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Two of my passions are history and math. Historians often consider mathematics 
separate or at best tangential to their own discipline, while, by contrast, historians 
snuggle up with philosophy and the arts in an intimate embrace. Try this experiment: 
go to the library and randomly select a history book on ancient Greece. The book will 
describe the geopolitical landscape in which Greek culture emerged, the incessant 
feuding between the city states, the wars with Persia, the Peloponnesian war, and the 
Macedonian conquest. Also included in the book will be a section on the influential 
Greek philosophers and philosophical schools. And equally likely is an analysis of 
the artwork that provides a reflection of the times. Most likely, there is no reference 
to mathematical and scientific achievements, and the rare book that does mention 
mathematics and science is very stingy in its offerings. The reader is left to conclude 
that philosophical ideals are the drivers of historical change, the evolution of which 
can be seen in the arts. Mathematical and scientific achievements are mere outcomes 
of the philosophical drivers and not worth mentioning in a book on history. 

There is of course the opposite argument in which one exchanges the positions 
of the mathematician with that of the philosophers. That is, mathematics and science 
are the drivers of historical evolution and in Darwinian fashion philosophies and 
political entities that promote scientific excellence flourish, while those that do not 
fade away. This latter argument provides the perspective for this book. 

The seventeenth century was the bridge between the sixteenth century's coun-
terreformation and the eighteenth century's enlightenment. It was the mathematicians 
who built that bridge as their efforts to settle the geocentric versus heliocentric de-
bate over the universal order resulted in Newton's and Leibniz' invention of calculus 
along with Newton's laws of motion. The mathematicians concluded the debate with 
their demonstration that the planets revolve around the sun along elliptic pathways. 
In a broader context, the outcome of the argument was a scientific breakthrough that 
altered European philosophies so that their nations could utilize their newly found 
scientific prowess. The Ellipse relates the story from the beginnings of the geocentric 
versus heliocentric debate to its conclusion. 

The impact of the debate is sufficient to warrant a retelling of the story. But this 
is not only a story of tremendous political, philosophical, and not to mention scientific 
and mathematical consequences, it is also one heck of a story that rivals any Hollywood 
production. Were we not taken in by Humphrey Bogart and Katherine Hepburn's 
dedication to a seemingly impossible mission in The African Queen! Johannes Kepler 
launched himself on a mission impossible that he pursued with fierce dedication 
as it consumed 8 years of his life. Were we not enthralled by Abigail Breslin as 
her fresh honesty disarmed the pretentious organizers of the Sunshine Pageant in 
Little Miss Sunshine! In the face of the Inquisition as they condemned Bruno to 
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death at the pyre, Bruno exposed the hypocrisy of his sentencers stating, "You give 
this sentence with more fear than I receive it." Such are the elements of this story that 
it is not only significant but also compelling. 

Those somewhat familiar with this story might launch a protest. Given its cen-
trality to man's development, this story has been picked over by many outstanding 
individuals. The result is that there are already many fine accessible books on the topic, 
such as Arthur Koestler's The Sleepwalkers. What does The Ellipse offer? There are 
two offerings. First, the premise above that mathematics and science are the drivers 
of historical evolution directs the historical narrative. There is a true exchange of the 
roles of philosophers and mathematicians from what is evident in the standard his-
torical literature. As with standard history books, this book describes the geopolitical 
environment. But philosophers are given a scant role, while mathematicians assume 
the center stage. Second, this is predominantly a math book with a specific objective. 
The objective is to take the reader through all of the mathematics necessary to de-
rive the ellipse as the shape of a planet's path about the sun. The historical narrative 
accompanies the mathematics providing background music. 

Throughout the book, the ellipse remains the goal, but it receives little attention 
until the very last mathematical section. Most of the book sets the stage, and the 
mathematical props of geometry, algebra, trigonometry, and calculus are put in place. 
Presenting these topics allows for the participation of a wide audience. Basic topics 
are available for those who may not as of yet had an introduction to one or more of the 
foundational subjects. And for those who have allowed their mathematical knowledge 
to dissipate due to lack of practice over several years, a review of the topics allows 
for a reacquaintance. Finally, for those who are well versed and find the exercise of 
deriving the ellipse trivial, enjoy the accompanying narrative. 

Apart from devoting quite a few pages to history, the presentation is unconven-
tional in several respects. The style is informal with a focus on intuition as opposed 
to concrete proof. Additionally, the book includes topics that are not covered in a 
standard curriculum, that is, fractals, four-dimensional spheres, and constructing a 
pentagon. (I particularly want to provide supplementary material to teachers having 
students with a keen interest in mathematics.) Finally, I include linear algebra as a 
part of the chapter that addresses high school algebra. Normally, this material fol-
lows calculus. Nevertheless, calculus is not a prerequisite for linear algebra, and by 
keeping the presentation at an appropriate level, the ideas are accessible to a high 
school student. Once this tool is available, the scope of problems that one can address 
expands into new dimensions, literally. 

There are prefaces in which the author claims their writing experience was 
filled with only joy and that the words came so naturally that the book nearly wrote 
itself. I am jealous for my experience has certainly been different. There were joyous 
moments, but difficulties visited me as well. The challenge of maintaining technical 
soundness within an informal writing style blanketed the project from its inception 
to the final word. Setting a balance between storytelling and mathematics has been 
equally confounding, as has been determining the information that I should park in 
these two zones. Fortunately, I have had the advice of many a good-natured friend to 
assist me with these challenges. I would like to acknowledge my high school geometry 
teacher, Joseph Triebsch, who first introduced me to Euclid and advised me to address 
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the above-mentioned challenges head on. Others who have assisted include Alejandro 
Aceves, Ted Gooley, David Halpern, and Tudor Ratiu. Their willingness to take time 
from their quite busy schedules and provide honest feedback is greatly appreciated. 
Should the reader judge that I have not adequately met the aforementioned challenges, 
it is not due to my not having been forewarned and equally not due to a lack of 
alternative approaches as suggested by my friends. The project did allow me to get 
in touch with old friends, all of whom I have not been in contact with for many 
years. This experience was filled with only joy and more than compensated for the 
difficulties that surfaced during the writing. 

I must also acknowledge my family, Lijuan, Julius, and Amelia, for putting up 
with me. For over a year around the dinner table, they were absolutely cheery while 
listening to my discourses on The Ellipse. I still cannot discern whether they actually 
enjoyed my hijacking of the normal family conversation time and conversion of it to 
lecture sessions or were just indulging their clueless old man. Either way, I am lucky 
and in their debt. 



My first teaching job did not start out too smoothly. I would feverishly spend my 
evenings preparing material that I thought would excite the students. Then the next 
day I would watch the expression on my students' faces as they sat through my 
lecture. Their expressions were similar to that on my Uncle Moe's face when he once 
recalled an experience on the Bataan Death March. How could the lectures that I 
painstakingly prepared with the hope of instilling excitement have been as tortuous 
as the Bataan Death March? To find an answer to this question, I went to the source. 
I asked the students what was going wrong. After 16 years, with the exception of 
one suggestion, I have vague recollection of the students' feedback. After 16 years, 
with the exception of one individual, I cannot remember the faces behind any of the 
suggestions. Concerning the one individual, not only do I have clarity concerning her 
face and suggestion, but I also have perfect recollection of my response. 

The individual suggested that I deliver the lectures in storylike fashion and 
have a story behind the mathematics that was being taught. My response that I kept 
to myself was "you have got to be joking." My feeling was that mathematics was the 
story; the story cannot be changed to something else to accommodate someone's lack 
of appreciation for the subject. This was one suggestion that I did not oblige. And 
while for the most part the other students responded positively to the changes that I 
did make, this student sat through the entire semester with her tortured expression 
intact. 

It is difficult to recall the specifics of something that was said over 16 years ago, 
the contents of a normal conversation remain in the past while we move on. Despite 
my reaction, there must have been some meaning that resonated and continued doing 
so, otherwise I would have long ago forgotten the conversation. Now I see the student's 
suggestion as brilliant and right on target. By not taking her suggestion, I blew the 
chance to get more students excited by mathematics through compelling and human 
stories that are at the heart of mathematics. At the time, I just did not have the vision 
to see what she was getting at. After 16 years, I have once more given it some thought 
and this book is the resulting vision. This is a mathematical story and a true one at 
that. 

The story follows man's pursuit of the ellipse. The ellipse is the shape of a 
planet's path as it orbits the sun. The ellipse is special because it is a demonstration 
of man's successful efforts to describe his natural environment using mathematics 
and this mathematical revelation paved the pathway from the Counter Reformation 
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to the Enlightenment. Man pursued the ellipse in a dogged manner as if a mission 
to find it had been seeded into his genetic code. Through wars, enlightened times, 
book burnings, religious persecution, imprisonment, vanquished empires, centuries 
of ignorance, more wars, plagues, fear of being ridiculed, the Renaissance, the Refor-
mation, the Counter Reformation, excommunication, witchcraft trials, the Inquisition, 
more wars, and more plagues, man leaf by leaf nurtured a mathematical beanstalk 
toward the ellipse. This book examines the development and fabric of the beanstalk. 
It describes the creation of geometry, algebra, trigonometry, and finally calculus, all 
targeted toward the ellipse. 

What are the ingredients that make up a good story? Heroes: They are in this 
story as the book presents a glimpse of the lives of several mathematicians from 
Aristarchus to Leibniz who made significant contributions to the beanstalk. Villains: 
The story of men threatened by progress and doing their best to thwart—being central 
to the story of the ellipse. Struggles: The problem of planetary motion is sufficiently 
vexing to assure some mathematical difficulty, and as the previous paragraph indicates, 
additional struggles result from a tormented history. Dedication: The dedicated effort 
of the contributors is at once admirable and inspiring. Uncertainty: While the book 
reconstructs mathematical history with the certainty that man arrives at the ellipse, 
many contributors had absolutely no premonition of where their contributions would 
lead. This uncertainty is germane to our story. Character flaws: Our heroes were not 
perfect and their mistakes are part of the story. Tragedy: Getting speared in the back 
while contemplating geometry, a victim of one's own insecurity, a burning at the stake 
as a victim of the Inquisition—these are a small sampling of personal tragedies that 
unfold as we follow the ellipse. Triumph: After a tortuous path, this story triumphantly 
ends at the ellipse. What else is in a good story? I dare not get explicit, but it is in 
there. 

With such a great story, one would think that someone had told it before. Indeed, 
the story has been told; the most comprehensive historical presentation is Arthur 
Koestler's distinguished book, The Sleepwalkers. In addition, there are history books 
and excellent biographies of the main contributors, mathematical history books, and 
books covering the various mathematical topics that are contained in this book. So 
what is different about this book? Simply put, the history books only address the 
history, the math books only address the math, and the mathematical history books 
only address the mathematical history. This book is a math book covering the topics 
of geometry, algebra, trigonometry, and calculus which contains a historical narrative 
that sets the context for the mathematical developments. Following my belief that 
separating the disciplines of the history of mathematics and science from general 
history is an unnatural amputation, the narrative weaves the mathematical history into 
the broader history of the times while focusing along the main thread of uncovering 
the ellipse. 

There is a final category of book that readers of this book may be interested 
in, popular books that explain mathematical and scientific theory—books explaining 
general relativity, quantum mechanics, chaos theory, and string theory abound for 
those without the requisite mathematical background. Of necessity, the core is missing 
in these books, the mathematics. Just as love binds two humans in true intimacy, 
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mathematics binds the theorist with evidence. It is difficult to have a true appreciation 
of the theory without the mathematics, which is unfortunate because it keeps the 
general public at a distance from theory. This book takes the reader through all the 
mathematical developments needed to uncover the ellipse, and the reader will become 
truly intimate with the theory. The book delves into the subjects of geometry, algebra, 
trigonometry, and calculus, and once the mathematical machinery is finally assembled, 
we stock the ellipse. 

Mathematicians are explorers. They follow their imagination into new terri-
tory and map out their findings. Then their discoveries become gateways for other 
mathematicians who can push the path into further unexplored territories. Unlike the 
great sea-going explorers of the fifteenth and sixteenth centuries who were exploring 
the surface of a finite earth, the domain of the mathematician is infinite. The sub-
ject will never be exhausted, mathematical knowledge will continue to expand, and 
the beanstalk will keep growing. However, like the great explorers of the fifteenth 
and sixteenth centuries, mathematical journeys may target a specific objective (akin 
to Magellan's circumnavigation of the world) or the consequences of mathematical 
journeys may be fully unrelated to their intentions (akin to Columbus' accidental dis-
covery of a new continent). We can even go one step further; it is possible that some 
mathematical journeys have no intent whatsoever other than to amuse the journeying 
mathematician. 

This book presents mathematics as a journey. There is the intended pathway 
toward the ellipse and there are sojourns along bifurcating branches of the beanstalk 
that are unrelated to the ellipse. The journey passes through the normal high school 
curriculum and calculus. By placing all the subject matter together, it is possible 
to demonstrate relations between what are normally taught as separate disciplines. 
For example, the area of an ellipse, a geometric concept, is finally arrived at only 
after developing concepts in linear algebra and trigonometry; the approach highlights 
the interplay of all the disciplines toward an applied problem. In addition, setting the 
objective of uncovering the ellipse motivates the mathematics. For example, studies of 
motion motivate the presentation of calculus and the fundamental theorem of calculus 
is presented as a statement of the relation between displacement and velocity. The 
sojourns with no apparent relation to the ellipse are undertaken solely because they 
are irresistible. 

The book allows you as a reader to plot your own course in accordance with 
your own purpose. Readers with excellent proficiency in calculus will certainly plot 
their way through the book differently from those who may be a little out of touch 
with their high school mathematics and calculus. And those entirely unfamiliar with 
one or more of the subjects will plot another course altogether. The first section of 
Chapter 2 hosts the main narrative and tells the story of man's pursuit of the ellipse 
beginning with Aristarchus, the first known heliocentrist, and ending with Newton's 
successful unveiling nearly two millennia after Aristarchus. Each subsequent chapter 
begins with a narrative that is pertinent to the mathematical material in the chapter. 
By and large the mathematical material is included for one or more of the following 
reasons. The material is necessary to understand the topic of the chapter and will be 
used in subsequent chapters, or the material presents concrete examples of relevant 
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concepts, or I have just indulged my own fancy and included material that I find 
fun. Sections containing material that falls solely within the last category are clearly 
marked as excursions and may be skipped without compromising your understanding 
of the remaining material. As for the remaining material, plot your course in 
accordance with your own purpose. You may grasp the high-level concepts and move 
on, or for those who want to go through the nitty-gritty, it is in there. Enjoy your 
journey. 



2.1 A STICKY MATTER 

CLASSMATE: Be careful. Take such stands in the classroom only. If you speak like 
that in public, you could be called a heretic. 

KEPLER: My beliefs are my beliefs. I will make no secret of them. 

Kepler and Galileo lived during a time of transition. The church had lost much of its 
authority during the Reformation and answered with the Counter Reformation in an 
attempt to recover its former position. There were several factors contributing to the 
Reformation: nationalism, taxation, and a wayward clergy. The central method of the 
Counter Reformation was that that the church had honed over its 1000-year reign of 
power, fear. 

For centuries the church could afford its excesses. Its position as the sole 
interpreter of scriptures allowed it to control human activity with the threat of eternal 
damnation. The message was simple and not subtle—follow the church's dogma 
toward eternal salvation or suffer unimaginable consequences, not only for the short 
period of your life on earth, but for eternity. And the church proffered vivid descrip-
tions of what the consequences would be so that the unimaginable became images 
that were seared into the minds of medieval Europe. Demons thrusting pitch forks into 
screaming victims, deformed beasts pursuing their victims without mercy, and rings of 
fire forever scorching its victims—these images of hell had been painted in medieval 
churches across Europe. Through fear, the church stifled intellectual development 
throughout the Dark Ages. 

The church maintained its monopoly as the sole interpreter of scriptures through 
two methods. First, the predominant avenue to an education was through church 
seminaries or church-sponsored universities; there were few independent secular 
educational institutions. Second, Latin, which was only taught in the seminaries and 
universities, was the language of the Bible. There were no translations into local 
languages, so the majority of Europeans could only rely upon the church's interpreta-
tion. In 1439, Johannes Gutenberg invented a simple device that would challenge the 
church's monopoly on intellectual activity, the printing press. Soon the Bible would 
be printed and distributed in local languages and the masses would be free to read and 
interpret scriptures for themselves. The Reformation was born, and after recovering its 
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footing, the church responded; it launched the Counter Reformation and unleashed the 
Inquisition. 

The result was chaos as Protestants responded to the Counter Reformation with 
war. The Germanic states that comprised the Holy Roman Empire launched a re-
volt against the church-supported Habsburg dynasty. This spawned the Thirty Years' 
War between Christians. Each side required discipline from their followers. In Italy, 
the church accepted no challenges to its authority and enforced its dogma with the 
Inquisition. Protestants followed suit, enforcing discipline the only way that they 
knew how, with fear. Those who did not agree with the dogma of the leading Protes-
tant clergymen were excommunicated. It was in this environment that the Lutheran 
Kepler and the Catholic Galileo initiated modern science and mathematics, and it 
was in this environment that both were punished for their remarkable accomplish-
ments. 

Is the sun fixed, with the earth and its sister planets revolving about the sun, 
or is the earth fixed with all that is in heaven revolving about the earth? This seems 
to be an innocent question, certainly not a question that would lead to censorship, 
excommunication, imprisonment, torture, and execution on the pyre, with all of these 
indignities sponsored by an institution claiming to show humanity the way to sal-
vation. And yet, the quest to answer this seemingly innocent question catalyzed all 
of these responses within the church. In those times, the church was far more politi-
cally consumed than the present-day church and political motives engendered these 
ugly responses. On the scientific side, the quest to determine the path of the planets 
catalyzed the development of calculus and brought science and mathematics into the 
modern era. This chapter follows the history of the quest in a narrative that addresses 
both political and scientific dimensions. The mathematics presented later in the book 
follows the narrative. 

While there are many potential points to begin this story, we choose to begin with 
Aristarchus (310-230 B.C.), a Greek astronomer and mathematician from Samos. 
Aristarchus is the first individual known to have proposed heliocentricity based upon 
geometric analysis. The analysis contained two components: a method for calculating 
the relative size of the sun and a proposition that distance explains the fixed path of 
the stars from the perspective of a moving earth. This latter proposition explicitly 
addresses what is known as the parallax problem. Detractors of heliocentrism state 
that the stars would not daily appear in the same position as the earth revolves around 
the sun if the earth were to do so. In short order, their argument goes, the stars do 
appear in the same position, so the earth must be stationary. Aristarchus retorts that 
even though the earth moves, the stars appear fixed because the distance between the 
earth and stars is orders of magnitude greater than the comparatively small distances 
that the earth moves. With this argument, Aristarchus confronts man with the scale 
of the universe and how little we are within it, not a very popular notion. 

Aristarchus makes another scaling argument, this one a bit more quantita-
tive with his estimate of the relative size of the sun. This estimate demonstrates 
Aristarchus' grasp of geometry while at the same time illustrating the limitations of 
the instruments used to take astronomical observations. The geometric argument is 
flawless, providing a correct equation, but the measurement of an angle required by the 
equation is far off base. Placing his poor measurement into the formula, Aristarchus 
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calculated that the diameter of the sun was about 20 times that of the earth, whereas 
the sun's actual diameter is on the order of 300 times that of the earth's. Nevertheless, 
Aristarchus is the first to propose that the sun is the significantly larger body, likewise 
not a popular notion. Aristarchus' work in which he proposes the heliocentric model 
did not survive. We can only conjecture that he found it more reasonable that the 
smaller body should orbit the larger body, not vice versa. 

The prefix geo, which finds great use in the English language, has its origins in 
the Greek word ge, meaning "earth." A slight permutation of geo yields ego, which is 
the Latin word for /. The heliocentric universe that Aristarchus proposed was much 
less ego friendly than the geocentric universe that had been accepted since Aristo-
tle. The earth lies precisely in the middle of Aristotle's universe and it is dominant 
everything else, much lighter than the earth, revolves around the earth in perfect cir-
cles. Given man's collective ego, not even the finest snake oil salesman in history 
could have sold Aristarchus' view in Aristarchus' time. The church's response to the 
heliocentric view nearly 1800 years later echoes a response by a contemporary of 
Aristarchus, Cleanthes. Cleanthes was so affronted by Aristarchus that he wrote a 
treatise entitled Against Aristarchus in which he states that "it was the duty of Greeks 
to indict Aristarchus of Samos on the charge of impropriety." The charge of impro-
priety is eerily similar to the charge of heresy that the church would accuse adherents 
of heliocentrism of at a later time. 

Despite Cleanthes' appeals, there is no evidence of court action against 
Aristarchus. In fact, Aristarchus' proposal was firmly rooted in Greek tradition, one 
that respects not only knowledge but also the quest for knowledge. Chaos often begets 
intellectual activity and the percolating cauldron that was Greece fits this pattern. 
Prior to Alexander, there was not an empire or even a monolithic civilization known 
as Greece. On the contrary, Greece was a constellation of city states, each with its own 
distinct culture. Some were ruled by tyrants and others by assembly. Some stressed 
military values, while others stressed arts and learning. What held them together as 
distinctively Greek was a common polytheistic religion, a common language, and 
geographic proximity. Another element binding the Greeks was the common threat 
of Persia, which would place them in temporary alliance. More often than not, when 
external threats diminished, the Greek states would war with one another. 

It was not until Philip of Macedonia united the Greeks that a national entity 
emerged. When Philip's son, Alexander, assumed power and established his empire, 
it was the Athenian culture of arts and knowledge that he exported and transplanted. 
This culture had an unusual tolerance for individual expression, one that resonated 
well with the indigenous inhabitants of the lands that Alexander conquered. The 
Athenian theater tradition demonstrates the high esteem that Athenians held for the 
right of self-expression, provided of course that you were a citizen as opposed to a 
woman, foreigner, or slave. (The latter category was not an insignificant portion of 
the population; at one time slaves comprised 30% of the Athenian population.) 

The Athenians delighted in theater. At the festival of Dionysus, there was a 
tradition of sponsoring four playwrights to showcase their work. A playwright whose 
work was selected for sponsorship received much prestige and the competition to 
be selected was fierce. Even in the midst of war, the Athenians would celebrate the 
festival of Dionysus. During the Peloponnesian War, which was poorly managed by 
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Athenian politicians and drained the city's economy, the playwright Aristophanes 
lampooned the Athenian leadership in his comedy Lysistrata (414 B.C.). In the play, 
the women of both Athens and Sparta, Athens' nemesis, unite to bring an end to the 
senseless war. Their plan is simple; they would deprive their respective males of carnal 
pleasure by going on a sex strike. The men are unable to withstand this denial and 
are driven to a peace treaty. There would be no other political entity until the advent 
of modern democracy that would allow its citizens to openly mock the policies of its 
leadership, particularly when the entity is at war. 

The Greek valued knowledge and learning centers were established throughout 
the lands conquered by Alexander. These learning centers inherited the Athenian 
respect for self-expression. Foremost among all learning centers was the university at 
Alexandria; the city established by and named for the famous conqueror is in Egypt. 
The debt of mathematics to the university at Alexandria cannot be understated. Shortly 
after Aristarchus, Euclid (circa 300 B.C.) wrote his incomparable work The Elements. 

The Elements would be the standard text for mathematics training throughout 
the Middle East and Europe over the next 2000 years. At the age of 40, Abraham 
Lincoln undertook the study of The Elements to exercise his mind and much of our 
modern-day high school mathematics curriculum draws from Euclid's The Elements. 
It is The Elements that cements the axiomatic deductive process that lies at the core 
of mathematics. The Elements begins with a set of definitions that are used through-
out the book. Axioms follow the definitions. Afterward, the text branches out in a 
tree of propositions that engender yet more propositions, but all are derived from 
The Elements' axiomatic roots. 

Aside from Euclid, there were others of tremendous intellectual stature associ-
ated with the university at Alexandria who made lasting contributions to mathemat-
ics. Central to the quest of an understanding of the juxtaposition of the stars, sun, 
planets, and earth are Archimedes (287-212 B.C.), Apollonius (262-190 B.C.), and 
Ptolemy (83-168 A.D.). All of these outstanding mathematicians and scientists were 
thoroughly educated in Euclid's Elements and it permeates their work. All made sig-
nificant contributions beyond The Elements. All were dead wrong in their assessment 
of Aristarchus' thesis. 

The story predates the university at Alexandria. Aristotle had posited the com-
monly held view of the universe's structure. According to Aristotle, the stars, planets, 
sun, and moon float above the earth as these entities are lighter than earth and they 
circulate about the earth through an invisible medium that he coined the ether. The 
earth itself, being the heaviest of all objects, is immovable, fixed within the ether. 
As with many scientific theses that Aristotle posited, this was more of a product 
of fanciful imagination than an actual scientific investigation. And as with many of 
Aristotle's physical theses, it has been thoroughly discredited. Despite the fact that 
he wrote a significant amount on topics that he knew nothing about, Aristotle's sci-
entifically vacant musings became dogma over a 2000-year span. The idolization of 
Aristotle would not happen under the Greeks; indeed, while Greek philosophers may 
have frequently cited Aristotle, the Greek scientists give little mention of him. 

Aside from his theory on the structure of the universe, another of Aristotle's 
theories has significance in the development of calculus. That is his incorrect view 
concerning the motion of falling objects. Aristotle's view is that a heavy object falls 
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faster than a light object. An argument against Aristotle's theory accessible to con-
temporary Greeks was that two objects could be combined into one by fusing them 
together; the combined object would not gain speed in its descent from the separate 
objects. Indeed, just tie a rope around two objects. If Aristotle is correct, the new 
object joined by the rope will fall faster than the separate objects, but it does not. 

Because of Aristotle's prominence in history, it is worthwhile to examine his 
role as a scientist. Aristotle is frequently credited with the development of the scien-
tific method, subjecting a hypothesis to rigorous testing. If this is the case, Aristotle 
never applied the scientific method to his views on the dimensions of the universe, the 
composition of the universe, or the motion of falling objects. Concerning the dimen-
sions and composition of the universe, he had neither the knowledge nor the means to 
subject his views to testing. Concerning the motion of falling objects, an experiment 
whereby objects of different shapes and weights are dropped repeatedly from a fixed 
height allowing the scientist to observe which, if any, objects fall at greater speed 
could have easily been performed. Such an experiment would have shown Aristotle's 
hypothesis to be incorrect. But Aristotle never performed the experiment. As with 
his views on the dimension and composition of the universe, Aristotle proposed them 
without evidence. 

By contrast, Aristarchus, a near contemporary of Aristotle's, only 70 years 
younger, performed a careful geometric analysis and then subjected his analysis to 
experimental measurement. The evidence he gave for his correct conclusion that the 
sun is larger than the earth was accepted and endorsed by the most capable of the 
Greek scientists, Archimedes. We have little record of the more personal aspects of 
his life, and yet personal stories about Archimedes have become a part of mathe-
matical folklore, a tribute to his well-deserved legendary status. The mathematical 
achievements of this man are staggering. The originality of his work and the scope 
of subjects that he investigated placed him years ahead of his contemporaries and 
science would not catch up for another 1800 years. Archimedes left for posterity 12 
works that we know of. He was a consummate problem solver developing brilliant 
methods. Archimedes did not formalize his solutions into theory. But the theory is 
recognizable and the depth of it is amazing. We briefly describe three works. 

In On Floating Bodies, Archimedes determines stable configurations of floating 
bodies. A stable configuration is one that does not drift away from its equilibrium 
position under a disturbance. As an example, a pendulum with its weight directly 
above the pendulum's pivot is in equilibrium but not stable since the weight will 
swing downward upon being disturbed. The pendulum with its weight directly below 
the pivot is in equilibrium and stable. Archimedes examined equilibrium configu-
rations for bodies floating in water and then determined which were stable, that is, 
which would not flip over in the presence of a disturbance. Archimedes correctly as-
serts that the stable configuration of a floating object is the one with the lowest energy 
level. He then proceeds to apply this principle to nontrivial shapes and determines 
their stable configuration. The physical assertion of the stable configuration does not 
explicitly use the term energy for the concept of energy had not yet been discovered. 
Rather, Archimedes poses his work in terms of centers of gravity. The very thought of 
attempting a stability analysis at this stage of intellectual development demon-
strates his creativity and daring. One would not find comparable works for another 
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1900 years, well after the advent of calculus. And arguably, one could cite this work 
to justify Archimedes as the father of integral calculus because he develops methods 
of integral calculus to calculate centers of gravity for nontrivial shapes. 

Again, Archimedes demonstrates his pioneering efforts in physics and calculus 
in his work On Spirals. In this work, Archimedes calculates the velocity of an object 
moving along a prescribed spiral pathway, relates the velocity to lengths of arcs, and 
determines the area that the particle sweeps out between the spiral and a coordinate 
axis. With this work, one could cite Archimedes as the father of differential calculus 
and even go one step further. While he does not formalize it, Archimedes uses the 
fundamental theorem of calculus to relate velocity to length and area. 

Archimedes judges his work by a different standard than those who review 
it with a historical perspective. The work that Archimedes was most proud of is 
On the Sphere and Cylinder, where he determines the formula for the volume of a 
sphere. Perhaps this is because it is such a difficult problem and Archimedes is a 
consummate problem solver, rightfully proud of his problem-solving capacity. The 
method is exceptionally original and once again demonstrates Archimedes' comfort 
with calculus. Indeed, Archimedes also relates the volume of the sphere to the sur-
face area, giving another example of the application of the fundamental theorem of 
calculus. 

It is not too difficult to imagine a historical scenario in which scholars following 
Archimedes' works formalize his problem-solving methods into theory and develop 
calculus long before Newton. But this is not how history happened. On the scientific 
side, Archimedes was far ahead of his time. The number system that Archimedes 
used did not have the counterpart of a zero, making calculations tedious and difficult 
to follow. Even more, algebra had not yet been formalized, and the many complex 
algebraic manipulations that Archimedes executes are difficult to communicate in the 
geometric language of Archimedes' times. In addition, formalization of Archimedes' 
results requires the general concept of a function as well as the concept of a coordinate 
axis system, neither of which was developed in Europe until Rene Descartes in the 
seventeenth century. Archimedes' works do not receive the attention that they merit. 
Perhaps, sadly, they served no other purpose than to dazzle modern historians by 
the stunning capacity of this man to be not only centuries but nearly two millennia 
ahead of his time. Then again, perhaps, as we shall see, they played a more inspiring 
role. 

One further work of Archimedes requires our attention for it is germane to the 
topic of this book. In The Sandreckoner, Archimedes supports the geocentric vision 
of the universe and opposes Aristarchus. Indeed, it is from Archimedes' response to 
Aristarchus that we are aware of Aristarchus' works; as previously noted, the original 
works of Aristarchus in which he expounds his heliocentric theory have been lost. It 
is a pity that Archimedes placed his opposition to Aristarchus in writing. Certainly, 
Archimedes carried significant authority in the intellectual world. His refutation may 
well have influenced others to turn away from Aristarchus. 

The historical route to calculus and the structure of the universe bypasses 
Archimedes and flows through a contemporary, Apollonius. Apollonius was a lec-
turer and researcher at Alexandria. Apollonius' initial impact upon the search for the 
structure of the universe was to point in the wrong direction with a very persuasive 
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finger. He applied his ingenuity toward correcting a flaw in the geocentric universe. 
The stars follow a daily circular motion and maintain their relationship with each 
other. But the Greeks identified objects with curious behavior and assigned the Greek 
word planetoid, meaning wanderer, to these bodies. Aristotle's model does not give 
a convincing description of planetary motion. 

The planets float among the stars, shifting their position. A first attempt to de-
scribe this drifting behavior was to hypothesize that they follow their circular orbits 
around the earth at different speeds than the stars. This appears to be almost correct, 
but there are anomalies. In particular, the planets appear to not be moving at a con-
stant speed and the planets shift their direction on occasion. How could one account 
for this observation? Apollonius salvages the Aristotelian view with a proposition 
that each planet moves in a small circle that rotates about a larger circle. Picture a 
giant circular arch across the sky and a planet being carried across by an invisible 
wheel that rolls over the arch. As the wheel moves along the dominant archway, its 
motion creates a secondary circular path known as an epicycle. The planet follows 
these composite motions. With the correct diameters for the larger arch and smaller 
wheel, as well as correct speeds around each circle, the anomalies could be explained. 
This is what Apollonius had in mind, but he did not carry out the calculations in 
detail. 

Apollonius is best known for his studies of conic sections. These are curves that 
result from the intersection of a plane with a cone. The intersection generates a circle, 
ellipse, hyperbola, or parabola dependent upon the manner in which the intersection 
occurs. Apollonius was not the first Greek to investigate conic sections, but he presents 
the most thorough accounting of their properties. Apollonius also calculated the value 
of pi (so did Archimedes), providing a necessary constant for finding the lengths and 
areas of both circles and ellipses. 

In addition, in his investigations of conies, Apollonius determines the 
tangent line to the surface of the curves, the objective of differential calculus. This 
places Apollonius as perhaps, not the father of differential calculus, but certainly an 
inspirer. Apollonius' interest is purely abstract as he does not show applications for 
any of his works. He could not imagine that the ellipse would supplant his own epicy-
cles as the correct description of planetary motion, but that would be a millennium 
and a smattering of centuries away. 

The weight of authority from both Archimedes and Apollonius was enough 
to crush further investigations into a heliocentric system. Nobody from Alexandria 
followed the direction indicated by Aristarchus. A Babylonian, Seleucus, took up the 
cause of Aristarchus two centuries later (circa 190 B.C.) and presented additional 
arguments in favor of a heliocentric system. However, Seleucus' works received little 
attention. It is noteworthy that Seleucus had adopted Greek culture although he was 
not racially Greek. The acceptance of Greek culture by inhabitants of the lands ruled 
by the Greeks was common and many of the intellectuals in the Greek universities 
were not in fact Greek. 

Ptolemy (83-161 A.D.) was another great ancient scientist who received a Greek 
education but was not Greek. Ptolemy endowed the West with the longitudinal and 
latitudinal coordinate system that is used to locate points on the earth's surface; this 
achievement cements Ptolemy's reputation in the West as the father of geography. 
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His works were widely read and quoted for centuries, particularly by mapmakers and 
navigators. Ptolemy was also a fine mathematician who developed extremely accurate 
trigonometric tables and in doing so demonstrated the level of sophistication in the 
area of trigonometry during his time. 

Central to our story, Ptolemy turned his attention to astronomy and calculated the 
specifics of motion along the larger and smaller wheels as proposed by Apollonius. 
Unfortunately, he found that no matter how he chose dimensions and speeds, he 
could not precisely replicate the motion of the planets as measured and logged at the 
astronomical observatory in Alexandria. The stubbornness and ingenuity of mankind 
in pursuing what is dead wrong are mind boggling. Ptolemy responded by introducing 
two devices, the eccentric and the equant. Ptolemy ever so slightly displaced the earth 
from the center of the universe by assigning the center of a planet's orbit to a point 
that is distant from the earth. Another device was to introduce an equant for each 
planet. The planet's angular velocity about its equant remains constant but as the 
equant is not centered on the earth, the planet's speed about the earth is not uniform. 
Ptolemy's universe is like an organ with its rotating gears moving in precision to 
produce a harmonic outcome. As the observations are not quite so harmonic, take 
a monkey wrench to the machinery and make corrections. One point of note is that 
Ptolemy's mastery of trigonometry was essential to carry out the calculations. And 
over the centuries the calculations became unwieldy. By the time of Copernicus, the 
Ptolemaic universe consisted of 40 epicycles. 

While at first glance this does not look good for Ptolemy, let us look at his 
approach in hindsight from a different perspective. In the early nineteenth century, the 
mathematician Fourier proposed a solution to a difficult set of equations known as the 
heat equations. His solution was an infinite composition of trigonometric functions. 
This caused much controversy because it was unknown if an infinite combination of 
functions had any meaning. As always, controversy in mathematics begets progress 
and Fourier was vindicated; indeed, one can construct a meaningful solution using an 
infinite composition of trigonometric functions. Ptolemy, with his wheel on a wheel 
on a wheel construction of the pathways of planets, was the first individual to attempt 
this. So even though he was dead wrong about the universe, he was years ahead of 
his time in creating functional series expansions. 

Returning to our story, it is in the Ptolemaic universe that Western thought 
stagnates for 1500 years. No further contributions are made toward the question 
of the structure of the universe and planetary motions. Western science is frozen 
in Aristotelian musings, while Aristarchus, Seleucus, and the far-reaching works of 
Archimedes are ignored. What forces are responsible for these sad circumstances? The 
force most immediately responsible for the decline in the pace of scientific progress 
is the Romans. Their march to power did not bode well for the sciences; a Roman 
soldier killed Archimedes. The historian Polybius (200-118 B.C.) recorded the story 
of Archimedes' death and it has become folklore that is retold in nearly every text 
that mentions Archimedes. So here it is. 

It is believed that Archimedes was educated at Alexandria. While in Egypt, 
Archimedes demonstrated his mechanical creativity for there he invented the 
Archimedean screw, a water-pumping device that is still used today. Archimedes' 
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gift with mechanics would be integral to his legendary status. Archimedes did not 
remain in Egypt but left to return to his native city of Syracuse, one of a series of 
cities that the Greeks had established throughout the Mediterranean prior to the days 
of Alexander. 

During the life of Archimedes, a century after Alexander's death, Rome was 
establishing itself as a power within the Mediterranean. Another contender, Carthage, 
battled with Rome for supremacy throughout the Punic Wars. Syracuse was situated 
in between these two powers, trying to ally itself with the unknown victor. At first 
Syracuse lined up behind Rome. Then under Hannibal the Carthaginians gained the 
upper hand; Hannibal led an army that included warrior elephants across the Alps and 
defeated the Romans. At this point, Syracuse as well as other Sicilian cities realigned 
themselves with Carthage. This set the stage for Rome to besiege the cities of Sicily 
when Rome reestablished itself as the stronger power. 

At the time Syracuse was a city state under the leadership of King Hiero. Hiero 
instructed Archimedes to draw up a defense plan against the Roman assault. In this 
task, Archimedes exhibited the same brilliance that he did in his scholarly works. 
He had the advantage of a well-protected city as the city walls had been well placed. 
Facing the sea, the wall abutted the Mediterranean. The remainder of the wall enclosed 
the city along a roughly semicircular path. The semicircular wall was predominantly 
built upon cliffs with few places of safe access. 

Archimedes applied his mechanical ingenuity, which was evident when he 
invented the Archimedean screw. Archimedes designed catapults of various sizes, 
large, mid, and small sized, optimally tuned for different ranges. Midsized and smaller 
sized catapults allowed for quicker reloading as they held lighter projectiles. Aside 
from the range-specific catapults, Archimedes built several cranelike structures that 
could be used to hoist large and heavy objects. The hoisting mechanism consisted of a 
beam that rotated on a pivot. A heavy object was hooked and connected to one end of 
the beam by a rope. A counterweight on the other side of the beam hoisted the object 
using leverage. Archimedes designed a hooking mechanism that has been likened to 
a claw for it could grapple objects that would then be hoisted by the cranes. Finally, 
Archimedes designed short-range weapons that could fire multiple darts with a single 
shot, a sort of ancient machine gun. 

Surveying the land and recognizing that there were few places where the wall 
was accessible, Marcellus, the commanding Roman general, at first decided to attack 
Syracuse by sea. His plan was to breach the walls with a series of ladders carried 
and secured by specially designed boats. The Romans had used this technique on 
cities similar to Syracuse and were confident of easily breaching the city walls by 
reason of overwhelming manpower. Once within the city walls, Roman soldiers with 
spears would operate according to standard procedure: pillage, burn, kill, and rape 
at will. 

On the day of the attack, the Romans approached Syracuse by sea and 
Archimedes' long-range catapults bombarded Marcellus' navy. The vessels that 
survived the initial barrage were then targets for Archimedes' mid- and short-range 
catapults. If a boat reached the city wall, Archimedes' claw grappled the vessel and 
hoisted the vessel into a dangling vertical position, whereupon the vessel was released 
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and smashed into the rocky seashore. All the while, the Roman soldiers were targets 
for shorter range weapons. The result was a resounding victory for the Greeks. 

This was discomfiting to Marcellus and Marcellus decided to attack by land. 
Unfortunately for Marcellus, his analysis that initially caused him to forgo a land 
assault proved to be correct. Archimedes lined up his firepower in a few areas where the 
wall was approachable. The firepower was concentrated, overwhelming, and accurate 
as the Roman army had to pass through the same series of long-range, midrange, and 
short-range weaponry that earlier greeted their navy. A barrage of iron and stone 
projectiles as well as arrows greeted the Roman soldiers who came close to the wall. 
In addition, the claw grappled individual soldiers and dropped them into the rocks 
below. The overall picture for the Romans was very demoralizing. 

Marcellus became prudent; he decided to forgo an assault and dug in for a 
siege embargoing the city and starving it into submission. This was not the preferred 
approach since it pinned down many Roman resources that could otherwise be used in 
further conquest. Furthermore, one never knew how long the supplies of the besieged 
city would last and the uncertainty of the duration of the siege, 6 months, 1 year, 2 
years, or longer, would not be good for one's career. However, Marcellus saw no other 
choice and he set up camp. 

Two and a half years into the siege, the embargo had taken its toll and the 
Syracusans resolve weakened. Marcellus launched an attack along with an order to 
spare Archimedes. The assault was successful, but the order to spare Archimedes was 
not obeyed. One legend has it that Archimedes was steeped in concentration, observing 
geometric figures that he had drawn in a sandbox, when the attack came. A Roman 
soldier entered his home and Archimedes snapped, "Don't disturb my circles." Not 
knowing the man was Archimedes, the soldier executed him by impaling Archimedes 
with a spear. Marcellus honored Archimedes by burying him in accordance with 
Archimedes' wishes. A sphere and a cylinder were engraved on the tombstone to 
commemorate Archimedes' most proud discovery of the formula for the volume of a 
sphere. 

If Archimedes had been at the university, perhaps he could have developed a 
school of followers who would further develop his ideas. Instead, he did the next best 
thing. He sent copies of his works to Alexandria and most likely these were shared 
with other universities. His works were revolutionary and difficult to comprehend. The 
wealth of material that could have been formalized into theory and text was not given 
the attention it merited. Eventually, mathematics would catch up with Archimedes, 
but that would not be for another millennium and a smattering of centuries. 

The Romans cobbled an empire together through fear. Local leaders understood 
that they would submit to Roman authority or suffer retribution. And the Romans were 
not subtle about the form that the retribution would take. Indeed, the standard infantry 
operating procedure described above, burn, pillage, kill, and rape, was meant as an 
intentional warning to those who might waiver in their commitment to Rome. 

In the early days of the Roman Empire, as long as there was willing submission 
to Roman authority and taxes were paid, local leaders could maintain their autonomy. 
Under this arrangement, local religious and cultural traditions continued. If the 
culture had a tradition of learning, as in the case of Alexandria, it could locally 
support a university. Ptolemy lived under Roman rule and the university at Alexandria 
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continued until 415 A.D. But learning and science were never germane to Roman 
culture. Indeed, on the cultural front, the Romans offered next to nothing over the 
500-year span of their empire. The Roman Empire was an exercise in power. Whereas 
the Greeks bequeathed the university system along with a formidable accumulation of 
knowledge, the Romans bequeathed their profane and unenlightened credo of power 
for the sake of power. Within this cultural vacuum, Romans adopted the Christian 
religion. 

Upon adopting Christianity in 312, the Romans assumed a less charitable 
attitude toward their territories. They reversed their previous tolerance for local tra-
ditions, and in 391 the Roman emperor Theodosius prohibited the practice of any 
religion other than Christianity. The prohibition sparked significant unrest as local 
populations were unwilling to forgo their traditional ways. The Roman response to 
this unrest was harsh. What occurred next at Alexandria was emblematic of what was 
happening across the empire. 

The university's library was within the city's pagan temple complex, a place 
where the Alexandrian pagan population sought sanctuary from marauding Roman 
Christians. The library housed the most complete collection of literature within the 
Roman Empire. The library consisted of scrolls that were painstakingly transcribed 
one letter at a time by a professional cadre of scribes. At its largest, the library is 
rumored to have contained 500,000 scrolls. This was before its original burning by 
Mark Antony (48 B.C.), an accident that was brought on by Roman soldiers under 
Antony's command. During the battle between Marc Antony and Cleopatra's rival to 
the throne, her brother Ptolemy, the library was a victim which in modern-day jargon 
would be described as collateral damage. Mark Antony made it up to Cleopatra 
by pilfering 200,000 scrolls from another library, at Pergamum; unfortunately for 
Pergamum, Mark Antony did not find such an enchanting spirit as Cleopatra there. 
Theodosius was not a patron of knowledge or beauty. His decree of 391 instigated 
Christians mobs to destroy pagan institutions. The library at Alexandria and the scrolls 
were not spared. While dedicated teachers tried to continue lecturing at the university, 
the staff eventually disbanded due to harassment through prosecution on the charges 
of heresy. In 415, the university's last remaining scholar-lecturer, a woman by the 
name of Hypatia, was accused of teaching heretical philosophies, assassinated, and 
cremated. 

The mix of politics with faith has been an explosive combination that has turned 
disastrous throughout history. Christianity had moved into the cultural vacuum of the 
Roman Empire and with the fall of the Roman Empire the church would assume an 
even larger political role. Throughout its life at the center of European politics, the 
church would attempt to reconcile its religious inheritance, the message of salvation, 
with its political inheritance, power for the sake of power. All too often, the message 
of salvation became subservient to politics. 

The church was a principal author of the post-Roman political order. The church 
struck a bargain with influential chieftains throughout Europe, and the church would 
legitimize their authority, conferring recognition of divine authority for a ruling class 
of nobility. In exchange the nobility would accept the Christian religion, furnish 
the church with lands and material support for cathedrals and monasteries through 
taxation, and allow the church to establish its own separate governing authority upon 
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church-owned lands. In constructing this political edifice, the church had no com-
punction about sacrificing its moral authority. It explicitly accepted the indentured 
servitude of a landless class to the nobility by legitimizing the institute of serfdom, an 
institute rife with abuses that are contrary to Christian philosophy. Heredity perpetu-
ated the arrangement as an individual's social status was conferred at birth. Through 
its political dealings, the church had become politically dominant, and more so than 
the Romans for from the fall of the Romans until the Reformation the reign of the 
church lasted 800 years. 

Mirroring the social fixed point that the church in league with the ruling class 
had established, the church also established spiritual and philosophical fixed points to 
create a triangle of stability. Spiritually, the church offered the inspirational teachings 
of the Gospels, but intellectually the church inherited little direction. In the thir-
teenth century, the Europeans rediscovered Aristotle, which created a stir among a 
previously intellectually comatose population. Thomas Aquinas was the best known 
promoter of Aristotelian reason. The initial church response was predictable. Aristotle 
was summarily rejected by Pope John I, who in no uncertain terms condemned Aris-
totelian philosophy. But the church could not keep intellectual curiosity at bay and 
the church adapted. By accepting Aristotle's scientific principles and reinterpreting 
his political and ethical philosophies, the church coopted Aristotle and completed the 
final fixed point for their triangle of stability. What was it about Aristotelian science 
as opposed to the far-reaching ideas of Archimedes and Aristarchus that the church 
found attractive? Archimedes and Aristarchus had profound ideas that required fur-
ther investigation. An institution that wishes to maintain the status quo does not want 
individuals following their own inquiry and certainly does not promote such a philos-
ophy. Alternatively, Aristotle offered a comprehensible knowledge of everything. For 
church leadership, Aristotle was simple and intuitive and stifled independent inquiry. 
In one word, this was perfect. The effect on mathematics and science is known to 
all; there was little European progress in either mathematics or science under church 
domination. 

Throughout the Middle Ages, the church maintained a grip on intellectual ac-
tivity through its influence on university education. The university evolved to meet 
church requirements for an educated clergy that could address complex theological 
issues as well as administrative and financial issues. An additional impetus was the 
needs of a growing mercantile class who had educational requirements that the church 
could not fulfill. Both of these sectors worked together to meet their corresponding 
educational requirements. 

Student-funded universities developed as the mercantile class sought 
knowledge beyond theological concerns. In the twelfth century, citizens would seek 
out a knowledgeable individual to teach a topic of interest in exchange for pay. At first, 
the process was ad hoc, and there was no formal administration or location. A natural 
place to hold classes was the old monastery schools that had been established during 
the Gregorian reforms, so the universities evolved out of the church's infrastructure. 
The process expanded both administratively and physically. Buildings were rented 
for the purpose of holding classes and later were owned as universities became their 
own entities. 
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As the infrastructure for the universities was created from church resources, 
the church had significant influence upon university administration that was later 
enhanced. Indeed, several incidents of conflict between local authorities and 
university students caused the student-sponsored universities to seek a form of 
church protection. The most famous incident occurred at the University of Paris in 
1229. The incident began as a dispute between a small group of students and the 
proprietor of a tavern over a tab and eventually snowballed into a full-scale riot 
and strike. After exchanging words, the proprietor and his workers manhandled the 
students and threw them out onto the streets. The next day, the students returned with 
a larger force. A riot ensued and several establishments were damaged or destroyed. 
After the riot, the city police were called upon to punish the offending students 
and things went from bad to worse. The police used unwarranted tactics associated 
with a vigilante force. Rather than conducting an investigation, they chanced 
upon a group of students and killed a few. There was widespread belief among 
the larger student body that the attack was set upon completely innocent students 
and the students called an immediate strike. The university closed its doors for 
2 years. 

The strike prompted university officials to seek church protection from local 
authority; officials believed that students would return with such protection. The 
church responded favorably and upped the ante. Pope Gregory IX, an alumnus of the 
university, issued a papal bull that placed the university under papal authority, and from 
that time onward local officials had no authority over affairs concerning the university 
or its students. In addition, the church financed the university, providing the salaries 
of the staff. As noted above, incidents at other student-sponsored universities caused 
administrators to seek similar protection from the church; the Italian universities at 
Padua and Bologna are examples. These universities remained student funded with a 
significant sphere of influence from the church. 

By the end of the fourteenth century, there were approximately 50 universities in 
Europe. The curriculum at the universities centered on theology, law, medicine, Aris-
totelian science, and mathematics. Concerning mathematics, as long as mathematical 
advances did not conflict with either biblical writings or Aristotelian science, there 
was a significant degree of allowable independent thought. During the twelfth and 
thirteenth centuries Europe played catch up. Indeed, from the ninth century through 
the thirteenth century Arab culture had spawned progress in mathematics, while Eu-
ropeans made no contributions to the field. Translations of Arabic texts, some of 
which had been translated from the original Greek, afforded Europeans access to an-
cient Greek works, contemporary Arab works, and the Hindu Arabic numeric system. 
Euclid's The Elements and Ptolemy's Almagest were among the translated texts. 

The method of translation is of interest. The translations were a multicultural 
effort between individuals of diverse backgrounds. Muslims, Jews, and Christians sat 
side by side rendering an Arab text into a local language and then into Latin. An 
Arab would read a text to a Jew who was perhaps conversational but not literate in 
Arabic. The Jew would then translate the text into the local language (often Spanish) 
and pass it on to a Catholic clergyman. The final translation into Latin was performed 
almost exclusively by a Catholic clergyman. In this manner, the Christian world was 
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brought up to speed in mathematical and scientific endeavors. In Spain, the Jews 
were repaid for their assistance by centuries of discrimination, an Inquisition, and 
forced conversions that finally culminated in the confiscation of Jewish property and 
their wholesale eviction from Spain on the eve of the voyage of Christopher Colum-
bus. Indeed, the seeds of the twentieth-century holocaust were planted in the Middle 
Ages. 

Once up to speed, Europeans began to make contributions of their own. Most 
relevant to the study of motion is the work of Nicola Oresme (1323-1382). Oresme 
studied theology at the University of Paris. He led the life of an academic, an adviser 
to the King, and a clergyman, eventually becoming the Bishop of Liseaux. Oresme 
expanded upon the concept of a coordinate system to associate quantities of physical 
interest, such as position and temperature or position and time. In doing so, Oresme 
proposed the concept of a mathematical function and anticipated the work of Rene 
Descartes who in the seventeenth century would popularize Cartesian coordinates. 
Oresme also discovered the law of motion for an object under a constant force, a 
discovery that is generally attributed to Galileo at the end of the sixteenth century. 
The motion is described by a parabola and Galileo's proof is identical to that of 
Oresme. 

There may have been an opportunity to follow up on the work of Oresme and 
initiate modern science. But Europe would have to wait for Kepler and Galileo two 
and a half centuries after Oresme. Europe was preoccupied by a disastrous four-
teenth century. During this time, instead of pursuing learning, Europe pursued war. 
The Hundred Years' War was a conflict between two households for the throne of 
France, an eastern household and a western household that ruled over England as 
well as parts of Normandy and Brittany. The war was a series of battles with in-
termittent intervals of peace; the first battle was fought in 1337 and the last battle 
was fought in 1453. And aside from the self-inflicted wounds of war, the plague 
of the 1340s ravaged all of Europe. Estimates are that the population of Europe 
fell by between 50 and 70% as a result of the plague. It would take over a century 
for Europe to recover its population. As war and plague consumed all of Europe, 
Oresme's works, like those of Aristarchus and Archimedes, were orphaned and 
abandoned. 

Political division was not confined to the monarchies of France and England. 
While the war between rival claimants to the throne unfolded in France, a similar 
internecine feud consumed the church. For a brief period between 1305 and 1377, 
the papacy resided in Avignon, France. Pope Gregory XI restored the office to its 
original location in Rome, but not before a substantial French influence had taken 
hold. Upon the death of Gregory XI in 1378, a riotous mob demanded that an Italian be 
elected to the office of pope and the cardinals acquiesced. They elected the Neapolitan 
Bartolomeo Prignano, who assumed the name Pope Urban VI. Regret at the choice 
set in and a substantial number of the cardinals who participated in the election of 
Pope Urban VI returned to Avignon and elected a rival pope, Pope Clement VII. The 
awkward situation in which there were two men who laid claim to the position of 
the sole and rightful interlocutor between God and man persisted for nearly 40 years. 
The nations of Europe were divided in their allegiance until the church finally reunited 
behind a single pope in 1415. 
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Plague, wars, and political intrigue were not enough to release Europe from 
the church's triangle of stability. But chaos begot more chaos and the church com-
pounded its problems by leading its flock with complete dereliction. There were two 
directions from which the church was politically vulnerable, nationalism and reason. 
Nationalistic feelings had always been latent within Europe. With the advent of the 
Hundred Years' War, nationalistic sentiment crystallized and allegiance to a nation 
began to displace allegiance to the church. Nationalism would erode the church's 
political fixed point, while reason would call into question church doctrine and erode 
the church's scientific fixed point. Only the church's spiritual message would remain 
intact, but the message would not necessarily be spread by the Catholic church. Kings, 
queens, aristocrats, merchants, and yeomen were at the forefront of the nationalistic 
movement, while a budding university intelligentsia often of the church's own clergy-
men would lubricate the slope away from a church-dominated Europe. The greatest 
impetus for the movement was the church's own delinquency. 

In 1460, a young Cardinal Borgia received a letter of rebuke from Pope Pius. 
The cause of concern was a party that the young cardinal had hosted; his guest list 
included the most enchanting ladies of Siena but curiously did not include their 
brothers, husbands, fathers, or any other male escorts. The cardinal and his fellow 
church brethren were free to enjoy their guests' company. The intercession of the 
pope did not cause Cardinal Borgia to uphold his vows of celibacy as it was publicly 
known that he fathered several children, including one of his own grandchildren. 

Cardinal Borgia became Pope Alexander VI and brought his partying ways to 
Rome. A diarist recorded a party in which the finest harlots of Rome were brought 
in for entertainment. To add merriment through friendly competition, guests were 
encouraged to publicly fornicate and the pope dispensed awards for competitors with 
the most ejaculations. The church had returned Rome full circle to the orgiastic days 
of the Roman Empire with ill portent. 

Another arena in which the church followed Roman precedent was in its policy 
of taxation. For centuries, the church imposed a tax across all of Europe. Taxation was 
unpopular, particularly among the mercantile class, and became a focal point around 
which Martin Luther attacked the church. To be fair, not all the collected taxes were 
spent on debauchery and war or dispensed to garner favor. The impressive cathedrals 
of the Renaissance along with the artworks of Botticelli, Michelangelo, Leonardo da 
Vinci, Rafael, and other accomplished artists were financed through church taxes. As 
impressive as these works are, they afforded little benefit to the citizens of Europe 
whose hard labor financed the efforts. 

The excesses at the top were mirrored throughout the church's hierarchy. It was 
known that priests would proffer absolution in exchange for sex. Imagine a maiden 
presenting herself to her priest to confess a carnal sin and for the father to absolve 
the sin and assure the sinner a pathway to heaven through ecclesiastic intimacy. In 
addition to satiating sexual desire, clergymen also abused their authority to enrich 
themselves. Pursuing an all-too-common intersection between sex and money, more 
than one nunnery had the reputation of being a whorehouse. To augment their income, 
clergymen also sold absolution for any possible crime. Indeed, it was the public selling 
of absolution by the swindler Johann Tetzel, a Dominican friar, that inspired Martin 
Luther to denounce the church. 
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Johann Tetzel traveled between German towns announcing his arrival using 
the methods of a circus publicist. Tetzel would enter the town square alongside 
a team of performing acrobats and men lugging an enormous cross. In addition, 
Tetzel's entourage included an accountant from the church's banker and a sack full of 
indulgences with the pope's seal. An indulgence guaranteed its purchaser a place in 
heaven regardless of past as well as future crimes committed. Tetzel was a fine mar-
keter and most likely he understood the need for price differentiation for his different 
policies; naturally, an indulgence covering future crimes was more expensive than 
one covering past crimes. One could also purchase an indulgence that would present 
a deceased loved one with the key to heaven. The profits from Tetzel's operation 
were split between local clergymen, the church, and the church's bankers, a Catholic 
German family named Fugger. 

The church was so brazen that its activities were public knowledge. A showdown 
between reformers and the church was inevitable. Leading the reformers was Martin 
Luther, who took on the rather out-of-touch Pope Leo X. Luther railed against the 
corruption of the church and the taxes and rallied around nationalism. From a twenty-
first-century perspective, one that is acutely aware of the negative consequences of 
German nationalism, Luther's admonitions to stir German pride are troubling. His 
voice resonated and many potentates of the hodgepodge of Germanic states that 
made up the Holy Roman Empire happily agreed to stop paying taxes to Rome and 
join the Protestant cause. Wholesale massacres of Catholic clergymen along with 
confiscation of property accompanied the Protestant revolution that occurred in the 
1520s. 

One consequence of the change in allegiance is that Protestant mercenaries who 
had joined the Spanish king's army, Charles V, in a church-inspired effort against the 
French under King Francis, turned against the church and sacked Rome. The sacking 
occurred in 1527 and these Protestants' ancestors, who had sacked Rome a millennium 
earlier, the Goths, and Teutonics, would have been proud of their progeny. Women 
were raped, buildings were burned, and wealth was stolen. The sacking of Rome was 
the symbol of the end of church dominance in Europe. 

Luther was a populist. While his counterparts on the side of the church pro-
nounced their edicts in Latin, Luther published in Latin as well as vernacular German. 
Of great assistance to Luther was the invention of the printing press and the maturing 
of a publishing community. Prior to the technical capacity for spreading one's mes-
sage, it is doubtful that a challenge to the church was possible, even with the church 
in such a sordid state. 

There are times when humanity collectively feels something in the air—that 
something big is going to happen. Those remembering the end of the cold war might 
know the feeling, a sense of anticipation that there will be a momentous shift in 
the international order. The national choir of the Soviet Union, the Godless state 
that was America's nemesis for nearly a century, came to entertain the nation's elite 
in Washington's Lincoln Center and sang, "God Bless America." Members of the 
audience at first stared in a stupor of disbelief and then cried; the cold war ended 
that night. Europe began the sixteenth century with a similar sense of anticipation. 
Renaissance painters brought the arts to its greatest level. The age of explorers was in 
its prime. Vasco da Gama pursued Africa to its bottom and opened a route to the Orient. 
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Christopher Columbus discovered a new continent to the west and soon Magellan's 
men would circumnavigate the globe. The church was lax and the Reformation would 
stir. In the year 1500 Nicolaus Copernicus, while completing his doctoral studies in 
law, followed his true passion with astronomy by observing a lunar eclipse. He then 
proceeded to eclipse Aristotle and illuminate the true scientific heritage of the Greeks. 
This was the most momentous and revolutionary achievement of the sixteenth century; 
henceforth, science would be where man would search for answers. 

Nicolaus Coppernic (1473-1543), better known by his Latinized name Coper-
nicus, was the first European to join Aristarchus. At the age of 10, Copernicus' ma-
ternal uncle became the legal guardian of the young Nicolas and his three orphaned 
siblings. Copernicus' father left behind sufficient funds to assure that the children 
were not wanting and the uncle, Lucas Waltzenrode, was a supportive man. Few men 
in Europe could have afforded the education that Copernicus received. In Poland, he 
studied at the University of Krakow. Upon completing his studies, good old Uncle 
Waltzenrode secured Nicolaus a lifetime appointment as church canon. The appoint-
ment included a comfortable stipend. In 1496, Copernicus went for further studies in 
Italy at Bologna, Padua, and Ferrara. Copernicus was a role model for the modern-day 
professional student, spending perhaps 14 years in higher education. In Renaissance 
fashion, Copernicus studied broadly, taking courses in law, the classics, and medicine, 
but it was his studies in mathematics and astronomy that were his passion. 

Upon departing Italy in 1503, Copernicus became a secretary to his uncle, who 
was by then the bishop and governor of Warmia, an autonomous state within Polish 
Prussia. Copernicus' duties included judging legal cases and performing administra-
tive functions for the church. Copernicus also spent time attending to the sick, often 
without compensation, a testimony to his good will and desire to do meaningful work. 
Copernicus' uncle, Bishop Waltzenrode, had paved a path for Copernicus to assume 
the position of bishop. But Copernicus refused to walk that road and maintained his 
much less esteemed rank. To a contemporary, the only explanation would be that 
the job was a comfortable job offering security for one with little ambition. And 
yet it was this man of seemingly little ambition who would move the earth and still 
the sun. 

Along with caring for the ill, Copernicus' position afforded sufficient time to 
devote to his passion, astronomy. That astronomy consumed both Copernicus' head 
and heart was evident during his graduate years when Copernicus preferred eclipse 
observation to other forms of entertainment available to a 20 some year old in Rome. 
Having been educated in Greek and astronomy and possessing a sharp mathematical 
mind, Copernicus was well versed in Ptolemaic theory, understanding all the details 
of the calculation of the epicycles, eccentricities, and equants that are required to 
match observations. The Ptolemaic universe is unsightly. It is a jerry-rigged structure 
built on a wobbly foundation with struts added at points of notable weakness; the 
struts appear as out-of-place artifices that only accentuate the folly of the core. Both 
mathematicians and physicists have a grasp of theoretical aesthetics and more than 
once a theory has been assailed on the grounds that it is ugly. 

Around 1610, Copernicus first reveals his heliocentric vision. In an unpublished 
manuscript known as Commentariolus {Little Commentary), Copernicus presents his 
view of the Ptolemaic system: 
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Yet the planetary theories of Ptolemy and most other astronomers, although consistent 
with the numerical data, seemed likewise to present no small difficulty. For these theories 
were not adequate unless certain equants were also conceived; it then appeared that a 
planet moved with uniform velocity neither on its deferent nor about the center of its 
epicycle. Hence a system of this sort seemed neither sufficiently absolute nor sufficiently 
pleasing to the mind. 

After stating his objections, that the theory was not pleasing (it is ugly), Coperni-
cus goes on to propose his alternative. Echoing Aristarchus, whom Copernicus would 
later cite, he supersizes the universe to explain parallax and proposes a heliocentric 
system. Going beyond what is known of Aristarchus, he explains the apparent motion 
of the heavens by motions of the earth. The short manuscript is a teaser, a preview to 
a larger piece of work that within the lines of Commentariolus Copernicus promises 
is forthcoming. 

Copernicus circulated Commentariolus among a small circle of intimates. It 
would be about three decades before the larger body of work, On Revolutions, would 
be published in 1543. We can conjecture why it was that Copernicus waited until 
he was on his deathbed to publish a piece of work that he had finished long before. 
An obvious conjecture is the times, which mirrored the tile of Copernicus' book. It 
was indeed a revolutionary time as the polemics of Martin Luther, a volatile mix of 
politics and religion, wove itself into a festering regional dispute between the Teu-
tonic knights and the King of Poland. Politicians, like dogs sniffing one another, seek 
out partners who may offer some advantage. Martin Luther inserted himself into the 
dispute proposing that the leader of the Teutonic knights, Albert of the House of 
Hohenzollern, convert to Lutheranism; Albert certainly saw the advantages to this 
proposal. The success of the Protestant revolt across central Europe was enough to 
scare the Catholic crown of Poland into conceding Prussia as a Protestant duchy to 
Albert in exchange for an oath of allegiance to Poland's King Sigismund I. Coper-
nicus was in the thick of the dispute as he took command of the defenses of the 
Castle at Olsztyn on behalf of the Polish crown during the Teutonic War (1519-
1521) and later worked through monetary reforms across Poland's religiously divided 
territories. 

These pressing matters certainly interfered with Copernicus' true calling, but it 
is believed that Copernicus had completed at least a first draft of On Revolutions by 
1530. For another decade he dallied on, making a revision here and there. Given that the 
contents could possibly lead to charges of heresy, one could conjecture that Copernicus 
delayed publication out of fear of church-sanctioned prosecution. But the church's 
attitude was lax. It had far greater concerns with Luther and the Reformation. Indeed, 
by 1533 Rome and Pope Clement VI had come to learn of Copernicus' heliocentrism 
through a series of lectures delivered by the pope's secretary. Not only did this elicit no 
negative response from Rome, but also Cardinal Schonberg, a well-respected authority 
who was a frequent visitor to Rome, encouraged Copernicus by requesting a more 
complete description of Copernicus' theory. Cardinal Schonberg's letter is punctuated 
by glowing accolades for Copernicus' achievement. Copernicus was assured that he 
would not have to bear the weight of religiously inspired persecution and responded 
by not responding to Cardinal Schonberg's request. 
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There is no reason to further conjecture why it was that Copernicus delayed 
publication of his life's work. Copernicus explains himself within the opening para-
graph of his preface to On Revolutions: "the scorn which I had reason to fear on 
account of the novelty and absurdity of my opinion almost induced me to abandon 
completely the work which I had undertaken." At the age of 70, with a desire to leave 
a legacy, Copernicus agreed to publish his work knowing that his impending death 
would relieve him of the scorn he feared. 

Copernicus left the publishing of On Revolutions to George Rheticus, an 
admirer who prodded Copernicus toward his decision to publish his works. In turn, 
Rheticus left the work with a Lutheran priest, Andreas Osiander, to oversee the pub-
lishing. Although there were no hotheads among the few who were up to date on 
Copernicus' universe, Osiander understood that religious passions could take root 
and cast Copernicus' heliocentrism into a fiery hell. As a precautionary measure that 
would enhance the probability of the book's survival, Osiander, without the permis-
sion or knowledge of Copernicus, included a foreword remarking that Copernicus' 
theory is a useful mathematical device to explain observation. Perhaps it was the 
reading of this foreword that instigated Copernicus' death, for to Copernicus his the-
ory was no device but illuminated the actual structure of the universe. At any rate, 
the ruse served its purpose; in later years, On Revolutions would be saved from the 
church's pyre precisely on the grounds that its contents were a mere mathematical 
device. Osiander's feared backlash came soon enough. 

The church initially stumbled in its response to the Reformation while the 
Lutheran wolf stole half its flock. The church had to recover, refocus, and deliver 
a coherent message. A wave of conservatism overcame the church; the church en-
shrined its conservative principles in the Council of Trent, which convened 25 sessions 
between 1545 and 1563. The council drew distinctions between Lutheran and Catholic 
doctrines issuing a series of dogmatic decrees. The issues addressed included the 
celibacy of the clergyman (Catholics yeah, Lutherans neigh); transubstantiation, the 
presence of Christ's body in the form of a wafer and Christ's blood in the form of 
wine during communion (Catholics yeah, Lutherans neigh); penance through contri-
tion, confession, and priest-directed obligation (Catholics yeah, Lutherans yeah on 
contrition neigh to the rest); and individuals' right to interpret scriptures (Catholics 
neigh, Lutherans yeah). With the Lutherans championing the Reformation, the church 
championed the Counter Reformation. 

The chaos of the Renaissance liberated arts, humanism, and Copernicus. The 
church's Counter Reformation was designed with the intention of returning Europe's 
intellect to the catacombs of orthodox scriptures; needless to say Copernican astron-
omy fell outside the domain of orthodox scriptures. Leading the assault on liberty 
was Pope Julius III. One cannot fault his desire to stamp out the excesses of church 
arrogance by curbing the clergy's impropriety as well as the sale of indulgences. 
But his zealotry morphed into bigotry as he and his successor, Pope Pius IV, burned 
homosexuals, expelled Jews from Catholic states, and unleashed the Office of the 
Inquisition to discipline heretics. One of the better known victims of the Inquisition 
is Giordano Bruno (1548-1600). In 1576, Bruno, an ordained priest, had captured 
the attention of the Inquisition with his promotion of Copernican ideas among other 
philosophies that were considered contrary to Catholicism. Fearing persecution Bruno 
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traveled about Europe for 25 years. At the age of 43, in 1591, Bruno returned to his 
homeland believing that an unstated statute of limitations had passed. In 1592, he 
was arrested by the Inquisition. Among the members of the Inquisition's committee 
was Cardinal Bellarmino, who would later acquaint himself with Galileo. Bruno's 
trial on several counts of heresy was conducted at Rome over a 7-year period; during 
that time, Bruno endured a rather harsh imprisonment. The Inquisition found Bruno 
guilty and sentenced him to execution. Bruno's response to his inquisitors speaks for 
itself, " You pass this sentence with greater fear than I receive it." On execution day, 
a muzzlelike device was placed on Bruno's jaw and a spike pierced his tongue. He 
was marched naked to a public square and burned at the stake. 

At this crucial point, science is represented by two remarkable men, Kepler and 
Galileo. Both were brilliant scientists and believers in their faith. It is well known 
that they both paved the way for the development of calculus and modern science but 
lesser known that they both espoused philosophies of the role of religious institutions 
separate from those of the state. Their remarkably similar philosophies were adapted 
by Christians of all denominations and Christianity has been strengthened as a re-
sult. While similar in philosophy, they were quite dissimilar in character. It is their 
similarities and differences that immortalize these men as fathers of modern science. 

Kepler was a Lutheran. He received his education in Tubingen, originally es-
tablished as a Catholic theological seminary but converted to a Lutheran seminary. 
As the quote at the beginning of this chapter shows, at Tubingen Kepler was known 
for letting his opinion be known. He actively participated in university-sponsored 
debates over a wide range of topics, where he displayed his unequaled intellect. In 
debate, Kepler was formidable. Like Star Trek's Spock, no matter what argument was 
thrown at him, he could in an instant analyze it, pinpoint its weaknesses, and counter 
the argument with impeccable logic. It is little wonder that the irritating know-it-all 
garnered his fair share of enemies at Tubingen. 

Kepler was a multifaceted character, certainly not schizophrenic, but with ca-
pacities beyond his prowess at logic. Adjectives to describe Kepler would be seem-
ingly contradictory yet accurate. He was stubborn in his beliefs, flexible, brilliant, 
naive, wise, loyal, witty, self-deprecating, energetic, idealistic, pragmatic, logical, 
ill-tempered, and paranoid. Of course, he did not display all these temperaments at 
once; he could not contemporaneously appear as Lassie and Don Rickles, but at var-
ious times he could exhibit this wide range of behavior. There is one important facet 
to Kepler's character, that is, he was a constant motivator for his works throughout 
his life. In his writings, Kepler reveals a spiritual side that is akin to Buddha. Indeed, 
Kepler's initial dream was to become a clergyman in the Lutheran church. He was set 
on a profession in mathematics by university elders who perhaps believed that such an 
independent-thinking man would not be suitable in the pulpit. While the elders of the 
Lutheran church would commit their fair share of mistakes in their dealings with Ke-
pler, this time their judgment was accurate. Kepler would gain well-deserved immor-
tality as a mathematician; as a priest he would have most likely remained an unknown. 
Kepler, without much choice in the matter, assumed a position of teacher in a Lutheran 
community ensconced in a Catholic state close to Prague. He came to love mathemat-
ics, but as a partner to his spiritual compassion. For Kepler, science and religion were 
not separate endeavors; both efforts were directed at uncovering the way of God. 
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After several years as a teacher, Kepler became the assistant to the Habsburg's 
imperial mathematician and astronomer, Tycho Brahe (1546-1601). The meeting of 
these two men was a random event. The favor that King Frederick of Denmark had 
for Tycho Brahe was not shared by Fredrick's son, Christian and when the latter 
assumed the throne, Tycho was dispossessed. Tycho left his native Denmark and 
accepted an offer as the imperial mathematician and astronomer to the Habsburg's. 
At the same time that arrangements between the Habsburg emperor, Rudolf, and Tycho 
were being finalized, Ferdinand, Archdoke of Austria and Rudolf's brother issued a 
decree expelling all Lutherans from the Catholic states in his realm. Kepler, living 
in Catholic territory, was a refugee and Tycho granted him refuge. Kepler, without 
other alternatives, accepted Tycho's offer. As with Kepler's involuntary career in 
mathematics, this was a fateful moment that equally defined Kepler's career. Had 
Kepler been able to realize his preferred position, a position at Tubingen, he would 
have never gained access to the material that made him immortal. Tycho convinced 
Rudolf to allow Kepler to live in Prague under Tycho's service. Despite his dire 
circumstances, Kepler had done all he could to dash the deal. Tycho was the target 
of Kepler's personality oscillations that nearly caused their relation to fall apart. Had 
the relations done so, history would surely have taken a different route. 

