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Preface 


This book continues a long tradition of relating the history of mathematics to the teaching of mathematics. Throughout 
the twentieth century, mathematics educators at various levels have argued that the history of mathematics is a marvelous 
resource for motivating and exciting students studying mathematics. During this time, there has been a constant stream of 
articles showing in detail how to use history in teaching. And during the flnal decades of the twentieth century, there has in 
fact been an increasing use of history in the teaching of mathematics at all levels. In 1972, the International Commission 
on Mathematics Instruction (ICMI) approved the founding of an affiliated study group, called the International Study 
Group on the Relations Between History and Pedagogy of Mathematics (HPM). This group now has regular quadrennial 
meetings in connection with the International Congress on Mathematical Education (lCME), as well as other meetings, 
both in the U.S. and abroad. Because of the work of HPM, ICMI authorized an ICMI Study on the Role of the History 
of Mathematics in the Teaching of Mathematics. This study has resulted in a new volume in the ICMI Study Series 
which is appearing in August, 2000. Among other indications of increased interest in the use of history in the teaching of 
mathematics, we note that the National Science Foundation has funded several grant projects dealing with the use of the 
history of mathematics at both the undergraduate and the secondary level. These projects will result in several publications 
demonstrating to teachers how they can use history in the mathematics classroom. 

The current volume brings together articles in the history of mathematics and its use in teaching, all based on papers 
presented at ICME in Seville, Spain and at the Quadrennial Meeting of HPM in Braga, Portugal, both in the summer 
of 1996. The latter meeting brought together close to flve hundred teachers from around the world interested in using 
history with most having some experience in doing so. There was a great sharing of ideas, as usually occurs during an 
international meeting, and all who participated felt that they could go back home and convince their colleagues that the 
use of history was an idea whose time had come. The articles in this volume present but some of the fruits of those 
meetings. They vary in technical and/or teaching level and also in the level of generality. Some of the articles deal very 
specifically with how one can use history in the teaching of a particular topic, such as quadratic equations or the rank of 
a matrix. Others are more general and present an overview of reasons why history is useful in the mathematics classroom. 
And some articles deal primarily with the history of a particular area of mathematics, but including suggestions as to how 
one can incorporate that history in teaching those ideas. 

Part One of this volume contains three articles dealing in general terms with the use of history in teaching. Man· 
Keung Siu gives us the ABCDs of using history • four general categories of how history has and can be used in the 
classroom. Frank Swetz shows us how the pedagogy of early mathematical texts can help in today's classroom. And Anne 
Michel·Pajus provides an example of the use of history in university classrooms in France. 

In Part Two, four authors discuss historical ideas as they can influence the pedagogy in our classrooms. Lucia 
Grugnetti gives us some general examples, concentrating in particular on the work of Cavalieri. Wann-Sheng Horng 
compares the work of Euclid and Liu Hui on several geometric topics, drawing some interesting conclusions as to how the 
ideas of both can be used. Fulvia Furinghetti resurrects an old Italian journal for high school teachers and demonstrates 
how the articles in it can still be useful in today's teaching. And Frank Swetz shares some interesting historical problems 
which can be valuable additions to the repertory of any practicing teacher. 
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Part Three contains five articles dealing very specifically with the use of history in the teaching of a particular topic. 

Luis Radford and Georges Guerette give us details on how to use the geometric methods of the Babylonians and the 

Islamic mathematicians in teaching the quadratic formula. Janet Barnett illustrates how the historical resolution of several 

important anomalies in mathematics can be used to teach the relevant topic today. Evelyne Barbin takes us a tour of the 

teaching of geometry, showing how what is "obvious" has changed over the centuries. Jean-Luc Dorier gives us some 

results of a research study in the teaChing of linear algebra, while describing how the use of some of Euler's original ideas 

clarify concepts with which today's students have difficulty. And Constantinos Tzanakis relates the teaching of physics 

to certain advanced mathematical topics through attention to their mutual history. 

In Part Four we see how the history of mathematics has been successfully used in teacher training. Ian Isaacs, V. 

Mohan Ram, and Ann Richards describe a historically based course for pre service primary teachers in Australia, while 

Greisy Winicki demonstrates the use of the rule of false position to improve understanding of linear equations with 

prospective secondary teachers in Israel. Maxim Bruckheimer and Abraham Arcavi then describe a long-running project 

in Israel on developing teaching materials in several areas using original sources and guided readings. 

The fifth and final part of the volume is devoted to articles on the history of mathematics, virtually all of which 

contain numerous suggestions as to how this history is applicable to the teaching of mathematics. Eleanor Robson presents 

the background to Mesopotamian mathematics, an area often missing from standard history books, while Man-Keung Siu 

provides a brief overview of ancient Chinese mathematics. George Heine takes us back to medieval Islam to look at the 

question of the value of mathematics. The Islamic answers are compared with modem ones. We then move to Renaissance 

Italy, where Uwe Gellert looks at the construction of a cathedral and shows how it reflects the mathematical knowledge 

of the day and the gradual shift to humanism. Luis Moreno and Guillerrnina Waldegg describe the history of the idea 

of "number" through the ages, an idea which must be communicated to students at various levels. Robin Wilson gives 

us a brief, though comprehensive, look at the history of combinatorics and provides a number of historical problems for 

students to solve. Torkil Heiede then presents the history of non-Euclidean geometry and tries to answer the question as 

to why a strong knowledge of this history is necessary for today's secondary school geometry teachers. Livia Giacardi's 

article is a complement to this one, presenting a more detailed history of Beltrami's contribution to the understanding 
of non-Euclidean geometry, while Gavin Hitchcock describes the world of Augustus DeMorgan through a scene from a 

mathematical play. The volume concludes with two preliminary studies of the history of mathematics in areas of the world 

still little studied. Jaime Carvalho, Antonio Duarte and Joao Queiro discuss the history of mathematics in Portugal, while 

Ubiratan D'Ambrosio provides the same service for South and Central America. In both cases we see how the study of 

mathematics was strongly impacted by the social and political currents of the day, even up through the twentieth century. 

I wish to thank not only the contributors to this volume, but also the many others who refereed the papers and gave 

valuable advice both to the authors and to me. These referees include Tom Archibald, Marcia Ascher, Janet Barnett, 

Al Buccino, Ronald Calinger, Louis Charbonneau, Dan Curtin, Florence Fasanelli, John Fauvel, Alejandro Garciadiego, 

Fernando Gouvea, Judith Grabiner, Charles Jones, Herb Kasube, Israel Kleiner, Stacy Langton, Karen Michalowicz, 

Daniel Otero, David Pengelley, Kim Plofker, Eleanor Robson, Amy Rocha. Ed Sandifer, Man-Keung Siu, Frank Swetz, 

Jim Tattersall, Erica Voolich, and Robin Wilson. Thanks are also due to the members of the MAA Notes Committee, 
including Dan Curtin, Phil Straffin, Tina Straley. Anita Solow, and Barbara Reynolds for their help in getting the book 

approved and for their detailed editorial work as well. Finally, I wish to thank the staff at the MAA, including Elaine 

Pedreira and Beverly Ruedi, for all their excellent, efficient work in producing the book. 

Victor J. Katz 


Washington, DC 


May, 2000 
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The ABCD of 
Using History of 
Mathematics in the 
(Undergraduate) 
Classroom 

Siu Man-Keung 
University of Hong Kong 

"The history of science is science itself" 
-Johann Wolfgang von Goethe, Theory oleolour (1808). 

Introduction 

Mathematics is a human endeavour which has spanned over 
four thousand years; it is part of our cultural heritage; it is a 
very useful, beautiful and prosperous subject. In his Presi
dential Address delivered to the British Association for the 
Advancement of Science in 1897 Andrew Russ Forsyth 
(1858-1942) said, "Mathematics is one of the oldest of 
sciences; it is also one of the most active; for its strength 
is the vigour of perpetual youth." [1, Chapter VII] This 
quotation hints at a peculiar feature of mathematics, which 
other sciences do not seem to possess, or at least not to the 
same extent, viz. the past, the present and the future of the 
subject are intimately in!errelated, making mathematics a 
cumulative science with its past forever assimilated in its 
present and future [2, 3]. No wonder in another Presiden
tial Address to the British Association for the Advancement 
of Science in 1890, J.W.L. Glaisher (1848-1928) said that 
"no subject loses more than mathematics by any attempt 
to dissociate it from its history" [1, Chapter VI]. The great 
French mathematician Henri Poincare (1854-1912) even 
said, "If we wish to forsee the future of mathematics, our 
proper course is to study the history and present condition 
of the science." 

For many years now various authors in different parts 
of the world have written on the important role played by 
the history of mathematics in mathematics education. A 
good summary of some reasons fOr using the history of 
mathematics in teaching mathematics and of some ways 
in carrying it out can be found in [4, pp. 4-5]. Perhaps it 
can be added that not only does the appropriate use of the 
history of mathematics help in teaChing the subject, but that 
in this age of "mathematics for all", history of mathematics 
is all the more important as an integral part of the subject 
to afford perspective and to present a fuller picture of what 
mathematics is to the public community. 

Be that as it may, enough has been said on a propagan
distic level. Some enthusiasts have already channeled their 
effort into actual implementation, resulting in a corpus of 
interesting material published in recent years in the fonn of 
books or collections of papers [5, 6, 7, 8, 9, 10, 11, 12, 13, 
14]. With this in mind I wish to share with readers some 
of my experience in integrating the history of mathematics 
into the day-to-day teaching in the (undergraduate) class
room. Do not be misled by the title into thinking that this 
article is a guide to the use of the history of mathematics 
in the classroom! The letters A, B, C, D refer to four cate
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gories, or levels, of the use of the history of mathematics in 

the classroom: A for anecdotes. B for broad outline, C for 
content, and D for development of mathematical ideas. Ex
cept for the last category, which describes a course by itself. 
the first three categories represent three aspects of the use 
of the history of mathematics. Following a good practice 
in teaching, I shall illustrate each category with examples 
taken from actual classroom experience instead of just ex
plaining what each category means in words. Even though 
such examples are admittedly piecemeal, I hope readers can 
still get an impression of how the four categories contribute 
to impart a sense of history in the study of mathematics in 
a varied and multifarious way. 

A for Anecdotes 
Everybody agrees that anecdotes about mathematics and 
mathematicians can contribute to the teaching of the subject 
in various ways. In the preface to his book [15]. Howard 
Eves sums it up beautifully, "These stories and anecdotes 
have proved very useful in the classroom-as little interest
rousing atoms. to add spice and a touch of entertainment. to 
introduce a human element, to inspire the student, to instill 
respect and admiration for the great creators, to yank back 
flagging interest, to forge some links of cultural history, or 
to underline some concept or idea." (For more anecdotes 
readers can consult two more books of a similar title by 
the same author [16, 17].) 

When we make use of anecdotes we usually brush 
aside the problem of authenticity. It may be strange to watch 
mathematicians, who at other times pride themselves upon 
their insistence on preciseness, repeat without hesitation 
apocryphal anecdotes without bothering one bit about their 
authenticity. However, if we realize that these are to be re
garded as anecdotes rather than as history, and if we pay 
more attention to their value as a catalyst. then it presents 
no more problem than when we make use of a heuris
tic argument to explain a theorem. Besides, though many 
anecdotes have been embroidered over the years, many of 
them are based on some kind of real occurrence. Of course, 
an ideal situation is an authentic as well as amusing or in
structive anecdote. Failing that we still find it helpful to 
have a good anecdote which carries a message. 

There are plenty of examples of anecdotes which serve 
to achieve the aims set out in Eves' preface. I will give only 
two examples. The first example illustrates the function 
mentioned last in Eves' list-to underline some concept 
or idea. The second example. besides introducing a human 
element, illustrates that mathematics is not an isolated in
tellectual activity. 

The first example is an anecdote about the German 

mathematician Hermann Amandus Schwarz (1843-1921), 
reported by Hans Freudenthal [18]. Schwarz, who was 

noted for his preciseness. would start an oral examination 

at the University of Berlin as follows. 

Schwarz: Tell me the general equation of fifth degree. 

Student: x5 + bx4 + cx3 + dx2 + ex + f O. 
Schwarz: Wrong! 

Student: ... where e is not the base of the natural 
logarithms. 

Schwarz: Wrong! 

Student: ... where e is not necessarily the base of the 
natural logarithms. 

This anecdote, whether it is true, semitrue or even 

false, makes for a perfect appetizer to the main course of 

the general equation of degree m. It drives the point home 

as to how special a general equation is! I have made use of 

this anecdote several times in a (second) course on abstract 

algebra, and each time students love it. After listening to 

it, they appreciate much better the definition of a general 

equation of degree m to be given subsequently. 

The second example is a real historical document, 

a letter dated March 6, 1832 from Carl Friedrich Gauss 

(1777-1855) to his friend Farkas Bolyai (1775-1856), 
seven weeks after receipt of the amazing work on non

Euclidean geometry by the latter's son, J:1oos Bolyai (1802
1860). We can imagine the dismay (but not without a trace 

of delight!) of the proud father when he read the letter 

which said, "If I commenced by saying that I am unable 

to praise this work [by J:1oos], you would certainly be sur

prised for a moment. But I cannot say otherwise. To praise 

it, would be to praise myself. Indeed the whole contents of 

the work, the path taken by your son, the results to which 

he is led, coincide almost entirely with my meditations, 

which have occupied my mind partly for the last thirty or 

thirty-five years .... of which up till now I have put little 

on paper; my intention was not to let it be published dur

ing my lifetime. . .. On the other hand it was my idea to 

write down all this later so that at least it should not perish 

with me. It is therefore a pleasant surprise for me that I am 

spared this trouble, and I am very glad that it is just the son 

of myoid friend, who takes the precedence of me in such 

a remarkable manner." [19, p.l00] From this passage we 

can unfold an interesting discussion on the interaction be

tween philosophy and mathematics, and realize better how 

mathematics forms a "subculture" within a broader culture. 



B for Broad Outline 

It is helpful to give an overview of a topic or even of 
the whole course at the beginning, or to give a review at 
the end. That can provide motivation and perspective so 
that students know what they are heading for or what they 
have covered, and how that relates to knowledge previously 
gained. In either case we can look for ideas in the history 
of the subject, even though in some cases the actual path 
taken in history was much too tortuous to be recounted to 
pedagogical advantage. 

One good example which permeates different levels 
in the study of mathematics is the concept of a function. 
(See [20] for a discussion of an attempt to incorporate this 
mathematical-historical vein into the teaching of mathemat
ics at various levels, from secondary school to university.) 
Let me give a more "localized" (to just one SUbject) exam
ple here, that of the differential geometry of surfaces. 

With the invention of calculus came its application 
in the study of plane curves and later space curves. One 
crucial description is captured in the notion of curvature 
with its several different but equivalent definitions. If we 
view the curvature K as the rate of change of a turning 
tangent, then it is not surprising that, as proved by Abraham 
Gotthelf Kastner 0719-1800) in 1761, 

f Kds = 27r 

c 
for a simple closed curve C on the plane. In the 18th cen
tury, knowledge about space curves allowed mathemati
cians to study a surface S in space, notably its curva
ture, through the investigation of intersecting curves on S 
by planes through the normal at a point. Leonhard Euler 
(1707-1783) introduced the notion of principal curvatures 
K1, K2, which are the maximum and minimum values of the 
curvatures of sectional curves so obtained on a pair of mu
tually orthogonal planes. The product K = K1K2 turns out 
to be of significance and is known as the Gaussian curva
ture, which can also be described through the "Gauss map", 
which measures how fast the surface bends away from the 
tangent plane by measuring the "dispersion of directions" 
of unit normal vectors at all points in a neighbourhood. 
Calculation of these quantities involves the use of coordi
nates. i.e., the surface S is regarded as something sitting in 
three-dimensional Euclidean space. For this reason we say 
that such quantities are extrinsically determined. 

Mathematicians would like to talk about the intrinsic 
geometry of a surface. i.e .• describe the surface as someone 
living on the surface without having to leave the surface 
and look at it from above or below! In a famous memoir 
of 1827 titled "Disquisitiones generales circa superficies 
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curvas" (General investigation of curved surfaces) Gauss 
initiated this approach. (Remember that Gauss did a lot of 
survey work and mapmaking, and in those days one sur
veyed the terrain on the ground, not from the air!) The 
crucial notion is that of a geodesic, the line of shortest dis
tance on the surface between two given points. Two sur
faces which are applicable the one to the other by bending 
but without stretching, so that the distance between two 
given points remains the same, will have the same geome
try. For instance, the geometry on a cylindrical surface will 
be the same as that on a plane surface, but will be different 
from that on a spherical surface. However, both the plane 
surface and the spherical surface enjoy a common prop
erty, viz. a small piece cut on each will be applicable to 
any other part on that same surface; in other words, they are 
both surfaces of constant curvature. Indeed. Gauss proved 
in his memoir that the (Gaussian) curvature K is an intrinsic 
property. a result so remarkable that he named it "Theo
rema Egregium". He further showed that for a triangle 6. 
on S whose sides are geodesics. 

11 KdS 27r (sum of exterior angles). 
/::; 

(More generally, for a simple closed curve C on a surface 
S, the analogue to Kastner's result is 

f Kgds = 27r - 11 KdS, 

C R 

where "'g is the so-called geodesic curvature and R is the 
region on the surface bounded by C. For a geodesic trian
gle the first integral becomes the sum of exterior an
gles.) This important result was later generalized by Pierre
Ossian Bonnet (1819-1892) in 1848 and by other mathe
maticians still later into the deep Gauss-Bonnet Theorem. 
which relates the topology of a surface to the integral of 
its curvature. (For the continued development initiated by 
the famous 1854 Habilitationsvortrag of Georg Friedrich 
Bernhard Riemann (1826-1866), readers can consult [21, 
Chapters 11-15].) 

C for Content 

In [22] David Rowe points out that a major challenge fac
ing the history of mathematics as a discipline will be to 
establish a constructive dialogue between the "cultural his
torians" (those who approach mathematics as historians of 
science. ideas, and institutions) and the "mathematical his
torians" (those who study the history of mathematics pri
marily from the standpoint of modem mathematicians). In 
this connection one should also consult [23, 24, 25] to 
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savour the different views held by some mathematicians 
and some historians of mathematics. I learn and benefit 
from both groups in my capacity as a teacher and student 
of mathematics, for I agree with what Charles Henry Ed
wards, Jr. says in the preface to his book [10], "Although 
the study of the history of mathematics has an intrinsic ap
peal of its own, its chief raison d' ~tre is surely the illumi
nation of mathematics itself ... to promote a more mature 
appreciation of [theories]." In this section I will give four 
examples borrowed from pages in the history of mathemat
ics with an eye to the enhancement of understanding of 
the mathematics. This is a particularly pertinent function 
of the history of mathematics for a mathematics teacher's 
day-to-day work. 

The first example has appeared in [26], which is in 
tum gleaned from [27, Appendix I]. (It also appears as 
one example in [28].) In 1678 Gottfried Wilhelm Leib
niz (1646-1716) announced a "law of continuity" which 
said that if a variable at all stages enjoyed a certain prop
erty, then its limit would enjoy the same property. Up 
to the early 19th century mathematicians still held this 
tenet, so that Augustin-Louis Cauchy (1789-1857) might 
have been guided by it to arrive at the following result 
in 1821: If {fn} is a sequence of continuous functions 
with limit I, i.e., limn-too In (x) = I(x), then I is a 
continuous function. Whenever I teach a calculus class I 
present Cauchy's "proof' to the class as follows. For suf
ficiently large n, I/n(x) - l(x)1 < e. For sufficiently large 
n, Iln(x + h) - I(x + h)1 < e. Choose a specific n so that 
both inequalities hold, then 

I/n(x) - l(x)1 + Iln(x + h) - I(x + h)1 < 2e . 

For this chosen In, we have Iln(x + h) - In(x)1 < e for 
sufficiently small Ihl, since In is continuous at x. Hence, 
for sufficiently small Ihl, we have 

I/(x + h) - l(x)1 ~ I/(x + h) 

+ Iln(x + h) 

+ lIn (x) - l(x)1 

< 3e. 

With e being arbitrary to begin with, this says that I is 
continuous at x. (A picture will make the argument even 
more convincing!) 

While many students are still nodding their heads, I 
tell them that Jean Baptiste Joseph Fourier (1768-1830) at 
about the same time showed that certain very discontinuous 
functions could be represented as limits of trigonometric 
polynomials! In hindsight we see that the work of Fourier 
provided counter-examples to the "theorem" of Cauchy. But 

at the time it was not regarded in this light. Actually, when 
the Norwegian mathematician Niels Henrik Abel (1802
1829) offered in his memoir of 1826 the example 

sin ¢ - sin 2¢j2 + sin 3¢j3 

he remarked that "it seems to me that there are some ex
ceptions to Cauchy's theorem" and asked instead what "the 
safe domain of Cauchy's theorem" should be [27, Appendix 
I]. Abel resolved the puzzle by restricting attention to the 
study of power series, but in so doing, missed an oppor
tunity to investigate the way infinite series (of functions) 
converge. 

I ask the class to wrestle with the "proof' of Cauchy 
and see what is amiss. If they cannot spot it, I tell them 
not to feel bad since Cauchy could not spot it either, and it 
was left to Philipp Ludwig von Seidel (1821-1896) to find 
out the mistake twenty-six years later! Rectification of the 
proof led later to the new notion of uniform convergence 
explicitly explained by Karl Theodor Wilhelm Weierstrass 
(1815-1897). With this historical overture we pass nat
urally on to a discussion of the mathematics of uniform 
convergence. (See [5, Chapter 5; 12, Chapter ID.4] for an 
enlightening discussion of the mathematics.) 

The second example has been used several times in 
an advanced elective course on algebra. It started with an 
announced "proof' of Fermat's Last Theorem by Gabriel 
Lam~ (1795-1870) in the meeting of the Paris Academy 
on March 1, 1847. The key step lies in the factorization 

in the ring of cyclotomic integers Z[(l (modem terminol
ogy), where ( is a primitive pth root of unity. For an inter
esting account of the pursuit of this question in subsequent 
meetings of the Paris Academy, readers can consult [29, 
Chapter 4]. The account includes the deposit of "secret 
packets" with the Academy by Cauchy and Lame-an in
stitution of the Academy which allowed members to go on 
record as having been in possession of certain ideas at a 
certain time without revealing the content, in case a priority 
dispute developed later. The packets remained secret and 
the matter was put to rest when Joseph Liouville (1809
1882) read a letter from his friend Ernst Eduard Kummer 
(1810-1893) in the meeting of the Paris Academy on May 
24, 1847. In the letter Kummer pointed out that the "proof' 
broke down owing to failure of unique factorization in Z[(l 
in general. He even included a copy of his memoir, pub
lished three years earlier, in which he demonstrated that 
unique factorization failed for p = 23. He went on to say 
that he could save unique factorization by introducing a 



new kind of complex number he christened "ideal com
plex numbers". With suitably chosen illustrative examples 
to supplement the story, this is a natural point to launch 
into a detailed discussion on the unique factorization of 
ideals in a Dedekind domain. 

The third example is also on algebra. It concerns the 
basic result known as the Chinese Remainder Theorem. I 
will skip both the statement of the result in the language 
of abstract algebra and the origin of the result found in 
Problem 26 of Chapter 3 of Sunzi Suanjing (Master Sun's 
Mathematical Manual, c. 4th century), which can be found 
in most textbooks, such as [30]. I will also skip the ap
plication of this type of problem, viz. x == ai mod mi, 

i E {I, 2, ... , N}, in ancient Chinese calendrical reck
oning. I will only highlight what I would do next after 
going through the two aforesaid issues with the class. I 

discuss with them an algorithmic method devised by Qin 
Jiushao (1202-1261), known as the "Dayan art of search
ing for unity" and explained in his book Shushu Jiuzhang 

(Mathematical Treatise in Nine Sections) of 1247. It is 
instructive to see how to find a set of "magic numbers" 
from which a general solution can be built by linear com
bination. It suffices to solve separately single linear con
gruence equations of the form kb == 1 mod m, by putting 
m = mi and b (ml ... mN)/mi. The key point in Qin's 
method is to find a sequence of ordered pairs (ki' ri) such 
that kib (-l)iri modm and the ri's are strictly de
creasing. At some point r8 1 but r8-1 > 1. If s is 
even, then k = ks will be a solution. If s is odd, then 
k (rs-l - l)ks + ks - l will be a solution. This se
quence of ordered pairs can be found by using "recipro
cal subtraction" (known as the Euclidean algorithm in the 
West), viz. ri-l = riqi+l + rHl with ri+l < ri, and 
kHl kiqi+l + ki  1• If one looks into the calculation ac
tually performed at the time, one will find that the method 
is even more streamlined and convenient. Consecutive pairs 
of numbers are put at the four corners of a counting board, 
starting with 
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or 

ki  l ri-l ki-l 
ki ri 

if i is odd . 

The procedure is stopped when the upper right corner be
comes a 1, hence the name "searching for unity". Students 
will be amazed by noting how the procedure outlined in 
Shushu Jiuzhang can be phrased word for word as a com
puter program! 

The fourth example is about the Cayley-Hamilton the
orem taught in a linear algebra course, viz. X(A) = ° 
where X(X) is the characteristic polynomial of the n x n 
matrix A. First I show students a letter dated Novem
ber 19, 1857 from Arthur Cayley (1821-1895) to James 
Joseph Sylvester (1814-1897) [31, pp. 213-214]. The let
ter illustrated the theorem by exhibiting a concrete 2 x 2 

case. This is particularly pertinent for an average student, 
who at this stage may even be confused by the mere 
statement of the result, not to mention the explanation of 
why it is true. Hence I emphasize the point in class by 
repeating the words made by Cayley himself (in 1858), 
"The determinant, having for its matrix a given matrix 
less the same matrix considered as a single quantity (ital
ics mine) involving the matrix unity, is equal to zero." 
To drive the point home I continue to produce a "joke
proof': set X = A in the expression det(A - X I), hence 
det(A - AI) det 0 0, which means A satisfies the 
characteristic polynomial X(X) = det(A X 1). Students 
are requested to fmd out why this is not a valid proof. I 
will give a valid proof in the next lecture, and for the more 
mathematically oriented students I may further explain how 
to turn the "joke-proof' into a rigorous proof by regarding 
both X(X) and A X I as polynomials over the ring of 
n x n matrices (or more precisely, as polynomials over 

flbl Ikllendingin ~.
~' 

The intermediate processes are shown below: 

ki ri ki ri 

ki - 1 ri-l ki - 1 rHl 

ki ri 
-----t if i is even,

kHl ri+l 

the commutative subring generated by A). My experience 
tells me that students are stimulated into discussion by the 
letter of Cayley, perhaps because they see from it that math
ematicians do not work alone but talk shop with each other 
and engage in social interaction. Students are particularly 
"sympathetic" to the statement made by Cayley in his 1858 
memoir after demonstrating the theorem for a 2 x 2 matrix: 
"I have not thought it necessary to undertake the labour 
of a formal proof of the theorem in the general case of a 
matrix of any degree." [32, p.624] As teachers we know 
how best to handle this sentiment! 
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D for Development of Mathematical Ideas 

"Development of Mathematical Ideas" is the title of a 
course I have been teaching at my university since 1976. 
As an elective course for upper-level mathematics students 
(with an occasional few in other majors) with a moderate 
class size of around twenty, the course does not have a 
fixed syllabus nor a fixed format in teaching and assess
ment, thus allowing me to try out freely new approaches 
and new teaching material from year to year. Some past 
experience has been reported in [33, 34]. 

For the academic year 1995-96 I built the course 
around the anthology "Classics of Mathematics" edited by 
Ronald Calinger [35], which became more readily available 
as a textbook through its re-publication in 1995. The idea 
is to let students read some selected primary source mate
rial and to "learn from the masters". The year-long course 
was roughly divided into five sections: (1) Euclid's Ele
ments, (2) Mathematical Thinking, (3) From Pythagoras, 
Eudoxus, ... (Incommensurable Magnitudes) to Dedekind, 
Cantor, ... (Real Numbers), (4) Non-Euclidean Geome
try, (5~ Godel's Incompleteness Theorem. Passages in [35] 
were fitted into these five sections. Besides the primary 
source material, some of the general historical accounts 
(named "Introduction" of each chapter) make for useful as
signed reading, to be supplemented by a general text such as 
[32]. Lectures were devoted to a more in-depth discussion, 
with more emphasis on the mathematics. I needed to add 
some extra source material from time to time, especially 
material on ancient Chinese mathematics. For instance, in 
the part on mathematical thinking I tried to let students 
experience, through the writings of mathematicians such 
as Liu Hui (c.250), Yang Hui (c.l250), Leonhard Euler 
(1707-1783), Julius Wilhelm Richard Dedekind (1831
1916), Henri Poincar~ (1854-1912), and George P6lya 
(1887-1985), how working mathematicians go about their 
jobs. Students would learn that the logical and axiomatic 
approach exemplified in Euclid's Elements is not the only 
way. The textbook by Calinger [35], with its extensive bib
liography, also provides useful support for the project work 
(in groups of two), which consists of an oral presentation 
and a written report on a topic of the students' choice. The 
course itself is in fact the presentation of my project work! 

Conclusion 

Using history of mathematics in the classroom does not 
necessarily make students obtain higher scores in the sub
ject overnight, but it can make learning mathematics a 
meaningful and lively experience, so that (hopefully) learn
ing will come easier and will go deeper. The awareness of 

this evolutionary aspect of mathematics can make a teacher 
more patient, less dogmatic, more humane, less pedantic. 
It will urge a teacher to become more reflective, more ea
ger to learn and to teach with an intellectual commitment. 
I can attest to the benefits brought by the use of history 
of mathematics through my personal experience. The study 
of history of mathematics, though it does not make me a 
better mathematician, does make me a happier man who is 
ready to appreciate the multi-dimensional splendour of the 
discipline and its relationship to other cultural endeavours. 
It does enhance the joy derived from my job as a mathemat
ics teacher when I try to share this kind of feeling with my 
class. I attempt to sow the seeds of appreciation of mathe
matics as a cultural endeavour in them. It is difficult to tell 
when these seeds will blossom forth, or whether they ever 
will. But the seeds are there, and I am content. I like the 
view proclaimed by the noted historian of science George 
Sarton (1884-1956), who said, "The study of the history of 
mathematics will not make better mathematicians but gen
tler ones; it will enrich their minds, mellow their hearts, 
and bring out their finer qualities." [36, p. 28] 
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Mathematical 
Pedagogy: An 
Historical Perspective 

Frank Swetz 
The Pennsylvania State University 

Introduction 

Old mathematical texts can tell us many things. Certainly 
they provide information on the development of mathemat
ical knowledge and procedures, the uses of mathematics, 
and the types of problems that were important to our fore
bearers. They provide insights into the culture and times 
within which they were written and give us hints as to the 
forces that shaped and controlled mathematical concerns. 
But if we look beyond the mathematics itself, and attempt 
to discern the author's intentions, "What is he attempting 
to teach?", "How is he doing it?", a perspective of early 
mathematical pedagogy emerges. 

An examination and analysis of didactical trends in 
historical material can take place along several lines: 

I. The organization of material; the sequential ordering 
of topics and specific problems. 

2. 	 The use of an instructional discourse and techniques 
of motivation contained within the discourse. 

3. 	 A use of visual aids; diagrams, illustrations and colors, 
to assist in the grasping of concepts on the part of the 
learner. 

4. The employment of tactile aids, either directly or by 
reference, to clarify a mathematical concept. 

It is impossible, in a limited discussion of this nature, to 
consider all of these aspects in some historical depth, but 
I would like to survey a few examples of pedagogic prac
tices evident in old texts. Hopefully, other researchers will 
pursue more detailed investigations. 

The Organization and Format of 
Mathematical Presentations 

The teaching of mathematics has a structure that proceeds 
from the simple to the complex, from the concrete to the ab
stract. For example, contemporary school children are intro
duced to the natural numbers before they encounter the con
cept of integers; simple fractions before rational numbers; 
geometric proofs involving triangles before those consider
ing circles and circular relations and so on. It appears that 
authors of mathematical texts have always followed such a 
scheme. British Museum cuneiform tablet 15285 from the 
Old Babylonian period (1800--1600 BeE) contains a series 
of geometrical diagrams. Each diagram presents a problem 
to its viewer. It is believed that this tablet originally con
tained over 40 systematically arranged exercise problems; 
however, only 30 are wholly or partially preserved.! These 
problems are reminiscent of present-day geo- or peg-board 
exercises. Early Assyriologists who studied the tablet and 
its contents were confused as to its purpose. Initially it 
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was described as a surveyors manual; however, later inter Learning/Solution Sequence 
preters determined that it is a series of exercises for math Earlier problem -II> latter problem 

ematical scribes.2 Each problem involves a square whose 
side measures I US,3 and each square is partitioned into 
smaller regions by the use of straight lines and circular arcs. 
The partitioning is accomplished by the use of equal and 
symmetric divisions of the area. Accompanying text enu
merates the resulting regions and refers to them by name. 
Students are requested "to put down" or "draw" and "to 
touch" the regions in question. Whether this latter direction a) inscribed triangle 
refers to the physical sense of touch, urging a multi-sensual 
approach to problem solving, or merely indicates an intel
lectual "touch" Le., think about, is open to speculation. 

Much of the Babylonian shape-designating terminol
ogy is readily translatable into familiar figures; thus the 
tablet's author speaks of squares, rectangles and circles 
but other terms describe "double bows", "ox eyes" and 
"deep-going boats" and require the use of a modern reader's 

b) "ox eye" 
imagination. One particular class of regions known to the 
Babylonians as abusamikku is especially interesting (Fig
ure Ie). A modern viewer might describe them as concave 
equilateral triangles or squares bounded by the tangents of 
three or four congruent circles. Finding the area of such re
gions makes its historical debut as a problem in BM 15285. 
Later consideration of these concave regions would appear 
in the works of Heron of Alexandria (c. 75 CE) and the In c) "bow" 
dian mathematician Mahavira (c. 850). The tablet's student 
user is required to find the area of a specific region within 
each square (my black shadings in Figure 1). Geometric 
intuition and problem solving skills are challenged. The 
problems are sequenced from the simple to the complex 
and a student-learner must work his way through prerequi
site problems before the later, more complex, problems can 
be solved. It appears evident that the author of the tablet 

d) "kite" 
sequenced these problems in a pedagogically purposeful 
manner. 

It is also evident in the Egyptian Rhind Papyrus of 
1650 BCE that a series of problems has been arranged in a 
controlled order to facilitate learning. Problems 41-60 of 
the Chace translation concern geometry. 4 Computations of 
volume are required (problems 41-46); area calculations 
follow (problems 48-55); finally, problems 56-60 require 

e) "concave square" (abusamikku)the application of triangle knowledge in work with pyra
mids. Just as children interact with three-dimensional solids 

Indicates chipped or 
before they appreciate the geometrical properties of plane 	 • Area required damaged tablet surface 
shapes, the author of the Rhind problems has his scribes 
consider simple problems of volume before they attempt 	 FIGURE 1 

Old Babylonian Geometry Problems more intricate calculations involving triangles and applica
tions of triangles. 



Perhaps the most comprehensive collection of prob
lems from the ancient world, in terms of both scope and 
mathematical content, is the Jiuzhang suanshu [Nine Chap
ters of the Mathematical Art] (c. 100 CE) from Han China. 
The Jiuzhang is comprised of 246 problems divided into 
nine chapters according to their methods and applications. 
In each chapter, the sequencing of problems carefully pro
gresses from the basic, demonstrating the principles to be 
learned or techniques to be mastered, to the theoretical and 
complex, where problem solving strategies are sharpened. 
A pedagogical analysis has already been undertaken on the 
contents of the ninth chapter concerning right triangles.5 

Let us briefly examine the organization of the eighth chap
ter, entitled fang cheng [square tabulation], which teaches 
methods of solution for systems of simultaneous equations. 
The "square tabulation" method involves the use of algo
rithmic computing rod techniques and parallels what today 
is known as the method of "Gaussian Elimination". Of the 
eighteen problems of this chapter, eight (problems 2, 4-6, 7, 
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indeterminate situation,6 and the last problem (18) has five 
equations in five unknowns. Note how the complexity of 
the situation is gradually increased throughout the sequence 
until eventually the student is introduced to an indetermi
nate situation. 

Use of Visual Aids: A Chinese Example 

The mathematical classics of ancient China contain many 
pedagogical features that are recently being recognized. 
Commentaries on the Zhoubi suanjing [Mathematical clas
sic of the Zhou gnomon] (c. 100 BCE) contain one of the 
first documented proofs of the "Pythagorean theorem". It's 
xian thu diagram employs the use of 3-4-5 right triangles, 
a superimposed grid network, and colors (red and yellow) 
to assist in its dissection proof strategy. 

Liu Hui (c. 263), one of the great mathematical com
mentators and mathematicians of old China, urged his read
ers to make diagrams on paper and to cut and rearrange the 
pieces in order to justify mathematical statements. For the 
Chinese, paper cutting and folding was a readily accepted 

9-11) involved two equations in two unknowns, six (prob
lems I, 3, 8, 12, 15, 16) concern three equations in three un
knowns, and two (14, 17) four equations in four unknowns. 
Problem 13 involves five equations in six unknowns-an 
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IE-A~ the geometric diagram became firmly implanted as a ped
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B 
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FIGURE 3 

method of mathematical demonstration.7 A further illus
tration of this technique is provided by Liu's algebraic
geometric justification of a solution formula for the six
teenth problem of the Jiuzhang's ninth chapter, where the 
reader is asked to find the diameter of the largest circle 
that could be inscribed in a right triangle of given dimen
sions. Using modern notation, let the length of the legs of 
the triangle be given by A and B, the hypotenuse by C 
and the unknown diameter of the circle by D. Liu con
ceived of the right triangle as being one half of a rectangle 
of area AB. He used two such rectangles partitioned into 
sets of congruent right triangles and squares, then cut and 
rearranged the pieces to obtain a visual statement of the re
lationships of the unknowns. Liu's diagrams demonstrated 
D = 2ABj(A + B +C), the correct result. 

The manipulation of plane rectilinear shapes to con
firm algebraic relations conforms to an ancient Chinese 
methodology of the "out-in complementary principle."8 
This form of visual mathematical thinking is also employed 
in early Babylonian and Greek works. The puzzle-game 
of Tangrams, which is operationally similar, originated in 
China. An interesting question arises, "Were there peda
gogical designs in the conception and use of Chinese tan
grams?" 

