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FOREWORD

Coolidge’s book is something of a classic in the history of mathematics,
although it has not inspired others to increase the list of mathematical
amateurs as Coolidge had hoped it would. It owes its status to its remarkable
breadth of erudition, and its inimitableness to Coolidge’s style of writing. This
is cheerfully personal, some might say obtrusive, and not at all the manner of
the usual self-effacing historian. Coolidge frankly confesses when he does not
understand something, and is not above suggesting that some ancient writing is
simply unintelligible. In the end, this openness becomes part of the book’s
charm. For that reason amongst others this re-edition of the book is a textually
unaltered reprint of the 1949 Oxford University Press edition, which coincides
with the 1963 Dover reprint.

None the less, and I believe in keeping with Coolidge’s own love of scholar-
ship, I have sought to bring the book up to date by writing an introductory
essay. The first part of this essay is a short biographical account of Coolidge
himself, based on Struik’s obituary of him. The second part of the essay deals
in turn with each of the 16 chapters of the book. I have tried to describe
substantial pieces of information not available when Coolidge wrote, and I
have indicated where later scholars have wanted to disagree significantly with
Coolidge, either on the basis of new information or a radically different
interpretation of the evidence. Minor cavils will be found in the few new
footnotes 1 have added at the end of the book. There is also an additional,
short, and selective bibliography which readers can use if they wish to consult
modern scholarship on some questions.

1989 JJ.G.






PREFACE TO THE FIRST EDITION

THE responsibility for advancing our knowledge in all branches of science has
always in the past, and still more in recent times, rested mostly on the
shoulders of men professionally engaged in the various subjects. The reasons
for this are partly social, but mostly financial. The extreme cost of the
apparatus needful for study in the physical and other experimental sciences,
and the large collections needed in the biological sciences, presuppose an
expenditure of money which places the conduct of research in such subjects
beyond the means of men not professionally connected with institutions which
have large resources available. Even in mathematics, where there is little need
for equipment, advanced study is open only to those who have easy access to
extensive library facilities, and these imply amassed wealth. Nevertheless,
mathematics is better off than the other sciences in this respect, and through-
out the centuries there have been a certain number of men, not professional
mathematicians, who have made significant contributions to this, the oldest of
the sciences.

It has seemed to me worth while to make some study of the contributions of
these men whom, for want of a better term, I have called amateurs. But 1
discovered at the outset that a rigid definition of this term was not feasible and
a consistent policy as to who should be included and who should not,
practically impossible. One would naturally mean by an amateur in mathe-
matics one who did not earn his living in large part by the subject, as a teacher
or a physicist, or an astronomer or even an engineer. But under such a defini-
tion Euclid and Archimedes would be classed as amateurs, which seemed to
me absurd. On the other hand, I did not like to leave the Greeks out altogether,
so I have included Plato.

In general I have taken men who were principally known for some other
activity, yet whose success in the field of mathematics enabled them to make
contributions of permanent value. As I said before, it has been beyond my
strength to be consistent. I have included Omar Khayyam although he was an
astronomer, but he was so widely known and loved as a poet, thanks partly to
Edward Fitzgerald, that I could not bear to leave him out. I have regretfully
excluded Sir Christopher Wren, that prince of architects, and Charles
Lutwidge Dodgson, the writer of the most popular humorous work in
generations, because unfortunately the former was Savilian Professor of
Astronomy in the University of Oxford, and the latter was mathematical tutor
in Christ Church in the same institution. I have included Baron Napier whose
non-mathematical activity amounted to little beyond acrimonious theological
writing because the discovery of logarithms was of such transcendent
importance. I have not included Fermat, whom Bell has called the Prince of
Amateurs,t who was a ‘Majtre des requétes’, because he was so really great that
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he should count as a professional, but I have included the great philosopher
Pascal. I have included William George Horner, no great mathematician,
because it seemed to me interesting that a man of very limited education,
beyond his own reading, should discover, independently of previous dis-
coverers, what is still the best method of solving an age-old problem. I have not
included George Salmon, a theologian, who is said to have forgotten his
mathematics in later life, because his text-books were so extremely good as to
place him in the professional ranks, nor Sir Thomas Heath, joint permanent
Secretary of the Treasury, or Paul Tannery, ‘Ingénieur des Tabacs’, because
the work of these fine scholars was in the history of mathematics where I did
not feel myself competent to appraise. If consistency is a vice of small minds, it
is a vice I have successfully avoided. My friend Professor Archibald of Brown
University, who has been very helpful to me in the preparation of this work,
truly remarked that the number of men included could easily be doubled or
trebled. I should be most happy to see someone undertake this interesting task.

CAMBRIDGE, MASS. JL.C.
t Men of Mathematics, ch. iv (New York, 1937).
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BIOGRAPHICAL NOTE

Julian Lowell Coolidge was born in Brookline, near Boston, on September 28,

1873. His family descended from John Coolidge, one of the first settlers of
Massachusetts Bay, as did that of President Calvin Coolidge in Vermont. They
were people of distinction in the area, and gave their son a good education that
culminated in his studying mathematics at Harvard and then at Oxford. He
returned to teach mathematics at the school in Groton, which was then
directed by its founder the Reverend Endicott Peabody. One of his pupils was
Franklin D. Roosevelt, with whom he remained on friendly terms. In 1899
Coolidge became an instructor in mathematics at Harvard, and in 1902 a
member of Faculty. That year he left for two years study abroad, where he took
a Ph.D. from Bonn under the direction of Eduard Study. He took the
opportunity to travel to Turin and work under Corrado Segre, and these two
leading geometers were a decisive influence on him. Study had just written an
important book on line geometry in non-Euclidean space, a topic that derived
from the theory of rigid body mechanics and projective geometry in equal
measure and that had been advanced by such men as Pliicker, Klein, and
Lindemann. Segre was the leading Italian geometer of his day, an expert in the
birational geometry of curves and a formidably well-read scholar. Many of
Coolidge’s strictly mathematical books and papers bear the mark of his time
with Study and Segre.

In 1918 Coolidge became a full professor at Harvard, and in 1929 the first
master of Lowell House, President Lowell having just introduced the house
system to Harvard. His tenure there was a success, and he stayed as professor
and master until he retired in 1940. He was a good teacher, and a great lover of
the energetic life; he once held the record for the mile at Harvard (4 mins, 30.8
seconds). As an older man he transferred his energy to fund raising for the
American Mathematical Society and the Mathematical Association of
America. He advocated the conservation of natural resources and forested a
large tract of woodland near his home in Maine.

Judged by the highest standards, he was not among the leading mathemati-
cians of his day, and he often seems to have thought that his own field of study
had entered into an irreversible decline. This was far from true, and if his own
contributions now seem dated they were valuable in their time, not least for the
education of mathematicians in America. Starting in his sixties he wrote three
historical books, of which this, the last, was written in retirement when he was
76. They are all personal and lively statements, mostly devoted to geometry,
the topic that had caught and held his interest all his life; they too deserve to
remain in print. He died on 5 March 1954,

JJ.G.






INTRODUCTION
Jeremy Gray

There is much in Coolidge’s book that one can still admire, and a great deal not
readily accessible anywhere else. This is surely the result of his enthusiasm for
reading the original texts coupled with a respect for the best historical writings
he could find. But if, like a well-built house, his book has stood the test of time,
it none the less now stands in need of some repair.

Our problems with it start with the title, and Coolidge’s avowedly idio-
syncratic use of the word ‘amateur’. In recent years historians have paid
growing attention to the working situation of mathematicians and scientists.
Terms like ‘amateur’, ‘professional’, and ‘patron’ have come to be used
precisely and effectively to elicit aspects of scientific work: why it was done in
this place or that, why it was done in this way or that. One should not be misled
by the title into placing Coolidge’s work in a tradition that has only grown up
since its author’s death. Work on ‘high’ and ‘low’ traditions in mathematics,
with the concomitant choice of Latin or the vernacular in some periods, and on
the diffusion of numeracy, likewise postdates this book. But the reader should
have no difficulty placing what he reads here into those more general contexts,
and may find on occasion that it helps bring them more carefully into focus.

Coolidge also renders the ancient mathematics in a way that has come in for
considerable criticism. Many would now argue against the tradition that found
no problem turning the prolixity of older writers into elementary algebra.
Those who, like Coolidge, did so believed that they were reading between the
lines and faithfully presenting what was clear to the original author in a way
that is clear to the modern reader. Modern historians, in contrast, would
emphasize the distinctive ways of thinking of the older writers, and argue that it
is the way they differ from us that made them find certain arguments natural
and others, perhaps, impossible. The least that needs to be said is that no-one
before Descartes literally wrote as Coolidge might seem to imply they did.

The essay on Plato shares the high view then current of the achievement of
the Pythagoreans. Recently, scholars have questioned some of the views of
Heiberg and Heath, which rest on surprisingly little contemporary evidence.
Indeed, one of the ways in which Plato’s writings are important is that they are
amongst the earliest reliable evidence we have for the development of Greek
mathematics. Much else must be quarried carefully out of Euclid’s Elements, a
later and harder source. The discovery of incommensurability has been much
discussed by historians; a spread of contemporary views will be found in the
books by Burkert, Fowler, Knorr, and Szabo listed in the additions to the
bibliography. Coolidge’s tacit disagreement with those who spoke of a
foundational crisis in Greek mathematics consequent upon this discovery is in
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keeping with the later work. A further interesting source, not mentioned by
Coolidge, is that of the relation between mathematics and music; this has been
well described by Barker [1984]. On the history of the regular solids, mention
should be made of Waterhouse’s important observation that, mathematically,
the important discovery was not that of the fifth solid (the dodecahedron) but
the concept of regular solids and the idea that they could be completely
classified.

Scholarship has also found fault with some of Coolidge’s translations from
the Greek, and alternatives to most of them can be found in the invaluable two-
volume reader edited by Bulmer-Thomas [1939]. Only one of these, however,
seems to be egregiously awry, the one that straddles pp. 12-13. A better version
is provided in a footnote.

The essay on Omar Khayydm does not begin with a biography modern
authorities would like; those provided by Berggren, Jaouiche, and Rosenfeld
are fuller and more accurate. Berggren in particular argues forcefully that the
story of the childhood pact with Nizam al-Mulk cannot be trusted. Coolidge’s
opinion of Fitzgerald as a translator is likewise contested; good poetry though
it is, it is not very faithful to Khayyam’s original and the version of Arberry is
often markedly different. That said, the account Coolidge gives of Khayyam’s
work on cubic equations is typical of his virtues as an expositor (note being
taken of his policy on the use of modern symbolism).

The topic which Coolidge would surely wish to discuss if he were writing the
book today is Khayyam’s remarkable study of the parallel postulate in Euclid’s
geometry. This was put into English (Amir-Moez, [1959]) and has since been
much written about. It is a trenchant disagreement with Khayyam’s illustrious
predecessor, ibn al-Haytham, over the use of the concept of motion in proving
theorems in geometry. Ibn al-Haytham had sought to defend the parallel
postulate by arguing that if a line segment moves so as always to be perpendi-
cular to a given line, then its tip sweeps out a straight line parallel to the given
line. This granted, he could establish the truth of the postulate. Khayyam did
not dispute the postulate, but he rejected ibn al-Haytham’s method and offered
one of his own based on a dictum about straight lines that he attributed to
Aristotle (and which has not otherwise come down to us). Khayyam’s method
also fails, as it must, to establish the truth of the postulate, but this disagree-
ment about the status of motion in geometry strikes deep into the study of what
geometry is about. For a full discussion of the work of ibn al-Haytham and
Omar Khayyiam, and of the centuries-long Islamic investigations of the
foundations of geometry, the reader may consult the works by Jaouiche (where
he will also find French translation of many originals) and Rosenfeld, or even
my own book, which is at this point based on theirs.

The three chapters on the work of the artists Piero della Francesca,
Leonardo da Vinci, and Diirer stand most in need of rethinking from a
social historical standpoint. When they discuss perspective, they should
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be set in the context established by White’s excellent book The birth and
rebirth of pictorial space [1957]. That on Piero should be read in conjunction
with M. D. Davis The mathematics of Piero della Francesca and Jayawardene
[1976], where another of Coolidge’s omissions is also filled: that of Piero as
an algebraist. It emerges that Piero’s treatise was based on an earlier one by
Fibonacci and so dwelt heavily on the solution to quadratic equations, but
went on to discuss a few special equations of higher degree. It is also amusing
to note that when discussing whether or not Pacioli stole the material for his
book De divine proportione from Piero, Coolidge does not observe what is now
widely agreed, that the beautiful drawings in that book are the work of
Leonardo.

It is hard not to write about Leonardo without resorting to superlatives,
and Coolidge is no exception. One wayin which doing so keeps us from
appreciating this remarkable man is demonstrated by contrasting the account
here with the ones by Gombrich and Kemp which introduced the catalogue
of the 1989 exhibition Leonardo then and now. Gombrich points out that to
praise Leonardo for uniting art and science would be to use the terms in a
way that Leonardo would scarcely have understood. Leonardo, he argues,
emphasized that painting had to rest on knowledge and so be valuable as a
liberal art and not merely as a craft. This was not a snobbish aspiration for
status, but part of Leonardo’s belief in the importance of artistic creativity.
Understanding the laws of nature is scarcely part of the artist’s rationale
today. Nor, Gombrich argues, should Leonardo’s universality be over-
emphasized. Leonardo considered himself unlettered because he never really
mastered Latin and had been brought up not in the schools of Renaissance
humanists but instead in the popular, vernacular tradition. His marvellous
powers of observation can also be allowed to hide him from our sight.
Truesdell amongst others has drawn attention to the fact that Leonardo
belongs with those who looked and experienced, not those who experi-
mented. Many of his drawings of vortices, for example, amply convey the
vigorous swirls such things have, but cannot be said to be literally accurate.
Leonardo’s style of representation is neither that of photographic realism nor
is it adequately experimental, still less theoretical. ‘

The chapters on Leonardo and Diirer none the less stand up favourably with
the treatments each received in the Dictionary of scientific biography. By relying on
Marcolongo, Coolidge put his trust in someone whose work on Leonardo has
not been surpassed. For a rich account that connects Leonardo’s study of
mathematics with the rest of his work, see M. Kemp [1981].

The material on Napier likewise stands up well. The modern historian, who
expects to see geometry and not algebra in works of the period, does not find
Napier’s presentation of the idea of logarithms as alienating as does Coolidge,
who otherwise brings out Napier’s ideas very clearly. He might have added that
Napier’s work excited the admiration of no less an astronomer than Kepler.
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The description of the invention of decimal fractions has, however, been
overtaken. Reasonably enough in such a small, tightly focused book, Coolidge
did not mention the Chinese method of writing decimal fractions, nor that of
the Islamic astronomer al-Kashi (d. 1436). In Europe, Regiomontanus’ table of
tangents, published in 1561, presented values as parts of 10° in what was to
become Napier’s notation (one lacking only the decimal point). Viete’s Canon
mathematicus of 1579 likewise had the idea of decimal fractions; the notation
again lacks only the decimal point. The idea of decimals was first explained
clearly by the influential Dutch mathematician Simon Stevin in his book De
Thiende of 1585, which was translated into English in 1608. Stevin’s own
notation was strangely cumbersome, and was simplified by Magini when he
presented his book of trigonometric tables in 1592. Here the decimal point
appears as a comma. Clavius occasionally did the same in his book of tables in
1593. Finally Jost Biirgi, whom Kepler considered to be the inventor of
logarithms, used decimals in unpublished work some time after 1592. Since
Napier, as Coolidge notes, ‘received much of his education on the continent of
Europe’, it is likely that some of these ideas were known to him. On the other
hand later writers have agreed with Coolidge that Bonfils’ system was indeed
soon forgotten.

We know a little more about Pascal since Coolidge wrote about him. Taton
has illuminated our account of his work as a geometer, drawing on surviving
notes by Leibniz of the still-lost Traité des coniques; see also Field and Gray
[1987]. A.W.F. Edwards has written a thorough historical study, Pascal’s
arithmetical triangle {1987], looking not only at the precursors of the Triangle
but at Pascal’s work on probability. He agrees with Freudenthal [1953] that
Coolidge should not have been worried by Vacca’s letter into arguing that
Pascal may have taken the idea of complete induction from Maurolico; it is not
there. Edwards agrees with Rabinovitch [1970] that something more like it is,
however, to be found in the writings of Levi ben Gerson, where it is impeded by
a poor notation. So it seems that Pascal was indeed the first to provide clear and
explicit examples of mathematical induction.

On the other hand, I regret that I have been able to find out nothing about
Arnauld. The Dictionary of scientific biography article is much less informative on
him than was Coolidge.

Jan de Witt and Hudde have been written about by Dutch scholars. Struik
provides a good general account of this, the most dramatic period in the history
of science in his native Holland, in his The land of Stevin and Huygens. H. H.
Rowen’s book [1978] is a full-length political biography of de Witt, with an
interesting chapter (“The unphilosophical Cartesian’) on his dealings with van
Schooten. J. van Maanen’s book [1987] sheds considerable light on the rise
and fall of Dutch mathematics in the seventeenth century. That there were
both Dutch mathematicians and an audience for their work in places like
Leiden can be attributed to the remarkable success of the Dutch in driving out
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the Spanish in a heroic and often costly war fought from 1568 to 1648. As
happened with the French Revolution, this struggle greatly invigorated Dutch
intellectual life and brought the Netherlands energetically to international
prominence. The reputation the country acquired for religious tolerance
attracted Descartes, who lived in the country from 1628 to 1649, and published
his Geometrie in Leiden in 1637. This difficult book was republished with
additional commentaries in a Latin translation by Frans van Schooten in 1649,
and that edition was further extended by van Schooten in 1659-1661. It is here,
for example, that Hudde’s essay appears. '

The short chapter on Hudde fails to point out that the reason he presented a
method for finding out when a polynomial equation has equal roots is that this
is the central problem in carrying out Descartes’ method for finding a tangent
to a given curve at a given point. Descartes had argued in his Geometrie that to
find the normal (and hence the tangent, which is at right angles to it) circles are
drawn through the given point, having their centres for convenience on the x-
axis. When the centre of the circle lies on the normal to the curve, the circle will
touch the curve; nearby circles will meet the curve in the given point and
another nearby. So to find the normal, let the circle centre (s, 0) be drawn
through the given point (4, 4), and eliminate either x or y from the equation of
this circle and the curve. The resulting equation, shall we say in «, has repeated
root x = g precisely when the point (s, 0) lies on the normal. This yields an
equation for s and so finds the normal and hence the tangent. Unfortunately,
the elimination is not easy, and can lead to a complicated equation. Hudde’s
rule gave a useful way of proceeding. When the young Newton came across it
there he speedily saw how to extend the argument to find the centre of
curvature of curves. By applying his simplification of Hudde’s rule, Newton
was also led to ask and answer the ‘right’ question of a tangent to curves: not
‘where does it meet the x-axis’ but ‘what is its slope?’. So Hudde’s rule was a
catalyst in the discovery of the differential calculus.

There is little to add to the chapter on Brouncker. Coolidge might have
mentioned his involvement in the British response to Fermat’s challenge of
1657: find integer solutions to the misnamed Pell equation, 2 = Ay* + 1 for
various specified integers A; among those Fermat proposed is A = 109, for
which the smallest value of y is the astonishingly large number
15 140 424 455 100. Plainly he had a general method for finding solutions.
Wallis replied with a solution method that works for all square-free values of A,
and attributed it to Brouncker. It seems impossible to determine which man
discovered what, but it is certain that neither they nor Fermat knew of the
solution proposed by the twelfth century Indian mathematician Bhaskara. As
for the story of the cycloid, D. T. Whiteside [1969, 390-9] finds that Huygens
made his discoveries in December 1659 and no doubt mentioned it when he
visited London in 1661. At all events, it was a topic of discussion in London in
1662, when Brouncker published his note. Apparently Huygens was not
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impressed with it, and remarked that it was easy to discover what Brouncker
had found once Wren’s results on the cycloid were available.

The Marquis de L’Hospital first met Johann Bernoulli, six years his junior,
in late autumn 1691, when he was 30. They met at one of the weekly gatherings
organized in Paris by Father Malebranche, and Bernoulli quickly impressed
L’Hospital by his ability to find the radii of curvature of arbitrary curves. This
inspired him to hire the young Swiss as his private tutor for four lessons a week.
The lessons continued to the middle of June 1692, when the L’Hospitals left
Paris and took Bernoulli with them to Qucques. The terms of the contract
stipulated not only the rates of pay, but above all that Bernoulli communicate
his discoveries to his new master while concealing them from everyone else. To
modern eyes, these circumstances incline one to agree with Bernoulli that he
was shabbily acknowledged by the Marquis, but doubtless the nobleman was
acting as he would towards anyone whose services he hired. For more details
see Spiess [1955], partially translated into English in Fauvel and Gray [1987].
Bernoulli’s discovery of the so-called 1.’Hospital’s rule is documented in his
letter of 22 July 1694; see Spiess, no. 28, p. 235.

In Book IX of his Traité L’Hospital deals with the use of conic sections to
solve equations of higher degree, a topic, as Coolidge rightly remarked, that
was dear to Descartes. In two important recent papers ([1981], [1984]),
H.J. M. Bos has shown just how much of the Geometrie must be seen as an
attempt to provide geometric answers to geometric questions, a process in
which algebra plays the role of a medium. Geometric problems may be
interpreted algebraically, but their solutions must then by re-interpreted
geometrically. What L’Hospital, like many of his contemporaries, was doing in
his chapter on the ‘construction of equations’ was to solve equations geometri-
cally not because other solutions were unavailable but because geometrical
solutions were required. As Bos has shown, this programme ultimately
foundered because it could not be given agreed standards for simplicity, and by
Euler’s time it had become a curiosity. However, Coolidge’s algebraic style of
writing should not obscure the importance to his contemporaries of what
L’Hospital was trying to do.

There is a thorough, recent treatment of the Saint Petersburg Paradox in
Jorland [1987]. Jorland not only gives Buffon’s table of actual results on playing
the game 2048 times, but provides a detailed account of the discussions of
many others on this intriguing paradox: N. Bernoulli, d’Alembert, Condorcet,
Laplace, and others. The reader will enjoy both this essay and that of M. Paty
[1988] which is more informative on Diderot’s work on probability. Coolidge
did not see those papers by Diderot, and therefore missed his polemics against
d’Alembert, which included his attempt to rebut d’Alembert’s arguments in
favour of innoculation. Coolidge also seems to profess ignorance of Brook
Taylor. For an account of his work on the vibrating string and its connection to
his interest in music, the reader can do no better than to turn to Cannon and



INTRODUCTION xxi

Dostrovsky [1981]; these authors also discuss Diderot’s use of the work of
Sauveur on music and mathematics. On the other hand, Coolidge’s account of
Diderot’s other work remains unsurpassed.

I have nothing to add to the chapter on Horner. The chapter on Bolzano is
being reprinted at a time when he is again receiving the attention he deserves.
Oxford University Press are bringing out a two-volume edition of his
mathematical work, edited by S. B. Russ, and I am grateful for his comments.
He tells me that the two important principles mentioned by Coolidge on
p- 195, the definitions of continuity and of convergence of a series, can be
found in an earlier work by Bolzano, the Binomische Lehrsatz of 1816. The
Functionenlehre, mistakenly called by Coolidge the Funktionentheorie, is being
re-edited from manuscript by van Rootselaar for the Gesamtausgabe edition,
and the English reader must await its appearance in Russ’s book. Surprisingly,
Coolidge does not mention Bolzano’s splendid example of a function con-
tinuous at every point of an interval but differentiable nowhere, which predates
the examples due to Riemann and Weierstrass by 20 to 30 years.

Bolzano’s function is defined by an iterative process on the interval [0, 1].
The function f; sends x to x. The function f, is defined differently on each of
the four intervals [0, 3/8], [3/8, 1/2], [1/2, 7/8], and [7/8, 1]; its graph is
obtained by joining up the points (0, 0), (3/8, 5/8), (1/2, 1/2), (7/8, 9/8), and
(1, 1) by straight line segments. The function f, is obtained by replacing each of
these segments by four more. The one from (4, a’) to (4, b’) is replaced by the
zig-zag line joining these points: (4, 4'), (¢ + 3/8(b—a), a’ + 5/8(b'—a")),
(172(a+b), 1/2(a’+ b)), (a + 7/8(b—a), a’ + 9/8(b'—a")), (b,b"). The function
Jf,+11s obtained from the function £, in the same way. Bolzano’s function fis the
point-wise limit of the f,’s.

Bolzano gave an imperfect proof that the function is everywhere continuous,
because he missed the uniformity of the convergence of the sequence f,. But he
did prove that the function failed to be differentiable at a dense set of points
and that it is never monotonic on any interval. Modern commentators like
Rychlik have filled in the gaps; this treatment is taken from Jarnik [1981}, who
gives a careful proof of all these claims.

Coolidge would surely also have enjoyed Bolzano’s attempts to define the
concept of line or curve, surface, solid and continuum, which make him an
important precursor of the modern theory of dimension. These have been well
discussed by Johnson [1977].

I would like to acknowledge the help of Judith Field, David Fowler, Jan van
Maanen, and Steve Russ in preparing these notes. I am, of course, responsible
for any errors they may contain.
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CHAPTER 1
PLATO

§ 1. Plato’s mathematical training

WHOEVER has written about the early history of mathematics has not
failed to mention Plato, and usually in terms of praise. But the question
of just how much he contributed to mathematical science is not easy to
answer, and the anterior question of just how much mathematics he
actually knew is still more difficult. There was plenty of mathematics
to be known in his time. Heath is very definite on this point:

‘There is therefore probably little in the whole compass of the Elements
of Euclid, except the theory of proportion, due to Eudoxus, and its conse-
quences, which was not in substance included in the recognized content of
geometry in Plato’s time.’}

Two comments suggest themselves. Another exception is the method
of exhaustion, also due to Eudoxus, although some theorems first firmly
established by this method were known before his time. But Eudoxus
was early in life Plato’s pupil, and it is hard to believe that these two
monuments to Greek mathematical genius were unknown to the master.
Whether he understood them completely is another question.

Plato certainly had ample opportunity to learn mathematics. Not
from Socrates, who had little interest in the subject, but from Theodorus
of Cyrene with whom he studied. He must also have been well acquainted
with the mathematics of the Pythagoreans. He visited Sicily more than
once, and he refers to the Pythagorean philosophy in various places.
But our strongest testimony as to his mathematical knowledge is in the
writing of that most laudatory commentator Proclus:

‘But Plato, who was posterior to these, caused geometry as well as the
other mathematical disciplines to receive a remarkable addition on account
of the great study he bestowed on their investigation. This he himself
manifests, and his books, replete with mathematical discoveries, evince.’}

§ 2. Discussion of the value of mathematics

The most certain fact is that Plato had a very high opinion of the
importance of mathematics and that, for various reasons. This appears
in many places in his writings, but especially in T'he Republic, 525-38,
from which I now quote at length, following Jowett’s translation.

Socrates. And all arithmetic and calculation have to do with number ?

Glaucon. Yes.

8. And they appear to lead the mind towards truth ?

G. Yes, in a very remarkable manner.

t Heath (q.v.), vol. i, p. 217. 1 Proclus (q.v.}, book ii, p. 100,
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8. Then this is the kind of knowledge for which we are seeking, having a
double use, military and philosophical; for the man of war must learn the
art of number or he will not know how fo array his troops, and the philosopher
algo because he has to rise out of the sea of change, and lay hold on true being,
and must therefore be an arithmetician.

G. That is true.

S. And our guardian is both warrior and philosopher ?

G. Certainly.

8. Then this is the kind of knowledge which legislation may fully prescribe,
and must endeavour to persuade those who are to be the principal men of our
state to go and learn arithmetic, not as amateurs, but they must carry on the
study till they see the nature of numbers with the mind only ; nor again like
merchants or retail traders with a view to buying or selling, but for the sake
of military use, and for the soul itself and because this will be the easiest way
for her to pass from becoming to truth and being.

G. That is excellent.

8. Yes, and now having spoken of it I must add how charming the scheme
is and in how many ways it conduces to our desired end, if pursued in the
spirit of a philosopher, and not of a shopkeeper!

"@. How do you mean ?

S. I mean, as I was saying, that arithmetic has a very great and elevating
effect, compelling the soul to reason about abstract number, and rebelling
against the introduction of visible or tangible objects into the argument.
You know how steadily the masters of the art repel and ridicule anyone who
attempts to divide absolute unity, when he is calculating, and if you divide
they multiply, taking care that one shall continue one, and not become lost
in fractions.

@. That is very true.

S. Now suppose a person were to say to them ‘O my friends, what are
these wonderful numbers, about which you are reasoning, in which, as you
say, there is unity such as you demand, and each unit is equal, invariable,
and indivisible’, what would they answer ?

@. They would answer, as I should conceive, that they were speaking of
those numbers which can only be realized in thought.

S. Then you see that this knowledge can be called truly necessary, necessi-
tating, as it clearly does, the use of pure intelligence in the attainment of
pure truth.

Q. Yes, that is a marked characteristic of it.

S. And have you further observed that those who have a natural talent
for calculation are generally quick at every other kind of knowledge ; and
even the dull, if they have an &_ithmetical training, although they may
derive no other advantage from it, always become much quicker than they
would otherwise have been ?

G. Very true.

8. And indeed you will not easily find a more difficult study, nor many as
difficult.

G. You will not.
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S. And for these reasons arithmetic is a kind of knowledge in which the
best natures should be trained, and which must not be given up.

G. 1 agree.

8. Let this then be one of our subjects of education. And next shall we
inquire whether the kindred science also concerns us?

G. You mean geometry ?

S. Exactly so.

G. Clearly we are concerned with that part of geometry which relates to
war, for in pitching a camp or taking a position or closing or extending the
lines of an army, or any other military manceuvre, whether in actual battle
or on the march, it will make all the difference whether a general is or is not
a geometrician,

8. Yes, but for that purpose a very little either of geometry or calcula-
tion will be enough, the question relates rather to the greater and more
advanced part of geometry, whether that tends to make more easy the
vision of the idea of the good, and thither, as I was saying, all things tend
which compel the soul to turn her gaze towards that place where is the full
perfection of being, which she ought, by all means, to behold.

G. True.

8. Then if geometry compels us to view being, it concerns us, if becoming
only it does not concern us.

Q. Yes, that we agsert.

8. Yet anybody who has the least acquaintance with geometry will not
deny that such a conception of the science is in flat contradiction to the
ordinary language of the geometricians.

G. Howso?

8. They have in view practice only, and are always speaking in the narrow
and ridiculous manner of squaring, and extending and applying and the like;
they confuse the necessities of geometry with those of daily life, whereas
knowledge is the real object of the whole science.

G. Certainly.

§. Then must not a further admission be made ?

. What admission ?

S. That the knowledge at which geometry aims is knowledge of the eternal
and not of anything perishing or transient ?

G. That may readily be allowed and is true.

§. Then, my noble friend, geometry will draw the soul towards truth, and
create the spirit of philosophy and raise up that which is now, unhappily,
allowed to fall down.

¢. Nothing will be more likely to have such an effect.

§. Then nothing should be more sternly laid down than that the inhabi-
tants of your fair city should, by all means, learn geometry. Moreover, the
science has indirect effects which are not small.

G. Of what kind ?

8. There are the military advantages of which you spoke, and in all
departments of knowledge, as experience proves, anyone who has studied
geometry is infinitely quicker of apprehension than one who has not.



. Yes, indeed, there is an infinite difference between them.

S. Then shall we not propose this as second kind of knowledge which our
youth must study ?

G. Let us do so.

It is perfectly clear from all this that Plato had a very exalted idea
of the importance of mathematical study, finding three different reasons
for it. First it is evident that mathematics has great practical utility.
This surely could not be denied, at least as concerns certain parts of
mathematics, but he considers it of minor importance. Socrates was
little impressed by Glaucon’s statement that a general needs a know-
ledge of mathematics to set the battle in order. Secondly he believed
that mathematics affords valuable mental training, for he asserts that
anyone who has studied geometry is infinitely quicker of apprehension
than one who has not. Perhaps the truth of this assumption is not
decided yet. Our psychologists are by no means at one on the subject
of the transfer of mental aptitudes, but Plato was troubled with no such
question. And lastly he found the supreme justification of mathematics
in this, that it leads to absolute truth, as it exists in the mind of God.
The search for this is the highest object of man’s endeavour.

§ 3. Analysis and synthesis

While we are occupied with Plato’s views on the underlying philo-
sophy of mathematics it is well to mention the subject of analysis. We
have a first note on this subject in Proclus.t ‘Butthere are, nevertheless,
certain most excellent methods delivered, and one which reduces the
thing sought by resolution to its explored principles which, as they say,
Plato delivered to Leodamas, and from which he is reported to have been
the inventor of many things in geometry.” We find a confirmation of
this elsewhere. ‘He was the first to explain to Leodamas of Thasos the
method of analysis.’f And what, pray, is analysis ? The classical defini-
tion is an interpolation in Euclid, Book XIII, Proposition 1. I follow
Heath’s translation, see his Buclid, vol. i, p. 138. Curiously enough,
when Heath returns to this same in connexion with Book X111 he gives
a different and less comprehensible translation.

‘ Analysis is an assumption of that which is sought, as if it were admitted,
and the passage, through its consequences, to something which is admitted
true. . . . Synthesis is an assumption of that which is admitted, and the
passage through its consequences to the finishing or attainment of that which
is sought.’

Now what all this means is the following. We wish to prove something.
We begin by assuming it true. We deduce from this assumption a series

+ Proclus (q.v.), book iii, p. 25. 1 Diogenes Laertius {g.v.}, p. 299,
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of consequences until we arrive at something which we recognize as
valid. We call this analysis; synthesis is the reverse operation. We
start with a statement which we recognize as correct and deduce there-
from a succession of consequences until we finally reach the thing which
we wish to prove appearing as a necessary result of that which was
admitted. This is especially clear if we use the modern mathematical
jargon. In analysis we find a necessary condition for the truth of that
which we wish to prove. In synthesis we show that this necessary
condition is also sufficient.

Let me illustrate by a simple example. Suppose that we wish to show
that the locus of all points in a plane equidistant from two given points
is the perpendicular bisector of the line segment connecting them.
Let the points be 4 and B, M the point midway between. If P be
equidistant from them, the triangles APM A, APM B are equal by three
sides, the angles ZPM A and £ZPM B are equal and supplementary, hence
PM is the perpendicular bisector. Conversely, if P be on the perpendicu-
lar bisector, triangles APMA, APMB are equal by two sides and the
included angle, hence P4 = PB.

But the question now arises, Was Plato really the discoverer of this
method ? It seems to me there is room for considerable doubt. The
statement is open to discussion from two sides. If Plato invented the
method, and communicated it to Leodamas, why do we not find it in
precise form in Euclid ? On the other hand, we do find it there in con-
cealed form in various propositions which were surely known before
Plato’s time. The method of reductio ad absurdum consists in assuming,
not the desired proposition, but the contrary, and showing that this
leads to the contradiction of an admitted fact. I cannot believe that
Plato really invented this method of attack. The most that I will con-
cede is that he classified or popularized a procedure already in use.
Heath dissents from this view, maintaining that the analysis and
synthesis which Plato invented was dialectical, not mathematical:

‘On the other hand, Proclus’ language suggests that what he had in mind
was the philosophical method described in the passage in the Republic which,
of course, does not refer to mathematical analysis at all. It may well be true
that the idea that he discovered the method of analysis is due to a misappre-
hension.’{

The passage in the Republic is a very obscure one which we shall come
to presently, but I cannot get away from Proclus’ statement that
Leodamas discovered many things in geometry as a result of Plato’s
method of analysis ; this must have been mathematical, not dialectical,
analysis.

- 1 Heath (q.v.}), vol. i, p. 291.
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§ 4. Hypotheses

Anyone interested in the philosophy of mathematics will surely
occupy himself with the hypotheses. It is true that the full significance
of the modern conception of hypotheses is of recent growth—witness,
for example, Poincaré’s Science et Hypothése—but we should expect
something interesting on the subject from Plato; the result is most
disappointing. We find an obscure passage which has worried com-
mentators from the earliest times to our own day. It comes at the close
of the Republic, Book vi. 510-11. Socrates has been expounding a very
difficult idea, and Glaucon says that, frankly, he does not understand it.

Socrates. Then T will try again, you will understand me better when I
make some preliminary remarks. You are aware that the students of
geometry, arithmetic and kindred sciences, assume the odd and the even,
and the figures, and the three kinds of angles, and the like in their several
branches of science ; these are the hypotheses which they and everybody are
supposed to know, and therefore they do not deign to give any account of
them, either to themselves, or to others; but they begin with them, and go
on until they arrive at last in a consistent manner at their conclusion.

Glaucon. Yes, I know.

8. And do you not also know that though they make use of visible forms
and reason about them, they are thinking, not of these, but of the ideals
which they resemble, not of the figures which they draw, but of the absolute
square and the absolute diameter and so on, the figures which they draw or
make and which have shadows and reflections in water of their own, are
converted by them into images, but they are really seeking to behold the
things themselves, which can only be seen in the eye of the mind.

G. That is true.

S. And of this kind T spoke as intelligible although in the search after it
the soul is compelled to use hypotheses not ascending to a first principle
because she is unable to rise above the region of hypothesis, but employing
the objects of which the shadows below are resemblances in their turn as
images, they having in relation to the shadows and reflections of them greater
distinctness and therefore higher value.

G. 1 understand that you are speaking of the province of geometry and
the sister arts.

S. And when I speak of the division of the intelligible you will understand
me to speak of the other sort of knowledge which reason itself attains by the
power of dialectic, using the hypotheses, not as first principles, but only
as hypotheses, that is to say, as steps and points of departure into a world
which is above hypothesis, in order that she may soar above them to the first
principle of the whole, and clinging to this, and then to that which depends
on this, by successive steps she again ascends without the aid of any sensible
object, from ideas, through ideas, and in ideas she ends.

These are surely dark sayings. Plato seems to recognize three objects
of thought: the visible forms, the ideas which they represent, and the
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hypotheses, whatever these latter may be. He rightly states that the
geometer is not dealing with the visible figures, that is to say with the
drawings, but with the forms which they represent, and which are given
by rigid mathematical definition. But what are the hypotheses ? To us
a mathematical hypothesis is an assumption that something exists or
something is true. This does not fit into Plato’s scheme at all. His first
idea seems to be that an hypothesis is an existence assumption for such
things as odd or even, the three kinds of angles, etc. But what then
does he mean by saying that the soul is unable to rise above hypotheses
to first principles ?

Persons adept in explaining Plato have been not a little puzzled by
this passage which is so incomprehensible to a mere mathematician.
I quote Adam:

‘It appears therefore that the dmdfeses of dialectic are not like those of
mathematics, immoveable and fixed, and that we may be called upon torender
an account of them, nay more, that it is our duty to submit them to examina-
tion ourselves.’t

Perhaps, in the Republic, Plato is speaking of the hypotheses of dialectic,
for he looks upon dialectic as a higher approach to truth than mathe-
matics ; we cannot argue the point with him, certainly nothing could
exceed the care with which twentieth-century mathematicians have
examined their hypotheses. I find somewhat more help in the opinion
of Jowett.

‘There is a truth, one and self-existent, to which by the help of a ladder

Iet down from above, the human intelligence ascends. . . . It is the idea of
the good, and the steps of the ladder leading up to the highest or universal
existence are the mathematical sciences, which also contain in themselves
elements of the universal. These, too, are seen in a new manner when we
connect them with the idea of the good. Then they cease to be hypotheses
or pictures and become parts of the higher truth which is at once their first
principle and their final cause.’}
I think all this means that essential truth exists somewhere outside of
ourselves, say in the mind of God, that mathematics is a ladder by
which we may ascend towards it, that owing to the frailty of our natures
we cannot do so without first making assumptions, but that the truth
. of the final conclusion does not depend on the validity of these assump-
tions but is independent of ourselves. But it may all mean something
quite different.

§ 5. Definitions

We should expect that Plato would pay attention, not only to the
hypotheses of mathematics, but to some at least, of the definitions. Here

1 Plato?, vol. ii, p. 175. 1 Plato!, pp. xcv, xcvi.
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he is strangely remiss, as it seems to me. In the Meno 75 and 76 is a
discussion of what a figure is. Socrates proposes this definition: ‘A figure
is the only thing which always follows colour.” We should say that such
a statement makes no sense whatever, but Meno objects that a person
might say that he does not know what colour is any more than he
knows what a figure is. Socrates continues:

Socrates. You will acknowledge that there is such a thing as an end or
termination or extremity. All such words I use in the same sense, although
I am aware that Proclus might draw distinctions about them, but still you,
I am sure, would speak of a thing as ended or terminated, that is all which I
am saying, not anything very difficult.

Meno. Yes I should, and I believe that I understand your meaning.

§. And would you speak of a surface and also of a solid as, for example,
in geometry ?

M. Yes.

S. Well then you are now in a condition to understand my definition of a
figure. 1 define a figure to be that in which a solid ends, or, more concisely,
as the limit of a solid.

It appears from this that a figure is a surface, which is rather strange
in that he has recently spoken of a surface. Moreover, at the end of
Meno 74 he spoke of a figure as having roundness or straightness.
Presumably he means that a figure is a termination. The termination
of a surface is one-dimensional and has roundness or straightness, but
the termination of a solid is a surface. Why this should be said to come
after colour I cannot imagine.

We find somewhat similar ideas in Parmenides 137 where Plato is
seeking to define the ‘one’ or unity, and establishing as many contradic-
tions as possible in this idea. It cannot have parts or be surrounded, it
can never move or be at rest. But at the end of 137 we have these
interesting definitions:

Parmenides. The one having neither beginning nor ends is unlimited.

Aristoteles. Yes, unlimited.

P. And therefore formless, it cannot partake of either the round or the
straight.

A. But why?

P. Why the round is that of which all the extreme points are equidistant
from the centre.

A. Yes,

P. And the straight is that of which the centre intercepts the view of the

extremes.
A. Yes.

It is interesting to compare this with Euclid’s definitions: ‘A circle
is a plane figure contained by one line such that all straight lines falling



§5 DEFINITIONS i 9

upon it from one point lying within the figure are equal. . . . A straight
line is a line which lies evenly within the points on itself.’

It is worth noting the fundamental difference between these two
definitions. The first is pragmatic; it gives that property of the circle
which is the basis of all that we know about the figure ; the fact that
a straight line lies evenly is not involved in any theorem having to do
with a straight line.

§ 6. The Pythagorean theorem

It is time to turn from what Plato says about mathematics philo-
sophically considered, to the few strictly mathematical passages which
occur in his works. I take the geometrical ones first, then the arith-
metical ones. Plato certainly was familiar with the Pythagorean
theorem, but the only direct mention of it is in the special case where
we have an isosceles right triangle. This appears at length in Meno 82-4.
Socrates is trying to prove our pre-existence by showing how, through
skilful questioning, a person can come to realize a truth which is not
actually stated to him, but must come as a recollection of something
learnt in an earlier state. He calls up a Greek boy who has had no
previous training in geometry, and asks him if he knows what a square
is. The boy replies in the affirmative. Socrates then draws a square,
divides it into four equal parts by connecting the mid-points of the
opposite sides. We have a square, two units on each side, with an area
of four units. The boy acknowledges this, and that a square of double
the size would contain eight. Socrates asks him to construct such a
square. He doubles the dimensions and finds that the area is not eight
but sixteen. The boy is given a second chance. He sees that the side
must be greater than two but less than four; he tries three. This time
the area is not eight but nine, not right but better.

Socrates then makes suggestions. The large square is made up of four
little squares. If we connect the middle points, not of the opposite sides,
but of the successive sides, we find that we cut off half the area of each
of the four little squares so that we have a square of area two, half of
the original area. Its sides are the diagonals of the small squares, and
we see that the square on the diagonals is the sum of the squares on
the sides.

Socrates. Without anyone teaching him he will recover this knowledge
for himself, if he is asked questions?

Meno. Yes.

Soc. And this spontaneous recovery is recollection ?

Meno. True.

I am afraid that nowadays no one would agree with this conclusion.
The conviction comes from looking at a very simple figure where areas
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can be estimated immediately. Plato would doubtless have liked to
prove the general Pythagorean theorem in this fashion, but that was
impossible.

This simple piece of geometry is followed by a problem which has
intrigued the critics a good deal; it comes in Meno 87.

‘At any rate will you condescend a little and allow the question “whether
virtue is given by intuition, or in some other way”’, to be argued by hypothe-
sis. Asthe geometrician, when he is asked whether a certain triangle is capable
of being inscribed in a certain circle will reply, ““I cannot tell you as yet, but
I will offer a hypothesis which will assist us in forming a coneclusion.”

If the figure be such that when you have produced a given side of it the
given area of the triangle falls short by an area corresponding to the point
produced, then one consequence follows, and if this is impossible, then some
other. And therefore I wish to assume a hypothesis before I tell you whether
this triangle is capable of being inscribed in the circle.’

This is Jowett’s translation and is as blind as one could ask for. Heath
does somewhat better:

‘If the given area is such that when one has applied it (as a rectangle) to the
given straight line in the circle it is deficient by a figure (rectangle) similar
to the very figure which is applied, then one alternative seems to me to result,
while again another results when it is impossible for what I have said to be
done to it.’t

The one certain thing here is that Plato was familiar with the applica-
tion of areas, the Greek method of solving mixed quadratic equations
which was discovered by the Pythagoreans. Heath tells usi that by
1861 thirty different explanations of the puzzle had been published, and
doubtless others since. I will limit myself to two. First of all Plato
probably realized that the maximum triangle inscriptible in any circle
is equilateral, so that if it was a question of whether a given triangle
was greater than the equilateral triangle inscribable in a given circle,
this certainly should not have been beyond the Greek geometry of his
time. But when it comes to actually constructing the triangle in a given
case, the matter is not so simple. Heath says that the most popular
solution is that of Benecke (q.v.). This writer points out that Plato has
just been talking of isosceles triangles, and assumes that he continues
to do so. An isosceles right triangle will fit into a circle if its hypotenuse
be equal to the diameter. In that case the area of the triangle is that
of a square on a radius, which has the same shape as the square on the
other half of that diameter. I agree with Heath in thinking that this is
too simple. Another explanation is that of August. I have not seen the
original of this, but it is apparently reproduced in Butcher (q.v.). Let
us limit ourselves to the isosceles triangle. If an isosceles triangle be

1 Heath (q.v.), vol. i, p. 289. 1 Ibid., p. 298.
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inscriptible in a given circle, the bisector of the vertical angle will be
a diameter (the line within the circle). The area of the triangle is, then,
that of a rectangle of which one side is the altitude lying along the
diameter, and this is similar to the rectangle on the remainder of
the diameter and the other half of the base when, and only when, the
triangle is inscriptible. Benecke objects to this on philological grounds
which I am unable to follow. I merely remark that Butcher was a very
distinguished scholar unlikely to go far wrong in such a matter. I am
bound to confess that the whole thing seems to me rather a futile .
speculation. Plato must have been familiar with Euclid, IV. 5, the
problem of circumseribing a circle about a given triangle ; all he had to
do was to compare the radii of the two circles.

§ 7. Two mean proportionals

We come to another more interesting speculation about Plato’s
geometry in Eutocius’ commentary on Book IT of Archimedes’ work
on the sphere and cylinder. It will be found in Archimedes,t and is
part of a most important passage dealing with the history of Greek
mathematics. We have here a discussion of the
various methods suggested for inscribing two M
mean proportionals between two given lengths, or
numbers. No less than thirteen of these are
offered, that described as ut Plato is like this 4 N
(Fig. 1). 0

Let A0 and OB be the two given lengths OM,

ON, the two mean proportionals.

AO OM ON
OM ~ ON ~— OB
We seek the points M and N. Clearly ZAMN, ZM NB are right angles.
We take an instrument like a vice, or the simple arrangement which
shoe-makers use to determine the length of the human foot. Essentially
we have two parallel jaws which move in such a way that all points
trace straight lines perpendicular to the two. We open them so that 4
lies on one jaw, B on the other, then twist and regulate the opening
until a pair of corresponding points lie on A0 and OB respectively.
This is surely ingenious, but difficult to accomplish with any degree
of accuracy; the important question is ‘Did Plato really discover or
propose this ?’ Eutocius is a responsible writer, one should not lightly
set his verdict aside. But it is strangely out of keeping with our ideas
about Plato. We have seen how he laid down the axiom that geometry
aims at the knowledge of the eternal, not of anything transitory or
perishing. Plutarch puts the matter in the strongest fashion.
1 Vol. iii, pp. 67 ff.