It was not charity that moved Tycho to assist Kepler, but rather Tycho's vision 
of his own destiny. Tycho had his own model of the universe. Tycho's universe lives in 
a halfway house between Ptolemy and Copernicus. Following the Ptolemaic system, 
earth is not a planet but a fixed body at the center of the universe around which 
the sun and stars revolve. Following Copernicus, the planets revolve around the sun 
(as the sun itself revolves about the earth). Tycho was an experienced empiricist who 
had assembled the best astronomical data in all of Europe. Kepler was the young, 
imaginative, yet untrained theorist. Tycho Brahe saw in Kepler someone who might 
intuit something from the data that he himself could not. Tycho's vision was that 
Kepler, like the sun, would illuminate Tycho's universe and Tycho's monument would 
forever shine on earth. On his deathbed, 18 months after Kepler came under Tycho's 
employment, Tycho repeated this wish to Kepler. When Tycho expired, the light 
went out on his universe. Kepler inherited the position of imperial mathematician that 
Tycho left behind and, without giving Tycho's model a thought for more than a second, 
pursued Copernicus' heliocentrism over a 6-year period like a salmon swimming to 
its spawning grounds. 

In discussing the reasons that Copernicus was so reluctant to publish his works, 
one crucial ingredient was overlooked. Copernicus was wrong and Copernicus knew 
it—all the more reason to fear mockery. While correct on the big picture of heliocen-
trism, Copernicus was off base on the details. Circular orbits around the sun do not 
match observed data. The only devices Copernicus had at his disposal for matching 
data were the very unpleasing devices of Ptolemy. Replace the position of the sun in 
Ptolemy's universe with that of the earth and the moon, remove the equants, and throw 
in a few more epicycles and, lo and behold, you have Copernicus' inspiration for Rube 
Goldberg. But like the Ptolemaic system, measurements recorded in Tycho Brahe's 
data proved that the Copernican arrow missed the bull's eye. Kepler as guardian of 
Tycho Brahe's impeccable data knew this better than any man on the planet. Kepler's 
mission to prove Copernicanism was one of salvation, and he was compelled toward 
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the mission by his belief that it was a path toward God. But the path would not be 
easy. 

There is a saying by Newton, "If I have seen further than others it is because I 
have stood on the shoulders of giants." This saying has survived because it is a truth 
about the progress of science that is fitting in any age. Indeed, the saying has been 
wrongly attributed to Einstein when describing how he arrived at his theory of general 
relativity. While Einstein never said this, because Einstein stood on the shoulders of 
Riemann, it would be fitting if he had. Kepler too would require the shoulders of 
giants and he searched in an unlikely place, the opposition's camp. Kepler chose 
the same giant as Ptolemy when Ptolemy wished to salvage the geocentric system, 
Apollonius. While Apollonius proposed the wheel-on-wheel system with the specific 
intention of preserving the geocentric ideal, the historical irony is that his detailed 
study of the ellipse, for which he had no application, would be precisely what Kepler 
needed to save Copernicus. One other giant that Kepler chose to destroy Ptolemy 
was Ptolemy himself. Ptolemy introduced the concept of an equant, a point not quite 
at the orbit's center about which a planet moves with constant angular speed. While 
Ptolemy gave birth to the equant, in fact it was a premature concept that needed 
further incubation. Reseeded in the fertile mind of Kepler, the equant emerges as the 
site where the sun chooses to sit and illuminate the planets. The planets orbit the sun 
along an Apollonian pathway, an ellipse with the sun as its focus. With this model 
Kepler successfully saved Copernicus and uncovered God's plan. The data confirmed 
a bull's eye. 

In his publication New Astronomy (1609), Kepler describes his journey to the 
ellipse. Scientifically, the text presents several accomplishments beyond a description 
of a planet's pathway. Kepler was also able to correctly calculate the velocity of a 
planet along its orbit using the following quantitative proposition. If one measures the 
area swept out by a line segment connecting the sun with a planet, the measurement 
will be proportional to the time duration of the measurement. For this proposition, 
Kepler once again ventured into enemy camp to recruit the shoulders of giants; both 
Ptolemy and Archimedes gave their support. Ptolemy's equants require the speed of 
the planet to change as it proceeds about its path. Kepler seized upon the idea of varying 
speed and incorporated it into his theory. Kepler reasoned that the engine providing 
the force that governed the motions of the planets was the sun and that the speed of 
the planets would be faster as the orbit came closer to the sun. Attributing the idea to a 
work of Archimedes in which Archimedes divides the area of a circle into an infinite 
number of triangles, Kepler performs a similar operation on the planetary orbits and 
arrives at his proposition. (Finally, after two millennia the work of Archimedes is 
available and in the hands of someone who can correctly use it.) This proposition is 
well known to today's student of physics as the conservation of angular momentum. 
The quantitative proposition that is identical to the conservation of angular momentum 
uses a qualitative proposition that Kepler also states in his work; a force from the sun 
causes the planets to orbit the sun and the force decreases with distance. Newton, 
standing on Kepler's shoulders, would later demonstrate the elliptical orbit using his 
theory of motion. 

Aside from its scientific merit, Kepler's book reveals much insight into his 
character. It resembles a diary providing a detailed account of his scientific efforts 



2.1 A STICKY MATTER 2 7 

over four noncontiguous years. At times the account is brutal. In one chapter, he 
presents volumes of tedious calculations with a hint toward a final resolution. The 
reader, exhausted by the tedium, feels Kepler's hope and hopes along with him. But 
no, Kepler ends the chapter with the conclusion that it was all dead wrong. The book 
also displays Kepler's self-deprecating humor and self criticism. In a passage that 
describes his foray down a wrong path, Kepler writes: 

But then what they say in the proverb, "A hasty dog bears blind pups", happened to 
me... If I had embarked upon this path a little more thoughtfully, I might have immedi-
ately arrived at the truth of the matter. But since I was blind from desire, I did not pay 
attention to each and every part of chapter 39, staying instead with the first thought to 
offer itself... and thus entering into new labyrinths..., (New Astronomy (1993), p. 455) 

It was with great excitement that Kepler sent his yet-unpublished text, New 
Astronomy, to his university mentor, Michael Mastlin. Kepler was hoping for some 
assistance with its publication. Although Mastlin had assisted Kepler in publishing 
a previous book (that launched Kepler's career), he was hostile to Kepler's New 
Astronomy and did not lend the prestige of Tubingen to the effort. This and a dispute 
with Tycho Brahe's heirs over ownership of the Mars data delayed publication for 
2 years. Prior to publication of New Astronomy, Kepler had risen to the level of 
scientific elite through his other works. Upon publication, New Astronomy seems to 
have fallen flat. Kepler had written a daring baroque while Europe was still listening to 
a lighter classical. The audience did not boo and hiss, they simply did not understand 
it. Nevertheless, the detail of the work, the significant calculations, the geometric 
figures elucidating the arguments, and the insights that can come only from genius 
are impressive and they bolstered Kepler's stature. If the Nobel Prize had been around 
back then, Kepler would have bagged it. Kepler was the acknowledged preeminent 
scientist in all of Europe. But times for a scientific superstar were very different from 
today; could one imagine a current Nobel laureate being excommunicated and forced 
into a position where he would have to expend an inordinate amount of time and effort 
to defend his mother against the charge of witchcraft? 

Kepler was caught between the Catholics and the Protestants, and among his 
Lutheran brethren his loyalty was suspect. Suspicions began during his student years 
when he showed himself to be an independent thinker with his formidable debating 
skills. Furthermore, Kepler had spent years as the imperial mathematician in the office 
of Catholics. He was born a Lutheran and believed in its philosophy with strong 
conviction. Yet he was flexible and understood the viewpoint of others. He hoped 
that all Christians would find enough common ground to coexist. But most of all 
Kepler believed in every man's right to seek God's truth without the intercession of a 
religious authority, be the authority Protestant or Catholic. Kepler never had political 
designs and, while perhaps disagreeing with church authorities on particular points, 
would never make a public issue of his disagreement. The strength of his convictions 
did however cause him to reveal his thoughts to the wrong people at the wrong time. 
His detractors misconstrued his independent thinking as disloyalty. 

Loyalty was critical during these years. Both sides of the religious divide were 
suspicious of one another and relations between the Catholic Habsburgs and the 
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Protestant states that they ruled were tense. Each side had its supporters and each side 
conscripted armies. The situation was extremely volatile and any provocation could 
set off hostilities; as always the ambitions of European nobility would guarantee 
provocation. 

The Habsburg emperor Rudolf II was ineffectual and without heir. His brother, 
Matthias, challenged Rudolf's authority. To enhance his position, Matthias made 
concessions to Protestant states and signed peace treaties with adversaries. In 1608, 
Matthias cobbled together a Protestant army and marched upon the imperial seat in 
Prague. In Rudolf's haste to counter his brother, Rudolf also turned to adversaries, 
the Protestant Bohemians, who surprisingly furnished an army to counter Matthias. 
Rather than fight, the two brothers came to an agreement to split the empire. 

The agreement was temporary as Rudolf showed his true intentions. Rudolf 
entrusted an incompetent nephew to assemble a Catholic army that would strike at 
both the Bohemians and Matthias, return all the possessions of the Habsburgs to 
Rudolf, and restore Catholic prestige. The Catholic army performed as competently 
as their leader. In 1611, they comically marched on Prague and went after the very 
Protestant army that had most recently saved Rudolf's royal behind, but they were 
no match for the Protestants. Once within the city walls, the Bohemian Protestant 
forces overwhelmed them. Seizing the moment, Matthias brought his own Protestant 
army to bear and the rout of Rudolf's Catholic army was complete. The Protestant 
armies celebrated by rioting. They entered the Catholic and Jewish quarters of Prague 
killing and thieving at will. Fortunately for Kepler, he lived within a safe enclave. 
The Protestant armies rallied around Matthias and he assumed the de facto powers 
of leader for all of the Holy Roman Empire; in a gesture of mercy, Matthias allowed 
Rudolf to maintain his titular role. 

The instability in Prague caused Kepler to consider returning to Tubingen as a 
professor. He was considered the preeminent scientist in Europe and, as an alumnus, 
certainly believed he had more than a good chance. The only thing that matched his 
brilliance was the naive perspective through which he viewed the Lutheran church. 
Kepler looked upon the Lutheran church as a philosophical institution when in fact it 
had very quickly mimicked the Catholic church in becoming a political institution. 

During Matthias' rule, a poisoned peace endured; Protestant and Catholics lived 
under a haze of mutual suspicion. Among the Lutherans, an informal body of elders 
maintained loyalty, acting in a similar capacity as the Catholic Inquisition. In 1611, 
with an eye toward returning to Tubingen, Kepler arranged a meeting with Pastor 
Hitzler, a respected member of the Protestant community and an alumnus of Tubingen. 
Suspicious of Kepler's loyalties, Pastor Hitzler put Kepler to the test by requesting 
that Kepler sign the Formula of Concord, a declaration of Lutheran principles. Kepler 
was most likely unaware that he was being offered a binary are you for us or against us 
option. While agreeing with most of the document, certain aspects affronted Kepler's 
beliefs as an independent thinker. He would not sign unconditionally. Passions of 
the time left no room for accommodation and the Lutheran interpretation to Kepler's 
refusal was, he is against us. The already difficult relations between Kepler and his 
fellow Lutherans had reached the breaking point. From then onward, Kepler was 
persona non grata. 
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In 1613, Kepler's mother was accused of witchcraft by a rather ignoble 
village neighbor. The accusation of witchcraft was not a trifling matter. There were 
common occurrences throughout Germany, and the accused, mostly women, often 
faced trial, torture, and a gruesome execution. The accusation against Katharina 
Kepler would amount to little more than public gossip over the next 2 years, but 
gossip in a small village is dangerous. Through a set of unfortunate circumstances 
spanning 5 years, the accusation came to trial in 1621. Throughout those 5 years, 
Kepler worked furiously at great expense to have the charges dismissed. He fired 
off letters reminiscent of his Spock-like debates to all authorities that might be of 
assistance in dismissing the charges. He once more sought the assistance of his 
alma mater. Certainly, the most learned and respected men of the Lutheran church 
could have used their influence to halt this dangerous charade, but the university 
had long ago turned their backs on their most famous alumni when he refused 
Hitzler's request to sign the Formula of Concord. He was de facto no longer one of 
them and Hitzler formalized this sentence by excommunicating Kepler in 1619. As 
the tensions between Catholic and Lutheran went from bad to worse, Kepler stood 
alone. 

In 1618, upon the death of Matthias, Matthias' cousin Ferdinand II assumed 
the position as emperor of the Holy Roman Empire. The cold peace between the 
Habsburgs and the Protestant states cracked. Suspicion between the Protestants of 
Bohemia and their new ruler led to a revolt and a Protestant army sacked Prague. 
Ferdinand sought the assistance of his Spanish patrons, who obliged their belea-
guered relative. In 1621, an army of mercenaries under the sponsorship of the 
Spaniards besieged Prague. The Protestant army proved to be no match for the 
Spanish-supported force; their defeat was complete and Ferdinand assumed his po-
sition in Prague firmly in charge. The war would have ended at that point, 2 years 
from its inception, but the political machinations across Europe would not allow 
peace. 

Also in 1621, after years of delayed trial dates, letters, legal review, legal fees, 
exile, and imprisonment, Katharina Kepler stood trial for witchcraft. The trial began 
on January 8 and the defense's final legal brief, much of it written by Johannes Kepler, 
was finalized and sent to Tubingen on August 22. The prosecution also delivered its 
arguments and requested Cognition of Torture, a sentence designed to terrorize the 
accused into confession by placing instruments of torture in front of the accused and 
describing their application. The law faculty at Tubingen found the accused guilty 
and sentenced Katharina Kepler accordingly. 

On September 26, with her famous son standing outside, Katharina Kepler faced 
the executioner, who carried out the sentence of Cognition of Torture. After listening 
to the executioner describe the use of the instruments of torture, Katharina responded, 
"They may do whatever they wish to me. Even if they pulled one vein after the other 
out of my body, I would have nothing to confess." Then Katharina fell to her knees 
and prayed. The sentence had been executed. Katharina was led back to her prison 
cell and several days later released. She died shortly thereafter. After his mother's 
trial, Kepler returned to Austria where he worked on his science for the remainder of 
his life. 
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The world around Kepler mirrored his personal crisis. The success of the Span-
ish to France's east had prompted an ignoble response from the French. France, a 
Catholic power, aided the Dutch, a Lutheran state, for the purpose of weakening 
the Spanish. The war that had been contained within Eastern Europe spread across 
Western Europe. When the Spanish made short order of the Dutch, the French en-
listed Denmark, another Lutheran state, to challenge the Spanish. The war now spread 
north and raged along the Baltic. Denmark, like the Netherlands before it, succumbed. 
Nearly all Protestant lands had been subjugated and it was not hard for France to per-
suade the last Protestant hope, Sweden, to join in the fray. The Swedish army proved 
up to the task. As central Europe had endured armies sweeping across the continent 
from the east to the west to the north, now it would endure those battles sweep-
ing down from north to south. With the Spaniards weakened by the Swedes, France 
relinquished its sideline role as instigator and joined in on the fray. After a 10-year 
struggle, the French defeated the Spaniards on French soil. Thirty years of fighting 
accompanied by famine and disease left a demoralized and reduced population across 
the German states. In 1646 hostilities ceased. 

Kepler died in 1630. Kepler's works tilted the intellectual community toward 
the heliocentric system. To be sure, there were scholars whose feet were planted in 
Aristotle's universe, but their numbers were decreasing. Many preeminent Catholic 
scholars were Jesuits; the Jesuit community had its fair share of individuals who 
acknowledged the brilliance of Kepler's works and accepted Copernicanism. While 
no authority in Europe could credibly dismiss Kepler's works or the heliocentric 
system, that did not stop the church, which was out of touch with the rest of Europe, 
from trying. This great man deserved far more than the circumstances of his times 
permitted him. Across the Alps to the south, another great man would also be a captive 
of the times. 

Up to the end of his life, the Catholic church unsuccessfully attempted to 
convert Kepler; bringing a man of Kepler's prestige into the Catholic faith would 
have been a coup. Only 3 years after Kepler died, the same church that had at-
tempted to convert the man who established the most convincing arguments in 
favor of Copernican astronomy held an Inquisition against Galileo for writing a 
piece of work with the intention of convincing the world of the truth of Copernican 
astronomy. 

Before resetting our coordinates for Galileo, there are other scientific con-
tributions of Kepler that are worth mentioning. Kepler proposed that an attractive 
force is inherent in all bodies. With this belief, he is the first European to correctly 
attribute the rise and fall of the tides to the attractive forces of the moon. As a purely 
geometric exercise, Kepler also developed a method to determine the volume of a 
certain class of shapes known as bodies of revolution. The method is a close relative 
of Archimedes' techniques, perhaps inspired by Archimedes' works. It is a direct 
predecessor to integral calculus. This was a near miss for Kepler. He did not associate 
the method with the study of motion, a task that was left to Newton to complete. 
Kepler was also influential in optics. He transformed optical science from the science 
of perception to the physics of light. He was able to furnish a satisfactory account 
of the workings of a telescope, an account that would be of great use to Galileo. 
Finally, nearly two decades after publishing New Astronomy, Kepler formulated 
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another law of planetary motion that relates the time required for a planet to make a 
complete orbit with the length of the major axis of the ellipse. Now let us teleport to 
Galileo. 

In 1609, Galileo was professor of mathematics at the University of Padua in 
Florence. Florence was a thriving city under the control of the Duke of Florence, 
a member of the illustrious and well-connected Medici family. The Medicis were 
successful merchants and bankers with the church among their clientele. It is not 
surprising that a portion of the taxes collected by the church should find its way into 
the Medici's pockets; three members of the Medici family became God's personal 
representative on earth occupying the office of the pope. The financial support of the 
Medicis allowed the arts in Florence to flourish throughout the Renaissance. Galileo 
occupied a most prestigious scientific position in Italy. Soon his prestige would even 
be greater. He was the first to use the telescope, crafted from his own hands, for 
astronomic observations—a feat that captured the imagination of Europe. In addition 
to his position at Padua, he would become the chief mathematician to the court of 
the Duke of Florence. The Medici's support would be of great assistance to Galileo, 
except for one member who was more religiously disposed than others. 

As with Kepler, Galileo was a formidable public debater. Unlike Kepler, Galileo 
was vain. Scientific debates in Italy somewhat took on the spectacle of an intellectual 
wrestling match. There was a lot of publicity prior to the debates, during which it was 
not uncommon for each side to perform an intellectual's analog of a gorilla's chest 
beating. Public declarations predicting that a debater would flatten his opponent were 
all part of the spectacle. Galileo came from a musical family and, in addition to 
his scientific prowess, he had a literary flair. Nobody was better equipped to debate 
than Galileo. In fact, he was so good that his first move in a debate would be to 
support his opponent's position. He did so with such enthusiasm and clarity that his 
opponent was left in a speechless stupor, for the opponent could not argue his own 
position with such skill. And then when all possible opposition arguments had been 
placed with the opposition totally silenced, Galileo would proceed one by one to 
destroy the arguments that Galileo himself had voiced. The effect was devastating 
and humiliating. In his scientific literature, Galileo could be equally humiliating. He 
had dished out more than a few insults at the expense of members of the preeminent 
Jesuit institution in Italy, the Collegio Romano. One recipe for producing enemies is 
to display a public mixture of vanity for oneself with contempt for others. Galileo 
followed this recipe and the Jesuits would have their chance to respond. 

The first time that Galileo attracted the attention of the Inquisition was in 
I6I6; the entire 1616 incident could have been avoided had Galileo been a bit more 
politically adept. And if Galileo had been more adept in his management of the 1616 
incident, the later more famous event may have never occurred. Galileo produced the 
best telescopes in Europe and turned his telescopes toward the night skies. In 1610, 
Galileo was the first man to see the moons of Jupiter. He charted the position of 
the moons and could conclusively determine that they indeed revolve about Jupiter. 
Galileo, like Kepler, had favored Copernicus over Ptolemy and his observation was 
the first visual evidence of one celestial body revolving about another. That this was 
counter to Aristotle and boosted the Copernican argument did not escape Galileo, an 
already devout Copernican who after this experience was more fired up than ever. 
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Galileo documented and published his findings and was direct in using his 
promotion of Copernican astronomy. He corresponded with Kepler who responded 
most enthusiastically (this is the only issue over which the two men shared a brief 
correspondence). Indeed, the booster rockets behind Galileo's flight toward fame 
were fueled by Kepler's endorsement of Galileo's work. Unlike Kepler's work, which 
was accessible to a few individuals with a high proficiency in mathematics, anyone 
could gaze through Galileo's telescopes. The telescopes that Galileo crafted and then 
furnished to influential men across Europe were a sensation across the continent. 
Galileo enjoyed the prestige that was showered upon him. 

Inspired and with his telescopes in hand, Galileo went directly to the top with 
his findings. In 1611, with the assistance of his benefactor, the Grand Duke Cosimo 
Medici, Galileo traveled to Rome for a meeting with the pope. Upon his arrival, 
Galileo was warmly greeted by the Jesuits of the prestigious Collegio Romano; the 
Jesuits were the preeminent Vatican authorities over scientific issues. It would be 
difficult to discern later conflicts between Galileo and the Jesuits from their gracious 
hosting of Galileo in 1611. The trip to Rome culminated in a successful audience with 
Pope Paul V. This was a coup of which Galileo could rightly be proud as the pope 
took little interest in scientific endeavors. 

There were detractors who claimed that the Jovian moons were not real; they 
were only illusions created by the telescope. Galileo could well afford to ignore the 
detractors; he was at the top of his game. But it just was not in his character to 
ignore any challenger. One particularly worrisome challenger came in the form of the 
matriarch of the Medici family, the Grand Duchess Christina, who was concerned by 
the religious implications of Galileo's work. The Grand Duchess and Galileo had a 
cordial relationship. Galileo, as court mathematician in the service of the Medicis, 
had tutored her son. In 1615, the Grand Duchess was in the company of Benadetto 
Castelli, a monastic student of Galileo, and Doctor Boscaglia. The conversation turned 
to Galileo's telescopes; the Grand Duchess was eager to learn of the observations from 
one who had used the telescopes firsthand. What she heard displeased the Grand 
Duchess as she came to the conclusion that the scientific endeavors contravened the 
Holy Scriptures and Doctor Boscaglia, an anti-Galilean detractor, encouraged the 
Grand Duchess' concern. 

I know of no one who has entered their student years without observing or 
participating in a debate between science and faith. The fighters in the debate might 
believe they are in the same ring but are arguing in different dimensions. While 
swinging furiously, neither is able to land a blow on their opponent, who is after all 
inaccessible to their reach. And so I know of few who have departed their student 
years without leaving such debates behind as fruitless endeavors. Every spectator 
of such debates knows that there is one set of circumstances in which there will be 
a knockout—when the side fighting for science enters the dimension of faith. This 
unfortunate fighter has foolishly exposed his body to all of the blows that the side of 
faith can deliver while his scientific counterpunches have no target. 

In Galileo's day, particularly in Italy, a scientist's position was precarious. 
If he entered the debate, he had no choice but to fervently acknowledge his faith; 
it was best to avoid such circumstances. Yet, it is amazing that several times in 
his life Galileo jumped into the ring when he might have avoided it all together. 
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Castelli informed Gallileo of his encounter with the Grand Duchess and Galileo 
responded by penning his thoughts on science and faith in a letter. While the let-
ter is addressed to Castelli, with pride Galileo encouraged Castelli to circulate it 
freely, and thus Galileo entered the ring. The letter was soon further circulated, reach-
ing the hands of Galileo's detractors. Christmas Day of 1614, Father Thomas Cac-
cini, preaching from the pulpit of the church of Santa Maria Novella, denounced 
"practitioners of diabolic arts." His references to Galileo's letter made his target 
clear. 

With accusations of heresy made public but still on his feet, Galileo felt the 
need to defend himself. He took a two-pronged attack that a military man might 
call a pincer movement, but the only man squeezed was Galileo. Clueless to the 
damage already caused by his previous letter, Galileo penned another letter, this time 
to the Grand Duchess. Like the previous letter, this one presents his scientific views 
through the lens of faith but then goes further. Galileo denounces his denouncers, not 
specifically by name, but it is clear that he sees these are men as abusing their position 
in the church. Anyone believing that a company email is confidential between sender 
and receiver is in for a rude awakening. Whether Galileo was aware of the rumor 
grist or not, there was a certain predictability that the letter would be circulated once 
more among a less-than-friendly crowd. And as it circulated, editorial license was 
taken. The letter, or an edited version, did make its way to Rome. The second prong 
of Galileo's attack was even more foolhardy. Galileo set himself upon a mission to 
convert the pope to Copernicanism. 

In 1616, Galileo undertook a second trip to Rome. The first had gone well, as 
evidenced by his audience with the pope. But the impetus for the pope's adoration 
had worn off, the novelty of Galileo's telescopes had dissipated, and feelings toward 
Galileo were more ambivalent. In the intervening years between visits, Galileo had 
dished out some rather harsh criticism of the Jesuits at Collegio Romano. The criticism 
had a lingering sting, especially given the favorable treatment that they had shown 
Galileo. While this sting was an undesirable background to Galileo's visit, the crux of 
Galileo's folly is that Galileo never grasped the essence of what the church was. The 
church was more of a political institution than a philosophical one. No philosophical 
argument could ever persuade the church to do something politically naive. It was a 
naive Galileo who, fueled by his vanity, believed that the pope could be persuaded by 
scientific reasoning. 

Galileo literally took it to the pope in the form of a treatise that explains the 
tides as a result of the earth's rotational and revolutionary movements. When Galileo 
arrived in Rome, he passed the manuscript to a cardinal, who then passed it on to 
the pope, who then quite predictably never read it. In fact, given the times, in his 
political role the pope had few options. Since Luther, the church had been under 
siege on the fronts of nationalism and religious interpretation. The pope could hardly 
personally endorse a third front, scientific reasoning. Galileo's gambit left the pope 
with no choice but to address the Copernican menace and hit hard. The pope left 
the heavy lifting to his most educated Jesuits under the guidance of Cardinal Bel-
larmino, who reported their findings to the Office of the Inquisition. The Jesuit re-
sponse to Galileo and Copernicus was a biblical interpretation of the structure of the 
universe. Citing passages in the Bible, the Jesuits proclaimed a geocentric universe and 
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furthermore stated that those who supported the theory of Copernicus were guilty of 
heresy. 

After 2 weeks, Cardinal Bellarmino summoned Galileo to his office. Speaking 
on the pope's behalf, Cardinal Bellarmino informed Galileo of the church's position. 
Also present in Cardinal Bellarmino's office was Father Michelangelo Seghizzi, a 
high-ranking official from the Office of the Inquisition. Father Seghizzi threatened to 
use the Office of the Inquisition to proceed against Galileo should Galileo persist in 
espousing Copernican astronomy. Galileo acquiesced. 

One week after Galileo's visit with Cardinal Bellarmino and Father Seghizzi, 
the church published an official edict conveying the official church position on the 
structure of the universe. In no uncertain terms, Copernicus was rejected. The edict 
also censured Copernicus' original book, suspending further printing pending review 
and editing. Additionally, the church explicitly forbade continued publication of a 
book by Father Paolo Foscarini in which the priest attempts to reconcile biblical 
interpretation with Copernican astronomy. The church indicated that scientific theory 
had no role in theological interpretations. The printer of Father Foscarini's book was 
shortly afterward arrested and 2 months later the 36-year-old Father Foscarini died. 

Galileo must have considered himself to be lucky. None of his works were 
censured and he was not specifically mentioned in the edict. But the warning had 
been issued; Galileo may not have understood that gravity was the cause of the tides, 
but he fully comprehended the gravity behind the Inquisition's demand to abandon 
Copernicus. Galileo left the ring but remained in the gym. For 7 years Galileo abided 
by his agreement with the church leadership. While Galileo did offer one more pub-
lication, The Assayer, in which he assails a prominent Jesuit scholar, he was mute 
on the subject of Copernicus. But nothing is permanent. People change office. New 
circumstances cause institutions to go forward and not dwell in what is no longer 
relevant or so it would seem. 

In 1623, Pope Paul V passed away. Maffeo Barbarini assumed the papacy and 
took the name Pope Urban VIII. This was a great sign for Galileo. Galileo and the 
new pope had clicked during Galileo's first visit to Rome. The new pope agreed to an 
audience with Galileo and the two seemed to have renewed their friendship. In addition 
to these favorable signs, Kepler had published, Introduction to Copernican Astronomy. 
This text was more accessible to a wider audience than Kepler's earlier work. With this 
publication, the intellectual argument between Ptolemy and Copernicus shifted even 
further toward Copernicus, and among the church's flock there were many shifters. 
To Galileo, there appeared to be a new era in which his commitment of 1616 was 
irrelevant. 

In the same year as the ascension of Pope Urban, Galileo embarked on a new 
project. Using his literary skills, he wrote an argument in favor of Copernican as-
tronomy that could be followed by the layman. His approach was influenced by his 
years of public debate; the argument was in the form of a play in which one of the 
characters debates in favor of Ptolemy while another debates in favor of Copernicus. 
The fate of the character who debates on the side of Ptolemy, Galileo named him 
Simplicius, follows the real live humiliation of those who went against Galileo in his 
actual debates. Galileo named the play Dialogue Concerning the Two Chief World 
Systems. 
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Galileo first wanted to ensure that he would have the church's support for the 
endeavor. As was his nature, he went to the top. With this limited objective in mind, 
as opposed to his previous attempt at conversion, Galileo received an audience with 
Pope Urban. Galileo described his work and stressed that whatever view the church 
takes, it must demonstrate that its view was not based on ignorance and that the church 
understood all of the arguments for each position. Indeed, it seemed that the times 
were different, for Galileo successfully prevailed upon the pope to lend his authority 
to the project. 

It took Galileo years to complete the play; during those years, Europe was in 
chaos. With the onset of the Thirty Years' War in 1618, wartime politics preoccupied 
the church. The Urban papacy exacerbated an already tense situation. The Catholic 
armies that were ostensibly assembled to fight off the Protestants were split into 
two camps, French and Spanish. The Habsburgs had the support of Spain, while the 
French wished to use the circumstances in the Habsburg empire to undermine Spanish 
influence. Rather than reconciling the two sides so that the Catholics could fight with 
a united army, Pope Urban came out openly in favor of the French, while at the very 
same time the French were undermining the Catholic cause through their alliances 
and support of Protestant states. As the war proceeded, it became obvious that the 
church no longer held its previous authority among Catholics across Europe. The 
church's response was to sulk and hunker down in the city states of Italy. 

Upon completion of Dialogue in 1630, Galileo (2001) followed the protocol 
of censorship that all such works in Italy were subject to. The church would have 
preferred wider censorship authority, but it had no more control of the publication 
process across Europe than a modern government, no matter how nefarious, has con-
trol over a website published outside its borders. However, within Italy, the church 
had censorship authority guaranteeing that Italy would not be a full participant in the 
scientific revolution that was yet to come. Galileo dutifully sent his work to church 
censors for approval. The process was a long one. One could only imagine a seething 
Galileo repulsed by the very idea of being subject to a censorship board that was 
far less qualified than him on the topic of the book and yet there was nothing he 
could do but play the game. And he did play it well. Galileo managed to stack the 
board of censors with individuals favorably disposed toward him. There were pas-
sages that the censors found offensive and Galileo edited these passages until the 
reviewers found them acceptable. After a little over a year of back and forth, the cen-
sors gave their approval and the play Dialogue was ready for publication in the fall of 
1631. 

This was no ordinary play in any sense of "ordinary." It was a literary play 
written by a mathematician on a subject that resided within a scientific realm 
over which religious authorities laid claim. It was long, over 500 pages. Once 
Dialogue had cleared church censorship, the typeset on Mr. Gutenberg's printing 
machine had to be readied, and the pages had to be printed and bound. It was not until 
February of 1632, 10 years after Galileo conceived of the project, that Dialogue was 
available to the public. The book was well received almost everywhere, the exception 
being certain offices in the church, including that of the papacy. There, it was viewed 
as another volley against church authority, equally threatening, if not more so, than 
the Protestant army that had sacked Rome nearly a century before. There was one 
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dissimilarity between the two attacks; the Pope was defenseless against the previous 
attackers but not against the current attacker. 

In September 1632, the church suspended publication of Dialogue. Further-
more, Galileo was summoned to the Office of the Inquisition. This was unlike Galileo's 
previous 1616 meeting with an officer of the Inquisition where a warning was issued. 
This was an official proceeding. Claiming ill health, Galileo requested that he respond 
to the Inquisition's inquiry from Tuscany, a request that was denied. In the presence 
of an official from the Inquisition's Florentine office, Galileo subjected himself to a 
panel of physicians who reported on the state of Galileo's health. The panel's report 
of Galileo's infirmities confirmed that a journey to Rome would endanger his life. 
The church ignored the report and once more demanded that Galileo respond to the 
Inquisition's summons by traveling to Rome. At the age of 69, Galileo made the jour-
ney to Rome. The actual condition of Gaileo's health is unknown. Some biographers 
claim that Galileo was indeed in bad shape, while others claim that Galileo's claims 
of ill health were a ruse. Galileo did survive the trip and outlived his progeny to the 
ripe age of 80. 

Galileo reached Rome on February 13, 1633. Later in the spring, he stood 
before the Inquisition on the charge of not faithfully executing his commitment of 
1616. Despite receiving papal approval before commencing with the project and 
despite having subjected himself to the church's censorship process, it was a fact that 
Galileo did ignore his 1616 commitment to cease espousing Copernican astronomy. 
Whether or not Galileo learned the lesson that the past can always strike back and 
finally understood that the church was first and foremost a political entity is unknown. 
But understand it or not, Galileo would feel the painful blow of church authority. On 
June 22, the church passed its sentence. The Inquisition found Galileo guilty of heresy 
for defending Copernican astronomy. 

Public humiliation was a normal element of church justice and Galileo's sen-
tencing was no exception. Feigning mercy, the sentence of the Inquisition agreed to 
grant absolution to Galileo, so that it would still be possible to access heaven for 
eternity, provided that Galileo publicly renounce his misdeeds. The renunciation had 
been prepared and Bruno certainly would have empathetically encouraged Galileo 
to read it, better than a spike through the tongue ending in a crispy departure at the 
stake. As Galileo read the renunciation, the members of the Inquisition as well as an 
assembly of witnesses listened: 

/, Galileo, son of the late Vincenzio Galilei, Florentine, aged 70 years, arraigned person-
ally before this tribunal, and kneeling before You, Most Eminent and Reverend Lord Car-
dinals, Inquisitors-General against heretical depravity throughout the Christian com-
monwealth, having before my eyes and touching with my hands the Holy Gospels, swear 
that I have always believed, I believe now, and with God's help I will in future believe 
all that is held, preached, and taught by the Holy Catholic and Apostolic church. But 
whereas-after having been admonished by his Holy Office entirely to abandon the false 
opinion that the Sun is the center of the world and immovable, and that the Earth is not 
the center of the same and that it moves, and that I must not hold, defend, nor teach 
in any manner whatever, either orally or in writing, the said false doctrine, and after it 
had been notified to me that the said doctrine was contrary to Holy Writ-I wrote and 
caused to be printed in a book in which 1 treat of the already condemned doctrine, and 
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adduce arguments of much efficacy in its favor, without arriving at any solution: I have 
been judged vehemently suspected of heresy, that is, of having held and believed that 
the Sun is the center of the world and immovable, and that the Earth is not the center 
and moves. Therefore, wishing to remove from the minds of your Eminences and all 
faithful Christians this vehement suspicion justly conceived against me, I abjure with a 
sincere heart and unfeigned faith, I curse and detest the said errors and heresies, and 
generally all and every error and sect contrary to the Holy Catholic church. And I swear 
that for the future I will never again say nor assert in speaking or writing such things 
as may bring upon similar suspicion; and if I know any heretic, or person suspected 
of heresy, I will denounce him to this Holy Office, or to the Inquisitor or Ordinary of 
the place where I may be. I also swear and promise to adopt and observe entirely all 
the penances which have been or may be imposed on me by this Holy Office. And if I 
contravene any of these said promises, protests, or oaths (which God forbid.'), I submit 
myself to all the pains and penalties imposed and promulgated by the Sacred Canons 
and other Decrees, general and particular, against such offenders. So help me God and 
these His Holy Gospels, which I touch with my own hands. I, the said Galileo Galilei, 
have abjured, sworn, promised, and bound myself as above; and in witness of the truth, 
with my own hand have subscribed the present document of my abjuration, and have 
recited it word by word in Rome at the convent of Minerva, this 22nd day of June 1633. 
I Galileo Galilei, have abjured as above, with my own hand. (Sobel (1999), p. 275) 

After his public humiliation, Galileo was placed under house arrest for the 
remainder of his life. As a temporary measure, the church arranged for Galileo's 
internment in the city of Siena under the stewardship of Archbishop Piccolomini. 
While this is the same city in which the infamous Cardinal Borgia held his orgies, 
there would be no celebrations for Galileo. Nevertheless, Archbishop Piccolomini 
was an admirer of Galileo and sought to heal his famous prisoner's broken spirit. 
Archbishop Piccolomini arranged for contact with scholars across Europe on a wide 
range of topics that studiously avoided the Copernican debate. The response of the 
broader European community may have provided a measure of comfort to the frail 
scientist. 

Through its minions, the church got wind of Galileo's favorable internment in 
Siena and hastened his move to a more permanent location. A house was built near San 
Matteo, a monastery in the hills of Tuscany. Within the monastery, Galileo's three ille-
gitimate daughters had lived as nuns. They were all born to the same mother, Galileo's 
lover whom he never married. Throughout Galileo's ordeals, his most beloved daugh-
ter, Marie Celeste, comforted and consoled him. There are many surviving letters 
that attest to a loving relationship. Galileo was imprisoned in his new location and a 
Church-appointed overseer restricted his social contacts. Galileo confronted one more 
ordeal in his last years, the death of Marie Celeste in 1634. Then in 1642, still under 
house arrest, Galileo passed away. He literally reunited with his beloved daughter in 
the grave: A later exhumation discovered the presence of Marie Celeste. 

Galileo left an impressive scientific legacy. His greatest contribution was in the 
study of motion. The legend of Galileo's dropping of two weights from the Tower of 
Pisa is an unconfirmed story. But it is drawn from factual accounts of otherexperiments 
that Galileo did perform, for Galileo was very much an experimentalist. The most 
significant of his experiments led to a mathematical description of free-falling bodies. 
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Galileo designed low-friction roller coaster-like tracks upon which he would roll 
spheres. Using a novel timing mechanism, he timed the descent of the spheres from 
a standstill position to the bottom of the track. The timing mechanism was similar 
to an hourglass, but rather than using sand, Galileo used water. A water source was 
connected by tubing to a pan below. He started the flow of water by opening a clamp 
on the tubing at the beginning of the sphere's descent and then closed the clamp at 
the end of the sphere's descent. The water would collect itself in the pan and then 
Galileo would weigh time, for the weight of the water was proportional to the time 
of the descent. 

Through this experiment, Galileo discovered that the distance that a body 
descends is proportional to the square of the time of the descent and independent 
of the body weight. Galileo mathematically described the motion of an object as 
having a constant acceleration that is independent of the object's weight. With this 
description, Galileo rediscovered Oresme's work of two and a half centuries earlier. 
Galileo recognized that the pathway of an object falling in accordance with this de-
scription is a parabola, a conic section studied by the same Apollonius who furnished 
Kepler with his ellipse. 

There were two ramifications of this experiment: one toward the past and one 
toward the future. Looking to the past, this was a refutation of Aristotle, who predicted 
that the descent of a heavy object would be faster than the descent of a light object. 
Looking toward the future, this was a step toward the development of calculus and 
the laws of motion; it established a concrete example of a specific motion along with 
a law for the description of that motion. A concrete example is valuable to scientists 
for two reasons. First, the example may be generalized into a broader theory. Second, 
it furnishes a test case for a more general theory; the generalized theory must produce 
the results of the concrete example or it is rejected. 

Einstein was particularly partial to Galileo, calling Galileo the father of modern 
science. In defending the Copernican system, Galileo proposed the first notions of 
relativity. Within the Aristotelian universe, the earth is fixed, and points in space can 
be clearly identified. However, the Copernican system sets the earth adrift. Galileo 
recognized that it is not possible to fix a point of reference within a system that 
is itself adrift. Accordingly, measurements of motion are not fixed but are relative 
with respect to the motion of the observer. Any laws of motion must account for 
relative measurements. Einstein's theory of general relativity expands upon Galileo's 
ideas. 

One wonders if the church would have prosecuted Galileo had it foreseen the 
damaging consequences to its own cause. The church's 1616 bout with Galileo was 
already damaging enough. Throughout Europe, scientists had their own telescopes, 
many of them gifts from Galileo, and they could judge for themselves whether the 
Jovian moons were images or reality. With Kepler's explanation of the workings of 
a telescope, public opinion fell behind Galileo. The publication of Kepler's work, 
Epitome of Copernican Astronomy, further increased the distance between the church 
and public opinion. The prosecution of Galileo over Dialogue reinforced the trend. 
While the church banned the printing of Dialogue from the time of Galileo's trial, 
the ban was only enforceable in Italy. Elsewhere throughout Europe, Dialogue be-
came a sensation. Galileo's prosecution was the church's last battle for the control of 
the individual's intellect. The church had already lost this war but would not concede. 
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The humiliation of Galileo was seen for what it was, bullying out of frustration, and 
the European scientific community tossed aside both Aristotle and the church. After a 
millennium, European scientists were freed from church dogma. Institutes of higher 
learning were no longer church-sponsored theological seminaries; they transformed 
into centers of independent inquiry. In this setting, a mere 23 years passed between 
Galileo's death and Newton's discovery of calculus. 

Greatness springs from many sources. Newton was born into humble circum-
stances in the village of Woolsthorpe-by-Costerworth. As if to presage his greatness, 
Newton was born in the very same year as Galileo's death, but Woolsthorpe-by-
Costerworth was an unlikely place for Galileo to pass his baton. Woolsthorpe-
by-Costerworth was a village where young men went to church and followed in 
the path of their fathers, often uneducated. Like Kepler, Newton's father passed away 
when Newton was a boy. His mother remarried and, also like Kepler, Isaac was sent 
to live with his grandparents. Newton attended the local elementary school and later 
the King's School. At school, Newton was a loner. He was for the most part an unno-
ticed and uncommunicative child. During recess, one can imagine his inner thoughts 
intensely focused on a subject of curiosity while his classmates were playing games. 
And in class, one can imagine Newton's mind far removed from the subjects at hand 
that he would find trifling to the point of unbearable boredom. He was a misunder-
stood child who developed a capacity for turning inward, a skill that assisted him 
in his dogged pursuit of research. However, he did not develop the social skills that 
would later be necessary for dealing with the broader community. 

Fortunately, there was one educator who understood Newton a bit more than 
others. Prior to completing high school, Newton's family removed him from school so 
that he could oversee the family farm, as was expected of him. In a short time, it became 
apparent to Newton's family that he was completely ill suited to this endeavor. Henry 
Stokes, the headmaster at the Kings School, perceived that Newton's intellectual 
capacity was quite strong, although no one could imagine his brilliance, and persuaded 
Newton's mother to allow Newton to finish his studies and enter college. 

In 1661, Newton began his university training at Cambridge under the tutelage 
of Isaac Barrow, holder of the prestigious Lucasian Chair of Mathematics. For the 
first time, Newton was exposed to a circle of men who could stimulate his intellect 
and direct his growth. At Barrow's request, Newton reviewed Euclid's The Elements. 
Then Newton immersed himself in the most current mathematical texts and kept up 
with the most current mathematical issues. Among the works that Newton found 
most exciting was Rene Descartes' text on analytic geometry. Rene Descartes had 
successfully combined algebraic concepts, as developed by the Arab world while 
Europe experienced the Dark Ages, with the geometry of the ancient Greeks. He 
synthesized the two through the creation of a coordinate axis system that we now refer 
to as Cartesian coordinates and proposed the general concept of a function. Geometric 
objects become numeric entities by their association with points on the coordinates. 
Equations with quantities expressed as variables represent geometric shapes. Analysis 
of the geometry is possible through algebraic manipulation of the variables. The conic 
sections of Apollonius and in particular the ellipse and the parabola are investigated 
in Descartes' work. 

Aside from books, Newton was exposed to scientific shop talk. European math-
ematicians had worked out specific cases of differential and integral calculus; Isaac 
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Barrow was a significant contributor. Through publications and letters, these advances 
circulated to European universities where they were topics of discussion. The great-
est discourse revolved around the works of Kepler and Galileo. While these two men 
had accurately described trajectories of motion, one for planetary orbit and one for a 
falling body, there was a desire to find a general theory of motion that would account 
for Kepler's and Galileo's discoveries. Established intellectuals from all over Europe 
committed themselves to this endeavor. Into the mix stepped a novice, the young Isaac 
Newton, who was ready for the moment. 

In 1664, a particularly nasty spell of the bubonic plague gripped England hitting 
densely populated areas. Within a year, one of six Londoners had succumbed. In 1665, 
as a precautionary measure, Cambridge University shut its doors and did not reopen 
until 1667. At the age of 22 Isaac Newton returned to his hometown and in isolation 
engendered the most productive burst of scientific discovery in history. In optics he 
developed a new theory of light. In mechanics he laid the groundwork for the laws 
of motion and made progress toward a theory of gravity and planetary motion. These 
were the beginnings of an effort that he would complete two decades later. Newton's 
most remarkable achievement came in mathematics. Newton jump-started the field 
of power series with his discovery of the binomial theorem. But the real treasure was 
an area that Newton named the theory of fluxions. Prior to Newton, the mathematical 
tools required to model natural phenomena were feeble. Scientists were chiseling 
away at the nature's secrets with a pocket knife. With his theory of fluxions, Newton 
invented an earth mover that would later be called calculus. 

Upon his return to Cambridge, Newton shared his discoveries with Isaac Barrow. 
One can only imagine the impression that Newton's work made upon Barrow. Past men 
had achieved greatness for lifetime contributions that amounted to a smidgen of what 
Newton had intuited in isolation during the plague-induced closure of Cambridge. 
Barrow was overwhelmed. Although he garnered significant prestige in academic 
circles, he understood that Newton was a phenomenon. He knew that Newton was far 
more worthy of the Lucasian Chair that he held. Of his own accord, Barrow resigned 
the position and passed it on to Newton. 

Unfortunately for Newton and mathematics during his time, there were those 
in the scientific community who were unlike Isaac Barrow and were not gentlemen. 
Unfortunately for science, Newton did not have the tools to cope with such men. 
During the plague years, Newton had produced an enormous quantity of research; 
as noted above, his research on motion and calculus was only a portion. One of the 
offspring of Newton's research was the reflecting telescope, a new design of telescope 
built by Newton that was far more powerful than its predecessor. As Galileo had 
discovered, the telescope captures the imagination of the public more than abstract 
mathematical theory. The success of Newton's telescope caused a stir and influential 
men prevailed upon Newton to publish something that would explain its workings. 
Newton responded with a publication of his new theory of light. 

Newton's theory was as novel in his day and age as was Aristarchus' heliocen-
tric theory in his. And like Aristarchus' bold theory, Newton's publication met with 
an overwhelmingly hostile reaction. In Newton's day, there was not a satisfactory 
explanation for color. Newton, ever the tinkerer, had placed a prism across a ray of 
light that he allowed to enter his room through a pinhole in a blind. He observed the 
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ray of white light separate into streams of color. The thought occurred to Newton to 
attempt to restore the light to its original color by inserting a second prism in just 
the right fashion across the streams of color emerging from the first prism. Newton 
found that he could indeed recover white light. His conclusion, now accepted, was 
that white light is a cluster of colored light. Newton reported his findings and his 
conclusion in his first ever publication. 

Preposterous, cried more than one esteemed member of the scientific elite. 
It went against all intuition that the mixing of many colors could result in white. 
This was as obvious to anyone who mixed paint as the geocentrism of Aristarchus' 
contemporaries. Newton found himself under siege. A leading figure in the assault 
was Robert Hooke (l 635-1703). Hooke was a nasty, cantankerous know-it-all set 
on proving that he was the greatest. Hooke had his own theory concerning light 
and colors that was in conflict with Newton's theory. Today, few know and nobody 
cares about Hooke's theory because it is wrong and irrelevant. But in Newton's time, 
Hooke's prestige could not be ignored. Newton found himself defending his ideas 
in an exhausting and continuous battle. Newton fired off many letters in response 
to Hooke's salvos in his direction. The whole experience disturbed Newton and his 
response must have been reflexive; Newton turned inward. Not wishing to be mired 
in controversy, Newton did not return to the task of publishing his other discoveries 
for decades. He sparingly doled out his ideas to a small circle of friends and let it be 
known that he did not wish his notes to be published prior to his death. Then he all but 
retreated from science for a period of more than a decade. Throughout the 1670s and 
early 1680s, Newton, a man endowed with one of the most brilliant scientific minds 
in all of history, engaged himself in the pursuit of alchemy. 

The appearance of comets was a mystery to the men of the Middle Ages. The 
appearance of motion in the heavens, where God resides in perfection, was at once 
disturbing and inspiring. Astrologers would forecast doom or fortunes at the sight 
of a comet. The post-Renaissance appearance of a comet in 1681 observed by a 
young Englishman named Edmond Halley was equally mysterious. An astrologer's 
forecast of a significant event would have been dead accurate. In 1684, Halley's wish 
to understand comets led him to Newton. Halley challenged Newton to present a 
description of a comet's path; this was the prod that Newton needed to reconnect with 
the work that he started during the days of the plague. Newton solved the comet and 
indeed the paths of all bodies orbiting the sun using his method of fluxions. With the 
mathematical tool, Newton revealed Kepler's ellipse. 

This is the place where our story should end. Calculus has been invented and 
the ellipse revealed. The historical trail from Aristarchus to Newton has been closed 
and, as the ellipse, it returns to its starting point, a heliocentric system. In between, 
the trail passes through Euclid, Apollonius, Ptolemy, Copernicus, Kepler, and Galileo 
and follows the mathematical achievements that allow science to uncover the nature 
of our universe. The trail illuminates the worst as well as the best of man: intolerance, 
intimidation, injustice, intelligence, imagination, and grit. The trail tells a story of 
intellectual triumph and makes the case for freedom of expression. It is a perfect 
ending to a dramatic story. But history does not allow us to end the story here. One 
more twist is left in the development of calculus. And of course we cannot abandon 
Archimedes without bringing him into the fold of developments. 
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Newton came to believe that his notes were inadvertently circulated to a German 
philosopher, Leibniz. Leibniz was born in the German town of Leipzig in 1646. His 
father was a professor at Leipzig University. Leibniz, like Newton and Kepler, became 
fatherless at a young age, but the similarity in upbringings stops there. Leibniz' family 
nourished his education from the outset. He was not a loner but wherever he went was 
the toast of the school. A brilliant future was foreseen from his early days. Leibniz 
lived up to the expectations and was quickly accepted into the elite intellectual circles 
of Europe. Although Leibniz matriculated with a degree in law, at the age of 20 he 
became interested in mathematics. The facility he had with men of great talent was 
of service, for one of Europe's most preeminent mathematicians, Christian Huygens, 
tutored Leibniz long before Leibniz had a reputation of his own. Within a short time, 
Leibniz surpassed his teacher. 

Leibniz was a grand visionary with a keen mind for abstraction and theory. The 
historical record shows that Leibniz independently discovered calculus in 1675 and 
published his first works on calculus in 1684. Although Newton discovered calculus 
10 years before Leibniz, Leibniz' work was not superfluous. His notation is superior 
and it is Leibniz' notation that has been adopted as an international standard. What 
was Leibniz' eureka moment? As with Newton, Leibniz was aware of initial efforts 
in the direction of calculus. Using his ability for generalization, it is conceivable that 
Leibniz was able to distill the initial efforts of his contemporaries into theory and then 
expand upon the theory; perhaps this is how it happened. But Leibniz himself posits a 
suggestion of what occurred. Leibniz once stated, "He who understands Archimedes 
and Apollonius will admire less the achievements of the foremost men of latter times." 
Calculus could easily have been spawned out of the mix of the trained and theoretical 
mind of Leibniz with the pioneering work of Archimedes. So, after a 2000-year hiatus, 
indeed the road to calculus may have passed through Archimedes. 

It is fitting to end our story with Leibniz. The best known of his sayings is 
perhaps the least understood, "We live in the best of all possible worlds." Leibniz 
was not blind to the cruelty of the world around him, and quite the contrary, he had 
a very firm grasp of the world and knew that cruelty was very much a part of the 
human experience. His view is that the most negative aspects of the flawed human 
character are inherent in any possible world. It is within this constraint that Leibniz 
made his observation. So did mankind have to pass along such a tortuous and at times 
depraved path toward one of its most outstanding achievements? Perhaps so. Given 
our flawed character, we took the only path we possibly could. And are we doomed 
to set a similarly depraved course toward our future or can we overcome our negative 
traits—Let us move onto mathematics. 

2.2 NUMBERS 

This book presents the mathematics required to derive Kepler's ellipse using Newton's 
calculus. The presentation passes through geometry, algebra, trigonometry, and finally 
calculus. But mathematics begins with numbers and so we begin with an investigation 
of numbers. If one imagines numbers as points on a number line, there is no obvious 
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distinction among the points. And yet, the properties of the distinct points and the 
way we express them is very different. In this section, differences between these 
seemingly similar points are investigated. The differences result in the classification 
of real numbers into integers, rational numbers, and irrational numbers. Examples 
motivate the classification of numbers. Finally, this section explores the impact that 
different numbers have on two related systems, artistic designs and the collision of 
an asteroid with the earth. 

2.2.1 Integers, Rational Numbers, and Irrational Numbers 

2.2.1.1 Integers The concept ofa whole number, 1,2, 3, and so on, is so intuitive 
that no explanation will be given. One is able to use whole numbers to solve a variety 
of problems. Consider, for example, payment for a basket of goods. One simply 
multiplies the unit price of each item by the quantity of purchase for each item to 
find the payment for each good, and then one sums across all the goods. This can be 
accomplished using whole numbers. 

Let us complicate the situation and see that restricting ourselves to whole num-
bers causes difficulties. Suppose that two individuals, Mr. G and Mr. K, are trading 
baskets of goods and that they will settle the difference with a cash payment, assuming 
that there is an agreed-upon market price for all goods. Let us consider the value of the 
swap prior to cash settlement from the perspective of each party and then determine 
how to settle the cash payment. Each individual calculates the benefit of the swap by 
subtracting the value that he gives from the value that he receives. The calculation 
appears as follows: 

VG = BG- BK VK = BK- BG 

where 

• VG is the value of the swap to Mr. G 

• VK is the value of the swap to Mr. K 

• BQ is the value of the basket that Mr. G receives 

• Z?K is the value of the basket that Mr. K receives. 

• All values are given in currency units that are henceforth denoted by CUs 

Unless the values of the baskets are identical, one of these individuals will receive 
less than he gives and the value of the swap will not be a whole number. Set, for 
example, BQ to 10 CUs and B& to 15 CUs. Then for Mr. K, the value of the swap is 5 
CUs, but for Mr. G, there is no whole number that can express the value of the swap. 
The problem requires numbers that are less than zero. So we couple the concept of a 
negative number with that of the whole numbers to arrive at integers. In the problem 
above, for Mr. G, the value of the swap is given by the integer value of —5 CUs. The 
settlement payment that accompanies the swap is then the value 5 CUs from Mr. K to 
Mr. G so that the value of the complete transaction to both individuals is identically 
zero. This is a fair transaction. 



4 4 CHAPTER 2 THE TRAIL: STARTING OUT 

2.2.1.2 Rational Numbers and Conversion With a slight complication of the 
problem, we see that it is necessary to expand beyond integers to determine meaningful 
quantities. Consider that Mr. G wishes to obtain 100 L of Lowenbrau beer and he has 
arranged to swap a fair quantity of Chianti. Let us imagine that one can purchase 3 L 
of Lowenbrau for 1 CU and sell 2 L of Chianti for 1 CU and these values indicate a 
fair market price. The problem is to find the quantity of Chianti that Mr. G must swap. 

Since the market value for 3 L of Lowenbrau is identical to the market value 
for 2 L of Chianti, for every 3 L of Lowenbrau that Mr. G wishes to obtain, he must 
provide 2 L of Chianti. There are several ways to arrive at a solution. One way is to 
separate the 100 L of Lowenbrau into individual pitchers of 3 L and then associate 
2 L of Chianti with each pitcher of Lowenbrau. Mathematically, the number of liters 
of Chianti that Mr. G must sell is expressed as follows: 

Pitchers of Loewenbrau = 100 ~ 3 

Liters of Chianti = pitchers of Loewenbrau x 2 

= (100-=-3)x 2 

Immediately, we can see that neither the pitchers of beer nor the equivalent 
liters of Chianti is integer valued. There are a bit more than 33 but a bit less than 34 
pitchers of beer. We must enlarge our set of numbers to include rational numbers, 
those numbers that can be expressed as fractions with an integer in the numerator and 
an integer in the denominator. With the assistance of rational numbers and the ability 
to perform arithmetic with them, the answer becomes ^p = 661 L of Chianti that 
Mr. G must furnish. 

Within the word rational lies its basis, ratio. A rational number is a ratio between 
two integers and thinking in this manner can yield some insight. In the above problem, 
one can arrive at a ratio of the quantity of Chianti to the quantity of Lowenbrau that 
equates their market values; the ratio is | . Notice that this ratio is independent of 
units; 2 L of Chianti is equal in value to 3 L of Lowenbrau and 2 barrels of Chianti is 
equal in value to 3 barrels of Lowenbrau. The quantity of Chianti that is equal in value 
to any given quantity of Lowenbrau is obtained by multiplying the given quantity of 
Chianti by | . 

The problem above is a conversion problem and in this case the conversion 
of liters of Chianti to an equivalent value of liters of Lowenbrau. Rational numbers 
frequently arise in problems of conversion as a ratio between values must be expressed. 
We present a few more examples, focusing on those involving motion. Indeed, the 
examples with motion will later be generalized in our development of calculus. 

Example 2.1 CONVERSION OF SPEED TO DISTANCE 

Suppose that in Galileo's experiments he set his track so that the sphere rolls downhill 
and then flattens out for quite a distance. Once it reaches the flat section, the sphere 
rolls at a constant speed. Let us say that Galileo measures that the sphere rolls a 
distance of 7 m in 2 s. Assuming there is sufficient track, how far will the sphere roll 
in 30 s? 
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Solution 30 s x ^ m/s = 105 m 

While the example may appear simple, with an understanding of this example, 
you are halfway to the fundamental theorem of calculus (the remainder of the book 
takes you all the way there). So some remarks are in order: 

• As a precursor to the problem, we note that we were able to calculate the speed, 
5 m/s, from a measurement of time and distance. Differential calculus general-
izes this to more complex motions; given a particle's distance as a function of 
time, find its speed. 

• The problem performs the inverse; once the speed is known, calculate the dis-
tance. Integral calculus generalizes a method for accomplishing this for more 
complex motions. 

• The fundamental theorem of calculus is nothing more than a realization of 
the relationship between speed and distance. This is why understanding this 
example establishes a good basis for understanding the fundamental theorem 
of calculus. 

• Note the inclusion of units in the calculation. Units cancel one another, so that 
the unit seconds (s) appearing with 30 cancels with the unit seconds (s) in the 
denominator of the expression for the speed. There is no cancellation of the 
length unit, meters, so it correctly remains in the answer. 

• Also, notice that the nature of the ratio \ is very different from the ratio \ 
that was found to equate Lowenbrau with Chianti. Whereas -j in the beverage 
problem is a universal constant independent of units, \ i n t n e speed problem 
is not. It very much depends upon the units. Indeed, if we express the speed in 
miles per hour, feet per second, or furlongs per score, we will get a different 
constant. This observation leads to our next example. 

Example 2.2 CHANGE-OF-SPEED MEASUREMENTS 

Let us take the above example but determine how far the ball travels in 2 min. 

Solution The solution is to multiply speed by time, but the time units associated 
with each measurement must be identical. Since the time is given in minutes, let us 
convert the speed from meters per second to meters per minute. This is accomplished 
by multiplying with another ratio expressing the number of seconds per minute, ^ , 
or just 60: 

7 
- m/s x 60s/min = 210m/min 

With the time units all set in minutes, it is possible to determine the distance: 

2 min x210m/min = 420 m 
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This example generalizes to a formula known as the chain rule in differen-
tial calculus and a principle known as change of variables in integral calculus. It is 
important to understand the concept of converting from one unit to another and how 
ratios are used to perform the conversion. 

Example 2.3 WEIGHING TIME 

This example follows the spirit of Galileo's measurements. Recall that Galileo did 
not measure time with a clock but weighed time by measuring the amount of water 
that flows into a pan from an hourglass-type device. Let us assume that in the above 
problem the sphere travels along the flat part of the track for a distance of 15 m and 
the amount of water collected during that time weighs 2 kg. Using the speed 5 m/s, 
find the flow rate of the water in kilograms per second. 

Solution 

■̂  kg/s x \ m/s = -^ kg/s 

Example 2.4 CONVERTING WEIGHT TO SPEED 

We can pose the above example from a different perspective. Suppose that it is known 
that the measuring device flows at a rate of j$ kg/s and, as above, the amount of water 
collected after the sphere goes 15 m is 2 kg. What is the speed of the sphere? 

Solution 

-y m/kg x -^ kg/s = \ m/s 

Note the similarity between the examples. Conversion from one unit to another is 
performed by a multiplication of ratios. The labeling of units greatly assists with 
getting the ratios correct. 

2.2.1.3 Irrational Numbers This section demonstrates that the rational numbers 
do not fill out the number line. Consider the following problem: given the side of a 
square, find the diagonal of that square. This is in fact a conversion problem. Similarity 
of squares shows that there is a constant ratio between the diagonal and the side 
(Figure 2.1). If one can find the ratio of the diagonal to the side, then that ratio can be 
used to convert a given length for the side of any arbitrary square to a length for the 
diagonal of the arbitrary square. Let us attempt to do this using rational numbers. 

Let D be the length of the diagonal and 5 be the length of the side. To find a 
rational number that represents the ratio D/S, one must solve the following equation: 

qD = PS (2.1) 

where both p and q are nonzero integers. Then the ratio D/S is the rational number 
p/q. How do we know if we can or cannot equate an integral number of diagonals, 
D, with an integral number of sides, S? The ancient Greeks addressed this problem 
and we follow their path. Using the Pythagorean theorem (presented in Chapter 3), it 
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D/S = D'lS' 

Figure 2.1 Similiraty of squares. 

is possible to determine D for a given value of S: 

S2 + S2 DL 

2S2 = D2 

Therefore, the ratio of D to S is D/S = y/2. Our original aim is to constrain 
the numbers p and q in equation (2.1) to rational numbers. So let us proceed and see 
if this is possible: 

qD 

P_ 

<7 

pS 

It is possible to express p/q in its most reduced form. This means that both presumed 
integer numbers p and q cannot be even: 

P 
„2 

Vlq 

2,2 

The right side of the above equality, 2q2, is an even number so the left side, p2, must 
also be even. Since the square of an even number is even, the value p must be even. 
Furthermore, since p is even, there is an integer, r, with p = 2r. Substituting for p, 
we have the following: 

Ar2 = 2q2 

2r2 = q2 

Using the final equation, 2r2 — q2, it is seen that q must be even by applying the 
identical argument that showed p is even; q2 is even and so q is also even. It appears 
that both p and q are even. But since p/q is in its reduced form, both numbers cannot be 
even. There is something amiss, and let us try to identify why this inconsistency arises. 

The equations are all constructed correctly. There is nothing wrong with as-
suming that p/q is in reduced form because it is always possible to reduce rational 
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fractions. The only other cause of the inconsistency is our attempt to find a ratio-
nal number that represents V2. The fact that this attempt leads to an inconsistency 
demonstrates that the attempt itself is folly and indeed -s/2 is not a rational number. 

The objective of this section is complete. We have found a number that is not 
rational and, in doing so, demonstrated that the rational numbers do not fill out the 
number line. 

2.2.2 The Size of the Irrational Numbers 

Let us take a pragmatic perspective toward mathematics. From this perspective, num-
bers must be able to quantify specific properties; such as the area of a wall so that 
someone knows how much paint to buy, the time it takes to drive to the mall so that 
one knows when to leave for an appointment, or the weight of a Roman boat so 
that the necessary leverage for lifting it out of the water is known. 

Any measuring device has discrete limitations that restrict the device's mea-
surements to the rational numbers. This is because associated with all measuring 
devices is a smallest unit of measurement that perfectly divides a standard unit of 
measurement. For example, a metric stick used to measure length may be divided 
into millimeters, one thousandth of a meter, and all measurements are accurate within 
1 mm. One cannot measure a length of -Jl m because y/2 is not a rational number 
and hence cannot be an integral multiple of millimeters. The fact that we are unable 
to solve equation (2.1) for rational p and q means that no matter how fine we take 
our smallest unit of measurement, nanometers, for example (10 - 9 m), we will not be 
able to precisely measure an object of length V2 m using the measuring stick. 

At first glance, from our pragmatic perspective this appears very disconcerting. 
There are numbers that we cannot measure. Perhaps y/2 is a fluke. Perhaps there are 
not too many irrational numbers, so it is not necessary to be too concerned about 
them. So let us ponder whether or not irrational numbers are commonplace. 

The following concrete problem is posed to address the issue. Let us first restrict 
the problem to the interval from 0 to 1. The length of this interval is 1. The irrational 
numbers within the interval from 0 to 1 are a subset and perhaps it is possible to find 
their length. If that length turns out to be really small, perhaps it is not necessary 
to worry about the irrational numbers. Alternatively, if that length turns out to be 
significant, we better learn how to deal with irrational numbers. 

Finding the length of the irrational numbers is not a trivial problem; it requires 
substantial theoretical firepower. Nevertheless, we find the length substituting intu-
ition for firm theory when necessary. 

Let us begin by dividing the interval from 0 to 1 into two sets, the set of rational 
numbers, which is denoted by Sr, and the set of irrational numbers, which is denoted 
by S|. Every number is either rational or irrational, a number can be expressed as a 
ratio of integers or it cannot, so every number in the interval is in either Sr or S\, and 
there cannot be a number in both sets. For example, | is in the set Sr while V2 is in 
the set Sj. The length of the interval from 0 to 1 is just 1. This length must be the same 
as the sum of the lengths of Sr and Sj. The following equation expresses this equality: 

L(Sr) + L(S i )= l 
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where 

• L(Sr)is the length of the set of rational numbers in the interval 0 to 1 

• L(Sj)is the length of the set of irrational numbers in the interval 0 to 1 

It turns out that finding L(Sr) is easier than finding the L(S[). So let us concentrate 
on this problem. Afterward, L(S\) is determined from the above expression, 
L(Sj) = 1 - L(Sr). 

The length L(5r) is determined by summing the lengths of every point within 
Sj. Is it possible to do this? Yes, provided that it is possible to identify each term 
of the sum: the first term, second term, third term, and so forth. Alternatively, if it 
is not possible to enumerate the terms in a sum, it is not possible to perform the 
sum. The property of being able to enumerate elements in a set is called countability. 
Specifically, a set is countable if each member of that set can be associated with a 
unique positive integer. Below are examples of countable sets in which the association 
is made explicit. 

Example 2.5 THE ALPHABET 

The alphabet is a countable set. Associate A with 1, B with 2, C with 3, and so 
on. Generalizing this example, any set with a finite number of elements is a count-
able set. 

Example 2.6 A FINITE SET WITH NEGATIVE NUMBERS 

Consider all the integers between the numbers —4.1 and 5.1. Even though there are 
negative numbers, it is possible to associate a positive integer with each value. The 
following table presents an association: 

Whole number 
Original value 

1 
- 4 

2 
- 3 

3 
- 2 

4 
- 1 

5 
0 

6 
1 

7 
2 

8 
3 

9 
4 

10 
5 

Notice that this is not a unique association. The next table presents another 
association: 

Whole number 
Original value 

1 
0 

2 
1 

3 
- 1 

4 
2 

5 
- 2 

6 
3 

7 
- 3 

8 
4 

9 
- 4 

10 
5 

One can describe the second association with the following formula: 

Í
2n for all positive n 

—2n + 1 for all other n 
Example 2.7 INTEGERS, AN INFINITE SET 

The integers form a countable set. Any integer could be inserted in the second table of 
the preceding example by extending the table. The formula in the preceding example 
presents an association over all integers. 
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Numerator 0 
Denominator 

C4- m 
0 2/5 0/5 4/1 

<q m-

—sfc 
2/7 3/7 Iff—Sff—6/7-

-3/8- -5/8-
■19 ?/q _á/9 5/9-

-2/8> 

7/9 8/9 

Figure 2.2 Ordering the integers. 

It turns out that the rational numbers between 0 and 1 form a countable set. In 
fact, the entire set of rational numbers is countable, but we focus on those between 
0 and 1. Figure 2.2 illustrates the construction of the association. In the figure, 
the horizontal numbers at the top represent the numerator of a rational number, 
while the vertical numbers represent the denominator. A rational number is given a 
place in the matrix; for example, the rational number | occupies the second column 
and fourth row. While the Figure 2.2 only displays a finite set of numerators and 
denominators, the actual matrix goes on indefinitely in each direction. In this manner, 
all the rational numbers are placed in the matrix. Notice that the numbers are only 
entered in the matrix in their reduced form. Otherwise, the matrix position is left 
blank. For example, there is no entry for | . 

To demonstrate countability, it is necessary to enumerate the entries. The squig-
gly curve through the numbers show how this is done. The table below is created by 
following the squiggly curve for the first 10 entries: 

Whole number 
Original value 

1 
0 

2 
1 

3 
l 
2 

4 5 

5 
6 
3 
4 

7 
1 
4 

8 
l 
5 

9 

i 
10 
3 
5 

We have constructed the necessary association of rational numbers, between 0 
and 1, with the positive integers to demonstrate that they are countable. 

Having demonstrated that it is possible to enumerate the rational numbers be-
tween 0 and 1, it is possible to determine L(Sr). The length of a countable set is 
the sum of the lengths of its elements. For L(Sr), this is expressed in the following 
equation: 

L(St) = L(Rl) + L(R2) + L(R3) + L(R4) +■■■ (2.2) 
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where 

• Rj is the 7'th rational point 

• the sum goes on indefinitely 

Each of our rational numbers is a point with no length; L(Rj) — 0 for every positive 
integer j . Substituting 0 for each L(Rj) in equation (2.2) shows that the length of our 
set 5r is a countably infinite sum of zeroes, which itself is just zero. 

We have found that L(Sr) = 0, which means that L(Sj) = 1 [recall L(Sj) = 
1 — L(Sr)] and the set of irrational numbers is much larger and certainly more com-
monplace than the set of rational numbers. The size of the rational numbers in com-
parison with that of the irrationals is so miniscule that the rationals are insignificant. 
Let us place this notion in a different context. If there was a truly random process that 
picked a number between 0 and 1, then after any number of attempts the probability 
of the process picking a single rational number is zero. The hope that V2 is a fluke 
is completely dashed. The opposite is true, the rational numbers are flukes, while the 
irrationals abound. 

We close this section with one remark. There is the question of why not apply the 
procedure of adding up the lengths of the individual points to the irrational numbers. 
Following the above process, the length of irrational numbers is zero as well because 
each individual irrational point has length zero. But the irrational numbers are not 
countable; there are too many of them so that enumeration is impossible. It is not 
possible to follow the above process and directly sum an uncountable quantity of 
terms; a direct sum can only be performed if each term can be enumerated. 

2.2.3 Suitability of Rationals and the Decimal System 

From the preceding section, one can deduce that most quantities, that is, the area of 
a wall so that someone knows how much paint to buy, or the time it takes to drive 
to the mall so that one knows when to leave for an appointment, or the weight of a 
Roman boat so that the necessary leverage for lifting it out of the water is known, 
have irrational measures. From a pragmatic perspective, irrational numbers cannot be 
ignored. We must come to terms with them. How do we proceed? 

The answer comes from our common sense, which says that it is not necessary 
to have such accurate measurements. If it is possible to find the area of a wall to 
within a square meter, we know how many cans of paint to buy. If the time required to 
get to an appointment is known within 10 min, we can plan just fine. If Archimedes 
knows the weight of a Roman ship to within 50 kg, he can engineer his mechanical 
lifters. Each situation has a tolerance band. For some, such as the manufacturing of 
microchips, the tolerance band may be severe, but it is not zero. So long as it is possible 
to meet any nonzero tolerance band, the rational numbers can do any job—not bad 
for a group of insignificant numbers. 

Let us bring some rigor to the notion of tolerance band with an exam-

ple. Suppose we need to cut a strand of gold to within Í j§ ) th of a millimeter 

( loooo ) th of a meter of \/2 m. How do we proceed? 
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To find a solution, note that all decimal values with a finite number of terms are 
rational numbers. For example, the number 0.5698 is rlnra • ^ u r a PP r o a c n t 0 finding 
a length within the tolerance band is to use the decimal system by finding a solution 
one digit at a time. The method is self-explanatory. 

Let us go for the ones digit. 

I2 < 2 < 22, which is the same as 1 < yfl < 2 
So the first digit is 1. Let us go for the one-tenths digit. 

1 A2 < 2 < 1.52, which is the same as 1.4 < \p2 < 1.5 
So the one-tenths digit is 4. Let us go for the one-hundredths digit. 

1.412 < 2 < 1.422, which is the same as 1.41 < V2 < 1.42 
So the one-hundredths digit is 1. Let us go for the one-thousandths digit. 

