version, on grounds of, among other
things, the observation that these manuscripts tend to contain the same errors.

It has long been recognized that the Greek manuscripts of the Arithmetika
that have come down to us belong to two distinct classes: the Planudean and the
non-Planudean class of manuscripts. The Planudean manuscripts contain scholia
that were inserted by the thirteenth-century monk Maximos Planudes (see par.
4.3). Of the twenty-seven full manuscripts and four important excerpts that have
been studied6, none can withstand the test of mathematical rigour. Planudes even
acknowledged this for his sources. Indeed, the manuscripts contain errors through-
out, so that they arguably rank among the most corrupted Greek texts to have
been passed down.
A stemma of the manuscripts7, based on the work by Allard, is given in chap-

5On this process, see L. REYNOLDS & N. WILSON(1974), pp.51-54, on which this descrip-
tion is based.

6We refer to the last notable study by A. Allard, dating from the 1970s. Unfortunately,
this work has never been published, apart from a very limited edition consisting in photocopies
of his doctoral thesis. Its publication was announced by Les Belles Lettres but never actually
materialized.

7Constructing a stemma is part of stemmatics or stemmatology, a rigorous approach to textual
criticism. The stemma or “family tree”, shows the relationships of the surviving manuscripts. The
method works from the principle that “community of error implies community of origin”. That
is, if two witnesses have a number of errors in common, it may be presumed that they were
derived from a common intermediate source, called a hyparchetype. Relations between the lost
intermediates are determined by the same process, placing all extant manuscripts in a family tree
or stemma codicum descended from a single archetype. This process of constructing a stemma
is called recension.
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ter 10. We shall refer to these various versions in due course, when discussing the
era when they were produced or used.

Editors may also rely on other sources than direct descendants of the archety-
pal text, such as quotations by other authors, ancient commentaries or translations
(mostly Arab). This is referred to as the indirect tradition. Adherents of this ap-
proach point out that Arab translations can be more faithful to the original Greek
than subsequent Greek copies, because they are often based on older versions.
In view of the enormous amount of non-described and non-inventoried Arabic
manuscripts, it should not come as a surprise that every once in a while an hith-
erto unknown manuscript is identified. That was the case in 1971, for example,
when an Arab version of Diophantos was found. The discovery caused quite a stir,
particularly when it emerged that the text contained content from hitherto un-
known books. In these books, it becomes clear that Diophantos used the methods
that he describes in his other works to their limits in order to solve higher-degree
problems.
The study and analysis of the newly discovered Arab manuscript is the work of
two Arabists: Roshdi Rashed and Jacques Sesiano8.

Up to the 1970s, the indirect tradition in the case of Diophantos consisted in
little more than a couple of quotes. The discovery of an Arab version of Diophan-
tos made little difference in this respect however, as the Arab texts were entirely
unknown in Greek. So, unfortunately, the Arab version can only be compared with
apparent excerpts from the Arithmetika cited by other Arab authors.

Although Diophantos asserts that his treatise is divided into thirteen books,
only ten of these books are known to us. The Greek manuscripts contain six books
each, four further books are known to us in an Arab translation. The original
order of these ten chapters would appear to have been G I, G II, G III, A IV, A
V, A VI, A VII, G IV, G V, G VI9. The exact order of the missing three books
within the series of thirteen is uncertain. In our description of the contents of the
Arithmetika, we shall maintain the aforementioned order.

Having completed the stemma, the critic proceeds to the next step, called selection, where the
text of the archetype is determined by examining variants from the closest hyparchetypes to the
archetype and selecting the best ones. Where the editor concludes that the text is corrupt, it is
corrected by a process called “emendation”.
André Allard has published several articles on the descent of the Diophantos manuscripts (1979),
(1981a and b), (1982-83), (1984).

8R. RASHED(1974), (1975) and (1984); J. SESIANO(1982). It was the keeper of the Iranian
parliamentary library who initially drew Roshdi Rashed’s attention to the existence of the text,
which was kept at the library of Meshed. Rashed soon identified it as having been written
by Diophantos. On the discovery of the manuscript, see R. RASHED(1984), LIX-LXXII; on the
ensuing controversy, see A. ALLARD(1984) and (1987). The document is now kept in the library
of Astān Quds, which is part of the mosque of the shrine of imam Rezā.

9J. SESIANO(1982), p. 5, R. RASHED(1984), p.VI. We shall refer to the first three Greek
books simply as I, II, and III, because no confusion is possible.
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3.2 Diophantos

As we have previously said, Diophantos (διοφάντου αλεξανδρέως) was either born
in Alexandria or it was his permanent domicile. Although αλεξανδρέως was an
appropriate term for a citizen of Alexandria, it was not necessarily synonymous.
Therefore, we do not know whether Diophantos actually held Alexandrian citizen-
ship10.
Only two books can be attributed to Diophantos with any degree of certainty11:
the Arithmetika, or Arithmetic, and a treatise on polygonal numbers. Three other
titles are conjectured to have existed: Porismata12, Moriastika13 and Arithmetika
Stoicheisis.
Unlike in most ancient mathematical texts, no reference is made in the Arith-
metika to other mathematicians, which immediately rules out a posteriori dating
of the treatise. An a priori dating is also very difficult, since the only author to
refer to Diophantos is Theon of Alexandria14. Theon lived in the fourth century
(ca. 335-ca. 405)15, so we can safely date the Arithmetika to before 400. Whereas
the Arithmetika was definitely written by Diophantos, the authorship of the book
on polygonal numbers remains debatable (see par. 3.3). However, if we accept the
attribution to Diophantos, then we are able to use the reference to Hypsikles, who
is known to have lived around 150 B.C.
But even then it is impossible to date the life of Diophantos to within an interval
of well over five hundred years, which more or less corresponds with the entire
period of Roman rule over Egypt.
As R. Netz has previously noted, when mathematicians in Classical Greece cite
peers, there is usually an age difference of no more than one generation16. With
this knowledge in hand, and considering Theon’s reference, we can tentatively put
Diophantos’ life around 300.

One of the earliest references to Diophantos, albeit with little biographical
significance, is in the Suida Lexicon. The Suida is a tenth-century alphabetically
organized encyclopedia containing some 30000 articles. The texts are based on
earlier sources, but they are not always entirely trustworthy. Somehow, however,
Diophantos’ reputation must have lived on for hundreds of years, to the extent
that his name became a byword for a logistic teacher.

10On Alexandrian citizenship see D. DELIA (1991). As in many other Greek cities, citizenship
in Alexandria was hereditary. The only other means of obtaining citizenship was through natu-
ralization. Citizenship would have brought many advantages, including exemptions from certain
taxes.

11On Diophantos see T. HEATH(1964), P. VER EECKE(1926), J.D. SWIFT(1956) and N.
SCHAPPACHER(2001).

12Mentioned in problems G V. 3, G V 5, G V.16.
13Mentioned in a scholion to Nicomachus’ Arithmetica.
14T. HEATH(1964), p.2, P. TANNERY(1895) II, pp.35-36.
15J.J. O’CONNOR & E.F. ROBERTSON (1999e).
16R. NETZ(2002a), pp.215-216, see also B. VITRAC(2008), p 530 ff.
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Under the lemma A drachma raining hail (δ 1491), we find17:

In the case of Diophantos a drachma became the subject of spec-
ulation. When the hail stopped at that minute (falling) from the upper
air, they joked it was a handful (= drachma) of hailstones.

The word drachma has three meanings: a handful, an old Athenian coin and a
weight18. Referring to the sometimes unrealistic nature of problems of logistic, the
answer to the question “How much hail has fallen?” would appear to be a play
on those different meanings: “Why, a drachma.”, i.e. a handful, which weighs a
drachma and is worth a drachma . . .

One of the earliest references to Diophantos as a person is by the Byzantine
intellectual Michael Psellos (1018-1081(?)). Psellos wrote a large number of trea-
tises on very diverse topics, including in the fields of philosophy, theology and the
sciences. In a letter19, Psellos refers to the treatise The Egyptian method for num-
bers, written by Anatolios and dedicated to Diophantos. Tannery identifies this
Anatolios with Anatolius of Alexandria, the Bishop of Laodicea (on the Syrian
coast) around 270-280. This bishop is indeed known to have written mathematical
treatises, fragments of which have been preserved. He was a student of Dionysius
of Alexandria (the later Saint Dyonisius)20. If one concurs with Tannery that a
treatise can only be dedicated to a person if this person is still alive, then Dio-
phantos must have lived in the third century, which for that matter ties in nicely
with our foregoing remark regarding references to him. Moreover, this Dionysius
may well be Diophantos’ dedicatee.

However, this dating has been called into question by W. Knorr21. In Defi-
nitions on geometrical terms, an introductory comment on Euclid that is ascribed
to Heron, we encounter a reference to a book of the same name, i.e. Arithmetika
Stoicheisis. These definitions are likewise dedicated to Dionysius, which was not
an uncommon name in Antiquity22. J. Klein therefore proposes another interpre-
tation of the Psellos fragment. He argues that Psellos is referring to the differences
in symbolism between Anatolios and Diophantos. In this way, the Anatolios refer-
ence becomes an a posteriori dating: Diophantos lived before him. He also argues

17
δραγμὴχαλαζῶσα ἐπιδιοφάντου τοθεωρητικὸν ἐγένετο δραγμή. ἐπεὶ δὲ ἐπέσχε χάλαζα τότε

ἀπὸ τοῦ ἀέρος, δραγμὴ ν αὐτὴ ν χαλαζῶν ἐπέσκωπτον. Translation by Robert Dyer, Adler number
delta, 1491 on http://www.stoa.org/sol/. The translator thinks the translation must be ‘a handful
of hailstones’. His explanation of the expression seems to be a little mathophobic: whatever
Diophantos (the teacher) was teaching disappears as fast as a handful of hail melts away.

18J.L. HEIBERG (1912), Heron, Geometrika, p. 411.
19P. TANNERY(1895)II, pp. 37-42.
20W. KNORR(1993), p. 183, Eusebius, Historia Ecclesiastica, XXXII. According to Eusebius,

Anatolios was a man of great distinction and erudition. He wrote a work on the calculation of
the Easter date and the Institutes of Arithmetic, in ten volumes. Part of this work was inserted
in Heron’s Definitions (138), presumably by a Byzantine scribe.

21W. KNORR(1993).
22Paula-Wissowa V has 166 lemmas under the name Dionysus.

http://www.stoa.org/sol
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that Anatolios’ treatise is dedicated to another Diophantos23.
On the basis of stylistic characteristics, Knorr concludes that Definitions, which is
generally ascribed to Heron, may in fact be attributed to Diophantos. The texts
are, moreover, both dedicated to a Dionysius.
According to Tannery, the two were one and the same person24. On this basis, he
concludes that Heron and Diophantos lived around the same time. A similar sug-
gestion is made by Heath25, following Heiberg, although he identifies the Heronian
Dyonisius as L. Aelius Helvius Dyonisius, the Roman prefect (praefecturs urbi) of
301. However, since these authors presented their arguments, it has been estab-
lished by O. Neugebauer that Heron must have lived around 62, which rules out
the identifications of these Dyonisii26, unless Diophantos lived in the first century,
which, at least according to W. Knorr, is not implausible27. On the other hand, if
Dionysius can be identified with Dionysius of Alexandria then, Knorr concludes,
Diophantos must have lived a generation earlier, around 240.

A counterargument against these propositions is that Diophantos is cited by
neither Nicomachus (ca. 100), nor Theon of Smyrna (ca. 130) nor Iamblichus (late
third century). The use of the word leipsis (see below) also suggest that Diophan-
tos lived later. Its first recorded use is in the second century. The term hyparxis,
which Diophantos uses in a mathematical context, appears quite frequently in
philosophical treatises belonging to the Neoplatonic school of Alexandria (ca. 200).

Since 1500, more than a thousand years after his death, various authors have
speculated about the life of Diophantos, identifying him as an Arab28, a Jew, a
converted Greek or Hellenized Babylonian. None of these characterizations stands
up to critical scrutiny though29. Whether we like it or not, the reality is that we

23The keyword in the Psellos fragment is heterôs, which, according to Knorr(1993), p. 184,
should be read as heteroi.
ὁ δὲ λογιώτατος Ἀνατόλιος τασυνεκτικώτατα μέρη τῆς κα΄τ έκεῖνον επιστήμης άπολεξάμενος ὲτέρως

[?] Διοφάντῳ συνοπτικώτατα προσεφώνησε.
The reading in Tannery (1895) II, pp.38-39, translates as: Diophantos treated this very precisely,
but the very learned Anatolios collected the most essential parts of this theory, as described by
Diophantos, in another way.
For his part, Klein (1992), pp. 244-246, translates as:. . . but the very learned Anatolios collected
the most essential parts of this theory in another way than Diophantos. He devotes a whole
paragraph to the possible translations.
Knorr (1993), on the other hand, thinks the fragment should be read as: but the very learned
Anatolius, who had collected the most essential parts of this theory, dedicated it to that other
Diophantos.

24P. TANNERY(1896-1912), pp. 535-538.
25T.L. HEATH(1964), pp.306-307.
26O. NEUGEBAUER(1938).
27W. KNORR(1993), pp.156-157.
28There may be some confusion here with Diophantus the Arab, Libanius’ teacher, who

lived during the reign of Julian the Apostate. See also Suida λ486 and S.N.C. LIEU in: R.
McLEOD(2000), pp.129-130.

29Resp. by O. SPENGLER(1923), pp. 96-99, 770, P. TANNERY(1912-1940)II, pp 527-539, D.
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know next to nothing about Diophantos, one of the most original mathematicians
of Antiquity.

3.3 The book On Polygonal Numbers and the lost
books

The book On Polygonal Numbers is often ascribed to Diophantos, but this attri-
bution is by no means certain. Evidence is simply lacking.
The book could be described as a distant echo of the ψῆφοι-arithmetic. In the
introduction, the author defines the notion of polygonal numbers and announces
that he intends to demonstrate, among other things, how to construct a polygonal
number of a given type, given its side. He goes on to explain that he intends to
begin with some preliminaries. Unfortunately, only four theorems of the book sur-
vive. All four belong to the preliminaries and deal with arithmetical progressions.
They are proved rigorously, using metrical geometry of the line.

The theorems are (in anachronistic terms):

If (ai){i∈N} is an arithmetical progression with difference v then
8aj+1aj + a2

j−1

= (aj+1 + 2aj)
2

If three numbers exceed each other in
the same way, then the octuple of the
product of the largest and the middle,
increased with the square of the small-
est, is a square whose side is equal to
the sum of the largest number and the
double of the middle number

an − a1 = (n− 1)v If a random number of numbers have
the same difference, then [the differ-
ence] of the largest and the smallest is
a multiple of that difference, which em-
anates from the number that is a unit
smaller than the number of chosen num-
bers.∑n

1 ai =
n

2
(a1 + an) If a random number of numbers have

the same difference, then the sum of the
smallest and the largest, multiplied by
the number of numbers, is the double of
the sum of the given numbers.

BURTON(1991/95), p. 223. See N. SCHAPPACHER(2001) for a discussion on the claims of
these authors.
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If
∑n

1 ai = sn

then
8snv + (v − 2)2

= ((2n− 1)v + 2)2

If, commencing at unity, a random
number of numbers have a same dif-
ference, then the sum of all numbers,
multiplied by the octuple of their dif-
ference, and increased with the square
of the number that is two less than the
difference, is a square whose side, from
which two units are deducted, is a mul-
tiple of the difference of the numbers,
which emanates from a number which,
augmented with unity, is the double of
the number of all given numbers, in-
cluding unity.

In the proof of the fourth proposition, it is stated that “in this fashion we have
proved what Hypsikles says in a definition”. If we accept the questionable attribu-
tion of this book to Diophantos, then this presents an opportunity for a posteriori
dating of his life. After all, Hypsikles was a mathematician from the mid-second
century B.C. In view of the reference, Diophantos could, at the earliest, have been
his contemporary. The attribution to Diophantos is based on the fact that the
treatise On Polygonal Numbers appears in all known Arithmetika manuscripts,
albeit very partially in some cases30.

In the Arithmetika, Diophantos refers on a number of occasions to his Poris-
mata (G.V 3, 5, 16), which is believed to be a collection of propositions dealing
with the properties of certain numbers. Hence, it would appear to have been a
theoretical work underpinning the Arithmetika. The testimony of Al-Karaj̄i makes
this hypothesis plausible. He attributes the algebraic proof for the solution of a
second-degree equation to Diophantos31, yet no such proof can be found in the
Arithmetika.
According to Proklos, however, “a porism is a theorem resulting directly from the
proof of another problem or theorem”. The question then becomes: from which the-
orems exactly are they deduced? J. Christianides32 has therefore suggested that
there may be yet another lost work, namely Ἀριθμητικὴ Στοιχείσις, or Elements of
Arithmetic. Moreover, a reference to this title is made in a scholion in Iamblichus’
comments on Nicomachus’ Introductio Arithmetica. This scholion further refers to
the last problem of the first book, in which the harmonic mean is mentioned. In
problem I.39 (the last known problem of book I) of the Arithmetic, the harmonic
mean is not dealt with explicitly, which seems to imply that the title refers to a

30A. ALLARD(1982-83), pp 59-72.
31A. ANBOUBA(1978), p.71.
32J. CHRISTIANIDES(1991).
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–lost– book by Diophantos33. W.C. Waterhouse34 gives an interpretation of prob-
lem I.39 in which the harmonic mean appears. According to him, it had implicitly
always been there. R.Rashed, on the other hand, argues that the reference is to the
Arithmetika itself. Indeed, in an Arabic treatise, al-Fakhr̄ı by Al-Karaj̄i, dealing
with problems extracted from Diophantos (see par. 4.2, p. 112), we encounter a
sentence that is lacking from the Greek version and that refers to the arithmetical
mean, which, according to Rashed, may have been accompanied by a sentence on
harmonic means.35.

A final work to have been atributed to Diophantos is Moriastika, mentioned
in just one scholion to Iamblichus’ commentaries on Nicomachus’ Introductio Arith-
metica36.

Bernardino Baldi, in Cronica de matematici(1707), also mentions a treatise
on Harmony. He asserts that this work is unedited, giving rise to the assump-
tion that a manuscript copy may have been available in circles close to him. It
is however likely that a treatise by another author was appended to Diophantos’
work, occasioning a misinterpretation of authorship. Baldi further writes that Dio-
phantos is the author of an Astronomical canon, which was commented upon by
Hypatia37.
The latter assertion is possibly based on an interpretation of the description of
Hypatia’s work in the Suida (see section 4.1), where we read: “She wrote a com-
mentary on Diophantos, [and one of] the Astronomical Canon, and a commentary
on the Conics of Apollonios”38. The interpolation by Paul Tannery has become
generally accepted. If it is omitted, we indeed come close to Baldi’s claim.

33J. CHRISTIANIDES(1991) and W.KNORR(1993).
34W.C. WATERHOUSE(1993).
35R. RASHED(1994). “If three numbers have an equal difference, then [the sum of] the outer

numbers is equal to the double of the middle one.” (p. 44)
36P. TANNERY(1895) II, p.72.
37F. WIERING(2000). One of the volumes in which Diophantos’ Arithmetika can be found,

Matritenis Bib. Nat 4678 (= N48), also contains an anonymous astronomical text and two astro-
nomical tables (see A. ALLARD(1982-83), p.66). This or a similar collation may have led Baldi
to assume that the astronomical text was also by Diophantos.

38M.A.B. DEAKIN(1994), pp. 237-238 and translation by C. ROTH, Adler number upsilon
166 on http://www.stoa.org/sol/ .

http://www.stoa.org/sol
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3.4 Symbolism in the Arithmetika

As is the case with most Greek treatises, we only know the Arithmetika through
Byzantine and mediæval copies, implying that the original text has gone through
a process of minisculization. We can therefore only guess as to which, if any, Dio-
phantine symbols appeared as capital letters in the original documents39.
Therefore, all comments on style and notation are first and foremost comments
on the Byzantine versions. This filtering process, combined with the uniqueness of
the Arithmetika, makes it virtually impossible to look further back in time than
the Byzantine era. Only if we compare Diophantos with original Graeco-Roman
papyri is it possible to reach more robust conclusions.

The most important characteristic of the Arithmetika is the system it uses
for representing what we refer to as polynomials, with abbreviations for the un-
known40.

µ
o ς δυ κυ δυδ δυκ κυκ

unity number square cube square square cube
square cube cube

(x0) (x1) (x2) (x3) (x4) (x5) (x6)

What we know as polynomials would have been written in the following
fashion:

1. The coefficients were represented in Ionian style, after the unknown or its
power

2. All terms to be subtracted were written after ap
3. The terms to be added were written without a summation sign, before the

ap
E.g.

δυ δµ
o
κε we would write as 4x2 + 25

δυδαµ
o
ωap δυφ we would write as x4 − 50x2 + 800

κυ βς ηap δυ ε µ
o
α we would write as 2x3 − 5x2 + 8x− 1

39See for example the remark in this sense by R. NETZ(1999b), p. 43. On minusculization, see
par. 3.1.

40In the Tannery transcription, capital letters are used. We prefer to follow Allard’s tran-
scription, which uses small letters. The translation of this notation has always posed problems.
Heath (1964) and Tannery (1895) do not translate the text, but rather paraphrase it in modern
mathematical terms, including modern mathematical notation. Ver Eecke (1926) resolves the
abbreviations and writes l’arithme for ς . Meskens & Van der Auwera (2006) translate the text,
but use an x for the arithmos and modern exponentiation for higher powers. Allard (1980), in
his rare translation, is perhaps most faithful to the text, using Renaissance-like abbreviations
such as N (number), Q (quadrat) and C (cube).
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Signs similar to ap seem to have been in general use for subtractions. In
Papyrus graecus Vindobonensis 19996, we encounter the sigil a◦ 41. A similar sign
would appear to have been used by Heron in his Metrika42.

Diophantos used µ
o to refer to numbers. It is often regarded to be nothing

more than a symbol to indicate the independent term43. Had µ
o been omitted,

confusion may have arisen, especially with sloppy handwriting. Is ς ιγ (overline
omitted) equal to 23x or 2x + 3? Writing ς µo ιγ resolves this problem. However,
this interpretation is not shared by J. Klein44. He sees µo as an abbreviation of
monas (unity), necessary in the notation as a consequence of the meaning of the
word arithmos, i.e. a certain number of something. Klein refers to a similar, non-
abbreviated word used by Heron. The arithmoi calculated by Diophantos are,
according to Klein, numbers of pure units: “all numbers are composed of a certain
number of units”45. In this interpretation, Diophantos may have viewed a monas
as divisible in parts.
Diophantos’ arithmos can therefore be regarded as a positive rational number.
Irrational numbers –although they are present– and negative numbers are not
considered to be arithmos.
On the basis of Renaissance symbolism, we are inclined to follow Klein’s interpre-
tation. In Renaissance texts, where the supposed problem of sloppy notation does
not present itself, a letter is added to the independent term, although this seems
entirely superfluous.

ἀριθμὸς, the number, is used by Diophantos to indicate the unknown. It is usually
written as an abbreviation, ς , or as a letter sign closely resembling it.
“But the number that has none of these characteristics, but consists of an unde-
termined number of units, we call the arithmos and its sign is ς ”46. The earliest
known use of the symbol ς is in Papyrus Michigan 620, dating back to the first or
the early second century47.
Any declension of the word ἀριθμὸς is indicated in an exponent. For instance, ς ”
means ἀριθμόν. The symbol is duplicated for a plural ςςοί, ςςούς, ςςῶν, ςςοῖς. It
is followed immediately by the number, thus ςςοίλβ means 32x.
On the basis of all of the above considerations, Thomas Heath concludes that the

41H. GERSTINGER & K. VOGEL(1932), pp.14 and 22.

42W. SCHMIDT(1899) changed the reading oδap ι′δ′, 74− 1
14

into oγ

ιδ′

ιγ , 73 13
14

(pp.156-157,
l.8 and 10). The sign appears only twice, and on the same page, in Metrika, so it is not clear
whether this is a later addition or whether other ‘minus symbols’ may have been resolved by
scribes. F. CAJORI(1993), pp.73-74„ T. HEATH(1981), p.459, K. BARNER(2007), p.27.

43P. TANNERY(1912-40)III, p.160, T. HEATH(1964), p.39.
44J. KLEIN(1992), p.131.
45Diophantos I, introduction
46Diophantos I, introduction
47F.E. ROBBINS(1929), K. VOGEL(1930).
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sign cannot be interpreted as an algebraic symbol48.

To denote powers of the unknown, Diophantos uses two symbols: δυ and κυ,
resp. the dynamis and the cube of the unknown. These symbols are not equivalent
to the exponent, but to the power of the exponent itself. Thus δυ does not stand
for the 2 in x2, but for the entire expression x2. The word dynamis, δύναμις, has
been interpreted in different ways by different translators. In colloquial Greek, it
has the meaning power, and this is indeed the word commonly used in transla-
tions. Bailly’s dictionary, for example, states: t. d’arithm puissance d’un nombre,
particul. le carré49. However, in mathematical usage, it is always used as a square.
The verb δυνασθαι, dynastai, was originally used for transformations of surfaces
in the plane. Thus, a rectangle was transformed into a square of the same area
(tetragonismos)50. The dynamis is obtained by finding or constructing the mean
proportional of length and width of the rectangle. Because the transformation of a
rectangle may result in a side of a square that is not measurable in length, it would
appear to have been desirable to measure these sides by their squares rather than
their lengths51. The δυ, δύναμις, has a special place in Diophantine terminology, in
the sense that, contrary to the other powers, it always refers to the square of the
unknown. The square of a number is usually referred to as tetragon, τετράγωνον.

Higher powers can be referred to by juxtaposing these symbols. The fourth
power is δυδ, δυναμοδύναμις. It was already used in this sense by Heron52 and
Hippolytus53. Although the Greek manuscript contains no powers higher than six,
it is clear from the Arabic books that the symbolism is retained. In the Arab ver-
sion, we encounter expressions such as ‘square square square square’, representing
x8, which may have been represented in Greek as δυδυδυδ. Note that this type
of notation requires two symbols, δυ and κυ, to denote the powers. It is obvious
that any number n can be written as54 2x+ 3y. Thus δυκ represents x5 and κυκ
represents x6. Also note that the notation is additional, like the exponents in our
notation.

Although the origin of the terminology is not clear, it seems to have been
widely used. It is, for example, also found in a surveyor’s text attributed to Varro55.
Marcus Terentio Varro (116-27 B.C.) was the editor of an encyclopedia De Disci-
plinis, a work consisting in nine volumes, the fourth of which dealt with geometry.
Although the text is in Latin, the powers are referred to in transliterated Greek:

48T. HEATH(1964), pp.32-37.
49L. SÉCHAN & P. CHANTRAINE(1950), p 542.
50A. SZABÓ(1978), pp.36-55. For an opposing view, see M. CAVEING(1982), pp.1342-1362.
51A. SZABÓ(1978), p.103.
52D. SAKALIS(1972), p.43.
53Hippolytus, Refutation of All Heresies, 1.2.10. Hippolytus lived around 200. He is commonly

regarded to have been the first antipope. He died in 235, reconciled with the Church.
54If n = 2m then x = m, y = 0, if n = 2m + 1 = 2(m− 1) + 3, then m = m− 1, y = 1.
55N. BUBNOV(1963), pp.495-503.
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dynamus (problem 19), kybus (problem 14, 22), dynamodynamus (problem 20),
dynamokybus (problem 20) and kybokybus (problem 22). We may reasonably as-
sume, then, that these terms had become widespread in mathematical usage by
the third century.

As we have previously mentioned, nearly all Greek mathematical works have
come to us through Byzantium. If we wish to gain insight into the use of math-
ematics, and elementary mathematics in particular, we must therefore consider
surviving papyrus fragments.
In relation to the Diophantine corpus, it is interesting to look at the notation
for fractions as evidenced by these fragments56. Essentially, the Greeks used to
deal with fractions in much the same way as the Egyptians - and indeed they
acknowledged this inheritance. The Egyptian technique for transforming fractions
into unit fractions was still in use in the Greek era.
Although by the second century B.C., the Greeks were familiar with the superior
Babylonian system, and even though they incorporated Babylonian astronomy and
geometry into their mathematics, they remained faithful to the Egyptian notation.
The assimilation of the Babylonian method only began in the second century B.C.,
when the Greeks, following the Alexandrine conquests, came into direct contact
with the culture of Mesopotamia.
The work of Heron of Alexandria in particular provides an indication of which
methods were applied during the Roman era. He uses both ordinary fractions and
unit fractions. The unit fraction notation is encountered on a couple of occasions
in Metrika, five times in book I of Metrika, just once in book II and not at all in
book III, where only ordinary fractions are used.
In contrast to this sparse use of unit fractions in Metrika, they appear abundantly
in Geometrika and Stereometrika. In some cases, problems are solved using both
ordinary and unit fractions, as if Heron were trying to clarify an arithmetical pro-
cedure. In others, ordinary fractions are used, but never without a version with
unit fractions. Many problems, however, are solved using unit fractions only.
In some instances, we observe a combined use: a problem formulated by means of
unit fractions and solved with ordinary fractions, after which the answer is given in
unit fractions, apparently because arithmetical manipulation of ordinary fractions
is easier.

Unit fractions are not used in this way by Diophantos (unless subsequently
omitted by copyists). Nonetheless, there is some reference to unit fractions, in-
cluding those with an unknown in the denominator, about which he asserts: “and
each of these fractions has the same symbol with above it the sign χ to clarify the
meaning”57. The symbol58 γχ or γ′ represents 1

3 .

56On the use of fractions by the Greeks, see W. KNORR(2004) and D.H. FOWLER(2004).
57Diophantos, introduction. Allard’s transcription (1980) makes use of an accent ′.
58Obviously this is a kind of abbreviation, similar to those used by merchants for denoting

multiples of χους, a measure for liquids. Multiples such as τρίχους, τετράχους or πεντάχους were
occasionally written as, resp., χγ , χδ , χε. See N. KRUIT & K.A. WORP (1999).
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The use of unit fractions is not generalized. Sometimes they are written as words,
such as τέτρατον, one fourth (e.g. in I.22)59, or a fraction may be represented as a
number and a unit fraction, e.g. ςγγ′µoγγ′ or 3 1

3x+ 3 1
3 .

In accordance with Greek tradition, Diophantos uses a separate symbol ∠′

for 1
2 . For the inverses of the unknown and its square, we encounter ς ′ (see for

example III.10 and III.11) and δυ′
(see for example G VI.3).

We also encounter the notation with the denominator above the nominator,

like
γ

ε or
5
3
, µo

γ

ιγap ςα or
13
3
− x (G IV.32). The horizontal bar is not to be re-

garded as a vinculum, but as a line above the letters to indicate that the expression
is a number.
Occasionally, we encounter a unit fraction in this denominator above nominator

notation, e.g.
φιβ′

α for
1

512
(G IV.28).

In this semi-semantic notation, Diophantos also manipulates what we would

refer to as polynomial fractions: μέσος µoη μορίου δυαςα or
8

x2 + x
and δυαςαµoη

μορίου δυαςα or
x2 + x+ 8
x2 + x

(G IV.25).

Interestingly, he considers polynomial fractions as fractions, for which he has

general rules for adding and multiplying. In G IV.36, he finds the fractions
3x
x− 3

and
4x
x− 4

.

But the product of the first and the third number is equal to 12δυ

parts of δυ + 12µo − 7ς . On the other hand, the sum of the first and
the third number is equal to 7δυ − 24µo parts of δυ + 12µo − 7ς , which
we find in the following way. Because we have to add fractions like 3ς
parts of ς - 3 and 4ς parts of ς - 4, we multiply the ς of the fractions
with the other denominator, that is to say 3ς with the denominator
of the other fraction, which is ς - 4, and, on the other hand, 4ς with
the denominator of the other fraction, which is ς - 3. In this way, we
find 7δυ − 24µo divided by the product of the denominators, that is
δυ + 12µo− 7ς .

59Tannery (1895) sometimes transcribes this as δoν.
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3.5 The structure of a Diophantine problem

Just as Euclidean theorems have a specific structure, so too do Diophantine prob-
lems. In fact, in many respects the two are quite comparable.

The typical structure of a mathematical problem was described by Proklos60.
A proposition begins with the protasis, which should ideally enunciate a condition
and a result following from that condition. It is distinguished from the other parts
by the fact that it is always general61. Next, in the ekthesis, a particular condition
is set. The diorismos specifies a (geometrical) relation, which is what is sought.
Then, in the kataskeue, the constituting objects of the proof or apodeixis are con-
structed. The proof is complete once the desired result stated in the diorismos is
obtained. Finally, a conclusion or sumperasma is drawn. This is usually a repeti-
tion of the protasis with the addition of the word ‘therefore’.

The structure of a Diophantine problem corresponds with this division by
Proklos. Diophantos poses his problems in a general way, without numerical data
(protasis). Solutions are provided for specific numbers (ekthesis), which are given
at the outset. Hence there is a partial analogy to be observed with geometrical
constructions, which are also posed generally, but applied to a specific figure.

Diophantos never provides a general method, though, even if a specific ex-
ample so allows. During the elaboration of the example, he sometimes adds a
restriction. In other cases, he does not, even if a restriction is called for. It re-
mains unclear whether this is due to the failure to recognize this necessity or to
the inability to formulate it correctly, e.g. in terms of the characterization of the
numbers.

The solution to a problem begins with determining an equation. In most
cases, a certain expression has to be equalled to a square or a cube (construc-
tion). The square or the cube is expressed in terms of an unknown in a manner
that guarantees a rational solution. The latter expression is introduced into the
equation, which can then be solved using Diophantos’ general rules, set out in the
introduction (demonstration). This leads to a particular solution for the problem
at hand.
Usually there is no formal conclusion, but just a simple confirmation that the
problem has been solved.

The above-described structure is characteristic of many Greek mathematical
treatises. In this sense, the Arithmetika is a book that fits seamlessly into the

60See R. NETZ(1999b) referring to Proklos’ in Primum Euclidis Elementorum Librum Com-
mentaria Prologus 203.1-207.25. He also gives etymological explanations for the Greek words.

61This explains why some constructions are put generally, but not proved generally. On Greek
methods of proof, see J. HINTIKKA & U. REMES(1974).
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Greek tradition of mathematical writing, yet its content is remarkable, original
and isolated within that tradition.