Visual Aids and the Printed Image 

When the first printed edition of Euclid's Elements ap
peared in Europe in 1480, it attracted much attention not 
only for its contents but also for its visual impact, particu
larly its prolific use of diagrams and iIIustrations.9 With the 
advent of printing, books moved from the realm of being 
passive repositories of information to becoming vehicles 
for active learning. In the transition to the geometry book, 

agogical tool. As the printer's art developed so too did the 
complexity and scope of illustrations, diagrams and collec
tions of mathematical exercises for the readers themselves 
to solve. 

Almost a century later (1570) when the first English 
language version of Euclid was published in London, it 
was obvious that the book was composed with the learning 
needs of the reader firmly in mind.1o In his preface to 
the reader, Henry Billingsley, its author, comments on the 
feature: 

Whereunto I have added easy and plain decla
ration and examples by figures, or defmitions. 
In which book also you shall in due place find 
manifold additions, Scholia, Annotations, and In
ventions: which I have gathered out of many of 
the most famous and chief mathematicians, both 
of old time, and in our age: as by diligent read
ing it in course, you shall well perceive. The fruit 
and gain which I require for these my pains and 
travail, shall be nothing else, but only that you 
gentle reader, will gratefully accept the same: and 
that you may thereby receive some profit and 
moreover to excite and stir up other learned, to 
do the like, and to take pains in that behalf. 11 

The volume abounds with diagrams and explanatory 
notes and includes folded paper pop-up figures. These three 
dimensional solids allow the reader to interact with the 
polyhedra discussed. Thomas Heath in his review of the 
book noted: 

The print and appearance of the book are worthy 
of its contents; and, in order that it may be un
derstood how no pains were spared to represent 
everything in the clearest and most perfect form, 
I need only mention that the figures of the propo
sition in Book XI are nearly all duplicated, one 
being the figure of Euclid, the other an arrange
ment of pieces of paper (triangular, rectangular, 
etc.) pasted at the edges on to the page of the 
book so that the pieces can be turned up and 
made to show the real form of the solid figures 
represented. 12 

A copy of Billingsley's geometry housed at the Prince
ton University Library still contains 38 operational pop-up 
models. Originally, the volume contained more; how many 
more is not clear. Since Billingsley makes no special men
tion of these models in his preface, it can be assumed that 
such mathematical teaching aids were known and used in 
sixteenth century England. 13 
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Colors were also effectively used as a visual and dis

criminatory aid in later British geometry texts as explained 
in the title of Oliver Byrne's 1847 book. The First Six 
Books of the elements of Euclid in which Coloured Di
agrams and Symbols are Used Instead of letters for the 
Greater Ease of the Learner. In his text Byrne employed 

the colors of red. yellow. blue and black. Using these col
ors, he visually coded the geometric elements under con

sideration and placed the colors systematically throughout 
his discussion and proofs. For example, when he states the 

Pythagorean theorem, a right triangle is depicted with a 

red hypotenuse and blue and yellow legs. When he men
tions the hypotenuse. a red line is shown; similarly, blue 

and yellow lines in the text represent legs of the triangle. 
An accompanying illustration then shows the squares con
structed on the sides of the triangle: a red square. a blue 
square and a yellow square. Byrne's book has been de

scribed as "one of the oddest and most beautiful of the 
whole [nineteenth] century.,,14 Its use of color in teaching 

mathematics was revolutionary. 

Mathematical authors of the early European Renais
sance were truly imaginative in their use of picturesque 

schemes to import to their readers the techniques of al
gorithmic computation employing "Hindu-Arabic" numer
als. Pacioli (1494) offered his audience eight different 
schematic techniques to obtain the product of two multi

digit numbers. lS Multiplication of two two-digit numbers 
could easily be accomplished per crocetta or "by the cross." 

The computation to multiply 32 by 57 was done mentally 

and goes as follows: 2 x 7 = 14; write down the four retain 

the one; "by the cross" (3 x 7) + (5 x 2) +1 = 31 +1 = 32; 
write the two retain the three; (5 x 3) + 3 15 + 3 = 18, 
write it down. Thus, the product is 1824. 

product 1824 3X: 
5 

An increase in the number of digits and the result
ing increase of partial products often caused place value 
confusion. To help remedy this situation, numerical con

figurations were devised to assist in ordering the partial 
products. These configurations were associated with com
mon objects. In a sense they became visual algorithms. 

Now a problem solver confronting a higher order multipli
cation could obtain a correct product with the aid of "the 
little castle," per castellucio, "by the chalice," per coppa 
or "by the bell," per campana. 16 The following example 

of finding a product of two three-digit numbers illustrates 

the benefits of employing a visual algorithm. (To under-
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stand the processes better, the reader should attempt to re

construct the partial products for the original information 
given): 

Cross multiplication 
with three digits "by the bell" 

3 2 6 326l')$(J 
5 7 4 574 

2 4 
8 

2 
4 2 

I 4 
2 1 

3 0 187 124 

I 0 
5 

8 7 2 4 

Such mnemonic devices had pedagogical designs. 

Conclusion 

Mathematical pedagogy, that is a conscious, organized ap

proach to imparting mathematical processes and concepts 

to a learner, has a long and multifaceted history. It appears 

that from earliest times mathematical teacher-authors were 

devising techniques to facilitate the understanding of their 

discipline-to make mathematics learning easier. By em

ploying diagrams, using color and tactile and visual aids, 

they incorporated the learner's senses of sight and touch 

into the processes of understanding and increased the re

ceptive dimensions of learning. Concrete operational teach

ing is not a product of the twentieth century! Also obvious 

in old mathematical texts is a purposeful and sequential 

ordering of topics and problems allowing the students to 

construct their own edifice of understanding. As heirs and 

perpetuators of this history, we should be both mindful and 

proud of the traditions of associating good pedagogy with 

mathematics learning and teaching. 

Endnotes 
1 The author is indebted to Joran Friberg of the University 
of Gothenburg for sharing his impressions of this tablet and 
its content with me. For more specific information on this 
tablet see, H.W. Saggs, "A Babylonian Geometric Text." Revue 
d'assyriologic et d'archeologic orientali (1960) 54: 131-145. 

2 See C.J. Gadd. "Forms and colours" and R. Caratini "Quadra
ture du Cercle et Quadratures des Iunules en Msopotamie". Revue 
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d' assyriologic et d' archeologic orientate (1992) 19: 149-159; 
(1957) 51: 11-20 respectively. 


3 In the Babylonian metrology of the period: I Os =60 gar, I 

gar =12 cubits, where a cubit in contemporary measure is 46-50 

cm. 


4 A.B. Chace, The Rhind Mathematical Papyrus, Reston, VA: 
National Council of Teachers of Mathematics, 1967 (reprint of 
1927-1929 edition). 

5 See F.J. Swetz, "Right Triangle Concepts in Ancient China", 
History of Science (1993) 31: 421-439. A complete translation 
of the ninth chapter is available in F.J. Swetz and T.I. Kao, Was 
Pythagoras Chinese? An Examination of Right Triangle Theory 
in Ancient China, University Park, PA: Pennsylvania State Uni
versity Press, 1977. 

6 "There is a common well belonging to five families; [if we 
take] 2 lengths of rope of family X, the remaining part equals 
I length of rope of family Y; the remaining part from 3 ropes 
of Y equals I rope of Z; the remaining part from 4 ropes of Z 
equals I rope of V; the remaining part from 5 ropes of V equals 
1 rope of U; the remaining part from 6 ropes of U equals I rope 
of X. In all instances if one gets the missing length of rope, the 
combined lengths will reach [the water]. Find the depth of the 
well and the lengths of the ropes." 

If W is allowed to be the depth of the well, then the situation 
is: 

2X + Y = W, 

3Y+Z W, 

4Z+V=W, 

5V+U W, 

6U+X=W. 
7 M.K. Siu, "Proof and Pedagogy in Ancient China-Examples 
from Lui Hui's commentary on Jiuzhang Suanshu", Educational 
Studies in Mathematics (1993) 24: 345-357. 

8 The Chinese "out-in complementary principle" applies to situ
ations involving rectangles and depends on the fact that the com
plements of rectangles about a diagonal of a given rectangle are 
equal in area. This concept was formalized by Euclid as Proposi
tion 43 in Book I of his Elements. See discussion in Wu Wenchun, 
"The Out-In Complementary Principle" in Ancient Chinese Tech
nology and Science, Beijing: Foreign Languages Press, 1983, pp. 
66-89. 

9 The Johannes Campanus translation Preclarissimus liber ele

mentorum Euclides Venice: Erhard Ratdolt, 1482. For discussion 

of such texts, see: Charles Thomas-Stanford, Early Editions of 

Euclid's Elements, London: The Bibliographic Society, 1926. 


10 Henry M Billingsley, The Elements of Geometrie of the Most 

Ancient Philosopher Euclide of Megara, London: John Day, 

1570. See R.C. Archibald, "The first Translation of Euclid's Ele

ments into English and its Source," The American Mathematical 

Monthly (1950) 57: 443-452. 


11 Billingsley, op cit, p. 2 of "Translator to Reader". 


12 Thomas L. Health, The Thirteen Books of Euclid's Elements 

Translated from the Text of Heiberg, New York: Dover Publica

tions, 1956, p. lIO (reprint of 1926 edition). 


13 Billingsley's pop-up solids appear to be an historical first in 

book publishing. Mechanical devices, that is, movable parts in

corporated into illustrations, appeared in texts as early as 1345. 

Fourteenth century anatomical books contained illustrations with 

layers of superimposed plates that when lifted revealed interior 

parts of the body and movable wheels or "volvelles" appeared in 

fortune-telling books and in material on secret codes. Historians 

of book design have ignored Billingsley's innovation. Peter Hain

ing in his Movable Books: An Illustrated History, London: New 

English Library, 1979 claims there were no movable books before 

1700; see also, Edwina Evers, "A Historical Survey of Movable 

Books," AB Bookman's Weekly (August, 1985) 76: 1204-1205. 


14 Ruari McLean, Victorian Book Design and Colour Printing, 

New York: 1963, p. 51. 


15 The techniques Pacioli discusses are: 

I. Per scachieri, Venetian for tesselated. 
2. Castellucio, Florentine for "little castle" 
3. A Traveletta or per colona, by the table or column. 
4. Per quadrilatero, by the quadrilateral. 
5. Per crocetta or casella, by the cross or pigeonhole. 
6. Per gelosia or graticola, method of cells. 
7. Per repiego, method of decomposition of factors. 
8. A scapezza. distributing. separating. and multiplying by the 

parts. 
For further information on these techniques see: Frank Swetz, 
Capitalism and Arithmetic: The New Math of the 15th Century. 
La Salle, IL: Open Court, 1987. 


16 For information on these various visual algorithms see D.E. 

Smith, History of Mathematics, New York: Dover Publications. 

1958.2: 101-128 (reprint of 1923 edition). 




On the Benefits 
of Introducing 
Undergraduates to 
the History of 
Mathematics-A 
French Perspective 

Anne Michel-Pajus 
IREM PARIS Vll* 

Some aspects of the reform of the 
preparatory levels 

France has a centralized education system that officially 
prescribes the various courses of instruction that students 
follow. In the system I teach in, some 50,000 students un
dergo their first two years of tertiary education. At the end 
of this time, the great majority of them take competitive 
examinations to gain entry to engineering schools; some 
others enter the Ecoles Nonnales Superieures in order to 
become researchers and teachers at either tertiary or sec
ondary level. 

In mathematics, the same teacher teaches one class 
16-20 hours a week. The basic class of about 45 students 
either works as a whole group or is divided into subgroups 
according to the activity. For two to five hours a week, the 
students work on exercises in groups of ten to twenty, with 
or without a computer. One hour every two weeks they 
work in groups of three for oral questions. 

This system has just undergone an important refonn, 
affecting both its structure and its programs of instruction. 
This refonn aims to reduce the importance of mathematics 
itself by relating it more closely to physics and engineering 
science. It also aims to develop a spirit of initiative in the 
students. 

The mathematics syllabus is in two parts, with accom
panying comments. The first sets out general educational 
aims while the other deals with the topics of linear algebra, 
calculus, and geometry. The students must know how to use 
both calculators and programs that perfonn symbolic ma
nipulations (Maple. in my institution). There are differences 
in content according to the major followed (mathematics 
and physics, physics and engineering sciences, physics and 
chemistry, physics and technology) but the educational ob
jectives are the same. In sum, mathematical education must 
"simultaneously develop intuition, imagination, reasoning 
and rigor." 

A short addition concerns the history of mathematics: 
"It is important that the cultural content of mathematics 
should not be simply sacrificed to its technical aspects. In 
particular, historical texts and references allow the analysis 
of the interaction between mathematical problems and the 
construction of concepts, and bring to the fore the central 
role played by scientific questioning in the tt'1eoretical de
velopment of mathematics. Moreover, they show that the 
sciences, and mathematics in particular, are in perpetual 
evolution and that dogmatism is not advisable." 

Another innovation is the introduction of project work. 
The history of mathematics is also mentioned in relation to 
this: "The study of a subject brings an increasing depth 
of theoretical understanding together with experimental as

17 
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pects and applications as well as the application of com
puting methods. It may include an historical dimension." 
In the fIrst year, smdents choose their project freely. In 
their second year, they must fIx their area and subject in a 
very wide framework (for example, dynamical systems in 
mathematics, measurement in physics). At their final as
sessment, each student has to present a page long summary 
and to speak for twenty minutes about their work before 
two examiners. 

The evaluation deals mainly with the communica
tion abilities of the students, but for the teachers who are 
constrained by a heavy, prescriptive program, this project, 
which takes up two hours a week, allows the freedom for 
them to introduce the history of mathematics. 

These reforms began in 1995, and so I have only a lim
ited experience to draw upon in writing this article. How
ever, I have found working in the area of the history of 
mathematics most enriching, and if my readers can glean 
some ideas from it, its purpose will have been achieved. 

Texts available in France 

The fIrst diffIculty is to find documents students can work 
on. One of our basic principles for smdents undertaking 
such a project is that any historical smdy must involve 
at least one extract from an original text. But since it is 
usually difficult to read them, secondary studies need also 
to be made available. The majority of useful documents 
in France have been published by the Commission Inter
IREM d'Histoire et Epistemologie. IREM stands for the In
stitut de Recherche sur I'Enseignement des MatMmatiques 
(Institute for Research in the Teaching of Mathematics). 
In France these institutes bring both secondary and tertiary 
teachers together. Those teachers working on the applica
tion of the history of mathematics in the regional IREMs 
come together nationally three times a year. These meetings 
comprise lectures and workshops and allow experiences to 
be exchanged. Proceedings and many other documents are 
published. Among these are the "problem-documents" in 
which explanations and questions are linked to selected 
passages of an historical text. 1 The collection provides 
homework for students in various classes. An example of 
such a document is attached (Appendix 1). A selection 
has been similarly translated and published by The British 
Mathematical Association.2 This network is also commit
ted to publishing texts-sources which are diffIcult to find 
in French in any other way. As a result I have participated 
in the edition of A History ofAlgorithms which systemat
ically presents the historical texts, translated if necessary, 
simated in their cultural context and accompanied by math

ematical explanations. The majority of the texts to which I 
refer here are drawn from this work.3 

Why choose approximating algorithms? 

Apart from the fact that my work in this area has allowed 
me to collect a large number of documents, this choice 
presents many advantages. 
• 	 the same topic allows one to cross centuries and civiliza

tions, and to meet many problems which are still open. 
For example, smdents are always fascinated by research 
into the decimal expansion of 1f. 

• 	 The question under consideration is clear: it is easy for 
students to compare the efficiency of procedures, which 
they can even test using a computer, and thus see the use
fulness of theoretical concepts whose depth and general
ity they otherwise fInd difficult to evaluate for the lack 
of a theoretical overview. For example, iterative meth
ods of solution of linear systems involve the topology of 
spaces of matrices.4 The interdisciplinary aspect of this 
theme is worth noting, as the fIrst studies arose from 
astronomy and surveying. 

• 	 Students can see how technical necessities drive the con
struction of new concepts and sometimes inspire them. 
Consequently, there is no boundary between pure and 
applied mathematics-the noble mathematics of mathe
maticians and that of engineers. 

• 	 Being able to write an algorithm in a computer language, 
such as Maple or Mathematica, involves the effort of 
freeing oneself from the restrictions of one specifIc lan
guage and from a particular set of ideas. This is similar 
to the effort needed to understand a historical text. 

• 	 There are, of course, other advantages tied up with 
course work, such as the connection with the theme of 
dynamical systems. 

Some examples 

1. A Project: The approximation of 7r. Six students 
chose to divide this topic up among themselves for their 
project. To assist them in understanding the sources I fur
nished them with problem-documents put together by sec
ondary teachers for their students. They obviously obtained 
other general references concerning the history of mathe
matics. An example is given as Appendix 1: it is a problem
document relating to a text of Euler, which was originally 
intended for students in their fInal year of secondary school. 

As part of the task of carrying out this project, I in
sisted that they state precisely the problems under consid



eration, the concepts, and the tools in use at the period of 
the text they were studying by asking them to reflect on 
the following questions: 
• 	 What is the author seeking to determine-a number, an 

area, a surface? What is he seeking to prove? 

• 	 Why do it? 
• 	 What tools-notation, theories, theorems-are available 

to him? What is implicit? 

• 	 Does it seem rigorous to you? 
The texts which the students chose to present to their 

class were: 
Archimedes5: Measurement of a circle (1st century BCE) 

Descartes6 : De la quadrature du cercle (1701) [Concerning 
the quadrature of the circle] 

Leibniz7 : Lettre lI. La Roque (circa 1780) [Letter to la 
Roque] 

Eulers: Des quantit~s transcendantes qui naissent du cer
cle (1748) [Transcendant Quantities arising from the 
Circle) 

Richardson9 : The deferred approach of the limit (1927) 
With reference to the historical aspects: 

• 	 students are astonished to see how slowly the idea that 
7r was actually a number arose. Until the seventeenth 
century 7r was never written, or even thought of, as a 
number in a formula. Instead we find a method of cal
culation, written in the language of the time, which can 
be used to calculate the area or perimeter of a circle. 
(This can be seen, not only in the works of Archimedes, 
but also in the work of the Chinese). Unhappily the text 
which is available to us is not very enticing, while stu
dents are regaled with the geometry of the triangle used 
by Archimedes, going so far as to find four different 
proofs of one theorem. 

• 	 they are surprised to see in 1927, an almost contempo
rary mathematician, Richardson, picking up the example 
of Archimedes in order to illustrate his method of ex
trapolation. Since this is a little known work, an extract 
is attached (Appendix 2). 

• 	 they have determined that there are several stages in the 
development of approximation. 
• 	 first stage: the basic idea of an approximate value (in

teresting for its technical uses). 
• 	 second stage: the determination of an interval of va

lidity. (This is a point that students find difficult to 
grasp. Generally, even in their exercises they give nu
merical results which show all the numerals which 
appear on their calculator display, without troubling 
themselves with the precision of the procedure they 
are using, even when the objective of the problem is 
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to evaluate this procedure!) The text of Archimedes 
illustrates this step in a remarkable manner. 

• 	 third stage: practical methods which provide more and 
more rapid approximations such as the use of series, 
continued fractions, and so on. The region of validity 
is sometimes made explicit by giving an inequality as 
in the works of Wallis or Huygens, for example, and 
is sometimes implied, as in the work of Leibniz and 
Euler who give an alternating series. (Leibniz first es
tablished that the partial sums are alternatively above 
and below the sum to infmity.) 

• 	 concerns as to how to speed up the rate convergence 
lead to theoretical methods of the acceleration of con
vergence which are useful in other contexts. One ex
ample, which has the advantage of being recent, is 
found in the article by Richardson. 

• 	 The concepts of infinite series, convergence, and rate 
of convergence are being built up concurrently with 
mathematicians carrying out theoretical studies as to 
the nature of 7r and its relation to the quadrature of 
the circle. 

2. A computer-related study: Newton's method. This 
is equally well known under the names of "the tangent 
method" or "Newton-Raphson" even though neither New
ton nor Raphson spoke of tangents or even of geometry in 
this context. Moreover, a century passed before Lagrange 
saw that they all came down to the same method. The algo
rithm put forward by Newton is very clear and easy to put 
into effect with symbolic manipulation software. (A Maple 
program is appended.). Proposed before the invention of 
fluxions, it does not use derivatives, but only the idea that 
some quantities are negligible with respect to others. The 
principle of a calculus of approximations is not made ex
plicit in the form of a recurrence relation, unlike that which 
appears in Raphson. However, the writings of Raphson are 
more difficult to read and a much clearer explanation can 
be found in Euler. These authors treat particular cases in 
which a recurrence relation appears, although they do not 
use the derivative explicitly in their writing. 

The task is for students to enter into the logical pro
cesses of a seventeenth or eighteenth century mathemati
cian and to translate their methods into their own program
ming language. I make the further demand that they justify 
the fact that the two methods lead to the formula with the 
derivative. This historical aspect reinforces the idea that the 
derivative allows one to make a first order approximation, 
or that it allows one to replace a function by its first order 
expansion-the tangent giving a geometrical illustration of 
this (cf. Appendix 3). 
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3. Commentaries associated with the course: The 
Cauchy-Lipschitz Theorem. I have searched for exam
ples in which techniques of approximating solutions have 
led to the theoretical proof of a theorem. The topic of dif
ferential equations provides a remarkable example of this, 
but one which lies outside the technical capabilities of my 
students. I can only refer to it in the course. 

The syllabus involves stating the Cauchy-Lipshitz 
Theorem on the existence of a unique solution to the prob
lem of Cauchy, without proof. It also includes research on 
approximating solutions to differential equations by Euler's 
method. Now the first proof given by Cauchy in a text of 
1824, which remained unedited until its recent rediscov
ery, begins precisely with the approximation furnished by 
Euler's method applied to the interval [xo, Xl for a given 
partition. By considering upper bounds on the error, Cauchy 
showed that, under very general assumptions, the approx
imate value tends toward a limit which only depends on 
X, as the steps of the subdivision tend to zero. It then 
only remained to prove that the function defined in making 
X vary across a neighborhood of Xo is, in fact, the solu
tion of the given differential equation. Picard's work, which 
completes this theory, also refers back to Euler's method, 
although the object of the successive approximations is no 
longer the value of a function at a given point (as in Euler) 
but a function defined on an interval. 10 

Conclusion 

I would like to conclude by revisiting the educational as
pects of my syllabus. I have tried to "stimulate intuition 
and imagination" by offering multiple viewpoints of the 
same mathematical object; "struggle against dogmatism" 
by demonstrating that the process of mathematical creation 
is cumulative but not linear, and that each era constructs its 
methods, concepts and proofs with a rigour appropriate to 
its intellectual framework; and finally show that there is no 
hierarchy between "pure" and "applied" mathematics, the
oretical concepts and their applications, and that even for 
future engineers mathematics is not merely a "serviceable 
discipline" but also a marvelous success of human thought. 

I am not able to say to what degree, greater or lesser, 
I have been able to attain these objectives. I do know that 

this work has not only given me pleasure, but that it has 
also given some of my students pleasure as well. And that's 
quite something. 

Endnotes 
• I would like to thank Stuan Laird (Rangitoto College, New 
Zealand) for his translation, for his peninent comments and for his 
careful rereading of this anicIe and for his New Zealand warmth 
so welcome in this wintry season. 
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61, IREM PARIS VII,la mesure du cercle, pp. 8-13; in Brochure 
M:A.T.H. nO 79, IREM PARIS VII, trois fiches sur Ie calcul de 
pi, pp. 36-45; la mesure du cercIe, p. 46; in History in the mathe
matics classroom, The Mathematical Association, 1990, Reading 
Archimedes' measurement of a Circle, Manine Buhler. pp. 43-58. 

2 History in the Mathematics Classroom, edited by John Fauvel, 
The Mathematical Association, 1990. 


3 Histoire d'Algorithmes. J.L. Chaben et aI., Belin, Paris, 1994. 

History ofAlgorithms. J.L. Chaben et aI., trans. by Chris Weeks, 

Springer-Verlag, New York, 1999. 


4 The texts of Gauss, Jacobi, Seidel et Nekrasov are to be found 
in History of Algorithms. chapter 9. 

5 The English translation of T.L. Heath, in The Works of 
Archimedes, Cambridge, Cambridge University Press, 1897, is 
very far removed from the Greek. text, much more so than the 
French translation of Paul Ver Eecke, Les oeuvres completes 
d'Archimede, 1921, r~ed. Blanchard, Paris, 1961, pp. 130-134. 
English translation and commentaries can be found in History of 
Algorithms, pp. 140-145. 

6 Circuli quadratio, excerpta ex MS.R. Des Canes, Ed. Ams

terdam, 1701, in Les oeuvres de Descartes, published by c.A. 

P. Tannery, LX, 1908, pp. 304-305; re-edited Vrin, Paris, 1974. 

Translation and comments J.L. Chaben in History ofAlgorithms. 

pp. 153-156. 


7 Leibniz, Lettre Ii La RlXIue, Mathematische Schriften, 1. V, pp. 

88-92, Olms, Hildesheim, 1962; History ofAlgorithms. pp. 158
161. M.E Jozeau, M. HalIez, M. BUhler. S~ries et quadratures 

chez Leibniz, Histoire d'infini. IREM de Brest, 1994, pp. 273
297. 


8 Euler, Introduction Ii I'analyse infinit~simale, Livre I, Ch VIII, 

Des quantit~s transcendantes qui naissent du cercle. English trans

lation: J.D. Blanton, Introduction to the Analysis of the Infinite. 

NY, Springer, 1988, 1990. 


9 Lewis Richardson, Philosophical Transactions of the Royal So

ciety of London. Series A, Vol 226. 1927, pp. 300-305. 

10 cf. History of Algorithms. pp. 378-381. 
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Appendix 1 

Euler and the calculation of 7r* 

A. Preliminary Activities 

i t 1 
Defme F on JR by F(t) = -12dx 

o +x 
1. 	 a) Justify the existence and differentiability of F. Calculate F(t) and detennine whether F is increasing or decreasing. 

8 . 1 2 4 6 x2. 	a) Show that. Vt E JR, -12 = 1 - x + x - x + -12 
+x 	 +x 

l
t x8 

b) Hence show that F(t) = P(t) + R(t) where P is a polynomial of degree 7 and R(t) = -12 dx 
, 	 0 +x 

t9 

c) Show that Vt E [0,1],0:::;; R(t) :::;; '9 


3. 	Define G on 1= ] -~, ~ [ by G(z) = F(tanz). 


a) Justify that G is differentiable and calculate G'(z) for z in 1. 

b) Calculate G(O). 

c) From the preceding deduce that \;jz E I. G(z) = z. 


4. a) Read lines 1 to 2 of the adjoined text. 

b) What is the relationship between this text and the preceding questions? 

c) Explain the &c ( =etcetera) line 2. 


S. 	 a) Calculate F(l) and F(l/v'3). 
b) Read lines 2 to 4 of the text . 


. c) What is meant by the word "series"? 


B. Approximation of 7r 

1. 	 a) Calculate P(l) (see 2 above) to 2 decimal places. How close an approximation to 11' does this value give? Explain 
the &c of line 3. 
b) Read lines .5 to IS of the text. Make explicit Euler's computation, by calculating each square root to four decimal 
places. How close an approximation to 11' does this value give? 

2. 	 Improving the approximation 
a) Read lines 16 to 20. Verify Euler's calculations. In particular. prove the formula giving tan(a + b). 
b) Suppose tan a = t. Calculate tan b ( where a +b = 7)' What are the values of F(!) and F(1)1 Calculate P(i) 
and p(l) to 6 decimal places. Give upper bounds for R(!) and R(l). 
c) Read the end of the text. Explain. using the notation of the problem. the equality of line 23. How close an 
approximation to 11' do you now have? Compare this with your earlier values. 

Euler, Introduction to Infinitesimal Analysis (1748) 

Thus set tang <; = t. so that <; is the arc whose tangent is t, and which we designate thus: A tang t, giving <; = A tang t. 
Knowing the tangent, the corresponding arc will be <; = f - ~+~ - ~ + .t; - &c. Then, assuming the tangent t is equal 
to the radius 1, the arc <; becomes equal to the arc of 45° or 7' and we find 7 1 -1 + i- - ~ + &c; the series which 
Leibnitz fll'St gave to express the value of the circumference of the circle. But in order to obtain the arc length of a circle 
quickly, by means of such a series, it is clear that it is necessary to take a sufficiently small fraction for the value of the 
tangent t. In this way, with the help of this series, it is easy to find the arc length <;. whose tangent t = 110 as this arc will 

• M. Bohler, Une approximation de pi. Mn~nwsyne nO IO,IREM PARIS vn. pp. 67-71. 
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be (= 1~ 3eiOO + 500~OO - &c-a series whose value may be easily found using decimals. But the measure of such an 
arc tells us nothing about the total length of the circumference as it is not possible to assign a relationship between the 
arc, with tangent t, and the entire circumference. This is why, in this research, it is necessary to take an arc which is 
an aliquot part of the circumference and whose tangent is sufficiently small and can be conveniently expressed. To fulfill 
this aim a 30° arc whose tangent 1/V3 is normally chosen, as tangents of smaller arcs, which have a measurable 
relationship with the circumference, are too irrational. Thus, as the arc of 30° 1/V3, we will have that 

1T 1 1 1 _ 2V3 _ 2V3 2V3 _ 2V3 &
and-3.3-V3-3 + ---= - &c 1T - 1 3.3 + 5.32 7.33 + c.V3 

And it is by means of this series, and an incredible amount of work, that the goal of finding the value of 1T which we 
gave above can be attained. 

This calculation is all the more laborious as all the terms are irrational and each term is barely less than a third of 
the preceding one; but this disadvantage can be remedied as follows: still choose an arc of 45° or ~. Although the value 
of this arc is represented by a barely convergent series = 1 - ~ + ! t + &c; we retain it nevertheless, and imagine it 

tang
divided into two arcs a and b, such that a +b = ~ 45°. Then since tang(a + b) = 1 = 1 a + tang bb we will have 

- tang a tang 

1 - tang a
1 - tang a tang b ::: tang a + tang b and tangb 

1 + tang a 

Now set tang a = !; we will find tang b = ~; then the two arcs a and b can be expressed by a rational series much more 
convergent than the preceding, and their sum will give the value of the arc ~. Thus 

In this way, by using the series we have previously given, the length of the semi-circumference can be found far 
more readily than it has been. 

Appendix 2 

Lewis Richardson, The deferred approach of the limit, Philosophical Transactions of the Royal Society of London, Series 
A, vol 226, 1927, pp. 300-305. 

Various problems concerning infinitely many, infinitely small, parts had been solved before the infmitesimal calculus 
was invented; for example, ARCHIMEDES on the circumference of the circle. The essence of the invention of the 
calculus appears to be that the passage to the limit was thereby taken at the earliest possible stage, where diverse problems 
had operations like d/dx in common. Although the infinitesimal calculus has been a splendid success, yet there remain 
problems in which it is cumbrous or unworkable. When such difficulties are encountered it may be well to return to the 
manner in which they did things before the calculus was invented, postponing the passage to the limit until after the 
problem had been solved for a moderate number of moderately small differences.[ ... ] 

The hZ-extrapolation was discovered by a hint from theory followed by arithmetical experiments, which gave pleasing 
results. [ ... ] 

Imagine that we are back in the time of ARCHIMEDES. 
As a first, obvious very crude, approximation, take the perimeter of an inscribed square = 4J2 = 5.6568. As a 

second approximation, take the perimeter of an inscribed hexagon = 6 exactly. 
The errors of these two estimates should be to one another as :b : b that is ~, if the error is proportional to the 

square of the coordinate difference. Thus the extrapolated value is 6 + !(6 - 5.6568) ::: 6.2746. 
The error of the extrapolated value is thus only 1/33 of the error in the better of the two values from which it was 

derived; so that extrapolation seems a useful process. To get as good a result from a single inscribed regular polygon it 
would need to have 35 sides. 
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Appendix 3: Newton, Euler and Maple 

a) 	 extract of "The method of fluxions," The mathematical papers of Isaac Newton, vol m, Whiteside ed, Cambridge 
University Press, 1969, pp. 43-47. [Written between 1664 and 1671, published in 1736, and explained by Wallis in 
his Treatise ofAlgebra in 1685.] 

When, however, affected equations are proposed, the manner in which their roots might be reduced to this sort of 
series should be more closely explained, the more so since their doctrine, as hitherto expounded by mathematicians in 
numerical cases, is delivered in a roundabout way (and indeed with the introduction of superfluous operations) and in 
consequence ought not to be brought in to illustrate the procedure in species. In the first place, then, I will discuss the 
numerical resolution of affected equations briefly but comprehensively, and subsequently explain the algebraical equivalent 
in similar fashion. 

Let the equation y3 - 2y 5 0 be proposed for solution and let the number 2 be found. one way or another, 
which differs from the required root by less than its tenth part. I then set 2 +P y. and in place of y in the equation I 
substitute 2 + p. From this there arises the new equation p3 + 6p2 + lOp -1 0, whose root p is to be sought for addition 
to the quotient. Specifically, (when p3 + 6p2 is neglected because of its smallness) we have lOp 1 = 0, or p = 0.1 
narrowly approximates the truth. Accordingly, I write O. 1 in the quotient and, supposing 0 . 1 + q = p, I substitute this 
fictitious value for it as before. There results q3 + 6. 3q2 + 11 . 23q + 0.061 = 1. And since 11 . 23q + 0.061 = 0 closely 
approaches the truth, in other words very nearly q -0.0054 (by dividing 0.061 by 11.23, that is, until there are 
obtained as many figures as places which, excluding the bounding ones, lie between the first figures of this quotient and 
of the principal one-here, for instance, there are two between 2 and 0.005), I write -0.0054 in the lower part of the 
quotient seeing that it is negative and then, supposing -0.0054 + r equal to q, I substitute this value as previously. And 
in this way I extend the operation at pleasure after the manner of the diagram appended. 

+2'10000000 
{ - 0·00544852 

2·09455148 [== y] 

2+1 == y. !l +8 +12/1 +6/12 +/1' 
-2!1 -4 -2/1 
-5 -5 

Total -I +10/1 +6/12 +r 

0'1+,_,0. +/1' +0·001 +0,03, +0·3,2 +,' 
+6/1' +0·06 +H~ +6 
+10/1 +1 +10 
-I -I 

Total 0·061 +11·23, +6.3,: +,' 

-0.0054+,.,. +,' -O·oooOOOI/Htl +o,o~'jl" -j!'JJ,J,! +1" 
+6·3,: +0·00018379'1 -0·068JI +N' 

+ 11·23, -0'060642 +11·23 
+0'061 +0·061 

Total 1+0·0005416 + 11·162, 

-0·00004852+s =='. 

b) 	extract of Euler, Elements ofAlgebra, Chapter XVI, Of the Resolution of Equations by Approximations, §784-789 

784. When the roots of an equation are not rational, and can only be expressed by radical quantities, or when we 
have not even that resource, as is the case with equations which exceed the fourth degree, we must be satisfied with 
determining their values by approximation; that is to say, by methods which are continually bringing us nearer to the true 
value, till at last the error being very small, it may be neglected. Different methods of this kind have been proposed, the 
chief of which we shall explain. 

785. The rrrst method which we shall mention supposes that we have already determined, with tolerable exactness, 
the value of one root; that we know, for example, that such a value exceeds 4, and that it is less than 5. In this case, if 
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we suppose this value = 4 +p, we are certain that p expresses a fraction. Now, as p is a fraction, and consequently less 
than unity, the square of p, its cube, and, in general, all the higher powers of p, will be much less with respect to unity; 
and, for this reason, since we require only an approximation, they may be neglected in the calculation. When we have, 
therefore, nearly determined the fraction p, we shall know more exactly the root 4 +p; from that we proceed to determine 
a new value still more exact, and continue the same process till we come as near the truth as we desire.· 

786. 	We shall illustrate this method fIrst by an easy example, requiring by approximation the root of the equation 
2x = 20. 

2Here we perceive, that x is greater than 4, and less than 5; making, therefore, x = 4 + p, we shall have x = 

16 + 8p + p2 = 20; but as p2 must be very small, we shall neglect it, in order that we may have only the equation 
16 + 8p = 20, or 8p = 4. This gives p = ~, and x = 4~, which already approaches nearer the true root. If, therefore, we 
now suppose x = 4~ + p'; we are sure that p' expresses a fraction much smaller than before, and that we may neglect 

1pl2 with great propriety. We have, therefore, x2 = 20~ + 9p' = 20, or 9p' = -~; and consequently, p' = - 36; therefore 

x=4~-316=4~~. 
And if we wished to approximate still nearer to the true value, we must make x = 4 ~~ + p", and should thus have 

2 _ 20 1 + 8 34 "- 20' th t 8 34 "- 1 322 " - 36 - 1 dx - 1296 36 P - , so a 36 P - - 1296' or p - - 1296 - - 36' an 

1 1 
p = - 36 x 322 = - 11592 : 

therefore x = 4 ~~ - 11~92 = 4 151~932' a value which is so near the truth, that we may consider the error as of no importance. 
787. Now, in order to generalise what we have here laid down, let us suppose the given equation to be x 2 = a, and 

that we previously know x to be greater than n, but less than n + 1. If we now make x = n + p, P must be a fraction, 
and p2 may be neglected as a very small quantity, so that we shall have x 2 = n2 + 2np = a; or 2np = a - n2, and 

2 	 2 2 + aa - n	 a - n n
p = ---; consequently, x = n + --- = ---. 

2n 	 2n 2n 
2 

Now, if n approximated towards the true value, this new value n : a will approximate much nearer; and, by 
2 

substituting it for n, we shall fInd the result much nearer the truth; that is, we shall obtain a new value, which may again 
be substituted, in order to approach still nearer; and the same operation may be continued as long as we please. 

For example, let x 2 = 2; that is to say, let the square root of 2 be required; and as we already know a value sufficiently 
2 

near, which is expressed by n, we shall have a still nearer value of the root expressed by n : 2. Let, therefore, 
2 

1. n = 1, and we shall have x = ~, 

2. 	 n = ~, and we shall have x = g, 

- 17 d hall h - 577
3. n - 12' an we s ave x - 408' 

This last value approaches so near J2, that its square ~~~~~~ differs from the number 2 only by the small quantity 16l464' 

by which it exceeds it. 
788. We may proceed in the same manner, when it is required to fmd by approximation cube roots, biquadrate roots, 

&c. 
Let there be given the equation of the third degree, x 3 = a; or let it be proposed to fInd the value of -era. 
Knowing that it is nearly n, we shall suppose x = n +p; neglecting p2 and p3, we shall have x 3 = n+ 3n2p = a; 

a- n3 

so that 3n2p = a - n3 and p = ---' whence , 3n2 ' 

2n3 +a 
x = (n + p) = . 