1.4142 < 2 < 1.4152, which is the same as 1.414 < V2 < 1.415 
So the one-thousandths digit is 4. Let us go for the one ten-thousandths digit. 

1.41422 < 2 < 1.41432, which is the same as 1.4142 < V2 < 1.4143 

The required tolerance has been established. As long as there is an instrument 
that can measure to within one-tenth of a millimeter of accuracy, the instrument 
should measure between 1.4142 and 1.4143 m. Taken between these measurements, 
the cut is within the tolerance band. If greater accuracy is required, it is possible to 
continue down this path and get more digits. So, indeed, using the rational numbers, 
it is possible to get as close to \f2 as desired. 

In this regard, there is nothing unique about \pl. Given any irrational number, 
it is possible to find a rational number within any tolerance band using the above 
process; go one digit at a time bounding the number above and below until the number 
is bounded as tightly as is required. Chapter 6 demonstrates that the methods of 
calculus generalize this process; using calculus one determines an unknown quantity 
by approaching it using quantities that can be determined. 

Having satisfactorily addressed our practical concerns, let us turn to the more 
abstract idea of accurately representing an irrational number. The Greeks were quite 
concerned by this and took to geometric representations. For example, V2 would be 
represented as the diagonal of a square with sides of unit length. The modern-day 
solution follows a more pragmatic approach. We simply write an expression that 
describes the number's significant property and do not give it any more thought. For 
example, y/2, 5 1 3 , IT, and cos(7r/7) are all modern-day representations of irrational 
numbers, that are, the square root of 2, 5 raised to a power of 1.3, the ratio of the 
circumference of a circle to the diameter of the circle, and the cosine of the angle rt/1, 
respectively. Any further specification is unnecessary. 

We close with some remarks of interest: 

• This method of approaching the unknown through the known is a theme of 
this book. Archimedes uses the approach to approximate the value of pi and 
determine volumes of several odd shapes. As noted above, the method is central 
to calculus. 
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• The process used to approximate an irrational number shows one of the ad-
vantages of a decimal system. The record indicates that the Mesopotamians 
were the first to introduce a decimal-like system. The difference between our 
modern system and theirs is that the base for their system was 60 as opposed 
to our system, which is base 10. The ancient Chinese system was a decimal 
base-10 system like the modern system. 

• As a testimony to the capacity of rational numbers to do the job, all of Kepler's 
data were in the form of rational numbers; Tycho Brahe could only make rational 
measurements. And yet, with this slightly imperfect data, Kepler was able to 
find the correct orbit of Mars. 

• The above process for finding a rational approximation of an irrational number 
is not an efficient process. This process finds one digit at a time. In the case of 
approximating the square root of a number, there are more efficient methods 
that allow one to get more than a single digit with each approximation. 

2.2.4 Rational and Irrational Outcomes 

This book pursues the ellipse. Occasionally, during the pursuit, something of interest 
comes into view and out of temptation we follow it. This section is the first sojourn 
off the path of the ellipse. 

There is a tendency to think of a number as only providing a quantity and that 
two numbers that are close are very similar. This section questions the notion through 
an analysis of an asteroid collision. Before taking on the problem of the asteroid 
collision, an artistic design is analyzed. The design follows a simple mathematical 
formula and the outcome of the design may change dramatically as a parameter in 
the formula changes. The design yields insight into asteroid collisions. 

2.2.4.1 Mathematical Art Look at the patterns shown in Figure 2.3. 
These are examples of mathematical art in which an artistic waif who is 

nevertheless mathematically savvy can create beautiful patterns. In this section, these 
patterns are analyzed. 

Let us imagine a circular table with nine pegs set equally about the edge of 
the table and label the pegs counterclockwise from 0 to 8. Attach a string to peg 0, 
moving clockwise skip two pegs, and attach the string to the third peg over. From 

Figure 2.3 Mathematical artwork. 
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Figure 2.4 A cycle, nine pegs skip two. 

that peg, again moving clockwise, skip two pegs and attach the string to the third one 
over. Continue this pattern. What happens? 

Eventually the string returns to peg 0. Why is this so? Notice that each peg 
leads to a unique peg along the path and there is only one peg that can precede it. For 
example, the path always proceeds from peg 3 to peg 6 and there is no other peg that 
precedes peg 6. Since there are only nine pegs, after a while, you have to reconnect 
to a peg that has already been connected. Let the first instance of a reconnection be 
at peg j . If j is not 0, then there is more than one peg that leads to j , which cannot 
happen so the first instance of reconnection must be at peg 0 and indeed the string 
returns to peg 0. We call the path from peg 0 back to peg 0 a cycle. 

Once the string has returned to peg 0, the pattern repeats. The cycle takes the 
path 0-3-6-0. Figure 2.4 depicts the cycle. In the remainder of this section, this 
pattern is referred to as the first pattern. 

Notice that the string never connects to pegs 1, 2,4, and 5. 
Let us see what happens if there is a slight change in the construction, instead 

of skipping over two pegs between connections, skip over three pegs and attach to 
the fourth one over. Figure 2.5 illustrates the result. The cycle assumes the path 0-4-
8-3-7-2-6-1-5-0. In the remainder of this section, this pattern is referred to as the 
second pattern. 

There is a visual difference between the two patterns; the first pattern is much 
more plain and the second far more striking. Is there a quantitative explanation for 
the qualitative difference? 

There are a number of quantities of interest: the number of circuits in a cycle, 
the number of legs that have been made, and a concept for length. A circuit oc-
curs each time the path passes 0 whether or not it reconnects to peg 0. A leg is a 
segment between two connected pegs. In the first pattern, there is one circuit and 
there are three legs. In the second pattern, there are four circuits (the path skips 
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Figure 2.5 A cycle, nine pegs skip three. 

over peg 0 three times and then returns to peg 0 on the fourth go around) and nine 
legs. 

The length of a portion of a path is the number of pegs from the starting peg to 
the final peg of the portion. The length of any path is the sum of the lengths of the 
portions. Accordingly, the leg length is the number of pegs from one attachment to 
the next, and in the first pattern the leg length is 3, while in the second pattern it is 
4. The cycle length is obtained by adding up each of the leg lengths within the cycle. 
Since the leg lengths are all identical, the cycle length is the product of the leg length 
and the number of legs. In the first example, the cycle length is 3 x 3 = 9. In the 
second example, the cycle length is 4 x 9 = 36. 

Is there another way to get the cycle length? Consistent with our previous 
definition, take the circuit length to be the number of pegs around one circuit; this is 
just the total number of pegs on the table. In both of the above patterns, the circuit 
length is 9. Then the cycle length is the sum of all the circuit lengths in the cycle. 
Since the circuit lengths are all identical, the cycle length is the product of the circuit 
length and the number of circuits in one cycle. In the first example, the cycle length 
is 9 x 1 = 9. In the second example, the cycle length is 9 x 4 — 36. 

We have calculated the cycle length in two ways: 

Cycle length = leg length x number of legs in a cycle 

Cycle length = circuit length x number of circuits in a cycle 

Equating the two calculations of cycle length yields the following equation: 

Leg length x number of legs in a cycle = circuit length 

x number of circuits in a cycle (2.3) 
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Consider the general case in which there are a total of N pegs on the circular 
table and an attachment occurs every Mth peg; that is, the circuit length is N and the 
leg length is M. As in the above patterns, because there are a finite number of pegs, 
the string must return to peg 0 and form a cycle. Let q be the number of circuits in 
a cycle and p be the number of legs. Rewriting equation (2.3) using M, N, q, and p 
results in the following equation: 

Mp = Nq (2.4) 

In equation (2.4) and the remainder of this section, M, N, p, and q are all positive 
integers. 

Notice the similarity between equations (2.4) and (2.1). Equation (2.1) was 
established to determine if an integral multiple of the length of the side of a square is 
equal to an integral multiple of the length of the square's diameter. (This was not the 
case.) Similarly, equation (2.4) finds a pair, p and q, in which an integral multiple of 
the leg length equals an integral multiple of the circuit length. In this equation, there 
is always a solution; set p = N and q = M. 

When a positive solution is found, the path has gone exactly through p legs and 
q circuits, and the path has returned to peg 0. One cycle must consist of the smallest 
positive values of p and q that satisfy equation (2.4), the least number of legs that 
corresponds with a perfect multiple of circuits. 

Is the solution, p = N and q = M, the smallest solution over positive integers? 
We return to our patterns hoping to find an answer. For the first pattern, M = 3 and 
N = 9: 

3p = 9<7 

This equation can be rewritten as 

1 = 1 
9 p 

By placing the fraction on the right into its reduced form, it is possible to find the 
smallest values of p and q: 

1 = 1 
3 p 

The solution is that p = 3, three legs, and q=\, one circuit. For the second pattern, 
we have the following: 

4p = 9q 

- = 1 
9 p 

Since | is in reduced form, p — 9, nine legs, and q = 4, four circuits, are the small-
est solutions. The above arguments are generalized into the following algorithm for 
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Figure 2.6 Patterns. 

finding the number of circuits and number of legs in a cycle: 

Step 1. Create the fraction M/N. 

Step 2. Reduce the fraction and call it q/p. 

Step 3. The number of circuits is q and the number of legs is p. The cycle length is 
pxq. 

The patterns shown in Figure 2.6 are created for the indicated values of M 
and N. 

We close this section with some remarks: 

• As long as the circuit length is a prime number, then the fraction M/N is already 
in reduced form and a cycle will connect to every peg. 

• In all the examples, the leg length is chosen as less than half of the circuit 
length. This is sufficient to determine the design of all the patterns using the 
symmetry of the system. For example, the pattern created by the values 5 for the 
connection length and 9 for the circuit is a reflective symmetry of the pattern 
created by the values 4 for the leg length and 9 for the circuit length. This 
happens because the connection points of the system with M = 5, N — 9 are 
identical to the connection points of a system in which M = 4, N = 9, but the 
pegs have been labeled clockwise as opposed to counterclockwise. 

• It is possible to consider leg lengths with any integer value, not just positive 
integers. Negative integers would indicate moving around in a clockwise, as 
opposed to counterclockwise, manner. 

• In general, the patterns with high cycle length yield complex figures, while 
the patterns with low cycle length are simple. The type of pattern that is more 
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visually pleasing (simple or complex) is a matter of individual taste. But the 
mathematically astute can create whichever is desired. 

2.2.4.2 Incoming Asteroid The designs in the previous section are governed by 
the reduced form of the rational number M/N. Two designs that are governed by 
numbers that are very close can have very different outcomes. For example, think of 
two designs, D] and D2, with 100 pegs, and N = 100 for both systems. Let M\ = 50 
and M2 = 49. Design D| yields a simple design; there are only two legs and one 
circuit in the cycle. The path initiates at peg 0, proceeds to peg 50, and then returns to 
peg 0. However, since - ^ is in reduced form, there are 100 legs and 49 circuits in D2; 
all the pegs are connected through a starlike design of 49 circuits. The numbers - ^ 
and -[QQ are reasonably close, yet the designs are very different. (If these two numbers 
do not seem close enough, try - j ^ and -fggjj.) The study of motion yields similar 
phenomena. Motion that is governed by a single or a small set of parameters may 
differ substantially by changing a parameter ever so slightly. This section presents an 
example that generalizes the results of the previous section. 

The setup is the following. Allow an object to move counterclockwise around 
a circle at constant speed; assume that distance is measured in a system where the 
circumference has length 1. After a fixed time interval, record its position. Continue 
recording the position over the same fixed time interval indefinitely. The position 
is identified by the length of the arc initiating from the object's initial position to 
its current position in a counterclockwise direction. Because the speed of the object 
remains constant and the time interval between recordings is fixed, the arc length 
between two recordings is a constant length. Let us denote this length by A and 
denote the recordings by Rj, where j represents the recording after the y'th time 
interval. We will examine the behavior of the record of positions. 

The following expressions establish the records Rf. 

R{ = A R2 = 2A mod 1 fl3 = 3A mod 1 

In general, the following relations hold: 

Rj = jA mod 1 = (Rj-i + A) mod 1 (2.5) 

The function mod is taken to maintain the recording between 0 and 1; once the object 
has completed a full revolution, the measurement is reset to zero. 

What can be said about the behavior of the record? Let us begin by associating 
this system with that of the previous section. Assume that the arc length between 
recordings is (5) th the entire circumference, that is, A is | . One can divide the 

circle into nine arcs of length 9, and the end points of these arcs are identical to the 
position of the pegs in the second pattern of the previous section. Then the object 
visits each end point in exactly the same order as the second pattern of the previous 
section (see Figure 2.5). A complete cycle is given by ^0 =0, R\ = 9, #2 = 9, 
R3 = 9, /?4 = 9, R5 = 5, R(, = | , Ri = 5, ^8 = 9, and R9 = 0. Compare this with 
the cycle of pattern 2 of the previous section; recall that cycle is 0-4-8-3-7-2-6-1-
5-0. The only difference is that the length of the circle in this section is 1, whereas 
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the length of the circuit in the second pattern is 9. This difference causes a rescaling 
of all lengths by a factor of 9; the leg lengths, 4, are rescaled to give the arc lengths, <j. 

Can the results of the previous section be generalized? Let us assume the same 
notation in which M, the leg length, has the interpretation of arc length and N, the 
circuit length, is the circumference length. Reexamine equation (2.4): Mp — Nq. 
Integer solutions for the values of p and q yield a similar conclusion to what was 
found in the previous section. On the recording Rp, the object has gone around the 
circle exactly q times. Therefore, the object has returned to its initial position. A cycle 
occurs when p and q are the smallest nonzero integer solutions. Restating the result in 
terms of the value A, we note that the circumference length N is 1 and the arc length 
M is given by A: 

The conclusion is that if A is a rational number, the object cycles. If the rational 
fraction q/p is in its reduced form, then on the recording Rp a cycle is complete and 
the object has revolved about the circle exactly q times. 

What happens if A is not a rational number? In this case, the behavior is quite 
different. Equation (2.4) and its equivalent form, equation (2.6), have no integer 
solutions. It can never be that the recording Rt> ends on the initial position after q 
revolutions for any nonzero, integer values of p and q. The observations continue 
indefinitely without ever repeating themselves. 

In the case of irrational A, more can be said about the way that the observations 
are distributed about the circle. The circle is a symmetric object and the observations 
should be spaced out over the circle symmetrically; they should not clump in any 
one region more than any other. The following property specifies the notion of a 
symmetric distribution of the observations. 

Density Property. The observations come arbitrarily close to any arbitrary 
point on the circle. 

The property is so named because a set of points that come arbitrarily close 
to a larger set is said to be dense within the larger set. For example, since any real 
number can be approximated by a rational number within any given tolerance band, 
the rational numbers are dense within the real numbers. The density statement for the 
recordings in this section similarly means that for any given tolerance band around 
any point on the circle some point on the record of a system governed by an irrational 
value of A falls within the tolerance band. 

A formal proof of the density property can be found in Geometric Methods 
in the Theory of Ordinary Differential Equations (1983) by V. I. Arnold. The idea 
behind the proof is to use symmetry to show that a property that is true in an interval 
of the circle can be extended to the entire circle and is accordingly true for the entire 
circle. The density statement states that the object comes arbitrarily close to any 
point. On the contrary, suppose that there is a point from which the object remains at 
a fixed distance; there is a gap in the circle and there are no recordings in that gap. 
One can extend this gap to fill up the entire circle, so the property that there are no 
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Figure 2.7 Intersection of pathways. 

recordings holds for the entire circle, which is patently false. The only way to avoid 
this circumstance is by rejecting the supposition that a gap exists. 

What are the ramifications for a planet that rotates in a circular orbit with an 
asteroid periodically penetrating and exiting the circle. The situation is depicted in 
Figure 2.7. Although there are two points of intersection between the pathway of the 
asteroid and the planet, the analysis for each is identical, so we consider only one. 
The analysis assumes that the asteroid's trajectory and the planet's trajectory are fixed 
so that the asteroid indefinitely returns to the same exact point in a fixed time. 

At some initial time, the asteroid is located on the planet's circular pathway at 
the point C, while the planet is at the point Ro- The next time the asteroid returns to 
point C, perhaps hundreds of years later, the planet is at the point R\. Let the arc length 
between RQ and R\ be given by A. Each successive time that the asteroid returns to 
C, the planet's position has shifted by an arc of length A. Indeed, the relations of 
equation (2.5) hold. 

Will the asteroid and the planet ever collide? Let us assume that A is rational. 
Then the planet naturally executes a cycle and returns to its initial position. If a point 
of the cycle is close enough to C to cause a collision, then a collision occurs; otherwise 
the planet completes its cycle and repeats it indefinitely with no collision. 

Alternatively, if the arc length A is irrational, then by the density property, 
the planet will at some time come close enough to point C to cause a collision. In 
Section 2.2.2, it was seen that an arbitrary real number is most likely irrational. In all 
likelihood, a collision occurs. 

We close this chapter with some remarks: 

• It is possible to strengthen the density statement as follows: 

Ergodic Property. The length of any arc is equal to the proportion of obser-
vations that lie within the arc. Suppose that one wants to measure the length 
of an arbitrary arc with some room for error. It is possible to collect enough 
recordings, so that the proportion of recordings that lie within the arc indicates 
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the length of the arc; the difference between the actual length and the proportion 
is smaller than the margin of error. As the requirement for accuracy increases 
(decreasing tolerance band), the number of recordings necessary to guarantee 
that one is within the prescribed error also increases. 

• The ergodic statement is an expression of the uniformity with which the record-
ings are distributed. For all arcs of identical length, provided the number of 
recordings is sufficiently large, the number of observations within each arc is 
nearly the same. 

• The ergodic statement is rather remarkable. Note that any arc contains all the 
irrational points within its end points and is accordingly an uncountable set of 
points. Yet using the ergodic property, one can approximate the length of an arc 
(an uncountable set) by determining the proportion of recordings within the arc 
length over a finite record of observations, and the approximation approaches the 
actual length as the number of observations (countable) increases. Similarly, a 
rational value can approximate an irrational value using a finite number of digits 
and the approximation approaches the actual irrational value as the number of 
digits increases. As noted in the discussion of approximating irrational values, 
integral calculus follows a similar process. 

• The example illustrates a difficulty of approximating an irrational number with a 
rational one. Qualitative differences emerge from slight quantitative differences. 
In one case recordings cycle; in the other case they do not. Problems with a 
computer's inability to represent an irrational number lead to inaccuracies that 
over the long run become consequential. If one wants to be close to the true 
trajectory for a given time, there is a rational number that will remain close to 
the trajectory of the irrational one for that length of time, but not indefinitely. 

• Honoring the spirit of self-criticism, I note that this book is all about the ellipse, 
and in particular its objective is to show how planets orbit the sun in an ellipse. 
In the example, the orbit is circular, which is a bit of a throwback. This criticism 
could be addressed with a bit of effort. One could map the actual elliptic orbit 
onto a phantom circular orbit that would amount to the same thing. There is no 
need to go into this level of detail as it would obscure the main point of this 
section, a demonstration that quantitative and qualitative differences can result 
from approximations of irrational numbers using rational numbers. 



The starting point of our pathway toward calculus and the ellipse is with Euclid. In this 
we are not alone. Euclid initiates the mathematical education of many mathematicians. 
Concerning the man, whose influence is matched with few other historical figures, 
little is known. Folklore ascribes two quips that if accurate indicate that he had quite 
a wit. According to one story, a student challenged Euclid to demonstrate any value 
of his teachings. Euclid responded by requesting of his slave, "Give him three pence 
since he must make gain out of what he learns." In another story, the King, Ptolemy, 
asks Euclid if there is an easy way toward the understanding of The Elements. Euclid 
replied something to the effect that there is no special road to geometry even for 
a king. 

Euclid's legacy is beyond what he or his colleagues could ever have imagined. 
The Elements (Euclid, 2002) has been translated into more languages than any other 
book, save the Bible. It ranks among history's bestseller list and is still available at 
bookstores throughout the world. Indeed, if Euclid could capture royalties from book 
sales, he would be able to boast about many pence that have come his way as a result 
of this book and his impudent student would be unduly impressed. Beyond its popu-
larity, as a standard of mathematics education over a span of 2000 years in both Arab 
and European cultures, the book has shaped mathematical and scientific methodol-
ogy. Axiomatic deduction is the standard of modern mathematical discourse and this 
stems from the success of The Elements. Isaac Barrow, Newton's mentor, instructed 
Newton to become thoroughly familiar with The Elements as a first step in his mathe-
matics education. Inscribed above the doorway of the library through which Leibniz 
passed as a boy are the words "Let all who pass through study Euclid." Whether King 
Ptolemy passed through the doorway is unknown, but certainly both Newton and 
Leibniz did. 

By the time of Euclid, the Greeks had made much mathematical progress. 
Axiomatic deduction had been central in the school of Plato. Plato's student Eudoxus 
was preeminent in this endeavor. The axiomatic method begins with statements, called 
axioms, which appeal to common sense as self-evident. From the axioms, one 
deduces new statements, known as theorems. Once a formal deduction of the theorem 
is established, the theorem becomes a part of the body of knowledge of mathematics 
and may then be used to generate further theorems. In his work The Elements, Euclid 
formalizes axiomatic deduction by providing known proofs of existing theorems, 
establishes theorems from known conjectures by supplying the proof, and adds 
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original theorems along with their proofs. The dividing line between what was known 
prior to Euclid and Euclid's original contributions is unclear. 

Euclid follows the axiomatic-deductive method with uncanny skill. The critical 
step is the first one, establishing the axioms. The axioms germinate either directly 
or indirectly all the theorems. As such they must be sufficiently robust to produce 
an interesting body of theorems but sufficiently narrow so as not to overstretch 
the notion of what is self-evident. Other required features of the axioms are that 
they are independent—no axiom can be deduced from the remaining axioms—and 
consistent—the axioms cannot lead to statements that are contradictory. Euclid's 
first order of business is to place forward his axioms and in this he demonstrates 
brilliance. Euclid chooses five axioms from which he derives results that number 
into the hundreds. The five axioms are given below: 

1. A straight line can be drawn joining any two points. 

2. Any straight-line segment can be extended indefinitely in a straight line. 

3. Given any line segment, a circle can be drawn having the segment as radius and 
one end point as center. 

4. All right angles are congruent. 

5. If two lines are drawn that intersect a third in such a way that the sum of the inner 
angles on one side is less than two right angles, then the two lines inevitably 
must intersect each other on that side if extended far enough. 

Euclid's choice of axioms reflects the geometric underpinnings that dominate the 
Greek approach to mathematics. In this regard, numbers are considered as lengths or 
areas of geometric objects. Accordingly, all of what Euclid would demonstrate must 
be accomplished through the construction of geometric objects and the only allowable 
instruments for their construction are a straight edge and a compass. The axioms must 
describe allowable geometric figures that the first three axioms address. 

As an example to illustrate the geometric perspective that the Greeks adopted, 
the Greek demonstration that (x + y)2 = x2 + 2xy + y2 looks like the one shown in 
Figure 3.1. 

Note the largest square of length x + y is composed of two squares, one of length 
x and one of length y, and two rectangles, each with sides of lengths x and y. The 
equality states that the area of the largest square is equal to the area of its composite 

xy 

X 2 

y2 

xy 

x y x+ y 
Figure 3.1 Geometric demonstration: (x + y)2 = x2 + 2xy + y2. 
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parts, a large square, two rectangles of equal size, and a small square. To assert this 
requires the construction of each square using a compass and a straight edge. The 
above axioms allow for this construction. 

The axioms have undergone tremendous scrutiny over their lifetime. There have 
been efforts to eliminate some as redundant or unnecessary. Every effort to alter the 
axioms has ended in failure, a testimony to Euclid's brilliance. 

The final axiom does warrant some remarks. The axiom is known as the 
parallel postulate as it determines the conditions under which two lines are parallel. 
This has been the subject of the most controversy and the target of most efforts 
to alter the axioms. Several very talented mathematicians have attempted to 
prove its redundancy. Following the works of Islamic mathematicians al-Haytham 
(915-1039), Oman Khayyam (1048-1123), and Nasir al-Din al-Tusi (1201-1274), 
Girolamo Saccheri (1667-1733), a Jesuit, imagined what would happen if one were 
to eliminate the fifth axiom. How would this change the geometry of space? Which 
of The Elements' theorems would remain, and what new theorems would result? 
Saccheri's questions were largely rhetorical. He believed that it was impossible to 
violate the fifth axiom; if one were to attempt to describe a geometry that violates the 
parallel postulate, a statement that is in contradiction of the remaining axioms would 
surface. This would in effect be a proof of the parallel postulate, demonstrating its 
redundancy and reducing its status to a theorem. Saccheri committed himself to 
this endeavor. As Ponce de Leon searched in vain for the fountain of youth, so did 
Saccheri search for a contradiction. Saccheri believed his work to be a failure when, 
in fact, the mathematical exploration charted new territory that would have much 
broader implications than Ponce de Leon's excursion. 

Johann Lambert (1728-1777) followed up on Saccheri's work with a more open 
perspective. He looked not for a contradiction but for an actual example of a geometric 
system in which there is no fifth axiom and he succeeded. Lambert's geometric sys-
tem is a curved space that is akin to the space-time continuum underlying Einstein's 
general theory of relativity. The road from Saccheri to Einstein is another historic 
journey that we do not pursue. Instead we remain firmly planted in Euclid's world. 
Euclid's geometry appeals to our common sense as developed by our everyday expe-
riences. Furthermore, the calculus of Newton and Leibniz is grounded on Euclidean 
geometry and Euclidean space is where the ellipse resides. 

Topics in this chapter include a discussion of dimension, the Pythagorean 
theorem, a theorem of Cavalieri (1598-1647) and its application toward finding 
volumes of different shapes, and Archimedes' approach toward menstruation. The 
chapter takes two excursions, one exploring the notion of a fractal dimension and 
another into equal-area maps. 

3.1 EUCLIDEAN SPACE, DIMENSION AND RESCALING 

3.1.1 Euclidean Space and Objects 

Greek geometers studied objects (squares, circles, triangles, and so on) and considered 
space as a boundless envelope that contains objects. A point can contain no objects 
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and is zero dimensional. The shortest path between two points gives a line segment 
that can be extended endlessly into a line; the line is a one-dimensional space. Given 
two intersecting lines, the space generated by taking all the lines that are parallel to one 
while intersecting the other is a two-dimensional plane. From the two-dimensional 
plane and another line that intersects the plane in a single point, three-dimensional 
space may be generated by taking all the planes that are parallel to the initial plane 
while intersecting the additional line in a single point. The Greeks considered objects 
to be of one, two, or three dimensions. 

3.1.2 Euclidean Space in Higher Dimensions 

The modern notion of Euclidean space is a generalization of three-dimensional 
Euclidean space into higher dimensions. While the concept of dimensions beyond 
3 may seem foreign, in fact it is necessary to consider higher dimensions to 
describe many physical systems, even very simple ones. We give a description of 
the motion for a single rigid body as an example. Consider a dimension as an attribute 
associated with the rigid body's motion. The motion has many attributes, such as 
location, velocity, orientation, and change in orientation; a description of the body's 
motion requires a space that is an extension of physical space. 

The starting point is to locate the body's position while at rest. The location of 
an object indicates the position of the object's center of mass and is accordingly a 
single point. An object at rest has no degrees of freedom; its center of mass is fixed 
and the dimension of the space necessary to describe its position is 0; we can describe 
its position with a single point. If we allow the object to move in a line, say from left to 
right, the object can move along one degree of freedom; accordingly, the dimension 
of the space in which the object can move is l. Providing an additional degree of 
freedom so that the object can move from front to back, as well as left to right, the 
dimension of the space is 2. Finally, allowing the object to move in any direction, left 
to right, front to back, and up and down, the object has three degrees of freedom and 
the object can move in three dimensions. At most three numbers suffice to describe 
the location of an object at a given time. If we wish to designate the object's location 
by time, a fourth number is needed, namely, the time. Accordingly, the dimension of 
the space where the object is described is 4. 

Ascribing more quantitative properties to the object requires additional dimen-
sions, because each additional property requires another number. For example, if we 
wish to give not only the object's location but also its velocity, an additional three 
dimensions are required. The additional dimensions each provide a speed in a pre-
scribed direction. There is a speed in the left-to-right direction, another speed in the 
front-to-back direction, and finally a speed in the up-and-down direction. The velocity 
is the composite of all the speeds. Now there are seven numbers required to describe 
the object: three for position, three for velocity, and one for time. Mathematically, the 
space required to describe the object is seven dimensional. 

Beyond the location and velocity, one might wish to describe the object's 
orientation. Consider, for example, that the object is a rigid hat that has been tossed 
in the air. At various times the hat may be flipped upside down or its bill may be 
pointed in a particular direction. In general, the hat or any object may rotate about its 
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center of mass while the center of mass moves. To describe the orientation requires 
a description of the object's rotation about its center of mass. It turns out that three 
more dimensions are required to specify the rotation. And if one wishes to describe 
the velocity of the rotation, an additional three dimensions are required. Altogether, 
13 numbers are required to specify the motion of the object; mathematically, its 
motion requires a 13-dimensional space. This book ends with a demonstration that 
the orbit of a planet around the sun is elliptic. This demonstration requires four 
dimensions, two for position in a plane and two for planar velocity; orientation is not 
considered. 

All the above dimensions apply to a single rigid body. For each additional 
rigid body under consideration, another 12 dimensions must be included (3 for po-
sition, 3 for velocity, 3 for orientation, 3 for velocity of rotation). If one wishes to 
ascribe other properties to the body (that is, temperature, mass), more dimensions are 
necessary. 

Hopefully enough fuss about dimensionality has been made to provide a 
convincing argument that pursuing geometric structures in dimensions above 3 is 
worthwhile. Geometric concepts, such as distance between points, perpendicular in-
tersection of lines, hyperplanes (planes of dimension higher than 2), and measurement, 
can be generalized from standard three-dimensional space to higher dimensions. This 
chapter is firmly planted in three dimensions (except for an excursion into fractals). 
In Chapter 4, concepts from this chapter are generalized to higher dimensions. 

3.1.3 Unit Measurements and Measures of Objects 

A primary interest of Greek geometry is to determine the measure of a given 
object. The starting point is to define a unit measurement for every dimensional 
space: unit length, unit area, and unit volume. The measurement of a given object, 
if it is well defined, is then the greatest number, whole or otherwise, of objects with 
unit measurement that the initial object can contain. 

For example, in one dimension one designates a selected line segment as having 
unit length. Then the length of another arbitrary line segment is the maximum number 
of unit lines or fractions thereof that fit within the arbitrary segment. Similarly, in two 
dimensions, one designates a square with unit sides as having unit area. Then the 
area of a given two-dimensional object is the maximum number of unit squares or 
fractions thereof that fit within the given object. Finally, in three dimensions, one 
designates a cube with unit sides as having unit volume. Then the volume of a given 
three-dimensional object is the maximum number of unit cubes or fractions thereof 
that fit within the given object. 

A rather obvious property concerning these measurements is that they are all 
additive. That is, the measure of an object that is composed by bringing two or more 
objects together is the sum of the measures of each object within the composition. This 
property is very useful; it allows one to determine the measure of a complex object 
by decomposing the complex object into simpler pieces. One can then determine the 
measure of the simpler objects, recompose the complex object, and take the measure 
of the complex object as the sum of the measures of the simpler objects. 
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Figure 3.2 The whole equals the sum of the parts. 

A simple example is given in Figure 3.2, a rectangle of length 3 and width 2. 
Using the definition, the maximum number of unit squares that fit into the rectangle 
is 6; the area of the rectangle is accordingly 6. Alternatively, one can decompose the 
rectangle into six squares of unit area and sum up the areas of each of these squares 
to arrive once again at an area for the rectangle of 6. 

Remark 

• Our modern concept of measurement has evolved from the Greek concept given 
above. Objects that are currently considered are more abstract, such as the set 
of all irrational numbers between 0 and 1. 

• There are alternative approaches to determine the measure. For example, instead 
of taking the sum of units that an object can contain, one could take the smallest 
number of units that contain the object. If the object has a well-defined area or 
volume, the two approaches yield the same result. 

3.1.4 Reseating, Measurement, and Dimension 

The above concepts work well when the objects considered are simple, for example, 
if a one-dimensional object can be cut from a line or a two-dimensional object can 
be carved from a plane. But what happens when the object is a curve, such as the 
circumference of a circle, or a curved surface, such as the surface of a sphere? In such 
cases, how do we even know the dimension of the object? 

This section finds a relation between measurement and dimension through 
rescaling. The notion of rescaling used in this book may differ from that in other 
sources. In this book, rescaling is nothing more than rescaling the unit quantity; the 
rescaled unit length is a multiple of the original unit length. It is possible to determine 
the measurement of an object in rescaled units knowing its measurement in original 
units. The relationship depends upon the dimension of the object. We proceed with 
an example. 

Example 3.1 RESCALING OF A LINE, RECTANGLE, AND CUBE 

Suppose there are three objects, a line segment, a rectangle, and a cube, each with 
measurements in yards given, respectively, by L, A, and V. 
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Consider the units to be measured in feet. For the line, each yard is equivalent 
to 3 = 31 ft; the length in feet is 3 = 31 times the length in yards: 

Length in feet = L x 3 ft 

where L is the length in yards. For the rectangle, each square yard is equivalent to 
9 = 32 ft2; the area of the rectangle in square feet is 9 = 32 times the area in square 
yards: 

Area in square feet = A x 3 ft 

where A is the area in square yards. Finally, for the cube, each cubic yard is equivalent 
to 27 = 33 ft3; the volume of the cube in cubic feet is 27 = 33 times the volume in 
cubic yards: 

Volume in cubic feet = V x 33 ft3 

where V is the volume in cubic yards. In each case, the measurement in rescaled units 
becomes 

M = Mx.*d (3.1) 
where 

• M is the rescaled measurement 

• M is the original measurement 

• s is the scaling factor (in the above cases, Í = 3) 

• and d is the dimension of the object 

One can take equation (3.1) as the definition for dimension. Using this definition, 
if one can work out the relationship between measurement and rescaling, then the 
dimension of the object can be found. 

Below, we apply the definition to find the dimension of a circle's circumference 
and then find the dimension of a fractal object. To examine the case of a circle, the 
method of exhaustion as described by Eudoxus is used. (Eudoxus was a student of 
Plato, and Archimedes credits Eudoxus with developing the method of exhaustion.) 
The method of exhaustion allows one to approximate complicated shapes by simpler 
shapes that lie within the complicated shape and, through refinement, improves the 
approximation to any arbitrary degree of accuracy. One way to apply this is to the 
case of a circle as described below and illustrated in Figure 3.3. 

Figure 3.3 Six- and 12-sided approximations of the circle. 
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Start by approximating the circle with six inscribed triangles. The object 
formed by the bases of all triangles approximates the circumference of the circle 
and, accordingly, summing their lengths results in an approximation for the measure 
of the circumference. To get a better approximation, double the number of triangles 
to 12 and sum the lengths of the bases. Continue improving the approximation by 
doubling the number of triangles and summing the lengths of the bases of these 
triangles. Measurements are made using a standard unit of length. 

Once we accept that the circumference may be approximated by the bases of 
the triangles, which are line segments, it is apparent that the circumference is one 
dimensional. Nevertheless, let us apply the definition as given by equation (3.1). In 
equations, the approximations are as follows: 

Mi = 5i,i + fii.2 + ■ • ■ + 5i,6 = 6S1 

M2 = B2,\ + B2,2 + ■■■ + 52,12 = 12B2 

Mn = B„,i + Bna + • • • + B„,k = kB„ 

where 

• M„ is the measure of the nth approximation in original units 

• Bn\, B,!,2,- ■ ■ are the lengths of the bases of the inscribed triangles in the nth 
approximation 

• k is the number of triangles, k = 6 x 2'"-1^ 

• the common length of all the bases for the nth approximation is given by Bn 

Let us rescale units. Let the initial unit measurement be s times the new measurement. 
Then in the new units, the length of the base is given as follows: 

Rescaled length of a base = B = B„s 

Using the above equations, in new units the approximations of the circumference 
become M„ = M„s, where M„ indicates the measurement in rescaled units. The 
dimension of each approximation is 1 because in the rescaling equation (3.1) the 
power associated with the rescaling factor is 1. Since the approximations approach 
the measurement of the actual circumference, the dimension of the circumference is 
also 1. 

Remarks 

• Eudoxus' method of exhaustion is found in Euclid. This is a significant first 
step toward the integral calculus, but Eudoxus does not take the next step of 
applying the statement and making an actual measurement. Archimedes is the 
first who works out the actual measurements by finding the limiting case for 
the approximations. 

• We were less than rigorous in the above treatment. Specifically, we did not 
demonstrate convergence of the approximations. In employing the method of 
exhaustion, Archimedes demonstrates convergence by bounding the object of 
interest between two series of approximations, one that is smaller than the 
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(a) (b) 
Figure 3.4 Resizing. 

object of interest and one that is larger. He then demonstrates that the smaller 
and larger approximations converge to the same value. This argument is used 
in Chapter 6, where calculus is presented. 

Associated with rescaling is the notion of resizing. Resizing of an object is the creation 
of a geometrically similar object whose size is a common multiple of the original 
object along each dimension. Figure 3.4 illustrates the concept of resizing applied to 
a triangle and an octagon. A resizing factor that plays the same role as the rescaling 
factor in equation (3.1) may be obtained by finding the ratio between any similar line 
segments. For example, the resizing factor s in resizing the triangle from the initial 
Figure 3.4a to the resized Figure 3.4b is obtained by taking any of the ratios as follows: 

The relationship between resizing and rescaling is as follows. For any resizing 
and rescaling factors of the same values, the measurement of the resized figure in 
original units is the same as the measurement of the original figure in rescaled units. 
The relationship equation (3.1) with s taken as the resizing factor holds. Because of 
the similarity between resizing and rescaling, many texts do not distinguish between 
the two. Indeed, resizing is not a common term. 

3.1.5 Koch's Snowflake, a Fractal Object 

This section investigates an object with fractal dimension. The section is another 
excursion and as all excursions the material is tangential to the remaining material in 
the book. 

In equation (3.1), which defines the dimension of an object, there is a priori no 
reason that the dimension must be integer valued. In this section, an object with frac-
tal dimension is considered. Neither Euclid nor any of the other ancient Greeks ever 
considered such a possibility. Karl Weierstrass (1815-1897) was the first to propose a 
fractal object, although he did not consider its dimensionality. Weierstrass' construc-
tion is artificial; however, the concept now finds application for describing geometries 
found in nature. Examples are river deltas, surfaces of highly porous medium, and 
systems displaying chaotic motion. The example presented in this section is like 
Weierstrass' example artificial, but it illustrates the possibility of fractal dimensions. 
Its creator is Helge von Koch (1870-1924) and it is known as Koch's snowflake. 
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Initial configuation First iterate 

_ A _ ) \_Au_. 

Second iterate Third iterate 
Figure 3.5 Iterates of Koch's snowflake. 

Koch's snowflake is produced iteratively. Figure 3.5 illustrates the initial con-
figuration and the first three iterations. Note that the initial configuration is simply a 
line between the points 0 and l. The first iterate is obtained by placing an equilateral 
triangle over the middle third of the original line segment and then removing the base 
of the equilateral triangle. Successive iterations are formed in the same fashion; on 
top of the middle third of every line segment, one places an equilateral triangle and 
then removes the base. Koch's snowflake is the limiting set of the iterations. 

Let us try to get the dimension of the snowflake. As a first attempt, assume that 
the snowflake's dimension is l and find its length. Summing up all the line segments 

in an iterate, the reader may verify that the length of the nth iterate is ( | ) , where 
n = 0 gives the initial configuration in Figure 3.5. Since the lengths of the iterates 
increase without bound, when considered as a one-dimensional object, the snowflake 
has infinite length. However, the snowflake itself is bounded within the unit square 
and perhaps ascribing a different dimension would cause a bounded measurement for 
this object. 

An approach toward finding the snowflake's dimension is to apply the definition 
as proposed in equation (3.1). We do so using a resizing factor of 3; one initial unit is 
the equivalent of three rescaled units. Applying equation (3.1) with s set to 3 results 
in the following equation: 

M = M x 7,d (3.2) 

where 

• M is the measurement in new units 

• M is the original measurement 

The upper object in Figure 3.6 shows the second iterate in the snowflake's construction. 
In recognition of the limitations of the drawing, the author requests that readers 
exercise their imagination and consider the object as the complete snowflake viewed 
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Figure 3.6 Resizing of snowflake. 

with poor resolution so that all the details are not visible. The lower object, also to 
be considered the complete snowflake, is a resizing of the upper object by a factor 
of 3. Note that upon resizing the lower object contains four replicas of the original 
snowflake, so that the measure of the entire lower snowflake is four times the measure 
of the upper snowflake. This observation leads to the following equation: 

M = AM (3.3) 

Equating equations (3.2) and (3.3) and noting that s = 3 yield the following: 

M xld =4M 

3d = 4 

Taking the logarithm of both sides reveals the dimension 

d log 3 = log 4 
log 4 

d= - 5 - % 1.26186 
log 3 

Using the relation between resizing and dimension establishes the dimension 
of Koch's snowflake somewhere between 1.2 and 1.3. With this dimension, one could 
prescribe the unit measure of one to the original snowflake, and the measure of any 
composition of snowflakes or partial snowflakes is determined with respect to the 
standard unit snowflake. 

3.2 MEASUREMENTS OF VARIOUS OBJECTS 

In this section, we determine the length, area, or volume of various geometric objects. 
Formulas for different shapes are determined. Shapes include the triangle, circle, 
cone, and sphere. 
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Figure 3.7 Right triangle of Pythagorean theorem. 

3.2.1 Pythagorean Theorem, Length of the Hypotenuse 

The Pythagorean theorem is named after the Greek mathematician Pythagoras (circa 
580-500 B.C.E.). The theorem was known to the Mesopotamians long before 
Pythagoras' time. Ancient Chinese and Indian mathematicians also independently 
discovered the theorem. 

The theorem relates the sides of a right triangle to the length of its hypotenuse. 
We have already seen that its application to finding the diagonal of a square led the 
Pythagoreans to the discovery of irrational numbers. In the next chapter, the theorem 
is useful for finding the distance between points in a Cartesian coordinate system. 

The theorem states that the sum of the squares of the sides of a right triangle 
is equal to the square of the triangle's hypotenuse. The equation is the following 
(Figure 3.7): 

„2 a2 + b2 

where 

• a is the length of the triangle's base 

• b is the length of the triangle's height 

• c is the length of the triangle's hypotenuse 

There are several ways to prove this result. We demonstrate two. 
For the first approach, consider Figure 3.8. The figure is constructed from four 

replicas of an arbitrary right triangle. The triangles are arranged to form a large square 
with sides of length a + b. Inscribed within the outer square is a smaller square with 
sides of length c. There are two ways to find the area of the outer square, each giving 
its own formula. Equating the two formulas and simplifying yield the Pythagorean 
theorem. 

a 

b 

b 

\c 

a 

c \ 

c ^ ^ 

a b 
Figure 3.8 Illustration of Pythagorean theorem. 
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The first way to find the area of the outer square is to simply square the outer 
square's sides. This gives the following equation: 

Area = (a + b)2 = a2 + lab + b2 

The second way to find the area of the outer square is to sum the area of the 
triangles and the inner square. The area of one triangle is ^ab, so the area of all four 
triangles is jab or equivalently lab. Also, note that the area of the inner square is c2. 
This results in the second equation for the area of the outer square: 

Area = lab + c2 

Equating the two formulas for the area of the outer square and simplifying yield 
the result: 

a2 + lab + b2 = lab + c2 

a2 + b2 = c2 

Another approach to the proof of the Pythagorean theorem is of interest because 
it applies the concepts of rescaling and dimension from the previous section. Consider 
Figure 3.9. The figure consists of a right triangle that is split into two triangles in a 
manner so that all three triangles are geometrically similar. 

The area of the largest triangle is equal to the sum of the areas of the smaller tri-
angles. As all the triangles are geometrically similar, the areas of the smaller triangles 
are obtained by the use of equation (3.1) with the correct resizing factor. In each case, 
the dimension d is 2. Also, in each case, the resizing factor is given by the ratio of the 
hypotenuse of the triangle of interest to the hypotenuse of the largest triangle. For the 
left triangle s = a/c, whereas for the right triangle s' = b/c. Applying equation (3.1) 
to the left triangle gives the following: 

where 

• AL is the area of the left triangle 

• A is the area of the largest triangle 

c = hypotenuse of largest triangle 
Figure 3.9 Pythagorean theorem: another proof. 
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a = 1 

(a) (b) 
Figure 3.10 Diagonals of a square and a cube. 

Similarly, applying equation (3.1) to the right triangle gives the following: 

where AR is the area of the right triangle. 
Summing the areas of the left and right triangles to get the area of the largest 

triangle and then simplifying yield the following result: 

(?)M;)'-' 
a2 + b2 = c2 

Example 3.2 DIAGONAL OF A SQUARE 

Find the diagonal of the unit square. Referring to Figure 3.10a, a = b = 1: 

a2 + b2 = c2 

12+ l2 = 2 

c = Vl 

Example 3.3 DIAGONAL OF A CUBE 

Find the diagonal of the unit cube. Referring to Figure 3.10b, note that a is the diagonal 
of the unit square. From the previous example, we see that a = A/2- Also, b = 1: 

a2 + b2 = c2 

2 + 1 2 = 3 

c = V3 
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3.2.2 Cavalieri's Theorem in Two Dimensions 

Cavalieri (1598-1647), a disciple of Galileo, thought considerably about measure-
ments of different shapes. His best known result bears his name, Cavalieri's theorem. 
Interestingly enough, two applications of Cavalieri's theorem are known to have oc-
curred long before Cavalieri. Zu Gengzhi (429-500), following the works of Liu Hui 
(circa 250) in China, used Cavalieri's theorem to derive the formula for the volume 
of a sphere. Archimedes used the theorem to demonstrate the relation between the 
volume of a sphere and the sphere's surface area. Later in this chapter, we replicate 
Archimedes' result. 

Cavalieri presents his theorem in the form of a construction. He constructs 
two-dimensional objects between two initial parallel lines. Then he asserts that if 
the two objects' cross-sectional lengths are equal for cross sections along every 
parallel between the initial parallels, the two objects have equal area. Figure 3.11 
illustrates the concept. In this figure, two horizontal lines bound two figures from 
above and below and the objects' cross sections are displayed along an arbitrary 
parallel. Cavalieri's theorem states that if all such cross sections have equal length 
the areas of the objects are equal. 

Cavalieri proposes the argument illustrated by Figure 3.12 as proof of his 
theorem. Two objects having the property that their cross sections along any given par-
allel are of the same length are said to satisfy the Cavalieri property. Any such objects 
can be superimposed so that their intersection has positive area. Superimpose object G 
upon object K in such a manner that the area of the intersection is maximum. Remove 
the intersection from the superimposed objects noting that the removed areas are the 
same. If there is any difference in the areas of G and K, there must be a difference in the 
areas of their respective remaining objects. Label these objects G' and K', with G' the 
remains of G and K' the remains of K. The objects G' and K' also satisfy the Cavalieri 
property. Once again superimpose the objects G' and K' and remove the intersection. 
Cavalieri claims that continuing the process would eventually deplete both objects G 
and K; since there would be nothing left, the objects could not differ in area. 

Cavalieri's theorem is an example of dead-on instinct with a somewhat flawed 
(though clever) proof. His claim that repeatedly superimposing and removing inter-
sections eventually depletes the objects is not demonstrated and not in general true. 

Figure 3.11 Cavalieri's theorem. 



3.2 MEASUREMENTS OF VARIOUS OBIECTS 7 7 

Figure 3.12 Cavalieri's proof. 

With additional conditions on the shapes, the argument is true; however, a rigorous 
proof of the theorem would have to await calculus. 

3.2.3 Cavalieri's Theorem, Archimedes Weighs In 

The symbol for justice is a balance scale held by a blindfolded woman. The balance 
scale is a metaphor for carefully weighing each side of a legal case. Archimedes 
was once involved in a legal case; in his case, the balance scale was not a metaphor 
but was the actual instrument with which Archimedes weighed justice. The problem 
was to determine if a crown commissioned by the king was constructed of gold as 
required or if the artisan used a gold alloy. Archimedes knew that the volume of an 
alloy would be larger than the volume of an equivalent weight of gold. He also knew 
that the buoyancy of the alloy with larger volume would be greater than the buoyancy 
of the gold with smaller volume. 

With this information Archimedes solved the case. He placed the crown on 
one side of the scale and placed an equal weight of gold on the other, and the scale 
balanced. Next, with both the crown and the gold remaining on their respective sides 
of the scale, he immersed the scale in water. Within the water, the side of the scale 
with the crown raised to a higher level than the side with the gold, demonstrating that 
the crown was more buoyant and thus of larger volume than the equivalent weight in 
gold. This was proof positive that the crown was an alloy and this is how Archimedes 
weighed justice. 

Archimedes was a tinkerer whose experiments assisted in his mathematical 
endeavors. To find the volumes and centers of masses of objects, he performed thought 
experiments with a scale. Following Archimedes, let us perform a thought experiment 
on Cavalieri's theorem. 

Suppose two planar shapes satisfying the Cavalieri property are cut out from 
a sheet of material that is of uniform thickness. We will show that they do have the 
same weight and hence must have the same area. 
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Figure 3.13 Center of mass. 

The scale that we consider is a balance scale; there is a central pivot and weights 
can be suspended at different positions from the pivot. For an object that is stretched 
out across one arm of the scale, the center of mass of the object is the single point 
where one would suspend the object in order to induce the same effect upon the scale 
as the originally placed object (Figure 3.13a). For an object that is symmetrically 
distributed about its center, the center of mass and the center are one and the same 
(Figure 3.13b). 

Let two planar shapes G and K be placed on the left and the right sides of the 
scale so that their corresponding axis is aligned with the corresponding left and right 
arms (Figure 3.14a). Also, ensure that their starting distances and ending distances 
from the pivot are the same; this can be done because their axes are of the same length. 
Select any distance to the left and the right of the pivot; because of the Cavalieri 
property, the cross-sectional length of each shape at the set distance is identical 
and these points are balanced. Because every point is balanced, the two objects are 
balanced. 

We have not yet shown that the weights are equal; this only happens if the scale 
is in balance when each object is suspended from a single point and the points (one for 
each object) are equidistant from the pivot. Let us take exact replicas of G and K and 
place them on the scale reversing the direction of the axis as shown in Figure 3.14b. 
The left side now has G and its replica, while the right side has K and its replica. The 
placement of the replicas maintains the Cavalieri property for the ensemble, so the 
ensemble is in balance. 

Also, for each side the ensemble is symmetric about its center. As a result of 
the symmetry, the center of mass for both objects is at the object's midpoint. Remove 
each ensemble and then suspend them at the center of mass for their corresponding 
arms; nothing changes, so the scale remains in balance (see Figure 3.14c). Note that 
the centers of mass are equidistant from the pivot. Therefore, the ensembles are of 
equal weight. As the ensemble is twice the weight of the original shapes, the shapes 
are also of equal weight. 
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Figure 3.14 Demonstrating Cavalieri's theorem. 

Remark. This demonstration of Cavalieri's theorem is not a proof in the sense 
of Euclid. Indeed, it is quite removed from Euclid's initial axioms. Nevertheless, it is 
complete provided that one accepts the behavior of the scale as used in the theorem. 
There is no written record of Archimedes proving Cavalieri's theorem, although as 
previously noted, he uses it to demonstrate the relationship between the volume of a 
sphere and the sphere's surface area. 

3.2.4 Simple Applications of Cavalieri's Theorem 

In this section, we apply Cavalieri's theorem to simple objects, parallelograms and 
triangles. Of course, it is possible to find areas for these objects without resorting 
to Cavalieri's theorem. But this section presents introductory material for following 
sections where Cavalieri's theorem is used to find formulas concerning areas and 
volumes of more complicated objects. 

The theorem asserts the equivalence of areas of rectangles with sides a and b 
and parallelograms with height a and base b (Figure 3.15). For both the rectangle 
(Figure 3.15a) and the parallelogram (Figure 3.15b), the length of the cross section 
along any parallel is identically b. Knowing the area of the rectangle is ab, we conclude 
that the area of the parallelogram is also ab. 

The cross sections in object C above are also of constant length, b. This object 
has equal area to both the rectangle and the parallelogram. 

Cavalieri's theorem also asserts that any triangles of equal height and base 
have the same area. In Figure 3.16, two triangles, G and K, are drawn between two 
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(a) (b) 

Figure 3.15 Objects with equal area. 

(c) 

parallels; the base of each triangle is of the same length, b. We demonstrate that the 
cross-sectional lengths along any arbitrary parallel are the same. Select a parallel 
that is a distance d from the uppermost parallel. Each portion of the triangle that 
lies above the selected parallel forms a triangle that is geometrically similar to its 
respective original triangle. Designate the length of the base of the smaller triangle by 
m. By similarity, the ratios b/h and m/d are equal. Equating these ratios and solving 
for m yields the length of the selected cross section: 

m 

~d 

b 

h 

b , 
m = —d 

h 
Since h, d, and b are equal for both triangles, the lengths of the cross sections 

along the parallel are equal. This is true for every parallel between the initial parallels. 
By Cavalieri's theorem, the two triangles are of equal area. 

Using the above result, we can assert that the formula for the area of a single 
triangle with a given height and base is in fact quite general and applies to any triangle 
with the same height and base. The simplest triangle to work with is a right triangle 
(Figure 3.17). A right triangle is half of a rectangle with the same height and base, so 
its area is half the area of the associated rectangle, A = ^hb. 

3.2.5 The Circle 

This section presents the formulas for the circumference and area of a circle using 
rescaling arguments. Cavalieri's theorem is then applied to find a relation between 

b 

Triangle G 

Figure 3.16 Triangles with equal area. 

b 

Triangle K 
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h 

b 

Figure 3.17 A right triangle as half a rectangle. 

circumference and area. The result is stated in terms of the constant n, which is 
approximated in Section 4.3.2. 

Consider a circle with radius 1. The circumference has a length that we call a 
constant p. Next resize the circle to have a radius of r. The resizing factor s in equation 
(3.1) is the ratio of the resized radius to the original radius, s — r/l = r. Denote the 
length of the circumference of the unit circle by X. Using equation (3.1) to calculate 
the length of the resized circumference with M = c, M = X, s = r, and d = 1 yields 
the following result: 

M = M x sd c = Xr (3.4) 

Accordingly, if the circumference of the unit circle can be found, then it is 
possible to find the circumference of any circle. In Section 4.3.2, the circumference 
of the unit circle is approximated using the method of Archimedes. 

A similar resizing argument shows that the area of a circle is proportional to 
the square of its radius. Consider once again a circle of radius 1 and resize the circle 
to have radius r. As above, s — r. Denote the area of the original circle by a constant 
a. The dimension of the circle d = 2. Using equation (3.1) to calculate the area of 
the resized circle with Af = A, M = a, s = r, and d = 2 yields the result A = ar2. 

To find the area of a circle in terms of its circumference, we cut it, unravel 
it, and determine the area of the resulting shape. Given a circle of radius r, cut the 
circle from its circumference to its center as shown in Figure 3.18. Next unravel 
the circle so that the circumference lies along a horizontal line. What object results? 
The circle is composed of a family of smaller circles all centered at the same point with 

r= h Base = c 

Circumference = c 
Smaller circumference = ca 

Figure 3.18 Unraveling the circle into a triangle. 



8 2 CHAPTER 3 THE SPACE: GEOMETRY 

radii ranging from 0 to r. Consider the circle with radius ru< r and circumference 
cu<c. The circumference is unfolded onto a line that is parallel to the unfolded 
circumference of the original circle. Unfolding every circle in this manner results 
in the triangle of Figure 3.18. The area of the circle is the same as the area of the 
triangle, A — jhb. In this case, the height h is given by the radius r and the base b is 
given by the length of the circumference. Using equation (3.4) for the length of the 
circumference, the area is given by the following formula: 

A = \kr2 (3.5) 

Define another constant, n, as ^ A.. Then equations (3.4) and (3.5) are the familiar 
formulas for the circumference and area of a circle: 

c = 2itr A = nr2 

Remark. Archimedes mentions this construction in his work on spheres. 

3.2.6 Surface Area of the Cone 

Combining the technique used to find the area of a circle with the Pythagorean theorem 
results in the area of the surface of a cone. Let the height and the radius of the base 
of the cone be given (Figure 3.19). The length from the base to the surface is given 
by the Pythagorean theorem, L = \/r2 + h2. Cut a line from the base to the top of 
the cone and then unfold each of the circles that is parallel to the base in a fashion 
similar to what was done when finding the area of a circle. The result is the triangle 
shown in Figure 3.19. The base of the triangle is the circumference of the cone's base 
circle; this has length c = 2nr. The height of the triangle is given by L. The area of 

Circumference of base circle = c 
Smaller circumference = ca 

Figure 3.19 Unraveling the cone. 
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Figure 3.20 Aligning the triangle with the central axis. 

the surface of the cone is given by the area of the triangle: 

A — \l7trL = nrslr1 + h2 

Before continuing to the next shape, we consider the possibility of peeling 
the circles off the cone and placing them along the vertical axis of length h while 
maintaining the area of the cone. A similar operation is used to determine the surface 
area of a sphere. Here, it is presented on the cone as a warm-up exercise. One certainly 
can cut out every circle and append to the axis at its corresponding height and then 
unwrap the circles on the vertical line. The area of the corresponding triangle is 
jrrh. This is smaller than the actual area. What has happened and can we make a 
correction? 

The vertical axis is shorter than the slanted line of the original cut. Plucking the 
circles off the slanted line and clipping them onto the vertical axis requires that we 
squeeze them together. To maintain the original area, it is necessary to compensate 
for the squeezing in one direction by stretching in the other. This is accomplished by 
multiplying each circle by the ratio L/h; the circles are squeezed by the ratio h/L 
so that they can fit onto the shorter line, and so we stretch them by the ratio L/h to 
maintain the area (Figure 3.20). 

Note that the stretching factor is the ratio of the slope length to the axial length. 

3.2.7 Cavalieri's Theorem a Stronger Version 
in Three Dimensions 

Cavalieri presents his theorem in both two and three dimensions. The three-
dimensional analog to the Cavalieri property of Section 3.2.2 is given by changing the 
parallel lines of that section to parallel planes and changing the cross-sectional lines 
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Figure 3.21 Cavalieri's theorem in three dimensions. 

of that section to cross-sectional planes with equivalent areas. Figure 3.21 illustrates 
the construction. 

The conclusion for the three-dimensional case is that objects satisfying the 
Cavalieri property have the same volume. 

The two-dimensional proof that Cavalieri proposed can be adopted for three 
dimensions. Establishing that iterative elimination of intersecting sets depletes both 
objects is even more daunting in the three-dimensional case than the two-dimensional 
case. On the other hand, the balancing scale argument for the three-dimensional case 
follows that of the two-dimensional case with minor adjustments. 

A useful result that is a bit stronger than the Cavalieri theorem is the following. 
Imagine two objects G and K that satisfy the following property: 

AhG = sAhK (3.6) 

where 

• AhG is the area of the cross section within object G at height h 

• A/,K is the area of the cross section within object K 

• 5 is a constant value for every height 

The feature to note is that the constant J applies to each height, so the ratio of areas 
is constant across the entire object. Then the following relation holds: 

VG = sVK (3.7) 

where 

• VG is the volume of object G 

• VK is the volume of object K 

For rational values of s, the strengthened Cavalieri result can be demonstrated as 
follows. First, it may be assumed that all the cross sections of object K are squares 
(if not, an object of equal volume could be constructed using square cross sections). 
Since s is a rational number, s — p/q with both p and q integers. Split the object K 
into q pieces as illustrated in Figure 3.22. In the figure, the cross-sectional area of 
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Figure 3.22 Demonstrating Cavalieri's theorem. 

each piece is identical; each piece's cross-sectional area is Ay^/q. Then by Cavalieri's 
theorem, each piece has the same volume, VK/<?- Construct an object, K, using p 
replicates of any of the pieces. Then the volume of K is p(V\ç/q) (Figure 3.22): 

V~ = p^= sVK 

Also, by construction, G and K have cross sections of equal area that by the 
Cavaliei theorem results in equal volumes: 

VC = V~ 

Substituting for the value of V~ yields the result: 

VG = V~ = sVK 

Remark. The result when s is irrational requires a bit, but not much, more 
sophistication. It will not be demonstrated in detail here. The idea uses approximations 
over rational numbers in a similar way that V2 was approximated by rational numbers 
in Section 3.2. Establish a small tolerance band and take a number r that is a rational 
approximation of * lying within the tolerance band. Replace s with r and construct 
K. It can be demonstrated that the difference between VQ and V~ goes to zero as the 
tolerance band is narrowed. The same holds for the difference between V~ and sV^. 
Allowing the tolerance band to approach zero yields the result. 

3.2.8 Generalized Pyramids 

In this section, we determine the volumes of generalized pyramids. Generalized pyra-
mids are all objects constructed of cross-sectional areas that are equal to the areas of 
the cross sections of a standard pyramid; the standard pyramid has rectangular cross 
sections. The identifying feature of a pyramid is that every cross section is a resizing 
of the base and the resizing factor is given by the square of the ratio of the distance 
of the cross section from the top of the pyramid to the height of the pyramid. We take 
some time to give an example using a standard pyramid. 
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Figure 3.23 Relation between height, base, and cross section. 

In Figure 3.23, the height of the pyramid is given by h and the base is a square 
with sides of length a and area A — a2. Each cross section is also a square. The sides 
of the cross section at distance b from the top are given by the following: 

b 

h 

where ab is the side of the square on the cross section that is at a distance b from the 
top. 

The area of the cross section, Ab, is given by the following: 

Ab = a\ = a1 
= A (3.8) 

Equation (3.8) presents the property of a generalized pyramid; the area of each 
cross section must be equal to the area of its base times the square of the ratio of 
the cross section's height to the height of the object. The cross sections need not be 
geometrically similar, although in the two examples we present, the cross sections are 
in fact similar. Two examples of generalized pyramids are given in Figure 3.21 and 
include a cone (circular cross sections) and a three-sided pyramid (triangular cross 
sections). 

By Cavalieri's theorem, a formula for the standard pyramid applies to the gener-
alized pyramid because both have identical cross-sectional areas as given by equation 
(3.8). Because the areas of all the cross sections depend solely upon the area of the 
base and the height of the generalized pyramid, there must be a formula relating the 
volume of a generalized pyramid to the height and area of the base. We seek this 
formula. 

It is possible to construct a cube using six equally sized pyramids. Figure 3.24 
illustrates the construction. Figure 3.24a shows three of the six pyramids (the left, top, 
and front pyramids), while Figure 3.24b shows the cube composed of six pyramids. 
Designate the length of an edge of the cube by a. Then the volume of the cube is a3, 
the area of its base A is a2, and the height h is a/2 (equivalently a = 2h). 
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(a) (b) 
Figure 3.24 A cube as six equally sized pyramids. 

Equating the volume of the cube with that of the six pyramids of equal volume 
yields the following identity: 

VP 

VP 

where 

• Vp is the volume of the pyramid 

• Vc is the volume of the cube 

• 2h is substituted for a value of a in the final equality 

• A is substituted for the area of the base, a2, in the final equality 

A formula has been proposed for the volume of a pyramid, but the formula is obtained 
by looking at a pyramid with a specified geometry. The ratio of the height to the 
square root of the area of the base is set at j , hfsfÃ = ^, restricting the use of the 
formula to those pyramids that satisfy the ratio. This restriction is overcome using 
the strengthened version of Cavalieri's theorem. We next present the result for a 
general pyramid. 

Let a general pyramid with height h and base area A be given. Construct another 
pyramid with the same height h and area A' = Ah1. Note that by the way A' is chosen, 
h/y/~Ã= 5.Sets = A/A' and the relation equation (3.6) holds, allowing one to apply 
the generalized Cavalieri formula, equation (3.7). Using equations (3.6) and (3.7) 
results in the following formula for the generalized pyramid: 

Vc 

Vc 
6 

„3 
aa 

T 
hA 
T (3.9) 

VA=sVA,=sh^- = h-f (3.10) 
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3.2.9 The Sphere as a Generalized Pyramid 

In his work On the Sphere and Cylinder, Archimedes asserts the following: 

Judging from the fact that any circle is equal to a triangle with base equal to the 
circumference and height equal to the radius of the circle, I apprehended that, in like 
manner, any sphere is equal to a solid cone with base equal to the surface of the sphere 
and height equal to the radius. (Heath (1921), p. 35) 

Archimedes recognizes the sphere as a generalized pyramid. He draws an 
analogy between the unfolding of the circle as demonstrated in Section 3.2.5 (see 
Figure 3.18) and the unfolding of the sphere to obtain the pyramid (a solid cone). The 
trick is to note that the sphere is made up of an infinite number of spherical shells, all 
with a common center. To construct the generalized pyramid, create cross sections of 
equal area to each shell and stack the cross sections on an axis of height equal to the 
radius of the original sphere (Figure 3.25). In Figure 3.25, the center of the sphere 
becomes the apex of the pyramid marked by the letter C. The inner shell becomes 
the triangular cross-section at h = r and the outer surface of the sphere becomes the 
triangular base of the pyramid. 

Using a rescaling argument, we demonstrate that this construction produces a 
generalized pyramid. The argument must show that the relation given by equation 
(3.8) holds. Referring to Figure 3.25, note that the radius of the sphere, r, gives the 
height of the pyramid, h. Consider the shell with radius b; this shell corresponds to 
a cross section with a distance b from the top of the pyramid. Also, this shell is a 
resizing of the outermost shell, and indeed all shells are geometrically similar. The 
resizing factor is b/r. Using equation (3.1) with A, the area of the outermost shell, 
Ah, the area of the shell with radius b, and noting that the dimension of the shells is 
2, we obtain the following: 

This is the precise relation, equation (3.8), that must be demonstrated. Because 
the sphere is a generalized pyramid, equation (3.10) holds, V = rA/?>. 

Figure 3.25 A sphere as a pyramid. 
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It is common to denote the surface area of the sphere by S and the formula is 
frequently given as follows: 

rS 
V=— (3.11) 

3 

3.2.10 The Surface Area and Volume of the Sphere 

Up to this point, we have followed Archimedes. Archimedes next finds a formula for 
the volume of a sphere and uses equation (3.11) to find the surface area. Archimedes' 
proof is the method that is used in modern calculus and is presented in Chapter 6. 
In this section, we proceed along a different route; we find the surface area and use 
equation (3.11) to determine the volume. 

The approach is similar to the unfolding of the circle and the cone in 
Sections 3.2.5 and 3.2.6, respectively. Start with a sphere of radius r. Note that the 
sphere is a collection of circles of latitude. We could cut across a longitudinal section 
of the sphere and unwind each circle of latitude into a line segment. The result is 
depicted in Figure 3.26, where the cut is made along the central meridian. A similar 
process on the cone yields a simple shape, a triangle, and we were able to determine 
the area of the triangle. The process here yields something like an extremely curved 
shoe horn and finding its area is a bit more complicated. 

Recall that at the end of our discussion on the surface area of the cone we 
unlatched the straightened circles from the cut and reattached them to their corre-
sponding positions on the cone's axis. Recall that in doing so each circle is squeezed 
into a smaller area, and to find the initial area, it is necessary to apply a stretching cor-
rection that counteracts the squeezing. The same procedure is applied to the sphere. 
The first step is to figure out the length of each unfolded circle at each point on the 
sphere's polar axis. The next step is to calculate the stretching ratio. The final step is 
to calculate the area of the resulting figure. 

Let the position of a point on the axis be denoted by z with z = 0 the axis center. 
Each value of z denotes a plane perpendicular to the axis that contains one and only 
one circle of latitude. We must determine the length of each of these circles. Referring 
to Figure 3.27, the radius of the circle at position z, denoted by rz, follows from the 
Pythagorean theorem: 

r\ + z2 = r2 

rz = V r2 - z2 

Figure 3.26 Unraveling the surface of a sphere. 
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Figure 3.27 Length of a given latitude. 

The circumference of the circle at z, cz, is then given by the following equation: 

cz = 27TV r2 — z2 

Now that the length of each circumference is known, the next step is to find 
the correct stretching ratio to compensate for the squeezing that is necessary to fit 
the circles from the circle of longitude onto the shorter polar axis. We make some 
observations. Around the equator there is some squeezing but not much. In fact, at 
the equator, the circle of longitude is parallel to the sphere's polar axis, so the equator 
does not get squeezed or stretched. The stretching factor close to the equator should 
accordingly be close to 1. Around the poles, there is a lot of squeezing. The circles 
around the poles are squeezed to fit them onto the polar axis and the stretching factor 
near the poles should be very large. From this we note that, unlike the case of the 
cone, the stretching factor depends upon the circle's latitude. But the cone is still of 
use; just apply a different cone at each point along the original cut. 

For a point on the cut, the cone of interest is the one that is tangent to the sphere 
(Figure 3.28). Recall from Section 3.2.6 (see Figure 3.20) that the stretching ratio is 
the ratio of the slope length to the axial length. Referring to Figure 3.28, the stretching 
factor at height z, sz, is given by the following equation: 

L 
s7 = — z h 

Also, Figure 3.28 illustrates that the triangle formed by the slope of the cone, the 
radius rz, and the cone's axis is similar to the triangle formed by the radius of the 
sphere, r, the radius rz, and the line segment along the axis to the point z. The result 
is the stretching ratio sz: 

r 
sz = — 

rz 

Note that the stretching factor matches the initial observations. At the equator, 
the stretching factor is 1. As we move toward the poles, the stretching factor becomes 
increasingly larger. 



3.2 MEASUREMENTS OF VARIOUS OBJECTS 91 

L/h = r/z 

Figure 3.28 Geometry of latitude cone. 

The lines of length cz that lie across the cut are plucked from the cut, fixed to 
the longitudinal axis, and stretched into lines of length czsz: 

czsz = 2nrz— = 27rr 
rz 

A wonderful thing has happened. The lines that we attach to the longitudinal 
axis are all of the same length. The original shape of Figure 3.26, which appears 
impossible to measure, has been transformed into a rectangle of equal area as in 
Figure 3.29. The length of the rectangle is the length of the longitudinal axis, 2r. The 
width of the rectangle is 27rr. The area of the rectangle, which is the same as the 
surface area of the sphere, is the product of its length and height: 

S = 4nr2 

Combining the result of the surface area of a circle with equation (3.11), the 
volume of the sphere is given by the following equation: 

4 
V = -nr 

3 
,3 

/fL 
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Figure 3.29 Aligning the unraveled sphere with the central axis. 
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In every method used to find the volume of the sphere, a seemingly great stroke 
of luck occurs. For Archimedes, the great stroke of luck is that the volume of the 
sphere is expressible in terms of cones and cylinders. For the Chinese mathematician 
and astronomer Zu Gengzhi (480-525), the great stroke of luck is that an object whose 
volume he needs to calculate turns out to be a generalized pyramid with an elementary 
base shape; calculation of the area for the base shape is trivial. In our method, the 
great stroke of luck is that the mapping of the sphere onto the longitudinal axis 
results in a very simple figure, the rectangle. A priori one cannot expect such luck 
and yet it occurs. There is more going on than we realize. The luck occurs because 
of the symmetry of the sphere. Often, there is an obscure simplification that yields a 
solution to a seemingly intractable problem. Great mathematicians have an instinct 
for recognizing problems that may be simplified and uncovering the simplification. 
Often a method yields further results than originally envisioned. We examine this in 
the next section. 

3.2.11 Equal-Area Maps, Another Excursion 

Once again we embark upon an excursion and as always the material is tangential to 
the remainder of the book. 

The history of cartography folds into the history of the studies of planetary mo-
tion beginning with Ptolemy. In addition to being the authority on planetary motion, 
Ptolemy achieved equal distinction in the area of cartography. Among many other 
subjects, Ptolemy's work Geographia presents the modern latitudinal and longitudi-
nal coordinate system for the earth. This work competes with Euclid's Elements as 
one of the most popular and influential works in history. 

Ptolemy presents several transformations of the sphere onto a flat surface; these 
furnish different ways to map the earth's surface. His development of transformations 
of the sphere is motivated by his investigations in astronomy and cartography. As an 
astronomer, he wished to map the celestial sphere and as a cartographer he wished to 
map the earth's surface. 

Ptolemy was a prolific scientist. As noted in Chapter 2, he produced signifi-
cant works in astronomy, geography, and mathematics. One of his investigations in 
mathematics was an attempt to prove the redundancy of Euclid's fifth axiom. Great 
mathematicians throughout history attempted to prove that the axiom is a conse-
quence of the other axioms. Ptolemy was among those who tried and failed. The 
failed attempts were caused by man's limited perspective; space looks Euclidean and 
the essence of space is captured by the first four axioms. Why should not the fifth be 
a consequence of the first four? 

If the fifth axiom were truly independent from the remaining axioms, one could 
replace it with its opposite statement and a consistent set of theorems would result. 
If it were not independent of the remaining axioms, when replacing the fifth axiom 
with its opposite, the resulting system would not be self-consistent; theorems that 
contradict one another would result. The mathematician Johann Lambert put the fifth 
axiom to this test. Lambert never found a contradiction. 

Others, notably al-Haytham (915-1039), Omar Khayyam (1048-1122), Nasir 
al-Din al-Tusi (1201-1274), and Giovanni Saccheri (1667-1733), had followed 
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a similar track and, not finding a contradiction, believed that they failed. But 
Lambert was bolder than his predecessors. He asserted that the fifth axiom is indeed 
independent of the other axioms. As a result, he tossed the fifth axiom and with it 
tossed Euclidean geometry. In place of Euclidean geometry, Lambert discovered a 
geometry with other properties: lines that are not straight, spaces where no lines are 
parallel, and bounded spaces with infinite measure. Lambert's work was ignored. It 
appeared as a mathematical construction with no real consequences for certainly it 
was believed that we live in a Euclidean universe. In fact, this was the first known step 
toward describing the non-Euclidean space that is the stage for the universe of Albert 
Einstein's relativity theory. Physical reality is the non-Euclidean space that Lambert 
first describes, while Euclidean space is an imagined idealization based upon our 
limited perception. 