B
Fra. 1.
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‘Eudoxus and Archytas had been the first originators of this far famed and
highly prized art of mechanics which they employed as an elegant illustration
of geometrical truths, and as a means of sustaining experimentally to the
satisfaction of the senses, conclusions too intricate for proofs by words or
diagrams. As, for example, to solve the problem, so often required in con-
structing geometrical figures, given two extremes, to find two mean lines of
proportion: both these mathematicians had recourse to the aid of instruments
adapting to their purposes certain curves, and sections of lines. But what
with Plato’s indignation at it, and his invectives against it as the mere cor-
ruption and annihilation of the good of geometry, which was thus turning
its back on the unembodied objects of pure intelligence, to recur to sensation,
and ask help (not obtained without base subservience and deprivation) from
matter, so it was that mechanics came to be separated from geometry and
repudiated and neglected by philosophers, and took its place as a military
art.’f

This seems to come much closer to the idea which we get of Plato from
other passages. The two can only be reconciled if we imagine that Plato
invented the mechanical method of inserting two mean proportionals,
only to reject it as unworthy.

§ 8. Geometry in three dimensions; regular solids

Plato’s interest in geometry was not confined to the plane but extended
to geometry in space, although he was pessimistic about the state of
this subject. In the continuation of a passage, already quoted, from the
Republic, he apologizes for failing to mention solid geometry when
discussing the important subjects for instruction, but passing directly
to astronomy. We find in the Republic 528:

Glaucon. Yes, there is a remarkable charm in them. But I do not clearly
understand the change in the order. First you begin with a geometry of
plane surfaces.

Socrates. Yes.

G. And you placed astronomy next, and then you made a step backwards ?

S. Yes, and I have delayed you by my hurry, the ludicrous state of solid
geometry, which in natural order should have followed, made me pass on and
go over to astronomy or motion of solids.

Plato was particularly interested in the five regular solids, but in their
mystical rather than their mathematical properties. They were well
known in his time, having been discovered by the Pythagorean School.
*Here Proclus is our informant:

‘But after them the Pythagoreans changed the philosophy, which is

T Plutarch (q.v.), vol. ii, pp. 252, 253.

* This translation from Proclus has drawn much criticism, for example from Burkert ({1972},
409-11). In the translation given by Morrow it runs: ‘Following upon these men, Pythagoras
transformed mathematical philosophy into a scheme of liberal education, surveying its principles
from the highest downwards and investigating its theorems in an immaterial and intellectual
manner. He it was who discovered the doctrine of proportionals and the structure of the cosmic

figures.” (Proclus [1970], 52-3.)
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conversant about geometry into the form of a liberal doctrine, assuming
its principles in a more exalted manner, and investigating its theorems
immaterially and intellectually; who likewise invented a treatise on such
things as cannot be explained in geometry, and discovered the construction of
mundane figures.’

It would seem that anyone who wrote about such things as cannot be
explained in geometry would have pretty much the whole intellectual
field open to him. I presume what is meant is geometrical figures
which are not contained in the plane. As for the identification of the
regular solids with ‘mundane figures’, we find the explanation in
Timaeus 53 .

‘In the first place, then, as is evident to all, fire and earth, water and air
are bodies. And every sort of body possesses solidity, and every solid must
be contained in planes, and every plane rectangular figure is composed of
triangles. . . . Thus proceeding by a combination of probability with demonstra-
tion, we assume them to be the original elements of fire and the other bodies.’

Plato then proceeds to build the World out of triangles, in fact out
of right triangles, as every triangle can be divided into two right
triangles. Of the right triangles he picks two as being the most interest-
ing, the isosceles, which are halves of squares, and the thirty-sixty-ninety
ones, which are halves of equilateral ones. He takes six of these latter
and makes an equilateral triangle out of them ; why two would not have
done just as well I do not know. Out of four equilateral triangles he
makes a regular tetrahedron. This is the simplest, and so the most
fundamental of the regular solids, and he associates it with fire, the
most fundamental of the elements. With eight equilateral triangles we
can construct a regular octahedron, which is assigned to air; twenty
equilateral triangles will give the regular icosahedron which is assigned
to water. These are the only regular solids made from the thirty-sixty-
ninety triangles; two isosceles will give a square and six squares will
give a cube, a hard resistant body assigned to earth. There remains the
dodecahedron, which he dismisses casually: ‘There was yet a fifth
combination which God used in the delineation of the Earth.’

These ideas are surely pre-Platonic. Four regular solids were dis-
covered. These were believed to be the only ones, they fitted in nicely
with the four supposed elements. It must have been awkward when a
fifth regular solid was discovered, with no element to correspond ; the
assignment to the whole Creation is weak enough. I seize especially on
the word ‘delineate’, for this emphasizes the fact that the association
must be understood in a symbolical sense. Plato knew enough about
combustion to know that fire was not composed of tetrahedra; the
tetrahedron is a symbol of the idea of fire as it appears to the mind
of God.

Besides the regular solids Plato seems to have been interested in what
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are called semi-regular solids ; the vertices lie on a sphere, the faces are
regular polygons, equal in groups. Here is Heiberg’s translation of what
Hero of Alexandria has to say on the subject:

‘Euklides hat im XIII. Buch der Elemente (13-17) bewiesen, wie er diese
fiinf Korper mit einer Kugel umfasst, er nimmt namlich nur die Platonigchen
an. Archimedes aber sagt, es gibe, im ganzen, dreizehn Kérper, die in einer
Kugel eingeschrieben werden kénnen, indem er ausser den gennanten fiinf
noch acht hinzugefiigt, von diesen habe auch Plato das Tessareskaidekaeder
gekannt ; dies aber sei ein zweifaches, das ein, aus acht Dreiecken und sechs
Quadraten .. .das andere umgekehrt aus acht Quadraten und sechs Dreiecken,
welches schwieriger zu sein scheint.’}

The adjective schwieriger is an under-statement ; the solid does not exist,
as we can prove by applying Euler’s formula for faces, edges, and
vertices,

§ 9. Numbers and commensurability

Plato was very much interested in numbers, as were the Pytha-
goreans, who believed that numbers were the basis of everything. In
the Republic, 546, he speaks of a geometrical number ‘which represents
a geometrical figure which has control over the good and the evil of
births’. Such a statement shows how essentially mystical was the whole
idea. It does not seem to me worth while to go into the various surmises
which have been made as to what is really meant, merely referring to
Heath.}

Plato was fascinated by the idea of incommensurable lengths and
irrational numbers ; we have an interesting passage in the Laws 819-20:

Athenian Stranger. And again in the measurements of things which have
length and breadth and depth they free us from the natural ignorance of
these things which is so ludicrous and disgraceful.

Cleindias. What kind of ignorance do you mean ?

4. O my dear Cleinias, I, like yourself, have late in life heard with
amazement of our ignorance of these matters; to me we appear to be more
like pigs than men, and T am quite ashamed, not only of myself, but of all
Hellenes.

C. About what? Say stranger, what do you mean ?

A. Iwill, or rather, I will show you my meaning by a question, and do you
please to answer me. You know, I suppose, what length is ?

C. Certainly.

A. And what breadth is ?

C. To be sure.

4. And you know that these are two distinct things, and that there is a
third called depth ?

O. Of course.

1 Hero (q.v.), vol. iv, pp. 65, 67. 1 gq.v., vol. i, pp. 305 fi.
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A. And do not all of these seem to you to be commensurable with them-
selves ?

C. Certainly.

A. That is to say, length is naturally commensurable with length, and
breadth with breadth, and depth, in like manner, with depth ?

€. Undoubtedly.

A. Butif some things are commensurable, and others wholly incommensur-
able, and you think that all things are commensurable, what is your position
with regard to them?

C. Certainly far from good.

A. Concerning length and breadth when compared with depth, or breadth
and length when compared with one another, are not all Hellenes agreed that
they are commensurable with one another in some way ?

C. Quite true.

A. But if they are absolutely incommensurable, and yet all of us regard
them as commensurable, have we not reason to be ashamed of our com-
patriots ?

This as it stands makes very little sense. I think that Plato must have
meant that anyone would naturally assume that the length and breadth
of the same rectangle must be commensurable, yet this is not necessarily
the case. The breadth of a rectangle might be that of a square, while its
length is equal to the diagonal of the square.

Plato was fond of certain individual numbers. In the Laws he shows
g partiality for 12. ‘There is no difficulty in perceiving that the twelve
parts admit of the greatest number of divisions of that which they
include, or in seeing that the other numbers which are consequent upon
them and are produced out of them up to 5,040.

What interests him is to find which numbers have the greatest number
of subdivisions into equal parts. Thus 12 can be divided into 2, 3, 4, or 6
equal parts. As for 5,040, which is 7!, that can be subdivided in a
fantastic number of ways. Plato closes with this cheerful remark:
‘Above all arithmetic stirs up him who is by nature sleepy and dull and
makes him quick to learn, retentive, shrewd and aided by the art divine,
makes progress beyond his natural powers.’

There is a curious note in Timaeus 321 where he says: ‘Two terms
must be united by a third which is a mean between them, and had the
Earth been a surface, only one term had sufficed, but two terms are
needed with solid bodies.” This apparently means that if two integers
are perfect squares, the mean proportional between them is an integer,
but if we have two integers which are perfect cubes, there are two
integral mean proportionals.

I said above that Plato was interested in the Pythagorean theorem.
This interest extended to the formation of integral right triangles, that
is to say, to finding pairs of integers, such that the sum of their squares
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is the square of an integer. I have not seen this in Plato’s own work.
We read in Proclus, after an account of a Pythagorean method based
on pairs of odd numbers:

‘But the Platonic method originates from even numbers. For when he has
assumed an even number he places it as one of the sides about a right angle,
and when he has divided it in halves, and has produced a quadrangular
number from the half when he adds unity to this he forms the subtending
side (hypotenuse), but when he has taken unity from the quadrangle he forms
the remaining side about the right angle.”{

The numbers are 2n, n?4-1, and n2—1.

1 mentioned quadrangular numbers. Plato, and after him Euclid,
was interested in cataloguing numbers according to such distinctions.
I shall return to this point presently. He was constantly preoccupied
with irrationals, which he ordinarily reached through the diagonals of
squares, but he was aware of the existence of other irrationals. Thus
we find in Hippias Major 303:

‘Of what kind, then, Hippias, does the beautiful seem to you? Whether
as you asserted, that if you and I are strong, both are so, and if both so, then
is each ; and similarly if I and you are beautiful, both are so, and if both so
too is each. Or is there nothing to prevent it as (in the case of numbers where)
some things taken together being even, may be when taken singly odd or
even, or when each is taken separately is irrational, but taken both together
may be rational or, perhaps, irrational ?’}

This shows that Plato knew that the sum of two irrationals might be
rational, which amounts to saying that not all irrationals are square
roots of integers, but might be mixtures of integers and square roots.
The most famous passage in which Plato introduces irrationals is
Theaetetus 147.

Theaetetus. Yes, Socrates, there is no difficulty as you put the question.
You mean, if I am not mistaken, something like what occurred to me and
to my friend here, your namesake Socrates, in recent discussions.

Socrates. What was that, Theaetetus ?

T'. Theodorus was writing out for us something about roots, such as roots
of three or five, showing that in linear measure they are incommensurable by
the unit ; he selected other numbers up to seventeen—there he stopped. Now
as there are innumerable ratios, the notion occurred to us to include them
all under one name or class.

8. And did you find such a class?

7. T think we did, and I should like to have your opinion.

S. Let me hear.

+ Proclus (q.v.), p. 203.
1 Hippias Magjor does not appear in Jowett. I have followed Burge’s Pluto, London,
1755, p. 266.
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T. We divided all numbers into two classes, those which are made up of

two equal factors multiplying into one another, which we represented as
square or equilateral numbers, that was one class.

S. Very good.

T. The intermediate numbers as three, five, and every other number which
is made up of unequal factors, either a greater multiplied by a less or a less
multiplied by a greater, and when regarded as a figure is contained in unequal
sides, all these we represented as oblong numbers.

S. Capital, and what follows ?

T. The lines or sides which have for their squares the equilateral plane
numbers are called by us lengths or magnitudes, and the lines which are the
roots of (or whose squares are equal to) oblong numbers were called powers
or roots ; the reason of this latter name being that they are commensurable
with the others (i.e. with the so-called lengths or magnitudes) not in linear
measurement, but in the value of their squares.

Heath sayst that this passage has given rise to various conjectures
as to whether Theodorus had some way of approximating to square
roots. I confess that I see nothing of the sort, nor do I believe that
Plato would have been much interested in any method of approximation
to the value of irrationals. To me it seems that Theodorus, recognizing
integers either as perfect squares or oblong, showed that the square
root of an oblong number is irrational, following the classical proceeding
for the square root of 2. The objection that this is too simple to have
excited Plato’s admiration seems to me ill founded. The terms ‘com-
mensurable’ and ‘incommensurable in square’ appear constantly in
Euclid X. Two small comments also occur to me. Is it possible that
Plato saw a difference between multiplying a less by a greater, and a
greater by a less? Or again, the number 6 would seem to be a length
or magnitude, as it is the root of 36, but it is thus the root of 9 X 4, and
so should be called a power or root. It is passing strange that he does
not draw the distinction between prime and not prime numbers.

And what shall be our final judgement of Plato as a mathematician ?
A productive mathematical scholar he certainly was not. He had the
highest opinion of the value, especially the spiritual value, of the subject.
He had a bowing acquaintance with all of the pure mathematics of his
time. He frequently, I almost said habitually,expressed himself obscurely
if notinaccurately. The vital question seems to me to be, Is this accident
or design. Did he really have a true grasp of the subjects he touched
upon, or had he merely heard them spoken of, never really grasping their
significance ? The passage where he brings in the application of areas
suggests a real knowledge, but all of the rigmarole about hypotheses is
discouraging. Did he have a real knowledge, but confine his interest to
the mystical side, or had he really failed to penetrate the significance of

1 Vol. i, pp. 204-6.
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the great triumphs of Greek mathematics which were known in his time ?
Each must decide for himself. I must confess to being enough of a
Philistine to believe it to be a waste of time to look for important facts
of & mathematical or historical nature under the confused statements
which may indeed arise from the spiritual height of his views, but
equally from a fundamental lack of grasp in his knowledge.



CHAPTER II
OMAR KHAYYAM

§ 1. The story of Omar

GHIZATHUDIN ABULFATH IBN IBRAHIM AL KHAYYAMI, who is generally
known under the name given at the beginning of this chapter, spent most
of his life at Naishdptr. There is a good deal of uncertainty about his
dates, but he seems to have lived during the latter part of the eleventh
and the beginning of the twelfth centuries. There is a tradition that he
'died in 1123, but we cannot place too much confidence in it. The most
significant episode in his early years was his friendship with two unusual
young men, Nizam al Mulk and Hassan ibn Subbuh. According to the
legend these boys agreed that if one of them should come to fame and
fortune he would show kindness to the other two. The lucky one was
Nizam, and he undertook to carry out the promise. He made Hassan
Court Chamberlain. This was a poor move. Hassan turned out to be
a troublesome courtier, and was exiled from the Court. He became the
head of an exceedingly blood-thirsty and troublesome band of fanatics
called Ismailians. They seem to have specialized in assassination ; some
etymologists tend to derive this word from Hassan, but others connect -
it with hashish. Omar did not ask for anything so spectacular, he merely
desired to be raised so far above want that he could give his life to his
favourite studies, mathematics and astronomy. This modest request
was granted; he made some return by his work in reforming the
calendar.

Omar’s fame as a scientist has, in recent years, been completely
obliterated by his brilliant reputation as a poet. A good share of the
credit for this belongs to his peerless translator, Edward Fitzgerald.
I have no competence to express an appreciation here, neither is there
any reason for me to discuss his anti-religious philosophy. Some persons
have maintained that he was grossly immoral, a libertine addicted to
unnatural vice. Perhaps he was, perhaps not. The impression which
I get from reading the Rubd'iyyat is that of a sophisticated and disillu-
sioned, but not unkindly cynic, who praises the attainable delights of
the senses, and treats his adversaries with caustic wit. Very likely he
was an atheist, but he was willing enough to use pious phrases of a con-
ventional pattern. Here are the opening lines of Omar (q.v., Woepcke’s
translation): ‘Au nom de Dieu, clément et miséricordieux. Louange &
Dieu, seigneur des mondes, une fin heureuse & ceux qui le craignent, et
point d’inimitié si ce n’est que contre les injustes. Que la bénédiction
divine repose sur les prophétes, et particuliérement sur Mohammed et
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sur toute sa famille.,” He closes his essay with these words: ‘C’est Dieu
qui facilite la solution de ces difficultés par ses bienfaits et sa générosité.’
He frequently wishes that God shall be merciful to this or that other
scientist. Such piety is common enough in Islamic writing; very likely
Omar had his tongue in his cheek while expressing himself in this
fashion, but these phrases did flow from his pen.

Omar wrote a treatise, now completely lost, which seems to have
contained something of great interest in the history of mathematics.
He writes: ‘J’ai enseigné & trouver les cotés du carré-carré, du cube-cube
efc, 4 une étendue quelconque, ce qu’on n’avait pas fait précédemment.
Les démonstrations que j’ai données & cette occasion, ne sont que des
démonstrations arithmétiques, fondées sur les parties arithmétiques des
éléments d’Euclide.’{

Tropfke expresses the opinion: ‘Die letzte Bemerkung kann man
offenbar nur auf Benutzung der binomschen Entwickelung auf beliebig
hohe Exponenten deuten, wodurch dann Alkhajjami als Entdecker des
Binomialtheorems fiir ganzzihlige Exponenten anzusehen wire. ]

§ 2. Early study of cubic equations

Omar’s mathematical interest is primarily centred in the solution of
equations. Right at the start he sees two problems, what he calls the
algebraic and the geometrical solution. He means by an algebraic:
solution one in positive integers. In all such questions the influence
of Diophantus is paramount. Omar’s work shows no great progress
beyond what was attained by this master. He means by a geometrical
solution one in terms of what he calls measurable quantities, lengths,
areas, and volumes. Here is the statement of a typical problem: ‘Un
cube, des carrés et des nombres sont égaux & des cotés.’§ This means
that we are concerned with such an equation as

23 fcxtta® = b,

T have written this in homogeneous form, and shall continue to do so.
The word des suggests that his coefficients were positive integers, but
T am not sure that this is what he meant. A Greek would probably have
said: ‘We wish to find the line which has the property that a cube with
this as an edge added to a square based rectangular parallelepiped of
given height with this as a base edge, and added to a given volume, is
equivalent to a rectangular parallelepiped of given square base with this
as height’. This would be a more accurate statement, but Omar did not
phrase things so accurately ; his unknown is a length, determined by the
way that it enters into certain areas and volumes. His great task is to

+ Omar (q.v.), p. 13. t Tropfke {q.v.), 3rd ed., vol. ii, p. 174.
§ Omar Khayyém (q.v.), p. 47.
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.make a systematic study of all linear, quadratic, and cubic equations,
which have at least one positive root. His method consists in using, not
only what the Greeks called plane loci, straight lines and circles, but
solid loci, conic sections. Before actually giving any of his work it will
be well to indicate some of what had been accomplished by his predeces-
sors ; the solution of equations, especially cubic equations, had greatly
intrigued the Arabian and Persian mathematicians.

The conic sections first appear in connexion with the problem of
inserting two mean proportionals between given lengths. The tradi-
tional discoverer of this procedure was Menaechmus, a pupil of Plato’s,
who flourished in the fourth century B.c. If the given lengths be @ and b,
and the two means we seek x and y,

afr = xfy = y/b.
From these we get two parabolas
?=ay; = bz,
and the hyperbola xy = ab.
We have also the cubic equations
8 =a%%; Yy =ab%

We find the first extension of this method of treating cubics in Archi-
medes’ treatise on ‘The Sphere and Cylinder’ in the fourth problem of
Book IT: ‘To cut a given sphere by a plane so that the volumes of the
segments bear to one another a given ratio’.} Archimedes did not give
the solution in this place, but his commentator Eutocius found elsewhere
a fragment which had the earmarks of being the work of the master;
it is reproduced at length in the place just cited. I will greatly shorten
the work by using modern algebraic notation. The radius of the sphere
shall be 7, the depth of the segment x. By proposition 2 of the same
book the volume of the segment is

2
V= ’_’3‘”.(3r—x).

Let us put this into words. We extend the diameter perpendicular
to the base of the segment one radius length beyond that end which
is away from the segment ; we have a line (in the Greek sense) of length
3r divided into two segments of lengths x, 3r—z. If the ratio of the
two segments be m/n,

3V m a? mr
dnr® T m+n’ 492 (m+n)(3r—=x)°

1 Archimedes?, pp. 62 ff.
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Archimedes generalizes this into the problem of dividing a given line
into two such parts that the ratio of one to a given length is the inverse
of the ratio of the square of the other to a given area

x2 a
e 28+ab? = ca?
b2 c—x T
We seek the intersections of
b

2% = gy; ylc—x) = ac.

Here we have a parabola whose axis is parallel to one asymptote of a
given hyperbola, so that we have two conics with only three finite inter-
sections, and so are led to a cubic equation. In this fragment Archimedes
gives a careful discussion of the limits on the coefficients necessary to
ensure a positive solution. In the same place we find solutions by
Dionysodorus and Diocles. The Arabs took much interest in the same
problem. We find in Omar:7

‘Quant aux modernes, c’est Alméhéni qui parmi eux congut I'idée de
résoudre algébriquement le théoréme auxiliaire employé par Archimede dans
la quatridéme proposition de son traité de la sphere et du eylindre ou il fut
conduit & une équation renfermant des cubes, des carrés et des nombres, qu’il
ne réussit pas & résoudre aprés en avoir fait une longue méditation. On déclare
donc que cette résolution était impossible jusqu’a ce que parit Abou Djafar
Alkhazin (A.D. 960), qui résolut I'équation & P'aide des sections coniques.’

Another famous problem was that of trisection of the general angle.
If we call this angle 3¢ we have

4 cos®p—3 cos ¢ = cos 3¢,
which leads to the cubic equation
z3 = b%x+ad.

Early writers did not have a sufficient knowledge of trigonometry to
lead to this simple equation. The Greeks preferred the use of the
‘quadratic’ for this purpose. Two good solutions appear in the work
of Pappus.§ The first of these calls for a preliminary construction.
Given a rectangle ABT'A (Fig. 2) to find £ on I'A, Z on BT so that
EZ = ¢, a known length.

Let AA = a, AB = b.
I seek H below Z so that FAHZ is a parallelogram.

¥ qv.,p. 2. 1 Archimedes!, p. exxxviii and Cantor?, p, 196.
§ Pappus (q.v.), vol. i, pp. 212 ff,



§2 EARLY STUDY OF CUBIC EQUATIONS 23

Let H have the coordinates (z, y), the axes being AK, AT’
AH? = 2% 4-y% = c2

I I Z
E

b H

A a A K
Fi1a. 2

From similar triangles
x

atx

It is true that the two conics lead to a quartic and not to a cubic

equation, but they give a solution of our problem of trisection. Let
LAAT (Fig. 3) be the angle we wish to trisect. Construct the rectangle

= %; xy+oy = bx.

B r Z
H
E
A )
F1e. 3

AABT and take EZ = 24T by the preceding construction, while H is
the middle point of EZ

Al' = EH = HZ = HT
LZAT = LAHYT = 2/HZT = 2/AAH
LAAT = 3/AAH.

I
A
y
Av

Fia. 4

Here is Pappus’ other solution. Let ZI'4 B (Fig. 4) be the angle we wish
to trisect. Let AA be a trisector. Pass a circle through B4 tangent

to AI': /AAB = 2/TAA = 2/ABA.
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We seek the locus of A, Let AE = x, AE =y,

g = tanZAAB; —ya? == tan/ZABA,
2
y_ _ c—=x
x Yz
| AN
(c—x)?

2x(c—x) = {c—x)2—

We need, then, to find the intersection of a circle with a rectangular
hyperbola.

The Arabs were very fond of the trisection problem ; we find in Omart
some half-dozen examples of their work. Here is an Arab problem
similar to Archimedes’ problem of cutting the sphere. It is due to
Al Kuhi (4.p. 1000) and given by Omar, p. 104. To construct a segment
of a sphere which has a given volume, and also'a given curved surface.
The two unknowns shall be r the radius of the sphere, and x the depth
of the segment. We have the equations

rx = b2, 2%(3r—x) = a®.
These lead to 3b%x = x%-}-ad; r3+—— = 3b—r2
Since
r >0, x < 2r,
b2
b <rV2; 72 >§,
?_‘L > >% 2768 > ab.

We shall return presently to Omar and the solution of the cubic, but
I must first mention an interesting opinion of Heath’s:

‘There can be no doubt that Archimedes solved this equation as well as
the similar one with the negative sign, i.e. he solved the two equations

a3 tax?4-b% = 0,

obtaining all their positive roots. In other words he solved completely, as
far as the real roots are concerned, a cubic equation in which the term in
is absent, although the determination of the positive and negative roots of
the same equation meant for him two separate problems. And it is clear that
all cubic equations can be reduced to the type Archimedes solved.’}

f q.v., pp. 117 fi. 1 Archimedes, exxix.
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It seems to me that here Heath is going beyond the facts. He says:t
‘Though Archimedes does not give the solutions, the following considera-
tions may satisfy us as to his method’. The method suggested, but not
carried out, is based on Archimedes’ work on spheroids and conoids.
Very likely he could have carried it out, but he did not. And what
reason is there to believe that Archimedes, or any ancient mathemati-
cian, could transform any cubic equation into one which lacks the term
inz?

§ 3. Omar’s own contribution

Omar’s fame as a mathematician rests chiefly on his claim to be the
first to handle every type of cubic that has a positive root. Here his
claim is perfectly definite. He says:]

‘Aprés lui tous les géométres avaient besoin d’un certain nombre des
susdits théorémes, et 'un en résolut un et 'autre un autre. Mais aucun d’eux
n’a rien émis sur I'énumération des cas de chaque espéce, ni sur leur démon.
stration, si ce n’est relativement & deux espéces que je ne manquerai pas de
faire remarquer. Moi, au contraire, je n’ai jamais cessé de désirer vivement
de faire connaitre avec exactitude toutes les espéces ainsi que de distinguer
parmi les cas de chaque espéce les possibles avec les impossibles en me fondant
sur des démonstrations.’

In classifying equations Omar’s first idea, not a very happy one, is
to separate according to the number of terms. First come binomial
equations ; some roots are equal to some squares, some roots are equal
to a cube. In trinomial equations his solutions of mixed quadratics are
less elegant than those obtained by the application of areas, as Euclid,
VI. 28 and 29. Let us compare his solution of dividing a sphere into
zones of given ratio with Archimedes’. This is his fifth case of trinomial
cubics. We have the equation

23-+ab? = ca?,
We first look for the point {3/(ab?), 3/(a?)}. This is Menaechmus’ pro-
blem of inserting two mean proportionals between ¢ and b

b_2_y

x y a

We next construct a rectangular hyperbola whose asymptotes are the
axes and which passes through this point. We bring it to intersect the
parabola whose vertex is (c, 0), whose axis is the z-axis, and whose
parameter is %/ (ab?) ‘

xy = btat; Yy = Y/(ab*)(c—x).

1 p. cxxvil. i qv.,p. 3.
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Now let us look at some more general cubics. In order to reach an
equation of the third degree from the intersections of two conics, we
must either have an infinite intersection or an intersection at a known
point ; Omar prefers the latter. Moreover, as he is thinking in geometric
terms he only wants a positive root, though negative numbers were
recognized in his time.{ »

There are a few preliminary constructions which he explains in detail
before getting down to business:

To insert two mean proportionals between two given lengths or
numbers. This is the problem of Menaechmus to which we have already
alluded.

To construct on a given square a rectangular parallelepiped having
the volume of a given rectangular based parallelepiped. This means
solving the equation 2b% = a?%d, or the two equations

b a, b _d
—

a 2 z

This is particularly important, as his key method is frequently to
construct the length a®/b%

Given a rectangular parallelepiped with a square base, to construct

another square-based rectangular parallelepiped of given height with

the same volume as the given one. This requires solving the equation

ca? = a’d.
To construct a cube of given volume.

The last two problems involve only solving certain proportions. We
may summarize his scheme as follows. Suppose we wish to solve the

equation a3 cx? 1-b2r-tad = 0.
First find the length a3/b2. Then consider the rectangular hyperbola

3 3
o £5) = £5

and the rectangular hyperbola or circle

e sl

These intersect where
b2’ , . a8
wxapy — £ [(“’ = b’z):*:"]'
3
Put ' - %—2 = g,

then b2rtad = +a3t-cal

t Cantor? p. 471.
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It will be more interesting to work out three problems exactly as Omar
does.

Problem 1] A4 cube, some sides, and some numbers are equal fo some

T \L
7 H
N
C
D
g b \
A B K FE
Fi1c¢. 5
a8
Let BE =¢, BC = b, BA = 7
Construct a circle on AE as diameter. Let BC meet this in Z,
BZ = %\/(ac).
3
Let HZ.ZG:CB.BA:‘%.

Construct a rectangular hyperbola with CB, CD as asymptotes passing
through H. Let this meet the semicircle in L and N. One might judge
from the figure that we were running into an equation of the fourth
degree, but such is not the case, as one intersection of the circle and
hyperbola is 4, which has the coordinates (0, 0), and there is one on the
other branch of the curve, giving a negative root

3
LT.TC = HM.MC = BC.BA = %.

Add the rectangle CBK to both sides,
LK.KB = KA.BC.
From the circle, LK?2 = EK.KA,
BC'_ LK* EK
KB KA* KA’
BC* KA — KB EK,
K B-4-a3 = KB*c—KB).
Add K B3 to both sides,
KB+ b2KB+a® = cK B2
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It appears then that L is a solution, IV is another. When H is way
outside the circle these points are imaginary ; Omar also fails to note
the negative root,

Problem 2] A cube and some squares are equal to some sides and a

number, 234-cx? = brt-ad.
z
f) a
N 0
b
%23
C ¢ A J: K
Fic. 6
3
Let BD=b;, CB=c; BA:%.

Suppose, first, a®/b? < c. We construct a rectangular hyperbola with
vertices 4 and C and a second rectangular hyperbola with asymptotes
DB, DN and a constant product a®/b. The two will meet in H, where

3
HE? = AK [AK+G—‘Z_2],

a3

(HK—b)(AK—%Z) S

HK(AK_ “_3) — AKb,

b2
HK AK+c—a®[b?
AR a5 = b '
3
But Ak—% — px, HE_BEtc  prmr—_p %

b2 BK~ b b’
BK?(BK +c) = b2BK+a?,
BK34-cBK? — b®BK+a?.

When a3/b2 > ¢ the figure is somewhat different, but the result is the
same.
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Problem 3] A cube and some numbers are equal to some squares and
some sides,

P ta® = cu’+box. o 13/
s . B £
First assume (Fig. 7) B Cb /

a® a3 B
'I72'>C, BOZC, BD:b, BA:EE N

Construct a rectangular hyperbola with asymp-
totes BD, DZ passing through 4, and a second
rectangular hyperbola with vertices 4 and C. Let
them meet in M :

Rectangle D4 = Rectangle DM,
Rectangle NE = Rectangle ZE,

D Zo
EM.MN = E0.Z0. Fia. 7
ME* CE
But ME = AE.CB;  —5g =,
BD.AB = MN.MO = EB.ND,
BD EB
ND~ 4B

Subtract 1 from each side:
BN EM EA
ND~ ND ™ 4B’
BD EB BD EM
EM T FEA’ EBT EA’
BD* . EA — EB?.CE,

3
b2<EB_.‘;L2) = EBYEB—c),

EB3-4-a® = b*EB--cE B2
When a® = b%, 4 and C fall together. BE = BC, a solution. When
a® << b% the algebraic work is similar.

Omar passes to a lengthy discussion of equations which involve not
only the three lowest powers of the unknowns but their reciprocals.
He notes that here one cannot usually find a solution with the aid of
conics, but in particular cases this is possible, as, for instance,

2 @ 2
x -}-—;_——_—cx—}—b.

It does not seem to me worth while to follow him here.



CHAPTER III
PIETRO DEI FRANCESCHI

§ 1. The problem of perspective; Alberti

THE problem of representing three-dimensional objects accurately on a
flat surface would seem naturally to be one that would attract the
attention of both the mathematicians and the artists, and that at an
early date. As a matter of fact both categories of persons left it severely
alone until a surprisingly late time. The geometers may have thought
it too simple to exercise their skill, the artists found it too mathematical
to suit either their taste or their capacity. There is reason to believe
that Vitruvius was familiar with some of its principles; we find him
writing, ‘ Perspective is the method of sketching the front with the sides
withdrawing into the background, the lines all meeting at the centre of
the circle’.t But we must wait for the Italian Renaissance, which pro-
‘duced a number of extraordinary men interested alike in the arts and
the sciences, for a detailed study of the really simple principles involved.

The credit for discovering the first principles of perspective is usually
given to Bruneleschi. We read in Vasari:

‘ Filippo Bruneleschi gave considerable attention to the study of perspective,
the rules of which were then imperfectly understood, and often falsely inter-
preted ; and in this he expended much time until at length he discovered a
perfectly correct method, that of taking the ground plane and sections by
means of intersecting lines, a truly ingenious thing and of great utility in
design. . . . This work having been highly commended by the artists and all
who were capable of judging matters of the kind gave Filippo so much
encouragement that no long time elapsed before he commenced another and
made a view of the Palace, the Piazza, the Loggia del Signori with the roof of
the Pisani and all the buildings erected around the Square, works by which
the attention of artists was so effectively aroused that they afterwards
devoted themselves to the study of perspective with great zeal. To Masaccio
in particular, who was his friend, Filippo taught this art.’{

The statement here of what Bruneleschi actually discovered is obscure
enough. For some time painters had been feeling for a theory of perspec-
tive and their results were by no means too grotesque in practice, even
if they had no theory. A long discussion of the point will be found in
Bunim (q.v.). We may well accept the statement that after Bruneleschi’s
time the study of the subject became popular, for ‘In 1435, a few years
after the fresco was painted, the first treatise in which the method of
focussed perspective, designed for the use of painters, was written by
Alberti.’§

1 Vitruvius (q.v.), p. 14. 1 Vasari (q.v.), vol. i, p. 249. § Bunim (q.v.}, p. 187.
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The work of Alberti was certainly intended for followers of the
painter’s art, the intention appears on every page. For example:

‘And indeed I shall think I have done enough if Painters, when they read
me, can gain some information on this difficult subject which has not, as I
know of, been discussed by any author. . .. And because it would be tedious
as well as extremely difficult and obscure in this method of intersection of
Triangles and Pyramids, to handle everything in a mathematical way, we
shall pursue our discourse according to the custom of painters.’t

The work begins with a general description, with excellent figures, of
the principles of foreshortening. He shows clearly how nearer objects
appear larger and, in general, discusses what he calls pyramids of rays.
Alberti wrote for members of his own craft; let me claim the same
privilege, and give a few definitions according to the custom of the
mathematicians.

A picture is supposed to be a drawing to scale of what exists in a
supposed ‘picture plane’ standing upright on the ‘ground plane’ between
the artist and the objects which he represents. This plane is pierced by
rays of light going straight from the objects to the artist’s eye, so that
we have in the picture plane a central projection of the objects in
question. The essential constants in the construction are the height
of the artist’s eye and the distance from that eye to the picture plane.
The position of the eye in space is called the ‘station point’. The foot of
the perpendicular from the station point on the picture plane is called the
‘centre of vision’. A vertical plane through these two points is called
the ‘central plane’; it intersects the picture plane in the ‘prime vertical’,
the vertical line through the centre of vision. The intersection of the
picture and ground planes is called the ‘ground line’. A horizontal line
in the picture plane through the centre of vision is called the ‘ vanishing
line’ or ‘horizon line’. The two points on this line the same distance
from the centre of vision as the station point are called the ‘distance
points’. A straight line in space will always appear as a straight line
in the picture; parallel horizontal lines, wherever they may be, will
appear as lines meeting on the horizon line ; lines perpendicular to the
picture plane will appear as lines through the centre of vision.

Alberti’s main problem is to represent in the picture plane a set of
squares in the ground plane whose sides are parallel to, or perpendicular
to, the ground line. We first mark off a set of equal distances on the
ground line and connect them with the centre of vision. These will give
one set of sides. More difficult is it to draw lines parallel to the ground
line which shall represent equally spaced lines parallel thereto. Alberti
tells us that troubled his predecessors not a little. One suggestion was

1 Alberti (q.v.), pp. 1 and 7.
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to space them according to a descending geometrical progression. He
comments: ‘This method may be practised by some, but if they imagine
it & good one, I am of the opinion they are not a little mistaken. ...
The matter standing as I have shown, I have myself invented the follow-
ing method which I have found, by experience to be a very good one.’f

I exhibit this in Fig. 8, which is taken photostatically from Alberti.

I will not give his proof, but save a good deal of labour by introducing
A

algebra. Let the height of the station point be %, the distance to the
picture plane a. If a line in the ground plane be parallel to the ground
line at a distance x therefrom, it will appear in the picture plane as a
line parallel to the ground line whose height above the latter is

e
=ra
We swing the central plane about the prime vertical till it lies in the
picture plane. A superior is thus the distance point. If we take 44
and the ground line as rectangular Cartesian axes, the line ABCD...
will have the equation kg
M=,

If we connect (x, 0) with the point A superior whose coordinates are
(0, b) the connecting line will meet ABCD... in a point for which
hx
n= ata
This proves the correctness of the construction.
§ 2. Pietro’s first method

It seems to me perfectly certain that Alberti’s knowledge of perspec-
tive did not cease with the representation of a chequerboard of squares,
but that is all that is given in this work. The man who first set forth
the principles in fairly complete form was Pietro dei Franceschi, or

+ Alberti (q.v.), p. 8.
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Pierro della Francesca as he is frequently called. It is hard to say just
how original he is. There is some discussion of the point by Winterberg
in the introduction to Franceschi (q.v.). This translator’s thesis is that
Franceschi merely set forth principles already familiar to artists, espe-
cially architects. I am not entirely convinced of the correctness of this
view. Franceschi’s work has been placed somewhere between 1470 and
1490, Alberti’s dated from 1435. It is hard to believe that this writer’s
technique had become current practice in so short a time. Pietro was
not a great mathematician, and he certainly did not write for mathema-
ticians, or in the style they affect. But he had read the works of great
geometers of the past. He explained two very different methods for
constructing perspective figures, one following Alberti’s model in essence,
the other entirely different. He may haveinvented it, he may have taken
it from some unnamed source, but he was the first writer to set forth in
great detail the methods for meeting all sorts of problems in perspective
which may arrive in practice. Pittarelli speaks of ‘L’opera sua come
scrittore di un trattato completo di prospettiva, il primo che vedesse lume
in Italia e nel mondo.’t I have personally found him hard to follow,
even in Winterberg’s translation, he uses many non-mathematical terms.
I therefore reproduce some of his excellent drawings and try to repro-
duce his thought from them.

Pietro begins with a number of simple geometrical principles and
drawings which illustrate the principles of foreshortening. He then goes
on to representing in the picture plane certain points and figures in the
ground plane. He imagines that this ground plane, or so much of it as
lies beyond the picture plane, has been swung around the ground line
as an axis until it lies on the picture plane, just below that part in
which he will draw his picture. We have a correct drawing in the
rotated ground plane, and just above it the representation in the picture
plane. Let us see what is going on. If we follow Alberti’s method we
can find the point in the picture plane corresponding to a given point
in the ground plane as follows. In the picture plane we mark the centre
of vision, distance point, ground line, and prime vertical. Through their
intersection we may draw in the ground plane a line making an angle
of 45° with the ground line. We wish to represent this in the picture
plane ; we can do so if we can represent one of its points. Choose a point
and draw through it a perpendicular meeting the picture plane in a
point, say s. Connect this with the distance point and centre of vision.
Find where the former line meets the prime vertical and through there
draw a parallel to the ground line. This will meet the line from the
centre of vision to s in the point representing the point of the 45° line.
But Pietro does not like to do it in this way, he does not like to represent

1 Pittarelli (q.v.), vol. xii, p. 254.
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the distance point. If we have marked the distance point we can, as
we have seen, draw the line in the picture plane which represents any
particular line in the ground plane parallel to the ground line. Con-
versely, if we know what line in the picture plane represents any
particular line in the ground plane parallel to the ground line, and the

A
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Fic. 9

centre of vision, we can at once draw the line in the picture plane which
represents the 45° line in the ground plane. Suppose, then, that we have
these data, and a point marked in the ground plane. We draw a vertical
line through it to meet the ground line, and connect the intersection
with the centre of vision. This will represent the vertical line through
the given point. Again, through the given point draw a line parallel to
the ground line to meet the 45° line, and find by the method just
described the representation in the picture plane. This will enable us
to draw in the picture plane that line parallel to the ground line which
represents the corresponding line in the ground plane. We have, thus,
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the representation of two lines through the given point; their inter-
section will represent that point. In Fig. 9 yve see how Pietro represents
a regular pentagon in the ground plane by this device.

/

Fre, 10
Unfortunately the objects which we wish to represent do not always
lie in the ground plane. Pietro next undertakes to show how to represent
points lying above the ground plane. It is inconceivable that Alberti
was unable to do this, but he does not show us in the work in question.
The difficulty arises from the fact that distances in the picture plane
above the ground line come from distances above the ground plane and
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distances behind the picture plane. Here is Pietro’s procedure. I wish to
represent a point which is a height £ above the ground plane, and whose
shadow thereon is known. We draw in the picture plane a line parallel
to the ground line at a height & above it, pick a point z thereon (not
marked in Fig. 10), and drop a perpendicular zB to the ground line.
We connect B with 4, the centre of vision. How shall we represent the
point which is at the height 4 above that point which is represented by
the point F' in the picture plane ? We draw through F a line parallel
to the ground line to meet AB in 0. Erect a vertical line at O to meet
Az in s. Through s draw a line parallel to the ground line to meet the
vertical line through F in K. Then K is the point sought. We see, in
fact, that sO/h = AO/AB, which ratio is independent of the position
of B on the ground line, and if we place B at the foot of the prime
vertical and consider what happens in the central plane, we see that we
have the right value. In Fig. 10 we have Pietro’s representation of a
cube of height A standing on the ground plane. He follows with eleven
- other figures showing the method of representing columns, prisms, arches,
and other vertical objects.

§ 3. Pietro’s second method

At this point Pietro turns completely about and shows a second
method of finding the picture. He says that this really amounts to the
same thing, which of course it must if each is merely a method for
finding the intersections of the picture plane with lines and planes
radiating from the station point. It is my impression that he feels the
first procedure would clutter up the picture with too many construction
lines, while the work of the second method can be done on other sheets.
The important point which T have not been able to settle is what is the
source of this new method. It certainly does not stem from Alberti’s
work. Winterberg, in Franceschi (q.v.), does not seem to appreciate
how complete is the change. 1t would be pleasant to find herein a really
original contribution to mathematical science, but was Pietro a suffi-
ciently capable mathematician to accomplish this ? Let us give him all
possible credit anyway.

I must confess to finding this part of Franceschi! even harder to
understand than what precedes; there are, of course, no real mathe-
matical proofs. An additional difficulty arises from the introduction of
new mathematical instraments, strips of wood or paper, needles, threads,
strings. These, of course, are only brought in for geometrical purposes.
Fortunately his drawings are very clear. I shall therefore, as before, try
to reconstruct from the figure the geometrical statement of what is
accomplished.

Pietro lived long before the time of Fermat and Descartes, and
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certainly had no general idea of rectangular coordinates; nevertheless
his second method consists in calculating from the original data what
will be the coordinates of the representing points in the picture plane.
We take the ground line as axis of abscissae, the prime vertical as axis
of ordinates. Abscissae are marked on the ground line, ordinates on two
vertical lines out of the way of the picture. With a draughtsman’s
triangle we may erect a perpendicular to the ground line at any cliosen
point, and with a ruler connect the two corresponding points on the
vertical lines. Where they cross is the point whose coordinates are
given. In practice the two coordinates are handled separately.

The abscissa of the representative of a given point is that of the point
where the ground line meets a vertical plane through the given point
and the station point. This plane contains the orthogonal projections
on the ground plane of the given point and the station point. If, then,
we connect these two projections, the connecting line will meet the
ground in the point whose abscissa will give us what we want.

The determination of ordinates is slightly harder; Pietro employs
different techniques in different problems. Let us first note that all
points in space on & line parallel to the ground line will be represented
by points having equal ordinates ; that is to say, points of another line
parallel to the ground line. We may find the ordinate of a point in the
ground plane in this way. Draw a line, which I will call the line I,
perpendicular to the ground line at a distance from the ground point
equal to the height of the station point. To find the ordinate of the
representative of a point P in the ground plane, we draw P perpendicu-
lar to the line [, connect @ with O, the projection of the station point on
this plane. The connecting line will meet the ground line in a point
whose distance from [ is equal to the ordinate sought; the proof comes
at once by similar triangles. We find the ordinate of a point representing
a point not in the ground plane by replacing it by the point where the
ground plane meets the line from the station point to the given point.
In Figs. 11 and 12 we have Franceschi’s picture of a regular octagon
lying in the ground plane, one side being on the line /.

A more difficult problem is that of representing a cube in general
position. This we have in Fig. 13. Let us begin with the abscissae.
The vertices of the cube shall be ABCDFGHI.-- 1 shall assume
that the face AFID, which I shall call the base, makes an angle 6
with the ground plane, and that the line of intersection is vertical
in this picture. If we rotate the base plane about the line of inter-
section until it lies on the ground plane, we have the figure in the
south-west corner of Fig. 13. The projections on the ground plane
of the four edges AB, FG, DC, IH when in original position will be
four equal horizontal segments on four horizontal lines through the
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rotated AFDI in the south-west corner. If we project the cube when
rotated to the south-west position orthogonally upon the central plane
we get a figure which when rotated down appears in the north-west

~

H N
9 o
g 5
8 3
® ]
< <
a
£ .2
T g
i — 15
29 Z;
18 18
£ e ha'

rigiAde Torghecza 51 4 H $8 679
Fia. 12
corner. In the north-east corner we take A at random. We draw
through it a line segment A DIF equal to the segment of that name in
the north-west, making an angle 8 with the vertical, and AB perpen-
dicular to it equal to 4B in the north-west. In other words, we repro-
duce the north-west figure in the north-east so that 4 F makes an angle 0
with the vertical. Through the eight points in the north-east we draw
vertical lines to meet the corresponding horizontal lines in the south-east
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tion of the cube on the

.

jec

the points which give the orthogonal pro

ground plane. LR is the ground line.

in

Frankly I

cannot make any sense out of Pietro’s own statement. The plan here

The determination of the ordinates is less satisfactory.
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is to project the cube horizontally on the central plane. In Figs. 14 and
15 KC is the prime vertical, O the station point, the plane of the paper
is the central plane. To project a point on the central plane we might
first project on the ground plane, then rotate that about the inter-
section till it stood on the central plane, then slide the point dc wnwards
the proper distance. That is what Pietro has done. The figure in the
south-west of Fig. 14 is that in the south-east of Fig. 13 slewed around.
The eight points are then slid horizontally to the position in the south-
east. I do not understand his rule for determining how far to slide them,
and I doubt whether this figure in the south-east really is the orthogonal
projection of the cube on the central plane. The faces ABPG and CDHI
are flattened nearly to line segments. I doubt very much whether this
would happen, judging from the other figures. But I think the author
deserves real credit for what he has accomplished, no small advance
theoretically at least, on the work of his predecessors.

§ 4. De corporibus regularibus

I may not leave Pietro without a short reference to his other mathe-
matical work, Franceschi?, De corporibus regularibus. As the title
indicates, he is occupied with the five regular solids. He begins with
a number of applications of the Pythagorean theorem. When he comes
to the regular pentagon he gives the ratio of the square of the diameter
of the circumscribed circle to the square of one side in the correct if
somewhat unusual form 16/(10—v20). He takes = = 3. When it
comes to inscribing regular solids he confesses his indebtedness to
Euclid XIII, though what he has written is much easier reading than
the work of the master. He ends up with a decidedly interesting
problem. This is to find the volume of the solid contained by two equal
cylinders of revolution, whose axes cut at right angles. This problem
was set by Archimedes and solved by him on p. 48 of Archimedes®. But
this part of Archimedes’ work was long lost and first recovered in 1907.
This seems to me Pietro’s best piece of mathematical work. I incline to
think that he invented and solved the problem first himself.