We can again take the famous problem as an example.

II.8 Divide a square into two
squares.

protasis (enunciation)

I propose to divide 16 into two
squares.

ekthesis (setting out)

I put it that the first number is
δυ, then the other is 16µo - δυ.
So it is necessary that 16µo - δυ is
a square.

diorismos (definition of goal)

Take the square of a random
multiple of ς of which the square
root of 16 is subtracted.

kataskeue (construction)

Take for instance 2ς - 4µo,
the square of which equals
4δυ + 16µo - 16ς .
We put this equal to 16µo - δυ.
If we add the lacking numbers
on both sides and if we subtract
equals from equals, we find that

5δυ equals 16ς and ς =
16
5

.

apodeixis (demonstration)

From which it follows that one of

the numbers is equal to
256
25

and

the other to
144
25

.
So the sum of the numbers is
400
25

.

sumperasma (conclusion)
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3.6 The Arithmetika

Although we do not know the origin of the Arithmetika and possess little or no
biographical information about its author, the history of the text itself is easier to
reconstruct. We shall return to this in following chapters and sections.
We have at our disposal three versions of Diophantos’ text, one Arab and two
Greek, each of which is based on different manuscripts. In what follows, we shall
try to describe Diophantos’ text as faithfully as possible and in the order that he
most probably intended (see par. 3.1, p. 45).

Like the Heronian treatises, Arithmetika occupies a position on the interface
of logistic and arithmetic. One of the characterizing features of Arithmetika is
that Diophantos always demands that the solution should be expressible (see for
example G IV.9, p. 71). Therefore, he considers whether the solution to which his
parametrization leads is expressible, ῥητός or not expressible, ἄρρητος. He never
uses the terms commensurable and incommensurable. Here the usage of Diophan-
tos and Euclid diverges: whereas Diophantos treats expressible and commensurable
as synonyms, Euclid differentiates between the two.

The introduction to the Arithmetika is addressed to Dyonisius (see p. 47).
Here, Diophantos explains the nomenclature, the symbolism and some of the al-
gorithms that are used. He starts out by defining number as being composed of
units. The number of numbers that can be formed is infinite. Evidently, this refers
to the Greek conception of number since Eudoxos and Euclid (see par. 1.4).
Diophantos gives the nomenclature for the powers of numbers and the powers of
the unknown, up to the sixth power. However:

The number which has none of these characteristics but holds an
undetermined number of units we call arithmos and its sign is ς .

Subsequently we are introduced to the inverses of the powers of the unknown and
the products of the inverse of the unknown with the powers of the unknown. Next,
he gives the product of each inverse of a power of the unknown with each power
of the unknown. These products shall be required in solving the problems.

He then gives two algebraic rules:

And next, if you find that a problem leads to an equation in which
certain quantities, when equalled to one another, do not have the same
coefficient, then it is necessary to subtract like from like on both sides,
until only one quantity is equal to another. If by chance in one or in
both sides there is a lacking [quantity], you need to add the lacking
[quantity] in both sides, until on each side the existing [quantities] ap-
pear, then subtract the quantities of the same nature, until there is only
one quantity of a specific nature in each of the sides.
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In modern usage:

• if the equation is formed, like terms are to be added on both sides resulting
in only positive terms on both sides.

• like terms on both sides cancel each other out.

For instance, in problem II.11 we find:

If we choose the square of ς - 4, choose y = x− 4

the square is equal to then y2 = x2 + 16− 8x
δυ + 16µo - 8ς ,

which we put equal to δυ + 1µo. x2 + 16− 8x = x2 + 1

If we add the lackings on both
sides

x2 + 16− 8x+ 8x = x2 + 1 + 8x

and we deduct equals from e-
quals,

x2 − x2 + 16 = x2 − x2 + 1 + 8x

then we see that 8ς is equal to
15µo

15 = 8x

and ς =
15
8

. x =
15
8

Finally Diophantos recommends that the equation be reduced whenever pos-
sible to one power of the unknown. Not unimportantly, he announces that he in-
tends to explain how to solve cases in which two terms are left equal to one term62.

Book I is the starting point for an introduction to indeterminate problems.
It consists mainly of linear problems, which are dealt with in Babylonian texts
and abacus manuscripts alike. It is very unlikely that either the Arithmetika was
influenced by the former or that it influenced the latter. This kind of problem is
the first to be dealt with in any mathematical evolution and, more often than not,
it is part of the oral tradition. The first set of problems consists of determinate
problems that depend on a parameter. Of course, in the Diophantine solution, a
value is given to the parameter and thus they become simple systems of linear
equations.
The first problem is simple:

Divide a number into two numbers with a given difference63.

62I.e. where more than one power of the unknown is present.
63

{
x + y = a
x− y = b
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The problems up to I.25 (with the exception of problem 14, which is an indetermi-
nate problem of the second degree64) are all systems of linear equations with up to
six unknowns. Problems 22 to 25 are indeterminate problems. These (and problem
14) are reduced to determinate problems by giving the parameters a value.
Problem I.26 is an intermediate problem between linear and quadratic:

Given two numbers, find a number which, multiplied with the first
gives a square and with the other the root of that square65.

The first problems of the second degree are systems that would have been quite
familiar by the time of Diophantos. Even our Babylonian scribes would have been
able to solve them.

Find two numbers given their sum and product.66

The other types of Babylonian propositions are dealt with in the next problems.

This gentle introduction is concluded with book II. Books II and III reveal
the characteristic of the Arithmetika: the solution of indeterminate problems. Dio-
phantos sets out in search of positive, expressible values of the unknown, which
make the expression into a square (or other powers in the following books). In
general, he is satisfied with one solution, although he is aware that more solutions
exist. He always solves these problems by giving the parameter a certain value,
making the problem determinate.
Book II begins with five problems that are in fact variations on problems I.31-34
(and I.14). While, in the latter, the ratio between the two unknowns is given, this
is not the case in II.1-567.
For instance:

I.33 Find two numbers, in a given proportion, such that the difference
of their squares has a given proportion to their sum.

II.5 Find two numbers such that the difference of their squares has a
given proportion to their sum.

Problems 6 and 7 follow logically from the first five problems. In problem 6, the
difference of the squares exceeds the difference by a given number, while in problem
7, it exceeds an expressible multiple of the difference by a given number.

64This problem breaks the logical order of the problems and is totally out of place in this
series. We may therefore speculate that it is a later addition.

65
{

ax = α2

bx = α

66
{

x + y = a
xy = b

67Bearing this in mind, II.1 and I.31, II.2 and I.34, II.3 and I.14 and corollaries to I.34, II.4
and I.32, II 5 and I.33 resp. deal with the same problem.
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Problem 8 is of course the most famous problem (see p. 58), although its solution
was known long before Diophantos wrote his book:

II.8 Divide a given square into two squares.

Geometrically, it can be interpreted as: given a hypotenuse, find the perpendicu-
lars.

Problem 11 is the first in which we encounter the often-used Diophantine
method of the double equation (see par. 3.7 esp. p. 83). With the exception of
problems 17 and 18, all subsequent problems are indeterminate problems of the
second degree68.
For example:

II.19 Find three squares, such that the difference between the
largest and the middle has a given ratio to the difference of the middle
and the smallest69

Problems II.32-35 are the extension to three unknowns of problems II.20-23 in two
unknowns.
For example:

II.20 Find two numbers such that the square of either added to
the other makes a square.

II.32 Find three numbers such that the square of any one of them
added to the next number makes a square70.

The first four problems in book III resemble the final two problems in book II.
E.g.

II.34 Find three numbers such that the square of any one, increased
with the sum of all three, makes a square.

III.2 Find three numbers such that the square of their sum, in-
creased with any one of these numbers, makes a square.

68Problems 17 and 18 are more in line with the first 25 problems of book I. Again, we may
ask ourselves whether these problems are not interpolations by later commentators. See also P.
TANNERY(1895)I, p.109, note 1

69 x2 − y2

y2 − z2
= m.

70II.20
{

x2 + y = α2

x + y2 = β2 and II.32

 x2 + y = α2

y2 + z = β2

z2 + x = γ2
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Again, we are faced with a question of order. Might the latter problems actually
have been the first problems of book III in the original version71?
Problem 10 is the first in which the method of false position is used.

III.10 Find three numbers such that the product of any two, in-
creased by a given number, makes a square.

Diophantos arrives at (the equivalent of) the expression 52t2 + 12, which must
equal a square72, with 52 = 4.13. Neither 52 nor 12 are squares, therefore none of
the Diophantine solution methods are applicable (see par. 3.7, p.81). For this rea-
son, he seeks numbers for which the coefficient becomes a square, and these are 4

and
1
4
. The resulting expression is t2 +12, which must equal a square. Diophantos

puts it that the square equals (t+ 3)2, from which t =
1
2
.

He could have simplified matters by choosing a square for the number that has
to be added73. We may therefore reasonably assume he wanted to demonstrate a
method that is sufficiently general to the problem with any given number.
The solutions to problems 17 and 18 are based on the application of the algebraic
identity74 a(4a− 1) + a = (2a)2.
In problem 19, Diophantos notes that 65 is a sum of two squares in two ways,
since 65 is the product of 13 and 5, each of which numbers is the sum of two
squares. This is remarkable, because he is not dealing with rational numbers, but
with integers75!
Problems II.20-21 are the same problems as respectively II.15 and II.14, but with
a more elegant solution thanks to a more appropriate choice of parameters.

The book that follows the third book is most probably the Arabic book IV,
not the Greek book IV76. Apparently Diophantos had conceived Book A IV as a
new part of the Arithmetika, for he begins by stating that, in the preceding part,
he has dealt with linear and quadratic problems organized in categories which
beginners can memorize. Diophantos puts it to the reader, who cannot be but

71Tannery has argued that these four problems are additions by later commentators (P. TAN-
NERY(1895) I, p.139. We tend to disagree. While these six problems are of the same type as
those posed in book II, it is not uncommon in the Arithmetika for similar problems to appear in
different places in the book. In most such instances, the later problems are either generalizations
or an extra condition is added.

72The equation 52t2 +12 = α2 actually has a solution for t = 1, for which 52.1+12 = 64 = 82.
73For example, choose a = 16. The resulting equation then is 52t2 + 16 = α2. Put α = t + 4

then 52t2 + 16 = t2 + 8t + 16 ⇔ t = 0 ∨ t =
8

51
.

74In problem 18, b(4b− 4)− (4b− 4) = (2b− 2)2 is used, which, by putting a = b− 1, becomes
the same identity after a simple manipulation.

75Fermat notes that, if a number is the product of two prime numbers, which can be expressed
as the sum of two squares, it can be expressed as a sum of squares in two ways, and he generalizes
the result. E. BRASSINE(1853), pp.65-66.

76The description of the Arabic books is based on J. SESIANO(1982) and R. RASHED(1984).
Quotations are from Sesiano’s translation, and they are followed by a reference.
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Dyonisius, his addressee in the first book, that he intends to offer him ‘experience
and proficiency’. He announces that, in the present book, he will introduce solid
numbers (products of three unknowns) either in problems, alone or in conjunction
with linear (unknown of the first degree) and plane (products of two unknowns)
numbers. Book A IV therefore instructs the reader on how to deal with higher
powers and how to choose the power best suited for the required magnitudes. Book
A IV begins with a recapitulation of the powers of the unknown, starting with the
cube and up to the sixth power, their multiplication and their division. Higher
powers, the eight and the ninth, are explained when they are first encountered in
A IV.29.

To solve these, he introduces a third algebraic rule:

• if in each term of the equation powers of the unknown are present, the equa-
tion can be divided by the smallest power of the unknown.

Although, these books also deal with higher-degree equations, the solution method
is basically the same as those in the previous books. With book IV, the reader en-
ters the integration phase, where the pupil needs to apply the method at a higher
level. It also makes clear that the Diophantine methods are not algorithms that
give a solution haphazardly, but that they may be seen as general methods for
solving higher-degree equations.

The first four problems of book A IV involve sums and differences of cubes
resp. squares equal to squares and resp. cubes, and they all lead to a linear equa-
tion. Other problems involving a square and a cube can be reduced to one of these
problems.

A IV.1 We wish to find two square numbers the sum of which is a square
number77.

We put x as the side of the smaller cube, so that its cube is x3, and
we put as the side of the greater cube an arbitrary number of x’s, say
2x; then, the greater cube is 8x3. Their sum is 9x3, which must equal a
square. We make the side of that square any number of x’s we please,
say 6x, so the square is 36x2. Then, since the side (of the equation) con-
taining the x2’s is lesser in degree than the other, we divide the whole
by x2; 9x3 divided by x2 gives 9x, that is 9 roots of x2, and the result
of the division of 36x2 by x2 is a number, namely 36. Thus 9x, that is
nine roots, equals 36; hence x is equal to 4. Since we assumed the side
of the smaller cube to be x, the side is 4, and the smaller cube is 64;
and since we assumed the side of greater cube to be 2x, the side is 8,
and the greater cube is 512. The sum of the two cubes is 576, which is
a square with 24 as its side.

77Translation by J. SESIANO(1982), p.88.
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Therefore we have found two cubic numbers the sum of which is a
square, the lesser being 64 and the larger 512. This is what we intended
to find.

Mathematically, this translates as and is generalized by:

x3 + y3 = α2.

Put x = t and y = pt
from which

(
1 + p3

)
t3 = α2

putting α = qt
we find

(
1 + p3

)
t3 = q2t2

and t =
q2

1 + p3
substituting this into the equation gives a solution.

Problem 14 is the first involving a system with squares and cubes, albeit a very
easy one.

A IV.14 We wish to find a number such that when we multiply it by
two given numbers, one of the two [results] is a cube and the other a
square78.

In the following problems, one of the two given expressions is a cube or a square
and the other is its side. The magnitudes with which these are multiplied satisfy
a certain condition, with the exception of problem 16, which is an indeterminate
problem.
In problems 23-24, we find the sum and the difference of fourth powers equal to
cubes. These problems can be reduced to a linear problem, as they are of the type
xn ± yn = αn±1.
Problems that one might expect to encounter in the book but that are not in-
cluded are x3 + y3 = α3 and x4 ± y4 = α2, most probably because no solution
was known; of course, today we know that no solution actually exists. Whether
or not Diophantos realized intuitively or even suspected this to be the case is a
matter of conjecture.
For solving problems 25 to 33, Diophantos reverts to the methods introduced in
book II.

78
{

kx = α2

lx = β2 . Translation by J. SESIANO(1982), p.95.
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For instance, in problems 32 and 33, a ninth-degree equation is solved:

A IV.32 We wish to find two numbers, one cubic and the other square,
such that the cube of the cube together with a given multiple of the prod-
uct of the multiplication of the square by the cube is a square number79.(
x3

)3 + ax3y2 = α2.

Put x = t and y = pt3

from which
(
1 + ap2

)
t9 = α2

putting α = qt4

we find
(
1 + ap2

)
t9 = q2t8

Problem 34 introduces systems of equations in which mixed sums of squares and
cubes are equal to squares or cubes. Diophantos solves these in two ways, using
the double-equation approach and another method that requires him first to solve
an indeterminate equation.
Problems 36-39 can either be reduced to II.10 or they can be solved by means of
the double-equation method.
In problems 43-44, we find cubes of cubes and squares of squares, but essentially
these can be reduced to problems 36-39 and therefore II.10.

The first six problems of book A V are reducible to the form{
a2x2j + bx2j±1 = α2

a2x2j + cx2j±1 = β2 .

E.g.

A V.4 We wish to find two numbers, one square and the other cubic,
such that, when we increase the square of the square by a given multi-
ple of the cube of the cube, the result is a square number, and when we
decrease the same by another given multiple of the cube of the cube, the
remainder is again a square number80.{
y4 + ax9 = α2

y4 − bx = β2 with a = 5, b = 3

Put x = t and y = pt3

from which
{
p4t8 + at9 = α2

p4t8 − bt9 = β2

79Translation by J. SESIANO(1982), p.109.
80J. SESIANO(1982), pp.128-129.
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⇒


p4 + at =

(
α2

t4

)2

= α′2

p4 − bt =
(
β2

t4

)2

= β′2

Put p = 2.

Now for any square u2:


u2 + 5

u2

4
=

9
4
u2 =

(
3
2
u

)2

u2 − 3
u2

4
=

1
4
u2 =

(
1
2
u

)2

Taking 16 for u2, one arrives at the solution and finds α2 = 15362 and
β2 = 5122.

As these problems bear no relation to the other problems of book V, their
origin, or at least their position in the book, has been called into question. Here
we have a similar situation as with the first problems of book III, except that,
in book A V, a new method is used. In these problems, Diophantos introduces a
ratio.
E.g.

A V.3 We wish to find two other numbers, one cubic and the other
square, such that, when we multiply the cube by two given numbers and
subtract each of the two (products) from the square, the remainder is
(in both cases) a square81.
Let the given numbers be 12 and 7. [. . . ]{

b4 − la3 = α2

b4 − ka3 = β2 with l = 7, k = 12

Put b = t and a3 = rt4, α2 = m2t4, β2 = n2t4

then
{

t4 − 7rt4 = m2t4

t4 − 12rt4 = n2t4

⇒ r =
1−m2

7
=

1− n2

12
⇒ 1− n2

1−m2
=

12
7

(
=
k

l

)
.

Using Elements V.1782:
1− n2

m2 − n2
=

7
5

Using the preceding problem, Diophantos finds that

m2 =
9
16

and n2 =
4
16

81J. SESIANO(1982), pp.129-130.
82If magnitudes are proportional componendo,they will also be proportional separando. T.L.

HEATH(1956)II, p.166.
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Hence a3 = rt4 =
1
16
t4 ⇒ r =

1
16

Put a =
1
2
t then t = 2

Thus a3 = 1, b4 = 16, α2 = 9 and β2 = 4.

Problems 5 and 6 have equations of the ninth degree.

A V.5 We wish to find two numbers, one cubic, the other square, such
that, when we multiply the cube of the cube by two given numbers and
add each of the two (products) to the square of the square, the result is
(in both cases) a square number.{

(b2)2 + k(a3)3 = α2

(b2)2 + l(a3)3 = β2

Put a = t, b = 2t2, k = 12 and l = 5, so
{

16t8 + 12t9 = α2

16t8 + 5t9 = β2

Divide by t8 {
16 + 12t = α2

1

16 + 8t = β2
1

Now it is known that


u2 + 12

u2

4
= (2u)2

u2 + 5
u2

4
=

(
3
2
u

)2

Putting u = 16 we immediately find that t = 4 is a solution.

In problems 7 to 12, the identity 4(a3 ± b3) = 3(a ± b)(a ∓ b)2 + (a ± b)3

lies at the heart of the solution. From these follow conditions for expressibility.
However, in these cases there is also a need for a positivity condition, which is
lacking.
Problems 13-16 are again constructed from an identity
viz. (x+ a)3 + (x+ b)3 = 2x3 + 3x2(a+ b) + 3x(a2 + b2) + a3 + b3.

In book A VI, Diophantos continues his pedagogical approach whereby the
problems presented become progressively more complex.
The first eleven problems seem to be interpolated problems, some of which corre-
spond to problems in book A IV83. Other problems (12-23) are reminiscent of the
problems posed in book II, but they allow a degree higher than 2.

A VI.1 We wish to find two numbers, one cubic and the other square,
having their sides in a given ratio, such that when their squares are
added, the result is a square number84 .

83VI.1 = IV.25, VI.2 = IV.26a; VI.3 = IV.26b, VI 5 = IV.33 corollary 1a, VI.6 = IV.33
corollary 2c, VI.7 = IV.33 corollary 1c.

84J. SESIANO(1982), p. 139.
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y6 + x4 = α2

Put x = t, y = pt and α = qt3

from which p6t6 + t4 = q2t2

The problem is thus reduced to finding a square that equals q2 − p6

(in which p is a known number).
We therefore look for two numbers for which

q2 −
(
p3

)2 = m2 ⇒ q2 −m2 =
(
p3

)2
.

which is nothing other than II.10.

Jacques Sesiano85 calls problems 17 and 22 “so unimaginative as to be hardly
less trivial than interpolated propositions”. Nothing could be further from the
truth!

A VI.17 We wish to find three square numbers which, when added, give
a square, and such that the first of these (three square) numbers equals
the side of the second, and the second equals the side of the third86. x2 + y2 + z2 = α2

x2 = y
y2 = z

from which x8 + x4 + x2 = α2.

Put α = x4 +
1
2

from which α2 = x8 + x4 +
1
4

and x2 =
1
4

and α =
9
16

This problem is interesting, not only because of the Diophantine methods;
by putting α = yx in the equation, we find

y2 = x6 + x2 + 1

which is a curve of genus 2. Faltings’s theorem puts that this kind of curve only
has a finite number of rational points.
J.L. Whetherell succeeded in proving that the Diophantine solution, disregarding
permutations and trivial solutions, is the only solution to the equation87. This is
illustrative of how deceptively easy Diophantine methods can be. Diophantos, it
seems, had mastered a technique for tackling equations to such a degree that he
knew how to choose parameters that offered him the greatest likelihood of solv-
ability.

85J. SESIANO(1982), p. 259.
86Translation by J. SESIANO(1982), p. 149.
87J.L. WHETHERELL(1994), esp. p.4.
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Book A VII is very short. Diophantos begins by announcing that the prob-
lems will be of the types encountered in books A IV and A V, and he explains
that their purpose is to enhance the reader’s “experience and skill”. In other words,
Diophantos intended this book to be the last in a first series, where the reader has
reached the final phase of learning; it is a final repetition, intended to consolidate
the acquired knowledge.

Again, the first problems, seven in this case, are interpolated.

A VII.7 We wish to divide a square number of cubic side into three parts
such that the sum of any two is a square88.

y6 = x1 + x2 + x3

z2
1 = x1 + x2

z2
2 = x2 + x3

z2
3 = x3 + x1

Put y = t from which t6 = x1 + x2 + x3

Using III.6, Diophantos finds three numbers that, taken two by two, are
a square and whose sum is also a square.
Suppose these numbers are a1, a2, a3, then a1 + a2 + a3 = α2

Now put xi = ait
4 from which t6 = (a1 + a2 + a3) t4

and t2 = a1 + a2 + a3 = α2

from which t = α

In the solution to problem 7, introduces the method also to be used in prob-
lems 8-11. The approach is in fact a clever application of the method of false
position applied to quadratic problems. Diophantos considers a similar problem
for which a solution is known. Because the solution is determined up to a quadratic
factor, the solution to the original problem is found by multiplying with the mag-
nitudes of the intermediate problem. Generally put, if we know that u2

0 =
∑
u2

i

then a2
0 =

∑ u2
i a

2
0

u2
0

.

The following problems are again quadratic problems: a square is divided into a
number of parts, for which specific relations are given.

The Greek books G IV - G VI were most likely books VIII-X in the origi-
nal version. Problems are dealt with in the same way, but they are of a different
order. More often than not, a subproblem is dealt with separately, or another,
easier, problem has to be solved first. The first attempt at solution often leads to
an insolvable equation or an equation without expressible solutions. In particular,
this is the case in G VI, where the solutions are perpendicular triangles with con-
ditions on its sides and/or area.

88J. SESIANO(1982), p.160.
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In book G IV, we find indeterminate equations of the third degree. Diophantos
does not actually solve third-degree equations, as all his third-degree problems are
reduced to the second degree, by a careful selection of the parameter.

For instance

G IV. 1 Divide a given number into two cubes, given the sum of
its sides89

Divide 370 into two cubes the sum of whose sides is 10.
I put it that the side of the first cube is equal to ς + 5, which is half
of the sum of the sides. Then the other side equals 5 - ς . From this it
follows that the sum of the cubes equals 30δυ + 250. Which we equal
to 370, that is to say, the given number, and ς = 2.
If we return to the problem posed, then the side of the first cube equals
7 and that of the second cube 3, and the cubes themselves are equal to
343 and 27.

Problem 9, goes as follows:

G IV.9 Add the same number to a cube and its side and make
them the opposite90.

It clearly demonstrates that Diophantos allows only expressible solutions. Where-
as, in the other problems, the fact that the solutions are expressible is more or less
a by-product of the choice of parameters, here Diophantos demands expressibility
for the solution.
Diophantos arrives at the equation 35t2 = 5, the solution of which is non-express-
ible “because the ratio of the one number to the other is not the proportion of a
square to a square”91.

89
{

x3 + y3 = a
x + y = b

.

Put


x =

b

2
+ t

y =
b

2
− t

, then


x3 =

b3

8
+ 3

b2

4
t + 3

b

2
t2 + t3

y3 =
b3

8
− 3

b2

4
t + 3

b

2
t2 − t3

,

from which x3 + y3 =
b3

4
+ 3bt2 = a and t2 =

40− b2

12
.

t will be expressible if the fraction is a perfect square. Therefore the system of equations will

have expressible solutions if a =
12bt2 + b3

4
for some expressible t.

In Diophantos’ solution, b = 10 and t = 2 giving a = 370.
90I.e. the sum of the number and the cube is a certain number, while the sum of the number

and the side is the cube of that certain number, or
{

y + x3 = α
y + x = α3 .

91This expression was also used by other mathematicians, such as Proklos and Pappos, and
seems to refer to Elements X.9. However, this is a source for geometric definitions. There-
fore, Knorr, on the basis of a passage in Heron’s Definitions argues that a similar arithmetic



72 Chapter 3. Diophantos and the Arithmetika

Problem 19 is interesting, because here Diophantos allows the solution to be put
in function of a parameter.

G IV.19 Find three undetermined numbers, such that the product
of any two, increased by unity, makes a square.

[. . . ] We put it that the second number is ς , then the first number
is ς + 2µo.
On the other hand, as the square of 2ς + 1µo equals 4δυ + 4ς + 1, if
we subtract 1 in the same fashion, we are left with 4δυ + 4ς . Now the
product of the second and third number has to equal 4δυ + 4ς , and the
second number is ς , so the remaining number is 4ς + 4µo.
In this way, we have solved the problem undetermined in such a way
that the product of two random numbers increased by one makes a
square and ς is any number.
Because solving in the indeterminate means making an expression for
which, for any value of ς one wants in the expression, the conditions
will be satisfied.

In problem 25, Diophantos introduces yet another technique: the method of limits.
This allows him to find a value of the unknown for which a certain function of the
unknown(s) takes on a value between two other functions of the unknown(s).

G IV.25 Divide a given number into three numbers such that their
volume makes a cube whose side equals the sum of the differences of
the numbers92.

[. . . ]
Suppose the smallest number is ς . It then follows that the largest num-
ber is equal to ς + 1. From this, it follows that if we divide 8 by their
product, that is to say by δυ, we find 8 divided by δυ + ς as the middle
number. Now we want this fraction to be larger than ς on the one hand
and smaller than ς + 1 on the other hand. And because the difference
of these latter numbers equals 1, it follows that the difference between
the first and the second number is smaller than 1, hence the second
number, increased by 1, is larger than the second number. But the sec-
ond number increased by 1, and simplified with δυ + ς , becomes δυ +
ς + 1 divided by δυ + ς , making this expression larger than ς + 1. If
we multiply everything with the denominator, then δυ +8 is larger than
κυ + 2δυ + ς . If we subtract, among other things, equals from equals,
we find that 8 is larger than κυ + 2δυ. [. . . ]

treatise, which included definitions pertaining to incommensurables, must have existed. W.
KNORR(1975), p.235.

92
{

x + y + z = a

xyz = ((y − x) + (z − y) + (z − x))3
.
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Problems 29 and 30 are not uninteresting for the theory of numbers, for Diophantos
writes:

G IV.29 [. . . ] Therefore we divide 13 into two squares 4 and 9 and

divide these squares again into two squares notably
64
25

and
36
25

and in
144
25

and
81
25

.

G IV.30 [. . . ] therefore we have to divide 5 into four squares [. . . ].

Now we can divide 5 into the squares
9
25
,
16
25
,
64
25

and
36
25

93.

Bachet94 concludes that Diophantos must have known that any non-square num-
ber can be written as the sum of two, three or at most four squares. In both these
cases, however, the number to be divided into four squares is itself conveniently
the sum of two squares. And, according to II.8, any square can obviously be di-
vided into two squares.

Problem 31 seems trivial, but its enunciation is worth noting.

G IV.31 Divide 1 into two numbers and add given numbers to them
respectively, such that the product of the two sums makes a square.

The italicised text reveals that Diophantos had no philosophical objection to divid-
ing unity into numbers. We may therefore assume that Diophantos also regarded
fractional parts of the unit as numbers.

In book G V, which again deals with indeterminate problems of second and
third degree, Diophantos presupposes that the reader is familiar with certain prop-
erties of numbers.
In problem 3, he refers to another book, entitled the Porisms:

We know from the Porisms that, if two numbers and their product
are each increased with a given number to make squares, then these
numbers are brought forth by two consecutive squares.

A porism is a statement directed at finding what is proposed. It is in this sense
that Diophantos uses them, i.e. as known techniques that have been proved or
explained elsewhere. He also mentions the Porismata in problems 5 and 1695.

935 = 4 + 1 and 1 =
9

25
+

16

25
, 4 =

144

25
+

81

25
.

94G. BACHET(1621), pp. 240-242.
95Porism in G V.5: If x1 = m2, x2 = (m+1)2, x3 = 4(m2+m+1) then xixi+1+xi+xi+1 = α2

and xixi+1 + xi+2 = α2. Porism in G V.16 see p. 75. On porisms see par. 3.3,p. 50
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Problem 9 is interesting in at least two ways. The condition which Diophantos
imposes seems to have been thoroughly corrupted by commentators, who perhaps
could not make sense of it.

G V.9 Divide unity into two parts such that, if a given number is
added to either part, the result is a square. The given number must not
be odd [and the double of this number, inrcreased by one, must not be
divisible by a prime number which, added to 1, is a quadruple].

The text between square brackets is an addition by Tannery, in an attempt to
correct the text. Allard96 interpolates as:

It is therefore necessary that the given number should not be odd
and that the double, increased by one, should not be divisible by a prime
number that [if itself increased by one] is a quadruple.

The problem is equivalent to the system

 x+ y = 1 (1)
x+ a = α2 (2)
y + a = β2 (3)

.

Adding (2) to (3), we find x+ a+ y + a = α2 + β2 ⇔ 1 + 2a = α2 + β2.
For example, consider the number 1225, which is divisible by 7, and obviously
7 + 1 = 8 = 4.2, yet 1225 = 2.612 + 1 = 784 + 441 = 282 + 212 and 612 is not
uneven. The reason here of course being that 1225 = (5.7)2. Now according to
Diophantos II.8, a square can always be divided into two squares.

The condition should therefore read:

It is always necessary that the given number should not be odd
and that the double of this number, increased by one, when divided by
its largest square factor, should not be divisible by a prime number that,
when added to 1, makes a quadruple.

Both interpolations are equivalent to p = 4k − 1 = 4l + 3 , in which p is a
prime number. The necessity of this condition, with the aforementioned proviso,
was proved by Fermat97. Because the text is so corrupted, it is impossible to re-
store Diophantos’ original condition, but it is barely conceivable that he correctly
stated Fermat’s conditions.
It is in this problem that he uses the method of limits for the first time (see p. 85).

Problem 10 is analogous, but more complicated, because here unity has to
be divided into two parts that make squares if added to different numbers.
It is however an interesting problem, because it is the only one in which geometrical
terminology is used, at least in the opening paragraphs:

96A. ALLARD(1980), pp.908-909.
97E. BRASSINE(1853), p. 97.
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Represent the unit by the line AB and cut it in Γ. Add to AΓ the
line A∆ with length 2 and add to ΓB the line BE; so each of them, Γ∆
and ΓE, represents a square.

In the closing part, the terminology is typically Diophantine:

From this it follows that, if we deduct 2 from this square, one of

the parts is
1438
2809

, making the other part
1371
2809

and the conditions are
met.

Problem 16 goes as follows:

To find three numbers such that the cube of the sum of these three
numbers, decreased with any of them, makes a cube.

To solve this problem Diophantos, once again referring to the Porisms, states:

we find in the Porisms that the difference of two random cubes
can be transformed into [the sum of two]98 cubes99

In problems 21 and 22, in which three squares are sought whose product, when
respectively increased or decreased by any one of them, makes a square, the result-
ing sixth-degree equation is reduced to a quadratic equation. The latter is solved
by invoking properties of right angled triangles100.

98Lacuna interpolated by P. TANNERY(1895).
99Given a and b the equation x3+y3 = a3−b3 can be solved by putting x = t−b and y = a−kt.

Substituting these values in the given equation, we find t3(1−k3)+3t2(ak2−b)+3t(b2−a2k) = 0.

Now put b2−a2k = 0, so k =
a2

b2
. We then find t =

3(b− ak2)

1− k2
=

3a3b

a3 + b3
, giving x =

b(2a3 − b3)

a3 + b3

and y =
a(a3 − 2b3)

a3 + b3
. This solution is due to Viète.

100Problem 21 can be rendered as

 x2y2z2 + x2 = α2

x2y2z2 + y2 = β2

x2y2z2 + z2 = γ2

To solve the problem put x2y2z2 = t2 (1), choose (ai, bi, ci) with a2
i + b2i = c2i and put

x2 =
a2
1

b21
t2

y2 =
a2
2

b22
t2

z2 =
a2
3

b23
t2

.

The conditions of the problems are fulfilled and equation (1) remains to be solved.

Now
a2
1a2

2a2
3

b21b22b23
t6 = t2 ⇒ t2 =

b1b2b3

a1a2a3
.

This will be fulfilled if
∏

aibi = δ2.
Choose a right-angled triangle (a1, b1, c1) and construct two other right-angled triangles using

a2 = 2b1c1, b2 = c21 − b21 = a2
1, c2 = c21 + b21

a3 = 2a1c1, b2 = c21 − a2
1 = b21, c2 = c21 + a2

1

then
b1b2b3

a1a2a3
=

b1a2
1b21

a1.2b1c1.2a1c1
=

b21
4c21

.
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The unity is a square and, if
120
720

were a square, the problem would
have been solved. Now, this is not the case and therefore we have to
find three right-angled triangles such that the volume number that is
formed by their three perpendiculars multiplied with the volume number
of their bases makes a square.
Let this square have as its side the product of the sides along the right
angle of one of the right-angled triangles. So, if we divide everything
by the product of the sides along the right angle of the right-angled
triangle that we have just described, we find the product of the sides
lying along the right angle of the other triangle. So if we suppose that
one of the triangles is 3, 4, 5, we must find two right-angled triangles
such that the product of the sides along the right angle taken together
is 12 times the product of the sides along the right angle of the other
triangle; which makes the area of the one 12 times larger than the area
of the other, and if it is 12 times, then three times as well101.
Now this is easy, and the one triangle is similar to the triangle 9, 40,
41 and the other is similar to the triangle 8, 15, 17. We now have three
right-angled triangles, such that we can return to our original problem

and put it that the sought after squares are
9
16
δυ,

225
64

δυ and
81

1600
δυ.