Lambert most likely viewed his work in the same vein as others, an interesting 
mathematical construction. Lambert lived at a time when Newton was an icon and 
Newton was very attached to the Euclidean world. Lambert enters our story in two 
different ways. He is the first to write down Newton's laws of motion and gravitation 
using Leibniz' notation. Later in this book, we will write Newton's laws as Lambert 
had written them for the first time. The other way in which Lambert enters our story 
is through his discovery of equal-area maps. An equal-area map has the feature that 
equal areas of the earth's surface are seen as equal areas on the map. The transforma-
tion that is used in the previous section presents a method for creating an equal-area 
map, the surface of the sphere is transformed to a rectangle of equal area, and the 
area of every region of the sphere's surface is respected. The discoverer of this trans-
formation is Lambert. The map of the earth using this transformation is shown in 
Figure 3.30. 

Note that with the exception of the equator the stretching factor distorts all 
the latitudes. The region around the equator does not get too badly distorted, but 
as one moves toward the poles, the distortion becomes significant. The countries 
further north are squeezed in and stretched out; they appear as if they had been put 
on the rack. For various reasons, aesthetics among them, one might wish to make 
adjustments to Lambert's map while preserving the equal-area property. Suppose, 
for example, you are a Londoner. Distortions far away from London are perfectly 
fine, but the region around London should have minimal distortion. How can this be 
accomplished? 

Figure 3.30 Equal-area map calibrated to the equator. 
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Figure 3.31 Equal-area map calibrated to London. 

Recall that the stretching factor is given by the equation sz = r/rz = 
r/(V7^l2). 

Set the scale of the map in units so that the radius is 1. Then the stretching factor 
becomes sz = 1 /(Vl — z2). 

The point z denotes the distance to the equatorial plane. Let us determine the 
value for London. To the nearest degree, the parallel passing through London is at 
52°, which has an associated z value of 0.788. Approximating sz for London yields 
the value 1.624. In the east-west direction, we can squeeze the entire map by a factor 
of 1.624 so that the parallel around London is restored to its original scale and then 
stretch the map in the north-south direction by a factor of 1.624 to maintain an 
equal-area map. From the perspective of the Londoner, the distortion introduced by 
the initial equal-area transformation has been redressed, as the map of Figure 3.31 
illustrates. With this correction, north-to-south as well as east-to-west distances are 
reasonably accurate around the 52nd parallel. Further away from the 52nd parallel, the 
representation is not as accurate and both north-south and east-west directions have 
been distorted. Indeed, in the map of Figure 3.31, it appears as though the continent of 
Africa has been put on a diet. Note that, by symmetry, in addressing the 52nd parallel 
in the northern hemisphere, we have also addressed the 52nd parallel in the southern 
hemisphere. Using this process, one can calibrate the map to any desired parallel. 

Remarks 

• The cartographer Gerardus Mercator (1512-1594) is the inventor of the most 
commonly used map, the Mercator projection. Rather than preserving equal 
area, the Mercator map preserves angles by applying the stretching factor not 
only to the east-west direction but also along the north-south direction. Mer-
cator was another victim of the Counter Reformation. He was jailed for 7 years 
on suspicion of harboring Protestant sympathies. 

• There are many more ways to create equal-area maps. The method used in 
this section can be generalized; further area-preserving transformations of the 
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rectangle can be developed and applied to the rectangle of the previous section. 
The image does not have to be rectangular. Common shapes are also circles, 
two sets of circles, triangles, or ellipse-like objects. 

• Creating a flat map requires sacrificing some properties of the original sphere. 
While equal-area maps preserve area, they distort shape and distance. Depend-
ing upon usage, other types of maps may be preferable. 

• How is it that seemingly bizarre behavior arises in non-Euclidean geometry? 
One source of what might be considered aberrant behavior is a generalized 
concept of a line. Given a space, a line segment between two points is the 
shortest pathway within the space between the two points. Let us take the 
surface of a sphere as our entire space. It is known that the shortest pathway 
between two points is along the great circle passing through those points (great 
circles are intersections of the sphere and planes that pass through the center of 
the sphere). Then the lines on the space are given by great circles. The equator is 
a line in this space and the longitudes are line segments. All longitudes intersect 
the equator at 90° angles, and yet the longitudes intersect at the poles. In this 
way, the parallel postulate is violated and the sphere's surface, when considered 
a space unto itself, is non-Euclidean. Theorems from Euclidean geometry do 
not apply. For example, the angles of a spherical triangle do not in general add 
up to 180°. Consider a triangle formed by the equator and two different lines of 
longitude within the northern hemisphere. Each angle at the equator is 90°, so 
these angles alone sum to 180°. The triangle has another angle at the pole whose 
measure is given by the difference in the longitudes of the triangle's sides. The 
sum of the angles of this triangle are greater than 180°. Given that the geometry 
of the sphere differs from that of the Euclidean plane, it is no wonder that flap 
maps distort the world's geometry. 



Greek geometric mathematics has its limitations; it is limited to problems that are 
expressible in terms of geometric objects. Until the limitation was addressed, it would 
be difficult to develop mathematics beyond Archimedes and Apollonius. The specific 
areas of weakness that needed attention were a cumbersome number system that did 
not contain zero and the lack of symbolic notation along with standard processes for 
manipulating the symbols. Progress in these areas that culminate in modern algebraic 
symbolism is traced to many sources such as Greece, India, Arabia, and Europe. 
(In the Far East, independent approaches were taken.) There is no well-delineated 
story line illuminating the progress. While there are some signposts, they are planted 
in controversy and may be misleading. Perhaps this is because the story itself does 
not unfold uniformly along one track. Instead, repeatedly across cultures and eras, 
different threads are spun and then abandoned without being integrated into a coherent 
system, only to be reconstituted at a later time. What is known is that the signposts 
point to Rene Descartes, who tied each end of the story line together by popularizing 
a coordinate system that proposed Greek geometric shapes as algebraic expressions. 
We follow the signposts to Descartes. 

A leading figure in the story is Abu Jafar Muhammed ibn Musa al-Khwarizmi 
(780-850). Al-Khwarizmi was a scholar in the House of Wisdom, the university es-
tablished by the Abassid Caliph Harun-al Rashid in Baghdad. Al-Khwarizmi memo-
rializes himself in two books. The first one, On Calculation with Hindu Numerals, as 
its title suggests, introduces the Hindu numerical system along with arithmetic oper-
ations using Hindu numerals. This book was a standard mathematics text throughout 
the height of Islamic power. It was one of the Arabic texts that was translated into 
Latin, bringing the Hindu system to the Europeans. Through this text, the Hindu 
numeric system became the modern international standard. 

In another book, Al-jabr wa 7 muqabalah, al-Khwarizmi describes methods for 
solving linear and quadratic equations through operations on the equation's expres-
sions followed in the case of quadratic equations by geometric constructs. While 
the geometric constructs had been known to the Greeks, a systematic presentation of 
operations to simplify equations was not known from the Greek literature. The two op-
erations that al-Khwarizmi considers are translated as "completion" and "balancing." 
Completion is the operation of adding a positive value to both sides of an equality in 
order to eliminate negative values. For example, x2 — 5x = 3 becomes x2 = 5x + 3 
through completion. Balancing is the operation of eliminating common terms from 
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both sides. For example, x2 + 2x = Ix + 2 becomes x2 = 5x + 2 by eliminating the 
common term, 2x, from both sides. 

Al-Khwarizmi demonstrates both limitations and sophistication with this ap-
proach. A limitation is that, lacking symbolic notation, al-Khwarizmi communicates 
mathematical expressions in prose. The following is a problem and solution from his 
book: 

What is the square which when taken with ten of its roots will give a sum total of thirty 
nine ? Now the roots in the problem before us are ten. Therefore take five, which multiplied 
by itself gives twenty five, an amount you add to thirty nine to give sixty four. Having 
taken the square root of this which is eight, subtract from this half the mots, five leaving 
three. The number three represents one root of this square, which itself, of course is nine. 
Nine therefore gives the square. 

Today we would simply write the problem and solution as algebraic expressions: 

x2 + IOJC = 39 

* = ( v / ( f ) 2 + 3 9 ) - T = 8 - 5 = 3 

Therefore, x2 — 9. 
Needless to say, prose is a much more cumbersome language for the develop-

ment and application of algebra than modern symbolic language. 
A point of interest that some may consider a limitation is that al-Khwarizmi ulti-

mately relies upon geometric constructions as known to the Greeks to solve quadratic 
equations. These constructions do not yield the unified solution currently taught in 
schools throughout the world, and they are unable to find negative solutions. The 
example above is solved through the geometric construction illustrated in Figure 4.1. 

Figure 4.1 Geometric solution to the quadratic equation. 
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The shaded region has an area of x2 + 10.x, which is equal to 39. The solution 
described by al-Khwarizmi is to find the area of the outer square, (-y) +39 , take 
its square root to find the length of the larger square's side, 8, and then noting that the 
length of the larger square is five units larger than the side x that is to be determined, 
subtract 5 from 8 to get the solution, 3. 

The solution is so Greek that it masks two critical contributions. The first contri-
bution is a classification scheme whereby each quadratic equation that al-Khwarizmi 
investigates is categorized into one of six cases. An equally significant contribution 
is the use of completion and balancing to reduce any quadratic equation to one of six 
cases. This formalizes two algebraic operations that al-Khwarizmi states in prose but 
would later be applied to symbols and taught to students throughout the world. 

For his efforts, the etymology of two words can be traced to al-Khwarizmi. 
The first word is algebra. This follows from al-Khwarizmi's choice to name one of 
his operations completion, which in Arabic is aljabr. The other word, algorithm, 
came about through a translational misunderstanding of al-Khwarizmi's work On 
Calculation with Hindu Numerals. The first Latin translation of the original Arabic 
version is Algoritmi de Numero Indorum, where algoritmi is the Latinized version of 
al-Khwarizmi's name. A common perception was that algoritmi referred to calculation 
methodologies. The perception took hold and today the word algorithm refers to a 
specified sequence of steps taken to arrive at a solution to a quantitative problem. In 
retrospect, the translational misunderstanding is perfectly justified for al-Khwarizmi's 
approach toward the solution of quadratic equations is the quintessential algorithm. 

Al-Khwarizmi's work spawned efforts to introduce algebraic principles into 
broader applications of mathematics. Whereas the Greeks perceived numbers as mea-
surements of geometric objects, the Arab world took a broader view. This allowed 
Arab mathematicians to address problems without a direct geometric interpretation 
using algebraic as opposed to geometric techniques. For example, Arab mathemati-
cians determine the sum of powers, lp + 2P + 3P -\ \-np . Notable in this en-
deavor are al-Karaji (953-1029) and al-Haytham (965-1039). The latter, al-Haytham, 
is considered the greatest medieval physicist with his most important contribution in 
optics. 

Arabs made limited headway toward the development of symbolic mathemat-
ics and always confronted the limitations of prose as a vehicle for expressing and 
communicating mathematics. The modern symbolism used to express mathematical 
concepts has evolved over a long time frame and is still expanding as the expansion 
of mathematical knowledge requires an increasing set of symbolic expressions. The 
solution to the cubic equation and the mathematical brouhaha surrounding it illustrate 
that the shift from prose to symbolism came about slowly. 

In sixteenth-century Italy, mathematical duels were staged events with all the 
theatrics one would expect from the culture that gave birth to opera. Public dueling 
afforded the victor's prestige, possibly accompanied by teaching opportunities. One 
form of dueling was to exchange problem sets, the sets would be circulated to partic-
ipants as well as a wider audience of experts who would act as witnesses. In 1535, 
Tartaglia (1500-1557) found himself preparing for a duel with a certain Mr. Fior. 
The latter had at his disposal a solution to the cubic equation x3 + ax — b for a and b 
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positive numbers. Mr. Fior received the solution from its original discoverer, Scipione 
del Ferro (1465-1526). Tartaglia set about finding the solution and succeeded. Fior 
submitted 30 questions, one of which is as follows: 

Two men together gain 1000 ducats. The gain of the first is the cube root of the gain of 
the second. What is the gain of each? 

Of note is that since al-Khwarizmi little headway had been made in the realm 
of notation. Prose was still the language of mathematics. In modern-day parlance, the 
problem would be posed as solve *3 + x = 1000. 

At any rate, Tartaglia swept through Fior's problems with ease while Fior was 
stumped by Tartaglia's. Tartaglia earned a bit of notoriety and the duel came to the 
attention of Geronimo Cardano (1501-1576). After years of Cardano's cajoling, in 
1539 Tartaglia revealed the solution to Cardano, while in return, Tartaglia elicited a 
promised from Cardano to keep the solution a secret so that Tartaglia could publish 
it in a future work. In 1545, Cardano published the solution in his work Ars Magna. 
There is a bit of controversy among historians. Some believe that upon seeing the 
same solution in an unpublished work predating Tartaglia, that of del Ferro, Cardano 
no longer felt obliged to maintain his promise to Tartaglia. Others believe Cardano 
never intended to keep his promise. How Cardano discovered the unpublished works 
of del Ferro is unknown, but just as Cardano stalked Tartaglia, it is conceivable that 
he followed the tracks of Fior, which led him to del Ferro's den. 

Cardano's publication was well received, enhancing his already considerable 
stature. Tartaglia was furious with Cardano for breaking his commitment to secrecy 
and unloaded a canister of insults with the objective of sullying Cardano's reputation. 
Cardano did not respond but was represented by his very able student Ferrari. Ferrari 
shot a volley of plagiarism at Tartaglia, somehow linking Tartaglia's solution with that 
of del Ferro. The charge of plagiarism elicited a challenge. In 1547 Tartaglia, hoping to 
engage in a duel with Cardano, sent off a list of 31 questions, but Cardano would have 
none of it. Cardano was, after all, the more famous of the two and there was no reason 
to respond to an inferior. As a consolation, Cardano offered his student, Ferrari. Two 
months later Ferrari responded in kind with a list of his own. Tartaglia then responded 
with a set of solutions to Ferrari's questions. Ferrari ripped them up claiming only 
five were correct and then 3 months later responded to Tartaglia's questions. It is all 
a disputation with piercing invective in which everybody was miserable. 

Under somewhat clouded conditions, Tartaglia agreed to a public debate be-
tween himself and Ferrari. It seems that Tartaglia had recently returned to his native 
town, Brescia, where he was offered a position as a lecturer. He was pressed into the 
debate to uphold the honor of Brescia. A public debate was not Tartaglia's preferred 
venue for a duel. Tartaglia had a speech impediment that was the result of a French 
soldier piercing his jaw with a sword in his youth. Hence, he was known by the 
nickname Tartaglia, the stammerer, instead of his real name, Nicolo Fontana. On top 
of this handicap, the debate would be on Cardano's home turf where Cardano could 
stack the audience. Tartaglia took a beating from which he never recovered. The only 
account of the debate is Tartaglia's; the account claims that a hostile crowd prevented 
Tartaglia from speaking so he left the debate early. Tartaglia never recovered from the 
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humiliation and was forced out of Brescia. Ferrari, on the other hand, was showered 
with praise. 

The literature on the debate is split among those sympathetic to Tartaglia and 
others claiming Tartaglia was in fact soundly defeated by Ferrari. Those in the latter 
camp point to the work in Ars Magna that Cardano attributes to Ferrari. There Ferrari 
presents solutions to cases of the cubic beyond the cases that Tartaglia addressed and 
presents a solution to the quartic polynomial. Historians on the side of Ferrari claim 
that Tartaglia never mastered the broader works of Ferrari and that was his undoing. 
We will not pursue what can only be speculation. But a trip over Ars Magna reveals 
the state of mathematical development in the sixteenth century. 

In Ars Magna, Cardano, like al-Khwarizmi, categorizes solutions into cases 
and then demonstrates the solution of each case. Also, Ars Magna, like Al-jabr Wa'l 
Muqabalah, is rife with the geometric flavor of the Greeks. Diagrams that could have 
come from Euclid's hand abound. Finally, prose dominates the book. The following 
is Cardano's description of a solution to one case taken from a translation of his book 
(Chapter 12): 

When the cube of one-third the coefficient ofx is not greater than the square of one-half 
the constant of the equation, subtract the former from the latter and add the square root 
of the remainder to one-half the constant of the equation and, again, subtract it from the 
same half, and you will have, as was said, a binomium and its apotome, the sum of the 
cube roots of which constitutes the values ofx. 

It is as if Cardano is al-Khwarizmi's clone. Cardano addresses a problem that 
is certainly a step up in degree of difficulty, but the methods and communication 
have not changed between the original and the clone that follows 700 years later. One 
cannot expect significant development in mathematics when a common language for 
mathematics in the form of algebraic symbols is not yet in use. 

Kepler continued the tradition of prosaic and geometric mathematics and, like 
Archimedes nearly two millennium before his time, had close encounters with calcu-
lus. The first encounter is laid out in Kepler's description of the conservation of angular 
momentum of a planet's orbit. Kepler's geometric construction echoes Archimedes' 
results of his investigations of spiral motions. (In fact, Kepler credits Archimedes with 
inspiring his approach.) The next encounter between Kepler and calculus is when Ke-
pler describes a method for determining the volume of shapes that are symmetric 
about an axis. This method is eerily similar to the method of Archimedes' proof of 
the volume of a sphere. Even the greatest among men are prone to err; Kepler was 
no exception. A century before Kepler, German mathematicians initiated a move-
ment toward algebraic symbolism that was known as coss. Kepler dismissed coss as 
a meaningless abstraction, choosing instead the geometric language of Archimedes 
and like Archimedes was a victim of its limitations. 

Why did Kepler dismiss coss? One can only speculate that the symbolic ex-
pressions did not contain the geometric insight that inspires mathematicians. For this 
reason, Kepler viewed coss as limiting, and at that stage of development Kepler was 
correct. 
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Rene Descartes (1596-1650) was a drifter. He was born in France, educated at 
a Jesuit College, then studied law at Poitier university. Afterward, his life resembled 
Europe during the Thirty Years' War, uncentered and in flux with no apparent pur-
pose to its movements. The resemblance is not merely a metaphor. Descartes entered 
military service on various sides of the fragmented continent. He was in the service of 
the Netherlands, the first Protestant nation to challenge Catholic Spain's supremacy 
on the continent. Then he switched sides offering his services to Duke Maximilian 
I of the Holy Roman Empire, Spain's surrogate. Then he switched sides once more 
offering his services to France, Spain's nemesis. Apart from his military career, during 
the years 1620-1628, there are reported Descartes sightings in Bohemia, Germany, 
Holland, Hungary, Italy, and France. Perhaps a weary Descartes then decided to settle 
down, choosing Holland for the next 20 years. Nevertheless, his idea of settling down 
differs from the typical community man. He moved addresses between Amsterdam, 
Dordecht, Deventer, Egmond, Endegeest, Franeker, Leiden, Santpoort, and Utrecht, 
seemingly changing residences at random. Descartes died in Sweden while in the ser-
vice of Sweden's Protestant queen. Befitting his life as a drifter, due to his Catholic 
heritage, Descartes was buried in a graveyard inhabited by residents who never had 
a home: unbaptized victims of infant mortality. The wanderer who lived most of his 
life in foreign lands did not form the social connections that center the lives of most 
men. (Although it is noteworthy that Descartes contracted the illness that eventually 
killed him while selflessly attending to a sick associate.) Yet it was this wanderer who 
connected coss with geometry, uniting the disciplines in the field of analytic geome-
try. From the time of Descartes' works onward, algebraic symbolism replaced prose 
as the language of mathematical expressions and geometry was etched into Carte-
sian coordinates. Preparations for a breakthrough in mathematics were complete and 
calculus would follow only 14 years after Descartes' death. 

In this chapter, Cartesian coordinates are presented along with an investiga-
tion of several algebraic expressions for geometric objects. Using the newly found 
power of analytic geometry, some unfinished business from Chapter 3 is attended 
to: Archimedes' evaluation of n and an investigation of the four-dimensional sphere. 
The latter is an excursion. The chapter then moves on to cover the method of induc-
tion introduced by al-Karaji and put to use by al-Haytham. Before closing with some 
properties of the ellipse, the chapter develops linear algebra and matrix notation in 
two dimensions. The chapter assumes that the reader is familiar with the concept of 
a function and uses the concept throughout. 

4.1 CARTESIAN COORDINATES AND TRANSLATION 
OF THE AXES 

Cartesian coordinates provide visualization of a function or a geometric object in 
one, two, or three dimensions. While visualization is not possible, they serve the 
same role of coordinating algebra and geometry in higher dimensions. The Cartesian 
coordinates of a point in n dimensions are denoted by n numbers in parentheses 
(x\, X2, *3, • • •, x„). In one, two, and three dimensions, it is common to designate the 
point by x, (x, y), and (x, y, z), respectively. There is some ambiguity in the notation 
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x=x0 
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y=y0i 

Figure 4.2 Intersection of two lines at a point. 

as sometimes the letters x, y, and z represent fixed numbers and sometimes they 
represent variables in an equation. To reduce the ambiguity, whenever a specific point 
is being considered, a subscript accompanies the letter. For example, the symbols 
(*0. yo) or (XA, }>A) denote specific points. 

In this section, two examples of the use of Cartesian coordinates to illuminate 
commonalities between algebraic and geometric concepts are presented. 

4.1.1 Intersections of Geometric Objects as Solutions 
to Equations 

The correct interpretation of a point (XQ, yo) on the coordinate plane is that XQ repre-
sents a distance along the x axis and _yo represents a distance along the y axis. There 
is another interpretation. Consider the following two equations and their plots on a 
Cartesian plane (Figure 4.2): 

x = x0 y = yo 

The first is the equation for a vertical line in which the variable x is a constant. 
The second is the equation for a horizontal line in which y is a constant. The two 
lines intersect at the point given by (xo, yo)- Accordingly, the point (xo, yo) can be 
considered the intersection of two lines. 

In three dimensions, the point (xo, yo, zo) can be interpreted as representing the 
intersection of three equations: 

x = xo y = yo z = zo 

Each of these three equations forms a plane. Two planes intersect in a line and 
the third plane intersects the line at a point; the intersection of three transverse planes 
is a point (Figure 4.3). The point is identified by the coordinates (JCQ, yo. zo)-
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Figure 4.3 Intersection of three planes at a point. 

A generalization of this perspective affords insight into a fundamental prin-
ciple for solving equations. In two dimensions, the equation f(x, y) — 0 forms a 
curve. If a problem requires the specification of a point, two curves and hence two 
equations are required; two properly constructed curves have a point of intersection. 
In three dimensions, the equation f(x, y,z) = 0 forms a surface. If a problem requires 
the specification of a point, three surfaces and hence three equations are required; 
three properly constructed surfaces have a point of intersection. There is a higher 
dimensional generalization. In n dimensions, n hypersurfaces and hence n equations 
are required to specify a point. 

This principle is an example of both an algebraic and a geometric approach 
toward the solution of equations. Solution points can be considered as intersections 
of geometric objects or solutions to algebraic equations. The Cartesian coordinate 
system unites these perspectives in a single framework. Later in this chapter, there 
are several examples in which it is necessary to determine the coordinates of points. 
The principle of the preceding paragraph informs us of the number of equations that 
are necessary to determine the coordinates. 

4.1.2 Translation of Axis and Object 
For clarity, this section restricts itself to two dimensions and points are given by their 
x and y values. 
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X = X + a 

y=b ^ ~ 

i x2 + y2 = 9 

(x+a)2 + (y+b)2 = 

\ 

x=a 

Figure 4.4 Equations in translated coordinates. 

As previously noted, a curve in two-dimensional space is given by the functional 
relation 

f(x,y) = 0 (4.1) 

As a concrete example, think of x2 + y2 — 9 = 0, which gives the circle of 
radius 3. The problem at hand is to express the functional relationship in terms of a 
coordinate system that is translated as indicated in Figure 4.4. 

Let points in original coordinates be denoted by (x, y) and points in translated 
coordinates be denoted by (x, y). As indicated in Figure 4.4, when x = 0, x = a. 
Similarly, when y = 0,y = b.ln general, we have the following equalities: 

x = x + a y = y + b (4.2) 

Substituting the equalities from equation (4.2) into the equation for the curve, 
equation (4.1), results in the equation for the curve in translated coordinates, f(x + 
a,y + b) = 0. 

Example 4.1 

Express the circle x2 + y2 — 9 = 0 in a coordinate system centered at (1, 2). 

Solution (jc+ l)2 + ( j + 2)2 - 9 = 0. 

Translation of the coordinates has a complementary operation, translating the 
geometric object. Translating the coordinates by a specified distance in a given di-
rection yields the equivalent result of translating the object by the same distance in 
the opposite direction. In the example, the coordinates are moved to the point (1,2). 
This has the equivalent effect of moving the circle to a new location centered at a new 
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Figure 4.5 Translation of center from (0, 0) to (a, b) 

point in the opposite direction (—1, —2). Accordingly, to translate a figure from a 
given position to a new position, subtract the values that determine the shift from the 
values of x and y (Figure 4.5). The formula for translating the object by the quantity 
(a, b) while maintaining the same coordinate axes is f(x — a, y — b) = 0. 

Example 4.2 

Shift the circle with radius 3 centered at the origin to a circle with radius 3 centered 
at ( - 1 , - 2 ) . 

on (JC — 

Remarks 

{-\)? + {y-{-2))2-
( jc+l)2 + (y + 2)2-

- 9 = 

- 9 = 

= 0 

= 0 

This problem demonstrates the power of unifying geometric and algebraic con-
cepts in a single framework. The geometric figure is constructed as an algebraic 
object. The geometry of translation is then expressed algebraically. Finally, geo-
metric translation is algebraically introduced into the equations, yielding a new 
algebraic expression. All along none of the geometric intuition is lost; indeed 
the geometry guides the algebra. 

The example in two dimensions is generalized to n dimensions as follows. 
Let f(x\, X2, XT,,..., xn) = 0 be a hypersurface in n dimensions. If we wish to 
translate the axes so that the origin is aligned with the points (a \, a%, «3 , . . . , an), 
then the surface is expressed as f(x \ + a \, xi + 02, £3 + «3 , . . . , x„ + an) = 0. 
If we wish to translate the hypersurface while maintaining the original axes, 
the formula is f(x\ — a\,X2 — 02, XT, — 03 , . . . , x„ — an) = 0. 
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4.2 POLYNOMIALS 

An nth-order real-valued polynomial is a function of the following form: 

f{x) = anx" +an-\x"~[ +a„-\x"~2 H \-a\x + a0 (4.3) 

where 

• n is a positive integer 

• for each j , a, is a real-valued coefficient (we only consider real numbers) 

A common problem is the location of the roots of a polynomial. That is, given a 
polynomial f(x), find all values of x such that f(x) = 0. While this problem does 
indeed find applications, the applications do not offer much insight into the solutions. 
It is best to view the problem as a puzzle unto itself. Historically, this has been the 
approach to the problem of finding roots; it is a puzzle unto itself. Surprisingly, this 
narrow perspective has yielded very powerful results that have broad application 
beyond the location of roots. For example, the concept of an imaginary number stems 
from the search for roots of polynomials; indeed the roots of the imaginary number lie 
in Cardano's work Ars Magna. Further analysis of complex functions demonstrates 
that a whole class of functions may be approximated to any level of accuracy by a 
polynomial function. We have seen something similar before; any real number may 
be approximated to any level of accuracy using only integers. This same property 
now exists on a functional level with the polynomials being the set of functions from 
which others may be approximated. 

Let us see how powerful this is. Consider the evolution in time of the distance 
between two moving objects, perhaps the earth and Mars. In general, the distance may 
be a very complicated function of time and it may not be possible to precisely express 
the function. However, given any tolerance band around the function, it is possible 
to construct a polynomial that remains within the tolerance band (Figure 4.6). While 
polynomials may not leave much of a first impression, they indeed are much more 
powerful than they appear. 

In the equation of a polynomial, when n = l, the graph of the polynomial is 
a line. In the case that n = 2, the graph is a parabola. We shall look at lines and 
parabolas both algebraically and geometrically. 

In subsequent results, it is sometimes necessary to equate polynomials that are 
obtained by different processes. Two polynomials are equal only if their coefficients, 
dj, are identical for each j . Accordingly, the polynomials are set equal by equating 
their coefficients. 

4.2.1 Lines 

A line is defined by two points. If we place these two points onto a Cartesian plane, a 
natural ratio is apparent: their difference along the y axis over their difference along 
the x axis (Figure 4.7). For reasons that are apparent from the figure, the ratio is 
known as the slope. The line is defined by a continuous extension in such a manner 
that this ratio is preserved for any two points on the line; the slope is a constant. A 
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Figure 4.6 Polynomial approximations within a tolerance band. 

consequence of this property is that all right triangles with their hypotenuse aligned 
along the line must be similar, as illustrated by the similar triangles in Figure 4.7. 

We seek an algebraic expression for the line. Begin by selecting a coordinate 
system so that the origin, the point (0, 0), is on the line. This can be accomplished by 
translating the origin of the original axis vertically (upward or downward) so that the 
translated origin lies on the line. Assume that the slope is given by the letter m and 
let (x, y) be another point on the line as described in shifted coordinates. Using the 
fact that the ratio is constant, we have the following: 

y o 
x-0 

bja^ = bj/aj 

Figure 4.7 Similar triangles along a line. 
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y 
— = m 
x 
y = mx (4.4) 

This establishes the equation of a line passing through the origin. To get the 
equation of the line in original coordinates, perform a translation of the shifted coor-
dinates back to the original coordinates. Let the shifted origin (x, y) = (0, 0) be the 
point (x, y) = (0, b) in original coordinates. The general relation between coordinate 
systems is given as follows: 

x = x y = y — b (4.5) 

Substituting the equalities (4.5) into the equation (4.4) just as described in 
Section 4.1 yields the equation for the line in original coordinates: 

y — b = mx 

y = mx + b (4.6) 

Equation (4.6) is the generalized equation for a line. It is a polynomial of one 
degree. Comparing (4.6) with equation (4.3), m = a\ and b = ao; the slope is given 
by a\ and ao represents what is commonly known as the y intercept. The y intercept 
is the value at which the line intersects the y axis. 

It is frequently necessary to write the equation of a line between two given 
points. The problem is posed as follows. Given two points (JCO, yo) and (*i, yi), 
find the equation of the line passing through them. Solving the problem requires 
determining the value of the slope, a\, and constant, ao. The solution for the slope is 
given as follows: 

&y - y\ - yo Ax = x\ -xo a\ = f^ 

Once the slope is known, the constant ao is determined by placing in values for 
x, y, and a\ into the equation of the line and solving for ao: 

a0 = y -a\x 

Either the values (XQ, yo) may be used or the values (jq, y\) may be used to solve 
for ao- The answer is the same either way; ao represents a vertical shift in coordinate 
systems and this is the same for every point along the line. An example illustrates 
this. 

Example 4.3 EQUATION OF A LINE 

Find the equation of the line passing through the two points (1,3) and (5, 6). 

Solution 

Ay = 6 - 3 = 3 Ax = 5 - 1 = 4 

Ay 3 
a\ = — = - a0 = y - a i x (4.7) 

Ax 4 
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Placing the values x = 1 and y = 3 into equation (4.7) results in the following 
value for an: 

a0 = 3 - \ x 1 = 2\ 

Placing the values x = 5 and y — 6 into equation (4.7) results in the same value 
forao: 

a0 = 6 - | x 5 = 22 

4.2.2 Parabolas and the Quadratic Equation 

Given a line and a point, a parabola is formed by the set of all points that are equidistant 
from both the line and the point. Consider the point in Cartesian coordinates given 
by (0, p) and the line given by y — — p. A point (X~A, /A) is on the parabola if the 
distance to the point (0, p) and the line y = —p is the same (Figure 4.8). 

To get an equation for the parabola, proceed as follows. First, find the distance 
from (X~A, \~A) to the point (0, p). This is found using the Pythagorean theorem: 

Distance to point (0, p) = JxA + (yA — p)2 

-p. Using Figure 4.8 it is seen Next find the distance from (X~A, JM) to the line y 
that the distance is the following: 

Distance to line = yA + p 

Finally, set both distances equal and simplify: 

y~A + P = yx\ + (yA - p)2 

(yA + P)1 =Z2A + OA - pf 

Distance 
from the 
line y=-p 
to (x,y) 

For every point on a parabola, the distances are equal. 

Figure 4.8 The parabola. 
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y2A + 2P)>A + P2 = x2
A + y\ - 2pyA + p2 

4p)>A = x\ 

X2 

■* A 

4/7 

All points on the parabola satisfy the above relation and so the equation for the 
parabola is 

x2 

~y = -r (4.8) 
Ap 

A family of parabolas is plotted for different values of p (Figure 4.9). 
The vertex of the parabola is the parabola's lowest point when p is positive or 

highest point when p is negative. Note that in the above derivation the vertex lies at 
the origin (x, y) = (0,0). Suppose that in the coordinate system of interest the vertex 
lies, not at the origin, but at a different point, (x, y) = (a,b). Then the general relation 
between the translated coordinate system and the coordinate system of interest is 
given by the following: 

x = x — a y = y — b (4.9) 

Substituting the equalities (4.9) into the equation (4.8) just as described in 
Section 4.1 yields the equation for the parabola in the coordinates of interest: 

y-b = 
(x-a)2 

Ap 

1 2 ap a2 

y-b=—x -—x+ — 
Ap 2 Ap 

1 o ap a2 

y=—x2-^-x+ — +b (4.10) 
Ap 2 Ap 

Figure 4.9 Parabolas for different values of p. 
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This equation is the same as the equation for a second-degree polynomial with 
the following associations: 

1 ap a2 

ai = — a\=-— a0 = — +b (4.11) 
Ap 2 Ap 

We have demonstrated that, given the values p, a, and b that describe a parabola, 
one obtains a second-order polynomial for its equation. Similarly, one could work 
backward. If the second-order equation is given so that a2, a\, and an are known, the 
values p, a, and b can be obtained for a parabola using equations (4.11): 

2a\ a\ a2 a2 

Aa2 a = = - - — b = a0- — = a0 - —-^ 
p 2a2 Ap 64^2 

The conclusion is that a second-order polynomial is the equation of a parabola. 
Next the roots of the second-order polynomial are determined; the roots are the 

corresponding values of x when y is set to zero: 

a2x
2+a[X + ao = 0 (4.12) 

The solution for x is the well-known quadratic formula that is derived below. 
A priori, it is assumed that square roots of numbers can be determined, so the final 
result can be expressed using a square root. 

To find the roots, it is possible to assume a2 = 1. How is this so? When y = 0, 
division of equation (4.10) by a2 yields the following: 

x -\ x -\ = 0 
«2 «2 

whereai/iZ2 andao/«2 are arbitrary constants that we take as b\ and bo, respectively: 

x2 + b\x + b0 = 0 (4.13) 

The problem is now to determine the roots for any given values of b\ and bo 
and then reexpress the roots in terms of the original parameters a2,a\, and ao-

As a first step, let us determine what quadratic equations are solvable. Consider 
equations of the following form: 

(x + X)2 - Y = 0 (4.14) 
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The solution is easily obtained: 

(x + X)2 = Y 

x + X = ±v7 

X=-X±JY~ (4.15) 

The solution is general if it is possible to intelligently choose X and y so that 
expression (4.14) is the same as expression (4.15). Equating the two expressions 
results in the following: 

(x + X)2 - Y - x2 + 2Xx + X2 - Y = x2 + b\x + bo 

To set the last two expressions equal requires that all the coefficients are the 
same. The coefficients of the second-order term are both 1. The coefficients of the 
first-order term are, respectively, 2X and b\. The constant terms are, respectively, 
X2 — Y and bo-

Setting the first-order coefficients equal and solving for lambda, we have the 
following: 

2X = b\ X = \b\ 

Lambda is now known. Setting the constant terms equal and solving for gamma, 
we have the following: 

X2-y = bo 

Y = X2-b0= (jfci)2 -b0 

Substituting the solutions for gamma and lambda into equation (4.15) gives the 
roots of x in terms of bi and bo: 

x=-X±^Y = -\b\±^\b^ -bo 

Finally, the quadratic formula is obtained by expressing the roots in terms of the 
original coefficients, «2*^1, andao- Recall b\ = a\/a2 and bo = aola2- Substituting 
these values into the solution of the roots and then simplifying yield the standard 
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quadratic equation: 

* = - 7±V 

2«2 

2a 2 

= °' ± 
2a 2 

2a 2 

W -
/ / a\ \ 2 a0 

V \ 2 «2 / a2 

a] - 4a0a2 

V 4 «i 
y a f - 4aoa2 

yja] - 4a0a2 

2«2 

Remarks 

There is a significant amount of algebraic manipulation required to derive the 
quadratic formula. The solution demonstrates the value of mathematical sym-
bols; it is difficult to imagine performing all the manipulation using prose. 

It is possible to relate the algebraic solution of this section with the geometric 
solution of al-Khwarizmi's as presented in this chapter's introduction. Indeed, 
the term x 4- A. is the side of the larger square in Figure 4.1 and the area of the 
larger square is given by y. 

In general, the value y may be taken as a positive or negative value. Note that 
there are two real-valued roots when y > 0 and there is one real-valued root 
when y = 0. In the case where y is negative, solutions are complex valued. 

4.3 CIRCLES 

While circles are examined in the previous chapter, two issues were left open: the 
approximation of n and properties of the tangent line to a circle. We address these 
issues in this section. 

4.3.1 Equations for a Circle 

A circle is the set of all points equidistant from a given point called the center. Assume 
that the center is at the origin, (jc, y) = (0,0), and designate the common distance by 
r. Using the Pythagorean theorem, the distance from all points to its center is given 
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by the equation 

yj x2 + y2=r 

It is common to square both sides: 

x2 + y2 = r2 

This results in the equation of a circle centered at the origin. The general equa-
tion for a circle centered elsewhere is found by translation. If in a coordinate system 
of interest the center is at the point (JC, y) = (a, b), the following hold: 

x = x — a y = y — b 

Substituting these relations into the equation for the circle yields the general 
equation 

(x - a)2 + (v - bf = r2 

4.3.2 Archimedes and the Value of n 

The problem of determining the value of n presents a good opportunity to practice 
algebra. Additionally, it is a precursor to methods of calculus that are explored in 
Chapter 7. The approximation for the length of the circumference of a circle with 
radius 1 follows the approach illustrated in Section 3.1.4. In that section, polygons 
formed by the bases of inscribed triangles are used to approximate the length of the 
circumference. In his work On the Measurement of a Circle Archimedes examines 
two sets of polygons, one inscribed within the circle and one circumscribed around 
the circle (Figure 4.10). The difference in the lengths of the perimeters is a tolerance 
band for the circumference. 

Archimedes' solution is iterative. For the first iterate, he chooses a six-sided 
polygon. Each successive iterate is obtained by doubling the number of sides of 
the polygon. Archimedes derives a general method for determining the length of 
a successive iterate's perimeter from the previous iterate's polygon. The method is 
explained below. 

Figure 4.10 Circumscribed and inscribed polygons. 
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Figure 4.11 Inscribing a hexagon. 

For the first iterate, inscribe the circle with a hexagon. This is accomplished 
using equilateral triangles. The base of each triangle is 1, and accordingly the length 
of the perimeter is 6. From this, it is possible to deduce that n, which is the length of 
half the circumference, is greater than 3. 

For further iterates, it is necessary to determine the coordinates of the point A in 
Figure 4.11; this is the intersection between two circles: the initial circle and the circle 
centered at D with radius 1. The point D has coordinates (1,0) (see Figure 4.11). 

The original circle has the following equation: 

x2 + y2=l (4.16) 

The circle centered at point D has the equation 

( j c - l ) 2 + ;y 2= 1 (4.17) 

The point A is given by the values of x and y that satisfy both equations. We 
denote the coordinates by (XA, }'A)- By symmetry it is seen that XA = j \ XA must 
be halfway between the two centers. Placing the value for XA into either of the two 
equations (4.16) or (4.17) and simplifying yield the value for y. Using equation 
(4.16), 

(i)V=l 

y = ±J\ = ±\Si 

There are two values for y, indicating that the circles intersect in two points. 
We are interested in the point in the first quadrant, y = |>/3. 
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C 

4 
i 
(b) 

D 

Figure 4.12 Construction of dodecagon. 

For the second iterate, it is necessary to determine the length of a single side 
of the 12-sided polygon and then multiply that length by 12 (all sides being equal). 
The point C of Figure 4.12a represents the intersection between the dashed line and 
the circle. It is the end point for one side of the 12-sided polygon and it is necessary 
to find the coordinates. This is accomplished using the three steps below. These steps 
use the points B, A, and D in Figure 4.12a. The point B is the midpoint of the line 
segment from A to D. 

The steps taken to determine the point C are as follows: 

Step 1. Determine the point B. It is the midpoint between the points D and A. 

Step 2. Determine the line passing through B and the origin and find the equation 

(the dashed line of Figure 4.12a). 

Step 3. Determine point C as the intersection of the line from step 2 and the original 
circle. 

We next execute these steps: 

Step 1. Determine the point B. It is the midpoint between the points D and A. 
Denote the point B by (JC#, yg). Since it is the midpoint between points D 

and A, we have the following: 

XB = \{xA +XD)=\\\ + y\ = 

(IV3 + 0) yB = i(yA + yo) [V3 

Step 2. Determine the line passing through B and the origin and find the equation 
(see Figure 4.12a). 
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Since the line passes through the origin, the equation of the line is given 
by y = mx, where m is the slope. 

_ yB _ V3 
xB 3 

Step 3. Determine point C as the intersection of the dashed line and the original 
circle. 

From step 2, the equation for the blue line is the following: 

y=\Jix 

The equation for the circle is the following: 

x2 + y2 = 1 

The intersection must solve both equations. Substituting the value for y 
from the equation of the line into the equation for the circle and simplifying 
give the following value for x: 

■2+ (!V3*)2 = 

x2 + \x2 = 

3 * -

x = 

= 1 

= 1 

= 1 

= ±; LV3 

There are two solutions, and we are interested in the positive solution, 
xc = j \ / 3 . To find the associated value for y, substitute the value of xc into 
either the equation for the line or the equation for the circle. It is easier to use 
the line: 

V^ V3V3 3 1 

The line segment between the points C and D determines a side of the 12-sided 
polygon. To get the length of this segment, apply the Pythagorean theorem to the 
triangle, as shown in Figure 4.12b. The length of the leg along the x axis is given as 
follows: 

Lx- xD-xc=\ - \~J?> 

The length of the side parallel to the y axis is as follows: 

Ly = yc-yD = \-0=\ 
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Using the Pythagorean theorem, the length of the segment (the hypotenuse of 
the triangle) is determined as follows: 

Length of segment = JLl + L\ 

Taking out one's calculator and plugging in the values gives the approximation 
for the length of the segment as 0.517638. 

The perimeter of the 12-sided polygon is 12 times the length of the single 
segment, approximately 6.211657, and half the perimeter is approximately 3.1058. 
As 7t denotes the length of half the circle's circumference and half the perimeter of 
the 12-sided polygon is less than half the circumference, this gives a lower bound for 
7i, it > 3.1058. 

An upper bound can be determined by calculating the length of the circum-
scribed 12-sided polygon. While Archimedes performed this calculation, we do not 
but merely note that the difference between the lower and upper bounds is a tolerance 
band for n. 

To get a better approximation, use a 24-sided polygon. Repeat steps 1, 2, and 3 
above with appropriate identification of the points A, B, and C. Assume A is given by 
the coordinates ( j \ / 3 , 5), the previous iterate's C, and B and C are defined as before 
but are calculated using the new value of A. One can continue indefinitely. Without 
the aid of a calculator, Archimedes found the tolerance band yp < n < y-. 

Remarks 

Note that the method uses the Pythagorean theorem to determine the distance 
between two points on a Cartesian plane with the result that the distance between 
two points A and Bis distance = \J(XA — XB)2 + ()>A — yB)2 (see Figure 4.12). 
Using a symmetry argument, one could deduce that the coordinates of points 
A and C in Figure 4.11 are reversed. 

Following Archimedes, obtaining an upper bound can be accomplished through 
a resizing argument. Find the resizing factor between the inscribed and circum-
scribed polygons. Because the perimeter is one dimensional, the resizing factor 
becomes the ratio between the lengths of the inner and outer perimeters. Ap-
plying the ratio to the lower bound of the tolerance band gives an upper bound 
for the tolerance band. Pi lies between these two bounds. 

Archimedes was not the only mathematician to discover this method. A Chinese 
mathematician, Zu Chongzhi (429-500), independently found the same method 
and performed the calculation out to 11 iterates, approximating the circle with 
a polygon of 12,228 sides. Zu Chongzhi's son, Zu Gengzhi, independently 
discovered the formula for the volume of a sphere using a different method 
than Archimedes. 
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Figure 4.13 Tangent line to a circle. 

4.3.3 Tangent Lines to a Circle 

In Section 3.2.9 the surface area of the sphere is determined. This is accomplished by 
transforming the surface into a rectangle. The transformation used the tangent line of 
a circle. In this section, we determine the equation for the tangent line as illustrated 
in Figure 4.13. The circle is centered at the origin and has radius 1. 

A line is tangent to the circle if it intersects the circle at only one point. Given 
that the point (XQ, }'O) is on the circle, the point satisfies the equation 

x0 yl (4.18) 

The point also satisfies the equation for the tangent line with as-of-yet-
undetermined values for ao and «i: 

>'0 = a\x0 + a0 (4.19) 

It is necessary to solve for the values of ao and a\ using the known values of JCO 
and >o- This requires two equations to solve for two unknowns. 

Placing the value of >'o from the equation for the line, equation (4.18), into the 
value of jo for the equation of the circle, equation (4.17), and simplifying yields the 
following: 

xl + (a]X + a0f = 1 

(1 + O\)XQ + 2a\aoxo + ÜQ 1 = 0 

Solving for XQ using the quadratic equation and simplifying results in the fol-
lowing values for XQ: 
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The behavior of this expression is dependent upon the value within the square 
root, (aiao)2 — (1 + a\)(a.Q — 1). There are three cases as presented by the table be-
low: 

(ti\(i(i)2 — (1 + a\)(a\ — 1) > 0 Two real values for xn 

(a\a0)
2 — (1 +a\)(a\ — 1) = 0 One real value forxn 

(aioo)2 — (• +a\)(a2) — 1) < 0 No real values for .to 

The case that we are interested in is the case when there is only one real value for 
xo; the tangent line intersects only one point on the circle. Accordingly, it is necessary 
to set the value within the square root to zero: 

( a i a o ) 2 - ( l + a ? ) ( a § - l ) = 0 

Simplifying the above expression yields the following: 

a\ - a\ + 1 = 0 (4.20) 

This establishes one equation for a\ and ao- Because there are two unknowns, 
another equation is necessary. But the other equation has already been given, the 
equation for the line, equation (4.18): 

yo = a\xo + ao 

Since xo and yo are given, it is possible to solve for one of the coefficients; 
selectao: 

ao=a\x0-yo (4.21) 

Substituting for «o in equation (4.20) and simplifying yields the following: 

a] - (yo - axx0)
2 + 1 = 0 

(1 - xl)a\ + Ixoyoai + 1 - yg = 0 

yla\ + 2x0yoai +XQ = 0 

The final expression uses the fact that since xo and yo are o n the unit circle, 1 — 
XQ = ^Q and 1 — >>Q = XQ. Note that the equation is quadratic in ai, so the quadratic 
equation is used to solve for a\: 

a\ = -2 (-xoyo ± J(xoyo)2 - xlyl} = —~ 
y2o \ v J yo 

The slope of the tangent line is — xo/yo-
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To find ÜQ, substitute the value of a\ into equation (4.21) and simplify: 

«0 = >'0 - « 1 * 0 

X2 

= yo + ^ 
>'o 

l 

The general equation for the tangent line is the following: 

xo , 1 
y = a\x + ao = x H 

yo }'o 
Remark. Finding the slope of the tangent line is the principal objective of 

differential calculus. In this section, it is hard work. Using differential calculus, this 
calculation is very simple. 

4.4 THE FOUR-DIMENSIONAL SPHERE 

It is time for another excursion. In Chapter 3, the surface area and the volume of 
a sphere are determined. The method equates the volume of the sphere with that 
of a pyramid using Cavalieri's theorem. This establishes a relation between the 
volume and the surface area of the sphere, V = ^rS. Finally, the surface area is 
established, and using the relation between volume and surface area, the volume can 
be determined. In this section, we generalize the process to higher dimensions and 
in particular find the volumes (surface volume and four-dimensional volume) for the 
four-dimensional sphere. 

A question concerning presentation may come to mind. Why not present this 
material in Chapter 3 rather than presenting it in this chapter on algebra? Geometric 
constructs in higher dimensions are difficult to convey in pure geometric form; Eu-
clid's compass and a straight edge just do not cut it. Coordinate systems in higher 
dimensions allow for algebraic representations. Then it is possible to perform geo-
metric operations algebraically. 

The material in this section is an excursion and as such not essential to the 
understanding of the rest of the book. The problem itself, finding measurements for a 
sphere in higher dimensions, arises as a challenge and appears to have little practical 
application. One of the pleasures of mathematics is finding relations that arise in 
apparently unrelated problems. As it turns out, the results from this section give 
results for integral calculus with polynomials, a subject investigated in Chapter 6. 
Just as exploration of new territories may turn up something interesting, so might a 
mathematical exploration. This section may also assist the reader in developing some 
facility for thinking in higher dimensions, a skill most useful as much of mathematics 
is done in higher dimensions. 
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Figure 4.14 Pythagorean theorem in three dimensions. 

Prior to beginning, some notation is necessary. In four dimensions, the coor-
dinate axes are given by (JC, y, z, w). In higher dimensions, coordinates are given by 
(x\,X2,X3,...,xn). A point in space is denoted by a capital letter, that is, A. The 
coordinates of the point are denoted by (XA, )>A, ZA, W A ) or, in dimensions greater 
than 4, (A\, Â2, A 3 , . . . , A„). 

4.4.1 Pythagorean Theorem in Higher Dimensions 

The Pythagorean theorem is used to find the distance between two points. Section 
4.2 presents an example in two dimensions where the equation for a circle identifies 
points of common distance through the Pythagorean theorem. 

Figure 4.14 illustrates the geometry in three dimensions. The illustration depicts 
a rectangular cube with A = (XA, yA, Z/i)andB = (XB, ys, z#) at opposite vertexes.lt 
is the distance between points A and B that is of interest. The point C lies on the bottom 
face of the rectangular cube opposite of A; its coordinates are C = (XB, ys, ZA)- The 
points A, C, and B form a right triangle, so it follows from the Pythagorean theorem 
that 

Distance^ = distance^ + distance^ (4.22) 

Likewise, the points A, C, and D form a right triangle. The coordinates of 
the point D are (XB, yA, ZA)- From this right triangle, it is possible to determine the 
distance from A to C: 

Distance^ — distance^ + distanceoc = (XA — XB) + (yA — yà) 

The remaining term in equation (4.22), distance^g, is the difference in height 
between the upper and lower surfaces: 

Distance^ = (ZA - ZB)2 
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Putting the results for distance2^ and distance2^ into equation (4.22) and taking 
the square root result in the following: 

Distance2^ = (xA - xBf + (yA - yB)2 + (ZA - zBf 

Distance^B = \J(XA - xB)2 + (yA - yB)2 + (ZA - zB)2 

Note the way that the formula is created. The first term is the difference along 
the x direction, the second term is difference along the y direction, and the third term 
is the difference along the z direction. 

We next generalize the result to four dimensions as follows. First, it is 
necessary to consider a four-dimensional rectangular cube. Can we construct a 
three-dimensional rectangular cube in a way that can be generalized? The three-
dimensional rectangular cube is constructed by placing on each coordinate axis two 
two-dimensional rectangles orthogonal to the axis; these form the faces of the cube 
(see Figure 4.14). There are three axes and two faces for each axis, making a total of 
six faces. 

A four-dimensional rectangular cube is constructed by placing on each coordi-
nate axis two three-dimensional rectangular cubes; these form the three-dimensional 
faces of the four-dimensional rectangular cube. There are four axes, making a to-
tal of eight faces. This rectangle can be translated so that it is centered anywhere 
within the four-dimensional space. Given two points A and B with coordinates 
A = (XA, yA, ZA, WA) and B = (xB, yg, zg, wB), respectively, it is possible to place 
a four-dimensional rectangular cube in such a fashion that the points A and B are 
opposite vertexes of the cube. 

Consider the point C given by the coordinates C = (xB, yB, ZA, WA)- This is 
the vertex of the four-dimensional rectangular cube with (x, y, z) values the same 
as point B and a w value the same as that of point A. Points A, B, and C form a 
right triangle in four- dimensional space. The triangle itself lies in a plane within the 
four-dimensional space and the Pythagorean theorem can be applied to this triangle 
to yield the distance between A and B. Analogous to equation (4.22) the distance is 

Distance2^ — distance2^ + distanceCB 

The points A and C lie in a three-dimensional face of the four-dimensional 
rectangle. Within this face, the value of w is constant; it plays no role in the distance. 
Therefore, the three-dimensional formula for distance can be applied to the distance 
from A to C: 

Distance2^ = (xA - xc)
2 + (yA - ycf + (ZA - zc)2 

The points C and B lie along a line segment in which the x, y, and z values are 
all constant. They play no role in the distance between C and B: 

DistanceCB = (u^ — wB) 
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Placing the distance formulas for AC and CB into that of AB and taking the 
square root result in the distance from A to B: 

Distance2^ = (xA - xBf + (yA ~ Jfl)2 + (ZA - ZB? + (wA - wB)2 

Distance,^ = yj(xA - xB)2 + (yA - yB)2 + (zA - zB)2 + (wA - wB)2 

More generally, given two points in n-dimensional space, A and B, with co-
ordinates A = (Ai, Ai, Ay,..., A„)and B = (B\, Bi, By,..., B„), the distance be-
tween the points is given by the following formula: 

Distances = \/(A, - B,)2 + (A2 - B2)
2 + (A3 - By)2 + ■■■ + (A„ - Bn)

2 

4.4.2 Measurements in Higher Dimensions and 
n-Dimensional Cubes 

The terms length, area, and volume denote measurements of one-, two-, and three-
dimensional objects. It is not feasible to create a new word for measurements of each 
higher dimensional object, so we are stuck with the term volume. When necessary, to 
promote clarity, n-dimensional volume is used in reference to the measurement of an 
n-dimensional object. The symbol V) is used to denote the volume of a y'-dimensional 
object; that is, V4 refers to the volume of a four-dimensional object. 

In the previous section, a four-dimensional cube is constructed. The concept 
is generalized to higher dimensions. In n dimensions, a unit cube is constructed by 
placing two (n — l)-dimensional unit cubes through each axis in such a manner that 
the distance between opposite faces is 1. For an n-dimensional cube, there are n axes 
giving In faces. The volume of an n-dimensional object is the maximum number of 
n-dimensional unit cubes or fractal portions thereof that the object can contain. It 
follows, for example, that the volume of an n-dimensional rectangle is the product of 
the lengths of its sides. 

4.4.3 Cavalieri's Theorem 

Cavalieri's theorem is valid in higher dimensions. To state the theorem, it is necessary 
to describe a hyperplane. This is a generalization of a plane to higher dimensions, and 
recall that planes are critical to Cavalieri's theorem in three dimensions. Assume we 
are in n dimensions. The equation x„ = k, with k a constant, describes an (n — 1 )-
dimensional surface in which all other variables x\, xi, xy,..., xn-\ are not fixed. 
Such an object is a hyperplane. 

Let two n-dimensional objects be situated in n-dimensional space such that their 
xn extents are identical; identifying a bottom and a top, the bottom of each object lies 
at x„ = 0 and the top of each object lies at xn = a for some value of a. If for any 
arbitrary hyperplane, x„ = k, the (n — l)-dimensional volumes of each object within 
that hyperplane are equal, then the n-dimensional volumes of the objects are also 
equal. 
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Figure 4.15 A hyperplane in three dimensions. 

The extended Cavalieri theorem as stated in Section 3.2.7 also applies. This 
statement requires two objects A and B and a constant multiple m. As above, let A and 
B be situated between the hyperplanes xn = 0 and xn = a. If for every hyperplane 
the (n — l)-dimensional volume of object A within each hyperplane is the same 
constant multiple m of the corresponding (n — l )-dimensional volume of object B, 
then the «-dimensional volume of object A is m times the n-dimensional volume of 
object B. 

Remark. The hyperplane given above is parallel to the base space xn = 0. In 
general, a hyperplane may have any orientation within the n-dimensional space. The 
general equation for a hyperplane is the following: 

a] x\ + aiX2 + «3x3 + ■ ünX,] 0 

A hyperplane in three dimensions is shown in Figure 4.15. The equation for the 
figure is 2x + ?>y + z = 1 ■ 

This is a common plane. 

4.4.4 Pyramids 

The method for determining the volume of n-dimensional pyramids follows the same 
process as that for three-dimensional pyramids. Each face of an n-dimensional cube 
becomes the base of an n-dimensional pyramid; as there are In faces, there will be 
2n pyramids, two on each axis. We concentrate on one of the two pyramids with its 
base perpendicular to the xn axis; all the others are constructed in the same manner. 
The three-dimensional pyramid of Figure 3.24 is replicated in Figure 4.16 as a visual 
aid. 

The bottom of the pyramid is an (n - 1 )-dimensional unit cube. The xn coordi-
nate at the base is — 5. The xn coordinate at the top is zero. We refer to the height of the 
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Figure 4.16 A three-dimensional pyramid. 

pyramid as the distance from the base to the top and designate it with the letter h. At 
each point between 0 and — 5 along the xn coordinate, create an (n — l)-dimensional 
cube with sides of length — 2xn. This gives a stack of unit cubes along the xn axis. 
The sides of the unit cubes increase in length from 0 to 1 as xn goes from 0 to —|. 
The stack is an n-dimensional pyramid. For example, a three-dimensional pyramid 
is a stack of squares with sides that increase from top to bottom, a four-dimensional 
pyramid is a stack of three-dimensional cubes, a five-dimensional pyramid is a stack 
of four-dimensional cubes, and so on. 

Now that we have constructed an n-dimensional pyramid, let us determine 
its volume. The unit n-dimensional cube of volume 1 has been assembled from 2n 
equally sized pyramids. As the volumes of these pyramids are equal, the volume of 
each is l/2n. The height of each pyramids is | and the (n — l)-dimensional volume 
of each base is 1 [the base are all unit (n — l)-dimensional cubes]. Putting everything 
together gives the following formula: 

Vn(pyramid) = - [h V„_i (base)] (4.23) 
n L J 

While formula (4.23) has been worked out for a pyramid with specific geometry, 
it can be generalized using the extended Cavalieri theorem as in Section 3.2.8. 

4.4.5 The n-Dimensional Sphere as an n-Dimensional 
Pyramid 

In n dimensions, the set of all points that are equidistant from a designated center 
form an n-dimensional sphere. The common distance from all points to the center is 
known as the radius and designated by r. The equation for the surface of a sphere 
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centered at the origin is 

x\ + x\ + x\ + ■ ■ ■ + x\ = r2 

This follows from the Pythagorean theorem in higher dimensions. We call such 
objects shells. The sphere itself is the collection of all shells centered at the origin 
that are contained within the surface of the sphere. 

Following Section 3.2.9, it is possible to unfold the n-dimensional sphere and 
obtain an n-dimensional pyramid. Select a radial line from the sphere's center to its 
surface. At every point of this radial line, unfold the shell that passes through it. The 
original center of the sphere becomes the pyramid's top and the sphere's outer surface 
becomes the pyramid's base. 

Since the n-dimensional sphere is an n-dimensional pyramid, equation (4.23) 
holds with the outer surface as the base and the radius as its height: 

V„(sphere) = - [rV„_, (surface)] (4.24) 

4.4.6 The Three-Dimensional Volume of the 
Four-Dimensional Sphere's Surface 

This section follows the method of Section 3.10, where the surface area of a conven-
tional sphere is determined and the volume follows by application of equation (4.24). 
In Section 2.10, the surface of the sphere is described as a stack of circles of latitude. 
Each of the circles is cut, stretched, and mapped onto the vertical axis of the sphere. 
Generalizing this method, the surface of the four-dimensional sphere is considered 
a stack of two-dimensional shells. Each shell is stretched and then mapped onto the 
vertical axis, taken to be the w axis. As a fist step, it is necessary to determine the 
area of each shell. Then it is necessary to determine a stretching factor as the shell is 
removed from the surface of the four-dimensional sphere and mapped down to the w 
axis. Figure 2.25, replicated in Figure 4.17, presents a visual illustration. 

Throughout this section, r denotes the four-dimensional sphere's radius. Con-
sider a shell at the latitude w = WQ. The shell is expressed algebraically as follows: 

x2 + y2 + z2 + wl = r2 

x2 + y2 +z2 =r2 -u>l 

Figure 4.17 Unraveling the surface of the sphere. 
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This is the equation for the surface of a three-dimensional sphere with ra-
dius r(tt>o) = r2 — WQ. From the results of Section 3.10, the surface area is area = 
4jr[r(wo)]2. The shell is transformed to an equal-area rectangle. Squeezing all the 
rectangles off of the surface of the four-dimensional sphere and onto the w axis re-
quires an offsetting stretching of each rectangle. Calculation of the stretching factor 
is performed in the identical fashion of Section 3.2.10, where the surface area of the 
three-dimensional sphere is calculated. The calculation yields a stretching factor s(w) 
with s(w) = r/r(w). 

For each point on the w axis, a shell from the four-dimensional sphere has been 
transformed into an equal area rectangle, stretched, and attached to its associated 
point along the w axis. The two-dimensional area of each stretched rectangle at the 
point w is the following: 

? r 

Area (w) = 4n (r(w)) 
r(w) 

= 4nrr(w) 

= 4 i r y r 2 — w2 

Align the rectangles so that the w axis meets at their front right corner and choose 
the dimensions of the rectangles 4nr units deep and to be Vr2 — w2 units in length. 
The result is half a cylinder. The entire cylinder is illustrated in Figure 4.18. The axis 
of the cylinder is perpendicular to the w axis and has length 4nr. The base of the 
cylinder is a disk with radius r and area izr2. The volume of the cylinder is twice the 
volume of the four-dimensional sphere's surface: 

^(surface) = \ (nr2) x (47rr) = 2n2r^ 

Using the relation between the three-dimensional surface volume and four-
dimensional volume, equation (4.24), the volume of the four-dimensional sphere is 

w 

| |4(*)/-

Sqrt(w0
2 + r2) 

Figure 4.18 The surface of a four-dimensional sphere unravels to a cylinder. 
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the following: 

V4(sphere) = jjr2r4 

4.5 FINITE SERIES AND INDUCTION 

There are individuals who make tremendous scientific contributions in isolation. On 
the island of Sicily, Archimedes had no sounding boards for his ideas. Isaac Newton 
developed calculus while alone at his hometown village. Einstein developed special 
relativity while working as a clerk in a Swiss government patent office. To this list 
one can add the most outstanding physicist of the middle ages, al-Haytham (965-
1040). 

Al-Haytham's most productive years occurred while he was under house 
arrest for displeasing al-Hakim, the Caliph of the Fatim Empire centered in Egypt. 
Wishing to leave his position as a minister in the Abbasid Caliphate located in 
Baghdad, al-Haytham devised a plan to reengineer the Nile River and he person-
ally pitched it to al-Hakim. Al-Hakim was so impressed that he placed al-Haytham 
in charge of the plan's execution as chief engineer. Selling the plan and accepting 
the commission were the two gravest errors of al-Haytham's life. But these two 
errors would create the circumstances in which al-Haytham made the most remark-
able contributions to a wide range of fields—astronomy, mathematics, mechanics, and 
optics. 

Not long after accepting the commission, al-Haytham recognized the hope-
lessness of the project. The reality on the ground in Egypt was far different from 
al-Haytham's vision in Baghdad. Al-Haytham reported his findings to al-Hakim. 
Souring relations led to the house arrest of al-Haytham. In a desperate attempt to 
escape a sentence of execution, al-Haytham pretended to be insane. While the ruse 
worked, al-Haytham remained under house arrest for 10 years until the death of al-
Hakim. 

During the time of al-Haytham's incarceration, he was prolific. The work for 
which al-Haytham is most remembered is optics. Al-Haytham pursued two avenues 
of investigation: the physics of light and the physiology of human sight. Kepler 
studied al-Haytham's work and expanded upon it to explain the workings of the 
telescope. And recall, it was Kepler's scientific explanation of the telescope that 
furnished support to Galileo against critics who claimed that the telescope created 
chimerical images. Aside from his work in optics, there is a clear line of sight 
between al-Haytham and the development of calculus. Following the work of al-
Karaji, al-Haytham devised a general method for summing a finite series consisting of 
powers of integers. This section presents the method. In Chapter 6, these sums are used 
to develop calculus for polynomials. As for the Nile River, it was eventually reengi-
neered along the lines of al-Haytham's vision with the completion of the Aswan Dam 
in 1970. 

Al-Haytham deserves mention for one other accomplishment that is discussed 
in Chapter 3. Al-Haytham set the first stitch in the thread of mathematics that begins 
with an attempt to prove the redundancy of the parallel postulate by the method 
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described in Section 3.11 and ends with the creation of non-Euclidean geometry by 
Lambert. 

4.5.1 A Simple Sum 

In this section, the sum 1 + 2 + 3 H + n is determined for any number n. By itself 
this has little consequence. However, it is a starting point for results of use in integral 
calculus. 

Some notation is helpful. Denote the sum of an n-termed expression by S„ and 
denote each term to be summed by XJ, where the letter j designates the y'fh term in 
the sum. Common mathematical notation is to express S„ using a sigma sign, J2< a s 

follows: 

n 

S„ = ^2 XJ — *1 + *2 + *3 H 1" X„ 
7=1 

Particular cases of this notation are given below: 

n 
S„=^2j=\+2 + 3 + --- + n 

v'=i 

n 

S„ =J2j2= l2 + 22 + 32 + --- + n2 

7 = 1 

n 

S„ = ^ 2' = 21 + 22 + 23 + • • • + 2" 
7=1 

There is an easy way to determine the sum given at the beginning of the section, 
S„ — J2"i= l J- The method follows: 

S„ = 1 + 2 + 3 + • • • + « 

S„= n +(n - I)+ (n-!) + ■■■+ 1 

25„ = ( « + l) + (n+ l) + ( « + l ) + ■■■ + (n+ 1) 

The third equation is obtained by summing the first two vertically. Note that 
there are n identical terms in the third equation, 25„ = n(n + 1). Therefore, S„ = 
\n(n + 1). 

4.5.2 Induction 

Suppose that a general formula for 5„ is given. Al-Karaji developed the method 
of induction for proving the correctness of the formula. The method is a two-step 
algorithm as follows: 
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Step 1. Demonstrate the formula holds for S\, the sum containing one term. 

Step 2. Demonstrate that if the formula applies to S„_i, it also holds for S„, where 
n is a positive integer. 

The first step establishes a starting point where the formula is verified. The second 
step establishes the proof of the formula for each incremental term. Since the formula 
has been verified for S\, the second step assures it holds for S2; since the formula 
holds for S2, the second step assures it holds for S3; since the formula holds for S3, 
the second step assures it holds for S4; and so on. 

To illustrate its use, the method of induction is applied to the formula from 
the preceding section. As in the preceding section, let S„ = J2"i=\ J- We demonstrate 
S„ = jn(n + 1) using induction: 

Step 1. Demonstrate the formula holds for S\, the sum containing one term S\ = 1. 
Using the formula, Si = j 1 (1 + 1) = 1, the formula is correct for n — 1. 

Step 2. Demonstrate that if the formula applies to S„_i, it also holds for S„, where 
n is a positive integer. 

To accomplish this step, it is necessary to assume that the formula holds for S„-\ and 
then establish a result for S„. If the established result matches the formula, step 2 has 
been successfully demonstrated and the proof is complete: 

S„ = 1 + 2 + 3 + •■• + ( « - \) + n 

= S„-\ +n 

= j(n — \)n + n 

\{n- 1)+ 1 

= 3«(n+ 1) 

The resulting formula is identical to the original formula, proving its correctness. 

4.5.3 Using Induction as a Solution Method 

The problem of Section 4.5.1 is solved through a trick that is difficult to generalize. 
What happens if we take it up a notch and seek a solution for the more difficult sum 
S„ = J2"i=\ J21 The problem is a purely algebraic; geometry has little to offer. Can 
we find an algebraic method for this problem? While induction is thought of as a 
method of proof, it can also guide one to a solution. In this section, induction is used 
to determine the solution. A benefit of using induction to guide the solution is that 
proof of the solution's correctness comes along with the solution. 

As a starting point, we note that the solution in Section 4.5.1 is a polynomial 
function of n; it is a second-order polynomial. Let us try a polynomial for the solution 
of S„ = Yl"j=\ J2- Denote the polynomial by p(n). Placing p(n) into step 2 of the 
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inductive method and applying the inductive assumption yield the following: 

Sn = l2 + 22 + 32 + • • • + (n - l)2 + n2 

= S „ _ i + n 2 

= p{n- l) + n2 

= p(n) 

It is necessary to determine what order polynomial can satisfy the last equality, 
p(n) = p(n — 1) + n2. Clearly, a first-order polynomial cannot; the polynomial has 
a square term. A second-order polynomial would also not work; the second-order 
term of p(n — 1) + n2 would always be different from the second-order term of p(n). 
The lowest order polynomial that has a chance is a cubic polynomial. Take p(n) as 
follows: 

p{n) = ãT,n + a2n + a\n + ao 

Placing this into the equality p(n) = p(n — 1) + n2 and simplifying yield the 
following: 

ai(n — l)3 + a2(n — l)2 + a\(n — 1) + ao + n2 = a-in3 + a^n1 + a\n +ao 

ci3(n3 - 3 n 2 + 3n - l) + a2(n2 -2n+ \) + a\(n - \) + a0 + n2 = 

a^n + ain + a\n + «o 

a3(-3n2 + 3n - l) + a2(-2n+ l) + a\(-\) + n2 = 0 

(1 — 3a3)rt2 + (3a3 — 2ai)n — a$ +a2 — a\ = 0 

The last line states that all the coefficients of the powers of n on the left-hand 
side must be set to zero: 1 — 3a3 — 0, 3«3 — 2a2 = 0, and —ai, + a2 — a i = 0 . This 
yields the following solution: 

1 - 3a3 = 0 

3«3 — 2a2 = 0 

3 i 
a2 = - Í 2 3 = 2 

—03 + a2 — a\ = 0 

a\ — a2 - a-i = \ 

Using these values results in the following equation for p(n): 

p(n) = in 3 + \n2 + \n + a0 

We have found a polynomial that satisfies the inductive step, step 2 of the 
inductive proof. All that remains is to verify that it is possible to satisfy the initial 
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step. Note that there is still a constant, ao, that can be set to any value required by 
step l. 

Setting n to 1 and verifying step 1 yield the following: 

S, = l 2 

= />(!) 

= 1 +ao 

The solution follows by setting ao = 0: 

S„ = in 3 + \n2 + \n 

Remarks 

• Al-Haytham used the method to determine 5„ = J2"i= l Jk r o r any positive in-
teger value ofk. The solution is a polynomial of order k + 1 and the coefficient 
dk+\is always \/(k+ 1). 

• To perform the inductive step, it is necessary to expand (n — l)m for integer 
values of m up to k + 1. There is a clever schema that allows one to tabulate 
the expansion rather quickly. The schema is known as Pascal's triangle, named 
for Blaise Pascal (1623-1662), who developed it. Pascal was in good company; 
both al-Haytham and Jia Xian (circa 1010-1070) had discovered the triangle 
centuries before Pascal. 

• Induction can be used to determine the volume of the n-dimensional sphere. 

4.6 LINEAR ALGEBRA IN TWO DIMENSIONS 
It is time to take stock of our progress and map out the remaining course. Our ulti-
mate objective is to derive Kepler's elliptical planetary motion using both Newton's 
calculus as expressed by Leibniz and Newton's laws of motion as written by Lambert. 
What mathematics have we developed to accomplish this and what more needs to be 
considered? Euclidean geometry, the space in which these calculations take place, has 
been introduced. Geometric measurements within Euclidean geometry have also been 
performed. Cartesian coordinates, an approach to integrating geometry with algebra, 
have been considered along with several examples utilizing the coordinate system. 
We have also become acquainted with finite sums that arise in integral calculus. 

What still needs to be accomplished? Of course, calculus is necessary. It might 
be possible to jump right into calculus at this point, but there is benefit to be gained in 
addressing other shortcomings prior to moving onto calculus. One shortcoming that 
comes to mind is that the ellipse has not yet been introduced. Another shortcoming is 
that we have not yet related the geometric concepts and the Cartesian approach with 
motion. Finally, trigonometry that arises in the solution to the ellipse has not yet been 
introduced. 
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It is with these latter goals in mind that we set a course for linear algebra. In the 
West, linear algebra was developed after calculus; strictly speaking, it is possible to 
address all our needs without it. However, I believe the clearest route to our objective 
lies through linear algebra. With the tools of linear algebra at hand, the ellipse is as 
easy as the circle. Concepts of motion are most naturally expressed using vectors, 
the fundamental elements of linear algebra. Finally, basic identities of trigonometry 
become apparent with the use of linear algebra. 

The field of linear algebra is very broad. It is the starting point for the study of 
abstract algebra, but this is not the course we will follow. We restrict ourselves to the 
essentials that are required for the purposes identified above. The primary emphasis 
is on clarity of exposition as opposed to abstraction and generalization. With this goal 
in mind, for the most part the material is presented in a two-dimensional setting. 