3n2 

* This is the method given by Sir Is. Newton at the beginning of his "Method of Fluxions." When investigated, it is found subject to different 
imperfections; for which reason we may with advantage substitute the method given by M. de la Grange, in the Memoirs of Berlin for 1768 and 
1767.-F.T. 

This method has since been published by De la Grange, in a separate Treatise, where the subject is discussed in the usual masterly style of this 
author. 
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If, therefore, n is nearly = ~, the quantity which we have now found will be much nearer it. But for still greater 
exactness, we may again substitute this new value for n, and so on. 

3For example, let x = a = 2; and let it be required to determine ?12. Here, if n is nearly the value of the number 

sought, the formula 2n;n~ 2 will express that number still more nearly; let us therefore make 

1. n = 1, and we shall have x = t, 
2. 	 n = t, and we shall have x = ~~, 


- 91 d hall h - 162130896
3. n - 72' an we s ave x - 128634294. 

789. This method of approximation may be employed, with the same success, in finding the roots of all equations. 
To show this, suppose we have the general equation of the third degree, x3 + ax2 + bx + c = 0, in which n is very 

nearly the value of one of the roots. Let us make x = n - p; and, since p will be a fraction, neglecting the powers of this 
2 2 3 3letter, which are higher than the first degree, we shall have x = n - 2np, and x = n - 3n2p; whence we have the 

3 2 3 +anequation n - 3n2p +an - 2anp + bn - bp + c = 0, or n 2 + bn + c = 3n2p + 2anp + bp = (3n2 + 2an + b)p;
2 n3 + an2 + bn +c (n3 +an2 + bn +c) 2n3 + an - c. .. 

so that p = 3 2 2 b' and x = n - 3 2 2 b = 3 2 2 •. ThIS value, WhIch IS more exact 
n + an + n + an + n + an + 

than the flfSt, being substituted for n, will furnish a new value still more accurate. 
790. In order to apply this operation to an example, let x 3+2x2 +3x - 50 = 0, in which a = 2, b = 3, and c = -50. 

If n is supposed to be nearly the value of one of the roots, x = 2;3 + 2;2 + ~o will be a value still nearer the truth. 
n2 + n+ 

Now, the assumed value of x = 3 not being far from the true one, we shall suppose n = 3, which gives us x = ~~; 
and if we were to substitute this new value instead of n, we should find another still more exact. 

791. We shall give only the following example, for equations of higher dimensions than the third. 
Let x 5 = 6x + 10, or x 5 - 6x - 10 = 0, where we readily perceive that 1 is too small, and that 2 is too great. Now, 

if x = n be a value not far from the true one, and we make x = n +p, we shall have x 5 = n5 +5n4p; and, consequently, 

5	 5n5 + 5n4p = 6n + 6p + 10; or 5n4p - 6p = 6n + 10 - n • And p(5n4 - 6) = 6n + 10 - n • 

6n + 10 - n5 4n5 + 10 	 . 
Wherefore p = 5n4 _ 6 ' and x (= n + p) = 5n4 _ 6 . If we suppose n = 1, we shall have x = :~ = -14; thIS 

value is altogether inapplicable, a circumstance which arises from the approximated value of n having been taken much 
too small. We shall therefore make n = 2, and shall thus obtain x = ~348 = ~~, a value which is much nearer the truth. 
And if we were now to substitute for n, the fraction ~~, we should obtain a still more exact value of the root x. 

c) Program Maple for Newton's algorithm 

3
>P: = - 5 - 2 x + x i 

>r: = 2 i h: = r i 

>for i from 1 to 4 do P:= sort (expand (subs (x = x + h, P)}}: 

> h:= evalf(- x*op(P} [4] / op(P} [3]} i 

> r:= evalf(r + h} i od i 
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The .. History of 
Mathematics and 
its Influence on 
Pedagogical Problems 

Lucia Grugnetti 
University of Parma, Italy 

Introduction 

Using the history of mathematics as an introduction to a 
critical and cultural study of mathematics is one of the 
most important challenges for mathematics teachers and 
for students. There are many possibilities in mathematics 
education for the use of history, which we discuss in what 
follows. 

If learning is not only an accumulation of items of 
knowledge, but a set of critical attitudes about knowledge, 

. then the question is not about the quantity of transmitted 
knowledge, but about its quality. Why did a certain concept 
arise? Under which historical conditions? The traditional 
idea that the development of mathematics is purely cumu
lative is largely out-of-date. Teachers must remain aware 
of the inherent relativity of knowledge, and of the fact that, 
in the long run, providing students with an adequate view 
of how science builds up knowledge is more valuable than 
the mere acquisition of facts (von Glasersfeld, 1991). Yet 
there is a growing debate concerning the role of the history 
of mathematics in mathematics education. 

One of the several risks in introducing the history of 
mathematics in mathematics education is the anachronism 
which consists in attributing to an author such conscious 
knowledge as he never possessed. There is a vast differ
ence between recognizing Archimedes as a forerunner of 
integral and differential calculus, whose influence on the 
founders of the calculus can hardly be overestimated, and 
fancying to see in him, as has sometimes been done, an 
early practitioner of the calculus (Weil, 1978). If the risk 
of anachronism is a big one for historians, it is not smaller 
in doing history of mathematics in mathematics education. 
So, once we introduce at school a mathematician or, in 
general, a scientist, it is fundamental to analyze the politi
cal, social, and economic context in which he lived. In this 
way it is possible to discover that facts and theories, stud
ied in different disciplines, are concretely related. More
over, as Pepe (1990) reminds us, the "meeting" between 
history and didactics of mathematics must be developed 
taking into account the negative influences that they can 
have one on the other. A possible negative influence of 
history on didactics is an increase in interesting and curi
ous references which are, in effect, not essential. On the 
contrary, the history of mathematics offers us several ex
amples which gain by an interdisciplinary approach (Pepe, 
1990) as, for example: the number systems of the ancients; 
the use by Galileo of both mathematical and experimental 
methods; and Descartes' use of the analytical method. 

The influence of the history of mathematics on ped
agogical problems can be seen by various methods. For 
example, 

29 
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• 	 By using old problems, students can compare their 
strategies with the original ones. This is an interesting 
way for understanding the economy and the effective
ness of our present algebraic process. In observing the 
historical evolution of a concept, pupils will find that 
mathematics is not fixed and definitive. 

• 	 History for constructing mathematical skills and con
cepts . 

• 	 An historical and epistemological analysis allows teach
ers to understand why a certain concept is difficult for 
the student (as, for example, the concept of the func
tion, the concept of the limit, but also fractions, op
erations with zero, etc) and can help in the didactical 
approach and development. An epistemological analysis 
is not easy to do, and some researchers have worked and 
are working on this aspect. 1 

By using old problems students can compare 
their strategies with the original ones 

An example of the history of mathematics as used in in
terdisciplinary teaching could come from the Liber Abbaci 
(1202) by Leonardo Pisano (known as Fibonacci). This 
book can be used as a source of problems (from the thir
teenth century) which will involve different teachers and 
subjects. For example, one can look at both Italian and 
Latin and ask what kind of language is that of the Liber 
Abbaci? In history, one can study the development of the 
Middle Ages in Europe and Islam. In geography, one can 
consider the differences between Western Europe and the 
Middle East. And in mathematics, one can ask why Fi
bonacci used certain strategies for problem solving and 
can compare those strategies with current ones. The stu
dents can, for example, understand the economy and the 
effectiveness of present algebraic processes compared to 
the ancient methods. The activity of recognizing and com
paring strategies is one of the most important aspects to 
develop in mathematics learning. Once students become 
able to compare different strategies (for solving problems, 
but also for proving theorems), they can begin the process 
of generalization. 

It could be interesting to ask 13-year-old pupils (as 
also older ones) to translate the following problem from 
the Liber Abbaci: 

In quodam plano sunt due turres, quarum una 
est alta passibus 30, altera 40, et distant in solo 
passibus 50; infra quas est fons, ad cuius centrum 
volitant due aves pari volatu, descendentes pariter 
ex altitudine ipsarum; queritur distantia centri ab 
utraque turri. 

Anyway, even if pupils are not able to translate the problem, 
we can ask them to solve it: 

Two towers, the heights of which are 40 paces 
and 30 paces, are 50 paces apart at their bases. 
Between the two towers there is a fountain where 
two birds, flying down from the two towers at the 
same speed will arrive at the same time. What is 
the distance of the fountain from the two towers? 

Pupils aged 13 and 14 can solve the problem using 
the Pythagorean theorem and solving an equation, but the 
real interest of this problem could be an examination and 
discussion of Fibonacci's strategies (literally translated): 

If the higher tower is at a distance of 10 from 
the fountain, 10 times 10 is 100, which added 
to the higher tower times itself is 1600, which 
gives 1700, we must multiply the remaining dis
tance times itself, which added to the lower tower 
times itself, i.e., 900, gives 2500. This sum and 
the previous one differ by 800. We must move 
the fountain away from the higher tower. For ex
ample by 5, i.e., globally by 15, which multiplied 
by itself is 225, which added to the higher tower 
times itself gives 1825, which added to the lower 
tower times itself gives 2125. The two sums dif
fer by 300. Before the difference was 800. So, 
when we added 5 paces, we reduced the differ
ence of 500. If we mUltiply by 300 and we divide 
by 500, we have 3, which added to 15 paces gives 
18 which is the distance of the fountain from the 
higher tower. 

It could be interesting to analyze and discuss with 
pupils this explanation of Fibonacci, in which arithmetic 
writing of operations is not given and in which the 
Pythagorean theorem is implicitly used. Pupils have to in
terpret Fibonacci's sentences by translating them into math
ematical symbolism. This ac~ivity can be done in small het
erogeneous groups. In modem symbolism Fibonacci's pro
cedure can be written as: 102 + 402 100 + 1600 1700 
and (50 10)2 + 302 402 + 302 1600 + 900 2500 
(Fibonacci says: "this sum and the previous one differ by 
800"). 152 + 402 = 225 + 1600 = 1825 and 352 + 302 

1225 + 900 2125 (Fibonacci says: "the two sums differ 
by 300"). Fibonacci uses now the diagram 

500 5 

/

300 3 

and his last sentence could be written as (5x300)/500 = 3; 
3 + 15 = 18. 
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The discussion can bring in the method of 'false posi
tion', one of the first ways to solve "equations", a method 
which was used in fact by the Egyptians 4000 years ago. 
Students can see that it is more 'economical' if they solve 
this problem using a simple algebraic equation, which Fi
bonacci could not use. The discussion can now concern the 
reasons why Fibonacci could not use algebra in our sense. 
In this way a historical example can give students the op
portunity to compare arithmetic and algebraic procedures. 
However, Fibonacci's problem doesn't finish here! In fact, 
Fibonacci considers a second strategy to solve it. 

After having e:({plained that the triangle agz (the foun
tain is at z) is isosceles with base ag (with ae = eg) by 
construction, Fibonacci adds: "40 and 30 is 70; the half 
is 35, in fact the line eft The lines df and fb are 25 in 
length, the difference between 35 and the lower tower is 5, 
which, multiplied by 35 is 175, which divided by the half 
of the distance between the two towers, in fact 25, gives 7 
(the line fz). Therefore dz is 32 and it remains 18 for the 
line zb." 

a 

40 

FIGURE 1 

It could be interesting to discuss with students Fi
bonacci's procedure which, as we can see, is based on the 
similarity of triangles efz and ghe where h is the inter
section point of e f and the parallel to df which contains 
g. Hypotheses of students and the discussion of them is an 
important element in this activity. 

While algebraic procedures in the thirteenth century 
were not developed, geometrical ones were the same as 
those our students use nowadays. Here, an important his
torical chapter could be opened in secondary school. 

History for constructing mathematical skills 
and concepts 

The main aim of IREM proposals2 is that of making teach
ers and students sensitive to the evolution of mathematics 

concepts and language. This activity allows, for example, 
students to work on Euclidean geometry in a critical way. 

Concerning three-dimensional geometry and calculus 
it could be fruitful from a pedagogical point of view to use 
Cavalieri's theory of indivisibles before introducing mod
ern integration, which soon becomes a technical way for 
solving exercises. Since the originals by Cavalieri are very 
difficult, we have to use a "didactical transposition" of that 
theory. 

In the seventeenth century, the systematic use of 
infinitesimal techniques for area and volume computa
tion was popularized by two influential books written by 
Bonaventura Cavalieri (1598- 1647)-his Geometria in

divisibilibum (Geometry of indivisibles) of 1635 and his 
Exercitationes geometricae sex (Six geometrical exercises) 
of 1647.3 

Using his method, Cavalieri proceeded by setting up a 
one-to-one correspondence between the indivisibles of two 
given geometrical figures. The fundamental idea in the Ge

ometria indivisibilibum is that it is possible to compare two 
continua by comparing their indivisibles. Thus by means 
of a straight line moving parallel to itself it will be pos
sible to characterize all the lines of the figure, namely the 
intersections of the moving line with the figure. In a sim
ilar way a plane moving parallel to itself will characterize 
in a solid body all its indivisibles, the intersections of the 
solid with the moving plane. Together with plane and solid 
figures we have then other objects, namely all the lines of 
the plane figures and all the planes of the solid ones, that 
will be compared with each other and each with the related 
figure, with the purpose of finding the ratios of the latter.4 

If corresponding indivisibles of the two given figures 
had a certain (constant) ratio, Cavalieri concluded that the 
areas or volumes of the given figures had the same ratio. 
Typically the area or volume of one of the figures was 
known in advance, so this gave the other: Cavalieri's prin
ciple is stated as: If two solids have equal altitudes, and if 

sections made by planes parallel to the bases and at equal 

distances from them are always in a given ratio, then the 

volumes of the solids are also in this ratio. (See Figure 2.) 
By using Cavalieri's method it is both possible and 

interesting to calculate the volume of the solid obtained 
by intersecting perpendicularly two equal cylinders. As is 
well known, the volume of such a solid is in general found 
at university level by the use of double integrals. On the 
contrary as Andre Deledicq (1991) shows us, Cavalieri's 
theory also allows secondary level students to solve this 
problem, which seems to have been solved by Evangelista 
Torricelli (1608-1647). 
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IE-+- a 

AB=A 'B'; RV= R'V', etc. 
The figures have a ratio 1: 1. 

FIGURE 2 

, 
b 

f-+.:-----I J 
IE--+- a 

u' 

T 

2uv=u'v', etc. 
S: T= 1: 2 

T=2S 
(a +a')b ,

S = 2 ; T =(a +a)b 

We can represent the solid by Figure 3. 

FIGURE 3 

At a university level we can fmd the volume of a part 
of the solid (the sixteenth part) as in Figure 4. 

By Cavalieri's theory: 
• in this solid S we can consider a sphere which is tangent 

to the two cylinders 
• if we dissect the sphere by horizontal planes we oblain 

for each plane a circle 
• if we dissect the solid S by horizontal planes we obtain 

for each plane a square (see Figure 5). 
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= 16 x J 

D
dzdy Jo dz 

= 16 x 1r Jr2  z2dz 1% dy 

= 16 X 1r zJr2  z2dz 

= 16 X ( -~) 1r(-2) z (r2 - z2)1/2dz 

= -8 X ~ [(r2 _ Z2)3/2]~ 

= _16 [_r2]3/2 = 16r3 
3 3 

FIGURE 4 
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FIGURE 5 

x 

In each plane we can see the sections as in Figure 6 where 
the square is a section of the solid S and the circle is a 
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4R2 

FlGURE 6 

section of the sphere. The ratio of the surfaces of the two 
sections is 4R2 /1I:R2 4/11:. 

By Cavalieri's principle, the same ratio must exists 
for the two volumes, so we obtain: 

Volume S (Volume sphere) x 4/11: = (411:r3 /3)(4/1I:) 

16r3 /3. 

Before Torricelli, this solid also interested the artist 
and mathematician Piero della Francesca (c. 1415-1492) 
and a half of the solid appears in the famous altar screen 
in Brera Palace in Milan. 

An interesting use, from a didactical point of view, of 
Cavalieri's theory, can be found also in an Italian textbook 
(L. Lombardo Radice and L. Mancini Proia, 1979) where 
it is used to find the area of the ellipse: IT we have the 

x2 y2
2circle: x

2 + y2 = a and the ellipse: + I? = 1 and a2 

we consider the chords obtained by cutting the circle and 
the ellipse by straight lines which are parallel to the y-axis 
(Figure 7), we have: 

a2 I? (a2 - x2 )
y2 = _ X2j y2 = --'--::_-'

a2 

The ratio of the two chords is b/ a, so we obtain: 
E : C = b : a (where E and C are respectively the area of 
the ellipse and of the circle) from which E = Cb/ a. We 
know that C 1I:a2 ; therefore E = 1I:ab. 

Y 
2 2 2Yt =a -x 

r J

22 b2(a2 _x )
Y2 = 2a

) xa 

FlGURE 7 

This approach allows the teacher to follow with the 
students the historical process in which the problem of the 
quadratures (integration) precedes the problem of the tan
gents (differentiation). Moreover we think that, by this pro
cess, students can also appreciate later "modem" integra
tion as need of generalization. At the same time, if we try to 
follow, in a certain sense, the historical process of calculus 
and, as in the previous examples, the theory of indivisibles, 
we have to develop with students a critical analysis con
cerning that theory. So why was the seventeenth century 
the moment of the theory of indivisibles? Or why was the 
calculation of areas and volumes one of the main problems 
of that century? 

The end of the sixteenth century saw the final estab
lishment of geometry as the leading branch of mathematical 
research, as a result of a process begun half a century ear
lier with an impressive series of translations, mostly into 
Latin, of the classical works of the Greek geometers, fre
quently accompanied by erudite comments (Giusti, 1980). 
This century saw the wide dissemination and serious study 
of Euclid's Elements and of the works of Archimedes. Tak
ing pride of place in this revival of geometric research were 
Archimedean themes, in particular the calculus of areas and 
volumes of geometrical figures and of their centers of mass. 
This sector expanded very rapidly, and maintained its lead
ership for most of the following century. The calculation 
of areas and volumes was one of the main problems of the 
early years of the seventeenth century, while the method of 
exhaustion was the only technique handed on by the an
cients. This technique was as rigorous as any other, but at 
the same time was extremely laborious and left little scope 
for intuition (Giusti, 1980). 

Therefore, during the seventeenth century, although 
Archimedes' accomplishments provided the chief inspira
tion for the resumption of mathematical progress, the time 
was ripe for the development of simpler new methods. 
Methods were sought that could be applied to the investi
gation of area and volume problems with greater ease than 
could the method of exhaustion with its tedious double 
reductio ad absurdum proofs. While continuing to regard 
Archimedean proofs as the ultimate models of rigor and 
precision, the Renaissance mathematical mind was more 
interested in quick new results and methods of rapid dis
covery than in the stringent requirements of rigorous proof. 
It is the main moment for 'indivisibles' in area and volume 
computation. Other subjects of present curricula find their 
"justification" in a historical and epistemological study, as, 
for example, non-Euclidean geometry introduced in the cur
riculum of some countries (in Italy, for instance). The pro
posal of introducing some elements of non-Euclidean ge
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ometry in high schools could be very interesting; but we 
run the risk of introducing it only by giving some theo
rems. On the contrary, it is important to give students an 
idea of the epistemological meaning of the non-Euclidean 
revolution: i.e., the overcoming of the old conception of 
geometry. 

A historical analysis allows teachers to 
understand why a certain concept is difficult 
for the student 

The concept of function, one of the main concepts in high 
school mathematics courses, can be considered as a unify
ing idea occurring in various chapters of scientific knowl
edge. The different names that it assumes--operation, cor
respondence, relation, transformation-reflect the historical 
circumstances in which it appeared in the fields of mathe
matics, of physics, of logic. 

While two centuries ago functions were thOUght of as 
formulas that described the relation between two variables 
involving algebraic expressions (in Euler's meaning), the 
modem definition of function is not so limited. It is not 
necessary that functions are represented by a graph or by 
a formula, and the corresponding sets do not only consist 
of numerical elements. 

In modem mathematics courses a function from X to 
Y (where X and Y are sets of real or complex numbers) 
is defined to be a rule that assigns to each element x of the 
set X a unique element y = I (x) of the set Y. Sometimes 
the function I is defined in terms of the set of all pairs 
(x, I(x)), a subset of the Cartesian product set X x Y. 

In mathematics education it is often forgotten that the 
concept of function was the result of a long train in math
ematical thought developing slowly. On the contrary, at the 
school level this concept is in general introduced very early 
as a basis on which other concepts are introduced. But is 
this basis really well understood? What happened during 
its long history? 

The idea of function can be seen in ancient mathemat
ics. For instance ratios can be seen as functional relations. 
But it must be clear that Greek geometry was concerned 
more with form than with variation, so that the function 
concept in itself was not developed. There was in Greek 
geometry no idea of a curve as corresponding to a function. 

The notion of function arose as the necessary 
mathematical tool for the quantitative study of natural 
phenomena,5 begun by Galileo (1564-1642) and Kepler 
(1571-1630). Its development was based in the expressive 
possibilities provided by the modem algebraic notation cre
ated by Viete (1540--1603) and, especially, by the analytic 

geometry introduced by Descartes (159~1650) and Fer
mat (1601-1665). Descartes stated that an equation in two 
variables, geometrically represented by a curve, indicates 
a dependence between variable quantities. Relationships 
between these quantities were often described by means 
of equations. However, these geometrical variables were 
viewed primarily as being associated with the curve itself, 
rather than with each other. 

We can see here, as, for example, much earlier in 
Nicole Oresme's (1323-1382) Treatise on the Configura

tions of Qualities and Motions, a notion of a functional re
lationship between variables, but the several variables asso
ciated with a curve were not generally viewed as depending 
upon some single "independent" variable. 

In the last part of the seventeenth century Leibniz 
(164~1716) introduced the word "function" into math
ematics precisely as a term designating the various geo
metrical quantities associated with a curve; they were the 
"functions" of the curve. Then, as increased emphasis was 
placed on the formulas and equations relating the func
tions of a curve, attention came naturally to be focused 
on their roles as the symbols appearing in these equations, 
that is, as variables depending only on the values of other 
variables and constants in equations (and thus no longer 
depending explicity on the original curve). This gradual 
shift in emphasis led ultimately to the definition of a func
tion given by Euler (1707-1793) at the beginning of the 
lntroductio in Analysin lnfinitorum (1748): a function of 
variable quantity is an analytical expression composed in 
any way from the variable quantity and from numbers or 
constant quantities. In present day terminology, we can say 
that Euler's definition included just the analytic functions, 
a restricted subset of the already small class of continuous 
functions. As far as mainstream mathematics is concerned; 
the identification of functions with analytical expressions 
would remain unchanged for all the eighteenth century. 

Euler's lntroductio was the first work in which the 
function concept played a central and explicit role. It was 
the identification of functions, rather than curves, as the 
principal objects of study that permitted the arithmetization 
of geometry and the consequent separation of infinitesimal 
analysis from proper geometry. 

Euler later (1755) gave a broader definition that is vir
tually equivalent to modem definitions of functions: if some 
quantities so depend on other quantities that if the latter are 
changed the former undergo change, then the former quan
tities are called functions of the latter. This denomination 
is of the broadest nature and comprises every method by 
means of which one quantity can be determined by others. 
If, therefore, x denotes a variable quantity, then all quan



The History of Mathematics and its Influence on Pedagogical Problems 35 

tities which depend upon x in any way or are detennined 
by it are called functions of it [y = f(x)]. 

This definition was revised and extended in the nine
teenth century into a definition which deeply changed the 
nature and meaning of the term "function." (Ponte, 1992). 
The definition in terms of arbitrary sets was reached only 
in the second half of that century. In retrospect, it is perti
nent to remark that whereas the idea of variability had been 
banned from Greek mathematics because it led to Zeno's 
paradoxes, it was precisely this concept which, revived in 
the later Middle Ages and represented geometrically, led 
in the seventeenth century to the calculus. Nevertheless, as 
the culmination of almost two centuries of discussion on 
the basis of the new analysis, the very aspect which had led 
to its rise was in a sense again excluded from mathemat
ics with the so-called 'static' theory of the variable which 
Weierstrass cIeveloped. 

At school level the set theory approach-that is a 
static approach-in which a function is a 'triad' (domain, 
codomain, correspondence between their elements) can blur 
the dynamism inherent in the function idea as dependence 
between two variables quantities. On the other hand, it 
could happen that where the aspect of 'dependence' is dom
inant, the function domain gets to assume a minor role. 
Moreover, when students use only Euler's definition, mis
conceptions which lead to stereotypes arise. The students 
develop 'prototype examples' of the function concept, such 
as: a function is like y = x2 , or a polynomial, or 1/x, or 
a sine function (Baker, Tall, 1991). 

I think that we could take from the rich history of 
the concept of a function the ideas for different approaches 
in introducing this concept at school level: the different 
levels of representing a function become necessary for its 
comprehension; the different notations are complementary, 
but they do not involve the same degree of difficulty. 
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Euclid versus Liu Hui: 
A Pedagogical 
Reflection l 

Wann-Sheng Horng 
National Taiwan Normal University 

I. Introduction 

It has been argued that ancient mathematics of the West and 
the East might have contributed complementary aspects, 
namely, the structural and the operational, to mathemat
ics. These aspects are particularly revealing in the works 
of Euclid and Liu Hui (third century CE).2 In this article, 
the author will compare the epistemology and'methodol
ogy reflected in the methods of these two mathematicians 
in finding the greatest common divisor of two natural num
bers, in their circle measurements, and in their proofs of 
the formula for the volume of pyramid. Pedagogical com
ments will be made to show the contrast between Euclid's 
structural (or theoretical) and Liu Hui's algorithmic (or 
constructive) approaches to the mathematical problems in 
question. 

II. Arithmetica vs. "Suan Shu" (Logistica)3 

In the elementary school mathematics curriculum, "arith
metic" usually refers to the computational procedures, or 
algorithms, for real numbers. This aspect of mathematics 
was called logistica (a word related to our "logistics") by 
the ancient Greeks (Cf. Bunt et aI., 1988, p. 75). For them, 
arithmetic (or arithmetica, a word related to our discipline 
"number theory"), on the other hand, was a study of the ab
stract mathematical properties of numbers, chiefly the nat
ural numbers. Greek enthusiasm about arithmetic, among 
other mathematical disciplines, was witnessed by Plato: 

[T]his knowledge of the kind [Le., mathematics] 
for which we are seeking, has a double use, mil
itary and philosophical; for the man of war must 
learn the art of number or he will not know how 
to array his troops, and the philosopher also, be
cause he has to rise out of the sea of change and 
lay hold of true being, and therefore he must be 
an arithmetician (Republic, Book VII, p. 525). 

In fact, arithmetic, along with geometry, astronomy and 
harmonics formed the quadrivium in the Classical World. 
No wonder Euclid would devote Books VII, VIII and IX 
of his Elements to arithmetic, since this text was probably 
designed for teaching mathematics in ancient Greece. 

However, side by side with the tradition of classical 
Greek geometry. which is known from the works of Euclid, 
Archimedes, Apollonius, and Pappus, a more popular tra
dition existed, a tradition of arithmetical and geometrical 
problems with numerical solutions, similar to the problems 
we find in Egyptian, Babylonian and Chinese collections 
(Van der Waerden, 1983, p. 154). This is very well illus
trated by Heron's Metrika. Whereas Euclid operates with 
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the line segments, polygons, circles, and solids themselves, 

without ever using words like "length", "area", or "vol
ume", Heron is mainly concerned with the numerical val
ues of areas and volumes. This indeed points to the fact 
that Heron was dealing with mathematics in terms of its 
operational aspect. 

Heron's treatment of mathematics was no exception 
in the history of mathematics. In addition to his Babylo
nian and Egyptian predecessors, Heron also had Chinese 
counterparts. Ancient Chinese mathematics is well known 
for its algorithmic aspects which are devoted primarily to 
solving practical problems. This may explain in part why 
the Jiu Zhang Suan Shu (Nine Chapters on Mathematics, 
first century CE) introduces the rules for addition, subtrac
tion, multiplication, and division of fractions from the very 
beginning. Indeed Chapter 1 of the Jiu Zhang Suan Shu 
was written to calculate the area of plane figures whose 
linear dimensions are often given as fractions. 

It should be noted that the rules of addition, subtrac
tion, multiplication and division given in the Jiu Zhang 
Suan Shu all agree with those we learn at school. More 
interesting is the method for simplifying fractions: 

If both [the denominator and numerator] can be 
halved, then halve them. When both cannot be 
halved, set down the numerals of the denomina
tor and numerator, and subtract the smaller from 
the larger. Continue to diminish mutually through 
subtractions ("Geng Xiang Jian Sun") to seek a 
pair of equal numbers ("Deng Shu"). Use [this 
number called] the "Deng Shu" to reduce [the 
fraction] (Qian, 1963, pp. 94-95. Here the trans
lation follows Lam and Ang, 1992, p. 56). 

The text gives two examples, namely Problems 5 and 
6 of Chapter 1. The latter is to simplify 49/91. We are 
instructed first to layout 

~ ~ 7 7 7 7 7 7 
91 42 42 35 28 21 14 7 

then to divide the numerator and denominator by the "equal 
number" 7 in order to get the answer 7/13. According to 
Van der Waerden, since it is quite easy to get the an
swer in this case, "the mention of the algorithm is not 
a logical or didactical necessity; it is just an addition by 
a systematically-minded teacher, who wanted to teach a 
never-failing method" (Van der Waerden, 1983, p. 38). 

Even so, an explanation of how the algorithm works 
made by Liu Hui in his commentary to the Jiu Zhang Suan 
Shu is equally impressive: 

To reduce by using the "Deng Shu" means to 
divide [the denominator and numerator] by it. As 

the mutually subtracted numbers are all multiples 
("Chong Die") of the "Deng Shu", this is the 
reason why the "Deng Shu" is used to reduce 
[the fraction] (Qian, 1963, p. 95. Here too the 
translation follows Lam and Ang, 1992, p. 56). 

Whether or not this argument is convincing, one must ad
mit that Liu Hui did tell us the reason why the algorithm 
("Geng Xiang Jian Sun") worked successfully in simplify
ing the fraction. Meanwhile, due to his argument that "the 
mutually subtracted numbers are all multiples of the 'Deng 
Shu"', one cannot help thinking of his structural concern 
in the context of algorithmic mathematics. 

In contrast, Euclid was primarily interested in finding 
a common measure (divisor) of two [natural] numbers. For 
example, Proposition 1 of Book VII reads: 

Two unequal numbers being set out, and the 
less being continually subtracted in tum from the 
greater, if the number which is left never mea
sures the one before it until an unit is left, the 
original numbers will be prime to one another 
(Heath, 1956, vol. 2, pp. 296-297). 

Immediately following Proposition 2 there is the 
method of finding the greatest common measure of two 
numbers not prime to one another: 

Given two numbers not prime to one another, 
to find their greatest common measure (Heath, 
1956, vol. 2, pp. 298-300). 

These two propositions comprise the so-called Euclidean 
algorithm. It should be noted that the Euclidean algorithm 
is just the same as the Chinese "Geng Xiang Jian Sun" de
spite the fact that the latter awaited Liu Hui's explanation. 
Indeed the Greeks as well as the Chinese reduce the pair 
of numbers (m, n) by alternative subtractions until they 
become equal, and then divide m and n by the resulting 
common divisor. 

That concepts like prime number and numbers prime 
to one another never occurred in traditional Chinese math
ematics may be because the ancient Chinese never paid 
any attention to mathematical problems which could be 
associated with number theory or arithmetic in the Greek 
sense. Nor did they discover the relation between the great
est common measure and the least common multiple. In 
fact, Chapter 4 of the Jiu Zhang Suan Shu gives the con
cept of the least common multiple in order to deal with the 
addition of fractions. However, the concept of the "Deng 
Shu" is never mentioned in the computational procedures. 
What is more surprising is that Liu Hui, the most impor
tant commentator of the Jiu Zhang Suan Shu in ancient 
China, also says nothing in this context. In other words, it 



seems that the structural relation between the greatest com
mon measure and the least common multiple never entered 
Liu Hui's mind even though he paid much attention to the 
concept of the "Deng Shu" (the greatest common measure). 

On the other hand, Books vn, VIII and IX of Eu
clid's Elements are devoted to number theory. A theoretical 
framework therefore is provided for dealing with the prop
erties of number per se, for example, definitions of prime 
number and composite number etc. (Heath, 956, vol. 2, 
pp. 277-278). What most concerns Euclid is the structural 
aspect of (natural) numbers including the relation between 
prime and composite numbers as well as that of the greatest 
common measure and the least common mUltiple (Heath, 
1956, vol. 2, pp. 336-341). No wonder Euclid stresses the 
significant role prime numbers play in number theory. Un
der such circumstances, it is not surprising to see that he 
even tries to count how many prime numbers there are 
(Heath, 1956, vol. 2, p. 412). Moreover, Euclid's proofs of 
Propositions Vll-I and VII-2 deserve our special attention. 
This is because even in the case involving an algorithm, say, 
the Euclidean algorithm, he still appeals to the argument of 
reductio ad absurdum (reduction to absurdity) (Cf. Heath, 
1956, vol. 2, pp. 296-3(0). He is primarily concerned with 
the structural aspect of mathematics even when he is doing 
something very algorithmical. 

III. Circle Measurement 

In Problems 31 and 32 of Chapter 1 in the Jiu Zhang Suan 
Shu. we are asked to calculate the areas of circular fields. 
For example, Problem 31 reads: 

A circular field has circumference 30 "Bu" (1 
"Bu" is about 126 cm in 1st-century China) and 
diameter lO "Bu". What is the area of the field? 
(Qian, 1963, p. lO3) 

In solving this problem, the Jiu Zhang Suan Shu provides 
four fonnulas for the area S of the circle T. The first of 
them is: S = (CI2)(DI2), where C, D are the circumfer
ence and diameter of the circle respectively (Qian, 1963, 
pp. lO3-108).4 

In order to show why this fonnula can help compute 
the area of a circle, Liu Hui suggests that from the be
ginning we can regard C12 and D 12 respectively as two 
sides of a rectangle, say R. If we can transfonn the cir
cle T into the rectangle R, preserving the area, then the 
proof is accomplished (see Figure 1). This is Liu Hui's 
strategy (Qian, 1963. p. lO3). In fact. it is very natural for 
Liu Hui to adopt this strategy. for he has already proved 
the area fonnulas for the triangle and trapezoid by trans
fonning each of them into rectangles (Cf. Qian. 1963, pp. 
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lOl-lO2). What he uses is the so-called In-Out Principle 
("Yi Ying Bu Xu"; see Figure 2). Since the circle is a 
curved plane figure, therefore, in addition to the use of the 
In-Out Principle, Liu Hui apparently realizes that he needs 
something more. This may explain why he also counts on 
the method of limit to accomplish the proof of the fonnula: 
S = (CI2)(DI2). 

In his proof, Liu Hui inscribed a regular hexagon 
within a circle. By successively doubling the number of 
sides-a method known as the "Ge Yuan" (circle division) 
method, he believed it was possible to reach a polygon 
which coincided with the circle and therefore "exhausted" 
its area (Qian, 1963, pp. lO3-104; Lam and Ang, 1986). 
There is no doubt that Liu Hui would allow the cutting to 
be infinite, for "if one makes the cut finer, the loss [of the 
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area of the inscribed regular polygon with respect to the 
area of the circle] will be smaller" (Qian, 1963, pp. 103
104). Here Liu Hui's conceptions of infinity and indivisible 
point are also clearly reflected in his quantitative estima
tion of the loss of the area of the inscribed regular polygon 
with respect to the area of the circle. Yet then why did 
Liu Hui need to emphasize: "cut the circle again and again 
till it cannot be cut any more; then the inscribed regular 
polygon will coincide without any loss"? Perhaps to Liu 
Hui exhausting the cutting to reach an eventual geometric 
entity was meaningful only if he had a formula to prove. 
This certainly was not the case with the area of a segment 
of a circle ("Hu Tian") in Chapter 1 of the fiu Zhang Suan 
Shu in which no exact formula of the "Hu Tian" was given 
(Cf. Qian, 1963, pp. 108-110; Horng, 1995). 

Now let us turn to Euclid. The "area formula" Euclid 
presents in his Elements is Proposition 2 of Book XU: 

Circles are to one another as the squares on the 
diameters (Heath, 1956, vol. 3, pp. 371-373). 

The proposition implies that he only knows that the ratio of 
a circle to the square of its diameter is a constant. However, 
he never mentions what the ratio is. Perhaps what he had 
in mind is actually 1r : 4. Yet a ratio, say a : b, in his 
Elements is not treated as a number alb per se (Kline, 
1972. p. 73). Therefore Euclid should not be credited with 
giving a formula for the area of a circle. 

In order to prove this theorem, Euclid applies the prin
ciple of exhaustion, a legacy of Eudoxus. He puts this prin
ciple as Proposition 1 of Book X in his Elements (Heath, 
1956, vol. 3, p. 14). The method does not really suggest that 
the inscribed polygons of the circle are going to "exhaust" 
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the circle. Instead it allows us to "approximate" the circle 
with the inscribed polygons to whatever extent we like. His 
proof of the theorem begins by assuming that the result is 
not true-an argument based on a reductio ad absurdum 
(Katz, 1992, pp. 86-87). 

It should be noted that H[t]he method of exhaustion, 
although equivalent in many respects to the types of argu
ment now employed in proving the existence of a limit in 
the differential and the integral calculus, does not repre
sent the point of view involved in the passage to the limit" 
(Boyer, 1949, p. 35). In fact, in his proof of the formula 
for the circle area Euclid never allows the inscribing of 
polygons in the circle literally to be carried out to an in
finite number of steps. Meanwhile, although the inscribed 
polygon could be made to approach the circle as nearly as 
possible, it could never become the circle, for this would 
imply an end in the process of subdividing the circumfer
ence. 

It seems quite enough at this point for us to com
pare Liu Hui and Euclid's treatments of the circle mea
surement. In contrast with Euclid's proof, Liu Hui's argu
ment is more intuitive and illuminating in that every stage 
of his proof shows clearly his goal. Therefore, one can
not but agree that underlying his methodology Liu Hui had 
"the belief in a balanced employment of rigorous argument 
and heuristic reasoning with the aim of achieving better 
understanding" (Siu, 1993). In fact, for certain audiences 
(Horng, 1994), Liu Hui' s proof is even more attractive than 
that of Archimedes' formula: 

The area of any circle is equal to the area of a 
right triangle in which one of the legs is equal 
to the radius and the other to the circumference 
(Fauvel and Gray eds., 1987, pp. 148-150). 

Archimedes' formula is equivalent to the Chinese one, 
namely both have the same form of (1/2)C . r, where C 
and r are the circumference and radius respectively. Fol
lowing Euclid, Archimedes also uses the method of ex
haustion to give his proof (Cf. Fauvel and Gray eds., 1987, 
pp. 148-150). Unlike Euclid however, Archimedes knows 
the formula for the area of a circle. 