The thirtieth and final problem would appear to be entirely out of keeping with
the rest of the book. Here we find not a generally stated problem between algebra
and the theory of numbers, but a plain logistic problem - or perhaps not quite.

A person who was required to do something useful for his travel
companions mixed a number of measures of wine of eight drachmas with
a number of measures of wine of five drachmas, and for this he paid a
square that, when added to the proposed number, makes a square whose
side is the number of used measures of wine. So work out how much
wine of 8 drachmas he had and also tell me, my lad, how much of the
other wine, of 5 drachmas, he had.

The solution is not simple by any standard, and Diophantos’ choice of parameters
moreover complicates matters somewhat.

101This is a very enigmatic sentence, which translates mathematically as follows:

Diophantos finds that (see previous footnote): t2 =
b1b2b3

a1a2a3
, which is equivalent to

a1a2a3b1b2b3 = t21.
If we put, as Diophantos does, t21 = (a2b2)2 it follows that a1a2a3b1b2b3 = (a2b2)2 or

a1a3b1b3 = a2b2.
Choosing one triangle arbitrarily as (3, 4, 5)
we find: 12a3b3 = a2b2
if, on the other hand, we put t21 = (2a2b2)2, then we find, as Diophantos concludes, that

3a3b3 = a2b2
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It goes along the following lines:

The proposed number, which is not specified in the problem, is chosen
to be 60. The conditions which are imposed then lead to the system

x+ y = α2

α2 + 60 = β2

x

8
+
y

5
= β

The second equation can be rewritten as α2 = β2 − 60, put α = β − k

then β2 − 60 = β2 − 2βk + k2 ⇒ β =
k2 + 60

2k
(1).

Now from the third equation
y

5
= β − x

8
, introducing this into the first

equation, we find x+ 5β − 5x
8

= β2 − 60 or β =
1
5

(
β2 − 60− 3x

8

)
,

from which Diophantos deduces β <
1
5

(
β2 − 60

)
(2).

On the other hand, y = 8β − 8
5

and analogously β >
1
8

(
β2 − 60

)
(3)

from which 5β < β2 − 60 < 8β.
Now from (2):

β2 > 5β + 60

⇒ β2 − 5β +
25
4

> 60 +
25
4

⇒
(
β − 5

2

)2

> 66
1
4

⇒ β >
5
2

+

√
66

1
4
≈ 10, 64

from which Diophantos deduces that β cannot be smaller than 11.
From (3) β2−60 < 8β he analogously deduces that β < 4+

√
76 ≈ 12, 72.

Therefore, Diophantos does not admit numbers larger than 12.

From which 11 < β < 12, but we know (1) that β =
k2 + 60

2k

So 11 <
k2 + 60

2k
< 12.

this leads to the inequalities k2 + 60 > 22k (4) and k2 + 60 < 24k (5).
from (4) k > 11 +

√
61 ≈ 18, 8 so k has to be larger than 19.

from (5) k < 12 +
√

84 ≈ 21, 16 so k has to be smaller than 21.
Now if 19 < k < 21 then we can put k = 20 and (1) becomes β = 11 1

2
and β2 = 132 1

4 and x = 4 11
12 and y = 6 7

12 .

Book G VI consists of twenty-four problems, all dealing with relations be-
tween the sides of right-angled triangles, other than the Pythagorean theorem.
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While in essence these problems are no more difficult to solve than those in the
previous books, they tend to be long and tedious, and demand the reader’s full
attention in order for the reasoning to become clear. Attention is due in particular
to the way in which Diophantos constructs his triangles, as here he applies two
methods: one beginning with an odd number, constructing a Pythagorean triplet
according to the Pythagorean method (see par. 1.4), the other beginning with
two unknown numbers the sum of whose squares expresses the hypotenuse, while
the double product and the difference of their squares expresses the other sides
respectively.
In book G VI, we find a synthesis of the properties introduced in the previous
books.

No copies have been found of books XI-XIII in either Greek-Byzantine or
Arabic libraries. Any attempt to characterize their content would therefore be
purely speculative.

3.7 The algebra of the Arithmetika

The question also arises how extensive Diophantos’ algebraic knowledge was. Like
Euclid’s Elements, the Arithmetika is a tightly organized book. It deals with prob-
lems involving linear and quadratic equations and problems concerning rational
perpendicular triangles. Invariably, the problem is posed in a very general way,
while the solution consists in a numerical example. The values which Diophantos
proposes for solving the problem are almost perfectly chosen, which gives rise to
the question of whether or not he was aware of a general solution method. The
answer is most probably affirmative. Moreover, he also realized that the proposed
solution to indeterminate equations was not unique. In III.19, he writes “Now we
have learned to divide a square into two squares, in an infinite number of ways”.
The way Diophantos deals with linear and quadratic equations suggests that the
special cases he uses are simply archetypal examples of the solution method. How-
ever, because of his example-based approach, it is very difficult to gain insight into
Diophantos’ mathematical reasoning.

There is a remarkable difference in style, though, between Diophantos and
those we consider to be the classical Greek mathematicians. Nowhere is this as
apparent as in solutions to similar problems in Euclid and Diophantos involving

the system of equations
{
x+ y = a
xy = b

and the resulting quadratic equation.
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Euclid II.5
If a straight line be cut into equal and unequal segments, the rectangle
contained by the unequal segments of the whole together with the square
on the straight line between the points of section is equal to the square
on the half.102

Figure 3.1

Diophantos I.27
Find two numbers such that their sum and product are given numbers.

Or better still, consider the following related problems:

Euclid
(Book I Proposition 47)

Diophantos
(Book II problem 8)

In right-angled triangles the
square on the side opposite the
right angle equals the sum of the
squares on the sides containing
the right angle.

Divide a square into two squares.

Let ABC be a right-angled
triangle having the angle BAC
right.

Suppose 16 is to be divided into
two squares.

I say that the square on BC
equals the sum of the squares on
BA and AC.

I put it that the first number
is δυ, and therefore the other is
16µo - δυ.

102T. HEATH(1956) I, p. 382. In other words �ADHK + �LHEG = �CBFE.
In the figure, put | AB |= a, | AC |=| AB | /2, | DB |= x.Then ax − x2 =
area gnomon LCBFGH. If the area of the gnomon is known, then the equation becomes
ax− x2 = b.
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Describe the square BDEC on
BC, and the squares GB and
HC on BA and AC. Draw AL
through A parallel to either BD
or CE, and join AD and FC.
Since each of the angles BAC
and BAG is right, it follows
that with a straight line BA,
and at the point A on it, the
two straight lines AC and AG
not lying on the same side make
the adjacent angles equal to two
right angles, therefore CA is in
a straight line with AG.
For the same reason BA is also
in a straight line with AH.
Since the angle DBC equals the
angle FBA, for each is right,
add the angle ABC to each,
therefore the whole angle DBA
equals the whole angle FBC.

Since DB equals BC, and FB
equals BA, the two sides AB
and BD equal the two sides FB
and BC respectively, and the an-
gle ABD equals the angle FBC,
therefore the base AD equals the
base FC, and the triangle ABD
equals the triangle FBC.
Now the parallelogram BL is
double the triangle ABD, for
they have the same base BD
and are in the same parallels
BD and AL. And the square
GB is double the triangle FBC,
for they again have the same
base FB and are in the same
parallels FB and GC.

So 16µo - δυ must be a square.
Take the square of a random
multiple of ς , from which the
square root of 16 is subtracted.
Take for instance 2ς - 4µo, the
square of which equals 4δυ +
16µo - 16ς .
We put this equal to 16µo - δυ

If we add the lacking numbers
on both sides and if we subtract
equals from equals, we find that

5δυ equals 16ς and ς =
16
5
µ
o.

From which it follows that one

of the numbers is equal to
256
25

and the other to
144
25

.

So the sum of the numbers is
400
25

.

In another way.
We again divide 16 into two
squares.
Put it that the square root of the
first number is again ς and that
the square root of the second
number is a random multiple of
ς , decreased by the square root
of the number which is to be
divided, so 2ς - 4µo.
From this it follows that one
square is equal to δυ and the
other to 4δυ + 16µo - 16ς .
We want the sum of these two
numbers to be equal to 16µo, so
5δυ + 16µo - 16ς is equal to 16µo,

so δυ =
16
5

.
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Therefore the parallelogram BL
also equals the square GB.
Similarly, if AE and BK are
joined, the parallelogram CL
can also be proved equal to the
square HC. Therefore the whole
square BDEC equals the sum
of the two squares GB and HC.
And the square BDEC is de-
scribed on BC, and the squares
GB and HC on BA and AC.
Therefore the square on BC
equals the sum of the squares on
BA and AC.
Therefore in right-angled tri-
angles the square on the side
opposite the right angle equals
the sum of the squares on the
sides containing the right angle.

Q.E.D.

So the square root of the first

number is
16
5

and the number

is
256
25

; the root of the second

number is
12
5
µ
o and the number

is equal to
144
25

and the demonstration is self-
evident.

The formulations and the algebraic technique proposed by Diophantos are
evidently more evolved than those applied in Babylonian times. Indeterminate
equations were, after all, unknown to the Babylonians. Yet the question has to
be asked whether there was, in the Greek classical world, not only a geometrical
tradition, but also an algebraic one, comparable to that in Babylonia. If so, then
Diophantos, like Euclid in the field of geometry, was a compiler of earlier – not
necessarily written – knowledge.

Let us take a look at the general methods proposed by Diophantos. He solves
first-degree equations without great difficulty, but the numerical examples are al-
ways chosen in such a way that the solution is positive. He also has a remarkable
sense for reducing systems of equations to a single equation. Diophantos does not
however deal with indeterminate equations of the first degree103.

For quadratic equations, Diophantos applies a standard technique, thereby
indicating he knew the general algorithm. In the Arithmetika, he never considers
more than one root, even if he seems aware that there are two positive solutions.
Perhaps he was interested only in attaining one solution, not all solutions.
Of the indeterminate equations of the type ax2 + bx+ c = 0, only those are con-
sidered where a or c disappears upon application of the algorithm. The method

103On indeterminate equations of the first degree in Greek mathematics, see J. CHRISTIAN-
IDES(1994).
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Diophantos relies upon allows one to solve the general equation only if a or c or
b2 − 4ac is a positive square, or if one solution is already known.

Consider the equation ax2 + bx+ c = α2, in which either a = a′2 or c = c′2.
The solution is then easily found.

Suppose a = a′2

The equation becomes
a′2x2 + bx+ c = α2

Put α = a′x+ k
and

a′2x2 + bx+ c = a′2x2 + 2a′kx+ k2

resulting in
bx+ c = 2a′kx+ k2

with solution

x =
k2 − c
b− 2a′k

for any value of k.
Diophantos never uses a parameter k, but always a specifically chosen value, for
which the solution always happens to be positive.
Suppose c = c′2

The equation becomes
ax2 + bx+ c′2 = α2

Put α = kx+ c′

resulting in
ax2 + bx = k2x2 + 2c′kx

which, after factoring, is equivalent to the linear equations
x = 0 or ax+ b = k2x+ 2c′k

and the solution to the latter equation is

x =
2kc′ − b
a− k2

Again, Diophantos uses a specifically chosen value for k.

If neither a = a′2 nor c = c′2, Diophantos draws attention to the fact that
the first choice of parametrization of α2 may not lead to a rational solution.
In IV.31, for example, he finds the expression 3x + 18 − x2, which must equal a
square. Initially, he equals the square to 4x2, leading to the equation 3x+18 = 5x2.
He notes that, in this case, the solution is not rational104.
He then asserts that we must find a square that, when added to 1, multiplied by
18 and then added to 2 1

4 , is again a square.

104The solution is x1,2 =
3±

√
369

10
.
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Diophantos’ expression seems enigmatic. Let us therefore transcribe it into modern
notation.
We have the equation 3x+ 18− x2 = a square = α2.
Put α = dx.
Then

3x+ 18− x2 = d2x2

⇔ −(1 + d2)x2 + 3x+ 18 = 0

with D = 9 + 4.18(1 + d2).
The quadratic equation will have a rational solution if D is a perfect square.

Thus 9 + 4.18(1 + d2) = f2 or
9
4

+ 18(1 + d2) =
(
f

2

)2

, which is nothing other

than the condition expressed by Diophantos.

In more generally terms, this becomes:
ax2 + bx+ c = α2

with
α2 = d2x2

from which
(a− d2)x2 + bx+ c = 0

with discriminant
D = b2 − 4(a− d2)c

Diophantos wants the latter expression to be a perfect square: D = f2.
Putting

D′ = b2 − 4ac
it follows that

D′ + 4d2c = f2

If D′ is a perfect square, the previous method immediately imposes a substitution
for f , with which the equation can be solved105.
If it is not, then one of the solutions has to be known in order to be able to con-
struct a pencil of solutions.

A very specific method applied by Diophantos is the so-called double equa-
tion. This is a system of two equations in one unknown, which must both equal a
square. The solution is based on factoring of the polynomials. For instance, con-
sider the system of linear equations:{

ax+ b = α2

cx+ d = β2

By subtracting both equations, we find
(a− c)x+ (b− d) = α2 − β2

105In the above case: D = 9−4(−1−d2).18 = 9+4.18(1+d2) = f2 ⇒
9

4
+18(1+d2) =

(
f

2

)2
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Now suppose that
(a− c)x+ (b− d) = p.q

(e.g. by considering (a− c) as a common factor). We can then write

p.q =
(
p+ q

2

)2

−
(
p− q

2

)2

= α2 − β2 = (α− β)(α+ β)

Diophantos immediately puts106

α =
p+ q

2
and β =

p− q
2

He also uses the method for quadratic equations. Whereas for linear equa-
tions, a solution in the rationals is always possible, this is not the case for quadratic
equations.

Diophantos considers just a few examples, which always give rise to a differ-
ence that can be factored.

For example, equations of the type{
a2x2 + bx + c = α2

a2x2 + b′x+ c′ = β2

leading to
(b− b′)x+ (c− c′) = α2 − β2

which has already been solved.
An example is G IV.23, where{

x2 + x− 1 = α2

x2 − 1 = β2

leading to x = α2 − β2.

A second form is {
x2 + bx+ c = α2

b′x+ c = β2

from which
x2 + (b− b′)x = α2 − β2

with the evident resolution into factors:
x(x+ (b− b′)) = α2 − β2

Some higher-degree equations of the type∑n
i=0 aix

i = y2(n 6 6) and
∑n

i=0 aix
i = y3(n 6 3)

are also solved by Diophantos.

The first type of equation is solved by putting y equal to an expression that leads
to the cancelling out of terms, thus resulting in an ‘elementary’ equation. This
106Omitting, or not recognizing, that one solution is given by{

p = α− β
q = α + β
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approach is similar to that encountered in the solution of indeterminate quadratic
equations.
As regards the second type of equation, just a few, easy-to-solve examples are
found in the Greek books. In the Arabic books, on the other hand, this type of
equation is dealt with extensively.

For systems of higher-order equations, he also uses the method of the double
equation.

These are equations of the following type:
{
ax2n+1 + bx2n = α2

cx2n+1 + dx2n = β2

Put α = α′xn and β = β′xn, which leads to the system{
ax+ bx = α′2

cx+ dx = β′2.
This type of system also appears in the Arabic books A IV.36-39.

In A.IV.34, a similar type of equation is solved by means of another method,
which avoids the double equation. It is, however, not generally applicable.

In
{
x3 + y2 = α2

x3 − y2 = β2

Put x = t, y = at and the system becomes:
{
t3 + a2t2 = α2

t3 − a2t2 = β2

Put α = vt and β = wt, then, on the one hand, t = v2 − a2 and, on the other,
t = w2 + a2. Combining these two equations, we find that v2 − a2 = w2 + a2 or
v2−w2 = 2a2, whereby the problem is reduced to finding two squares with a given
difference.

More generally: {
a2x2n + by2n−1 = α2

a2x2n + cx2n−1 = β2

Put α = α′xn, β = β′xn, then y2n−1 =
α′2 − a2

b
x2n =

β′2 − a2

c
x2n.

Now put y2n−1 = mx2n then
α′2 − a2

β′ − a2
=
b

c
. The problem is transformed into the

known problem of finding three squares whose differences have a given ratio (II.19).

One specific method applied by Diophantos is that of limits or, as he calls it,
παρρισότης or παριστότητος ἀγωγή.
In this method, two or three squares are required whose sum is a given number
and each of which approximates to the same number ‘as closely as possible’.
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He uses the method a couple of times in G V107. It might also have been useful in
certain problems where it is not applied108.

In problem G V.9, Diophantos faces the problem

 x+ y = 1 (1)
x+ a = α2 (2)
y + a = β2 (3)

,

which he solves using the method of limits. As it is difficult to render the method
more or less generally, we add Diophantos’ numerical treatment in a footnote109.
Obviously, from (2) + (3), it follows that 1+2a = α2+β2 and a < α2, β2 < a+1110 .

Diophantos’ method amounts to finding two numbers r, s with a < s2 < γ2 <
r2 such that r2 + s2 = 1 + 2a, by first determining a suitable value for γ. Since, in

general,
1 + 2a

2
is not a square, Diophantos seeks a square, larger than but very

close to 1 + 2a.

Now determine s such that
1 + 2a

2
+

1
s2

= γ2

⇒ 2 + 4a+
1
t2

= γ′2
(
having put t =

s

4

)
⇒ (2 + 4a)t2 + 1 = γ”2

107G V.9-14, although in G V.10 and G V.12-14 the squares do not have to be nearly equal,
but they are subject to limits.
108A VII.14-15. See J. SESIANO(1982), pp.274-277. It should be noted that this book precedes

G V.

109

 x + y = 1
x + 6 = α2

y + 6 = β2

6 1
2

+
1

s2
= γ2

⇔ 26 +
1

t2
= γ′2

⇒ 26t2 + 1 = γ”2

Choose γ” = 5t + 1 and t = 10.

Thus γ =
51

20
, now 13 = 22 + 32.

We see that 2 +
11

20
=

51

20
and 3−

9

20
=

51

20
.

Put r = 3− 9t and s = 2 + 11t and suppose r2 + s2 = 13 or
202t2 + 13− 10t = 13

⇔ 202t2 − 10t = 0

⇔ t =
10

202
=

5

101
110J. FRIBERG(1991), p.15, calls this an additional condition. It is not, though, as it follows

logically from the problem. If x, y > 0 then from x + y = 1 it follows that x, y < 1. From
a < x + a = α2 and from α2 = x + a < 1 + a the condition appears.
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Put γ” = mt+ 1 then t =
2m

2 + 4a−m2
.

From which 2 + 4a+
1
t2

=
(

2 + 4a+m2

2m

)2

= γ′2

and γ =
2 + 4a+m2

4m
, the value also found by the direct application of II.10[

if m =
5
2

]
.

Now
1
t

should be a small fraction.

Therefore, choose an integer value of m as close to
√

2 + 4a as possible111.
Diophantos wants to divide 1 + 2a into two squares, the sides [= square roots] of
which are as close to γ as possible.
Suppose r2 + s2 = 1 + 2a and r > γ, s < γ.

Suppose r − γ =
ρ

4m
and γ − s =

σ

4m
and put r′ = r − ρx and s′ = s+ σx.

Now suppose (r − ρx)2 + (s+ σx)2 = 1 + 2a, which is a quadratic equation.
(r − ρx)2 + (s+ σx)2 = 1 + 2a

⇔ r2 + s2 + (2sσ − 2rρ)x+
(
ρ2 + σ2

)
x2 = 1 + 2a

⇔ 1 + 2a+ (2sσ − 2rρ)x+
(
ρ2 + σ2

)
x2 = 1 + 2a

⇔ (2sσ − 2rρ)x+
(
ρ2 + σ2

)
x2 = 0

⇔ x =
2(rρ− sσ)
ρ2 + σ2

(or x = 0)

He uses the same method in G V.11 to find a sum of three squares.

In a modern interpretation, this procedure may be translated as follows.

Initially,
1 + 2a

2
would be a square number.

If a square, the solution is r = s =
√

1 + 2a
2

. If not, as in most cases, a solution

is needed in which r and s are approximately equal.
In geometrical terms, Diophantos knows one rational point on the circle with ra-
dius

√
1 + 2a and the centre (0, 0), and he needs to find another rational point

near the line x = y. Of course, this interpretation is completely anachronistic, but,
as shall be demonstrated in a subsequent paragraph, there is another, historically
more plausible, one.

111In G V.9
√

2 + 4a =
√

26, Diophantos chooses m = 5, which is of course the integer value
closest to

√
26. t will be positive for values smaller than

√
2 + 4a.
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In conclusion, we may say that Diophantos has complete mastery of the so-
lution methods for linear equations, for indeterminate quadratic equations and
for systems of equations of the first and second degree. He also knows solution
methods for some higher-degree equations. However, in some cases, his choice of
parametrization seems rather fortuitous. For instance, the Arab version of problem
A VI.17 goes as follows: “We wish to find three squares which, when added, give a
square, and such that the first of these (three square) numbers equals the side of
the second, and the second equals the side of the third.”112. Diophantos’ solution

to this problem is
(

1
2
,
9
8

)
. Excepting trivial solutions and variants with minus

signs, this is moreover the only solution (see par. 3.7, p. 69), but the question
arises whether Diophantos was aware of this. Clearly though Diophantos’ method
led to a solution, which in his eyes was satisfactory.

3.8 Interpretations of algebra in the Arithmetika

Some authors, most notably I. Bashmakova and R. Rashed113, regard Diophantos’
work to be more than just technical manipulations and they draw an immediate
line to analytic geometry. Bashmakova, for instance, writes:

In his Arithmetic Diophantus [. . . ] entirely solved in a purely alge-
braic way the problem concerning the rational points of second degree
curves. In the same work he used the tangent and secant methods (again
treated in an algebraic way) for the discovery of rational points on curves
of third degree.

This is too much honour for Diophantos. Although the problems can be translated
into contemporary mathematical terms as looking for rational points on curves,
this notion is entirely absent from Diophantos’ oeuvre. While he does sometimes
use (ingeniously found) algorithms, he provides no justification. Still, the fact that
Diophantos consistently applies them in similar fashion would appear to indicate
that he realized that they were generally applicable.

Let us first apply Bashmakova’s reasoning to the famous problem II.8. Subse-
quently, we shall consider a more plausible explanation for the origin of the Dio-
phantine methods.
Suppose f(x, y) is an irreducible polynomial of the second degree over the field

Q,+, . It is then possible to find a rational parametrization
{
x = φ(t)
y = ψ(t) , which

112R. RASHED(1984) IV, p.65 and J. SESIANO(1982), p.149. The cited translation is by J.
Sesiano.
113I. BASHMAKOVA(1981) and R. RASHED(1984). In his interpretation Rashed uses a battery

of modern notions which would be in any interpretation alien to Diophantos or any ancient Greek
mathematician.
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is also the solution of the equation.
On the strength of the fact that Diophantos uses a method that is in accordance
with the above method, Bashmakova concludes that he may be seen as the father
of the theorem that a rational curve of the second degree has either no rational
point or is birationally equivalent to a straight line.

In II.8, rational solutions are sought for the equation x2 + y2 = a2 (Diophantos
uses a = 4). Diophantos’ method can be generalized by putting y = kx− a.
The equation then becomes (kx− a)2 = a2 − x2 and

x =
2ak
k2 + 1

y = a
k2 − 1
k2 + 1

This may be interpreted as a pencil of rational straight lines through a point
A(0,−a) that also intersect the circle in a point B114.

Diophantos solves this problem numerically and finds one specific solution. How-
ever, he knows that he can find other solutions in a similar way. In III.19, he
writes the following with reference to II.8: “We learned how to divide a square in
two squares in an infinite number of ways”.

In the problems following II.8, Diophantos solves quadratic equations in a
similar fashion. In II.9, he implicitly states that there are other possible solutions.
Here, Diophantos solves x2 + y2 = a2 + b2, where a2 + b2 = 13(= 22 + 32), using
the substitution {

x = t+ 2
y = 2t− 3

In Bashmakova’s interpretation, Diophantos discards the evident solution (2, 3)
and chooses instead for the solution (2, -3) to construct a pencil of straight lines.
All rational straight lines through A will intersect the circle in a second rational
point, providing another solution to the problem.
Diophantos further indicates that there are alternative ways of solving the prob-
lem: “the second number [i.e. the coefficient of t in the expression for y] is an arbi-
trary multiple of t”. In other words, the algorithm can be generalized by putting
y = kt− 3.

According to Bashmakova, Diophantos’ method is therefore equivalent to
considering a pencil of rational straight lines through a known rational point, each
of which intersects the curve in another rational point. Moreover, she assumes that
Diophantos was aware of this fact (albeit in a different guise).

114I. BASHMAKOVA(1997), pp.11 & 24-25.
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Another, in our opinion far more reasonable, explanation is formulated by
Jöran Friberg115, who sees a connection with the Babylonian algebraic geometri-
cal problems. In this interpretation, Diophantos’ problems are simply geometrical
in nature, albeit in an algebraic rather than a geometric expression. This inter-
pretation has the advantage that Diophantos’ choice of parameters becomes very
natural, without reverting to the use of rational straight lines. Let us reconsider
problem II.8, but this time in the geometrical algebraic Babylonian version. It
should be noted here that, in Babylonian problems, respectively the base and the
large base of triangles and trapezoids are assumed to be at the top.
Consider the triangle in the figure. In anachronistic terms, the problem may be
stated as follows:

If a given symmetrical triangle, with a prescribed triangle ratio [i.e.
altitude/(base/2) = t ], which is inscribed in a circle of ratio r, in such
a way that the centre of the circle divides the altitude into two parts,
then calculate the base and the upper and lower part of the altitude.

The Babylonian solution (in modern notation) is:

With reference to figure 3.2, the radius, r, is the hypotenuse of a per-
pendicular triangle with sides (p, q, r), in which p = tq − r
So q2 + (tq − r)2 = r2

and (t2 + 1)q2 − 2tqr = 0
or (t2 + 1)q2 = 2tqr

from which q =
2t

t2 + 1
r

Figure 3.2

115J. FRIBERG(1991).
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Problem II.9 can be interpreted in a similar fashion:

A symmetrical trapezoid with prescribed triangle ratio [i.e. alti-
tude/((large base - small base)/2) = t)], and whose centre divides the
altitude into two parts, is given. Suppose that the length of the small
base and the lower part of the altitude are given. Then determine the
upper part of the altitude and the large base.

Figure 3.3

With reference to figure 3.3, we remark, that on the one hand
a2 + b2 = r2

on the other hand
(tq − b)2 + (a+ q)2 = r2

from which
(tq − b)2 + (a+ q)2 = a2 + b2

or (t2 + 1)q2 = 2tbq − 2aq
from which

q =
2tb− a
t2 + 1

Friberg provides further convincing indications that Diophantos’s method
was at least similar to that used in Babylonian geometric algebra. Unlike in Bash-
makova’s reading, we feel that Diophantos had an algorithm that was applicable
to quadratic problems and that was based on the Babylonian method or – more
probably – a Greek successor116. In this interpretation, the disappearance of the
116It has been remarked by J. HØYRUP(2001) that the appearance of the same kind of problems

does not necessarily mean there is a direct connection between the written sources. After all,
there used to be an age-old oral tradition among craftsmen, whereby the secrets of the trade were
passed down to apprentices only. Similarly in mathematical circles, the custom to keep one’s
methods secret prevailed at least up to the Renaissance (e.g. the feud between Cardano and
Tartaglia). Diophantos appears to fit partially into this tradition. His immediate purpose was –
in the practical tradition – to obtain an answer using known methods, but without indicating the
origin of the method. A direct consequence is that we are unable to trace where certain problems
arose or whether they arose in different places at different times. Mathematical problems appear
to be very resilient in that they survive different cultures or a succession of cultures.
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quadratic term follows naturally from the problem.

This is not to belittle Diophantos’ merit. The problems in which he uses the
algorithm are very diverse, which demonstrates his absolute mastery of the tech-
nique.
In this interpretation, however, another question comes to the fore: is Diophantos’s
Arithmetika perhaps a(n advanced) step in the de-geometrization of problems? In
other words, are these in fact problems where the geometrical context has been
omitted, leaving only an algebraic proposition? Or did at least some problems re-
tain a geometrical meaning, as their formulation suggests, and were the accompa-
nying figures omitted during copying? Alternatively, were these figures superfluous
to his contemporaries?

The attractiveness of Friberg’s interpretation is that it is also able to explain
Diophantos’ method of limits (see par. 3.7, p. 85).
Recapitulating, Diophantos needs to find two approximately equal numbers, close
to
√

1 + 2a, in which a is a given number. Friberg argues that the Babylonians
knew how to approximate square roots and that they used this knowledge to par-
tition trapezoids into trapezoids of –nearly– equal areas.

Figure 3.4

Consider a trapezoid with bases r and s and transversal d. The condition for

equipartitioning117 is r2−d2 = d2−s2 or r2 +s2 = 2d2. If
r2 + s2

2
is not a perfect

square, is it possible to find near-equals r′ and s′ such that r′2 + s′2 = r2 + s2?
117Consider the similar right angled triangles in fig. 3.4 bounded on one side by the resp. dashed

lines,

we find
r − d

qh
=

r − s

h
=

d− s

ph
,
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This is indeed the problem that was resolved in Babylonia118.
Rewrite the equation as r′2 − r2 = s2 − s′2, to make the equation determinate,

and introduce the condition that
r − r′

s′ − s
=
ρ

σ
, where ρ and σ are given numbers.

The problem can now be reduced to a system of linear equations with solution:
r′ =

(σ2 − ρ2).r + 2ρσs
ρ2 + σ2

s′ =
2ρσr − (σ2 − ρ2).s

ρ2 + σ2

Diophantos computed a square close to
13
2

(
=

1 + 2a
2

)
, which approximates

to the square of
51
20

.

Now 13 = 22 + 32 and
3− 51

20
51
20
− 2

=
11
9

=
3− r′

s′ − 2
, and, from the second equation,

3− r′ = 11x and s′ − 2 = 9x, which is also Diophantos’ choice.

There is a second, more or less analogous interpretation in which manipula-
tions, with a primarily geometrical meaning, are generalized and decontextualized
and used in other problems. We shall give the geometrical approach, which in
turn leads to the interpretation by Jean Christianides119, who thus follows in the
footsteps of Aleksander Birkenmajer120 and Maximos Planudes.

We again take II.8 as an example. Consider the geometrical problem in fig-
ure 3.5. It is clear that 4ABC is perpendicular. Furthermore 4ABD and 4BDC
are similar triangles.

In these triangles, the equation
a+ y

x
=

x

a− y
holds.

The equality is equivalent to
a2 − y2 = x2

⇔ x2 + y2 = a2

from which q =
r − d

r − s
and p =

d− s

r − s
.

The trapezoid is equipartitioned if
r + d

2
.qh =

d + s

2
.ph.

Substituting the values for p and q we find
(r + d)(r − d)

r − s
=

(d + s)(d− s)

r − s
, which is the stated

condition.
118J. FRIBERG(1991), pp.16-18.
119J. CHRISTIANIDES(1998).
120A. BIRKENMAJER (1970).
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Figure 3.5

Of course, beginning with the equation, we can also retrace our steps towards the
proportions. Moreover, if we put

a+ y

x
= k, we find y = kx − a, which is in fact

the substitution used by Diophantos. As x, y and a are rational, k will also be
rational. Inversely, for each choice of a rational k, if x and a are rational, y will
also be rational.

This technique can also be applied to II.19

x2 + y2 = a2 + b2

⇔ x2 − a2 = b2 − y2

⇔ (x− a)(x+ a) = (b− y)(b+ y)

⇔ b+ y

x− a
=

a+ x

b− y
Put t = x− a or x = t+ a

and put
y + b

x− a
= k ⇔ y + b

t
= k ⇔ y = kt− b.

Again, the problem has a geometrical counterpart. It is a known property that
4ABM and 4MCD are similar triangles, from which the given proportion im-
mediately follows.

Taking the equation y2 = a2x2 + bx+ c as another example,
it is clear that

y2 − a2x2 = bx+ c

from which
(y − ax)(y + ax) = bx+ c

from which the possible proportion

y − ax
1

=
bx+ c

y + ax
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Figure 3.6

Putting the first fraction equal to k, we find y = k − ax, which again is the
Diophantine substitution.

Christianides gives the following table with possible proportions:

Equation type Corresponding proportion

y2 = a2x2 + bx + c (y − ax) : 1 = (bx + c) : (y + ax)

y2 = ax2 + bx + c2 (y − c) : x = (ax + b) : (y + c)

x2 + y2 = a2 + b2 (b + y) : (x− a) = (x + a) : (b− y)

y2 = a2x2 + b and a + b = k2

becomes y2 = a2x2 + k2 − a
(y + k) : (x− 1) = (a(x + 1) : (y − k)

y2 = ax2 + bx y : x = (ax + b) : y

y2 = ax3 + bx2 + cx + d2 (y − d) : x = (a3x2 + bx + c) : (y + d)

y3 = a3x3 + bx2 + cx + d3 (y − d) : x = (a3x2 + bx + c) : (y2 + dy + d2)

x(a− x) = y3 − y (y + 1) : x = (a− x) : y(y − 1)

y2 = a2x4 + 2abx2 + b2 − cx3 − dx (ax2 + b− y) : x = (cx + d) : (ax2 + b + y)

y2 = x6 − ax3 + bx + c2 (y − x3) : 1 = (c2 − ax3 + bx) : (y + x3)

The question then remains whether Diophantos was able to use this technique
with the algorithms that were known in his time. The answer is unequivocally af-
firmative. He definitely knew the formulae for perfect squares, for the difference of
two squares121, and for the sum and difference of cubes. Moreover, he knew how

121See for example J. SESIANO(1999), p.30, for an early Greek application of this technique.
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to factor, as becomes clear in VI.6 (“The difference becomes y2− 14y, the division
gives y and y−14”) and VI.8 (“The difference is 14y, the division gives 2y and 7”).