4.6.1 Vectors 

Vectors are often used to represent various physical phenomena; two common uses 
are as identifiers of relative positions in Euclidean space and as representations of 
an object's velocity. It is common to depict a vector as a line segment with a spec-
ified direction using an arrowhead. In the case of identifying relative positions, the 
length is the distance between the positions and the arrow points from the initial 
point toward the direction of the terminal point. In the case of representing velocity, 
the arrow points in the direction of travel and the length of the line segment is the 
speed. The length of a vector is more commonly referred to as the vector's magni-
tude. In this book, the notation for a vector is a letter with an arrow above it, that 
is, V. 

Vectors may be added, subtracted, and multiplied by a constant to yield another 
vector. Figure 4.19 presents a diagram of algebraic operations on vectors. Addition 
of the vectors, denoted by A + B = C, yields a new vector, as illustrated in Figure 
4.19a. Multiplication of a vector by a positive quantity is a resizing of the length by the 
quantity. In Figure 4.19b vector A is multiplied by 2; the result is denoted by 2A — C. 
Multiplying a vector by a negative quantity is a resizing and reversal of direction. In 
Figure 4.19c, vector A is multiplied by —1. Subtracting one vector from another 
requires reversing the direction of the subtracted vector and adding the result to the 
remaining vector; that is, the subtracted vector is multiplied by — 1 and then added as 
illustrated in Figure 4.19d. The notation to indicate subtraction is A — B = C. This 
is operationally the same as A + (-B). 

Given a coordinate system for a Cartesian plane, one represents a vector in two 
dimensions by providing two numbers in a column atop one another, as in the vectors 
V and W below: 

- 0 "W 
The first number is the vector's extent along the x coordinate and the second 

number is the vector's extent along the y coordinate. If the vector represents a point in 
the plane relative to the origin, the entries are the vector's coordinates. The operations 
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A+ B 

(a) 

A-B 

(c) 
Figure 4.19 Vector addition and subtraction. 

W 

of addition, subtraction, and multiplication by a scalar are all performed on each 
component of the vectors, as seen in the following examples. Notationally, vectors 
are often presented in rows, with a superscript T that indicates the rows are actually 
transposed columns. For example, the vector V above is written as V = (1 2)T. 

Example 4.4 ADDITION 

Example 4.5 SUBTRACTION 

V-W = 

Example 4.6 SCALAR MULTIPLICATION 

5V = 5 

The magnitude of a vector is found using the Pythagorean theorem and is 
designated by enclosing the symbol in double bars; that is, || V|| is the magnitude of 
the vector V. The magnitudes of the above vectors, V and W, are given below: 

IV = \ / l2 + 22 = V5 
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B-A 

,-' B 

Figure 4.20 Vector from A to B. 

As vectors are presented as abstract objects, one gains familiarity by using them 
in concrete examples. Some examples are given below. 

Example 4.7 AS THE CROW FLIES 

A crow located at the grid point (—1,7) wishes to fly to the grid point (3, 2). 
Determine the vector that gives the direction and distance that the crow must fly 
assuming that the crow maintains a constant altitude. 

The solution is illustrated in Figure 4.20, where C = B — A is the required 

vector. The initial position of the crow is given by the vector A — ( ~7 1 and the 

destination is given by the vector B — (~2 ) . 

The distance that the crow must fly is the magnitude of C, \\C ||= ^ 4 ^ + 5 ^ = VÍT. 

Example 4,8 RUNNING IN CIRCLES 

A dog runs clockwise around a circle with radius 100 m at uniform speed. It takes 
1 min to complete a circuit. Determine the vector that gives the speed and direction 
of the dog when the dog is at the position (XQ, yo) = (—50, V7500). 

The solution is illustrated in Figure 4.21, where V = (v\ V2)1 is the required 
vector. The direction of motion at any point on the circle is tangent to the cir-
cle. Therefore, the ratio vj/vx is the same as the slope of the tangent line. By the 
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Figure 4.21 Velocity vector for circular motion. 

results of Section 4.3.3, the slope of the tangent line is— y/x = — V7500/50 = —V3-
Additionally, we know that the magnitude of V is the speed of the dog. Since the dog 
travels a distance of one circuit in l min, the dog's speed is 200;r m/min. Two relations 
for the quantities v\ and vi have been determined: 

^ = -73 v\ + v\ 40007T2 

The first equation relates the slope of the tangent line to the vector entries and 
the second equation relates the square of the velocity to the vector entries. Solving 
the two equations yields the values for v\ and V2'-

V2 — — V3f l 

v\ + 3u2 = 40007T2 

i 
IOOOTT^ 

HI = VlOOO^-

V2 = -V3000n-

Remarks 

Note that the equation v\ — 10007T2 has a positive and a negative solution 
for v\. The positive solution is the relevant one as the dog runs clockwise 
around the circle and the x component of the velocity is positive at the point 
(x, y) = ( - 5 0 , V75ÕÕ). 

The units of measurement associated with V are meters per minute. The units 
apply to both components of V. 

Both examples illustrate that a vector does not necessarily originate at the origin 
but may be translated so that its beginning point does lie at the origin. 
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4.6.2 The Span of Vectors 

Given a set of vectors (Vi, V2,V^,..., Vn) the following expression is a linear com-
bination of the vectors: 

ax V\ + a2 V2 + a3 V3 + • • • + an V„ 

where the coefficients a-s are any real numbers. 
The span of a set of vectors is the set of all vectors that are linear combinations 

of the set. For example, if B\ = (1 0)T and B2 = (0 1)T is a set of vectors, then the 
span of the vectors is the entire Cartesian plane. This is seen as follows. Given any 
vector in the Cartesian plane, V = (v\ v2)

r, for some real values v\ and v2, V can be 
expressed as a linear combination of the vectors B\ and B2: 

V = = vi + v2 v\B\ + v2B2 

In one dimension, a single vector spans the entire line. In two dimensions, two 
vectors are required to span the plane, although not any two vectors suffice. Three 
vectors are required to span all of the three-dimensional Euclidean space, although 
once again not any three vectors suffice. In general, n vectors are required to span all 
of the Euclidean n-dimensional space, although not any n vectors suffice. 

Let us examine the two-dimensional case. Given two initial vectors A and 
B as depicted in Figure 4.22a, any arbitrary vector C can be expressed as a linear 
combination of the initial vectors. However, the vector C cannot be expressed as a 
linear combination of two vectors A and B that are collinear as in Figure 4.22b. Only 
vectors on the common line of A and B can be expressed in terms of A and B. 

; aA 

C=aA+bB 

(b) 

Figure 4.22 Span of vectors. 
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The results above are generalized in an intuitive manner. Vectors that are 
collinear span a one-dimensional space; vectors that are coplanar span a two-
dimensional space; and if m is the lowest dimensional Euclidean space that a set 
of vectors shares, the vectors span the m-dimensional space. 

4.6.3 Linear Transformations of the Plane Onto Itself 

A vector transformation is a generalization of a function of a variable. Just as a function 
takes one value to another value, a vector transformation takes one vector to another 
vector. We present some examples. 

Example 4.9 

Example 4.10 

TV 

Example 4.11 

\ V\ +2l>2 

(3 x 2) - (7 x (-3)) 

2 + (2x( -3 ) ) 

In general, a transformation of the plane onto itself is given by the following: 

TV=(MVUV2)) 

\ f2(V\,V2) I 

When both functions /i(i>i, v2) and f2{v\, v2) have only linear terms, as in the 
final example above, the transformation is a linear transformation. In two dimensions, 
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the general form of a linear transformation is given as follows: 

( a\\v\ + a\2V2 \ 
TV=[ (4.25) 

ya2iv\ +a22V2/ 

for real values of an, an, «21» a nd «22-
While one may venture the guess that a linear transformation is so named be-

cause the transformation contains only linear terms, there is another more fundamental 
explanation. A linear transformation satisfies the following linearity property: 

T(aV + bW) = aTV + bTW (4.26) 

One can directly verify that transformations given by equation (4.25) satisfy 
the linearity property of equation (4.26): 

T(aV + bW) = T 

T(aV + bW) 

av\ + bw\ \ 

av2 + bu>2 I 

av\ +bw\ \ 

av2 + bu>2 J 

(a\\(av\ + bw\) + an(av2 + bu>2)\ 

l ü2\{av\ + bw\) + a22(av2 + bw2) J 

(a\\av\ -\-a\2av2\ (a\\bw\ -\-a\2bw2\ 

\a2\av\ +a22av2j ya2\bw\ + 022bw2 J 

_ Í auv\ + a\2V2\ f anu)i + a\2W2\ 

\a2\av + Ü22V2 ) \u2\bw + Ü22W2 J 

= aTV + bTW 

A consequence of the linearity property, equation (4.26), in two dimensions is 
that, by knowing the result of the transformation on two vectors that span the plane, 
it is possible to determine the transformation on any vector in the plane. This is most 
easily conveyed by an example. 

Example 4.12 LINEAR TRANSFORMATION 

Suppose that T ( ^ ) = ( ' ) a n d T ^ ) = ( " 3 ) . Find T ( _ 4
2 ) . 

Solution Let V = (l
Q\ and W = (°\ Then ( O = 4V - 2W. 
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Using the linearity property, equation (4.26), 

T(4V - 2W) = 4TV - 2TW 

■C) 
An elegant notation is used to represent linear transformations. In two dimen-

sions, transformations are given by a matrix of the coefficients: 

M= aUan 

\ «21 «22 

One applies the matrix to the vector V to get the resulting transformed vector, 
W, as follows: 

MV = W = I Wl ] \w2J 

2 

7=1 

Expanding the summation for each component of W results in the following: 

Wl = ÍZllUl +a\2V2 

W2 — a2\v\ + (122V2 

The expression for MV may also be written in the following notation: 

/ «11 «12 \ / "l 
MV = 

\ «21 «22 / V v2 

'awvi +a\2v2\ 
ã2\V] + Ü22V2 I 

We adopt the matrix notation in the remainder of this text. 
Let us interpret the coefficients within the matrix using the above example. 
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Example 4.13 COEFFICIENTS USING THE TRANSFORMATION 
OF EXAMPLE 4.12 

Using matrix notation for the transformation of Example 4.12 where 

Ai(l
0\ = (l

2\ andA/(°) = (~ 3 ) results in the following: 

M 

(«11 x l) + (ai2 xO) 

(a2\ x l) + (a22 xO) 

(an x0 ) + (ai2 x 1) 

(a2] xO) + («22 x 1) 

M = 

Example 4.13 illustrates that the matrix coefficients are obtained by the trans-
formation's behavior upon the vectors (1 0)T and (0 1 )T; the first column of the matrix 
is the result of applying the transformation to the vector (1 0)T and the second column 
of the matrix is the result of applying the transformation to the vector (0 1)T. 

In the next example, the matrix notation is illustrated on a vector. 

Example 4.14 TRANSFORMATION USING MATRIX NOTATION 

Applying the matrix of Example 4.13, 

M = 

to the vector of Example 4.4, 

V = 
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lives the following: 

MV 
a2\ an] \yi J 

' a\W\ +a\2V2\ 

Ü2\V\ +Ü22V2 J 

'(1 x4 ) + ( ( - 3 ) x ( - 2 ) ) N 

( 2 x 4 ) + (l x ( - 2 ) ) 

The result is the same as the answer in Example 4.12. 

Remarks 

• The results of this section can be generalized to linear transformations from 
n-dimensional Euclidean space back to itself. The generalizations are given 
below. 

• A linear transformation from n-dimensional Euclidean space back to itself sat-
isfies the linearity property, equation (4.26). 

• By the linearity property, the transformation on a set of n vectors that span 
all of n-dimensional Euclidean space determines the transformation over all of 
n-dimensional Euclidean space. 

• There is a matrix associated with the transformation. The matrix has n rows 
and n columns. The y'th column of the matrix is given by determining the 
transformation on the vector having a 1 in the yth position and zeroes in all 
other positions. 

4.6.4 The Inverse of a Linear Transformation 

We continue to consider linear transformations from the plane back to the plane. The 
following diagram depicts a linear transformation acting on a vector; the original 
vector, V, is mapped to a new vector, W. In this section, the following questions are 
addressed (Figure 4.23): 

Question 1. If W is any arbitrary vector in the plane, is there a vector V that gets 
mapped to IV? 

Question 2. If the answer to question 1 is affirmative, how can V be established for 
any arbitrary IV? 

The specific form of the matrix M is used to answer question 1. As established 
in Section 4.6.3, the matrix M is composed of two columns, and each column is a 
vector. The first column (vector) is the result of the linear operator acting on the vector 
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MV=W=aA+bB 

A and S are column vectors for the matrix M 

Figure 4.23 Solution to linear equations. 

(1 0)T and the second column (vector) is the result of the linear operator acting on 
the vector (0 1)T. Suppose that these two columns (vectors), A and B, are collinear; 
their span lies on a line as depicted in Figure 4.22b and all vectors are mapped onto 
that line. If a vector W is not on the line spanned by the columns (vectors), it is not 
possible to find a vector V that is mapped to W. (See Figure 4.22b where the vector 
C takes the role of W.) 

Alternatively, suppose that the two columns (vectors) A and B are not collinear. 
As depicted in Figure 4.23, the span of the two columns (vectors) is the entire plane. 
Associated with every vector IV is a vector V that is mapped to W by the linear 
transformation. In fact, the vector V can be specified. As depicted, W = aA + bB, 
where A is the first column of the matrix M and B is the second column of the matrix 
M. Then the vector V" = a ( 0 ) + è ( 1 ) i s mapped to W. Indeed, we have 

MV = M a 

With the construction of V, question 1 is answered. As long as the columns 
(vectors) of M are not collinear, every vector W has a vector V that is mapped to W. 

We next turn our attention to question 2. There are some observations in the 
way that V was constructed that are helpful. First, note that W is a unique linear 
combination of the vectors A and B; that is, there is a unique pair of coefficients a and 
b such that W = aA + bB. As such, there is only one vector, V, that is mapped to W. 
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Let us use this observation to reverse our perspective. Instead of thinking of W as a 
transformation of V, think of V as a transformation of W; any given W is mapped to a 
vector V. We will denote this transformation by T~ ' . Using this notation, W = TV 
and V = T _ l W, where T _ 1 is known as the inverse of T. 

An observation of note is that T _ l is a linear transformation. Let us test this 
out. Let IV and X be two vectors, W = awA + bwB and X = axA + bxB, where A 
and B are the column vectors of the matrix associated with T. Using the construction 

of the inverse vector, T" 1 W = aw (ò ) + K (°A and T _ 1 X = a^ (^) + bx (°\ 

We have to show that the linearity property, equation (4.26), is satisfied: 

T~\aW + BX) 

= T-

(a(awA + bwB) + B(axA + bxB)) 

((««„, + Bax)A + {abw + Bbx)B) 

= (aaw + Bax)l\+ (abw + Bbx) í { 

+ P + bx 

aT-]W + 8T~lX 

Note that the third equality follows from the construction of the inverse vector. 
Since T _ 1 is a linear transformation, it has an associated matrix that we denote 

by M~'. One arrives at a complete answer to question 2 by determining the compo-
nents of A/ -1 . The first column of M~[ is the result of the mapping T~' on (1 0)T 

and the second column of M~' is the result of the mapping T _ 1 on (0 1)T. Using the 
process for constructing the inverse vector, we have the following. Let 

= a\A+b\B 

(4.27) 

where 

0 2 ^ + ^ 2 ^ 

= a2 + b2 (4.28) 

A is the first column of the matrix M 

B is the second column of the matrix M 
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.M= (aUan 

\ «21 «22 

0 
T" 1 [ „ I =aiT-xA + b\T-xB 

= fl,ü)+ft,W 
a\ 

Similarly, 

= a2T-iÃ + b2T-lB 

a2 ( „ I + b2 I , 

The matrix M ' is then given by the following equality: 

\b\b2) 

The solution to M~x is found by determining the quantities a\, b\, a2,mâb2 

in terms of the original matrix M. Equating both components of the vector in equation 
(4.27) results in the following two equations: 

ana\ +ai2b\ = 1 

«21«1 + «22^1 = 0 

We solve these equations simultaneously. From the second equation 

, «2 i a i 
b\ = 

«22 

Substituting into the first equation and simplifying yield the result for ay. 

ai\a\ , a\\a\ — a\2 = 1 
«22 

a\\a22 - a\2a2\ a\ = 1 
«22 

«22 
«1 = 

«11«22 - « 1 2 « 2 1 
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Substitution of a\ into the expression for b\ yields the result for b\: 

, ~ai\ 
b\ = 

a\\a22 - ana2\ 
A similar process applied to equations (4.28) yields the results for «2 and b^-

-an , a\\ 
Ü2 = — — i>2 = 

a\\ü2i - ana2\ a\\ü22 - ai2ü2\ 

Placing the values for a\, b\, a2, and £>2 into the expression for M _ l and 
simplifying result in the expression for M _ 1 : 

M"1 = (4.29) 
a\\a22 - ana2\ y-a2\ a\\ J 

Note that each term inside the matrix is multiplied by the factor in front of the 
matrix. 

Example 4.15 NONINVERTIBLE MATRIX 

Let 

Then 

Since B = —2 A, A and B are collinear, as shown in Figure 4.22b. It was demonstrated 
that inverses only occur when the column vectors are not collinear. Accordingly, the 
matrix of this example has no inverse. Note that the term a \ \ 022 — a 12̂ 21 that occurs 
in the denominator of the factor for the inverse matrix evaluates to zero for this 
example: 

aua22-cn2a2i = ( 1 x 6) - [(-2) x (-3)] = 0 

The expression for A/ -1 indicates that M is noninvertible as division by zero is 
undefined. 

Example 4.16 INVERTIBLE MATRIX 

Let 

M=U 7 
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Then 

i > - 1 
Assume A and B are not collinear as in Figure 4.22b, so the inverse exists. Using 
equation (4.29), «11^22 ~ #12^21 = ( 5 x l ) — (—3 x 2) = 11 and 

Af"' = 
| / 5 3 

IT I - 2 1 

Select a vector V = H ) . Applying the matrix M to V yields the following: 

' l - 3 \ / 3 \ 
MV = , 

\ 2 5 

(1 x 3 ) - ( 3 x4 ) 

( 2 x 3 ) + ( 5 x 4 ) ( 

26 j 

If everything is correct, applying M ' to 

MV = \~ 
\ 26 

should result in the original vector V = ( 4 ) • The calculation is verified below: 

' 9 \ 1 / 5 3 \ / - 9 \ 
M-1 

26 j 11 \ - 2 i y y 26 y 

_ J_ / (5 x (-9)) + (3 x 26) ' 

~T\ \ ^ ( - 2 x ( - 9 ) ) + (l x26 ) / 

11 V 44 / 

3 

= V 

Example 4.16 presents a specific example of a general property. If A/ -1 does 
exist and V gets mapped to W, the following relations hold: 
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M~lMV = M~lW= V 

MM~XW = MV = W (4.30) 

These relations can be used to solve systems of equations. 

Example 4.17 SOLVING A SYSTEM OF EQUATIONS 

Let the matrix M be as in the previous example. Solve for V in the equation 

MV = [ 
V-667 

Using relations (4.30), 

- Í 55\ MV = 
1-66 j 

M~]MV = A/"1 

( 5 x 5 ) + (3 x (-6)) 

( - 2 x 5 ) + (l x ( - 6 ) ) 

Remarks 

• In general, the condition that a linear transform from n dimensions to 
n dimensions has an inverse is that the column vectors of the associated matrix 
span n-dimensional Euclidean space. 

• Inverting a transformed object occurs in many settings. One setting is encoding 
and decoding; messages are often coded to preserve confidentiality. The code 
transforms characters from a character set to other characters, perhaps from the 
same character set. The result is an incomprehensible message. Applying the 
inverse code to the encoded message restores the original message. 

• The relations expressed by equation (4.30) are often used to define the inverse 
of a matrix. That is, the inverse must satisfy both relations. In mathematics, 
it is also of interest to find the inverse of common functions. The functions 
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and their inverses must satisfy relations that are analogous to equations (4.30); 
r\f{x))=xmdf{f-\y)) = y. 

4.6.5 The Determinant 

In Section 4.6.4, the formula for the inverse of a matrix, equation (4.29), contains the 
term a\ \an — a\iai\ ■ This term is known as the determinant. The determinant has 
the following geometric interpretation. If an object in the plane has area A, then the 
image of the object under the linear transformation represented by the matrix M has 
area | a\\an — ai2«2i I xA. This interpretation is used in the following sections. It 
is demonstrated in Chapter 5. 

4.7 THE ELLIPSE 

The human obsession with beauty borders on disease. Perhaps the best indication of 
our desire for beauty is the marketplace where we spend our money. Merchants must 
have beautiful packaging for their products that themselves must be beautiful. Does 
anyone remember the AMC Pacer? Probably not—the ugly car was not in production 
very long. There are two types of beauty, the type that must be pursued and the type 
that just exists. Music, art, and fashion lie within the first category. The creator is in 
specific pursuit of beauty. Athletics and mathematics are in the second category. The 
athlete does not pursue beauty, the athlete heads a corner kick to score a goal and, if the 
timing and the placement are right, the result just happens to be beautiful. Likewise, 
the mathematician creates mathematics and beauty comes with the territory. Perhaps 
it is watching this beauty unfold that motivates mathematicians. 

Apollonius' (C.200BC) work Conies contains brilliant and beautiful mathemat-
ics. The work, which earned Apollonius the title as the greatest geometer, comes in 
eight volumes; the first seven have survived. There is not a trace of utility in any of 
the surviving seven volumes. Instead, seductive and elegant geometric constructions 
underlie beautiful theorems. As an example, the fifth volume presents theorems that 
give the maximum and minimum distances from any planar point, the plane within 
which the conic section lies, to the conic section. The work exquisitely applies the 
notion of orthogonality as the basic indicator of a maximum or a minimum distance. 
The work also details the intricate calculations required to uncover the distances. But 
Apollonius presents not even the slightest hint that there is any functionality behind 
these theorems. 

In fact, there are practical applications of Apollonius' work. Apollonius devel-
ops foundational knowledge in the field of optimization. Additionally, al-Haytham 
and later Kepler would use properties of the parabola and ellipse that are stated to 
describe reflections of light sources on both parabolic and elliptic surfaces. It is not 
conceivable that history's leading authority on conic sections was unaware of these 
broader, more practical implications, yet he is mum on purporting any use at all. The 
work is beautiful and that alone justifies both the writer's and the reader's efforts. 

In his book, The Optical Part of Astronomy, Kepler includes a chapter on the 
conic sections. (The main objective of the text is to expand upon al-Haytham's work 
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in optics.) Apollonius had not quite exhausted all the properties of the conic sections 
and Kepler demonstrates his mastery of the curves by discovering yet one more prop-
erty. Additionally, Kepler presents interesting interpretations of Apollonius' work. In 
particular, his view of the relation between the foci of the sections and the sections 
themselves could be viewed as a pioneering effort in bifurcation theory; the curves 
adopt new shapes as the foci pass through thresholds. 

Kepler's (1993) work New Astronomy is a historian's dream. Unlike other sci-
entific work, it is very personal, part diary and part science. This affords a unique 
entry point into the mind of a genius. What can one expect? Is not Captain Spock 
the quintessential model of a genius? Should not Kepler, this brilliant intellect, have 
a clear path toward his objective? Should not his drive be based upon pure logic, 
unclouded by emotional content? If these are the preconceptions of the genius mind, 
Kepler dispels them all. Kepler is not a guided missile; he is a fireworks display. He 
has no clear path toward his objective, but ideas percolate through his mind sending 
him in all different directions. And with each new possibility, there is childlike ex-
citement in pursuing it to its end. Even when Kepler has intellectual certainty that one 
of his ideas will end in failure, he doggedly pursues it to the end and seems to take an 
enormous amount of pleasure in the magnificence of the failure as well as its public 
disclosure. But never does he dwell upon the failure at length for as soon as one idea 
has exploded, another surfaces, and well there he goes again. This pattern went on for 
6 years, interrupted by legal proceedings, negotiations, and his other seminal work 
The Optical Part of Astronomy. 

Kepler had a great sense of humor, and despite the many tragedies that he 
confronted, his life could also inspire comedy. Imagine a movie in which a genius 
is working on a project and due to a legal snag is forced to temporarily abandon 
it and take up something else. Everyone in the audience knows that the seemingly 
unrelated projects are united by a single element, say the ellipse. The genius having 
learned everything about the ellipse in one of the projects just does not pick up on 
it for his other project. He pursues one failure after another, but he pursues it with 
such joy and in the process pokes so much fun at himself that despite this tortuous 
display of cluelessness the audience loves the genius. Indeed, his cluelessness is one 
of his endearing features. But he is no clown, for accompanying his cluelessness is 
penetrating insight, unequaled dedication, and remarkable honesty. The honesty is 
what really strikes the audience. The genius could at any time pull the wool over the 
eyes of his contemporaries and present his many failures as a success. But instead 
he chooses to expose his own personal failures, learn from them, and move on. It is 
this quality that earns the genius immortality; his honest confrontation of his failures 
leads him to the correct conclusion that is enduring. The movie ends with the genius' 
epiphany that what he needed all along was readily available to him, Appollonius' 
beautiful ellipse. What a great movie. Should it ever be made, it would be the movie 
of Kepler's greatest discovery. 

Kepler was the first to propose a force between the sun and its planets and he 
posited that the force lessens with distance. A consequence of this view is that all 
points equidistant from the sun experience the same force. The intuitive orbit that 
results from this view is the circle of Copernicus; the planet would experience an 
equal force at all points of a circular orbit and this equal force would keep the planet 
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an equal distance from the sun. There is a peculiarity with the ellipse; it is elongated 
along a designated direction. This is counterintuitive as a possibility for a planet's 
orbit. The sun's force is circularly symmetric; it does not have a preferred direction 
that would account for the elongation of a planet's orbit. But the circular symmetry 
of the solar force expresses itself in a less transparent fashion through conservation 
of angular momentum and Kepler's planetary pathway around the ellipse satisfies 
the conservation of angular momentum. Kepler was ahead of his time. There was no 
concept of angular momentum, let alone the understanding of symmetry conditions 
that preserve the angular momentum. Indeed, the general relation between symmetry 
and constants of motion would come nearly 300 years after Kepler is discovered by 
David Hubert (1862-1943) and Emmy Noether (1882-1935). 

This section closes our chapter on algebra with a brief introduction to the ellipse. 
The equations of the ellipse are derived using a linear transformation of the circle. 
Afterward, Kepler's property of the foci is presented. Some find the results beautiful, 
some find them useful and beautiful, but only the unaware can find neither beauty nor 
use. 

4.7.1 The Ellipse as a Linear Transformation of a Circle 

As a starting point, we define the ellipse as a linear transformation of the circle with 
radius 1. Specifically, let the matrix of the transformation be given by 

M= k , (4-31) 

in which a and b are positive numbers. 
If a is less than 1, the transformation compresses the x axis; alternatively, if a 

is greater than 1, the x axis is stretched. Similarly, the transformation compresses or 
stretches the y axis depending upon whether b is less than or greater than 1. Letting 
a = | and b = ^ and applying M to the circle with radius 1 yield the ellipse as 
illustrated in Figure 4.24. As illustrated by the figure, the length of the major axis is 
twice the larger of a and b, while the length of the minor axis is twice the lesser of a 
and b. 

Using the geometric interpretation of the determinant as presented in Section 
4.6.4, the area of the ellipse is found by multiplying the determinant with the area 
of the corresponding circle. Noting that the determinant of M is ab results in the 
following: 

Area = nab 

4.7.2 The Equation of an Ellipse 

An equation for the ellipse is obtained via the equation for the circle. The points on 
the ellipse are mapped back to the circle and placed into the equation of the circle. 
Figure 4.24 illustrates the process that is expressed algebraically below. 
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. 

/r=1 \ 

x = a = 4/3 

Figure 4.24 Transformation of a circle to an ellipse. 

Let (x, J) be a point on the circle that is mapped by the matrix M of equation 
(4.31) onto a point (JC, y) of an ellipse: 

M 
y, 

Note that M is invertible as its determinant is nonzero. Applying equation (4.29) 
results in the inverse: 

A/"' = — 
1 [bO 

ab \ 0 a 

io 
a 

Applying M ' to the point (x, y) on the ellipse gives the associated point on 
the circle, (x, J): 

M - l a x (4.32) 

Since the point (x, ~y) is on the unit circle, it satisfies the equation for the circle: 

x2 + y2=\ 

Substituting for (x, y) using the equality (JC, J) — (x/a, y/b) yields the equation 
for the ellipse: 

rx\2 ,y\2 

(;)+©" 1 (4.33) 
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Figure 4.25 The sum of the lengths from the foci to points on the ellipse is constant 

4.7.3 An Excursion into the Foci of an Ellipse 

Kepler discovered that the sum of the distances from each focus to any point on 
the ellipse is equal to the length of the major axis of the ellipse. This property is 
illustrated in Figure 4.25. In the figure, the lengths of the line segment to the positive 
and negative foci are correspondingly denoted by L+ and L_. The property states that 
L+ + L- = 2a. A derivation of the property is presented. The derivation is in a sense 
unsatisfactory; it is an algebraic exercise that does not offer much insight into why 
the property holds. However, after going through the exercise, one appreciates Kepler 
all the more. How did he intuit his results without our modern notation, without 
Cartesian coordinates, without equations for the ellipse, and without our standard 
algebraic operations? As with other excursions, this section is unnecessary for the 
understanding of the remaining material in the book. 

For an ellipse given by equation (4.33), with a > b > 0, the foci are points that 
lie along the x axis in the positions (c, 0) and (—c, 0) with 

c2 = a2 - b2 (4.34) 

We now verify the property L+ + L_ = 2a: 

L+ + L- = y/(x - c)2 + y2 + yj(x + c)2 + y2 (4.35) 

Using equation (4.33) to solve for y2, substituting the result into equation (4.35), 
and simplifying result in the following: 

y2 = b2 ['" & 
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L+ + L- (JC + c)2 + b2 

= \ x2 - 2xc + c2 + b2 - Í — ] + Jx2 + 2xc + c2 + b2 - ( — 

Recall that c2 = a2 — b2and substitute for c2 to obtain the following: 

L+ + L_ = Jx2 - 2xc + a2 - ( — j + Jx2 + 2xc + a2 - ( — fbxY 

\ 
K2 — 2xc + a2 + 

N --:sy x2 + 2xc + a2 

Note that from equation (4.34), l — (b/a)2 = (c/a)2. Substituting into the above 
expression and simplifying yield the result: 

L+ + L- = J(-) x2-2xc + a2+ J(-) x2 + 2xc + a2 

c \2 

(a-cãx) +na+zx)' 

= (a-a
X) + (a+aX) 

= 2a 

Kepler's result allows one to draw an ellipse using a string. Let the string be of 
length 2a and tape the ends of the string onto the focal points. With a pencil, pull the 
string taut in all directions while marking off the points where the string reaches its 
maximum extent. 



A microphone planted by the U.S. Navy senses noise from an underwater object 
entering the North Sea through the Skagerrak Strait. Through a series of communi-
cation relays, the signal is transmitted to a computer that resides in the continental 
United States. The computer performs a Fourier transform on the noise; the Fourier 
transform decomposes the original noise into a spectrum of constituent trigonometric 
functions. The computer then analyzes the resulting spectrum and compares it with 
a stored library of known signals. The computer identifies the noise as a whale and a 
naval officer concurs after visually inspecting the spectrum. The story of trigonometry 
begins with a very elementary problem, triangulation. It then traverses ground into a 
completely unrelated applied problem, the heat equation; spurs research in theoretical 
mathematics; and then finds application in ever more areas of engineering—such as 
signal processing, which allows the U.S. Navy to identify the source of a noise that 
is sensed by an undersea microphone. It is not a coincidence that many of the same 
men who are central to our story of the ellipse are also central to the development of 
trigonometry and its applications. 

The field of astronomy has motivated mathematical development across 
cultures and time. Many of the early astronomers devoted considerable effort toward 
a mathematical description of the pathways of heavenly bodies that were divided into 
four types: stars, planets, the moon, and the sun. Underlying their efforts were the 
assumptions of Aristotle's universe: The earth is dominant at the universe's center and 
is heavier than all the heavenly bodies. Aristarchus made no such assumptions but 
sought answers. Aristarchus devised a method to determine the relative sizes of the 
earth, moon , and sun. Using his method, Aristarchus could either confirm Aristotle 
or bring Aristotle's model into question. 

Aristarchus understood the dynamics of a lunar eclipse and used this under-
standing to answer his question. The basic premise is illustrated in Figure 5.1. From 
this figure, it is seen that the Aristotelian configuration in which the earth is larger than 
the sun causes the earth to cast a larger shadow than the alternative case. Aristarchus 
determined the geometry of the earth's shadow using measurements he had taken dur-
ing a lunar eclipse; the moon falls within the shadow during such events, providing an 
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Figure 5.1 Lunar eclipse, small and big sun. 

opportunity to take measurements. Using the measurements along with the assistance 
of a known trigonometric inequality, Aristarchus determined that the sun's diameter 
is between 19/3 and 43/6 times the diameter of the earth. Due to errors in measure-
ment, Aristarchus' quantitative result is inaccurate; the sun's diameter is roughly 
110 times that of the earth. Nevertheless, his geometric argument is impeccable and 
it was accepted by later Greek astronomers. But the result, other than in Aristarchus' 
mind, did not cause a reassessment of geocentrism. Aristachus' analysis could not be 
taken seriously until Copernicus revived heliocentrism nearly 1300 years later. 

Ptolemy's achievements in astronomy, mathematics, and geography were wor-
thy of the acclaim that they received. Unlike Aristarchus, Ptolemy did not have to 
wait 1300 years for his ideas to take hold. In the field of astronomy, Ptolemy followed 
the Aristotelian program. Nobody devoted more effort toward providing a geocentric 
description of the heavenly bodies than Ptolemy. Far from a failure, the description 
proved quite accurate. Truth be told, it was more accurate in describing the motion 
of the planets from the perspective of an earthbound observer than the proposal of 
Copernicus a millennium and three centuries later. A related body of Ptolemy's work 
is a comprehensive table of chord lengths associated with angles from half a degree 
through 180°. Today, we view the tables as providing trigonometric relations from 0° 
to 90° in quarter-degree increments. Among other uses for the tables, they certainly 
were of assistance for determining the positions of equants and eccentrics as well as 
the dimensions of epicycles. 

Both Aristarchus' and Ptolemy's application indicate the importance of 
trigonometry to astronomy as well as its primary application, triangulation, in both 
Euclidean and spherical coordinates. In the West, there were a few contributions to 
the field of trigonometry between Ptolemy and Newton-Leibniz. Both Newton and 
Leibniz independently determined power series expansions for trigonometric func-
tions. [The Indian mathematician and astronomer Madhava Sanganagrana (1350-
1425) made this discovery two and a half centuries before Newton and Leibniz.] The 
expansions allow one to approximate trigonometric functions as polynomials with 
the approximation improving as one considers polynomials of higher order. 
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Newton and Leibniz' discovery would lead to an investigation of power series, 
polynomials of indefinite degree. A magnificent body of mathematical theory was 
developed. The theory culminated two centuries later with the triumphant outcome 
of Weierstrass (1815-1897), who in 1885 demonstrated that a large class of functions 
can be expressed as power series. 

But trigonometric functions, originally established for triangulation, held other 
secrets that would not be fully uncovered until the beginning of the twentieth century. 
In 1822, Fourier published a solution to a problem of heat transfer across a rod. It 
is assumed that the rod has an initial arbitrary temperature distribution, not uniform, 
and that heat cannot escape from the rod. The problem is to find the temperature 
distribution across the rod at any time. Using calculus, it was possible to derive an 
equation that determine the evolution of the temperature at each point on the rod. 
Fourier showed that trigonometric functions satisfy the equation and that solutions 
are additive; multiples of solutions could be added together and the result is also a 
solution to the heat equation. To complete his analysis, Fourier had to demonstrate 
that he could find a composition of trigonometric solutions that satisfy the initial 
temperature distribution. Toward this end, he produced a method for describing the 
initial temperature distribution with a series expansion of trigonometric functions 
that he claimed was in fact equal to the initial temperature distribution. Nobody could 
blame Fourier for not being able to prove his claim. Fourier's series initiated a flurry of 
research into this issue that involved nearly all of the most capable mathematicians of 
the nineteenth century. No single individual can lay credit to fully solving the problem. 
The research culminated in a validation of Fourier's approach in the earlier part of the 
twentieth century. The Fourier transform, which allows the U.S. Navy to determine 
if a noise relayed by an undersea microphone is from a whale or a submarine, is an 
application that follows from this highly theoretical research. 

This chapter follows the path of Ptolemy from a modern perspective. A table of 
trigonometric functions is developed. Along the way, definitions are introduced and 
identities that assist with finding table entries are also demonstrated. Afterward, an 
application is considered, and Aristarchus' calculation is revisited. In addition, we 
attend to unfinished business; the determinant of a two-dimensional transformation 
is demonstrated to have the property claimed in Section 4.6.5. In addition to the 
above material, one excursion is taken. The Greeks were able to perform amazing 
constructs with a compass and a straight edge. One achievement is the inscription of 
a pentagon into a sphere; this construction assisted Ptolemy in the development of 
his table of chords. We will demonstrate the construction. Finally, an understanding 
of trigonometry allows us to relate polar coordinates, a method of coordinating the 
plane using radial and angular measurements, to standard Cartesian coordinates. This 
chapter demonstrates the relation that is critical for uncovering the ellipse. 

5.1 TRIGONOMETRIC FUNCTIONS 

5.1.1 Basic Definitions 

This section presents the basic definitions of the trigonometric functions. Let a unit 
circle be given over a Cartesian plane with the usual (x, y) coordinates. Let an angle 
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A 

(x0,y0) 

•■> x 

Figure 5.2 Trigonometric functions as coordinates of a unit circle. 

00 be given by a point (XQ, yo) on the circle; 0n is the angle formed along the arc 
of the circle from the x axis to the point (XQ, yo) (Figure 5.2). The trigonometric 
functions are functions of the angle. The table below presents their definition for an 
arbitrary angle 6 with corresponding coordinates (x, y) on the unit circle. Note that 
the functions are given in terms of the (x, y) coordinates. 

Function Name 

Sine 
Cosine 

Tangent 

Cosecant 

Secant 

Cotangent 

Notation 

sin(tf) 
cos(0) 

tan(#) 

csc(0) 

sec(#) 

cot(fl) 

Definition 

y 
X 

y_ 
X 

l 

y 
1 
X 
X 

y 

The angle 6 is sometimes expressed in radians and sometimes expressed 
in degrees. It is worth one's effort to be able to use both units of measure-
ment. 

5.1.2 Triangles 

For angles between 0° and 90° (from 0 to JT/2 radians), the trigonometric functions 
correspond to ratios of right triangles as illustrated in Figure 5.3. 
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Figure 5.3 Trigonometric functions as triangular ratios. 

Notation Definition 

sin(tf) 

cos(fl) 

tan(tf) 

csc(fl) 

sec(fl) 

cot(fl) 

opposite 
hypotenuse 

adjacent 
hypotenuse 
opposite 
adjacent 
hypotenuse 
opposite 

hypotenuse 
adjacent 

adjacent 
opposite 

The equivalence between the definitions in the preceding two tables is seen by 
noting the triangle formed between a point on the unit circle, the origin, and the point 
along the x axis given by the JC coordinate of the original point. The ratios that define 
the trigonometric functions are the same for all similar triangles. 

5.1.3 Examples 

Using the definitions, it is possible to determine the trigonometric functions for some 
values of 0. Examples are given below. These examples are the first entries into a 
trigonometric table that is further developed in subsequent sections. 

Example 5.1 

Determine the trigonometric for the value 0 = TT/4 rad (45°). 

Solution When the angle 9 is TT/4 rad, x = y along the unit circle (see Figure 5.4). 
With the assistance of the Pythagorean theorem, the values for x and y and the 
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Figure 5.4 Trigonometric functions for 45= angle. 

trigonometric functions are obtained: 

x1 + y2 = 1 

x2 + x2 = 1 

2x2 = 1 

H (deg) 

45 

0 (rad) 

7T/4 

sin(fl) 

v\ 
cos(tf) 

y/l 

tan(0) 

1 

csc(tf) 

V2 

sec(tf) 

v/2 

cot(fl) 

1 

Example 5.2 

Determine the trigonometric functions for the value 9 = n/3 rad (60°). 

As noted in Section 4.3.2, a hexagon (six-sided polygon) with sides of equal 
length may be inscribed into the unit circle. Figure 5.5a shows the case when a vertex 
is on the x axis. The point (XA , yA) corresponds with the angle 7i/3 (60°). The triangle 
with (XA, yA) at the apex is an equilateral triangle. Bisecting the base of the triangle 
results in the value XA = \. To find the value of y\, use the Pythagorean theorem: 

A + y\ = i 
>i = i 

}'A ^ 
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(a) (b) 

Figure 5.5 Triagonometric functions for 60° and 30° angles. 

9 (deg) 

60 

9 (rad) 

\n 

sin(fl) 

|V3 

cos((9) 

l 
2 

tan(fl) 

V3 

csc(fl) 

2/V3 

sec(fl) 

2 

cot(0) 

l/>/3 

Example 5.3 

Determine the trigonometric functions for the value 6 = TT/6 rad (30°) 

Inscribe the hexagon in the unit circle so that the x axis bisects a side of the poly-
gon (Figure 5.5b). The point corresponds to the angle TT/6 (30°). From the geometry, 
it is apparent that XB = )>A and ys = XA ■ Indeed, the argument of Example 5.2 applies 
with XB replacing y& and ys replacing x&. 

9 (deg) 

30 

9 (rad) 

a* 
sin(fl) 

l 
2 

COS(fl) 

V̂5 

tan(0) 

1/V3 

csc(#) 

2 

sec(#) 

2/V3 

cot(#) 

V3 

Example 5.4 OTHER QUADRANTS 

Knowledge of the trigonometric functions for an angle that lies in the first quadrant 
allows one to determine the trigonometric functions of associated angles in the other 
quadrants. The associated angles, along with their coordinates corresponding to the 
unit circle, are illustrated in Figure 5.6. 
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(-■Wo) = (sin(180-/4), cos(180-/4)) (x0,y0) = (sin A, cos A) 

(-x0,-y0) = (sin(180+/4), cos(180+/4)) (*o-y0) = (sin(-/4), cos(-A)) 

Figure 5.6 Trigonometric functions generated from first quadrant. 

As an example, the associated angles with n/6 rad (30°) and their corresponding 
coordinates are presented in the table below. 

0 

(x,y) 

7T/6 

(W* Í) 

5TT/6 7TT/6 

( _ I . - ^ ) ( - I V 3 . - 1 ) 

IITT/6 

(i.-í^) 

In a similar fashion, the trigonometric functions for the angles associated with 
7T/4 and ;r/3 can be determined. The known trigonometric functions are presented in 
the following table. 

0 (deg) 

0 

30 

45 

60 

90 

120 

135 

0 (rad) 

0 

n 

6 

n 

4 
71 

1 
2 

In 

T 
3TT 

T 

sin(tf) 

0 

1 

2 

/I 
V3 
2 

1 

>/5 
2 

\/I 

cos(rt) 

1 

v/3 

2 

/T 
V 2 1 

2 
0 

1 
~2 

-yi 

tan(tf) 

0 

1 

7! 
i 

y/3 

Undefined 

-V3 

- 1 

csc(#) 

Undefined 

2 

V2 

2 

71 
1 

2 

7! 
V2 

sec(tf) 

1 

2 

7? 
>/2 

2 

Undefined 

- 2 

-> /2 

cot(fl) 

Undefined 

yfi 

1 

1 

71 
0 

l 

~7I 
- i 

(continued) 
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Table (Continued) 
e (deg) 

150 

180 

210 

225 

240 

270 

300 

315 

330 

360 

0 (rad) 

5JT 

~6 
n 

In 

~6 
5n 

T 
An 

T 
3TT 
2 

5n 

T 
In 
T 
I I J T 

~6~ 
In 

sin(0) 

1 

2 
0 

1 

~ 2 

-ê 
V3 
2 

0 

V5 
2 

1 

~ 2 
0 

COS(fl) 

V3 
2 

- 1 

V3 
2 

-VÉ 
1 

~ 2 

- 1 

1 

2 

V3 

~T l 

tan(0) 

1 

~7I 0 
l 

Vf 
i 

V3 

0 

-V3 

- 1 

1 

~Vl 
0 

csc(S) 

2 

Undefined 

- 2 

-V2 

2 

"v! 
Undefined 

2 

~vl 
-V2 

- 2 

Undefined 

sec(0) 

2 

~Vl 
- 1 

2 

~Vl 
-V2 

- 2 

- 1 

2 

V2 

2 

v! 1 

cot(0) 

-y/l 

Undefined 

V3 

1 

1 

v! 
Undefined 

1 

~Vl 
- i 

-V3 
Undefined 

Example 5.5 THE DIRECTION OF A VECTOR 

Determine the angle associated with the vector v = 
-V3 

Solution The vector lies in the fourth quadrant (Figure 5.7). The tangent of the 
angle by the ratio U2/U1 = —V3. From the table of the previous example, the angle 
having a tangent of —\/3 is 5^/3 (300°). 

*■ x 

Figure 5.7 The angle satisfying tan A = —V3. 
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Figure 5.8 Graphs of sine and cosine functions. 

5.2 GRAPHS OF THE SINE, COSINE, AND TANGENT 
FUNCTIONS 

Plotting the points of the table from Example 5.4 on a Cartesian plane and interpolating 
between points result in a rough sketch of the graphs of the sine, cosine, and tangent 
functions. The results are given in Figure 5.8. Of note is that the sine and cosine curves 
repeat a pattern every lit radians. The pattern is the result of executing one cycle 
about the circle in 2TT radians. The pattern is repeated indefinitely in both the positive 
and negative directions as the circle is indefinitely traversed counterclockwise or 
clockwise. 

5.3 ROTATIONS 

Rotations are linear transformations as illustrated in Figure 5.9. The vector A = aV + 
bW is rotated through an angle 0 by a transformation R#. The result is the same as 
the sum of rotations on the components of A, RgA = aR^V + bR$W. Accordingly, 
the rotation satisfies the linearity property given in equation (4.26). 

The rotation can be represented by a matrix M$. Recall the first column of 
Mg is obtained by applying the rotation to the vector (1 0)T, while the second col-
umn of the matrix M$ is obtained by applying the rotation to the vector (0 1)T . 
Figure 5.10 illustrates the rotation on these two basis vectors with the following 
result: 

"\0j \sm(0)J ^ \ \ ) \ cos(0) j 

The matrix Me is then 

= /cos(0) -s in(0)\ 
9 ~ \ sin(0) cos(0) J 
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RA + RS = R(A + B) 

Figure 5.9 Rotations as linear transformations. 

Example 5.6 ROTATING A VECTOR 

Rotate the vector V = ( 2~) through an angle of | ;r radians (150°). 

Solution Using the trigonometric table from Example 5.3, the entries in the rotation 
matrix Mn may be specified: 

MH = 

'«*(§*) -sin (f ?r) 

sin(fw) cos(|7r) 

-w~\ 
Applying Mo to the vector V results in the solution 

M„V = 
173 - i \ /2VT 

Figure 5.10 Rotation of the basis vectors. 
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= / ( - I V 3 ) ( 2 y 3 ) + ( i ) 2 \ 

V (*)(2V3)-(^/5)2 ) 

■ ( - . ' ) 

The solution is easily verified. The initial vector has length 2 and points in the 
direction of a 30° angle from the x axis. Rotating the vector through 150° maintains 
its length, but its angle is now 30° + 150° = 180°. Accordingly, the vector of length 
2 points along the x axis in the negative direction. 

5.4 IDENTITIES 

This section presents several trigonometric identities. The identities are later used to 
extend the trigonometric table. 

5.4.1 Pythagorean Identity 

Applying the Pythagorean theorem to any values of x and y on the unit circle results 
in the following equality: 

x2 + yl = l 

Replacing x and y by their trigonometric values yields the following identity: 

cos2(0) + sin2(0) = l 

A notational convention has been used. More commonly [cos(0)] is written as 
cos2(0). Similarly, [sin(0)]2 is more commonly written as sin2(0). 

5.4.2 Negative of an Angle 

From the definitions of the trigonometric functions and Figure 5.6, it is readily seen 
that the following equalities hold: 

cos(-0) = cos(0) sin(-0) = - sin(0) tan(-0) = - tan(0) 

sec(-0) = sec(0) csc(-0) = - csc(0) cot(-0) = - cot(0) 
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Note the use of these equalities in Example 5.4 where the trigonometric functions 
were extended to other quadrants. 

5.4.3 Tan (ft) in Terms of Sin(0) and Cos(0) 

Also, from the definitions of the trigonometric functions, the following holds: 

sin(0) 
tan(0) = -

x cos(0) 

5.4.4 Sines and Cosines of Sums of Angles 

Let two angles a and p be given. As illustrated in Figure 5.11, let (xa, ya) be the 
point on the unit circle aligned with angle a and (xa+p, ya+p) be the point on the unit 
circle aligned with the angle a + p. Note that the point (xa+p, ya+p) is a rotation of 
the point (xa, ya) by the angle p. 

Using the rotation matrix Mp, the point (xa+p, ya+p) can be expressed in terms 
of the point (xa, ya): 

cos(/3) - sin(£) 

sin(/3) cos(/6) 

'cos(P)xa -ún(P)ya\ 

sin(P)xa + cos(P)ya J 

cos(a) cos(P) — sin(a) sin(^) 

cos(a) sin(P) + sin(a) cos(P) 

(*«./«) 
(sin(a), cos(a)) Á 

(xm-/3'yo+/3) ^ 

= (sin(a+/J), cos(a+/J)) 

. 

\ / 

V 

a \ 

... .1 ► X 

Figure 5.11 Trigonometric functions of the angle a + fi. 
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Substituting for xa+p and ya+p results in the following two summation 
identities: 

cos(a + P) = COS(OÍ) cos(/6) — sin(a) sin(/S) 

sin(a + p) = cos(a) s\n(P) + sin(a) cos(p) 

5.4.5 Difference Formulas 

Using the negative-angle formulas of Section 5.4.2 in the summation identities of 
Section 5.4.4 results in the difference formulas 

cos(a — p) = cos(a)cos(—P) — sin(a)sin(—P) = cos(a) cos(^) + sin(a) sin(/S) 

sin(a — P) — cos(a) sin(—P) + sin(a) cos(—P) — — cos(a) sin(^) + sin(a) cos(P) 

5.4.6 Double-Angle Formulas 

Setting p equal to a in the summation identities of Section 5.4.4 results in the following 
double-angle formulas: 

cos(2a) = cos2(a) - sin2(a) 

sin(2or) = 2 sin(a) cos(/5) 

Note that applying the Pythagorean theorem to the cosine formula yields an 
alternative form for the cosine double-angle formula: 

cos(2a) = cos (a) — sin (a) 

= cos2(a) — (1 - cos2(a)) 

= 2 cos (a) — 1 

5.4.7 Half-Angle Formulas 

Setting 2a — 6 in the final cosine double-angle formula of Section 5.4.6 and solving 
for cos(#/2) result in the cosine half-angle formulas: 

2cos2(a) — 1 = cos(2a) 

2cos2(|6>) - 1 =cos(6») 

2cos2 ({d) = 1 +cos(6») 

cos2(i6>) = (±)[l+cos«9)] 
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The sign associated with the square root is determined by the quadrant of the 
angle 6/2 . 

The corresponding half-angle formula for the sine function is obtained with the 
use of the half-angle cosine identity and the Pythagorean identity. 

cos2(i0) = (±)[l+cos«?)] 

sin2 (\e) + cos2 (\d) = sin2 (\o) + \ [1 + cos(6»)] 

1 =s in 2 (^0) + \[\ +cos(6>)] 

sin2(±6>) = 1 - i [ l+cos(6>)] 

sin (*') [1 -cos(6>)] 

sin (\0) = ±yj\[\ -cos(0)] 

Once again, the sign associated with the root is determined by the quadrant of 
the angle 6>/2. 

5.5 LUCKY 72 

The angle 72° has a nice property that allows one to determine its trigonometric 
functions. Let (x^, y^), (xj2, yn), and (X144, ̂ 144) all be points on the unit circle 
associated with the angles of 36°, 72°, and 144°, respectively. Figure 5.12 illustrates 
relations between these points. These relations, along with identities established in 
Section 5.4, allow for the solutions of JC72 and ^72. 

The values for (x\u, ^144) are attained in terms of the values (^72, J72) in two 
ways. A formula for (^72, ^72) arises by equating the two resulting expressions. For 
the first expression, begin by using the half-angle cosine formula from Section 5.4.7 

(x144,y144) 

= (-*36.y36) 

Figure 5.12 Relations between angles of 72°, 36°, and 144° 
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and noting the relation between x^e and JC144: 

*144 = -X36 = - \ A ( 1 +X72) 

Observing that 1̂44 = 3̂6 and applying the half-angle formulas result in the 
following vector equality, which is our first expression: 

\j\ (1 - *72) 

Obtain the second expression by applying the double-angle formula from Sec-
tion 5.4.6 to the angle 72°: 

/*144\ _ {2*12- A 

\y\44) \2x12yi2 J 

^JC'j'y 1 

2^72 Y 1 - x2 
1 x12 

The Pythagorean formula was used to solve for yn in the final expression. 
Equating the above two expressions for ( *144 J results in two equations for X72, one 
for each component of the vector: 

2x$2 - 1 \ 
I T ^5-1) 

2^72^/1 -XJ2J 

From this point on, it is an algebraic exercise to determine solutions to equa-
tion (5.1). The solution route given below takes us through two cubic polynomials. 
Subtraction of one cubic from the other yields a quadratic polynomial for which a 
solution is available. 

We arrive at one of the cubic polynomials by squaring both sides of the second 
component of equation (5.1) and simplifying: 

Y \ (1 - *72) = 2*72 Y 1 - X72 

i ( l - X 7 2 ) = 4 x 7 2 ( l - X 7
2

2 ) 

2 - ( l - * 7 2 ) = 4x72 (1 -JC72) ( l + * 7 2 ) (5-2) 

\ = 4*72 ( l + * 7 2 ) 

4JC72 + 4*7 2 - \ = 0 
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We arrive at the other cubic polynomial by multiplying both components of 
equation (5.1) with one another and simplifying: 

- V^ (1 + ^ 7 2 ) ^ ( 1 -X72) = (2*72 - l ) ( 2 * 7 2 ^ / 1 - ^ 2 ) 

-^/i(l+JC72)(l-JC72) = ( 2 ^ 2 - l ) ( 2 x 7 2 ^ 1 - ^ 2 ) 

- V 1 _ J f 7 2 = (2*72 - •) ( 2 x 7 2 ^ 1 - ^ ) (5.3) 

- 1 = (2x2
12- 1)2x72 

4x^2 - 2x72 + 2" = 0 

The value X72 satisfies both of the above cubic equations, equations (5.2) and 
(5.3); it must also satisfy their difference. Subtracting the two equations and solving 
the resulting quadratic polynomial yield the following solution for X72 = cos(72°): 

(4x^2 + 4X7
2
2 -{)- (4X^2 - 2X72 + 2") = 0 

4X72 + 2X72 - 1 = 0 

*72 + 3*72 - í = 0 

*72=i(-^+yiTT) 

- 1 ( " 2 + V? 

= I ( - 1 + V 5 ) 

Note that the value X72 = cos(72°) = ^ ( — 1 + V5\ is positive since the angle 
72° lies in the first quadrant. Accordingly, the positive sign is assigned to the squ-
are root. 

Using the Pythagorean theorem and simplifying, one finds the sine of 72°: 

sin(72°) = v/l - cos2(72°) 

(5 + Vs) 
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Remarks 

• The negative square root with x = — | (l + \ /5 j gives the cosine for the 

angle 216°. A drawing analogous to Figure 5.12 can be drawn using the cor-
responding point to 216°; the half-angle is 108° and the double angle is 432° 
shares a common point on the circle with 72°. As these three points share the 
same double- and half-angle relations depicted in Figure 5.12, they share the 
same equations (5.2) and (5.3). Hence, the equations yield a solution for the 
angle 216° using different signs for the square root. 

• The value X72 could have been solved from a single cubic equation. Doing so 
would have required finding the roots of the cubic equation, which is a tedious 
process. As such, we introduced the second cubic equation. 

5.6 PTOLEMY AND ARISTARCHUS 

5.6.1 Construction of Ptolemy's Table 

Ptolemy's table of chords gives the lengths of chords with end points at increments of 
half a degree. It is Ptolemy's work that cements the standard of angle measurement 
through degrees, with the circle a full 360°. In this regard, Ptolemy is influenced by the 
Mesopotamians, who had assembled an impressive body of mathematical knowledge 
centuries before the Greeks. 

The Mesopotamians used a base-60 number system complete with sexagesimal 
representations of numbers. (In a sexagesimal system, the symbol 15.2 has the base 
10, meaning 65gg.) One can only conjecture why it was that the Mesopotamians used 
a base-60 system, but the coincidences with the calendar and geometric properties 
of the circle afford a good guess. The Mesopotamians had a good estimate for the 
length of the year in days. Rounding the estimate to 360 yields a nice number for 
the number of degrees in a circle. The number 360 is divisible by 2, 3, 4, 5, 6, 
8, 9, 10, 12, and more, so proportioning the circle into halves, thirds, fourths, and 
so on, is easily expressed in whole degrees. For example, one-twelfth of the circle 
is 30°. 

A property of the circle that we have used to inscribe a hexagon is that the radius 
of the hexagon is the same as the lengths of its sides. This is an elegant feature unique 
to the hexagon that the Mesopotamians were aware of. Using the Mesopotamian's 
system of measuring degrees in angles, the arc between the sides of the hexagon spans 
60°, and it is one-sixth of the circle. The Mesopotamians certainly noted this and it 
could well be the basis for their decision to use a base-60 system. 

Because of the Mesopotamian base-60 system, each degree is further divided 
into 60 units called minutes and each minute is divided into 60 units called seconds. 
Aside from measurements of angles, this system became the basis for time measure-
ment. Hence, we have 60 seconds in a minute and 60 minutes in an hour. 

The system begs an answer to the question, were the Mesopotamians the original 
Copernicans? While Aristarchus goes on record as a heliocentrist, the choices of the 
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Sine of half the angle equals 
half the chord length. 

Figure 5.13 Ptolemy's chord length and the sine function. 

Mesopotamians indicate that perhaps someone among them held a heliocentric view 
of the universe. With their system of measuring angles, which is reflected in their 
number system, the earth would travel roughly through 1° of its circular journey 
around the sun everyday. That the Mesopotamians chose an angular measurement of 
the circle, 360°, which is divisible by 12, has other implications. There are roughly 
12 lunar cycles in a year corresponding to a 12-month calendar. Each month has 
roughly 30 days, (360/12), so the earth travels through roughly 30° of its orbit each 
month. 

Let us leave conjecture to others and discuss what has been established. It is 
known that the Mesopotamian system for measuring angles was common in Ptolemy's 
time. Ptolemy used this system, and due to the popularity of Ptolemy's works, the 
system became an international standard. Ptolemy's table presents chord lengths cor-
responding to angles from half a degree to 180° in half-degree increments. The rela-
tion between the chord lengths and the sine of the angle is illustrated in Figure 5.13; 
sin(#/2) equals half the chord length. From this relation, it is seen that Ptolemy's 
table is equivalent to a sine table from 0° to 90° in quarter-degree increments. It is 
this latter table that we develop. 

The starting point for our table is the trigonometric table from Section 5.1. This 
includes the trigonometric functions for the angles in all quadrants. Henceforth, we 
determine values only in the first quadrant. The table can be extended into the other 
quadrants using the same techniques as illustrated in Example 5.4. 

The results of the previous section allow us to enter the angle 72° into the 
table. Using the half-angle formulas from Section 5.4.7, one can also include the 
angles 36°, 18°, 9°, and 15° (half of 30°, which is already in the table). In ad-
dition, by applying the difference formulas from Section 5.4.5 to the angles 72° 
and 60°, the angle 12° may be included in the table. A further application of 
the half-angle formula allows one to enter in succession the angles 6°, 3°, lA , 

and | c 

By repeated use of the sum formula from Section 5.4.4, one can fill out 
the table for all remaining angles that are multiples of | (that is, 3 0 | 30+f, 
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P = arc length 

Figure 5.14 The inequality sin(/i)//* < sin(c*)/a. 

,, a = arc length 
...sin.(a)Il » x 

31 i = 30 | + | ) . After accomplishing this, the equivalent of one-third of Ptolemy's 
table is filled; Ptolemy's table presents the sine of angles for multiples of | . 

To fill out the table in the manner of Ptolemy, another application of the half-
angle formula to the angle | determines the sine of | . Then apply an interpo-
lation method based upon the following inequality, which was established prior to 
Aristarchus. The inequality is expressed in terms of radians, so the angles are given 
in their radian measurements: 

sin()8) sin(a) n 
— — < — — < 1 whenever 0 < a < B < — 

P a H 2 
(5.4) 

Because the angles are expressed in radians, a and /S refer to arc lengths. Fig-
ure 5.14 illustrates the inequality. Geometrically, it states that the ratio of a point's y 
coordinate to the arc length between the x axis and the point decreases as the angle 
increases. So as one traverses the circle from angle a to angle /6, the ratio decreases 
and the inequality holds. Visually, this seems obvious and for now we accept the 
inequality. In Chapter 6, we will apply calculus to prove this statement. 

Applying the ratio 180/TT to each side of the inequality converts the radian 
measurement to degree measurement. And so the inequality remains valid if degree 
rather than radian measurements are used. 

The inequality is applied twice. First, let a = j and ft = | : 

sin(0) 

asin(j6) 

P 

*«"(r) 

< 

< 

< 

sin(a) 

a 

sin(a) 

s i n f i 

f s i n ( f ) < sin ( i ° ) 

Next, let a = | and/3 = j : 

sin(/S) sin(a) 
< 
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. , „ /Ssin(a) 
sin(^) < — 

sin (r) < *=P-5 sin 

sin(I°): 

sin (1°) < | s i n ( § ° ) 

Putting the two inequalities together results in the following bounds for 

f s i n ( f ) < sin (1°) < f s i n ( | ° ) 

We will cheat and use a calculator to obtain the left-hand and right-hand bounds. 
For Ptolemy, it was a long, arduous calculation involving many iterates of complicated 
arithmetic operations, in particular many square roots, that led him to the bounds for 
sin(I°): 

\ sin ( | ° ) = 0.00872639 < sin ( l ° ) < f sin ( | ° ) = 0.00872658 

From the above bounds, the value of sin(j ) out to six decimal places is 
sin(I°) = 0.008726: 

Once the trigonometric functions for the angle ^ is established, using the 
summation formulas from Section 5.4.4, all remaining multiples of j can be filled. 
Upon completing this, two-thirds of the table entries have been made. The only values 
that remain are multiples of | that have not yet been filled in. Ptolemy filled in these 
values by interpolating between their nearest values. For example, the value at 34^ 
remains unfilled. Take sin(34^ ) to be the following value: 

sin (34l°) = \ sin (34°) +sin (34^°) 

Remarks 

• Archimedes knew all of the trigonometric identities necessary to establish 
Ptolemy's table nearly three centuries before Ptolemy, but there is no evidence 
that Archimedes set upon this task. 
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• Ptolemy could have used the difference relations to determine the chord lengths 
for 2 (trigonometric functions for | ). An interpolation provides the degree 
of accuracy that Ptolemy deemed acceptable. 

5.6.2 Remake of Aristarchus 

This section presents a modern rendition of Aristarchus' calculation for the relative 
size of the sun and the earth. A substantial degree of license is taken in this remake. For 
a presentation that more accurately reflects Aristarchus' original work, consult Heath's 
excellent book Aristarchus ofSamos: The Ancient Copernicus (1920). What is striking 
about the method is the coexistence of that which Aristarchus has full control over with 
that which he has no control over. He had control over the analytic thought process 
and it is elegant. However, the process involves two measurements one taken during a 
lunar eclipse and another taken at half moon. While a half moon occurs every month, 
a lunar eclipse is far less frequent. Once the process was determined, all Aristarchus 
could do was sit around, wait for an eclipse, and then use poor instruments to make 
a rough measurement. 

Aristarchus' method uses the similar triangles that are illustrated in Figure 5.15. 
The figure depicts the configuration of the sun, earth, and moon during an eclipse (not 
to scale). During the eclipse, the earth casts a shadow that extends to the point P in 
the figure. This shadow is in the shape of a cone with the circumference of a circle 
of the earth acting as the base. The illustration depicts three similar triangles, one with 
the radius of the sun as base, one with the radius of the earth as base, and one with a 
base that extends from the center of the moon to the shadow's boundary. Denote these 
lengths by Rs, RE, and R, respectively. Also, denote the distance from the center of 
the sun to the point P by Dp, the distance from the earth to the sun by Ds, and the 
distance from the earth to the moon by DM-

Ratios of similar sides of the two triangles (Rs to P and RE to P) result in the 
following equality: 

Sun 

Figure 5.15 Similar triangles used by Aristarchus. 
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Similarly, ratios using triangles with the moon's entry and exit points yield the 
following equality: 

R DP-

Rs 

RE 

Rs ' 

-Ds-DM + s 
DP 

DM 

' Dp 

Rs 

RE-

Rs 

(DM-

DP 

R 

-e)Rs 

(5.6) 

Solving for Dp in equation (5.6), placing the result into equation (5.5), and 
simplifying yield the following equations: 

Ji_ _ RE DM-e 
Rs ~ 

DM-£ _ 

Dp 

Dp = 
RE-R 

RE = j _ _ D s 
Rs Dp 

RB = { Ds (RE - R) 

RS (DM - e) Rs 

_ D 1 _ \ R , = DSR 

(DM-s)J RS (DM-£)R 

RE = l + DSR/KDM - £) Rs] 

Rs l + DS/(DM - s) 

Aristarchus expresses the quantity R in terms of the moon's radius, /?M> so that 
R — XRM- It is the quantity X that Aristarchus must determine during an eclipse. With 
the substitution R — XRM, the equation for the ratio RE/RS becomes the following: 

^ E = l+£>S*/?M/[(£>M-g)/?s] ( 5 g ) 

RS l + DS/(DM -e) 

Aristarchus again uses similar triangles to express the ratio RM/RS in terms of 
DM and £>s- Aristarchus notes that to the earthbound observer the moon and the sun 
occupy equal areas of the sky. Figure 5.16 illustrates the geometry, and once again 
using similar triangles, it is seen that RM/RS = DM/DS- Placing this equality into 
the final expression of equation (5.8) results in an expression for RE/RS-

RE _ 1 + XDM/(DM ~ s) 

RS ~ 1 + DS/(DM - s) 

(l+X)DM-e 

DM + Ds-e 
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Sun 

Figure 5.16 Similar triangles. 

DM + Ds-e + XDM - D s 

= l + 

= l + 

DM + DS-S 

ADM - Ds 
DM + DS-E 

X - DS/DM 

l + (Ds - e)/DM 

Aristarchus has reduced the problem of determining the ratio between the earth 
and the sun to three measurements, the ratio DS/DM, the value e, and the value X. To 
determine the ratio D S / D M , Aristarchus turns to trigonometry. He notes that when an 
earthbound observer sees a half moon, the earth, sun, and moon form a right triangle 
with the moon at the apex of the right angle (Figure 5.17). The quantity D S / D M is 
the cosecant of the angle a, D S / D M = l/sin(a). 

Aristarchus inaccurately assigns the angle a the value a = 3°. If he were 
able to consult with Ptolemy or perhaps Archimedes, he could find sin(3°) quite 
accurately. But both Archimedes and Ptolemy would follow Aristarchus. Instead, 
Aristarchus had the inequality [equation (5.4)] available that he used to demon-
strate that 25 < sin(3°) < -rg. Finally, using an argument that we do not reproduce, 
Aristarchus demonstrates that 0 < e < D M / 6 7 5 . With his bounds on the value of 

Sun 

Figure 5.17 Right triangle during half moon. 
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sin(3°), Aristarchus could place bounds on the ratio RE/RS- We first treat the up-
per bound. Noting that D S / D M = l/sin(a) > 18, equation (5.9) yields the following 
upper bound: 

RE X- DS/DM 

RS 1 + (D s - s)/DM 

X - DS/DM 
< 1 + 

1 + DS/DM 

1+A 

1 + Ds/DM 

1+A. 

19 

For the lower bound, use DS/DM = l/sin(a) < 20 and s < DM/675 in equa-
tion (5.9): 

RE = A - D S / D M 

RS 1 + (DS - s)/Du 

X - D S / D M 
> 1 + 

> 1 + 

1 + D S / D M - 575 

X - 2 0 
21 _ _ L 
Z 1 675 

Placing the two bounds together results in the one-way inequalities, 

A. - 20 RE 1 + X 
1 + r- < — < (5.10) 

The only thing left is for Aristarchus to await a lunar eclipse so that he can 
measure X using the method illustrated in Figure 5.15. The quantity X is the ratio 
between the value R and the radius of the moon. In his work On the Sizes and Distances 
of the Sun and Moon, Aristarchus demonstrates | | < X < 2 . Appropriately placing 
the bounds of X into the inequalities (5.10) yields the result: 

j f - 2 0 ^ < 1 ± 2 
2 1 - 6 7 5 * 1 9 

8973 flE 3 
< — < 

63,783 Rs 19 

Aristarchus loosens his bounds to find a simpler expression. After demonstrating 
that £j < 639yg3, Aristarchus presents his final result: 

A < £E <± 
43 < Rs

 < 19 
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Remarks 

• Aristarchus' method and final result give the appearance that he is more inter-
ested in the mathematical analysis than in the astronomy. He goes through a 
significant effort to account for the circular motion of the moon as it passes 
through the earth's shadow. The mathematical rigor required to accomplish this 
is not trivial. In doing so, Aristarchus develops clever estimation techniques of 
interest to mathematics. However, the consequences on the result are immate-
rial. It would have been far simpler to assume that the motion is a straight line; 
because of the very small distance traveled, the assumption would have had 
very little impact on the result. In the analysis above, this means that s = 0. 

• Remarkably, while Aristarchus took great care to include the somewhat insignif-
icant parameter s, he did not take such care with the most critical parameter, a. 
While Aristarchus sets the angle at 3°, the angle a is closer to 10 min (g ).Asa 
result, his approximation for D S / D M = l/sin(a) is ridiculously far off. Rather 
than 18 < D S / D M < 20 as Aristarchus claims, in reality, the ratio D S / D M is 
closer to 400. It is rather surprising that Aristarchus is not more careful. After 
all, the observation is available to him on a monthly basis. He could have taken 
several measurements while awaiting the event of an eclipse. It is also notable 
that in a review of Aristarchus' work Archimedes sets the angle a at a more 
plausible j . 

5.7 DRAWING A PENTAGON 

One of the more artful accomplishments of Greek geometers was their ability to draw 
pentagons using only a compass and a straight edge. And the pentagons were drawn 
with perfection. One wonders how the construction was ever developed prior to the 
advent of trigonometry. Perhaps after many trials it was discovered by chance or 
perhaps brilliant intuition guided a talented individual, whose name is unknown, to 
its construction. In this section, the results of the cosine of 72° are used to construct 
the pentagon. 

First use a compass to draw a circle and then add the x and y axes. Consider 
the point (1, 0) to be the first vertex of the pentagon, V\, and then cos(72°) is the x 
coordinate of both neighboring vertices. 

The result of Section 5.5 is cos(72°) = | ( — 1 + \ /5). It is easy to locate the 
point ( — | , 0 ) along the * coordinate; simply bifurcate the x axis between (—1,0) and 
the origin two times (Figure 5.18). To this point, it is necessary to add the value | V 5 
along the x coordinate and locate the point ( - 1 ^ , 0). This is easily accomplished 
using the triangles depicted in Figure 5.19. The triangle on the left (Figure 5.19a) has 
base 1 and height 2. Using the Pythagorean theorem, the hypotenuse has length \ /5 . 
The inscribed triangle is similar with the lengths of the base, height, and hypotenuse, 
respectively, \,\, and \^/5. 

The triangle has vertices ( — | , 0 ) , (0, j ) , and the origin (Figure 5.19b) is 
congruent with the triangle of Figure 5.19a, so the distance between the points 
( — j , 0 ) and (O, ^) is \y/5 . Using a compass, set the point (— £,0) as the 
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Figure 5.18 Locating x = —1/4. 

at the circle. 
+ V5),0],as 

center of the circle and adjust the radius so that the point (0, i ) is 
Next arc the compass through the x axis to determine the point [£(—1 -
depicted in Figure 5.19b. 

Next determine a line perpendicular to the x axis at the point (\(— 1 + V5), 0) 
and mark off the intersections of this line with the original circle. These intersections 
are the neighboring vertices to the first vertex at (1,0), V2 and V5 (Figure 5.19b). 

Next center the compass at the vertex V2 in the first quadrant and set the radius 
as the distance to the original vertex V\. While maintaining the center and radius, 
determine where the arc intersects the original circle. This intersection gives the 
fourth vertex V3. Perform the same operation on the vertex in the third quadrant to 
find the final vertex V4 (Figure 5.20). 

(5"2)/4 

V2=(cos(72), sin(72),0) 

V6=(cos(-72), sin(-72),0) 

x = (-1+51/2)/4 

(b) 

Figure 5.19 Locating V2 and V5. 
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V3=(cos(144), sin(144),0) 

K,= (C0S(216), sin(216),0)f 

V2=(cos(72), siiji(72),0) 

Vs = (cos(-72>; sin(-72),0) 

Figure 5.20 Locating the remaining vertices. 

Finally, using a straight edge, draw lines between neighboring vertices to obtain 
a pentagon. 