Even so, just like Euclid's case, each step of 
Archimedes' proof hints at nothing about how the formula 
(1/2)C· r was obtained in a constructive manner.5 Judged 
by this standard, Liu Hui's treatment of circle measure
ment is more heuristic than Archimedes' despite the fact 
that Archimedes in his book The Method shows his enthu

FlGURE 3 siasm for his method of discovery. 
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IV. Volume of A Pyramid 
As is well known, any proof of the fonnula for the volume 
of a pyramid must use infmitesimal considerations in one 
fonn or another. It is not surprising to see, just as in the 
case of circle measurement, that Liu Hui also makes use 
of a limit process in deriving the volume of the pyramid, 
"Yang Ma", which has a rectangular base and one lateral 
edge perpendicular to the base. In fact, Liu Hui's argument 
was given in his commentary on Problem 15 of Chapter 5 
in the Jiu Zhang Suan Shu: 

Given a "Yang Ma" which has a length of 5 "Bu" 
and a width of7 "Bu" [for its rectangular base] as 
well as a height [i.e., lateral edge perpendicular 
to the base] of 8 "Bu", find its volume (Qian, 
1963, p. 166). 

Let us begin with a brief summary of Liu Hui' s deriva
tion, "translated" into modem language and symbolism. Let 
a "Yang Ma" be given with dimensions a, band h as shown 
in Figure 4. A tetrahedron "Bie Nao", i.e., a pyramid with 
right-triangular base and with one lateral edge perpendic-
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ular to the base, could be chosen to fit together with the 
"Yang Ma" forming a wedge "Qian Du" (see Figure 5). 
Here the "Yang Ma" is BDF EC and the "Bie Nao" is 
BACE. Set c as the volume of the "Qian Du" ABDCEF; 
y as the volume of the "Yang Ma" BDFEC; and p as the 
volume of the "Bie Nao" BACE. Since Liu Hui has al
ready proved that c = (1/2)abh, in order to prove that 
y (1/3)abh it is sufficient to show that y = 2p. Now 
make the division as shown in Figures 6 and 7. It is clear 
that the sum of the volumes of the two "Qian Du" pieces 
of the "Bie Nao" is exactly one-half of the sum of the 
volumes of the one box and two "Qian 00" pieces of the 
"Yang Ma". Thus it remains to show that the two smaller 
"Bie Nao" pieces of the "Bie Nao" together represent half 
the volume of the two smaller "Yang Ma" pieces of the 
"Yang Ma". 

These smaller "Bie Nao" and "Yang Ma" can again 
be divided up in the same way as shown in Figures 6 and 
7. This division again yields some parts whose volumes 
have the desired ratio, and which altogether fonn 3/4 of 
the volumes remaining in the first plus the remainders, 
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namely, four smaller "Bie Nao" and four smaller "Yang 
Ma". The still undetermined remainders are only 1/4 of 
1/4 of the original "Qian Du". These can again be divided 
up in the same way. Eventually, "to exhaust the calcula
tion," as Liu Hui 'puts it, "halve the remaining breadth, 
length, and height; an additional three-quarters can thus be 
detennined" (Qian, 1963, p. 168). 

But how did Liu Hui actually carry the process to the 
limit? He says: 

The smaller they are halved, the finer ["Xi"] are 
the remaining [dimensions]. The extreme of fme
ness is called "subtle" ["Wei"]. That which is 
subtle is without form ["Xing"]. When it is ex
plained in this way, why concern oneself with the 
remainder? (Qian, 1963, p. 168; here the trans
lation follows Wagner, 1979) 

This passage makes it clear that Liu Hui has an idea of 
carrying the process to the limit (Van der Waerden, 1983, 
p. 202). For Liu Hui it is possible to exhaust the process of 
halving to reach a state of "Wei", a concept of indivisible 
point which he might have drawn from the pre-Qin period 
thinkers like the Mohists. In fact, coupled with his (quan
titative) estimation of the remainders, Liu Hui must have 
used the argument of "exhausting the halving" to convince 
his readers that his demonstration really works, as does his 
proof of the formula for the area of the circle. 

In addition, at each stage of his halvings, Liu Hui is 
able to hint at the so-called "Liu Hui's Principle"-"Yang 
Ma": "Bie Nao" 2: 1 (Cf. Wu, 1982) which leads 
eventually to his proof of the volume formula of the "Yang 
Ma". In other words, Liu Hui's method is constructive in 
a sense that each step of the argument repeatedly points to 
the goal to be obtained. 

As in his circle measurement, Euclid also uses the 
method of exhaustion to prove his volume formula of a 
pyramid. In addition, the argument of reductio ad absur
dum is adopted apparently because, just as in the case of 
his circle measurement, his formula for the volume of a 
pyramid is expressed as a proportion, namely Proposition 
XII-5: 

Pyramids which are of the same height and have 
triangular bases are to one another as the bases 
(Heath, 1956, vol. 3, pp. 386-388). 

Again he still needs Proposition X-I to approximate the 
pyramid with its inscribed prisms. Prior to that it is also 
necessary for him to provide Proposition XII-3: 

Any pyramid which has a triangular base is di
vided into two pyramids equal and similar to one 
another, similar to the whole and having trian

gular bases, and into two equal prisms; and the 
two prisms are greater than the half of the whole 
pyramid (Heath, 1956, vol. 3, p. 378). 

and Proposition XII-4: 

If there be two pyramids of the same height which 
have triangular bases, and each of them be di
vided into two pyramids equal to one another and 
similar to the whole, and into two equal prisms, 
then, as the base of the one pyramid is to the 
base of the other pyramid, so will all the prisms 
in the one pyramid be to all the prisms, being 
equal in multitude, in the other pyramid (Heath, 
1956, vol. 3, p. 382). 

In fact, in his proof of Proposition XII-5 Euclid takes 
away from the pyramid two prisms which together are more 
than half the pyramid (see Figure 8). From the remainder 
he again takes away more than half, and so on, until the 
remainder is less than any assigned volume (Cf. Heath, 
1956, vol. 3, pp. 386-388). Van der Waerden has noted its 
parallel in methodology to Liu Hui's proof of the "Yang 
Ma": Liu Hui takes away three quarters from the prism 
("Qian Du"), and from the remainder he again takes away 
three quarters, and so on, until the remainder is completely 
negligible (Van der Waerden, 1983, p. 203). On the other 
hand, Crossley and Lun comment that "Euclid did not need 
to use non-constructive methods in his derivation of the 
volume of the pyramid" (Crossley and Lun, 1994). This is 
because, as they suggest, iffor given pyramids P, pi Euclid 
considered P - (prisms in P) and pi - (prisms in Pi) and 
repeated the subdivisions, then he could have constructive 
convergence (to zero) on both cases.6 

With the resemblance of Liu Hui and Euclid's meth
ods in hand, one is tempted to agree with Van der Waer
den that Liu Hui was influenced by Greek sources (Van 
der Waerden 1983, p. 203). Whatever the case, Liu Hui's c 

H 
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method indeed provides a direct avenue which help us to 
understand how the volume of the "Yang Ma" is two times 
that of the "Bie Nao". In contrast, due apparently to the ar
gumentation of reductio ad absurdum, the indirect feature 
of Euclid's approach is evident in his proof of the formula 
for the volume of a pyramid, just as in his proof of the 
formula for the area of a circle. Meanwhile, one has to ad
mit that Euclid does not say much about what the volume 
of the pyramid is. He simply puts it as: "Any prism which 
has a triangular base is divided into three pyramids equal 
to one another which have triangular bases." (Proposition 7 
of Book XII, cf. Heath 1956, vol. 3, p. 394). But nowhere 
in his Elements does Euclid mention any formula for the 
volume of the prism. As to the reason, we would like to 
speculate in the next section. 

V. Operational vs. Structural 

It seems quite clear, from the examples discussed above, 
that in contrast with the structural features of the Elements, 
the Jiu Zhang Suan Shu is a mathematical classic which 
is basically operational. Therefore, if the structural and the 
operational aspects of mathematics can be regarded to be 
complementary, then so are the learning of the Elements 
and the Jiu Zhang Suan Shu. In fact, even "[i]n Euclid, 
the role of dialectic is to justify a construction-i.e., an 
algorithm" (Davis and Hersh, 1981, p. 182). 

For Euclid indeed, the definitions, postulates and com
mon notions of the Elements are those suggested by com
mon sense by which geometrical construction could be 
made. Besides, his geometry never loses contact with spa
tial intuition. For example, Definition 4 of Book I is about 
a straight line which is reminiscent of the experience of the 
ancient Egyptian rope-stretcher: 

A straight line is a line which lies evenly with 
the points on itself (Heath, 1956, vol. 1, p. 153). 

It has also been suggested that in the Elements Proposition 
X-2 as well as Proposition X-3 were originally used as a 
method of approximating the length of the diagonal of a 
square rather than in order to prove its incommensurability 
with the side (Heath, 1956, vol. 3, pp. 17-22; Lloyd, 1984, 
pp. 106-108). These two together with Proposition VII-l 
and VII-2, i.e., the Euclidean algorithm, are called "anthy
phairesis", a term showing that a clear practical bearing 
can be located among these propositions (Lloyd, 1984, pp. 
106-108). 

Now let us briefly trace Euclid and his Elements back 
to a period in which the Greek philosophers Parmenides, 
Zeno, Plato and Aristotle dominated mathematical studies, 
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at least at the academic level. Then we can better explain 
why Euclid was only interested in the structural aspect of 
mathematics. On the other hand, since Liu Hui also showed 
a very clear concern about philosophical issues in his com
mentary to the Jiu Zhang Suan Shu, perhaps it is not irrel
evant for us to explore the interaction between philosophy 
and his mathematical study as well. 

Euclid's use of the method of exhaustion and the argu
ment of reductio ad absurdum suggests that the Elements 
is based on "refined intuition" rather than "naive intuition" 
(Boyer, 1949, p. 47). In so doing, the infinitesimal is ex
cluded from the demonstrations of geometry as shown in 
the proofs of Propositions XII-2 and XII-5. The reason may 
lie in Euclid's response to the Eleatic philosophers Par
menides and Zeno. In fact, Zeno's famous Achilles para
dox is directed against the thesis that space and time are 
infinitely divisible since, according to his explanation of 
the infinitesimal, it is impossible to conceive intuitively 
the sum of infinitely many infinitesimals (Boyer, 1949, p. 
24). Apparently "it was the Eleatics who provided the first 
clear statement of the key thesis that serves as the epistemo
logical basis for any abstract inquiry such as mathematics, 
namely the insistence on the use of reason (as opposed to 
the senses) as the criterion" (Lloyd, 1984, p. 110). On the 
other hand, granted that "[a] number is a multitude com
posed of units" (Definition 2 of Book VII in the Elements) 
(Heath, 1956, vol. 2, p. 177), the ratio of the diagonal and 
the side in a square (i.e., the square root of 2) is simply 
not a number at all. This may have compelled Euclid to 
incorporate Eudoxus's theory of proportion into Book V of 
the Elements-an indication that Euclid was forced to deal 
with number and magnitude separately since number in the 
Greek sense is not enough to deal with incommensurable 
magnitudes (i.e., irrational numbers in the modern sense). 
Consequently, Euclid was obliged to express the area of a 
circle and the volume of a pyramid in proportional forms. 

Indeed, incorporation of Eudoxus's principle of ex
haustion as well as the argument of reductio ad absurdum 
into the Elements is only one piece of evidence showing 
that Euclid had accomplished the grand synthesis of Greek 
philosophy and mathematics. By taking seriously into ac
count the Eleatic challenge, Euclid, among other Greek 
mathematicians, adopted the hypothetico-deductive format 
in order to secure the certainty of mathematical knowledge 
(Lloyd, 1984, pp. 70--72, 110, 118). This may well explain 
why the Elements reflects primarily the structural aspects 
of mathematics. 

The role of Liu Hui in the history of Chinese mathe
matics is parallel to that of Euclid in the history of Greek 
mathematics. In fact, just as Euclid concludes prior Greek 
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mathematics with a hypothetico-deductive structure of his 
own, Liu Hui establishes a conceptual framework to ana
lyze the underlying logical interconnections of algorithms 
in the Jiu Zhang Suan Shu (Cf. Guo, 1995, pp. 301-322). 
Unfortunately, as a commentator, Liu Hui was obliged to 
confine his study of mathematics to explaining methods, 
fonnulas and algorithms of the Jiu Zhang Suan Shu. In so 
doing, Liu Hui, just like other ancient Chinese scholars, 
was not expected to break the fonnat of the text or to re
organize its content into a new text (Cf. Wagner, 1979). 
Under such circumstances, he did not have a chance to 
build a theoretical structure of his own. It comes as no sur
prise that his mathematics retains the algorithmic features 
on which the practical concern of Chinese mathematics 
could lean-since for the ancient Chinese, mathematics is 
one of the six arts in solving practical problems. 

Even so, in dealing with mathematics, Liu Hui, just 
like Euclid, does not count on "naive intuition" but "re
fined intuition". In the case of the "Geng Xiang Jian Sun", 
although his structural concern had to be fitted into the al
gorithmic jacket designed by the Jiu Zhang Suan Shu, Liu 
Hui's explanation not only helps justify the method but 
also enhances understanding of the structural aspect. In the 
cases of circle measurement and the volume of a pyramid, 
Liu Hui' s explanations of their fonnulas are constructive in 
the sense that they provide a direct avenue for us to attain 
the final goal. It should be noted that Liu Hui's argument 
always tells us how to proceed in the next step and where 
to go for the goal. Moreover, his proofs of the fonnulas 
for the area of a circle and the volume of a pyramid not 
only offer justifications but explain the ways to re-discover 
the formulas. In other words, by contrast with Euclid's sole 
concern about the structural aspect of mathematics, Liu Hui 
emphasizes both the operational and the structural. 

Now that we have established that Liu Hui was trying 
to add something structural to the Jiu Zhang Suan Shu, 
a basically operational text, can we explain his epistemol
ogy and methodology in the socio-cultural context of third
century China? As argued above, we can trace the influence 
on Euclid's Elements of the philosophies of the Eleatics, 
Plato and Aristotle. Yet how about Liu Hui's mathematics? 

Indeed, Liu Hui' s concern about the argumentation 
of mathematics had something to do with the heritage of 
several schools of thought, especially the sophists and the 
Mohists in the pre-Qin period (Cf. Wagner, 1979; Guo, 
1995, pp. 323-348; Horng, 1995). Especially striking is 
the resemblance of Liu Hui's epistemology to that of the 
Mohists. In his treatments of circle measurement and the 
volume of a pyramid, Liu Hui apparently adopted the Mo
hists' definition of an indivisible point and thereby applied 

his own principle of exhaustion. Besides, Liu Hui also jus
tified his propositions essentially in tenns of arguments 
related to the concept of an indivisible point. In so doing, 
Liu Hui might have followed the Mohists in their studies 
of argumentation (Cf. Guo, 1995, pp. 267-300). However, 
if Chinese mathematics was basically devoted to the em
pire's practical affairs such as calendar-reform, agriculture, 
and so on, then how could Liu Hui justify his own mathe
matical study which doubtless reflected something beyond 
a mere practical flavor? It should be noted that unlike in 
Plato's philosophy, mathematics simply has no place to 
show its epistemological power in Confucian philosophy. 
This means that mathematical training has nothing to do 
with Chinese sagehood (Cf. Horng, 1991). Under such cir
cumstances, mathematics was always regarded as an infe
rior art which scholars only learned for leisure use. If that is 
the case, why has Liu Hui bothered with something more? 

Although almost nothing about his life is known to us, 
Liu Hui was active in the late third century, for he wrote 
his commentary to the Jiu Zhang Suan Shu in 263 CEo 

That is a period when Confucian philosophy lost its sta
tus as a state orthodoxy which, as mentioned above, never 
respected mathematics highly as an academic discipline. 
Thus Liu Hui should have been comfortable in studying 
mathematics for its own sake under a more flexible intel
lectual background (Cf. Horng, 1992). This in turn might 
have led him to pay attention to issues of methodology with 
the source materials available thanks to the re-appearance 
of pre-Qin texts like the Mohist at the time (Cf. Guo, 1995, 
pp. 267-301, 323-348). Therefore, just as in Euclid's case, 
Liu Hui's mathematics can be better understood in tenns 
of socio-intellectual factors. 

VI. Conclusion: A pedagogical reflection 

First of all, in mathematical learning one should be aware 
that "the tenns 'operational' and 'structural' refer to in
separable, though dramatically different, facets of the same 
thing" (Sfard, 1991). In other words, these two aspects are 
to be regarded as "the different sides of the same coin". 
In this connection, therefore, their duality rather than di
chotomy is emphasized (Sfard, 1991). 

If that is indeed the case, we would like to recom
mend Liu Hui's approach to mathematics for school teach
ers. This is principally because one can learn from Liu Hui 
"both what and how to do" or "both rules and reasons" 
(Cf. Skemp, 1995, pp. 203-2l3, 221-225). In the case 
with fmding the greatest common divisor of two natural 
numbers, the "Geng Xiang Jian Sun" method suggests that 
a series of "reciprocal subtractions" would be performed 
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with counting rods ("Suan Chou") on the counting board 
in the manner shown in Section II above (Cf. Lam and Ang, 
1992, pp. 54-56). According to Van der Waerden, the algo
rithm manifests itself even without Liu Hui's explanation 
(Cf. citation in Section II above). However, to our students 
who learn the same procedure in terms of manipulation 
of Hindu-Arabic numerals, Liu Hui's explanation reminds 
them to check the procedure if an error occurs in the fmal 
result. Of course, the Euclidean algorithm now familiar to 
school teachers and students is easy to manipUlate too. Yet 
the "Geng Xiang Jian Sun" method and the accompany
ing explanation by Liu Hui are still more illuminating in 
"both rules and reasons". Nevertheless, the Euclidean al
gorithm should not be ignored because it is at the more 
advanced stage of concept formation. For example, after 
students have become familiar with how to find the great
est common divisor and in turn how to simplify fractions, 
they should be encouraged to explore what the concept of 
divisor per se is all about. For them then the structural as
pect of the natural numbers may become a genuine issue. 
In other words, maybe now the students are ready for some 
features of elementary number theory. 

In the cases of circle measurement and the volume of 
a pyramid, we also think that it is appropriate to introduce 
to students Liu Hui's approach at the first stage of their 
learning. This is because Liu Hui's method shows a very 
heuristic flavor that is lacking in Euclid's solely structural 
concern. Moreover, Liu Hui's approach also solicits the 
readers to share his methods with models with which they 
are familiar in their daily lives.7 Above all, his instruction 
may serve to encourage teachers not to sever mathematics 
teaching at elementary levels from the ordinary life experi
ence of students. Nevertheless, Euclid's treatments of circle 
measurement and the volume of a pyramid deserve a place 
in geometry teaching not only for their standard of rigor but 
also for their emphasis on the structural relations between 
geometrical entities. These treatments would help brighter 
students come to realize that exploring geometrical entities 
for their own sake is worthwhile. This would in turn help 
them to appreciate the beauty of mathematics-an intel
lectual satisfaction that all qualified teachers like to share 
with their classes. 

As a concluding remark, let me write a few words 
about how the history of mathematics should be related 
to the pedagogy of mathematics. In concluding their study 
concerning the comparison of the logic employed by Euclid 
and Liu Hui in proving the formula for the volume of a 
pyramid, Crossley and Lun comment that: 

Nowadays we use the abstract approach of Euclid 
and the algorithmic and practical approach of Liu 
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Hui together. In this way our mathematics can 
provide sound proofs and accurate calculations 
at the same time. These are essential for writing 
good computer programs. They also reflect how 
beneficial it is to use the ideas of our ancestors 
from the West and the Middle Kingdom together 
(Crossley and Lun, 1994). 

However, the argument of this article has tried to go one 
step further. I hope that it has successfully shown how a 
comparison of mathematical methods developed in different 
civilizations could be beneficial to mathematical teaching. 
In fact, the contrast of Euclid and Liu Hui should have 
suggested that meaningful teaching can be accomplished 
by approaching mathematics from different epistemologi
cal and methodological perspectives. Such a pedagogy is 
even more fruitful than the usual one in classrooms in its 
multicultural bearing. In this respect, historians of mathe
matics around the world all have something to contribute 
to the teaching enterprise. We look forward to seeing a 
closer cooperation of historians and teachers in the setting 
of mathematics education. 

Endnotes 
1 The early version of this article has been presented, in an 
abridged fonn but with the same title, to the conference, HEM 
Braga 96, July 24-30. 

2 According to Cullen, "Liu Hui does not use any word which cor
responds to Greek apodeixis or English 'proof'" (CUllen, 1995). 
Nevertheless, if by a proof we mean not only to justify but also to 
enhance understanding, then comparison in methodology should 
be legitimate at least in the connections of HPM. In this article, 
therefore, the author will use the term "proof' in a broad sense
it refers not merely to Euclid's rigorous deductive demonstration 
but to Liu Hui's explanation as well. 

3 The term "Suan Shu", appearing often in ancient China, did not 
refer to mathematics in the modem sense. Literally it indicates a 
deep-rooted emphasis on calculation and algorithm. For example, 
the Jiu Zhang Suan Shu bearing the term "Suan Shu" in its title 
is the paradigmatic example in ancient China (Cf. Siu, 1996). 

4 The other three formulas for the circle are (in modem symbolic 
terminology): a). (C· D)/4; b). (3· D2 )/4; c). C 2 /12. Liu Hui 
is quite certain that the first is equivalent to (C/2) (D /2), while 
the last two are exact only under the conditions that 11' 3 (Cf. 
Qian, 1963, pp. 106-108). 

5 In explaining how Archimedes might have come up with his 
formula for the circle, Johann Kepler wrote that "I divide the 
circumference into as many parts as there are points on it, which 
is an infinite number. We consider each of them to be the base 
of an isosceles triangle with altitude r" (Quoted in Bero, 1995). 
In other words, Kepler offers an explanation of this formula in a 
constructive manner. 

S Crossly and Lun also compare Euclid and Liu Hui's method
ology in this connection: "The methodology of Euclid was more 
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abstract and general than that of Liu Hui but this general approach 
will sometimes give non-constructive proofs which do not allow 
direct calculations" (Crossley and Lun, 1994). 

7 For example, in proving the formulas of rectilinear solids in 
Chapter 5 of the Jiu Zhang Suan Shu, Liu Hui cut up the solid in 
question into at most four standard blocks, a "Li Fang" (cube), 
a "Qian Du", a "Yang Ma" and a "Bie Nao", each with length, 
breadth, and height 1 "Chi" (about 21 em at Liu Hui's time). 
Then he manipulates the formulas for the parts to arrive at the 
formula for the whole (Cf. Li and Du, 1987, pp. 71-73). 
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The Long Tradition of 
History in Mathematics 
Teaching: An old 
Italian Case 

Fulvia Furinghetti 
University of Genova 

Introduction 

The use of history in mathematics teaching is a matter of 
discussion very much alive both in the world of historians 
and of mathematics educators. It may be encouraging for 
researchers and teachers involved in this kind of study to 
know that there is a long tradition behind the experiences 
and the discussions carried out at present; evidence of this 
fact is offered by the old mathematical journal for students 
of secondary school II Pitagora (Pythagoras) which we 
present in this paper. The interest of this journal in con
nection with the debate on the use of history in mathematics 
teaching mainly relies on two facts: 
• 	 it is one of the few (the only?) journals of its time which 

had the declared aim of introducing the history of math
ematics in classroom practice 

• 	 the great majority of the authors who published articles 
in it were teachers and thus their suggestions really came 
from a practical knowledge of classroom life. 

The Journalll Pitagora 


The editor and the life of the journal (1895-1918) 


The fIrst issue of the journal Ii Pitagora appeared in 
January 1895 in Avellino, a little town in Southern Italy 
near Naples. The founder and editor was Gaetano Fazzari 
(1856-1939), a prominent secondary mathematics teacher 
of the period. According to the customs of those times the 
journal belonged to the editor and thus followed the events 
of his life: for example, starting from 1899 it was pub
lished in Palermo (Sicily), since Fazzari was appointed as 
a teacher in a high school of this town. 

The last issue of the journal appeared in December 
1918. One of the reasons it stopped appearing was the 
critical situation in Italian society in that period with strikes 
and riots which made the regular publication of this and 
other mathematics journals very diffIcult. The main reason 
for the journal ceasing to appear was, though, the First 
World War, as is expressed in the following passage by the 
editor (1916-17, v.1, s.2, a.22, p. 144)1: "This is the last 
issue of the volume of II Pitagora published in the present 
year [1917] during the glorious war of our Italy, while the 
young boys, who last year were students in high school, 
are heroically fIghting for the freedom and the redemption 
of peoples." 

The founder and editor Gaetano Fazzari was born in 
Calabria, a region of Southern Italy which in the past was 
part of the important Greek colony known as Magna Gre
cia (Great Greece). Important philosophers and mathemati
cians of the classical period (Pythagoras, for one) lived 
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there. Fazzari taught in the Classical Lyceum, a type of 
Italian high school with a strong humanistic orientation, 
where Latin and ancient Greek are the most important sub
jects. All his life he kept a strong penchant for the classical 
world; his work in history mainly concerns the Greek au
thors and the translation of Archimedes' writings. He au
thored research papers in mathematics and the history of 
mathematics, as well as articles on the teaching of mathe
matics and on the use of history in mathematics teaching. 
Fazzari had regular contacts with the international scien
tific world, received publications in his fields of interest 
from many countries, prepared reports for the first ICMI 
meetings, and was a member of an important mathemat
ical association of those times which still exists (Circolo 
Matematico di Palermo). These facts affect the style of the 
journal II Pitagora which, in spite of its secluded origin, 
does not have a provincial flavor. 2 

The editorial line 

The subtitle of II Pitagora is "Mathematics journal for 
secondary school students." This makes it one of the first 
Italian mathematical journals for students of this school 
level. (Note that, according to the Italian school system, 
secondary means until the age of 19.) The aim of the ed
itor, stated in the circular letter of presentation written in 
November 1894, is "to instill the love for the mathematical 
disciplines into the minds of the young people attending 
secondary school." To attain this aim he warmly asks his 
colleagues' collaboration; with a few exceptions, the au
thors of the articles published in the journal were, indeed, 
school teachers. 

The articles concern various mathematical subjects 
(algebra, arithmetic, geometry, logic, probability), with a 
prevalence of algebra, arithmetic and geometry, the sub
jects most treated in school. The level of the presentation 
is elementary, but in some problems (e.g., that of the mea
surement of a circle that we shall present in the following) 
advanced topics such as integration and plane algebraic 
curves of degree greater than two are introduced. Except for 
a few cases, the articles are quite short and at the students' 
level. As a general impression we can say that the ini
tial intention of addressing secondary students is respected 
with a good balance of different styles and topics. This 
is the value of II Pitagora. since other journals born with 
the same purpose degenerated into a rather boring list of 
exercises. However it seems that the most efficient way to 
employ the journal was to use it as a source for develop
ing a given topic under the teacher's guidance. (We will 
give an example of this in the following.) For this reason 
we consider the teachers as the principal readers and as 
mediators. 

What makes the journal singular in the international 
panorama of the period is the role ascribed to the history 
of mathematics in pursuing the editor's aim ("to instill the 
love ... "). In the circular letter of presentation to potential 
subscribers of the journal, the editor presents it as a "tour
nament open to the young minds of the students attending 
secondary schools. [The journal will contain:] questions 
and exercises, with the best solutions of the young readers; 
puzzles and (scientific) paradoxes, historical. biographical 
and bibliographical notions, questions and answers by stu
dents, original excerpts from ancient authors [emphasis is 
mine]." His hope is to help students to overcome the diffi
culties in doing mathematics, of which, as a teacher, he is 
perfectly aware. 

In the first issue of the journal the intention of the 
editor is made evident (1895, a.I, p. 1): "Being convinced 
that it is a great advantage for young people to know the 
history of mathematics, II Pitagora will attempt to present 
the studies on which the efforts of the scholars of this disci
pline are concentrating all over the world in recent times.3 

And who cannot see how much this is useful not only from 
the pedagogical, but also and first of all from the scientific 
and historical point of view? As a matter of fact nobody 
can doubt that any erudition, according to the cognitive 
process, has to be a history before being a science. Thus 
erudition, as a center which links the criticism to hermeneu
tics, is the first means for understanding the Greek and 
Latin Classics. Without any doubt erudition is very im
portant for human knowledge, since it makes the centuries 
present and associates us to past generations. Moreover no 
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young people having attended our high school should be 
ignorant of the place occupied in the history of civilizations 
by Thales, Pythagoras, Euclid, Archimedes, ... and partic
ularly by the Italian mathematicians who from the XIII to 
the XVI century were the followers of Greek science. not 
only extending it, but spreading it all over Europe." 

The presentation of the editor gives an idea of the 
underlying educational philosophy of the journal, which 
may be summarized in the following points: 
• 	 students do not naturally love mathematics and have an 

inborn difficulty in leaming it 

• 	 puzzles and history are the 'devices' with which the 
teacher can arouse interest for mathematics 

• 	 to know the facts and how things have evolved is the 
first step for understanding things. 

In this view of history we can recognize the Italian 
orientation favorable to historicism which strongly influ
enced the school and the culture. The position of the jour
nal may be criticized; nevertheless the editor's merit is to 
have clearly stated it to his interlocutors. In the light of later 
research in mathematics education, the remedies to the stu
dents' difficulties proposed by the editor may appear quite 
naIve and simplistic, but we have to acknowledge that he 
has conceived and developed a project consistent with his 
ideas about mathematical culture. The way he proposed 
for solving the mathematics teaching/leaming problems is 
one of the possible answers to the awkwardness of math
ematics teachers facing the difficulties of their profession. 
In the same period other teachers proposed very different 
solutions to this problem. For example, in the U. K. the 
Perry movement proposed to emphasize applications in the 
teaching of mathematics. The limit we can recognize to 
Fazzari's project is that he trusted too much in the possi
bility of transferring to students the pleasure he felt in doing 
mathematics, based on the enjoyment of the 'aesthetics' of 
this discipline. 

The philosophy underlying II Pitagora is strongly in
fluenced by the role ascribed to history in mathematics 
teaching by the Italian historian Gino Loria (1862-1954), 
whose ideas, clearly stated in (Loria, 1890), are widely re
ported as a manifesto in the letter of presentation of the 
journal. One of the main points of Loria's view is that 
the history of mathematics is an efficient means for pro
moting links among the various subjects taught in school; 
in this way it contributes to widening and deepening the 
culture of the student. These ideas of Loria were shared 
by other researchers; see for example (Heppel, 1893). This 
last paper shows a very pragmatic approach to the issue, 
by stating very clearly the basic restrictions and limitations 
under which history may be advantageously employed in 

teaching mathematics, as shown in the following passage 
(Heppel. 1893, p.19): 

I. The History of Mathematics should not form a 
separate subject of education, but be strictly aux
iliary and subordinate to Mathematics teaching. 
II. Only those portions should be dealt with 
which are of real assistance to the leamer. 
III. It is not to be made a subject of examination. 

In the journal II Pitagora we do not find such a posi
tion clearly expressed, but, as we will see in our 'virtual' 
didactic unit, the choice of the historical topics to be pre
sented in the classroom appears really aimed at promoting 
the students' learning and understanding. 

A 'virtual' didactic unit from the journal II 
Pit agora 

To determine the effectiveness of the proposals coming 
from the journal, we unfortunately have no records on what 
teachers of the beginning of the century were doing in their 
school practice, nor if and how they applied the suggestions 
and the stimuli coming from the journal. What we can do 
is to think of a 'virtual' teacher who is a regular reader of 
the journal and imagine what he/she could have done on 
finding inspiration from the articles published there. Under 
this condition we have constructed a 'virtual' didactic unit 
using seven articles of the journal II Pitagora.4 

The topic we shall develop in this 'virtual' didactic 
unit is the problem of the measurement ofa circle. which 
is treated in many issues of the journal from various points 
of view. The topic has a particular didactic character since 
it can be treated with different degrees of depth, using ele
mentary to advanced concepts. In fact, Felix Klein (1849
1925), who was very concerned with the problem of linking 
the different levels of mathematical instruction, chose it as 
one of the topics to be developed at the GOttingen meet
ing of the German Association for the Advancement of the 
Teaching of Mathematics and the Natural Sciences (Klein, 
1962). Moreover we think that the historical analysis of 
this problem is particularly suitable to give students an el
ement very important for their mathematical learning, that 
is the sense of what solving a problem means. As a matter 
of fact we have often observed that students have three be
liefs when facing a problem. First, a problem always has a 
solution; second, the solution is unique; and third, the way 
of solving the problem is unique. In addition, they are not 
aware that to be solvable or not is linked to the context in 
which the problem is set and the means available. Since 
solving problems has to be the core of mathematical activ
ity (in the classroom as well as in research) we think that 
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I. Survey on the historical The symbol 11". Number 
development of the of digits of 11". The 
problem "measurement transcendence of 11". 

of a circle" 

2. How to find values of 11" Through elementary 
constructions; Through 
advanced constructions; 
Through mechanical 
machines; Experimentally 

3. An approach to sources The propositions I, II, 
and ill of Archimedes' 
Measurement of a circle 

Table 1 
The plan of the 'virtual' didactic unit 

giving clear ideas on the nature of this activity is an aim 
to be pursued in teaching. 

We have planned the didactic unit having this aim 
in mind. We address it to high school students. The ma
terial provided by the articles of the journal Jl Pitagora 
is organized according to the schema of Table 1. All our 
suggestions are based on materials and ideas contained in 
articles of the journal, to which we add a few comments. 
Here we can simply hint how the sections 1, 2, 3 can be 
developed; the reader can find the complete treatment in 
the works quoted in the references and in other books on 
the history of mathematics. 

1. Survey on the historical development 0/ the prob
lem 'measurement 0/ a circle' 

There are reports of experiences in the classroom which 
show that it may be efficacious to introduce students to a 
given problem through an initial very descriptive phase. In 
our case this phase is necessary to give an idea of how 
important this problem was in the development of mathe

matical specUlation. 
At the beginning we consider the history of the symbol 

11". It appeared for the fll'St time in the Synopsis pa/mario
rum (1706, London) of William Jones (1674-1749); thanks 
to Leonhard Euler (1707-1783) it was definitely accepted. 
Afterwards the various approximations of 11" and the related 
number of digits are presented. The survey begins with the 
Holy Bible, the Egyptians and the Babylonians and arrives 
up to the nineteenth century. Table 2 summarizes the main 
attempts of researchers looking for algorithms approximat
ing 11" from the sixteenth century onwards. It may be amus
ing for students to quote the funny lines of verse from the 

Number of 
Researcher Year Digits of 11" 

Metius 1556 6 

Viete 1579 9 
Viete 1610 35 
Romanus 1613 15 

Ludolph von Ceulen 1615 32 

Grienberger 1630 39 

Matsumura 1633 7 

Sharp 1699 71 

Lagny 1719 112 

Vega 1794 136 

Thibaut 1822 156 

Dahse 1844 200 

Clausen 1847 248 

Richter 1853 330 

Rutheford 1853 440 
Shanks 1853 530 

Shanks 1874 707 

Table 2 
The approximated values of 11' (data from the joumalll 
Pitagora) 

famous book Ricriations mathimatiques (E. Lucas, Paris, 
1891, v.II, p.155) in which each word has the number of 
letters equal to the corresponding decimal digit of 11" until 
the thirtieth. These two different pieces of information (the 
table and the lines) show the two main aspects of the prob
lem, its impact in the mathematical community and in the 
common people via school experience. 

The foregoing presentation of decimal digits not only 
has the function of surprising and amusing the students, 
but it is also a means for introducing them to the transcen
dence of 11", instilling no doubt that the number in question 
is 'special'. Thus, when the narrative survey arrives at the 
eighteenth century the interest of the students shifts from 
the problem of the pure computation of digits to the prob
lem of guessing what the nature of 11" may be. The school 
level we are considering does not allow us to present the 
proofs involved, but students are able to understand the 
statements of the theorems and become acquainted with 
the transcendence of 11". 

2. How to approximate the value 0/1r 

Through elementary constructions. After this quite de
scriptive survey, which consists of giving pieces of infor
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fiGURE 1 
The construction of 11' by Specht 

mation on the role played by the problem in the develop
ment of mathematical culture, the students need to work 
actively on it. We present two elementary constructions (I 
and II) which have the aim of approximating the value of 
tr, working in a field (Euclidean geometry) which is quite 
familiar to students. 

I. In a circle of radius 1 the sum of the sides of the equi
lateral triangle and of the square inscribed is V3 + v'2 = 
3.1462 ...; thus we can take a segment with length equal 
to this sum as the half of the circumference with an error 
less than 0.005. 

II. In (Specht, 1828) there is the following construction (see 
Figure 1). On the tangent at A to a given circle with radius 
r take the segments AB = (2 + 1/5)r and BC = (2/5)r. 
On the diameter through A take AD = OB, and draw DE 
parallel to OC (E is its intersection with the tangent at A). 
The length of AE gives an approximation of the length of 
the circumference with an error less than two millionths of 
the radius. 

Proof AD = OB =rJl + (11/5)2 = rv'146/5, since 
AE : AD = AC : AO = 13/5, AE = (13/5)AD = 
2{3.1415919 ... )r. so that, if r = I, the difference AE/2
tr is about 0.0000007. This means that for a circle with the 
radius of 7000 kilometers (note that the mean radius of 
the earth is 6366 kilometers) this construction gives the 
circumference with an error of approximately 10 meters. 

Through advanced constructions. The method pre
sented is based on the curve, called the quadratrix of Di
nostratus (fourth century BCE), described as follows (see 
Figure 2). 

Let a point Q starting at A describe the circular quad
rant AB with uniform velocity, and let a point R starting 
at 0 describe the radius 0 B with uniform velocity. Let Q 
and R start simultaneously and simultaneously reach the 
point B. Let the point P be the intersection of OQ with a 
line perpendicular to 0 B drawn from R. The locus of P is 
the quadratrix. Letting LQOA = 8, and OR y. we find 
that y / () is equal to 2r/ tr (r is the radius of the circle). 
The curve has equation x = ycot() = ycot(try/2r). and 
intersects the x axis at the point with abscissa x = 2r/ tr 

obtained as y approaches O. Thus if we can construct the 
curve, we can construct tr. For this purpose, it is sufficient 
to represent the branch of the curve described by the point 
p, as in Figure 2. In Figure 3 (taken from the journal), 
all the branches of the curve x = y cot(try/2r) are drawn; 
this figure also contains the circumference with center 0 
which is related to the dynamic construction, but is not 
part of the curve. With a convenient choice of the axes X 
and Y the curve of Figure 3 can be obtained as a graph 
of a real function of one real variable. At present in the 
classroom, we can use the computer to show the dynamic 
construction of the branch that gives tr (see Figure 2) as 
well as to draw the complete curve of Figure 3. 