To these three main interpretations, we may add that by Yannis Thomai-
des122. In his view, Diophantos wanted to exploit the rules he had set forth in the
introduction so as to obtain a manageable equation. In a first step, Diophantos
sets up an expression, which has to equal a square or a cube. Choosing the side
of the square in a particular way leads to the cancelling out of a term on either
side. This term is chosen in such a way that the equation becomes manageable, i.e.
leading to a linear equation (see par. 3.7, p. 81). In principle, infinitely many sides
can be chosen, some of which will lead to, in Diophantos’ view, absurd solutions.
The value for the coefficient(s) chosen by Diophantos is not random, but is the
first admissible value.
In the case of II.8, he faces the task of equalling 16− x2 to a square.
Choosing a side for this square of the expression mx ± 4 guarantees that 16 is
cancelled out on both sides. Which value should then be chosen for m?
In the sequence:

. . . , 4x− 4, 3x− 4, 2x− 4, x− 4, x+ 4, 2x+ 4, 3x+ 4, . . .
it turns out that 2x − 4 is [reading from right to left] the starting point of an
infinity of admissible cases123.
The problem then remains how this first admissible value is found. It is here that
generality fails, as the value can only be found through trial and error124.
Clearly, Diophantos deserves some latitude here. For one thing, he notes on several
occasions that the proposed side is not the only possible one, and that therefore
the solution found is not necessarily the only one either. Indeed, he does not al-
ways choose the first admissible value. For instance, in II.10 the difference between
two squares has to equal a given number: (x + m)2 − x2 = a, in which a = 60.
Obviously the first admissible value is x+1, whereas Diophantos chooses the third
admissible one, x+3. In problem G V.17, the expression 9x2+31−27x must equal
a square. Therefore, the side can be expressed as 3x−m.
In the sequence

. . . , 3x− 7, 3x− 6, 3x− 5, . . . , 3x− 1, 3x+ 1, . . . , 3x+ 4, 3x+ 5, 3x+ 6, . . .
the first admissible cases are 3x− 6 and 3x+ 5. The expression 3x+ 5 is an iso-

lated case, considering that, for m < −
√

31 and −9
2
< m <

√
31, x will become

negative. The only integer value between −
√

31 and −9
2

is m = −5.

122Y. THOMAIDES(2005).
123mx− 4 is always admissible, but m = 1 leads to the trivial solution (4,0) (and (0, 4) which

Diophantos ignores). mx + 4 is never admissible for m > 1 because it yields a negative solution
for x.
124Or by determining the sign of the corresponding function in m, which obviously did not lie

within Diophantos’ scope.
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The expression which Diophantos chooses is 3x− 7, which, if, for obvious reasons,
we ignore 3x+ 5, is the second admissible. Note that the solution to the problem

(x =
6
5
) makes this admissible expression negative! We shall return to this point

in the next paragraph.

3.9 Negative numbers?
We have already mentioned Bashmakova’s assertion that Diophantos works within
the set of rational numbers. The question therefore arises whether Diophantos ever
used negative numbers, or even understood or accepted them as a concept125. She
uncritically accepts that he did: “Diophantos introduces negative numbers.” At
first glance, this would ineed appear to be the case, as he seems to give a multi-
plication rule for the signs.

However, matters are more complicated than that. First of all, it is worth
recalling that, in modern mathematical usage, the signs + and - have two different
functions. On the one hand, they are an indication of whether a number is positive
or negative, while on the other, they indicate binary operators on two numbers.
Moreover, the minus sign is used in the additive notation as an indication for the
opposite or, in other words, the symmetrical element of a number (the appearance
of which also implies the existence of a neutral element, 0). In a polynomial, the
sign is therefore an operator, which means that the apparition of a negative term
does not imply that the coefficient as a number is, in itself, negative.
The question ultimately revolves around the semantics of the words leipsis and
hyparxis.

Leipsis, λεῖψις, seems to have appeared very late in classical Greek, meaning:
l’action de délaisser, d’abandonner, manque, défaut126

According to Bailly’s dictionary127, it means: manque, omission
with first known use:

DYSC Synt 78,9
DYSC = Apollonius Dyscole d’Alexandrie du milieu du 2ème s. apr. J.C.

As far as we know, Diophantos uses the word only in a mathematical context.
Possible translations are “what is missing” or “a lacking”. It does not mean the
subtrahend or subtraction, for which άφαίρεσις is used.

125See K. BARNER(2007) for a detailed analysis of this topic.
126C. ALEXANDRE(1888), p.844.
127L. SÉCHAN & P. CHANTRAINE(1950), p.1178.
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The word hyparxis, ῦπαρξις, may be translated as ‘existing’ or ‘the existing’128.
The multiplication rule becomes: “A lacking multiplied by a lacking gives an ex-
isting and a lacking with an existing gives a lacking.”

The uses of the term ‘existing’ seems to imply that Diophantos does not
regard ‘lackings’ (i.e. negative numbers) to be existing entities. In other words, he
does not see them as an integral part of things that exist in reality, which may
explain his aversion to working with negative numbers129.
This is apparent in V.2, which asks for the solution of a system of equations.


x

y
=

y

z
(1)

x+ 20 = α2 (2)
y + 20 = β2 (3)
z + 20 = γ2 (4)

Choose a square such that (2) is true, e.g. x = 16 and put z = t2.
Then, because of (1) y2 = 16t2 from which y = 4t, whereby (3) and (4)
constitute the system {

4t+ 20 = β2

t2 + 20 = γ2

giving t2 − 4t = γ2 − β2.
The latter equation holds if{

γ + β = t
γ − β = t− 4

From which 2β = 4 or β2 = 4 and 4t+ 20 = 4.
This equation has a negative solution for t, which Diophantos calls “ab-
surd”, as 4 would then be larger than 20.

Klaus Barner130 draws attention to the fact that, for some of Diophantos’ parame-
trizations (= sides), he could not but have noticed that these are negative for the
proposed solution. This is often the case if the quadratic polynomial has the ex-
pression a2x2 + bx + c, which has to equal a square. In such cases, Diophantos
chooses a square with side ax−m. Here, m is a rational number, chosen in such a

way that it leads to a positive solution, viz. x =
k2 − c
b+ 2ak

(see table 3.9 on page 100).

128C. ALEXANDRE(1888), p.1467, and P. SÉCHAN & P. CHANTRAINE(1950), p.1993, trans-
late as ‘existence’ and, as a neologism, also as ‘realité’, reality.
129One may wonder whether the same process is at work here as with the introduction of

complex numbers. Complex numbers were already used implicitly –as square roots of negative
numbers – before they were recognized as such. See also section 5.3, p. 128.
130K. BARNER(2007).
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Looking for critical values and the change in sign of x as a function of k, we
find the following possibilities131:

• if a, b, c ∈ R+
0 then x > 0 if k ∈ ]−

√
c,− b

2a
[ ∪ ]

√
c,+∞[

or k ∈ ]− b

2a
,−
√
c [ ∪ ]

√
c,+∞[

• if b ∈ R−
0 and a, c ∈ R+

0 then x > 0 if k ∈ ]−
√
c,− b

2a
[ ∪ ]

√
c,+∞[

or k ∈ ]−
√
c,
√
c [ ∪ ]− b

2a
,+∞[

• if c ∈ R−
0 then x > 0 if k ∈ ]− b

2a
,+∞[

Obviously, we need to determine which number
√
c or − b

2a
is the largest and then

choose a number k that is larger than max
{
√
c,− b

2a

}
. The parametrization of

the side then becomes ax− k. While not in line with Diophantos’ reasoning, this
is equivalent with determining the rational intersections of an hyperbola with a
straight line parallel to the asymptote.

If the coefficient of x is not a perfect square, but the independent term is,
that is ax2 + bx + c2, Diophantos chooses the expression c − kx, k > 0, making

x = 0 or x =
b+ 2kc
k2 − a

.(see table 3.2 on the next page)
A similar determination of critical values and signs can be made for which, in

some cases, we have to determine whether
√
a or − b

2c
is larger and then choose a

k that is larger still. Often, Diophantos chooses the first admissible expression.

One might wonder whether a negative side really poses a problem. If we
assume that the ‘side’ y is ‘lacking’, then it would be multiplied by itself in the
expression y2 = a2x2 + bx+ c. According to Diophantos, the product of two ‘lack-
ings’ would give an ‘existing’.

According to a second interpretation, Diophantos was aware of the negative
sides, but ignored them all the same. If we calculate the left-hand side by intro-
ducing the solution for x in the right-hand side, we never even notice that y may
be negative. And that was precisely Diophantos’ intention: to find a value for the
arithmos (x) for which the expression is a perfect square.

131The case where a ∈ R−
o does not occur. The factorization (y − ax)(y + ax) always allows a

to be chosen positively.
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3.10 Conclusion

One may wonder whether Diophantos’ Arithmetika is algebra or number theory.
We would argue that it is neither. At least, not in the sense that we generally
understand these words. Diophantos’ book is concerned with algorithms, some of
which may be useful to an official in executing a particular task. However strange
some of these problems may seem, they are no more out of the ordinary than the
problems posed to Babylonian scribes.
If one replaces Diophantos’ ancient symbolism with a modern notation and reads
the problems aloud, one can almost hear a teacher explaining it with the aid of
a blackboard. And Diophantos would appear to have been a very accomplished
teacher. Comparing his problems with pseudo-Heron’s indeterminate problems
makes this very clear. Pseudo-Heron uses no symbolism and performs algorithms
on numbers which lead to a solution. Diophantos, on the other hand, does use
(pseudo-)symbols and his train of reasoning is very clear, even if his choice of pa-
rameter is not. Yet the very fact that contemporary scholars seek an explanation
for his choice suggests that they consider his mathematics to be advanced.

The problems which Diophantos poses are of a certain type. He solves them
in a fashion that is general enough for the reader to follow and to grasp the under-
lying algorithms, not unlike a teacher who provides examples to his pupils. The
reader is then free to explore similar problems with other parameters.
May the Arithmetika therefore be likened to a recipe book? The answer is yes, but
only in the sense that Euclid’s writings may. Diophantos’ book is, first and fore-
most, a masterly encyclopedic compilation of known higher-order indeterminate
problems.

The question of the origin of the problems is, by lack of comparative evidence,
food for speculation. Bashmakova’s and Rashed’s explanations, which rely heavily
on analytic geometry, may be interesting for reinterpreting Diophantine problems
retrospectively, but they do not contribute to an understanding of Diophantos’
train of reasoning.
Friberg, for his part, succeeded in providing a historically plausible explanation
for some of the techniques Diophantos uses. Christianides complements this by
reinvigorating Planudes’ explanation in terms of proportion.
No matter which of these interpretations one favours –and we are strongly in-
clined towards the view of Christianides – they all lead to the same conclusion.
Initially, some of the problems are geometrical in nature, but they are gradually
decontextualized and eventually lose their relation to geometry. This is, effectively,
the introduction of a kind of algebra, which can develop without geometry. Other
problems are introduced that have no geometrical equivalent, yet can be solved in
a similar fashion.
Both Friberg’s and Christianides’s explanation leave one question unanswered:
was Diophantos familiar with negative numbers and did he use them? We have
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demonstrated that some of the sides that Diophantos chooses become negative for
the solution he finds. Whether or not he was aware of this is a matter of spec-
ulation. It is our belief that he was, but that he was also unable to account for
it, as he lacked the mathematical language to express himself. In this context, we
recall the dual meaning of our minus sign. Negative numbers most likely posed a
conceptual problem, much as imaginary numbers would a millennium later. Yet
mathematicians used the latter anyway, despite an imperfect notation and a lack of
understanding. In fact, negative numbers may have presented an even greater con-
ceptual challenge. After all, once one has accepted an “unnatural” kind of number
(i.e. negatives), it becomes easier to accept other, even stranger ones. Nevertheless,
even if Diophantos only used “lackings” (= terms to be deducted), this is already
quite a significant step toward negative numbers as such.

There is no doubt in our mind that every single problem we encounter in the
Arithmetika had already been solved before Diophantos. His Arithmetika is nei-
ther algebra nor number theory, but rather an anthology of algorithmic problem-
solving. This does not minimize Diophantos’ (nor his predecessors’) merits. In this
book, we can see that mathematicians realized that what we call algebraic prob-
lems fall into categories, each with a particular method of solution that is suitable
for each problem of this type.
Some, most even, of these problems may have originated in a practical context,
such as land surveying. Others may be pure mathematical Spielerei. Each, how-
ever, is accompanied by a general enunciation and a model solution, leaving the
reader free to explore other examples.

Summarizing, Diophantos’ work seems to be situated exactly at a turning
point in mathematical traditions. The Arithmetika on the one hand seems to be the
end of the road for algorithmic algebra, which began with the Babylonian scribes,
while on the other marking the beginning of abstract algebra, which would be
further developed by the Arab mathematicians and would reach its full potential
with the emergence of sixteenth-century symbolic algebra.



Chapter 4

Sleeping beauty in the Dark
Ages

4.1 The sins of the Fathers. . .

Much like today’s investor turns to the stockbroker to predict the performance of
shares – a wildly inaccurate science at best – so the Alexandrian merchant used
to call on a soothsayer to foretell his gains. Fortune-tellers appear to have been
ubiquitous in Alexandria: they were of all faiths and could be found on every
proverbial street corner. While most were merely concerned with making a decent
living, some of Alexandria’s finest minds aspired to bringing science into astrology.
To be able to practise astrology on a supposedly sound basis, one needed to un-
derstand the movement of the planets and stars, which in turn required complex
calculations. An astrologer could not but be a mathematician and, conversely, the
best mathematicians of the era were also astrologers. In fourth-century Alexan-
dria, as in the Roman Empire, the two words actually became synonymous1.
One such mathematicican-cum-astrologer was Theon of Alexandria (ca. 335-405),
possibly the last scholar of the Museum2. He wrote not only commentaries on
mathematical works, but also books on divination, and is credited with such in-
truiging titles as On Omens, The Observation of Birds and The Voice of Raven3.
Theon would appear to have been a competent teacher, but a rather unoriginal
mathematician. His approach consisted in improving existing manuscripts, rather

1This is also reflected in the Historia Augusta, in which Hadrian is referred to as math-
eseos peritus (Ael. 3,9) and Septimus Severus as matheseos peritissimum (S3.,9). The latter
emperor seems to have had a particular interest in the horoscopes of women of nubile age. J.
STRAUB(1970), p.249. The Historia Augusta is a late Roman collection of biographies, in Latin,
of the Roman Emperors, their junior colleagues and usurpers of the period 117 to 284. The dating
of the Historia Augusta is uncertain.

2Suida θ205, translated by David Whitehead. (http://www.stoa.org/sol/)
3C. HAAS(1997), pp.151-152.

A. Meskens, Travelling Mathematics - The Fate of Diophantos’ Arithmetic, Science Networks.
Historical Studies 41, DOI 10.1007/978-3-0346-0643-1_4, © Springer Basel AG 2010
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than simply copying them and subsequently adding emendments as was the cus-
tom. He wrote commentaries on Ptolemy’s Almagest and on the works of Euclid,
probably for the benefit of his students. As a matter of fact, some of the commen-
taries attributed to Theon may be notes taken down by them.
His version of Euclid’s Elements is thought to have been a collaboration with
his daughter Hypatia4. Together they amplified Euclid and made his work more
accessible to novice mathematicians. Their text became the standard edition, su-
perseding all previous ones and eventually driving them into oblivion. However, it
is also a case in point of why Greek mathematical texts should never be taken at
face value, and why one must always be on one’s guards for virtually untraceable
alterations. For example, at one point Theon writes:

But that sectors in equal circles are to one another as the angles on
which they stand, has been proved by me in my edition of the Elements,
at the end of the sixth book.5

The proposition is found in the Euclid manuscripts as if it belonged there. Without
Theon’s reference, we would never have had a clue that the corollary to VI.33 is
not by Euclid. This example goes to show that we can never be entirely sure
how close an often-copied ancient text is to its original, including in the case
of manuscripts attributed to Diophantos. In fact, Theon’s daughter Hypatia also
edited the Arithmetika, giving rise to speculation that certain problems in that
text may also have been inserted by her.
It is in Theon’s commentaries on Ptolemy’s Almagest that we find the earliest
reference to Diophantos:

As Diophantos says: ‘Unity is invariable and always constant. When it
is multiplied by itself, it keeps the same expression.’6

Hypatia (ca. 350/70-415)7 lived in Alexandria during the rise of the Eastern
Roman Empire. She is described as an attractive and independent woman. Unfor-
tunately, no works by Hypatia are known to us8. What little we do know about
her life comes from the work of her student Synesius of Cyrene (c. 373-c.414) in
the Anthologia Graecae, a mention in the Suida Lexicon and some rare references
in early Christian writings9.

4On their editions see W. KNORR(1989), p.761 ff. and A. CAMERON(1990)
5T.L. HEATH(1956)II, p.274. Also W. KNORR(1989), p.398.
6A. ROME (1931-43), p.453. See P. TANNERY (1895), pp.7-8, A. MESKENS & N. VAN

DER AUWERA (2006), p 5 for comparison.
7Her date of birth is uncertain, but is believed to have been somewhere between 350 and 370.

See M.A.B. DEAKIN(2007), pp.50-51.
8Translations of the most important texts relating to Hypatia are published in M.A.B.

DEAKIN(2007), pp.137ff. and D. FIDELER(1993), pp.57-64. J.J. O’CONNOR & E.F. ROBERT-
SON(1999d and e), M. DZIELSKA(1995), N. WILSON(1983), p.42. The biography of Dzielska
contains a lot of information on circles around Hypatia and the circumstances of her death, but
it provides few details about her mathematics.

9M.A.B. DEAKIN(1994), (1995) & (2007), T. ROQUES(1995), R. HOCHE(1860), G.
LUCK(1958), E. LIVREA(1997). The mystery surrounding her death has given rise to many
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Philostorgius, for example, asserts that “Hypatia, the daughter of Theon, was so
well educated in mathematics by her father, that she far surpassed her teacher, and
especially in astronomy, and taught many others the mathematical sciences.”10.
Around 400, Hypatia became the head of the Platonic school in Alexandria. She
is said to have based her teachings on the work of the Neoplatonists Plotinus11
(204-270) and Iamblichus12 (ca. 245-ca. 305). Founded on Plato’s theory of forms,
Neoplatonic thought puts forward a hierarchy of spheres of being. The highest
sphere is undetermined and the source of being, while its opposite is the abso-
lute nothing. In its Plotinean version, the Neoplatonic worldview is based on a
Trinity, making it compatible with Christianity. It should therefore not come as a
surprise that Christianity lay at the heart of the schism in Neoplatonic teaching
and its schools. The school of Athens (the direct successors to Plotinus) remained
anti-Christian, while the Alexandrian school came to embrace Christianity into its
teachings. Hypatia’s choice for a non-Christian Neoplatonism seems to have made
her a target for Christian attacks, despite her own tolerant attitude.
From the few bits and pieces we know about her life, we are able to infer that she
assisted her father in the writing of a Euclid edition and that she also produced
commentaries to Diophantos’ Arithmetika and Apollonios’ Konika, as well as to
the treatises of Ptolemy. Deakin may well be right in asserting that Hypatia was a
superb compiler, editor and conservator of mathematical works, especially of what
we would call handbooks13. She may also have been a competent mathematician
in what was by any account a testing era.

All commentaries indicate that Hypatia was a charismatic teacher. It is some-
times assumed that the version of Diophantos’ books we know today is based on
Hypatia’s edition or on one of her Commentaries14. According to this view, she
only added commentaries to the first six books to have been preserved. However, it
has become clear by the discovery of the Arab books that at least this latter asser-
tion is wrong. Although it would seem that all known versions can be traced back
to one archetype, there are no indications whatsoever to attribute this manuscript
to Hypatia15.

myths about her life, some of which have been eloquently novelized.
10Philostorgius, Epitome, 9.
11“Having succeeded to the school of Plato and Plotinus, she explained the principles of phi-

losophy to her auditors, many of whom came from a distance to receive her instructions. On
account of the self-possession and ease of manner, which she had acquired in consequence of the
cultivation of her mind, she not unfrequently appeared in public in presence of the magistrates.
Neither did she feel abashed in coming to an assembly of men. For all men on account of her
extraordinary dignity and virtue admired her the more.” Socrates Scholasticus, Ecclesiastical
History, XV.

12J.M. RIST(1965) disagrees. He claims that philosophy in 4th and 5th-century Alexandria
was essentially classical Platonist.

13M.A.B. DEAKIN(1994).
14P. TANNERY(1895)II, pp.17-18 and T. HEATH(1964), p 5.
15All assertions to this point have always used indirect evidence. Hypatia’s edition was bound

to leave traces in the form of scholia. Because this is not explicitly the case it is presumed
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Another recent view, advanced by Michael Deakin16, is that the Arabic books,
rather than the known Greek books, are to be attributed to Hypatia. He, unlike
Rashed (see par. 4.2, p. 110), contends that the Arabic and the Greek texts differ
greatly in style. While the Greek version is sparse and to the point, the Arabic
version is verbose and repetitive. Deakin notes that the Arabic problems conclude
with a check and add a recapitulation of the work done. In this he sees the hand of
a pedagogue and, as Hypatia is considered to have been an excellent mathematics
teacher, the attribution seems logical. For teachers, he adds, performing a check
is a natural thing to do, even if superfluous from a mathematical point of view.
Clearly, though, both views remain speculative and neither is based on convinc-
ing evidence. Unless new clues are found, it will therefore remain an unresolved
question whether or not Hypatia’s reading of Diophantos has survived.

The libraries of the Museum were often the target of sectarian violence. The
last of the libraries associated with the temple of Serapis, is believed to have been
ravaged in 39117 during a period of sustained violence. Despite the danger, and
unlike many other philosophers, Hypatia did not flee the city. At a time when
Alexandrians were torn apart by religious differences, she taught students of all
persuasions.
After 412, she became the focus of a struggle between the (Christian) Church
and the State over which matters are the province of which authority18. Although
there is some debate as to who led the crowd, there is little doubt Hypatia was
murdered by a Christian mob in 41519. With Hypatia’s death, the classical era
of Greek mathematics, including its Ploklean late flowering, had come to an end.

that these have been removed by later editors to restore the text to its original state. Because
scholia are not easily recognizable if they are not indicated as such some would have remained.
This would be the case for II.1 and II.2 because these seem, in the whole of the Diophantine
corpus, too easy. From this it is then concluded that these are additions to make it easier for
students to understand the methods which are being used. All these assertions bear a high
degree of speculation in them. M.A.B. DEAKIN(1994).For a detailed analysis of the descent of
Diophantos manuscripts see A. ALLARD(1982-83), see also the stemma in chapter 10.

16M.A.B. DEAKIN(2007), pp.98-101. The same argument was already alluded to by J.
SESIANO(1982), pp.71-72.

17J. SCHWARTZ(1966).
18During the period of Hypatia’s death Orestes was governor of Egypt. He was a Christian,

but tolerant towards other religions. His rule was contested as of 412 by the intolerant bishop
Cyrillus (the later Saint Cyrillus of Alexandria), as secular and ecclesiastical authorities fought
for political dominance. These opposing views regularly gave rise to sectarian violence. Hypatia’s
political alliances were seen as hostile to the Church. Orestes had befriended Hypatia, and their
friendship made her politically suspect. It was widely rumoured that Hypatia and her teachings
were the personal and intellectual driving forces behind Orestes’ political opposition to Christian
authority. Her eloquence and intellectual prominence were regarded by Cyril as the seeds of
destruction of the Church’s authority in Alexandria.

19“The impious writer asserts that, during the reign of Theodosius the younger, she was torn
in pieces by the Homoousian party.”, Philostorgius, Epitome, 9. It is not clear however whether
she was murdered because she was famous and happened to be in the wrong place at the wrong
time, or whether it was a deliberate attempt at her life because of her alliances and philosophical
views.
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Baghdad, and not as one might expect Byzantium, became the new mathematical
capital of the world.

4.2 From Alexandria to Baghdad

In the course of the fourth century, the great migrations from Eastern Europe
began to gain momentum. This would ultimately lead to the demise of the Roman
Empire by the end of the fifth century. The deposition of the Emperor in 476 is
generally regarded as the moment Rome fell. The centre of power had long since
shifted toward the East, where Constantinople had become the capital city. The
Eastern Roman or Byzantine Empire would last until 1452. Setting aside an at-
tempt by Justinian to restore the old Roman Empire, the history of the Byzantine
Empire is one of continuous retrenchement, until only a city state remained. The
largest contribution of Byzantium to science is that it preserved Greek knowledge
and transmitted it to Western Europe at a crucial moment in its history.

After the fall of the Roman Empire, Europe went through an age of revolu-
tions and upheaval, driven by migrations and dominated by a fear for Atilla the
Hun. Eventually, on the ruins of ancient Rome emerged the Germanic and Vandal
states.
Around the same time, Arabia also experienced some revolutions that would
change the course of history. During the seventh century, Islam expanded rapidly,
leading to the conversion of the Arabian peninsula, North Africa, large parts of
the Middle East and parts of Asia. Although this part of the world was more or
less culturally homogenized, it cannot be likened to the Roman Empire. It was
more like Greece, with independent regions sharing a common culture.

Much of the Greek mathematical –and other– corpus has been lost and is
known only through references in texts that have withstood the ravages of time. A
number of smaller works, such as Aristarchos’ On the Sizes and Distances of the
Sun and the Moon, have been preserved because they were part of late-Roman or
Byzantine curricula20Syntaxis.
In the intellectual centres at the borders of the Byzantine Empire and the Persian
Empire, such as Edessa, Harrān and Ras el-Ain, translators –more often than not
Christians– had been active since the fifth century. Many Greek texts were trans-
lated into Syriac, yet the subsequent influence of these centres on Arabo-Persian
intellectual life, especially in Baghdad, has hardly been studied. Undoubtedly,
though, these Syriac translations are a crucial link in the transmission of Greek
knowledge to the Arabic civilization21. They were the germinators of a first re-
naissance of Greek thought and knowledge.

20A. MESKENS, N. VAN DER AUWERA & P. TYTGAT(2006). According to Pappos, this
treatise was part of the introduction to Ptolemy’s .

21P. BENOÏT & F. MICHEAU(1995), pp.192-202, J.L. BERGGREN (1991) & (1996), J.
LAMEER(1997).
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The Arab conquest swept through a large part of the Hellenized world to the foot
of the Himalayan mountains. Thus, Arabia came into contact not only with Greek
knowledge, but also with that of Persia and India. The most powerful impulse
for translations came during the Abbasid caliphate, which had Baghdad as its
capital and stretched out across the Middle East and North Africa22. The earliest
of these translations date from the end of the eighth century, and the tradition
would continue for about a hundred years. They included not only Greek works,
but also Sanskrit and Pahlavi treatises.
By the eighth century, the Greek corpus had already dwindled, but it goes with-
out saying that there were more surviving manuscripts than seven hundred years
later, when Renaissance scholars returned to the writings of ancient authors. Ara-
bic scholars sent agents from Baghdad to the Byzantine Empire to search for
scientific treatises (including on astrology). Several hundreds of such texts would
be translated into Arabic. Unlike in Byzantium, where knowledge was merely pre-
served, the Arabs built on the Greek insights, furthering the study of mathematics
and contributing original new methods and theorems. A number of these Greek
treatises in Arab translation would find their way to Western Europe from the
twelfth century, via translation centres in Sicily and on the Iberian peninsula,
where the Islamic and Christian civilizations met23.
From the seventeenth century, European libraries began collecting Arab works,
for the purpose of comparing them with mediæval copies of Greek treatises. How-
ever, the larger part of Arabic collections remained in Turkish or Arabic libraries.
Conservative estimates put the number of non-inventoried manuscripts at around
20000024. One can only guess as to what mathematical gems might be hidden
among them.

The Arab world is where two mathematical traditions merged. The first was
the Indian-Persian tradition, with its focus on astronomy and algebra. Here, math-
ematics is seen first and foremost as a tool for solving practical problems. The other
is the continuation of the Hellenistic mathematical tradition, with its emphasis on
geometry and deductive reasoning. From the fusion of these two traditions emerged
a third, clearly identifiably, Arab mathematical tradition.
The hegemony of the Arab world extended to the borders of India, so that Islamic
mathematics soon picked up Hindu numerals, which spread to the West from the
seventh century onward and are known by us today as Hindu-Arab numerals.

The first known Arab mathematician of some renown is Abū Ja‘far Muham-
mad ibn Mūsā al-Khwārizmı̄ (Muhammad, father of Jafar and son of Musa, from

22See G.J. TOOMER(2004) and J.P. HOGENDIJK(1996), pp.35-36.
23On these translations, see for example P. BENOÏT & F. MICHEAU(1995), pp.213-221, P.

LORCH(2001).
24G. TOOMER(2004) citing H. Ritter (1953), who estimated that the libraries in Istambul

alone hold some 124000 manuscripts.
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Khwarizim)25, who was probably born ca. 780 in the Khwarizim region, east of
the Caspian Sea. Around 820, when he had already earned himself a reputation
as a mathematician in Merv, one of the capitals of the Abbasid Caliphate, he was
invited to Baghdad by the Caliph. He wrote at least two mathematical treatises
H. isāb ’al-jabr w’al muqābala (Calculation of Restoration and Subtraction) and
Algoritmi de numero indorum (Calculation with Indian numerals). Ironically, the
latter treatise is known only in a Latin translation. The first book, which is usu-
ally referred to as Algebra, deals with the different kinds of linear and quadratic
equations: ax = b, ax2 = bx, ax2 = b, ax2 + bx = c, ax2 + b = cx, ax2 = bx+ c. The
application of these expressions avoids the use of negative numbers.
Although he was able to solve these equations algebraically, they were explained
geometrically. Note that we have to understand algebra as manipulating determi-
nate equations, not, as in Diophantos, indeterminate equations26.

Interestingly, the Arabs were the first to solve third-degree equations. This
feat was first achieved by Tābit ibn Qorra (836-901) and Al-Hasan ibn al-Haitham
(better known in the West as Alhazen; ca. 965-1039). Omar Khayyām (ca. 1050-
1123), who was more renowned as a poet than as a mathematician, developed a
solution method based on conic sections.

The earliest indeterminate equations in Arab mathematics are found in the
work of Abū Kāmil (ca. 880), about whom we possess no biographical details27.
There is nothing to suggest that he was aware of Diophantos’ book28, but he does
seem to have had access to Greek sources. He may be regarded as a direct succes-
sor to al-Khwārizmı̄ and as a link to al-Karaj̄i. His significance to Europe lies in
the fact that his work helped lay the foundation for the writings of Fibonacci, so
that, indirectly, he had a profound influence on the introduction of algebra to the
continent.
Abū Kāmil’s Book about Algebra consists of three parts: the solution of quadratic
equations, the applications to algebra for constructing the pentagon and the
decagon, and Diophantine equations. There is only one known Arabic manuscript
copy, dating from 125329. There are also known to be Hebrew and Latin transla-
tions, which however lack the part on indeterminate equations30.
Abū Kāmil uses higher powers of the unknown in a similar fashion as Diophantos:
x6 is, for example, regarded as ‘cube cube’, analogous to κυκ, and x8 is seen as
‘square square square square’, analogous to δυδυδυδ. Although Abū Kāmil solves
indeterminate equations of the type encountered in Diophantos, he uses methods

25J.J. O’CONNOR & E.F. ROBERTSON(1999f), J.A. OAKS & H.M. ALKHATEEB(2005),
pp.401-402 and (2007).

26See S. GANDZ(1936) and R. RASHED(1994b), pp.8-21.
27See J.J. O’CONNOR & E.F. ROBERTSON(1999a).
28J. SESIANO(1977).
29See M. LEVEY(1966) and J. SESIANO(1977).
30See R. LORCH(1993) and M. LEVEY(1966).
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unknown to the latter and his treatment is less systematic31. Interestingly, Abū
Kāmil mentions that these questions circulated among the mathematicians of his
age, indicating the interest of the Arabs for the solution of indeterminate equa-
tions32.

Not surprisingly, then, this was the age when Diophantos was translated into
Arabic

The Arab version was written by Qusţā ibn Lūqā al-Ba’labakk̄i , who lived
in the second half of the ninth century. He was a Greek Christian and a native
of Baalbek (Heliopolis)33. He was invited to Baghdad to work as a translator. At
least from 866 onwards, he is known to have made numerous translations of Greek
mathematical works and he also seems to have written treatises on mathematics
and medicine34. Apparently he left for Armenia some time before 890. The trans-
lation of the Arithmetika must therefore have been produced between 860 and
890.
The manuscript itself dates back to 1198. It was produced somewhere in Iran by
two copyists, the first of whom did not progress beyond the first seven folios (recto
and verso). As the Arabic text has already been sufficiently analyzed philologically
elsewhere, we restrict ourselves to the mathematical aspects.

The translator did not transcribe the figures into contemporary Hindu-Arab
numerals, but spelt them out as words. The unknown ς is referred to with a word
which may be translated as ‘the case’ or ‘the thing’.

The abbreviations that Diophantos uses for composite expressions are also
spelt out in words. δυδςβµoκε is rendered as ‘four squares plus two things and
twenty five units’. The fact that Qusţā remained faithful to the original text is
demonstrated indirectly by Rashed. Qusţā also translated the first three books
of the Arithmetika. These have been lost, but parts of the translation appear in
other mathematical treatises, including al-Bāhir by Al-Samaw’al ibn Yahyā (ca.
1180), who cites two examples that, according to Rashed, are Qusţā’s translation
of I.16 and I.2635. Al-Bāhir is a comprehensive commentary on the works of other
authors. At the end of his treatise, the author also refers to Diophantos.

Around the time that Diophantos was translated into Arabic, a number the-
ory school emerged36. This school did not seek solutions to an equation within

31H. SUTER(1900)(1902), M. LEVEY(1966).
32A. ANBOUBA(1978), pp.84-85.
33There has been some debate on the first name Qusţā. According to R. RASHED(1984),

p. XVII it is the Arabic transcription of the Latin name Constans (through Greek Kostas).
According to J. SESIANO(1982), however, it is the transcription of Greek Kostas, a pet name
for Constantine.