Remarks 

• The initial step in the construction is to set up the axes. Then one draws a 
line perpendicular to the x axis at the point (£(— 1 + V5), 0) . It also requires 
the bisection of a line segment. After some experimentation, the reader can 
accomplish these operations using only a straight edge and a compass. 

• While the method given above does display the relation between cos(72°) and 
the construction clearly, it is not the only construction. There are more efficient 
constructions that complete the figure using fewer steps. 

• It is not possible to construct every polygon using a compass and a straight 
edge. The outstanding mathematician Carl Gauss (1777-1855) discovered a 
construction for a 17-sided polygon. He then developed conditions that if sat-
isfied guarantee that the construction of a particular polynomial is feasible. 
Pierre Wantzel (1814-1848) then proved that polygons not satisfying Gauss' 
sufficiency conditions are not constructable using only a compass and a straight 
edge. 

5.8 POLAR COORDINATES 

In Chapter 4, the Cartesian coordinate system is introduced. The system is very useful 
for identifying points in space and indicating functional relations, but there are other 
coordinate systems used for the same purpose. In this section, polar coordinates are 
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y 

(*b.y0) 

\ I 
Distance from V^j-^AniJte = 0 
Origin to point = r \ j >. 

Figure 5.21 Polar coordinates. 

introduced on a plane. Polar coordinates identify a point by its distance from the origin 
and the angle that is made between the point, the origin, and the x axis. Often, because 
of the geometry of a specific problem, polar coordinates are a more natural candidate 
for expressing relations. In the case of the governing equations for planetary motion, 
the equations are most simply expressed in polar coordinates because the forcing 
function as determined by the force from the sun is identical forpoints equidistant from 
the sun. The objective of this section is to transform expressions between standard 
Cartesian coordinates and polar coordinates. 

Polar coordinates are given by the pair (r, 6) in which r represents the distance 
from the origin and 0 represents the angle as illustrated in Figure 5.21. Note that r is 
always zero or a positive value. The relationship between the polar coordinates of a 
point and the standard Cartesian coordinates is given by the following equations (see 
Figure 5.21): 

t x2 + y2 r cos(#) = x r sin(#) = y (5.11) 

These expressions can be used to transform equations from Cartesian to polar 
coordinates as illustrated by the following examples. 

Example 5.7 

Write the equation for a circle centered at the origin in polar coordinates. 

The equation in Cartesian coordinates is given by x2 + y2 = c2, where c rep-
resents the radius of the circle. Using the above relations, x2 + y2 = r2, which when 
substituted into the equation of the circle yields r2 = c2, or equivalently r = c. The 
geometry of the problem allows for a simpler expression in polar coordinates. 

Example 5.8 

Write the equation for an ellipse centered at the origin in polar coordinates. 

The equation in Cartesian coordinates is given by x2/a2 + y2/b2 = 1. 
Simplifying the relation and applying the relations of equation (5.11) give an 
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expression in polar coordinates: 

a2 + b2 

x2 x2 + y2 

b2 

b2-, 

b2 

i2b2 ■X+V2 = 

-Mr'"*-™** 
r 
b2 l - cosz(9) = 

There are other possibilities. For example, the solution could be expressed in 
terms of sin(#) by eliminating x instead of y. Or, both x and y can be replaced directly 
and a corresponding expression involving both sin(#) and cos(#) results. 

Example 5.9 

Write the equation for an ellipse centered at its left-hand focal point in polar coordi-
nates. 

The equation in Cartesian coordinates is given 

(y2/P2) = '» w ' t n the focal length given by y/a2 — 01. As above, simplifying the 
expression and applying the relations of equation (5.11) yield an expression in polar 
coordinates. The expression is chosen to match the result required for uncovering the 
ellipse in Chapter 7: 

,2 

(--V?1?)' 
+ ? = ' 

(x- x / ^ 1 ) 2 - (a2 - / ) + p2 = f? 

(x2 -2^^J2x) + a~y2 = fi 

+ (?)V+ 'H+(? 
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;?)>+')-'+V 

£l -» - + 2 

r r = l + 

a V 1 

1 
rrcos(#) 

l c o s ( 0 ) + ^ | r = l 

The next point of interest is to express a vector in polar coordinates. The setup 
is illustrated in Figure 5.22 where two sets of coordinate axes are illustrated, (x, y) 
and (Sr, to). There a vector v attached to the point (xo, yo) is given. The vector may be 
thought of as providing the velocity of an object located at the point (jto, yo)- We wish 
to find the components of the vector in polar coordinates, vr and vo, where vr is the sr 

component of the vector and vy is the to component of the vector. Note that the sr axis 
points in the radial component of the point (xo, yo) and the ty axis is perpendicular 
to the sr axis and points in the direction of an increasing angle. Also, note that the 

Figure 5.22 Polar representation of a vector. 
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R(-0)wr 
*■ ► x 

R(-0)we 
R(-0)v 

Figure 5.23 Aligning a vector with the coordinate axis by rotation. 

(sr, to) coordinate axes are centered at the point (xo, yo)- Finally, note that the vector 
wr is the component of v that is aligned with the sr axis, while the vector xbo is the 
component of v that is aligned with the to axis so that v = wr + vbf). 

In Figure 5.23, the vectors v, ihr, and wt> are rotated through the angle —6. The 
result is that after rotation the direction of the vector wr is along the x axis and the 
direction of the vector w# is along the y axis. As illustrated, the x component of 
the rotated vector is identical to the radial component of the original vector. Similarly, 
the y component of the rotated vector is identical to the angular component of the 
original vector. This gives the following relation: 

Vr I = R(-6)v = R(-6) ( Vx 

in which R{—9) is the rotation matrix through the angle — 6: 

^cos(-0) - s i n ( - # ) \ / cos(6) 
R(-e) = sin(-0) cos(-#) 

sin(#)\ 

- sin(0) cos(d)J 

The relation is not to be thought of as a rotation of the vector v. Indeed, the 
original vector remains the same. The relation is merely a means to express the polar 
representation of the vector v given the Cartesian components. 

The inverse operation of rotating through a given angle in one direction is merely 
rotating through the angle in the opposite direction. Therefore, R~l(—9) = R{6). 
From this it is possible to determine a vector's representation in Cartesian coordinates 
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if the vector in polar coordinates is known: 

R(0) [Vr)= R(9)R(-9) I Vx 

\Vf> \VV 

R(0) 
V0 

5.9 THE DETERMINANT 

The claim that the area of an image that is a linear mapping of an original object is 
equal to the absolute value of the determinant times the area of the original object is 
made in Section 4.6.5. In this section, we demonstrate the claim. 

It has already been noted in Section 4.6.5 that a matrix with determinant zero 
maps onto a line (or a point if everything gets mapped to the origin). Accordingly, 
whenever the determinant is zero, all mapped objects have zero area. It is only left to 
consider the case when the determinant is nonzero. 

The approach that this argument takes is to demonstrate the claim for a simple 
case and then show that if the claim holds for the simple case, it holds in general. 
For the simple case, the initial object is a square aligned with the x and y axes. To 
move toward the general case, there is an intermediate stage—a demonstration that 
the claim holds for a mesh of squares having bases aligned with the x axis. Finally, the 
general case can be demonstrated. Below, the detail for the simple case is presented, 
while the intermediate and final stages are sketched. 

Figure 5.24 shows the simple case, a square aligned with the x and y axes; the 
square has sides of length s. Note that the square is mapped by a transformation with 
matrix M into a parallelogram denoted by Ps. The square with base given by the unit 
vector is also mapped into a parallelogram, denoted by Pi, and the two parallelograms 
are similar; just as the original square is a resizing of the unit square with a resizing 
coefficient of s, its associated parallelogram Ps is a resizing of the mapped unit square 
Pi with a resizing factor s. Using a dimensionality argument, the parallelogram Ps has 
area equal to s1 times the area of the parallelogram Pi, Area(P4) = s2 x Area(Pi). 

For the simple case, the claim is demonstrated provided that Area(Pj) = 
determinant(A/), where M is the matrix of the linear transformation. Recall the fol-
lowing relations: 

M a\\ an 
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n- - ► x 
1 s 

M 

Figure 5.24 Transformation of squares into parallelograms. 

(S3i,,sa2i) 

Figure 5.25 illustrates that the transformation applied to the unit square with 
sides given by the vectors (1 0)T and (0 1 )T results in a parallelogram with sides given 
by the vectors («i i «21 )T a n d {an a22)T- It is necessary to determine the area of the 
parallelogram. 

The general formula for the area of a parallelogram with base b and height h is 
Area = bh. For the height, the definition of the sine function produces the equality 
h = c | sin(#) |, where c is the length of the diagonal side as illustrated in Figure 5.25. 
In terms of the sides and the angle between them, the area is given by the formula 
Area = be | sin(#) |. 

The length b is given by the length of the vector (an aj\ )T , while c is given by 
the length of the vector ( a n <Z22)T- Figure 5.24 illustrates that 0 = /S — a. Applying 
the difference formula from Section 5.4.5 and expressing the sine and cosine functions 

( - a 1 1 ' - a 2 l ) »,. 

h= c\s\n{0)\ 

(a„,a21) 

Figure 5.25 Area of transformed parallelogram. 
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in terms of the entries to the matrix M result in the following equality: 

| sin(#) | = | sin(a) cos(^) — cos(a) sin(^) | 

_ . -a\\ an fl2i a\2 , 
b e b e 

= T~ I 022^11 -012021 I 
be 

Placing the value for | sin(#) | into the formula for the area of a parallelogram 
furnishes the result. 

Area(Pi) = be | sin(0) | 

= be— I 022011 -012021 I 
be 

= I 022011 -012021 I 

= I determinant(AÍ) | 

This completes the argument that the result holds when the original object is a 
square aligned with the x and y axes. 

The intermediate step is to show that the result holds for a mesh of squares; 
each square in the mesh has the same area. We do not present a rigorous calculation. 
Instead, we demonstrate this pictorially through Figure 5.26. All squares in the mesh 
have equal area and the square mesh is transformed into a mesh of parallelograms all 
with equal area. 

The final step is to take an arbitrary object with well-defined area and demon-
strate the claim; the area of the mapped image is equal to the area of the initial object 
times the absolute value of the determinant of the transformation matrix. The area of 
the object can be approximated by a mesh with mesh elements sufficiently small as 
indicated in Figure 5.27. The set of mesh elements entirely within the object produces 

Figure 5.26 Transformation of a mesh of squares to a mesh of parallelograms. 
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Figure 5.27 Inner and outer mesh areas. 

an underestimate of the area, while the set of mesh elements that intersect the object 
either wholly or partially produces an overestimate. This is expressed by the following 
inequalities: 

Inner mesh area < object area < outer mesh area 

The area of the object's image is approximated by the images of the mesh 
elements that are all parallelograms of equal area. Then the following inequality 
holds: 

Inner image area < image area < outer image area 

But using the intermediate step, the inner (outer) image area is equal to the 
product of the absolute value of the determinant and the inner (outer) mesh area, 
Inner image area = | determinant(M) | x(innermesh area) and similarly for the outer 
image area. Substitution into the inequalities for the image area results in the following 
inequalities: 

| Determinant^) | x(inner mesh area) < Image area 

<| determinant(M) | x(outer mesh area) (5.12) 

Imagine a sequence of meshes (mesh 1, mesh 2, mesh 3, and so on) in which 
the number of mesh elements increases and the size of the mesh elements approaches 
zero as one proceeds along the sequence of meshes. The approximations given by the 
inequalities get better and better as we move along the mesh sequence. Since the area 
of the initial object is well defined, the inner and outer mesh areas converge to the 
actual object's area as the mesh is further refined. So both the left and right sides of the 
equality converge to the same quantity, | determinant(M) | x (object area), providing 
the following inequalities: 

| determinant(M) | x(object area) < image area 

< | determinant(M) | x(object area) 

But the left-hand and right-hand sides are the same value, so in fact, 
| determinantM) | x(object area) = image area, demonstrating the claim. 

We use a similar construct to determine areas in calculus, the topic of 
Chapter 6. 



It is not coincidental that calculus was discovered by both Newton and Leibniz within 
10 years of one another. History granted an opportune moment that each of these 
towering intellects was able to seize. On the cultural side, the church ceased to inter-
fere in the scientific teachings of secular universities; there was a freedom of thought 
and expression that had not been previously experienced. After Galileo's persecu-
tion, Descartes was hesitant but forthcoming. The mathematicians who followed 
Descartes, including Huygens, Bernoulli, Gregory, Mercator, and Barrow, had no rea-
son to hesitate. Unlike Kepler and Galileo, both Newton and Leibniz were educated 
in an environment that encouraged scientific inquiry and where religious censorship 
in the sciences was a foreign and irrelevant concept. 

On the mathematical side, the stage had been set for a breakthrough; 
Archimedes' pioneering work was not the only prop on the stage. Algebraic notation 
and usage had matured allowing for complex operations with equations. In addi-
tion, geometric and algebraic concepts had been united in the Cartesian framework. 
With these innovations, several problems that lie within the realm of calculus had 
been solved. Among the more notable achievements are those of Isaac Barrow, who 
devised a method for determining the tangent to a limited set of curves and also 
discovered the fundamental theorem of calculus. 

The interaction between mathematics and physics was also critical to the dis-
covery of calculus. The cross-fertilization between these disciplines has been a recur-
ring scientific theme. At times, mathematical theory precedes physical application. 
At other times, physical theory and mathematical development are contemporane-
ous. Yet at other times physical theory initiates mathematical research. Our story of 
mathematical development contains all three possibilities. 

Among the ancient Greeks, Archimedes stands out as both a mathematician 
and a physicist. Regarding both disciplines, his works were so far ahead of their time 
that they could not make the contribution they warranted; the rest of the world was 
not prepared to understand these works. While Archimedes' contemporaries utilized 
mathematics to describe observations, Archimedes used and developed mathematics 
to describe fundamental physical principles. Similarly, Archimedes used his insight 
into fundamental physical principles to solve mathematical problems. 

An example of the latter is Archimedes' method for discovering the formula 
for the volume of a sphere, his method and the mathematical proof were distinct. 
Archimedes imagined how a sphere could be placed into balance on a scale using 
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other figures whose volume he could determine. Through this exercise he developed 
the physical insight to solve the problem. On the other hand, the proof of his formula 
is purely mathematical; there are no arguments about balancing different bodies on a 
scale. 

Archimedes' investigation of the stability positions for floating paraboloids 
makes impressive contributions to both physics and mathematics, contributions that 
were not appreciated until more than a millenium and a half later. Archimedes develops 
a physical law to determine stable positions in terms of the center of mass, specific 
gravity, and geometry of an object. This is a problem in the field of hydrostatics that 
has engineering implications. In particular, Archimedes' analysis is central to the 
naval engineer's task of designing a boat that will not capsize. Archimedes then turns 
to the mathematical problem of determining the center of mass of the paraboloid. In 
accomplishing this feat, Archimedes develops a new mathematical methodology that 
is a precursor to calculus. 

Archimedes (2002) was also a pioneer in the subject of the study of motion. In 
his treatise On Spirals, he performs an analysis of a particle moving along a spiral 
path. The particle revolves around a central point at a uniform rate while concur-
rently moving away from the central point at a uniform radial speed. This is the 
first known example in which the velocity is parsed into two perpendicular compo-
nents, the radial direction outward from the center and the angular direction along 
a series of circles with the central point as a common center. Archimedes relates 
the particle's velocity to other measurements providing a stunning set of theorems. 
One theorem is a direct precursor to Kepler and calculus. Archimedes determines 
the area between the trajectory and the center that is swept out in any given time 
interval. 

Like Archimedes, Kepler had both brilliant physical and mathematical insight. 
As noted in Chapter 2, Kepler set himself upon a mission to salvage Copernicus' 
heliocentric theory. Kepler reasoned that the sun applies a force to the planets and 
that the force depends upon distance; each circle about the sun experiences a force of 
equal strength and the force decreases as the radius of the circle increases. Following 
this reasoning, a circular orbit seems most natural; the force remains constant, keeping 
the planet in its circular path. Kepler's physical instincts led him to believe that if the 
orbit is not circular, some property of circular motion must result from the symmetry 
of the sun's force. Toward this end, Kepler examined the properties of circular motion 
and noted that the area swept out by the orbit's path and a line connected to the circle's 
center is proportional to the time of the measurement. In modern-day language, Kepler 
noted that the angular momentum is a constant and proposed that the elliptical orbits 
of the planets must satisfy this property. Kepler's study of angular momentum led him 
to a general mathematical method for determining the area swept out by an orbit. It is 
a method that Archimedes would have approved of, for indeed Kepler rediscovered 
what Archimedes developed in his treatise on spirals. 

Galileo was another individual who traveled down a path laid by Archimedes. 
In Galileo's study of the motion of falling objects, Galileo parsed the object's motion 
along two distinct perpendicular directions, the vertical direction and the horizontal 
direction. Galileo's insight was that this parsing allows for the independent study 
of the motion in each direction. The motion in the vertical direction is influenced by 
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gravity, but this is not the case for the motion in the horizontal direction. Since gravity 
is the only force on the object, Galileo recognized that the object traverses freely along 
the horizontal direction; its horizontal movement is independent of its vertical motion 
until the object strikes the ground. Galileo shows that the resulting trajectory of these 
two independent motions is the parabola. Later, the ability of Newton to replicate 
Galileo's conclusion using his laws of motion and calculus furnished confirmation of 
the correctness of Newton's approach. 

What was it that allowed Newton to become the highest authority in matters 
of physics over a 200-year period while introducing a new mathematics that has 
been a foundation for mathematical research since its inception? Certainly, Newton 
possessed a rare combination of instinct and intelligence that permitted penetrating 
insight into his subjects of investigation. While this combination is rare, before Newton 
as well as after Newton, there have been men who possess such talent. For those who 
came before Newton, the time was not right, but Kepler, Galileo, and Descartes had 
endowed Newton with the knowledge to make his breakthrough. 

As with Archimedes, Newton's formidable physical intuition guided his math-
ematics. His route to calculus directly followed his insights into the motion of free 
bodies. Indeed, Newton developed laws of motion that are expressible in the vo-
cabulary of calculus. Furthermore, calculus can be applied to solve the trajectories of 
moving objects that obey Newton's laws of motion. One such instance is the parabolic 
motion of a falling object as described by Galileo. But the most inspiring application 
was the use of calculus and the laws of motion to describe the trajectory of a planet 
about the sun. The result of this beautiful theory that married physics with a new 
branch of mathematics perfectly matches Kepler's ellipse. The result closed the case 
of the geocentric versus heliocentric dispute that Aristarchus initiated and once more 
resurfaced with Copernicus. And the result permanently changed the attitudes of men 
toward science. Never again would science be looked upon as a heretical activity; it 
would be viewed as a way to serve mankind's causes. 

Ten years after Newton's accomplishment, Leibniz paved a different path to 
calculus. Leibniz' formal education was in law, and he received little university train-
ing in either mathematics or physics. However, Leibniz possessed a curiosity that 
throughout his life caused him to pursue many disciplines. He had a tremendous in-
tellectual capacity along with a gregarious personality that he used to gain access to 
Europe's most prestigious intellectual circles. His curiosity led him to mathematics 
and his personality attracted the attention of Christiaan Huygens (1629-1695), one of 
Europe's finest mathematicians. After impressing Huygens by solving very difficult 
problems, Huygens agreed to tutor Leibniz. 

Through the tutelage of Huygens, Leibniz became familiar with the works 
of the modern mathematicians as well as those of the ancient Greeks, including 
Archimedes and Apollonius. Leibniz' strength was in abstraction and communication, 
and at one point he envisioned the development of a universal language that would 
encompass all disciplines. It is from this perspective that he distilled the works of his 
contemporaries and Archimedes and generalized the results into calculus. Leibniz' 
calculus was technically identical to Newton's, but while Newton focused on physical 
implications, Leibniz focused on his strengths, abstraction and communication. The 
result of Leibniz' work was an intuitive notation in symbols that could be manipulated 
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with known algebraic operations. Leibniz' notation as well as his terminology has 
become the international convention. 

It was Leibniz who coined the basic vocabulary associated with calculus, in-
cluding the word calculus as well as the terms differential calculus and integral 
calculus. By contrast, Newton's naming convention, the theory of fluxions, is not 
widely known. Similarly, while Leibniz' notational conventions lend themselves to 
generalization for a broad set of applications, Newton's notational conventions are 
far more limited and not as widely used. The historical review of Chapter 2 closes 
with Leibniz' well-known phrase, "we live in the best of all possible worlds." The 
phrase is certainly applicable to the invention of calculus. Through Newton and his 
remarkable physical insights, we have a mathematical theory that reflects the physi-
cal world we live in. Newton showed how to use calculus to describe our world. And 
through Leibniz with his incomparable skills at abstraction and communication, we 
have symbolic conventions that are intuitive and in accord with the broader set of 
mathematical notation. Historical perspective has brought us to this realization, but 
this was far from obvious to the men central to its development. 

After Newton's bouts with Hooke concerning his work on optics, Newton 
locked his scientific gems in a vault; only a small circle viewed them. For 10 years 
from 1674 through 1683, Newton, one of history's greatest physicists, pursued the 
field of alchemy with the same dedication that he earlier pursued mathematics; his 
scientifically explosive mind became dormant. As for Leibniz, he was a very busy 
man whose wide-ranging interests left him a bit unfocused. Leibniz had an unmatched 
intellectual curiosity about everything and fluttered between disciplines. In addition 
to his pursuits in mathematics, including the discovery of calculus in 1674, he had 
engaged himself in an array of projects that could have easily occupied 10 men around 
the clock. As an example of how his mind wandered, one such project (a folly reminis-
cent of al-Haytham's plan to divert the Nile) was an effort to drain local silver mines 
of water using a series of windmills as pumps. The project caused Leibniz to study 
windmills and he became thoroughly immersed with the science and history of wind 
power. Concerning the history of wind power, Leibniz became familiar with different 
fashions of sail boats, including those of the Chinese. He then became fascinated 
with Chinese history and contributions to science, becoming a world authority and 
authoring a book on the subject. With these commitments, Leibniz had little time for 
putting his calculus results in publishable form. But the year 1684 was a banner year 
for both Leibniz and Newton. Each published works that they held privately for years. 

Through his nasty disposition, Hooke was one cause of Newton's self-
cocooning, and by coincidence, Hooke was in some ways instrumental in getting 
Newton to return to scientific endeavors, although the bulk of the credit goes to 
Edmond Halley (1656-1742). One day, Hooke and Halley, both distinguished mem-
bers of the Royal Society of Scientists, along with the architect Christopher Wren 
(1632-1723) were sitting around in a coffee shop and talking shop. The topic of dis-
cussion was the shape of the trajectory for a comet orbiting the sun. Halley believed 
it would be an ellipse but did not have any argument in support of his view. Hooke 
claimed that he had solved the problem using an inverse square law as the binding 
force between the comet and the sun, and the force is inversely proportional to the 
square of the distance from the sun. Hooke was unable to substantiate his claim. 
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The matter must have nagged at Halley, who apparently took an unusual interest 
in comets; Halley's comet is named for this man. Halley discussed the issue with 
several other members of the Society and through the grapevine heard that Newton 
may be of some assistance. To satisfy his longing for a solution, Halley took a trip to 
Cambridge for a visit with Newton. 

Halley was the opposite of Hooke. He was a gentleman who could bring out 
the best in others. Upon meeting Newton, he posed his problem concerning the path 
taken by a comet. Without hesitation, Newton stated that the orbit would be an ellipse. 
The certainty of Newton's response must have registered with Halley, and Halley was 
able to use his charm to elicit an explanation. Newton claimed that he had long ago 
solved the problem but lost the results. Newton did promise to furnish an explanation 
and, just like that, Newton abandoned alchemy and once more pursued mathematics 
and physics with a fierce dedication—the volcano was once again active. Newton 
returned to his unfinished investigations of planetary motion that he had initiated 
during the plague years of the 1660s. Newton wrote a treatise that derived Kepler's 
elliptic orbit using the inverse square law and mailed the treatise to Halley. 

Halley was a well-trained scientist and he knew a treasure when he saw it. An 
argument could be made that this work was the most important scientific work up to 
that point in history. But through Halley's persistence it would soon be surpassed by the 
most influential scientific work ever written before or after. From every perspective, 
Halley's response to his encounter with Newton was admirable. Halley's objective 
was to make Newton's work available to the scientific community. With Newton's 
permission, Halley reported the results to the Royal Society in December of 1684 and 
after some revision they were published. Halley then went further; he persuaded the 
Royal Society to sponsor a project so that Newton could expand upon his work. Both 
the Royal Society and Newton agreed, but when funding for the publication was not 
forthcoming, Halley personally financed the work. Through Halley's intervention, the 
most influential scientific work ever written, Principia, came about. 

In Principia, Newton (1995) lays out his laws of motion and using the laws 
performs an analysis of several motions. Included in three volumes and several re-
visions are investigations of planetary motion, the moon's orbit, tides, and the shape 
of the earth. Concerning the latter, Newton demonstrates the earth is not quite round 
but oblate; the earth's rotation causes it to bulge at the equator. So impressive is Prin-
cipia that Newton was deified throughout Europe during the eighteenth century. The 
French scientist Pierre de Maupertuis, inspired by Newton's theory of an oblate earth, 
set upon an Arctic expedition to make measurements that would confirm Newton's 
theory. The philosopher Voltaire, no friend of Maupertuis, took a swipe at his fellow 
countryman while singing Newton's praises with his remark that Maupertuis went to 
the ends of the earth to find that which Newton discovered from his desk. 

Newton's methods would be central to every investigation in dynamics over the 
next two centuries. It is central to many scientific and engineering disciplines: clas-
sical mechanics, fluid mechanics, structural engineering, aeronautical engineering, 
thermodynamics, and electrostatics. Electrodynamics and relativity are an outgrowth 
of Newtonian thought. Even quantum mechanics pays homage to Newton. A key 
principle of quantum mechanics is its consistency with Newton's classical theory in 
the limit of many interacting particles. 



CHAPTER 6 THE SLAYER: CALCU LUS 1 9 7 

It took Newton 3 years to finalize his first version of Principia. When Prin-
cipia was published in 1687, one element of Newton's analysis was conspicuously 
missing, calculus. While Newton used calculus to attain his results, he did not use 
calculus as an explanatory vehicle. This was not an oversight; it was intentional. The 
central theme of Principia was the dynamics of motion and it was all new material. 
Perhaps Newton believed that the book would have lost its focus had it included an 
additional body of material on new mathematical methods. Nearly three centuries 
later, von Neumann proposed his version of relativistic quantum mechanics that in-
cluded new mathematical results in the area of functional analysis. The scientific 
community preferred Dirac's work in the same field as it focused on the physics. 
From a historical perspective, Newton's judgment in omitting a presentation of cal-
culus was very sound. Yet Newton himself poses another explanation for the omis-
sion, one that indicates a lasting wound from his earlier bouts with Hooke. When 
asked later why he omitted calculus from Principia, Newton responded that he feared 
ridicule. 

In the meantime, Leibniz had not been idle. By 1674, Leibniz had discovered 
many results in the field of calculus. Leibniz, like Newton, did not immediately publish 
his results. His first publication in the field of calculus came during the same year 
as Newton's letter to Halley, 1684. Unlike Newton, the cause of Leibniz' pause was 
not apprehension. Leibniz was overcommitted by his many activities. Perhaps the 
impetus for Leibniz to publish his work was a series of letters between Leibniz and 
Newton in which each claimed cryptically to be able to solve a set of similar problems 
and Leibniz wished to claim priority. 

Through his published work, Leibniz gained fame in Europe and was consid-
ered the sole inventor of calculus for 15 years. Then in 1699, one of Newton's most 
cherished friends, Nikolas Fatio, accused Leibniz of plagiarism. This marked the 
beginning of a brutal and pointless brawl that consumed the energies of not only 
Leibniz and Newton but also others within European scientific circles. Surrounding 
Newton and Leibniz were men that encouraged their self-righteous instincts. Na-
tionalistic fervor was the source of support for Newton, while a sense of continental 
superiority encouraged Leibniz' supporters. Both men literally fought on to their 
grave. Even after the death of Leibniz in 1716, Newton continued to pursue his case 
against Leibniz for an additional 11 years until his death. 

The basis for Newton's accusation of plagiarism rested on Liebniz' 1676 visit 
to London at the behest of the Royal Academy. The visit did not go too well. In full 
character Hooke lambasted Leibniz. At any rate, Newton claimed that it was during 
this visit that Leibniz obtained access to Newton's works. In Newton's mind, Leibniz 
did nothing more than steal Newton's results, rewrite them in a new notation, and then 
pass them off as his own. The conduit who passed the results to Leibniz, a man named 
Collins, was an admirer of Newton who only wished to praise his hero. This is all 
irrelevant. It is uncertain if the sneak peek contained any material related to calculus, 
but even if it had, Leibniz had already made his breakthrough in 1675. Another claim 
of Newton is that in 1678 Newton wrote Leibniz a letter containing applications of 
calculus. Perhaps so, but the letter merely stated several problems that Newton could 
solve without explaining methodology and by that time Leibniz could also solve such 
problems. 
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Although mostly meaningless, the fight did have one redeeming feature. A 
famous problem that inspired a whole new discipline in mathematics, the calculus of 
variations, emerged from the fight. Initially, one of the men who most championed 
Leibniz' cause was Jacob Bernoulli (1654-1705), a student of Leibniz. Bernoulli was 
certain that Newton was a complete fraud. He had no reason to believe otherwise, 
there was no record of Newton's claimed achievements. In a manner similar to the 
Italian duels, Bernoulli proposed to send Newton a problem that could be solved only 
by those who truly understood calculus. Newton's certain failure to solve this problem 
would expose him. 

The problem is known as the brachistrone problem. The objective is to find the 
shape of a curve that allows a body to slide from a higher point to a lower point, 
not directly beneath the initial point, in the least time. As noted above, this problem 
would later motivate a branch of mathematics known as the calculus of variations. 
On continental Europe, apart from Leibniz and Bernoulli, nobody could solve the 
problem. [Some claim that l'Hopital (1661-1704), an aristocrat who took an interest 
in mathematics, could also solve the problem. However, as l'Hopital was a benefactor 
to Bernoulli, independent achievements of l'Hopital have come into question.] It is 
not known how long it took these men to arrive at a solution. Nevertheless, the fact 
that they shared solutions indicates that they considered it a significant challenge and 
one can surmise that each took a considerable time grappling with the problem. The 
fact that the problem was posed as an open challenge to the European community 
and nobody else was able to arrive at a solution attests to its difficulty. The problem 
was posed to Newton, who had been inactive in mathematics for around two decades. 
According to Newton's niece, the master dispensed with the problem in a single 
evening between his dinner and bedtime—it was child's play. 

Still the fight dragged on. Both Leibniz and Newton, men of great intellect, 
were stupid enough to attack each other's strengths. Leibniz, with a modest record of 
achievement in physics, attacked Newton's explanation of planetary motion stating 
that the concept of gravity was absurd. How could Leibniz have believed he could 
win an argument in physics with the internationally acknowledged supreme physicist 
of the times? Newton, whose notation was not as transparent as Leibniz', attacked 
Leibniz on the grounds that Leibniz' notation deprived its users of geometric insight. 
In fact, Leibniz' notation was adopted because its simplicity and elegance enable ease 
of use and allow for keener insight. 

The development of calculus through the quest to describe planetary motion is 
an achievement that cannot be understated. Calculus and the laws of motion initiated 
modern science, and they are at the root of nearly all other achievements in mathemat-
ics and physics in the past 300 years. Certainly, their discovery added to the technical 
body of knowledge that mankind accumulated. But more importantly, their discovery 
forever changed the way that the unknown was approached—the unknown would be 
challenged by the imagination leading to greater discoveries. 

The invention of calculus can be viewed in two ways. Chapter 2 stresses the 
perspective of the invention as an achievement for mankind; it is the culmination 
of centuries of pursuits that are interwoven with a broader history. The invention of 
calculus may also be viewed as the achievement of two individuals, both geniuses 
who applied their talents with a determined spirit. Whichever perspective is taken, a 
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common view is visible. The historical perspective reveals human flaws that resulted 
in unjust persecutions of men who were deliberating over a subject that ought to 
have been innocuous. The view of individuals reveals human flaws that cause men of 
exceptional talent to engage in senseless tomfoolery, just like you and I. The brilliant 
and the blemish are part of mankind and men. 

6.1 STUDIES OF MOTION AND THE FUNDAMENTAL 
THEOREM OF CALCULUS 

As a starting point, this section motivates calculus through an investigation of simple 
motions. Differential calculus, integral calculus, and the relation between them are 
introduced from the perspective of the description of motion. Concrete methods for 
calculating derivatives and integrals follow in later sections. 

6.1.1 Constant Velocity and Two Problems of Motion 

This section examines the case in which an object moves along a single dimension at 
constant velocity. A physical setting would be a train moving along a track at constant 
speed. There are two fundamental problems that we address. The first is, given the 
object's position, determine its velocity. The second problem inverts the first; given 
the object's velocity, determine its position. Differential calculus is a generalization 
of the first problem, while integral calculus is a generalization of the second. The 
geometry of these problems is emphasized as it is critical to the generalization. 

The geometry is set on a Cartesian plane parameterized by t and x or v. The 
horizontal axis, t, represents time while the vertical axis, x or v, represents the distance 
that the object has traveled, JC, or the velocity of the object, v. 

For the first problem, the object's position is described by a function of time: 

x(t) = at + c (6.1) 

A graph of the position is presented in Figure 6.1. 

x 

Position, x, at time / 

Figure 6.1 Graph of motion with constant speed. 
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The problem is to find the velocity. The velocity is a ratio of distance to time. 
With this notion, it is easy to determine the average velocity over a time interval. It is 
simply the difference in position divided by the difference in time: 

Average velocity = 
x(tf) - x(ti) 

(6.2) 

where t\ and ff are initial and final times over the time interval of interest. Using the 
value of x(t) given by equation (6.1), the average velocity is the following: 

Average velocity = x(tf) - *te) 
í f - f i 

(atf + c) - (at\ -
i f - f i 

a(t{ - /■{) 

-c) 

In this case, the average velocity is independent of the time interval given by t\ 
and if. As such the average velocity is the same as the velocity at all times. Denoting 
the velocity by v(t), v(t) = a. Geometrically, the velocity is the slope of the line 
given by the graph. Higher velocities correspond with greater slopes, as illustrated 
in Figure 6.2, where all objects start at the same position. Notice that at any given 
time the position of the object with higher velocity, which is the same as the slope, is 
greater than the position of the object with lower velocity. 

For the second problem, the object's velocity is given as a function of time and 
the objective is to determine the position of the object. We start with the simplest 
case, v(t) = a. In this case, the velocity is constant for all times. 

One approach toward solving this problem is to appeal to the definition of 
average velocity and solve for the position. As above, because the velocity is constant, 

Initial position 

Higher velocity (slope) indicates greater 
difference from initial position at a fixed time 

Figure 6.2 Position at different speeds. 
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Figure 6.3 Geometric relation between speed and position. 

x(tf) - *(fi) 
= a 

f f - i i 
a ( f f - i i ) 

Geometrically, the solution to the second problem is illustrated by Figure 6.3. 
The velocity is graphed as a horizontal straight line indicating a constant velocity 
across all time. The difference between the position at times t\ and if is the rectangular 
area between the graph of the velocity and the i axis, Area = a(t{ — ij). 

It is common to express the position at any time in terms of the initial position. 
Setting if to any arbitrary time, if = i, and t\ to zero yields the following: 

x(t) - x(0) = at 

x(t) = at + x(0) 

= at + c 

where c indicates the initial position, x(0). 
Note the expressions for velocity and position whether we are first given the 

position and must solve for the velocity or vice versa. 
The geometric interpretations of velocity and displacement, slope and area, are 

generalized below. 

6.1.2 Differential Calculus, Generalizing the First Problem 

Next consider a more general motion. While still along one dimension, the position of 
the object is a general function of time with the property that every point of the function 
has a unique tangent line. Figure 6.4 illustrates the concept of a unique tangent line; 
those functions similar to Figure 6.4a are allowable, while the others are not. Note 
that Figure 6.4b has no tangent line where the function breaks, while the function in 
Figure 6.4c does not have a unique tangent line at the point where the graph has a cor-
ner. The first problem is to determine the velocity of the object at any arbitrary time i. 

it is the same as the average velocity: 

Average velocity 

x(t{) - x(ti) 
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(a) (b) 
Figure 6.4 Only part (a) has a tangent line along its entire graph. 

(c) 

The average velocity between times t\ and if is given by equation 6.2. The 
velocity at time fj, sometimes referred to as the instantaneous velocity, is defined as 
the result of applying the formula for the average velocity and finding the limiting 
value as if approaches t\. In symbols, the velocity is defined as follows: 

x(tf) - x(ti) 
u(fi) = l im 

' r - * f i í f - í j 

The symbol limir_>fi is read as the limit as if approaches fj, so the definition of 
instantaneous velocity is the limiting value of the average velocity as the time interval 
over which the average is taken shrinks to a point. The question of how the limiting 
process is evaluated as well as the geometric interpretation of the definition is best 
illustrated by example. For our first example, suppose x(t) is as follows: 

x(t) = t2 

Let us take t\ = 1 and find the corresponding instantaneous velocity. First, 
construct a table in which if assumes values that approach t\ = 1. The result is shown 
in the following table: 

'32 

2" 

jc(ff) - 4 ' i ) 

32 - 1 = i 

1 =3 

G) !-

1 = 

5 
4 

_9_ 
To 
\1_ 
64 
33 
256 
65 

1024 
1+2" 

4" 

f f - ' i 

16 
1 

32 
J_ 
¥ 

X(t,)-X(ti) 

- = 4 
2 
3 
- = 3 
1 

5/4 _ 5 
1/2 ~ 2 

9/16 _ 9 
174" ~ 4 

17/64 _ 17 

1/8 _ Y 
33/256 _ 33 

1/16 ~ To 
65/1024 _ 65 

1/32 ~ 32 
+ 2"/4" 1 + 2 " 

1/2" 2" 
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f=1.15 f=2 f=3 
Figure 6.5 As t( approaches ij, the chord approaches the tangent line. 

Graphically, the limiting operation is viewed in Figure 6.5. As if approaches 
ij = 1, the line between the points (ij, x{t\)) and (if, x(t{)) approaches the tangent line 
to the curve at t\. One can surmise, and it is true, that the instantaneous velocity is the 
slope of the tangent line. 

While geometric arguments permit insight, assessing the limiting value requires 
algebra. It is customary to set if = t\ + A, where A can be either positive or negative. 
Noting that if — t\ = A, the instantaneous velocity can be expressed as follows: 

u(ij) = lim 
A—>0 

x(ti + A) - x(ij) 

With ij = 1 and x(t) = i , the instantaneous velocity becomes the following: 

v(\)= lim 
A^O 

= lim 
A-.-0 

AT(1+A)-Jt(l) 

( 1+2A + A 2 ) - ( 1 ) 

A 

,. 2A + A2 

= lim 
A^O A 

= lim 2 + A 
A^O 

There is a subtlety in the notation that justifies an explanation. Because of the 
division by zero, the expression [(1 + 2A + A2) — (1)]/A does not make sense as a 
stand-alone expression with A = 0. However, it is possible to talk about the limit of 
the expression as A approaches zero. Indeed, as long as A is not zero, the algebraic 
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operations that yield the answer v( 1) = 2 are all allowable and the limit as we proceed 
toward zero has a well-defined value. 

This subtlety expresses itself geometrically. In Figure 6.5, the single point 
(/j, *(fj)) = (1, 1) does not define a unique line; another point, (if, x(t{)), is necessary. 
However, as long as A is not equal to zero, two points are available for defining a line 
whose slope is the average velocity between the points. By allowing if to approach t\ 
(A approaches zero) without ever equaling t\, a sequence of lines that approach the 
tangent line is established. The sequence of slopes that corresponds with the sequence 
of lines approaches the instantaneous velocity, which is the same as the slope of the 
tangent line. 

Note that the algebra used to obtain u(l) in the preceding set of equations is 
not unique to the point ij = 1. The velocity at any general time t can be determined 
as follows: 

x(t + A) - x(t) 
v(t) — lim 

A->0 A 

(f2 + 2tA + A2) - (i2) 
= lim 

A^O A 

2iA + A2 

= hm 
A^O A 

= lim It + A 
A^O 

= 2t 

As expected, the general expression for the velocity is consistent with the ve-
locity specified at time / = 1, D(1) = 2 X 1 = 2 . 

Leibniz' notation for the instantaneous velocity is the following: 

dx dx x(t + A)-x(t) 
v(t) = — or — = lim (6.3) 

dt dt A->0 A 

The full reading of dx/dt is the change in x with the change in t; this is a ratio 
of changes as illustrated in Figure 6.6. 

One can also think of d/dt as an operator that when applied to the function x 
yields a new function. From the above example, 

d 

~dt 
Wr)] = | ( r 2 ) = 2 i 

That is, applying the operator d/dt to the function x(t) = t2 results in a new function, 
dx/dt = It. 

Leibniz coined the resulting function the derivative and that is what it been 
called ever since. Considering x(t) as the position of an object at time t, the derivative 
of JC is the object's velocity. 

Remark. While the example of the relation between position and velocity is 
used to introduce the concept of a derivative, the derivative is much more general. If 
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Figure 6.6 The derivative as a ratio of dy to dx. 

two quantities y and z are related functionally, z = f(y), then dz/dy represents the 
ratio of incremental changes in the quantities. 

6.1.3 Integral Calculus, Generalizing the Second Problem 
We continue to generalize Section 6.1.1. While still constraining motion to one 
dimension, consider the velocity of the object as a general function u(i). The sec-
ond problem is to determine the position of the object, x(t), at any arbitrary time i. 
Section 6.1.1 presents the answer for the case when the velocity is piecewise con-
stant. Calculus proposes an approach for generalizing the piecewise constant solution 
to more arbitrary functions. 

Figure 6.7 illustrates the generalization. Consider the velocity given by the 
function v(t). We wish to find the distance traveled by the object between times t\ 
and if. Suppose we partition the time interval from t\ to if into smaller time segments 

*C3) - £k) = YaCr-y < *C3) - *Cz) < v^rk) = *C3) - *(k) 

Figure 6.7 Underestimate and overestimate between two times. 
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with end points to,t\,t2, ■ ■ ■ ,tn so that t\ = in < ii < ti < Í3 < • • • < tn = if. Next, 
let Vj be the minimum value of the velocity whenever fy_i < t < tj and similarly let 
Dj be the maximum value of the velocity whenever tj-\ < t < tj. Also, let AXJ and 
AXJ denote the differences in position between times tj-\ and tj corresponding to 
the velocity profiles Vj and Vj (see Figure 6.7). 

By the results of Section 6.1.1, AXJ and AXJ are calculated as follows: 

ÂÃj = Vj(tj - tj-1) AXJ = Vj(tj - tj-1) 

Finally, let AXJ be the difference in position between times tj-\ and tj corre-
sponding to the original velocity profile v{t). Then, because v • < v(t) < Vj for all t 
in the interval between tj-\ and tj, the following inequalities hold: 

AXJ < AXJ < ~ÃXj (6.4) 

The quantity jc(if) — jt(ij) is the difference in position from time ij to time if, 
also referred to as the relative displacement. The relative displacement is equivalent 
to the sum of all the AJC/S. Since the inequalities of equation (6.4) hold for each j , 
the following also holds: 

n n n 

y ^ AXJ < ̂ 2 &XJ=*(*{)_ x(fi) - 5 Z ~^*J ^6-5-* 
j= l 7=1 7=1 

As illustrated in Figure 6.8, the left-sided sum is the area between the t axis and 
the velocity profile given by the u,-'s, while the right-sided sum is the area between 
the t axis and the velocity profile given by the v/s . What happens as the partition 
becomes finer and the size of every cell in the partition approaches zero (tj — tj-\ 
approaches zero for each j)l 

Assuming that the area between the initial velocity curve and the t axis is well 
denned, as the partition becomes finer, the areas given by YTj=\ ^xj anc* YTj=\ &xj 
approach one another. Then the difference in the initial and final positions is the 

*Uf) - * t t ) = Yi(fHo) + y2(f2-fi) +y3{t3-t2) + ■■■ +ye(ta-t7) 

<x(tl)-x{ti)< 

x(f() -xifl) =V1(f,-y + Mf2-f,) +"v3(i3-f2) + ... + 7e{tf-t7) 

Figure 6.8 Underestimate and overestimate of the relative position. 
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x((j)-x(fi) = shaded area under line = if- f, 

Figure 6.9 Position given by shaded area. 

common limiting value, which is the area between the velocity curve and the t axis: 
n n 

x{t() — x(t\) = lim y ^ A j : , = lim T^ v,(i; - i;-i) 
fl->oo *—' J n->oo '—^ J 

7=1 7=1 
n n 

= lim S^AXJ= lim y^ü,(f ,• — i,_i) (6.6) 
n->oO'<-—' n->oo ^—' 

7=1 7=1 
Note that as the partition becomes finer the number of elements in the partition 

becomes indefinite. Determining an object's relative displacement, x(t{) — x{t\), from 
the object's velocity profile, v(t), is known as integrating the velocity over the interval 
from t\ to if. We illustrate integration with a simple example. 

Consider the case when an object moves with the velocity v{t) = 2i and examine 
the difference in the object's position between two times t\ and if. From the above 
discussion, the difference in the object's position, jc(if) — x{t\), is given by the area 
under the line, as illustrated in Figure 6.9. The area is the difference in area of the two 
triangles; the larger triangle has area tj and the smaller triangle has area tf: 

JC(/f) - Xfo) = ±v(tf)tf - tV(ti)ti 

= j2tftf - 22?iíi 

= if - ij2 (6.7) 

Remarks 

The inequalities of equation (6.5) may yield positive as well as negative values 
for the displacement x(t{) — *(ij). This comes about by specifying positive and 
negative directions of motion. In the case that the displacement is positive, the 
graph of the velocity tends to be above the time axis. Alternatively, in the case 

• 
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when the displacement is negative, the graph of the velocity tends to fall below 
the time axis. 

• Archimedes' estimation of n squeezes the quantity between upper and lower 
bounds. In his work On Floating Bodies (2002), Archimedes adopts the same 
approach for estimating the volume of paraboloids and then finds the actual 
volume by allowing the upper and lower bounds to approach one another. 

6.1.4 Relations Between Differentiation and Integration 
and the Fundamental Theorem of Calculus 

The fundamental relationship between velocity and position is that if the position of 
an object is known over a time span, the velocity can be determined (differentiation); 
alternatively, if the velocity of the object is known over the time span, the relative 
displacement can be determined (integration). We explore this in some detail. 

Suppose an object is in motion and t\ is set as a fixed time. Let x(t) be the 
position of the object. Next imagine another coordinate system, x, that shifts the 
original coordinate, x(t), by the object's initial position, x(t) = x(t) — x(t,), so that 
x(t[) = 0. Note that in both coordinate systems the velocity is the same. After all, it is 
the same object with the same motion. Accordingly, the differentiation of the position 
expressed in either variable results in the same velocity: 

at at 

Note that x(t) is the relative displacement found by integrating the velocity v 
through the time interval from t, to t. Equation (6.8) explicitly shows the relation 
between differentiation and integration and is the fundamental theorem of calculus. 

Let us apply this principle to the examples from Sections 6.1.2 and 6.1.3. In 
Section 6.1.2, an object's position is given, x{t) = t2. It was found that the velocity 
is v(t) = dx/dt = It. In Section 6.1.3, the velocity profile is given, v(t) = 2t. As 
the velocity profiles of these examples are identical, the relative displacement must 
also be identical. The displacement given by equation (6.7) is indeed consistent with 
the position, x(t) = t2. [Using the position from x(t) = t2 to x(tf) — JC(ÍJ) results in 
equation (6.7).] 

Remarks 

• Isaac Barrow spent his mathematical career creating a mathematical repre-
sentation of motion that would relate velocity and position. All that has been 
presented to this point was known to Isaac Barrow, who built upon the work of 
Pierre Fermat (1601-1665). Because Newton's legacy overshadows Barrow's, 
Barrow does not receive his due credit as the discoverer of the fundamental 
theorem of calculus. 

• Newton and Leibniz went well beyond Barrow in many areas. This book 
presents a glimpse of their contributions, including methods to calculate deriva-
tives and integrals, as well as Newton's application to planetary motion. 
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It may be instructive to apply the definition of the derivative to obtain equation 
(6.8): 

di~,™ >• x(t + A)-x(t) 
— lx(t)] = hm 
dt A^O A 

[x(t + A) - x(t;)] - [x(t) - x(ti)] 
= hm 

A^O A 
,. x(t+A)-x(t) 

= hm 
A^O A 

d 
= T[x(t)] 

dt 
= v{t) 

6.1.5 Integration, Leibniz' Notation, and the Fundamental 
Theorem of Calculus 

Although there is an equivalence between the area under a curve and the position of 
an object as demonstrated in Section 6.1.3, Leibniz did not approach calculus from 
this perspective. For Leibniz, integral calculus was purely the determination of areas 
under a curve. We follow Leibniz' approach as it is the most natural way to introduce 
his notation. 

Leibniz' starting point was the approximation of the area by sums. In Section 
6.1.3, an underestimation and an overestimation are presented, and the estimates 
converge to the area as the number of partition elements increases. Recall the notation 
in which the curve is given by v(t): 

E tej < E Axi = •*('<•) - *Ci) ̂  E Ãí/ 
7=1 7=1 7=1 

àXj = Vj(tj - tj- 1) AXj = Vj(tj - tj-1 ) 

tx— to < t\ < Í2 < Í3 < ■ • • < tn = t{ 

Note that the middle term, x(tf) — x(t\), representing the area under the curve, 
may be negative (Figure 6.10). Leibniz' interpretation is that when the function v(t) is 
negative the region between the function and the t axis is assigned the negative value 
of the corresponding area. 

Substituting the values of Ax; into the sums yields the following: 
n n 

E Mj < x(t() - x(ti) < E A*i 
7=1 7=1 

« n 

E Vj(tj - tj-x) < x(t() - x(ti) < E Vjitj - t;-\) (6.9) 
7=1 7=1 

E a-, A?/ < x(U) - x(t;) < E »i A'i 
7=1 ' 7=1 

where At/ = tj — tj-\. 
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Figure 6.10 Positive (gray) and negative (black) areas of integration. 

We consider only curves in which the area is well defined so that the 
underestimates converge to the overestimates. Accordingly, for ease of exposition, 
it is only necessary to consider one case. It is possible to choose either underestimates 
or overestimates, whichever is most convenient. Leibniz then examined the limiting 
case when the length of all cell intervals, Aiy, approaches zero. His notation as the 
limiting case is considered in the following equation: 

— x(ti) = lim > T5,Ar,= / v(, 
n->oo ^—' I, 

x(tf)-x(tj)= lim 2_^,VjAtj= I v(t)dt (6.10) 

The final term on the right-hand side is read as "the integral of the function 
u(r) between t\ and if." The symbol J is known as the integral sign. Leibniz chose 
a stretched-out S to indicate that this is a summation. The value fj' v{t) dt is known 
as the definite integral, indicating that a well-defined area between t\ and if is being 
assessed. Notice the use of "dt" to represent the limiting length of the partitions. This 
is by design similar to the notation of the derivative, dx/dt, in which "dt" denotes 
a limiting length of an interval shrinking to zero and dx/dt is the ratio of shrinking 
intervals. Heuristically, Leibniz considered integration to be the operation of summing 
up an infinite number of rectangles with height v(t) and base "dt." 

Placing this notation into the fundamental theorem of calculus, equation (6.8) 
results in the following: 

-[*(<)] = v(t) 

Some attention to the notation is worthwhile. Note that t is considered a variable 
so that the integral is a function of t and it makes sense to take the derivative with 
respect to t. Also, note the use of the variable r following the integral sign. A letter 
different from t was chosen since / is the uppermost limit of the interval of integration. 

Integrals are rarely assessed using the definition equation (6.10). Instead, one 
assesses integrals using a grab bag of approaches that are sometimes useful and 
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Figure 6.11 Underestimation of the integral by rectangles. 

sometimes not (methods are introduced in subsequent sections). Nevertheless, in 
some instances it is possible to apply the definition, and it is instructive to go through 
one such example. Consider the case v(t) = t2. Let t\ = 0 and if be any number greater 
than zero. Let the interval of integration be partitioned into n cells of equal size; for 
each cell, Atj — // — tj-\ = tf/n. It follows that t\ = to = 0, t\ = t{/n, ti = 2tf/n, 
and in general f; = jtf/n. Also, for each interval 

Placing these values into the inequalities of equation (6.9) results in the 
following: 

n n 
Y^Vj Af/ < x(if) - x(ti) < ^Vj At, 

" t " t 
y ] í | - r < J ( ( í f ) - J « i ) < E í r (6-12) 
t-^, .1 n is .1 n 

7=1 7=1 

The table below presents values for the left- and right-hand sums for partitions 
having 1-10 cells. Figure 6.11 corresponds to the table with the number of partitions 
set at 5 (the first cell has zero area). In both the table and the figure, if = 1. 

Number of cells 5 10 15 20 25 30 
Lower sum 0.24 0.285 0.3007 0.3088 0.3136 0.3137 
Upper sum 0.44 0.385 0.3674 0.3588 0.3536 0.3502 

The table suggests that the left-hand side and the right-hand side converge as 
the number of cells increases. What happens in the limit as the cell sizes Atj = \/n 



2 1 2 CHAPTER 6 THE SLAYER: CALCULUS 

all approach zero (equivalently allow the number of cells, n, to become indefinitely 
large)? To answer the question, it is necessary to apply some algebra. The induction 
result of Section 4.5.3 is useful. Recall the result 

n 

7=1 

It follows that 
n n—1 

•2 

7=1 7=0 

= \(n - l)3 + \{n - l)2 + i(n - 1) 

= jn 3 - \n2 + \n 

Simplifying the left-handed expression of equation (6.12) results in the follow-
ing: 

7=1 v ' y=i 

= ©'G"M" 2 ! 
+ 6n 

"" íf V3 2n + 6n2 

We can now take the limit as n becomes indefinitely large: 

.. ^fU-i)tf\2tf , / i l l 
hm > - = hm ti [- + — + —-z 

7=1 

3 

The answer results from insignificance of the terms l/(2n) and l/(6n2) as n 
becomes indefinitely large. 

A similar calculation on the right-hand side of equation (6.12) results in the 
same answer. 

2 

7!->00 z ' \ It / n 7!->00 V / J / Z _ " ' 
7=1 7=1 

,. / í f \ 3 / l , 1 2 1 
= 1 , m (n) ( j B +=" + 7" 7i->oo \ n / \ 3 2 

1 
óT2 

7,-^co f \ 3 2n 

/3 



6.2 MORE MOTION: GOING IN CIRCLES 2 1 3 

Both the left-hand side and the right-hand side of the inequality approach the 
same value, so the object moves a distance of 5 tj between the times 0 and if. Note 
that when if = 1 the value of the definite integral is | . The previous table indicates 
that the estimates obtained by partitioning indeed approach j . 

Using Leibniz' definition of the integral, we have found 

But we have found more. The relation between velocity and position as 
expressed in the fundamental theorem of calculus allows us to also conclude the 
following: 

Í ( T ) - " 
So in addition to the value of the integral, the derivative of the function | i 3 

has been determined. How do we interpret this result in terms of displacement and 
velocity? If the position of an object is given by the function x(t) = ^í3, then its 
velocity is given by v(t) = t2. Conversely, if an object's velocity is given by v(t) = t2 

and the position at time t = 0 is zero, then the position for any time is given by 
x(t) = Ir3. 

6.2 MORE MOTION: GOING IN CIRCLES 

Copernicus was partial to circles and uniform circular motion. In fact, to Copernicus, 
one of the more displeasing elements of Ptolemy's universe was the introduction of 
equants that caused planets to move with non-uniform speed. Copernicus could not 
eliminate the epicycles because observations of the planets confirmed that they did 
not move in circular orbits, but he did eliminate equants. Recall that by reason of 
symmetry circular orbits are compatible with Kepler's view that the sun's force on 
an object is determined by the object's distance from the sun. By studying circular 
motion at constant speed, Kepler recognized that the angular momentum of the planet 
is constant and reasoned that a planet following an elliptic path must respect this 
property. In this section, we examine circular motion and receive a bonus for the 
effort. Formulas for the derivative of the sine and cosine functions fall out of the 
process. 

The study of circular motion forces us to generalize the concept of velocity from 
linear to planar motion. A moving object's position in a plane can be expressed as a 
vector X(t) in which the entries are time-dependent functions, X(t) — (x(t) y(t))T. 
(Recall a capital T is used to indicate the transpose of the row into a column 
vector.) The velocity of the object is defined in a manner similar to that of the velocity 



2 1 4 CHAPTER 6 THE SLAYER: CALCULUS 
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y * ( f 0 + 2 ) \ 

Figure 6.12 Approximating the velocity vector. 

in a single dimension: 

V(t) = lim 
A^O 

lim 
A^O 

X(t + A) - X(i) 
Ã 

1 

Ã 

WO] 

The equation states that the velocity of a position vector is the derivative of its 
components. As notation, we use V(t) = (vx(t) vy(t))

T; that is, 

vx(t) = TU(t)] 
at 

d 
Vy{t) = -[y{t)} 

at 

Figure 6.12 illustrates the process of determining the velocity vector at a po-
sition X(/o). An object's pathway is given along with the position X(to). A second 
position, X(t + A), is considered. The vector W& = [X(t + A) — X(t)]/A lies on 
the line between the two points. The vector W& approaches the velocity vector as 
A approaches zero. Note that, similar to Figure 6.5, the line segments between the 
points X(to) and X(t + A) approach the tangent line to the curve at the position X(to). 
This means that the velocity vector is tangent to the curve. Figure 6.13 illustrates an 
object's pathway along with the velocity vector at different times along the path. As 
noted, the velocity vector is always tangent to the curve. 

We next determine the position and velocity of an object moving about a circular 
path centered at the origin at constant speed. The position vector at a point in time 
is obtained by applying a rotation matrix to the initial position. We assume that the 
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W3)MW) 

V(t3) 
vM = o 

Figure 6.13 Velocity vector always tangent to curve. 

initial position is along the x axis: 

X{t) = 
cos[6>(r)] -sin[6>(i)] 

sin[#(f)] cos[#(r)] 

The value r is the radius of the motion. It is necessary to determine 6(t). Note 
that, by assumption, the initial angle is zero, 0(0) = 0 . As the speed of the object 
is constant, the rate at which the angle changes, jjjO(t), is also constant, jt9(t) = a>. 
It follows from Section 6.1.1, where the relation between constant speed and linear 
motion is presented, that 0(t) = cot with w a constant: 

X(t) 
cos(a)/) — sin(wr) 

sin(o)f) cos(wi) 

COS((Dí) 

sin(a)i) 

The velocity vector is found by differentiating the position vector, but there is 
an alternative way. The direction of the velocity vector can be determined by noting 
that the velocity vector is tangent to the circle. Additionally, the length of the velocity 
vector can be determined by noting that the velocity vector's length is the object's 
speed. Knowing the direction and the length allows us to specify the velocity vector. 
The details of the calculation follow. 

In Section 4.3.3, the tangent line to a circle is found; the result is that the tangent 
line is perpendicular to the position vector. As the velocity vector lies along the tangent 
line, it is also perpendicular to the position vector and points in the direction of the 
motion. The vector WQ — (0 l)T is perpendicular to the initial position and points 
in the direction of the velocity. Furthermore, the rotation matrix maintains the angle 
between two vectors; applying the rotation matrix to the vector (0 l)T results in a 
vector that is always perpendicular to the position vector Xt and always points in the 
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X(() = R,X0 

m = Wo. 

Figure 6.14 Velocity vector for circular motion. 

direction of the velocity (Figure 6.14). The vector W(t) — RtWo given below points 
in the direction of the velocity vector: 

R,W0 = 
cos(&>/) —sin(o)/) 

\ sin(a)i) COS(ÍWÍ) 

( -sin(oií) \ 

COS(ÍDÍ) I 

W(t) 

The vector W(t) has a constant length of 1. Since V(t) and W(t) point in the 
same direction, V(i) is a multiple of W(t), V(t) = sW(t), for some scalar multiple s. 
In fact, since the length of W(t) is 1, s is the length of V(t) and the speed of the object. 
Also, the distance that the object travels in time / is r6(t) = rwt, giving a constant 
speed of s = rco. [Here rO{t) is the arc length of the object's path through the angle 
9(t).] The velocity vector can now be specified: 

V(t) = sW(t) 

vx(t)\ _ / - s in(wi) ' 
Vv{t) I \ COS(cüf) 

= rco 
—sin(wi) 

cos(«f) 

Relating the velocity vector to the derivative of the position yields the following 
derivatives: 

dt 
[x(t)] = vx(t) 

dt 
[r COS(CÜÍ)] = — ru>ún{íot) 
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TWO] = l>v(0 
at 

— [rsin(ft)i)] = nwcos(o>/) 
at 

Setting r and co to l results in the derivatives of the sine and cosine functions: 

d d 
— [cos(0] = -sin(f) —[sin(i)] = cos(i) (6.13) 
dt dt 

Remark. The tangency of the velocity vector to the curve can be demonstrated 
as follows. The slope between two points is given by t and t + A: 

Slope 

Tangent slope = lim 

y(t + A) - y(t) 
x(t + A) - x(t) 

y(t + A) - y(t) 

A^O x(t + A) - X(t) 

y(t + A) - >-(i)A 
= lim 

A^O x(t + A) - x(t)A. 

The above calculation holds provided that fjj[x(t)] is not zero. In the case that 
jt{x{t)] is zero, the tangent is not defined. This corresponds to a vertical line. 

6.3 MORE DIFFERENTIAL CALCULUS 

While Barrow discovered the fundamental theorem of calculus and was able to differ-
entiate a few functions, both Newton and Leibniz discovered rules that allow them to 
differentiate large classes of functions. Using the rules, the problem of differentiation 
is turned into a rather mechanical process involving algebraic manipulations; to un-
cover the ellipse, it is necessary to become familiar with the mechanical process. This 
section first presents the mechanics in a stripped-down, just-the-facts manner. The 
concept of higher order derivatives is also presented. Finally, there is an excursion 
that includes a more thorough treatment of the mechanical process of differentiation, 
the exponential function, and a proof of the identity that Aristarchus uses as presented 
in Section 6.3.4. 

The starting point for the mechanical process is the following table of derivatives 
for a very short list of functions. In subsequent sections, the table is used to differentiate 
more complicated functions. 
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Function 

sin(f) 
cos(/) 
/" 
c = constant 
e' 
ln(/) 

Derivative 

cos(/) 
- sin(i) 
nt"-] 

0 
é 
if 

6.3.1 Differentiation Rules 

There are five differentiation rules. These rules are bridges between extremely com-
plicated expressions and the simple functions of the table presented above. The rules 
are presented along with examples of their use. 

Rule 1. Additive rule 

^-[x(t) + y(t)]=^-[x(t)] + ^[y(t)] 
at at at 

Example: Determine ^[sin(i) +12]. Using the additive rule and the above table, 

^[sin(í) + í2] = ^-[sin(í)] + 4 ( í 2 ) at at at 

= cos(i) + It 

Rule 2. Multiplicative constant rule 

When the value c is a constant value, 

d d 
— [cx(t)] = c—[x(t)] 
dt dt 

Example: Determine 4(3i5). Solution: 

d * d * 

= I5t4 

Rule 3. Multiplicative rule 

^ WOv(r)] = x(t)^[y(t)] + y(t)^-[x(t)] 
dt dt dt 

Example: Determine Jj[r cos(f)]. Solution 

— [í3cos(í)] = t3— [cos(t)] + cos(t)—(t3) 
dt dt dt 

= -t3 sin(r) + 3i2 cos(r) 
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Rule 4. Quotient rule 

Example: Determine 

d fx{t)\ y(OjtMt)]-x(t)jt[y(t)] 

dt \y(t)J (y(t))2 

d d / s in ( i ) \ 
— [tan(i)] = — ( — — 
dt dt\cos(t)J 

Solution: 

- I dt ' 

If 

d d 
cos(i)—[sin(r)] — sin(f)—[cos(i)] 

, dt dt 
cos2(i) 

cos2(i) + sin2(i) 

cos2(i) 

1 
cos2(i) 

= sec2(/) 

Rule 5. Chain rule 

dt dy dt 

Example: Determine 4[sin(;3)]. Set y = i3: 

^-[sin(i3)] = ^-[sin(>»)]^-(i3) 
dt dy dt 

= —cos(y)3t2 

= -3í2cos(í3) 

6.3.2 Notation and the Derivative at a Specified Point 

We have used the notation ^ and 4_ [*(/)] to represent the derivative of a function 
which is another function. The notation x'(t) is also commonly used for the same 
purpose. The following notation for the evaluation of the derivative at a specified 
point io is common 

-r \t=t0 -r(x(t)) |,=/0 x'(f0) dt at 

Example: Find the derivative of the function x = tan(i) at the time t = it. 

From the example following rule 4 in Section 6.3.1, 

dx d , T 
— = -[x(t)]=x'(t) = sec2(t) 
dt dt 
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Evaluating the derivative at t — n results in the following: 

dx d ; 2 
— Ir=7r= —WO) \t=n= X (jr) = s e c ^ ) = 1 
dt dt 

6.3.3 Higher Order Differentiation and Examples 

The result of differentiating a function is another function. At times it is of interest to 
differentiate the resulting function, and this is known as taking the second derivative. 
One can continue to take the third derivative, fourth derivative, and so on, ad nauseam. 
There are many applications where taking a higher order derivative is useful; New-
ton's laws of motion are based on the second derivative. In this section, notation is 
introduced through examples. 

An additional benefit of the examples is that they illustrate the use of the dif-
ferentiation rules. As noted above, the rules are bridges toward a simplification that 
requires only the derivatives of the elementary functions listed in the table at the 
beginning of the section. The reader is encouraged to identify the rule used as the 
expression is morphed into a more congenial form. 

Example 6.1 

d , d2 -, 

dt(t) df(t) 

dt dt2 dt \dt 

d 2 

= dti3t) 

d , 

= 6i 

Example 6.2 

(ti 1- (t3) 

d? , 
d7{t) 

did2 

~ dt \dt2 

d 

= 6 

(ti Idt* 
(t3) 

d4 3 
dt4^ 

did3 , ■ 

=itWt) 

= 0 

d d2 

T [sin(50] -jj sm(50 
dt dt2 

d , . . d . d . d2 , . . , did . [sin(50] = — [sin(>0]-(50 -JJ [sin(5r)] = - - [sin(50] 
dt dy dt dt1 dt \dt 

= cos005- (0 = - [ 5 c o s ( 5 0 ] 
dt dt 

d 
— 5 cos(50 = 5 — [cos(50] 

dt 
d d 

= 5 — [cos(>')]-(5i) 
dy dt 

d 
= -5sin(>')5—(0 

dt 
d 

= -25sin(50—(0 dt 

= -25 sin(50 
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Example 6.3 

(Uses results of Examples 6.1 and 6.2) 

— (V sin(5i)) = f3— [sin(5i)l + sin(5t)—(S) 
at \ ) at at 

= 5f3 cos(5i) + 3í2 sin(5í) 

dt2> -^■[i3 sin(5f)] = — ( — it3 sin(5i)l ) = — ht3 cos(5í) + 3í2 sin(5í) 
at1 at \dtL J at I 

= 5— [r3 cos(5r)l + 3— íí2 sin(5í)l 
ai at 

= 5 (V3^[cos(5f)] + cos(5í)^(í3)J 

+ 3 f í2 —[sin(5í)] + sin(50—(í2) 

Example 6.4 

dt dt 

= -25r3 sin(5f) + 15i2 cos(5f) 

+ 15f2 cos(5f) + 6í sin(5í) 

= -19i 3 sin(5i) + 30í2 cos(5í) 

d ( •> } d d -> 
— \ sin[cos(i2)] \ = — [sin(y)] — [cos(f2)] 
dt y. > dy dt 

d 2 
= cos(y)—-[cos(r)] 

dt 

= cos[cos(r2)] — [cos(z)]—(i2) 
dz dt 

= -cos[cos(r2)]sin(z)—(i2) 
dt 

= -cos[cos(í2)]sin(í2)—(í2) 
dt 

= -2cos[cos(/2)]sin(í2)f 

With a little practice, it is possible to differentiate the above expression quickly 
to obtain the second derivative. The reader might want to get out paper and pencil 
and fill in the missing steps to the solution given below: 

—j jsin[cos(r2)]] — — j-2ícos[cos(í2)]sin(í2)j 

= -2cos[cos(í2)] sin(í2) - At1 cos[cos(í2)] cos(í2) 

- At1 sin2(í2) sin[cos(/2)] 
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6.3.4 Differentiation and the Enquirer 

The preceding material in Section 6.3 requests that the reader accept on faith both the 
initial table of derivatives (except for sine and cosine presented in Section 6.2) and 
the rules of differentiation. The inquiring mind may wish to understand the basis for 
the rules of differentiation and derivatives of the elementary functions. This section 
responds by providing both heuristic and formal arguments. 

Additionally, the exponential and logarithmic functions introduced in the table 
on page 218 are ignored in the subsequent material. While not necessary for pursuing 
the ellipse, these functions are central to many core concepts that are approached 
through calculus and are a part of the calculus curriculum that is taught as an in-
ternational standard. For this reason, it is not possible to write a book that includes 
calculus without some mention of the exponential and logarithmic functions, so I feel 
compelled to include the material. This section also includes a demonstration of the 
identity used by Aristarchus, equation (5.4). The reader may skip this section and still 
follow the remaining material. 

6.3.4.1 Heuristic Understanding of the Addition Rule 

^-[x{t) + y{t)] = ^-\x{t)} + ^-[y{t)} 
dt at at 

A physical example of the additive rule offers some insight. Imagine two trains going 
down a straight railroad track, A and B, with A in front of B. Also imagine a stationary 
observer, C, as in Figure 6.15. In this setup, the distance from B to A is given by x(t), 
the distance from C to B is y(r), and the distance from C to A is z(t) = x(t) + y(t). The 
additive rule states that given the relative velocity of train A with respect to train B, 
jt [JC(0], and the velocity of train B with respect to the stationary observer C, ^ [y(t)], 
the velocity of train A with respect to the stationary observer is the sum of the two 
given velocities: 

Tfiz(t)] = -\x(t) + y(t)] = ~[x(t)] + i[y(t)] 
at at dt at 

6.3.4.2 Heuristic Understanding of the Multiplicative Constant Rule 

d d 
-(cx(t)) = c - W O ) 
dt dt 

As with the addition rule, intuitive reasoning guides us toward the multiplicative 
constant rule. Once again using the train analogy, suppose that train B's position from 

Figure 6.15 Addition rule. 
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observer C is given by x(t) and train A's position is always c times that of train B. If 
y(t) is the position of train A as viewed by observer C, y(t) = cx(t). Then train A is 
moving c times as fast as train B: 

7W)] = 7Mi)] = 4 w ) ] at at at 

6.3.4.3 Heuristic Understanding of the Chain Rule 

^{x[y{t)W = - W ) - ) ] - W i ) ] 
at ay at 

Once again the analysis of a physical problem affords insight. Suppose that an Ameri-
can is standing next to a European and the European continuously records the distance 
to a moving train in meters. The distance is represented by y(t). Next suppose that 
the American wishes to have the record of distances in feet, so he has a process that 
converts meters to feet. The conversion process is represented by x(y), so the record of 
the distance to the train in feet is given by Jt[y(f)]. To get the speed in feet per second, 
one finds the speed in meters per second, jt[y(t)], and then multiplies it by the ratio 
indicating the train's change in feet over its change in meters, ^[x(y)]. Hence, 

^r{x[y(t)]} = ^-[x{y)]í-[y(t)] 
at ay at 

This intuition is more evident using the notation 

dx dx dy 
dt dy dt 

The expression states that the change in feet per change in time is equal to the 
change in feet per change in meters multiplied by the change in meters per change 
in time. The change in meters, dy, cancels on the top and bottom to give the desired 
answer. 

6.3.4.4 Formal Derivation of the Multiplication Rule 

7[x(/))'(/)] = x(t)^-[y(t)] + y(t)í-[x(t)} 
dt dt dt 

Below, a formal argument of the multiplication rule is presented. A similar 
argument can be made to formalize the other rules as well. The argument appeals 
directly to the definition of the derivative, equation (6.3). 