Through mechanical machines. An article of the jour
nal considers also processes based on non-elementary 
means such as algebraic curves of degree greater than two 
or integral curves. We present them, even if they are beyond 
the usual mathematical programs of high school, since they 
give interesting insights on the use of mechanical machines 
in fashion at those times. 

We consider the integraph designed and realized by the 
Polish Bruno Abdank-Abakanowicz (1852-1900) based on 
the kinematic principle that if a wheel rotating round an 

fiGURE 2 FIGURE 3 
The generation of the quadratrix of Dinostratus The complete quadratrix of Dinostratus 
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FIGURE 4 
The Abdank-Abakanowicz integraph 

axis parallel to a given plane rolls on the plane itself, the 
tangent to the curve described by the point of contact lies 
on the plane of the wheel. This instrument enables us to 
trace the integral curve 

Y F(x) =Jf(x) dx 

when we have given the differential curve 

y = f(x). 

For this purpose, we move the liokwork of the integraph 
so that the guiding point (P) follows the differential curve; 
the tracing point (R) will then trace the integral curve 
(see Figure 45 ). We simply indicate the mathematical prin
ciple on which the integraph is based (see Figure 5 taken 
from the journal). Let B be any point of the differential 
curve y = f(x), Construct the right-angled triangle with 
the vertices B(x, y), A(x,O) and D(x 1,0). The tangent 
of the angle BDA is equal to y. Thus the hypotenuse BD 
is parallel to the line tangent to the integral curve at the 
point T(X, Y) corresponding to the point B(x, y). For a 
fuller description of this instrument we refer to (Abdank
Abakanowicz, 1889). Some old books of calculus and anal
ysis published in the first decades of the twentieth century 
present this and other integraphs.6 

To construct 1r, we consider the differential curve 
x2+y2 r2, and its integral curve Y f vr2 - x2dx = 
(r2/2) arcsin(x/r) + (x/2)Vr2 - x2, which consists of a 

o 

FIGURE 5 
The use of the integraph for integration 

family of equal branches. The points where it intersects the 
OY axis have ordinates 0, ±r21r/2, ...; the points where 
it intersects the lines x ±r have ordinates 0, ±r21r/ 4, 
r 231r/4, .... If we take r 1 the ordinates of the intersec
tion points give 1r and its multiples. In Figure 6 (taken from 
the journalll Pitagora) there is the construction that the au
thor says is taken from Klein's book Leftons sur certaines 
questions de gtomttrie tltmentaire (Nony, Paris, 1896). 
An English version of this construction is in (Klein, 1962). 

Experimentally. We take an 'experimental' method for 
finding the area of the circle from the treatise Admiran
dis Archimedis Syracusani monumenta by Franciscus Mau
rolycus (1494-1575), published posthumously (Palermo, 
1685). In this book there are also versions of Archimedes' 

FIGURE 6 
The construction of Klein for finding 71' 
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FIGURE 7 
The area of the circle according to the method of Maurolycus 

work on the measurement of a circle, Hippocrates' method 
for squaring the circle (,Hippocratis tetragonismus'), and 
a method by Maurolycus himself ('Maurolyci tetragonis
mus'). 

On page 39 we find the problem 'Modus alius quad
randi circulum' in which the author gives the following 
method. We construct an empty cylinder and an empty 
cube (see Figure 7). The cylinder has the circle as base 
and height equal to the diameter d of the circle; the cube 
has side equal to the diameter d. We fill the cylinder with 
water and then pour it into the cube. The product of the 
depth x of the water in the cube and the side d of the cube 
equals the area of the base of the cylinder. 

Proof The volume of the water in the cube is xd2, the 
volume of the same water in the cylinder is given by the 
area of the circle multiplied by d; then xd2 = area of circle 
multiplied by d and the area of the circle is xd. 

3. An approach to sources 

This part asks the students to come to the core of the prob
lem by studying the work of a chief character in the history 
of 7r, Archimedes (287-212 B. c.). Due to the importance of 
this author the presentation of the topic has to be preceded 
by some notes on his life and works. Afterwards students 
have to discuss the following propositions taken from the 
Measurement of a circle (see Heath, 1921). 

I. The area of a circle is equal to that of a right-angled 
triangle in which the perpendicular is equal to the radius, 
and the base to the circumference, of the circle. 

II. The area of a circle is to the square of its diameter as 
11 to 14. 

III. The ratio of the circumference of any circle to its di
ameter is less than 3 1/7 but greater than 3 10/71. 

The Archimedean proofs of these propositions may be 
found in (Archimedes, 1558; Heath, 1897 and 1912; Ver 

Eecke, 1921) as well as in many treatises on the history 
of mathematics; here we give only the general idea of the 
processes involved to point out the strong didactic charac
ter. In proposition I the area of the circle is approximated 
by inscribing and circumscribing successive regular poly
gons with a number of sides continually doubled (starting 
from squares). The proof is interesting from the pedagogi
cal point of view, since it introduces a general method ap
plicable to other situations, viz. the method of exhaustion, 
which rests on a principle stated in the following enuncia
tion of Euclid X, 1, see (Heath, 1956): 

Two unequal magnitudes being set out, if from 
the greater there be subtracted a magnitude 
greater than its half, and from that which is left 
a magnitude greater than its half, and if this pro
cess be repeated continually, there will be left 
some magnitude which will be less than the lesser 
magnitude set out. 

About proposition II, in proving it we observe that it 
depends on the result of proposition III. As pointed out 
in (Knorr, 1993, p.153), "the writing as we know it has 
been altered to its detriment through editorial revisions and 
scribal confusions." The correct order of the two proposi
tions can be discussed in class as a further occasion for 
understanding the topic. 

The proof of proposition ill is the most interesting; 
it offers a good example of an algorithm for performing 
approximate calculations. The method requires the approx
imate calculation of the perimeter of two regular polygons 
of 96 sides, one of which is circumscribed about, and the 
other inscribed in, the circle. In the process of accomplish
ing this, Archimedes gives the following approximation 
without explanations: 

265/153 < v3 < 1352/780. 

The discussion of this value offers students a good occasion 
to reflect on thIS type of computation. Students can work 
on the problem with programmable pocket calculators or 
a computer and improve Archimedes' algorithm. The fact 
that history may be a good approach to problems of approx
imation has already been discussed in (Furinghetti, 1992). 

All these proofs have to be considered, according to 
the distinction discussed in (Hanna, 1990), not only proofs 
which prove, but also proofs which have a strong explana
tory character. For these reasons they are a recurring theme 
in school. Proposition ill has been developed for the class
room in recent times. For example, this experiment was 
carried out in a French Lyceum, as described in (Buhler, 
1990). In this paper this and other ideas presented in the 
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FlGURE 8 

The figures of the proposition III from Archimedis opera non nulla . .. (1558) 


journal Il Pitagora are developed, including that of in
volving the colleague who teaches ancient Greek in the 
translation of Archimedes' excerpts, since the students are 
studying this language. Other papers present experiences in 
the classroom based on Archimedes' measurement of a cir
cle, integrated with works of successive authors. In (FUhrer, 
1991) it is recognized that the history of 1r gives the feeling 
that "good ideas seem to have a touch of eternity" (p.27). 

Conclusions 
We think that our 'virtual' didactic unit satisfies the re
quirement we have stated at the beginning of enriching the 
students' ideas on what solving a mathematical problem 
means. The articles of the journal provide us with materials 
that foster a gradual presentation from the phase of a gen
eral survey of the problem to the phase in which one really 
goes to the core of the problem and perceives the main con
cepts (big mathematical ideas) involved in it. The study of 
the three Archimedean propositions allows us to introduce 
students to a method transferable from this case to other 
cases. The concept of solving a problem is extended to use 
means different from the usual ones and to consider dif
ferent aspects (theoretical, existential, computational, ... ). 
These facts foster a flexibility in learning which is advo
cated by many educators. It is curious to observe that our 
didactic unit based on history leads in a natural way to the 
use of computing machines for implementing algorithms or 
drawing curves. It is interesting also to observe that with 
our didactic unit we can give to students an idea of what 
mathematics development has been, reproducing some as
pects of it in the classroom. 

To analyze the actual contribution of the journal to the 
discussion on the use of history in mathematics teaching we 

have to consider how this use may be carried out in school 

practice. First, we must observe that, in spite of the declared 

intentions of the editor of addressing students, the historical 

materials proposed in the journal can reach the students' 
minds only via a careful mediation of the teacher. The dis

cussion of how this mediation can be performed leads us to 

the core of the discussion concerning whether and how to 

use history in mathematics teaching. In (Furinghetti, 1997) 

we have summarized our opinion on this point by advo
cating the integration of history in mathematics teaching. 

For us this integration means to pursue the mathematical 

objectives of the classroom activity through history or, as 

(Katz, 1997) put it, to use the history of mathematics to 
make learning better for the students. 

Students can feel themselves participants in the cul

tural project of the development of mathematics only if 

they actively live their personal mathematical experience. 
The main stages of this process of integration are sketched 

in Figure 9. 
On the ground of the preceding observations on our 

'virtual' didactic unit we can say that the journal reached its 

scope of providing students, or, to be precise, their teach

ers with resources suitable for integrating history in the 
teaching of mathematics. Thus the first two stages of the 

process are fulfilled. We lack important elements for judg
ing the effectiveness of the proposals that we have read in 

the journal, viz. the kind of mediation made by the teach
ers of those days when working in the classroom and the 

analysis of the students' reactions. This means that the last 

three stages have to be fulfilled. Would a modem teacher 

experiment with our 'virtual' didactic unit and write the 
missing part of the Il Pitagora's project? 
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FIGURE 9 
The process of introducing history in the teaching of 
mathematics 
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Endnotes 
1 The original is in Italian. Here and elsewhere the translations of 
the passages originally in Italian are by the author of the present 
paper. 

2 A presentation of the historical content of II Pit agora is in the 
dissertation (supervisor F. Furinghetti) Demontis, F.: 1995, La 
storia come strumento didattico nella rivista II Pitagora, Dipar- . 
timento di Matematica dell 'UniversiUl. di Genova. 

3 In that period studies in history of mathematics were flourishing 
allover the world with important editions of classic authors and 
the birth of the first journals explicitly dedicated to history of 
mathematics. 

4 With the expression 'didactic unit' we mean a series of lessons 
on a given topic. The articles used are published in (1895, a.l, 
26), in 1899 (a.V, 1° sem., 14-15), in 1904-05 (aXI, 144), in 
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1908-09 (a.xV, 101-102), in 1898 (a.IV, 2° sem., 95-96), in 
1902-03 (a.IX, 31-32; 47-51), in 1912-13 (a.xIX 5-23). 
5 This figure is taken from Tacchella, G.: 1957, "Calcolo mecca
nico," in Berzolari, L., Vivanti, G. & Gigli, D. (editors), Endc/o
pedia delle matematiche elementari. vol. I, p. 1,411-442. This 
article is contained in a famous book for teacher training, first 
published in 1930. 

6 We have to remember that in those days the use of physical, con
crete helps for doing mathematics was becoming fashionable, in 
connection both with the growing interest in pedagogical problems 
in teaching mathematics and the raising of positivist philosophy. 
In this connection we recall that in the International Conference 
of Mathematicians held in Heidelberg in 1904 there was an ex
hibition of about 300 mathematical models, tools and computing 
machines (including that of Leibniz), as described in the third part 
of the proceedings (Krazer, 1905,717-755). For a discussion on 
the connection between pedagogical reforms and concrete objects 
see (Kidwell, 1996). 



Problem Solving 
from the History 
of Mathematics 

Frank J. Swetz 
The Pennsylvania State University 

"Where can I find some good problems to use in my class
room?" is a question I am often asked by mathematics 
teachers. My answer is simple: "The history of mathemat
ics." 

Since earliest times, written records of mathematical 
instruction have almost always included problems for the 
reader to solve. Mathematics instruction was certainly con
sidered an activity for self-involvement. The lUXUry of a 
written discourse and speculation on the theory of mathe
matics appeared fairly late in the historical period with the 
rise of Greek science. Records from older civilizations such 
as Babylonia, Egypt, and China reveal that mathematics in
struction was usually incorporated into a list of problems 
whose solution scheme was then given. Quite simply, the 
earliest known mathematics instruction concerned problem 
solving-tbe doing of mathematics. Obviously, such prob
lems, as the primary source of instruction, were carefully 
chosen by their authors both to be useful and to demon
strate the state of their mathematical art. 1 The utility of 
these problems was based on the immediate needs of the 
societies in question and thus reflect aspects of daily life 
seldom recognized in formal· history books. Such collec
tions of problems are not limited to ancient societies but 
have appeared regularly throughout the history of mathe
matics. 

In this literature of mathematics, thousands of prob
lems have been amassed and await as a ready reservoir 
for classroom exercises and assignments. The use of actual 
historical problems not only helps to demonstrate problem
solving strategies and sharpen mathematical skills, but also: 
• 	 imparts a sense of the continuity of mathematical con

cerns over the ages as the same problem or type of prob
lem can often be found and appreciated in diverse soci
eties at different periods of time; 

• 	 illustrates the evolution of solution processes-tbe way 
we solve a problem may well be worth comparing with 
the original solution process, and 

• 	 supplies historical and cultural insights of the peoples 
and times involved. 

In the following discussion, I will survey 28 problems 
that readily lend themselves to classroom use. 

A Sample Problem Solving Situation 

During an in-service workshop on problem solving con

ducted for twenty experienced secondary school teachers,2 

the participants were given the following homework exer
cise: 

A circle of radius 4 units is inscribed in a triangle. 
A point of tangency of the circle with a side of 

S9 
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the triangle divides the side into lengths of 6 and 
8 units. What are the lengths of the remaining 
two sides of the triangle? 

Further, they were constrained from using trigonomet
ric techniques. (An analysis of a diagram for the situation 
reveals three pairs of congruent right triangles upon which 
a repeated use of trigonometric functions would supply the 
correct answer.) See Figure L 

The problem appears simple but without alternate 
problem solving strategies, the teachers were frustrated in 
their solution attempts. On the following day, only one 
teacher had solved the problem. Working with areas, she 
determined those of the known components of the triangle, 
two pairs of congruent right triangles 4 x 8 and 6 x 4, then 
let the length of the unknown segments of the required two 
sides of the triangle be x and used Heron's formula: 

Given a triangle with sides of length a, b, c, the area 
of the triangle will be given by: 

A = Js(s - a)(s - b)(s - c) 

where s is the semi-perimeter of the triangle. Thus she ob
tained, J(x + 14)(6)(8)x = 32 +24 +4x and solving the 
equation, she found x = 7 and the required sides are 15 and 
13 units long. Upon demonstrating this solution process to 
the other workshop participants, several questions arose: 
initially, "What is Heron's formula?" as the majority of the 
teachers had never heard of it; second, "Who is Heron?" 
(Alexandrian mathematician, circa 75 CE). Finally, some
one asked where this particular problem originated. All the 
teachers were amazed to find that it came from 15th cen
tury Italy. A follow-up assignment was the derivation of 
Heron's formula. 

In this instance much useful mathematical introspec
tion and learning took place. A problem, usually considered 

an exercise in trigonometry, was resolved through a con
sideration of area-a more concrete approach to a solution 
that was popular for hundreds of years. The issue of another 
formula or method for determining the area of a triangle 
arose--most teachers and students only know the prescrip
tion that the area of a triangle is one-half the product of 
its base and altitude. In an applied problem, the measure 
of an altitude may remain elusive and, in itself, may be 
the subject of further investigation. Land surveyors deter
mine areas of triangular plots by working with the sides 
of the triangles in question and seldom consider altitudes. 
A problem-solving approach recognized from the history 
of mathematics thus supplies relevance for contemporary 
needs. 

A Survey of Historical Problems, Some 
General Impressions 

Mathematical historians generally now concede that sev
eral ancient peoples probably preceded the Greeks in ob
taining and using the correct mathematical relationships 
between the sides of a right triangle, the relationship com
monly known as the Pythagorean Theorem.3 A concern 
with right triangle theory and applications is evident in 
many old problems. 

A reed stands against a wall. If it moves down 
9 feet (at the top), the (lower) end slides away 
27 feet. How long is the reed? How high is the 
wall? (Babylonia, 1600-1800 BCE)4 

An erect (vertical) pole of 30 feet has its base 
moved out 18 feet. Determine the new height and 
the distance the top of the pole is lowered. (Egypt, 
300 BCE) 

A bamboo shoot 10 feet tall has a break near the 
top. The configuration of the main shoot and its 
broken portion forms a triangle. The top touches 
the ground 3 feet from the stem. What is the 
length of the stem left standing erect? (China, 
300 BCE) 

A spear 20 feet long rests against a tower. If its 
end is moved out 12 feet, how far up the tower 
does the spear reach? (Italy, 1300 CE) 

While the information given is similar within this se
quence of problems, the required results are different. If, 
for each problem, x represents the desired unknown, the 
solution situations are quite different as shown in Figure 2. 

The "bent bamboo" problem provides an example of 
mathematical borrowing and transmission across cultures. 
It is known to have first appeared in China as the lhir
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teenth problem in the ninth chapter of the Jiuzhang suan
shu [Nine Chapters on the Mathematical Art] (300 BCE

200 CE).5 Later it reappears in the Sanskrit mathematical 
classic Ganita-Sara [Compendium of Calculation] com
piled by Mahavira (c. 850 CE). Finally, it found its way 
to Europe in Philippi Calandri's "Arithmetic" of 1491.6 

See Figure 3. Such illustrations can be made into over
head transparencies and shown to a class. Students can be 

placed in the position of mathematical archeologists and 
asked to decipher the problems from the diagrams and the 
limited, recognizable, information given. Archaic units of 
measure, for example, braccia, can be converted to their 
modem equivalents. Their fmdings can then be compared 
to the original problems. 

While these are simple applications of the "Pythag
orean" theorem, more complex and imaginative situations 
were also considered: 

A tree of height 20 feet has a circumference of 
3 feet. There is a vine which winds seven times 
around the tree and reaches the top. What is the 
length of the vine? (China, 300 CE) 

(Given a vertical pole of height 12 feet.) The in
genious man who can compute the length of the 
pole's shadows, the difference of which is known 
to be nineteen feet, and the difference of the hy
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potenuses formed, 13 feet, I take to be thoroughly 
acquainted with the whole of algebra as well as 
arithmetic. (India, 1000 CE) 

This second problem provides a true computational chal
lenge! 

Problem similarities are not only limited to mathemat
ical contexts. Societal concerns also allow for comparisons. 
Early societies' concern with food, particularly grain, is ev
ident from the context of many problems. Ancient peoples 
used grain as a currency and paid wages and taxes with 
grain. 

Suppose a scribe says to thee, four overseers have 
drawn 100 great baskets of grain, their gangs con
sisting, respectively, of 12, 8, 6 and 4 men. How 
much does each overseer receive? (Egypt, 1600 
BCE) 

From a certain field, I harvest 4 wagons of grain 
per unit of area. From a second field, I harvest 3 
wagons of grain per unit area. The yield of the 
first field was 50 wagons more than that of the 
second. The total area of both fields is known to 
be 30 units. How large is each field? (Babylonia, 
1500 BCE) 

The yield of 3 sheaves of superior grain, 2 
sheaves of medium grain, and 1 sheaf of infe
rior grain is 39 baskets. The yield (from another 
field) of 2 sheaves of superior grain, 3 sheaves 
of medium grain, and 1 sheaf of inferior grain 
is 34 baskets. (From a third field) the yield of 
1 sheaf of superior grain, 2 sheaves of medium 
grain, and 3 sheaves of inferior grain is 26 bas
kets. What is the yield of superior, medium, and 
inferior grains? (China, 300 BCE) 

Early society's concern with grain, its harvesting, stor
age and distribution reflects their agricultural status. Prob
lems 41-60 of the Rhind papyrus (c. 1650 BCE) concern the 
geometry of grain storage? One chapter of the Chinese Ji
uzhang suanshu is entitled "Millet and Rices." It concerns 
the use of proportions in the distribution of these grains. 
The use of proportion was a powerful mathematical tool in 
early problem solving. 

Throughout the ages, the division and pricing of food
stuffs has provided the basis for many problems. Fibonacci, 
writing for a 13th century Italian audience, demonstrates 
that, mathematically speaking, "things are not what they 
may seem." 

There were two men, of whom the first had 
3 small loaves of bread and the other 2; they 
walked to a spring, where they sat down and ate. 

A soldier joined them and shared their meal, each 
of the three men eating the same amount. When 
all the bread was eaten the soldier departed, leav
ing 5 bezants to pay for his meal. The first man 
accepted 3 of the bezants, since he had three 
loaves; the other took the remaining 2 bezants 
for his 2 loaves. Was the division fair? (Italy, 
1202). 

Insights into the use and rewards for labor can be found in 
many cultures: 

It is known that the digging of a canal becomes 
more difficult the deeper one goes. In order to 
compensate for this fact, differential work allot
ments were computed: a laborer working at the 
top level was expected to remove 1/3 sar of earth 
in one day, while a laborer at the middle level re
moved 1/6 sar and at the bottom level, 1/9 sar. If 
a fixed amount of earth is to be removed from a 
canal in one day, how much digging time should 
be spent at each level? (Babylonia, 1500 BCE) 

Now there is a city wall of upper width 2 zhang, 
lower width of 5 zhang, 4 chi, height 3 zhang, 8 
chi, and length 5,550 chi to be constructed. The 
work capacity of a person in autumn is 300 chi. 
Find the manpower needed. (China, c. 200 CE)8 

Warner receives $2.50 a day for his labor and 
pays $.50 a day for his board; at the finish of 40 
days, he has saved $50. How many days did he 
work and how many days was he idle? (United 
States, 1873). 

Compensation for work performed reveal social in
justices, societal inequities and the fact that our forefathers 
worked with indeterminate situations: 

If 100 bushels of com be distributed among 100 
people in such a manner that each man receives 
3 bushels, each woman 2, and each child 1/2 
bushel, how many men, women and children 
were there? (England, 800 CE) 

If 20 men, 40 women and 50 children receive 
$350 for seven weeks work, and 2 men receive as 
much as 3 women or 5 children, what sum does 
a woman receive for a week's work? (England, 
1880) 

In a 1000 years, has the status of a woman's labor really 
improved? 

Alcuin of York compiling problems in about the year 
800, notes the need for military conscription: 

A king recruiting his army, conscripts 1 man in 
the first town, 2 in the second, 4 in the third, 8 



in the fourth, and so on until he has taken men 
from 30 towns. How many men does he collect 
in all? 

Apparently in Victorian England the practice was still tak
ing place, although at a less dramatic level. 

The number of disposable seamen at Portsmouth 
is 800; at Plymouth 756; and at Sheerness 404. 
A ship is commissioned whose complement is 
490 seamen. How many must be drafted from 
each place so as to take an equal proportion? 
Hamblin's Treatise ofArithmetic (1880). 

Military needs have been a persistent theme in historical 
problem solving.9 

Geometric situations also provided a challenging set
ting for problems: 

Given a triangular piece of land having two sides 
10 yards in length and its base 12 yards, what is 
the largest square that can be constructed within 
this piece of land so that one side lies along the 
base of the triangle? (AI-Khwarizmi's Algebra, c. 
820 CE) 

A circular field of land can contain an equilateral 
triangle of side 36 feet. What is the size of the 
field? (Egypt, 300 BCE) 

Given a right triangle with legs 8 and 15 feet, 
respectively. What is the largest circle that can 
be inscribed in this triangle? (China, 300 BCE) 

In examining collections of old problems, it is inter
esting to note that there have always existed purely intel
lectual, riddle-type, problems such as the "three sisters" 
problem from ancient China: 

Now there are three sisters. The eldest returns 
every 5 days, the second returns once every four 
days and the youngest returns once every three 
days. Find the number of days before the three 
sisters meet together. (c. 200 CE) 

or the famous "goat, wolf and cabbage" problem from 
Western mathematics: 

A wolf, a goat and a cabbage must be transported 
across a river in a boat holding only one besides 
the ferryman. How must he carry them across so 
that the goat shall not eat the cabbage, nor the 
wolf the goat? (800 CE)IO 

Mathematical authors have always provided both chal
lenges and fun in their problem selections. 

Problem Solving from the History of Mathematics 63 

Problems as a Mathematical Testament 

While problems can supply much information about the so
cieties and times in question, they also illustrate the math
ematical needs and ingenuity of our ancestors. From ex
amining a problem's contents, students are often amazed to 
discover that before the Christian era, people were solv
ing systems of linear equations and applying iterative al
gorithms to compute square and cube roots of numbers to 
a good degree of accuracy.11 At various periods of history 
certain problems dominate the mathematical environment. 
While ancient Chinese and Egyptian mathematics focused 
on utilitarian needs, Greek mathematicians were busy with 
such non-utilitarian concerns as: 

1. The duplication of the cube 
2. The trisection of an angle 
3. The quadrature of the circle 
These problems were to be solved with the use of a 

straightedge and compass alone. It was over two thousand 
years before this feat was proved impossible, but yet, in 
the interim search for solutions, many useful mathematical 
discoveries were made, including a theory of conic sections 
and the development of cubic, quadratic, and transcenden
tal curves. Out of this particular legacy emerged a series of 
geometric problems that can challenge and fascinate mod
em students. In the search to achieve a quadrature of the 
circle, a theory of lunes developed and problems like those 
that follow resulted.12 

Given a semicircle with diameter AB, arc ADB 
(a quadrant) is inscribed in the semicircle. The 
region bounded between the semicircle and the 
arc is called a lune. Show that the area of the 
lune ACBD is equal to the area of the inscribed 
triangle ACB where AC ~ CB. (See Figure 4.) 

Problems become more complex and further removed 
from reality, as shown by a consideration of the arbelos 
and its properties, a curve studied by Archimedes.13 
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FIGURE 5 

Let A, C, and B be three points on a straight line. 
Construct semicircles on the same side of the line 
with AB, AC, and CB as diameters. The region 
bounded by these three semicircles is called an 
arbelos. At C construct a perpendicular line to 
AB intersecting the largest semicircle at point 
G. Show that the area of the circle constructed 
with CG as a diameter equals the area of the 
arbelos. (See Figure 5.) 

Given an arbelos packed with circles Ct , C2 , 

C3 , ••• , as indicated, show that the perpendic
ular distance from the center of the nth circle to 
the line ACB is n times the diameter of the nth 
circle. (See Figure 6.) 

During the Edo period of Japanese history (1603
1867), Japan remained isolated from the Western world. 
Little Western knowledge entered the island empire. How
ever, it was a period of strong mathematical activity with 
a broad spectrum of common people posing and solving 
rather intricate problems involving geometric figures. Most 
of these problems concerned the packing of circles into cer
tain specified plane figures. 14 Two elementary problems of 
this genre are: 

A 

FIGURE 6 

FIGURE 7 

Given three circles Ct , C2, C3 with radii of 
Tt, T2, and T3 respectively. The circles are in
scribed in an ellipse with major axis of length 
a and minor axis of length b. Circles C1 and 
C2 touch each other externally, and each also 
touches the ellipse at two distinct points. The 
circle C3 touches the ellipse internally and also 
touches each of the other two circles externally. 
Find T3 in terms of a, b, and Tt. (See Figure 7.) 

Given triangle ABC with sides of known lengths 
a, b, c respectively. Three circles of radii Tl, T2, 

T3 are in mutual contact and are inscribed in the 
triangle. What are the radii of the circles in terms 
of the given sides? (See Figure 8.) 

Such problems, when solved, were inscribed on 
wooden tablets and presented at the local Shinto temple. 
Today they are known as "Japanese Temple Problems." 

Both the classical problems of ancient Greece and 
the temple problems of a reclusive seventeenth century 
Japan, possess a certain aesthetic that while different is 
also strangely similar. Geometric relations and perceptions 
of space have always fascinated people across time and 
cultures. It was well into the nineteenth century before the 
Greek classical problems were shown to be unsolvable us
ing straightedge and compass, but their legacy has left us 
with much interesting mathematics. The temple problems 
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of Japan still remain little known outside their country of 
origin-they wait to be explored! 

Conclusion 

The history of mathematics contains a wealth of material 
that can be used to inform and instruct in today's class
rooms. Among these materials are historical problems and 
problem solving situations. While for some teachers, histor
ical problem solving can be a focus of a lesson, it is proba
bly a better pedagogical practice to disperse such problems 
throughout the instructional process. Teachers who like to 
assign a "problem of the week" will find that historical 
problems nicely suit the task. Ample supplies of historical 
problems can be found in old mathematics books and in 
many survey books on the history of mathematics. These 
problems let us touch the past but they also enhance the 
present. Their contents reveal the mathematical traditions 
that we all share. Questions originating hundreds or even 
thousands of years ago can be understood, appreciated, and 
answered in today's classrooms. What a dramatic realiza
tion that is! 

Notes and References 
1 The emphases of textual problems have varied for different peri
ods of time and have refl~ted the instructional intent of their au
thors. Texts written in the bureaucratic contexts of ancient Egypt 
and China considered contemporary societal problems and em
ployed contemporary data. Their problems discussed and refl~ted 
the needs of the times and thus provide valid historical insights. 
Similarly the abaci manuscripts of the late middle ages reflect the 
economic and commercial climate of southern Europe. See, for 
example, Warren Van Egmond, The Commercial Revolution and 
the Beginnings ofWestern Mathematics in Renaissance Florence 
1300-1500 (Ph.D. thesis, Department of History and Philosophy 
of Science, Indiana University, 1976). Other textbook authors, pri
marily interested in the theoretical aspects of mathematics, have 
devised problems whose realistic application is open to question. 

2 The workshop was given in 1995 by the author to a select group 
of teachers from Southeast Asia. 


3 See discussion in Victor Katz, A History ofMathematics (New 

York: Harper Collins, 1993) pp. 26-31; R.C. Buck, "Sherlock 

Holmes in Babylon," American Mathematical Monthly 87 (1980) 

pp. 335-345. 


4 Assume that the reed initially stands even with the top of the 
wall. 


5 For a more complete discussion and analysis of this problem 

see Frank Swetz and T.!. Kao, Was Pythagoras Chinese? An Ex

amination ofRight Triangle Theory in Ancient China (University 

Park, PA: Pennsylvania State University Press, 1997) pp. 44-45. 
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6 The migration of this problem is discussed in Vera Sanford, 
The History and Significance of Certain Standard Problems in 
Algebra (New York: Teachers College Press, 1927) p. 77. The 
problems illustrated from Calandri's Arithmetic are: 

A tower is 40 braccia high and at its base runs a river 
which is 30 braccia wide. I want to know how long a 
rope which runs from the top of the tower to the other 
side of the river will be? 

There is a tree on the bank of a river which is 60 
braccia high and the river is 30 braccia wide. The tree 
breaks at a point such that the top of the tree touches 
the opposite bank of the river. I want to know how 
many braccia broke off and how high the stump was? 

1 As given in the translation: A.B. Chace, The Rhind Mathemati
cal Papyrus (Washington, DC: The National Council of Teachers 
of Mathematics, 1978 [reprint of 1927, 1929 editions]). 

8 The units of measure employed are the chi. the Chinese "foot" 
and the zhang, where I zhang = 10 chi. See Lam Lay Yong 
and Ang Tian Se, Fleeting Footsteps: Tracing the Conception of 
Arithmetic and Algebra in Ancient China (Singapore: World Sci
entific, 1992) p. 84. The unit chi is a measure of both length and 
volume depending on context. Thus the work capacity of 300 chi 
should be understood to mean 300 cubic chi. The accompany
ing answer determines the volume to be constructed as 7,803,300 
(cubic) chi for which 26,011 men will be required. 

9 Books were devoted to military problem solving, for exam
ple, Leonard and Thomas Digges, Arithmetical Militare Treatise, 
named Stratioticos (London, 1572.) The concept of "drumhead 
trigonometry" owes its origins to military needs. See D.E. Smith, 
History of Mathematics vol. II (New York Dover Publications, 
1958) p. 355. 

10 The problem apparently originated in Alcuin of York's Propo
sitiones ad acuendos juvenes (800 CE) See translation and discus
sion in David Singmaster and John Hadley, "Problems to Sharpen 
the Young," The Mathematical Gazette 76 (1992) pp. 102-126. A 
discussion of the same problem in different contexts and cultures 
is given in Marcia Ascher, Ethnomathematics (Pacific Grove, CA: 
Brooks/Cole Publishing Company, 1991) pp. 109-112. 

11 An analysis of Yale Babylonian Collection tablet 7289 re
veals that its ancient scribes calculated v'2 = 1.414213562. See 
discussion in H.L. Resnikoff and R.O. Wells, Mathematics in 
Civilization (New York; Holt, Rinehart and Winston. 1973) pp. 
76-78. 

12 Leonardo da Vinci experimented with the mathematics of 
lunes. See Herbert Wills. Leonardo's Dessert (Reston. VA: Na
tional Council of Teachers of Mathematics, 1985). 

13 For a fuller discussion of the arbelos see L. Raphael. "The 
Shoemaker's Knife," Mathematics Teacher (April, 1973) pp. 319
323. 


14 These problems are considered in Yoshio Mikami, The Devel

opment of Mathematics in China and Japan (New York: Chelsea 

Publishing Company, 1974 [reprint of 1913 edition]). An exten

sive discussion of problems and their solutions is given in H. Fuk

agawa and D. Pedoe, Japanese Temple Geometry Problems (Win

nipeg, Canada: The Charles Babbage Research Centre, 1989). 


/ 




tUOJS!H ~U!Sn 


J;)a{qnS J.vzn;)!JJ.vJ 

v ~u!lf;)va.L 


III llud 




Second Degree 
Equations in the 
Classroom: A 
Babylonian Approach* 

Luis Radford 
Universite Laurentienne, Canada 

and 

Georges Guerette 
Conseil de l' education de 
Sudbury, Canada 

In this paper, we present a teaching sequence whose pur
pose is to lead the students to reinvent the formula that 
solves the general quadratic equation. Our teaching se
quence is centered on the resolution of geometrical prob
lems related to rectangles using an elegant and visual 
method developed by Babylonian scribes during the ftrst 
half of the second millennium BeE. Our goal is achieved 
through a progressive itinerary which starts with the use 
of manipulatives and evolves through an investigative 
problem-solving process that combines both numerical and 
geometrical experiences. Instead of launching the students 
into the modem algebraic symbolism from the start
something that often discourages many of them- algebraic 
symbols are only introduced at the end, after the students 
have truly understood the geometric methods. The teaching 
sequence has been successfully undertaken in some high 
school classrooms. 

1. The Babylonian Geometric Method 

Before explaining the teaching sequence it is worthwhile 
to mention briefly some of the features of the Babylonian 
geometric method. The method to which we are referring 
was identified by J. Hl:')yrup who called it Naive Geome
try. l In order to show the method, let us discuss one of 
the simplest Babylonian problems, namely, problem 1 of a 
tablet preserved at the British Museum and known as BM 
l3901. 

The statement of the problem, which seeks to fmd the 
length of the side of a square, is the following: 

The surface and the square-line I have accumu
lated: 3/4. 

As in most of the cases, the scribe states the problem 
using a very concise formulation. He is referring to the 
surface of a square, and the square-line means the side of 
the square. Thus, the problem is to fmd the side of the 
square, knowing that the sum of the area of the square and 
the side is equal to 3/4. The method of solution is not 
fully explained in the text. Indeed, the text shows only a 
list of instructions concerning a sequence of calculations 
that allows one to get the answer. 

The instructions, as they appear in the tablet. are the 
following; 

1 the projection you put down. The half of 1 you 
break, 1{2 and 1{2 'You make span la rectangle, 
here a square), 1/4 to 3/4 you append: 1, make 
1 equilateraL 1/2 which you made span you tear 
out inside 1: 1/2 the square-line. (Hl:')yrup, 1986, 
p.450) 

69 
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Of course, the Babylonians should have had a method 
on which the numerical calculations were based. For some 
time it was believed that the Babylonians somehow knew 
our formula to solve second-degree equations. However, 
this interpretation has been abandoned because of the mul
tiple intrinsic difficulties that it implies, one of them be
ing the well known lack of algebraic symbols in Babylo
nian mathematical texts and the related impossibility for 
the Babylonians to handle complex symbolic calculations 
without an explicit symbolic language (details in Radford 
1996 and Radford in press). 

Based on a philological and textual analysis of the 
Babylonian texts, J. H~yrup suggested that the solution of 
problems (such as the preceding one) was underlain by a 
geometrical configuration upon which the oral explanation 
was based. In the case of the previous problem, the scribe 
thinks of an actual square (Fig. a). However, the side is 
not seen as a simple side (Fig. b) but as a side provided 
with a canonical projection that forms, along with the side, 
a rectangle (Fig. c). The duality of the concept of side is 
based on a metrological equality: the length of the side 
and the area of the rectangle that it forms along with its 
canonical projection have the same numerical value (see 
H~yrup 1990a). Keeping this in mind and coming back 
to problem 1, BM 13901, it appears that the quantity 3/4 
refers then to the total area of Fig. 1. Next, the scribe cuts 
the width I into two parts and transfers the right side to 
the bottom of the original square (see Fig. 2). 

Now the scribe completes a big square by adding a 
small square whose side is 1/2 (Fig. 3). The total area is 
the 3/4 (that is, the area of the first figure) plus 1/4 (that 
is, the area of the added small square). It gives 1. The side 
of the big square can now be calculated: that gives 1; now 
the scribe subtracts 1/2 from 1, he gets 1/2: this is the side 
of the original square. 

FIGURE a (square) FIGURE b (side) 
length =s 

( ) 

FIGURE 1 

FIGURE 2 FIGURE 3 

This is the same type of transformation that seems to 
be the basis of the resolution of many problems found in 
a medieval book, the Liber Mensurationum of AM Bekr 
(probably ninth century), whose Arabic manuscript was lost 
and which we know of through a twelfth century translation 
by Gerard of Cremona (ed. Busard, 1968). In fact, many 
of these problems are formulated in terms similar to those 
of the Naive Geometry. 

Let us consider an excerpt from one of the problems 
of the Liber Mensurationum (problem 41; Busard 1968, p. 
95): 

And if someone tells you: add the shorter side 
and the area [of a rectangle] and the result was 
54, and the shorter side plus 2 is equal to the 
longer side, what is each side? 