34See for example L. AMBJÖRG(2000).
35R. RASHED(1984). Rashed uncritically accepts as self-evident that Al-Samaw’al uses

Qusţā’s translation: ‘As-Samaw’al donne deux exemples empruntés à Diophante et donc néces-
sairement à la traduction d’Ibn Lūqā’ (our emphasis).

36R. RASHED(1994b), pp. 35 and 205-210 on Diophantos’ influence, and pp. 210-331 on the
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the rational numbers, but within the positive integer numbers. The problems are
related, because rational solutions to an equation are equivalent to the integer
solutions of the homogenized equation37. Hence, it goes without saying that Dio-
phantos became a welcome source of inspiration. It is in this context that Arab
scholars, for the first time in the history of mathematics, used the concept of ‘in-
solvability’.

Not long after, more or less contemporary with the translation of Diophantos
into Arabic, two authors came to the fore who show an affinity with Diophantos.
The first is Abū Ja‘far al-Khāzin (ca. 940), who, among other things, wrote on the
solution of the equation x2 ± k = α2.
The family of al-Khāzin is believed to have hailed from the Southern Arabian
Saba38, but al-Khāzin himself would appear to have been from Khurasan, in east-
ern Iran. He came to the court at Rayy (south of present-day Tehran) under Caliph
Adud ad Dawlah, a ruler of the Buyid dynasty, whose court was at Baghdad. The
vizier of Rayy charged him in 959/60 to calculate the angle between the equator
and ecliptic planes.
Al-Khāzin’s number theory work is based on the work of the mathematician al-
Khujandi, a contemporary at the Rayy observatory. Al-Khujandi claimed he had
succeeded in proving that x3 + y3 = z3 has no solutions in the natural numbers
(which is Fermat’s theorem for n = 3); al-Khāzin, on the other hand, maintained
his proof was flawed39.
This latter claim is the direct inducement for a correspondence between al-Khāzin

and Arab mathematicians. One of the problems he treats is
{
x2 + a = α2

x2 − a = β2 .

al-Khāzin shows that the existence of numbers x, α, β with these properties is
equivalent to finding numbers u and v with a = 2uv and u2 + v2 = γ2. The
smallest number with this property is a = 24, which results in 52 + 24 = 72 and
52−24 = 12. The other integers, which are solutions, are multiples of 24. A similar
reasoning would lead Fibonacci to define congruent numbers.

Referring to Diophantos, he also solved the equations40 x2 +
(
y2

)2 = z2 and
x2 + y2 =

(
z2

)2.

contributions of Arab scholars to number theory.
37It is clear that, if (x1, y1, z1) is a solution to the homogeneous equation P (x, y, z) = 0, then(
x1

z1
,
x1

z1
, 1

)
is a solution of P (x, y, 1) = 0.

38Better known as Sheba, from the story of King Solomon and the queen of Sheba. See J.J.
O‘CONNOR & E.F. ROBERTSON(1999b).

39R. RASHED(1994b), p.231
40A. ANBOUBA(1979), pp. 134-139.
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The Persian Abū’l-Wafā’ al-Buzjani (940-997/8) commented on at least part of
Diophantos’ book41. He worked at the court of Caliph Adud ad-Dawlah and his
son Sharaf ad-Dawlah in Baghdad. He was involved in erecting the city’s short-
lived observatory. He also produced translations of and annotations to the works
of Euclid, Diophantos and al-Khwārizmı̄, which have probably all been lost. In
Abū’l-Wafā’s work, we find negative numbers, representing a debt. He provides
some rules for calculating with such numbers. Furthermore, he did some astro-
nomical work and drew up trigonometric tables.

It is thanks to the treatises of al-Karaj̄i that we can be certain Diophantos’
books I-III were known to the Arabs42. Al-Karaj̄i lived at the end of the tenth
and the beginning of the eleventh centuries. At a very young age, he left his
mountainous homeland to live in Baghdad. It was here that he wrote his most
important works: al-Fakhr̄ı, Badī‘ and Kāfi .
In the book entitled al-Fakhr̄ı, Al-Karaj̄i copied large parts of Arithmetika: nearly
half of book I, the larger part of book II, the whole of book III with exception of
three problems, and nearly all of book IV. The work is an attempt to generalize
Diophantos’ method43.
In his book Badī‘ al-Karaj̄i returns to the subject of indeterminate equations.
In this work, however, he does not copy Diophantos, but rather gives his own
introduction to the first books of the Arithmetika. Although al-Karaj̄i often cites
the problems put forward by Diophantos, he never refers explicitly to him44.

Al-Karaj̄i’s most important contribution to mathematics is that he, using
al-Khwārizmı̄’s and Diophantos’ methods, advanced algebra by “treating the un-
known in the same fashion as known quantities”. In this manner he reaches the
equivalent of m,n ∈ Z : xm.xn = xm+n. In his work, we also find a predecessor to
the method of mathematical induction and a precursor of a table with binomial
coefficients (Pascal’s triangle).
In contrast to the Byzantine copies, these Arab versions of Diophantos unfortu-
nately did not impact on the rebirth of algebra in the Renaissance in Italy or
Europe. Nonetheless, as we intend to demonstrate, in Fibonacci we may recog-
nize a link between the number theory work of the Arabs and Western European
mathematicians.

41See J.J. O’CONNOR & E.F. ROBERTSON(1999c), A. ANBOUBA(1979).
42J. SESIANO(1982), pp.10-11, R. RASHED(1994a) and(1994b), pp.22-33.
43R. RASHED(1994b), p.29.
44On Badī‘ see J. SESIANO(1977).
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4.3 The Byzantine connection

The name Byzantine Empire derives from the politico-administrative centre of
Byzantium, which was however called Constantinople from 330 onward. Territori-
ally, it corresponds with the Eastern Roman Empire, which was created under the
administrative division in 395 of the Roman Empire in a western and an eastern
part. The Eastern Roman Empire comprised the Balkans, Asia Minor, the Middle
East and Egypt45.
With the fall of the Western Roman Empire in 476, it also gained formal indepen-
dence. By the seventh century, the Empire had established its own Greek identity,
separating it from its Roman roots. Up until the eleventh or twelfth century, it
remained a stable state, consisting of Eastern Greece and Asia Minor.
Despite social and economic decline in the course of the twelfth century, culturally
speaking, the Byzantine Empire flourished once more in a territorially stable set-
ting. Subsequently, the Empire began to crumble and alliances with the West did
not work out as planned. The Crusades were disastrous for the Byzantine Empire,
leading to much internal discord and the instauration of a feudal Latin Empire
(1204). After the reconquest of Constantinople by Emperor Michael Palaeologus
(1259/61-1282), the Latin Empire collapsed. Once again, the Byzantine Empire
flourished culturally, but financially it had been weakened beyond repair. As the
fifteenth century drew on, it shrunk until no more than a city state remained. On
29 May 1453, Constantinople was conquered by the Turks, dealing the deathblow
to the thousand-year-old Byzantine Empire.

How and when Diophantos began to be studied in the Byzantine Empire is
as much an enigma as everything else about him. We possess merely fragmentary
information about intellectual life in the Empire, and even fewer details about
scientific activities.
In a twelfth-century biography of Joannes Damascenus (674/5-749), Joannes Hi-
erosolymitanus46 refers to eighth-century scholars who studied, among other trea-
tises, the work of Diophantos47.
According to this testimony, Damascenus, under the tutelage of Cosmas, read the
Quadrivium (arithmetic, music, geometry and astronomy), in which he ‘was as
diligent in the theory of proportions as Pythagoras and Diophantos’48.

As there are four centuries between the biographer and his subject, it is not
unthinkable that he used a contemporary example to evoke an image of erudition
for his readers. More importantly, however, he relates Diophantos to the theory of
proportions (see higher par. 3.8, p. 93).

It is not uncommon for Diophantos to be seen as an ancient authority in the
Byzantine Empire, which sometimes leads to the erroneous attribution to him of

45On the history of the Byzantine Empire, see for example M. ANGOLD (1997).
46Twelfth century hagiographer and patriarch of Jerusalem.
47J. CHRISTIANIDES(2002), pp.153-154, P. TANNERY(1895)II, p.36.
48J. CHRISTIANIDES(2002), pp.153-154, P. TANNERY(1895)II, p.36.
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ancient treatises or, worse still, of more recent compilations. We know of at least
three Byzantine fragments that have been wrongly attributed to Diophantos49.
The first is Excerpts from Diophantos’ Arithmetic50, which was very clearly writ-
ten long after Diophantos’ death, considering that it uses Hindu-Arab numerals
when dealing with square roots. The manuscript is believed to have been written
around 1303.
In a second fragment, which is sometimes also attributed to Pappos, the sexa-
gesimal system of astronomers is used for multiplication and division51. It was
collated with Ptolemy’s Prologomena and is now thought to have been written in
the sixteenth century by Johannes a Mauro.
A third fragment consists of four chapters: The plane geometry of Diophantos,
The methods of polygons, Treatise on the general method of polygons and On the
cylinder. It is a compilation of geometric and stereometric theorems chosen from
the work of Heron of Alexandria. This volume was written in the sixteenth cen-
tury52.

The first Byzantine whom we know definitely studied the Arithmetika is
Michael Psellos (1018-ca.1078). As we have no positive proof that Diophantos was
also studied prior the eleventh century, we shall focus on him.
Psellos’ Christian name was Constantine, which he changed to Michael upon en-
tering a convent53. For the most part of his career, he was in the service of the
Emperor. According to some sources, he was, for a considerable time, the man be-
hind the scenes, as it were. As a professor of philosophy, he gained a certain fame
that attracted many students, including Arabs. He wrote a considerable number of
treatises, on history among other things, as well as numerous funeral orations. In
his research, he adopted an unbiased attitude toward classical and non-Christian
writers, much to the dismay of the Church authorities. He came under repeated at-
tack and was required on several occasions to prove his allegiance to the Orthodox
faith and Church.

Psellos studied areas such as gnosticism, astrology, magic and alchemy, but
also classical philosophers such as Plato and Aristotle. In one of his texts, we find
references to some of the courses he taught: Aristotle, astronomy, geometry, arith-
metic, and optics (esp. properties of mirrors).
In his lectures, he used the models described in Heron’s Pneumatika, and he is
also said to have conducted classroom experiments.
In one of his letters, Psellos cites almost literally from Diophantos’ book54. Ac-

49P. VER EECKE(1926), pp. LVIII-LIX.
50P. TANNERY(1895)II, p.3, text of Bibliothèque nationale, Suppl. Gr. 387, and p. III-IV. The

manuscript which also contains Heron’s Metrika and Stereometrika was edited and published by
F. HULTSCH(1864).

51P. TANNERY(1895)II, pp.3-15, text of Bibliothèque nationale 453, and pp. IV-V.
52P. TANNERY(1895)II, pp.3-15, text of Bibliothèque nationale 2448, and pp. V-VI.
53About Psellos see N. WILSON(1983), pp.156-166. The change of name is notable in the sense

that it was customary for one’s convent name to have the same initials as one’s given name.
54P. TANNERY (s.d.)
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cording to Tannery, Psellos owned a version with scholia deriving from the work
of Anatolios.

Diophantos was not forgotten in the next century either: Nicephorus Blem-
mydes (ca. 1197 - ca. 1272) notes in his autobiography that he travelled to Skaman-
dros to the teacher and hermit Prodromos. Here he became acquainted with the
works of Nicomachos and Diophantos. From Diophantos’ Arithmetika, he learnt
those parts which were best understood by his teacher. Reading Diophantos was,
after all, never an easy proposition.
The reconquest of Constantinople on the Latins by Michael Palaeologus heralded
the start of a Byzantine renaissance. In the thirteenth and fourteenth centuries,
intellectual life in the Byzantine Empire intensified and was no longer limited
to literature, but also included science and mathematics55. During the so-called
Palaeologic Renaissance, scholars began to see the inheritance of Greek Antiquity
in a different light. The fostering of this inheritance would prove to be of the ut-
most importance to the fifteenth-century Italian Renaissance.

Two eminent representatives of this Palaeologic Renaissance conducted a first
systematic study of Diophantos.
Georges Pachymeros56 (1242-ca. 1310) first studied in Nicea, but probably ended
his work in Constantinople. It is in any case an established fact that he settled
in the city after the reconquest. He is best known as the author of a history of
the first half century of the Palaeologic dynasty. As a teacher, he wrote a number
of treatises, including Treatise on the four sciences arithmetic, music, geometry
and astronomy, better known as the Quadrivium. The chapter on arithmetic is –at
least in part– based on Diophantos. The introduction and problems I.1 to I.6 an
I.8 to I.11 are all paraphrases, suggesting that Diophantos was used in Byzantine
education, even though his influence may have been limited to the rather atypical
book I.

The second Byzantine scholar to study Diophantos, Maximos Planudes57 (ca.
1255-1305), is a key figure in the Greek tradition of the Arithmetika. Not unusually
during the Palaeologic Renaissance, the well known literatus was also versed in
sciences and mathematics. Born in Nicomedia in Bythinia (Asia Minor), he moved
at a very young age to Constantinople, where he entered a convent. His real name
was Manouel, but upon entering the convent, he changed it to Maximos.
He always took care not to get on the wrong side of the powers that be. On the
one hand, he was a supporter of the orthodoxy, as opposed to the Latin cult. On

55D. GENEAKOPLOS(1984), p.3.
56On Pachymeros see N. WILSON(1983), pp.241-242.
57C. CONSTANTINIDES(1982), p.62, J. CHRISTIANIDES(2002), pp.155-156.

He argues that, contrary to Tannery’s opinion, this does not indicate new methods in the arith-
metic education. Until then it seemed that only Nicomachus’ Arithmetica was being used. Chris-
tianides refers to Hierosolymitanus.
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the other, he, like cardinal Bessarion, was sufficiently flexible to accept a religious
union with Rome whereby the cultural identity was preserved.
He was fluent in Latin, which allowed him to make a (heavily censored) translation
of Ovidius’ Metamorphosis and of texts by Saint Augustine, Boethius and Macro-
bius58. It was also because of his excellent command of Latin that, in 1296, he was
sent as an Imperial Envoy to Venice, where he received an honorary citizenship.
More than forty books are attributed to Planudes, covering subjects from theology
and grammar to poetry and mathematics. He compiled the astronomical work of
Aratus, in which he replaced some of the qualitatively inferior parts with excerpts
from the Almagest , and he edited Ptolemy’s Geographika, works by Plutarch,
Homer and Hesiod. He was also the author of a book on Indian numbers (Hindu-
Arab numerals)59.
Planudes’ interest in the work of Diophantos dates back to 1292-93, as is apparent
from his letters from around this period60: they tell of how he was collecting Dio-
phantos manuscripts in order to collate them and edit a text that was as complete
as possible61. At least three Diophantos manuscripts were available to Planudes’
circle of friends. One of these was owned by Planudes himself62, another was in
the possession of the astronomer Manuel Bryennios63. Planudes asked Bryennios
whether he could compare the two manuscripts, which seems to indicate that his
own copy was not in the best of conditions. The third manuscript belonged to the
imperial library, headed by Theodore Muzalon, who had asked Planudes to restore
the copy.
One commentary by Planudes puts the rule of signs in a different perspective (see
par. 3.9): “A lacking multiplied by a lacking gives an existing and a lacking with
an existing gives a lacking.”64.

As we have previously noted, some authors compare this statement with our
sign rule and consequently associate it with the introduction of negative numbers.
However, in a commentary, Planudes explains: “He does not simply say ‘that what
is missing’, as if there were a certain presence [and hence something that is missing],
but [he speaks of] a presence of which something is missing”. In other words,
something can only be lacking if something is present: ‘that which is simply lacking’
does not make sense to Planudes.

58See W.O. SCHMIDT(1968).
59See A. ALLARD(1981b).
60P.L.M. LEONE(1991), see letters 66 and 98 among others.
61This obviously implies that it was not easy to obtain complete or undamaged manuscripts.

If, like Christianides claims, Diophantos was used in education, this should not have been a great
problem. His reference to Johannes Hierosolymitanus to assert that Diophantos was used in the
eight century would seem to be a backward projection to convince contemporary readers of the
quality of the treatise of his protagonist. The fact that these three manuscripts contain just six
of the original thirteen books also indicates that the study of Diophantos was limited to say the
least.

62See A. ALLARD(1981b). This manuscript is probably Ambros. Et 157 sup.
63C. CONSTANTINIDES(1982), pp.74, 96 & 142.
64Compare with Heath’s indication of a literal translation: “A wanting multiplied by a wanting

makes a forthcoming.” T. HEATH(1964), p.130.
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Therefore he can only interpret the rule in relation to what we would call
polynomial arithmetic, which makes it possible to deal with expressions such as
(a± b)(c± d).

The two known types of Diophantos manuscripts originated in this period.
One of these types contains the commentaries of books I and II and the scho-
lia of the monk Maximos Planudes. These are referred to as the Planudean class
of manuscripts65. The other class derives from an unknown archetype (see chap-
ter 10). Both versions are apparently drawn from an unknown common archetype.

Four Diophantos manuscripts date back to the thirteenth century, two of
which belong to the Planudean class. One of these texts is an autograph of Max-
imos Planudes66. The other Planudean class manuscript was owned by cardinal
Bessarion, who donated it to the Marciana library67. The two other thirteenth
century manuscripts do not derive from a Planudean class manuscript. One was
in the collection of the library of the Chapter of the Cathedral of Messina68. The
provenance of the other manuscript is unknown69.

Not only did Byzantium preserve a large part of the Greek corpus; this in-
heritance would also find its way to Europe, as many intellectuals and their book
collections travelled west during the fifteenth century. One of these emigrants
would build one of Italy’s most remarkable libraries.

4.4 Diophantos reinvented: Fibonacci

The first time we encounter Diophantine-like problems in Western European math-
ematics is in the work of Leonardo of Pisa, better known as Fibonacci (ca. 1170-ca.
1250)70. Fibonacci was born in Italy, but grew up in North Africa. His father was
a diplomat for the Pisan merchants in Bugia (Bejaia) on the Algerian coast at the
mouth of the Wadi Soummam. Fibonacci took mathematics classes, where he was
introduced to and learned to work with Hindu-Arab numerals.
He travelled the Arab world until about 1200, when he settled in Pisa. Here
he wrote a number of books, including Liber Abaci (1202), Practica geometriae
(1220), Epistola ad magister Theodorum (?), Flos (1225) and Liber Quadratorum
(1225). He is also known to have written Di minor guisa on commercial algebra

65C. CONSTANTINIDES(1982), pp.70-73.
66A. ALLARD(1979) & (1982-83), p 59. This is Mediolanensis Ambrosianus Et 157 sup.
67A. ALLARD (1982-83), p.61. This is Biblioteca Marciana gr. 308., the manuscript only

partially dates back to the thirteenth century (see chapter 10).
68A. ALLARD(1982-83), p.62. This is Matritensis Bib Nat 4678. Also A. DE ROSALIA(1957-

58).
69A. ALLARD(1982-83), p.69, this is Vaticanus gr 191.
70On Fibonacci and his mathematics, see B. BONCOMPAGNI(1851), E. LUCAS(1877), R.

FRANCI & L. TOTI-RIGATELLI(1985), p.18-28, L.E. SIGLER(1987), M. BARTOLOZZI & R.
FRANCI(1990), R.B. McCLENON(1994).
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and a commentary on Euclid’s book X, with a discussion of irrational numbers,
but these works have unfortunately been lost.

Given Fibonacci’s youth, it should not come as a surprise that these books
bear testimony to an Arabic influence. Rashed has demonstrated convincingly that
numerous examples in Liber Abaci were taken directly from Arab sources71, while
a large part of Abū Kāmil’s On the pentagon and decagon was used in Practica
geometriae72. Whether Fibonacci was familiar with the work of Diophantos, be it
wholly or partially and either in Greek or in Arabic, is unknown. We do however
know that he solved problems that were similar to those posed by Diophantos. The
manner and order in which he tackles them seem to suggest that he was unfamil-
iar with the Arithmetika - at least in its original form73, although the possibility
remains that he may have encountered originally Diophantine problems in Arab
sources. Fibonacci’s style, however, has more in common with Euclid’s algebraic-
geometric approach than with that of Diophantos.

The direct inducement for writing Liber Quadratorum came after an invita-
tion to the Imperial Court at Pisa. Fibonacci had come to Emperor Frederick II’s
attention through his correspondence with scholars at the court, including Michael
Scotus (the court astrologer) and Theodorus of Antioch (the court philosopher).
During his visit, Johannes of Palermo put him to the test by presenting him with
some mathematical problems74.
One of these problems was: find a solution or an approximation of the solution to
the equation x3 + 2x2 + 10x = 20. Fibonacci had ‘demonstrated’ (in Flos) that
the roots of this equations cannot be constructed with straightedge and dividers.
It was a first indication that there are other numbers than those defined by the
Greeks as a ‘constructable number’75.

71R. RASHED(2003), pp.55-56.
72M. LEVEY(1966), pp.8-9.
73The only author who is cited in the Liber Quadratorum is Euclid. L.E. SIGLER(1987), pp.13

&96, M. FOLKERTS(2004), p.106.
74L.E. SIGLER(1987), p.3, P. VER EEECKE(1952), p.1. According to R. RASHED(2003),

p.57, these problems were taken from Arab manuscripts available at the court of Frederick II.
Both Theodorus and Johannes were well aware of Arabic mathematics, indeed Theodorus was
of Arabic descent and a student of al-Dı̄n ibn Yūnus. Also R. RASHED(1994b).

75The equation can be solved by determining the abscissa of the intersection of the hyperbola
(x + 2)(y + 10) = 40 and the parabola y = x2.

The solution is x =

3
√

352 + 6
√

3930 +
3
√

352− 6
√

3930− 2

3
.

What Fibonacci did was show that the solution of the equation was neither a whole num-
ber, nor a fraction, nor the square root of a fraction. This leads him to the conclusion that
it is not possible to solve the problem in one of these manners, and therefore he ‘tried to
approximate the solution’. This solution is given in the sexagesimal system, which is rather
ironic considering that he was the man who introduced decimals in Western Europe. His
solution x = 1.22.7.42.33.4.40

(
= 1 + 22

60
+ 7

602 + 42
603 + . . .

)
, which in the decimal system is

x = 1.3688081075 , is correct to nine decimals!
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The problem, with the same numerical values, is also encountered in the work of
Omar Khayyām. Obviously this equation is of the same kind as those studied by
mathematicians of al-Karaj̄i’s school76.

However, it was the following problem that inspired Fibonacci to write Liber
Quadratorum: find a square, which when five is added or subtracted is a square
again77.

In other words
{
x2 + 5 = α2

x2 − 5 = β2 .

Leonardo came up with the correct answer x = 11 97
144 .

The result of his enquiry is one of those shining jewels in the crown of math-
ematics. Although less well known than Liber Abaci , it could be argued that Liber
Quadratorum is Fibonacci’s most intriguing work. It is a well written, beautifully
ordered set of theorems and properties about indeterminate quadratic equations,
based on elementary relations between square numbers and finite sums of odd
numbers. Although it treats similar subjects as Diophantos’ Arithmetika, it is
written in the style of Euclid’s number theory works.
The aim of Leonardo is to prove the questions posed by Johannes of Palermo (re-
solved in proposition 16) and Theodorus (resolved in proposition 20). The book
begins with theorems that are reminiscent of the basic properties of the kind of
number known to the Pythagoreans, like n2 − (n − 1)2 = 2n − 1, and the very
important property

∑n
i=1(2i− 1) = n2.

The first theorem78 is related to Diophantos II.8, but it asks for two squares whose
sum is a square, rather than for the division of a number into two squares.

Leonardo begins with a numerical example.
(1 + 3 + 5 + 7) + 9 = 1 + 3 + 5 + 7 + 9

16 + 9 = 25
42 + 32 = 25

In other words, one should take a sum of successive uneven numbers,
the last of which is a square.
Now consider the sum of all uneven numbers smaller than (2n − 1)2,
which is an uneven number. The last term in this sum evidently is
(2i− 1)2 − 2.
Now

(2n− 1)2 − 2 = 4n2 − 4n− 1
= 2.

(
2(n2 − n)

)
− 1

Therefore the required sum is∑2(n2−n)
i=1 (2i− 1)

76M. FOLKERTS(2004), p.105, R. RASHED(2003), pp 57-58.
77Compare with al-Khāzin’s problem on p. 111. The very same problem was posed in al-Karaj̄i’s

Badī‘. However, Fibonacci’s reasoning differs from al-Karaj̄ı’s. R. RASHED(2003), pp.68-69.
78We use the order as edited by L.E. SIGLER(1987).
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Now
∑2(n2−n)

i=1 (2i− 1) =
(
2(n2 − n)

)2

From which∑
(2i− 1) + (2n− 1)2 =

(
2(n2 − n)

)2 + (2n− 1)2

=
(
(2(n2 − n)

)2 + 4n2 − 4n+ 1
=

(
(2(n2 − n)

)2 + 2.2(n2 − n) + 1
= (2n2 − 2n+ 1)2

which is a square.

In theorem 3 Fibonacci proves the well known Pythagorean property(
m2 + n2

2

)2

=
(
m2 − n2

2

)2

+m2.n2

We then encounter theorems with a distinct Diophantine flavour, such as:
if a2 + b2 = c2, find two numbers x and y for which x2 + y2 = c2 (theorem 5).

Essentially the solution amounts to finding another right triangle with
the same hypotenuse as the given right triangle.
Suppose a2 + b2 = c2 and that m2 + n2 = p2 then(

m

p

)2

+
(
n

p

)2

= 1

and
(
mc

p

)2

+
(
nc

p

)2

= c2

Fibonacci distinguishes between three cases, depending on whether the
sides are smaller than, longer than or equal to the sides of the given
triangle.
The numerical example he gives is 52 + 122 = 132 and 82 + 152 = 172

giving (
8
17
.13

)2

+
(

15
17
.13

)2

= 132

⇔
(

104
17

)2

+
(

195
17

)2

=
(
6 2

17

)2 +
(
11 8

17

)2

= 132
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This is followed by the related problem79 of finding two numbers x and y such
that a2 + b2 = x2 + y2.

To solve this problem Fibonacci uses the property he had proven in
theorem 6, namely that

(a2 + b2)(c2 + d2) = (ac+ bd)2 + (ad− bc)2

= (ad+ bc)2 + (ac− bd)2

Now choose two numbers c and d such that c2 + d2 = k2

then write (a2 +b2)(c2 +d2) as a sum of two squares, e.g. p2 +q2 leading
to

a2 + b2 =
p2

k2
+
q2

k2

the required numbers are therefore
p

k
and

q

k
.

These theorems about quadratic sums have, at least in their formulation,
a distinctly Diophantine flavour. Other theorems already point toward number
theory, for example if m and n are relatively prime and if m and n are uneven
then mn(m + n)(m − n) is divisible by 24, or if m is even and n is uneven then
2m.2n(m+ n)(m− n) is divisible by 24. Fibonacci calls these products congruent
numbers and they are important for the rest of his treatise. He shows, for exam-
ple, that a number of the form 24t2 is always a congruent number. A congruent
number can however never be a square.

These numbers are important in solving the problem
{
y2 − c = x2

y2 + c = z2 , which

he interprets as
{
x2 + c = y2

y2 + c = z2 , in which c is a congruent number.

Fibonacci sees these squares as the sums of uneven numbers and he needs to dis-
cuss the number of terms to reach a solution. In the end, after some cumbersome
reasoning, he finds the same solution as Diophantos did80.
In theorem 16, he looks for numbers whose congruent number is a quadratic quin-
tuple. He uses this result to solve Johannes of Palermo’s problem in a very general
fashion.

79L.E. SIGLER(1987). This property is known as Lagrange’s theorem. Lagrange proved that
the product can be written in two, three or four ways as a sum of two squares.

80See L.E. SIGLER(1987), pp.53-64 for Fibonacci’s text and pp.64-74 for a discussion of Fi-
bonacci’s solution. On the history of the problem, see L.E. DICKSON(1971)II, pp. 459 ff.
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x2 + 5 = α2

x2 − 5 = β2

As 5 is not divisible by 24, it cannot be a congruent number and there-
fore no integer solution exists. Rational solutions can be found by choos-
ing m and n in such a way that their congruent number is a quadratic
quintuple.

The following theorems are variants and elaborations of this problem81.
Other Diophantine-type problems include Theodorus’ problem: x+ y + z + x2 = α2

x+ y + z + x2 + y2 = β2

x+ y + z + x2 + y2 + z2 = γ2

which he considers as  x+ y + z + x2 = α2

α2 + y2 = β2

β2 + z2 = γ2

and solves using the theorems for quadratic sums (theorem 20).

One may say without diffidence that Fibonacci was the only European math-
ematician after Diophantos and before Fermat to make significant contributions to
number theory. It was not until Diophantos’ manuscripts travelled west to Europe
that number theory stood a chance. Slowly but surely, the Arithmetika would come
to be known in Europe, but not before an event with disastrous consequences for
the Byzantine Empire: the fall of Constantinople.

81In the Florentine manuscript Palatino 577, dating back to the 15th century, variants with
other numbers (6, 7, 30) are considered. They are solved using a table of congruent numbers. E.
PICUTTI(1979).



Chapter 5

New vistas

As Europe recovered from the Black Death and created a splendid Renaissance for
itself, long-held ideas were challenged and replaced with others. The change would
manifest itself in literature, the arts and science, though not simultaneously. In this
chapter, we consider some of these trends, as insight into the evolution of concepts
and worldviews is necessary for an accurate perspective on the story of Diophantos.

5.1 Printed by . . .
In the course the 1400s, the printed book gradually gained in popularity, but it
was not until the sixteenth century that it came to full prominence1. The advent of
printing greatly facilitated the dissemination of information. Mathematics, how-
ever, remained a field for specialized printers.

Printing was undoubtedly an important factor in the development of Renais-
sance mathematics and science, though opinion differs on the exact nature of its
role.
Producing manuscript copies was a labour intensive process. Inevitably, this meant
that texts reached a rather small audience. With the advent of printing, however,
it became possible to produce relatively large runs of exact copies at a relatively
low cost. Moreover, if demand so required, it was quite easy to produce a second
edition. This meant that written materials could be distributed much more widely,
which in turn allowed more people to take note of science and its teachings2.
Books had a further advantage: all copies were identical. Wherever a particular

1For a discussion of the importance of the book to science and mathematics, see E.L. EISEN-
STEIN(1979).

2On scientific books and their prices in sixteenth-century Antwerp, see A. MESKENS(1995).
The average print run for a more or less scientific book would appear to have been 500 copies,
although the number could vary anywhere between 18 and 1200 copies.

A. Meskens, Travelling Mathematics - The Fate of Diophantos’ Arithmetic, Science Networks.
Historical Studies 41, DOI 10.1007/978-3-0346-0643-1_5, © Springer Basel AG 2010
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copy of a book was read, it contained exactly the same information as all the
other available copies. This is not necessarily the case with manuscripts: some-
times scribes would deviate from the original by adding comments or by omitting
or editing the text, or by adapting its structure in accordance with their own tastes
or preferences. In this sense, every manuscript is unique, unlike a book.
The wider availability of books also freed scholars from the time-consuming chores
of copying manuscripts or searching for existing texts on a particular topic.

The undisputed top of the bestseller’s list of the era was the Bible, though not
necessarily in its Vulgate edition. Protestant Bibles were equally popular. It goes
without saying that the authorities were keen to control this new mass medium as
best they could. More often than not, publishing a book required licence from the
sovereign and sometimes, as in the Low Countries, also from the religious author-
ities. As the Roman Catholic Church was unable to control printers in Protestant
territories, it published an Index Expurgatorium librorum or Index of Forbidden
Books. This centrally produced Index would be supplemented locally. The black-
list could contain some unexpected titles, like books on mathematics for example.
This would be due not to the content, but very often to the reputation of the au-
thor or the person to whom the book was dedicated. Michael Stifel’s Arithmetica
(1543), for instance, was put on the list of suspect books because it was dedicated
to the Protestant pastor of Holtzdorf3.

Despite their popularity, the Bible and other religious texts did not distract
attention from the classical authors. Printers continued to publish technical trea-
tises and, in this way, promoted the dissemination of scientific knowledge. More-
over, competition between publishers stimulated them to try and publish the best
books. Some printers actually commissioned scholars to collect and edit material
for publication. One such example was Venice-based Aldus Manutius, who estab-
lished a printing workshop specializing in Greek books. These materials would be
edited and prepared for print by Cretan and Greek assistants.

It was an era of a fruitful cooperation between scholars and printers. Indeed,
some individuals combined the two careers. Petrus Apianus, a professor of math-
ematics in Ingolstadt, ran his own printing business, and Oronce Finé, the court
mathematician to the French King, also worked as a printer in Paris.
Although practical treatises on arithmetic and astronomy were most prevalent,
the classical authors were by no means disregarded. Most editions or translations
of classical authors date back to the first half of the sixteenth century. It is in this
light that the Diophantos edition by Xylander should be viewed.

Proofreading sometimes brought to light internal inconsistencies. Practical
mathematicians (either inspired or compelled by the printing process) had to find

3A. MESKENS(1994a), p.221.
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a common language for expressing their mathematical thoughts, which would con-
stitute the basis for a successful symbolic notation.
Printing was the primary motor behind the (at least partial) standardization of
mathematical symbolism, which emerged in the course of the sixteenth century.
It also put an end to trade secrets: the centuries-old tradition whereby skills and
know-how were transferred exclusively from master to pupil was broken, so that
knowledge became a common good.