There has been rather an absurd amount of controversy over the
question of whether Luca Paccioli’s De divina proportione is not a shame-
less copy of the work, Franceschi?. Vasari considered Paccioli as a per-
fectly unblushing thief of other men’s work. Waters (q.v.), in his book
about Pietro gives reasons to doubt this. But others have entered the
fray, Chasles, Cantor, Steigmiiller, and Pittarelli. Loria and Volterra
in their introduction to Pietro Franceschi?, lay stress on the fact that
the same numbers are used in giving examples of geometrical facts,
though there was no inherent reason for the choice. I have not been
able to find the examples they suggest. A charitable view is expressed
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by Mancini in his preface to Pietro?. He gives reasons for believing that
Paccioli copied, but excuses him on the interesting ground that in his
time this was not considered a very blameworthy thing to do. I have
not, gone as deeply into the matter as he has, but a hasty study leaves
me rather sceptical. Pietro seems very little interested in the Divina
proportio or ‘golden section’ as we call it, the division into extreme and
mean ratio. He mentions it casually, as he must, in connexion with the
pentagon. Luca turns it about in every way, bringing in again and
again the mystic numbers ~125—5, 15—+125 which I do not find
explicitly in Pietro. He pays a good deal of attention to the inscription
of the regular bodies in one another, which does not appear in Pietro,
but he gives nothing as interesting as Pietro’s problem of the volume
between two cylinders which I mentioned above. The question does
not seem to me vital, the whole subject was started long before by
Euclid anyway.



CHAPTER IV

LEONARDO DA VINCI
§$ 1. Background

Or all the sons of men of whom we have any record, none had a greater
intellectual appetite, or shall we say, a more omnivorous curiosity, than
the great Florentine whose name appears at the head of the chapter.
He is the closest approach we have to that unattainable ideal, the
universal man. The Italian Renaissance produced a number of men
who stood out both in science and art, but Leonardo was supreme.
We think of him first as a really great painter, and that opinion will
probably hold good until the end of time, but in that connexion he was
deeply interested in anatomy, both human and animal, and is said to
have dissected a large number of human bodies. It has been suggested
that the famous intriguing smile of La Gioconda could only have been
painted by one well acquainted with the muscles of the mouth ; I cannot
see exactly how it would be possible to prove such a statement. His
treatise Della pittura clearly shows his interest in anatomy, but also his
absorption in mechanics. Mechanics led to the construction of war
machines, a highly prized accomplishment in that warlike time, but it
also led to the study of the accomplishment of human flight. Leonardo
was convinced, perhaps wrongly, that the human frame had sufficient
muscles for flight, it was only a question of attaching them to the proper
mechanism. He made careful observations of the flight of birds, and
gave careful consideration to the essential question of the relation
between the centres of gravity and wing pressure. He could not foresee
the invention of the internal-combustion engine which alone has made
flight possible for us. The mechanics of rigid bodies borders on that of
fluids ; he made both theoretical studies and practical undertakings in
the science of hydraulics. Physics is next to chemistry, he was much
preoccupied with the mixture of paints, although here, as in other places,
his ventures were not uniformly successful; his great unfinished paint-
ing, the battle of Anghiari, was completely spoiled when wrongly mixed
paint ran, under the influence of heat. A more elaborate list of his
scientific activities will be found in Libri (q.v.) or Marcolongo!, the
great collections of his scattered notes and designs, as Leonardo! and
Leonardo?, contain an unbelievable wealth of ideas and suggestions
dealing with all manner of subjects.

Our present interest is in Leonardo as a mathematician, although
this is not one of the fields where he showed marked superiority.
A careful and detailed study will be found in Marcolongo! and Marco-
longo?, especially the former. If I were to venture on a criticism of the
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work of this distinguished mathematician it would be to say that he was
so much impressed by the universal genius of his extraordinary fellow
countryman that he was over ready to excuse errors and omissions
which seem to me important; but when it comes to lavishing praise,
he is far behind Libri. Be that as it may, short of giving many years
to the study of Leonardo’s mathematics, it would be hard to add any-
thing substantial to what Marcolongo has written. I will make this
exception: he pays no attention to Leonardo’s inscription of regular
polygons, which seems to me interesting, and to which Cantor gives
considerable attention.

What chance did Leonardo have to learn mathematics ? There is a
detailed documentary study of this in Marcolongo!.t His early education
was certainly not carried far, but his insatiable appetite drove him to
seek information whenever and wherever it could be found. During his
apprenticeship in the studio of Verocchio he met men of outstanding
ability, and throughout his life he had the most stimulating intellectual
contacts. In particular he was intimate with Luca Paccioli, whom I
mentioned on p. 42, and later he was in contact with Nicolo Cusano.
I should also mention Leonbattista Alberti, and Pietro dei Franceschi.

How about his mathematical reading ? There were parts of Euclid
that he knew well, especially the Pythagorean theorem, and the con-
struction of a mean proportional. With other parts of Euclid he does
not seem to have been familiar, or they did not interest him. He makes
no mention of the gnomon or the Application of Areas, and I doubt
whether he really appreciated the method of exhaustion, although that
is much in evidence in the writing of another Greek mathematician
whom he greatly admires, Archimedes. He certainly was familiar with
the encyclopaedic work of Giorgio Valla (q.v.). This writer gives a long
study of the problem which intrigued Leonardo, the insertion of two
mean proportionals between two given lengths, or numbers. He gives
in turn a long list of attempts at solution by various Greek geometers.
This list first appeared in Eutocius’ commentary on Archimedes’ work
on the sphere and cylinder.

The mathematical work of Leonardo which I shall discuss in detail
falls under five heads:

I. The areas of lunes.
11. Solids of equal volume.
I1I. Reflection in a sphere.
IV.. Inscription of regular polygons.

V. Centres of gravity.
1 pp. 31-47.
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§ 2. Areas of lunes

Hippocrates of Chios, a mathematician of the fourth century, the first
Greek to prepare a book of elements, made the surprising discovery that
there are certain plane figures, bounded by circular arcs, whose areas
could be calculated, that is to say, we could construct geometrically
squares having the same areas. This discovery stimulated a great deal
of research, quite out of proportion in fact to its own intrinsic im-
portance, but the problem of squaring the circle had, from earliest
times, been so alluring that anything that looked in that direction was
bound to arouse interest. If we can find exactly the area of a figure
bounded by two circular arcs of different radius, why not that of the
simpler surface bounded by a single circle ? Here are Hippocrates’ two
theorems:

I) If a semicircle be described on the hypotenuse of an isosceles right
triangle as diameter so that it passes through the vertex of the right
angle, and another on one of the legs, also passing through that vertex,
the area of the ‘lune’ between the two is half the area of the triangle.

I1) If a semicircle be constructed on a diagonal of a regular hexagon
which connects & pair of opposite vertices, and additional semicircles
on the three sides of the original hexagon which are chords of the semi-
circle, the sum of the areas of the three lunes between the large semicircle
and the three small ones, plus that of one small semicircle, is half of the
area of the original hexagon. When it comes to a proof we have merely
to note that the areas of semicircles are to each other as the squares of
their diameters, so that in the first case the area of a small semicircle is
half that of the large one ; we then take from each the common segment.
In the second case the area of a small semicircle is one quarter that of
the large one; we then subtract the areas of the three small circular
segments.t

It is perfectly evident that each of these theorems can be easily
generalized. Curiously enough, progress in this direction came slowly.
The first important step was to consider a right triangle which was not
isosceles, and to describe semicircles on each of the legs and on the
hypotenuse. Then as the sum of the squares on the legs is equal to the
square on the hypotenuse, so the sum of the areas of the two small
semicircles is equal to the area of the large one. We then subtract the
sum of the two small segments and reach the pretty theorem that the
sum of the areas of the two lunes is equal to that of the right triangle.
Now this was first discovered about the year 1000 by Hasan ibn al
Haitam, as we learn from Suter (q.v.). Exactly what drew Leonardo’s
attention to it we do not know ; it is hard to imagine that he ever saw

1 Cf. Marcolongo, p. 52, and Heath (q.v.}, vol. i, pp. 183 ff.
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the text of the Arabian author which was first translated into a Euro-
pean tongue in 1899. I reproduce Leonardo’s bad drawing in Fig. 16.
Here is the text:

‘Qui sempre li 2 semicirculi @, b insieme giunti sono eguali al terzo dove &
fatto 'ortogonio. E se a cose equali si leva la parte equale, il rimanente

Fie. 16 Fia. 17

saranno equali. Se dunque, che tolte il depennatto (che e doppio) allo a e
tolto al b restano le lunelle, e di poi tolto il depennato al semicirculo maggiore

n che vale ai due predetti, seguita che un ortogonio resta equale alle due
lunelle.’t

It is noteworthy here that we learn next to nothing about the area
of one lune, it is the sum of the areas that appears.

It is perfectly incredible how Leonardo threw himself upon this not
too important theorem, deducing therefrom numberless particular in-
stances of rectifiable figures bounded by circular arcs, or dissimilar
figures of the same area. On one page I have counted 176 individual
figures, a photostatic reproduction would be too confusing. His various
procedures are somewhat codified in Marcolongo!. If similar figures are
constructed on the legs and hypotenuse of a right triangle, the sum of
the areas on the legs is equal to the area on the hypotenuse. An example
of this appears in Fig. 17. It is to be noted here that the segments have
angles of 45°. If we construct a semicircle outside on one of the legs we
get a lune with an angle of 45°. If we rotate this lune about one corner
through an angle of 45°, we get an eight-petalled flower of known area
inside a circle.

One simple method of finding a figure of known area is to take a
polygon with two equal sides, gouge out a figure of any shape inside one
of these sides, and add an equal figure outside the other. I give two

+ Marcolongo, p. 54.
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examples in Fig. 18. In Fig. 19 we have something more elaborate ;
it is taken from Leonardo!, 98 v. Let the radius of the circle inside the
square be 1, the radius of a small semicircle is ¥2/2. The area of each
small segment is one-half that of a large segment. The area of the out-
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side circle is 27r. The area of the four large segments is #—2. Hence the
shaded area is 2m-—4 and the non-shaded is 4.

The area of each petal in Fig. 20 will be }m—1% ; the shaded area will
then be 7#—2 and the non-shaded 2.

Leonardo was rather fond of figures inscribed in semicircles. We have
a good example in Fig. 21, also from Marcolongo!. The area of a large
petal which is four times that of a small one is {r—1. The area between
the two large petals and the small ones is the same, so that the area
of the rest of the big semicircle is 1.

Leonardo makes much use of the fact that the area of one-eighth of
a circle of radius 2 is that of one-half of a circle of radius 1. In Fig. 22
we see that by taking away from both the common area we have a
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horn-shaped figure of the same area as a segment of a circle. Here are
two examples from Marcolongo?,} though the drawings are based on
Leonardo’s own. In one case the shaded part has the area of a rectangle,
in the other case of a triangle. I note that in Marcolongo!,] this is
handled wrongly. One could go on almost indefinitely giving such
examples; I can but wonder that such a great man paid so much
attention to what was, after all, a pretty unimportant matter, his
ingenuity in thinking up examples is, of course, extraordinary.

§ 3. The transformation of solids

Leonardo was not a professional mathematician; he did not choose
his problems from among those most likely to advance mathematical
science, otherwise he would not have spent so much time and strength
on figures bounded by circular arcs. Another rather curious fancy was
the transformation of solids into others of equal volume. The Greeks
had, so to speak, completely solved the analogous problem in two
dimensions. They were even able to construct a polygon, similar to a
given polygon, and having the area of another given polygon. Trans-
formation of solids had already been studied by Nicolo Cusano. Leonardo
saw therein more or less of a practical problem, which to his mind
naturally made it more interesting. We find him writing : ‘ Geometria che
s’astende nelle trasmutazioni dei corpi metallici che son di materia atta
a astendersi e racortare secondo la necessitd de loro speculanti’.§ His
whole point of view is essentially practical. He prefers constructions
which can be found experimentally to those which can be demonstrated
rigorously. It appears certain also that he wrote a treatise on thissubject
which has been lost, for in Leonardo? we find references to such
numbers as ‘la 5% del 2°, la 6% del p°’.

The solids with which he is principally occupied are rectangular
parallelepipeds with square bases. When such a solid has a height
greater than the length of the base he calls it a cylindro ; when the height
is less it is a tavola. It is noticeable that Leonardo? is, so to speak,
written backwards ; not only that, like most of Leonardo’s work, it was
mirror-written, but that the more elementary parts on which the others
depend come at the end. Fortunately in Marcolongo', p. 312, we have
the essential material arranged in proper order. Let us begin with
Leonardo?, 38 v., where he finds a square equivalent to a given rectangle.
This, as Leonardo himself acknowledges, is Euclid, II. 14; he even
copies Euclid’s figure. On p. 59 he mentions the reverse problem, that
of finding a rectangle of given length equivalent to a given square, also
that of finding a rectangle equivalent to the sum of two rectangles.
There is nothing of interest here.

t p. 163, 1 p. 62, § Leonardo?, 40 v., p. 70.
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We find something more worth while in 34 v., p. 58, to construct a
cube equivalent to a given cylinder. This involves solving the equation

23 = a?b,

Fic. 23
which is the same as the introduction of two mean proportionals

a x Y

x y b

the most famous problem in Greek mathematics, and the source of our
knowledge of the conic sections. Leonardo was certainly familiar with
Valla (g.v.), who follows at length Eutocius’ commentary on Archi-
medes, where many solutions are given.t Leonardo chooses that of
Hero. In Fig. 23 we have his rather crude drawing. Let bede be a face
of the cylinder. We take as a centre the intersection of the diagonals,
and draw two circles ; one, not shown, through b, ¢, d, e, the other meet-
ing ce and de in two such points f, p that fp passes through b. We know
to-day that this cannot be effected with the aid of ruler and compass
alone. As for a proof we note that

feich = fe:ep = bd:dp.
Now as f and p are at the same distance from the centre of the circle,
they have the same power with regard to it, so that
fe.fe = ep.dp
ferep = dp:fc
ch:fc = fe:dp = dp:bd.
1 Archimedes?, vol. iii, pp. 71, 72.
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On the preceding page we have the problem of solving the equation
md = bxa?,
fe=m, cd = b.

Ereet (Fig. 24) perpendiculars to cd at ¢ and d, and n, the middle point.
On this last perpendicular nh we find (he does not tell us how) such a

:
h !
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point e that if a circle be drawn with e as centre passing through f it
will meet db in k and fk will meet the perpendicular at ¢ in 4, so that
cd = 2ne. We now have the same arrangement as in the last figure,
and may proceed as before. We find a different proof in Marcolongo®.{
We have finally the problem of solving

md = a’x,
and here again he works around to the same figure.
One wonders, naturally, why Leonardo follows such a clumsy tech-

nique. The obvious way would have been to take the last two problems
in reverse order. He knew perfectly well how to find y so that

m? = ay,
md = amy = 6%,
XY = m:ia.
As a matter of fact, he does give such a solution in another place.{ As

for the problem md — ba?

1 p. 314. 1 Marcolongo!, p. 314.
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we find y so that m? = by,

md = bmy = bx?,

my = a2

This is a problem already solved. It is clear, I think, that Leonardo’s
object is to find a uniform method which a clever workman can follow

*

/AN

[

experimentally rather than an exact one. As a matter of historical fact
all of these problems save the first were solved in Euclid XI.

Leonardo gave applications of his general methods to certain specific
problems. In Leonardo®} we have the good problem of constructing a
rectangular parallelepiped, equivalent to a given cube, whose measure-
ments are in given ratios. This amounts to

[ =4

° T
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z/b = ylc = z/d; xyz = ad.
We find in turn bed = bs* = 13,
afr = xb = ylc = 2/d.

This is a correct solution, but Leonardo was by no means above
making mistakes. In Leonardo2} we have another attempt to solve for z
the equation y22 = 3. I change the lettering from the equation on p. 50
to avoid confusion with the rather obscure Fig. 25.

Let cd =y, db = dgq = z.
Let e be the middle point of ¢g:
df = J(yz).

t p. 24. I F.l4v,p. 19,
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Let n be the middle point of ab:
ed = y+z -

e & =

2
nd = J (% +z2) = ¢p by definition of p,

md = \J(ep?—ed?) = 1,/(2yz-32%).
For some strange reason he says that this is the value of x.
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Leonardo is interested in pyramids as well as in parallelepipeds. He
realizes that the volume of a pyramid is one-third the product of the
base and the altitude. His problemt is to find a pyramid of given height
whose volume is that of a given cube. The figure Leonardo?, p. 37, is
too bad so I follow that on p. 325 of Marcolongo! which, of course, is
based on the original. The squares abef, bcfg are typical faces of the
cube. Construct a pyramid of the given height, which we assume
greater than three times the length of an edge of the cube, on a face
of the latter. Construct a rectangular parallelepiped on the same base
with one-third the height of this pyramid. This shall be Lmfg. We wish
to find a rectangular based pyramid of height 3Lf and volume (bf)3.

Draw Lc to meet fg in A. Let bh meet cg in 4:

Lf[bf = cglig = bfig,
Lf.ig = (bf)%;  Lf.ig.bf = ().
I mention in conclusion that Leonardo sometimes really went off the

deep end, at least if he was trying to do exact mathematics. I take as
1 Leonardo? F. 24 r., p. 38.
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an example Leonardo?, p. 12: ‘Di un cubo sia fatto un corpo di 12 eguali
base pentagonali” The problem of finding a regular dodecahedron
equivalent to a given cube was surely above his depth.

§ 4. The spherical mirror

In his long treatise on painting Leonardo showed great interest, not
only in shadows, but in general questions of illumination. I note in
passing that it was Leonardo who made the discovery that the familiar
phenomenon of ‘The old Moon sitting in the new Moon’s lap’ was caused
by the illumination of the Moon by Earthshine. It was consequently
natural that such a man should become interested in the problem of the
spherical mirror. What is that ? 1t is the problem of finding the point
of impact on a spherical mirror of a ray issuing from & given point and
arriving at a given point, after reflection. But right at the outset we
are faced again with the same problem of originality as before, for this
problem also had been stated, if not completely solved, by Hasan ibn
al Haitam. It is a suspicious circumstance that Leonardo should have
taken two problems from this author ; in the first case, as I said on p. 486,
it seems to me that we can excuse the Italian from any charge of copy-
ing ; not so here. The Arabian author’s treatise had been translated into
Italian in the fourteenth century,t and may have been available to
Leonardo in Pavia or in the library of San Marco in Florence, Moreover,
a treatise on optics based on his work by Vitellio was available, and had
been consulted by Paccioli.f Finally Huygens, to whom we must turn
for a good solution, in a letter written in 1669 speaks of Problema
Alhesini.§ It seems to me therefore that although this was a problem
that Leonardo might easily have thought of for himself, he really took
it from the Arabic source.

How about the solution? Leonardo himself tried hard and failed.
Pet us see what is involved. It is a two-dimensional, not a three-
dimensional problem, for the point sought must obviously be in the
plane through the centre of the mirror, the source of light, and the eye ;
it is a question of a circular, not a spherical mirror, and looks very easy
at first sight. But when we look further into the matter difficulties
appear. It is the problem of finding where the circle will be touched
externally by an ellipse whose two foci are the source and the eye, and
we find that analytically there will be four solutions. These were
worked out by Huygens and others. I will give the neatest form due
to Catalan.|]

Let us take the lines from the centre to the source and the eye as x-
and y-axes for a set of oblique Cartesian coordinates. The inverse of

t Nardueci (q.v.), pp. 1 ff. 1 Marcolongo?, pp. 72 ff.
§ Huygens (q.v.), vol. vi, p. 462. | Oznam (q.v.), p. 486.
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the source shall be (x;, 0) that of the eye (0, y,), the point sought (z, y).
We have two similar triangles, the one with vertices (x, ¥), (z, 0), (%, 0),
the other with vertices (z, ¥), (0, ¥), (0, ¥4):

y

v—x, Y=y

@l —y? = aty—Yyy,.
We have a hyperbola, which is rectangular, through the centre and the
inverses of the eye and the source.

R

Fia. 27

Leonardo himself made various attempts at a mathematical solution
and failed, but he was by no means a man to be satisfied with failure.
He proceeded to devise a simple mechanical scheme for accomplishing
his end. This we see in Fig. 27. The picture in Leonardo'f is unsatis-
factory, so I copy that in Marcolongo!,} which represents a machine
built on Leonardo’s model that actually worked. A4 and B are the eye

1 81lr. i p. 78
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and the source of light, and are in long slots ; C is the centre of the circle ;
P slides up and down a slot till 7 is on the circle of centre ¢. INMP is
a thombus so that PI produced bisects the angle ZAIB.

§ 5. The inscription of regular polygons

Leonardo was much interested in anything which was connected with
drawing. He consequently, and quite naturally, gave some attention to
geometrical constructions. Marcolongo does
not consider these worth attention, but
Cantor was of a different opinion, and gives
them not a little attention in Cantorl.t

It is to be noted at the outset that
Leonardo used a compass that was capable
of but one opening. This restriction is
usually assigned to Abul Wafa, but it is not
certain that Pappus did not have the same
idea. We find specifically in Leonardo®f
‘affare una linea curva divisa in parti dis-
pari e eguali come appare in abc con un solo Fic. 28
aprire del seste’. This raises the question of
whether Leonardo was familiar with Abul Wafa’s work. I shall
presently give his construction for the regular hexagon which is
essentially that of his Arab predecessor. However, this particular trick
is found in the work of other writers ; the evidence does not seem to me
convincing.

Let us first find his determination of an angle of 15°. T take Cantor’s
drawing as clearer than Leonardo’s original, Fig. 28. The centre of the
circle is d, the arcs bd, da, ac, cd are each 60°. We draw bc bisecting arc da
in e. The arc de is 30° so Zadf = 15°. We can now easily inscribe a
regular polygon of three, four, or six sides. Leonardo made various
attempts at inscribing a regular polygon of five sides. Some of these
were so obviously incorrect that he himself labelled them falso. This
was an old problem ; there is a correct solution in Euclid, iv. 11, and
another is given by Abul Wafa.§ The fact that Leonardo gives his own
incorrect solution does not surely prove that he had not seen Abul Wafa’s
work ; he surely must have been familiar with Euclid’s construction.
Perhaps he did not think these easy to execute in practice, and was
seeking for something simpler. His best attempt here is, put in slightly
different form, ‘Given a line segment, to construct a regular pentagon
with this as one side.” The construction will come immediately if we
can find the radius of the circle in which such a pentagon will be

t q.v., vol. ii, pp. 295 ff. i 15w,
§ Woepcke (q.v.), p. 327.
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inscribed.t The given segment is da ; we find p and r, the intersections
of equal circles with radii de and ad; s is the middle point of da, which
we divide into eight equal parts. We draw pg parallel to ad and equal
A to ad/8. Then ag meets ps in the centre of
' the circle required. This is, as a matter of
fact, a good approximate construction as
it makes sin 36° = 0-585 instead of 0-587.
It is interesting to speculate as to just
7 what led Leonardo to make this particular
construction. p is the centre of the circle
where ad is the side of a regular hexagon.
If it is to be the side of a pentagon, the
s radius must be shortened. Leonardo would
d @ have us go one fifth of the way down to
s; did the fact that the pentagon has five
sides influence his choice ? The scheme of
moving the centre up and down appealed
to him. He knew of a correct construction
Fa c of the regular octagon, butin Leonardo®] we
have an incorrect one, Fig. 30. He takes the
RN distance pC one-third of a radius above p,
Fic. 29 and says that C is the required centre.
Cantor§ points out that the broken line
Opa = §ap, the coefficient is the ratio of the numbers of sides of the
octagon and hexagon. I should put this down as altogether too
fantastic to be the real reason for the choice of this method, were
it not repeated in Leonardo3,] where it is a question of inscribing
a regular nonagon. ng (Fig. 30, right) is one-half the radius, so that the
broken line

gna = $na = na.

Now Cantortt divides Leonardo’s constructions into three classes. The
first class are stigmatized with the adjective falso. Of these nothing
need be said. The second class are not qualified by any adjective;
Cantor thinks that Leonardo considered them good enough, even if not
geometrically perfect. To the constructions of the third class the adverb
apunto, i.e. ‘exactly’, was attached. Cantor interprets this as meaning
that Leonardo looked upon them as mathematically perfect. But this
adjective is attached to the construction of the nonagon which I have
just given ; it is hard to believe that Leonardo really believed in perfec-
tion here. It seems to me far more likely that he tried the thing experi-
mentally and found the construction quite as accurate as he believed

1 Leonardo?, B. 13 v. i B.14r. § Cantor! {q.v.), vol. ii, p. 299,
I B.29r. 11 Ibid., p. 300.
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necessary. The same thing applies to his construction of the regular
heptagon.t He takes as a side of an inscribed heptagon the altitude of
one of the six equilateral triangles into which the inscribed hexagon is
divided by radii to the corners, or, more simply, half the side of the

e d
Fic. 30

inscribed equilateral triangle. This was not correct, nor was it original ;
it was called the Indian rule, and was given by Abul Wafa.}

§ 6. Centres of gravity

One other purely mathematical topic attracted Leonardo’s attention,
that of centres of gravity. For this there were many reasons. Leonardo
was an enthusiastic if not, perhaps, a very deep student of the works
of Archimedes. This writer published two documents bearing on the
equilibrium of plane figures, and there seems reason to believe that he
had other writings on similar subjects which are now lost. Moreover,
mechanical problems of this sort were naturally intriguing to Leonardo
anyway, and the centre of gravity is fundamental in statics. Lastly
Leonardo, as an artist, was interested in questions of balance; he
treated them in his work on painting.

I notice first that Leonardo, following Albert of Saxony, seems to
have done his best to bedevil the subject by introducing three different
sorts of centres of gravity. We find him writing: ‘In ogni figura pon-
derosa si trova essere tre cientri de quali luno e cientro della gravita
naturale, il 2° della gravitd accidentale, il 3° del magnitudo del

t Leonardo?, B. 28 r. 1 Cantor?, vol. ii, p. 83, and Woepcke (q.v.), p. 320.
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corpo.’f These three terms appear again in other places. Marcolongo
interprets cientro della gravité naturale to mean the centre of mass, while
magnitudo would give the centre if the body were homogeneous. What
accidentale means I do not know, but it seems to come in only when
extraneous weights are added, as in the case where the weight of a lever
has been added to those of other weights applied. Perhaps Leonardo
himself did not have the distinctions very clearly in mind.

Archimedes gave two excellent proofs of the theorem that the centre
of gravity of a homogeneous triangle is the point of concurrence of the
medians. Leonardo was cognizant of this fact: ‘Ogni triangola a il
cientro della sua gravita nella intersegatione delle linie che si partano
dalli angoli e terminando nella meta della opposita base.’}

Leonardo does not give a proof, but he would naturally assume that
a triangle would balance on a knife-edge that ran along a median. When
it comes to finding the centre of gravity of an isosceles trapezoid, he
gives an incorrect answer in Leonardo?, 3 r., but a perfectly correct one
in 17 v. First we connect the middle points of the parallel sides. Then
we divide into two triangles by means of a diagonal, and connect the
centres of gravity of the two. The centre of gravity sought is on each
of these lines. Leonardo pays some attention to the centre of gravity
of a pentagon, dividing it into triangles and trapezoids. At this point
Marcolongo seems to be confused, for he writes: ‘Riferendosi poi per il
resto alla 5 di Archimede.’§ Now I find in Leonardo?, 17 v, no reference
to Archimedes. The point is important, as bearing on the question of
whether Leonardo had ever seen Archimedes’ work on centres of gravity
of plane figures. If he had, why did he sometimes give incorrect answers
to questions which Archimedes answered correctly ?

Near the close of Leonardo?|| is an attempt to find the centre of gravity
of a semicircle. He divides the figure into eight equal sectors, which he
handles as if they were isosceles triangles. The result is fairly accurate,
but it shows that he had never heard of Pappus’ theorem about the
volume generated by rotating a closed plane figure about a line which
does not cut it.

I have so far pointed out the weak points in Leonardo’s studies in
centres of gravity. If there were nothing else we should do better to
omit the subject entirely. But there is something else, and it is, in fact,
his one great contribution to geometry: he determines the centre of
gravity of a tetrahedron. Here is his statement: ‘Il cientro di gravita
del corpo di 4 basi triangolari sia nella segatione de sui assi, e sara nella
4* parte della sua lunghezza.’{t

We are brought face to face with the question of how Leonardo

1 Leonardo*, 72 v. 1 ibid., 16 v. § Marcolongo, p. 196.
I 215 r. 11 Leonardo?, 193 v.
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discovered this. There is no trace of a proof, at least in any writing of
his that has come down to us. If Archimedes really wrote a now lost
treatise on centres of gravity it seems almost certain that it contained
this theorem, and carefully proved, but this is mere speculation. Some
commentators have become excited over the point, thus Libri:

‘Dans le volume F (f. 51) il détermine le centre de gravité comme cela est,
en effet, au quart de la hauteur de la droite qui joint le sommet au centre
de gravité de la base; la figure qui accompagne sa note prouve que Léonard
décomposait la pyramide en plans paralléles & la base comme on fait & pré-
sent.’f

This caused an outbreak on the part of Duhem:

‘Libri a écrit avec son inexactitude habituelle “La figure qui accompagne”
etc. En réalité les deux figures dessinées par Léonard ne portent aucune
trace de cette décomposition. Léonard a simplement tracé les médianes en
chacune des diverses bases du tétraédre, et les lignes qui joignent chaque
sommet au point de concours des médianes de la face opposée.’t

This explicit statement of Duhem’s is certainly correct, but even if
the figures do not show it, Leonardo may well have divided up his
tetrahedra into thin slices parallel to the base; I personally believe he
did so. Here are my reasons.

Leonardo makes great play of what he calls the ‘axis’ of any pyramid ;
it is the line joining the vertex to the centre of gravity of the base ; note
that I say ‘any pyramid’, not merely tetrahedron. Here is the way that
the tetrahedron theorem is phrased:

‘Il centro di gravita piramidale & nel quarto de suo assis di verso la base,
e se dividerd l'assis per 4 eguali e intersegherai due a due li assi di tale
piramide, tale intersegatione verra nel predetto quarto.’§

Or again:

‘Di ogni piramide tonda triangola, quadratica, o di quanti lati sia, il centro
di gravitd ¢ nella 4 parte della sua assis vicina alla base.’||

I should like to point out next that by proposition 8 of the first book
of Archimedes’ brochure on the equilibrium of plane figures, assuming
that Leonardo was familiar with it, the centre of gravity of a figure
composed of two parts is shown to be on the line joining the centres
of gravity of the individual parts, and the same will hold in three
dimensions, and when the number of parts is greater than three, pro-
vided their centres of gravity are all collinear. Furthermore, by Archi-
medes’ fifth postulate in the same work, the centres of gravity of similar
figures are similarly placed. It will follow from this that if we take any

+ Libri (g.v.), vol. iii, p. 41. 1 Duhem (q.v.), vol. ii, p. 75.

§ Marcolongo?, p. 200 (the reference given there to Leonardo is incorrect).
| Leonardo?, 218 v.
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number of thin sections of a pyramid parallel to the base, their centres
of gravity will all lie on a line through the vertex, and the centre of
gravity of the whole pyramid will lie on this line. If the pyramid be
triangular, if we draw two such ‘axes’ the figure will show at once they
divide one another in the ratio 1:3. The centre of gravity of a triangular
pyramid is thus one-quarter of the way up an axis. Hence, if we divide
any pyramid into triangular ones, its centre of gravity will be one-
quarter of the distanee up the axis, for the centres of gravity of all the
partial pyramids are in a plane one-quarter of the way up from the base.
It seems to me altogether likely that Leonardo reached his theorem in
this fashion, especially because Archimedes probably proceeded along
similar lines. We have learnt in recent times that although Archimedes
proved theorems in measurement by the most rigorous use of the
method of exhaustion, he frequently first discovered the facts by sub-
dividing into thin slices.T Why might not Leonardo have done just the
same thing, omitting the rigorous demonstration ? Our whole study of
Leonardo suggests that he was only faintly interested in rigorous mathe-
matical demonstration ; what he cared for was mathematical work that
gave the answer with all of the accuracy needed in any practical case.
The underlying philosophy of mathematics meant very little to him, the
concrete results meant a great deal.

1 Heath (q.v.), vol. ii, p. 2L,



CHAPTER V

ALBRECHT DURER
§ 1. Spirals and helices

It is a noteworthy fact in geometry that the study of figures in three
or more dimensions has lagged very far behind that of figures which are
in one plane. We have already mentioned on p. 12 that this was a source
of regret to Plato. There was really a deep underlying reason for this,
even if Plato were unaware of the fact. It can be shown that the
geometry of the plane is not only simpler than that of higher spaces,
but actually richer in interesting results. Such matters are not, how-
ever, our present concern ; historically the lag of solid geometry behind
plane geometry has persisted from Plato’s time to our own.

The idea has come at different times to different mathematicians to
make three-dimensional geometry more vivid by representing space
figures in the plane. We cannot represent all of three-space in one plane,
for obvious reasons, but suppose that we try to represent in two planes
simultaneously, and then superpose one plane on the other. A point in
three-space will then be represented by two points in the plane. Clearly
these must be connected in some definite way, for the points in three-
space depend on three independent parameters, while two points in the
plane depend on four. There are various methods of overcoming this
simple difficulty.

The most usual procedure is called ‘descriptive geometry’. The credit
for discovering it is generally ascribed to that prince of teachers,
Gaspard Monge. We project our space figure orthogonally and vertically
on a horizontal plane, and horizontally on a vertical plane, then we
rotate one plane about the line of intersection of the two until it coincides
with the other. A point in three dimensions is thus represented by two
points in the plane, one vertically above the other. In order to put this
in more concrete mathematical form, let us assume that we have in
space an English rectangular Cartesian system of axes. The plane of
the paper, the vertical plane, shall be the (Y, Z) plane, the positive
Y -axis going horizontally to the right. The positive X-axis shall come
directly towards the observer. This (X, Y) plane is then rotated
around the intersection downwards until the X-axis takes the —Z
direction. The point (X, ¥, Z) is thus represented by the pair of points
(Y, Z), (Y, —X), that is, if the line of intersection of the two planes is
taken as the Y-axis.

Let us give Monge all possible credit for discovering this simple and
useful process; the credit for actual discovery belongs to the great
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artist of Nuremberg whose name appears at the head of the chapter.
The first to point out this interesting fact seems to have been Amedeo
(q.v.). It must not be imagined that Diirer, in writing Diirer?, imagined
that he was composing a complete treatise on geometrical science. He
wished to give a sufficient number of definitions and first principles so
that his reader could perform easily certain drafting operations. His

! €
AE §

6 4
$

Fig, 31

definitions are decidedly sketchy. A point is something which has
neither length, breadth, nor thickness, a line is the path of a moving
point ; Relinquit post se vestigium.

Diirer was particularly interested in helical space curves. The projec-
tion of such a curve on a plane, perpendicular to the cylinder on which
it lies, is a spiral, so he begins with plane spirals.t The simplest, which
I reproduce in Fig. 31, is drawn with the aid of a compass alone. We
make a series of semicircles, whose diameters lie along a certain line,
the curves lying alternately above and below it, each sharing an end
with the preceding and with the following curve. We have here a con-
tinuous curve with a continuously turning tangent, but there is a
disquieting set of discontinuities in the curvature. Diirer must have
been worried by this, for he proceeded to show a variety of methods
of shortening the radius vector as the latter turns around. The whole
story is developed in Diirer’,{ but instead of starting with the simple
case of the circular helix, which comes later, he takes a decidedly
complicated curve. This does not lie on a cylinder, nor yet on a cone,
but makes one turn around a cylinder and one around a cone, which
stands on top of it. The azimuth 6 shall run from 0° to 120°, the height

shall be given by

]
= atan —.
2 = atan 5

+ Diirer?, p. 4 f. 1 pp. 13, 14.
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For the first turn, the horizontal projection on the (X, Y) plane is
r = b; for the second turn we have the much more complicated form

8

tan 30°— —_
r:b[ an tanM]‘

tan 30°—tan 15°
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The horizontal projection on the (Y, Z) plane is
y = rsiné.

Diirer undertakes something much simpler when he passes to the conic
sections. We show in Fig. 33 the projections of the ellipse. The projec-
tion on the (¥, Z) plane is a line segment bounded by two sloping lines.
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This is divided into twelve equal parts, and through the points of
division vertical lines are drawn and numbered. Horizontal lines also are
drawn through the points of division ; the segments determined on them
by the sloping lines will be the diameters of the circular sections which
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horizontal planes cut from the cone. We draw in the (X, ¥) plane a
series of circles with these diameters, and when that is folded down to
lie on the (Y, Z) plane we have a series of concentric circles just below
the figure in the (¥, Z) plane. Where each of these circles meets the
vertical line with the same number will be the folded-down projection
of a point of the ellipse. We have in this way a rather unshapely pro-
jection of the original curve. However, Diirer does not draw it in, but
rather constructs the curve itself. The original line segment has the
length of the major axis. This we set upright to the right of the figure,
and divide into twelve equal parts. Through each point of division we
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draw a double ordinate equal to the diameter of the corresponding
horizontal circle.
Before leaving this part of the subject I will describe an even more

m{ p

0 ST 2 )

9 [ 10
59 —]
sa S
24 e -

Fia. 34

complicated sort of twisting space-curve. This lies on three cylinders
of revolution, each tangent to the next along a vertical element. The
intersections with the (X, ¥) plane, the vertical projection of the curve,
are three tangent circles, which are treated as two spirals of the sort
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mentioned on p. 62. The middle circle is tangent to the two others at
points where ¥ = 0.

We start on the smallest circle at a point, not a point of contact,
where ¥ = 0, and divide into six equal parts numbered 1 to 6 ; we pass
then to the middle circle, continuing around in the same sense of rota-
tion and in a half-turn take twelve equal parts numbered 7 to 18.
Continuing always to turn in the same sense we pass to the largest circle
and make a complete circuit with equal parts numbered 19 to 42, then
around the other half of the middle circle with parts numbered 43 to 54,
and lastly on the smallest circle with parts numbered 55 to 60. The
space curve is wound in this order, so that it goes around each imaginary
cylinder once. To write its equations we suppose r,, ry, 73, the radii of
the three circles, the azimuth 8. We also choose an arbitrary angle «
which looks like 60° in the figure, and the height of the column 4. If,
then, the point numbered » have the azimuth 8, which will depend on
whether the semicircle is divided into six parts or twelve, we have

. ktan(no/60)

= 7r,8in#;
y : ’ tan o

I find it hard to see what led Diirer to choose this complicated curve.

§ 2. Problems in one plane

Diirer paid some attention to classical geometrical problems as well
as to plane curves of his own devising. Here is his construction for a
heart-shaped curve of the fourth order, drawn with a double ruler so
constructed that one part makes twice the angle with the horizontal
that the other does ab == ; be = p;
x = r.cos 0-+p cos 28; y = rsinf-psin 26;

224 y? = r2+-p?2rp cos b;
1.
platp) = [+ (1 =) |
He makes various attempts to inscribe regular polygons in a circle,
probably realizing that what he gives are only approximate construc-
tions. In Cantor!, vol. ii, eight pages are given to describing this part
of Diirer’s work to the exclusion of other parts of greater significance.
Thus we read:t ‘Albrecht Diirer ist der erste, welcher die Nahrungs-

konstruktionen mit vollem Bewusstsein ausgefithrt hat.” This seems
to me a difficult thesis to defend, especially in view of Leonardo’s

1 p. 465.
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work. To inscribe a regular heptagon Diirer takes one-half of a side
of an inscribed equilateral triangle, a classical construction we have

490 ¢

Fic. 36

mentioned already on p. 57. For the pentagon there are two attempts:
here is the better one. We have, given the side, to find the circum-
scribed circle. «, B, 8 are the centres of three equal circles. Find 2 and 5,
the points where the lines from ¢ and f to the middle point of the arc o8
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meet the circles about « and 8. He takes 5a, of, B2 as three sides of the
pentagon. This leads to the approximation

8in 27° = 2sin 60°sin 15°,
0-454 = (-448.

His approximation for the ratio of circumference to diameter is
7 = 100/32.

<
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Amusing construction appears at the beginning of his Book IV to
construct regular solids by paper folding. This is the usual procedure
taught to-day in our schools; so far as I can make out it is original with
Diirer.t I reproduce his picture for the icosahedron in Fig. 37. For
duplicating the cube he uses what is essentially that of Sporus, given

t Cantorl, vol. ii, p. 466.
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by Eutocius in his commentary on Archimedes and reproduced in
Valla (q.v.).
§ 3. Descriptive geometry

It is a strange fact that Diirer’s most original geometrical work does
not appear in Diirer but in Diirer?, which was composed subsequently.
This contains a fantastic number of measurements of human bodies,
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male and female, tall and short, stout and thin, straight and bent, with
projections seen from front, back, or sides. But Diirer is sometimes
anxious to give not two orthogonal projections but three, on three
mutually perpendicular planes, which is something Monge did not
undertake. We project on the (Y, Z), (X, ¥), and (X, Z) planes. The
(X, Y) plane is then swung down as before until it becomes the (—Z, Y)
plane, and the (Z, X) plane is rotated until it becomes the (Z, —Y)
plane. Diirer perceives that these three are not independent one of
another, but if we know two projections we can construct the third.
Corresponding points on the (Y, Z) and the swung-down (X, Y) plane
are on the same vertical lines, corresponding points on the (Y, Z) and
the swung (X, Z) planes are on the same horizontal lines. The coordinate
which was originally X becomes in one case —Z, and in the other — Y,
The relation between the two rotated planes is thus an interchange
of Y and Z, and this we perform by drawing a line, which Diirer
calls a ‘transferent’, which makes an angle of 45° with the horizontal.
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Horizontal lines of the rotated (X, Y) plane are brought to meet this,
then rotated through an angle of 90° to become the vertical lines of
the rotated (X, Z) plane. This appears very clearly in Figs. 38 and 39.

It is fair to say that Diirer does not seem to have seen anything of
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geometric interest in this, merely a way of passing from a side view of
a head to a front view. This suggested to him that we need not turn
through an angle of 90° but through any other angle we please. If we
turn the head about a vertical axis, the projection in the (X, ¥) plane
will be turned through the same angle. If we turn the figure in the
rotated (X, Y) plane through any convenient angle, then erect perpen-
diculars, they will meet the horizontal lines in the rotated (X, Z) plane
in points giving the projection on the (¥, Z) plane of the head turned
about a vertical axis. We see this in Fig. 40 and several times later.
One wonders whether Diirer was aware of the fact that any rotation is
the product of two reflections. This might lead to a further use of
transferents.



CHAPTER VI

JOHN NAPIER, BARON OF MERCHISTON
§ 1. Logarithms

WE must, 1 think, accept as a fact that most of the contributions to
mathematics made by men whom I class as great amateurs may be
beautiful or attractive or ingenious, but seldom indeed are they what
we may call practically useful. Perhaps Leonardo’s studies of war
machines, or better his work in hydraulics, perhaps Pietro’s studies of
perspective or Diirer’s invention of descriptive geometry, should not be
condemned as unpractical, but the general statement remains true. But
now we come to a glaring exception, in the work of the theologically
contentious Scot whose name appears above. The inventor of logarithms
will always be classed as one of those who have benefited mankind in
a directly practical way, even if we do not include his attacks on the
Church of Rome, or his invention of secret weapons of war as striking
benefactions.

John Napier himself failed to appreciate the full importance of his
invention of logarithms; he believed that his interpretation of the
Apocalypse of St. John was his greatest service to mankind. Perhaps
we should not judge him too hardly for this: a far greater than he,
Sir Isaac Newton, is said to have had an exactly similar illusion. But
Napier had a strong desire to do something to shorten the labour of
astronomical calculation and other applications of trigonometry, sub-
jects in which he was deeply interested. He was very much aware that
addition and subtraction are less laborious than multiplication and
division, especially where large numbers are involved, and he set himself
to the useful task of devising a method of avoiding the more laborious
techniques. Lord Moulton, in an interesting article on the invention of
logarithms which appears in Napier?, points out that Napier’s logarithms
were originally logarithms of sines, and the formula

sin A sin B = }{cos(4— B)—cos(4+ B)]

may have given him the first hint of substituting addition and subtrac-
tion for multiplication and division. I cannot feel that this point is well
taken. We shall see that he began with a comparison of arithmetical
and geometrical series, even though his first logarithms were merely
those of sines. But this relation between the two series was known
to Archimedest and appears in his Sand Reckoner. Napier received
much of his education on the continent of Europe, and is believed to
t Archimedes?, p. 229,
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have been familiar with the work of Stifel. This writer is perfectly
explicit:

‘Additio in Arithmeticis progressionibus respondet multiplicationi in
Geometricis.

‘Subtractio in Arithmeticis respondet in Geometricis divisioni.

‘ Multiplicatio simplex (id est, numeri in numerum) quae fit in Arithmeticis
respondet multiplicationi in se quae fit in Geometricis ... ut in superiore
exemplo 5.11.17 triplatio medii facit quantum additio omnium trium, sic
hie 4.6.9 multiplicatio cubica medii facit quantum tres inter se.

‘Divisio in Arithmeticis progressionibus respondet extractionibus radicum
in progressionibus Geometricis.’}

How could a man who had written this fail to discover logarithms
as exponents ?>-—especially when he wrote such arrays as

0123 4 5
124816 32

Smith says that he went further and considered negative powers.}
I have not been able to verify this in Stifel’s work, but there is an even
more striking array in Clavius, where we find

-7 —6—-5—-4-3-2-10123 4 5 6 7

1 1 1 1 1 1 1 ,

196 64 33 16 § 4 2 1248163264128
with the comment: ‘Nam et hic superioris progressionis numeri idem
faciunt additione et subtractione quod inferioris progressionis numeri
multiplicatione atque divisione.’§ I do not know whether Napier was
familiar with this. If he was, it is hard to see why he set up his logarithms
in the clumsy fashion which I shall describe presently; it is equally
surprising that neither of these writers anticipated his discovery.

Napier’s writings on logarithms are two in number. First we have
the Mirifici logarithmorum canonis descriptio (Edinburgh, 1614). A
translation was published by Wright in 1616. The Constructio canonis
logarithmorum was published in Edinburgh in 1619; a translation by
Macdonald appeared in the same city in 1889. In dealing with Napier’s
logarithms I shall generally follow this latter. Let us now see how he
goes to work.

Napier starts to set up, side by side, arithmetical and geometrical
series, pointing out that the construction of the former is usually much
the easier. If a geometrical series is a descending one, the process con-
sists in subtracting each time a certain proportion of what is left. If

1 Stifel (q.v.), pp. 35, 36. 1 See Napier?, p. 86,
§ Clavius {q.v.), vol. ii, algebraic part, p. 16.
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this last factor of proportionality is a negative power of 10, we take from
what we have what appears when we have moved the decimal point a
certain number of places to the right. Napier begins like this

10000000-0000000
1-0000000

9999999-0000000
-9999999

9999998-0000001
9999998

9999997-0000003}

At this point I must speak of Napier’s use of the decimal point and
of decimal fractions, each of which he manipulated with skill. Ball says
with regard to the fractions:

‘In Napier’s posthumous construction published in 1619 it is defined and
used systematically as an operative form, and as this work was written after
consultation with Briggs about 1615-16 and probably revised by the latter
before it was issued, I think it confirms the view that the invention was due
to Briggs and was communicated by him to Napier. At any rate it was not
employed as an operative form by Napier in 1617.’}

If Ball means by this that the notation for decimal fractions was
invented by Briggs he is certainly in error. The notation had been
passing through a long process of evolution, the decimal point was
used by Pellos in 1493. Here is a more recent view:

‘It is unquestionably true that the invention of logarithms had more to do
with the use of decimal fractions than any other influence. When Napier
published his tables in 1614 he made no explicit use of decimal fractions, the
sine and the logarithm being each a line of so many units. In the 1616
translation of the work, Edward Wright used the decimal point.’§

The most recent view that I have seen is that of Gandz, who says that
the systematic use of decimal fractions, and of integral and fractional
exponents, was first introduced in the middle of the fourteenth century
by Immanuel Bonfils.|| I have not been able to verify this statement,
but it seems to me unlikely, even if this writer first discovered these
useful notations, that their use was widely known in Napier’s time, or
that he copied from him.

I must now explain Napier’s actual line of reasoning. Instead of
following the natural arithmetical route suggested by the relation of
arithmetical and geometrical progressions, he introduced geometrical

t Napiert, p. 13. 1 Ball (g.v.), p. 204.
§ Smith (q.v.), vol. ii, pp. 244 and 338. || Gandz (q.v.), p. 273.
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considerations which seem to me to have complicated the matter
enormously. His sines, for I must repeat that it is only the logarithms
of sines with which he is concerned, are not supposed to decrease
arithmetically, but in a geometrical series. This led him to the idea
of rates. He imagines two moving points. The first goes at a uniform
velocity, say one unit of distance for each unit of time. The second,
starting at a distance » from its goal with the same velocity as the first,
goes at a decreasing speed, its velocity during each interval of time being
proportional to its distance from its ultimate goal at the beginning of
the interval. Its distance from that goal at the end of any time-interval
will be its distance at the beginning less 1/r of the same. The distances
from the goal are, then,

7, T(l—-lr)’ r(l—»%)z, . 7(1-—-})21. (1)

If thus the distances from the start in the first series are
0, 1, 2, .., v

we see in this way how the numbers in one series correspond to the
exponents in the other. Here is Napier’s own statement: ‘The logarithm
of a given sine is that number which has increased arithmetically with
the same velocity throughout as that with which radius began to
decrease geometrically and in the same time as radius has decreased
geometrically to the given sine.’