As in the case of Babylonian texts, the steps of the 
resolution given in the Liber Mensurationum indicate the 
operations between the numbers that one has to follow.2 In 
all likelihood, the calculations are underlain by a sequence 
of figures like figures 4 to 10 hereinafter. The initial rect
angle is shown in Fig. 4. The shorter side, x, (placed at the 
right of the figure) is provided with a projection equal to 
1 (Fig.5), so that the length of the side is equal to the area 
of the projected rectangle, as in the case of the Babylonian 
problem discussed above. Given that y x + 2, the base 
'y' (bottom of Fig. 5) can be divided into two segments 'x' 

FIGURE C (side with canonical projection) 

area s FIGURE 4 FIGURE 5 
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and '2' (see Fig. 6). Now two small rectangles are placed 
inside the original rectangle, as shown in Fig. 7. 

The next step is to divide into two the set of the three 
equal rectangles (Fig. 8); one of these parts (that is, a rect
angle and a half) is placed at the bottom of the remaining 
figure. As a result of this transformation, we now have Fig. 
9, which is almost a square. 

The key idea in the resolution of these types of prob
lems (and which appears in an explicit manner in AI
Khwarizmi's AI-JabI' (ed. Hughes 1986» is to complete 
the current figure (Fig. 9) in order to get a square. The 
completion of the square (Fig. 10) is achieved then by 
adding in the right comer a small square whose area is 

equal to (q) 2 = 2~. The final square then has an area 

equal to 54 + 2~ = 56~, so that its side is M 7!. 
The shorter side, x, of the original rectangle is then equal 
to 7! - 1~ 6, so the longer side is 8. 

We are not going to discuss here the historical ar
guments that support the reconstruction of the procedures 
of resolution for problems such as the preceding one 
in terms of the Naive Geometry (see Hyjyrup 1986 or 
Hyjyrup 1990b). We shall limit ourselves to simply indi
cating that the explicit appearance of these procedures in 
AI-Khwarizmi's work leaves no doubt that these proce
dures were well-known in the ninth century in certain Ara
bic milieus. 

2. The Teaching Sequence 

In this section we shall present the teaching sequence that 
we have developed in order to introduce the students to 
second degree equations and that culminates with the rein

10 	
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10 

x lY2 x lY2
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vention of the formula to solve these equations. The se
quence is divided into 5 parts (whose duration may vary 
according to the students' background). 

For each part of the sequence: 
(i) 	we give the indications of the different steps to follow 

in the classroom; 
Oi) 	 we include an item called particular comments, 

which. through concrete examples, intends to shed 
some light on the issues of the teaching sequence ac
cording to our classroom experience. 

Part 1. The introduction to the Naive Geometry 
In part 1, the students are presented with the following 
problem: 

What should the dimensions of a rectangle be 
whose semi-perimeter is 20 and whose area is 96 
square units? 

Working in cooperative groups, the students are asked to try 
to solve the problem using any method. After they complete 
the task, the teacher, returning to the geometrical context 
of the problem and using large cardboard figures on the 
blackboard, shows them the technique of Naive Geometry. 

This can be done through the following explanation: 
If you take a square whose side is 10, then its area is 100 
(Fig.ll). One must therefore cut out 4 square units of the 
square whose side is 10 (Fig. 11) to obtain a figure whose 
area is 96. This can be achieved (and that is the key idea 
of the resolution) by cutting out of the big square a smaller 
square whose side is 2 (see Fig. 12). In order to obtain a 
rectangle one cuts the rectangle shown by the dotted line 
in Fig. 13 and places it vertically on the right (Fig. 14). 
The sought-after sides then measure 12 units and 8 units. 

2 
1-1 10+ 2 

I! 
FIGURE 11 	 FIGURE 12 FIGURE 13 FIGURE 14 
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Once the technique is presented, the teacher gives the 
students other similar problems. In order to avoid a simple 
repetition, the parameters of the problem (Le., the area and 
the semi-perimeter) may be chosen as follows: area of the 
rectangle 30 and semiperimeter = 12. Problems like 
this are particular in that the area of the small square to 
be removed (Fig. 12) is not a perfect square. This led the 
students to reflect about the Naive Geometry technique on 
a deeper level. 

In order to help students achieve a better understand
ing, the teacher asks them to bring a written description to 
class the next day outlining the steps to follow to solve this 
type of problem. They may be told that the written descrip
tion or "message" should be clear enough to be understood 
by any student of another class of the same grade. 

Particular comments. 
(1) 	The idea of asking the students to solve the prob

lem 1 using any method is simply to get them ex
ploring the problem. As expected, usually, they use a 
trial-and-error method. Other students choose a rather 
numerical-geometric method; they choose a square of 
side equal to 10 (a solution motivated by the fact that 
the number 10 is half of the semi-perimeter 20). A 
less usual strategy is to take the square root of 96. In 
the last two strategies, when they try to justify their 
answer (sometimes at the request of the teacher), they 
realize that it is incorrect. The teacher may then ask 
for ideas about direct methods of solution (something 
that excludes trial-and-error methods). 

(2) The geometrical resolution of this problem, a problem 
that can actually be found in a numerical formula
tion in Diophantus' Arithmetica (c. 250 CE) (Book 
1, problem 27), is far from evident to the students. 
As we have quite often noticed, when we first show 
the Naive Geometry approach in the classroom, the 
visual seductive geometrical particularity of the reso
lution awakens a genuine interest among the students. 

(3) In one of our sessions, when confronted with the prob
lem of area = 30 and semi-perimeter = 12, one group 
of students started assuming, according to the tech
nique, that the sides were each equal to 6 (which meets 
the requirement of semi-perimeter = 12). Given that 
the area of this square is equal to 36, they realized 
that they needed to take away 6 square units. In order 
to avoid irrationals, they cut out a rectangle whose 
sides were equal to 2 and 3. Then they realized that 
in doing so it is not possible to end with a rectangle, 
as required by the statement of the problem. Fig.I5b 
shows the non-rectangular geometric object to which 

I 

(a) 	 (b) 

FIGURE 15 

one is led when one takes away a 2 x 3 rectangle (Fig. 15a) 
instead of a square whose sides are equal to V6). Then, 
they became aware that a square of area equal to 6 has to 
be removed and that they had to take away a side of length 
equal to V6. 

Part 2. 
This part begins with a discussion of the messages contain
ing all the steps required in the resolution of the problems 
seen in part 1. Working in cooperative groups, the students 
have to discuss and come to an agreement about the points 
which could cause a conflict or could give way to an im
provement. When all the group members are in agreement, 
the teacher can choose one student of each cooperative 
group to present the work to the other groups. This allows 
certain students to better understand. Following this, the 
students are asked to pose problems themselves with the 
following restriction: the sides of the sought-after rectangle 
have to be expressed in whole numbers; then, as a second 
exercise, the sides of the sought-after rectangle do not have 
to be expressed in whole numbers. The students may even 
be asked to find fractional answers. A few of these prob
lems would be used in the test at the end of the chapter. 

Particular comments. We want to stress the fact that 
many students have some problems in writing the mes
sage in general terms, that is, without referring to particu
lar numbers for the semi-perimeter and the area. Although 
they were not explicitly asked to write the message us
ing letters (Le., using an algebraic language), it was very 
hard for many of them to express, at a general level, the 
actions that they were able to accomplish when working 
with manipulatives (concrete rectangles on paper that they 
produced themselves using scissors) or drawings. 

Despite the intrinsic difficulty of this task. it is impor
tant that students try to use the natural language to express 
their ideas. This will siinplify the transition to the abstract 
symbolic algebraic language. 

Part 3. 

In part 3, the students are presented with a problem that 

requires a different use of the Naive Geometry technique. 
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The problem, inspired by that of AbO Bekr seen at the end 
of section 1, is the following: 

Problem 2: The length of a rectangle is 10 units. 
Its width is unknown. We place a square on one 
of the sides of the rectangle, as shown in the fig
ure. Together, the two shapes have an area of 39 
square units. What is the width of the rectangle? 

[] 
10 

The teacher asks the students to solve the problem 
using similar ideas as the ones used to solve problem I. 
If students do not succeed in solving the problem by the 
Naive Geometry technique, the teacher may show the new 
problem-solving method as follows: Using large cardboard 
figures placed on the blackboard, the teacher cuts the initial 
rectangle vertically in two (Fig. 17), then takes one of the 
pieces and glues it to the base of the square (Fig. 18). Now 
the students notice that the new geometrical form is almost 
a square. The teacher then points out that the new form 
could be completed in order to make it a square. In order 
to do so, a small square, whose side is 5 (Fig. 19), has to be 

added. The small square has an area equal to 25. Thus the 
area of the new square (Fig. 19) is equal to 39 + 25 = 64. 
Its side is then equal to 8. From Fig. 18 it follows that 
x + 5 = 8, which leads us to x 3. Next, other similar 
problems are given to the students to solve in groups. 

As in part I, the students are asked to work on a 
written description or message of the steps to follow in 
order to solve this type of problem. 

Particular Comments. The students soon realize that the 
problem-solving procedure used in problem I does not ap
ply directly to problem 2. Here, the central idea (and it is 
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important that the teacher emphazises it) is the completion 
of a square, something that will be very important when 
the students work with algebraic symbols later. 

Part 4. 
As in part 2, the students' written descriptions or messages 
are discussed. Mter this, the teacher asks them to pose 
some problems requiring a specific condition on the sides 
of the rectangle: 

(i) the sides 	of the rectangle have to be expressed in 
whole numbers; 

(ii) 	the sides of the rectangle have to be expressed in frac
tional numbers; 

(iii) the sides of the rectangle have to be expressed in ir
rational numbers. 

Part 5. Reinventing the formula. 
In this part, the students will keep working on a problem 
of the same type as in parts 3 and 4. The difference is 
that concrete numbers are given neither for the base of 
the rectangle nor for the area that the two shapes cover 
together. The goal is to help students reinvent the formula 
that solves quadratic equations. 

In order to do so, the teacher explains to the students 
that slbe is interested in finding a formula which will pro
vide one with the answers to the problems seen in parts 3 
and 4.3 The teacher may suggest that they base their work 
on the written message produced in step 4 and to use let
ters instead of words. To facilitate the comparison of the 
students' formulas in a next step, the teacher may suggest 
using the letter "b" for the base of the rectangle and "c" 
for the area of both shapes (see Fig. 20). The equations are 
discussed in co-operative groups. The final equation is 

x= Jc+ (~r -~. 

The teacher may then proceed to translate the geometric 
problem into algebraic language: if the unknown side is 'x', 
then the area of the square is x2 and that of the rectangle 
is bx; thus the sum of both areas is equal to c, that is: 
x 2 +bx = c. Now, in order to link equations to the formula, 
the teacher gives some concrete equations (like x2+8x 9, 

b 

FIGURE 18 	 FIGURE 19 FIGURE 20 
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x 2 + 15x = 75) and asks the students to solve them using 
the fonnula. 

The next step is to give the students the equation ax2 + 
bx = c and ask them to find the fonnula to solve this 
equation. The students might note that if this equation is 
divided by a (we suppose that a -::f. 0), then we are led to 
the previous kind of equation. It suffices then to replace 'b' 
by 'bla' and 'c' by 'cia', in the previous fonnula, which 
gives the new fonnula 

b~ + (.!!..) 2x 
a 2a 2a 

The last step is to consider the general equation ax2 + 
bx+c = 0 and to find the fonnula that solves it. The fonnal 
link with the previous equation ax2 + bx = c is clear: we 
can rewrite this equation as ax2 + bx - c = O. Thus, in 
order to get the equation ax2 + bx + c = 0 we need to 
replace 'c' by '-c' and to do the same in the fonnula. 

When we replace' c' by '-c' in the fonnula we obtain 
the general fonnula: 

b 
x 

2a 

Of course, this fonnula is equivalent to the well-known 
fonnula: 

-b + .jb2 - 4ac 
x 

2a 
where in order to obtain all the numerical solutions one 
needs to consider the negative square root of b2 4ac. 
This leads us to the fonnula 

-b ± v'b2 - 4ac 
x= 

2a 

Particular comments. 

(1) Usually, the students are able to provide the fonnula 
that solves the equation x2 + bx c and to use it to 
solve concrete equations (as those mentioned above). 
That they can produce such a fonnula and realize the 
amount of work that the fonnula saves is appreciated 
very much by the students. This gives them a 'practi
cal' sense of the fonnula. 

(2) However, many students need some time in order to 
abandon the geometrical context and to limit them
selves to the numerical use of the fonnula. Further, 
there are many students who prefer to keep thinking in 
tenns of the Naive Geometry technique. The geomet
rical versus numerical preference may be caused by 
the specific students' own kind of rationality (some
thing that is referred to in the educational field by the 

unfelicitous expression "styles of learning", an expres
sion that hides more things than it explains!). Some 
students have the impression that they no longer un
derstand if they merely use a fonnula. Understanding, 

for many of them, does not seem to mean simply 'be
ing able to do something'. 

(3) Most of the students are able to find the fonnula which 
solves the equation ax2 + bx c. However, some 
students may experience some difficulties. The main 
problem is that here, as in the subsequent steps, the 
geometrical context is being progressively replaced by 
a symbolic one. 

(4) To end these comments, we want to stress the fact that 
our approach cannot avoid or conceal the problems 
that are specific to the mastering and understanding 
of algebraic symbols (see section 4 below). Our ap
proach aims to provide a useful context to help the 
students develop a meaning for symbols. It is worth
while to mention that the use of manipulatives and 
geometric techniques in order to derive the fonnula 
were appreciated by our high-school students. A girl, 
for instance, said: "I better understand with the draw
ings, I find this a lot more interesting and fun than the 
other mathematics." 

3. About the duration of the teaching 
sequence 

The teaching sequence that we discussed here may vary in 
time depending on the background of the students and their 
familiarity with classroom research activities. In one of the 
first times that we undertook it, we allowed a period of 
80 minutes to each step. However, it is possible to reduce 
the time and the steps of the sequence. A variant of the 
sequence, that we undertook in an advanced mathematics 
high school course, consisted of steps 3 to 5. This can be 
done in two periods of 80 minutes each. 

4. A concluding (theoretical) remark about 
the use of symbols in mathematics 

The passage from numbers to letters does not consist of a 
simple transcription, as we have noted. In fact, the symbol 
must, in part 5, summarize the numerical and geometrical 
experiences developed in parts 3 and 4. The encapsulation 
of these experiences includes a stage of generalization and 
of reorganization of the actions which opens up on a much 
more ample description of mathematical objects. 

Of course, the new semiotic category (that is, the cate
gory in which the algebraic symbolism is embedded) offers 



75 Second Degree Equations in the Classroom: A Babylonian Approach 

new challenges to the students (see the students' reinven
tion of the formula shown in Fig. 21) as it did for past 
mathematicians (see Radford, in press). For instance, oper
ations with symbols need to be provided with new mean
ings. In this sense abstraction does not seem to proceed to 
a detachment of meanings or to more "general" ideas. In
deed, contrary to a general interpretation, abstraction does 
not mean to take away some features of a given object but 
to add new ones and to be able to focus our attention on 
the features required by the context. This was suggested 
by the transference from geometric to syntactic algebraic 
symbolism and vice-versa that students showed when solv
ing second-degree equations at the end of the sequence (for 
example, 2x2 + 12x - 64 = 0), after having reinvented the 
formula. 

These considerations lead us to the following intrigu
ing idea: abstraction is a contextually based operation of 
the mind. 
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1 His main work on Naive Geometry is (H~yrup I 990b). 

2 The solution is given in the Liber Mensurationum as follows: 
The way to find this is that you add two [to one], such 
that you have 3. Now you take half which is one and 
a half and multiply that by itself so you get two and 
a quarter. So, add 54 to this and you get 56 and a 
quarter; take the root and subtract I and a half; you 
are left with 6 and that is the smaller side; add to it 2 
and you will have the longer side, that is, 8. However, 
there is a method to find this according to the people 
of the al-gabr. .. 

3 The students are already familiar with the concept of formula: 
not only have they seen formulas in mathematics, e.g., the formu
las for the areas of regular geometrical figures, but in the sciences 
as well. 
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Anomalies and 
the Development 
of Mathematical 
Understanding 

Janet Heine Barnett 
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A number of historians of mathematics have identified 
anomalies as a major force shaping the development of 
mathematics. Wilder [1980], for example, classifies para
doxes and inconsistencies as components of 'hereditary 
stress', "the most important force exerted from the math
ematical community upon the individual mathematical 
mind". Several of the famous Ten 'laws' concerning pat
terns of change in the history of mathematics identified 
by Crowe [1975] also point to the role of anomalies in 
both delaying and advancing mathematical developments. 1 

In his critique of Crowe's laws, Mehrtens [1976] remarks 
not only on the role played by anomalies in the history of 
mathematics, but also proposes the concept of an 'anomaly' 
as a valuable tool for the historian in assessing historical 
developments. 

In view of the importance assigned to anomalies by 
historians, it is reasonable to expect this concept to be of 
some importance to individual student learning as well. Un
derlying this expectation is the Piagetian belief that there 
are parallels between the way individuals construct mathe
matical knowledge (psychologically) and the way humanity 
constructed such knowledge (historically). This proposal 
views historical analysis as a critical factor in making in
structional and curricular decisions, even when the actual 
implementation of these decisions might not involve the use 
of history in the mathematics classroom. Thus, the history 
of mathematics is seen as a lens through which to view 
'mathematical understanding' in order to develop and as
sess pedagogical principles for the mathematics classroom. 

This paper offers such an analysis of the role played 
by anomalies in developing mathematical understanding. 
We begin with overviews of three historical episodes in 
which the resolution of anomalies played a central role. 
The primary purpose of these overviews is to identify ped

agogical principles that could be applied to the teaching of 
any mathematical topic by highlighting certain aspects of 
the episodes in question. The specific examples considered 
(incommensurable magnitudes, non-Euclidean geometries, 
and Cantor's infinite sets) were chosen to draw particular 
attention to the role of intuition in generating and resolving 
anomalies. In the closing sections, we relate these aspects of 
the historical developments to principles underlying current 
learning theory, and offer specific examples of how these 
ideas might be implemented in classroom instruction. 

Inconnnnensurables 

We do not know exactly how or when the existence of mag
nitudes which cannot be measured by a common unit was 
discovered, due to the lack of primary source material con

77 
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cerning pre-Euclidean Greek mathematics. The discovery 
was certainly known by 399 BeE when Thaetetus (417
369 BeE) informs us in Plato's dialogue2 of that name: 

Theodorus here was proving to us something 
about square roots, namely, that the sides of 
squares representing three square feet and five 
square feet are not commensurable in length with 
the line representing one foot, and he went on in 
this way, taking all the separate cases up to the 
root of seventeen square feet.3 

It is interesting that Plato takes J3 as the starting 
point of Theodorus' work, a detail which suggests that the 
incommensurability of .J2 was known prior to Theodorus' 
research. This interpretation is consistent with the hypoth
esis that incommensurables were discovered in the context 
of finding a common measure for the side and diagonal of 
a unit square. A general outline for a proof equivalent to 
our standard proof of the irrationality of .J2 is given by 
Aristotle in several places, including the following: 

the diagonal of the square is incommensurate 
with the side, because odd numbers are equal to 
evens if it is supposed to be commensurate.4 

Another hypothesis concerning the initial discovery 
suggests that the first known pair of incommensurable mag
nitudes was the side and diagonal of the regular pentagon,5 

a figure associated with the pentagram which served as 
a Pythagorean recognition symboL Von Fritz [1945] ar
gues that the pentagon discovery is apparent almost at first 
sight,,6 from the fact that the diameters of the pentagon 
form a new regular pentagon in the center. The formal 
proof results from applying the repeated subtraction pro
cess of the Euclidean algorithm to the magnitudes. In this 
instance, this repeated subtraction procedure (known as an
tenaresis) results in a pattern of remainders that establishes 
the impossibility of a 'least' magnitude.7 

One point on which most scholars agree is that 
the existence of incommensurable magnitudes represented 
an unexpected and unwelcome discovery for the early 
Pythagorean philosophy that 'all is number'. The severity 
of the shock is suggested by the well-known story of Hip

pasus being drowned at sea for revealing the discovery. 8 

Aristotle describes the Pythagorean belief in number as the 
substance of the physical universe as follows: 

in numbers they seemed to see many resem
blances to the things that exist and come into 
being... ; since, again, they saw that the mod
ifications and the ratios of the musical scales 
were expressible in numbers; since, then, all these 
things seemed in their whole nature to be mod
eled on numbers, ... they supposed the elements 
of numbers to be the elements of all things. 9 

This intuition that everything can be counted, and hence 
assigned a number, is easily applied to lengths by desig
nating a unit of measure which can be replicated to cover 
the given length. For two or more magnitudes, the intu
ition that one can find some (possibly) small unit that can 
be used as a common measure is reasonable based on our 
experiences with physical measurements. In fact, the need 
to prove the existence of such a common measure would 
not have occurred to the Babylonians and Egyptians, in 
part because they were more empirically oriented than the 
Greeks, but also because of the strength of the intuition in 
question. 

Given the requirement of a proof in Greek mathe
matics, the discovery of incommensurables was inevitable. 
Although it is questionable whether this discovery formed 
a mathematical crisis,lO commensurability did play a key 
role in Greek geometrical proofs; the discovery could not 
be ignored. In this instance, the required 'resolution' was 
achieved by Eudoxus (408- 355 BeE) who developed a 
theory of proportions for continuous magnitudes as a com
panion to the existing theory of proportional numbers. As 
presented by Euclid in Book V of the Elements, the Eu
doxean Theory of Proportionll provided the necessary log
ical foundation for the existing theory of similar rectilinear 
figures, as well as a basis for the limiting process of the 
Method of Exhaustion used to establish area and volume 
formulae. 

While the details of the Eudoxean resolution of the 
incommensurability anomaly are of clear mathematical 
interest,12 other aspects of the episode may be of greater in
terest to the mathematics educator. Foremost among these 
is the high level of mathematical activity which appears 
to have taken place in that period, including the work of 
Hippocrates of Chios (c. 420 BeE) on lunules, the study 
of irrationals begun by Theodorus (c. 400 BeE) in the late 
fifth century BeE and continued by Thaetetus in the fourth, 
and on-going efforts to solve the well-known geometrical 
problems of circle quadrature, angle trisection and cube 
duplication13 throughout the fifth and fourth centuries. The 
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mathematicians associated with Plato's Academy in the 
fourth century BeE were especially productive, both before 
and after Eudoxus' arrival at the Academy in the middle 
of that century. Whatever the reasons for this intense level 
of activity, it is clear that the existence of the anomaly did 
not halt mathematical production, or even restrict its scope 
to problems that avoided incommensurables. 

Another interesting aspect of the post-resolution pe
riod is the failure of the Eudoxean theory of magnitudes 
to .replace the Pythagorean theory of proportional numbers, 
which appears in Book VII of Euclid. The resolution of the 
incommensurable 'crisis' led not to a more general concep
tion of number, but rather to a strictly enforced distinction 
between continuous magnitudes and discrete number. This 
distinction was in part due to the authority of Aristotle, 
who was the first to derme it. It is also indicative of the 
reluctance of the mathematical community to cast off a the
ory that has served it well. In this case, the techniques for 
working with numbers were considerably less cumbersome 
than those for working with magnitudes, leading to even 
greater reluctance to discard the old theory in favor of a 
new, more general theory.14 

Finally, but perhaps most surprisingly, it is worthwhile 
to note the rapidity with which the old intuition of 'com
mensurability' came to be replaced by the new mathemat
ical intuition developed by Eudoxus. Looking to Aristotle 
once more, we read that: 

it seems wonderful to all who have not yet seen 
the reason, that there is a thing which cannot 
be measured even by the smallest unit. ... [yet] 
there is nothing which would surprise a geome
ter so much as if the diagonal turned out to be 
commensurable.15 

The anomaly had thus been completely reversed; it would 
now be more surprising, at least to the initiated, if all mag
nitudes were commensurable. This is precisely the goal of 
mathematics educators: to move students from their current 
'naive' understanding to new and deeper intuitions. Under
standing this phenomenon of building new intuitions will 
be the focus of our remaining historical examples. 

Non-Euclidean Geometry 

The anomaly, which precipitated the development of non
Euclidean geometries, was not a foundational 'crisis' of the 

sition, or at least to re-state it in a more self-evident form, 
were based on a more subtle dissatisfaction with its role in 
the formal axiomatic system of the Elements. First, there is 
the fact that Euclid's parallel postulate is strikingly com
plicated, especially in contrast to the simplicity and self
evident characteristic of the first four postulates: 

Euclid's Postulates:16 

1. 	 To draw a straight line from any point to any 
point. 

2. 	 To produce a finite straight line continuously in 
a straight line. 

3. To describe a circle with any center and distance. 

4. 	 That all right angles are equal to one another. 

5. That, 	if a straight line intersecting two straight 
lines make the interior angles on the same side 
less than two right angles, the two straight lines, 
if produced indefinitely, meet on that side on 
which the angles are less than two right angles. 

The parallel postulate itself is not employed in a proof until 
Proposition 1-29. It is also the converse of Proposition 1-17. 
These facts suggested to many that the parallel postulate 
might itself be a theorem, and not a postulate. 

Attention to this anomaly began as early as the first 
century BeE;17 investigations of the postulate were car
ried out by Posidonius (first century BCE), Ptolemy (2nd 
century eEl, ibn Sina (980-1039), Levi ben Gerson (1280
1344), Omar Khayyam (1048-1131), Nasir Eddin al-Tusi 
(1201-1274), and J. Wallis (1616-1703), to name but a 
few. 18 A significant step towards the development of a 
non-Euclidean geometry was made by Gerolamo Saccheri 
(1667-1733), although Saccheri himself believed he had 
fully vindicated Euclid's choice. Rather than try to prove 
the postulate directly as done in many of the earlier at
tempts, Saccheri assumed the negation of the postulate and 
sought to establish the truth of the parallel postulate by 
reductio ad absurdum. Specifically, he considered the fol
lowing quadrilateral containing two right angles and two 
congruent sides. 19 It is straightforward to show within neu
tral geometry20 that the angles a and f3 are congruent, lead
ing to three possible cases: (1) angles a, f3 are right angles 
(which is equivalent to Euclid's Fifth); (2) angles a, f3 are 
obtuse; and (3) angles a, f3 are acute. 

kind often associated with the discovery of incommensu
rabIes. The truth of the parallel postulate was never ques
tioned by Euclid's contemporaries, nor by the mathemati [ ]cians who investigated it over the next twenty centuries. 
Rather, efforts to derive the parallel postulate as a propo
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Saccheri believed he had succeeded in deriving a con
tradiction from the obtuse angle hypothesis, inadvertently 
assuming results of Euclidean geometry which do not hold 
in this case.21 Unaware of his logical flaw, he turned to 
the acute angle hypothesis and succeeded in proving a 
sequence of theorems in what we would now call non
Euclidean geometry. In particular Saccheri considered the 
family of lines through a point A, where A does not lie on 
the line l, and showed that it contains two lines, p and q, 
which are themselves asymptotic to l and which separate 
those lines through A which intersect 1 from those lines 
through A which do not intersect i. He then argued that 
this result leads to the recognition of two straight lines [l 
and p} which "at one and the same point [at infinity} have 
in the same plane a common perpendicular. ,,22 Unable to 
derive the desired logical contradiction, Saccheri draws on 
his intuition of straight lines and concludes: 

The hypothesis of the acute angle is absolutely 
false, because it is repugnant to the nature of the 
straight line. 23 

Saccheri's inability to free himself of Euclidean in
tuitions was repeated by Lambert (1728-1777) and Leg
endre (1752-1853) whose efforts to improve on Saccheri's 
work ended with similar appeals to the 'correctness' of Eu
clid's geometry. A turning point in this development was 
the eighteenth century introduction of analytic techniques, 
which allowed the language of trigonometric formulas to 
be used in discussions of the problem. The work of Tau
rinus (1794-1874) on hyperbolic trigonometric formulas 
marks this turning point, although Taurinus himself was 
convinced that his work was not a description of any real 
geometry.24 The critical breakthrough towards the accep
tance of non-Euclidean geometry as real but paradoxical 
was finally taken by Lobachevsky (1793-1856) and Bolyai 
(1775-1856). Both men began their investigations by as
suming a non-Euclidean geometry was possible and pro
ceeded to follow this assumption to its logical and analyt
ical conclusions. The formal validity of the non-Euclidean 
trigonometric formulas that they were able to derive pro
vided convincing evidence that their original assumption 
was, indeed, a sound one. 

With the publication of the works of Lobachevsky and 
Bolyai in 1829 (in Russian) and 1831 (in Latin) respec
tively, the unintuitive geometry of the acute angle hypoth

esis was publicly acknowledged as a logically rigorous al
ternative to Euclidean geometry for the fIrst time. Despite 
the obvious break with accepted intuition, the work did not 
immediately draw wide attention. This may have been in 
part due to the fact that both men were isolated geograph
ically and by language from the mainstream mathemati
cal community, a fact which in tum may have contributed 
to their ability to break with the traditional view. This 
observation draws attention to the role of the individual 
in developing mathematical knowledge. Without individ
ual reflections on and interpretations of shared problems 
and intuitions, the break with tradition accomplished by 
Lobachevsky and Bolyai could not have occurred. 

The difficulty of breaking with tradition is indicated 
by Gauss's (1777-1855) reluctance to publish his own de
velopment of non-Euclidean geometry. Although the con
clusions were logical, they were not intuitive, as he writes 
in a letter to Taurinus dated November 8, 1824: 

The assumption that the angle sum [of a tri
angle] is less than 180" leads to a curious ge
ometry, quite different from ours but thoroughly 
consistent.. .. The theorems of this geometry ap
pear to be paradoxical, and, to the uninitiated, 
absurd, but calm, steady reflection reveals that 
they contain nothing at all impossible.25 

In a later letter to Bessel (dated 27 January 1829) Gauss 
admits that he "fears the howl of the Boeotians,,26 upon 
publication of these 'absurd' results. In fact, the truth of 
Euclidean geometry had been accepted implicitly for cen
turies, due both to the weight of Euclid's authority and 
to the fact that this geometry accords with our experience 
of the physical world. In the eighteenth century, Kant's 
doctrine of space as a pure intuition independent of empir
ical experience further emphasized Euclid's geometry as 
the one 'true' geometry.27 Perhaps more surprising than 
the long delay in recognition of a non-Euclidean geometry 
is the fact that this recognition occurred at all. Had it not 
been for the posthumous publication of Gauss' correspon
dence in the 1860s, testifying again to the role played by 
pronouncements of an authority in building acceptance of 
novel concepts, this recognition might have been further 
delayed. 

Two other nineteenth century developments, which 
aided the eventual acceptance of non-Euclidean geometry 
as legitimate, may also provide insight for the educator. 
The first of these was the development of new algebras 
possessing some, but not all, the properties of traditional 
algebra. These new algebras included a non-commutative 
matrix algebra, Boole's algebra of symbolic logic with its 
dual distributive properties, Hamilton's non-commutative 
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quaternions, and the subsequent development of a vector 
algebra with two multiplicative operations. The acceptance 
of these various algebras shows that mathematics was in
creasingly being viewed as the (abstract) study of structures 
independent of physical reality and traditional 'rules'. It 
also illustrates how work in apparently unrelated areas can 
be of mutual value. 

The second important nineteenth century development 
was Riemann's development of a general system of geom
etry in 1868, which in turn led to the creation of models of 
non-Euclidean geometry. These models enhanced the ac
ceptability of the new geometries by providing a concrete 
interpretation for them. Additionally, because the models 
use a part of Euclidean space to interpret non-Euclidean 
space, any inconsistency within the non-Euclidean space 
corresponded to an inconsistency in the 'accepted' Eu
clidean model. What began as an effort to remove what 
Saccheri and others viewed as a 'blemish' in Euclid's work 
thereby ended with the parallel postulate being vindicated 
as the essential assumption which distinguishes Euclid's 
geometry from other, equally consistent geometries whose 
existence he could not possibly have guessed. 

Infinity 

The concept of infinity is another enigma which has in
trigued scholars since the time of the Greeks, dating back 
at least to the appearance of Zeno's (in)famous paradoxes 
in the fifth century BeE. These paradoxes suggest that the 
assumption that space and time are infinitely divisible, as 
well as the assumption that space and time are composed 
of infinitely many indivisible atoms, will lead to contradic
tions concerning motion. 'Achilles', for example, asserts 
that "in a race the quickest runner can never overtake the 
slowest, since the pursuer must first reach the point whence 
the pursued started, so that the slower must always hold a 
lead".28 Since this process continues ad infinitum, it would 
seem also that neither runner finishes the race, being unable 
to cover an infinite number of points in a finite amount of 
time. Under the alternative assumption that space is com
posed of indivisible atoms, Zeno argued that "the flying ar~ 
row is at rest,,29 since at each moment it occupies a space 
equal to itself. 

Theories concerning Zeno's motivation in putting for
ward these arguments range from the desire to confound the 
sophists at their own rhetorical games to a more scholarly 
desire to add credence to his teacher Parmenides' tenet that 
"All change is illusory". Whatever his original objective, 
Zeno did succeed in drawing attention to problems concern
ing the infinitely large and small. 30 Aristotle was among 

those who took up the task of refuting Zeno's arguments 
about motion which "cause so much disquietude to those 
who try to solve the problems that they present".31 Aris
totle accepts the hypothesis that both space and time are 
infinitely divisible, and attempts to avoid Zeno's paradoxes 
by insisting that this 'infinite division' is only potential in 
nature. Although he rejects the notion of the 'actually infi
nite' in both a physical and mathematical sense as a result, 
Aristotle comments that: 

Our account does not rob the mathematicians of 
their science .... In point of fact they do not need 
the infinite and do not use it. 32 

This banishment of the actually infinite from mathe
matics remained intact for centuries, even after the distinc
tion between number and magnitude had been removed. As 
late as 1831, Gauss writes to Schumacher: 

As to your proof, I must protest most vehemently 
against your use of the infinite as something con
summated, as that is never permitted in math
ematics... No contradictions will arise as long 
as Finite Man does not mistake the infinite for 
something fixed.33 

A similar reference to 'Finite Man' was made earlier by 
Galileo, one of a small number of mathematicians who en
tertained the idea of an actually completed infinite set. On 
the First Day of his Dialogues Concerning the Two New 
Sciences, Galileo's character Salviati establishes a one-to
one correspondence between the set of natural numbers and 
the set of perfect squares, implicitly assuming the comple
tion of both sets.34 Rather than accept the notion that these 
two sets are the same size, however, Galileo uses this exam
ple as justification for rejecting the notion that cardinality 
can be applied to 'infinite quantities', asserting: 

This is one of the difficulties which arise when 
we attempt, with our finite minds, to discuss the 
infinite, assigning to it those properties which we 
give to the finite and limited; but this I think is 
wrong, for we cannot speak of infinite quantities 
as being the one greater or less than or equal 
to another ... the attributes 'equal', 'greater' and 
'less' are not applicable to the infinite, but only 
to finite, quantities.35 

The mathematician responsible for the critical break
through concerning infinity was Georg Cantor (1845
1918). Cantor's interest in infinite sets grew from his study 
of trigonometric series representation, which in turn led him 
to a study of the real number continuum.36 His investiga
tions led him to the observation that, although both sets 
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are infinite, the set of real numbers is fundamentally dif
ferent than the set of rational numbers, the former being 
dense, continuous and complete. while the latter is only 
dense. These differences suggested to Cantor that, despite 
the conviction of earlier mathematicians, there is a sense 
in which there really are fewer rational numbers than real 
numbers.37 As a means of characterizing this inherent dif
ference in richness, Cantor was led to the notion of one
to-one correspondences, proving in 1873 that such a cor
respondence is impossible between the set of real numbers 
and the set of natural numbers.38 Having thus established 
the existence of at least two sizes of infinity, Cantor spent 
the next decade exploring these ideas, eventually devel
oping an "unbounded ascending ladder,,39 of infinite (or 
transfinite) numbers which measure the differing sizes of 
actually infinite sets. 

The principle that every 'consistent' set, whether fi
nite or infinite, contains some definite number of elements 
and can therefore be assigned a cardinality marks Cantor's 
primary contribution. According to this stance, earlier con
fusion about the actually infinite stemmed from the belief 
that infinite sets must possess the same properties as fi
nite sets in order to be considered coherent, a belief that 
is clearly suggested in the quote from Galileo. In essence, 
previous mathematicians had confused the concept of 'set' 
with their intuition of 'finite set'; their intuitions about fi
nite sets were correct, but they had been overgeneralized.4o 

In fact, an infinite set has the peculiar property that its ele
ments can be placed in one-to-one correspondence with the 
elements of some of its proper subsets,41 so that the whole 
is not necessarily bigger than its parts.42 Rather than re
ject the notion of infinite sets due to this peculiarity, Cantor 
defined the concept of 'cardinality' using one-to-one corre
spondences, the very notion which led to earlier rejections 
of infinite sets. 

This use of the paradoxical feature of a concept as the 
property by which it is formally defined is a twist of spe
cial interest to mathematics educators. Here we see that it 
was not the intuition per se that was incorrect-infinite sets 
do possess this peculiar property. Rejection of this intuition 
was shaped in part by prevailing cultural attitudes concern
ing the infinite, but also by the uncanny ability of math
ematicians to avoid its use in their work for centuries.43 

Cantor was finally influenced to accept the intuition be
cause of its usefulness in understanding the continuum,44 
where "each potential infinite, if it is rigorously applicable 
mathematically, presupposes an actual infinite,,45 so that 
even "the provision of a foundation for the theory of irra
tional numerical quantities [real number] cannot be effected 
without the use of the actual infinite in some form.,,46 

Cantor's emphasis on the indispensability of the actu
ally infinite did not, however, lead to the immediate accep
tance of his work. In particular, objections were raised con
cerning the non-constructive nature of many of his proofs. 
Further concerns about his work arose when paradoxes in
volving the intuitive concept of 'set' appeared, raising ques
tions concerning the logical consistency of the theory.47 
Again, the question of whether these paradoxes presented 
a real 'crisis' for the foundations of mathematics is de
batable. For the 'working' mathematician of that time and 
today, the essential issue has again been the tremendous 
value of set theory as a tool in analysis and other areas of 
mathematics. Rather than lose the value and power of set 
theory, the majority of mathematicians choose to accept the 
formal axiomatization of set theory developed in response 
to these paradoxes. By 1903, we hear Russell declare: 

The Infinitesimal Calculus, though it cannot 
wholly dispense with infinity, ... contrives to 
hide it away before facing the world. Cantor has 
abandoned this cowardly policy, and has brought 
the skeleton out of its cupboard ... like many 
skeletons, it was wholly dependent on its cup
board, and vanished in the light of day.48 

Pedagogical Implications: The Role of 
Intuition and Experience 

The focus in the examples above has been on the relation 
between mathematical understanding and mathematical in
tuition. We adopt here the definition of intuition as "an 
accumulation of attitudes based on experience" given by 
Wilder [1967], a definition which captures the two essen
tial features of intuition. First, it is the intuition of mathe
maticians that leads them to their definitions and theorems, 
not vice versa. Cantor did not begin with a definition of 
'transfinite numbers', but was led to it on the basis of the 
intuition he had acquired at the end of extensive study and 
similarly for Lobachevsky and Bolyai. Such study consti
tutes the second key feature of intuition; namely, intuition 
is based on experience, and is not derived from logic. 