5.2 Wherefore art thou number?

Slowly, almost unnoticed, a new kind of number came to the forefront of western
mathematics: the negative number. It remains an unanswered question whether
Diophantos knew negative numbers and regarded them as such. As we have pre-
viously mentioned, negative numbers first appeared in Arab mathematics to rep-
resent losses, and this is also the form in which they were introduced in European
mathematics. Nonetheless, we notice in a tenth-century manuscript that negative
numbers as such were already in use. They are indicated in that text by non
existens or simply by minus4. The manuscript treats negative numbers as exist-
ing quantities, if only to demonstrate how to use the subtrahend. In Liber Abaci,
Fibonacci considers systems for which the solutions exist only if the parameters
are negative. He also discusses these cases and comes to the conclusion that the
solutions are positive. If there are negative solutions, he considers the problem as
insoluble5.
The oldest manuscript in which negative numbers are considered acceptable so-
lutions –in a problem where one would expect positive ones– is in a Provencal
Arithmetica from around 1430.
Nicholas Chuquet appears to have been the first to permit negative solutions in
abstract problems (1484)6. Luca Pacioli, in the same period, reluctantly accepted
negative numbers7.
Although this reticence towards negative numbers would disappear only slowly, by
the sixteenth-century such numbers were widely used in practice. Thus, the way
was being paved for yet another kind of number . . .

The notion of a “number” has always been enigmatic, particularly in the shift
from the countable sets of natural and rational numbers to the uncountable set
of real numbers. The question of whether the set of real numbers is a continuum
first presented itself –in an embryonic form– in the sixteenth century. We have al-
ready discussed the classical notions of number. The query that confronts us now
is which transformations does the Diophantine arithmosconcept have to undergo

4M. FOLKERTS(1972), p.41.
5J. SESIANO(1995), pp.116-133.
6J. SESIANO(1995), p.148.
7J. SESIANO(1995), pp.134-142.
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to become a modern symbolic notion of number? As exploring this matter in any
great detail would lead us too far astray from our central topic, we shall consider
it only superficially. However, the development of the notion of number has been
discussed explicitly by some of the commentators on Diophantos.
Any discussion on the development of number must begin with the Italian abacists
and their northern counterparts in Germany and the Low Countries8. They are
the first group of mathematicians for whom we have sufficient material to allow
us to form a clear image of their perceptions of mathematics. From the thirteenth
up into the sixteenth centuries, we see that their merchants’ manuals tend toward
greater simplicity in terms of organization and terminology. They concentrate on
the practical, everyday uses of mathematics. However far removed from philosophy
this may seem, it is here that questions about the nature of number begin to arise.
In their work, ratios of numbers are present in the form of solutions to practical
merchants’ problems, more specifically in problems of company9. It was not long
before square roots began to appear in merchants’ manuals10. This leads to prob-

lems such as: how does one interpret 6 =
6

3−
√

3
+

6
3 +

√
3
? The left-hand side

obviously is a natural number and therefore a multiple of unity, but what about
the right-hand side? It is a sum of two ratios that are incommensurable. To be
able to explain this, a different conception was required of the notion of number.
It would, however, take another two centuries before a logically sound solution
was found, and the first steps toward it would be taken by mathematicians who
are part of this arithmetic teaching tradition.

The first indications of a changing conception of number are found in Re-
giomontanus. He was a man who still stood with one foot in the world of the
Ancients, and hence considered numbers as arithmoi, or sets of units. However,
with the other foot, he stood firmly in the modern world, as all magnitudes are
quantities ‘that are measured in relation to a certain unit’11. According to Re-
giomontanus, if the surface area of a square is not a perfect square and one wishes
to know its side, an approximation is acceptable, ‘because it is better to approxi-
mate the truth, than to ignore it.’12.

With Stevin, this reluctance disappears altogether. His definition of number
builds on Regiomontanus, but it was also revolutionary, for he dropped the clas-
sical definition altogether and accepted the modern notion: “Nombre est cela par

8On the Italian abacists see e.g. W. VAN EGMOND (1976); on the Netherlandish reken-
meesters see A. MESKENS (1994), (2009) and M. KOOL (1999).

9In a problem of company, three or more merchants raise a capital to gain interest or to
buy goods. The share of each merchant is different, as is the time during which the merchant is
a shareholder and, in some examples, the interest that each receives. M. BARTOLOZZI & R.
FRANCI(1990), pp.9-10, A. MESKENS(1994a), pp.66-72.

10M. BARTOLOZZI & R. FRANCI(1990), pp.9-10.
11A. MALET(2006), p.71.
12A. MALET(2006), pp.71-72.
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Figure 5.1 Stevin’s definition of number. From: Simon Stevin, L’arithmetique. C.
Plantin, 1585. Erfgoedbibliotheek Hendrik Conscience, Antwerpen, G 10413.

lequel s’explique la quantité de chascune chose”, “nombre n’est poinct quantité
discontinue” and “que l’unité est nombre”13. Stevin did not consider numbers as a
discontinuous spectrum, but as a continuum. H.J.M. Bos recognizes the influence
of Ramus in Stevin’s writings14. Ramus (1514-1572) evolved in his thinking about
number. At first he used the classical notion that a number essentially consists of
a number of units. In 1569, however, he wrote in his Arithmetica that “number is
that which explains the quantity of each thing.”15, a definition which is borrowed
almost literally by Stevin. Moreover, this definition implies that the unit is a num-
ber, which is made explicit by Stevin.

A further explanation lies in the practical mathematical professions that
Stevin came into contact with and where no distinction was made between the
different kinds of number. When constructing a wine gauge, for example, one can
use a rational approximation to indicate a depth point or rely on the construction

13S. STEVIN(1585), f1 and f.4
14H. BOS(2001), p.138. According to R. Hadden, Stevin’s notions developed from his dealings

with merchants, especially in relation to the calculation of interest, where the classic conception
is found wanting. The counter argument to this is that numbers that are used in the financial
world are, by definition, rational. An interest is nothing more than a ratio of a hundredth part of
a natural number and another natural (or rational) number. See R. HADDEN(1994), pp.149-154.

15“Numerus est secundum quem unumquodque numeratur” (ed. 1569, p.1). See J.J. VER-
DONCK(1966), pp.131-132.
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of a square root using Pythagoras’ theorem16.
By interpreting numbers as a continuum, Stevin opened a veritable Pandora’s box,
the true significance of which he would never fully grasp. He had no idea of the
conceptual obstacles that would have to be overcome in order for his insights to be
rigorously definable. Yet these insights are crucial in a new interpretation of Dio-
phantos. Whereas Diophantos used only rational –and therefore commensurable–
numbers and excluded the incommensurable numbers, including the constructable,
now a whole new class of numbers was excluded; numbers whose nature would re-
main unclear in centuries to come. Nonetheless, it is this new concept of number
that distinguishes between algebra and number theory. In a modern interpreta-
tion, we may subsume Diophantos with the latter category.

5.3 From the rule of coss to algebra
Whereas the Greeks made a distinction between logistike, the calculating practices
of the merchants and bookkeepers, and arithmetic, the science of the properties
of numbers, during the Renaissance, the two fields merged. This, together with
the rise of printing, was a seminal moment in the history of algebra, lifting the
discipline to a higher level as it were. This confluence was preceded by (and par-
tially still coincided with) another development: the use of Hindu-Arab numerals
instead of the cumbersome Roman numerals17.

The fourteenth-century Italian abacists still used rhetoric algebra. Problems
and their solutions were given in words, without abbreviations or symbols. The
unknown was referred to as cosa. The terminology was also used in Southern
Germany, where it came to be known as der Coss. Sixteenth-century arithmetic
books show a diversity in symbolism, an indication that things were on the move.
The solution of problems had travelled a long way since the Babylonians. Symbols
were attributed to the powers of the unknown. The evolution from rhetoric over
syncoptic to symbolic algebra was never straightforward. However, we can roughly
distinguish between two schools, namely the Italian and the Southern German
school. The symbolism of the latter would come to be used throughout Western
Europe.

The first indications of syncoptic algebra are noticeable in Italy. In his Summa
de aritmetica (1494), Luca Pacioli uses the following abbreviations18:

x0 x1 x2 x3 x4 x5 x6 x7

no co. ce. cu. ce.ce. po ro ce.cu 2oro

numero cosa censo cubo
censo de

censo
primo
relato

censo de
cubo

secundo
relato

16On wine gauging, see A. MESKENS(1994a), (1994b),(1999).
17See for example G.R. EVANS(1977) and W. VAN EGMOND(1976), pp.217-222.
18F. CAJORI(1993), pp.107-109.
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Figure 5.2 Cossic symbols. From: Valentin Mennher, Arithmétique seconde. Jan Loë,
1556. Erfgoedbibliotheek Hendrik Conscience, Antwerpen, G 21409.

This system was used until the first half of the sixteenth century not only
throughout Italy by, among others, Tartaglia (Nova Scientia, 1537, and other man-
uals) and Cardano (Practica arithmeticae generalis, 1539, 1545, 1570), but also by
the Portuguese mathematician Pedro Nuñez19.

Regiomontanus was one of the progenitors of mathematical symbolism in the
west. Already in his manuscripts of 1456, he used symbols for the unknown and its
square, for the root, the subtraction and the equality. Whether this symbolism was
original is doubtful. It is also used by the monk Fridericus Gerhardt (†1464/65)
in a manuscript from 146120. Therefore, one may assume it to have been more or
less common in Southern Germany.

x0 x1 x2 x3 x4 x5 x6 x7

or N
Dragma or
numerus radix zensus cubus

zens de
zens

surso-
lidum

zensi-
cubus

bisur-
solidum

19F. CAJORI(1993), pp.117-123 and 161-164.
20M. FOLKERTS(1977), pp.222-223.
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At first sight, the resembles a sloppily written res21, while the seems to be
a stenographic abbreviation of cubus.
In Western Europe, this notation gained quite a few followers, such as Michael
Stifel (Arithmetica Integra, 1544, 1545, 1553), Valentijn Mennher and Michiel
Coignet (Livre d’Arithmétique, 1573), Robert Recorde (Grounds of the Artes,
1557), Jacques Peletier (Algebra, 1554) and many more22.
Michael Stifel suggested an alternative system, in which the unknown is repre-
sented by a letter. The number of consecutive letters equals the power, thus x4

would be written as 1AAAA. The idea of representing the unknown by a letter
would, however, not catch on for a few more decades.

Other systems use a symbol that we would refer to as an exponent. Heinrich
Schreiber (also known Grammateus) applied such a notation:

x0 x1 x2 x3 x4 x5 x6 x7

N Pri Se. 3a 4a 5a 6a 7a

Numerus Prima Secunda Tercia Quarta Quinta Sexta Septima

It was also used by, among others, Gielis Vandenhoecke (In Arithmetica,
1545)23. Again, what we see as an exponent is nothing more than an abbreviation
of the name of the power (see fig. 5.3).

In essence, the same system can be found in Rafael Bombelli (L’algebra, 1572,
1579)24, although here a major step has been made in symbolic notation. Bombelli
writes axn as ǎ

n
. A similar system is used by Stevin, who writes axn as a©n .

Problematically, Stevin uses the same notation for decimal numbers. For instance
1©0 3©1 0©2 2©3 stands for 1.302, while 3©1 + 2 means 3x + 2, which could
also be interpreted as 0.3 + 2 (= 2.3)25.

Viète uses letters for the unknown, but he continues to name the exponent
verbatim or in abbreviation. The names he uses for the powers are the Latin equiv-
alents of Pacioli’s names.
Thomas Harriot was the first to use small letters for the unknown (in Stifel’s sec-
ond notation). It is only with James Hume and René Descartes that the system
of exponentiation that we use today came into general use26.

21Latin for the thing. It is the same terminology as Italian cosa. See also J. TROPFKE(1980),
p.377.

22A. MESKENS(1994a), pp.64-66, F. CAJORI(1993), pp.139-147, 164-167, 172-177.
23See P. BOCKSTAELE(1985), esp. pp.17 ff.
24F. CAJORI(1993), pp.123-128.
25On Stevin’s symbolism see A. MALET(2008)
26F. CAJORI(1993), pp.188-209.
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Figure 5.3 Exponentiation in Vandenhoecke’s In Arithmetica, Symon Cock, 1545. Erf-
goedbibliotheek Hendrik Conscience, Antwerpen, R 50.28

The polynomial 9x5 − 7x4 + 5x2 − 3x+ 1 thus becomes

with Pacioli 9.poro.m.7.ce.ce.p.5ce.m.3.co.p.1.no

with the cossists 9 − 7 + 5 − 3 + 1
with Grammateus 9 5a − 7 4a + 5se− 3pri+ 1N
with Stevin 9©5 − 7©4 + 5©2 − 3©1 + 1

with Viète
A plani cubo 9 - A planoplano 7

+ A planum 5 - A3 + 1 N
or A pl.c.9 - A pl.pl.7 + A pl.5 - A3 + 1N

In these notational systems, equations are solved. They were usually reduced
to four known types:

ax = b (and axn = b)
ax2 + bx = c
ax2 + c = bx
ax2 = bx+ c

The transformation of equations into cossic or other symbols had an impor-
tant consequence. By using a notation, even in the semi-symbolic, semi-semantic
form of the arithmetic manuals, the attention of the arithmetic teachers was drawn
to these imperfections. Although the recreational problems from the arithmetic
manuals are founded on a long tradition, they very often rely on implicit assump-
tions or are undetermined27.

27J. HØYRUP(1990b), pp.66-72, cites a problem (p.67) in which the price of a horse has to
be determined. It is, however, incomplete and the price can be any multiple of 11. On equations
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In this period, a major breakthrough was achieved in the theory of equa-
tions. A general algorithm for solving a particular type of third-degree equation
was found. Scipioni dal Ferro (1465-1526), a mathematics professor in Bologna,
had succeeded in finding a general method for solving equations of the type
x3 + mx = n, based on an ingenious substitution of the unknown by two un-
knowns28. As was customary, he kept the method to himself.
In 1535, Niccolo Fontana da Brescia, better known as Tartaglia (the stammerer;
1499-1557), was challenged to solve thirty third-degree equations. Tartaglia, who
had claimed that he was able to solve equations of the type x3 + mx2 = n, suc-
ceeded without problems. Girolamo Cardano (1501-1576) persuaded Tartaglia to
teach him his method, on condition of total secrecy. However, Cardano was not a
man of his word, and published the method in his book Ars Magna (1545).
The method of solution led to new problems, opening up a Pandora’s box inside a
Pandora’s box as it were, with square roots of negative numbers29. The arithmetic
teachers of the time were not aware that they had stumbled upon yet another class
of numbers; numbers which, again, would retain their secrets for some decades to
come.

and algebra in the sixteenth century see also P. FREGUGLIA(2008).
28To solve the equation x3 + px = q (p, q > 0), put t− u = q (1) and tu =

(p

3

)3
(2)

Equations (1) and (2) lead to a quadratic equation with solutions:

t =

√( q

2

)2
+

(p

3

)3
+

q

2
and u =

√( q

2

)2
+

(p

3

)3
−

q

2

The solution of the equation becomes: x = 3√t − 3√u , which is easily checked by substi-
tution.

29Consider the equation x3 = 15x + 4, put t + u = 4 and tu =

(
15

3

)3

= 53

This leads to the quadratic equation t2−4t+125 = 0 with a negative discriminant. The solution
would then be x = 3

√
2 +

√
−121 + 3

√
2−

√
−121. This is a casus irreducibilis. We know there

is a solution: x = 4 (the other solutions are x = −2−
√

3 and x = −2 +
√

3).
One can prove that there are apparently no real solutions if, in the equation x3 = px + q,
27q2 − 4p3 < 0, when in fact there are three real roots! If 27q2 − 4p3 > 0 then the equation
has one real and two complex roots. In other words, with this method one finds the real root if
complex roots are present, but one cannot find any of the real roots if there are three.



Chapter 6

Humanism

6.1 Trait d’union: Bessarion and the humanists

Early in the fifteenth century, long before 1453, the westward exodus of schol-
ars, from the Byzantine Empire to Italy, had already started. This was to give a
decisive impetus to the renewed interest in Classical Antiquity, which had been
manifesting itself in Italy since the fourteenth century. It led to the spectacular
growth of humanist libraries1. In a mediæval library, one would typically find only
Euclid and Archimedes, usually in their Latin translations, whereas in a humanist
library, one would encounter not only Euclid and Archimedes in both Latin and
Greek, but also numerous mathematical texts by other authors.
After the establishment of a chair of Greek in Florence in 1396, the town grew to
become the centre of the study of Greek codices. The most important catalyst for
the study of Greek in Italy was the Council of Florence in 1438-39. The purpose of
this Council was the unification of the Roman and Byzantine Churches. The fine
fleur of Italian humanism attended: Bruni, Traversari, Poggio, Valla and Nicholas
of Cusa2.

Concerted efforts were made to locate further Greek codices. Fra Ambrogio
Traversari, for example, made a tour of the Italian abbeys, while Poggio Bracci-
olino’s search focused on the trans alpine abbeys3.
Giovanni Aurispo (1376-1459) and Francesco Filelfo (1398-1481) travelled to Byz-
antium to report on the state of its libraries and they brought home with them nu-
merous manuscripts. Aurispo, after his second voyage, is believed to have brought
back no fewer than 238 codices, and Filelfo apparently took home some fifty

1See P. KIBRE(1946) and P.L. ROSE(1973).
2J. GILL(1961), pp. 85 ff.
3On these book hunts, see for example P.W.G. GORDAN (1974). On Poggio, see E.

WALSER(1974).

A. Meskens, Travelling Mathematics - The Fate of Diophantos’ Arithmetic, Science Networks. 133
Historical Studies 41, DOI 10.1007/978-3-0346-0643-1_6, © Springer Basel AG 2010
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manuscripts4. With these new acquisitions, the Italian libraries soon became the
most important in the Western world.
It was during the reign of Nicholas V (1397-1455, pontiff from 1447) that the Ro-
man Renaissance began. Nicholas had set himself the task of building the world’s
largest library, equalled only by the ancient library of Alexandria. Moreover, the
fall of Constantinople in 1453 prompted an influx of Greek manuscripts. By 1455,
the Vatican library contained 414 Greek manuscripts, twelve of which were of a
mathematical or astronomical nature. Among these texts is ‘a medium-sized vol-
ume on papyrus, bound in red leather and entitled Arithmetika by Diophantos of
Alexandria’5 and the Tables of Theon of Alexandria6.
Sixtus IV (1414-1484 - pontiff from 1471) continued Nicholas’s library policy and
soon two further versions of Diophantos also found their way to the Vaticana7.

Equally important to the Italian humanist libraries was the private manu-
script collection of Cardinal Basileios Bessarion, the embodiment of the merger be-
tween East and West8. Born into a family of manual labourers in Trebizond on the
Anatolian Black Sea, his intelligence caught the attention of the local metropoli-
tan, who arranged for him to be sent to Constantinople to study. Bessarion would
travel the Peloponnese, explore Neoplatonism under Gemistos Pletho and devote
himself to a broad range of mathematical fields. In Byzantium, he advocated much
needed reforms, inter al. to the future emperor Constantine XII. In view of the
(technical) superiority of the Latin culture, he argued that Constantinople should
attract metallurgists, mechanics, arms manufacturers and shipbuilders from Italy.
His suggestions were however not well received and would never be put into prac-
tice.

In 1437, he was appointed Metropolitan of Nicaea. The following year he
travelled to Italy, to attend the Council of Florence. His countrymen resented his
notion that the Catholic and Orthodox Churches could be reconciled. Pope Eu-
gene IV, on the other hand, appreciated his viewpoints and invested him with the
rank of Cardinal. From 1440, he lived in Italy. It was Bessarion who, in a decisive
way, made mathematics an integral part of the studia humanitatis9. He had an
immense, possibly even the largest, private collection of Greek manuscripts and
mathematical texts, which in 1468 he donated to Venice, where it would become
the nucleus of the Biblioteca Marciana. Among these manuscripts were Greek
codices by Apollonios, Archimedes, Aristarchos, Diophantos and seven books by
Euclid, including not only the Elements but also the Optics and Catoptrics10.

4P.L. ROSE(1976), p.28.
5Vat.Gr. 304. P.L. ROSE(1976), p.37.
6E. MÜNTZ & P. FABRE(1887), p.339, P.L. ROSE(1976), p.37, R. McLEOD(2000), p.9.
7Vat. Gr. 191 and 200, P.L. ROSE(1976), p.38.
8The seminal study on Bessarion is the three-volume treatise by L. MOHLER(1923).

Other studies on Bessarion and fellow-emigrants can be found in J. MONFASANI(1995).
9D. GENEAKOPLOS(1984), p.23 and P.L. ROSE(1976), pp.44-46, 49, 56.

10P.L. ROSE(1976), p.45, L. LABOWSKI(1979), no. 118 in inventory 1474, p.198.
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With the exception of Pappos, his collection contained all classical mathematical
writings.

In collaboration with Cardinal Bessarion (1403-1472), Nicholas V established
an Academy for the study of Greek philology. The aim of the Academy was the
translation into Latin of Greek and Byzantine books. Bessarion was driven by a
certain patriotism and the hope that it would contribute to mustering support for
a new crusade11. Hitherto, the Italians had given preference to corrupted Greek
texts and second or third-hand Arab translations over the more or less immaculate
Byzantine originals (among other things because, since the Schism, the Byzantines
had been regarded as heretics)12.
The Academy consisted of Greeks and members of the Curia alike. Some actually
travelled to Constantinople to learn Greek13.

Bessarion, aided by the Academy and the patronage of scholars, succeeded
in promoting the translation of all major scientific Greek treatises into Latin.

6.2 Diophantos goes north: Regiomontanus

Through his contacts with Cardinal Bessarion, Regiomontanus’ interest in Greek
mathematicians, and Archimedes in particular, grew. Regiomontanus (1436-1476)
was born as Johann Müller in Koenigsberg (present-day Kaliningrad). Aged eleven,
he enrolled at the university of Leipzig, where he would study astronomy and
mathematics. Later, in 1450, he went to the university of Vienna, attracted by the
reputation of Georg Peurbach (1423-1461)14.

In May 1460, Cardinal Bessarion arrived in Vienna on a papal mission to gain
imperial support for the war against the Turks15. Ironically, it was in this period
that the last Byzantine bastion against the Turks, his hometown of Trebizond, fell
(1461). By this time, Bessarion had begun to translate Ptolemy’s Almagest . He
hoped that he could improve on what he felt was an inferior translation by George
of Trebizond16. He invited Peurbach and his student Regiomontanus to travel back

11C.L. STINGER(1985), p.120.
12D. GENEAKOPLOS(1984), p.61.
13D. GENEAKOPLOS(1984), p.17.
14M.H. SHANK(1996), M. FOLKERTS(1996). On Regiomontanus’ mathematical work in Vi-

enna, see M. FOLKERTS(1980) and (1985).
15M. FOLKERTS(2002), p.44.
16George of Trebizond (Trabzon) was one of the most important translators of the Academy.

At the insistence of cardinal Bessarion, he had added a commentary to Ptolemy’s. This com-
mentary was based on, but sometimes also contradicted, Theon of Alexandria’s commentary.
Although there was a twelfth-century version of the Almagest by Gerard of Cremona, George
of Trebizond’s version would become the standard (see D. GENEAKOPLOS(1984), p.19.). The
fact that Bessarion and George of Trebizond were at odds over the topic of Platonism undoubt-
edly clouded Bessarion’s opinion. On this controversy, see for example J. MONFASANI(1976),
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Figure 6.1 Cardinal Bessarion (l) and Regiomontanus (r). From: Hartmann Schedel,
Das Buch der Chroniken und Geschichten. Anton Koberger, 1493. Erfgoed-
bibliotheek Hendrik Conscience, Antwerpen, B 481.

to Italy with him, hoping that, with their assistance, he would be able to finalize
the translation. Peurbach died before Bessarion’s departure, but Regiomontanus
was easily persuaded and joined the Cardinal’s retinue for the following years17.
Regiomontanus finished Peurbach’s Epitomi Almagesti and wrote De triangulis
omni modis libri quinque (Five Books on All Kinds of Triangles). By this time,
Bessarion had taught him fluent Greek.
Some time before 1467, Regiomontanus travelled to Hungary, where he joined the
court of King Matthias Corvinus. Here, he drew up trigonometrical tables and
solved astronomical problems. From 1471 to 1475, he lived in Nuremberg, where
he also opened a print shop. In 1476, he travelled to Rome to take part in discus-
sions on calender reform. It would be his last journey, as he died unexpectedly in
Rome that same year.

The real interest in Diophantos in the West only began in earnest after Re-
giomontanus had visited the Venetian library and had found six of Diophantos’
books in its collections. He wanted to translate them, but only in conjunction
with the other seven. He therefore asked one of his Italian correspondents to en-
quire with the Graecisti in Ferrara about the other volumes, but without success18.

passim.
17On Regiomontanus’ Italian years, see R. METT(1989).
18J.-A. MORSE(1981), p.62.
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Probably in 1464, he gave a series of lectures at Padua University, of which
only the introductory Oratio has come down to us. In this Oratio, he presents his
views on the history of mathematics, with emphasis the continuity of the math-
ematical tradition, as is apparent from the transfer of knowledge from culture to
culture and from language to language. He puts it that mathematics began with
the Egyptians, who had to redivide the banks of the Nile after the annual flooding.
This geometrical practice culminated, after having been transferred to the Greeks,
in the work of Euclid. For arithmetic, he goes as far back as Pythagoras and then
draws a line from Euclid and Jordanus of Nemore to the Renaissance. Shortly
before his 1464 lectures, he had encountered the Diophantos manuscripts, which
suggested to him that the origin of algebra lay in Antiquity. Thus, Diophantos
came to epitomize the transmission of knowledge over the centuries and between
cultures19, although the emphasis on the humanist ideal of the rebirth of classical
knowledge may have prejudiced Regiomontanus in forming his opinion. According
to him, the work of Diophantos contains the “whole flower of arithmetic, the ars
rei et census, which we now refer to under its Arab name of algebra”20.

In his letters to Giovanni Bianchini, Regiomontanus poses problems which
have an unmistakable Diophantine flavour to them. It is doubtful, though, whether
this is a direct consequence of the discovered manuscript, as he had, in 1456,
already posed similar questions21. Two of the problems he presented to Bianchini
were:

find four squares whose sum is again a square22 and find three
squares that are in harmonic proportion.

The further correspondence does not reveal whether Regiomontanus himself was
able to solve the problems, though it seems self-evident he was. It was, for that
matter, customary for mathematicians and arithmetic teachers to present as a
challenge to their peers problems to which they themselves already knew the an-
swer23.

19P.L. ROSE(1976), p.96 and J.-A. MORSE(1981).
20F. SCHMEIDLER(1972), p.46, G. CIFOLETTI(1992), pp.260-261, J.S. BYRNE(2006), p.55.
21M. FOLKERTS(2002), p.414, (1996), pp.105-108 and (1985), pp.207-219. This manuscript

(Plimpton 188) is largely an autograph by Regiomontanus, in which we find Johannes de
Muris’s Quadripartitum numerorum, Gerard of Cremona’s translation of al-Khwārizmı̄’s Al-
gebra and sixty-four problems presumably written in 1456. Among these, we encounter in-
determinate systems of equations and systems with more Diophantine-like problems, such as{

x + y + z = 214
x2 − y2 = y2 − z2 and

{
x + y + z = 116

x2 + y2 + z2 = 4624
and remainder problems.

22This problem is solved by Diophantos by using II.8. If

 x2 + y2 = β2

z2 + w2 = γ2

β2 + γ2 = α2
is true then

x2 + y2 + z2 + w2 = α2 is also true. The system is easily solved by applying II.8 in which
γ = kβ − α, x = ky − β and z = lw − γ.

23See for example A. MESKENS(1994a), pp.81-84.
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Regiomontanus also opened a print shop in Nuremberg24. He had the in-
tention of publishing all mathematical and astronomical treatises that seemed
important to him. To this end, he drew up a publication plan, which he also pub-
lished and which mentions not only Diophantos’ Arithmetika, but also Jordanus of
Nemore’s Arithmetica and Numeris Datis and Johannes de Muris’sQuadripartitum
Numerorum, as well as the anonymous Algorithmus demonstratus25. His untimely
death prevented him from fully implementing his plan.

Decades later, Regiomontanus’ attempt to publish an edition of Diophantos
came to the attention of Wilhelm Holtzman (1532-1576), better known as Xylan-
der, who would become the first to attempt to publish and edit the book.

24A. WINGER-TRENNHAUS(1991).
25M. FOLKERTS(2002), p.413.



Chapter 7

Renaissance or the rebirth of
Diophantos

7.1 Xylander: A sphinx to solve a riddle
Regiomontanus’ discovery remained hidden for about half a century. There are
but few indications that Diophantos was studied during the first half of the six-
teenth century. Yet it was the sixteenth-century interest in ancient texts that led
to his proverbial rebirth. It was, after all, a period when study groups on classical
authors were established. One such group centred around Paolo Manuzio (1512-
1574), the son of the printer Aldus Manutius, who specialized in Greek editions.
In his circle, we find Gian-Vincenzo Pinelli, a bibliophile who owned at least one
Diophantos manuscript, Nicaise van Ellebode1 (ca. 1535-1577), a Flemish student
at Padua University, and Andras Dudith (1533-1589), a Hungarian scholar who
resided in Italy for the Council of Trent2. Dudith left Italy in 1562, after having
been appointed as Bishop of Csanàd. He later became Bishop of Pecs and Sziget,
two cities that, like Csanàd, were located in Turkish-occupied territory. In 1565, he
was sent by Maximilian II as an imperial envoy to Krakow. During this period, he
maintained a lively correspondence with Manuzio’s study group. Two years later,
however, it emerged that he had married, which shocked the Italians to the extent

1Nicaise van Ellebode, or Helbault, came from a poor family in Kassel. He studied at Louvain
University from 1549. In Cardinal Granvelle he found his first patron. In 1552, he began to study
at the Collegium Germanicum in Rome. He subsequently became a teacher at the Academy of
Tyrnau (Hungary), where he met Andras Dudith. During the 1560s, he returned to Italy to study
philosophy and medicine, and later also Greek. In 1577, at the request of Bishop Radéczi, he
moved to Pressburg, where he soon died of the plague. He made several translations of Greek
authors, including Aristotle, Aristophanes and Apollonios, but only one was published (De natura
hominis liber unus, Plantin, Antwerp, 1565; MPM A398, EHC D2286). On van Ellebode, see D.
WAGNER(1973).

2J.-A. MORSE(1981), p.192; on Manuzio, see also P.L. ROSE(1976), pp.190, 194, 196, 198,
218.

A. Meskens, Travelling Mathematics - The Fate of Diophantos’ Arithmetic, Science Networks. 139
Historical Studies 41, DOI 10.1007/978-3-0346-0643-1_7, © Springer Basel AG 2010
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that they ceased all correspondence with him. In 1568, he was excommunicated3.
Previously in Italy, Dudith had managed to locate many of Pinelli’s manuscripts
–some of which he copied– but not the Arithmetika. Around 1570, however, he
wanted to obtain a copy of the work. Apparently, his interest had been aroused by
reading Regiomontanus (most probably the 1464 letter to Bianchini). As he was
unable to contact Pinelli directly, he asked Nicaise van Ellebode to act as an inter-
mediary4. Van Ellebode forwarded the question to Camillo Zanetti in Venice5, who
complied by sendings him a copy. Dudith was convinced he had received a copy of
the Pinelli manuscript, as is confirmed in van Ellebode’s correspondence. However,
the copy cannot be traced to any existing Pinelli manuscript6, so that the Dudith
version was, probably via an unknown copy, derived from a manuscript by Matteo
Macigno, which Camillo Zanetti had compiled in 1560-1565. This manuscript is
based on two progenitors: a fifteenth-century non-Planudean and a fourteenth-
century Planudean manuscript7.

Wilhelm Holtzman (1532-1576), or Xylander in Greek, was a professor of
Greek and logic at the University of Heidelberg. He translated many works, in-
cluding Dio Cassius, Plutarchos and Strabo into Latin. He also translated the first
six of Euclid’s books into German and Michael Psellos’ Quadrivium into Latin.

In October 1571, he paid a visit to some friends at the University of Wit-
tenberg, a call that would not be without consequences. During a conversation
with the mathematics professors Sebastian Theodorich and Wolfgang Schuler, the
topic turned to Diophantos, of whom the latter possessed a corrupted text they
were unable to correct8. On his journey home, Xylander found a solution to one
of the problems the text posed. As he passed through Leipzig, he discussed his
method with Simon Simonio. Simonio and Joannes Praetorius subsequently acted
as intermediaries to ensure that Xylander could borrow the Dudith manuscript in
order to study it in Heidelberg9. In less than three years, Xylander succeeded in
translating the book from Greek into Latin and in publishing the text. The work
not only contains the translation, but also scholia and commentaries by Xylander.
Each type of text has its own type face, which makes it easy to distinguish between
the units. The problems are set in bold Roman type; Planudes’ commentaries carry
the heading SCHOLION and are set in small italics, while his own commentaries
are marked XYLANDER and set in large italics. Wherever Planudes had missed
a mathematical point, Xylander corrected the former’s errors and also digressed
upon the points made by Diophantos. In most cases, however, Xylander felt he

3A. ALLARD(1985), pp. 299, 312.
4P. COSTIL(1935), p.296. Letter of Nicaise van Ellebode to Adriaan van der Myle.
5On Zanetti as a calligrapher and copyist, see R. CESSI(1925).
6See A. ALLARD(1985), with an extensive description of the manuscript and its antecedents.
7A. ALLARD(1982-83), pp.76, 82-83. The manuscript is based on a Mediolanensis Am-

brosianus A91 sup and T Vaticanus gr. 304.
8W. XYLANDER(1575), introduction.
9W. XYLANDER(1575), introduction, A. ALLARD(1985), pp.297-298 and 309-310.
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needed to supplement Planudes’ notes, sometimes even on a different topic10.
In his translation, Xylander freely applies the symbolic notation in use in his re-
gion at that time. However, he also explains the procedures used in his own words.
Let us again take problem II.8 as an example.

II. Divide a square into two squares.

Diophantos puts that if x2 + y2 = 16,
then also y2 = 16− x2 and puts y = 2x− 4.

2N — 4
2N — 4

— 8N + 16
4Q — 8N
4Q — 16N + 16

This has to equal 16−Q or 5Q− 16N ‖ 16,
from which 5Q+ 16 ‖ 16 + 16N ,
This immediately implies the equality of 5Q and 16N and therefore of
5N and 16.

In passing, Xylander also notes that (2n+ 1)2 − (2n)2 = 2n+ 1.