Begin by noting the following approximation: 

x(t + A) % x(t) + v(t)A = x(t) + — [x(t)]A 
dt 

Solving for the difference in position x(t + A) — x(t) results in the approxima-
tion x(t + A) — x(t) ^ $j[x(t)]A. The approximation indicates that during a small 
time increment A an object roughly moves through a displacement that is determined 
solely by its velocity at the beginning of the increment and the length of the increment. 
This is not an equality because as the object moves from its position at time n o a new 
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position at time t + A the velocity is not necessarily constant but may change. Let us 
eliminate the approximation using a correction term that we denote by £(f, A): 

x(t + A) = x(t) + -[*(*)]A + ç(f, A) 
at 

x(t + A) - x(t) - Ç(f, A) = - [ J C ( Í ) ] A 

at 

Dividing the second equation by A and taking the limit as A approaches zero results 
in the following: 

x(t + A) - x(t) - Ç(Í, A) d 
lim = — [x(t)\ 
A-*0 A dt 

From this one can conclude that liiriA^o £(?< A)/A = 0. This will be useful in 
the following derivation: 

[x(t)y{tj\ = Hmo i [x(t + A)y(t + A) - x(t)y(tj\ 
dt 

= lim — 
A^O A 

4i) + ^W0]A + ^(r,A) 

x ( y{t) + jtly(t)]& + Çy(í, A)) -*(i)y(r) 

lim — 
A-*0 A 

x(t)y(t) + x(t)-[y(t)]A + x{t)t;y(t, A) + y(t)-[x{t)]A 

= lim — 
A^O A 

— lim 
A^O 

+ ■ 

+ k(f, A)-[y(f)]A + Ç,(f, A)Çv(í, A) - *(í)y(í) 

x(t)^-[y(t)] + y(t)^-[x(t)]) A + ^-[y(t)Ax(t)]A2 

dt dt ) dt dt 

+ k(r, A / V ( Í ) + ~[yit)]^\ + ÇyC. A) f*(f) + ^ WO] A 

+ £,(/, A)ÇV(Í, A) 

JC(0^[3<0] + y(t)~[x(t)]) + j [ j ( t ) ] j [Jt(/)]A 

(í, A)(y(t) + Jtíy(t)]A Çy(t, A)(x(t) + ^ [*(*)]A 

+ A 

+ 
k(f, A)Çv(í, A) 
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= lim ( x(t)^-[y(t)] + y(t)^- [x{t)]\ + lim ( ^[y(t)]^-[x(t)]A 
A^O \ at at I A-s-o V at at , 

+ lim 

Çx(t, A) ( y(t) + j([y(t)]A 

A^O A 

^ A ) ( , ( Q + ^ ) ] A ^ , A ) ^ , A ) 

+ lim — + lim = 
A->0 A A^O A 

= x(t)^-[y(t)] + y(t)^-[x(t)] 
at at 

The above derivation assumes that both jjj[x(t)] and ^[y(t)] are well defined. 
The derivation also makes use of an additive property of limits—the limit of sums is 
the same as the sum of limits—which equates expressions above and to the right of 
the sixth equality sign. The final step makes use of the fact that a limit of factors is the 
same as the factor of limits. Within the expression above the final result, the second 
term disappears since the factor A goes to zero. The remaining terms all disappear 
since the factors Çx{t, A)/A and £v(i, A)/A both go to zero. Note that within the 
limiting expression to the right of the fifth equal sign the terms are lined up as a 
first-order term in A, a second-order term in A, and the expressions involving Çx or 
| v . The only term that survives the limiting process is the first-order term in A, which 
is typical for an argument of this type. 

6.3.4.5 The Derivative of x(t) = /" In this section, differentiation of functions 
of the type x(t) = t", where n is any real number, is considered. The presentation is 
in cases, starting with positive integers and proceeding to negative integers and then 
to rational numbers and finally to any real number. 
Case 1. n a positive integer. 

The method of induction by the Muslim mathematician Al Karaji is the 
perfect tool for our purpose. Recall that there are two stages to the method. 
The first is to demonstrate that the statement is true for some starting value. 
This stage is already complete; the method is true for the starting value n = 1, 
as demonstrated in Section 6.1. The second stage is to demonstrate that if 
the identity holds for arbitrary n, then it holds for n + 1, showing that under 
the assumption Jp(f") = nt"~l it is true that ft(t"

+l) = (« + i)t": 

at at 

d „ „ d 
= t-(t") + t"-(t) 

at at 

= tnt"-] +tn 

= nt" +1" 

= (n+\)t" 

The second stage is successfully demonstrated and case 1 is complete. 



2 2 6 CHAPTER 6 THE SLAYER: CALCULUS 

Case 2. n = —q with q a negative integer. 
Case 2 proceeds in a manner similar to case 1; the method of induction is 
used on the integer q. For this case, it is noted that the function t~q is not 
defined at the point t = 0, so the expressions below assume nonzero values 
for t. There is a little more work to be done; stage 1 is first established with 
q — 1. To accomplish this, the following identity is obtained by long division 
and placed into the definition of the derivative: 

1 

i + A 

I ('-') 

1 A A2 

~ / t2 + t2(t + A) 

r l ( l l \ 
— nm ( ) 

A^O A \t + A t ) 
1 / 1 A A2 

— lim — 1 =• + -s 
A^O A \ i t2 t2(t + A) 

,. 1 / A A2 \ 
= lim — — T + -z 

A^O A V t2 t2(t + A)J 
r ( X A \ 

= lim — -x + -x 
A^OV t2 t2(t+A)J 
, ■ ( X \ r A 

— l i m 1 1 1 1 í m 
— n m i T 1 i n m T , 

A-+0 \ t2) A ^ 0 f 2 ( i + A ) 

1 

= -r2 

l 

t 

Stage 1 is a success as the result matches the proposed derivative, jt{t q) = 
—qt~(q+^ when q = 1. We proceed to stage 2. Assume that the proposal 
holds for an arbitrary positive integer value of q = — n and demonstrate that 
| ( r(9+l)) = _(9+l)r(i+2). 

at at 
\ d „ „d i = rl

T(t-«) + r«-(r{) 
at at 

= -qt-lr^+l)-r"r2 

- _9 i-(</+2) _ t-(<i+2) 

= -(q+\)t <q+2) 

The second stage is successfully demonstrated and case 2 is complete. 

Case 3. n = \/q with q a positive integer. 
Once again the same strategy is taken; apply al-Karaji's method of induction 
for positive and negative integers. This case is left to the reader. 
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Case 4. n a rational number. 
As n is rational, n = p/q with both p and q being integers. The derivative is 
found by applying the chain rule. 

Let y(t) = t'> and x{y) = y]/t<. Then x(y(t)) = (t'')]/ii = t''^: 

djA^) = jMym 

- I-y.l/^-lpf/'-l 

q 

q 

= Efi'/i-i'+i'-i 
1 

= tti>li-\ 
q 

= nt"-{ 

Case 5. n any real number. 
For this case, an arbitrary sequence of rational numbers that approaches the 
real number n is investigated. Since the derivative associated with each ratio-
nal number follows the general formula, and the rational number approaches 
n, it can be shown that the derivative approaches the general formula for 
every real number n. 

6.3.4.6 The Quotient Rule 

d (x{t)\ _ y(t)±lx(t)]-x(t)±[y(t)) 

àt \y(t)J [yd)}2 

There is some redundancy in the rules of differentiation. The quotient rule follows 
from the multiplication rule, chain rule, and the derivative of a power. Let z(y) = >'-1 

so that z(y(t)) = l/[y(t)]. 

d fx(t)\ d 

= z[y(t)]^-[x{t)] + x(t)^-{z[y{t)]) 
at at 

jMW d d 
= ^—r-+ x(t)—(z(y))-[y(t)] 

y(t) dy dt 
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dt 
WO] 

y(t) 

dt 
y(t) 

+ x(t)--(y-,)-[y(t)] 
dy dt 

x(t)(y(t)r2 - M O ] 
dt 

^-[x(t)] x(t)^(y(t)) 
dt dt 

y(t) wor 
y(t)jt[x(t)]-x(t)jt[y(t)] 

~ iyW? 
Remark. The quotient rule is not the only redundant rule. The constant rule is 

also redundant as it is a special case of the multiplication rule. 

6.3.4.7 The Exponential Function Let x(t) = a' for some value of a. To find 
the derivative, try to use the definition: 

d . V) 
dt 

lim 
A->0 A 

a A - l = lim a' 
A-.-0 A 

— a' lim 
A^O 

= a' lim 
A-»0 

,à , 
= aTSa) dt 

aA-l 

«A-«° 
A 

/=o 

Figure 6.16 Graph of a' with different a. 
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Tangent line 

.Chord 

Figure 6.17 Approximation of i/(f4)/'dt at t = 0. 

Is there a value of a so that ^(« ' ) |r=n is 1? If so, then there is a function 
x(t) = a' with the property that ^ [x(t)] = x(t). Figure 6.16 shows the graph of x(t) = 
a' for different values of a. Note that, when a — 1, x is constant for all f, and x(t) = 1, 
the derivative of x(t) is zero. If a is less than 1, the value x(t) decreases in t, so the 
derivative of x(t) is negative. Alternatively, as a increases from 1, the derivative of 
x(t) at t = 0 also increases. 

Figure 6.17 shows the graph of x{t) — a'for a = 4. The x coordinates at/ = — j 
and t = 0 are ^ ( - j ) = 4 " l / 2 = \ to x(0) = 4° = 1. The slope of the dashed line 
between these points is 

x(0) - x(- -*> 1 

0 - ( - -*> 
1 

From the graph one can determine that the slope of the tangent line at t = 0 (the solid 
line) is greater than that of the dashed line. So, for a = 4, jt{ot') | /=o> 1. 

When a = 1, Jp(a') lr=o= 0, and when a = 4, ̂ (a ' ) |,=o> 1 • For some value 
of a in between 0 and 4, the derivative at 0 should be 1. In fact, such a value exists. 
Let us denote the value by e. In the next section, we follow Newton's and Leibniz' 
method for determining e. The method uses the defining property of e; the function 
x(t) = e' is its own derivative, fjj(e') = e'. 

6.3.4.8 Power Series and the Exponential Function Power series are polyno-
mials of indefinite order. Both Newton and Leibniz found power series expansions 
for the exponential function. We retrace their steps. 

Assume that é can be expanded in a power series: 

an +a\t + ci2t + ■ =£ a it' 

7=0 
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Assume next that one can find the derivative of é by termwise differentiation 
of the power series; one applies the sum rule to each term of the series: 

d , d d d i d 
-(e) = - ( ao ) + - ( a i O + Tf(a2t

2) + ■■■ + -r{ajtJ) + ■■■ 
dt dt dt dt dt 

= 0 + ax-(t) + a2--(t
2) + ---+ajT(ti) + ---

dt dt dt 

= a\+ 2a2t -\ h jajtj~x + ■■■ 

00 

7=0 

By the defining property of e', both of these power series must be equal. Two 
power series are equal only if each term is identical; this means that the coefficients 
in each power must be the same, aj = (j + \)aj+\, or 

aj+x = j ^ (6.14) 

These relations form an infinite set of equations that we next solve. 
As a starting point, setting t = 0 determines the value for ao since all other 

terms in the power series vanish: 

e° = a0 = 1 

It may be helpful to write a few terms and see if a pattern emerges. 

a\ \ a2 1 «3 1 
a\ = ÜQ = 1 a2 = — = — «3 = — = - — - Ü4 — — 

3 2 x 3 4 2 x 3 x 4 

The pattern that emerges is aj — l/j\, where the symbol "!" represents the 
factorial function over positive integers, j \ — 1 x 2 x 3 x • • • x j . Using induction, 
one can check that the solution aj — 1/j! is correct. This solution satisfies equation 
(6.13) and allows one to match the known quantity e° = ao = 1. 

Having found the power series, it is possible to approximate the number e by 
setting t = 1 and summing a reasonable number of terms from the power series. 
Summing the first six terms gives the following: 

e ^ l H 1 1 1 1 = 1 + H 1 1 1 =2.71666. . . 
1! 2! 3! 4! 5! 2 6 24 120 

After 10 terms, the approximation yields e «» 2.718282, which is correct to six 
digits. 

Remarks 

• In the seventeenth century, both Newton and Leibniz followed their intuition in 
deriving the series expansions for the exponential function. The general anal-
ysis of power series, which includes a rigorous demonstration of convergence 
and justification from term-by-term differentiation, was not finalized until two 
centuries later. 



6.3 MORE DIFFERENTIAL CALCULUS 2 3 1 

Figure 6.18 Inverse of a function. 

• Newton and Leibniz found power series expansions for other functions as well, 
including the sine and cosine functions. 

• The number e is an irrational number. 

6.3.4.9 Logarithms In Section 4.6.4, the inverse of a linear transformation is 
introduced. As indicated in the remarks following Section 4.6.4, an analogous con-
cept exists for the inverse of a function. Given a function x(t), g(s) is its inverse 
provided that both the following equalities are satisfied, g(x(t)) = t and x(g(s)) = s. 
Figure 6.18 illustrates the concept of the inverse. In Figure 6.18a, a function x(t) maps 
the value io to a number so and g(s) maps the number so back to the original value, to. 
The graph can be considered as representing the points (s, g(s)) or the points (t, x(t)). 
In the latter case, the independent variable, t, points in the vertical direction, rather 
than the customary horizontal direction, The reader can graph the function x(t) in its 
standard manner using two steps. First rotate the axis so that the t axis is horizontal 
(Figure 6.18b) and then flip the image around the s axis so that the í axis points to the 
right (Figure 6.18c). 

The inverse of the exponential function is known as the logarithm. Figure 6.19a 
is a graph of the exponential function, while Figure 6.19b is a graph of the logarithmic 
function. Note that because the exponential of any real number is always positive, the 
logarithm is defined only over positive real numbers. 

The derivative of the logarithm function is obtained by applying the chain rule to 
the defining property of the logarithm. Start with exp[ln(i)] = t. Taking the derivative 
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(a) (b) 
Figure 6.19 Exponential and logarithmic functions. 

of both sides and simplifying give the result. Letx(i) = ln(i): 

^ {exp[ln(i)]} = ^ ( 0 
dt at 

^-[exp(*)Aln(i)] = 1 
ax at 

exp(x)-[ln(f)] = 1 
at 

d 1 
:[ln(0] = dt exp(x) 

d 1 
^-[ln(0] = dt exp[ln(i)] 

d 1 
-[ln(r)] = -

Remark. The method demonstrates a relation between the derivative of a func-
tion and the derivative of its inverse: 

y[x(t)] = t 

d d 
-j\y[x{t)}} = - ( 0 
dt dt 

J [ ^ ) ] J [ Í W ] = l 

dx dt 
d 1 
-WO] = dt £[><x)} 

6.3.4.10 A Trigonometric Inequality As discussed in Section 5.6.2, Aristarchus 
used the trigonometric inequality sin(a)/a > sin(/6)//S (whenever 0 < a < p < 7r/2) 
to determine bounds on the dimension of the sun. In this section, we demonstrate the 
inequality. The inequality is identical to the statement that the function sin(6)/6 is a 
decreasing function over the interval from 0 to TT/2. Figure 6.20 illustrates the relation 



6.3 MORE DIFFERENTIAL CALCULUS 2 3 3 

Negative derivative (slope of tangent line) 
where function 
decreases 

Positive derivative 
where function 
increases 

b " 

Figure 6.20 A function decreases (increases) where the derivative is negative (positive). 

between a decreasing function and the slope of its tangent. The function is decreasing 
between the values t = a and t — b, the same interval where the slope of the tangent 
is negative. Conversely, the function is increasing wherever t < a and wherever t > b. 
The figure illustrates that it is necessary to demonstrate that (d/d9)[s\n(9)/9] is less 
than zero in the interval of interest, 0 to it/2. 

d (s\n{9)\ 9% [sin(0)] - sin(0)4(0) 

d0 e2 

_ 0cos(0)-sin(0) 

~ W2 

Within the interval of interest, the derivative (d/d0)[sin(9)/9] is negative pro-
vided that the function f{9) = 9 cos(0) — sin(0) is negative. The function f(6) is 
identically zero when 6 is zero. If the derivative of the function f{6) is negative be-
tween 0 and 7T/2, then the function f(6) decreases from zero and the function f(6) is 
accordingly negative whenever 0 < 9 < JT/2 (Figure 6.21): 

Figure 6.21 A function startin] ig at the origin goes below the x axis with a negative derivative. 
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= e— [cos(0)] + cos(0) - cos(#) 
dO 

= -0sin(0) 

The derivative of the function f(6) is indeed less than zero in the interval of 
interest, 0 < 6 < ;r/2. As stated above, f(0) decreases from zero and is accordingly 
negative. 

Remark. At the points t — a and t — b in Figure 6.20, the derivative of the 
function is zero. These points are known as extrema and play a fundamental role in 
optimization theory. 

6.4 MORE INTEGRAL CALCULUS 

This is the last of the mathematical sections, and it furnishes the final element of all the 
mathematics required to reveal the ellipse. The relations between velocity, position, 
differentiation, and integration are presented in Section 6.1.3. This section follows up 
with methods of integration as developed by Newton and Leibniz. 

6.4.1 The Antiderivative and the Fundamental Theorem 
of Calculus 

In Section 6.3, the fundamental theorem of calculus [equation (6.11)] demonstrates 
the relationship between integration and differentiation. To determine the definite 
integral, it is necessary to find a function x(t) whose derivative is equal to the function 
being integrated, v(t), that is, jt[x(t)] = v{t) [see equation (6.8)]. Leibniz' integral 
sign also indicates this relation: 

I v(t)dt = x(t) + c (6.15) 

Notice that the notation differs slightly from that found in Section 6.1.5. Equa-
tion (6.10) has an interval associated with the integral sign, [fj, if], whereas equation 
(6.15) has no associated interval. Additionally, equation (6.15) contains an arbitrary 
constant, c. The role of the constant is to generalize the result so that it includes 
all possible functions that satisfy the relation ^ [*(/)] = v(f); o n e n o t e s t n a t if x (0 
satisfies Jj [x(t)] = v(t), then so does x(t) + c for any arbitrary constant c. Using the 
interpretation that x represents position with regard to some arbitrary fixed reference 
point, v represents velocity, and / represents time, recall that the definite integral is 
the difference in the relative positions of an object moving with velocity v(t). The 
choice of c sets the arbitrary point of reference for the position, which can be critical 
in applications. 

The result x(t) + c goes by two names, the antidervative of u(i) and the indefinite 
integral of v(t). Mathematicians often generate results through intuitive processes; 
rigorous proofs come later. Leibniz' notation allows one to pursue one's intuition 
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toward correct results, as illustrated in the following equalities: 

dx 
li = m 

dx = v(t)dt 

I dx = v(t) dt 

x(t) + c= / v{t)dt 

So a problem that is originally posed in terms of the derivative is converted to 
a problem that is posed as an integral. 

As noted in Section 6.1.5, the relation between the antiderivative and the definite 
integral is the following: 

/ v(t)dt = [x(tf) - c] - [x(ti) -c]= x(tf) - x(tt) 

The value of c is irrelevant when determining indefinite integrals because rel-
ative positions between two points are the same regardless of the reference point 
against which the two points are measured. Other notation that is commonly used is 
the following: 

n v{t)dt = x{t)\',\ I 
In this notation, x(t) |J[= x(t{) — x{t\). 

We close this section with a method for verifying that an integral is properly 
evaluated. The method is just a restatement of the fundamental theorem, of calculus. 
If one understands differential calculus, it is easy to check whether or not one has 
valued an integral correctly, take the derivative of the result, and make sure that the 
derivative returns the original function being integrated. This fact was made used in 
Section 6.1.5, where it was shown that Jt'

( ltdt = t1 \\\. 

How can one tell? The derivative of the result t2 returns the function being inte-
grated, fjj(t2) = 2t. It is common to refer to the function being integrated as the inte-
grand. Using this parlance, we have verified that the derivative of the integral returns 
the integrand. This method of verification is used whenever one performs an integral. 

6.4.2 Methods of Integration 

This section shows some common methods for integrating functions. This section 
emphasizes commonality between rules of differentiation and methods of integration 
that surface naturally through the relationship between differentiation and integration. 
We start by noting that the derivative table at the beginning of Section 6.3 can also be 
transformed into an integral table by switching columns and applying simple algebra. 
Verification of the entries may be accomplished by assuring that the derivative of the 
integral returns the function as discussed in Section 6.4.1. 
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Function Integral 
cos(i) 
sin(r) 

é 
1/í 

sin(?) 
— cos(f) 

tn+{ 

n + 1 
é 

ln(f) 

6.4.2.7 Linearity Rules: Additivity and Multiplication by a Constant The 
linearity rules of differentiation, the additivity rule, and the constant-multiplication 
rule have identical counterparts for integration: 

/ v(t) + w(t) dt = v(t) dt + w(t) dt 

This is noted by taking the derivative of the right-hand side, applying the addi-
tivity rule for differentiation, and noting that the result is the integrand on the left-hand 
side: 

d 

= v(t) + w(t) 

( / v(t)dt+ / w{t)dt\ = — ( v(t)dt) +j( w(t)dt) 

= s(/"( v(t) + w(t) dt 

Similarly, for a constant a, J av(t) dt = a J v(t) dt. 

Example 6.5 POLYNOMIALS 

The linearity rules combined with the integral for powers allow for the integration of 
polynomials: 

Í2t4 + t3 -7t2-4t + 3dt= j2t4dt+ f t3 dt - j It2 dt - j4tdt+ J 3dt 

= 2 j t4dt+ I Pdt-1 j t2dt-4 ftdt + 3 j dt 

= | i 5 + \t4 - | ? 3 - 2t2 + 3i + c 

In general, 

Jant" ant"+an-it"
 l+an-2t"

 2H \-mt + a0dt 

= — V + -L-Lt" + -O-Lf ' +••• + — t2 + a0t + c 
n + \ n n — 1 2 

6.4.2.2 Chain Rule and the Change of Variables Let the integrand be the 
composite function v(u(t)) in which u{t) has the corresponding derivative ^ . Then 
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the following identity holds: 

v(u(t))dt = v(u) du (6.16) 
J J du/dt 

To show that the identity holds, the derivative of the right-hand side is taken 
and shown to be equal to the integrand of the left-hand side. The chain rule must be 
applied to convert from a derivative with respect to t to one with respect to u: 

d ( f 1 \ d ( f 
— / v(u) du = — / v(u) 
dt \J v 'du/dt ) du\J 

1 \ du 
-du —-

v(u)-

du/dt J dt 

1 du 

du/dt dt 

= w(«(0) 

For the definite integral, the following holds: 

r'i ru('() i 
/ v(u(t))dt= I v(u)-—-du 

Jt-, Juifi) du/dt 

The identity changes the integration from a function over the variable t to a 
function over the variable u. There are times when it is advantageous to make the 
change as illustrated by some examples. 

Example 6.6 

Determine / te' dt. 
Let us change the variable. Let u(t) — t2 and note that du/dt = 2t so that 

1 /(du/dt) = l/(2r). Applying the change-of-variable formula yields the following 
result: 

/ te1 dt — j teu —du 

I -e'du 
2 

= \eu+c 

= -2e' + c 

The result can be checked by verifying that its derivative equals the integrand. 
Note that when taking the derivative of the result the chain rule must be applied with 
u(t) = t2: 

d (\ .2 \ d (\ p\ d, N — \-é + c = — I -e' + —(c) 
dt \2 J dt\2J dt ' 
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\ d „ d 
= 2d-uie)Jt

{U{t)) 

-e'lt 
2 

= te' 
Example 6.7 

Determine / , te' dt. 
Using the result of the previous example with u(t) = t2,u(l) = l,and«(2) = 4 

along with the change-of-variable formula for the definite integral yields the following 
result: 

2 4 

te' dt = - e" du 

= -/ it 

= i<«-«'> 

There are several points of interest in this example. First, it is possible to main-
tain the original range of integration (1, 2) by expressing the result of the indefinite 
integral in terms off rather than u: 

2 

I te' dt = \e'2 2_ I H'4-*1) 
The example also illustrates the geometry of the variable change. Figure 6.22 

presents graphs of the integrands in terms of f and u between their respective ranges 
of integration. Both v = fexp(f2) and w = exp(u) are plotted on the same set of axes 
for ease of comparison. The change of variables from f to u stretches out the interval 

V = t exp(r) W = exp(u) 

Figure 6.22 Change of variables. 
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l/=fexp(f2) W=exp(u) 
Figure 6.23 Partitions before and after change of variables. 

of integration from [1,2] to [1,4]. Recall that the integral is the area between the 
graph and the horizontal axis. If the areas are to be maintained, one must vertically 
squeeze the graph enough to compensate for the horizontal stretching. As expected, 
the graph w = exp(w) is a horizontal expansion and a vertical compression of the 
graph of v = t exp(r2). 

Recall from Section 6.1.5 that the integral is defined as a limit of sums of 
rectangles. Figure 6.23 presents a partition of rectangles for the functions v = t exp(r2) 
and w = exp(H). Examine a single rectangle of a partition over the function expressed 
in terms of the t variable and the corresponding rectangle expressed in terms of the u 
variable, uj = u(tj): 

Area,; = v(tj)(tj+\ - tf) Area((y = Wj(uj+\ - uj) 

We wish to equate the areas of these rectangles by a judicious choice of wy. 

Wj{Uj+\ - Uj) = V(tj)(tj+i - tj) 

Wj = v{tj)tj+i~'j 

The ratio (r,+ i — tj)/(uj+\ — u,) is the squeezing factor that when applied to 
v(u j) determines the height of the rectangle, Wj. To find the integral, one examines the 
limiting case as the bases of each rectangle in the partition approach zero. When the 
difference between ; ; and tj+\ is sufficiently small, the ratio (u / + i — u j)/(tj+\ — tj) 
is close to the derivative, (du/dt) \t . Equivalently, 

"7+1 - "./' (du/dt) \,j 

The approximation becomes exact in the limit as tl+\ approaches tf. 

Wj = w(uj) = lim v(tj)-J ' 

1 
V(tj) Kl'(du/dt) I, 
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Applying the definition of the integral as the limiting value results in the change-
of-variable formula: 

n 

7=1 

" 1 
= lim y^viuj) (uj+i -Uj) 

"^°° trí (du/dt) \tj 
«((f) 

1 = / v(u) du 
J K 'du/dt 

»f 

= / w(u)du 

«i 

where w(u) = v(u)[\/(du/dt)]. 

Remarks 

Recall that a similar situation arises in Chapter 3 where the surface of a sphere is 
calculated. A change of variables occurs when a longitudinal arc of the sphere 
is mapped onto the sphere's central axis running between the poles. In that 
case, the mapping squeezes the longitudinal arch into a smaller space and a 
corresponding stretch is necessary. In regions where the map u(t) shrinks the 
corresponding interval of integration, 1 /(du/dt) is greater than 1 and there is a 
corresponding stretch of the integrand. Alternatively, in regions where the map 
u(t) stretches the corresponding interval of integration, 1 /(du/dt) is less than 
1 and there is a corresponding squeeze of the integrand. 

Leibniz' notation permits additional intuition: 

dt 
v(u(t))dt — v(u)—du 

du 

v(u(t))dt = v(u) du 
du/dt 

/
v(u(t))dt = / v(u) du 

J du/dt 

• To further cement the correspondence between the chain rule for differentiation 
and a change of variables for integration, note the following. The chain rule 
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changes differentiation with respect to one variable into differentiation with 
respect to another by applying a correction factor: 

d ^ dx du 
— [x(u(t))] = — x — 
at du at 

the correction factor is du/dt. The change of variables formula changes inte-
gration over one variable to integration over another by applying a correction 
factor (stretch or squeeze): 

/ v(u(t))dt= / v(u)—du 

The correction factor dt/du is the inverse of the correction factor for differentia-
tion, as expected by the inverse relations between differentiation and integration. 

6.4.2.3 The Multiplication Rule and Integration by Parts A very useful 
method for performing integrals, known as integration by parts, is given by the 
following formula: 

f u(t)-{v{t))dt = u(t)v(t) - j v(t)jt(u{t))dt 

where u(t) and v(t) are differentiable functions. 
The following example demonstrates the method's use. 

Example 6.8 

Evaluate J0 t cos(i) dt. 
Let j,[v{t)] = cos(i) and u(t) = t. Then v(t) = sin(i) and jt[u{t)\ = 1. Apply-

ing the integration-by-parts formula gives the following result: 

/ tcos(t)dt = isin(f) - / sin(t)dt 

= t sin(i) + cos(i) + c 

Evaluating the antiderivative at the end points of the interval of integration 
establishes the result: 

I 
* / 2 

tcos(t)dt = [t sin(f) -I- cos(f)] |Q' 

= j7T Sin ( j7r) + COS ( j7r) -[Osin(0) + cos(0)] 

{n- 1 
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The solution to the indefinite integral is verified by checking that the derivative 
of the result is equal to the integrand on the left-hand side: 

d d d 
— [t sin(i) + cos(i)] = — [t sin(i)] H cos(i) 
dt dt dt 

= it— [sin(i)] + sin(i)^ (0 J - sin(i) 

= ícos(í) + sin(í) — sin(í) 

= t cos(í) 

In the example, the multiplication rule is employed to perform differentiation. 
It is possible to start with the multiplication rule and arrive at the integration-by-parts 
formula. Let u{t) and v(t) be differentiable functions: 

d d d 
-[u(t)v(t)] = u(t)-[v(t)] + v(t)-[u(t)] 
dt dt dt 

[ jt[u(t)v(t)}dt= f u(t)-W)]dt+ f v(t)-[u(t)]dt 

u(t)—[v(t)]dt+ v(t)—[u(t)]dt 
dt J dt 

- / v(t)—[«(/)] dt= / u( u(t)v(t)- I vity^luit^dt = j u(t)—[v(t)]dt 

6.5 POTPOURRI 

This section is the final excursion of the book. The excursion revisits some of the 
problems that were previously introduced. 

6.5.1 Cavalieri's Theorem and the Fundamental Theorem of 
Calculus 

Recall Cavalieri's theorem from Section 3.2.2. The theorem states that two objects 
with the same cross sections have the same area (see Figure 6.24). One can prove this 
theorem by using calculus. Referring to Figure 6.24, label the horizontal axis by x. 
(The axis no longer represents time, so another variable is selected.) Let the lower 
boundary of object A be given by the function f\{x) and the upper boundary be given 
by g\(x) and the corresponding boundaries for object B be given by /B(X) and gs(x). 

Using the fact that the cross sections are equal [for all x, /A(X) — #A(*) = 
/ B W — £BC*)L equality of the areas of the objects can be demonstrated: 

i-Xf rXf 

AreaA = / fA(x)dx- / gA(x)dx 
J x\ Jx\ 

rx{ 

= / [AM - gA(x)] dx 
J x\ 
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Figure 6.24 Cavalieri's theorem and integration. 

P [Mx) - « B W ] dx 
Jx, 

= Areas 
A natural question arises for the reverse direction: Can one state anything about 

the vertical cross sections if the area is known? The answer may be found by reversing 
the above process. Integration of the vertical cross sections results in the area, and 
differentiation (the inverse of integration) of the area must result in the vertical cross 
sections. In the remainder of this section, we take the lower boundary, g(x), as the x 
axis so that the vertical cross section has height f(x). 

Let A(x) be the area of the object between the interval jq and x, A(x) = 
LXJ(x)dX-

We seek the derivative of A(x). First note the following identity that states that 
the area associated with the interval initiating at *; and ending at JC + A can be split 
into two areas, one along the interval from x-, to x and the other along the interval 
from x to x + A (Figure 6.25): 

A(x + A) = / * f(x)dX + JX
A ftx)dx 

= A(x) + lAf(x)dX 

(6.17) 

Figure 6.25 Area under the curve equals the sum of gray and dark areas. 
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Figure 6.26 Area bounded between underestimate and overestimate. 

Let / m j n be the smallest value of f(x) within the interval from x to x + A and 
let /Max be the largest value of f(x) in the same interval. Using the inequalities of 
equation (6.16), upper and lower bounds on the area f f(x)dx a r e given in terms 
of /min and /Max: 

/min A < / f(x)dX = A(x + A)- A(x) < /M a x A (6.18) 

The inequality states that the area of interest is greater than the rectangle with 
base delta and height / m j n but less than the rectangle with base delta and height /max 
(Figure 6.26). 

Assume that f(x) is continuous; it has no breaks so that one can draw its graph 
without lifting the pen. Then as A approaches zero, both /m in and /Max approach 
f(x). Dividing the inequalities of equation (6.17) by A and taking the limit result in 
the fundamental theorem of calculus: 

A(x + A) - A(x) ^ 
/min _ A _ /Max 

A 
A(x+A)-A(x) 

lirn /min < hm < hm /Max 
A-.-0 A^O A A-»0 

fix) < - f [A(x)] = ~ ( [X f(x)dx) < fix) 
dx dx \JX. J 

Since the extreme left and extreme right are both the same, the inequalities can 
be replaced by an equality: 

a; jx[ l f(x)dx)=f(x) 

The fundamental theorem of calculus completes the relation between the height 
of the vertical cross sections and the area. Integration of the vertical cross sections 
yields the area, and differentiation of the area yields the vertical cross sections. 

Remarks 

• In the above discussion, corresponding with Cavalieri's theorem only positive 
values of f(x) have been considered. Integration of a function along an interval 
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with negative values of / corresponds to the negative of the area between the 
graph of f{x) and the horizontal axis. The fundamental theorem of calculus 
follows either way with a slight adjustment to the above discussion; both the 
signs and directions of the inequalities of equation (6.17) are reversed. 

• The fundamental theorem of calculus is independent of the initial point x\ that 
is selected. 

6.5.2 Volume of the Sphere and Other Objects with Known 
Cross-Sectional Areas 

In 1615, a wine barrel shortage followed a banner harvest of grapes. The shortage 
inspired Kepler to determine the volume of a wine barrel. Kepler posed a similar 
solution to the one that Archimedes presents in his proof for the volume of the sphere. 
This section presents the sphere and other examples. 

Example 6.9 VOLUME OF A SPHERE OF RADIUS R 

Consider a sphere depicted on the x, y, and z axes as shown in Figure 6.27a. One way 
to approximate the volume of the sphere is to partition the x axis into small segments 
and sum the volumes of discs that are inscribed within the sphere, as depicted in 
Figure 6.27b. 

For a single disc, disc j , the radius of the disk is rj = JR2 — x2j and the 

corresponding volume of the disc is v, = 7ir2Axj+\ — x/) (Figure 6.28). 
The volume of the sphere can be approximated as follows: 

Volume % 2_. vi 
7=1 

7=1 

Figure 6.27 Approximating sphere with disks. 
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Figure 6.28 Dimensions for a single disk. 

Taking the limit as the number of partition elements, n, becomes arbitrarily 
large results in the volume of the sphere. Additionally, taking the limit results in an 
integral, as in equation (6.10): 

Volume = lim > 7ZT;Ar, 
7=1 

' [r(x)f dx 
J-R 

= 7i j (R2- x2) dx 

= TX 

= 7T 

= -TtR3 

R2x - |JC3 

C*3 - w ) - H 3 - L3 - *3) 

Example 6.10 WINE BARREL 

Position a wine barrel so that its central axis passing through the ends is aligned 
with the x axis. The cross sections of the barrel are all circles. Assume that the 
length of the barrel is 1 m and let the radii of the cross-sectional circles be given by 

r(x) = 3 ( 1 - \x2\ (Figure 6.29). 
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Figure 6.29 Approximating a barrel with disks. 

The entire construction that leads to the integral for the volume of the sphere 
can be replicated for this example: 

Volume = lim > 7ir2Ax, 

= I R[r(x)]2dx 

n 
9 

x3 x5 

n 

9 

43;r 

27Õ 

1 1 \ / 1 1 
1 - - + — - - 1 + 

3 2 0 / V 3 20 

Example 6.11 

Volume of an n-dimensional pyramid. 
Let an n-dimensional pyramid be given with its base an (n — 1 )-dimensional 

cube having sides of length x. Additionally, assume that the length of the pyramid 
is also x. The pyramid is a stack of (n — l)-dimensional cubes. If we flip the stack 
over and lay it upon the y axis, so that it balances on its apex at y = 0, the side of the 
(n — l)-dimensional cube at a cross section perpendicular to the y axis is given by 
the value s{y) = y. The volume of the (n — l)-dimensional cube is just fi{y) — y"~]. 
Figure 6.30 illustrates the three-dimensional case n = 3 in which n(y) represents the 
cross-sectional area of the squares. 
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Figure 6.30 Approximating a pyramid with boxes. 

The volume of the n-dimensional pyramid is approximated by breaking the 
pyramid into slices and adding up the volumes of the slices. Let Vj represent the 
volume of slice j , v} = fi(yj)(yj - yj-i) = fi(yj)Ayj: 

Volume = lim >^ v ■■ 

n 

= lim V]fi(yj)Ay 
n-yoo *—' ■' 

y=i 

Jo 
fi(y)dy 

= ff-ldy 
Jo 

n 

x" 
n 

X 

0 

This is the same result as obtained in Section 4.4. Setting h = x in formula 
(3.23), we note V„_i(base) = x"~\ giving V„(pyramid) = (l/n)xn. Knowing that 
V„(pyramid) = f$ y"~l dy allows one to conclude J yn~idy = y"/n,orequivalently 
f ? dy = y+l/(.n + I). 



Kepler had been working for 5 years trying to decipher Mars' trajectory from Tycho 
Brahe's observations. He had a correct functional description of the planet's latitude 
and endeavored to complete the orbital description by determining the longitude. Rec-
onciling the two components of motion required an adjustment that set the pathway 
off of Tycho's observations by 8 min, j$ . Let us put this 8 min in perspective. To 
launch the shuttle, NASA needs to know the full weight of the payload. Suppose they 
account for the weight of a crew of five at 900 lb. The crew weighs in on launch date 
and their combined weight comes to 900 (V3) pounds. Does NASA pull the plug on 
the mission? Kepler had a fixation with numbers. He once calculated his gestation 
period within his mother's womb at 224 days 9 h and 53 min. For Kepler, there was 
only one way to proceed, pull the plug and go back to square one. 

One might wonder how the intellectual development of civilization would have 
proceeded had the earth been an only child with no moon or sister planets. In such a 
lonely solar system, the geocentric description of the universe would be perfect and a 
would-be Copernicus may never have questioned it. Fortunately, the sun's sphere of 
influence contains many spheres. The heliocentric signature is penned by the planets' 
trajectories as seen by an earthbound observer. The curve of Figure 7.1 indicates 
the path of the planet Mars as viewed from the earth. A peculiarity that has been at 
the center of the controversy since observations of the planets have been recorded is 
retrograde motion of the planets Mars, Jupiter, and Saturn. In Figure 7.1, retrograde 
motion is seen beneath Aries where Mars initially moves in a dominantly westerly 
direction, reverses its course, and then resumes its original direction. It is the specifics 
of Mars' retrograde motion that led Kepler to the ellipse. 

The curve of Figure 7.1 gives a series of Mars observations against a back-
ground of fixed stars. The time period of observation begins on June 21, 2005 and 
ends on March 26, 2006, and specific observations are annotated by their dates. An 
experienced reader may recognize the background constellations against which the 
observations are made. It is of interest to compare the planet's signature with that 
of the sun as well as the daily trajectory of a fixed star. The zodiac guides the sun's 
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Figure 7.1 Path of Mars June 21, 2005, through March 25, 2006. 

movement as it floats easterly through the stars. Figure 7.2 presents the constellation 
behind the sun throughout the year. The annual trajectory is sinusoidal with its posi-
tion closest to the North Star in the summer and furthest from the North Star in the 
winter. 

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan 

Figure 7.2 Motion of the Sun through constellations. 
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Figure 7.3 Annual movement of a given star about the North Star. 

The stars execute a uniform rotation that fixes their position with respect to one 
another. Figure 7.3 illustrates a star's movement as viewed from the northern hemi-
sphere. The star executes a daily rotation in a counterclockwise direction centered at 
the North Star. The rotation may be used as a nighttime clock provided that the num-
bers are ordered in reverse of an actual clock to accommodate the counterclockwise 
motion. Figure 7.3 superimposes a counterclock on the sky with the North Star at the 
clock's center and another star that is in the midnight position on New Year's Eve. At 
2 A.M. on January 1, the star that at midnight was in the midnight position would be 
in the 2 o'clock position, and in general, at j o'clock on January 1, the star would be in 
the j o'clock position. This clock would run fast by about 4 min per day, requiring the 
clock's reader to adjust the reading. The effect of running fast is illustrated in Figure 
7.3. The same star shown at midnight on different dates of the year runs further ahead 
of the clock as the months pass. In 1 year's time, the star returns to its position directly 
above the North Star at midnight. 

Because the trajectories of the stars and the sun move in a discernible pattern 
that repeats annually, the geocentric shaman can easily explain these observations 
using Figure 7.4. The universe is a huge sphere; resting upon its surface are the stars 
and at its center is the earth. The universal sphere's north-south axis is aligned with 
that of the earth. Encased within the universal sphere is the sun. The sun rotates about 
the universal sphere's north-south axis at uniform speed once per day and always 
rests upon a plane called the ecliptic. The ecliptic forms an angle of 23.4° with the 
earth's equator and also rotates about the north-south axis. At the winter solstice, on 
January 21, point a vector from the center of the earth toward the highest latitude 
upon the equinox and set the sun there. The surface of the universal sphere and all 



2 5 2 CHAPTER 7 EIGHT MINUTES THAT CHANGED HISTORY 

Figure 7.4 The geocentric universe. 

the stars affixed to it also rotate about its north-south axis as seen by the star's daily 
motion. However, the speed of rotation of the universal sphere along with the ecliptic 
is slightly faster than the daily rotational speed of the sun, | | | times as fast as the 
sun. Then, the drift of the stars as depicted in Figure 7.3 is visible to an observer 
because the stars advance slightly each day. Furthermore, if an observation of a star 
is taken at midnight of some day, a year later the relative position of the stars and 
sun will realign and the observation will return to its same point. The faster rotation 
of the universal sphere than the sun also explains the eastern drift of the sun through 
the zodiac, as depicted in Figure 7.2. Finally, because the ecliptic's daily rotation 
is slightly faster than the sun's, the sun's latitude performs its sinusoidal oscillation 
through the stars—also depicted in Figure 7.2. 

This is a tidy and convincing portrait of a universe without planets or the moon. 
The movements of this geocentric model are in nearly perfect accord with observa-
tions. There is a slight disagreement between the model and observations. The model 
predicts equal time frames for the seasons, but in fact in the northern hemisphere the 
winter is slightly shorter than the summer. This would probably raise some eyebrows, 
but the model could be salvaged by slightly altering the rate of rotation of the sun. 
More to the point, the arrangement is simple and pleasing. Apparently many ancient 
observers found this model particularly pleasing because the orbits of the stars and 
sun are described by uniform circular motions. The planets upset universal nirvana 
with their retrograde motion. But the motion cannot be denied so the geocentrist 
must march on. To maintain tradition and aesthetics, the geocentrist must propose a 
pathway of circular orbits that explains retrograde motion. A most able advocate is 
Apollonius, who, as discussed in Chapter 2, proposes epicycles. 
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Figure 7.5 Geocentric retrograde motion due to epicycles. 

Figure 7.5 illustrates retrograde observations caused by epicyclic motion. The 
annual motion of the center of the planet's epicycle follows the largest circle. The 
four smaller circles indicate the position of the epicycle and its center at four different 
times, Co through C3. The planet's position within its epicycle is also displayed at the 
same four times. The figure illustrates the associated four observations of the planet 
from a geocentric earth, and each observation is taken at midnight. The observations 
indicate the alignment of the stars behind the planet. Typically, the stars that are behind 
the planet are ordered in a counterclockwise direction associated with the center of 
the epicycle's counterclockwise motion. However, due to the epicyclic motion, the 
ordering of the stars behind the planets Si and 52 reverses, this clockwise ordering 
exhibits retrograde motion. 

When Ptolemy attempted to apply Apollonius' epicyclic theory, reality was not 
accommodating. Rather than reviewing the central precepts, maintaining the earth in 
the center and explaining any movement in terms of uniform circular motion, Ptolemy 
made adjustments. Ptolemy added more epicycles so that a planet's motion could be 
the sum of more than two circular movements. He also shifted the center of the primary 
circular path of a planet's orbit from the earth to a point close by known as the eccentric 
and fixed the angular speed of the planet's primary orbit with reference to another 
point known as the equant. With these final two adjustments, Ptolemy sacrificed the 
pure notion of the earth being smack-dab in the middle of the universe and uniform 
circular motions. The sacrifices were accepted because the adjustments were minor, 
and the earth was still in the middle of the celestial sphere carrying the stars and was 
only a smidgen off center with respect to the planets. Furthermore, the motions of 
both the celestial sphere and the sun were still described by uniform rotations, and the 
adjustments to the planets were slight. While the description was reasonably accurate 
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in terms of matching observations, to many it lost its pre-Ptolmaic beauty and was, 
as Copernicus put it, not pleasing. The complexity of the system meant that anyone 
wishing to fully understand its details must put in a significant effort. What is more, 
no physical explanation of the cause of the motion for any of the heavenly bodies was 
put forward. 

With all its shortcomings, Ptolemy's model was accepted for 1300 years, until 
the Renaissance, when Copernicus placed his heliocentric model as a competitive 
alternative to Ptolemy. Copernicus' work receives its well-deserved historical recog-
nition, although the description commonly proffered throughout elementary schools 
is inaccurate. The common perception is that Copernicus describes circular orbits 
for the paths of the planets with the sun at its center and that Kepler's ellipses were 
a minor adjustment. This is not quite right. There is brilliance in Copernicus' work 
along with some old Ptolemaic baggage. Let us start with the brilliance. 

Copernicus' description of the earth's motion matches the historical picture. 
Copernicus describes the earth as having three motions. The first is uniform circular 
motion about the sun. The second is the daily rotation about the earth's axis. The 
third is the most puzzling because it applies to an unusual frame of reference. If a 
person could stand on the sun while continuously rotating so that he always faces 
the earth, it would appear to that person that the earth's axis performs a precession. 
Sometimes the North Pole would be inclined toward that person and sometimes it 
would be inclined away from that person. Copernicus' third motion is the precession 
of the earth's axis as seen by the solar inhabitant. From the perspective of someone 
standing on the North Star always looking down at the earth, there would be no 
precession of the earth's axis. Unlike the solar cousin, the individual on the North 
Star would not have to continuously rotate to keep the earth in sight and the earth's 
axis would be fixed—no motion. Since Copernicus describes his first motion from the 
perspective of the individual on the North Star, which is a reasonable proposition, it 
is a bit perplexing that he even introduces a third motion. Perhaps Copernicus wishes 
to state this motion so that he can emphasize the relation between the orientation of 
the earth's axis and the seasons. This Copernicus does with great skill. 

By replacing geocentrism with heliocentrism, Copernicus is able to correct a 
serious flaw in the Ptolemaic universe. A natural question that arises in the Ptolemaic 
system is the ordering of each heavenly body by their distance from the earth. The 
Ptolemaic answer is Moon, Mercury, Venus, Sun, Mars, Jupiter, Saturn, and finally 
the stars. The answer is wrong because the question makes no sense. Since the earth 
and the planets are in motion, there is no fixed ordering of the planets and the sun 
in terms of their distance from the earth. Copernicus correctly poses the question of 
ordering in terms of distance from the sun. He then gets the right answer for the six 
planets known at the time, Mercury, Venus, Earth, Mars, Jupiter, and Saturn. Not only 
does Copernicus correctly infer the solar ordering, but he also used a similar three-
bodied trigonometric relations between the earth, the sun, and a planet that Aristarchus 
applied between the sun, earth, and moon to estimate each planet's distance to the 
sun relative to the earth's distance from the sun. It must be noted that Copernicus 
correctly viewed the earth as a planet, while others would have maintained that there 
are only five planets. As for the moon, Copernicus correctly describes it as a satellite 
of the earth. 
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Copernicus describes the orbits of the planets as nearly circular. A natural 
question is the time period of revolution for each planet, each planet's year. Once 
again Copernicus addresses this issue using trigonometry and presents a method for 
calculating each planet's year. He gives some crude estimates from data that he had 
assembled. The method would later be used by Kepler with better data. One more 
success of Copernicus is that he deduces the presence of gravity on all heavenly 
bodies, just as it is evident on the earth, and correctly concludes that it is due to 
gravity that the heavenly bodies are round. Copernicus' concept of gravity is primitive 
in that he considers it a surface effect unable to act across space between heavenly 
bodies. 

These accomplishments are considerable, but to convince a skeptical audience, 
Copernicus would have to pass the same test as Ptolemy. The predictions of his 
model would have to match astronomical observations. At first glance, Copernicus' 
arrangement offers some promise. One can replicate retrograde motion in a helio-
centric model with the planets executing circular obits. Figure 7.6 illustrates how 
this arises. The earth moves about its orbit quicker than a planet at greater distance 
from the sun. The stars behind the planet vary providing the signature seen in Figure 
7.1. (Compare this illustration with the geocentric illustration, Figure 7.5.) While 
promising, the circles do not yield signatures that match observations. Copernicus 
was stuck in the same position as Ptolemy. Not knowing what else to do, Copernicus 
applied the same epicyclic medicine. Copernicus had an issue with equants, finding 
them most displeasing, That left Copernicus with epicycles that he applied liberally. 
In fact, Copernicus' description has more epicycles than Ptolemy's and, like Ptolemy, 
he had no explanation for their cause. 

One has to wonder about the data that both Copernicus and Ptolemy worked 
with. The observations were taken over a period of history that dates back to Ptolemy. 
The precise dates of these measurements can be questioned and the accuracy of any 
measurement must also be called into question. Referring to inaccuracies, in today's 
parlance, one would describe the data set as noisy. One could argue that it was a 

Figure 7.6 Retrograde motion in a heliocentric model. 
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rather meaningless exercise to try to match any model to a noisy data set. Or, on 
the contrary, one could confer success upon an incorrect model by stating that the 
observations, not the model, are in error. There was a remarkably clean and very 
populated data set back in Copernicus' time. This was the data set that had been 
continuously and meticulously gathered over many centuries by the Chinese using 
techniques that proffered very accurate measurements. But, needless to say, Europeans 
did not have access to the Chinese data. For Europeans to make further headway on 
the arrangement of the solar system, they would need their own clean data set. Is it 
a freak happenstance that Tycho Brahe, Europe's preeminent astronomical observer, 
dwelled on earth at just the moment that Europeans had the wherewithal to put a clean 
data set to use, or was it the aftermath of the Renaissance that allowed a man with 
Tycho's aptitude and determination to pursue his interest? 

Half of Tycho's nose was lopped off by the sword of a classman with whom 
Tycho had brawled. Tycho later used an artificial replacement made of gold and 
silver. Reflecting this episode, Tycho's life is both bizarre and gilded. Tycho was 
born into one of the most connected families of the Danish Kingdom; the family 
had several members serving the inner court of the monarchy. At the age of two, 
Tycho was kidnapped by his childless uncle, Joergen Brahe. An arrangement was 
struck whereby Tycho was coparented by his biological parents and his adopted 
parents, sharing the households of both. Despite all efforts to guide Tycho down the 
path of a political career in the service of the king, as all four of his brothers had, 
Tycho stubbornly pursued his interest in astronomy. Unlike his brothers who were 
fully parented by their biological parents, perhaps Tycho felt the influence of his 
father's sister-in-law, his comother, who had an intellectual disposition. Or perhaps 
the strange parental arrangement left Tycho a bit different from the others. Or perhaps 
Tycho was just different. Whatever the case, he was a maverick who could afford to 
pursue his dreams. With the assistance of connections made through his family as 
well as resources inherited from his father's death, Tycho was able to construct several 
instruments for taking astronomical observations. Using these observations, Tycho at 
age 27 published a book, De Nova Stella (1573) that gained him notoriety. 

The sovereign of Denmark, King Frederick II, was lucky to be alive as Tycho 
passed into adulthood. In 1565, when Tycho was 21 years old, King Frederick had 
fallen off a bridge into icy waters whereby a loyal member of the king's inner court 
sacrificed himself by diving into the waters and rescuing the king, while the loyal 
servant subsequently contracted pneumonia and died. The savior was Tycho's own 
uncle-cofather Joergen and the Brahe family received its share of gratitude. King 
Frederick seemed to have taken a personal liking to Tycho, despite or perhaps be-
cause of Tycho's maverick ways. When Tycho refused to accept the gift of four castles 
and fiefdoms because of the political duties associated with their operation, the King 
offered to build Tycho an astronomical observatory on the island of Hven so that 
Tycho could fully engage himself as an astronomer. Tycho accepted the offer. With 
his bride, a commoner whose social status was several strata beneath Tycho's, along 
with a retinue of servants, Tycho moved to Hven. The King was forthcoming in pro-
viding sources of income from a fiefdom. Following the path of Copernicus, the King 
granted Tycho the position of Church Canon from which Tycho gleaned additional 
revenues. 
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At Hven, over a 21 -year period, Tycho assembled his treasured data set. Despite 
being publicly financed, the data in no measure belonged to the public. There were 
observations that Tycho did publish. But Tycho safeguarded as personal property the 
observations of the planets and their signatures that encoded the correct structure 
of the universe. Even on the island of Hven, Tycho was the only individual with 
access to all observations. There were three competing theories on the universe's 
structure, geocentric, heliocentric, and Tycho's own halfway system in which the 
planets are satellites of the sun, while the sun revolves about the earth. While Tycho 
was the most able observer in all of Europe, he and the individuals in his retinue did 
not have the theoretical skills to tease the data into revealing the universe's correct 
structure. This matter was made worse by Tycho's prejudice that the data should 
only be used to demonstrate the correctness of Tycho's own Ptolemaic-Copernican 
compromise. 

There are many avenues that history could have followed. It is not hard to envi-
sion a scenario in which Tycho Brahe's observations languish in obscurity. The course 
of history flirted with this outcome as Tycho was entrenched on Hven. Something 
would need to perturb Tycho's isolation so that his data could fall into the hands of 
someone who could actually make use of it. In 1588, the death of King Frederick 
and ascension of his son, Christian IV, instigated a change. Relations between Tycho 
and the young king deteriorated to the point that King Christian dispossessed Tycho 
of Hven. Tycho responded by seeking a better offer elsewhere. It took some time to 
reach a breaking point and find another suitor, but by 1599, Tycho arranged a deal with 
Emperor Rudolf of the Habsburg Empire. He would be the imperial mathematician 
and would be given a residence that was larger than his castle at Hven. The move to 
the outskirts of Vienna was not an easy task. It was not until 1600 that Tycho resided 
in his new location. 

Tycho was aware of his limitations as a theorist. He desired to use his cata-
log of observations to demonstrate his halfway system. To accomplish this, Tycho 
would need to bring a theorist of superior intellect into his inner circle. As Tycho 
accidentally stumbled into the neighborhood of the most brilliant mathematician in 
Europe, Johannes Kepler was reluctantly on his doorstep in desperate circumstances. 
While Tycho was recruited into the Habsburg Empire with extensive offerings, Jo-
hannes Kepler was no more than a refugee. Archduke Ferdinard, emperor Rudolf's 
cousin proclaimed and enforced a decree evicting Protestants from well-delineated 
Catholic areas in which Kepler happened to reside and work. Remaining faithful to 
his Lutheran beliefs, Kepler, the man who would later be excommunicated from the 
Lutheran Church, refused to convert to Catholicism, despite real earthly advantages 
that a conversion would confer upon Kepler and his family. As Kepler drew the line 
and stood on the other side, he and his family were evicted. Kepler's connections at 
Tubingen refused to offer assistance in obtaining a well-deserved university position 
either in Tubingen or elsewhere. He was homeless, unemployed, and rejected by the 
Lutheran community that he had remained faithful to. Apart from his unfortunate 
circumstances, there was another cause for Kepler to seek out Tycho. Kepler contin-
ued his research into God's order and passionately pursued theories relating musical 
harmonies to the structure of the universe. He was certain that Tycho's data would 
enable him to substantiate his views. 
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Kepler initially stayed as Tycho's guest. The circumstances of both men brought 
out the worst in each. Outfitting his new observatory to the standards of Hven was 
an overwhelming task that frustrated Tycho. Cost overruns, unfulfilled promises of 
support from the emperor, difficulties with the transport of equipment, and a homesick 
staff that took flight all conspired against Tycho. Regarding Kepler, Tycho was fearful 
that Kepler was a closet Copernican, not fully on board with the Tychonic compro-
mise. Tycho was right because Kepler was not exactly in the closet. On his side, Kepler 
was fearful that his circumstances were being taken advantage of and he was not being 
accorded the status he deserved. Inadequate morsels were tossed his way in the form 
of material and intellectual substance. On the material side, like a student he was given 
room and board. But he was without salary, as a man of his accomplishment deserved, 
and he needed a salary to support his family. On the intellectual side, Tycho's prized 
observations were withheld. An emotionally charged Kepler brought the situation to a 
head, resulting in a public shouting match between the nobleman and the commoner 
that was witnessed by Tycho's own staff and so it also seemed ending the possi-
bility that the empiricist and the theorist could together resolve the structure of the 
universe. 

Humans are not governed by a simple set of physical laws. Drop an object from 
your hand a thousand times and surely enough of it falls toward the ground each 
time. Drop it one more time and surely enough of it falls again. Witness a commoner 
public shout at nobility as though the commoner has higher authority a thousand 
times and each time the commoner will discover very quickly that he is mistaken. 
Witness it one more time and then wonder just what happened as the two men come 
to agreement. It took some intervention by a mutual friend, but after a period of 
time, Tycho offered Kepler the terms of employment that Kepler was seeking and 
Kepler accepted. They might have had problems in the personal arena but wished to 
cohabitate within the scientific arena. Luckily, their relationship was not based on 
politics. 

Recruiting Kepler was the last gift to science that Tycho would make. Full re-
construction of a functioning observatory at the outskirts of Prague never occurred. 
In fact, Tycho found himself in a position that he would have recoiled from in his 
youth. Emperor Rudolf called upon Tycho as his personal astrologer and, finding 
Tycho's counsel useful, forced Tycho to take up residence away from his obser-
vatory near the imperial palace in Prague. (That Tycho, a protestant, was able to 
adroitly maneuver between political columns of Catholics attests to his ability in this 
role.) It is in this residence that Tycho died in a bizarre set of circumstances that are 
legendary. 

As legend goes, Tycho died of urethral infection instigated by his insistence 
on upholding etiquette and remaining at his seat at a banquet when in truth he really 
had to go bad. This description does not fully satisfy the modern forensic pathologist 
and there has been an ongoing investigation that began in 1991. Based upon chemical 
analysis of beard samples, the conclusion of forensic experts is that Tycho died of 
mercury poisoning. There are two camps as to how Tycho ingested the mercury. 
One camp proposes that Tycho prepared his own medications that included mercury 
and unwittingly poisoned himself. Another camp states that he was murdered, and 
this assertion has precipitated a whodunit hunt. Suspects include envious advisers 
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to Rudolf and a distant cousin of Tycho's who was sent as an assassin by King 
Christopher of Denmark. 

Included in the list of suspects, but one that nobody takes seriously, is Kepler. 
The only supporting evidence is that Kepler benefited from the death, which cannot 
be argued. In the aftermath of Tycho's death, Tegnagel, Tycho's ambitious employee 
turned son-in-law, did his best to preserve the family inheritance. This was an enor-
mous task given the holdings of Tycho. Kepler correctly assumed that it would be a 
while before anyone would notice a small portion of missing observations. During 
a visit to Tycho's estate, Kepler took his opportunity and absconded with the Mars 
observations. The newly named imperial mathematician, Johannes Kepler, pored over 
these observations for 2 years before Tegnagel noticed they were missing. That it took 
so long to notice the missing observations testifies to the dysfunctional state of the 
observatory from the time of Tycho's death. Indeed from then on Tycho's instruments 
gathered cobwebs. 

For 5 years Kepler worked to establish his first theory of orbital shape. Upon 
finding an 8-min discrepancy with Tycho's data, Kepler delightfully torched 5 years 
of work and began anew. It was not Kepler's first nor last demonstration of having the 
Scarecrow's capacity to pick himself up, put himself together, and start all over again. 
This time, he did so with the Scarecrow's most cheery disposition. Kepler describes 
his decision in the following words: 

Since the divine benevolence has vouchsafed us Tycho Brahe, a most diligent observer, 
from whose observations the eight minute error in this ptolemaic computation is shown, 
it is fitting that we with thankful mind both acknowledge and honor this benefit from 
God. For it is in this that we shall find at length the true form of the celestial motions... 

Just as Tycho's 8 min caught up with Kepler, so did Tegnagel. Upon discovering 
that Kepler was in possession of the Mars observations, Tegnagel demanded that the 
data be returned. Kepler forfeited the data, interrupting his research, and then turned 
to another seemingly unrelated pursuit, optics. As noted in Chapter 4, it is through 
Kepler's work in optics that he becomes thoroughly familiar with the conic sections, 
in particular the ellipse. While depriving Kepler of the data, Tegnagel inadvertently 
steered Kepler in the right direction. But Kepler would have nothing to do with it. 
Concerning the possibility of elliptical orbits, in a letter to a friend, Kepler writes 
that the problem would have been solved by Archimedes or Apollonius if the true 
path were an ellipse. No little anguish would result from this assumption as Kepler 
convinced himself out of the correct answer before ever giving it a try. 

During the 2-year interlude in which Kepler wrote his work The Optical Part 
of Astronomy, Tycho's invaluable Mars observations found company with Tycho's 
invaluable observations of other planets and stars, all filed and forgotten. Tycho re-
peatedly said on his deathbed, "Let me not seem to have lived in vain." While Tegnagel 
may have been acting on behalf of the legal heirs to Tycho's property, Kepler was the 
heir to Tycho's legacy. After Tycho's departure, Kepler had the will and the imagina-
tion to fuel Tycho's fire; Tegnagel did not and never even tried. Through negotiations 
between Kepler and Tegnagel, Kepler regained possession of the Mars data and was 
ready for round two. 
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Having convinced himself that the path was oval, but not an ellipse, Kepler 
proceeded to consider alternatives. Kepler (1993) pursued several alternatives that 
occupied him for perhaps 2 years and also occupy 10 chapters of his 70-chapter book 
New Astronomy. To give an abridged version, all failed. What is striking is that Kepler 
actually uses an ellipse to establish estimations for his oval shapes. But he is only 
willing to use the ellipse as a device to assist with calculations, not yet recognizing 
that the contrivance is the actual prize. 

Once more, Kepler cheerfully played the scarecrow, accepting the failure in fine 
humor; it is at this point that Kepler compares himself to a dog through the quote that 
is given in Chapter 2. But then what they say in the proverb, "A hasty dog bears blind 
pups", happened to me. Kepler's further elaboration of his efforts indicates a sense 
of frustration that accompanied his good humor: 

While I am thus celebrating a triumph over the motions of Mars, and fetter him in 
the prison of tables and the leg-irons of eccentric equations, considering him utterly 
defeated, it is announced in various places that the victory is futile, and war is breaking 
out again with full force. For while the enemy was in the house as a captive, and hence 
lightly esteemed, he burst all the chains of the equations and broke out of the prison of the 
tables. That is, no method administered geometrically under the direction of the opinion 
ofch. 45 was able to emulate in numerical accuracy the vicarious hypothesis of chapter 
16 (which has true equations derived from false causes) ...I send new reinforcements of 
physical reasoning in a hurry to the scattered troops and old stragglers, and informed 
with all diligence, stick to the trail without delay in the direction whither the captive has 
fled. (New Astronomy (1993), p. 508) 

Kepler considers himself at war, but throughout the battles, he never waivers 
from his original purpose. Philosophizing about the errors evident in all his attempts, 
Kepler writes the following: 

But, my good man, if I were concerned with results, 1 could have avoided all this work, 
being content with the vicarious hypothesis. Be it known therefore, that these errors are 
going to be our path to the truth. (New Astronomy (1993), p. 494) 

At long last, Kepler comes to the realization that the path is an ellipse. Once the 
ellipse has been accepted, the specifics can be determined and it can be put to the test 
and proved with brevity. These tasks do not take considerable time and only require ten 
chapters of New Astronomy (recall there are 70 chapters in all). The accomplishment is 
a testimony to both Kepler and Tycho Brahe. Though his Tychonic compromise proved 
to be incorrect, Kepler's work memorializes Tycho. The faith that Kepler placed in 
Tycho's observations is particularly noteworthy. Despite underlying tensions, there 
was considerable mutual respect. As for Kepler, this work along with his work in 
optics is his best. While Kepler's previous work demonstrates mathematical acumen, 
it is not based on science but has an element of mysticism to it. Kepler is at his best 
when he confronts the empirical data of Tycho in an honest manner. His faith in Tycho 
not only is a testament to Tycho but also allows Kepler to mature as a scientist. Along 
with Kepler's growth, science takes a leap forward. 
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Figure 7.7 Kepler's law relating sector areas to path time. 

Kepler's work culminates in two laws of planetary motion; he would add a third 
at a later time. It is worth reiterating the original two laws because of their relation to 
one another. The first law states that the ellipse is the shape of a planet's trajectory. 
The second law concerns the area of pie-shaped sectors, as illustrated in Figure 7.7. 
Each sector has three corner points, two are the planet's position at two different times 
and the final corner point is the sun. One boundary of the sector is the pathway of the 
orbit between the planet's corner points, while the other two boundaries are straight 
lines between the planet's corner positions and the sun. The second law states that the 
area of the sector is proportional to the amount of time required for the planet to move 
from the initial corner point to the latter corner point. In the illustration, the planet 
moves faster when it is closer to the sun so the time required to move from point A to 
B is the same as that required to move from point C to D. According to Kepler's law, 
the areas of the two corresponding sectors are equal. Kepler proposed his second law 
perhaps 3 years before he had settled on the ellipse as the planet's path. 

The next scientific work of historical significance is Galileo's (2001) Dialogue. 
The attention afforded the trial of Galileo is disproportionate to that afforded Galileo's 
scientific works to an extent that Galileo's true role in science is often overlooked. 
Galileo's interest was in the study of motion. His insight guided him toward conclu-
sions that formed the basis of Newton's laws, but his descriptions were qualitative. 
Clearly, Galileo understood inertia and had a sense of the relation between force and 
motion. With his understanding he had a good intuition of an object's motion when 
subject to a force, but without mathematical relations he was unable to perform math-
ematical analysis. Galileo used his intuition to guide his experiments in motion, and 
through data collected from the experiments, Galileo was able to describe an object's 
trajectory. 

Galileo was not an astronomer and had no particular training in astronomy. 
Unlike Kepler, it is unclear that he ever read Copernicus' (1995) On Revolutions 
and most probable that he never read Kepler's (1993) New Astronomy. Prompted by 
his success at constructing telescopes, Galileo became interested in astronomy when 
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he was nearing 50. Galileo writes his argument in favor of Copernican astronomy, 
Dialogues, not from the perspective of an astronomer, but from the perspective of his 
understanding of motion. True to form, while Galileo is not able to quantify his state-
ments regarding motion, he nevertheless brings insight demonstrating exceptional 
instinct. 

What conclusion can be drawn from the fact that one of Galileo's greatest follies 
also demonstrates his brilliant insight? Galileo's argument that tides are caused by the 
effects that the earth's revolution about the sun has upon the seas that daily rotate about 
the north-south axis of the earth cost him dearly. He was so enamored by his argument 
that he would stop nothing short of using it to convert the pope to geocentrism. In 
Chapter 2, the consequences of this decision that laid the groundwork for Galileo's 
later persecution are described. But the venture was not only a personal folly but also 
a scientific one. 

Let us examine a bit more closely Galileo's proposition. Consider the dynamics 
of two particles, one that is pushed toward and one that is pushed away from the center 
of rotation of a rotating object. The perspective from which to view the particles is that 
of an observer standing at the center of the object while rotating with the object. The 
particle pushed toward the center appears to drift ahead of the revolving object, while 
the particle pushed away from the center appears to drift behind the revolving object. 
The cause of the drift is the conservation of angular momentum. The angular velocity 
of the particle increases as the particle's distance toward the center decreases, while 
the particle's angular velocity decreases as the particle's distance from the center 
increases. Galileo attributes the tides to the tendency of the oceans to drift as they 
recede from or approach the sun in accordance with the earth's rotation. 

There is an element that Galileo overlooks. The tendency to drift must be com-
pared with the rotation of the earth and the two must not be compatible. Furthermore, 
it must be shown that if the two are incompatible, the overall effect on the motion 
is enough to cause the tides. Newton's laws of motion along with his calculus offer 
a means to perform this analysis but had not sufficiently matured to tackle such a 
problem until over a century after Newton. Galileo proposed his hypothesis before 
Newton's birth; the tools were not available. Galileo was in a similar situation long 
before his interests turned to astronomy. While studying the motion of falling bodies, 
without Newton's tools Galileo was unable to perform a mathematical analysis of 
a body's trajectory, so he turned to experiment to acquire empirical data. Similarly, 
without mathematical constructs empirical data are necessary to support Galileo's 
tidal hypotheses. Nature's own empirical data display a huge embarrassing hole. If 
the cause were as Galileo claims, there would be a rhythmic daily pattern to the tides 
that just does not exist. The data reject the theory, but Galileo could not. He did not 
have Kepler's disposition to accept nature's verdict, so he never bothered to ask for 
it. Perhaps it was this disposition that caused him to recklessly engage the pope in an 
issue that could only spell trouble. 

So what makes the folly a success? Examine Kepler's second law and its con-
sequences. The speed of a planet moving toward its center of revolution, the sun, 
increases while the speed of a planet moving away from its center of revolution de-
creases. Both men have found the essence of conservation of angular momentum. 
Kepler finds this through intuition and verifies it using Tycho's data. He is also able 
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to furnish a quantitative description. Galileo arrives at his conclusion through a com-
bination of experience and pure intuition. He does not verify it with any data. While 
he is unable to set forth any quantitative law, he is on to something quite remarkable. 
What Galileo intuits would later be called the Coriolis force, named after the math-
ematician Gaspard-Gustav Coriolis (1792-1843), who quantified Galileo's intuition 
using Newton's laws of motion. While Galileo was wrong concerning the tides, the 
Coriolis force due to the earth's rotation (not the revolution about the sun) does impact 
ocean currents and weather systems. 

When Newton was born, not only mathematics but also physics was on the 
brink of discovery. Copernicus had introduced the seeds of the concept of gravity 
and correctly used it to explain the spherical shape of stars, planets, the sun, and 
the moon. Kepler had gone further, correctly asserting that a body's gravity reaches 
across space and furthermore attributing planetary motion to a force emanating from 
the sun. Galileo had qualitatively described inertia and the effect of forces on objects. 
Newton inherited this sketch and was able to complete it into a vivid portrait. His 
portrait in which his invention of calculus delineates the laws of motion is one of 
the greatest intellectual feats in history and arguably has had a broader influence on 
mankind's development than any accomplishment of any other man. 

The accomplishment does not come without its blemish. The description of 
Robert Hooke as nasty and cantankerous is apt. Newton harbored a hatred for Hooke 
that displays an equally nasty nature. While Hooke was an object of Newton's ill will 
from the time of Newton's publication in optics, Leibniz would be a later target. But 
while the battle with Leibniz only consumed Newton's energy with no productive 
result, Newton's hatred for Hooke was motivational. Exactly how Halley inspired 
Newton to abandon alchemy and return to physics is unknown. But it is possible that 
during Halley's 1684 visit to Newton, Halley, knowing Newton's hatred of Hooke, 
hinted that Hooke was on the verge of demonstrating the elliptical orbit of planets 
and this hint was enough to prompt Newton to complete his work and claim priority. 

Newton would have taken a threat from Hooke seriously. Several years earlier, 
during a brief interlude from alchemy, Newton and Hooke corresponded. Newton 
had sent Hooke a confidential letter concerning the kinematics of an imaginary object 
under the influence of earth's gravity that could penetrate the earth's surface and move 
freely within the earth's interior. The letter contained an error and, as expected from 
a man of Hooke's disposition, Hooke used the error to publicly humiliate Newton. 
Confidentiality be damned, Hooke displayed the letter at a meeting of the Royal 
Society, pointed out the error, and proceeded to give his own analysis of the kinematics. 
Hooke's response contains his correct view that the force on an object under the 
influence of gravity falls off inversely to the square of the distance to the object. 
Along with the bouts over optics, this painful episode resided in Newton's psyche 
and a skillful Halley could well have used it. 

The episode also may have been more than a motivator. Hooke later claimed 
priority over the use of the inverse square law and prevailed upon Halley to request that 
Newton recognize Hooke's contribution in Newton's (1995) upcoming publication, 
Principia. Newton responded that Hooke's claim was nonsense and threatened to 
abandon the project. Hooke was dispensable; Newton was not, and so the issue never 
resurfaced. Nevertheless, there is merit to Hooke's claim. Had Newton formulated the 
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inverse square law during his astonishing research days only to have forgotten it, in 
which case Hooke merely prodded Newton's memory, or did Hooke have a legitimate 
claim to priority over the discovery? It is a secret that Newton took to his grave. Either 
way Newton must be smirking. 

Eighteen hundred years prior to Newton's Principia, Euclid (2002) opens his 
seminal work, The Elements, in the following manner. 

Definition 7.1 A line is that which has no part. 

Twenty-two additional definitions follow and then Euclid stepwise moves to 
axioms and theorems. His work resonates with Newton as Newton in a similar "let's 
get down to business" tone begins Principia in the following manner: 

Definition 7.2 The quantity of matter is the measure of the same, arising from its 
density and bulk conjunctly. 

Eight definitions follow and then Newton stepwise moves to axioms (the three 
laws of motion) and theorems. It is Euclid's well-deserved legacy that Newton chose 
Euclid's work as a template. The success of both The Elements and Principia is such 
that Euclid's work is a template for nearly all modern mathematics and theoretical 
physics. There are no confessions, references to dogs, battles with an enemy, requests 
for sympathy, or invocations of an almighty entity; it is all humorless and impersonal 
and it is perfect for its purpose. Kepler was the last of his kind—perhaps one of a 
kind. 

The previous chapters present all the mathematics needed to demonstrate el-
liptic planetary orbits. In this chapter, the mathematics is joined with Newton's laws 
of motion to unveil Kepler's ellipse. The starting point is a presentation of Newton's 
laws. From there we investigate Galileo's parabola, which affords two benefits. First 
the simpler problem of Galileo's parabola facilitates an understanding of the laws of 
motion as well as the mechanism used to determine an object's trajectory. Second, the 
implementation of Newton's program, which successfully models Galileo's experi-
ments, furnishes confirmation of the program's correctness. Once that stage has been 
reached, we apply Newton's program to planetary motion and find the ellipse. Our 
presentation is a bit more ambitious than Newton's original presentation in Principia. 
Since Newton refrains from the use of calculus, his goal is limited to demonstrating 
that the ellipse satisfies the laws of motion. The ellipse is a starting point and it is 
shown to be correct. In our approach, we do not begin with the final shape of the 
trajectory but use calculus to generate the ellipse. 