With this definition in place, we may describe the pro
cess of mathematical development illustrated in the above 
examples as follows. An anomaly arises when experience 
conflicts with established intuitions. The anomaly is re
solved when appropriate new intuitions based on further ex
perience are established. Along the way, the 'paradoxes' be
come little more than curiosities for the uninitiated. Trans
lating this process to the classroom, students can be ex
pected to gain intuition, and thereby understanding, through 
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the acquisition of experience, a view affirmed by research 

on the learning process.49 Within this process, the teacher's 

role is to structure experiences in order to stimulate the de

sired intuition and to prepare the students to accept that 
intuition as 'correct'. Once developed, the teacher can then 
direct the students' intuition towards the appropriate defi

nitions, theorems and processes. 

Note here the implication that examples should pre

cede definitions, in direct contrast to current practice in 

many mathematics classrooms. Consider, for instance, the 

usual introduction to group theory found in undergraduate 

texts: the definition of 'group' is presented, followed by 

a list of examples illustrating this definition, with perhaps 
an example or two of an operation that does not define a 

group. The assumption is that these examples are famil
iar to students from earlier studies, so that it will be clear 
(with minimal checking) that the necessary properties hold, 

although why these particular properties are necessary is 

likely to be less clear. The altemative approach suggested 

by the historical episodes is to allow students to analyze 
known examples and counterexamples in order to identify 

their important common characteristics before any mention 

of the term 'group' is made. Once these essential features 
have been extracted from the examples, the definition can 
be introduced. The anomalous lack of 'commutativity' in 

the definition is thereby removed as the students see that 

this property was not (algebraically) present in several of 

their examples. 

A similar instructional strategy can be applied to many 

other concepts. The primary requirement for its success is 
prior student familiarity with concrete examples 50 which 

illustrate the desired intuition. Historical studies can be of 

particular value in identifying relevant examples for stu

dent exploration.51 The curriculum which results from such 
analyses need not follow the original chronological order. 
For instance, although the development of non-Euclidean 

models followed the work of Lobachevsky and Bolyai, their 

role in gaining acceptance of these geometries suggests that 

these models should perhaps be explored in the classroom 
prior to the logical study of alternate parallel postulates. 

Folio [1985] has used such an approach with liberal arts 
students, reporting that it is "the experiencing of the pro

cess [of exploring the models] that has given meaning to the 

new ideas [of non-Euclidean geometries]". In other words, 

the students gain valuable experience in interpreting mod
els and become better prepared (psychologically) for the 

possibility of non-Euclidean parallel postulates by this ap

proach. 

Pedagogical Implications: The Role of 
Anomalies and Confusion 
Using history as a guide, we see that the process of prepar
ing an individual to accept new intuitions can be lengthy. 
History also suggests that anomalies within students' un
derstanding can facilitate this process, particularly in cases 
where old intuitions must be discarded along the way. One 
such concept is that of an 'irrational number', typically 
presented in the United States at grade 7 or 8 in terms 
of square roots of non-square numbers and their decimal 
expansions. Given the practical need to approximate most 
rational numbers, as well as the ease with which calcu
lators provide approximations for rationals and irrationals 
alike, it is not surprising that students fail to grasp either 
the meaning or the relevance of this distinction. By posing 
the problem in terms of magnitudes,52 however, one can 
play on the strong geometrical intuition which says that 
a small common measure must be possible. When faced 
with a pair of magnitudes for which no such measure can 
be found, both the terminology and import of the notion 
becomes more relevant to the student. Rosenfeld [1978] 
implements this idea by first looking at specific examples 
of commensurable segments a, b and their common unit u 
in order to translate this geometric relation to the algebraic 
statements a = mu, b = nu, alb min. Once the rela
tion of commensurable magnitudes to rational numbers is 
established, the indirect proof of the irrationality of J2 is 
presented, starting from .Its geometric statement. The ap
proach of Arcavi and Bruckheimer [1984] is more strictly 
geometric; after introducing the repeated subtraction proce
dure (antenaresis) as a means to obtain a common measure, 
the fact that "the process can be continued indefinitely,,53 
in the case of the side and diagonal of a regular pentagon 
is used to demonstrate their incommensurability. 

Anomalies can be used in a similar way to define rel
evant questions of study, much as the anomalous parallel 
postulate did in the development of non-Euclidean geome
try. Sierpinksa [1994] remarks that a discrepancy in one's 
understanding is, in fact, necessary to produce questions 
which are both sensible and interesting to the student. 'Sen
sible and interesting questions', 'attention' and 'intention' 
are the three psychological conditions identified by Sierpin
ska as necessary for understanding. Unresolved anomalies 
can thus provide further instructional value by maintain
ing student attention to questions and by motivating them 
to understand and resolve these questions. Cordeiro [1988] 
who introduced paradoxes of infinity to a class of sixth 
grade students, some of whom were classified as reme
dial, describes an intriguing experiment of this type. Using 
Hilbert's Infinity Hotel,54 these students were introduced 

http:exploration.51
http:process.49


84 Using History to Teach Mathematics: An International Perspective 

to the use of one-to-one correspondences as a means of 
distinguishing between finite and infinite sets at a rela
tively early stage in their mathematical development. Al
though the models they then produced of Infinity Hotel and 
transportation devices for its guests showed some confu
sion about the infinite/finite distinction, this topic became 
the "stuff of idle conversation after school",55 indicating a 
high degree of engagement in the study. The fact that the 
students themselves were able to point out some confusion 
in each other's work further indicates that their intuition 
concerning infinity was undergoing change as a result of 
their 'play'. 

One concern expressed about using anomalies as a 
pedagogical device in this way is that the presence of 
anomalies may lead to confusion instead of learning. The 
historical examples suggest just the opposite: the pres
ence of anomalies in mathematics seemed to stimulate 
the growth of mathematics, not suppress it. This growth 
was often accompanied by increased levels of abstraction 
and changes in accepted standards of rigor. In fact. it has 
been hypothesized that the need to resolve the contradic
tory mathematical knowledge of their Egyptian and Baby
lonian predecessors motivated the Greeks to tum towards 
deductive logic as a basis for mathematics. These obser
vations are again consistent with current learning theory 
which hypothesizes that learning takes place when cog
nitive schemata are transformed through the processes of 
assimilation and accommodation. 56 Implicit in this theory 
is the suggestion that merely 'correcting' students who hold 
false intuitions is not effective instructional practice since 
errors are now viewed as indications of existing cognitive 
schemata or conflicts within them.57 As such, errors are 
likely to systematically reoccur until the students' internal 
intuitions or schemata are modified in response to individ
ual experiences and reflections. In conjunction with earlier 
observations about the role of the individual in develop
ing mathematics, this suggests that classroom cooperative 
work alone is not sufficient to build individual understand
ing, despite the emphasis placed on communication with 
peers by constructivist theories. Effective opportunities for 
individual reflection are also needed, a suggestion which is 
being confirmed by educational research. 58 In this regard, 
historical materials, and especially original source material 
readings, can again be of value by encouraging such re
flection in the context of book reviews, editorial reports, or 
essays based on historical problems. 59 

Another notable principle of constructivist learning 
theory is the self-perpetuating nature it ascribes to cognitive 
schemata. This characteristic of cognitive schemata leads 
the individual to resist cognitive modifications, much as 

mathematicians resisted changes in their shared schemata 
involving number. geometry and infinity. The Greek dis
tinction between magnitude and number is evidence of how 
much resistance a culture can have in the case of accom
modation, where significant restructuring of the cognitive 
schemata is required. In view of the amonnt of 'good' 
mathematics which was produced in conjunction with this 
'false' intuition, we see that refraining from correcting cer
tain student errors may not be as detrimental as is typi
cally feared, provided the 'correct' intuition is eventually 
achieved.6o For an individual, resistance to the accommo
dation process is so strong that cognitive disequilibration 
(i.e., an encounter with an anomaly) is viewed as necessary 
to motivate the change. Some educational research suggests 
that cognitive disequilibration may also benefit learning in 
situations requiring only the less extreme process of as
similation. In their research on the formation of rational 
number concepts, for instance, Behr et al. [1983] found 
that a 'good' manipulative aid is one that actually causes 
some confusion. 

Thus, although the creation of confusion seems con
trary to the role of a teacher, we see that both history and 
psychology suggest that confusion can be of benefit to stu
dents. We close with one final suggestion as to how instruc
tors can draw on the role played by anomalies in shaping 
the historical development of mathematics. Namely, shar
ing stories of past paradoxes is an interesting way to show 
students that confusion is an inherent part of mathematical 
studies, and that the difficulty which such confusion rep
resents "should be to us a guide post on the mazy paths to 
hidden truths, and ultimately a reminder of our pleasure in 
the successful solution.,,61 
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Endnotes 
1 This is especially seen in laws I, 2, 3 and 9, reproduced below: 

( I) New mathematical concepts frequently come forth not at the 
bidding, but against the efforts, at times strenuous efforts, 
of the mathematicians who create them. 

(2) Many new mathematical concepts, even though logically ac
ceptable, meet forceful resistance after their appearance and 
achieve acceptance only after an extended period of time. 

(3) Although the demands of logic, consistency, and rigour have 
at times urged the rejection of some concepts now accepted. 
the usefulness of these concepts has repeatedly forced math
ematicians to accept and to tolerate them, even in the face 
of strong feelings of discomfort. 

(9) Mathematicians have always possessed a vast repertoire of 
techniques for dissolving or avoiding the problems produced 
by apparent logical contradictions, and thereby preventing 
crises in mathematics. 

2 399 BeE is the fictive date of the dialogue which was written 
in the year 368/367 BeE Although ancient tradition dates it ear
lier, Knorr [1975], pp. 36-49, argues convincingly for dating the 
discovery between 430 and 410 BeE. 

3 One suggestion as to why Theodorus stopped with Jf7 remarks 
that the diagram known as the Spiral of Theodorus circles back on 
itself once one reaches the square root of 19. An alternative theory 
is that Theodorus did not possess a general proof schema, but 
approached each case separately and encountered mathematical 

difficulties with the proof for Jf7. See Knorr [1975], pp. 83ff., 

concerning this latter theory. 


4 Aristotle, Prior Analytics, 41a 23 ff. 


5 Fowler [1987] remarks (pp. 296-297) that the word 'square' 

does not occur in the Greek text of Aristotle and offers two proofs 

(pp. 304--308) which fit Aristotle's remarks concerning an "odd

even" proof; the second of Fowler's proof techniques can be ap

plied to any regular polygon. 


6 von Fritz [1945], p. 259. 


7 See also Jones [1956a] for details of this argument and Arcavi 

& Bruckheimer [1985] for a classroom activity based on this 

process. 


8 The veracity of this story is called into question by Fowler 

[1994], pp. 225-226. 


9 Aristotle, Metaphysics, 985b 26ff. 


10 Both Knorr [ 1975], pp. 36-42, and Freudenthal [1966 ] offer 

arguments against the 'foundational crisis' view of incommen

surables. Fowler [1987, 1994] also questions the 'crisis' theory, 

as well as the traditional hypothesis that dealing with incom

mensurable magnitudes was the goal of the Eudoxean Theory of 

Proportion. Fowler's thesis is based on a non-traditional view of 

the role of antenaresis in Greek. mathematics. See also Berggren 

[1984], pp. 398-402, for more on this debate. 


11 The Eudoxean Theory of Proportion replaced an earlier, but 

more cumbersome, proportion theory for magnitudes which was 

based on the process of antenaresis. See Knorr [1975], especially 

pp. 255-261. 


12 See Katz [1993] , pp. 72-77, for the mathematical details of 

both the pre-Eudoxean Proportion Theory based on antenaresis 

and the later Eudoxean Proportion Theory. 


13 Knorr [1986] argues that such geometric problem solving 

was the primary motivating factor for the development of much 

of Greek mathematics. See especially chapters 2 and 3 for an 

overview of the technical advances in geometry during this pe

riod. 


14 In fact, the techniques are interchangeable for commensurable 

magnitudes. as established in Euclid, Book. X. 


15 Aristotle, Metaphysics, 983a 17 ff. 


16 Translation by Heath [1956]. 


17 Gray [1979], pp. 34-36, remarks that attention to the prob

lem posed by the parallel postulate predates Euclid since both the 

existence and uniqueness of parallel lines was required to allow 

parallels to be used in transporting angles in geometrical con

structions. Although a proof eluded Greek geometers, the notion 

of straight line seemed to imply that the lines described in the 

fifth postulate would necessarily meet if they were indeed straight, 

so that "it grated that such an assumption had to be made" (p. 

36). The aim of the fifth postulate and other early research on the 

uniqueness of parallels was thus "to graft onto geometry without 

parallels (an unexceptionable but dull subject) something unex

ceptionable but powerful enough to make the subject interesting." 

(Gray, p. 37) 


18 See Rosenfeld [1987]. chapter 2, for a detailed survey of ef

forts to resolve the problem of the parallels prior to the work of 

Lobachevsky and Bolyai. 
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19 The Islamic mathematicians Omar Kbayyam and Nasir Eddin 

in al-Tusi also considered this quadrilateral in their attempts to 

prove the parallel postulate. 


20 Euclidean geometry without the parallel postulate. 


21 In particular. Saccheri used Elements 1-17 which states that any 

two angles of a triangle are together less than two right angles, a 

result which depends on the ability to extend a straight line to any 

given length. Euclid explicitly used this latter assumption, which 

does not hold under the obtuse angle hypothesis. 


22 As quoted by Gray [1979], p. 61. See also Bonola [1955], pp. 

22-44, for details of Saccheri's work. 


23 Fauvel and Gray [1987], p. 514. 


24 Taurinus obtained these formulas by "pure substitution" of 

imaginary quantities for the real quantities appearing in spherical 

trigonometric formulas, following a suggestion of Lambert's that 

the geometry of the acute angle hypothesis appears to hold on the 

surface of a sphere of imaginary radius. 


25 As quoted by Rolwing and Levine, [1994), p. 594. 


26 Fauvel and Gray [1987], p. 498. 


27 Gray notes, however, that Kant "was not committed to a ge

ometry based upon the parallel postulate", and that he did not 

reject the logical possibility of a non-Euclidean geometry. See 

Gray [1979], p. 75. 


28 Aristotle, Physics, 239b, 14ff. 


29 Aristotle, Physics. 239b, 3Off. 


30 Szabo [1964] has suggested that Zeno's paradoxes were also 

critical in establishing the axiomatic method in mathematics. This 

view is critiqued by Knorr [1981] and others. See also Knorr 

[1986], pp. 86-88. 


31 Aristotle, Physics. 239b, lOff. 


32 Aristotle, Physics. 207b 28ff. 


33 As quoted by Burton [1995], p. 593. 


34 See page 144 of the Great Books of the Western World trans

lation of Galileo's Dialogues Concerning the Two New Sciences. 


35 ibid, p. 144. 


36 Building on Heine's 1870 result that a function can be uniquely 

represented by a trigonometric series of the form I(x) ~ao + 

Lan sin (nx) +bn cos(nx) if that series is uniformly convergent 

in general, Cantor proved in that same year that a trigonometric 

series representation is unique provided only that the series con

verges for every x. By 1872, Cantor was able to weaken the 

assumption further, replacing convergence for every x by con

vergence everywhere except on a set P for which some derived 

set pen) is empty, where n was considered to be finite and the 

sets pin) be dermed iteratively as sets of limit points. That is, 

given a set of real numbers P, the set pi is the collection of 


limit points of P and p(n+1) = [p(n))'. Finally, Cantor set 

p(oo) n:=1 pin) and continued this first use of a set opera
tion to a transfinite level. He later replaced the symbol 00 by w to 
emphasize that these were, in fact, actual numbers and not merely 
symbols. See Dauben [1979], pp. 30-46, for further detail. 

37 This suggestion is also made by Dedekind who states "the 
straight line L is infinitely richer in point-individuals than the 

domain R of rational numbers in number-individuals" in his dis
cussion of completeness in Section III of his 1851 paper Stetigkeit 
und irrationale Zahlen. 

38 This proof appears in Cantor's 1874 paper On a Property 
of the Collection of All Real Algebraic Numbers in which he 
also shows that there are infinitely many transcendental numbers 
by establiShing a one-ta-one correspondence .between the set of 
algebraic numbers and the set of natural numbers. 

39 Cantor, ()ber Undendlichen, lineare Punktmannigfaltigkeiten, 
as quoted by Hallett [1979), p. 39. 


40 Cantor himself wrote to Gustav Enestrom: "All so-called proofs 

against the possibility of actually infinite numbers are faulty 

. .. from the outset they expect or even impose all the proper

ties of fmite numbers upon the numbers in question. while on 

the other hand the infinite numbers, if they are to be considered 

in any form at all must (in their contrast to the finite numbers) 

constitute an entirely new kind of number." See Dauben [1979], 

p.125. 


41 In his 1851 Paradoxien des Undendlichen, Bolzano also used 

this feature of infinite sets to formally define the actually infinite, 

although his work was not widely known by his contemporaries. 

In contrast to Cantor, Bolzano chose the part-whole conception 

as a mechanism for comparing the cardinality of sets. instead of 

the correspondence criteria. See Moreno & Waldegg [1991] for a 

historico-critical comparison of Bolzano's and Cantor's concep

tions of the infinite and their relation to high school students' 

responses to the concept. 


42 Falk [1994] remarks that the notion that the part must be 

smaller than the whole is, in fact, learned in several developmental 

stages in early childhood, typically completed by age 7 or 8, so 

that it is not an a priori belief. 


43 We are reminded here of Crowe's ninth law; see footnote 1 
above. 


44 The consistency of the mathematics of the transfinite was also 

an important factor in Cantor's philosophical justification of the 

work. See Hallett [1984], pp. 14-24, and Dauben [1984], pp. 

128-132. 


45 Cantor , ()ber die verschiedenen Ansichten in Bezug auf die 
actualunendlichen Zahlen [1886], as quoted by Hallett [1984] , 
p.25. 

46 ibid, p. 26. 
/ 

47 Cantor drew additional criticism by appealing to theological 
arguments to address these paradoxes and other objections. See 
Hallett [1984]. pp. 1-48, for an analysis of Cantor's line of ar
guments in this respect. 

48 Russell [1903], p. 304. 

49 See Romberg [1992], pp. 53-59, for an overview of the basic 
principles underlying current learning theories in mathematics. 

50 The term 'concrete' does not refer necessarily to actual physical 
materials, but to examples and experiences which aim at the same 
level of abstraction at which the student in currently operating. 

51 See, for example, Tzanakis in this volume for a historical study 
of examples important in the development of group theory; Burton 
and Van Osdol [1995] for a study in ring theory, and Tzanakis 
[1993] on complex numbers. 
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52 As these presentations typically require significant algebraic or 
geometric prerequisites on the part of the student, it is unlikely that 
they could be used at the middle school level where irrationals are 
typically introduced. Fishbein et al. [1995] have found that most 
Israeli high school students still lacked a clear concept of irrational 
numbers (as did many preservice teachers in their study), and 
recommend (page 43) that students be led to "live the difficulty 
of accepting that for two segments one may not fmd any common 
unit, no matter how small-that is, not to disregard the difficulty 
but to confront it!" (Emphasis in original) 

53 Arcavi and Bruckheimer [1985]. p. to of the answer sheet 
to "The Pythagoreans" worksheet. This source-work collection of 
activities designed for in-service and pre-service teachers at the 
junior high level combines original and secondary source read
ings with activity worksheets tracing the historical development 
of irrational numbers from the Pythagoreans through Dedekind's 
definition in the 20th century. Similar activities used at the sec
ondary level are briefly described in Daumas [1996]. 

54 See Gamow [1947], p. 28, for a description of this paradox. 

55 Cordeiro [1988]. p. 560. 


56 Assimilation is the process by which new experiences are inte

grated into existing cognitive schemata, whereas accommodation 

is the process of re-structuring existing schemata in order to make 

sense of recent experiences. 


57 See, for example, Behr and Harel [1990], for a classification of 

some cognitive conflict types which result in systematic student 

errors. 


58 See, for example, Sierpinska [1994], pp. 66-68. 


59 See, for example, Shulman [1995], who has employed such 

assignments based on Archimedes' Sand Reckoner with under

graduate students and secondary teachers. 


60 Borasi [1996] proposes that errors should, in fact, be integrated 

into an inquiry instructional style, and not viewed as impediments 

to student progress. 


61 From Hilbert's 1900 Lecture to the International Congress of 

Mathematicians. See Calinger. p. 699. 




The Historicity of the 
Notion of what is 
Obvious in Geometry 
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Something that is evidently true, or obvious, is something 

that is "immediately grasped by our intelligence", it is 

therefore something that is essentially personal. A math

ematical argument or assertion cannot be "obvious" inde
pendently of the person who makes such a judgment, who 

says, or writes. "that's obvious". The task of the historian 
then, is not a matter of identifying the "eternal" obvious, 

but of trying to determine those aspects of reasoning that 

were generally said to be, or accepted, as obvious. Taking 

this point of view, we shall proceed here not by looking 

at mathematical reasoning of past times with the benefit 

of our own familiar mathematics, but by reading declara
tions of the kinds of things that were held to be obvious at 
the time, and by examining the mathematical practices that 

were based on those convictions. We shall explore read
ings in Greek geometry of Proclus and Descartes, in an

alytic geometry of Larny and Ponce let, and in descriptive 

geometry of Gergonne and Chasles. The comparisons be

tween the readings of disciples and detractors have their 
own historicity. Opposing views generated controversies, 

which could be strident. and so we can certainly claim that 

the nature of what may be taken to be clearly evident, or 
obvious, is a matter of concern to the mathematician at a 

deep and significant level. 

A reasoned discourse on images 

Euclid proposes the following problem as the first Proposi

tion of Book I of the Elements: to construct an equilateral 

triangle on a given finite straight line AB. The construc
tion is presented in an impersonal way, the geometer effac

ing himself before what he contemplates: l "With centre A 
and distance AB let the circle BCD be described; again. 
with centre B and distance B A let the circle ACE be de

scribed; and from the point C, in which the circles cut one 

another, to the points A. B let the straight lines C A, C B 
be joined."2 (See Figure I.) 

D E 

FIGURE 1 
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This construction depends on two Postulates stated at 
the beginning of Book I: we can draw a circle with any 
center and any radius, and we can draw a straight line 
from any given point to any other point. The reasoning by 
which we can conclude that the triangle ABC is equilateral 
is a reasoned discourse, consisting of a set of deductions 
which rely on one of the Common Notions, also stated at 
the beginning of Book I, namely that two magnitudes both 
equal to another magnitude are equal to each other. In his 
Commentary on the First Book of Euclid's Elements, writ
ten in the fifth century CE, Proclus distinguishes between 
the Postulates and the Common Notions, or Axioms: the 
first are things it is useful to allow so to be, the second 
are things which are obvious in themselves. But Proclus 
says that "both must have the character of being simple 
and readily grasped.,,3 

In his commentaries on Proposition I, Proclus relates 
Zeno's objection to this construction: no axiom asserts that 
the two lines CA and CB could not have a common part 
CE, and so the triangle AEB would not be equilateral 
(Figure 2). This objection is a matter of logic, it is offered 
as a challenge to the principles of geometry, since Euclid 
relies on an assertion that was not made explicitly in a 
Postulate or an Axiom. But Proclus raises no objection 
concerning the point C; he believes there is no need to 
prove that the two circles do in fact intersect. The visual 
evidence that the two circles do intersect is obvious enough. 
For Proclus, this Proposition has the virtue of "showing 
us the nature of things as images."4 He writes that the 
equilateral triangle is the most beautiful of triangles, and it 
is very similar to the circle. The image allows us to perceive 
the close relationships between these two perfect figures. 

But this does not mean that the geometer has only to 
rely on visual evidence. Thus, Proclus regards Proposition 
20 of Book I of Euclid's Elements, which states that any 
two sides of a triangle are greater than the remaining side, 
legitimate as a proposition. He replied to the Epicureans, 
who derided the theorem because "it is evident to an ass 
and needs no proof," that "To this it should be replied that, 

FIGURE 2 

granting the theorem is evident to sense-perception, it is still 
not clear for scientific thought."s Any assertion, obvious to 
the senses, but not having the status of an axiom, has to be 
demonstrated. What is obvious still needs to be proved by 
the geometer using logical reasoning. 

Proposition 20 is, in fact, a diorism6 which allows 
us to solve the problem posed in Proposition 22, namely 
to construct a triangle having its sides equal to three given 
straight lines. Euclid attaches to the problem in Proposition 
22 a condition: two of the straight lines taken together must 
be greater than the third. The construction, as in Proposition 
1, depends on drawing two circles, which Euclid assumes 
will intersect. In his commentary, Proclus asks, why can he 
assume this? He points out that two circles can be disjOint, 
can touch each other, or can intersect, and he shows that the 
two first assumptions lead to contradictions. In the case of 
two circles touching, he only considers the case in which 
the circles are exterior to each other. Then he concludes 
that Euclid "was right in assuming that the circles intersect, 
since he had also posited that of three straight lines two of 
them together in any way are greater than the other one.',7 
So Proclus's commentary here seems to be designed more 
to justify the need for the condition than to demonstrate 
the existence of a point of intersection. In the seventeenth 
century, Rene Descartes posed the question of how this 
could be done, but in a wider context. 

Obviousness for Descartes 

Descartes, in Rule IV of the Rules for Direction of the . 
Mind. expresses his dissatisfaction with proofs in arith
metic and geometry in the following way: "But in neither 
subject did I come across [ancient] writers who fully sat
isfied me. I read much about numbers which I found to 
be true once I had gone over the calculations for myself; 
the writers displayed many geometrical truths before my 
very eyes, as it were, and derived them by means of logical 
arguments. But they did not seem to make it sufficiently 
clear to my mind why these things should be so and how 
they were discovered."s The works of those writers did not 
show why a mathematician would propose to prove some 
result, nor how he arrived at the proof. For Descartes, the 
form of logical reasoning allowed the truth of results to 
be incontestably asserted, but it did not provide a way for 
solving new problems. 

In order better to understand Descartes' dissatisfaction, 
let us look at his view of Proposition 11 of Book 2 of 
Euclid's Elements. This requires a given straight line AB 
to be cut at a point H in such a way that the rectangle 
contained by the sides H B and BD, where BD is equal 
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to AB, should be equal to the square on the side AH. 
Euclid sets out his construction before our eyes: first let 
the square of side AB be constructed; let E be taken as 
the mid-point of AC; let E be joined to B; let EF be 
made equal to EB; and let the square FH be drawn on 
AF (Figure 3). 

Then, says Euclid: "I say that AB has been cut at H 
... " as was required. He then goes on to prove that the 
rectangle is indeed equal to the square by a sequence of 
rigorous deductions that flow from the Common Notions 
or from earlier proved propositions. Descartes is obliged 
to admit that the result presented before his eyes is true, 
but he has no way of knowing how Euclid discovered the 
construction of the point H. He wants to know the process 
that was used to determine the point H, and he challenges 
the obviousness of the process: "I say that." 

The obviousness that Descartes was ,interested in was 
not the obviousness of an image, nor that of logical dis
course, but that of the geometer who works with objects 
that are obvious, or simple. To do this, he reduces all ge
ometrical objects to straight lines, which can be related to 
each other with the aid of a unit straight line. In this way, to 
solve a problem is to establish relationships among (finite) 
straight lines. Descartes stated in his Geometry of 1637 
his method for solving any problem in geometry thus: "If 
then, we wish to solve any problem, we first suppose the 
solution already effected, and give names to all the lines 
that seem needful for its construction, to those that are un
known as well as to those that are known. Then making 
no distinction between known and unknown lines, we must 
unravel the difficulty in any way that shows most naturally 
the relations between these lines, until we fmd it possible 
to express a single quantity in two ways. This will con
stitute an equation ......9 The known and unknown line 
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segments are to be labeled with letters, and the solution is 
found by solving an equation. This is an analysis, in the 
sense that it goes from the unknown to the known; but here 
the known is not one or more propositions considered as 
obvious or known to be true. The known consists of given 
line segments or, in the case of a given curve, of relations 
between line segments. 

When a result has been obtained by algebraic calcula
tion, can it be considered to be a proof! Descartes' reply is 
yes. He writes that there are two ways of proving, one by 
analysis, the other by synthesis: "Analysis shows the true 
way by means of which the thing was discovered method
ically ... ; so that if the reader is willing to follow it ... he 
will understand it as perfectly as if he had discovered it for 
himself. Synthesis, by contrast, employs a directly opposite 
way ... it employs a long series of definitions, postulates, 
axioms, theorems and problems ... the reader is compelled 
to give his assent. However, this method is not as satisfy
ing as the method of analysis, nor does it engage the minds 
of those who area eager to learn, since it does not show 
how the thing in question was discovered."l0 The "satis
faction of the mind" comes from the systematic procedure 
of the geometer, who decomposes the figure into its sim
ple parts and then manipulates the algebraic symbols that 
represent those parts. The figure has not only been contem
plated, it has been dissected through calculation. What is 
visually obvious leads to evidence provided by calculation. 
For Descartes, this evidence is a guarantee of the truth of 
the results that have been obtained, and this legitimises the 
calculation as the proof. We will see later, with Larny, an 
example of the Cartesian method to solve problems. 

That something is obvious, according to Descartes, 
does not depend on logical deductions derived from ax
ioms, but is based on the manipulation of simple objects 
represented by symbols. The metaphor of contemplation or 
visual appearance is replaced by one of "touching". Thus, 
Descartes, in a letter to Mersenne in May 1630, distin
guishes between comprehension and knowledge: "to com
prehend something is to embrace it by thought; whereas to 
know something, it suffices to touch it by thought." 11 

Descartes' radical break with "ordinary mathematics" 
was sufficiently deep to make The Geometry incomprehen
sible to most of his contemporaries. But Descartes was to 
have his disciples, like Arnauld and Lamy. In La logique ou 
tart de penser (Logic or the Art of Thinking), co-written 
with Nicole in 1662, Arnauld reproaches geometers like 
Euclid for having "more concern for certainty than for ob
viousness, and for convincing the mind rather than for en
lightening it." In particular, he reproaches Euclid for having 
proved Proposition 20 of Book I, since it has no need of 
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a proof, and of having proved Proposition 1, since it is a 
special case of Proposition 22 (see the statements of the 
propositions above). Arnauld was also unconvinced of the 
logical order of Euclid's Elements and he recommended 
instead a "natural order", more related to things being ob
vious than to the logical order of propositions.12 

Lamy devotes a chapter of his Elements of Geometry 
to the Cartesian method. Using this method, he solves a 
number of propositions of the type given in Euclid's El
ements Book II. For example, for the proposition men
tioned above, he assumes the problem already solved and 
labels the known and unknown segments: here AB a 
and AH = x. He then works through the problem in or
der to establish relations between the known and unknown 

2lengths, here x = a(a - x). He then solves the equation 

1 v'5 1 v'5 
x = - - -a + -a and x = --a - -a2 2 22' 
The first solution makes sense, because the required 

unknown is a line segment. The second is also legitimate 
from an algebraic point of view. What, however, is its status 
from a geometrical point of view? As we will see, the 
question of the geometrical status of negative or imaginary 
algebraic solutions was going to occur frequently in the 
nineteenth century. 

Lamy also solved other problems, in the sort of "blind" 
way that algebraic calculations allow. For example, find the 
point F on the side C B of a given square such that the 
segment FE should be equal to a given segment (Figure 
4).13 Lamy lets the given segment FE have length b and 
sets AB = a, AF = x, and C F = z. He then works 
through the problem, writing relations derived from similar 
figures and from the Pythagorean theorem, until he finally 
obtains the quartic equation (1) in x: 

(1) 

Further progress is impeded by the complexity of the equa
tion, so Lamy attacks the problem by using a supplementary 
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construction (Figure 5). He draws two lines from the point 
E, one parallel to AD and one perpendicular to AE, which 
cut AB produced at H and G respectively, and shows that 
EG x. He then lets BG = y, and works through the 
problem again, this time obtaining the quadratic equation: 

(2) 

Before proceeding with the problem we should note 
that Descartes' criticism of the Ancients applies just as 
well here: how did Lamy discover his construction? Was 
it as a geometer contemplating the figure, or was it as an 
algebraist guided by the calculations? Lamy does not tell 
us. But now back to his equation (1). Treating this as a 
purely algebraic problem, if we take a new variable t, with 

then equation (1) becomes: x(b + x) at. Hence t has to 
satisfy the equation: 

which, with another change of variable y = t - a, brings us 
back to Lamy's equation (2). But what is the geometrical 
significance of t and of y? We can see that t is the hy
potenuse of a right-angled triangle with sides (b + x) and 
x, like AG in the triangle AEG in Lamy's construction, 
and y is the difference between AG and AB, like BG. 

This example, given by an admirer of Descartes, is 
a good illustration of the difficulties that a geometer may 
meet when using algebraic methods, even though the mas
ter himself had devoted a whole Book of his Geometry to 
working with equations. More than a century later, Ger
gonne was to propose problems in geometry for which ge
ometric reasoning from the figures turned out to be vastly 
simpler than analytical methods. 

http:propositions.12
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Analytic Methods and Pure Geometry: 

a shared view of what could be taken as 

obvious 


The works of such mathematicians as Desargues, Pascal 
or La Hire on perspective geometry went almost unnoticed 
in the eighteenth century, while the Cartesian method, ex
tended to analytical geometry and infmitesimal calculus, 
became all powerfuL However. towards the end of the cen
tury, Monge's lessons reawakened interest in purely geomet
ric methods. and gave birth to what would later be called 
modem geometry. Moreover, Gergonne, as editor of the An

nales de mathematiques pures et appliqu~es, promoted new 
ideas which challenged the established methods of the ana
lysts. In volume I of the journal, which appeared in 1810

·1811, he offered his readers a number of problems about 
minima. One of these was to determine in a plane the point 
for which the sum of its distances from three given points, 
or more generally from any number of points, should be a 
minimum.14 

A correspondent at the Institute of Paris, named 
Ttdenat, presented two methods of solution.15 The fIrst 
uses analytic methods, in which the given points are 
referred to two rectangular coordinate axes: the given 
points are m, m', mil, . .. with coordinates (a, b), (a', b'), 
(a" , b"), . . . and the required point M is (x, y). Hence the 
sum S of the distances z, z', z", . .. of the given points 
from M can be expressed algebraically, and the condition 
for S to be a minimum is given by putting the derivatives 
of S with respect to x and y equal to zero. Ttdenat obtains 
the two equations 

x a x - a' 
n" + V(x - a')2 + (y _ b')2 

X - a" 
+ +···=0,

V(x - a")2 + (y - b")2 


Y b + y-b' 

V(x - a)2 + (y - b)2 V(x - a')2 + (y - b')2 


Y - b"
+ + ... 0 
V(x - a")2 + (y - b")2 , 

which, he says, "theoretically speaking, are sufficient for 
the determination of this point; but unfortunately these 
equations, by their extreme complexity, cannot be, in the 
greater number of cases, a great help for the complete so
lution of the problem." He then lets a, a', a", . .. stand for 
the slopes of the lines mM, m'M, milM, ... and notes that 
the equations now take on the very simple form 

cos a + cos a' + cos a" +... 0 
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and 

sin a + sin a' + sin a" + ... = O. 

It should be noted that when a straight line intersects a 
regular polygon then the angles the line makes with the 
sides of the polygon (or the sides extended) satisfy these 
equations. The rest of the argument is then purely geomet
ric: the lines mM, m'M, milM must be parallel to the 
sides of such a polygon, and so for three points, the angles 
mMm' and m'Mm" must both be equal to 120°. 

In the second solution, Ttdenat lets a, b, c, ... stand 
for the distances mM, mM, milM, ..., A, B, 0 for the 
angles mMm', m 'M mil, milM mill, ..., and takes P as 
the area of the polygon whose vertices are the given points 
m, m' , mil, .... From this he obtains the three conditions: 

a + b+ c + ... is a minimum, 

A + B + 0 + ... = 360°, 

absin A + be sin B + cd sin 0 + . . . 2P. 

By considering a, b, c, . .. as "absolutely indepen


dent variables", he derives three equations with respect 
to a, b, c, A, B, 0, . .. and obtains a system of differential 
equations which he solves in three pages of calculations
without any diagrams. However, it is clear that the calcula
tions, in particular the changes of variables, are dictated by 
the form of the expressions: in other words, vision guides 
manipulation. 

Gergonne offers, anonymously, a geometric solution 
of the above problem that is "extremely simple", of which 
he writes that it will be "easy, for any intelligent reader, 
to supply what he has intentionally left out." His solution 
rests on two geometric lemmas, which can be used for the 
solution of numerous problems about minima. 16 

The fIrst lemma states: the point M on a straight line 
AB. such that the sum of its distances from two fIxed 
points P and Q. both situated on the same side of AB, 
is a minimum, is the point such that the angles AMP 
and QM B are equal (Figure 6). In the fIgure, let pi and 
o be points such that PP' is perpendicular to AB and 
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CP = CPl. Then if MP + MQ is a minimum, so is 
M pI + M Q, and M, pI, Q must lie on a straight line. 

The second lemma states: the point M on the circum
ference of a given circle with centre 0, such that the sum 
of its distances from two given points P and Q for which 
M P and M Q do not cut the circumference, is a minimum, 
is the point such that the angles OMP and OMQ are equal 
(Figure 7). In the figure, if another point N is taken on the 
circumference, and if N Q intersects the tangent drawn to 
the circle at M in the point D, then 

MP+MQ < DP+DQ, 

from the first lemma, and 

DP+DQ < NP+NQ, so MP+MQ < NP+NQ. 