It goes without saying that Xylander’s version would not pass the scrutiny of
contemporary text editions. The syncoptic notation of Diophantos is translated,
without any ado, into symbolism, thus µoβςap δυα becomes 16 − Q and ςβap δ
becomes 2N − 4.
If the Greek text was incomprehensible, he made no attempt to clarify the text,
but simply rendered it in equally incomprehensible Latin. It was only in his com-
mentaries that he solved the unclarities, sometimes with the relevant Greek texts
alongside. For Xylander, an edition was nothing more than the start of a series of
commentaries on the mathematical and philosophical contents. In this sense, he
was an exponent of the old school. However, this is not to minimalize Xylander’s
work. He stood at the cradle of the emergence of critical text edition, and his
work has undoubtedly helped to make Diophantos’ work accessible to a broader
audience. Moreover, the Diophantos manuscripts that were available to him were
corrupted: the numbers were often incorrect and the train of reasoning was hard
to follow. In Xylander’s own words, he had to be a sphinx to solve the riddles
associated with the manuscript11.

10See also J.-A. MORSE(1981), p.199.
11W. XYLANDER(1575), p.94, comment added to III.16 (III.15 in Tannery’s numbering). The

deplorable state of the manuscripts is confirmed by Allard’s research (1980)(1985), who found no
fewer than 300000 errors in thirty-one manuscripts of a text containing only about 58000 words,
which averages out at roughly one error per five words.
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Only two years after Xylander’s publication, Guillaume Gosselin used it for
his own De Arte Magna [. . . ] quae & Algebra et Almucabala, libri quatuor12. Al-
most simultaneously, Diophantos was rediscovered in Italy, not by a philologist,
but by a mathematician. He would give the text another, more mathematical,
interpretation putting literary considerations aside.

7.2 Coincidence of traditions: Rafael Bombelli

Around the time when Xylander was preparing his text edition of Diophantos, a
second Diophantos manuscript came to the attention of another mathematician.
He would open up a new avenue in the history of Diophantine analysis and make
the elusive author known to a broader audience of scholars.
About a century earlier, Regiomontanus had argued that algebra had classical
roots. In his day, however, algebra was a practical art, pursued by arithmetic
teachers and engineers, not by the university-educated audience he was address-
ing. Whereas mathematics scholars had no problem bridging the gap between
the two worlds, most practical mathematicians did, because more often than not
they neither read nor understood Latin. Hence, Regiomontanus’ oratio rather pre-
dictably did not meet with a wide response.
The man who would change this was himself a practical mathematicians. His name
was Rafael Bombelli (1526-1572/73).
Few biographical details are known about Bombelli13. His father was called Anto-
nio Mazzoli, but he changed his surname to Bombelli. Antonio, a wool tradesman,
was married to Diamante Scudiere. The couple had six children, the eldest of
whom was Rafael. Rafael got an education with the engineer and architect Pier
Francesco Clementi. He found a patron in Alessandro Rufini, the later bishop of
Melfi.
In 1549, Rufini obtained the privilege to drain the swamps of the Val di Chiani, in
the Papal States. Bombelli worked on this project from 1551 to 1555, when it was
temporarily suspended. To fill this period of inactivity, he set himself the task of
writing a comprehensive yet accessible algebra book. The material he intended to
use was not new. In some cases, it had already been published or was considered
common knowledge. In his opinion, however, previous books were inadequately
arranged, and he thought it should be possible to unify the various techniques,
rules and constructions that were applied. He wanted the text to be self-contained
and accessible even to those who had had no mathematical education beyond el-
ementary arithmetic. Bombelli began writing his treatise in 1557. By 1560, the
work in Val di Chiani had been concluded, and Bombelli left for Rome, where
he was consulted on the draining of the swamps in Lazio, a persistent source of
malaria since Roman times. As Bombelli recounts, it was during this project that
‘a Greek manuscript, compiled by Diophantos, was found in the Vatican library.

12SBA G4825, MPM a692.2(2) and P. VER EECKE(1926), pp.LXXI-LXXV.
13J.-A. JAYAWARDENE(1963) and (1965); J.E. HOFFMAN(1972), pp.196-197.
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It was shown to me by Antonio Maria Pazzi, public professor of mathematics in
Rome. We have begun the translation and have already finished five of the seven
existing books. We have not been able to finish the others because of other com-
mitments.’14. Shortly after the publication of his Algebra15, which contains these
translations, Bombelli died (1572/73).

Algebra consists of three books, the first two of which deal with algebra while
the third is concerned with number theory. Two further books, dealing with ge-
ometry, were prepared but never published. Algebra is dedicated to Alessandro
Rufini, the Bishop of Melfi and Bombelli’s patron. In his dedication, Bombelli de-
scribes algebra as higher arithmetic, invented in India and introduced in Europe
via Arabia. Remarkably, he also mentions Diophantos, who does not fit into this
picture. This may be due to the fact that he only learnt of the existence of Dio-
phantos after he had written the first draft of his manuscript.
The reference to Diophantos gives Bombelli a strong argument for a reappraisal of
algebra within the field of mathematics. As in the work of Regiomontanus a cen-
tury earlier, it was also an invitation for the Humanists to devote some attention
to the book: by stressing the Greek roots of algebra, he detaches the discipline
from the tradition of craftsmen and arithmetic teachers and brings it into the
realm of humanist scholarship. Yet Bombelli’s experience as an engineer is ap-
parent throughout the work, because he stresses the aspect of problem-solving
methods rather than the underlying mathematical structures or techniques. Be
that as it may, Bombelli brought Diophantos within reach of all mathematicians,
without breaking with the algebraic tradition.

A comparison between the manuscript (most probably dating from 1557-
1560)16 and the published version of the book shows that the discovery of the
Diophantos manuscript influenced Bombelli’s thinking. Books 1 and 2 would re-
main virtually unchanged, but whereas the manuscript version of book 3 consists
entirely in typical arithmetic-teaching problems, this is by no means the case for
the printed version. In the first book, Bombelli introduces terminology and sym-
bolism. Although he attributes his symbolism to Diophantos, he does not deviate
from the Italian conventions for powers. Diophantos’ κυδ becomes primo relato
(the first posed) and κυκ becomes the cube of the power. Bombelli went up to the
twelfth power in this fashion. However, his interpretation is multiplicative, unlike
Diophantos’ additive notation. Whereas the Italian arithmetic teachers used words
like cosa for the unknowns and censo for the power, Bombelli uses terms which
derive from the Diophantine terminology: tanto and potenza.
He also discusses the operations with numbers, including square roots. It is impor-
tant to note that Bombelli appeared to have no objections to using

√
−1 and that

14P.L. ROSE(1976), pp.146-147; R. BOMBELLI(1963) , Algebra sig d 2r-v.
15R. BOMBELLI(1963).
16There are two known manuscripts: one complete (in the library of Bologna) and one con-

taining books 3 and 4 (university library of Bologna). See S.A. JAYAWARDENE(1973).
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he even provided rules for manipulating this kind of number. They are used in the
second book to solve equations. As a curiosity, they are also used as imaginary
tanto to quadratic equations. In solving cubic equations, they are of course en-
countered when dealing with ‘irreducible equations’. In present-day terminology,
he calculates the cubic root of conjugate complex numbers by accepting that they
are again conjugate17.
The practical problems of book 3 have disappeared and have been replaced with
270 other problems, 143 of which were selected from the Arithmetika. The oth-
ers are similar to those originally devised by Bombelli18. The numbers proposed
by Diophantos have more often than not been changed, so we cannot speak of a
translation as such. The initial, linear, problems are intended to clarify the re-
statement of a verbal problem, as a calculation that has been stripped entirely of
the terminology typically applied by arithmetic teachers.
Bombelli’s treatment of systems of quadratic equations begins with Diophantine
problems, but he also refers frequently to methods proposed by Pacioli and Car-
dano. Again, he adds his own problems, in which he does not limit himself to
rational numbers, but also considers irrational square and cubic roots. The inde-
terminate problems have been selected from the first five books of the Arithmetika.
Not only have the proposed numbers been changed, but so too has the method of
solving the problems. Bombelli often adds the general rule, in the traditional ter-
minology of the arithmetic teacher. These are usually word-by-word descriptions
of the algorithms that need to be followed, with references neither to the unknown
nor to the numerical values. In this manner, Bombelli is able to formulate the Dio-
phantine problems more generally. An advantage of this method is that it can also
be applied to algebraic numbers, that is to say numbers with an unknown quantity.

To find two numbers in a given proportion and with a given sum, one proceeds
as follows19:

Add the two numbers of the proportion and divide the given num-
ber [= the sum of the nominator and denominator in a proportion of a
fraction equal to the given proportion] by the sum. Multiply the quo-
tient by both numbers of the proportion and these two products are the
sought after numbers.

Bombelli then gives an example with numbers whose proportion is 2 to 3 and
whose sum is x + 5. By applying the rule, it becomes clear that x + 5 must be

divided by 2 + 3 = 5. The numbers, then, are resp.
2
5

(x+ 5) = 2
(x

5
+ 1

)
and

17I. BASHMAKOVA & G. SMIRNOVA(2000), pp.73-75.
18For a concordance between the problems in Diophantos and Bombelli, see K. REICH(1968).

19R.BOMBELLI (1963), p.321. This procedure amounts to:

{ x

y
=

m

n
x + y = p

.

From which x =
m

n
y ⇒

m

n
y + y = p ⇒ y =

np

m + n
.
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3
5

(x+ 5) = 3
(x

5
+ 1

)
.

Whereas Diophantos considers indeterminate equations in preparation of fur-
ther problems, Bombelli regards them as problems in their own right.
In problem V.16, Bombelli demonstrates he has complete command of the Dio-
phantine methods. This problem asks for three numbers the sum of whose cube
minus any one of those numbers is again a cube.
After Diophantos has found the equations, he must divide 162 into a sum of three
cubes. Diophantos notices that 162 = 125+37 = 125+64−27 = 53 +43−33. The
Diophantos manuscripts state rather enigmatically that ‘we find in the Porisms
that the difference of two arbitrary cubes can be rendered as [. . . ] cubes’. Here,
Bombelli explicitly transforms 37 = 43 − 33 into a sum of two cubes. As he only
uses one symbol for the unknown, his procedure is sometimes confusing20.

Suppose 37 = 43 − 33 = (4− t)3 + (t− 3)3

Now (4− t)3 = 64− 48t+ 12t2 − t3
and (t− 3)3 = −27 + 27t− 9t2 + t3

Replace t by
27
48
t =

9
16
t.

The sum
(

4− 9
16
t

)3

+ (t− 3)3 which has to equal 37.

This equation is simple to solve, as the linear terms cancel each other
out.

And the final result is: 37 = 43 − 33 =
(

40
91

)3

+
(

303
91

)3

Bombelli, therefore, did not just translate Diophantos; he also adapted, edited
and amended the problems, which clearly indicated that he was a match for Dio-
phantos. In a sense, Bombelli did nothing that commentators before him had not
done, yet his approach was boldly new. He refused to be a slave of the text, as
Xylander was. His approach to the Arithmetika is that of a mathematician. If he
needs to clarify, he does so by adding a properly chosen example, in which the
problems faced are solved. He also puts the problems in a wider mathematical
perspective, points out that a typical Diophantine problem has no unique solu-
tion, and gives a general algorithm to solve the problem. It would therefore appear
that Bombelli was the first Renaissance mathematician to fully comprehend and
appreciate the Diophantine corpus. Thanks to Bombelli’s treatment, Diophantine

20See J.E. HOFFMAN(1972), pp. 213-214. The general problem can be solved as follows, using
two unknowns. Put a3 − b3 = (a − x)3 + (y − b)3 and put a2x = b2y (1), then the equation

becomes y3 − x3 = 3(by2 − ax2) (2). From (1) it follows that we can put x =
b2

t
and y =

a2

t
.

Substituting in (2), we find
1

t
=

3ab

a3 + b3
, from which the solution immediately follows. For the

actual problem see: E. BORTOLOTTI(1963), pp.453-454.
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analysis entered a new phase: it was finally placed in the mathematical footlight
again, after slumbering in near-darkness for almost a millennium and a half. Un-
fortunately, Bombelli’s work did not reach as wide an audience as it deserved.
Sometimes, however, quality is more important than quantity, for there was at
least one scholar who read both Xylander and Bombelli. His name was Simon
Stevin, and he was one of the finest mathematicians of his era.

7.3 The great art: Guillaume Gosselin
During the sixteenth century, numerous arithmetic books were published across
Western Europe. As it was cited in Johann Scheubel’s Algebra (1550), Regiomon-
tanus’ view on the history of mathematics and algebra, which afforded a prominent
place to Diophantos, became widely accepted 21. Diophantos’ manuscripts also be-
came known in France. Petrus Ramus refers to them in Schola mathematica (1569),
again with Regiomontanus’ views as a starting point. Ramus’ Schola mathematica
tried to radically alter the history of mathematics by suggesting that there was a
direct lineage leading from Ancient Greece to Western Europe. According to him,
transmission occurred via Byzantium and Italy22.

The first mathematician to use Xylander’s work was, most probably, Guil-
laume Gosselin. Although not well known, Gosselin is a key figure in the de-
velopment of theoretical algebra, which would culminate in the work of Viète.
Biographical data on Gosselin is scarce. We know that he was born in Caen, but
not in which year. He is referred to as ‘young’ in one of the dedicatory poems of
his edition of Tartaglia’s Arithmetica from 1578. This leads Cifoletti to conclude
that he was not yet thirty at the time, implying that he was born after 154823.
He began to work at the court in Paris at a very young age, probably after being
introduced by a relative called Jean Gosselin. Jean Gosselin was a librarian with
the Royal Library and he also served as court mathematician to Margaret de Val-
ois, Queen of Navarre24.

During his time in Paris, Guillaume stayed at the Collège de Cambrai. He
became involved with the Académie de Baïf, a group centred around Jean Antoine
de Baïf (1532-1589) that studied music and mathematics25.
Within this academy and in other intellectual circles, there was a notion – not

21G. CIFOLETTI(1992), p.126.
22J. HØYRUP(1996), pp.114-115, also R. GOULDING (2006).
23G. CIFOLETTI(1992), p 54.
24Sister of Henry III and wife of Henry IV.
25The Académie de Poésie et de Musique was the first French academy to be established by

royal decree. In 1570, Charles IX, Jean Antoine de Baïf and Joachim Thibault de Courville (c.
1530-1581) asked permission to found an academy for the purpose of reviving Graeco-Roman
poetry and music. The academy also had a moralistic undertone, inspired by Neoplatonism. The
link with mathematics lies in Pythagorean philosophy, which puts it that the physical universe
can be rendered as numbers and posits a harmony between the universe and the structure of the
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unlike, mutatis mutandis, that in Italian humanist milieus a century earlier – that
France should take part in the Greek, classical Roman and Italian cultures. The
first reference to Gosselin as a mathematician is in an Oratio (1576, but delivered
in 1575) by Maurice Bressieu (ca. 1546-1617)26. His name is mentioned along-
side several other acquaintances of Bressieu whom the author finds significant to
mathematics in France. Bressieu is believed also to have worked on an edition of
Heron’s writings, on the basis of copies at the Royal Library27.
Gosselin wanted to publish an edition of Diophantos’ work. He is known to have
published three books with the house of Gilles Beys (1542-1595)28, but none on
Diophantos. For the preparation of such an edition, Gosselin seems to have had
access to the otherwise rather closed Royal Library, which possessed a Diophantos
manuscript29. Perhaps this was due to the fact that the edition was to be part of a
larger project, conducted under the patronage of influential individuals such as Re-
naud de Beaune and Auguste de Thou (1553-1617)30, aimed at making the ancient
mathematical corpus more easily accessible to contemporary readers. In his book
De Ratione, Gosselin reveals details of his edition. Apparently, he was entrusted
with the editing task by François Viète, Jacques Cujas (1520-1590)31 and Jacob
Holler32. Through the offices of Cardinal Jacques Davy du Perron (1556-1618)33,
Gosselin obtained a copy of the Vatican Diophantos manuscript. Unfortunately,
Gosselin’s manuscript has not been preserved34.

From the very first pages of his book De Arte Magna (1577), Gosselin refers
to Diophantos and uses some of his problems. Gosselin’s symbolism is closely
related to that of Pacioli, but it is typographically simpler. For powers he uses the
multiplicative form, fully aware that he diverts from Diophantine usage35. The
contents of the first two books is classic for a sixteenth-century algebra book. It
deals withroot calculating, proportions, the rule of three, problems relating to the

human soul. F. YATES(1947), pp.21 and 38, also G. CIFOLETTI(1992), p.57.
26Bressieu became a mathematician at the Collège de France in 1575. In 1586, he was appointed

as the King’s representative to the Holy See. Here, he became steward of the Vatican Library.
27Letter from Gosselin to Bishop Renaud de Beaune (1527-1606), who was maître des requêtes

of the Parisian parliament and a very influential figure at the court.
28Son-in-law of the Antwerp printer Christopher Plantin and head of the Paris branch of the

latter’s firm.
29Probably Parisinus gr. 2380.
30A historian and politician, and a member of an influential French family. He collected material

with a view to the compilation of a history of France.
31A French lawyer and professor with different institutes. He was conseiller au parlement de

Grenoble.
32A lawyer and parliamentarian.
33Confidant of Charles IX, Henry II and Henry IV. He was a Calvinist, but converted to

Catholicism in 1577. He took his vows in 1593 and was appointed to the position of Cardinal
and Archbishop of Sens. He was a member of the Council of Regents (1610).

34G. BACHET(1621), p.4 Ad Lectorem.
35G. GOSSELIN(1577), p.4.
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Figure 7.1 From the introduction of Guillaume Gosselin, De Arte Magna, Gilles Beys,
1577. Erfgoedbibliotheek Hendrik Conscience, Antwerpen, G 4825.

regula falsi36 and the double regula falsi37, and calculating with polynomials38.
The third book is devoted to equations ordered by degree and in second order by
the Diophantine method of solution. After a discussion of equations of the third
degree, he describes selected equations from the Arithmetika, referred to as the
fictitia aequatio. These are indeterminate equations in which an expression is to
be equalled with a square or a cube. His first example is “6x2 + 16 = a certain
square”. His solution is, of course, based on Diophantine methods.

Choose a square for which the root is a binomial in x, e.g. 2x+ 4.
The square of which has to equal 6x2 + 16
We thus find 6x2 + 16 = 4x2 + 16x+ 16, from which x = 8.

Gosselin also uses the binomial 3x − 4 to demonstrate the possibilities and
the limitations of the method.

36Using the regula falsi, the root of an equation is found by substituting two arbitrary numbers.

If x1 gives a difference of f1 and x2 a difference f2 then the solution is x =
x1f2 − x2f1

f2 − f1
.

37The double regula falsi used to solve two simultaneous equations in two unknowns. See J.
TROPFKE(1980), pp.371ff.

38H. BOSMANS(1906), pp.47-55



7.3. The great art: Guillaume Gosselin 149

A second Diophantine method is that of the duplicata aequatio or double
equation (see p. 83), which is used for finding the three terms of an arithmetical
sequence whose terms are squares39.

If the difference is 96, then the terms are x2, x2 + 96 and x2 + 192
The difference between the last two is of course 96.
Now 96 = 4.24 = 6.16 = 8.12 = p.q.

The solution is given by
(
p+ q

2

)2

= x2 +192 and
(
p− q

2

)2

= x2 +96.

With p = 8 and q = 12, we find a negative x2, which is excluded.

With p = 4 and q = 24, we find
(

1
2
.28

)2

= 196 = x2 + 192,

therefore x2 = 4 and x = 2.

Altogether new is that some Diophantine problems –from the atypical first
book– are solved using two unknowns.

Divide 100 into two parts such that a fourth part of the first num-
ber exceeds a sixth part of the second part by 20 (Diophantos I.6).

Call the numbers 1A and 1B then 1A+ 1B = 100 and
1
4
A =

1
6
B + 20.

Therefore 1A =
4
6
B + 80 and, considering that 1A + 1B = 100, we

can equal 1A to
4
6
B + 80, so that

5
3
B + 80 equals 100. If we omit the

unnecessary, we find
5
3
B = 20. We divide 20 by

5
3
, yielding 12, which

is the number B, so that the number A equals 88.

The transition to two unknowns (and implicitly a system of simultaneous
equations) is a deviation from and – in terms of legibility – an improvement on
the original Diophantine solution.
Although Gosselin indicated on more than one occasion that he was preparing an
edition of Diophantos, the project never materialized. Could it be that another
edition interfered with this project? After Xylander’s translation by Bombelli, Dio-
phantos would soon be published in a contemporary mathematical form. Moreover,
Gilles Beys’s father-in-law, Antwerp-based printer Christopher Plantin, had pub-
lished an own version of Diophantos. Perhaps he dissuaded Gilles Beys to market
a rival French edition. And with this, we have arrived in the Low Countries.

39See 3.7, p. 83. See also H. BOSMANS(1906), pp.60-61 and G. CIFOLETTI(1992), pp.129-
130.
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7.4 The marvel is no marvel: Simon Stevin

The first edition to be conceived not so much as a text-critical study, but rather
as a mathematical translation with respect for the original problems was the edi-
tion by Simon Stevin. Stevin was, without any doubt, one of the best practical
mathematicians of his age. Born in Bruges in 1548, he was the illegitimate child
of Anthuenis Stevin and Cathelyne van der Poort. Cathelyne later married Joost
Sayon, a member of a wealthy Bruges mercantile family that traded with, among
other places, the Baltic Region. Stevin worked first at the tax office of the Brugse
Vrije40 and subsequently as a bookkeeper and cashier in Antwerp. His life is rel-
atively easily reconstructed from 1581 onwards. In 1581, he was admitted as a
freeman of Leyden. Here, he developed a friendship with Prince Maurice, who at
that time was studying at Leyden University. From 1584, Stevin would act as a
praeceptor to Prince Maurice for his geometrical studies. Later, he was appointed
as a counsellor. He is the author of several books, some of which were published
posthumously by his son41.
A first productive period in his authorship was during the 1580s. His first book,
Tafelen van interest (Interest tables), was published by Plantin in 1582 in Antwerp.
This was followed the next year by Problematum Geometricorum, published by Jan
Bellerus, also in Antwerp. The religious strife that raged through the Low Coun-
tries prompted Plantin to move his print workshop to Leyden, and it was there that
Plantin published the book that would make Stevin’s name: De Thiende, which
would later appear in a French edition entitled La Disme42. In that same year,
Plantin also printed Dialecticke ofte bewysconst (a book on logic) and L’Arithmé-
tique 43.
L’Arithmétique is a contemporary and competent compilation of sixteenth-century
algebraic knowledge. Much of the material was already known and is compara-
ble to that found in other arithmetic books of the time. However, the book by
Stevin does have a certain originality, as the author explains his new symbolism
for writing unknowns in equations (see par. 5.3) and allows negative coefficients in
equations44. He discusses the equations x2 = ax+b, x2 = ax−b and x2 = −ax+b.
While these equations were also dealt with in other arithmetic books, the latter
only allowed positive coefficients, i.e. x2 = ax+ b, x2 + b = ax and x2 + ax = b.

Appended to L’Arithmétique, we find Stevin’s translation of Diophantos,
which took as its starting point Xylander’s Latin version45 and is comparable in

40The hinterland of Bruges.
41More details about Stevin’s life can be found in E.J. DIJKSTERHUIS(1970) and G. VAN-

DEN BERGHE(2004). On the mathematics in the work of Stevin, see A. MESKENS(1996) and
H.J.M. BOS(2004).

42The Tenth, a book on the use of decimal notation.
43See D. IMHOF(2004).
44H.J.M. BOS(2004).
45One may wonder whether Stevin ever came into contact with Andras Dudith prior to his

publication of Diophantos. In a now untraceable letter from Ortelius to Justus Lipsius, we read:
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Figure 7.2 Stevin’s Diophantos. From: L’Arithmetique, C. Plantin, 1585. Erfgoedbib-
liotheek Hendrik Conscience, Antwerpen, G 10413.

approach to Bombelli’s treatment. Contrary to Bombelli and Gosselin, however,
he does not restrict himself to a selection of problems, but provides a full math-
ematical translation of the first four books of Diophantos’ Arithmetika. The last
two books were added in a later edition of 1625 by Albert Girard. Stevin, in his
own words, explains that he was prevented from translating them by more urgent
business.
Stevin was, for that matter, not interested in producing an accurate translation,
which he felt was, in any case, impossible due to the corruption of the texts. He
was more preoccupied with adapting the problems and solutions to the style en-
countered in the rest of L’ Arithmètique46.
Stevin thus incorporated Diophantos entirely into the algebraic corpus and moved
him away from number theory. He was aware that the problems in books II to IV
are formulated in a general way and often have an infinite number of solutions.
Instead of allowing this, he introduced the numbers that Diophantos merely uses

‘he has told Dudith what he wrote to Plantin about Simon, the mathematician, but Dudith
has not yet replied.’ Dudith had asked Justus Lipsius, the famous Antwerp humanist, to act
as an intermediary to persuade Stevin to come to Breslau. Lipsius was very sceptical about
the ‘mathematician’ (whose name is replaced by asterisks in his published letters), “He is a
mere mathematician [mathematicus erim merus] without any other craftsmanship, indeed, any
knowledge of languages, in short the type one considers more as an applied scientist than as a
theoretician.” Clearly, then, Lipsius is anything but complimentary about Stevin! On Stevin and
Lipsius’ letter to Dudith, see R. DE SMET(2004).

46S. STEVIN(1625), pp.407-408.
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as an example in the problem statement. This way, he succeeds in reducing the
general problem to a particular problem, which of course limits its scope.

If we take problems II.8 and II.9 as an example, we notice how he still de-
mands that the numbers should be rational (commensurables)47.

8. Partons une nombre quarré à sa racine commensurable, comme 16,
en deux semblables quarrez.
Divide a square number that is commensurable with its root, like 16,
into two similar squares.

Let the first number be 1©2 , which makes the second −1©2 + 16.
This is a square that is commensurable with its root whose side we equal
to a number of times ©1 −

√
16, for example 2©1 − 4 and the square is

4©2 − 16©1 + 16.
When reduced, this gives 5©1 equal to 6 and according to the sixty-

seventh problem 1©1 equals
16
5

.

I say that
256
25

and
144
25

are the required squares.
[. . . ]
Note: It is known that one can find an infinite number of right triangles
whose sides are an arithmetical number. If one is asked for the side that

contains the right angle, the root of the said
256
25

is equal to
16
5

and

the other side the root of
144
25

, which is
12
5

, and the hypotenuse will be 4.

9. This ninth question is the same as the eight, but shall be solved in a
different way.

Let the side of the first square be 1©1 and the side of the second square
a number of 1©1 −

√
16, for instance 2©1 − 4.

So the first square is 1©2 and the second square is 4©2 − 16©1 + 16.
The sum of the squares therefore is 5©2 − 16©1 + 16 and, considering

the sixty-seventh problem, 1©1 will equal
16
5

.

So
256
25

and
144
25

are the two required squares, as above.

47What Stevin means by a similar square is a square commensurable with its root. II.9 is
Diophantos’ second solution to the problem. Thus, Diophantos II.9 becomes Stevin’s II.10.
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In the tradition of arithmetic books, Stevin then gives the general rule, e.g. for a
double equation

Rule
One finds two numbers whose product equals the difference of two

given numbers, but on the condition that the square of half their dif-
ference is larger than the smallest given arithmetical number, or, which
amounts to the same, the square of the half of their sum is larger than
the largest given arithmetical number.

Problems that are solved by Diophantos by means of the double equation (see
p. 83) are solved in similar fashion by Stevin, e.g. problem II.12

Find a number which, when 2 and 3 are added, becomes a square.

Suppose the number is 1©2 − 2, then (1©2 − 2) + 2 is a square.
If we add 3 to this number, we find 1©2 + 1. This number has to be
a square. Equal this to the square of 1©1 − 4. Then 1©2 + 1 equals

1©2 + 8©1 + 16 and ©1 equals
15
8

, which solves the problem.

In these first four books, we find one problem that has been literally trans-
lated, and it is not altogether clear why. Was it perhaps overlooked in the manu-
script and subsequently appended under time pressure, perhaps by someone else
than Stevin?
Stevin, on the other hand, succeeded in making a very strong case for his notation.
Although inferior to the notation later introduced by Descartes, it is nonetheless
clearer than the cossic notation. Moreover, this Diophantos edition is the first that,
while faithful insofar as mathematical content is concerned, translates the first four
books into contemporary mathematical terms. To Stevin, the mathematical con-
tent takes precedence over literary criticism. This fresh approach to Diophantos,
unlike the earlier literary edition, was conducive to new mathematical insights.

Girard’s translation (1625) of books V and VI is inferior to Stevin’s, even
though he had access to Bachet’s masterly rendering and edition of Diophantos,
as is apparent from a number of additions by Girard. For example, he sometimes
asks for solutions in the integers instead of the rationals. And he does not always
adhere to Stevin’s notational system, thereby breaking up the unity of the text so
carefully crafted by the latter. Girard uses some of Viète’s solutions in the latter’s
notation. Viète, for his part, had his own particular insights into the meaning of
the Arithmetika.



Chapter 8

Fair stood the wind for France

8.1 Diophantos’ triangles: François Viète and the
New Algebra

François Viète was born in Fontenay-le-Comte in 1540. After an education at the
Franciscan school of Fontenay, he enrolled at the university of Poitiers in 1558
to study civil and canonical law. It took him just one year to obtain a baccalau-
reate and a licence degree, after which he embarked on a successful career as a
lawyer in his hometown. In 1564, he became a secretary to Jean and Antoinette de
Partenay, a position he combined with tutoring their daughter Catherine (1554-
1631) in mathematics. Catherine would later marry Charles de Quellenec. After
a quarrel with her son-in-law, Antoinette moved to La Rochelle, a stronghold of
the Huguenot movement, and Viète followed her. It was here that he came into
contact with figures from highly influential Huguenot circles, including Henry of
Navarre, the later King Henry IV, and his niece Françoise de Rohan, to whom he
became a legal counsellor.

In 1571, Viète went to Paris and became avocat au parlement. Here, he wit-
nessed the St. Bartholomew’s Day massacre, during which Charles de Quellenec,
the husband of his former disciple, was killed. Viète’s pupil Catherine owed her
life to the actions of her brother René de Rohan. Viète himself seems never to
have gotten in any danger: apparently he succeeded in adopting a neutral position
during this time of religious strife1.
In 1573, he was appointed by Charles IX as a member of the parliament of Brit-
tany. He moved to Reims, where he would live for the next seven years. In March
1580, Henry II called him back to Paris to act as a counsellor. However, religious
tensions were still running high in the French capital, including at the royal court.

1According to K. REICH & H. GERICKE(1973) Viète remained Catholic, J.J. O’CONNOR
& E.F. ROBERTSON (s.d.) maintain that he was a Huguenot.

A. Meskens, Travelling Mathematics - The Fate of Diophantos’ Arithmetic, Science Networks. 155
Historical Studies 41, DOI 10.1007/978-3-0346-0643-1_8, © Springer Basel AG 2010
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Viète fell under suspicion of being a Huguenot, and his presence was no longer
desired2.
Viète retreated to Beauvoir-sur-Mer. During his five-year exile there, he had
enough spare time on his hands to devote himself to his favourite pastime: math-
ematics. It is in this period that his most important mathematical ideas began to
take shape.
After a turbulent period in 1587-883, Viète became a counsellor and cryptogra-
pher in the service of Henry IV. As a cryptographer, he was able to decipher an
intercepted letter from the Spanish King and French Pretender Philip III to the
Archduchess Isabella4, which helped Henry thwart Philip’s military plans.
In 1597, Viète went on special leave in his hometown of Fontenay-le-Comte only
to return to his position in Paris barely two years later. In 1602, an exhausted
Viète left the service of Henry IV. He died a year later.

Despite the fact that, as an attorney, he was merely an ‘amateur’, Viète was
one of the great mathematicians and he carried out important work in, among
other fields, the theory of equations. It should be noted that Viète ‘homogenized’
his equations. This means that he reduced all terms of an equation to the same
‘kind’. He would have regarded the equations x3 + x = 8 as x3 + 12x = 23. Thus,
each term in the equation represents a rectangular parallelepiped. In the original
equation, a cube is added to a line to find a line, which he considered absurd. He
distinguished between numbers as numbers and numbers as geometrical entities.
If two numbers are multiplied, the result is a number; if, however, two lines are
multiplied, the result is a rectangle (area).

Viète introduced a method which, by means of an appropriate substitution,
can be used to solve second, third and fourth-degree equations (we ignore the
homogenization here).One may wonder to what extent Viète was inspired by Dio-
phantos’ substitutions (see par. 3.7)

2Due mostly to machinations of the so-called Holy League, which schemed to keep protestants
as far away from power as possible.

3In 1584, Henry of Navarre became the legal heir to the throne, in what would prove to be
the start of a bitter struggle for power. The ensuing war saw several political assassinations. The
principal victims were Henry III and Henry, Duke of Guise. Henry IV eventually ascended the
throne in 1589. He immediately had to contend with a strong Spanish intervention. Not until
1593, when he ‘returned to the Roman Catholic faith’, was he able to enter into Paris. He is said
to have declared ‘Paris vaut bien une messe’. Viète supposedly reconverted around this time,
but it is doubtful whether he was ever a Huguenot in the first place.

4The then governor of the Spanish Netherlands.
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For the equation x2 + bx = c

make the substitution y = x+
b

2
or x = y − b

2
then

y2 = x2 + bx+
(
b

2

)2

⇔ y2 = c+
(
b

2

)2

which immediately gives the value of x.

For the third degree equation x3 + bx2 + cx+ d = 0,

he puts x = y − b

3
yielding the equation

y3 + py + q = 0
A second substitution

y = z − p

3z
which has become the classical substitution for solving third-degree equations,
yields a biquadratic equation in z3

z3 − p3

27z3
+ q = 0

from which z3 = −q
2
±

√(p
3

)3

+
(q

2

)3

.

Viète only uses the positive cube root of z, but it is easily demonstrated that
the six solutions for z yield three different solutions for x.

For the fourth-degree equation, Viète uses the substitution

x = y − b

4
which reduces the general equation to

x4 + px2 + qx+ r = 0

which can be solved using Ferrari’s method.

It goes without saying that finding these substitutions encouraged Viète and
other mathematicians to search for similar substitutions for higher-degree equa-
tions, an undertaking that was, for that matter, doomed to failure.