Before leaving these equations 1 will point out:

1\ 1\
if x:wbwﬂ aM.ﬂ:TP-J, (2)

r r

izp_ww.
X T

So that if the 2’s follow & geometrical series, the y’s will follow an
arithmetical series, and this is the heart of the whole matter. The
number 7 which he calls the ‘whole sine’ he takes, following Regio-
montanusj} r = 107, (3)

I must now quote the opinion of Lord Moulton that there were three
successive stages in the development of Napier’s thought. The first
stage was concerned with the construction of a decreasing geometric
series.

‘In the second stage he found himself repeatedly deducting from a number
say its ten millionth part, and the continued multiplication by a factor gave
way to taking away one and the same aliquot part of the number arrived at
by the preceding operation. This naturally led him to pass in his thought

t Napier?, p. 19. 1 Smith {q.v.), vol. ii, p. 242,
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from figures representing quantities arithmetically to the geometrical repre-
sentation of the quantity by a line, so that the repeated operation was

perfectly represented by repeatedly cutting off one and the same fraction of
the line operated on. . . .

‘The concentration of Napier’s thought on groups of operations identified
with equal lengths on the logarithmic line, prepared him for what 1 view as
the third and most interesting stage of the discovery. So long as the effect
of the group in the reduction it produced was the same, what mattered it
whether it was made out of a large number of small reductions, or a smaller
number of large ones? In both cases the principle that the logarithms of
proportional quantities are equidifferent would apply. It would only mean
that the determinate moments during which the point kept its velocity would
be shortened, and the changes of velocity would come more frequently. From
this he, no doubt, gradually passed into a stage of contemplating the changes
as taking place so frequently that it might be said that at each instant the
moving point possessed the exact velocity that it should have were it starting
to move for a determinate moment, i.e. its velocity is equal to its distance
from the end of the line.’t

This is certainly logical and the idea of velocity is there, but I am
not convinced that Napier had really the difficult idea of an instanta-
neous velocity which was so baffling to Newton and the other early
writers on the calculus. Napier himself says: ‘whence a geometrically
moving point approaching a fixed one has its velocities proportionate
to its distances from the fixed one’.3 The fact that the word ‘velocities’
appears in the plural suggests to me that he had in mind successive
steps rather than a continuous change.

It is fair to say that what is involved here is a very small point, of
theoretical interest only; the practical result is the same whether we
adopt one hypothesis or the other. We get from equation (2)

x = r(l—l)y,
’

log, x—log,r = ylog, (1 — :4),
log, x—log,7

1
log, (1 -;)

Developing the denominator in power series, and multiplying above
and below by —r,

logyz =y =

r(log,r—log,x)
1,1 )
1 +§;+372+

logyz =

(4)

If, on the other hand, we adopt the hypothesis of instantaneous velocity,
1 Napier?, pp. 11 and 14. 1 Napier!, p. 18.
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and give to the first point the velocity 1, then when the second point
is at a distance x from its goal, its velocity is —a/r. As the logarithm
is the distance covered by the first point, which is equal to the time it
has been moving, and this is the time the second point has moved, we

have .

logye = —r f de == r{log,r — log,x). (5)
r
This is the value usually given for Napier’s logarithm. The ratio of the
two, in view of (3), is
1 1
T,
+2.107+3.1014+
It is now time to show how Napier calculated his logarithms.t He
starts with

2 100
7, 71—1, 7”1-~1~ » e rl—-l— :rl—~1~~.
7 7 7 105

The last equation is only approximately correct, it amounts to writing

(1..1)” —1."
T T

The logarithms of these numbers are 0, 1, 2,..., 100.
‘We now write a second series:

1 12 10 1
AU DR U S | DHNL i § PR
" T( 105)’ T( 105)’ ’ T( 105) 7( 2000)

These also are a geometrical series, so that their logarithms from the
arithmetical series are 0, 100, 200,..., 5,000.
The third and final table contains sixty-nine columns; the first is

7, r(l ————1—), 7(1——_}—)2, e r(l—~i—)20 = r(1~—1~-).
20060 2000 2000 100
The logarithms of these numbers are
0, 5,000, 10,000, .., 100,000,

k
The logarithm of the number r(l»—ﬂ—lﬁ) will be £00,000; &k = 0, I,

2,..., 68. We have sixty-nine columns such as

1\k 1\k 1 1\% 1 )\2
—_—— e ———} {1 ———
7(1 100) ‘ 7(1 100) ( 2000)’ 7( 100) ( 2000) ‘
The logarithm of the (I+-1)th number here will be

£00,000--5,0001.
+ Napier?, pp. 13 ff.
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Napier was perfectly well aware that in practice the logarithms, like
the sines themselves, could only be given approximately. In such cases
it is well to give limits of approximation. The sum of two positive
numbers lies between the sum of their lower limits and that of their
upper limits. When we have the difference between two positive
numbers, which difference is supposed positive, that lies between the
lower limit for the minuend less the upper limit for the subtrahend, and
the upper limit for the minuend less the lower limit for the subtrahend.
But Napier has a much shrewder approximation for sines and their
logarithms. While the sines are decreasing in geometrical progression,
the increase of the logarithms depends on the number of times the sines
have decreased, not on the ratio of decrease.

Let the sine shrink from x to a. The logarithm increases at a steady
rate, but the sine shrinks at a decreasing rate. At the start the rate
of shrinkage of the sine is x/r times the rate of increase of the logarithm,
at the close it is a/r times the rate of increase. The decrease of the sine
is therefore less than it would have been had there been log a—log =
jumps each x/r times the rate of increase of the logarithm, i.e.

r—a << :—f {loga—logx).

Similarly a
z—a > - (log a—log ),

r 7
p (x—a) <loga—logx < a (x—a).

In practice Napier uses

logw = loga:tg(x~a). (6)

It is time to introduce to our scene Henry Briggs, Professor of
Geometry in Gresham College, London. The often quoted account is
from William Lily.

‘1 will acquaint you with a memorable story related to me by Mr. John
Marr, an excellent mathematician and geometrician whom I conceive you
remember, he was a servant to King James, and Charles the First.

‘At first when Lord Napier, or Lord Marchiston, made publick his Loga-
rithms, Mr. Briggs, then reader of the Astronomy lecture at Gresham College
in London was so surprized with admiration of them that he could have no
quietness in himself, until he had seen that noble person the Lord Marchiston,
whose only invention they were. He acquaints John Marr herewith, who
goes to Scotland before Mr. Briggs, purposely to be there when two so learned
persons should meet. Mr. Briggs appoints a certain day when to meet in
Edinburgh, but failing thereof, the Lord Napier was doubtful he would not
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come. It happened one day as John Marr and Lord Napier were speaking
of Mr. Briggs “Ah John”, saith Marchiston, “Mr. Briggs will not come.”
At the very instant one knocks at the gate. John Marr hastened down, and
it proved Mr. Briggs, to his great contentment. He brings Mr. Briggs to my
Lord’s chamber, where almost one quarter of an hour was spent each behold-
ing the other with admiration, before one spoke: at last Mr. Briggs began:
“My Lord, I have undertaken this long journey purposely to see your person
and to know by what engine of wit or ingenuity, you first came to think of
this most excellent help unto astronomy, viz. the Logarithms ? But my Lord,
being by you found out, I wonder nobody else ever found it before, when now,
being known, it appears so Easy.”” He was nobly entertained by Lord Napier,
and every summer after this, during Lord Napier’s being alive, this venerable
man, Mr. Briggs, went to Scotland to visit him.’{

A good deal has been written about the relative contributions of
Napier and Briggs to the method of logarithms. Perhaps the safest
plan is to follow what Briggs says himself:

‘That these logarithms differ from those which that illustrious man, the
Baron of Merchiston, published in his Canon Merificus, must not surprise you.
For I myself, when expounding their doctrine publicly in London to my
audience in Gresham College, remarked that it would be more convenient
that 0 be kept for the logarithm of the whole sine, (as in the Canon Mirificus)
but that the logarithm of the tenth part of the whole sine, that is to say
5 degrees, 44 minutes and 21 seconds should be 10,000,000,000. And con-
cerning that matter I wrote immediately to the author himself; and as soon
as the season of the year and the vacation of my public duties of instruction
permitted, T journeyed to Edinburgh, where being most hospitably received
by him, I lingered for a whole month. But as we talked over the change in
the logarithms he said that he had been for some time of the same opinion
and had wished to accomplish it ; he had, however, never published those he
had already prepared, until he could construct more convenient ones if his
affairs and his health would permit of it. But he was of the opinion the
change should be effected in this manner, that 0 should be the logarithm
of unity, and 10,000,000,000 that of the whole sine, which I could not but
admit was by far the most convenient.’}

Let us look into this more closely, using modern notation. If we take
the usual abbreviated form of definition for Napier’s logarithms we have
from (5) logyz = 1[log,r—log,x]. (7)
Briggs substitutes 101 for r, giving Napier’s form altered by Briggs:

logyz = 10'9log, 10*°—log, x].
Here we should have  logy 10® = 10log, 10.
Briggs would prefer that this should be 10%, which involves dividing

1 Lily (q.v.), p. 235. 1 Gibson in Napier?, p. 126.
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by log, 10, and this again amounts to taking 10 as a basis for logarithms,
so that in Briggs’s scheme

logpa = 101910 —log,,x]. (7

Here again equal ratios will give equal logarithmic differences, the vital
matter. Napier wished to retain this advantage, but from the equation

2y _ Y
x 1
we get logxy = logx + logy — log 1.

This would be much better if log1 = 0, the change he proposes. This
will involve subtracting a constant from all logarithms, giving the

final form logyz = 10°log,, .

The factor 10° is unimportant.

It seems to me, to conclude, that Napier deserves the whole credit.
He first saw the advantage of logarithms, put through a tremendous
amount of work in calculating them by a highly ingenious method, for
the development in power series was then scarcely known, thought out
Briggs’s improvement independently, and made a further improvement
of his own. Our logarithm of to-day is essentially Napier’s logarithm.
What an accomplishment for a theologically inclined nobleman !

§ 2. Trigonometry

The admirable purpose of Napier’s trigonometric work is to show the
application of logarithms to trigonometric computation. At the outset
the reader should be warned that Napier uses certain words in a sense
that is different from what is current to-day. His logarithm table was for
sines, so that when he speaks of the logarithm of an angle he means the
logarithm of its sine, while the logarithm of a tangent is sometimes
called ‘differentialis’. His work in plane trigonometry begins with

‘In rectangulo Logarithmus cruris est aequalis aggregato ex Logarithmo
anguli oppositi+ Logarithmo hypoteneusi

log @ == logsin 4 +log c.
‘In rectangulo Logarithmus cuiusvis cruris est aequalis aggregato ex
differentiali oppositi anguli+Logarithmus reliqui cruris
log @ = logtan 4-+log 6.’

When he comes to oblique triangles he uses the law of sines whenever
possible. When he has two sides and the included angle, or three sides
given, he does not use the law of cosines, but proceeds otherwise. Here
is his fifth proposition:

‘In obliquangulis Logarithmus aggregati crurum, subductus a summa facto
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ex Logarithmo differentiae crurum, aequatur differentiali semi-aggregati
suorum oppositorum angulorum relinquit differentiale semi-differentiae
eorum.’}

This means:

log(a—b)—log(a-+b) = logtan —logtan———

A—B A+ B
2 2

Which is rather better in the non-logarithmic form
a—b  tan}(4—B)
at+b  tani(4d+B)

This we call the ‘law of tangents’; it stems from Vieta.}

Napier finds a wider scope for his methods when he passes to spherical
trigonometry. The right and quadrantal triangles are treated together.
He makes use of an ingenious device which is not, however, strictly new,
as it was developed by Tarporley. This article I have not seen, but
there is an adequate account in De Morgan (q.v.). The trick here is to
take as the five ‘circular parts’ of a right spherical triangle the two legs
and the complements of the hypotenuse and the two angles, other than
the right. We find in this way a curious figure which was, apparently,
in Tarporley’s work. Begin with a right spherical triangle, and draw
two arcs each of which is perpendicular to a leg and to the hypotenuse.§
We have then a spherical pentagon and five right spherical triangles,
each formed by a side of the pentagon, and two adjacent sides produced.
It then turns out, strangely enough, that the same five values give the
five circular parts of each triangle, they are merely arranged in different
orders.

If we take three parts of a right spherical triangle, two must be next
to one another. Then either the third is next to one of these, so that
we have a part and the two next, or it is opposite to both, and we have
a part and its two opposites. We thus get, in rather strange form, this
fundamental rule of Napier’s: ‘Logarithmus intermediae aequatur
differentialibus circumpositorum extremorum, seu Antilogarithmi
oppositorum extremorum.’] This means: ‘The logarithm of the sine of
any part is equal to the sum of the logarithms of the tangents of the
adjacent parts, or the sum of the logarithms of the cosines of the
opposite parts.” I personally when a schoolboy learnt this in evenshorter
form. You were supposed to remember that you were dealing with the
sine of a part, then you said: ‘Tan ad, cos op.” The difficulty in practice
consists in remembering in which case you take the given values and
in which the complements.

When it comes to dealing with oblique spherical triangles, Napier

Tt Napier?, pp. 25, 26. 1 Vieta (q.v.), p. 402.
§ Napier?, p. 32. Il Napiexr®, p. 33.
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shows considerable ingenuity in ‘massaging’ known formulae. I will
not give many details here, merely referring to von Braunmiihl{ or
Tropfke.]

There is further trigonometric work in Napier!. The avowed object
is to solve the oblique triangle without dividing it into right triangles.
He is much impressed with the virtues of halved versed sines. For
instance we have:

‘Given two sides and the contained angle, to find the third side.

‘From the half versed sine of the sum of the sides, subtract the half versed
sine of their difference ; multiply the remainder by the half versed sine of the
contained angle, divide the product by the radius, to this add the half versed
sine of the difference of the sides, and you will have the half versed sine of the
required base.’§

If we take the radius as unity:
[l—cos(a—{—b) _ l—cos(a-—b)] [1~cos C’] n l—cos(a—b) 1—cosc

2 2 2 2 2

This is rather clumsy, even if we have a table of haversines, as it
involves both multiplication and addition. Napier’s most striking result
comes a few pages later:

“‘Of the five parts of a spherical triangle, given the three intermediate, to find
the two extremes by a single operation. Or otherwise, given the base and adjacent
angles, to find the two sides.

‘Of the angles at the base write down the sum, half-sum, difference and
half-difference along with their logarithms.

¢ Add together the logarithm of the half-sum, the logarithm of the difference
and the logarithm of the tangent of half the base ; subtract the logarithm of the
sum and the logarithm of the half-difference, and you will have the first found.

‘Then add the logarithm of the half-difference and the logarithm of the
tangent of half the base, subtract the logarithm of the half-sum, and you
will have the second found. _

‘Look for the first and second found among the logarithms of tangents,
since they are such, then add their arcs and you will have the greater side;
again subtract the less arc from the greater, and you will have the less side.’}|

This means, in our notation:

A+ B
D)

log sin +log sin (4 — B)-+log tan % —logsin (4 4- B)—log sirfA —

atb

=1 Z-
og tan? 3

. A—
logsin

—{—logtan—--—logtané:g—‘g_ azb

t q.v., vol.ii, pp. 14-16.  } g.v,,vol.v. § Napierl, p. 68. | Ibid., p. 63.
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Removing the logarithms:
sin 3(4 4 B)sin(4 — B)tan }¢

sin(A4 -+ B)sin $(4— B)
Writing sin(4 + B) and sin(4 — B) in terms of the half-angles:
cos }(4—B)

= tan }(a-+b).

e 7 le — 1

cos%(A+B)tan70 tan i(a+-b). (8)
In the same way we get from his ‘second part’:

sin §(4 - B) . i

Snl(ATB) tanic = tand(a—b). (9)

These are known as Napier’s ‘analogies’. He doubtless found them in
hunting for something to correspond to Vieta’s Law of tangents, given
on p. 80. Analogous to these are the formulae found by Briggs:}

sin $(a—b) - LA DY
mtan%C = tan {4 —B); -
cos $(a—b)

—tn L = .
cos J(aLh) aniC = tan {4 B)

Napier’s trigonometric work is directed towards a useful end, and the
result is useful. I agree with the laudatory opinion of von Braunmiihl:

‘Uberblicken wir Neper’s Leistungen im Gebiete der Trigonometrie, so
miissen wir zugestehen, dass durch seine Erfindung der Logarithmen diese
Wissenschaft in ganze neue Bahnen geleitet wurde, und dass von ihm selbst
schon die Richtung angegeben worden ist, nach welcher die Umgestaltung der
bisher in Gebrauch befindlichen Sitze stattzufinden hatte, und das neue
Instrument in fruchtbringender Weise zu verwerthen. Aber auch sein zweites
Verdienst ist nicht gering anzuschlagen, dass es ihm zum erstenmal gegliickt
ist, die verwirrende der Sitze, die bisher zur Behandlung der rechtwinkeligen
Kugeldreiecke dienten, durch eine klar und kurzgefasste Regel zu ersetzen.’}

§ 3. Napier’s rods

Napier’s practical spirit, when questions of a theoretical sort did not
come in, led him continually to look for labour-saving devices which
would simplify calculation. Yet he himself can scarcely have appre-
ciated the value of his logarithms, otherwise he would not have troubled
himself, just about the same time, to develop certain other devices
which were highly esteemed at the period, but which appear to us to-
day as rather trivial. One of these was the use of strips of metal or
bone to aid in multiplication and division. The description is found in
Napiert.§

1 Napier?, p. 80. 1 von Braunmuhl (q.v.), 1T, 17. § pp. 6 ff.
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Let us imagine a long strip, marked at the top with one of the first
nine integers, and in the squares below the product of this integer and
each of the first nine. When the product involves two integers, these
are separated by a diagonal line. Suppose, for instance, we wish to
multiply 257 by 36. We place next to one another the rods for 2, 5,
and 7, and carry through the multiplication, first by 6 and then by 3.
5 7
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Napier begins on the line 6. If we multiply into 7 we get 42. Write
down the 2, but carry the 4 diagonally downwards adding it to the 0;
carry the 3 diagonally downwards and add to the 2, getting 5; write
down the 1, thus getting 1542.

We multiply by 3 in exactly the same way, finally putting
1542
771
9252
Division is managed in somewhat the same way but is naturally more
complicated. Suppose we wish to divide 354,526 by 257. We use the

same rods for finding the partial products, guessing each time at the
next figure of the quotient. Napier’s work looks like this:

243
204 123
97 257
354526 1379
2567
771
1799
2313
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I should like to point out that this is essentially the usual process of
long division except that partial products are written below and
remainders above.

It is remarkable that Napier devised more complicated rods for
extracting square and even cube roots. For finding a square root we
have what he calls a ‘lamina’, giving in three columns the numbers
22, 2z, x. Here is how he finds the square root of 117716237694 :

_— 90
11,7211 54895
a4 V4 0
442 67
lg/é/s 221

gﬁl/j/‘* 11.77.16.23.76.94
5/0A 3 4 3 0 9 8
31

4_6{2/6 9

jl/j/} 252040

a 204¢

L 41/6)/8 617481
8/1//

11,/81,79 5489504

Here is the modus operandi. The nearest root to 11 is 3, whose square
is 9, written below ; the difference is 2, written above. Take the rod
marked 6. Find by the aid of it and the lamina the integer whose
square plus its double comes nearest to 277 when multiplied by 30.
This integer is 4, and the square and double add to 256, leaving a
remainder 21, both set down in the proper places. We double 4, getting
8, take the rods for 6 and 8 and the lamina, and find the integer whose
square and double multiplied by 340 come nearest to 2116. This integer
is 3; we keep on in this way to the end. There is a similar but more
elaborate system for cube roots.

Napier’s inventive genius does not stop here. He describes a box,
which he calls a ‘Pyxis’, in Napiert.f This does not seem to have
attained much popularity. There is, indeed, not much to be said in
favour of his Rhabdiologia as a contribution to mathematical theory:
we can but wonder at the great esteem in which it was held by his
contemporaries.

§ 4. De arte logistica

This is Napier’s most elaborate mathematical work. It was put
together from various fragments, some incomplete, which were left

+ Napier?, p. 27. i p. 98.
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behind at his death. It was published in handsome style by Mark
Napier, who remarks:}

‘It would appear however, that his Algebra, as far as orderly set down, is
an earlier production than either his Arithmetic or the fragment of Geometri-
cal Logistic. . . . Napier adopts in his Algebra the nomination and notation
which had been introduced before his time, whereas in the Arithmetic and
Geometrical Logistic he adopts and expands a peculiar numeration of his
own, applicable to the Arithmetic of Surds whereby he proposes to supersede
that with which he operates in his treatise on Algebra. There can be little
doubt, therefore, that his Algebra is a work of still earlier date than the
other books, and these, as has been seen here, were prior in date to his con-
ception of Logarithms which was some time before 1594.’

But, after all, what is logistic ? In modern times it means the science
of moving military forces, but Napier says: ‘Logistica est ars bene
computandi’, the art of computing well. He goes ahead and defines the
four fundamental operations, division being called partitio; it can be
either perfect or imperfect. He early comes to the extraction of roots,
and here, in the first part of the Ars Logistica, we find an ingenious
notation of his own devising. We set the nine first integers in cells like
this:

NN
o] Ot o
ol o) w

12|

| 616

| 8]
The boundaries of the cells are the radical signs for the roots whose
indices are the numbers in the cells. Thus the square root of A is
written |14, while its cube root is L 4. This number cannot always be
found, i.e. it is not always an integer. In chapter vi of Book I of
Napier? we first come to grips with negative numbers, ‘De quantitatibus
abundantis et defectibus’. The signs + and — are introduced, and the
rules for calculating with them rightly given. There is nothing essen-
tially new here, negative numbers were in current use. He notes that
an even root of an abundant number may be either abundant or
defective. Book I ends with fractions. In Book II we come to closer
grips with the actual labour of computation, first with integers. The
first real difficulty comes with division. This is done by the old ‘scratch
and galley method’, still in use in his time,} although, as we saw on
p. 83, he was familiar with what is essentially our present practice. He
then returns to radicals which exercise him greatly. The difference
between the same two powers of two integers is called a supplement ;
thus 44 is a supplement, as it is the difference between the squares of
10 and 12. He undertakes to prepare a table of supplements, and this

1 Napier?, 1. 1 Smith {(q.v.), vol. ii, pp. 136 ff.
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amounts to writing the differences between o™ and (a--b)*. This appears
in the form of a triangular array:

4 6 4 1
5 10 10 5 1
6 15 20 15 6 1
7 21 3 35 21 7 1

This is usually called Pascal’s triangle, after the writer whose use of
it we shall discuss in the next chapter. We see at once that the numbers
in any horizontal row give the coefficients in the binomial expansion.
But we saw on p. 20 that there is reason to believe that Omar Khayyam
may have known of this in the eleventh century: the Arabs knew it in
the twelfth and the Chinese not only knew the law, but expressed it in
triangular form in the fourteenth.t Napier probably knew nothing of
all these people, but he received a good part of his education on the
Continent, and may well have been familiar with the work of Stifel.
Now Stifel shows a slightly modified form of this triangle,} he knew the
expansion up to (a-+5)77. Napier’s placing this figure in his work has
not the historical significance that some commentators seem to find.
In approximating to a square root he uses what is essentially the
inequality b b

2

oﬂ—ﬁ:i < JJ(a?+b) <a+~2-&.

This, however, is an old Arabic rule known to Leonardo of Pisa and

Tartaglia.§ Napier also gives an approximation to a cube root which

is erroneous.|| There follows a discussion of fractions ending with ‘De

fractionibus physicis’. These are what we call ‘denominate numbers’;
the discussion is very short.

The third book deals with geometrical logistics: ‘Geometrica ergo
dicitur logistica quantitatum concretarum per numeros concretos.
Concretus dicitur omnis numerus quatenus quantitatem concretam et
continuam referat.” This means, in modern phrase, that he is going to
discuss the continuum ; continuous quantities are those which can be
represented by the lengths of line segments. He reintroduces his nota-
tion for roots, and is especially interested in monomials. ‘Unde sequitur
quod uninomium vel est numerus unicus simplex, vel unici numeri
simplex radix aliqua.’tt He gives as examples L110, L12, J26. He
then points out that roots can be positive or negative or both, as the

1 Tropfke (q.v.), 2nd ed., vol. vi, p. 35, 1 Stifel (q.v.), p. 44,

§ Cajori? p. 150. There oceurs a mistake of sign in this.
|| Stegell in Napier?, p. 152. t+ Napier®, p. 85.
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even roots of positive numbers; as for the even roots of negative
numbers, ‘Quaedam tandem nec sunt abundantia nec defectiva, quae
nugacia vocamus. Hujus arcani magni algebraici fundamentum superius
Lib. 1 cap. 6 jecimus (quod quamvis a nemine quod sciam revelatum sit)
quantum tamen emolumenti adfert huic arti, et caeteris mathematicis,
postea patebit.’t

This shows clearly that he believes he is revealing a great secret, and
that no one before him had considered anything like his nugacia. I see
no reason to doubt his good faith in the matter, and the same view has
been expressed by others, as Mark Napier:

‘There can be no doubt that by nugacia Napier means the impossible
quantity, and that he was the very first to conceive the idea and propose its
use in the arithmetic of surds and in the theory of equations. . . . The great
emolument which Napier expected to bestow on Mathematics by this ghost
of a quantity can only be understood by profound mathematicians.’}

The same erroneous view is held by Stegel: ‘But however this may be,
there is no doubt that Napier’s reference to imaginaries is the first on
record.’§ I am afraid that there is a great deal of doubt. The idea was
certainly present to the mind of Cardan: ‘Secundum genus positionis
falsae, est per radicem 7. Et dabo exemplum, si quis discat, divide 10
in duas partes, ex quarum unius in reliquam ducto producatur 30
aut 40.|

He puts through the calculation and finds 5pR, m15, 5mR, m15, that
is t0 say, 54-4/—15, 5—4/—15.

Let us now inquire as to what Napier makes of his great secret. We
read, p. 86 of Napier’, ‘In nugacibus sumponere cavendum est ne
copula munitionis interponendum praeponitur’. This means that we
must not confuse LI-—9 with —L19; beyond this he has naught to say.

The last part in position, but the earliest in composition, of the Ars
Logistica deals with Algebra: ‘Algebra scientia est de questionibus
quanti et quoti solvendi tractans.” This means that Algebra is the
science of finding numbers from facts known about them. His first
worry is about monomial surds. Two surds are said to be commensur-
able if they are of the same order and if the quotient of their radicands
is a perfect power of that order. He gives as an example L112, 13, The
familiar rules follow, but sometimes he falls into error: ‘Ut sit 10—113
dividendum per 64-LI12 quod non aliter fit quam interlineali divisione

10—Li3
6112 "
In a small marginal note is written: ‘Haec sunt emendanda, nam per

1 Ibid., p. 85. 1 Ibid., p. Ixxxii. § Napier?, p. 155.
|| Cardan {(q.v.}, t. iv, p. 287.
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6112 fieri potest divisio ut. per omne binomium ex fine praecedentis
capitis.” The note is not perfectly correct either, for there is no hint in
the preceding chapter how we should have to rationalize the denomina-
tor if it involved a cube root instead of a square root.}

Book II of the Algebra is longer, and harder to understand. He uses
certain characters rather indiscriminately for his unknowns. His
favourite symbol is R,. I am not sure whether this stands for Res or
Radix, as in Cardan. The coefficient is sometimes prefixed. He indicates
powers by certain symbols preceded by +. These symbols are called
Numeri ordinis, and he knows that when we multiply two powers we
should add the symbols.] In other words, he was in possession of the
essentials of exponential notation, but his symbolism was sadly ineffi-
cient, and the same facts had been previously discovered by others.§

I cannot, on the whole, bestow high praise on the Ars Logistica, either
as a contribution to pure mathematics or as an aid to calculation. Bub
I do not wish to close my appreciation of this great man with a dis-
paraging note, for a great man he certainly was, even though the state-
ment that he was the greatest son of Scotland may be excessive. No
man has done more to lighten the labours of those of his fellow men
who were condemned to the work of calculation. By his patience and
ingenuity in using the decimal point, in extending the use of decimal
fractions, and above all in inventing, perfecting, and calculating loga-
rithms, he rendered a service of incalculable value to all succeeding
generations.

+ Napier?, p. 106. 1 Ibid., p. 127.
§ Cf. Smith in Napier?, pp. 81 ff.,, and Clavius (q.v.), p. 16.



CHAPTER VII

BLAISE PASCAL
§ 1. Pascal’s theorem

Every writer who deals extensively with the history of mathematics
pays considerable attention to the famous theologian, philosopher, and
master of French style whose name appears above. He was born in
1623, and died in 1662. His originality and ability were remarkable;
had he confined his attention to mathematics he might have enriched
the subject with many remarkable discoveries. But after his early youth
he devoted most of his small measure of strength to theological ques-
tions, and his contributions to philosophical thought, and to fixing
French prose outweigh in importance what he has done for pure science.
He is not out of place when classed as a great amateur.

There are various romantic legends concerning Pascal’s life which we
need only mention briefly. His father, Etienne Pascal, was a man of
good mathematical ability. He was much worried by his son’s delicate
constitution and devotion to his books, so he prohibited the boy, not
only from studying geometry, but even from thinking about it, merely
telling him it was the science of drawing figures correctly. The prohibi-
tion was enough to set young Blaise to thinking intently on the subject,
and the story has it that by himself he worked out many of the theorems
of elementary geometry, including that which gives the sum of the
angles of a triangle. When this precocity was discovered, the prohibition
was removed, and the young Pascal made surprising progress with his
studies. At the age of fourteen he attended scientific meetings with such
men as Mydorge, Mersenne, Roberval, and others; at sixteen he com-
posed a work on the conic sections which must have been altogether
remarkable. We have the authority of Mersenne for the statement that
from his theorem of the hexagon, or Hexagramma mysticum, he drew
over four hundred corollaries. We are, I think, safe in classing this as
a fable, but it must have been a remarkable piece of work, and it is
completely lost! All that we have now is a short fragment, composed
in 1640, called ‘Essai sur les coniques’. In this we find the theorem,
‘dont U'inventeur est M. Desargues Lyonnois, un des grands esprits de
ce temps’, that a transversal will meet a conic, and the pairs of opposite
sides of an inscribed quadrangle, in pairs of points of an involution.
The mere fact that Pascal appreciated the work of that strange man,

1 Kor a detailed list of Pascal’s mathematical writings see Marie (q.v.), vol. Iv, p. 185 f.
{ Cantor!, vol. ii, pp. 621 ff.
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Girard Desargues, is a proof of his capacity. We find here also his
hexagramma mysticum, or inscribed hexagon, together with:

Pascal’s Theorem] If the vertices of a hexagon lie on a conic, the inter-
sections of the pairs of opposite sides lie on a straight line.

The converse of this theorem is also true, and the theorem holds even
when the conic is degenerate.

How did Pascal prove his theorem? We have only one hint. He
stated it originally only in the case of a circle, and then remarked that
as it is projectively invariant it holds for the general conic which, by
definition, is the projection of a circle. It is therefore probable that he
proved it for the circle, using some property, like the equality of all
angles inscribed in the same circular are, which is peculiar to that curve.
Proofs based on this have subsequently been developed ; they are among
the most difficult proofs of the theorem. We can, without difficulty,
reconstruct proofs that would have been quite accessible to Pascal.
That given by Brianchon (q.v.) is very much in the manner of Desargues,
whom Pascal admired so much, and the latter might well have found it,
but then he would not have stated it first for the case of a circle. It is
to be noted also that he states his theorem in very clumsy shape, show-
ing that a pair of opposite sides of an inscribed hexagon and the line
connecting the intersections of the other two pairs of opposite sides
‘sont de mesme ordre’. Now he begins the present essay with the
words ‘Quand plusieurs lignes droictes concourent au mesme point ou
sont toutes paralléles entre elles, ces lignes sont dictes de mesme ordre
ou de mesme ordonnance’, a clumsy wording taken from Desargues.f

§ 2. The logic of mathematics
In the present work I shall confine myself strictly to the study of

Pascal’s work as a pure mathematician, omitting all reference to his
study of the pressure of the air, even of his calculating machine. I may
not, however, omit all reference to his discussion of the philosophy of
mathematics, which is included in his Pensées, in an essay ‘De la
démonstration géométrique’.; Here he undertakes a careful analysis of
the essential quality of mathematical reasoning. Pascal was nothing if
not a casuist: argument was meat and drink to him ; he was interested
in the principles of demonstration, and he found them in geometry.
The basis of accurate discussion must be accurate definition. He begins
by refuting those who say that definition is unnecessary, and those who
claim that everything must be defined. It is perfectly clear that in any
definition the meaning of some terms must be assumed as known at the
outset. In modern abstract mathematics we cut the number of these
down as low as possible, but we assume that we know what we mean

1 Pascal {q.v.), vol. i, p. 251. 1 Ibid., vol. ix, pp. 271 ff.
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by such purely logical terms as ‘exist’, ‘one’, ‘none’, ‘belong to’, etc.
Pascal is more liberal. He says:t ‘Elle ne définit aucune de ces choses
espace, temps, mouvement, nombre, égalité ni les semblables qui sont
en grand nombre, par-ce-que ces termes la désignent si naturellement
les choses qu’elles signifient, 4 ceux qui entendent la langue, que I’éclair-
cissement qu’on voudrait en faire apporterait plus d’obscurité que
d’instruction.” He gives as an example the absurdity of one who would
define light as a luminous movement of shining bodies. He takes a
pot-shot at the classical difficulty of the infinite divisibility of space.
He is especially caustic at the expense of one who maintains that space
can be divided into two parts which are themselves indivisible. He is
emotionally much moved by the thought of the lnﬁmtely large and the
infinitely small.

The second part of the essay is called ‘De 1’art de persuader’. Here
we get rules for definitions, axioms, and demonstrations. He finally gets
down to this:}

‘Reégles pour les définitions.
‘I. N’entreprendre de définir aucune des choses tellement connues d’elles-
mesmes, qu’on n’ait point de termes plus clairs pour les expliquer.
‘I1I. N’omettre aucun des termes un peu obscurs ou équivoques sans
définition.
‘III. N’employer dans la définition des termes que des mots parfaitement
connus ou déja expliquéz.

‘Régles pour les axiomes.
‘1. N’omettre aucun des principes nécessaires sans avoir demandé si on
Paccorde, quelque clair et évident qu’il puisse étre.
‘II. Ne demander en axiomes que des choses parfaitement évidentes
d’elles-mesmes.

‘Régles pour les démonstrations.
‘I. N’entreprendre de démontrer aucune des choses qui sont tellement
évidentes d’elles-mesmes, qu’on n’ait rien de plus clair pour les prouver.
‘II. Prouver toutes les propositions un peu obscures, et n’employer & leur
preuve que des axiomes trés évidens, ou des propositions déja accordées ou
demonstrées.

‘III. Substituer toujours mentalement les définitions & la place des définis,

pour ne pas se tromper par I'équivoque des termes que les définitions ont
restreints.’

This is not exactly the way that we should phrase things to-day.
It took nearly three hundred years of mathematical thought to reach
the modern abstract logical point of view. We do not begin our geometry
by defining points, nor do we omit all definitions because it is perfectly
clear what they are. We do not much care what they are, provided we

1 p. 247. + Pascal (q.v.), vol. ix, pp. 271 ff.
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may make certain purely logical assumptions about them. We are little
interested in the truth of axioms, but much in their independence.
Pascal was a long way from Hilbert and Russell. But I accept gladly
Cantor’s judgement: ‘Der erste moderne Versuch einer Philosophie der
Mathematik’.f The Pensées did not appear till 1669, but were probably
written before Arnauld’s Logique de Port-Royal, which contains many
similar ideas, as we shall see in the next chapter, and which appeared
in 1662. Doubtless the two writers shared their thoughts in these as in
other matters.

§ 3. The arithmetical triangle

All who bave written about Pascal as a mathematician have written
.about the arithmetical triangle, to which his name is usually attached.
We saw on p. 86 that not only was this known to Stifel, but much earlier
to theé Chinese, but Pascal was so much interested in it that it is well to
discuss it in connexion with his work. In Fig. 41 we reproduce Pascal’s
own drawing. We can describe it very succinctly as follows. Let us
imagine that the positive X-axis has been run through the centres of the
top row of unit squares, and the negative Y-axis through the centres
of the left columns of unit squares. With this arrangement, at the point
whose coordinates are {r, r—n), n 2= r, we write down

(Z)EWLLW )

Pascal does not describe it in this way. In the first ‘rang paralléle’ we
write a series of units, in the second the natural series, whose differences
are the members of the first series. In the third row we have the so-called
‘triangular series’ whose differences are the second series, in the fourth
the ‘pyramidal series’ whose differences are the triangular one, and so
on. These so-called ‘figurate numbers’ go back to the Greeks, as well
as their names; they appear in the same connexion in Stifel.{ The ‘rangs
perpendiculaires’ will be built on the same principle. The number in
any square is the sum of the numbers immediately above, and imme-
diately to the left, which gives

b= G+ @

Pascal finds a number of other identities as

(7:)+(£1) = (f)+(f:11) =2 (3)

The most striking feature of the triangle is that the numbers in any
north-easterly running diagonal are binomial coefficients. Pascal him-
1 Cantorl, vol. ii, p. 682, 1 Euelid (q.v.), vol. ii, pp. 289 ff.
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self points this out.t I do not think that we should for this reason set
him down as the discoverer of the binomial theorem. I mentioned on
p- 20 that there is good reason to believe that the credit should go to
Omar Khayyam, and as Stifel used these same numbers to extract roots
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of varying orders, it seems likely that he connected them with the
binomial theorem.] Pascal calls the different rows ‘ordres numériques’,
and as I said on the last page develops many identities from them. More
interesting is his application to the theory of combinations. The number

of groups of » objects taken from n objects is (r) Here is Pascal’s
statement:

‘Le nombre de quelque cellule que ce soit égale la multitude des com-
binaisons d’un nombre moindre de l'unité que l'exposant de son rang
paralléle dans un nombre moins de 'unité que 'exposant de sa base.'§

1 Pascal (q.v.), vol. iii, p. 499.

1 Stifel (q.v.), sheet 44; also Cantor!, vol. ii, p. 234,
§ Pascal (q.v.), vol. iii, p. 476.
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The confusing phrase moins de I'unité is explained by the simplification
I have made in the notation by a slight sliding of the axes. In any case
the formula for the number of combinations of n things taken r at a
time had been found long before.

Much more original is the application of the arithmetical triangle to
the calculus of probability. This branch of mathematics was coming
rapidly to the fore in Pascal’s time. He exchanged letters on the subject
with Fermat, the Chevalier de Méré, and others. The particular applica-
tion of the arithmetical triangle is to the problem of how the stakes
should be divided when two players, of supposed equal skill, are forced
to break off a game before it is finished. This problem was brought to
Pascal by Chevalier de Méré, who confessed that he could not solve it
in the general case. Pascal first takes up some special cases. Suppose
that the first is within one point of winning, while the second needs two
points. The first has a half-chance of winning the first turn, in which
case he has won the whole, and a half-chance of losing the first turn,
in which case they are equally placed. The chance of the first is then
dhi=1

Suppose secondly that the first has one point only needed to win, the
second three. If the first wins the first point he is finished, if he loses
the situation of the preceding problem has arisen; we have then
bEd =3

Or suppose the first needs two to win and the second three. If the
first wins the first point the last situation has arisen, if he loses it, they
are equally well off. The chance for the first is thus $.5+3.4 = #-.

Now for the general case. Pascal and Fermat both worked at this.
The latter confessed that it was beyond him. Here is Pascal’s solution,
which I have shortened as his reasoning is rather tedious.

Let the first need m to win and the second #, and let us call the
chance for the first f(m, n). Let us write m-+n--1 = r. Pascal assumes

o= d{elesfl) o

-3

Now let us find f(m-+1, n). There is a half-chance that he will win the
first time, in which case he will need only m to win, or he may lose the
first time, in which case the adversary will only need n—1. Hence

fn-+1,n) = 3 f(m, n)+fm+1, n—1)}.

+ See editorial comment, Pascal (q.v.), vol. iii, p. 442.
1 Pascal (q.v.), vol. iii, pp. 490 ff,
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Substituting,

A RAS)

Now, by (3), (11) + (lcil) - (Hi:])

Hence we have

gl o )+ ()R]

and this shows that formula (4) steps up. The same will hold when we
go from » to n-1.

Cantor has pointed out that we have here a perfect example of
mathematical induction, and expresses the belief that this is the first
case on record.t This opinion is incorrect, as Vacca pointed out in a
letter ; the method had been used by Maurolycus in the sixteenth cen-
tury. Now Pascal knew of Maurolycus, for he quotes ‘Maurolic’ in a
letter to M. de Carcavi.] This suggests that Pascal may have taken the
method over bodily without mentioning it. Let us hope that such was
not the case. For a further discussion see Bussey (q.v.).

§ 4. Centres of gravity .

I will now return to Pascal’s orders of numbers. In a letter to
M. de Carcavi§ he proceeds as follows. Suppose that we have a set of
quantities 4, B, C,.... Then A-+B-+C+... is called their simple sum.
We then take the sums

A+B+C+DH-...
B+C+D+...
C+D--...
D4-....
These added give

A+2B+30+4D+...,
which he calls the triangular sums. Similarly we take
A+2B+3C+4D+-...
B+-2C--3D+...
C+4-2D+...
D+....,
giving their pyramidal sum
A+3B+60+10D+... .

1 Cantor?, p. 749. i Pascal (q.v.), vol. viii, p. 343.
§ Ibid., pp. 337 ff.
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The triangular sum is the more interesting, so I confine my attention
to that. Let us imagine that these quantities are weights, strung at unit
distances along a straight line. The moment about a point a unit’s
distance from the first point will be the triangular sum. The moment
about any point will be that about any other point plus the moment
about the former of the whole weight if concentrated at the latter.
This is more concise than Pascal’s statement which does not include the
possibility of negative weights.

Let us now consider the moments of an infinite number of infinitesi-
mally small quantities, as the moment of a curve about an axis. We
must first say something further about such infinite sums. It must be
borne in mind that Pascal was intimate with Roberval who, following
Cavalieri, was deeply steeped in the idea of indivisibles. The mathe-
matical world was at this time feeling its way towards the infinitesimal
calculus. Pascal’s ideas were essentially sound. One might judge at first
reading that Pascal believed that an area was the actual sum of an
infinite number of line segments, or lines as he would have said, but this
was not exactly the case. He means an infinite sum of infinitesimal
rectangles. He does not mention the ‘limit of a sum’—mathematical
thought had not reached that point—but he was very near to grasping
the idea. Moreover he draws very important distinctions which show
that he did not add sums in the straightforward manner. Suppose that
we divide that portion of the X-axis which lies under a continuous curve
into an infinite number of equal lengths, thatis tosay, aneverincreasingly
large number of such lengths. The perpendiculars to these lengths are
what he calls ‘ordinates’, and when he speaks of their sum he means
what we should write f y dx. But suppose that instead of dividing up
the base into equal segments we divide the curve itself, and drop
perpendiculars on the axis from these points. These perpendiculars are
called ‘sines to the base’, and when he speaks of a sum here he means
f y ds. The fact that there are the same number of divisions in the two
cases is immaterial. We shall see later that he will speak of the ‘abscissa
of centre of gravity of ordinates to base’, meaning & where

f (x—Z)y ds = 0. ,
He is interested in both simple and triangular sums, the latter, of course,
moments. Asanexample of the way he goes to work, let me show how he
determines the centre of gravity of an arch of the cycloid.t This clearly
lies on the middle vertical, so we have merely to determine its ordinate ;
we may confine our attention to one half of the curve. Let us find (Fig.
42) the moment about a tangent at the top of the arch. We have:

Moment == 2 f CZ ds.
1 Pascal (q.v.), vol. viii, p. 359.
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By a familiar property of the cycloid:
Arc CY = 20M; CM? = CZ.CF = 0Z%;

where O lies on a parabola with axis CF.

Moment = 2 f CZ d0Z = 2 fxdy.
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This is the area of the parabolic half-segment = § CF2.
But Arc U4 = 2CF.
CF.

ol

Hence 7=

§ 5. Integration

I shall return later to Pascal’s study of the cycloid. First, however,
I wish to take up what seems to me altogether the most interesting and
significant part of his mathematical work, his study of definite integrals.
His general scheme is to make some such integral correspond to the area
or volume of some simpler figure, and then determine the latter by a
change of variable. His fundamental figure is called a ‘triline’ or
‘triligne’. This is an area bounded by a smooth arc and two mutually
perpendicular line segments called the axis and the base. If the curve
is # = f(y) the moment about the X-axis of the area is f xy dy.

Now through each point of the triline we erect a perpendicular to the
plane. Through the base we pass a plane making an angle of 45° with
the plane of the triline. The volume contained between the two planes
and the cylindrical surface which he calls a notch (‘onglet’) will be f xy dy.
If we can find this volume by some other integration, we can find the
moment of the triline.

Pascal made use of something even more complicated than the triline
and its notch. Let us suppose (Fig. 43) that each abscissa is extended
beyond the Y-axis until it meets a curve, called an ‘adjoint’ of the
triline, in a point with the generic denomination I. The figure AIK is
then turned about AB as an axis through an angle of 90°, so that it is
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in a plane perpendicular to the plane of the triline. Through each point
of the arc BC and of the line-segment AC a perpendicular to the plane
of the triline is drawn, thus making a cylindrical surface. We cut this
surface by lines through all the points to 47K in its new position

/)

E E NE A
Fic. 43

parallel to AC, and seek the volume of this solid. We can find this in
two different ways.

First we can cut it by planes perpendicular to AC. The area in such
a plane is the curvilinear triangle ARI. On the other hand, we might
take planes perpendicular to AB. In this case the element of area is
the rectangle GR.RI. We thus get

AB 4B
| (ARD) dw = | @ RIdy. (6)

Suppose, however, we do not wish for the whole volume, but so much
as lies below a chosen line GR, where y = y,. Let z be the area of the
curvilinear triangle A RI. This, like , is a function of'y, and /R.dy = dz.

Y1
QOur volume is then f x dz.

But we might prg)ceed otherwise. The volume is divided into two
parts. Oneis RGAE, a horizontal column standing on ARI = 2, height,
section, etc. The other part is CGE. Here if we take the negative
direction as positive for X and upwards as positive for ¥, as y increases
dx is negative. We thus get the final equation
U1 K
fxdz:xlzl——fzdx. (7)
0 0

This, of course, is the usual formula for integration by parts.f Pascal
+ Cantor!, vol. i, p. 838.
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did not appreciate its full significance, neither did he understand the
full significance of integration anyway. But in spite of his complicated
method, he deserves full credit for discovering this fundamental formula.

Pascal makes applications to cases where the adjoint is a specified
curve. Let it be the straight line

y=ua
AR 4B
»-f ydx = f ay dy. (8)
0
Or suppose it is the parabola
yr = AB.x2"
ARI = ——?
3487
fx.RIdy - ﬁfxgﬁdy,
AB 40
%fﬁw=fwwy (9)
0 0

Pascal finds sums of sines by a simple device. We start with the
curve y = f(z) and take also

o= Y =y;
fsdy:fyds; fxydy:%fyzds. ‘ (10)

§ 6. The cycloid

As an introduction to Pascal’s study of this curve, we study a half-
segment of a circle of radius r:

d_ng_/; rda = y ds; rdy = —xds;
ds r

St

r ds = mld'z ; 2ds = ?l'd = r.area ABRI; (1l
ufy s r!x 7T, Ufy S ¢Jyx r.area (1)

Ny @ : 3
fy"ds:rfgﬂdx:rf(r?——ﬁ) de = r3x1—-%. (12)
0 0
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Now take a half-segment BSR:

’

' =ux; y =y—a;
81
fy' ds = re;—as;; (13)
6
fg/'2 ds == r.area A BRI-—2arx,-}-a%s,; (14)
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fxy' ds = %lmafxds = %¥+ar(7’~a). (15)
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Now for the cycloid. This curve, called by various names, had been
studied not a little by his contemporaries, and men with whom he held
scientific correspondence, especially Roberval. It was therefore natural
that he should apply his methods of integration, which I have described,
to this curve. He thereupon issued a challenge to contemporary mathe-
maticians to solve, within a specified time, certain problems which he
proposed. The following were given out in June 1658,

Given the triline whose curved part is an arch of a cycloid measured
from the summit, the base is not necessarily the base of the cycloid. To
find the content, and centre of gravity of the triline, of the solids obtained
by rotating it about the base and axis, and of the zones so generated.