With this chapter's introduction, the book's narrative ends. How does one con-
clude a messy story that includes Greek tragedies, backstabbings, nose loppings, 
crisped corpses, sacked cities, plagues, fragile egos, papal bastards, enigmatic ge-
niuses, loose cannons, quirky noblemen, idealistic paupers, rock bed faith, excom-
munication, stubborn conviction, unrequited dedication, and blissful discovery—a 
story that as a fictional work would be criticized as devoid of reality? I have decided 
to end it by recalling my favorite part. There is lots to choose from, but for me the 
best is when after 2 years of struggling with the Mars data Kepler discovers the 8-
min error and shortly afterward Tegnagel demands that the data be returned to him. 
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The back-to-back setbacks do not stop Kepler, and he returns to his work in optics. 
Through this work, Kepler becomes thoroughly familiar with the ellipse. In the end, 
Kepler's recognition of a data point within the Mars data that matches his previous 
work in optics sparks his realization that God chose the ellipse as the path of the 
planets. Kepler's back-to-back setbacks become his blessing. 

7.1 NEWTON'S LAWS OF MOTION 

Newton unveils his theory of motion in Principia. Reflecting the practice of scholarly 
works of the times, the original publication is in Latin. The influence of Euclid's 
Elements is visible in Newton's Principia as Newton applies the axiomatic process to 
physics. Newton's axioms are his laws of motion; he reveals three laws that are central 
to the rest of his analysis. This section presents the laws. It is tempting to present 
them through a direct translation and be done with it. Unfortunately, this leaves a 
false impression; the laws must be interpreted within the context of other material. 
Accordingly, in addition to providing a translation of the laws, an interpretation is 
presented. 

1. Every body perseveres in its state of rest, or of uniform motion in a right 
(straight) line, unless it is compelled to change that state by forces impressed 
thereupon. 

2. The alteration of motion is ever proportional to the motive force impressed and 
is made in the direction of that straight line in which that force is impressed. 

3. To every action there is always opposed an equal reaction, or the mutual actions 
of two bodies upon each other are always equal and directed to contrary parts. 

Suppose that one were to present these axioms to Euclid. What might his reaction 
be? Most certainly, Euclid would consider this attempt at an axiomatic process to 
be amateurish. As the foundations of the deductive process, axioms are independent 
statements. There is a serious flaw when one axiom can be deduced from the remaining 
axioms. At first glance, this flaw appears in Newton's laws; the first axiom appears 
as a consequence of the second. Indeed, one can prove the first from the second as 
follows. From the second axiom, if a body experiences no impressed force, it remains 
at rest or its motion is unaltered; this is a rewording of the first axiom. 

To be sure, Newton was no amateur. His first axiom is far from a blunder; it 
addresses relativity of laws of motion. The concept of relativity is something that 
Galileo dwelled upon at length. Galileo's concern was that motion appears different 
to different observers. Furthermore, there is not a preferred observer. Imagine two 
objects in space moving past one another at uniform velocity. Two observers, one on 
each object, each concludes that the object upon which he resides is at rest while the 
other object is moving past him. A third observer not on either object may perceive 
that both objects are in motion. Any analysis of motion must be applicable to different 
observers. 

Like Galileo, Newton was fully cognizant of the concept of relativity, and 
in developing his mathematical analysis, Newton wished to take the concept into 
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account. Newton did not philosophize over the issue as Galileo did; rather he quickly 
addresses the issue through his first law, which frames the conditions under which his 
general analysis is applicable. Prior to applying his method, Newton demands that the 
observer obey his first law. If an observer views an object altering its course without 
any force impressed upon it, then the observer violates the first law and cannot use 
Newton's system. Observers obeying Newton's first law are said to be observers in 
an inertial frame of reference. Inertial frames of reference are at rest or move with 
constant velocity. 

Once the setting for the analysis is established, Newton can present a description 
of the relation between force and motion. This is the second law; the alteration of an 
object's motion as observed by an observer in an inertial frame is proportional to the 
force impressed upon the object. It is the translation of this law into a mathematical 
expression and the analysis of the resulting expression using the methods of calcu-
lus that distinguish Newton from his predecessors. Whereas his predecessors could 
merely philosophize about motion, Newton could calculate. He could determine an 
object's future trajectory knowing only its current state. 

In the privacy of his own company, Newton employed his notation of calculus 
to express the second law of motion mathematically, but not in Principia. Indeed, 
the first publication of the second law of motion in terms of calculus is given by 
Johann Lambert after Newton's death. The law relates the alteration of the motion 
to force. The law speaks not of motion, which Newton quantifies as the momentum, 
mass x velocity, but of an alteration of motion. The corresponding mathematical 
expression is not the momentum but the derivative of the momentum. The law speaks 
of proportionality to the impressed force. Putting these ideas together results in the 
following equations: 

—(mi;) = F 
at 

d .. 
m—(v) = F 

at 

m-2(x) = F 

In this set of equations, m is the mass of the moving object, v is the velocity with 
respect to an observer in an inertial frame, x is the position with respect to an observer 
in an inertial frame, F is the force impressed upon the object, and t is the time. The 
quantity 

d . d2 , 
dt(V)=a*iX) 

is known as the acceleration. Notice the relation between acceleration, mass, and 
force. A low-mass object accelerates at a quicker pace than a high-mass object when 
subject to the same force. Also, notice that the position, velocity, and force are all 
vectors in three-dimensional Euclidean space. 
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Newton considered the mass of an object to be fixed. If not, the equations 
become 

d ^ ^d 
m—(v) + v—m = F 

dt at 

It was not until Einstein challenged the notion that mass remains constant that the 
second term was considered. For motions that are perceived in everyday experiences, 
Newton's view remains valid and Newton's analysis is at the foundation of all but 
highly specialized investigations. For the remainder of this chapter, the mass of all 
objects is considered constant. 

The analysis of planetary motion looks at a two-body system, the sun and a 
planet. With the third law, our program, seeking Kepler's ellipse with the sun fixed at 
a focus of the ellipse, appears to be in jeopardy. After all, the third law states that if 
the sun pulls on the planet, the planet pulls on the sun with an equal force. And if the 
planet pulls on the sun, how in an inertial reference frame can the sun remain at rest at 
the focus of the ellipse? Indeed, the sun cannot remain at rest in an inertial reference 
frame, and it appears that Newton's program is bound for failure by his own laws. 

In Chapter 2, there was a similar sense of despair concerning the broader goal 
of quantifying anything. Recall that the cause of concern is the discovery of the 
sparseness of numbers that we can actually represent—rational numbers. The question 
that was asked is that if most physical measurements such as position, speed, and force 
are irrational values, does not the fact that our measurements are limited to rational 
values doom any analysis? We saw that the rational numbers, while sparse, were 
sufficient because rational numbers could be used to come within any required error 
tolerance. 

It is the same concept of error tolerance that allows us to apply Newton's 
analysis to planetary motion. While the sun may not be exactly fixed with respect to 
an inertial frame, its movement is so slight that fixing it introduces an error that is 
inconsequential. The ellipse of Kepler is not the precise orbit, but it is oh so close, 
just as a rational number can be made oh so close to an irrational number. 

That the sun's movement is nearly fixed is a consequence of Newton's second 
law, 

d _ 1 -
-(v) = -F 
dt m 

The mass of the sun is orders of magnitude larger than that of the planet; 1/m is so 
huge for the sun that the acceleration is inconsequential. Accordingly, our analysis 
considers the sun's position as fixed and analyzes the motion of the planet. 

Remarks 

• The more general problem known as the two-body problem allows the ratio of 
the masses of the bodies to be any value. For the two-body problem, the inertial 
frame of interest is usually taken to be the center of mass of the bodies and each 
body is in motion with respect to the center of mass. Newton's analysis applies, 
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although the mathematical solutions become somewhat complicated. Kepler's 
ellipse is a limiting case when the ratio of the masses of the larger object to the 
smaller object becomes indefinite. 

The third law is equivalent to the statement that the motion of the center of 
mass of a system of objects obeys the first law; if the system is not subject to 
external forces, the motion of its center of mass is unchanged. As an illustration 
of the concept, consider a two-object system, A and B. The center of mass of 
two objects, A and B, is given by the following equation: 

m\xA + mB*B 

where m\is the mass of object A and x\ is its position, and similarly for object 
B. Suppose that an imaginary observer who does not interfere with the motion 
of either object makes his observations of the motions of the bodies with respect 
to a fixed center of mass that we may arbitrarily set at the origin: 

mAxA + rriBXB = 0 

Taking the derivative of the center of mass, which is by assumption fixed, results 
in the following: 

— (rtlAXA + TOB*B) = 0 
at 

d _ d , 
m A — O A ) + »IB — O B ) = 0 

dt dt 
Taking the second derivative produces the following result: 

dK dK 
mA—jXA + mB-jXB = 0 

FA + h=0 

FA - -FB 

where F\ and F% represent the forces on bodies A and B, respectively. As there 
are no external forces, these are the forces that the bodies impress upon each 
other. These forces are of equal magnitude but in opposite direction just as the 
third law demands. By performing the steps in reverse, one demonstrates that 
the third law implies that the first law applies to the system's center of mass. 

7.2 GALILEAN CHECKPOINT 

Galileo studied the motion of projectiles near the earth's surface and found that the 
pathway of a tossed object is a parabola. Galileo's explanation of the parabolic shape 
was a precursor to Newton's laws of motion. Galileo reasoned that the projectile is 
attracted toward the earth's surface in a vertical direction, and hence its motion in the 
vertical direction is influenced by the attraction. However, as there is no force influ-
encing its motion in the horizontal direction, Galileo reasoned that the projectile's 
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Vertical, horizontal, and composite positions at times T,, T2,T3, and T4 

Figure 7.8 Motion of thrown object. 

horizontal motion proceeds in an unaltered state. Figure 7.8 shows the separate hor-
izontal and vertical components of an object thrown horizontally off of an elevated 
platform. The separate motions are then coupled with a parabola as the resulting 
shape. 

There are several admirable features of Galileo's analysis. He is able to separate 
motion into two components, one that is influenced by a force and one that is not. 
This allows each component to be assessed independently, simplifying the problem. 
Also, by correctly describing the horizontal motion, Galileo arrived at Newton's first 
law before Newton. While Galileo presents a qualitative description, he is unable to 
propose quantitative laws. Galileo required experimental observations to determine 
the precise nature of the vertical component of motion. The experiments are described 
in Chapter 2. These data were collected and analyzed just as Kepler had analyzed 
Tycho's data. Below we apply Newton's program to determine the trajectory. 

Let a stationary observer sitting comfortably on the ground record the position 
of a tossed object. Align the axes of the inertial frame such that the y axis points in 
the vertical direction and the x axis points in the direction of the horizontal motion. 
Newton's second law of motion gives the following equations: 

dt 
(vx) 0 - ( v v ) = - F v at m 

where 

• vx is the horizontal velocity 

• vy is the vertical velocity 

• Fy is the vertical force of gravity 

• m is the mass of the object 
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As the tossed object remains near the surface of the earth, the vertical force Fy is 
considered to be a constant. Anyone lifting two weights of different mass can attest to 
the fact that the forces of both weights are proportional to their mass. Accordingly, we 
set Fy = — mg, where g is the constant of proportionality. The constant value g has 
been measured and depends upon the units of measurement. In metric units, the value 
of g is approximately 9.8 m/s2. The negative sign indicates that the accelerating force 
Fy acts downward in the negative y direction. Using Fy = —mg admits the following 
equations for the motion of the object: 

4(^) = 0 4(»v) = -g (7.1) 
at at 

The position of the tossed object can be determined by integrating the equations 
of motion. Furthermore, consistent with the independence between the horizontal and 
vertical components of motion, the equations may be solved independently. We begin 
with the horizontal motion. 

Because only a constant has zero derivative, vx(t) must be a constant value 
denoted by vxo, vx{t) = VXQ. Note that v{t)-^-{x furnishes the following result: 

d 
-fix) = vx0 

at 

" / ' 
x(t)= vx0dt (7.2) 

= Vxot + Xo 

In the above equation, xo is both the initial horizontal position of the object and the 
constant of integration. 

Next we consider the motion in the vertical direction: 

Jt(vy) = -8 

-Ji* vv(f) = - I gdt (7.3) 

= -gt + vyo = -rly) 
dt 

Once again the constant of integration vyo has a physical interpretation. It is 
the object's initial vertical velocity. The velocity is written as a derivative and the 
resulting equation is integrated to obtained the vertical position: 

d 
-riy) = -gt + f vo 
dt 

y(t)= / -gt + Vyodt (7.4) 

= -jgt2 + Vyot + y0 

Another constant of integration, _yo, results. This is the initial height of the 
object. We can conclude that the initial velocity (VXQ, vyo) and the initial position 
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(•*o. >'o) determine the position (JC(/), y(t)) at any time and this position is given by 
equations (7.3) and (7.4). 

One way to demonstrate the parabolic trajectory is to solve for the time variable 
t in equation (7.3) and substitute the result into equation (7.4): 

X-XQ 
x = vx0t + xo t = 

VxO 

y = -^gr + Vyot + yo (7.5) 

l f X — XQ\ ( X — XQ 

= - ~ # + uvo + yo 
2 V vx0 ) \ VxO ) 

It is noted that y is quadratic in x, so the shape of the trajectory is a parabola. 

Example 7.1 SHOT PUT 

A standard shot put has a mass of 7.26 kg (weighs 16 lb). Suppose that the height of 
an athlete's hand as he releases the shot put is 2 m. In addition, the athlete releases the 
shot put at an angle of 45° with a speed of 30 m/s. How far does the shot put travel 
before striking the ground? 

The initial conditions are stated in the problem: 

(*o, yo) = (0, 2) (vx0, Vyo) = (30cos45°, 30sin45°) « (14.14, 14.14) 

The terminal condition, when the shot put strikes the ground, is y = 0. Placing 
the initial conditions and terminal condition into the quadratic expression of equation 
(7.5) results in the following equation for the terminal horizontal distance: 

1 I x — JCQ \ I x — XQ 
y = -~g + Uvo + yo 

2 V vx0 ) \ vx0 ) 
9.8 2 0 = -—xz+x + 2 
225 

% 0.044A:2 +x + 2 

Solving for x using the quadratic equation yields the result x % 
[-1 - y/l - 8(0.044)]/[-2(0.044)] % 20.51 m. 

Note that the mass of the shot put does not directly enter into the solution, but 
it affects the initial velocity that the shot putter is capable of at release time. As of 
July 2009, the world record is 23.12 m. 

Remark. While we have been casual concerning the units associated with the 
terms, they are important. A very useful quality check on any equation is to assure 
that the units on each side of the equation match. 
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7.3 CONSTANTS OF MOTION AND ENERGY 

A constant of motion is a function of an object's position, velocity, or both that does 
not change even as the object moves. For example, in the tossed object of Section 7.2, 
the term vx(t) is a constant of the motion; the equations (7.1) inform us that vx(t) is 
a constant of motion because 

at 

The constant of motion vx(t) allows for separation between horizontal and vertical 
components of motion and results in a simple solution to the horizontal component. In 
general, constants of motion, also known as conserved quantities, simplify solutions. 
A universal constant of motion for all mechanical systems obeying Newton's laws of 
motion is the energy. This section develops the energy for the tossed-object problem 
and shows that indeed it is a constant of the motion. The method is then generalized 
to determine the energy for a general system. 

7.3.1 Energy of a Tossed Object 

First consider the simple case of the tossed object discussed in the previous section, an 
object that vertically drops. The equations of motion for such a case are the following: 

d d 
-Ü0 = ,v - („ , ) = -g 

Let us look for a constant of the motion of the following form: 

Em(y, vy) = Km{vy) + Pm(y) 

where Km(vy) and Pm(y) are functions of their associated variable. 
Note that because each of the variables is a function of time, y = y(t), and 

vy = vy(t), both Km{vy) and Pm(y) are also functions of time. Using the sum rule and 
the chain rule for differentiation and substituting for the values of ^(vy) and $j(y) 
when appropriate, it is possible to determine the time derivative of Em(y, vy): 

j { [Em(y(t), vy(t))] = jf [Km(vy(t))} + j { [Pm(y(t))] 

= dVy^{v^d\ivy)+Ty^^i{y) 

= -8-£- [Km(vy)} + vyj [Pm(y)] (7.6) 

To ensure that Em is a constant of the motion, set its time derivative to zero: 

- [Em(y(t), vy(t))] = -g— [Km(vy)} + vyj [Pm(y)} = 0 
Vy y (7.7) 

8dV ^Kmivy^ = vyj~ iPm^] 
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The left-hand side of equation (7.7) is a product of a constant and a function in 
vy so the right-hand side must also be of the same form. Equating the function in u_v 

yields the following equation: 

d r , 
— - [Km(Vy)\ = Vy 
dVy 

Integrating furnishes a solution for Km: 

Km(Vy) = / VydVy 

1 2 

= 2U-v 
The remaining right-hand factor of equation (7.7) must be equated with the 

remaining factor on the left-hand side: 

-r[Pm(y)} = g dy 

Integrating with respect to the variable y establishes a solution of P: 

Pm(y)= [ gdy 

= gy 

Having found Km and Pm, the constant of motion Em is available: 

1 
Em(y, vy) = Km(Vy) + Pm(y) =-if + gy / 

Multiplying the constant of motion Em by the mass furnishes the energy of the 
system: 

1 , 
E = -mvy + mgy 

The energy is split into two components, one that depends only upon velocity 
Vy and one that depends only upon position y. The term depending upon velocity, 
\mvy, is known as the kinetic energy while the term depending only upon position, 
mgy, is known as the potential energy. 

Remarks 

• The conserved quantity emerges regardless of the constants of integration that 
are chosen. It is most common to set the constants of integration to zero. 

• It is possible to verify that the energy is indeed a constant of the motion by 
taking the time derivative and ensuring that it is equal to zero. It is necessary to 
use the chain rule in the exact same manner as in equations. 
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7.3.2 Energy of a System Moving in a Single Dimension 

The approach that results in the energy for the dropped object is applicable to any 
of Newton's equations of motion in a single dimension provided that the force is a 
function of position only. Below, the approach is repeated for a general force F(y). 
The equations of motion are as follows: 

d . . d F{y) 
T.W = Vy —(Vy) = 
at at m 

A constant of motion Em = Em(y, vy) is determined and its derivative set to 
zero: 

Em(y(t), vy(t)) = K(vy(t)) + Pm{y(t)) 

- [Em(yit), vy(t))] = - [Km(vy(t))] + j { [Pm(y(t))} 

= — [Km(vy)] — + Vy^- [Pm{y)\ 
dvy L m ay 

= 0 

From the above relations, the following equality holds: 

d . N F(y) d 

dvy m dy 

Each side of the equality is a multiple of two factors. The first factor is a function 
of Vy and the second factor is a function of y. Equating the factors and solving through 
integration result in solutions for Km and Pm: 

-T- [Km(Vy)] = Vy 
dVy 

Km = I Vy dVy 

d 

dy [ft Áy)] = 

Pm = 

1 2 

F(y) 
m 

-±i F{y)dy 
m j 

Placing the expressions for Km and Pm into the expression for Em results in 
the following expression for Em: 

Em — Km + Pm 

V2y 1 , 
; F(y)dy 

m I 
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Multiplying through by m furnishes the energy with the first term the kinetic 
energy and the second term the potential energy: 

E = ^ - J F(y)dy 

Remarks 

• Direct verification that the energy is a constant of motion is performed by 
ensuring that the time derivative is zero. To take the time derivative, the chain 
rule is necessary. 

• In the above calculations, the energy has been derived from the force. In ap-
plications, it is often the case that the energy is known and the force is derived 
from the energy. From the expression of the energy, it is seen that the force is 
the negative of the derivative of the potential energy, 

d 
F = (potential energy) 

dy 

Knowing the force, the equations of motion can be determined, so the equations 
of motion are available from the energy. For example, the potential energy for 
the tossed object in one dimension is Potential energy = mgy. From this we 
find the force, 

d 
F = -—(mgy) = -mg 

dy 

• The process above is generalizable to motions in three dimensions. The gener-
alization requires further definitions that would take us along more excursions. 
The final target, Kepler's ellipse, is within reach; we forgo the excursion and 
head toward the ellipse. There may be an objection to this approach. After all, 
planetary orbits are not along a single direction; a planet moves in an ellipse 
that lies in a plane. If energy is a critical requirement for solving the problem 
of planetary motion, a generalization to at least two dimensions should be con-
sidered. While the objection has merit, nature is most accommodating. Notice 
that the tossed-object problem of Galileo can be split into separate and indepen-
dent components, motion along the horizontal direction and motion along the 
vertical direction. Each component can be solved separately, so the solution to 
the motion in two dimensions yields two separate one-dimensional problems. 
In the next section, it is shown that a similar separation occurs for planetary 
motion. 

7.4 KEPLER AND NEWTON; ARISTARCHUS REDEEMED 

7.4.1 Polar Coordinates 

Kepler states that the force between the sun and the planet is directed along the line 
between their centers. Fixing the inertial frame of an observer so that the origin is at 
the center of the sun, the law states that the force acting on the planet is always in the 
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Figure 7.9 Sun pulls planet directly toward it. 

radial direction (Figure 7.9). The force is a vector with two components, Fx aligned 
with the x axis and Fy aligned with the y axis. Using the relations between polar and 
Euclidean variables, r cos(#) = x, r sin(0) = y, and r = yjx2 + y2, the components 
of force are Fx = cos(6)F(r) and Fy = sin(6)F(r), where F(r) is the force expressed 
in terms of a point's distance from the sun. 

Newton's equations of motion may be expressed as follows: 

d 
(JC) = Vr 

dr ' 
j W = Vy (7.8) 
dt 

^-(vx)=-Fx = -cos{0)F(r) 
dt m m 

~(vy)=-FY = -Sm(9)F(r) 
dt m m 

The result is difficult to deal with as there is no obvious way to integrate the 
derivatives so that the underlying coordinates are available. As the force is directed 
only in the radial component, it is natural to describe the system entirely in polar 
coordinates. This is the immediate task. 

7.4.1.1 The Position Variables and Velocity In Cartesian coordinates, the 
relation between position variables (x, y) and velocity variables (vx, vy) is straight-
forward; the velocity is the derivative of the position. There is an intuitive approach 
toward determining the relation between the polar position variables (r, 9) and the 
velocity expressed in polar variables. The intuitive approach is given below. With 
a trust-but-verify attitude toward intuition, a more detailed demonstration is also 
given. 

We begin with some notation. Let íixy denote the velocity vector expressed in 
standard Cartesian coordinates and 5poiar denote the same velocity vector expressed 
in polar coordinates. The components expressed in polar coordinates are upoiar = 
(iv, ve)T. 

Let us begin by assuming that an object's motion is in a radial line emanating 
from the origin. Then, just as with Cartesian coordinates, the derivative of the radial 
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position coordinate r is the velocity in the radial direction vr; ^(r) = vr. Next assume 
that the object's motion is circular about the origin with constant speed, v#. Let Ad 
be the angle change in time Ai. The distance traveled in time Ai is given by r A6. To 
determine the speed, divide the distance traveled by the time: 

rAO 

At 

Taking the limit as Ai approaches zero establishes the relation between the time 
derivative of the angle and the angular component of the velocity: 

rAO d 
hm = r—(d) = ito 

A/^0 Ai dt 

Sometimes we divide by r to obtain 

d 1 
dt r 

The relations between derivatives of the position variables and the velocity have been 
found for two special cases, radial and circular motion: 

d d 1 
— (r) = Vr —(0)=-V0 
dt dt r 

Consider any arbitrary motion as a composite of these cases and the relations hold, 
so says our intuition. We next follow a more detailed path. 

Recall from Section 5.8 that the components of ipoiar are obtained by applying 
a rotation matrix R(—0) as follows: 

_ = I cos(-0) -s in(-0) \ = / cos(0) sin(0) \ 

\̂  sm(-9) cos(-0) ) ~ \ - sin(0) cos(6>) J 

Also recall that the inverse of the matrix, R(—9), is the matrix R(6). This allows one 
to obtain the Cartesian representation vxy if the polar representation is known: 

-sin(0) \ 

cos(0) J 

To determine the relation between polar coordinates and the velocity, begin by 
expressing the Cartesian position (x, y)Tin polar coordinates: 

r(i)cos[0(i)]\ 

r(t)sin[0(t)]) 
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Next take the time derivative of each side. The right-hand side requires the use 
of the multiplication rule and the chain rule: 

= /r(Ocos[0(f)A 
~ \r(t)sm[0(t)) ) 

~ V|{r(f)sin[0(i)]}j 

/cos| 

I sin 

os[0(í)]|[/-(í)] + r(í)|{cos[0(í)]}\ 

■in[9(t)]ft[r(t)] + r(t)^{sm[d(t)]} ) 

fcos[6{t)]£ [r(0] + r(t)fe [cos(0)] | [6(t)] \ 

V sin[0(i)]| [r(0] + r(t)± {sin[0(i)]} ; 

'cos[0(f)] | [r(f)] + mis tC0S^)] S PWl \ 

V sin[0(i)]| [r(f)] + K 0 | [sin(0)] ft[9(t)] J 

os[0(r)]|[r(r)] - r(f)sin(0)£[0(f)] \ 

n[0(i)] | [r(r)] + r(/)cos(0)£[0(O] J 

Expressing the relationship of equation (7.9) purely in terms of polar coordinates 
and simplifying result in the required relationship: 

Equivalently, 

( áfWOi 

( Iwo] \ 

±{r) = vr > ) = ^ (7.10) 
at at r 

7.4.1.2 The Velocity Variables and Acceleration To complete the polar de-
scription of Newton's equations, it is necessary to express the acceleration in polar 
coordinates. Begin by taking the derivative of i(r)Polar = R(—0(t))v(t)xy. Below, we 
apply the product rule, which works for matrix functions just as it does for standard 
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functions: 

Jf [iKOpolar] = Jt [R(-9(t))v(t)xy] 

= (jf [R(-e(t))]\ v(t)xy + R(-0(.t))^ [v(t)xy] (7.11) 

The derivative of the matrix R is obtained by taking the derivative of each 
component: 

<* \-i{sMf>(.tm ÍicosWt)])) 

Use of the chain rule results in the following expression for the derivative of 
the matrix: 

^R(-emJ\[com]*m j[™m^) dt \-ie^mim &[**(maw) 
= / - s in (0 )4 (0 ) cos(0)$(0) \ 

V-cos(0) | (0) -s in(0) |«?)J 

-sin(0) cos(0) \ 

-cos(0) — sin(6>) y 

Substituting the values of jjjVx, ^vy from Newton's equations of motion, equa-
tion (7.8), and the expression for j t [R(—0(t))] into the expression for ^ [v(Opoiar]» 
equation (7.11), results in the following equation for -jt [í(í)poiar]: 

Jt p(í)polar] = j f [R(-0(t))] V{t)xy + R(-0(t))- [v(t)xy] 

= d f-um 
dt \ -cos(6>) 

/ cos(#) sin(0) 

\ - sin(fl) cos(0) 

- sin(0) cos((9) 

■ cos(0) - sin(0) 

(coM sin(*)\ l^comFir) 

\-tín(ff) c o s ^ M I s i n ( f l ) F ( r ) ' 
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The vector vxy is next expressed in polar coordinates: 

= R(9) 
v» 

cos(6) - sin(0) 

sin(0) cos(0) V0 

( vr cos(0) + V0 sin(0) \ 

—vr sin(0) + VH cos(9) I 

Placing the expression for vxy into equation (7.12) and simplifying establish a 
polar expression for the acceleration: 

dt 
d 

■dt 

(Vr) 

(VH) 
dt 

(0) 
-sin(0) cos(0) \ ( vx 

■ cos(0) — sin(0) I \ u v 

+ 
cos(0) sin(0) 

- sin(0) cos(6>) 

f - cos(0)F(r) 
m 
1 

- sin(0)F(r) 
m 

dt 
(0) 

- sin(0) cos(0) \ ( vr cos(0) + Vf) sin(0) \ 

■ cos(0) -sin(0)) \-vr sin(#) + vo cos(0) J 

1 
cos(0) sin(0) \ ( - cos(0)F(r) 

-sin(0) cos(0W I j _ 

m 
sin(0)F(r) 

-HZM m 
0 

jp-x-> F(r) 
m 
0 

(7.13) 

Using the expression for angular velocity, equation (7.10) yields the two accel-
eration equations: 

F{r) 
-(Vr) =Ji + 
dt r m 

d -vrvH 
— (V0) = 
dt r 

(7.14) 

Equations (7.10) and (7.14) are the equations of motion in polar coordinates. 
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Remarks 

To convince oneself that the product rule for differentiation applies to equation 
(7.11), expand the terms and compare the results. 

A more direct path from equation (7.12) to equation (7.13) is available for those 
who are familiar with matrix multiplication: 

- sin(0) cos(0) 

cos(#) - sin(6») 

1 
cos(<9) sin(6>)\ / -cos(0)F(r) 

+ l -sin(0) cos(8)) 1 } _ s m ( 0 ) F { r ) 

m 

-sin(fl) cos(0) \ /cos(0) -sin(0) 

-cos(0) -sin(6»)y \^sin(0) cos(0) 

, 1 
cos(0) sm{6)\ ( - C 0 S ^ ) f ( r ) 

I -sin(0) cos(6) I I 1 — sin(6»)F(r) 
m 

Fir)' 

m 
0 

7.4.2 Angular Momentum 

Integration of equations (7.10) and (7.14) so that the location variables are determined 
explicitly still appears difficult. A simplification occurs using another constant of the 
motion, the angular momentum. Angular momentum is the quantity mrve. This section 
shows that in a Newtonian system angular momentum is conserved by demonstrating 
that the time derivative of the angular momentum is zero. Afterward, the equivalence 
with Kepler's second law is shown. 

7.4.2.1 Conservation of Angular Momentum We begin by taking the time 
derivative of the quantity rv»: 

d d d 
—{rvn) = r—(vo) + Vn—(r) 
dt dt dt 
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Next substitute for the values of ^(r) and ^t{v$) from Newton's equations in 
polar coordinates and simplify to demonstrate that rvy is a conserved quantity: 

—(rvy) = r—(ve) + ve—ir) 
at at at 

= — r h Vf)Vr equation (7.10) 
r 

= 0 

Conservation of angular momentum allows one to set the quantity rv$ to a 
constant value and then express the angular component of velocity, v$, in terms of the 
variable r: 

rvs = k 
k (7.15) 

ve = -

This relation is critical for revealing the ellipse. 

Notation. From this point onward, justification for a single equality in a sequence of 
equalities is at times given on the right of the equality of interest. For example, in 
the equalities preceding equation (7.15), equation (7.10) is used to obtain the second 
equality. 

Remarks 

• A point of interest is that up to now the force function F{r) has not been specified. 
The results then apply to any system for which the force function is constant 
along all fixed radial values. In the case of planetary motion, let the planet be at 
a certain point with a fixed radial distance from the sun and measure the force. 
Now move the object to any other point having the same distance from the sun. 
If one were to measure the force on the planet, it would be the same at both 
points. Any force satisfying this property defines a Newtonian system in which 
angular momentum is conserved. 

• The case in which there is no force at all satisfies the property identified in the 
previous remark. Fixing any arbitrary point as the origin, an object at points 
that are equidistant from the origin experiences the same force along all those 
points, zero. This means that angular momentum is conserved. A point moving 
in such a force field moves in a straight line with constant velocity. One can 
demonstrate using Cavalieri's theorem that Kepler's second law holds for such 
motion. 

7.4.2.2 Kepler's Law and Angular Momentum We close this section by 
demonstrating the equivalence between Kepler's second law and conservation of 
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angular momentum. This is the final excursion of the book, and it is completely un-
necessary for uncovering the ellipse. However, I made so much hullabaloo about this 
point throughout the book that I feel obligated to formally demonstrate it. 

Kepler's second law states that the area swept out by the line between the sun 
and the planet between times ?o and t is proportional to the length of the time interval 
(Figure 7.7). Kepler's law may be stated as an equation: 

A(t) =-k(t - t0) (7.16) 

where 

• A{t) is the area of interest 

• k is a constant value 

• and io is the initial time, which may be set to zero 

Note that differentiation of equation (7.16) results in 

d k 
Jt

[Mt)] = 2 

which is another way to express Kepler's law. 
To establish equivalence between Kepler's law and conservation of momentum, 

it is necessary to show that each statement may be derived from the other. First, it 
is shown that conservation of angular momentum follows from Kepler's second law. 
Toward this end, we demonstrate that assuming 

d k 

dt[m] = 2 

leads one to the conclusion that the constant quantity mk is the angular momentum, or 
equivalently k = rvo. Afterward, we demonstrate the converse statement, assuming 
the angular momentum is constant, rvn = k, it follows that 

d k 

dt[m] = 2 

For the first part, assume 

d k 

Jt[A{t)] = 2 

and consider Figure 7.10. For ease of exposition, io has been set to zero and the 
planet's initial position is along the x axis. The symbols A(t) correspond to the area 
of the sector within the ellipse enclosed by ro and r,, while A(t + A) corresponds 
to the area of the sector within the ellipse enclosed by rt and rt+&; A_(t + A) — A(t) 
corresponds to the area of the triangular region that is colored in turquoise, and 
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Figure 7.10 Underestimate and overestimate of sector between t and t + A. 

A(t + A) — A(t) corresponds to the area of the circular sector with radius enclosed 
by r, and r,+& with radius rt. The following inequalities result from these definitions 
for the corresponding areas, A(t), resulting in the following equality: 

A(t + A) - A(t) = \rth(t + A) < A(t + A) - A(t) < \r}A0{t) 

= Ã(í + A) - A(t) 

where A#(r) is the angle between rt and rt+&. Note that A#(r) = 6{t + A) — #(i). 
The inequalities are valid for all times in an interval between t and t + A for a 

small increment A. As such, across the inequalities, it is possible to divide through 
by A and take the limit to determine a derivative: 

A(t + A) - A(t) A(t + A) - A(t) A(t + A) - A(i) 
Ã ~ Ã ~ Ã 

,. A(t + A)-A(t) ,. A(t + A)-A(t) 
lim < urn 
A-^0 A A->0 A 

,. Ã(í + A ) - A ( í ) 
< urn 

A^O A 

A(t + A) - A{t) d k 
m ~ — < —[A(t)] = -

A-*O A ~ dt 2 

A(t + A) - A(t) d k 
< hm assumption —\A(t)] = -
~ A^O A v dt 2 

(7.17) 
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Next, determine the left-hand expression of equation (7.17): 

,. A(t+A)-A(t) 
lim 
A^O A 

lim 
r,h(t + A) 

A-»0 2A 
,. r) sin[0(r + A) - 0(0] 

= lim - — — 
A^O 2A 

= lim 
A^O 

rf sin[0(i + A)] cos[0(O] 
2Ã 

r) sin[0(O] cos[0(r + A)] 

cos[0(O] lim 
A^O 

-sin[0(O] lim 
A-.-0 

2A 

sin[0(r + A)] 

A 
cos[0(f + A)] 

2 

cos[0(f)]T{sin[0(O]} 
at 

-sin[0(O]^-{cos[0(O]} 
at 

cos[0(f)]^[sin(0)] 
ad 

-sin[0(O]^[cos(0)] 
ad at 

h = sin[A,)(i)] 

trigonometric identities 

simplification of limits 

definition of derivative 

(0) chain rule 

cos2 [0(f)] + sin2 [0(0] 

r} d 
— —(0) 
2dty ' 

rjve(t) 

—(0) derivative of trignometric functions 
at 

Pythagorean identity 

equation (7.10) 

Finally, evaluate the right-hand expression of expression (7.17): 

A(t + A) - A(t) 
lim 
A^O A 

= lim 
A^O 
.2 

r2 [6(t + A) - 0(Q] 
2A 

/-; 0(f + A ) - 0 ( Q . 
— lim simplification of limits 
2 A^O A 
r 2 J 
— — (0) 
2 div ' 

definition of derivative 

= ^ ( 0 equation (7.10) 
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Figure 7.11 Approximation of sector by circular sectors. 

Replacing the left-hand and right-hand expressions into the inequality estab-
lishes the following inequality: 

jrvo < \k < \rvu 

Noting that the left-hand and right-hand expressions are equal furnishes the 
desired result, rv» = k. 

With the above result, we have accomplished the first step, demonstrating that 
conservation of momentum follows from Kepler's law. We next move to the final step; 
the assumption of conservation of angular momentum results in Kepler's law. 

Consult Figure 7.11. As in Figure 7.10, A(t) is the area of the region within the 
ellipse enclosed by ro and rt. Approximating the area by a sum of sector areas results 
in the following: 

n 

7=0 

7=1 

In the above expression, the radius of sector j is r7 and each sector has the same 
angle A#. The actual area, A(r), is determined by taking the limit as the sector angle 
approaches zero. Simplifying the expression yields the result: 

7=1 

d0 definition of integral -I 
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1 /"' 2 d$ 
= - lr(*)] —àx change of variables, angle to time 

2 Jl{) dx 
1 /•' 

= - / r(x)w(x)dx equation (7.10) 
2 Jtn 

conservation of angular momentum = 

= 

2 A, 
k 
-(t-
2 

kdx 

-to) 

The final equality is Kepler's law, which does indeed follow from the assumption 
of conservation of angular momentum. 

7.4.3 The Ellipse 

In this section, we reveal the ellipse. Our path toward the ellipse follows six steps that 
are first outlined. Afterward, the steps are executed. The objective is to find the shape 
of the trajectory by determining a relation between the radial and angular components 
of the trajectory. 

Step 1. Find an equation for jp(8)-
Using conservation of momentum, it is possible to determine an equation for 
■jp(0)- The result is an equation in both r and vr. 

Step 2. Separation of radial component of motion. 
The equations governing motion along the radial direction are written only 
in terms of the radial variables r and vr. 

Step 3. Find the associated energy and use it to establish a relation between r and vr. 
Another constant of motion, the energy, is determined for the equations gov-
erning radial motion. This generates a relation between r and vr. 

Step 4. Simplify the result of step 1 using the relationship between r and vr from 
step 3. 
Substituting for vr the result of step 1 establishes an equation of the form 
jjp(9) = h{r), where h{r) is a function of r only. 

Step 5. Determine 6 by integration. 
Integrate the result of step 4 to determine a relation between 8 and r. 

Step 6. Transform the relation of step 5 to reveal the ellipse. 
The map is marked. Let us begin. 

Step 1. Find an equation for ^(0). 
Using conservation of momentum, it is possible to determine an equation for 
jp(0). The result is an equation in both r and vr: 

mrvv = k equation (7.15) 
k 

V0 = 

mr 
d k 

r—[0(r)] = — equation (7.10) 
dt mr 
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d k 
Tf[0(r)] = — 
dt mrL 

—(0)—(r) = —~ chain rule 
dr dt mr1 

d k 
-(0)vr = — T equation (7.10) 

dr mvrr
2 

Step 2. Separation of radial component of motion. 
The equations governing motion along the radial direction are written only 
in terms of the radial variables r and vr: 

—(t>r) = ^ + - ^ equation (7.14) 
dt r m 

= , - H equation (7.15), ty> = — 
m'-ri m mr 

Step 3. Find the associated energy and use it to establish a relation between r and vr. 
Another constant of motion, the energy, is determined for the equations gov-
erning radial motion. This establishes a relation between r and vr. The system, 
is a Newtonian system: 

d 

d k2 F(r) 
—(vr) = - , H result of step 2 
dt míri m 

Using the procedure described in Section 7.3, the energy for this system can 
be determined: 

E = m{Km{vr)+Pm{r)) 

d i d d \ 
-(E) = m i - [Km(vr)] + — [Pm{r)\ J product rule 

id d d d \ 
= m I — ^Km)jSvr) +-T^Pm)jSr>>) chain rule 

(d ( k2 F(r)\ d \ 
= m[-—(Km)[ —T-^-\ )+—(Pm)vr] system equations 

\@vr \mAr3 m J dr J 
= 0 conservation of energy 

The following relations for K and P assure that the energy is fixed 
(dE/dt = 0): 

d d ( k2 F(r) 
—(Km) = vr - ( />„) = - ( - _ + - i ^ 
dvr dr \.mzrJ m 
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Integrating both equations furnishes the kinetic and potential components: 

Km = I vrdvr Pm = - I ( —r-r H ) dr 
J J \mlr* m J 

At this point, we introduce the force F(r). According to the inverse square 
law, the sun pulls the planet with a force that is proportional to the inverse 
square of the distance between the two bodies, F(r) — —y/r2. Newton rea-
soned that the constant of proportionality is the product of the mass of the 
planet, m, and that of the sun, M, along with another constant known as the 
universal constant of gravity, g\ y = mMg. Placing this force into the integral 
for Pm and performing the integration result in an expression for the potential 
component (the constant of integration has been set to zero): 

■ / ( ■ 
M A 1 (k V Mg 

+ - ? * = : 
m2 r3 r2 J 2 

With the kinetic and potential components, the energy is determined: 

mvl k2 mMg 
£ = L -| 2. 

2 2mr2 r 
Since the energy is a constant value, ly can be solved in terms of r: 

I2E 2Mg 

Step 4. Simplify the result of step 1 using the relationship between r and vr from 
step 3. 
Substituting the result of step 3 into the result of step 1 establishes an equation 
of the form $p(0) = h(r), where h{r) is a function of r only: 

d k 
-(9) = r step 1 

dr mvrr
2 

mJ2-* + ™*-(±)2 
step 3 

m r \mr J 

Step 5. Determine 0 by integration. 
Integrate the result of step 4 to determine a relation between 9 and r: 

d k 
—(0) = step 4 dr , 2E 2Mg ( kx2 

mrz\ 1 

" / ■ 

r \mr 
k 

-.dr 
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-I 

= 1 
A 

1 

m\2 (2£ 2Mg ( k V 

k I \ m r \mr) 

-.dr 

(l) 
1 

2Em 2Mg (m\2 1 
--dr 

k2 
ZMg / m y _ j _ 

+ r \k) r2 

Change the variables to simplify the integrand. Let Í = 1/r, then ds = 
I 

"7? dr. 

-I 
1 

- ,2Em 2MB (tn\2 1 
--dr 

- I 2 Em 
-.ds 

k2 + 2Mg(T) s — s 

Complete the square of the radical: 

2 N 2 

2 Em 
~fc2~ ^(TP-HT)

 +HfH 
Mgm2\2 2Em 

1 - -

Mgm' 

(s -Mgm1 Ik2)2 

(Mgm2/k2) +2Em/k'1 

Substitute the completed square into the integral and simplify: 

1 

/ ^2Em/k2 + 2Mg {m/kf s - s2 
ds 

V2J 

\ 

( Mgm2 x 

V k2 + 
2 Em 

k2 

Mgm2\ 2Em 
k2 

I 
k2 

(s- Mgm2/k2)2 

(Mgm2/k2)2 + 2Em/k2_ 

ds 

-.ds 

1 -
(s - Mgm2/k2) 2 / t 2 \ 2 

\ (Mgm2/k2)2 + 2Em/k2 

(7.18) 

Once again change the variables to simplify the integrand: 

s — Mgm2/k2 

COS(M) 

-yj'{Mgm2 /k2)2 + 2Em/k2 
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ds 

-\J(Mgm2/k2)2 + 2Em/k2 

1 ds 
du = — —— 

^(Mgm2/k2)2 + lEm/k2 S1"(" 
1 ds 

^(Mgm2/k2)2 + 2Em/k2 V1 ~ cos2(") 

1 ds 

) 

Pythagorean identity 

l/Mgm2\2 2Em (s-Mgm2/k2)2 

V k / kl \ (Mgm2/k2)2 + 2Em/k2 

Idu= , ' J- ds 

Mgm \ 2Em 
+ k2 k2 

(s- Mgm2/2k2) 

\ | ' (Mgm2/k2)2 + 2Em/k2 

equation (7.18) 

The constant of integration has been set to zero. The constant determines 
the orientation of the axes with respect to the solution, so it is not relevant to 
the shape of the trajectory. 

Tracing back through the variable changes allows one to find the relation 
between r and 0: 

-6 = u 

cos(-O) = COS(M) 

COS(#) = COS(M) 

s—Mgm2/k2 

cos(#) = 
- ̂ (Mgrr^/k2) 2+2Em/k2 

If Mgm2 \ 2Em Mgm2 

+ . cos(fl) = s— -V k2 ) k2 w k2 

\(Mgm2\ 2Em Mgm2 

(Mgm2\2
 [ 2Em ...Mgm2 1 

'{Mgm 2 \ 2Em Mgm2 , 
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Step 6. Transform the relation of step 5 and reveal the ellipse. 
The ellipse is coded into the last equation of step 5 in polar coordinates. In this 
step, we display the ellipse in Cartesian coordinates. To clarify the process, 
the following notation is used: 

Mem i k 
a=-?— -P2 = - (7.19) 

2E 2Em 
Placing the notation in the result of step 5, the ellipse is uncovered through 

an algebraic process that is presented in an example of Section 5.8. In that 
section, the polar coordinates are determined from the Cartesian coordinates. 
Here we work in reverse: 

4rcos(#) 

"«J 
2 

(x _ v ^ ^ ) 2 - (a2 - ?) + $y2 = p 

(x-y/^fi) 
+v 

At long last, the ellipse is revealed. But wait, Apollonius scores! Greek math-
ematicians set a precedent in their willingness to investigate topics with no apparent 
application. This precedent finds remarkable payouts again and again. Appolonius 
demonstrates no application for the conic sections that he revered, but the ellipse 
weaves itself into planetary motion. Not only the ellipse—take a good look at the fi-
nal result. From equation (7.19), when E < 0 (/?2 > 0), the solution is the ellipse with 
major axis a, minor axis ft, centered at the point (x, y) = (vc*2 — P2< u)> with the 
left-hand focal point, the sun, at the origin (see Figure 7.7). But when E > 0 (/32 < 0), 
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the solution is the hyperbola. As we further pan the solution, another nugget falls out. 
When E = 0, we have the following: 

'/Mgm2\z 2Em Mgm2 , 
+ — 7 - cos(0) + -4V— r = 1 

Mgm1 I 

-r[l -cos(6)] = 1 
k2 

Mgm Mgm 
r = —-=—r cos(9) + 1 k2 k2 

Mgm2 \ (Mgm2 N 

(Mgm2\ 2 Mgm2 

V A:2 7 )t2 

Mgm2 ■, k2 

y- = X + 2k2 2 Mgm 

„2 
X = 

Mgm2 2 k 
2k2 y 2Mgm2 

The equation describes a parabola opening up on the x axis. All of Appolonius' 
conic sections are solutions to Newton's equations. 

Since the energy controls the solution, a look at the energy is in order: 

mv2 k2 mMg 
£ = L -| 2. 

2 2mr2 r 
mv2 mr2vl mMg „ „ 

= —r- + 0- equation (7.15) 
2 2 r 

The first two terms are the total kinetic energy, while the final term is the 
gravitational potential, which increases from negative infinity to zero as the planet's 
distance from the sun goes from zero to infinity. When the gravitational potential 
dominates, the orbit is the ellipse. Alternatively, when the kinetic energy dominates, 
the planet drifts off along a hyperbolic trajectory. Finally, when the kinetic energy 
and the gravitational potential are in balance, the planet's trajectory is a parabola. 





Behind my home in Arcadia is a pathway leading up to Mount Wilson. It is quite 
a strenuous hike with a 4500-ft elevation gain over 7 miles. The pathway is very 
diverse; it begins along a barren stretch, passes on through a forest, and then there 
are a series of switchbacks that take you up the final assault. Once atop Mt. Wilson, 
there is a broad vista. The highest peak of the San Gabriel, Mt. Baldy, is visible to the 
east and on a clear day one can see the San Bernadino Mountains beyond Mt. Baldy. 
To the west, the Pacific Coast Range is visible along with the ocean. Indeed, in every 
direction there is a natural landmark that piques at one's curiosity and is very alluring. 
It's a full day's hike, morning to evening, to climb up and down the Mt. Wilson trail. 
The distant landmarks are noted for another day. 

There are many directions that we could explore with our understanding of 
calculus. Optimization theory is nearly within our grasp and we could follow the 
brachistrone problem into the calculus of variations. With a bit more effort, we could 
look into differential equations, partial differential equations, and more general dy-
namic systems. Alternatively, we could follow the route of physicists and review a 
broader set of mechanical systems, optics, and electrodynamics. And more in the dis-
tance lies relativity and quantum mechanics. But this book ends at the ellipse, leaving 
other challenges for another day. 

Would it not be nice if all those who contributed toward this achievement could 
gather together at the top of Mount Wilson, survey the trail that brought us to the 
peak, and have a chat. Since I have entered into a fantasy world, I will make it the 
best of all fantasies and assume that the contributors do not display the more flawed 
aspects of their dispositions. Aristarchus would possibly take a few jovial shots at 
his fellow Greeks for their ridicule while he was right all along. And Archimedes 
might retort that if Aristarchus had left the specifications of the planetary orbit to 
him just as Kepler had left the specifications to Newton, then he, Archimedes, could 
have proved its elliptic path. Apollonius would be able to brag that he knew there was 
something fundamental to the conic sections and history proved him right. Ptolemy 
might be embarrassed but he could point out that his system very accurately describes 
the position of the planets and has endured for 1300 years. Copernicus might thank 
Kepler for having faith in his work and salvaging the truth. Kepler and Galileo, though 
different in character, might share a special bond for having lived during troubled times 
and having felt the consequences of the troubled times in a very personal way. Newton 
would have to recognize Leibniz' contribution to calculus as Leibniz' notation is the 
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current standard. And Leibniz would have to concede Newton's historical role in both 
mathematics and physics. 

While not physically present, these men are with us through the legacy that 
they have left. They may have had different personalities with some flaws, but all of 
them were truth seekers who laid out their work for us to review with full honesty and 
openness. We have all been beneficiaries of their achievements. Unfortunately, it is 
not only the truth seekers who accompany us, but also among us are the ignorant, such 
as the soldier who speared Archimedes; the intolerant, such as the men who burned 
the library at Alexandria; the sadistic, such as the men of the Inquisition who tortured 
and executed Bruno; the hoodwinkers, such as the men who presented Aristotle and 
their own interpretation of the bible as the final truth about everything; the bigots, 
such as the men who cast out and persecuted minorities; and the self-aggrandizers, 
such as those who claimed to be the sole interpreters of God's will. As we set our own 
journeys, we are free to choose who within our legacy will be our guides. Choose 
wisely. 



Al-Khwarizmi. Algebra. Translated by Frank Rosen. Publisher unknown. London, 1831. 

Apollonius. Conies. Translated by William Donahue. Santa Fe, 1997. 

Appelbaum, Wilbur. Encyclopedia of the Scientific Revolution: From Copernicus to Newton. 
Garland, London, 2008. 

Archimedes. The Works of Archimedes. Translated by Thomas Heath. Dover, New York, 

2002. 

Arnold, Vladimir. Geometrical Methods in the Theory of Ordinary Differential Equations. 
Springer, New York, 1983. 

Bardi, Jason. The Calculus Wars. Thunder's Mouth Press, New York, 2006. 

Beckmann, Petr. A History of Pi. St. Martin's Press, New York, 1976. 

Boorstin, Daniel. The Discoverers. Vintage Books, New York, 1985. 

Bottazini, Umberto and Van Egmond, Warren. The Higher Calculus: A History of Real and 

Complex Analysis from Eulerto Weierstrass. Springer-Verlag, New York, 1986. 

Boyer, Carl. A History of Mathematics. Revised by Uta Merzbach. Wiley, New York, 1991. 

Brecht, Bertolt. Life of Galileo, Penguin, New York, 2008. 

Burman, Edward. The Inquisition: The Hammer of Heresy. Dorset, London, 1984. 

Cardano, Girolamo. Ars Magna. Translated by Richard Witmer. Dover, New York, 2007. 

Connor, James. Kepler's Witch. HarperCollins, New York, 2005. 

Copernicus, Nicolaus. On the Revolutions of Heavenly Spheres. Translated by Charles Wallis. 
Prometheus Books, New York, 1995. 

Crowe, Michael. Theories of the World from Antiquity to the Copernican Revolution. Dover, 

New York, 1990. 

Cullen, Christopher. Astronomy and Mathematics in Ancient China. Cambridge University 
Press, Cambridge, 2008. 

Descartes, Rene. The Geometry of Rene Descartes. Dover, New York, 1954. 

Estep, William. Renaissance and Reformation. Grand Rapids, 1986. 

Euclid. The Elements. Translated by Thomas Heath. Green Lion Press, Santa Fe, 2002. 

Ferguson, Kitty. Tycho and Kepler. Walker and Company, New York, 2002. 

Feynman, Richard, Leighton, Robert, and Sands, Mathhew. The Feynman Lectures on Physics. 

Addison Wesley Longman, New York, 1970. 

Galileo, Galilei. Dialogue Concerning the Two Chief World Systems. Translated by Stillman 
Drake. University of California Press, New York, 2001. 

The Ellipse: A Historical and Mathematical Journey by Arthur Mazer 
Copyright © 2010 by John Wiley & Sons, Inc. 

297 



2 9 8 BIBLIOGRAPHY 

Gingerich, Owen. The Book Nobody Read: Chasing the Revolutions ofNicolaus Copernicus. 
Walker and Company, New York, 2004. 

Gleick, James. Isaac Newton. Pantheon, New York, 2003. 

Gullberg, Jan. Mathematics: From the Birth of Numbers. W.W. Norton and Company, New 

York, 1997. 

Hawking, Stephen editor. On the Shoulders of Giants. Running, Philadelphia, 2002. 

Heath, Thomas. A History of Greek Mathematics, Volumes I and II. Dover, New York, 1921. 

The Copernicus of Antiquity, MacMillan, New York, 1920 
Hofstadter, Douglas. Godel, Escher, Bach: An Eternal Golden Braid. Basic Books, New York, 

1979. 

Kepler, Johanes. New Astronomy. Translated by William Donahue. Cambridge University Press, 

Cambridge, 1993. 

The Optical Part of Astronomy. Translated by William Donahue. Green Lion Press, Santa 
Fe, 2000. 

Epitome of Copernican Astronomy and Harmonies of the World. Translated by Charles 

Wallis. Prometheus, New York, 1995. 

Kuhn, Thomas. The Copernican Revolution. Shambhala, Boston, 1991. 

Koestler, Arthur. The Sleepwalkers: A History of Man's Changing Vision of the Universe. 
Penguin, New York, 1990. 

Laubenbacher, Reinhard and Pangelley, David. Mathematical Expeditions: Chronicles by the 
Explorers. Springer, New York, 2000. 

Leibniz, Gottfried. The Early Mathematical Manuscripts of Leibniz. Translated by J. M. Child. 
Cosimo Classics, New York, 2008. 

Litvinoff, Barnet. 1492. Little, Brown Book Group, New York, 1991 . 

Marsden, Jerrold and Ratiu, Tudor. Introduction to Mechanics and Symmetry. Springer, New 

York, 2002. 

Martin, Thomas. Ancient Greece. Yale University Press, New Haven, 1996. 

Newton, Isaac. Principia. Translated by Andrew Motte. Prometheus Books, New York, 1995. 

O'Connel, Marvin. The Counter Reformation, 1550-1610. Harper and Row, New York, 1974. 

Penrose, Roger. The Road to Reality: A Complete Guide to the Laws of the Universe. Knopf, 

New York, 2005. 
Ptolemy. Almagest. Translated by G. J. Toomer. Princeton University Press, Princeton, 1998. 

Saliba, George. Islamic Science and the Making of the European Renaissance. M.I.T. Press, 

Boston, 2007. 
Shuckburgh, Evelyn. A History of Rome to the Battle of Actium. MacMillan and Company, 

New York, 1894. 

Sobel, Dava. Galileo's Daughter. Walker and Company, New York, 1999. 

Spivak, Michael. Calculus. Cambridge University Press, Cambridge, 2006. 

Van Helden, Albert. Measuring the Universe: Cosmic Dimensions from Aristarchus to Halley. 
University of Chicago Press, Chicago, 1986. 

Voelkel, James. The Composition of Kepler's Astronomia Nova. Princeton University Press, 
Princeton, 2001. 



A 

acceleration 266-7, 278-9 
al-Hakim 129 
al-Haytham 64, 92, 98, 101, 129-30, 133, 

150 
al-Khwarizmi 96-100, 113 
Albert, Duke of Prussia 22 
Alexander 7-8, 13 
Alexandria 6, 8, 10-15 
algebra 2-3, 10,42,96-102, 104-6, 108, 

110, 112, 114, 116, 118, 120-2, 124, 
134, 152, 2 0 3 ^ 

angular momentum 26, 100, 152, 193,213, 
262,281-2,286 

conservation of 26, 100, 152, 262, 281-2, 
286-7 

Apollonius 8, 10-12, 26, 38-9, 41-2, 96, 
150-1, 194,252-3,259,292 

Archimedean screw 13 
Archimedes 8-14, 16, 18, 26, 30,41-2, 

51-2,69,76-7,88-9, 100-1, 114, 118, 
179, 192-4,208 

Aristarchus 2-3, 6-12, 16, 18,21-2,40-1, 
156-8, 173, 175, 177-81, 194,217, 
222, 232, 254 

Aristotle 7-9, 16, 25, 31, 38-9, 156 
Ars Magna 100 
astronomy 12,21,92, 129, 150-1, 157, 181, 

256,259,261-2 
average velocity 200-2, 204 

B 

Barrow, Isaac 39-40, 62, 192, 208, 217 
Bellarmine, Richard 24, 33-4 
Bernoulli, Jacob 198 

The Ellipse: A Historical and Mathematical Journey 
Copyright © 2010 by John Wiley & Sons, Inc. 

Brahe, Tycho 25, 27, 53, 256-7, 259-60 
Bruno, Giordano 23-4, 36 

C 

calculus, fundamental theorem of 3, 10,45, 
192, 208, 210, 213, 217, 234, 244-5 

Cambridge 39-40, 196 
Cardano, Gerolamo 99-100 
Cardinal Schonberg 22 
Cartesian coordinates 18, 39, 101-3, 105, 

109, 133, 154, 184-5, 187, 276, 292 
Cartesian plane 102, 106, 118, 134, 138, 

158, 165, 199 
Cavalieri, Bonaventura 64, 76, 83-4 
Cavalieri's theorem 76-7, 79-80, 83-7, 

124,242,244 
Celeste, Marie 37 
center of mass 78-9 
chain rule 45, 219, 223, 227, 231, 236, 240, 

272-3, 275, 278, 285, 288 
change of variable formula 237-8, 240 
change of variables 45, 236^1 , 287 
circle 11, 52, 58-60, 67-9, 80-3, 88-91, 

104-5, 113-20, 137, 151-3, 173-5, 
181-2, 184, 193,213,215 

great 95 
circular motion 137, 181, 193,213,216, 

277 
circular orbits 11,25,60-1, 151, 193,213, 

252, 254 
cone 11, 72, 82-3, 86, 89-90, 92, 177 
conic sections 11, 38-9, 150-1, 259, 292 
constants of motion 272-3 
coordinate systems 18, 96, 104, 107-8, 110, 

114, 121, 134-5, 183,208 
Copernican astronomy 23, 30, 32, 34, 262 

by Arthur Mazer 



300 INDEX 

Copernicus, Nicolaus 12, 21-3, 25-6, 34, 
38, 41, 151, 157, 194, 213, 249, 254-6, 
263 

cosine 52, 165, 168-9, 173, 181, 222 
Counter-Reformation 94 
cube 66-8, 75, 86-7, 100, 123, 126, 247 
cylinder 10, 14, 88, 92, 128 

D 

Descartes, Rene 10, 18, 39, 96, 101, 192, 
194 

determinant 150, 152-3, 158, 188-91 
difference formulas 169, 174, 189 
differential calculus 11,45, 121, 195, 199, 

201, 217, 219, 221, 223, 225, 227, 229, 
231,233,235 

differentiation 208, 217,222, 225, 234-6, 
240^,272,281,283 

rules of 218, 220, 222, 227, 235 
dimensions 6, 9, 12, 32,64-72, 74, 76, 

8 3 ^ , 101-3, 105, 122-6,133, 134, 
138^1, 143,275 

additional 65 
displacement 3,201, 207-8, 213,223 

relative 206-8 
distance 6, 38, 44-6, 78, 85-6, 94-5, 

109-10, 118, 122^, 136-7, 177, 
180-2, 184, 199-201, 222-3, 254-5 

minimum 150 
double-angle formulas 169, 171 

E 

earth's surface 11, 92-3, 263, 268 
eclipse 177-8, 181 

lunar 21,156-7, 177, 180 
ecliptic 251-2 
ellipse 1-3, 11, 26, 38-9,41, 53, 61-2,134, 

150-6, 184-5, 259-61, 264-5, 267, 
282-3, 286-7, 292-3 

Emperor Rudolf 25, 28, 257-9 
energy 9, 197, 272-5, 287-9, 293 

potential 273, 275 
Enlightenment 2 
epicycles 11-12, 21-2, 25, 157, 252-3, 255 
equal area maps 64, 92-5 
equants 12, 21-2, 25-6, 213, 253 

Euclid 8, 17, 41, 62-3, 69-70, 79, 100, 
264-5 

Euclidean geometry 93, 95,133 
Euclidean Space 64-5,67, 69, 71,93, 134 

n-dimensional 143, 149 
Eudoxus 68-9 
exhaustion, method of 68-9 
exponential 222,231-2 

F 

Ferrari, Lodovico 99-100 
finite series 129 
fluxions 40-1, 195 
focal points 19, 155 
foci 26, 50, 151-2, 154, 197, 267 
formula 

half-angle 169, 173^1 
quadratic 111-13 

four-dimensional cubes 124, 126 
four-dimensional sphere 101, 121, 123, 125, 

127-9 
Fourier 12, 158 
fractal dimension 64,70 
Frederick, King of Denmark 25, 256-7 
function 

decreasing 232 
differentiable 241-2 
exponential 217, 228-32 
logarithmic 222,231-2 

Fundamental Theorem of Calculus 199, 
201, 203, 205, 207-9, 210, 234, 242 

G 

Galileo Galilei 5-6, 18, 24, 30-41,46, 76, 
129, 192^, 261-3, 265, 268, 275 

Galileo's parabola 264 
generalized pyramids 85-8, 92 
geocentric 26, 194, 255, 257 
geometry 2-3, 6, 39,42, 62, 64, 70, 87, 93, 

95, 101, 105, 122, 126, 184, 199 
gravity 34, 40, 193^ , 198, 255, 263, 269, 

289 

H 

Habsburg Empire 25, 28-9, 35, 257 
Halley, Edmond 41, 195-7, 263 



INDEX 301 

heliocentrism 6-7, 22-3, 25, 254 
heresy 7, 15, 22, 24, 33-4, 36-7 
hexagon 115, 161-2, 173 
Hooke, Robert 41, 195-7, 263-4 
Hopital 198 
Hven 257-8 
hyperplane 66, 124-5 

I 

induction 129, 130-3 
method of 101, 131,225-6 
using 131-3,230 

indulgences 20,23 
inertial frame 266-7, 269, 275 
Inquisition 2, 6, 18, 23-4, 30-1, 33-4, 36 
integers 43-4, 47-51, 57, 70, 84, 106, 129, 

133,225-6 
negative 57, 226 

integral calculus 10,30,39,45,61,69, 121, 
130, 133, 195, 199, 205, 209, 234-5, 
237, 239 

integrals 199,208,210 
integrand 235-41, 289 
integration 207-10, 234-44, 281, 287, 289 

constant of 270, 288, 291 
interval of 210-11,240, 241 

inverse 45, 143, 145, 147-50, 153, 231-2, 

241,243,277 
inverse square law 195-6, 2 6 3 ^ , 289 
irrational numbers 43, 46, 48-9, 51-3, 61, 

67,73,231,267 

J 

Jesuits 30-3, 64 

K 

Kepler 5-6, 18, 24-32, 34, 38-42, 53, 100, 
129, 150-2, 154, 192^1,213,249, 
257-65,275,281-3 

Johannes 29, 257, 259 
Katharina 29 

Kepler and TVcho Brahe 260 
Kepler credits Archimedes 100 
Kepler's ellipse 41-2, 254, 267, 275 

Kepler's laws 261, 282, 286-7 
Kepler's work memorializes Tycho 260 
Kepler's works 30, 32,259,261 
kinetic energy 273, 275, 293 
Koch's snowflake 70-2 

L 

Lambert, Johann 64, 92-3, 130, 133 
Leibniz, Gottfried 2, 42, 62, 64, 133, 157-8, 

192, 194-5, 197-8,204,208-10,217, 
229-30, 234, 240, 263 

limit 196, 202-4, 211-12, 224, 225, 239, 
246, 277, 284-6 

limiting value 202-3 
linear algebra 3, 101, 133-5, 137. 139, 141, 

143, 145, 147, 149 
linear combination 138 
linear transformations 139-41, 143, 145, 

150, 152, 165-6, 188,231 
linearity properties 140-1, 143, 145, 165 
linearity property of integrals 236 
log 72 
logarithm 72, 231-2 
Luther, Martin 19-20, 22, 33, 257 

M 

map 3, 61,92-5, 133,231,240,287 
Marcellus 13-14 
Mark Antony 15 
Mars 27, 53, 106, 249-50, 254, 260 
Mars observations 249, 259 
mass, center of 65-6, 78, 193, 267-8 
matrix 50, 141-50, 152-3, 165, 188, 190, 

277-9 
Matthias 28-9 
measurements 6, 25-6, 38, 45, 48, 52, 58, 

66-73,75-7,79,81,83, 124, 157, 193, 
256 

Medicis31-2 
Mesopotamians 53, 73, 173^ 
momentum 266, 282, 286 
motion 

constant of 272-5, 287-8 
constants of 152, 272 
epicyclic 253 
equations of 270, 272, 274-6, 279-80 



302 INDEX 

motion (continued) 
laws of 38, 40, 93, 133, 194, 196, 198, 

220, 262-5, 268, 272 
uniform circular 252-4 

N 

New Astronomy 26-7, 260, 261 
Newton, Isaac 3, 10, 26, 30, 39-42, 62, 64, 

93, 129, 157-8, 192, 194-8, 229-30, 
262-9, 275, 288-9 

Newton's equations 274, 276, 278-9, 282, 
293 

Newton's laws of motion 93, 133, 194, 220, 
262-3, 264-5, 267-8 

Newton's Principia 264-5 

O 

objects 
four-dimensional 124 
fractal 68, 70 
n-dimensional volume of 125 
three-dimensional 124 

observations 11-12,23, 31-2,42,45, 
59-61,72,90, 144, 177, 181, 192,249, 
251-3,256-7,259 

observer, earthbound 157,178-9, 249 
operator, linear 143 
optics 30, 40, 98, 129, 151, 195, 259-60, 

263, 265 
orbit, planet's 100, 152,253 
Oresme, Nicole 18 
orientation 65-6, 125, 254, 291 
Osiander, Andreas 23 

P 

parabola 11, 18, 38-9, 106, 109-11, 150, 
194,268,271,293 

parallel postulate 64, 95, 129 
partitions 205-7, 210-11, 239, 245 
pentagon 158, 181, 183 
plagiarism 99, 197 
plagues 2, 18-19,41,264 
planetary motion 2, 11-12,31,40,92, 133, 

184, 196, 198, 208, 261, 263^1, 267, 

275, 282, 292 
planets 8, 11-12, 25-7, 60, 151, 156-7, 

193-4, 213, 249, 252-5, 257, 261-3, 
267, 275-6,282-3,289 

planet's position 60, 253, 261 
planet's year 255 
polar coordinates 158, 183-8,275-78,292 
polynomials 106-9, 111, 121, 129, 131-2, 

157-8, 183,229,236 
cubic 132, 171-2 
second-order 111, 131 

Pope Urban 34-5 
position vector 214-15 
power series 40, 158, 229-30 
precession 254 
Principia 196-7,263-6 
projectiles 268 
Ptolemaic system 21, 25, 254 
Ptolemaic universe 12, 21,254 
Ptolemy 8, 11-12, 15, 22, 25-6, 31, 34, 41, 

62, 92, 157-8, 173-7, 179, 253-6 
Ptolemy's table 173-6 
pyramids 85-8, 121, 125-6,247-8 

n-dimensional 125-7,247-8 
standard 85-6 
three-dimensional 125-6 

Pythagorean theorem 46, 64, 73-4, 82, 89, 
109, 113, 117-18, 122-3, 127, 135, 
160-1, 167, 169, 172, 181 

Q 

quadratic equations 96-8,109, 111,113, 
119,271 

R 

rational numbers 43^t,46-53, 58-9, 61, 
84-5, 225, 227, 267 

real numbers 43, 59, 106,138, 225, 227, 
reformation 2, 5, 16, 21-3 
rescaling 59, 64-5, 67-71, 74, 123 
rescaling factors 69-70 
resizing 70, 72, 85, 88, 134, 188 
resizing factor 70-1, 74, 81, 85, 88, 118, 

188 
retrograde motion 249,252-3,255 
Roman Empire 14-15, 19 



INDEX 303 

roots 23, 97, 106, 111-12, 170, 173, 198 
real-valued 113 

rotation , 66, 165-6, 168, 187, 251-2, 262 
rules of differentiation 218-20, 222 

additive 218, 222 
multiplication 223, 227, 242, 278 
quotient 219, 227 

S 

Saccheri, Giovanni 64, 92 
scale, balance 77-8 
second law of motion 266, 269 
Seleucus 11-12 
similar triangles 107, 160, 177-9 
slope 19, 90, 106-8, 117, 120-1, 137, 

200-1,203-4,217,229,233 
snowflake 71-2 
snowflake's dimension 71 
space 

four-dimensional 123 
n-dimensional 124-5, 138 

sphere 10, 14, 38, 46, 67, 72, 76, 82-3, 
88-93,95, 118-19, 121, 126-9, 192, 
240, 245-7 

celestial 92, 253 
n-dimensional 126-7, 133 

sphere's surface 93, 95 
four-dimensional 127, 129 

surface area 10, 82-3, 89, 91, 119, 121, 
127-8 

Syracuse 13 

T 

tangent 90, 119, 137, 164, 192,214-15, 
217,233 

tangent line 11, 113, 119-21, 137,201-4, 
214-15,229,233 

Tartaglia 98-100 
Tegnagel, Jan 259 
Tetzel, Johann 20 
transformation 92-3, 119,140-5, 152-3, 

165,188-90 
translated coordinates 104 
translating 104-5, 107 
translation 5, 17, 100-1,103-5, 108, 114, 

265-6 

triangles 26, 64, 69-70, 72^1, 79-83, 
88-90,95, 107, 115, 117-18, 123, 
159-61, 177, 181,207 

trigonometric functions 157-63, 167-8, 
170, 174,176-7 

trigonometry 2-3, 12,42, 134, 156-8, 160, 
162, 164, 166, 168, 170, 172, 174, 176, 
178-82, 184 

Tubingen 24-5, 27-9, 257 
two-body problem 267 
Tycho's death 259 
Tycho's universe 25 

U 

universities 5-6, 8, 14-17, 24, 29, 96 

V 

vector entries 137 
vector transformation 139 
vectors 134-9, 141-6, 148, 164-7, 

171, 186-9,213,215-16,251, 
266, 276 

basis 165-6 
column 144-5, 147, 149,213 
rotated 187 
subtracted 134 

vectors span 139 
velocity 3, 10, 26, 65-6, 134, 137, 186, 193, 

199-202, 204-8, 213-17, 222, 234, 
266, 272-3, 276-7 

instantaneous 202-4 
object's 134, 199-200, 204, 213 

velocity vector 137, 214-17, 276 
velocity vector's length 215 
volume 10, 14, 27, 66-8, 76-7, 79, 84-7, 

89, 91-2, 100, 121, 124-9, 150, 192-3, 
208, 245-8 

dimensional 124, 126 
equal 84-5, 87 
n-dimensional 124 

W 

witchcraft 27, 29 


	CONTENTS

	PREFACE

	1 INTRODUCTION

	2 THE TRAIL: STARTING OUT
	2.1 A STICKY MATTER
	2.2 NUMBERS

	CHAPTER 3 THE SPACE: GEOMETRY  
	3.1 EUCLIDEAN SPACE, DIMENSION AND RESCALING
	3.2 MEASUREMENTS OF VARIOUS OBJECTS

	CHAPTER 4 THE LANGUAGE: ALGEBRA  
	4.1 CARTESIAN COORDINATES AND TRANSLATIONOF THE AX
	4.2 POLYNOMIALS
	4.3 CIRCLES
	4.4 THE FOUR-DIMENSIONAL SPHERE
	4.5 FINITE SERIES AND INDUCTION
	4.6 LINEAR ALGEBRA IN TWO DIMENSIONS
	4.7 THE ELLIPSE

	CHAPTER 5 THE UNIVERSAL TOOL: TRIGONOMETRY
	5.1 TRIGONOMETRIC FUNCTIONS
	5.2 GRAPHS OF THE SINE, COSINE, AND TANGENT FUNCTIONS
	5.3 ROTATIONS
	5.4 IDENTITIES
	5.5 LUCKY 72
	5.6 PTOLEMY AND ARISTARCHUS
	5.7 DRAWING A PENTAGON
	5.8 POLAR COORDINATES
	5.9 THE DETERMINANT

	CHAPTER 6 THE SLAYER: CALCULUS
	6.1 STUDIES OF MOTION AND THE FUNDAMENTAL THEOREM OF CALCULUS
	6.2 MORE MOTION: GOING IN CIRCLES
	6.3 MORE DIFFERENTIAL CALCULUS
	6.4 MORE INTEGRAL CALCULUS
	6.5 POTPOURRI

	CHAPTER 7 EIGHT MINUTES THAT CHANCED HISTORY
	7.1 NEWTON'S LAWS OF MOTION
	7.2 GALILEAN CHECKPOINT
	7.3 CONSTANTS OF MOTION AND ENERGY
	7.4 KEPLER AND NEWTON; ARISTARCHUS REDEEMED

	EPILOGUE

	BIBLIOGRAPHY

	INDEX