Inspired by Diophantos’ Arithmetika,Viète suggested that perhaps algebra
could be used to solve geometrical and arithmetical problems5. He intended to

5See J.-A. MORSE(1981), W. VAN EGMOND(1985), P. FREGUGLIA(1989) & (2005) and
H.J.M. BOS(2001).
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explain his reconstruction of the classical solution methods in a series of books
entitled New Algebra.

His approach consisted in three parts: zetetike, poristike and exegetike (or
rhetike), the three consecutive steps in algebraic problem-solving.
Zetetike is the art of translating the problem from a geometrical or algebraic formu-
lation into an equation in one or more unknowns, as in the Arithmetika. Poristike
are techniques for transposing these equations or ratios into other equations or
ratios. These transformations may result in conditions of existence (cf. diorismos)
or in another, more general, problem. Examples of this can be found in Theon of
Alexandria and Archimedes. Exegetike is the way in which algebraic or geometrical
solutions are found from the equations drawn up with zetetike and transformed
with poristike. Viète was, however, unable to provide a classical example of this.

In 1591, he began to work on a project intended to result in a series of books
that together would constitute the Opus restitutiae mathematicae analyseos seu
algebra nova (Book of the restored analysis or new algebra)6. The series was to
consist of ten books, but only seven were ever published.
In one of these books, entitled Zeteticorum libri quinque, Viète turns his attention
to Diophantine problems to demonstrate his new solution method. The book is
undated and it is often encountered in a single volume alongside In Artem Ana-
lyticem Isagoge (1591). Research by Warren van Egmond suggests it was printed
in two parts7. The first eight sections were probably printed by Jamet Mettayer
in Tours, as the paper on which it appears is similar to that used in other books
by this printer. The other sections were printed on a different kind of paper: the
same as was used for De numerosa potestatum resolutione, which was printed in
1600 by David Leclerc.
As we have previously noted, zetetike is the translation of a problem into an equa-
tion. By referring to Diophantos, Viète, much like Regiomontanus and Bombelli
before him, was able to give the topic of his work an aura of respectability and tra-
dition, reaching back to Antiquity. Yet Viète was of the opinion that Diophantos
did not apply zetetike correctly. Diophantos, he argued, failed to solve the general
problem, but instead used specific cases to illustrate his solution procedures. Con-
sequently, the procedure itself tends to be obscured, which would not have been
the case had he worked with kinds rather than specific numbers. Viète proposes
to clarify this in Zeteticorum. Algebra had undergone an evolution since the time
of Diophantos, so that the latter’s text had become unrecognizable. Algebra had
matured, necessitating a reinterpretation of the Arithmetika. About a third of
Zeteticorum was borrowed from Diophantos’ Arithmetika8.

6W. VAN EGMOND(1985), pp.367-368.
7W. VAN EGMOND(1985), p.362.
8See K. REICH & H. GERICKE(1973).
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Viète is not the only reader or commentator to have claimed that Diophantos’s
style is rather obscure. This assessment is in part due to the fact that we are
unable to read the Arithmetika through the eyes of a mathematical contemporary
of Diophantos. The criticism usually relates to three aspects. Although Diophan-
tos promises a general solution, he solves the problem using specific values. If
Diophantos encounters difficulties in using these values, he, without distinction
to the solution of the actual question, first solves an easier problem needed to
solve the original query. For the unsuspecting reader, Diophantos’ approach can
be somewhat enigmatic. The proposed numbers and parameters do indeed lead to
a solution, but the reasoning behind their selection is never explained. The reader
can only guess as to whether or not Diophantos had a general algorithm at his
disposal.
In Viète’s algebraic application, whereby the geometrical approach often confounds
the actual algebra, Diophantos’ problems are resolved in a general way. His struc-
ture of proof is such that there are no specific problems to resolve on the way,
just ordinary equations. Viète does pay a price, though, because what he does is
beyond the realm of Diophantine number theory.

Viète provides a geometrical interpretation to arithmetical problems, often
using rectangular triangles. In Notae Priores (1631), he indicates that two num-
bers (A,B) can produce a Pythagorean triplet (A2 +B2, 2AB

∣∣A2 −B2
∣∣). He also

shows that, if (Z,B,D) and (X,F,G) are Pythagorean triplets, then
(XZ, |FB ±DG| , |BG∓DF |)

is also a Pythagorean triplet9. He frequently uses these properties when solving
Diophantine problems.

Let us consider Viète’s interpretation of Diophantos II.8 (in Viète’s Zeteti-
corum IV.1 10). Viète gives two solutions: the second refers to the Diophantine
solution, while the first is Fibonacci’s. In the latter, he makes use of a number
triangle, i.e. a right-angled triangle with two known sides.

9If a2 = k2 + l2 and b2 = m2 + n2 then
a2.b2 = (k2 + l2)(m2 + n2)

= k2m2 + k2n2 + l2m2 + l2n2

= k2m2 + l2n2 ± 2klmnk2n2 + l2m2 ∓ 2klmn
= (km± ln)(kn∓ lm)

A classical proof for this proposition is given by Bachet in Porism II.7. Diophantos most probably
also uses the proposition in III.65 in which he states that 652 = (32 + 22)(22 + 1) = 42 + 72.
I. BASHMAKOVA & I. SLAVUTIN(1976/77) interpret Viète’s construction as a predecessor to
the multiplication of complex numbers. Although a parallel does exist, their explanation is not
credible. The right triangles may be considered as complex numbers z = b + di and x = f + gi.
The product xz then produces one of Viète’s triangles.
Note that even Fibonacci used a method that is essentially the same as that described here.

10F. VIÈTE(1646), p.62.
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Suppose the square of F has to be divided into two squares.

Choose a right number triangle with hypotenuse Z, base B and
perpendicular D.
The solution is given by constructing the similar right triangle with hy-
potenuse F .
Because Z is to F as B is to the base and D is to the perpendicular,

the base is
BF

Z
and the perpendicular

DF

Z
The sum of the squares of these numbers is the square of F .

If we follow the Diophantine reasoning to divide B2 into two squares,

then we put one side equal to A and the second to B − S

R
A.

The sum of the squares, then, is:

A2 +B2 − 2SAD
R

+
S2A2

R2

which has to equal B2, from which

A2 − 2SAD
R

+
S2A2

R2
= 0

and A =
2SRB
S2 +R2

and as second side

C =

(
R2 − S2

)
B

R2 + S2

With the numbers R and S, we construct the number triangle(
S2 +R2, 2SR,R2 − S2

)
.

So B is to S2 +R2 as A is to 2SR and C to R2 − S2.

To divide 100 into two squares, we make a right number triangle with 4
and 3, which makes the hypotenuse 25, the base 7 and the perpendicular
24. Then 25 is to 7 as 100 is to 28 and 25 to 24 as 100 to 96. Making
the square of 100 equal to the square of 28 plus the square of 96.

Viète always starts from a Diophantine problem, which he proceeds to solve
in a general way, using his own methods and techniques. The homogenization of
equations sometimes forces him to rephrase the problems. It is however clear that
Viète interprets Diophantos in a highly original, geometric fashion.



8.2. Emulating the Ancients: Claude-Gaspar Bachet de Méziriac 161

8.2 Emulating the Ancients:
Claude-Gaspar Bachet de Méziriac

Xylander’s translation of the Arithmetika was conceived neither as a definitive nor
even a correct interpretation. Moreover, his edition of the Greek text was never
published. His addition of commentaries suggests he adhered to the old belief that,
in text editing, the addition of consecutive commentaries can clarify the intention
of the author.
Two generations later, this viewpoint had become obsolete. Consecutive commen-
taries were omitted in favour of a readable, definitive text in Greek as well as in
(Latin) translation. Texts were studied from a philological, historical and mathe-
matical point of view, and unclarities, errors and corruptions were resolved. In this
respect, the text of Arithmetika offers the advantage that it is quite stereotypical,
so that corrections depend primarily on the mathematical insight of the translator
or editor rather than on their philological prowess.

A first attempt at editing the Greek text was undertaken by Joseph Auria,
about whom we know very little. He is believed to have lived in Naples around
1590, where he was renowned as a mathematician11. His name may be derived
from Italian Doria. He translated Heron and Diophantos from Greek into Latin
and edited new translations12 of the books by Autolycus (De Sphaera13), Theo-
dosius of Tripoli14 and Euclid (Phaenomena15).
For his Diophantos edition, Auria wrote a number of preparatory manuscripts16.
In four of these texts, we encounter notes on omissions, and two also contain his
Latin translation17. In the Parisian manuscript, the Greek text appears on the left
side, the Latin translation on the right. Corrections were added in the margins,
with reference to other codices. Auria’s translation makes references to or emends
Xylander’s translation. The manuscript also includes the book on polygonal num-
bers, but here the right-hand side –presumably intended for the translation– has
remained blank. Further contained in this volume is Auria’s Latin translation of
Heron’s Automatopoetica.

11J.J. HOFMAN(1698), lemma JOSEPHUS Auria.
12G. JÖCHER(1960-61) I, p.662.
13Joseph AURIA (ed.) Autolycus, De sphera quae movetur liber, Theodosii Tripolitae, De habi-

tationibus liber; Omnia scholijs antiquis & figuris illustrata; de Vaticana bibliotheca deprompta:
& nunc primum in lucem edita. Josepho Auria. Neapol. Interprete. His additae sunt Maurolyci
annotationes, Apud haeredes Antonij Bladij, Rome, 1587.

14A.J. AURIA (ed;), Theodosius Tripol., De diebus et noctibus in linguam latinam conversi
A.J. Auria [s.l.][s.n.], 1591.

15Joseph AURIA (ed.), Euclides Phaenomenae Post Zamberti: et Maurolyci editionem, nunc
tandem de Vaticana, Bibliotheca deprompta . . . et de Graeca lingua in Latinam conuersa. A
Iosepho. Auria Neapolitano. His additae sunt Maurolyci . . . annotationes. . . , Giovanni Mar-
tinelli, Rome, 1591.

16A. ALLARD(1981a), pp.104-107.
17Parisinus gr. 2380 and Ambrosianus E5inf, see A. ALLARD (1981a).
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The manuscript Ambrosianus E5inf is Auria’s own manuscript. In this version, we
find a list of abbreviations, notes on the plus and minus signs, an alphabetic list
of Greek numerals and their Hindu-Arab and Roman counterparts, as well as the
Book on polygonal numbers, the Arithmetika with the Book on polygonal num-
bers in a Latin translation, and with references to and emendations of Xylander’s
translation. This manuscript is based on manuscripts of the Planudean and the
non-Planudean class18.
Auria’s edition could have become a synthesis of the two classes of Diophantos
manuscripts, alongside the emendations by the humanists. The undertaking was
nearly successful, but unfortunately the manuscript never got to print. Moreover,
Auria was not particularly consistent and rigorous in his reading and solving of
certain difficulties. Remarkably given his reputation, this was more often than not
due to a lack of mathematical intuition. Some of the emendations that Tannery
attributes to Auria may in fact have been made by some of his Humanist col-
leagues, and the circle around Gian-Vincenzo Pinelli in particular.

It was not until 1621 that a new edition of Diophantos saw the light of day. It
would be the single most influential edition, not in the least because it caught the
imagination of mathematicians. Mathematicians were now able to delve deeper
into the number theoretical consequences of many of the Diophantine problems.
The edition was published by Claude-Gaspar Bachet de Méziriac (1581-1638)19.

Claude-Gaspar was born on 9 October 1581 in Bourg-en-Bresse, the son of
Jehan, a judge and counsellor to the Duke of Savoye, and Marie-Françoise de Cha-
vanes. Jehan and Marie-Françoise had at least six children. A year after Marie-
Françoise’s death in 1586, Jehan remarried, but he died shortly after from the
plague. Claude-Gaspar is assumed to have been educated at a Jesuit college, al-
though direct evidence is lacking. He is known to have travelled to Rome and Paris
among other places, but dates are lacking, with the exception of a stay in Paris in
1619-20. During his time in Paris, he had a number of his manuscripts published.
After his sojourn in Italy, Bachet lived in his hometown and in his country mansion
in the nearby commune of Jasseron. It was here, in these familiar surroundings,
that he prepared his publications. He read, consulted and cited a great many au-
thors, from which we may infer that he had access to an extensive library, most
probably his own. In 1612, he had his first book published: Problèmes plaisants et
délectables qui se font par des nombres (Lyons, 1612).
He married Philiberte de Chabeu in 1621, when he was already forty. The couple
would be blessed with seven children.
Bachet was one of the members to be admitted to the august body of the Académie
Française when it was established in 1634. He published not only mathematical
treatises, but also literary work, including Ovid, and his own version of Aesopus. . .

18The ‘descent’ of Auria’s manuscript has been described by A. ALLARD(1981a).
19For a biography of Bachet see C.G. COLLET & J. ITARD(1947).
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Figure 8.1 Bachet’s Diophantos, Drouart, Lutetiae, 1621. Erfgoedbibliotheek Hendrik
Conscience, Antwerpen, G 4803.

For his edition of the Greek version of Diophantos’ Arithmetika, Bachet relied pri-
marily on the manuscript Parisinus 2379(r)20. André Allard was able to verify that
all fillings of lacunae by Bachet also appear in that manuscript. He further made
use of a partial copy of a Vatican manuscript produced by Jacques Sirmond (1559-
1651)21 and of notes that Claude Saumaise (1588-1653)22 made from a manuscript
by Andras Dudith. It goes without saying that he also had at his disposal earlier
printed versions, such as those by Bombelli and Stevin23.
Bachet’s edition of the Arithmetika is preceded by three books of Porisms con-
taining resp. 24, 21 and 19 theorems. These theorems are, on the one hand, an
attempt to reconstruct Diophantos’ Porisms and, on the other, lemmas to support
the solutions of Diophantos’ problems. They were written in a style reminiscent
of Euclid’s arithmetical books.
In Bachet’s Arithmetika, each page is divided into two columns: the left column
contains the Latin translation, the right the original Greek text. Bachet’s com-
ments are added in full. They sometimes provide an explanation of Diophantos’

20See A. ALLARD(1982-83), p.131. See also the stemma in appendix.
21Secretary to Superior General Aquaviva from 1590 to 1608.
22French humanist and philologer who wrote over eighty books. Successor to Joseph Scaliger

at Leyden University (1631).
23C.G. COLLET & J. ITARD(1947), p.37.



164 Chapter 8. Fair stood the wind for France

method or propose new theorems. For example, in a comment on IV.31(p. 240-
242), Bachet notes that any number can be written as the sum of at most four
squares. He then provides a table illustrating this proposition24.

Like all translators and commentators, Bachet considered the Arithmetika
to be algebra, noting that the terminology was essentially algebraic. His identi-
fication of the Arithmetika with algebra led him to study the transformation of
classical algebra into cossic algebra. For generalizations, Bachet relied on the same
techniques as his predecessors. Moreover, he used them very consistently to find
new solutions.
Because he was so apt at applying classical knowledge, his work illustrates one of
the great dilemmas of the humanist project: how true should one remain to the
original? In fact, what Bachet did was to gain an understanding of Diophantos in
order to formulate new theorems that were classical in style, but new in content.
More than once, he succeeded in arriving at more general solutions than those
offered in the Arithmetika.
Bachet not only provided new solutions, he also developed new techniques to ar-
rive at those solutions, and he even added theorems. In this sense, he not only
emulated the classical authors, but actually surpassed them.
In his historical introduction, Bachet struggles with the same question facing ev-
ery editor before and after him: “When did Diophantos live?”. He concluded this
had to be between Hypsikles and Hypatia, but was unable to put forward a more
precise date25. To him, Diophantos could not but have been the father of algebra,
considering that he lived long before Arab algebra came to fruition26.
If the Arithmetika is algebra, then the book must contain the rules of this art
or Diophantos must at least have been familiar with them. On this basis, Bachet
interprets the sentence ‘as is clear to see’, which accompanies a condition, as an
indication of Diophantos’s awareness of these rules.
For example, from I.30 he infers that the rules for solving a quadratic equation
must have been known:

Find two numbers whose difference and product are two given numbers.

It is necessary that the quadruple product of the numbers added to the
square of their difference is a square, as is clear to see.

To us, this condition says no more than that the discriminant of the resulting
quadratic equation must be positive27.

24Upon reading this paragraph, Fermat noted that any number can be written as a sum of at
most n n-gon numbers. This was proved by Lagrange, Legendre, Gauss for squares (n = 4) and
generally by Cauchy.

25C.-G. BACHET(1621), p.iii.
26C.-G. BACHET (1621), pp.iii-iv.
27

{
x− y = V

xy = P
leads to the quadratic equation x2 − V x − P = 0 with discriminant

D = V 2 − 4P .
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Bachet not only identified the Arithmetika with algebra, he also assumed
that algebra belonged to the realm of arithmetic. To Bachet, the Arithmetika
was the art of numbers, not of quantities or geometrical entities. Yet there was
little in the Arithmetika that linked it to classical number theory. For example,
Diophantos allows fractions, whereas classical number theory only allows positive
integers larger than 1.
Bachet introduced new methods that could be applied to integers. In more than one
comment, he looks for ways to reduce the Diophantine solutions to integers and to
find integer solutions using Diophantine methods. Bachet tried to incorporate these
new problems into a tradition, albeit that of merchants’ algebra. When solving an
indeterminate equation, he sometimes asks for an integer solution that refers to the
quality of the unknown, whereby the unknowns may refer to indivisible entities,
such as animals or humans. This reference immediately implies that Bachet linked
the problem to merchants’ algebra and considered it to be an integral part of
classical number theory. Unfortunately for Bachet, not all indeterminate equations
have integer solutions though.
We are inclined, however, to situate the origins of number theory as we know it in
the work of Bachet. The added problems to the Arithmetika are of such a general
nature that they can no longer be seen as being part of recreational mathematics,
nor are they specific enough to be part of merchants’ algebra.
Consider the following example:

Given two numbers that are relatively prime, find a multiple of the
first, which exceeds a multiple of the second with a given number in such
a way that these multiples are as small as possible28.

Unlike Bombelli and Viète, Bachet remained faithful to the classical style, but
evidently went much further in content, so that we can safely say he was a research
mathematician of great stature. His preconditions for working with numbers made
him shy away from Viète’s algebra of kinds.
With Bachet’s edition of the Arithmetika, Diophantine analysis enters the stage of
contemporary mathematics. Ironically, it would be a zealous student of Viète who
would find in it a sheer inexhaustible source of inspiration. His name was Pierre
de Fermat.

28For example, if a, b and a difference c are given numbers, find m and n such that ma−nb = c
in such a way that if m1a− n1b = c then m < m1 and n < n1.



166 Chapter 8. Fair stood the wind for France

8.3 This margin is too small. . .

Born either in August 1601 or in 160729, Pierre de Fermat was the son of Do-
minique de Fermat, a leather salesman, and Claire de Long, a descendant of a
family of lawyers. Pierre would follow in their footsteps. He bought the office of
conseiller au Parlement de Toulouse et commissaire aux requêtes du Palais. Al-
though he had admirable administrative and legal skills, and possessed extensive
philological knowledge, we shall focus exclusively on his no less than extraordinary
contribution to mathematics.
Fermat had little inducement to publish. Like Viète, he was “merely” an amateur
mathematician. It would not be until after his death that much of his work was
published, by his son among others. Fermat had a great respect for the classical
authors, unlike his contemporary Descartes. Yet, ironically, by trying to renew
or continue classical traditions, he gave new directions to mathematical research,
which diverged ever further from the classics.
His first mathematical work was an attempt to translate Apollonios’ treatise on
plane loci. This led him to formulate the same principle as Descartes:

Whenever two unknown quantities are found in final equality, there re-
sults a locus [fixed] in place, and the endpoint of these [unknown quan-
tities] describes a straight line or a curve30.

Fermat came to this conclusion through the algebraic methods, pioneered
by his mentor Viète (and his pupil Marino Ghetaldi), for solving the Apollonian
problems. In his manuscript Ad locus planos et solidos isagoge, Fermat reaches the
conclusion that a first-degree equation represents a straight line. He subsequently
studies second-degree curves and is able to reduce these, by translating or rotating
the system of axis to an equation of an ellipse, parabola or hyperbola.
Unfortunately his treatise was not published until 1679, about forty years after
Descartes’ publication. Yet there is an essential difference between the two theo-
ries: Descartes started out with a curve and found the equation, whereas Fermat
started with the equation and found a curve. Or how, independently of each other,
two Frenchmen studied different sides of the same coin.

29On Fermat’s life and mathematical work, see the seminal M.S. MAHONEY(1994). The
following paragraphs are in large part based on this book.
It has always been held that Fermat was born in 1601. However, Klaus Barner (2001), on the basis
of two documents recently discovered in the archives of Montauban and Beaumont-de-Lomagne,
comes to the conclusion that his birthdate must have been 1607. They show that Pierre de
Fermat’s father Dominique was married twice and that the child Pierre, who was baptized on
August 20, 1601, is the son of his first wife Françoise Cazeneuve, whereas Pierre de Fermat’s
mother is Claire de Long, Dominique’s second wife. The true year of birth 1607/(08) is hinted at
by the last line of the epitaph above Fermat’s tomb, according to which he died on 12 January
1665 at the age of 57.

30Translation by M.S. MAHONEY(1973), p.78.
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Fermat’s significance to mathematics is not limited to analytic geometry.
He also made interesting contributions to proto-infinitesimal calculus. In 1637, he
wrote a manuscript entitled Methodus ad disquirendam maximum et minimum,
in which he tries to find the maxima and minima of certain functions. His idea
was that values of a continuous function only differ very slightly if they are in one
another’s vicinity.

Fermat’s most important contribution to mathematics, though, relates to
number theory. This field had most probably come to his attention through Ba-
chet’s edition of the Arithmetika.

Fermat’s interpretation of the problems is truer to Diophantos than Bachet’s,
except that Fermat allows only integers as solutions. In this way, he detaches Dio-
phantos from algebra, where his predecessors had put him, and puts him in the
realm of number theory. His contribution was initially met with little enthusiasm.
Fermat was, after all, not a member of the mathematical fraternity and the new
direction he was following did not appeal to those who were. More so than in any
other branch of mathematics he was involved in, he remained very secretive about
his findings in relation to number theory.

Many of his contributions appear as “marginal notes” in his copy of Bachet’s
Diophantos. He provides hardly any proofs. We may assume him to have been
able to produce these proofs – or at least to believe he could – but that he always
kept them to himself. Every now and again, he provides a glimpse of a proof in
his correspondence. Only in his letters to Jacques de Billy s.j.(1602-1679)31 did he
reveal his improved methods for solving double equations.

It was only after his father’s death that Samuel de Fermat published Pierre’s
mathematical work. To do so, he had to assemble the dispersed notes and try
to establish some kind of order in them. The first book he had published was a
re-edition of Bachet’s Arithmetika, to which he added his father’s notes. Jacques
de Billy s.j. wrote an appendix, entitled Doctrinae Analyticae Inventum Novum.
It was based on letters Fermat had written to him and in which he had explained
the method for solving Diophantine equations.

In 1643, Fermat presented three problems to Pierre Brûlart de Saint Mar-
tin, with whom he maintained a correspondence on a number topics. One of
his other correspondents on these particular queries was Bernard Frenicle de

31Jacques de Billy was a Jesuit and throughout his life taught mathematics at the colleges of
Reims, Grenoble and Dijon. He became rector of the college at Châlons, Langres and Sens. He
was befriended to Bachet and corresponded with Fermat. In de Billy Fermat found a confidant
whom he trusted and confided some of his proofs to. De Billy published astronomical tables and
made some progress in number theory.
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Bessy32(1605-1675). The problems went as follows:

1. find a right-angled triangle such that the hypotenuse is a square and the sum
of the perpendiculars, or of all three sides, is also a square33.

2. find four right-angled triangles having the same area34.

3. find a right-angled triangle such that the area plus the square of the sum of
the smaller sides is a square.

Brûlart and Frenicle accused Fermat of having posed impossible problems. Fermat
conceded to father Mersenne that the problems were extremely hard to solve and
in the end he provided his correspondents with the answers. Fermat had found a
method for solving double equations and used it to pose and prove new problems.
What this boiled down to was that, once one has obtained a solution, one is able
to construct an infinitude of solutions35. Fermat had unlocked the secret behind
Diophantos’ solutions, rendering his problems uninteresting. He now turned his
attention to the divisibility of integers and the role of prime numbers. Fermat
formulates propositions such as: “Any number can be written as the sum of at
most four squares”. His researches into the properties of square numbers brought
him to the brink of Gauss’s quadratic forms theory. He dedicated much of his time
to equations of the type x2 − py2 = ±1, in which p is no square and x and y are
integers.
Some of the theorems we owe to Fermat – without proof – are

• If p is prime and p is a divisor of a then ap−1 − 1 is divisible by p

• Any uneven prime number can be written in a unique way as a difference of
two squares.

• A prime number of the form 4n+1 can be written as the sum of two squares.
Moreover it can only be the hypotenuse of a unique right triangle, the square
can be a hypotenuse twice, the cube thrice, the fourth power four times etc.

32Frenicle de Bessy was an excellent amateur mathematician who held an official position as a
counsellor at the Court of Monnais in Paris. He corresponded with Descartes, Fermat, Huygens
and Mersenne, mostly, but not exclusively on number theory. He solved many of the problems
posed by Fermat introducing new ideas and posing further questions. See J.J. O’CONNOR and
E F ROBERTSON(2000). On these problems see M.S. MAHONEY(1973), pp.307ff.

33E. BRASSINE(1853), pp.125-126.
34E. BRASSINE(1853), pp. 92-94. In his copy of Diophantos Fermat noticed that an infinitude

of such triangles can be found.
35Fermat wrote a treatise on this topic, which has unfortunately been lost. Undoubtedly the

gist of it is contained in de Billy’s Inventum Novum. Consider the system
{

f(x) = y2

g(x) = z2

and suppose x = m is a solution i.e.
{

f(m) = s2

g(m) = t2
.

Now substitute x by u + m to obtain
{

f(u + m) = F (u) = y2

g(u + m) = G(u) = z2 the constant in F (u) is s2,

while the constant in G(u) is t2, therefore the system is easily solved using Diophantine methods.
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• The equation x2 +2 = y3 has only one solution; the equation x2 +4 = y2 has
two.

• There are no positive integers such that x4 − y4 = z2

• There are no positive integers such that xn + yn = zn

The last proposition, known as Fermat’s last theorem, was a marginal note to
Diophantos’ II.8. Unfortunately, the margin was too small to contain the proof:

Cubum autem in duos cubos, aut quadratoquadratorum in duos qua-
dratos, et generaliter nullam in infinitum ultra quadratum potestatem
in duos eiusdem nominis fas est dividere. Cubus rei demonstrationem
mirabilim detexi hanc margines exiguitas non caperet.

The theorem would torment the minds of the very best and brightest math-
ematicians for centuries to come. Fermat claimed to have an elegant proof – most
probably based on his method of infinite descent and incorrect. He only gave the
proof for n = 4. Euler proved the proposition for n = 3, Legendre and Dirichlet
for n = 5 and Lamé for n = 7. Kummer once thought he had found the proof, but
this was not the case. In fact, it has been suggested that this is the theorem to
have generated the largest number of faulty proofs.
Fermat’s last theorem would not give up its secrets until 1994, when it was finally
cracked by Andrew Wiles36. However, that is yet another chapter in Diophantine
analysis. . .

36A. WILES(1995) and R. TAYLOR & A. WILES(1995). On the attempts to prove Fermat’s
Last Theorem see S. SINGH(1997) and A. ACZEL(1996).
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Coda: Hilbert’s tenth problem

At the turn of the previous century, David Hilbert (1862-1943) was already re-
garded as one of the finest mathematicians of his generation1. He had forced
breakthroughs in the theory of invariants, number theory and geometry2. Hilbert
would, self-evidently, address the International Congress of Mathematics in 1900
on the occasion of the World’s Fair in Paris. He conferred on the subject with his
friends Hermann Minkowski (1864-1909) and Adolf Hurwitz (1859-1919). They
advized him to look ahead towards the future. Organizationally, the Congress was
a disaster, remembered only for Hilbert’s speech. A condensed version appeared in
L’Enseignement Mathématique (1900). The complete version was published in the
Nachrichten (1900) of the Göttinger Wissenschaftsgeselschaft and the following
year also in Archiv der Mathematik und Physik3. The problems Hilbert proposed,
and which he felt needed resolving, came from all fields of mathematics. They dealt
with divergent aspects such as the cardinality of natural and real numbers, the
axiomatization of mathematics and physics, algebraic number theory, geometry,
algebra, and analysis.

The tenth problem goes as follows4:

Entscheidung der Lösbarkeit einer diophantische Gleichung.
(Determination of the solvability of a diophantine equation)

Eine Diophantische Gleichung mit irgend welchen Unbekannten und mit
ganzen rationalen Zahlencoefficienten sei vorgelegt: man soll ein Ver-
fahren angeben, nach welchem sich mittelst einer endlichen Anzahl von

1On David Hilbert and the problems he proposed see: I. GRATTAN-GUINNESS (2000), J.J.
GRAY (2000).

2Grundlagen der Geometrie (1899) contains a new and complete axiomatization of the Eu-
clidean geometry.

3D. HILBERT(1900).
4On this problem, see M. DAVIS & R. HERSH(1973).
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Operationen entscheiden läszt, ob die Gleichung in ganzen rationalen
Zahlen lösbar ist.

The answer to this problem is affirmative for polynomials in one unknown,
because it is possible to determine a lower and an upper bound for the possible
solutions in terms of the coefficients. The answer to the general problem, how-
ever, is negative, as was subsequently proved by Youri Matijasevitch. The proof
was read to the symposium on Hilbert’s Problems of the American Mathematical
Society in 1974. It rests on the fact that there exists a polynomial expression in
thirteen unknowns and with one parameter for which there is no algorithm that
shows whether the equation has solutions for the given value of the parameter.

The proof is not only interesting as a solution to the tenth problem of Hilbert;
it also has deep implications for number theory. For instance, it can now be proved
that there is a polynomial whose non-negative integer values are exactly the prime
numbers.
Goldbach’s conjecture may be reduced to a Diophantine equation. Had Hilbert’s
tenth problem been confirmed, then Goldbach’s conjecture would have been false.
The Riemann hypothesis, too, can be reduced to a Diophantine equation, which
does not actually make it easier to solve.
The most intriguing consequence, however, is that every mathematical theory
comes with at least one Diophantine equation that has no solutions if and only if
the theory is consistent.
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Stemma

Known manucripts with sigels as assigned by P. Tannery and A. Allard. For a de-
tailed description of these manuscripts we refer to the work of A. Allard. Stemma of
Diophantosmanuscripts, see A. Allard (1980), (1981a), (1981b), (1982-83), (1983),
(1984), (1988).

a. Milan, Biblioteca Ambrosiana A91 sup., parchment, fifteenth century.

E. Milan, Biblioteca Ambrosiana E 5 inf., paper, sixteenth century.

M. Milan, Biblioteca Ambrosiana Et 157 sup., paper, thirteenth century.
(Copy of Maximos Planudes. Archetype of the Planudean manuscripts.)

o. Milan, Biblioteca Ambrosiana Q 121 sup., paper, sixteenth century.

d. Krakau, Bibliotheka Jagiellonska 544, paper, sixteenth century.

h. Wolfenbüttel, Gudianus gr. 1, paper, sixteenth century.

hII. Fragment containing problem I.1, part of of h.

q. Firenze, Biblioteca Laurentianus Acquisti e Doni 163-164, paper, sixteenth
century.

B. Venice, Biblioteca Marciana gr. 308, paper, thirteenth century (ff. 1-49 writ-
ten on 16th century paper, 50-254 on 13th century paper).

A. Madrid, Biblioteca Nacional 4678, paper, thirteenth century.

n. Naples, Borbonicus III C17, paper, sixteenth century.

f. Oxford, Baroccianus 166, paper, sixteenth century.

P. Vatican City, Biblioteca Vaticana Palatinus gr. 391, paper, sixteenth century.

O. Oxford Bodleian, Savilianus 6, paper, sixteenth century.
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s. Paris, Bibliothèque nationale Arsenacensis 8406, paper, sixteenth century.

i. Paris, Bibliothèque nationale gr. 2378, paper, sixteenth century.

r. Paris, Bibliothèque nationale gr. 2379, paper, sixteenth century.

S. Paris, Bibliothèque nationale gr. 2380, paper, sixteenth century.

p. Paris, Bibliothèque nationale gr. 2485, paper, sixteenth century.

g. Madrid, Escorial R II 3, paper, sixteenth century.

c. Madrid, Escorial R III 18, paper, sixteenth century.

e. Madrid, Escorial T I 11, paper, sixteenth century.

l. Madrid, Escorial I 15, paper, sixteenth century.

N. Turin, Biblioteca nazionale C I 4, paper, sixteenth century.

b. Vatican City, Biblioteca Vaticana Urbinas Universitatis 102, paper, sixteenth
century.

bII. Fragments of book I, part of b.

u. Vatican City, Biblioteca Vaticana Barberinianus gr. 267, paper, sixteenth
century.

V. Vatican City, Biblioteca Vaticana gr. 191, paper, thirteenth century.

v. Vatican City, Biblioteca Vaticana gr. 200, paper, fifteenth century.

T. Vatican City, Biblioteca Vaticana gr. 304, paper, fourteenth century.

R. Vatican City, Biblioteca Vaticana Reginensis gr. 128, paper, sixteenth cen-
tury.

t. Vatican City, Biblioteca Vaticana Urbinas gr. 74, paper, sixteenth century.

Manuscripts not mentioned by Allard, but which can be found in Jordanus
database:

• Milan, Biblioteca Ambrosiana C263 Inf. Greek.
Many treatises among which

– Diophantus, Prolegomena in Almagestum

– Diophantus, Opera quadeam de mathematicis

Jordanus IMILAC263I

• Leiden, Universiteitsbibliotheek B.P.G. 74 G. Greek.

– Diophantus, Libri arithmetici (excerpt.), Prolegomena arithmetica, A-
rithmeticis excerptum. Incipit: Ek ton tu Diophantu arithmetickon: apo
pantos arithmu tetragonu monados.

Jordanus NLEIUBPG074G

Chapter 10. Stemma
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