Neither of the contestants who sent in answers fulfilled the conditions
imposed, as Pascal explains at great length.t Here are some of the
integrals involved:

fxdy, fxy dux, foczy dy, fxy ds.
The central fact of which Pascal makes use is that
YZ = MZ-+arc MC,
x = +s y =y,
fxdy:: fx’der fsdy: fx’dy+ fyds
= QRC4+r.OR—FO.arcCR.
+ Pascal (q.v.), vol. ix, pp. 116 ff.
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Other integrals are calculated by similar devices, all turning on the
calculations for circular arcs we have shown. In all of this the methods
are more interesting than the results. I have the uncomfortable feeling
that Pascal picked his challenge problems to show his skill in a very
limited field rather than to advance mathematical science. Perhaps this
happened in other cases where one mathematician challenged another.
One’s final impression is not inspiring.

§ 7. Short studies

Pascal made many other studies in pure mathematics, and carried the
subjects I have touched much farther. I will, however, only give two
other examples of his work, one geometrical, one algebraic, or rather
arithmetical. He makes an interesting comparison of the spiral of
Archimedes with the parabola. We have such a spiral and parabola
which begin at the same point and touch there. In modern notation
we write them o = my; r = mé.

The points where x = r are said to be corresponding.

rdg _r_ = _ b
dr ~ m m dx’
We see thus that at corresponding points the tangent to the parabola
makes the same angle with the tangent at its vertex that the tangent
to the spiral makes with the radius vector. We have, moreover,

ds® = P72 dg? — drz(l + 7%22) — da?+-dy?.
Corresponding ares on the two curves have the same lengths.
The arithmetical note has to do with divisibility. When will the
number g+ 102, + 1002, 4 1000+ ...
be divisible by x which I suppose < 10.
Let 10 = ¢ o+,
107 = gyt
107, = qza+73

Then 100 = (10qy+gy)x -7,
1000 = (100g;+10g,-+g5)e4-7,

10% = (10%-1g;4-10%—2g, 4-... g )w 47y
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The given number is divisible by = if
ay+a,r+ay et Fa,r, = 0 (modx).

The condition is theoretically correct; in practice I cannot see that
it shortens in any way the problem of divisibility.

What should be our final judgement of Pascal as a pure mathemati-
cian ? That he was unusually keen and original there can be no possible
doubt. He came near to making great discoveries, but fell a little short
of doing so. Very little that he wrote caused a noteworthy advance in
mathematical science. He has a perfect claim to priority in the discovery
of the theorem which bears his name, and a very pretty theorem it is,
but not epoch-making. We have no clue as to what may have been
included in the fabulous number of corollaries which he is said to have
deduced from it; that there were anything like four hundred of them
I very much doubt. He was one of the first to make use of mathematical
induection, but not the actual discoverer, and it seems quite possible that
he took it bodily without credit from Maurolicus. He really discovered
integration by parts, but failed to see the real importance of it. I think
that brilliant amateur in mathematics is the best description of this
remarkable man.



CHAPTER VIII

ANTOINE ARNAULD

§ 1. General introduction

It is really noteworthy that the small fraternity of the Port Royal
produced two writers of uncommon mentality who had more than a
passing interest in mathematics. One of these was Blaise Pascal, whom
we discussed in the last chapter, and who stood very close to the
company without being technically a member of it, the other was his
intimate associate Antoine Arnauld, ‘le grand Arnauld’ as his country-
men frequently called him. His intimacy with Pascal was so close that
in some places it is difficult to distinguish between them, a difficulty
which has arisen more than once in the long history of mathematics.
Pascal had original, brilliantly original, ideas, and made important
contributions towards the advancement of mathematical science.
Arnauld corresponded with Descartes and Leibniz, and doubtless
appreciated the importance of their mathematical work, though his
letters seem to have been more occupied with philosophical than with
mathematical questions; nevertheless he can be classed as one who
contributed to the advancement of mathematics, even though his
contributions were of pedagogical rather than of scientific importance.
A very complete account of his work will be found in Bopp!.

We may divide Arnauld’s mathematical writings into two parts,
Arnauld! and Arnauld?2,. We must always bear in mind that he was a
theologian, a very combative theologian, whose main interest in life
was theological controversy. He openly proclaimed that the one source
of certitude in this world is authority, and when authority speaks in
clear tones there is no room for argument. But he believed also that
man is a rational being, that truth can be learnt by observation and
reason, and that there can be no higher exercise of our intellectual
powers than that of reaching new truth by sound reasoning. It is
therefore not surprising that such a man should write a very influential
work on logic.

§ 2. La Logique de Port-Royal

This work, which bears the sub-title of ‘L’Art de Penser’, is not a
complete treatise on the subject, for, as Jourdain points out in the
preface to Arnauld!,} there is no mention of inductive reasoning, but
this commentator also points out, very justly: ‘On ne peut pas apporter
dans l'exposition des arides préceptes de la logique, plus d’ordre,

T p- xvii,
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d’élégance et de clarté qu’Arnauld, un discernement plus habile de ce
qu’il faut dire parce qu’il est nécessaire, et ce qu’il faut taire, parce
qu’il est superflu.” Now mathematics, which the French frequently
call géoméirie, is the shining example of what can be accomplished by
deductive reasoning. Much of the work on logic is, consequently,
devoted to a criticism of the foundations and teaching of this subject.

Arnauld’s discussion of the philosophy of mathematics appears first
in the fourth part of Arnauld® which deals with ‘La méthode’. He
insists that we have to acknowledge the existence of certain things
which are in themselves inconceivable, because the denial leads to error.
He argues strongly for the existence of infinite divisibility, hard as that
may be to imagine. No integer, which is a perfect square, is double
another which is also a perfect square, yet we can construct a square
which has double the area of another square. But if there existed an
indivisible small unit of area, the number of units in one would be
double the number of units in the other. It is also hard to imagine
something which is at once finite and infinite, but here is an example,
which Arnauld stigmatizes as assez grossiére.tf We take a rectangle
which is half of a square, lay one-half of itself next, end to end, then
one-half of the half, and so on. The limit of the length is infinite, but
the limit of the area is that of the square. Such examples are ingenious,
even if not very profound.

Arnauld recognizes in the second chapter two methods which he calls
analysis and synthesis. One would expect to find references to Plato,
but there are none. He has, however, the same idea in mind, he merely
illustrates it differently. Suppose we wish to prove that a certain man
is descended from Saint Louis. One method would be to show that he is
the child of 4, and B,, who are the children of 4,,, 4;; and of Byy, By,
and so on back until one arrives at the sainted king. But one might
also begin with the King of France, give the list of his children, of their
children, and so on down until one finally came to the individual in
question. He also mentions the method of reductio ad absurdum as an
example of analysis.

In chapter iii we have certain rules for mathematical demonstration
which appear in greater detail in chapter xi. I will give them at length:
‘Deux régles touchant les définitions

‘1) Ne laisser aucun des termes un peu obscurs ou équivoques sans les
définir.

¢2) N’employer dans les définitions que des termes parfaitement connus
ou déjd expliqués.

‘Deux régles pour les axiomes
‘3) Ne demander en axiomes que des choses parfaitement évidentes.
1 Arnauld!, p. 272.
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‘4) Recevoir pour évident tout ce qui n’a besoin que d’un peu d’attention

pour &tre reconnu véritable.
‘Deux régles pour les démonstrations

‘5) Prouver toutes les propositions un peu obscures, en n’employant pour
leur preuve que les définitions qui auront précédé et les axiomes qui auront
esté accordés, ou les propositions qui auront esté démontrées.

‘6) N’abuser jamais de I’équivoque des termes en manquant de substituer
mentalement les définitions qui les restreignent et les expliquent.

‘Deux régles pour la méthode

‘T) Traiter les choses, autant qu’il se peut, dans leur ordre naturel, en com-
mengant par les plus générales et les plus simples, et expliquant tout ce qui
appartient & la nature du genre, avant que de passer aux espéces particuliéres.

‘8) Diviser, autant qu’il se peut, chaque genre en toutes ses espéces, chaque
tout en toutes ses parties, chaque difficulté en tous ses cas.’

There are various comments that occur at once. First of all we note
that Nos. 1, 2, 3, 5, and 6 are practically what Pascal required, as we
saw on p. 91, As for dates, the Logique first appeared in 1662, Pascal’s
Pensées did not see the light until after his death ; he died in 1662, the
Pensées came out in 1669, and Arnauld was one of those who produced
them. I do not think that we should conclude that either author copied
from the other. Pascal had by far the greater knowledge of mathematics,
as Arnauld freely confesses, and the Pensées represent what had been
long on his mind. On the other hand, Arnauld would not have stressed
ideas taken from a friend without some reference to their origin. The
natural explanation is that the two friends worked in such close accord
that it would be next to impossible to say which were the ideas of which
author.

Arnauld has pointed out that the definitions of mathematics are
purely nominal, and he is very scornful of those who seek to define
things whose significance is perfectly clear. We have, he says, a pretty
good idea what a man is, and learn nothing of value when Plato defines
him as a featherless biped.t Plato acknowledges that the ideal way
would be to define everything, but realizes perfectly that this would be
impossible. We are entirely in sympathy with all this to-day. On the
other hand, we have drawn away from his No. 3, which requires that
the truth of an axiom should be perfectly evident, that is to say, from the
purely logical point of view. It is the consequences, not the origins, of
an axiom that interest us, in so far as we are examining the logical
structure of any system.

Arnauld’s requirement 6 is important. It means that in mathematics
a term may have a different meaning from what applies in other con-
nexions ; we should continually check up and see in what sense a term

4 Ibid., pp. 344 ff,
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is being used. In No. 7 he speaks of ‘the natural order’, a very favourite
idea of his, which I shall have occasion to attack later on.

In the following pages Arnauld develops these general ideas. First
there is the question of definitions. He insists on using only such terms
as are clear and easily understood. Then he takes a shot at the Greek
definition of an angle. Here is Heath’s translation of the Greek of
Euclid I, definitions 8 and 9:

8) A plane angle is the inclination to one another of two lines in a plane
which meet one another, and do not lie in a straight line.

9) And when the lines containing the angle are straight, the angle is called
rectilineal.

Arnauld’s translation is: ‘La rencontre de deux lignes droites inclinées
sur un méme plan.’t

I will not take up the question of whether these two translations
mean the same thing, but point out that Arnauld makes a very shrewd
comment. He says that if Buclid wishes to use these words as a nominal
definition of angle he has a perfect right to do so, provided that he bears
this definition constantly in mind, but such is not the case. ‘Il enseigne
par exemple, & diviser un angle en deux. Substituez sa définition. Qui
ne voit que ce n’est point la rencontre de deux lignes qu’on divise en
deux, ce n’est pas la rencontre de deux lignes qui a des cotés, et qui
a une base ou sous-tendante, mais tout cela convient a Uespace compris
entre les lignes.” For Arnauld an angle was the space comprehended
between two lines or line segments. Just where this space ends is not
clearly stated, he measured it by the circular measure of the arc of any
circle whose centre is the intersection of the lines and whose radii are
the sides. The idea of calling an angle the space goes back to Apolio-
nius, but is none the less unsatisfactory. He was probably unaware of
the great amount of discussion that had taken place on this very point.{

Another of Euclid’s definitions to which Arnauld objects is that of a
ratio. Here is Heath’s translation: ‘ A ratio is a sort of relation in respect
to size between two magnitudes of the same kind. Magnitudes are said
to have a ratio to one another which are capable, when multiplied, of
exceeding one another.’ Arnauld’s translation is: ‘La raison est une
habitude de deux grandeurs de méme genre, comparées I'une a Pautre
selon la quantité. La proportion est une similitude de raisons.” Arnauld
points out that the difference of two quantities is just as much a
‘habitude’ as their quotient. He would distinguish between arithmetical
and geometrical proportion just as we distinguish between arithmetical
and geometrical series. The whole matter seems to me rather trivial.
What Euclid really uses is not the idea of ratio, which is, at best, con-

T Arnauld, p. 283. 1 Cf. Euelid, vol. i, pp. 176 ff,
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fusing, but of proportion, and this, following Eudoxus, he defines in
truly masterly fashion, covering both the commensurable and the
incommensurable case.

Arnauld is very scornful of those who maintain that all of our ideas
of truth are derived, in the last instance, from physical experience.
This frequently leads astray through false induction. He suggests that
one would take it as an experimentally established fact that if an
upright U-shaped tube be partly filled with water, the liquid will stand
at the same height in the two arms. As a matter of fact, owing to
capillary attraction, it will stand higher in the thinner tube, when the
two are notably different. Or take the axiom that the whole is greater
than a part. Our belief in this does not arise from the observation that
a man is taller than his head, or a wood is greater than an individual
tree, but from a perfectly clear idea of what is meant by the words
‘whole’ and ‘part’. I do not know whether he believed in the existence
of innate ideas, the question is in any case too metaphysical for our
present discussion. He did not see the difficulty that Bolzano introduced
with the study of infinite assemblages. He would probably have said
that two geometrical figures which could be brought to coincidence by
a rigid motion were of the same size, but an angle, under his definition,
can be brought to coincide with a part of itself, by sliding the plane
along one of its sides. He returns again and again to the consideration
of what is contained implicitly in an idea. ‘Tout ce qu’on voit claire-
ment contenu dans une idée claire et distincte qu’on a du tout, enferme
celle d’étre plus grand que sa partie. Donc on peut affirmer avec vérité
que le tout est plus grand que sa partie.’}

Here are six faults which he finds in the reasoning of the geometers:

1) Awoir plus de la certitude que de I'évidence, et de convaincre Uesprit
plustdt que de Uéclairer. This means that didactic needs are more impor-
tant than logical ones, a complete shift from Euclid’s ground, but quite
permissible in one whose main aim is to write a text-book.

11) Prouver des choses qui n’ont pas besoin de preuve. This again is
an important point as anyone who has undertaken to teach elementary
geometry has discovered ; the difficulty is to draw the line.

I1I) Démonstration par U'impossible. He grants that such proofs are
at times necessary. ‘Cependant il est visible qu’elles peuvent convaincre
Pesprit, sans qu’elles ne ’éclairent.” This again is good pedagogy, a
beginner finds such proofs unsatisfactory.

IV) Démonstrations tirées par des voies trop éloignées. He objects to
Euclid’s proof of I. 5, the ‘Pons asinorum’, for bringing in a number of
triangles which have nothing to do with the result. He wasevidently not
familiar with other known proofs.I He also disliked Euclid’s own proof

1 Arnauld?, pp. 299 ff. 1 Euelid, vol. i, p. 252.
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of the Pythagorean theorem for introducing extraneous triangles, when
it can be proved otherwise, ‘puisque 1’égalité des carrés ne dépend point
de I’égalité des triangles qu’on prend pour moyen de cette démonstration
mais de la proportion des lignes’. It is interesting to compare this with
Heath’s view: ‘There can be little doubt that the proof by proportion
is what suggested to Euclid the method of I. 47, and the transformation
of the method of proportion into one based on Book I only, effected by
a construction and proof so ingenious, is a veritable four de force which
compels admiration.”}

V) ‘Navoir soin du vrai ordre de la nature. C'est la plus grande faute
des géométres. Ils se sont imaginés qu’il n’y avait presqu’aucun ordre
a garder.” This is the sorest point with Arnauld, he comes back to it
again and again. He is convinced that there is a natural order in
geometry, and that most of the difficulties which a beginner encounters
arise from the departure therefrom. The book which I shall discuss
presently was written largely to prove this point. If we deny his
premiss, the conclusion falls to the ground.

VI) Ne point se servir de divisions et de partitions. This seems to be
an objection that the subject is not divided into species and types. 1t
is hard to take this very seriously ; I cannot see how such subdivision
would help much.

Arnauld was certainly not a mathematician of the stature of Euclid.
This great teacher had many critics, both before and after Proclus, the
critic par excellence. But the great Jansenist was an acute thinker and
an honest one ; his criticisms certainly give us much food for thought.

§ 3. Les Nouveaux Elémens de Géométrie

It is now time to consider in detail Arnauld’s principal mathematical
work which first saw light in 1667. He tells us in the preface an amusing
story of how he came to write it. Pascal, whom he describes as ‘un des
plus grands esprits de ce siécle et des plus célébres par ouverture
admirable qu’il avoit pour les Mathématiques’, had written a short
essay on the beginnings of geometry. This fell into the hands of
Arnauld, who was astonished at the confusion that subsisted in the
work owing to the unnaturalness of the order. He said jokingly that
if he had a little time, he could produce something much better. The
occasion arose, and he produced the book under discussion. We find a
confirmation in something written by Nicole: ‘Lorsque Pascal vit
Pouvrage il condamna le sien au feu, et reconnut franchement que
M. Arnauld avoit trouvé le vrai ordre naturel de traiter cette matiere.’}

‘Ordre naturel’: here lies the key to all of Arnauld’s work, for as I
have said, he was convinced that such an order existed, and that when

1 BEuelid, vol. i, p. 353. 1 Boppt, p. 237.
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it was once found, the demonstrations were easy. I do not personally
feel that he found any such order, and if his demonstrations are easy,
it is because he proceeds carefully, and avoids certain difficulties by the
fatally simple expedient of introducing new axioms. Let us see what
he says:

‘Il ajoutoit méme que cet ordre ne servoit pas seulement & faciliter 'intelli-
gence et soulager la mémoire ; mais qu’il donnoit lieu de trouver des principes
plus féconds, et des démonstrations plus nettes que celles dont on se sert
d’ordinaire. En effet il n’y a presque dans ces nouveaux élémens que des
démonstrations toutes nouvelles qui naissent ’elles-mémes des principes qui
y sont établis et qui comprennent un assez grand nombre de nouvelles
propositions.’}

I cannot see any justification for the statement that his new order had
uncovered many new propositions, personally I find few. He probably
did not have recourse to much bibliographical material. The whole
passage is essentially what we call at the present time ‘sales talk’.

What is the reason for studying geometry anyway? In Arnauld’s
view it is mental training. Logic does the same thing, but geometry
does it better because the underlying ideas are more clearly set forth.
Arnauld does not look upon the subject-matter of mathematics as in
itself very important.

‘C’est une ignorance tres blamable que de ne point savoir que toutes ces
spéculations stériles ne contribuent rien & nous rendre heureux; qu’elles ne
soulagent point nos miséres, qu’elles ne guérissent point nos maux . . .
cependant on ne voit que trop par expérience que ces sortes de connoissances
sont d’ordinaire jointes & l'ignorance de leur prix et de leur usage. On les
recherche pour elles-mémes, on s’y applique comme & des choses fort impor-
tantes. On en fait sa principale possession. . .. Si cet ouvrage n’a rien de ce
qui mérite la réputation de grand Géométre, au jugement de ces personnes
en quoy il est trés juste de les en croire, au moins on peut dire avec vérité
que celui qui Pa composé est exemt du défaut de la souhaiter; que
quoique il estime beaucoup le génie de plusieurs personnes qui se mélent
de cette science il n’a quun estime trés médiocre pour la Géometrie en
elle-méme.’

I quote these reflections at length to give an idea of Arnauld’s point
of view. 1 cannot share Bopp’s opinion that he must have had a pro-
found knowledge of higher mathematics because he corresponded with
Leibniz about philosophy.

It is time to take up the fifteen books one by one. The natural order
which he praises so highly always consists in proceeding from the
general to the particular. Herein he differs totally with Euclid, who
begins with the simplest figure, the triangle. Arnauld’s first subject of

+ Arnauld?, preface. The pages are not numbered.
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study is ‘Les grandeurs en général’. He assumes that we know what
is meant by ‘quantité ou grandeur générale en tant que ce mot com-
prend P’étendue, le nombre, le tems, les degréz de vitesse et, en général
tout ce qui se peut augmenter en ajoutant ou multipliant, et diminuer
en soustraiant ou divisant.” He makes certain arithmetical assumptions
such as that which says that whatever we mean by signs such as a, b, ¢
we know b=0b; ¢ = ¢; bxe = c¢xb.

Then come & number of axioms, as: ‘The whole is equal to the sum
of its parts’; ‘If equals be taken from equals, the remainders are equal’.
Next come the rules for the fundamental operations when applied to
letters. A polynomialis called a grandeur complexe. Negative quantities
as such do not appear, though it is hard to believe that a correspondent
of Leibniz and Descartes was ignorant of them. He is a good deal
worried to show that the product of ‘moins en moins donne plus’. The
book ends with the simplest equations.

The second book deals with proportions. As I said onp. 106, he insists
that two quantities of the same sort can be combined in two ways: we
may find their difference or their ratio. And here, of course, the trouble
begins, for we are never told exactly what a ratio is: ‘L’autre est quand
on considére la maniére dont une quantité est contenue dans une autre
ou en contient une autre, ce qui s’appelle raison.’y

He distinguishes conscientiously between commensurable and incom-
mensurable quantities. Two ratios are equal when the antecedents
contain or are contained in the consequents equally. This is rather a
dark saying. He flounders around a good deal, gives five axioms, but
finally gives a second definition: ‘Deux raisons sont appelées égales
quand toutes les aliquotes pareilles des antécédents sont chacunes
également contenues en chaque conséquent.’

This is nothing but Eudoxus’ classic definition which we find in
Euclid V, definition 5. One wonders why Arnauld imagined that he
was making things easier by putting this supremely difficult material
into his second book, Kuclid postponed it as long as he dared. If in
various places Arnauld’s proofs in questions of proportion are shorter
than Euclid’s, that is because he dares not drag all the difficulties out
into the light. I think, however, it is fair to say that he did not inten-
tionally slur over them, but rather did not understand all that was
involved. The remainder of Books II and IIT is devoted to proportion.
He becomes rather deeply involved when he passes from equal to
unequal ratios ; he writes:

‘Cest ce qui n’est pas peu embarrassé. Mais voicy, ce me semble, la plus
facile maniére de la concevoir.

+ Arnauld?, p. 23.
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‘De deux raisons inégales celle qui s’approche davantage de la raison
d’égalité s’appelle la plus grande et celle qui s’en éloigne la plus petite.’{

Here he is certainly above his depth. Presumably he is dealing only
with ratios of positives, but the statement is true only of ratios of less
to greater, and, as he acknowledges, it is not by any means easy to say
which of two is nearest to unity. He helps out with two axioms. If we
have two ratios with the same consequent, that with the greater ante-
cedent is the greater ratio. If two ratios are equal to two others which
are unequal, that is the greater which is equal to the greater ratio. He
ends up pathetically: ‘Mais il n’est pas toujours facile de discerner en
toutes sortes de grandeurs quelle est la plus grande différence de deux
termes aux termes communs.’}

Book 1V is devoted to commensurable and incommensurable quan-
tities. He gives as his fundamental theorem that which states that the
square or cube of a rational ratio (ratson de nombre) is the ratio of the
squares or cubes of the terms. The book ends with a few rules about
integers.

Rule I) The square of every odd number which, when added to itself
less unity, gives a perfect square, is the sum of two perfect squares.

Let x=2b+1, 20—1=4b+1 = p?
2 = (2b)4p2.
Rule 1) If ¢? = a%4-b?,

(re)? = (ra)24(rb)%

He then builds up, I do not know why, an elaborate table in seven
columns. Each term in column V is the sum of the corresponding terms
in columns II and II1, each in column VII of the two in V and VI.

The fourth book of his first edition, the only one I have seen, deals
with endless geometrical series, as

R T S AT S S S
He sums the latter by what amounts to the formula

atartar?f-... = ___Uf____‘_‘ﬂ_
1—r 1—r

When |r| <1 the last term can be made as small as we please.
Arnauld remarks that the famous sophism of Achilles and the tortoise
can be explained ir this way.

The subject of geometry in the narrow sense begins with Book V.
This deals with extended magnitudes. The simplest of these are one-
dimensional and the book deals with straight lines and circles. He
assumes that the reader knows what a straight line is, and that he also

1 Ibid., p. 56. 1 TIbid., p. 57.
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knows that it gives the shortest path between two points. However,
this is not enough; he must assume other axioms. He lays down six
other axioms about straight lines, one being Archimedes’ axiom about
convex paths. The axiom that two different straight lines cannot share
more than one point appears in several forms. He also makes a vague
sort of parallel axiom, ‘ Deux lignes droites qui estant prolongées vers un
méme costé s’approchent peu a peu, se couperont & la fin’. Then come
six axioms about the circle or circumference. One of these is really
important and saves a lot of time later on. ‘In the same circle or equal
circles, equal chords subtend equal arcs, and conversely.” This is very
helpful to him later on. Certainly there is a tendency in modern text-
books to extend the list of axioms. This comes from the discovery that
Euclid really makes a whole lot of assumptions which he does not
explicitly acknowledge. A rigorous proof of this axiom based on an
adequate definition of the length of an arc would be laborious. On the
other hand, it takes a certain amount of self-control not to avoid all the
major difficulties by indulging freely in additional axioms. The whole
theory of incommensurables has pretty much gone out of the window
in recent times, largely because the Euclidean theory is really too hard
for most pupils to understand, and various substitutes are less rigorous,
and not much simpler.

Arnauld next passes to oblique and perpendicular lines and gives
much attention to them as affording a means of proving various
theorems which Euclid handles with the aid of triangles. We have here
another curious axiom. ‘If two lines intersect, and if two points on the
first are each equidistant from two points of the second, the same is true
of all points of the first.’t This is very convenient, but quite unnecessary
if we follow Euclid’s order. The axiom that the straight line gives the
shortest path and Archimedes’ axiom about convex paths is very helpful
in this book.

In Book VI Arnauld takes up parallel lines and makes, on the whole,
pretty heavy weather of it. He points out acutely enough that we asso-
ciate with parallels two distinct ideas, that of non-intersection and that of
equidistance. Many fruitless attempts have been made to prove Euclid’s
parallel axiom by playing on this distinetion. Arnauld’s principal tool in
this work is his set of theorems about perpendiculars and obliques, estab-
lished in the preceding book. He also has a very strong parallel axiom.

Book VII is much more interesting; | deals with the relations of
straight lines and circles. First comes the problem of passing a circle
through three non-collinear points. And then, surprisingly enough, we
have a little trigonometry. We are told about the sine and the versed
sine of an arc, less than a quadrant. He points out that the sine can be

T Arnsuld?, p. 87.
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taken as a measure for the supplementary arc. Then comes the impor-
tant theorem that in two concentric circles the arcs which correspond
to the same central angles are proportional to the circumferences. This
is based on his axiom that equal chords subtend equal arcs, and a careful
handling of the aliquot parts. He considers as the measure of an arc
its ratio to the circumference, essentially its circular measure. He shows
that arcs of equal measure have equal sines. The book ends with a few
theorems about secants and chords and the simplest properties of
tangents.

In Book VIII we come to angles. An angle is the ‘area comprehended
between two line segments with a common origin, but not on the same
line’. He saves himself much vagueness by taking as the measure of an
angle the circular measure of the arc of any circle whose embracing radii
are along the sides of the angle. Equal angles have equal sines; the
equality of the alternate interior angles made by a transversal with two
parallel lines comes from the equality of their sines; vertical angles are
equal because they intercept equal arcs.

In Book IX we study the relation of an angle to a circle whose centre
is not at the vertex. Here is the most fundamental theorem: ‘Tout
angle compris entre une tangente et une corde a pour mesure la moitié
de l’arc soutenu par cette corde, du costé de la tangente.’t This is
Eueclid, II1. 32, but Arnauld’s proof is much neater. The complementary
angle between the radius and the chord is equal to the angle between the
radius and the diameter parallel to the chord, which is complementary
to half the angle which the chord subtends at the centre. This is the
neatest proof I have seen ; the usual theorems about the angles of other
chords are deduced easily enough. An excellent book.

In Book X we come to proportional line-segments. Here Arnauld
introduces a curious element, the ‘parallel space’. This is the infinite
space between two parallel lines. He takes as its measure the length
of any common perpendicular. A segment which two parallel lines cut
on a transversal not perpendicular to them is called an ‘oblique’. His
first fundamental theorem is that if we have two parallel spaces, the
obliques making the same angles with them are proportional to the
perpendiculars. The proof passes through the commensurable and
incommensurable cases, as one would expect. It follows at once that a
parallel to the edges within a parallel space will divide ‘all obliques
proportionally. From this we pass easily to the fundamental theorem
that if a triangle be crossed by a line parallel to one side we have two
triangles with proportional sides. I do not rate this book very highly
except for ingenuity. Euclid’s approach to the subject, which is based
on Euclid, VI. 1, ‘Triangles and parallelograms which are under the

1t Arnauld?, p. 165,
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same height are to each other as their bases’, seems to me more natural.
Arnauld has not yet brought in the subject of area, he substitutes
therefore his parallel space which is, after all, infinite. The book ends
with a proof of Euclid, VI. 3: ‘The bisector of an angle of a triangle
divides the opposite side proportionately to the adjacent sides’.

Book XTI is still more interesting and original. Arnauld writes: ‘Ce
livre-cy sera encore de la proportion des lignes, et contiendra plusieurs
choses nouvelles qu’on jugera, peut-estre, plus belles et plus générales
que tout ce qu’on a trouvé jusque icy sur cette matiére des proportions.”f
The subject is lignes réciprogues. This means, in general, that we have
four line-segments such that the first is to the second as the fourth is to
the third. He is working around towards antiparallelism. A transversal
is anti-parallel to the base of a triangle when it makes with the other
two sides b and ¢ the angles which the base makes with ¢ and 5. This
again amounts to saying that its intersections with these two sides are
concyclic with the ends of the base. I find nothing corresponding to
this in Euclid. He recognizes that the great interest in the whole subject
comes from thislast-mentioned fact. Here is his favourite theorem, which
I restate, as his statement is needlessly long. Given a point P on a
circumference, where @ is the other end of the diameter through P and
@', the intersection with a perpendicular on this diameter. Then if a
line through P meet the circumference in R and the perpendicular in £,

PQ.PQ' = PR.PR'.

Arnauld is lyrical in his praise of this theorem: ‘Voicy la proposition
générale sur ce sujet, qui est, peut-estre, la plus belle et la plus générale
qu’on puisse trouver sur les proportions des lignes qu’on puisse trouver
par la géométrie ordinaire.’] The words géométrie ordinaire suggest his
familiarity with the new analytic geometry of Descartes. His treatment
is rather prolix, but he uses it to prove Euclid, II1. 35 and 36, which
say in effect that the product of the distances from a point to the two
intersections of a circle with a line through the point is independent
of the direction of the line. The book ends with a number of familiar
theorems and constructions. On p. 237 he gives a pretty solution of
the problem of golden section, cutting a length in extreme and mean
ratio. This is simpler than Eueclid II. 11 and VI. 30, but apparently not
new, having been found by Hero of Alexandria, whose work Arnauld
very likely never saw.§

Book X1IIis devoted to polygons, ‘figures’ as he calls them. The sum
of the interior angles is 2(n—2) right angles. Inscriptible and regular
polygons receive some notice. A circle is defined as a regular polygon
of an infinite number of sides, a bad statement that lingers to this day.

1 Arnauld?, p. 208. 1 Ibid., p. 222. § Tropfke, 3rd ed., vol. iv, p. 244,
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Here we get from Arnauld some very shaky mathematics.t Suppose
that we have two inscribed regular polygons of the same number of
sides. Let b be the side of the one, ¢ of the other:

bjc = 10b/10c = 1006/100¢ =

‘Donc les circuits ne sgauront manquer d’estre en mesme raison que les
costéz.” This is certainly very queer, for b and ¢ are functions of the
numbers of sides. He should have shown that the perimeters were
proportional to the radii, a fact that he deduces herefrom. He closes
by inscribing regular polygons of various members of sides, pentagon,
decagon, and pentadecagon, following Euclid, 1V. 16.

Book XIII deals with the angles of triangles and quadrilaterals.
Here we find an old friend from Euclid, Book I. 18 and 19: if two
angles of a triangle are unequal, the opposite sides are unequal, and
the greater side is opposite the greater angle. A very simple proof
comes by circumscribing a circle about the triangle; the greater side
will subtend the greater arc and so correspond to the greater angle.
This is so simple that I suspect a trap somewhere; it is another case
where Arnauld makes skilful use of the relation of chord to arc. We
have the usual theoreins about equal triangles which are found in
Euclid, Book I. Next we have similar triangles and a proof of the
concurrence of the altitudes of a triangle. This theorem is not in
Euclid, but was known to Archimedes and Proclus. Tropfke calls
Arnauld’s proof ‘den besten seiner Art bis Gauss’. Arnauld follows with
theorems about right triangles, parallelograms, and the gnomon. He
shows that the diagonals of a regular inscribed pentagon divide one
another in extreme and mean ratio; this is essentially Euclid, IV. 11.

In Book XIV we come at last to the measurement of areas. Here
again are a battery of new axioms:

Axiom I] All squares of the same sides are equal.

Axiom II] Two rectangles with the same dimensions are equal.

Axiom II1] The product of a whole multiplied by a whole is the sum
of the products of the parts of one multiplied by the parts of the other.

It is interesting to note that the first two of these might be proved
by superposition, which Arnauld wisely avoids. There follow certain
algebraic identities, as

(z ai)z = ;a%+i§; ;0

(2
Then comes the fundamental theorem that rectangles with equal bases
are to each other as their altitudes. The proof runs through the usual
course for the commensurable and the incommensurable cases. Impor-
tant metrical theorems, as Eueclid, I1I. 35 and 36 and the Pythagorean,

1 p. 257,
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as well as, curiously enough, the less important Euclid, X11I. 10: ‘If
an equilateral pentagon be inscribed in a circle, the square on the side
of the pentagon is equal to the squares on the side of the hexagon and
on that of the decagon inscribed in the same circle.” Both Euclid’s and
Arnauld’s proofs are rather long ; the matter is simpler if we write

d . r—2x X

— DT 3 c. e = e = ° o 71— in2 o,

o 8in 36°; 5 5 cos 72 1—2sin?36°;
e 1_—@3‘ A2 == Uty = 202f 1 = r24-22.
2 e’

Book XV also deals with areas. At the outset we find something
decidedly interesting. The Nowveaux Elémens were published in 1657.
Four years earlier appeared Cavalieri’s Geometria Indivisibilium, which
created a great stir. Arnauld writes:t ‘Je n’ay rien veu de ce qui a esté
écrit, mais voici ce qui m’en est venu dans P'esprit, en ne m’arrestant
maintenant qu’a ce qui regarde les surfaces. Le fondement de cette
nouvelle géométrie est de prendre pour V'aire d’une surface la somme
des lignes qui la remplissent.” He sees very clearly the dangers of any
such method. Ligne means for him, of course, segment. His first
caution is that two segments must not intersect, so that when we are
dealing with line segments they should be parallel, and if circular arcs,
they should be on concentric circles. Secondly, he holds rightly, that in
speaking of infinite sums we are playing with fire. Consequently he
says, by definition, two infinite sums of line segments are equal in
number when they are contained in equally wide parallel strips. With
these definitions he shows that two parallelograms of the same height
and equal bases are equivalent because they are composed of an equal
number of equal segments. The following is more interesting:

Theorem] Le cercle est égal au triangle rectangle qui a pour costéz de son angle
droit le rayon du cercle, et une ligne égale & la circonférence du cercle.

The proof is easy. The triangle is formed of a radius and a tangent
whose length is the circumference. Then the circle is built of concentrie
circles, and the triangle from tangents to these parallel to the original
tangent, and limited by the same two lines. The numbers are the same,
for we have a one-to-one correspondence. It is interesting to see this
reaction of an intelligent contemporary to this startling new doctrine.

§ 4. Magic squares

The last section of Arnauld? is devoted to what he calls Quarréz
magiques. There have been indeed many writers on this subject to
which, at first, a mystical significance was attached. I hasten to say
that our own Benjamin Franklin, who contributed to this literature,

1 p. 307.
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did not, probably, see any religious implications. Curiously enough,
those who have written on the subject pay little attention to Arnauld.
In Guenthert is a statement that Arnauld must have leaned heavily
on Bachet. I find no justification for this statement, nor any similarity
in their methods. Bachet acknowledges that he can write no general
principle for constructing squares of even order. Here are some of
Arnauld’s principles which seem to me original.

We shall speak of two squares, the one natural, the other magic.
Each has n cells on a side, the numbers running from 1 to n2. Two
numbers, a large and a small, whose sum is (n?-+1)/2 shall be called
complementary. In the natural square they lie symmetrically with
regard to the centre. In both squares the complement of a number on
a diagonal is on the same diagonal at the same distance from the centre.
In every magic square of odd order, and every one of even order, except
for the sixteen central cells, if & number is in the top or bottom quadrant
formed by the diagonals, its complement is in the reflection of its cell
in a horizontal line through the centre, the complement of a number
in the right or left diagonal quadrant is in the reflection in the vertical
line through the centre. The sixteen central cells of an even-order
square seem to be filled by main force with regard to what is outside.

Suppose, then, we have a centrally situated square # cells on a side,
and that this is magic. When # is odd the numbers in a row, column,
or diagonal of this shall add up to }n(n24-1), when = is even they add
to the same. Suppose then we have such a centrally situated square.
We fill the top row and right column bordering with any numbers we
please not yet used, and fill the bottom and left column with their
complements as already explained ; the new central square fulfils the
requirement. Continuing in this way the whole square is filled out.

There are a number of details in the description which I have omitted
for the simple reason that I do not understand them. Arnauld is at
times obscure, and does not always carry out in practice what he says.
Bopp says: ‘Wir werden hier nicht die eleganten Beweise Arnaulds,
welche auf Analysis situs gegriindet sind, wiederholen; sondern ver-
weisen auf den franzosischen Text.’} I confess I do not find any traces
of analysis situs; Bopp’s arithmetical treatment covers twelve pages.

§ 5. Final estimate

What shall be our final judgement of Arnauld, and what he has tried
to accomplish ? Here is his own judgement of himself:

‘Je laisse d’autres problémes qui sont trés faciles & résoudre par les prin-
cipes qui ont esté établis. Outre que n’ayant entrepris ces Elémens que
pour donner un essay de la vraie méthode qui doit traiter les choses simples

t q.v., p. 232. 1 Bopp!, p. 323.
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avant les composées, et les générales avant les particulidres, je pense avoir
satisfait & ce dessein, et avoir montrez que les géométres ont eu tort d’avoir
négligé cet ordre de la nature en s’imaginant qu’ils n’avaient autre chose &
observer, sinon que les propositions précédentes servissent & la preuve des
suivantes ; au lieu qu’il est clair, ce me semble, par cet essay, que les élémens
de la géométrie, estant réduit & leur ordre naturel, peuvent estre aussi
solidement démontrez, et sont, sans comparaison, plus aisez & concevoir et
& retenir.’f
Arnauld bases his whole claim on the virtues of his new ordér. How
far have his successors acknowledged their debt to him ? Bopp’ points
out} that Lamy and Varignon copied him closely, the former speaking
of Arnauld as the man who had found the only real order for geometrical
theorems. That curious volume Elémens de géométrie de Monseigneur
le Duc de Bourgogne, which is based on the teaching which M. de Male-
zieu delivered to that exalted personage, follows Arnauld’s lead. It is
also noteworthy that the book was noticed by the Philosophical Transac-
tions and the Jowrnal des Scavans. There were several editions after the
first. Yet to a modern teacher the work is not satisfactory either mathe-
matically or pedagogically. It is also highly significant that when
Arnauld’s distinguished compatriot Adrien Marie Legendre prepared an
introduction to geometry which was to have a very great influence all
over Europe and America, he took Euclid and not Arnauld as his model. .

Why, then, have I paid so much attention to Arnauld ? 1t is for his
priority in breaking away from Euclid, a most important step. He tells
us in his preface: ‘Car tant de personnes ont demandéz au Libraire une
nouvelle géométrie qu’on n’a pas pu la refuser aux instances qu’il a fait
de leur part pour 'obtenir, n’estant pas juste de se faire beaucoup prier,
pour si peu de chose.” We have in Kokomoor! and Kokomoor? the list
of a large number of attempts that were made to improve the teaching
of elementary geometry in the seventeenth century, but such examina-
tion as I have made of them has yielded very little result. Pierre de la
Ramée (q.v.) throws in new axioms whenever he wants to, is careless
in many proofs, and avoids all difficulties arising from incommensurables.
His great interest is in practical applications, and he wishes to open an
easy road to them. His work was written before Arnauld’s, and I can
see no reason to believe that Arnauld was influenced by him. The same
is true of Robert Recorde’s Pathway to Knowledge, which is even more
casual. Professor Karpinski of the University of Michigan, a man very
well versed in such matters, wrote me in April 1945: ‘I think it safe to
conclude that Arnauld made the first serious attempt.” It was a very
important forward step in education ; I am glad that my last word about
Arnauld should be so much to his praise.

t Arnauld?, p. 323. 1 pp. 246 fi.



CHAPTER IX

JAN DE WITT

§ 1. Geometrical writings
MosT of the men whom I have classified as amateurs in mathematics
gave the remainder of their professional lives to quiet intellectual pur-
suits. Perhaps it would not be quite accurate to say this of Leonardo
da Vinci, who gave some attention to waging war, but even in his case
the balance of intellectual activity went D

to affairs of the mind, quiet pursuits of
the studio or of the study. This, how-
ever, is far from being true of that L
great patriot, the Grand Pensionary of
Holland and West Friesland, to whom
I now turn. A very active man was he,
in war and peace, deeply involved in (| Piale oL
international affairs and the internal T W
politics of the United Provinces. His
life was busy, contentious, and success- /V

\oad
i
]
(3]

ful, but his enemies were determined,
*and his end was tragic. 1t is truly sur- K
prising that such a man should find any
time to devote to pure mathematics.

The explanation of all this is to be
found in the fact that De Witt, when a student of jurisprudence, lived
in the house of Franz van Schooten, who was indeed professor of
that subject, but also a keen mathematician and a correspondent of
Descartes. In fact he published so much mathematics that he should
be classed as a professional mathematician, which is not the case with
De Witt, whose writings on geometry present evidence of the influence
of his older friend.

De Witt explains his point of view in the preface to De Witt! which
was written in 1658 and published the next year. He acknowledges that
the methods developed by the ancients were adequate for handling
plane loci, that is to say, straight lines and circles, and that the recently
discovered analytic methods are applicable to loci of every sort.
He was convinced that the study of curves, especially the conic
sections, as sections of a cone or other surface represented a needless
detour. The natural approach is a kinematical one, to study a curve
as the locus of a point moving according to a mathematically described
law. The first book of De Witt! is devoted to exactly such a study

* ‘his end was tragic’. He was shot, publicly hanged, and his body violated by an angry mob
during the panic that swept Holland when it was simultaneously invaded by France and England.

Fic. 47
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of the conics, and is sent with affectionate greeting to amicissimus
Schootenus.
De Witt begins with a parabola which he defines in a manner which
I have not seen in the writings of any previous mathematician. Suppose
(Fig. 47) that we have an angle of fixed magnitude ZH BG which rotates
about a fixed vertex B. Let the angles ZLBD and ZLDB both be equal
to LHBG. Let H slide along a fixed line DL, and through it draw a line
HI parallel to BD. Then ¢, whose locus we seek, is the intersection of
this with the swinging arm BG. We also let GK be parallel to LB where
K is on BD.
GK = BI = DH, LDBH = LIBG;
BD BI BD K@,
DPET 1@~ G~ KB

De Witt concludes: ‘Constat itaque curvam intersectione, uti prae-
dictum est descriptam, eam ipsam esse, quae Veteribus Parabola.’

It is clear that BL will be the tangent at B, but the trouble with such a
generatlon is that the point B would seem to play a special role in form-
ing the curve, and that is intolerable. We must show how to replace it
by any point M on the curve. I abridge De Witt’s reasoning somewhat.

Let us take MS parallel to the tangent at B and R on BD so that
SB = BR. We draw the diameter through M and let it meet GK in V':

M8%* = VK?*= DB.BS.
Draw GWT parallel to MR, and on the diameter through M make
MN = MR?/BS.
GK|TK = MS/RS = DB/2MS = DB|2VK,
26GK.VK = TK.DB;
GK® = DB.BK;
GV?: = (GK—VK)?
= DB(BK-—-TK+ BS)
= DB.RT = DB.MW;
GW? = GV:. MR* MS*?
= MW.MN.
This gives the desired equation of the parabola with the new parameter.
I said that I have not seen this method of generation in the work of
previous geometers, I add that T am a little surprised at De Witt’s use
of it. In van Schooten? we have the description of a very simple
mechanism for drawing the curve. This is based on the fact that any
point on the extension of the diagonal of a rhombus is equidistant from

the ends of the other diagonal. One vertex of a jointed metal rhombus
is a fixed pivot, the opposite vertex slides along a fixed grooved rod,

KG@? = BD.KB.
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while a perpendicular to this rod at that point is brought to intersect
the other diagonal. We have here a moving point whose distance from
a fixed point is equal to its distance from a fixed line, so that it will
trace a parabola. This, I say, is given in van Schooten? 1 which was
published the year before De Witt sent in his paper, and it appears in

4

Fia. 48

the preface that van Schooten was familiar with this instrument some
years before. It is hard to believe that De Witt did not know of it, or
that he shared the Greek prejudice against anything which could be
accomplished mechanically. I note also the requirement that
£LDB = LLBD

seems a bit extraneous. When it is removed the locus] is a hyperbola.
De Witt judged rightly that this method of determining the curve is
inferior to the one I will now explain.

Let a line segment of fixed length EB slide along a fixed line FL.
Through F we pass a line EM having a fixed direction. 4 is a fixed
point ; we bring 4B to meet M in C, whose locus we seek.

t p. 857. 1 De Witt!, pp. 231 £,



122 JAN DE WITT Chap. IX

When AC takes the given direction, B shall fall at D and E at F.
Through F draw FH in the given direction:

CE.EF = EB.AD.
Clearly C can come as close to FL or to FH as we please without

Fic. 49

reaching either. The product of the distances from C to each line in
the direction of the other is constant. This is the fundamental relation
of the points of a hyperbola to the asymptotes.

What about the discovery of this method of reaching the curve ? 1 am
afraid that we cannot give the credit to De Witt, for it is set forth in
the writings of Descartes, and the corresponding equation determined,
and De Witt was familiar with these.t A machine for describing hyper-
bolas based on this is described on p. 332 of van Schooten?.

As the product of the distances to the asymptotes in two specified
directions is constant, so is the product in any two given directions.
In particular, if we take two general points of the curve, the product
of the distances to the asymptotes along the line joining them is the
same. Consequently the two longer segments on this line from the
curve to the asymptotes are equal, as are the two shorter segments.
A limiting case of this is that the two distances along a tangent from
the point of contact to the asymptotes are equal.

De Witt proves the constant area of a triangle bounded by a tangent
and the asymptotes very easily as follows:

AGBC = }AGAH; ADIE = }AAIK.
If we draw through C and E lines parallel to AG and terminated in 4K,
their lengths would be 48 and 4D ; hence
GB.BC = AB.BC = AD.DE = ID.DE
AGAH = AIAK.

T Descartes!, p. 18; Descartes?, p. 22.
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We find what we might call the Greek form for the equation of the

Fia. 50

F1a. 51

hyperbola very easily from this (Fig. 50). € and P are the ends of a
diameter:

OH? — DF.DE — (NF—ND)NFLND),
ND? = NF*_CH?,

NF_ AN
CH AC’
CH? )
ND? = 3 CZ(ANLAG&)
CH?
— Z—CTz.PN.ON.

This whole approach to the hyperbola seems to me excellent, the best
thing in De Witt’s geometrical work.
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In the third chapter of Book I De Witt turns naturally to the ellipse,
and applies a still different technique. Suppose that we have a rod of
fixed length KM which slides with its ends on two fixed lines AF, AP,
We choose a fixed point L on the rod, or rather on its extension, and
seek its locus. One position of the rod will be BC when it is perpendicu-
lar to AE; L will then take the position H. He calls GH = 24H the
‘secant’.

Through K and L draw KO and LP parallel to BC and terminating

on AE. Draw LI parallel to HA, and IN parallel to AB where N is
on LP

BA BC KM ML HC BAAAO
KA KO KO LP LP  IN 1P’

KA4 = IN.
Hence AKIN is a parallelogram, KN = 41
AD = AE = KL
DI IE = AD*—AI*
== KL?—KN?
= LN?
Lrr_ LI* AH* AH?
DITE = LN HBE ™ 4R
AH

2
L% = i5

2

b
y? = E;v(%—-x).

Here we have the classical Greek form for the equation of the ellipse
where the axes are a diameter and the tangent at its end.
Now for the question of priority. We find in Proclust this:

‘Nor yet if you suppose a right line moving in a right angle and by bisection
to describe a circle, is the circle on this account produced with mixture?
For the extremes of that which is moved after this manner, since they are
equally moved, will describe a straight line, and the centre, since it is equally
developed, will describe a circle ; but other points an ellipse.’

Here we have the theorem quaintly enough stated when the lines are
mutually perpendicular. I do not know whether De Witt was original
in proving it when they make any angle, but should be very sceptical
on the point. When the lines are perpendicular, a point rigidly con-
nected with the rod, whether on its line or not, will describe an ellipse.

1 q.v., p. 130,
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In van Schooten®t we have the description of quite a number of simple
ellipsographs depending on this principle. The credit here seems to go
back to Nasir Edin.}

Returning to De Witt we see, by symmetry, that AE bisects the
chords parallel to 4 H which will be parallel to the tangents at D and K

DI IE < AE?; LI* < AH2

It follows from this that a line through H parallel to AE cannot enter
the ellipse, and so will be the tangent. Thus the diameter AE is
conjugate to AH or the relation of conjugate diameters is a mutual
one. An ellipse will be completely determined by any pair of conjugate
diameters. In De Witt'§ we have a long and elaborate discussion of this
problem: ‘Given a pair of conjugate diameters of an ellipse, to find the
conjugate of any diameter.” Here we find a good deal of waste motion.
He proves a few pages later that the ends of a diameter are harmonically
separated by the intersection with a chord in the conjugate direction
and the intersection with the tangents at its extremities, a theorem
known to Apollonius. This enables us to draw a tangent at any point
and so find the conjugate to any diameter. In the fourth chapter of the
first book De Witt describes certain other less simple constructions,
which call for no further comment.

Book II of De Witt’s Elementa curvorum is analytic, and devoted to
showing that any linear equation represents a straight line, and any
quadratic one a circle or a conic section ; that is to say, if there is any
corresponding locus at all. This is by no means new. Fermat did
essentially the same thing in 1643; Descartes solved the analogous
problem of four lines in 1637.|]

De Witt first shows that an equation which we should write

y = +lotbd
always represents a straight line. Ishould mention here that no negative
quantities are ever involved, a point I shall return to in the next chapter.
Next we have an elaborate discussion of the parabola. He shows that
by a change to parallel axes we can reduce the equation
y* = taxrtb?

to the simpler form y? = 2ma.

Here is something more complicated : {7

bay

a

2,2
y2— = -—%% +ba++d2.

I mention in passing that De Witt retains the classical requirement

1 pp. 303 ff. } Coolidge!, p. 152, § pp. 214 ff.
{| Fermat, q.v., vol. i, pp. 90 ff. 11 De Witt, vol. ii, p. 263.
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that equations shall be homogeneous. That is because they are always
conceived in geometrical terms. If linear, lengths are involved, if
quadratic, areas. Descartes exploded this superstition by showing that
all symbols represented numbers. Thus the symbol x* does not represent
a square figure, but the fourth term in the numerical proportion

liz:x:x®

De Witt first writes his equation:
bx\?
— =t == betd2
(y 2a) x-+d
Put =2 é xz; 22 = bx--d?
Y= +2d ; = .

The question is, What geometrical significance shall we attach to these
symbols ? z is the distance in the y-direction to the intersection with

b v
2a

y:.::

This shall be the new z'-axis, the new origin shall be the intersection
of the curve with this line. The distance along the z-axis to the old
origin shall be £&. We have

k d? , A%,
— T 28 ==
x bx-t+d? k
Here is a typical parabola. In chapter iii we handle the central conics
in the same way. Our standard form is

Yrc? = b, wr = L),
q b
Put yt+e=y'; ¥ = %y’(y’*%)-

A typical hyperbola. For the general case we take

y2+2§xy+20y = 2x2+bx+d2,

b
z = y—{—&x—f—c,
2= bz"{;abx2+qb+2bcx+c2+d2,
a a
a? 3 al{ub-+2bc) a(ct-+d?)

bab” vihab O priab
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Geometrically speaking we have preserved the direction of the z-axis,

but changed the y-direction to y = —bx/a. Putting
aab-42be
T3 ab

a typical hyperbola, 2% = ul4- k.

a?
b*+ab

In chapter iv De Witt takes up the same problems in greater detail,
but I cannot see that he adds anything essentially new. In general I
cannot count his geometrical work as of first importance. The idea of
studying the conics dynamically as generated by moving points con-
nected with moving lines is fundamental, but was much better done
later by MacLaurin, and put in final form by the Chasles-Steiner con-
struction through projective pencils. I do not agree with some writers
who look upon him as anticipating that. He seems to have no knowledge
of the work of Desargues and Pascal, and his discussion of the general
equation marks no great advance.

§ 2. Annuities

De Witt, a forward-looking statesman, was interested in various
questions of public importance. One of these was the subject of annui-
ties. Such things had been in existence since Roman times, but the
theory had been little developed. It is generally stated that De Witt
was the first to make a careful study of the underlying problem, for
which reason it is well to look into what he wrote on the subject. His
interest was in annuities as related to public finance, and only seconda-
rily as a means for persons with no natural heirs to secure a competence
against old age. Thus all of his calculations are for annuities beginning
at the commencement of a healthy normal life, let us say four years of
age. His writings are in a series of letters addressed to the States-
General which are available in De Witt? and in his correspondence with
Hudde which we find in De Witt3. I note in passing that 1671, the date
of the former, was seventeen years after Pascal’s correspondence with
Fermat on the subject of mathematical probability. It is not clear to
me that De Witt was familiar with the studies of this discipline which
were being made at the time by certain French mathematicians, espe-
cially in connexion with certain games of chance. De Witt’s object was
essentially practical; he does not seem to me to have penetrated very
deeply into the underlying philosophy of probability. Ishould, however,
in all fairness give the contrary opinion of his commentator:

‘De Witt first gives the rules of the calculus of chances by simple examples
with their explanation, that is to say, to as great an extent as is necessary
for his object. They are the rules which Huygens had already developed in
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his treatise, but the application of the rules to the calculation of the value
of life annuities is the work of De Witt, and he is, in my opinion, the first
who makes so useful an application of the doctrine of chances. The law of
probability was then almost unknown, at that time one could only base such
calculations upon more or less probable suppositions. If we consider the slender
progress which the calculus of probability had then made, we must look upon
the whole treatise as an eminent proof of the inventive genius of the celebrated
author.’{

De Witt begins by laying down certain fundamental assumptions:
‘1 presuppose that the real value of certain expectations or chances of

objects of different values must be estimated by that which we can obtain from
equal expectations or chances dependent on one or several equal contracts.’}

This seems to me rather a blind statement, but it is really the germ
of the theory of mathematical expectation. We learn here that if a man
have the probabilities p,, p,,..., p,, of acquiring the sums s, ss,..., 8, his
expectation is, by definition, Y p;s;.

(2

This is what he should pay for the privilege of entering the transaction.
The simplest proof is to assume that the probabilities are rational,
p; = 1,/N where the denominator is very large. His expectation is
1/Nth of what he might expect to gain in N ftrials. Here he would
expect to receive the sum s; in what we might call asymptotically ;
times, so that the total sum gained would be 3 7;s;.

k2

The expectation is, then,

%72 T8y == Z %Si = 2 P;S;

De Witt does not give anything as definite as this; be begins with a
very simple case. A man has a half-chance to receive 20 stuyvers and
a half-chance to receive nothing. This, he says, is just the same as if a
friend had put 10 stuyvers into the pool and they then tossed up to see
which should take the whole.

Second proposition] ‘In any particular year of life a man in full
vigour is equally likely to die in the first or second half.” This is reason-
able, though accurate mortality tables will not quite back it up. He
extends this to assume the chance of mortality in all the half-years of
a man’s vigorous life is the same, an even more doubtful assumption.

Third proposition] In the age 53 to 63 the chance that a man shall
survive a half-year is 2 of what it was earlier, in the years 63 to 73 it
is 1, and in the years 73 to 80 it is }. We find on p. 85 of De Witt? this
interesting statement:

‘These three articles being presupposed, we have by demonstrative calcula-
+ De Witt?, pp. 95, 96. t De Witt?, p. 82.
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tion mathematically discovered and proved that the redeemable annuity
being fixed at 25 years purchase as above, the life annuity should be sold at
16 years purchase and even higher to be on an equality with the other so
that in the purchase of one florin of life annuity on a young and vigorous life,
more than sixteen should be paid.’

This means that a life annuity of 1 florin a year for a vigorous four-year-
old is worth more than 16 florins which is the paid-up price for a 25-year
annuity certain, the rate of discount being 4 per cent. This I have
verified. For this reason it is somewhat strange to read three pages
later:

‘Tt is likewise more useful for private families, who understand economy
well, and know how to make good employment of their surplus in augmenting
their capital, to improve their money by life annuities than to invest it in
redeemable annuities, or at a rate of 4% per annum, because the above
mentioned which are sold, even at the present time, at 14 years purchase,
pay, in fact much more than redeemable annuities at 25 years purchase.
I have consequently respectfully submitted to your Lordships the unchal-
lengeable proof of my assertion.’

The surprising thing is that life annuities should have been purchasable
at 14 years’ purchase of a 25-year annuity certain when the latter was
worth 16 years’ purchase. Perhaps, in fact, attention was paid to the
fact that the annuitants were above 4 years of age.

Let us see how De Witt worked this out. There is an explanation in
a footnote to p. 102 of De Witt?, and a different one in the article on
annuities in the Encyclopaedia Britannica. The following seems to me
simpler and nearer to De Witt’s thought. He limits himself to 154 half-
years beginning with the age 3 or 4, and Kkills off all who are older than
75 or 76. Suppose, first, that the probability of death is the same for
every half-year in the interval. This amounts to saying that the proba-
bility that the last payment shall be in any particular half-year is the
same for all 154. If then we calculate the initial worth of an annuity
certain whose last payment shall be in any one of these half-years,
and divide by 154 we get the average amount paid, and so the proper
value for the life annuity. But De Witt does not assume equal probability
for all last payments. It is the same for the first hundred half-years;
for the next 20 years he assumes that the chance is 2 of what it was
before, in the next 20 it is {, and in the last 14, §. He therefore gives
the first 100 sums each the weight unity, the next 20 the weight %, the
next 20 the weight }, and the last 14 the weight 4, and divides by 128,
getting the value 16-001606.

De Witt gives no hint as to the mathematical procedure employed
in calculating these sums; probably he did not make the calculations
himself. However, the calculation of an annuity certain at a specified
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rate of discount to run for a specified time involves nothing more
recondite than summing a geometric series, and that is found in Euclid,
IX. 35, and was presumably well known. Besides, such calculations
would be unsuitable matter to put into a communication addressed to
the ‘Noble and Mighty Lords of the States General’. In the concluding
pages of De Witt? we find a number of reasons why a life annuity is
really worth more than 16; these are of no mathematical interest.

The Grand Pensionary returns to the subject of life annuities in
De Witt?, but this time he does not assume anything so simple as an
equal probability of decease in each half-year. He assumes that a
mortality table has already been set up in this shape. We are told how
many years pass from the beginning until the first death occurs, say at
the end of 7, years. Let the second death occur r, after the beginning,
and so on, the last occurring after r, years. Let 4, be the value of an
annuity certain to run for  years. He assumes that a particular person
is just as likely to be one of these as another, hence the value of a life

annuity should be
A, +A4,,+..+A,
n

I do not find the reasoning perfectly convincing, but the answer is
correct if calculated by more modern assumptions.

De Witt next proceeds to a more novel and difficult calculation, that
of an annuity based on the last survivor of two, three, or more lives.
His reasoning is similar to that which precedes. Let us start with the
same life table, the first death coming after r, years, the second after r,
years, and so on. He assumes it is equally likely that the first two to
die should be any two of these. If the decedents were the first two, the
annuity would be worth 4,,, if the second death were after 7, years, the
first might equally well be after r, or 7, years, so we have two equal
probabilities. If the second were to die after r, years, the first might
be after r;, 75, or 7, years. He thus calculates the annuity of the second

to die as
A, 424, 4.+ (n—1)A4,,
14+243--... '

Again, suppose he with an annuity of the third to die, is the last survivor
of three. The principle is the same. If the last survivor dies at the end
of r, years the value is 4, . If he dies at the end of r, his two predecessors
were equally likely to die after », years and r, years, or after r, years
and 73 years, or after r, years and 73 years, three possibilities. If he die
after r; years we have six equal probabilities ; the answer is

A, 434, +...
1431
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The form in which De Witt gives his answer is interesting:

7 15 24 33 41 50 59 68
1 2 3 4 5 6 7

1 3 6 10 15 21

1 4 10 20 35

1 5 15 35
1 6 21

1 7

1

The first row gives, presumably, the years of death, reduced according
to some system; the remainder of the table is the miscalled Pascal
triangle.

We are very safe in saying that this represents De Witt’s most impor-
tant contribution to mathematics, and that it is a very commendable
performance for a man deeply involved in the affairs of state. But I
cannot help feeling astonished that such an important subject should
have to wait until his time for adequate and careful discussion.



CHAPTER X

JOHANN HEINRICH HUDDE

§ 1. The reduction of equations

It is greatly to the credit of van Schooten that two of his pupils who
attained high position in public life should have spent part of their
leisure in mathematical study and produced work worthy of comment.
I do not know the name of any other teacher who produced two such
pupils, and both remained loyal to their master, which has not always
been the case. One of these pupils was De Witt whom we have just
considered, the other was the man whose name stands above. He began
as a student of jurisprudence and certainly retained an interest in that
branch all of his life. He was appointed to take charge of the flooding
of the country when it was threatened with invasion by the French, but
his greatest public distinction was that he was elected Burgermeister
of Amsterdam no less than nineteen times. His interest in mathematics
was very real. He was personally acquainted with Huygens, who was
surprised at the amount of Hudde’s unpublished mathematical notes.
We see from the letters in De Witt? that the Grand Pensioner rated him
highly, and Collot d’Escury quotes one Witsen as calling Hudde the
‘incomparable mathematician’.t We need not go quite as far as that,
and we should not be too much prejudiced by the statement that he
boasted he could pass a curve through any number of points.

QOur writer’s first article, Hudde!, has to do with the reduction of
equations. This is rather unsatisfactory from a modern point of view,
for there is no discussion of domains of rationality, as we should expect
to-day. Hudde had never heard of anything of the sort. He writes his
equation by setting equal to 0 a homogeneous polynomial involving
such a variable as 2.

He begins with several rules which amount to this:

Suppose that we have a polynomial, homogeneous in the variables
x,a,b,c,.... Let us give to some of these variables special values. If in
the resulting polynomial the term independent of « is not 0, and if it is
not factorable, then the original one was not. If the term independent
of  does vanish, but if the polynomial is unfactorable after « has been
divided out, then the original polynomial was unfactorable. Here are
two of his examples:

(1) 23— (3a-+b)x?+(2b%4-3ab+4a0%)r— (a®+-5a%b--4ab®4-1%) = 0.
Let a = 0: 3 —bx?- 2% 0% = 0.
+ De Witt?, p. 96.
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This is not rationally factorable, hence the original was not.
()  atddeadt (dc2—d2—2b%)aR—4blex+ (b3—b2d?) = 0.

Lletb=c=d=1: xt4-4adfa?—dx = 0,

234 4a2x—4 = 0.
This is unfactorable, hence Hudde concludes the original polynomial
had no factor of degree less than three. It seems to me that he has
gone wrong at this point. His next phrase is: ‘At vero si ultimus
terminus evanescat atque etiam inde resultans aequatio non existat

reducibilis, aequatio proposita ad pauciores dimensiones quam ista
resultans reduci non poterit.’}

But if we take 23 —ba2+a2r—ab
and put b = 0, x24-a? = 0;
yet the original equation had the factor x—b.

Hudde frequently introduces new variables. For instance,}

x5+ (a2 b3+ (3ab%— 2a3)x? - 2ab* = 0.
Let 23+ ya?+2a%w4-z = 0,
¥ = —ya?—2air—2,
[Ba(ay+b?) —y(y?2+b%) —2a°—2]x?+[yz+ 20t — 2a%(y* - b%) o+
+-{(a®—b2—y?)z-+2ab*] = 0.
Setting the coefficients separately equal to 0, and eliminating z twice,
— -+ (a?— b2y 4 (3ab?—2a%)y + 2a%(a®—0%) = O,
Yo+ (20— 4a?)y® - (20° — 3ab®)y® - (3a' — 406>+ b)y -
-+ (5a%b% —abt—2a®) = 0.
These will have a common root y = «, giving
z = 2ab?; 23 4-ax?-+ 202+ 2a0b? = 0.

I can find only one other case, and that was even more trivial, where
Hudde introduced two new variables. I consequently cannot help
wondering at Cajori’s statement, ‘With Hudde we find the first use of
three variables in analytic geometry’.§
§ 2. Equal roots

The remainder of Hudde’s algebraic work seems to me very prolix,
not to say boring, with one important exception. On p. 435 of Hudde!
he finds a necessary and sufficient condition that an equation shall have
two equal roots. No proofis given in that place ; I will give in somewhat
abbreviated form the proof that he gives on pp. 507, 508 of Hudde2.

+ Huddel, p. 408, I Ibid., p. 428. § Cajorit, p. 180,
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Let an equation have two roots equal to y. It may then be written
(x—y)[a"24-a; "3 faz v 4 +...] = 0.
Here are three successive terms:
(01— 20541 Y+ Qg Y2)E T4 (g g — 205 4 Y 0 g YR )RR
+ (Oppro— 20143 Y Qg g YR FH,
Let us multiply these in turn by three successive terms of any arith-
metical progression, say «—8, «, a8, and seek the total coefficient of

;. , which we may take as a general term in @, and which appears only
in these three. We find

3a[xn—k+2y2__ an—k+3y+ xn—-k+4] .

This will vanish when @ == y. He finds thus as a necessary and sufficient
condition that an equation should have two equal roots, that if we
multiply the successive coefficients, including those which are equal to 0,
by successive terms of any arithmetical series, the resulting equation shall
share a root with the original one. This is easy to determine by Euclid’s
method of finding the greatest common divisor. As a matter of fact he
usually takes the series n, n—1, n—2,..., and this amounts, little as he
knows it, to requiring that a polynomial shall share a root with its deriva-
tive. We shall meet this again when we come to consider I’Hospital.
We find a further discussion of equal roots when we come to the
discussion of maxima and minima in Hudde? for a maximum or
minimum usually comes at the top or bottom of an arch, or where the
curve meets a horizontal line two of whose intersections fall together.
More briefly we find a maximum or a minimum for y by finding such
a value for  that two roots in y coalesce. He gives in fact some maxima
and minima problems which involve several variables. Here is one:t

y3—nyx-+a® = 0; V—2 = y; Wy = z;
v to be a maximum. Eliminate y:
93— 32 - 3vx? = nx(v—2z).

Eliminate «: o2
103432 = n(z — 22) ,

" ——%vz—{%z%—{—nzz = 0.

Take the series 3, 2, 1, 0:
nv 2
32 = 0 3L,
CTeTg

Substituting for 2% v: = 5

1 Hudde?, p. 514.
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Hudde has here an ingenious method of finding out when an equation
has two equal roots. It is his best known contribution to mathematics,
and deserves more than passing notice. It was unfortunate for him
that he did not discover it sooner, as it would not have been so quickly
superseded by the superior methods of the infinitesimal calculus. There
remains, however, one very interesting question about his place in
mathematical history: Are we not indebted to him for a very important
contribution to algebra, the use of a single letter to stand for a negative
as well as for a positive quantity ? This view seems to be widely held.,
For instance:

‘With Descartes a letter represented always a positive number. It was

Johann Hudde who in 1659 first let a letter stand for a negative as well as a
positive value.’}

Or again:

‘Den Schritt, einem und demselben Buchstaben positiven und negativen
Wert zu verleihen, tat 1657 Johann Hudde, Amsterdam, bei Descartes hat
noch jeder Buchstabe nur positiven Wert.’§{

I think that this idea was first put forth by Ennestrom (q.v.) in one
of his customary attacks on the accuracy of Cantor. He points to
Hudde’s Regula XI which says:

‘Brevitatis causa quantitatem cognitam 23 termini adfectam suis signis --
& — vocabo p, 3titq, 447, 5ts atque sic deinceps & —p, —gq, —r ete. easdem
quantitates designabunt, sed contrariis signis adfectas.’§

This certainly means that a single letter can stand for a positive or
negative quantity, a tremendous advance. But it comes after 30 pages
where we continually find literal coefficients with 4- or — signs prefixed,
and the same in Hudde? which is more recent. This would seem com-
pletely meaningless unless the letter alone meant a positive quantity.
I conclude that Hudde made a most valuable mathematical discovery,
. which he did not in the least appreciate himself,

1 Cajorit, p. 178. 1 Tropfke, 3rd ed., vol. ii, p. 100. § Hudde!, p. 431.
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WILLIAM, VISCOUNT BROUNCKER

§ 1. Continued fractions

WiLLiAM, second Viscount Brouncker, held a more exalted position in
the world’s eye than any other great amateur mathematician. He
inherited his Irish peerage from his father, for whom it had been
created, and who stood high in Court favour. William fully maintained
the family loyalty to the throne. He was long intimate with Pepys, and
held exalted, if not perhaps arduous, positions both in the Treasury
and the Admiralty. But his great public service consisted in being one
of a small number of scientific enthusiasts who founded the Royal
Society. He not only helped to found it, but was the first President,
from 1662 to 1677. One suspects that he was placed ahead of such men
as Boyle and Wallis in the presidency partly on account of his social
position, but the Society’s records show that he was faithful in atten-
dance and fulfilled the presidential duties conscientiously. The great
advantage that came to him from this connexion was that he was fully
aware of the great scientific advances then taking place all over the
world. He studied mathematics in Oxford, took a degree in medicine,
and initiated his scientific activity by a study of the recoil of guns.

Our present business is with Brouncker the mathematician. Here he
enjoyed the great advantage of intimacy with Wallis. From this sprang
the impetus for most of his scientific activity. In the Arithmetica
Infinitorum, published in 1665, Wallis undertook to find the approximate
value for 4/7. I will not reproduce his long calculation ; the explanation
in Scott (q.v.) covers pp. 47-60. The final result can be written:

4 BXBXBEXBXTXTX...
m 2X4AXEXBXE6X8X8X...

Nowadays we reach this easily from the inequality

Kis

(1)

-

o A
sin?"y dx > f sin?*+lx dx > f sin2n+2x da,
0 0 0

or from Stirling’s formula

lim wrey(2mm) 1.

N—r00 nl
Wallis was not satisfied with an answer of this sort. An endless
product looked to him suspicious. He might have reasoned that if we
write it 9 95 49

§X§Z><Zé><m,
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the result is greater than unity, as it should be, whereas if we write it

1,9 25
277167 36
the result appears less than . In any case he submitted it to Brouncker,
who came back with the result

S= @)
2tz 25
+_._.

Right here we have a great disappomtment, we simply do not know how
Brouncker reached this result. There is what seems to be a proof in
Wallist which frankly I am unable to follow. He begins by noting that
the product (1) can be written, in modern notation,

=2 (2r4-1)2

IT[%+1

He then considers the function

1
) = g+ ——e—
2y+ 95
Wty

and shows that for the first three convergents

@)y +2)—[dly+ 1))
is small. I do not see how he proceeds from there and agree with Reiff:
‘Der Beweis den Wallis dafiir giebt, ist aber so gekiinstelt, dass man
nicht annehmen kann, Brouncker habe denselben Weg eingeschlagen.’}
Here is a very simple proof based on some work of Euler’s. Suppose
we have a convergent infinite series

CotYitrivetyivevsto .
This is equivalent to the continued fraction

Co+y1
172

1+7'2_13/.3,, _
N

Let us take in particular

xs a7

-1
tan x_f1+t2 T— +3_7+

t q.v., pp. 470 ff, I Reiff (q.v.), p. 14.
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2 3x2
Pat y; = 2, y, = 3y Vs = T
tan-lp = = 3
147
Q2
3—a? |-
2512
5—3x2 4
7T bxt-L
Putting o = 1
T 1 . 1
TS S
2. "
21 %5
2 ..

Perront gives essentially this, with the comment ‘Dieser Ketten-
bruch war lang vor Euler bekannt’.

At this point we run into an interesting historical question. It has
sometimes been assumed that Brouncker and Wallis were the first to
make use of continued fractions. This is not the case. Continued
fractions were used much earlier in computing square roots.I Two
Italians, Raffaele Bombelli and Pietro Cataldi, used them for simple
root extraction. We find a long account of Cataldi’s work in Bortolotti
(q.v.). He claims that we owe the latter for

1) The fact that successive convergents are alternately less and

greater than the ultimate value.

2} The formulation of the rule for finding convergents in terms of the

successive quotients.

3) The estimate of the limit of error.

These are important claims, and I am not sure that Cataldi is entitled
to the full credit for the general continued fraction; he does not use
perfectly general numerators and denominators, and the only fractions
that he uses are those which approach square roots. Independent of
these Italians Daniel Schwenter showed how complicated fractions
involving large numerators and denominators could be approximated
to by continued fractions involving only small numbers. In Schwenter§
we have an approximation to 288. He first carries through the Euclidean
process for finding the highest common factor, setting down the quo-
tients and remainders in two columns. In two other columns he sets
down the numerators and denominators of the successive convergents,
much as we should do it to-day. He evidently had the general idea.
I doubt whether either Brouncker or Wallis ever heard of Schwenter,

1 q.v., p. 209. 1 Tropfke, 2nd ed., vol. vi, pp. 75 ff.
§ q.v., Part II, Book I, Problem XIII, pp. 65 ff.
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the number 4/m in which they were interested is not the root of any
equation with rational coefficients. We therefore owe these geometers
thanks for being the first to use continued fractions to approxzimate
to a transcendental number. I think it is possible that Wallis sur-
mised the general rule for finding successive convergents; we find him
writing:

Esto igitur fractio eiusmodi continue fracta quaelibet sic designata

Cum igitur constet, recepta methodo reductionem institui posse ad hunc
modum
ab  af
af b+of’

Et sic deinceps quantum opus erit.’}

ac-afy
actby+afy’

abe
afy

He may, of course, merely have put this through by main force, but
again he may have surmised some more general method of calculation.

§ 2. The semi-cubical parabola and the cycloid

Brouncker’s next mathematical work appeared in 1659 in Wallis’s
discussion of the cycloid, but seems to have been completed earlier.
The work is interesting because before the methods of Newton and
Leibniz were widely known, there were so few curves which could be
rectified. Van Schooten had shown that a certain Heurat had rectified
the semi-cubical parabola. Wallis wrote to Huygens that this had
previously been done by a certain William Neile. Neile’s proof was
apparently improved on by Wren. Wallis sent Brouncker ‘Hanc D.
Nelii demonstrationem, ubi conspexerat Illustris Brounckerus suam ille
statim quae sequitur non absimilem concinnavit, et impertivit mihi,
quam jam ultra duos annos apud me habui’.}

It is true that the two proofs are much alike, Neile’s being, I think,
the easier. I am sure, however, that Brouncker was too honourable a
man to send in some slight modification, claiming that it was original
work. Let us therefore assume that concinnavit means that he had
already knocked something together and was now sending it along.
Here is the essential part.

Let us remember that a semi-cubical parabola is the curve whose
ordinates are proportional to the areas of parabolic arches cut by pairs
of ordinates perpendicular to the axis. We take the parabolic half-
segment 4 BC

4B = «a; BC =b; BE = c.
t Wallis (q.v.), vol. i, p. 475. 1 Ibid,, vol. i, p. 552,
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Let AeE be the semi-cubical parabola, and AcC the corresponding
bola:

barahola Par ABC _BE ¢

Par dac ~ ae  ae

F
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‘Ee ¢ }{t
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Brouncker will prove
AB 27ac?
AeE  (402+49c?)[|/(4a%+9c%)—8a]’
Now ¢ is proportional to Par 4 BC,
Suppose AB AKxAB
BE ~ Par ABC’
Par ABC Par Adac
—ax -~ B AgK T
Par Aac
AK
mj;;?f—a = Pe; ee? = (am)?}(Pe)?

By the fundamental property of the parabola

Take two values of

and subtract. Then, approximately,

T
ah = J(AK*tact);  BH = J(AK*+b¥);
ah? — ac*+ BH?—b?
=t B2,

a

act  Aa,

Then % traces a parabola where the element of area is
aa X ah = AK Xee.
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The problem of finding the length of an arc of a semi-cubical parabola
is that of finding the area under an arch of a parabola, solved by
Archimedes. It does not seem to me necessary to follow the calculation
any farther.

Brouncker’s next contribution, Brouncker?, is called ‘A Demonstra-
tion of the Synchronism of the Vibrations in a Cycloid’ and is very brief,
but we find the calculation at length in Birch.t The date is 22 January:

‘The pendulum experiment was discoursed by Lord Viscount Brouncker
who brought in the account and schemes of it, and a committee was appointed

for making trials of it, consisting of his lordship himself, Mr. Boyle, Sir
William Petty, Dr. Williams, and Dr. Wren.

‘His lordship’s paper was ordered to be registered, and a copy of it was
made against the Friday following and brought to Sir Herbert Moray to be
gent to Mons. Huygens.

‘The paper was as follows.’

The paper is given in detail. It covers four very large pages; I cannot
see that it is in any way an improvement on Huygens. The important
question is whether this was the first demonstration of the interesting
theorem that the cycloid is the tautochronous curve. Huygens’s proof
is found in his Horologium oscillatorium, which was not written till 1665,
but that does not settle the question. The wording above suggests that
Huygens had announced the tautochronism of the cycloid, and perhaps
sent along his proof, and a committee was appointed to test the thing
experimentally. Brouncker then either published a proof which he had
worked out previously, or lacking Huygens’s proof, worked out one of
his own. Cantor inclines to this latter view.] It seems highly likely that
Huygens had proved the theorem mathematically, not experimentally,
following the lines of his subsequently published proof. This idea is
strengthened by the following:

‘On examine le mouvement sur les surfaces inclindes, et c’est 13 qu'on a

démontré cette propriété si estimée, que je scay que M. Huygens a démontré
touchant le mouvement qui se feroit sur une cycloide.’§

*Paradies gives a proof.]|| The date of this writing was subsequent to
1665, but Cantor, loc. cit., points out that it was before the H. orologium
oscillatorium was available. It seems to me that Huygens must have

found and communicated to a certain number of people a proof anterior
to Brouncker’s.

§ 3. The hyperbolic area and logarithms
Brouncker’s last mathematical contribution will demand longer con-
sideration, for it involves several other mathematicians. It appeared

t q.v., pp. 70 ff. 1 Cantor?, vol. iii, p. 134.
§ Paradies (q.v.), 16th page of the preface. I} pp. 233 .

* Paradies; Pardies is the more usual spelling.
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in 1667 and was devoted to the much studied computation of the area
bounded by an arc of a rectangular hyperbola, the ordinates dropped
from its ends on an asymptote, and the intercepted segment of that
asymptote. Let us look at the history of this problem.

In 1647 there was published in Antwerp the Prolegomena a Santo
Vincento. Opus geometricum quadraturae circult et sectionum cons which
is accessible in Bopp2. We may assume that Brouncker was familiar
with this, for Wallis wrote to to him in 1658:

‘Si Pon prend sur 'asymptote les droites NH, NI, NQ, NK, NL, NM
en proportion géomsétrique, des points H, I, @, K, L, M on méne des droites
paralléles & I'autre asymptote, I'espace hyperbolique ABHM est dividé en
cing parties égales, comme I'a démontré Grégoire de St. Vincent Livre X
je crois.’}

The proof is easy, and comes to this:J

Let the extreme ordinates be £, Q,, P, @,. We divide the area into
equal parts by ordinates P, @y, P, @s,..., Py @y

- : PQ; _ Fub
P%Q’LXRPL-PI P‘H—l Q‘L+1><P1,+1 PL+2’ -l)i+1 qu+1 -l)i})i+1 °
But

PQ, _ OPyy  OPuytPiyPuy _ OPuy _ PQu
Pa@un  OF  OPRYBE, OBy, Pt

re==ey

St. Vincent considers also the incommensurable case, but we need not
follow him here. I note that he treats the area as the sum of a number
of rectangles ; these were the days of Cavalieri’s indivisibles.

I turn next to Fermat. I cannot find the date of his publication of the
following result, but as he died in 1665 it was before the date of
Brouncker’s publication of the work with which we are occupied. This
theorem, which is in a discussion of quadratures, states that we can find
the area bounded in this same way by any hyperbola, save the first, by
a uniform method.§

His first idea is to take as bases of his infinitesimal rectangles not
points equally spaced on the asymptote but those which mark a
decreasing geometrical series of distances from a fixed point. Consider
the hyperbola z"y = 1 and the points whose abscissae are a, ar, ar®....
The element of area is then

ar™(l—r)  1—r
anrymn - an—-lrm(n—l)'

ylarm—arm+t] =

1 French translation of Tannery and Henri, in Fermat (g.v.), vol. iii, p. 576.
i Bopp?, p. 2656. § Fermat (g.v.), vol. iii, pp. 217 ff.



§3 THE HYPERBOLIC AREA AND LOGARITHMS 143

This only breaks down when n = 1.

We now pass to James Gregory. In 1667 he laid before the Royal
Society a paper entitled Vera Circuli et Hyperbolae Quadratura. Here
is the comment: '

‘This treatment perused by some very able and judicious mathematicians,
and particularly by the Lord Viscount Brouncker, and the Reverend John
Wallis, received the character of being very ingeniously and mathematically
written, and well worth the study of men addicted to that science ; that in it
the author has delivered a new analytical method for giving the aggregate of an
infinite or indefinite converging series, and that thence he teaches a method
of squaring the circle, ellipsis and hyperbola by infinite series, and calculating
the true dimensions as close as you please. And lastly that by that same
method from the hyperbola he calculates both the logarithm of any number
assigned and, vice versa, the natural number of any logarithm assigned.’t

This seems to be the first statement of the connexion of logarithms
with the hyperbola. Let us look into the question of who first saw this
connexion. Cantor frankly gives the credit to St. Vincent, basing his
statement on the theorem proved on p. 142, although St. Vincent never
uses the word logarithm.

‘Das ist offenbar die Wahrheit von der Quadratur der auf die Asymptoten
bezogenen Hyperbel durch Logarithmen, welche hier entdeckt ist, ohne dass
Gregorius sich dabei des Wortes Logarithmen bedient habe.’}

A much more definite statement is found in Hutton:

‘ As to the first remarks on the analogy between logarithms and hyperbolic
space, it having been shown by Gregory St. Vincent in his Quadratura Circuli
et Sectionum Coni published at Antwerp in 1647, that if an asymptote be
divided into parts in geometrical progression, and if from the points of division
ordinates be drawn parallel to the other asymptote, they will divide the space
between the asymptote and the curve in equal parts, from thence it was
shown by Mersenne that by taking the continual sums of these parts there
would be obtained areas in arithmetical progression which therefore were
analogous to a system of logarithms. And the same analogy was remarked
and illustrated soon after by Huygens and others.’§

This statement is important, if correct, but Hutton does not rank as
a perfectly accurate historian. I find no confirmation in any of the
standard histories of mathematics, except that already quoted from
Cantor. Montucla is very much interested in the point:

‘Cette propriété est du plus grand usage dans la géométrie transcendante et
elle a fourni la résolution pratique de tous les problémes qui dépendent de la
quadrature d’un espace hyperbolique & 'usage d’une table de logarithmes. Au
reste la découverte de cette propriété est revendiquée par plusieurs géométres.’||

1 Gregory (q.v.), p. 282. } Cantor?, vol. ii, p. 896.
§ Hutton (q.v.), p. 86. {i Montucla (q.v.), vol. ii, p. 80.
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We find in Kistnert an attack on St. Vincent. by Mersenne, who
blames him for the fact that he does not show how to solve the problem,
given three positive numbers, and the logarithms of two of them, to
find the logarithm of the third. Kistner goes on to give the answer of
Sarsa, who says the problem is easy when the numbers are commen-
surable. Montucla points out that the logarithm is there in every case.
If we have given a straight line and two points on one side of it, there
is just one rectangular hyperbola through these two points which has
the line as an asymptote. I cannot find the passage in any of Mersenne’s
works accessible to me. It is certainly no great step to pass over from
St. Vincent’s series theorem ; such a step would seem quite natural to
anyone who considered the question. For instance, we find Mercator
dealing with the hyperbola:

S S 2__ 3
y—x—{«l—l rtaxt—a3...
xZ x3 x4
fydx_log(l+x)—x——2—+§~Z+....

Of course he did not bother with any question of convergence.}

It is high time to return to Lord Brouncker. On the page of the
Philosophical Transactions facing that with the mention quoted above
of Gregory’s work, we find Brouncker on The Squaring of the Hyperbola.§
I showed on p. 142 how Fermat had tlie idea of spacing ordinates from
an asymptote from lengths which follow a geometrical progression.
Brouncker’s scheme is rather more complicated. He starts with
Mercator’s hyperbola: (@+1)y = 1.

He wishes to find the area bounded by the X-axis, which is an asymp-
tote, the ordinates x = 0, x = 1, and the intervening arc of the curve.
We first go to the point (1, ) and draw the coordinates. We have with
the axes a rectangle whose area is 1/(1x2). We then go to the point
(4, %) and draw down an ordinate as far as the top of the preceding
rectangle and an abscissa as far as the Y-axis. We add to our area a
rectangle of 19 1 1

5(3—5) T ax4’
We then go to the points (%, ), (}, 4 and form rectangles on the
previous model; their areas will be

1 q.v., vol. iii, p. 251. i Zeuthen (q.v.), p. 314,
§ Phil. Trans., abridged ed., 1809, vol. i, p. 233.
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Here is the general scheme, although Brouncker does not give the
details. We go to the point

2m—+1 n

9n oL om1
and drop perpendiculars on the lines

v = 2m . 2n

T YT miomre
We form a rectangle whose area is
1
" Fom 1) (2" 2m+2)
For each n the limits for m are 0, 2"~%. We reach finally
1 1 1 1

1><2+3><4+5><6+7><8+""

But Brouncker does not stop here, he calculates similarly the area on
the other side of the curve, that is to say, bounded by the curve and
the lines z = 1, y = 1. Starting with the same poink

9m -1 on )
gn  on i om1

we drop perpendiculars on the lines
© = 2m4-2 2n

T YT s em
We thus get the area
1 1
@ am) " @ am 1)
. 1 1 1
and so the series 2><3+4><5+6><7+""

I repeat that Brouncker does not give this general formula, merely
taking it for granted that the procedure which worked in the first three
cases can be stepped up indefinitely.

The noble viscount then takes the interesting step of calculating
another series which converges more rapidly, namely that which gives
the area between the curve and the chord connecting the end points
(0, 1), (1, §). This he gets from an infinite series of triangles, much as
Archimedes did in calculating the area of a parabolic segment. We have
triangles with vertices

E 2n 2m--1 P 2m—+-2 on
on’ 9ntom)’ on ’ 9rlom--1) on 7 9n L om2)
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Instead of using these coordinates and the formula for the area of their
triangle, he makes use of the simple theorem that if a point be within
a rectangle, the area of the triangle whose vertices are this point and
the ends of a diagonal is one-half the difference between the areas which
the lines through the point parallel to the sides make with the sides
across the diagonal and with the sides on the same side of the diagonal.
This gives him the form he seeks:

1/ 1 1 1 1 1 1 1
— — — amand L 400 o
2(2><3 3><4+4><5 5><6+") 2><3><4'4><5><6+6><7><8+
At this point Brouncker becomes interested in convergence. He
remarks:
1 LI S
1><2+2><3 3xd™ T 7

not for the fairly obvious reason that the sum of the areas on the two
sides of the curve is unity, but because if ¢ be the number of terms
taken at pleasure, the last term is 1/(¢®>+a) and the sum so far
1—1/(a+1). He does not give a complete proof based on mathematical
induction. He then tries with less success to show that the difference
between the sum of his third series and the area sought is less than any
assigned quantity. He does show that if in any area of this sort the
end ordinates are commensurable, the area can be found as closely as
we wish by this device.} It seems to me interesting that at this early
period in the history of infinite series Brouncker not only bothered with
questions of convergence, but also of showing that a series converged
to the right value.

What should be our final judgement of Brouncker as a mathemati-
cian? I am afraid that I cannot be as enthusiastic as I should like to be.
One must be more exacting in judging a man who had every scientific
advantage that his age offered, and was in touch with all the ablest
mathematicians of his time, than in the case of a man less favourably
placed. He was certainly an able man, and his continued fraction
approximation to 4/7 was admirable. But in all of the other papers I
have mentioned he was pretty close to what others had done, and
sometimes done better ; a sad verdict.

+ Zeuthen (q.v.), pp. 810-13.



CHAPTER XII
GUILLAUME L’HOSPITAL, MARQUIS DE SAINTE-MESME

§ 1. Original contributions

GuiLLAuME Frangors I’HospiTar, Marquis de Sainte-Mesme, Comte
d’Entremont, Seigneur d’Ouques, etc., was born in 1661 and died in
1704. He was a shining example of a man of the highest social distine-
tion whose love of learning drove him to devote much of his short life
to scientific writing. There were, as we shall see, certain inexactitudes
in his mathematics, but they were nothing compared to the vagaries
in the spelling of his name: ‘He is also known as the Marquis de ’Hospi-
tal. The family also spelled the name Lhospital and, somewhat later
PHopital.’t

A young man sprung from a socially important family was naturally
destined to serve in the armed forces, and there Guillaume began, rising
to the rank of captain, but withdrew from the army because his extreme
near-sightedness proved an insurmountable barrier. It is interesting to
note in this connexion that Taine tells us in his Histoire du Consulat et
de U Empire that the reason why the French won the great victory of
Auerstiddt was that Marshal Davoust was very near-sighted, and always
went way forward to get a good view of the enemy ; this enabled him
to discover that a large German force was endeavouring to withdraw
after the great defeat at Jena. One is inclined to believe that it was
L’Hospital’s love of mathematics rather than the imperfection of his
vision that led him to abandon a military career in favour of a scientific
one. He early established contact with Huygens, Leibniz, James and
John Bernoulli, and other scientists. A most significant event occurred
in 1691 when John Bernoulli came to spend a season in the French
capital, and passed part of his time at L'Hospital’s estate of Ouques.
This was significant in the lives of both. L’Hospital subsequently
secured for the Swiss a position as professor at the University of
Groningen.] This was in return for being inducted into the mysteries
of Leibniz’s new doctrine of differences, and receiving a start towards
mathematical production. Their subsequent relations were not always
entirely happy, as we shall see.

L’Hospital’s first contribution to mathematics was his ‘Solution du
probléme que M. de Beaune proposa autrefois & M. Descartes’, which
appeared in the Dutch Journal des Sgavans for September 1692. Right
here we run into a priority dispute. Descartes was unable to solve the
problem ; Leibniz apparently solved it, but did not publish his solution.

t Smith (q.v.), vol. i, p. 384. 1 Rebel (q.v.), p. 13.



148  GUILLAUME L’HOSPITAL, MARQUIS DE SAINTE-MESME  Chap, XII

Bernoulli and L’Hospital seem to have studied it together, which subse-
quently led to heart-burning.t Here is the problem: ‘To find a curve
through the origin which has the property that the slope of the tangent
at any point is equal to a fixed quantity N divided by the length on
the ordinate between the point of contact, and the intersection with the
line = y.” I’ Hospital does not set up and solve the differential
equation, but gives a geometrical construction that produces the result

W_ Ny aN-gm]
de y—x’ N ' N—(y—=z) ’

Y 1 1og N—(y—)] = 0. M

On p. 596 of the Journal des Sgavans he proceeds as follows. He takes
the hyperbola (N —&) (N —7) = N2,

He then finds the area bounded by the lines x = 0, y = % and the arc
of the curve from (0, 0) to (£, 7). In his picture £ << 0, 7 > 0 and the
curve sought is in the north-east quadrant. This area he calls Nz,

7 7

NZ
Ne= — | édn=— | [N\ d
x Offn Of(+n__N)n

= —Nj+N?og(N—7).

We then put y—z = § and fall back on (1).

A similar but more difficult problem appeared a year later in the
Mémoires de I’ Académie des Sciences, vol. x, June 1693, We seek a curve
which has the property that the length on the tangent measured from
the point of contact to the intersection with the X-axis bears a fixed
ratio to the distance from the origin to the intersection of that axis with
the tangent. Here again it is easy to set up the differential equation

xdy—ydx q
L’Hospital does not tell us how to integrate this equation, he merely
states: ‘Les principes sont peu connus.” He gives a solution involving
an auxiliary variable 2] :
@ z2+(q2__p2)a,2 a2+p/4z1—p/q (3)
v paz YT 2E(porat
This curve gives a solution of the differential equation. It is rather
curious that p and ¢ appear explicitly, not merely through their ratio,

1 Rebel (q.v.), pp. 3, 4. 1 Ibid., p. 28.
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which is the way in which they appeared at first. To find a geometrical
construction he takes two rectangular hyperbolas,

&y =q—p; = —¢

We get the relation of x and y to 2z by comparing areas under these curves.

In the tenth volume of the Mémoires de I’ Académie L’Hospital has
two short notes. He begins by seeking the point where a caustic
by refraction touches its envelope. This problem had already been
solved by others, and I shall return to it again. On pp. 397-8 of the
same journal he raises a more interesting point. He says that Leibniz,
Huygens, and others insisted that at a point of inflexion the radius of
curvature is infinite whereas, says L’Hospital, it may be 0. He gives
as an example the curve s __ .5
&e = y )
which appears to the eye to have an inflexion at the origin, though
the radius of curvature vanishes. The difficulty here is a lack of a clear
definition for an inflexion. This is usually treated as a non-singular point
of the curve, but as every line through the origin will have at least three
coincident intersections with the curve, this pointissingular. L’Hospital
naturally knew nothing of all this, his point is well taken. Unfortu-
nately he makes another mistake at this point. He says that if a curve
have an inflexion at any point, that involute which passes through the
point will also have an inflexion there. This is not the case analytically.

The next article of L’Hospital’s which I care to mention appeared in
the Acta Eruditorum for February 1695. A drawbridge is hoisted by a
rope passing over a pulley to which is attached a weight sliding down
a given curve. What should be the form of this curve if the system is
to be in equilibrium at every point ? L’Hospital makes two modifying
assumptions: the rope is attached to the drawbridge at its centre of
gravity, and the pulley is just above the hinge. As a matter of fact he
makes the height of the pulley equal to the weight of the bridge, that
is merely a question of units. It simplifies the result, for he remarks
ex statica the tension in the rope is then equal to the distance from the
pulley to the point of attachment to the bridge, or from the weight
down along the line of the rope produced to the intersection with a
circle whose centre is the pulley, and whose radius is the length of the
rope. If the length of the rope be « and the weight b, we find by similar

triangles ay a
AL U F SIS
{J<x2+y2) y} { LR P
(b+x) dat-y dy = adJ(x®+y?),
br+3(a2+y?) = ayf(z2-+y?)+ K.

This note is followed by two from the Bernoulli brothers. John shows

}:_.— dx:dy,
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that in the general case we have a trochoid, of some sort; his brother
James carries the thing through very easily, removing the restrictions
placed by L’Hospital.

In the July number of the same periodical we find another pretty

¥ie. 53

problem of I Hospital’s. A straight line moves so as always to be
tangent to a given curve, and to cut two others. The tangents are
drawn at the two points of cutting, and brought to intersect. To draw
a tangent to the locus of this meeting-point. This problem is most
easily solved by line geometry. Here is L’Hospital’s solution by means
of the elementary geometry of infinitesimals.

Let H, I be the cutting points, while @ is the point of contact with
the envelope of the line. K and k are nearby points on the locus sought.

Let GH = a, Gl =b, HK=m, IK=mn.
The radii of curvature at H and I shall be f and g.
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Let oy and o, be the angles which the tangents HK, IK make with
some fixed direction. If L be any point on the tangent to the locus of k,
the ratio of its distances to the two lines HK, IK is the ratio for k.

Aal
LE KO mAw mA_tth_ _nggx_l_lf __am¥g
IF T KR nhw  _Bap  n fBNE T ey

Al

A pretty piece of geometry.

In the Acta Eruditorum for May 1697 is along discussion of the problem
of the brachistochrone, or curve of quickest descent under gravity.
I’Hospital is sometimes given credit for being one of the first to solve
this, but this article is very short, so that unless he has made some
other publication in another place which I have not seen, I cannot see
that he deserves much credit. He does, however, about this time, solve
some rather neat problems. Here is one from the January 1698 number
of the same journal.

A series of ellipses have a common major axis. How shall we find the
tangent to the curve which is the locus of such a point that the area
bounded by the ordinate, the arc to the major axis, and the segment
of that axis back to the foot of the ordinate is constant? We must
remember that such an area bears a simple relation to the corresponding
arc for the major auxiliary circle.

Let the moving point be (x, y) on the variable ellipse

Y
2+_‘ =1
The corresponding point on the major auxiliary circle will be (z, ay/t)

t[a2 cos-1 2 — (az—xz)] =,

2 [a2 cos-12 x\/(az—xz)] ’
a7 a

@t c? .
By definition,
d[a2 cos—lg—xJ (a? xz)] = ay@
2 do - L% gy Yay| —
azdx-{-ct[ L i % dy] —0.
. yr at—at . . .
Putting = we have the differential equation; L’Hospital

omits the analysis.
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In the August 1699 number of the Acia L'Hospital gives a Solutio
Sacilis et expedita methodus inveniendi solidi rotundi. This is the problem
of finding which form of tube will offer the least resistance to a liquid
flowing through it in the direction of the axis. This had already been
treated by Newton. L’Hospital finds his treatment too long, and offers
something simpler. It certainly is simpler, but it seems to me that he
oversimplifies the physical assumptions, and does not see nearly as far
into the problem as had the Englishman.

In the Mémoires de I’ Académie des Sciences for 1700 we find another
pretty geometrical problem in an article entitled ‘Solution d’un
probléme physico-mathématique’. This is to find the shape of a curve
such that a body descending it under its own weight will always exert
a normal pressure equal to that weight. We start with Huygens’s prin-
ciple that if a body move down under gravity along a frictionless path in
an upright plane, the normal acceleration is equal to the square of the
velocity divided by the radius of curvature. Let us assume that the mass
is unity, the arc length s, and this we take as the independent variable,

ds = \J(dx2+dy?); d?s = 0; dxd?x-+dyd2y = 0;
dx
Py = — @dzx.
For the radius of curvature
1_ dyd?*x—dxd?y _ d?x ' 4)
z ds® dyds
The normal force exerted by a unit mass will be
L (g e
g dyds\dx] ' ds
Now by the elementary principles of mechanics, for a body coming
down a curve in a vertical plane

SN TN N T
a2 =95 a = w g\dt]
y 2 I
From (4), 2y d ;c\—/i?—/dydx = ZSfZ/

This he integrates ingeniously:
d{dxvy] = dldsvy];

since d?s = 0;  davy = ds[vy—~al;
since ds is constant. Replacing ds by its value,
de — dy(vVy—~a)

v = T2y —a)
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It is a perfectly straightforward job to integrate this, giving, sur-
prisingly enough, an algebraic curve. The whole seems to me his
prettiest piece of mathematical work.

L’Hospital’s last original paper appeared in the Mémoires de 'Académie

des Sciences for 1701. It is entitled ‘La quadrature absolue d’une
infinité de portions moyennes’. Once more we are dealing with figures
bounded by circular arcs, which we have seen were so dear to the heart of
Leonardo da Vinci. Again we meet the theorem that if the radii of two
circles are in the ratio v2:1 a sector of the first with a central angle of §
has the same area as a sector of the second with an angle of 26. L’Hospi-
tal’s problem is like a lot solved by Leonardo, merely a bit more general
and difficult. He refers to Hippocrates, but not to the Italian geometer.

We have two circles as in Fig. 54. We draw a curve ASC according
to the principle PS = sin ZNBM. Through S we draw a horizontal
line meeting the same curve again in I and through this another
vertical. I Hospital seeks the area FGM N, two sides being circular arcs.

By definition arc FIL = 2arc N = 2arc HO = +/2arc GM.

Then arc FL and arc GM correspond to the same central angle

segment GM = }segment F'L
= segment FNJAFNL,
FGMN = trapezoid FGMN +segment @M —segment FN

= trapezoid FGMN+IAFN L.
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This is I’Hospital’s theorem ; there are an infinite number of these
rectifiable figures, since one vertex can be taken at random on the
appropriate arc.

I think we cannot escape the conclusion that as an original mathe-
matician L’Hospital was very much an amateur. He considered mostly
problems which had been set and solved by others. He was not above
making mistakes, and we have from him no striking contribution to
mathematical theory.

§ 2. L’Analyse des infiniment petits

After giving such a tepid account of L’Hospital as an original
mathematician, it is a pleasure to turn to what he accomplished as a
text-book writer. Here he was supreme, a worthy member of the great
French school which included Monge and Lacroix.

L’Hospital’s first book is his Analyse des infiniment petzts first pub-
lished in 1696. It is an introduction to the differential calculus as
conceived by Leibniz, and expounded with all of the enthusiasm of a
neophyte. He conceives that there exist in nature magnitudes of such
different sizes that we may look upon some as infinitely small compared
with others. The small may then be discarded when compared with the
large ones. The distinction between this and our modern point of view is
that a differential, or, as he says a difference, is not a variable approach-
ing a limit under defined circumstances, but an actual small quantity.
The difference of the sum of two finite quantities is the sum of their
differences, so he has his first equation

d@+y—2) = (@+da+y+dy—z—de)—(@+y—2) = detdy—

The difference of a product is found equally easily. As for the differ-
ence of a quotient, the existence of this is first assumed, then it is found
from the product formula

= Y| = za(¥) 1Y
dy = d[x. ;] = xd(x)-}.xdx.

I will mention at this point that L Hospital never explicitly differen-
tiates the logarithm, although he knows the value of {dx/x. He also
does not differentiate the trigonometric functions, although it seems
likely that their derivatives were known in his time. This frequently
involves him in needlessly long calculations. The differentiation of alge-
braic expressions goes through very smoothly. There isno integration; it
is possible that he planned at one time to write separately on this subject.

In section II we are concerned with tangents to curves. He does not
look for the equation of the tangent, but the value of the subtangent,
that is to say the orthogonal projection on the axis, usually the X-axis,
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of as much of the tangent as runs from the point of contact to that axis.
This is, of course, (y dx)/(dy).
Here are some interesting examples:

y—ad = axy,

ydr  3y*—axy

dy = 32tay’
The distance along the axis from the origin to the tangent is
_yde  —ary
dy  3x%4-ay ’
_ Stx?
a(x—t)

Assuming that ¢ does not become infinite with « and y, we put y = 3tz/a
(273 —a?)2® = 3a’ta?,
273 —a?

When 2 is infinite, 3 =a, g = ;’; =1.

The asymptote makes an angle of 45° with the axis; strange mathe-
matics! In proposition X we find a curious theorem which he ascribes
to Tschirnhausen. Given the curve f(z, y) = 0 and the point (a, 4,),
connect (x-dx, y+dy) with this and drop a perpendicular on this line

from (z, y). The distance to the point (z+4dz, y--dy) from the foot of
this perpendicular is, to the first order of infinitesimals,

(x—,) dz + (y—yy) dy
dJi(x—ax 2+ — 2} .
\/{( l) (y yl)} \/{(x—x1)2+(y—y1)2}
Now take a point at a distance r from (2, ) on the line from there
to (xls ?/1)

3

_ ro—z) "y—y,)
LY (e v SR A AL (e W prmrr B

The distance from here to the normal at (z, y) is

rfl@—=,) do+(y—y,) dy}
ds{(@—a))*Hly—v:)%
The ratio of this to dy/{(x—=,)24-(y—,)?} is a function of r alone.
Section III deals with maxima and minima. When a function is
represented by a curve with a continuously turning tangent, a maximum
or minimum, when not at the end of an interval (a possibility he does
not consider) will either be at the top or bottom of an arch, or at a cusp.
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On p. 49 he gives Huygens’s solution of Leonardo’s brilliant point pro-
blem, which we saw on p. 54. He does not make it quite clear why this
should be a problem In maxima and minima. Next comes the classical
refraction problem, the quickest path between two media of different
densities. The section closes with an amusing problem taken direct from
John Bernoulli’s Differentialrechnung: To find on what day in the year
twilight will be the longest at a point of given latitude. Twilight is sup-
posed to last until the sun has crossed a circle parallel to the horizon,
and a certain number of degrees below it. Our variable is the sun’s
declination ; we wish to maximize the difference in the sun’s hour angle
between the time of geometrical sunset and the crossing of this circle.
In section IV he comes to grips with higher derivatives, or second
differences as he calls them. I should mention at this point that
L’Hospital is very careful in his choice of independent variable, whose
second difference is 0, a care which Pascal also took, as we saw on p. 96.
The first application is to points of inflexion. A point of inflexion is,
for him, a point where the curvature reverses while the moving point
does not; at a cusp the tracing point goes back in its tracks. He does
not consider a beak where the point reverses and the curvature does not.
The distance from the origin to the intersection of the X-axis with
the tangent is
y da _ —ydad?y,
Ay S
In case of an inflexion ¢ will have an extreme value d¢, will change from
positive to negative or vice versa. He naturally assumes that it will
pass through the value 0. In the case of a cusp df does not change sign
whereas dx does. d?y must change sign; he assumes that it becomes
infinite. The absurdity of assuming that a second difference, which is
negligible compared with a first difference, should become infinite should
have shown him that there was something fundamentally wrong in his
assumptions. Had he realized that in kinematical terms a cusp was a
point of 0 velocity, he would have seen that both da/d¢, dy/dt change sign
and both d2x/di?, d?y/dt? vanish. He hunts also for inflexions when the
appliqués are radiating lines. Here we are dealing essentially with polar
coordinates which were invented by James Bernoulli in 1691, but did not
come into general use for another century. He writes y where we should
write 7, and da where we should write » df. Here is an example where
he finds a cusp. This is the curve we saw on p. 148.

y(da?-dy®) _p

z dy—y dex q

Joy — Pldrdy—x dy*)y (da®+dy®)
qy* dy—puyy/(de®+dy?)

= —; dt d?z = 0.

’
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He takes the two cases d?% = 0; 1/d% = 0. Unfortunately he makes
a mistake in each.

In section V we come to evolutes, beginning, however, with involutes.
Following Huygens’s classical discussion he shows that if a thread be
unwound from a given curve, the locus of a point fixed in the thread
is an orthogonal trajectory of the system of tangents to the curve. On
the other hand, to find the centre of curvature of a given curve, we find
where a normal meets another infinitely near, or a point whose imme-
diate motion is down the normal. We can abbreviate his work as
follows:

Let the tangent make an angle § with the horizontal.

dx dy

— M —_ = i 0;
F P cos f; Is sin

£ = x—rsiné; n = y-+rcosb;
d¢ = dx—drsin 8—rcos 6d6; dn = dy+-drcos 6 —rsind d6.

It dadé-dydm —

0;
0 = ds?—r dsdb; % a8

=, 5

T (8)
There are various forms for this. If we take s as the independent
variable d%s = 0 and we have the previous equation:

1 dyd*x—dad?y  d’

Z= = . 6
7 dy? dyds )
1 dxdy
20 — 2=

If d*x = 0, ;= g (7)

L’Hospital likes the horizontal projection
=I5 8
z=re0sf = - (8)

There follow certain well-chosen examples as the conic sections, the
courbe logarithmique ordinaire dy = (r dz)/a, and the logarithmic spiral
where in our notation dr = ar df. The interesting thing here is that he
must have known how to differentiate the logarithm. He ends with
rolling curves, very well done.

In sections VI and VII we have an extended discussion of caustics.
A caustic is the envelope of lines, issuing from a given point, which are
reflected or refracted at a given curve. The first problem is to find where
such a ray will touch its envelope. The usual method of setting up the
differential equation is pure geometry in the infinitesimal domain; we
can save much labour by a slight use of trigonometry, which L Hospital,
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for some strange reason, avoids. Let us begin with the caustic by
reflection. Let the source of light be O, the point where it meets the
curve P, the centre of curvature C, the orthogonal projection of this
point on the reflected ray produced @, while the point where the
reflected ray touches its envelope is . Let OP make an angle ¢ with
the direction of the X-axis, the normal make an angle 6, and the
reflected ray an angle 4,

J—b = 0—9,
PF dif = dasin—dy cosy = cos(p—0) ds,
PO df = dasin6—dy cos § == ds,

OP d¢ = — PC df cos(s—8)

= — PG d#,
PGXOP
Pr = sop+pe ®)
When the light is at an infinite distance
PG
PF = ——2—-.

When it comes to finding a caustic by refraction we have essentially
the same equations as before except that the first is replaced by

sin(0—¢)  m

sin(p—0) 7w’

In section VIII L’Hospital discusses the envelopes of systems of
curves. He takes it for granted that the point where a curve meets an
infinitely near member of the family is the point where it touches the
envelope, the curve to which all members are tangent. This is capable
of proof, but no proof is given. His general procedure is like this. We
start with a curve flz, y) = 0

and a variable curve, solving simultaneously for £ and 5

Fx,y, ¢, n) = F(x+dz, y+dy> ¢, n) = 0.

We know the ratio of dy/dx from the first equation, and so we can find
£—z and n—y in terms of known quantities. He gives his answer in
terms of such things as sub-tangents and sub-normals. In modern
times we should write

=~ f, T E/

Newton knew this method of writing the slope of a tangent in terms

b_ L L
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of partial derivatives, but I do not find it explicitly in L'Hospital. All
will be clearer if I give one or two examples:

Problem] Two curves are so related that the ordinate of the first is
equal to the normal to the second from the foot of that ordinate. How are
their equations related ?

L’Hospital shrewdly remarks that the second curve is the envelope
of circles whose centres are the feet of the ordinates to the first curve,
and whose radii are equal to those ordinates. We have, then,

f(x’ 2/) =0, (f"x)z'f—(’?—y)z = ?/2,

- _,Y
§—x = —?/a?c-
Problem] Given the curve
f (x’ y) = Oa

where will the line %-}-g = 1 touch its envelope?

Xy+Yz =ay; Xdy4+Yde = xdy+yde; X@dy—ydr) = 22dy.

The section ends with this question: A point P moves on a certain
curve, PQ and PR are the tangents to two other curves. Where will
QR touch its envelope ? The treatment is rather clumsy ; he notes that
an easier discussion is based on what we saw on p. 151.

The ninth section is given to the ‘solution de quelques problémes qui
dépendent des méthodes précédentes’. The first is the classical problem
of indeterminate forms, which he writes:

@) =gy =0, y—L@).

$()

He then puts — Sflx+-dx) _ ﬂ
! St de) — dg

For instance V(20Pz—at) —a3/(a’)

’ a—H@
a,3 —_ 2{123 . a :i/ag
Differentiating, v (2“390:;‘;)/a 33/a2 .
44/x

The limit as  — a is 16a/9.

As a matter of fact this particular problem had worried him a good
deal. We find him writing in July 1693 to John Bernoulli suggesting
that we should substitute directly in the original equation, getting

a2___a2
a—a

= 2(1/,
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and in September of the same year he writes:
‘Je vous avoue que je me suis fort appliqué & résoudre I’équation

V(@aPr—2xt)—ad/(a%)

a—4/(aad) o

lorsque z = a, car ne voyant point de jour pour y réussir puisque toutes les
solutions qui se présentent d’abord ne sont pas exactes.’t

All this suggests that L’Hospital learnt the correct solution from
Bernoulli, but did not give him the specific credit, with the unfortunate
result that the method came to be known as L Hospital’s method.

The tenth and final section is given to a ‘nouvelle maniére de se servir
du calcul des différences dans les courbes géométriques, d’ot 'on déduit
la Méthode de Mrs Descartes et Hudde’.

Here at last we find a small amount of partial differentiation. A maxi-
mum or a minimum, not at the end of an interval, will come at the top
or the bottom of an arch, or at a cusp. It is clear that at the top or
bottom of an arch a slight change in & will make a negligible change
in'y, so that we have f = f, = 0. It is not quite so clear why this should
also happen at a cusp, but he points out that here f, == f, = 0.

At a point of this sort the two equations in x,

a2 +a "t 4a, = 0,
ny 2" 14 (n—)a, 272+ +a, 4 = 0,
where a, is a polynomial in y, will have a common root. The same will
of
be true aoxnﬂplq)_f_al xnﬂp/q}“l_l—“, = O,

(n —i—j—;) @y xR L (n +% — l)al anwl)-2 = 0,

Multiply through by ¢ and divide by x?l:

(ng-+p)ag x4 (ng+p—q)a; a"24-... = 0.

If therefore we start with our original equation and multiply its terms
one by one by the members of any arithmetical progression, and if the
new equation and the old one have a common root, the original equation
had two equal roots: ‘C’est précisément en quoy consiste la méthode de
M. Hudde.’] We have seen just this in Hudde’s own setting on p. 134.

Let us next find which tangent to a curve passes through the point
(s, 0). Let a vertical through the origin meet this at (0, ¢),

Yy Sty
s$  8$—x t
We substitute this value in the equation of the curve, and put down the
1 Rebel {q.v.), pp. 31, 32. b L’Hospitalf p. 168.
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condition that the resulting equation in y shall have two equal roots,
since the tangent has two superposed intersections with the curve. This
gives the desired relation between s and ¢; he remarks that if an
equation have a double root this will be a root of the derivative also.
He then proceeds to find inflexions, using the same technique, but
requiring the equation in y to have three equal roots, so that second
differences vanish.

To draw a normal to a curve from the point (s, ) we seek a circle
with this point as centre which has two adjacent intersections with the

curve. We write
(s—2)2+4-(t—y)? = 7%,

x = sJ{r*—(t—y)¥.

We then substitute and put down the condition that the resulting
equation in y shall have two equal roots. This scheme was familiar
to Descartes. L’Hospital closes with the remark, p. 181:

‘On voit clairement par ce que on vient d’expliquer dans cette section de
quelle maniére I'on doit se servir de la méthode de Mrs Descartes et Hudde
pour résoudre ces sortes de questions lorsque les courbes sont géométriques.
Mais I'on voit aussi en méme temps qu’elle n’est pas comparable & celle de
M. Leibnis [sic] que j’ai tiché d’expliquer & fond dans ce traité.’

I have given, I think, a sufficient account of the contents of the
Analyse; it is time to take up the vexed question of originality. The
point at issue is just how much did L’Hospital take direct from John
Bernoulli, who spent some time in Paris in 1694, and also at the
marquis’s country place of Ouques, and beyond a doubt introduced his
host into the calculus of Leibniz. This question has been vigorously
debated pro and con. Cantor sticks up for the Frenchman, Montucla
inclines to the Swiss side. A long discussion will be found in Schafheit-
lein (q.v.) and Rebel (g.v.). On p. xiv of the Introduction to L’Hospital!
the writer says:

‘Au reste je reconnois devoir beaucoup aux lumitres de Mrs Bernoulli,
surtout & celles du jeune, présentement professeur & Groningue. Je me
suis servi sans fagon de leurs découvertes et de celles de M. Leibnis. C’est
pourquoy je consens qu’ils revendiquent tout ce qu’il leur plaira, me con-
tentant de ce’qu’ils voudront me laisser.’

This is a sufficiently casual way to treat the question of authorship.
L’Hospital sent a copy of the Analyse to John Bernoulli in 1697 for
which the latter returned thanks and an expression of appreciation.
But in 1698 he wrote a letter to Leibniz complaining bitterly that
L’Hospital had copied from him shamelessly, and a similar note
appeared in a letter to Brooke Taylor written after L’Hospital’s death.
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The reason for concealing his displeasure in private letters would seem
to be found in the fact that Bernoulli was indebted to L’Hospital for
his position as professor at Groningen. The Bernoullis were a conten-
tious race, and one does not get a very pleasant impression of John
from the incident. My own feeling is that L’Hospital was culpably
negligent in acknowledging his scientific indebtedness, but that he did
not intentionally take to himself any credit due to another.

Let us actually compare the Analyse des infiniment petits with
‘Bernoulli’s Differentialrechnung from the Basel manuscript translated
and annotated by Schafheitlein (q.v.). Bernoulli begins with three
postulates. Here are two of them:

‘Eine Grosse, die vermindet oder vermehrt wird um eine unendlichkleinere
Grosse, wird weder vermindert noch vermehrt.’

‘Jede krumme Linie besteht aus unendlich vielen Geraden die selbst unend-
lich klein sind.’

Here are I’Hospital’s corresponding assumptions:

‘On demande qu’on puisse prendre indifféremment I'une pour Pautre, deux
quantités qui ne différent entre elles que d’une quantité infiniment petite,
ou (ce qui est la méme chose) qu’une quantité quin’est augmentée ou diminuée
que d’une autre quantité infiniment plus petite qu’elle, puisse étre considérée
comme demeurant la méme.’

‘On demande qu’une ligne courbe puisse é&tre considérée comme l'assem-
blage d’une infinité de lignes droites, chacune infiniment petite, ou (ce qui
est la méme chose) comme un poligbne d’un nombre infini de cotés, chacun
infiniment petit, lesquels déterminent par les angles qu’ils font entre eux, la
courbure de la ligne.’

The two are essentially identical, L'Hospital’s being in each case
longer and more explicit.

Bernoulli’s first section gives the rules for differentiating sums and
differences, products and quotients much as I’ Hospital does. At times
the actual examples are the same, as y/(ax-+a?)/y(x?+y?). The second
section in each book goes to finding subtangents, each beginning with
ax = y?. An interesting problem comes in Bernoulli,f to find a curve
whose subtangent is constant:

yde e _dy
dy ey
‘Weil aber dz/a stets constant ist, so wird dy/y immer constant, d.h. (die

Ordinaten) bilden eine geometrische Reihe und es ist daher die logarithmische

Linie, deren Ordinaten eine geometrische und die Abscissen eine arithmetische
Reihe bilden.’

1 p. 2L
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I am at a loss to know why neither writer proved
dy
~ =log y.
f y &

Perhaps no good proof was available ; none is too easy to find to-day.

Bernoulli’s treatment of maxima and minima is less complete than
L’Hospital's, but several of the most interesting problems are identical.
I mention in particular the day of the longest twilight, and the deter-
mination of the lowest point reached by a weight whose cords pass over
two pulleys. Not only are the problems the same, but the figures also,
except that L’Hospital’s are much better drawn. Each writer then
passes to points of inflexion, frequently using the same curves. Ber-
noulli goes no farther, he offers no parallels to L’Hospital’s last six
sections. In this connexion Schafheitlein makes a devastating remark:

‘ Aus dem Briefwechsel ergiebt sich dass nun, grossere Teile von Abschnitt
2, 4, und 5, und vollig Abschnitt 8 und 9 von Bernoulli herriihren, die
Abschnitte 6, 7 und 10 geben nur Anwendungen der Differentialrechnung auf
Dinge, die schon durch Tschirnhaus, Descartes und Hudde grossenteils
bekannt waren.’

I do not know the basis of this statement. The only part of the corre-
spondence I have seen is that given by Rebel, which does not bear the
idea out. I do not see as much identity in L’Hospital and Bernoulli as
does Schafheitlein. I find it hard to believe that a man so much
respected by his contemporaries could have published a book that was
almost entirely the work of others.

What is perfectly certain is that 1’Hospital published a magnificent
text-book, even Bernoulli acknowledged that. If once we accept his
postulate about magnitudes of different orders where the lesser can be
neglected in comparison with the greater, it is hard to see how a much
better presentation could be found. Here is Cantor’s opinion of the
Analyse:

‘Der Erfolg des Buches ist um so begreiflicher als es das erste, langer Zeit
das einzige, und noch lingere Zeit das am. leichtesten lesbare Lehrbuch der
Differentialrechnung war.’}

§ 3. Traité analytique des sections coniques

T havespoken of L’Hospital as a great text-book writer. Hisreputation
in that matter does not rest alone on the 4dnralyse but to an almost equal
extent on his analytic study of the conic sections to which I now turn.

The book begins with the parabola, defined mechanically by sliding a
right triangle. He works at the equation where the coordinate axes are
a tangent and the diameter through the point of contact, proving that

t Schafheitlein (q.v.), p. 6. 1 Cantor!, Ist ed., vol. iii, p. 235.
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the abscissa is the negative of the X intercept of the tangent. In Book II
we come to the ellipse. He works out the equation in this excellent form.
Let the foci be F and f, a point on the curve M, the distance from
centre to focus ¢ = 4/(a?—b?):

Mfe—MF? = [y*+ (-] —[y*+ (w—c)?]
= 4cx
= (Mf—MF)Mf+MF)
= (Mf—MF)2a.

Mf—MF — ?gf,

cx cx

Mf=a+%,  MF=a—"

y? = MF?*—(c—x)?
2
== gé(az——xz).

y2 b2

(a+x)a—x) a?

A line at the extremity of an axis, parallel to the other axis, will not
meet the curve again and so be a tangent. He then proceeds to find
conjugate diameters in this curious fashion. Through the centre C draw
a line to the point P = (zy, ) on the curve. Find (z, 0) so that
x, 2, = o Then a diameter parallel to the line from (z,, ) to (2, 0)
will be conjugate to the diameter CP. Of course the double ordinate
through (x,, ;) lies on the polar of (x, 0), as is shown in Apollonius, 1il.
37, and the line from (2;, 1,) to (x, 0)is the tangent at (2, y,). L’Hospital
proves that the relation of conjugate diameters is a reciprocal one.

In Book III we reach the hyperbola. I mention in passing that he
looks on the two branches as separate curves, calling them ‘ Hyperboles
opposées’. The conjugate axis is found by taking a perpendicular
through the centre to the transverse axis, and bringing it to intersect
a circle whose centre is an end of the transverse axis, and whose radius
is the focal distance from the centre. With a, b, ¢ thus determined we
get the asymptotes. The tangent is found to be such a line through a
point of a curve that the given point is the middle of the segment cut
by the asymptotes. Tangents lead to conjugate diameters.

The fourth book deals with the three conics taken together, though
frequently the parabola must be left aside. On p. 95 we have the
famous problem of drawing a tangent to a conic from a point outside.
In the case of a parabola you draw a diameter through the point. Then
the reflection of the given point in the intersection of the diameter and



§3 TRAITE ANALYTIQUE DES SECTIONS CONIQUES 165

the curve will lie on the polar of the given point, which is parallel to
the tangent at the intersection. We have essentially the same construc-
tion for the central conics. On p. 102 is a pretty construction for the
ellipse, 2 g
PERN R

1,

r

We connect the point (a/—{-k, ib,
(a’, —k) with the point (—a’, 0). The point of intersection of these lines
as k varies traces the desired curve. This is a special case of the Chasles-
Steiner construction by means of projective pencils ; it recalls De Witt’s
work. He ends by passing a conic through five points. The construction
is based on the theorem, known to the Greeks, which he has already
proved, that the ratio of the distances from a point to the intersections
of the curve with two lines through the point depends on the directions
of the lines and not on the situation of the point. The construction is
that of Pappus.

In Book V we have a slight smattering of the calculus. We have
Cavalieri’s principle of equal areas leading to a proof that if we draw
parallel chords to an ellipse, and connect each end of one with one end
of the other, making an inscribed trapezoid, the areas of the segments
outside the non-parallel sides are equal. On p. 156 we come to a more
general study of sub-tangents, though the notation is that of differentials.

Suppose we have the curve

) with the point (¢’, 0) and the point

y" = amgnr-m,
Let s be the sub-tangent. The ratio of the increments is s/y, so we
take these as e, ey/s

@+%Y=u+www,

e
ny'n—l_g_/ — mxm—lean»m’
8

n
8§ = —x.
m

He then proceeds to find the formula for the area under the curve. The
increment of area is ye. The increment of xy is

(x+e)(y+§)~xy = ye [1 +§]

The ratio of the increments is
1 m
T4ajs min
Since this is constant, the ratio of the increments is the ratio of the areas.
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On p. 164 he develops, very rigorously, a relation between the arc of

a parabola, and the arc under a hyperbola. Take the curves

Yy = 2mz; 't —y? = m?
For the parabola ds = d~q\/(m2+y2) = x_@

m m

Hence the length of the arc multiplied by m is equal to the corresponding
area under the hyperbola. He uses this much later to find a parabolic
arc twice as long as a given one. This example is due to Van Heurac,
and will be found in Descartes® ¥

In Book VI the conics are taken up as Apollonius treated them,
namely as sections of a circular cone. The words ‘ellipse’, “parabola’, and
‘hyperbola’ are used, but it is not until much later that he shows that
these curves are the same as those of the same names discussed before.
The line where the plane of the circle meets the plane through the vertex
parallel to the plane of the conic, the line that is projected to infinity, is
called, unfortunately, the directrix. A diameter is defined as the line
connecting points of contact of parallel tangents. Much later he shows
that all such are concurrent. The whole book seems to me superfluous.

Book VII is entitled Des lieux géométriques and deals with the general
equation of the second order. There are here two questions:

1) Given the data necessary to determine a conic, to find its equation.

2) Qiven the equation, to determine the comic.

With regard to the first question, suppose that we know the major
axis of an ellipse in length and position, to find the equation we must
have one other datum, say the position of one point (x, y). We then
find b from the Greek form of the equation

2
y? = Z—Zx(2a—x)‘
As for solving the general equation of the second order, that had
already been done by Fermat, Descartes, and De Witt; naturally
I Hospital does it more neatly.

Book VIII contains a number of locus problems, of which I will
give two.

Problem] Given a set of rectangular hyperbolas with the same asymp-
totes to find the locus of the feet of the normals on them from a point (a, b).
xy = c%; xdy+ydr = 0;

y—=b =
—a "y
x2—y? = ax—by.
This is clearly another rectangular hyperbola.
+ Vol. 1, p. 518.
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Problem] T'o find the locus of a point which moves so that the tangents
thence to a given parabola make a given angle.

I assume that the angle is not a right angle, in which case the locus
would be the directrix. Let the parabola be

y? = 2maz.

The points of contact of the tangents shall be (z, 3,), (2, %,), their slopes
mfy,, m/y, the tangent of the angle m/n;

m_m
m
H Yy y: = —; WY~y = 1Yt m
14"
Y1Y2

Since (z, ¥) is on the tangent, say at (£, u),
2
y = miz-+£) = ma4 T,

72—2yn+2mx = 0.
The roots in n are ¥, and y,:
Yot = 2¢/(y*—2ma)
4n2(y%—2mx) = mP*(2x-+m)s
I’Hospital’s work is a good deal longer than this, for he used neither

the formula for the tangent of the difference of two angles, nor those

connecting the roots and coefficients of a quadratic equation, though
both were known in his time.

Book IX deals with the use of conics to solve higher equations, an
exercise dear to Descartes. For instance, on p. 299 we are asked to

show how any equation of the fourth order can be solved by the aid
of a circle and a parabola

-+ 2003+ acx?—a*de—adf = 0.
This is written in the homogeneous form usual at the time. We begin
with the parabola ay — bar-4-a?,
which is easily constructed. Squaring we have
a?y? = x4 2ba 4 b2,
a*y:+ (ac—b)x? —a?dx—a’f = 0.

We bring them to intersect. The abscissae of the intersections give the
desired roots, but through these four points will also pass the circle

a*(x®+y?%) 4 (a?b-+b—abc—a*d)x —a(a?-+b2—ac)y—a¥f = 0.
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A more ambitious problem comes on p. 336, an equation of the sixth
order which, however, lacks the second term. Incidentally I do not
know whether L’Hospital knew how to remove this term when it was

present 28— bat —cad4-dat—frt-g = 0.
Take ay = a3,
dx?+abyt—a*bry—fr—caty-+g = 0.

Book X, the last and the longest, deals with determinate problems,
which amounts to finding the intersections of pairs of conics. I give
some examples.

Problem] To find a point which has the property that the differences of
its distances from three given points have given values.

This amounts to finding the intersections of two hyperbolas with a
common focus, and so, by circular inversion, to finding the common
tangents to two given circles. L’Hospital realizes that if we go about
this stupidly we shall run into complicated expressions, so he uses
ingenuity. The focal distances from a point on the hyperbola

@Y
0/2 b2
are ex+a, ex—a, where ae = /(a2+b?). Here x is the distance from
the point midway between 4 and B to the foot of the perpendicular
dropped on AB from the point sought

AB = 2ae = 2./(a*+-b%); MA—MB = 2a.
Simﬂarly MA = e'x'+a', MO = e'x'——a',
MA—-MC = 24/, AC = 2d'e’.

We know a, e, o', ¢/ and the position of C. Let 4C make an angle 6
with 4B so that C is the point (—ae--2a’e’ cos 8, 2a’e’ sin §).
The mid-point of AC is (—ae+a'e cosh, a’e’ sin §).

A line perpendicular to AC is y_—z = —cot .

The distance to this line from the mid-point of AC is
x' = a'e’—ae cos §—(x cos 0y sin 0).
Setting ex-ta = e'x' +-a’,

we have a straight line whose intersections with the hyperbola gives the
points desired. IL’Hospital points out the relation to the problem of
Apollonius, to construct a circle tangent to three given cireles.



§3 TRAITE ANALYTIQUE DES SECTIONS CONIQUES 169

Problem] Given a circle of centre A and two points off the circle K, F,
to find such a point M on the circle that LFMA = LAME.
. This is Leonardo’s optical problem. L’Hospital gives Huygens’s
solution which we saw on p. 53.

Problem] Given a point within a given angle, to pass a circle through the
point which shall touch one leg of the angle, and cut a segment of given
length on the other leg.

According to the first requirement the centre of the circle must be
on a parabola having the given point as focus and the first leg as
directrix. If it pass through a given point and cut a segment of given
length on a given line, the difference between the squares of the dis-
tances from the centre of the circle to the given point and to the nearest
point of the given line will be constant. This will give the equations

2ty —(@w—b)® = a?,
y? = —2bx-a?--b?,
and so another parabola.
The book closes with a long discussion of the problem of dividing an

arc of a circle of unit radius into a given number of parts. The basis
of the discussion is this formula:

2 cosnf = 2cos 6 X 2 cos(n—1)8—2 cos(n—2)4.

This he does not prove, but gives examples showing its accuracy up to
n = 13. An immediate proof comes if we write 2 cosx = €%} ¢%%,
There follow a large number of applications, which seem to include
gome errors. The book ends with the description of a link work which
will divide a given angle into a given number of equal parts.

There remains the question of the originality of the work. I confess
that after studying the story of the Analyse des infiniment petits it
seemed to me quite likely that he had leaned heavily on some previous
author. For a moment I suspected plagiarism of Philippe de la Hire’s
Nouveaux élémens des sections coniques which was published in 1679.
The two works take up many of the same problems, but in different
orders. L’Hospital merges geometric and algebraic methods, La Hire
keeps the two separate. I think the charge of undue copying can be
dismissed, at least in this case.

L’Hospital’s T'raité des sections coniques is a great text-book. The
proofs are uniformly easy; often, one suspects, the easiest possible.
As in the previous book he could have saved himself much trouble had
he made use of trigonometry, and he might have, with advantage,
made further use of the calculus. He probably had the same scruple
about doing this which besets modern text-book writers, a feeling that
didactically the calculus is a later subject than analytic geometry;
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largely a mistake in my opinion. But I repeat, we have here a great
text-book. Here is the view of W. W. Rouse Ball:

‘He wrote a treatise on analytic geometry which was published in 1707 and
for nearly a century was deemed a standard treatise on the subject.’t

In the same spirit we find Cantor:

‘Das Werk besitzt die gleichen Eigenschaften, welche auch De 1'Hospitals
Analyse des Infiniment Petits nachzurithmen sind, eine ungemeine Fasslich-
keit bei grosser Sorgfalt zahlreiche Einzelsitze zu geben. Bahnbrechende
Neuerungen sind freilich nicht gar zu erwarten.’}

1 Ball (q.v.), p. 380. 1 Cantor, Ist ed., vol. iii, p. 410.



CHAPTER XIII

BUFFON

§ 1. The search for the infinite

THERE certainly never was a man belonging to that class which I have
called amateur mathematicians who had a wider interest in all science,
especially descriptive science, than George-Louis Leclerc, Comte de
Buffon. His monumental Histoire naturelle is overwhelming in size and
the variety of topics treated, but he had besides a very real interest in
theoretical mathematics. He was especially preoccupied with what one
might call the metaphysical aspect of the subject. The discovery of the
infinitesimal calculus had raised a number of very puzzling questions
as to the real meaning of the various concepts involved. What do we
really mean by infinitely large or infinitely small ? What, if anything,
is indivisible ? The fundamental concept of a limit was only reached
after long and painful struggle. These abstruse questions appealed
strongly to Buffon’s inquiring temper although, like his contemporaries,
he never reached a point where he could give answers which are entirely
satisfactory to our more critical minds.

Buffon’s first mathematical effort was a translation of Newton’s
Fluxions. He did not base this on the Latin original, but on the English
translation by Colson. However, he wisely confined himself to giving
nothing but Newton, omitting Colson’s long commentaries.

Buffon is very enthusiastic about the genius of the original:

‘On sera bien aise de voir, en un seul petit volume, le calcul différentiel et lo
calculintégral avec toutes leurs implications. Onreconnaitra, & la maniére dont
les sujets sont traités, la main du grand maitre, et le génie de I'inventeur, et on
demeurera convaincu que Newton seul est ’auteur de ces merveiileux caleuls,
comme il est aussi de bien d’autres productions toutes aussi merveilleuses.’t

After this he proceeds toslay Leibniz, and such of his disciples as claim
that he was the author, or co-author, of the caleulus. He makes out a
pretty good case too, although he hardly lets us see that whatever else
Leibniz was or was not, he was an extremely great mathematician. '

Buffon takes up the quest of the infinite, about which he had very
definite ideas, which I must confess are not perfectly clear to me, He
feels that the Greeks understood perfectly well what infinity means but
that more recent writers have invented perfectly new concepts which
are wrong. To Buffon something is infinite if it lacks a bound or a last
term. Then we find the curious statement:

‘Ce n’est pas ici le lieu de faire voir que I'espace, le temps, la durée ne sont
1 Buffon?, p. vi.
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pas des infinis réels, il nous suffira de prouver quwil n’y a point de nombre
actuellement infini ou infiniment petit. . . . Mais dira-t-on le dernier terme
de la suite 1,2,3,4,...,n’est il pasinfini ? . .. Il paroit que les nombres doivent
3 la fin devenir infinis puisqu’ils sont toujours susceptibles d’augmentation ;
& cela je réponds que cette augmentation, dont ils sont susceptibles, prouve
¢videmment qu’ils ne peuvent étre infinis . . . mais que tous sont de méme
nature que les précédents, c’est & dire, tous finis, tous composés d'unités.’}

I confess that I do not know just what he is driving at here. There
seems to be what we should call a confusion between cardinal and
ordinal infinite. His adversary objects that the numbers are cardinally
infinite, but he replies by saying that there is no ordinal infinite, as
whenever we add a number it is the same sort of thing as what precedes;
we never get out of the system by adding, hence it is self-contained or
bounded. These ideas were very dear to Buffon, I do not think they
are very important to us to-day.

§ 2. Moral arithmetic

Buffon’s principal mathematical work was his Essas d’arithmétique
morale. This begins with a discussion of certainty. There are two kinds
of certainty. Physical certainty is based on a long uninterrupted series
of successes ; moral certainty, which is much less strong, is based on a
restricted number of observations, of what seem essentially analogous
cases. And then he undertakes the curious task of calculating the
probability that the sun will rise the next day. This is obviously a very
foolish question. Bertrand has pointed out that a man might be con-
.vinced that the sun was sure to rise the next morning, and then travel
to the polar regions where the phenomenon failed. Even if we made
a mathematical calculation, the correct way would be to go on Bayes’s
principle of the probability of causes. Buffon assumes that after each day
when the sun has risen the probability that it will rise the next day is
doubled. Assuming that it has already risen 2,190,000 times, the
probability that it will rise the next day is

1

T 92,180,600

1

When it comes to moral certainty, he takes as his basis the assumption
that a man is morally certain he will be alive the next day, and so a
thing is morally certain if the chance of failure is less than 1/10,000.
The title of the essay is Arithmétique morale, and he pays a good deal
of attention to the moral value of money, which is not the same as its
arithmetical value. The arithmetical value of ten crowns is the same
to all men, but the importance of an accession of ten crowns is very

+ Buffonl, pp. ix, x.
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different to a man who has only five and to one who has five million.
He argues ingeniously from this to show the foolishness of games of
chance. Suppose we have two players, each with a certain sum. They
agree to play at a fair game until one has lost one-half of that sum. At
the end the winner will have gained one-third of what he then has but
the loser will have lost one-half of lLis original property. Buffon argues
that there is an adverse chance of one-sixth. I can see no justification .
for estimating the value of the sum in one case in comparison with what
he had at the end and in the other case on what he had in the beginning ;
it would be more logical to say that the winner had gained what was
one-third of what he then had while the loser had lost 100 per cent. of
what he still owned. But I approve of his disapproval of gambling.

Buffon passes next to the famous paradox of St. Petersburg:

‘Cette question a été proposée pour la premiére fois par feu M. Cramer,
célébre professeur de mathématiques & Genéve dans un voyage que je fis &
cette ville en 'année 1730. Il me dit qu’il avoit été proposé précedemment par
M. Nicolas Bernoulli & M. de Montmort . . . je révai quelque temps 3 cette
question sans en trouver le noeud, je ne voyois pas qu’il fit possible d’accorder
le calcul mathématique avec le bon sens, sans y faire entrer quelques con-
sidérations morales, et ayant fait part de mes idées & M. Cramer il me dit
que j’avais raison, et qu’il avoit aussi résolu cette question par une voie
semblable; il me montra ensuite sa solution & peu pres telle qu’on I'a
imprimée depuis dans les Mémoires de 1’Académie de Pétersbourg 1738.’+

Here is the paradox. Peter and Paul play under these rules. Paul
throws a coin. If it come up heads he will give Peter a crown. If it
come up tails he will not give anything, but will throw again. Ifit come
up heads the second time he will give two crowns, if the first heads be
on the third throw he will give 4 crowns, if not till the nth throw he
will give 2%~ crowns. What should Peter pay to be allowed to take part
in this interesting game ?

We have here a question of mathematical expectation, that being by
definition the sum of all possible gains each multiplied by the chance
of getting it. Peter’s expectation is, then,

1 1 1
= X2+ %28, =0,
2><1-{—22>< +23>< + o'e)

Now this is certainly contrary to common sense. No one with any
common sense would pay any large sum for Peter’s expectation. What
is the matter ? Buffon had the bright idea of having a child throw a
coin 2,048 times. The total payment was 10,057 crowns, so that the
average was about 5. Peter should offer about 5 crowns to come into
the game, not an infinite sum.

1 Buffon?, p. 75.
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Buffon argues rightly that the game is inherently impossible. Neither
adversary will have an infinite fortune, so that Paul is in no position to
meet all possible outcomes. Moreover, there is an obvious limit of time ;
no matter how industriously they play they will not be able to keep on
long enough to permit more than moderate gains on Peter’s part. He
then gives his own explanation. The moral value of an accession of
money depends, not only on the amount, but also on how much one
has at the start. He suggests that the sum given if the first head come
on the nth throw should not be 2"-! but (9/5)"-1. Peter’s expectation
should then be 1

1 9 1 9\2 -
§X 1+§X(B)+§5X(5) e == b,

The assumption seems to me perfectly arbitrary, one cannot escape the
impression that it was made to work out to the answer 5.

This Petersburg paradox has been quite famous in the history of
mathematics. The idea of the moral value of money was developed by
Daniel Bernoulli. He maintained that if a man have a fortune of «, the
moral value of a small increment of du, is dzfx. Hence the moral value
of an increase of one’s fortune from @ to b is

b
do _ lo b
x 8a’
a
A gystem of direct taxation where each surrenders the same proportion

of his wealth will thus impose the same moral strain on each.

§ 3. Geometrical probability

Buffon’s most original contribution to mathematics was the invention
of geometrical probability, which seems to have been entirely the child
of his brain.

‘L’analyse est le seul instrument dont on se soit servi jusqu’a ce jour,
dans la science des probabilités, pour déterminer et fixer les rapports du
hasard, la géometrie paraissoit peu propre & un ouvrage aussi délié ; cependant
si Pon y regarde de prés, il est facile de reconnoitre que cet avantage de
I'analyse & la géométrie est tout & fait accidentel.’}

He proceeds to invent some examples of geometrical probability.
A smoothed table is ruled with squares. A coin, whose diameter is less
than the width of these squares, is thrown at random on the table ; what
is the probability that it will cross the boundary of one of the squares ?

He assumes that all situations for the centre of the coin are equally
likely. The probability is the proportion to the area of the square of
the area of that part in which the centre must lie in order to cross.

1 Buffon?, p. 96.
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If the length of a side of a square is 1, and if the answer is to come
out }, then in order to cross, the centre must lie inside a strip running
around inside the boundary with a width equal to the radius of the coin.
The strip must have an area equal to one-half of the area of the square ;
hence the side of the square must stand to the diameter of the coin in

the ratio 1:(1_\/%).

He discusses certain modifications of this problem when the table is
ruled with equal figures of different shapes. Then comes the problem
which has made Buffon’s name famous in the history of probability.

Problem] A floor is ruled with parailel lines whose distance apart is d.
A needle of length I < d is thrown at random on the floor. What is the
probability that it will cross one of the lines?t

In order to cross a line the needle must fulfil two conditions. The
distance from the centre to the nearest line must be less than half the
length of the needle, and the angle which the needle makes with a
perpendicular to the lines must be less than cos™*(2x/l). These are
treated as independent probabilities, so the final probability is their
product. Assuming that all distances to the nearest line are equally
likely and that all angles are equally likely, we have

P
4 2, 9l
;E f CcOs de == ﬁo
0

There are various things which should be said about this. Most impor-
tant is that Buffon did not perceive the great dangers involved in
assuming the equally likely, or the choice of independent variable. His
assumptions are the most plausible ones, but the case is not always so
simple. Suppose, for instance, we ask this question: a number is taken
at random between 1 and 3, what is the probability that it lies between
1and 2. The distance between 1 and 2 is one-half the distance between 1
and 3. Hence the most natural answer is that the probability is 1. But
wait a moment. If a number is between 1 and 3, its reciprocal is between
1 and }, while if it is between 1 and 2, its reciprocal is between 1 and 1.
If thus we fix our attention on the reciprocal, the question is thus: A
number is between 1 and %, what is the probability that it lies between
1 and {? The natural answer here is §.

I should mention next that it does not seem that Buffon was quite
up to integrating cos™1(2z/l). He notes that the integrand is like what
appears when we are seeking the area under a cycloidal arch, and that
he knows, so that he gives his answer in those terms. It is also interest-
ing to note that we can get the answer without any integration by a

t Ibid., p. 101.
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device described on p. 56 of Bertrand’s Calcul des probabilités, and
ascribed to Rabier.

The probability is the expectation of a man who is to receive one
crown if the crossing takes place. This expectation is the sum of the
expectations of the various linear elements of the needle, and these are
unaltered if the needle is bent to a circular shape. The probability of
crossing is now the ratio of the diameter of this circle to d/2, but if the
bent needle cross a line once, it will cross it twice, so that the expectation
‘is twice the new probability. This will give the same answer as before.

The needle problem has been studied experimentally by a number of
persons, partly as an amusing method of calculating the value of 7.
The most apparently successful attempt I have heard of was made by
Lazzerini in 1901, with the result

7 = 3-1415929...,

an error of 0-:0000003. This is certainly suspiciously accurate. It would
only be possible if the number of crossings were exactly the most likely
with no discrepancy, but the chance for that to happen is approximately
1/69, so that it seems quite likely that Lazzerini ‘watched his step” and
stopped his experiment at the moment when he got a good result.t

Buffon also considers the problem when the floor is covered with
rectangles of dimensions ¢ and b. Here we have the probability of
crossing parallels @ apart, plus the probability of crossing parallels b
apart, less the probability of crossing a corner. This is a little more
complicated than the other, but leads to the same integrals, and the
final answer is 9N(ab)—I2

I do not understand Buffon’s symbolism here, and so cannot be sure
that he has the correct answer.

In the last section of the Arithmétique morale Buffon discusses arith-
metical and geometrical measures. He compares our decimal system of
notation with other scales. Suppose we wish to expressin the quinary

scale
log 1738

b5 = 44 ...
1738 = 2x 5%4-488

488 == 3x 534113

113 = 4x 5213

13 = 2x5+43.

1738 = a X 5",

The answer is 23423.
1 Cf. Coolidge?, pp. 81, 82.



§3 GEOMETRICAL PROBABILITY 177

When it comes to geometrical measures he is on more dangerous
ground. We can measure line segments, that is to say their lengths, by
means of a unit of length, but measuring curved lengths involves the
use of infinitely small lengths, whatever they may be. He sticks to the
old distinction between geometrical and mechanical curves. He realizes
that infinitely small quantities are only useful when we compare them,
that is to say take their quotients or add an infinite number. The con-
cept of an infinitesimal as a variable, approaching 0 as a limit, not a
fixed quantity, was still far in the future. He insists on the fact that
it is indeed lamentable that there are such a variety of measures differing
from country to country, and points out the advantages of having a
uniform system for all, based on some physical fact, independent of
country. He suggests as a unit of length that of a seconds pendulum
at the equator. This unit had been suggested by Picard in the seven-
teenth century, and was considered by the committee which devised the
metric system, but was discarded in favour of the metre which was
supposed to be one ten-millionth of the meridian of Paris. Curiously
enough this is close to the length of the seconds pendulum, but why go
to the equator for a unit when you can have one in Paris ? As a matter
of fact the official metre is not exactly equal to either.

We cannot look on Buffon as a great mathematician, but a bright
man, interested in mathematics, who deserved well of posterity.



CHAPTER XIV

DENIS DIDEROT
§ 1. Vibrating strings

Fuw persons think of this intellectually omnivorous encyclopaedist as
a mathematician, and he certainly was not a mathematician of the first
rank. But he was a man of a keen and inquiring mind, who in his earlier
years was really interested in mathematics, especially in their applica-
tions ; yet his discussion of the current theories of mathematical proba-
bility, which I personally have not seen, show an equal interest in the
philosophy of the subject. T will discuss the mathematical parts of
Diderot (g.v.) which was reviewed at some length in the April 1749
Mémoires de Trévouzx powr I Histoire des Sciences et des Beaux Arts. The
reviewer was principally interested in Diderot’s ideas about music and
acoustics, and showed no ability to discuss his mathematics. A much
better discussion of this is found in Krakauer and Krueger (q.v.).

The first, as well as the longest and most important, memoir in
Diderot (q.v.) is entitled ‘Principes généraux d’acoustique’. The
author’s object is to analyse the principles of sound, mathematically
and physically, and trace their connexion with music, and the pleasures
of listening to it. But how is sound produced ? By vibrations of the
air, and these in turn are caused by vibrations of a tube or a stretched
string; so he comes first to a vibrating string. Here he follows an
Englishman named Taylor, of whom I know nothing except that
Diderot says he was a contemporary of Newton. This must surely
have been Brooke Taylor. We find this theorem:

Lemma 11] The acceleration of any point P of a stretched elastic string
of uniform diameter is, during small vibrations, proportional to the curva-
ture of the string at this point.

We may prove this as follows:

Let the maximum extension of the middle point of the string be
BD = q, the radius of curvature at this point 7. Let

MB = x, SP = ag—=,
the amount of extension of the general point, whose distance from the
centre line is PM = y. I apologize to the reader for using y for a hori-
zontal and z for a vertical line, but I thought it best to follow Diderot’s

notation. The tension at this point shall be G. The length of the chord
is I, the mass M. Then by the fundamental principles of mechanics

ﬂll_jif ‘gg — g[(G+AG)cos(84-A8)— G cos 0],
M ds d*x . . M ds
— = g[(G—{—AG’)sm(O—{—AG)—«Gsm9—~L——] . (1)
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Taylor assumes that the tension is constant, so that AG = 0. He also
discards the last term which is the contribution of the mass of an
element of length. Expanding we have

M d¥y . . dbé M d2x de
—_— e T — —_ —— e T2 9—. 2
Lap = 99505 T g — 90 eosb g (2)
B
2 \
P n
¢ 3 x 553 A
G
C
Fia. 55

We thus get for the normal acceleration

gGL do
M ds’
which is proportional to the curvature. This is Taylor’s Lemma, I1.
Proposition 1] If a string be stretched along such a curve that the
curvature ot each point is proportional to its distance from the chord, all
points will come to lie on the chord at once.
Here he tacitly assumes that the acceleration is normal to the chord :

2(q—
B = 208 — b Q

This is the familiar equation for a longitudinally stretched string which
comes to rest at the same time, no matter how far it has been stretched.
If the string be once stretched along such a curve it will always stay so.
It is now time to find the equation of such a curve.t

d%y 1
dsdx ~ ra (z—a), (4)
dy

JuC A VO .
e ot = jaw ax+QG
When z = 0, dy = ds,
dy
MEE = zxx—ax-t+ra. (5)

T Diderot (q.v.), p. 24.
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Let ax—Lux = 2z;
da?4-dy? = ds?,
(2razz—2%) dy* = (ra——z2)% da.

But 2z is small compared to ra, so he contracts to

dy _ Afra)
de ~ J(2ax—xx) (6)

Y = a,A/g cos~! (?—g—af). (7)

Diderot notes in this connexion that the differential equation for the
motion of a point in the string is essentially that of the weight of a
cycloidal pendulum, or a point descending a cycloidal path under
gravity where the effective force is proportional to the distance along
the curve to the bottom, and from this he calculates the relation
between the tension in the string to the data of the cycloid.

These purely mathematical calculations are followed by a long
musical discussion which I am unable to criticize. The next piece of
pure mathematics comes on p. 62, where he seeks the greatest velocity
of any point on the string, this being the velocity of the middle point
when it reaches the chord. The integral of equation (3) is clearly

da—zx) _ [[gaG
T J (rM 7. ®)
Returning to (7):
_ L L 0= 7, r_ £
when y=5, CO8I——=g; aJa_ﬂ.

The maximum velocity comes when z = 0. Diderot suppresses the
factor g presumably by taking the proper choice of units. We have

" naNG
ML)

Problem 1} A string is stretched by a total force F which gives to the
centre the velocity w and to every point such a velocity that at every point
the string will always preserve the required curve. What is the value of the
maximum displacement?

The initial velocities must be proportional to the distances SP = a—=x
if all are to reach the final form together. The initial velocity at D shall
be . He takes the mass of an element as (M/L) dy. The product of
mass and initial velocity is

(9)

wla—x) M dy
a L~
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Substituting in (6) we get
wlo—x)  My(ra)
a LJQar—a?)
If a constant force act through a short period the velocity it will

produce will be proportional to the force; hence if we integrate with
regard to z, whose limits are ¢ and 0, we have

upf(ra) M
A
Double this will be the total force F'.
maNG _I_}_E . mavGV(ra), __ FVJL

SJ@Iy T ymny b T e
The remainder of the first memoir has little mathematics, except for
the study of fretting the string in places. The interest is more musical
than mathematical.

(10)

§ 2. Involutes

Diderot’s second memoir is purely geometrical. He is an ardent
advocate of Descartes’s thesis that it is a great mistake in geometry to

Fr¢. 56

limit ourselves to what can be accomplished with the sole aid of ruler
and compass; on the contrary, we should make use of any curve that
can be drawn by mechanical means. The curve he favours especially
is the involute of a circle which is easily constructed by unwinding a
thread which has been wound around a flat circular cylinder. In fact
on p. 121 of Diderot (q.v.) is a picture of a man holding a large circular
disk against a wall with one hand, and unwinding the thread with the
other. Let the radius of the disk be #, the centre C, the point where
the involute springs from the circle 4, B any point on the circle, E the
corresponding point of the involute. Let 4 have the polar coordinates
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(r, 0). Let positive measure be counter-clockwise, let L/ ACB = ¢. The
coordinates of & will be

x == rsin¢-—r¢ cosd, Y == rcosp-+rdsind. (11)
Diderot does not actually give these equations, but they will somewhat
simplify part of what, follows. I have copied only one of his figures,
there are several on the same page, and he has a confusing trick of

changing notation from one to another. Here are what seem to me his
most interesting problems, the numbering is mine.

Problem 2] To divide a given angle in a given ratio.

Let ¢ be the given angle, the given ratio m/n. Let ¢ divide BE in
that ratio. Let a circle of centre ¢ and radius CG meet the involute
in D; draw the tangent DF:

BG _m.o AP _m
GE  n’ B "

Problem 3] To find a sector of a given circle whose area is equal to c2.

We wish irih = c?; T = -,
7

On any tangent to the circle draw a length 2¢%/r. Find a point on the
involute at the same distance from the centre as the end of this tangent.
A tangent thence to the circle will determine the required sector.

Problem 4] To find a square equivalent to a given sector.

This, by (11), consists in finding a square equivalent to ACBE.

Problem 5] To find the length of an arc AE of the involute.

For the involute we have ds = r$ d¢, s = Lré?

Through E draw a perpendicular to £C and let this meet CB in K:

BE* = CB.BK, r’?* = r X BK,
s = }+BK.

Problem 6] To find the area of the involute segment ABE.

Let us imagine the area filled by infinitesimal triangles bounded by
adjacent tangents

et G D

The area of AEBK = }EBX BK = §r¥3.

Hence one-third of this area gives the desired result.

Problem 7] To find the centre of gravity of a circular arc.

If the central angle be 28, we find by a simple integration that the

_distance along the bisector of the angle to the centre of gravity is
rsinf  risind 2r  2rsinf

g="220 T8nE AT renl,

) 76 r d
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The distance is, thus, a fourth proportional to the distance along the
tangent to the involute, the radius, and the chord.
Diderot next discusses the solution of cubic equations such as

2 —pr = 1,
which can be at once reduced to the problem of trisecting an angle.
The memoir ends with a long article leading to this:t ‘Donc le rayon
de la développée est toujours comme P'arc infiniment petit multiplié
par le rapport du sinus de 'angle de contingence au sinus versus du
méme angle.’

The phrase est toujours comme here is a little ambiguous, there is a
factor 2 which comes in here; the formula he is looking for is

2ds 2 dssindf
= . =9 T e
3 50 ds ctn 246 I —cos do

§ 3. The retarded pendulum

Diderot’s last memoir of a mathematical nature is No. 5. He investi-
gates the motion of & pendulum in air, assuming that the resistance
varies as the square of the velocity. Let the length of the pendulum be «,
the height of the top of the swing above the lowest point b, the variable
height z, the weight divided by the acceleration of gravity p, the
velocity v, the resistance (fv?)/q2.

The acceleration along the path is

p(2ax—2?)  fo dv _ ” dv ds — .= dr
a @ dt  ds  J2az—a?)’
—pdx+ afv? dx = v dv;

7*(200—a?)
afe? dx
20z —a?)"

Diderot approximates to the remaining integral as follows. If the
pendulum were swinging in vacuo we should have

v = 2p(b—.’13),

but the resistance of the air is small in comparison when the pendulum
bob is heavy, hence he rejects this first part except to substitute in the
second. He has some difficulty with

dpaf [ (b—zx)dx
7 ) JQax—a?)’
the indefinite integral is rather a complicated expression involving «
t p. 161,

vt = 2p(b——x)+2f
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and sin~L(2ax—x?)/a. This latter will be proportional to the are through
which the pendulum must swing to reach the lowest point.

The fact is that Diderot had hold of a problem that was too much for
him. Krakauer and Krueger go wrong at this point. They write:

‘The latter [Newton] had “proved’ that the retardation of a pendulum
due to the resistance of air in falling through an arc is proportional to the are.
Diderot “proves” it is proportional to the square of the arc’ [and in a foot-
note at the bottom of the same page] ‘ According to modern physics neither
is correct ; the resistance varies as the square of the velocity. However, both
Diderot and Newton used approximations and arrived at a fairly close result
considering the velocity studied, and the short arc traversed.’t

But we have seen that Diderot started by assuming the resistance
proportional to the square of the velocity. As for the statement about
modern physics, I refer to the long article by Furtwingler.i Here it is
shown that, physically considered, the resistance of the air cannot be
adequately handled in any such summary way. If we put

oy ACax—a?)
¢ = sin™? R

The classical equation for the pendulum in vacuo is

2
c;tf Zsing = 0.
When the amplitude of the swing is small we may replace sin ¢ by ¢,
getting
dtgS +g ¢ =0

If we take in the resistance of the air a good approximation is
d*p ?5
TE +k —l— ¢ =

The retardation of the air is thus proportional to dé/dt, that is to say
the angular velocity. There is a long discussion in Furtwingler’s article,
or in any good book on rigid dynamics, e.g. Routh, p. 77. Diderot’s
discussion of Newton, which forms the close of the article, puts the
matter in a simpler form than does the master, but both are far from
the modern treatment, so it is not worth while following them farther.

Diderot wrote also on ‘probability’. This I have not seen. Krakauer
and Krueger say, rather obscurely, ‘It is regrettable that Diderot did
not publish this article. I have the impression it came out after his

+ Krakauer and Krueger {(q.v.}, p. 227.
t Encyclopddie der math. Wissenschaften, Part IV, Section 7, pp. 14-186.
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death.’f It is also possible that he contributed mathematical articles
to his Grande Encyclopédie, but as the official announcement says at
the beginning that the mathematical part was due to D’Alembert it
seems needless to try to pick out what might have been contributed
by a much inferior mathematician. I cannot leave Diderot without
expressing my admiration for his really stimulating mathematical work,
when his other interests were so large and so varied.

1 Krakauer and Krueger (q.v.), p. 225.



CHAPTER XV

WILLIAM GEORGE HORNER
§ 1. Horner’s method

I sHouLD perhaps begin with an apology for including this man in
my list of distinguished amateurs who have contributed to mathe-
matical science. A great mathematician he certainly was not. A man
distinguished in public life he was not, a master in an altogether
undistinguished boys’ school. The contribution to mathematics for
which he is generally known, Horner’s method for the solution of
nunerical equations, was, as we shall see, discovered sixteen years
earlier by Paolo Ruffini, and six centuries earlier by Ch’in Chiu-Shao.
So why include him ? Well, it may be said, on the other hand, that he
was largely self-taught. He never went to the university, but at the
age of nineteen became a master in the Kingswood School of Bristol,
where he had studied. He read the works of Euler, Lagrange, Halley,
and others; he certainly never heard of the work of either of these
predecessors. He offers a fine example of what an amateur can accom-
plish by dogged industry, and his method is surely the best we have
for solving numerical equations.

Horner’s first article, Horner?, is a trivial affair, composed, I should
judge, about the same time as Horner2. This latter has a curious history.

‘Mr. Horner’s first paper on equations was printed in the Philosophical
Transactions in 1819, and Mr. Horner has often stated to me that much
demur was made to the inclusion of it in that publication. It was, indeed,
owing more to the influence and earnestness of Mr. Davis Gilbert than to
any respect for the author, his subject, or his mode of treating it, that the
honour was accorded him. The elementary character of the subject was the
professed objection, his recondite mode of treatment, was the professed
passport of admission.

‘The paper has been reprinted in the Ladies’ Diary for 1838 and most of
our readers are doubtless acquainted with it. The mode in which it is drawn
up is, in one respect, fortunate, there can be no doubt, since that finally
secured its publication, whilst, on the other hand, it may be considered
unfortunate by its requiring so much higher mathematical learning to under-
stand the reasoning than the nature of the inquiry itself renders desirable.
Mr, Horner was himself so sensible of this objection, that he attempted a
simplification of the prineiples. The consequence of this attempt was the
paper now about to be submitted to the public for the first time, after lying
more than twenty years altogether unknown.’{

With regard to dates, Horner? was presented to the Royal Society in
1819, the year of publication of Horner! ; Horner® was presented to the

1 T. 8. Davies in a note to Horner?, p. 108.
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Royal Society in 1823, but was inserted in T'he Mathematician for 1845,
and finally published in 1855. As for the ‘higher mathematical learning’
that was so discouraging, that was Taylor’s theorem.

Let us now look at Horner?:

‘The process which it is the object of this essay to establish being nothing
else than the leading theorem of the Calculus of Derivation presented under
a new aspect, which may be regarded as a universal instrument of calculation,
extending to the composition as well as the analysis of functions of every

kind. . ..
‘In the general equation

dx =0
T assume x = R-prtr 4" 4.
and preserve the binomial character of the operations by making successively
¥ = R+2z= R4rt2'
= R'+2 = R +r' 42" )]
=R'4z2" = ..

By Taylor’s theorem, expressed in the more convenient manner of Abrogast,

we have ¢z = $(R+2)
= $R+D$R .2+D*R 22+ ... 2)
where by D*¢$R is understood}
dngR
1.2.3..ndR"
He then sets about calculating his derivatives
SR = R+ Ar
A = D¢R+-Br
B = D*R+-Cr (3)

V = D" %R+ Ur
U = D" R-r.
He then writes in reverse:
V = D**% R+ D" 1¢R . r+r?

Keeping on in this way he eventually gets back to (2) with z changed
to r.
I note at this point that Horner insists that his method is applicable
to all sorts of functions, so that it is not quite clear why r should have
1 Iorner?, pp. 49, 50.
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the coefficient 1 in the last equation. Having found ¢R’ he proceeds
to-find SR' — R+ A"

A" = D¢R'+ B'r'

If we keep on in this fashion it is well to have a rule for compounding
the operator D. Horner writes: -

DrD%ga — (r-+ 1)(1r+22);.(r+8) Drsda, (4)

DrgR — Dn¢R+’i’it_1.Dn+l¢R.r+("+;?%ﬂ DrRgR ... (5)

From this he finally gets an elaborate rule which I will not write, as
it does not seem to be of much practical use. He uses the scarcely
English word ‘derivee’ whose nature is well known: ‘It is sufficient to
state that they may be considered either as differential coefficients, or
as the limiting equations of Newton, or as numerical coefficients in the
transformed equation.’{

I note that he also uses the word ‘derivate’. On the same page he
mentions what he calls De Gua’s rule that if the roots of ¢ are all real
D™=14 and D™ will have opposite signs for each root of D™é.

Let us now take some examples of his method, of which we find no
simple explanation till we get to Horner3, which I shall take up later.
The fundamental idea is perfectly simple. If we make a first approxima-
tion to a root and reduce all of the roots of the equation by this amount,
which is easily done by replacing # by @7, and caleulate the new
coefficients by his method, we have a new equation with roots close to 0,
and we can approach these as nearly as we please by repeating the
process. When he wishes to avoid decimals he multiplies all roots by 10.
His first equation is from Euler:

xt—4a3- 82— 162-}- 20 = 0.

Let us reduce the roots by unity, and then do the same thing again,
writing the coefficients downwards in reverse order. We get:

x = 20 9 4

—16 —8 0
8 2 8
—4 0 4
1 1 1.

The first row gives the values of f, the second of Df.

1 Horner?, p. 57.
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In the first column are no permanencies of sign, hence the equation
has no negative roots. In the third column if we treat 0 as positive the
reduced equation has no positive roots; hence the original one had no
positive roots greater than 2. He concludes that as the once reduced
equation is close to 2x2+1 = 0 it has no real roots.

The next equation is taken from Lagrange:

B—Tr+7 =0
7 1 1

—7 —4 5
0 3 6
1 1 1.

We see from the last column that there are no positive roots greater
than 2. We see by the second column that the first derivative vanishes
between 1 and 2; there may be two roots of f in that vicinity. He
makes a third table:

T = 1-0 1-1 1-2 1-3 1-4 1-5 1-6 17
= 1000 631 328 97 -—-56 —125 —104 13
He goes at some length into the equation
23—2x—5 = 0.
There is clearly a root a little greater than 2. Reducing by that amount,
23+ 6x2-}-10x—1 = 0.

This has a root slightly less than 1. He tries 0-09. He then covers up
most of his work, finally coming out with the answer

x = 2-094551481542326590,

‘correct to the 18th decimal place at three approximations.’

I must confess to being somewhat sceptical as to the limits of
accuracy of his methods of shortening. The general scheme is like
shortened division, where we cut off figures at the beginning of the
divisor, instead of adding to the end of the dividend. He states his
general principle as follows:

‘From these principles we make the following conclusions demonstrative
of the facilities introduced by the improvement of the original process.
Whatever be the dimension (n) of the proposed equation whose root is to be
determined to a certain number of places, only 1/nth part of that number
(reckoning from the point at which the place of the closing addend begins to
advance to the right of that part of the derivee) needs to be found by means
of the process peculiar to the complete order of the equation, after which
1/n(n—1)th may be found by the process of the (n—1)th order.’t

t Ibid., p. 63. 1 Ibid., p. 64.
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I am not sure exactly what this means, I am sceptical. I take
2342542+ Br—0-961725 = 0.
The first figure of the root will be 0-1. Reducing by this amount
3+ 25-322-4-10-032x —0-210725 = 0.

Since we have advanced to the right of the last figure of the derivee,
if we wish only three-figure accuracy, it would seem Horner would
allow us to contract. If so, the next figure is 0-02, but if we retain the
cubic this is too big.

Horner maintains that his method applies just as well when we have
functions other than polynomials. He gives the example

x® = 100; zlog,x = 2.

We see from the table that a first approximation is 3-6. After this point
he covers up his tracks, but it is not hard to proceed

d
2 (wlogyy) = logyge(1-+log,2)

7
= log,o€ -+ 10,36 + 10g10610g8(1 + 56)

From this point on it is straightforward. He gives the astonishingly
long answert
x = 3-5972886.

Horner! is a short paper and does not call for much notice. It consists
chiefly in comparing Newton’s method of approximation with others
not much more complicated. In Newton’s method, if R be the first
approximation, the first correction is —¢(R)/¢'(R), and that is really
what is usual in Horner’s own method for finding roots, after things
are well started. Here is something a bit more accurate. Let

r¢'(B)+(R) = 0,
3 B (s (R) - 4(R) = o,
4R
¢'(B)+34"(R)(r+3r)
We simplify the denominator: putting r for --8 in the denominator,

R
¢'(R)+3rd"(R)

r-4+dr =

r4-8r =

This he calls Halley’s method.
In Horner? we get the fundamental method of Horner? explained in

1 Horner?, p. 68.
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so simple a fashion that the author seemed a little ashamed of it. He
sees that save for the later contraction he repeats the same process over
and over again, each time adding a figure to his answer.

“The remark I am about to make may appear indeed, at first sight too
trivial to be dwelt upon. If the formula

A, q "B,y K g Ly g+ My y+ (6)
be divided by y as many times as are represented by any one of the
subscribed exponents, the several remainders will be N,, M,, L, etc., ending

with that under which the selected exponent appears. Yet if we conceive y
to be only a concise expression for (x—r) and theformula a concise expression

for Ayan+ By 1op-... 4 Ko ¥+ Ly 22+ My a-+ Ny = f(z) (7
we find in this perfect truism the real germ for that species of transformation
on which the approximate solution depends.’t

This means that to reduce the roots of f(z) = 0 by r we should write

f@) =fly+r) = A,y"+ B, y" .+ My + N
The coefficients are functions of r obtained by dividing (7) by (x—7),
and then the quotient and so on. In a footnote to the same page we
find an explanation of Horner’s method of ‘synthetic division’ which
is further explained in Horner? to which I shall return presently. The
explanation on this page is as follows:

‘Leaving the powers of  to be mentally annexed to these coefficients, and
indicating in the margin the number of times r must be used to arrive at the
remainder the continual division of eq. (7) by x—r will assume the form

4, B, €, . . . K, L, M, N,
0 4,r Byr . . . Hyr Kyr Lyr Myr

™ A B C, . . . K L M, N,
0 Ayr Byr . . . Hyr Kyr Ly,r Myr

™t 4, B, C¢, . . . K, L, M, N,
0 Adgr Byr . . . Hyr Kgr Lgr Mgyr

Ay, By Oy . . . Ky Ly M, N

There is a slight confusion here because all of the 4’s are equal. The
reason for introducing new letters is to be able to write the general

formula Q= QurtRr.

Horner? is a series of letters and other communications to the editors
of Leybourn’s Repository bearing dates between 1820 and 1827 and adds
little to what I have already given. He gets a limit for positive roots
by reducing all roots by 1, 2, 3, etc.—a tedious process. He gives a

1 Horner?, p. 109.
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number of expedients for simplification, which do not impress me much.
He becomes excited over the accusation that a certain Mr. Holdred had
anticipated his work. He states emphatically: ‘I am not indebted to
any person that ever lived for a hint beyond what I have fairly and
broadly stated in the Phel. 1'rans.’t That he had already been antici-
pated by Ruffini and Ch’in he clearly could not realize. In general the
chief interest in Horner? is in connexion with synthetic division, which
he explains, not very well, on pp. 44, 45. So far as I can make out this
is original with him, and certainly deserving of credit even if to-day we
have drifted rather far from such questions. I have already indicated
his method of dividing f(x) by —r; let us generalize this, first illustrat-
ing multiplication. Suppose we wish to multiply

Q& Fa, 2"t ayan 4. by @P4byaP b, aP-2

ay a; ay ay
1 b, b, by
@y @yt by g+ dy by 4 by
Now divide
Coa™HP ¢y an Pl f e antp-24 . by aP4-b xPtpby PRt
Co ¢y Co €3 .+ -
1 —by —by —by

@y == €y Ay = C;—Coby Gy = Cu—a;b;—ayby

§ 2. Paolo Ruffini

I now turn from Horner himself to those predecessors whom I have
already mentioned. The first was Paolo Ruffini, professor in Modena,
who attained celebrity by publishing one of the earliest proofs of the
insolvability of the general equation whose degree is higher than four.
Like Horner he started with Taylor’s theorem for reducing his roots,
and he also shied off from this as presumably too esoteric for pupils
interested in solving equations.

‘Ho dimostrato la veritd di tali operazioni tanto nel NO 12 della citata
Memoria come nei numeri 123 e 127 del Appendice della mia Algebra Elemen-
tare ; ma siccome cold suppongo noto il calcolo differenziale, e quivinote le serie
algebriche, no sara forse inconveniente, prima di proceder inanzi, d’esporre
nuovaments simile demostrazione senza supporre le indicate nozioni.”f

The equation he would solve is

Az Bgm-14- Cgm—24- ...+ S+ Tx+-U = 0. (8)
Let Ap+B = P,
Ap*+Bp+-C = L,

Apr+ Bpr-14-Cpr-2+- ...+ Lp*+Mp+N = B,.
1 Horner4, p. 39. 1 Ruffini (q.v.), p. 12.
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These F;’s are what we get by dividing (8) by x—p. He then intro-
duces a whole new flock of letters:

= pA+P = pay+ b, = pay+Fy
Ba PA+oy 34 PB:;‘I'% /35 Z’.34+°‘4

¥a = pA+oy

These are Horner’s numbers in a different order ; it fatigues the memory
to try to hold them. I note in passing

P, . 4B, _
G g P

He finally sets out the array

pl A B C D E F
4 B BB PR
A oy ay oy

4 By B

which is Horner’s essential arrangement.

Ruffini goes to great lengths to find methods of contraction, but I see
no reason to follow him there. Irepeat that it seems to me very unlikely
that Horner had ever heard of this paper.

§ 3. Ch’in Chiu-Shao

A far earlier predecessor of Horner’s, whom it is even less likely that
he ever heard of, was Ch’in Chiu-Shao, a thirteenth-century Chinese sage
who sometime around A.p. 1247 composed the Nine Sections of Mathe-
matics. Here, as far as I can understand it from Mikamit is his general
scheme for the solution of numerical equations.

A first approximation to a root is guessed. The first coefficient is
multiplied by the approximate root and added to the second coefficient,
making the first partial sum of the first set. The first coefficient is
multiplied by the approximate root and added to the first partial sum,
making the second partial sum of the first set, and this system is kept
up till a first set of » partial sums is made. Then we start again. The
first partial sum is multiplied by the approximate root and the product
is added to the third coefficient, making the first partial sum of the
second set. We keep on in this way, multiplying the partial sums of the
first set by the approximate root, and adding to the corresponding
partial sums of the second .set. This is done n—1 times, making the
second set of partial sums, and so on. This is evidently Horner’s

1t q.v., pp. 74 ff,
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reduction of all roots by the amount of the approximation, using his
method of synthetic division in reversed order. Here is a simplification
of Ch’in’s process as given by Mikami.t The table should be read up
from the bottom. The equation to be solved is

2476320022 — 40642560000 = 0.

If we solve this as a quadratic in 2 we find four real approximate roots
x = 76, x = -4-265. But Ch’in, for some reason I do not grasp, takes
as his first approximation 800.

i 800 Root
— 40642560000
(1°) x 800 800 x 98560000 78848000000
38205440000 Absolute
(2°) x 800 800 % 123200 98560000
800 X { ~1156800) — 925440000
— 826880000 1st degree
763200
(3°) X 800 800 x (—800) _—840000
123200
800 % (— 1600) — 1280000
— 1156800
800 x {— 2400) —1820000
— 3076800 2nd degree
{4°) X 860 800 % (—1) ~—800
800 x (—1) — 800
— 1600
800 x (—1) — 800
— 2400
800 x {—1) —800
- 3200 3rd degree
—1 4th degree

1 repeat that we have here essentially Horner’s own method.

T think that my partiality for Horner is partly based on a prejudice
in favour of a man of limited training who, by courage and determina-
tion, did something really worth while, even if others had done it before
him. But no subsequent writer has developed anything better, his
fundamental idea and his synthetic division are the last word in
simplicity ; greater mathematicians have done less admirable things.

t q.v., pp. 74-7.



CHAPTER XVI

BERNHARD BOLZANO

§ 1. Roots of a real function

THuE distinguished Czech writer whose name stands above bears, from
the point of view of this book, a certain resemblance to Blaise Pascal.
Both were deeply interested in religion and philosophy, both were
involved in controversy and suffered for the faith that was in them.
Both did such brilliant mathematical work that they might well be
classed as professionals. But I have included Pascal with the amateurs
because he was more famous as a philosopher and a writer of beautiful
French prose than as a mathematician, and I take up Bolzano because
it seems to me interesting that a man who was a remarkable pulpit
orator, only removed from his chair for his political opinions, should
have thought so far into the deepest problems of a science which he
never taught in a professional capacity. Aninteresting study of Bolzano
the mathematician will be found in Stolz (q.v.).

Let us begin by noticing Bolzano!, which was completed in 1817, and
bears the title Rein analytischer Beweis des Lehrsatzes, dass zwischen je
zwey Werthen, die ein entgegengesetztes Resultat gewdhren, wenigstens eine
reelle Wurzel liege. This tells us that if the real function f(z) be con-
tinuous through the interval from a to b, and if f(a) and f(b) have
opposite algebraic signs, then at least one root lies in the interval., This
fact is so intuitively evident if one draws a picture, that it is hard to
persuade any but a professional mathematician that there is any
interest in proving it.

But the words rein analytischer Beweis show that Bolzano looked on
this as a purely analytical fact, which should be proved by steps based
merely on the premisses of analysis. The date is important because the
work contains the earliest statement of two most important mathe-
matical principles, and because it was written by a man still actively
engaged in non-mathematical work, who must have had but a limited
amount of time to give to mathematical research.

He begins with the statement that two theorems have occupied a
very central place in the study of algebra. The first is the theorem
stated above, the second that which states that any polynomial in one
variable with real coefficients is divisible into factors which are either
linear or quadratic in the variable. This second theorem had been
adequately handled by Gauss ; as for the first, there were many existing
proofs, but either they were based on geometry, that is to say on pure
intuition, or on insufficiently exact ideas of continuity. We should have
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a really rigorous proof, based on accepted principles germane to the
theorem involved.

Bolzano! is occupied with real functions of real variables, especially
with continuous functions. But when is a function continuous? Here
is his definition:

‘Eine Function f(z) fiir alle Werthe von « die inner- oder ausserhalb
gewisser Grenzen liegen, nach dem Gesetze der Stetigkeit sich éndere, nur so
viel, dass, wenn x irgend ein solcher Werth ist, der Unterschied f(a--w)—f(z)
kleiner als jede gegebene Grisse gemacht worden kénne, wenn man w 8o
klein, wie man nur immer will, annehmen kann.’f{

This definition of continuity, which would be perfectly acceptable if he
indicated that klein means small in absolute value, and which is abso-
lutely fundamental in all modern discussions of real variables, is often
attributed to Cauchy, but is really Bolzano’s own great contribution to
analysis.] If Bolzano had done nothing else in mathematics, this alone
would secure for him a place in the history of the subject.

We first get down to business in Bolzano! with the study of infinite
sequences. On p. 21 of Bolzano! we find a statement which I translate
as follows.

Theorem 1] When a series of values Fy(x), Fy(x), F,(x),..., F, . (2) 18 such
that the difference between the nth term F,(x) and every subsequent term
F, . (), be this never so far removed, remains less than any specified number
when n is taken sufficiently large, then there is always a definite value X, and
only one, to which the members of the series approach as close as we will,
when the series is prolonged indefinitely.

This is of capital importance in analysis. X is not a constant,
but a function of z, and we have here the first adequate definition
of a convergent series.§ Moreover, he does not give a real proof at this
point; I will return to this later on. Bolzano points out that such
convergent series exist, as the series of sums in the series

1472 lrl < 1.
He also shows that F,(x) itself approaches this value as

and similarly we see that there can be only one such value. What is
really lacking is an existence theorem for X unless we take the word
Lehrsatz to mean assumption. He has no real definition of the con-
tinuum, or of irrational number. The series 14-0-4+0-01--... converges
+ Bolzano, pp. 7, 8.
1 Cf. Jourdain in Bolzanol, p. 39, and Pringsheim in the Encyclopddie der maih.

Waissenschaften, vol. ii, 1. 1.
§ Cf. Jourdain in Bolzano!, p. 41, and Knopp (q.v.), p. 85.
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to ~2, but what sort of a thing is this to which we say it converges?
A clear definition of an irrational number by a Cantor series or a
Dedekind cut is still some distance in the future. What islacking here, as
elsewhere in his published work, is a proof of the Bolzano-Weierstrass
theorem: Every bounded sequence possesses at least one limiting point.t
I shall return to this again.

From this point on Bolzano! runs smoothly enough. If a series be such
that by taking » large enough the sum of all the terms after % of them
can be made as small as we please in absolute value, the series of sums
is convergent, as is the series itself.

Theorem 2] 7f not all values of a variable have a certain property M,
but all which are less than a given value u have this property, then there is
a certain value U such that it is the greatest number of which it can be said
that all lesser values of x have this property.

Here is his proof. Let all values of a for which this holds be called
values of the first class, and all others of the second class. We can
find D, when U is of the first class, such that U+ D is of the second.
Consider the values

D D D D
Utz Ut Ut o Ut

If no such value is of the first class, no matter how large I may be, as
this number can be made as close to U as we please, then U itself is the
number we seek. If not, let U4 (D/2") be the first of these which is of
the first class, while U~+-(D/2"71) is of the second. Using D/2" in the way
that we previously used D, and continuing the same process again and
again, we have D

D D
U+§1—L+Wﬁ+"'+m.

If this series terminate it ends in the sort of number we want ; if not,
it tends to a limit under Theorem 1.1

Theorem 3] If two functions of x, f(x), ¢(x) either for all values of x
or for all between « and B alter according to the law of continuity, and if
Surther f(a) < dla); f(B) > H(B), then there is always between « and B such

a value that flx)— () = 0.

We suppose both « and B are positive, and o < 8. We shall say that
w has the property M, if fladw) << ¢(a+w). When w = 0 it has this
property, but not when it = B—a«. Then by Theorem 2 there is a
largest value of w such that for x < a-+w, f(z) < $(x). By the continuity
1 Cf. Knopp (q.v.), p. 89.

1 Jourdain says, Bolzano!, p. 43, ‘Die folgende Schlussweise . . . ist im Wesen sehr
alt’, but gives no reference.
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assumption, for this value f(x) = ¢(x). The fundamental theorem he
seeks to prove is a special case of this when ¢{zx) = 0.

§ 2. Study of real functions

Bolzano? is a careful study of real functions of a real variable, the
domain being the continuum. He builds from the ground up. It is a
more elaborate and sophisticated work than Bolzano!, showing a much
greater knowledge of the literature ; he doubtless had read Cauchy. He
begins with a study of differences which is not particularly interesting.
Matters improve when he passes to continuous functions, the definition
being essentially that of Bolzano'; but this time he speaks of the abso-
lute values of his differences. He points out that a function may be
continuous at a point for a positive value of the increment only. In
general he only uses the word stetig when there is continuity both ways.
He occasionally goes astray, writing

1 e | ey 2 __ 3
m_ l—x4-x2—23+....

Then ‘by the law of continuity’

1=1-141—1+...
A slip occurs on p. 27, where he assumes that if F(x) be continuous in
a certain interval, and take the value M an infinite number of times,
without being identically equal thereto, then to each point where
F(x) = M there is a nearest point where the same is true. Rychlik}
takes the function F(x) = (1/x)sinz (—1 < & < 1), F(0) = 0. There is
no nearest point to the origin where F(0) = 0. Something very interesting
comes on pp. 28, 29.

Theorem 4] If a function F(x) defined for an infinite number of values
between a and b take an infinite number of values, and if at least one of
these be greater than any assigned number, this function s not continuous
for all values of the interval.

We assume x,, ,, Ly,... such that

Flz) >1, Flzy) >2, .., Fz,)>n,

Then there must be a point of accumulation ¢ in the interval such that
in the shrinking interval (c+w), F(x) takes a value greater than any
assigned quantity.

But why must there be such a point of accumulation? Bolzano
writes in a footnote in his own handwriting that this was shown in the
‘Lehre von der Messbarkeit der Zahlen’. But where is this article, and
when was it written? Rychlik says in a footnote to Bolzano®] that
neither he nor Jadek has been able to find any trace of such a work.

1 Bolzano?, p. 5. 1 Bolzano?, Notes, p. 5.
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Now this is exactly the Bolzano—Weierstrass theorem that I mentioned
on p. 197 which is used without proof in Bolzanol. It would be pleasant
to assume that Bolzano himself worked out a rigorous demonstration,
but we can hardly take this as certain.

We pass from here, by similar reasoning, based on this theorem to

Theorem 5] If F(x) be continuous in a closed interval a to b it will take
at least once every value between F(a) and F(b).

Theorem 6] If F(x) be continuous in a closed interval a to b it will
actually take a maximum and a minimum value.

He passes next to functions of several variables, and is at pains to
define exactly what he means by continuous. He gives

Theorem 7] If for all values of , y, z,... in the closed interval x-+h,
y+k, 241 the function F(x,y, z,...) is continuous in each of the variables
separately, it is continuous in all together.

Flot+Ax, y+Ay, 2+Az,...)— F(x, 9, 2,...) = Flx-+Ax, y+Ay, 24+Az,...)—
—F(x, y+ Ay, z+Az2,..)+ Flz, y+Ay, 2+Az,..)— Flz, y, z-+-Az,...)+
+F(x, y, 2+Az,...)~F(x, y, 2,..) ...

Each of these separate differences approaches 0.
Rychlik points out that this is true if we assume that this limiting

value is independent of the manner of approach, otherwise it may not
be true.

-
Let Flo,y) = iy L
F0,y) =0, F(x, 0) = 0.
If y=mz, Flz,y)= r_}’_’_“;n.é

He then returns to functions of one variable and shows that even though
in a closed interval a to b, F(x) takes allintervening values, itisnot neces-
sarily continuous. For instance we might take the interval 0to 1, making
F(x) = {x, x rational, F(x) = =, x irrational, F(0) = 0, F(1) = }.

He studies monotonely increasing or decreasing functions and func-
tions with an infinite number of maxima or minima in a closed interval.
Rychlik finds several flaws in the proofs, but I will not pause to point
them out.

The second section of Bolzano? is given to derivatives. He is careful
to point out that there may be a difference in value between the
derivatives in the positive and in the negative direction. If a function
have a derivative, either in the positive or the negative direction, for
a value ¥ = x,, it is continuous in this direction ; the converse is not
necessarily true.
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Theorem 8] If a function F(x) is continuous at xy but has no derivative
there, then either AF|Ax increases indefinitely in absolute value, or there
18 such a number M that | M —AF [Ax| can be made as small as we please.

We see, in fact, that if AF/Ax does not increase indefinitely it must
remain less than some smallest number M. He gives some attention to
functions nowhere differentiable, and has a function with an infinite
number of maxima and minima which is too complicated to give here.
He pays some attention to the Law of the Mean, and Taylor’s theorem
with remainder. The proofs are inferior to others now available, and
there are occasional lapses in the reasoning.

Bolzano? is, as I said before, a more sophisticated work than Bolzano!
and is based on a wider mathematical knowledge. The number of small
faults is large ; it would not do to-day as an introduction to the subject.
But it is a remarkably penetrating study of a very difficult subject, a
noteworthy work for any amateur.

Bolzano3, like Bolzano?, is carefully built up from first principles. It
deals largely with divisibility and primality of positive integers, a far
safer subject for an amateur than the general theory of real functions. He
proves various standard theorems, such as Euclid’s method of finding the
highest common factor of two integers, the unicity of division into prime
factors, one of Fermat’s famous theorems, unfortunately not his last,
and Wilson’s theorem. A good deal of attention is given to the theorem
that every integer is the sum of four or fewer perfect squares. There
are few errors as compared with Bolzano®. This is quite natural, given
the difference in difficulty of the two subjects. There does not seem to
be anything very original in the whole work, it is not a subject where
original results are easily found.

§ 3. Die Paradoxien des Unendlichen

Bolzano? represents a serious attempt to wrestle with the difficulties
inherent in the introduction of infinitely large quantities into mathe-
matics. How many great men, even great mathematicians, have
attempted this, and with what pitiful results! Prihonsky says in the
introduction, p. iv: ‘Wahrhaftig hiitte Bolzano nichts anderes geschrie-
ben, und uns hinterlassen, als diese Abhandlung allein, er miisste, wie
wir fest glauben, schon um ihretwillen den ausgezeichnetsten Geistern
unseres Jahrhunderts beigezihlt werden.’ Georg Cantor (q.v.) expresses
an almost equally high appreciation of Bolzano’s penetration, though
he points out places where the Czech theologian falls short of the mark.

Bolzano’s thesis is that the infinite is something perfectly definite,
with definite properties, not merely a pure negation. He proposes to
deal with some of the surprising results, even apparent paradoxes,
which arise from this conception. His first approach is through the
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ordinal numbers. Suppose we have an assemblage where we can say of
any two things either that they are equal, or that one is greater than the
other, and that to each which is not the greatest of all, if there be such,
there is one next greater. Suppose, further, there is one least. Then
to each object will correspond a positive integer. If there is no greatest
we say that the assemblage is infinite. He says that he has no quarrel
with writers such as Cauchy, who define the infinite as a variable and an
assemblage as infinite if it can be increased indefinitely, though he rightly
objects to those who call infinity the limit of an unlimited assemblage.

Bolzano has more difficulty with infinite cardinals. He remarks that
there is hardly a mathematician who will deny that the number of points
on a line between two given points is infinite, but it cannot be said thatin
this continuum there is one point which is next to another. He points
out next that a finite object can be composed of an infinite assemblage
of parts; an example is the sophists’ paradox of Achilles and the
tortoise, or an endless decimal. And now comes his first and greatest
paradox. All assemblages are not equal, but the ancient axiom that a
whole is greater than a part of itself must be modified because an
infinite assemblage is equivalent to a part of itself in the sense that they
can be put into one-to-one correspondence. It is easy to show examples.
The points of the X-axis whose abscissae are 0 or positive can be put
into one-to-one correspondence with those whose abscissae are greater
than or equal to any chosen positive number. Or again, if we take the
two ordered sequences

1, 2, 3, 4, ..,
12, 22, 32, 42

there is a one-to-one correspondence between them, but the second
sequence contains only a minor portion of the first.

Here Bolzano stands on the brink of taking a great forward step,
that of describing the Mdchtigkeit or power of an infinite assemblage,
and showing that not all infinite assemblages are equivalent in the sense
that they can be put in one-to-one correspondence with one another.
He was not quite able to take it, we must wait for Georg Cantor, but
he was very near. He writes:

“Ubergehen wir nun zur Betrachtung einer héchst merkwiirdigen Eigenheit,
die in dem Verhaltnisse zweier Mengen, wenn beide unendlich sind, vor-
kommen kann, ja eigentlich immer vorkommt, die man aber bisher zum
Nachtheil fiir die Erkentniss mancher wichtigen Wahrheiten der Meta-
physik, sowohl als Physik und Mathematik iibersehen hat, und die man wohl
jetzt, indem ich sie aussprechen werde, in einem solchen Grade Paradox finden

wird, dass es sehr néthig sein diirfte, bei ihrer Betrachtung uns etwas linger
zu verweilen.’}

t Bolzano?, p. 28,
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This seems to be nothing less than a claim that no one had previously
noticed that the members of an infinite assemblage can be put in
one-to-one correspondence with those of a part of the same assemblage.
It is indeed hard to believe that no previous writer had ever noticed
this fairly evident fact, but I can find no mention of it, one way or the
other, in the literature. It would be pleasant to think that it was
Bolzano’s own original contribution to fundamental mathematics.
I will mention in passing that it can be taken as a definition for the
infinitude of an assemblage.

At this point Bolzano wanders off into some calculations which, as
Georg Cantort rightly says, do not make any sense at all. He writes:

104201801 L0 — NO,
What the sign of equality means here I do not know. Then we have

(et 1) (1 2)+ (n4-3) 4 = N7

104204304, = Nn_NO
142484 ntm4+1).. =89,
but adds we may not write
G _ N°(N;+1)

merely because this is true of finite numbers.

A number is said to be infinitely small if no matter how many times
we take it, we cannot come up to a finite number. He does not show
that such things exist, or in what sense we here use the word number.
He points out the danger of writing 1/N0 for such a number, and the
still greater danger at the other end of writing 1/0. The series

= a—ata—ait..
must not be written
x = a—(@a—a)—{(a—a)..,
as this leads to x = a/2. He points out that in an infinite series we

may not change the order of terms, or introduce parentheses as we do

with finite sums. If we write
a a
T = Atreteted Ty

o-+at+a-t-... = 0.
1 cannot help expressing surprise that the man who first introduced

the correct definition of a convergent series should not have grasped
the idea of defining a series as a limit.

t q.v., p- 661.
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Bolzano points out the great danger of following Leibniz in neglecting
small numbers in comparison with large ones. If M and N are two
large numbers whose ratio is rational we cannot say of any number p
however small that Mtu M

N N

Bolzano now passes to the safer ground of the infinitesimal calculus.
If y be a function of « which has a derivative, we are safe in writing

. Ay dy
hmA—x- =
When it comes to second differences he proceeds like this:
. dy 1d% , », .
y+Ay = y—)—%Ax—}—:‘): wa +.3
dy+A 1 d¥(y+A
(y+20y+A%) = y+Ay+ WTED ng  LIWHAY) o,
dx 2  dx
_dy 1d% , ., .
Ay = %Ax+§%éAx 4.
ddy  d% .
% — d_xéAx—'}_---,

d?y )
Aty = —ZS A0

Ay dy
MR gt

This, of course, is perfectly sound.

The continuum of time and space is defined as everywhere dense.
Lengths are measured in comparison with other lengths, areas with
areas, and so on. He pays a good deal of attention to the erroneous
idea that the distance between two points is measured by the infinite
number of points between them. A curious result of this would be that
the ratio between the number of points on a side and on the diagonal
of a square would be irrational, or more simply, as the points on a line
segment an inch long can be put into one-to-one correspondence with
those on a line 2 inches long, the two lengths are equal. There is also
much danger in speaking of infinitely short distances. Here is something
curious ; I name it after the man Bolzano said discovered it:

i

Galileo’s Paradox] The circumference of a circle has the same area as
its centre.

The modern mathematician would agree, as each has the area 0, but
let us see what is meant. Consider a sphere of radius 1, embedded in
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a circular cylinder of that radius and height 2. Consider a ring in the
plane z = 2; between two circies with a common centre (0, 0, z;) and
radii 1 and ,/(1—2%): m2d == 7 L —m(1—22).

The limit of the left-hand side as z;— 0 is the centre, and of the
right is the equator.

Bolzano next goes on to show that certain things, formerly considered
paradoxical, are not really so. It was formerly believed that an infinitely
extended object could not be contained in a continuum of finite extent,
or that an infinitely extended object could not have a finite content,
and that a spiral with an infinite number of turns must be infinitely long.
None of these assumptions is correct.

Consider first the curve 1

y = sin—,

or so much of it as is contained between the Y-axis, the line x = 2/m,
and the lines y = --1. The length from the origin to the line x = 2/ is
infinite. Next consider the curve

sy = 1.

This will be extended indefinitely along the X-axis. The area between
the curve and that axis from the point (1, 1) out is

e8]

!ydx:lfx“%dx:

Bolzano’s example is not so simple as this. Before leaving this curve
let us look at the other asymptote. The area here is

o

fxdy=!y‘§dy=oo.

1
But if we spin around this axis the volume generated is

wfxzdyzwfoy“gdyZ?m.
i i

Query, what has become of Pappus’ theorem that the volume generated
by spinning an area about a line in its plane which does not cross it, is
equal to the product of the area multiplied by the length of the path
traced by the centre of gravity ? As a mistake of the statement about
the spiral with an infinite number of turns, we have but to consider the
logarithmic spiral which turns an infinite number of times as we go in
towards the centre, but has a finite limit of length.

Here is one more example of the fundamental theorem that an
infinite assemblage is equivalent to a part of itself. If two figures can
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be carried into one another by a rigid motion of the plane, it would
seem safe to say that they included the same infinite number of points.
It is equally safe to say that there are as many positive numbers as
negative ones. Similarly it would seem safe to say that the number of
numbers < 2 is equivalent to the number of numbers > 2, for the last
statement is carried into this by sliding the origin 2 places. But the
number of numbers < 2is greater than the number of negative numbers,
and so greater than the number of positive numbers and so greater
than the number > 2. What we really need here is Bernstein’s theorem,
still far in the future, that two assemblages are equivalent when each
is equivalent to a part of the other.

The remainder of this interesting essay is more or less metaphysical
and so is not our present concern. The whole is the work of a man who
reflected deeply on the foundations of mathematics, and came very near
to developing the modern theory of infinite assemblages. But what a
splendid accomplishment for one who was not a professional mathe-
matician to be the first to define properly a continuous function, the
first to define properly a convergent sequence, and the first to point out
that an infinite assemblage is equivalent to a part of itself.
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