Gergonne's reasoning can be seen in the figures, for 
example, the construction of the point M whose distances 
from three given points A, B, and C is a minimum (Figure 
8). He supposes that the distance M C is given, and takes 
M as a point on the circumference of a circle with centre 
C, such that M A + M B is a minimum. From the second 
lemma, the angles C M A and C M B are equaL Hence all 
three angles C M A, AMB and B M C must be equal (ex
change C by B and then by A), and thus each is equal to 
120°. 
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In his journal, Gergonne promoted the works of 
Monge, the theory of transversals of Carnot who wrote 
in 1806 that he wished to "free geometry from the hiero
glyphics of algebra", and the theory of poles and polars 
developed by Brianchon in 1806. Gergonne also published, 
in 1817-1818, one of the first memoirs by Poncelet, a pupil 
of Monge. In it, Poncelet recounts that when he was a stu
dent at the Ecole Polytechnique, from 1808 to 1810, he 
wanted to fmd, by coordinate analysis, the curve whose 
radius of curvature at any point was twice the normal to 
the abscissa axis, and he was extremely surprised to obtain 
the equation of a parabola, instead of the expected cycloid. 
He realized that this result was due to "an influence of 
the sign +", and set about looking for a purely geometric 
proof of the principal properties of the parabola, "a proof 
unencumbered by any of the trappings of algebra."17 While 
languishing in Russian prisons, with only the memories of 
his student days at the Ecole Polytechnique, where he had 
shown a keen interest in the works of Monge, Carnot and 
Brianchon, Poncelet wrote several notebooks devoted to the 
new synthetic geometry. 

The third of his notebooks concerns descriptive prop
erties of conics and the first principles of projection. Ac
cording to the fourth principle, if we are given a conic and 
a straight line in the same plane, there exist an infinite num
ber of ways of projecting the figures onto another plane in 
such a way that the projection of the conic is a circle and 
that of the straight line is the line at infinity. In examining 
the cases where a geometric proof of this principle comes 
up against impossibilities, Poncelet notes however that co
ordinate geometry does allow the result to be established 
and writes: 

It is this great generality of [coordinate] analy
sis, that we are able to bring to proofs in ge
ometry in the same circumstances, that has justi
fied this expression of the power of [coordinate] 
analysis.... In the course of a calculation, it of
ten happens that certain expressions which arise 
implicitly are null, infinite, imaginary, or take a 
quite different form: we continue the calculation 
unworried.... This is not the same with geome
try, as we are accustomed to regard it; since all 
the arguments, and all the consequences, cannot 
be perceived, grasped by the mind, unless they 
are portrayed to the imagination by perceptible 
objects, as soon as these objects are missing, rea
soning ceases. 18 

Thus, according to Poncelet, coordinate analysis and 
geometry differ in the notions that are accepted by the math
ematician as obvious. In the former, these are based on the 
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"blind" manipulation of symbols, and in the latter, on visual 
imagination. If coordinate geometry appears as all powerful 
mathematically, pure geometry is superior from the point 
of view of simplicity and elegance, and can be made equal 
to it if new principles are adopted. Ponce let goes on to 
examine a problem in which pure geometry and coordi
nate geometry are again compared: given two straight lines 
AM and AN. a conic in the same plane, and a tangent 
X' X" to the conic with X' on AM and X" on AN, frod 
the locus of the point P, which is the intersection of two 
other tangents PX' and P X", as the tangent X'X" varies 
(Figure 9). 

Poncelet begins with a "purely geometric solution." 
As X' X", varies the chord XXi has to pass through a fixed 
point m (the pole of AM), and the chord xx" has to pass 
through a fixed point n (the pole of AN). By Poncelet's 
fourth principle, there exists a projection such that the conic 
goes to a circle and the line to infinity. Hence, the above re
duces to the following problem: given a circle, a point x on 
it and two chords XXi and xx" parallel to given directions, 
to find the locus of the point P, which is the intersection 
of the tangents PX' and PX" as x moves on the circumfer
ence of the circle (Figure 10). "It is clear", says Poncelet, 
that the angle x'xx" is constant, so the chord x'x" is con
stant and therefore the point P lies at a constant distance 
from the centre C of the circle. Thus P describes a circle 

p 
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concentric to the given circle, and thus the point P in the 

original problem describes a conic. Poncelet comments on 

his solution: "If one wished to deal with the same question 
in all its generality by coordinate analysis, one would be 

thrown into calculations and eliminations of a dishearten
ing length."19 He does go on, however, to offer three long 

solutions by analytical geometry, "not to give a greater cer
titude to the first proof', but in order to determine the locus 

precisely by equations, and to show how solutions foreign 

to the question intrude into the calculations. 
In a note concerning the determination of this locus, 

Poncelet again contrasts the resources of coordinate ge

ometry with the reasoning in pure geometry, "where one 

abandons oneself to the personal, one might say intuitive, 
contemplation of the conditions and the givens of each 
problem."2o This type of solution, he writes, "alone merits 

the epithets of elegance, speed and ingenuity." The visual 

evidence, which he invites the mathematician to share, is 

something that is obvious in space, and not in the plane. 

With plane geometry, the geometer may contemplate a fig

ure as an image before him, but, with projective geometry, 
he himself is in a space in which the figure lies. To put it 

another way, in space, the image and the figure no longer 
coincide: the visual evidence in the plane and in space are 

certainly different. Take for example. Desargues' theorem, 
which states that if two triangles are such that the lines join

ing the corresponding vertices pass through the same point 

0, then the corresponding sides intersect in three collinear 

points M, N, P. It is not an obvious theorem of plane ge

ometry, but the geometer can see this theorem as obvious if 
he embeds the two triangles in two planes in space whose 
intersection is the straight line M N P (Figure 11). 

Chasles reports that in his lectures Monge never drew 

any figures, but he "knew how to make all the most compli
cated forms of space appear in space ... with no other aid 

than his hands, whose movements admirably supplemented 
his words.,,21 In space, what is visually obvious requires 

the help of movement and talking, just as the new projec

tive geometry needed new principles to extend the power of 
coordinate geometry. In the 1820s, Poncelet and Gergonne 

went on to propose two fundamental principles, the princi
ple of continuity and the principle of duality, respectively. 

As we will see later, this was to cause a dispute between 

the two mathematicians, but beyond simple polemics and 
disputes of priority, their differences were profound. In fact, 

in a way, the principle of continuity derives from the evi

dence provided by motion and the principle of duality from 
the evidence of language. 
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Questions of Principles: 
a dispute about what could be accepted as 
obvious 

In his Traitt des proprittts projectives des figures of 1822, 
Poncelet set out to make descriptive geometry independent 
of algebraic analysis. Wherein lies the extensive power of 
coordinate geometry? Why is the geometry of the Ancients 
lacking and what means can be found for it to enjoy suc
cess? Poncelet explains that algebra represents magnitudes 
by "abstract signs" which provide these magnitudes with 
the greatest possible lack of determination. Reasoning is 
implicit in the algebra and is an abstraction from the fig
ure, whereas the geometry of the Ancients never draws 
conclusions which cannot be "portrayed to the imagination 
or to sight". But were it possible to use implicit reasoning, 
through abstraction from the figure, ancient geometry could 
become the rival of coordinate geometry. Poncelet goes on 
to state his principle of continuity. Consider some figure, 
in a general and to a certain extent undetermined position, 
and suppose we have found either "metric" or "descriptive" 
relations or properties of the figure by ordinary explicit 
reasoning. Then, says Poncelet, "is it not evident that if, 
keeping the same given things, one could vary the primitive 
figure by insensible degrees by imposing on certain parts of 
the figure a continuous but otherwise arbitrary movement, 
then the properties and relations found for the first sys
tem remain applicable to successive states of the system, 
provided always that one has regard for certain particu
lar modifications that may intervene, ... modifications that 
will always be easy to recognise a priori and by infallible 
rules?,,22 

For Poncelet, the principle of continuity is a sort of 
axiom whose "obviousness is manifest, incontestable and 

does not need to be proved". For him, if it is not admitted 
as a method of proof, it can at least be admitted as a means 
of discovery or invention. It seemed to him unreasonable 
to reject in geometry ideas that were generally accepted 
in algebra. The obviousness of the principle of continuity 
did not, however, convince all of Poncelet's contemporaries. 
Ponce let's geometry was even described by some of them 
as "romantic geometry." In a communication to the Royal 
Academy of Sciences in January 1826, Cauchy wrote that 
the principle of continuity was "only a strong induction."23 
Poncelet replied to this later, writing that Cauchy only pos
sessed an imperfect feeling for true geometry. In another 
communication to the Royal Academy, commenting on a 
memoir of Gergonne's about the theory of reciprocal polars, 
the writer explains that to put the result "beyond doubt, it 
appears necessary for them to substitute an analytic proof 
for M. Poncelet's geometric proof.,,24 In 1827 Poncelet de

nounced "the habit generally acquired of according to al
gebra an almost undefined rigour." He accused correspon
dents of the Academy of having cast a sort of disfavour on 
his principles, and he regretted that the reproach of lack 
of rigour had been restated by several geometers, including 
Gergonne.25 This latter had, the previous year, stated his 
principle of duality, and the two mathematicians were now 
in dispute about it. 

In his Considtrations philosophiques sur les tMments 

de la science de Ntendue (Philosophical considerations on 
the elements of the science of space)26 of 1826, Gergonne 
separates the theories of the science of space into two cat
egories: those concerning metric relations, and established 
by calculation, and those relating to the position of geo
metric objects, which can be deduced by calculation but 
can also be "completely freed" from calculation. He draws 

http:Gergonne.25
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support from the works of Monge, which allowed one to 
conclude that the division of geometry into plane geometry 
and spatial geometry was not as natural as "twenty cen
turies of habit have been able to persuade us." He notes 
that in plane geometry, to each theorem there corresponds 
another, which can be derived by a simple interchange of 
the words "points" and "lines", while in the spatial geom
etry it is the words "points" and "planes" that have to be 
interchanged. "This sort of duality of the theorems consti
tutes a geometry of position." Gergonne sets out theorems 
in two columns since, he says, it is "superfluous to at
tach to this memoir figures, often more embarrassing than 
useful, in the geometry of space.... We only have here, in 
effect, logical deductions, always easy to follow, when the 
notation is chosen in a convenient way.,,27 

The duality is obvious in the statement of Desargues' 
theorem and its converse, and setting it out in columns 
shows this clearly: 

Desargues' Theorem Dual of Desargues' Theorem 

If two triangles are such that the If two triangles are such that the 
lines joining the corresponding points of intersection of corre
vertices pass through the same sponding sides lie on the same 
point 0, then the corresponding line 0, then the corresponding 
sides intersect in three collinear vertices are joined by three con
points. current lines. 

We could equally show the duality of Pascal's theorem 
and Brianchon's theorem. The correspondent to Gergonne's 
memoir in the Bulletin des sciences de F~russac notes that 
the properties of poles and polars can also illustrate the 
property of duality.28 But Gergonne extends the notion of 
duality in a much more general way to the whole of the 
geometry of space. His duality consists of a true work of 
translation, work done on language, as is shown in the first 
example of his 1826 memoir, which shows the duality of 
propositions for the plane and for space: 

Two points, distinct from each Two planes, non parallel, given 
other, given in space, determine in space, determine an infinite 
an infinite line which, when line which, when these two 
these two points are designated planes are designated by A and 
A and B, can itself be desig B, can itself be designated by 
nated by AB. AB. 

In a note29 of March 1827 about a memoir by Pon
celet on the theory of reciprocal polars, Gergonne writes 
that certain statements of theorems are indeed susceptible 
of a "sort of translation which is the subject of Poncelet's 
meditations, without their authors having the air of doubt
ing that this translation is possible."3o He reproaches Pon
celet for hastening a revolution, while he himself tries to 
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make the truth accessible by senses. For him, the obstacle 
facing an easy propagation of the doctrines, which both 
he and Poncelet wished to popularise, lay in the obligation 
to speak in a language that had been created for a more 
restrained geometry, which is the plane geometry of the 
Ancients where the figures were not embedded in space. 
For, when "the language of a science is well made, logi
cal deductions come from it with such ease, that the mind 
moves as it were of itself before the new verities.',31 It is 
therefore through work on language that the new doctrines 
can be made obvious: to present the new theory in the most 
advantageous way, it is necessary to first create a "language 
in keeping with it." 

The above note is the origin of the dispute between 
the two mathematicians. Poncelet was furious to read in 
the Bulletin des sciences de F ~russac that he had taken his 
research from Gergonne's duality. Poncelet was obliged to 
show that his idea of reciprocal polars was not one of du
ality, and to explain that he was even opposed to the latter 
idea, in particular to setting out propositions in columns. He 
reproached Gergonne with having established false propo
sitions as general principles, and of having "tortured the 
meaning of words" in order to make the consequences 
correct.32 The dispute was also to draw in Plucker, who 
announced that he "had discovered in a purely analytic 
way the secret of duality." 

The intensity of Poncelet's remarks shows the depth 
of the disagreements: here were three conceptions of what 
could be taken as obvious, rooted in different practices and 
habits. The dispute about what could be taken as obvious 
remained lively until the end of the nineteenth century. For 
example, Hadamard was described by Hermite as a traitor 
because, in a memoir of 1898, the former had used geo
metric intuition while the latter despised geometry. Hermite 
protested vehemently against Hadamard, crying: "You have 
betrayed analysis for geometry.,,33 

Logically obvious, visually obvious, and 

obvious by manipUlation 


In Hilbert's Fundamentals of Geometry, which appeared 
in 1899, the objects of geometry are defined in a purely 
grammatical and formal way; points, lines and planes are 
only words which are related together by sentences. This 
is close to Gergonne's idea of interchanging words in sen
tences. Thus, the first axioms state that: 

1. 	 There exists a line associated with two given points 
A and B to which these two points belong. 

2. There is no other line to which the two points A and 
B belong. 
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3. 	On a line, there are at least two points; there exist at 

least three noncoUinear points. 
4. There exists a plane associated with three noncollinear 

points A, B, C to which these three points A, B, C 
belong. 
This geometry is axiomatic, like that of the ancients, 

but here no visual evidence is supposed. The combination 
of logic and vision that is found in Euclidean geometry was 
blown apart by the invention of non-Euclidean geometries. 
In 1733, when faced with a choice between logical dis
course and visual evidence, Saccheri wrote that the nature 
of the straight line was repugnant to the non-Euclidean 
hypothesis and so he chose visual evidence. The inven
tors of non-Euclidean geometry made the opposite choice. 
Poincar~, however, proposed a visual model of hyperbolic 
geometry, in accordance with a geometric vision. 

Poincar~'s reading of Hilbert's book can serve as a fit
ting epilogue to our story. In Science et methode, which 
appeared in 1909, Poincar~ contrasts two types of mathe
matical definitions: "those which seek to make an image 
become alive, and those where we are restricted to combine 
empty forms, perfectly intelligible, but purely intelligible 
forms, that abstraction has deprived of all matter."34 For 
him, these latter definitions are those of Hilbertian geome
try. For a geometer of the nineteenth century, like Poncelet, 
they were also those of coordinate geometry, where, for 
example, a circle is defined as an equation. Poincare re
marked that the definitions which are best understood by 
one were not those best suited to the other. 

The historical stages to which we have referred con
vince us of the justice of this remark of Poincare's. At each 
stage, new arguments or practices declared as obvious by a 
mathematician come up against the acquired habits of his 
contemporaries regarding what is understood to be obvious. 
To put it another way, and paradoxically, obviousness may 
not be obvious. The feeling, however intimate it may be, 
that something is obvious, must be understood more as a 
habitus,35 rather than as something inborn. 
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Teaching of Linear 
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Grenoble, France 

Linear algebra is universally recognized as a very important 
subject not only within mathematics but also with regards 
to its applications to physics, chemistry, economics, and so 
on. In the modem organization of mathematical subjects, 
a vector space is one of the simplest algebraic structures. 
Nevertheless students, who often have great difficulty at the 
start of a linear algebra course in the first year of university, 
do not easily recognize this simplicity. This paper will focus 
on the French context of this teaching, but several research 
works have found similar difficulties in various countries 
around the world. l 

In France, the teaching of linear algebra was entirely 
remodeled with the "reform of modem mathematics" in 
the sixties. At that time, the influence of Bourbaki and a 
few others led to the idea-which was based on a very 
democratic concern-that geometry could be more easily 
accessible to students if it were founded on the axioms of 
the structure of affine spaces. Therefore the axiomatic the
ory of finite-dimensional vector spaces was taught in the 
first year of secondary school (age 15). The fate of this 
reform and the reaction it aroused are well known. There
fore, from the beginning of the eighties, the reform of the 
teaching of mathematics in French secondary schools grad
ually led to the removal of any subject related to modem 
algebra. Moreover, the teaching of geometry focused on the 
study of transformations on elementary figures, and analyt
ical geometry is now barely taught at secondary level. On 
the other hand, formal theories became unpopular and stu
dents entering university nowadays have very little practice 
of any formal mathematical subject. 

This situation created a total change in the background 
of students, for whom the teaching of linear algebra repre
sented the first contact with such a "modem" approach. Of 
course the teaching in the first year of university changed 
and became less theoretical. In many universities,2 it was 
decided to prepare the students for the teaching of linear al
gebra by a preparatory course in Cartesian geometry and/or 
by a course in logic and set theory. Yet, in secondary school, 
students still learn the basics of vector geometry and the 
solving of systems of linear equations by Gaussian elimi
nation. Therefore, they have some knowledge on which the 
teaching of linear algebra can be based. For the moment, 
the idea of teaching students the axiomatic elementary the
ory of vector spaces within the first two years of a science 
university has not been questioned seriously, and the teach
ing of linear algebra. in France. remains quite formaL 

In this context, A. Robert and J. Robinet (1989) 
showed that the main criticisms made by students toward 
linear algebra concern the use of formalism, including the 
overwhelming number of new defmitions and the lack of 
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connection with what they already know in mathematics. It 
is quite clear that many students have the feeling of landing 
on a new planet and are not able to fmd their way in this 
new world. On the other hand, teachers usually complain 
of their students' erratic use of the basic tools of logic 
or set theory. They also complain that students have no 
skills in elementary Cartesian geometry and consequently 
cannot use intuition to build geometrical representations of 
the basic concepts of the theory of vector spaces. These 
complaints correspond to a certain reality, but the few at
tempts of remediation-with previous teaching in Cartesian 
geometry and/or logic and set theory-did not seem to im
prove the situation substantially. Indeed, many works have 
shown that difficulties with logic or set theory cannot be 
interpreted without taking into account the specific context 
in which these tools are used. 

In my first work (1990a), I tested with statistical tools 
the correlation between the difficulties with the use of the 
formal defmition of linear independence and the difficul
ties with the use of mathematical implication in other con
texts. Although these two types of difficulties seemed at 
first closely connected, the results showed clearly that no 
systematic correlation could be made. This means that stu
dents' difficulties with the formal aspect of the theory of 
vector spaces are not just a general problem with formal
ism. They are mostly a difficulty of understanding the spe
cific use of formalism in the theory of vector spaces and 
the interpretation of the formal concepts relative to more 
intuitive contexts like geometry or systems of linear equa
tions, in which they historically emerged. We will analyze 
this point in more detail in this paper. 

A. Robert, 1. Robinet, M. Rogalski and I have devel
oped a research program on the learning and teaching of lin
ear algebra in the first year of a French science university. 
This work, which started some ten years ago, includes not 
only the elaboration and evaluation of experimental teach
ing but also epistemological reflections. These are built in a 
dialectical process on a historical analysis of the genesis of 
the concepts of linear algebra and a pedagogical analysis of 
the teaching and the difficulties of the students.3 In this pa
per, I will try to summarize the main issues of our research, 
focusing on a restricted set of concepts: linear dependence 
and independence, generators, basis, dimension and rank. 

I. Logic versus Meaning: the Role of 
Formalism 

Linear dependence and independence, generators, basis, di
mension and rank are the elementary concepts which con
stitute the foundations of the theory of vector spaces. For 

any mathematician, they seem very simple, clearly inter
related notions. Indeed, in the formal language of modern 
algebra they correspond to easily expressible defmitions. 
Moreover, the logic of a deductive presentation induces a 
"natural" order among them (more or less the order given 
above) which reflects their intrinsic network of relations. 

In his doctoral dissertation, A. Behaj (1999) has inter
viewed several students from the second to the fourth year 
of French and Moroccan universities. He asked them, in 
pairs, to build the skeleton of a course, to be addressed to 
first year students, on these basic notions of linear algebra. 
It is quite surprising to see that nearly all of them have the 
same initial reaction: they present the notions in their sup
posedly natural logical order. They do it consciously and 
they give justifications on the ground of logic and sim
plicity. Yet, most of them, when they are asked to give 
applications and exercises in relation to the course, gradu
ally abandon (more or less explicitly) this "natural" order 
and reorganize the network of relations according to a less 
conscious construction, after using them in several contexts. 
Similar phenomena have been revealed when interviewing 
teachers. Not that they change their presentation, but they 
c1early-although it may not be really conscious-show 
two contradictory concerns when structuring their course: 
a concern for the logic of a deductive presentation and a 
concern for the applicability of their course to exercises 
and problems. 

These two concerns induce different organizations of 
the notions. Therefore, most of the time, the teacher's 
course is apparently organized according to standards of 
logic, proper to the rigor of a mathematical text. However, 
the choices of examples, remarks, and so on create a sec
ondary level of organization in relation to the solving of 
exercises and problems and also according to what teach
ers know of the difficulties of their students. For instance, 
the understanding of the notion of generators is very rarely 
evaluated in exercises. Indeed, teachers know that once the 
dimension of a subspace is known to be n, then n inde
pendent vectors generate the subspace; they also know that 
proving that vectors are independent is easier than proving 
that they generate a subspace. Thus the notion of generator 
holds a very different position within their formal presen
tation of the theory from the one it has within the solving 
of exercises. 

Such observations may certainly be made about sev
eral different mathematical notions. Yet, this group of no
tions is particularly interesting, because each of them is 
somehow elementary, not in the sense that it is simple, but 
in the sense that it is an element which will be part of a 
more complex set of notions. In this sense, it is true that 
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the notions of linear independence and generators are more 
elementary than the notion of basis, because a basis is usu
ally defined as a set of linearly independent generators. Yet, 
a basis can be defined as a minimal set of generators or as 
a set of units, of which each element of the vector space 
is a unique linear combination. In these two approaches, 
there is no reason to say that linear independence is more 
elementary than the notion of basis, which can be defined 
independently of the notion of linear independence. On the 
other hand, a finite-dimensional vector space may be de
fined as having a finite maximal set of independent vectors. 
Then a basis can be defmed as any maximal set of indepen
dent vectors, without using the notion of generators, which 
has then no reason for being more elementary than the 
notion of basis. Although this last alternative is somehow 
"unnatural", the first two are sometimes chosen in text
books or actual teaching. However all three are logically 
consistent. 

I draw two conclusions from these remarks : 

• 	 Any logical construction is partly arbitrary and cannot 
be qualified as natural, without further epistemological 
investigations. 

• 	 The nature and meaning of concepts is to be found be
yond their logical interrelations. 

Although these may seem obvious, they are very im
portant as far as a theory such as that of vector spaces is 
concerned. Indeed, in its modem axiomatic version, this 
theory has been so highly formalized that it is tempting to 
reduce its content to the logical network of relations be
tween formal concepts. On the other hand, as a reaction to 
this extreme position, one may want to give only "practical" 
knowledge with reference to "practical" contexts like ge
ometry, linear equations, differential equations, and so on. 
But this last option reduces the meaning and general nature 
of linear algebra. Indeed, the formal aspect of the theory 
of vector spaces is the result of its general nature and a 
condition for its simplicity. Therefore one cannot spare the 
students the difficulty of formalism if the theory is to be 
understood with all the meaning it has now acquired. More
over, we put forward the hypothesis that the necessity for 
formalism has to be understood very early in the leaming 
of the theory. Our historical analysis (Dorier 1995a, 1997 
and 2000 (first part» has been, to a great extent, conducted 
in order to clarify and support the preceding statement. 

Our epistemological reflection has led us to under
stand more clearly the different stages of unification and 
generalization in the genesis of linear algebra but also the 
role played by the different contexts of origin (in geom
etry, linear systems and determinants, algebra, and func
tional analysis). The axiomatic approach of the theory only 

prevailed around 1930 and took a long time to be ac
cepted by mathematicians, even in the early history of 
functional analysis where infinite determinants were pre
ferred by many until Banach's 1932 Theorie des operations 
lineaire (Dorier 1996). Yet, once accepted, the axiomatic 
approach was quick to replace all previous analytical ap
proaches, and its power of generalization and unification 
was universally recognized. In teaching, however, formal
ism should not be introduced too early and imposed without 
care. A formal concept has to be introduced with reference 
to students' conceptions previously acquired in intuitively 
based contexts, as a means for generalization and simplifi
cation. 

Let us take as an example the notions of linear inde
pendence and dependence. 

II. The Case of Linear Dependence and 
Independence 

In the language of the modem theory these two notions are 
extremely simple. They can be defined as two logically op
posite notions in the language of basic set theory. Yet, even 
if students can be easily trained to solve standard questions 
like "is this set of vectors independent or not?" in various 
contexts, the use of these notions in less straightforward 
situations may be much less easy. On the other hand, the 
historical elaboration of the formal definition of linear inde
pendence was not as easy as one could imagine. I will start 
by developing these two aspects: the students' difficulties 
and the historical evolution. Then, in a third part, I will 
draw some conclusions on the basis of an epistemological 
synthesis of the first two parts. 

1) The difficulties of the students. 
Anyone who has taught a basic course in linear algebra 
knows how difficult it may be for a student to understand 
the formal defmition of linear independence and to apply it 
in various contexts. Moreover, once students have proved 
their ability to check whether a set of n-tuples, equations, 
polynomials or functions are independent,4 they may not 
be able to use the concept of linear independence in more 
formal contexts. 

Let us take a few examples of exercises5 given to 
beginning students to obtain a better idea of this kind of 
difficulty. 

I. Let U, V, and W be three vectors in R3. If they 
are pairwise non-collinear, are they independent? Many 
students think that this proposition is trivial, and they are 
sure that it is true. If they want to prove it by using the 
formal definition, they are led to say more or less any kind 
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of nonsense just for the sake of giving a fonnal proof (as 
required by their teacher) to a statement of which they are 
convinced.6 Nevertheless, this mistake is one aspect of a 
more general difficulty with the global aspect of the con
cept of linear (in)dependence. Indeed, many students are 
inclined to treat the question of linear (in)dependence by 
successive approximations starting with two vectors, and 
then introducing the others one by one. We will say that 
they have a local approach to a global question. Indeed, 
in many cases, at least if it is well controlled, this ap
proach may be correct and actually quite efficient, yet, 
it is a source of mistakes in several situations. The stu
dents have built themselves what G. Vergnaud (1990) calls 
theortmes-en-acte (i.e., rules of action or theorems which 
are valid in some restricted situations but create mistakes 
when abusively generalized to more general cases). Here is 
a non-exhaustive list of theortmes-en-acte connected with 
the local approach of linear (in)dependence, that we have 
noticed in students' activities: 

• 	 if U and V are independent of W, then U, V, and W 
are globally independent; 

• 	 if Ul is not a linear combination of U2 , U3, . .. , Uk, then 
Ul, U2 , .•• ,Uk are independent; 

• 	 if Ul> Vl, and V2 are independent and if U2 , Vi. 
and V2 are independent, then Ul , U2 • Vi, and V2 are 
independent.7 

2.1. Let U, V, and W be three vectors in R3, and f 
a linear operator in R3.lf U, V, and Ware independent, 
are f(U), f(v), and f(W) independent? 

2.2. Let U, V, and W be three vectors in R 3 , and f a 
linear operator in R3.lf f(U), f(V), and f(W) are inde
pendent, are U. V. and W independent? To answer these 
questions, beginners usually try to use the formal defmition 
without first building concrete examples that would help 
them to obtain an idea of the result. Then they try differ
ent combinations with the hypotheses and the conclusions, 
and fmally answer "yes" to the first question and "no" to 
the second one, despite coming close to writing the correct 
proof for the correct answers. Here is a reconstructed proof 
that reflects the difficulties of the students: 

If aU + ,BV + 'YW = 0 then f(aU + ,BV + 
'YW) = 0 so f being a linear operator, af(U) + 
,Bf(V) +'Yf(W) = 0; now as U, V, and W are 
independent, then a = ,B = l' = 0; so f(U), 
f(V), and f(W) are independent. 

In their initial analysis, A. Robert and J. Robinet con
cluded that this type of answer was an incorrect use of 
mathematical implication characterized by the confusion 
between hypothesis and conclusion. This is indeed a seri

ous difficulty in the use of the formal definition of linear 
independence. As mentioned above, I tested the validity of 
this hypothesis with different students. Before the teaching 
of linear algebra, I set up a test to evaluate the students' 
ability in elementary logic and particularly in the use of 
mathematical implication (Dorier 1990a and b), and after 
the teaching of linear algebra, I gave the above exercise to 
the students. The results showed that the correlation was 
insignificant; in some cases it was even negative. Yet, on 
the whole (both tests included many questions), there was 
quite a good correlation between the two tests. This shows 
that if a certain level of ability in logic is necessary to un
derstand the fonnalism of the theory of vector spaces, gen
eral knowledge, rather than specific competence is needed. 
Furthennore, if some difficulties in linear algebra are due 
to fonnalism, they are specific to linear algebra and have 
to be overcome essentially in this context. 

On the other hand, some teachers may argue that, in 
general, students have many difficulties with proof and 
rigor. Several experiments that we have made with students 
showed that if they have connected the formal concepts to 
more intuitive conceptions, they are in fact able to build 
very rigorous proofs. In the case of the preceding exercise, 
for instance, if you ask the students after the test to il
lustrate the result with an example individually, let us say 
in geometry, they usually realize very quickly that there is 
something wrong. It does not mean that they are able to 
correct their wrong statement, but they know it is not cor
rect. Therefore, one main issue in the teaching of linear 
algebra is to give our students better ways of connecting 
the fonnal objects of the theory to their previous concep
tions, in order to have a better intuitively based learning. 
This implies not only giving examples but also showing 
how all these examples are connected and what the role 
of the fonnal concepts is with regard to the mathematical 
activity involved. 

2) Historical background. 
The concept of linear (in)dependence emerged historically 
at first in the context of linear equations (Dorier 1993, 
1995, 1997 and 2000). Euler's 1750 text entitled Sur 
une contradiction apparente dans la doctrine des lignes 
courbes is the first one in which a question of depen
dence between equations was discussed. Euler's concern 
was to solve Cramer's paradox. This paradox first drawn 
out by Cramer and MacLaurin was based on two proposi
tions commonly admitted in the beginning of the eighteenth 
century: 

1. An algebraic curve of order n is uniquely deter
mined by n(n + 3)/2 of its points. This was clear from 
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elementary combinatorics by counting the coefficients of 
the equation of such a curve. 

2. Two algebraic curves oforders nand m intersect in 
nm points. It was known that some points may be multiple, 
infmite or imaginary, but one knew cases when all these 
mn points were finite, real, and distinct. 

Therefore for n > 3, it appears that n2 points common 
to two algebraic curves of order n would not be sufficient 
to determine uniquely an algebraic curve, while the first 
proposition states that n(n+3)/2 « n 2 ) should determine 
one and only one such curve. This is Cramer's paradox. 
Euler discussed the validity of both propositions and of 
their consequences and concluded that the first one, based 
on the fact that n linear equations determine exactly n 
unknown values, should be restricted. At that time, the 
general idea that n equations determine n unknowns was 
so strong that nobody had taken the pains to discuss the 
exceptional case, until Euler pointed out this problem. 

He starts by an example with two equations : 

Let us just look at these two equations 3x-2y= 5 
and 4y = 6x-1O; one will see immediately that it 
is not possible to determine the two unknowns x 
and y, because if one eliminates x then the other 
unknown y disappears by itself and one gets an 
identical equation, from which it is not possible 
to determine anything. The reason for this acci
dent is quite obvious as the second equation can 
be changed into 6x - 4y = 10, which being sim
ply the frrst one doubled, is thus not different.8 

It is clear-especially by reading the end of this 
quotation-that Euler does not intend to fool his reader, 
even though he artificially hides the similarity of the two 
equations. Yet, it is also clear that it is not the fact that the 
two equations are similar that determines the dependence 
of the equations, but the fact that something unusual-an 
accident-happens in the final step of the solving process. 
This accident reveals the dependence of the equations, be
cause, although there are two of them, these equations do 
not determine two unknowns. Mathematically speaking, the 
two statements are logically connected; a linear dependence 
between n equations in n unknowns is equivalent to the fact 
that the system will not have a unique solution. However, 
these two properties correspond to two different concep
tions of dependence. To be able to distinguish these two 
conceptions, I will call Euler's conception, inclusive de
pendence. I wish to insist on the fact that this conception 
is natural in the context in which Euler and all the math
ematicians of his time were working, that is to say with 
regard to the solving of equations and not the study of 
equations as objects on their own. 

To make my statement clearer, let us see what Euler 
says in the case of four equations. He gives the following 
example: 

5x + 7y - 4z + 3v - 24 = 0, 

2x - 3y + 5z 6v - 20 0, 

x + 13y 14z + 15v + 16 = 0, 

3x + lOy 9z + 9v 4 = O. 

These would be worth only two, since having 
extracted from the third the value of 

x = -13y + 14z 15v - 16 

and having substitued this value in the second to 
get: 

y = (33z-36v-52)/29 and x (-23z+33v+212)/29, 

these two values of x and y being substituted 
in the first and the fourth equations will lead to 
identical equations,9 so that the quantities z and 
v will remain undetermined. lo 

Here again the proof is based on the solving of the sys
tem offour equations by substitution that leads to two unde
termined quantities. Euler does not even mention any linear 
relations between the equations, although they may seem 
rather obvious, like: (1) (2) = (4) and (1) - 2x(2) = (3), 
for instance. Therefore, the property expressed by Euler is 
not the modern concept of linear dependence. It is, how
ever, a property of the equations that makes the network 
of constraints they impose on the unknowns equivalent to 
two constraints and not four. This is what we propose to 
call inclusive dependence. Another aspect of Euler's work 
is worth special attention, the passage from two to tltree 
equations. Indeed, for three equations, Euler says: 

The frrst one, being not different from the third 
one, does not contribute at all in the determi
nation of the tltree unknowns. But there is also 
the case when one of the tltree equations is con
tained in the two others .... So when it is said 
that to determine three unknowns, it is sufficient 
to have tltree equations, it is necessary to add the 
restriction that these three equations are so dif
ferent that none of them is already comprised in 
the others,u 

Euler's use of terms such as comprised or contained 
refers to the conception of inclusive dependence as we ex
plained above. It does not mean that Euler was not aware 
of the logical equivalence with the fact that there exist lin
ear relations between the equations, but, within his prac

http:undetermined.lo
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tice with linear equations, the conception of inclusive de

pendence is more consistent and efficient. Yet, there is a 
difficulty for further development; indeed, the conception 
of inclusive dependence is limited to the context of equa
tions and cannot be applied to other objects, like n-tuples 
for instance. Therefore inclusive dependence is context
dependent although linear dependence is a general concept 
that applies to any linear structure. 

It is important to notice also that Euler separates the 
case when two equations are equal from the case when the 
three equations are globally dependent. This points out an 
intrinsic difficulty of the concept of dependence, which has 
to take all the equations in a whole into account, not only 
the relations in pairs. We have seen that students have real 
difficulties with this point. 

Moreover, in this text, Euler was able to bring out 
issues that can be considered in many respects as the first 
consistent ideas on the concept of rank. For instance the 
quotation above, about four equations, is an illustration of 

the relation: 

(number of unknowns) - (rank of the system) 
= (dimension of the set of solutions). 

Indeed, there are four unknowns; the equations "are worth 
only two" (their rank is two); and "two unknown quanti
ties will remain undetermined" (the dimension of the set of 
solutions is two). Of course this result remains implicit and 
is not formalized. Euler shows, however, through a few nu
merical examples never exceeding five unknowns and five 
equations, that he had an intuitive yet accurate and con
sistent conception of the relation between the size of the 
set of solutions and the number of relations of dependence 
between the equations of the system. In this sense, the spe
cific context of Cramer's paradox helped him to elaborate 
such a reflection as shown in the following statement: 

When two lines of fourth order12 intersect in 16 
points, as 14 points, when they lead to equations 
all different among themselves,13 are sufficient 

to determine a line of this order, these 16 points 
will always be such that three or even more of 
the equations they produce are already comprised 
in the others. So that these 16 points do not de
termine anything more than if they were 13 or 
12 or even fewer and in order to determine the 
line completely we will have to add to these 16 
points one or two points. 14 

We will see that it took more than a century for the 
concept of rank to come to its maturity. 

The year 1750 is also the year when Cramer published 
the treatise that introduced the use of determinants, which 

were to dominate the study of linear equations until the first 
quarter of the twentieth century. In this context, dependence 
of equations but also of n-tuples was characterized by the 
vanishing of the determinant. However, determinants pro
duced technical tools that were not always appropriate for 
easily approaching questions like the relation between the 
size of the set of solutions and the number of relations 
of dependence between the equations, as Euler had done 
in a very intuitive approach. On the other hand, the con
ception of inclusive dependence, which was still dominant, 
prevented equations and n-tuples being treated as identical 
objects with regards to linearity. Thus, this was an obstacle 
to the use of duality reasoning. 

But the concept of rank is intrinsically connected to 
duality, since it is not only an invariant of a subspace but 
also of its orthogonal complement (i.e. its representation 
by equations). In the context of equations, to make all the 
aspects of rank explicit, it is necessary to consider all the 
equivalent systems to a given system of homogeneous linear 
equations and to show that its set of solutions cannot be 
represented by fewer than a certain number (the rank of 
the system) of equations. This process uses duality (see 
Dorier 1993). Therefore abandoning inclusive dependence 
for linear dependence was a necessary and decisive step 
toward the determination of the concept of rank. 

In the second half of the nineteenth century many 
mathematicians made great progress toward this goal. But 
they used very elaborate technical tools within the theory of 
determinants and never really made anything explicit. All 
the works that we have analyzed in this period aimed to 
give a rule for solving any system of linear equations in the 
most concise manner. The idea was to choose one of the 
nonzero minors of maximal order r. The r unknowns and r 
equations involved in this minor were called the main equa
tions and the main unknowns.15 One can apply Cramer's 
rule to the r main equations, the remaining unknowns be
ing put on the other side of the equality with the constant 
terms. Therefore, the value of the r main unknowns are 
given as functions of the other unknowns. By substitution 
of these values in the other equations, one gets the condi
tions of consistency of the system. This practical rule for 
solving a system made the value of r central in the relation 
between the size of the set of solutions and the number of 
relations of dependence among the equations. Yet the spe
cific choice of the minor had to be discussed with regard to 
the invariance of the result. In order to abstract the concept 
of rank from this technique, one had to take a more general 
point of view and take up the dual problem of considering 
the set of solutions in connection with all systems having 
this set of solutions. 

http:unknowns.15
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Frobenius made the decisive improvement in 1875. In 
his article about the problem of Pfaff, there is an impor
tant section about linear systems. He considers a general 
system16 of homogeneous linear equations: 

alJ.!)ul + ar)U2 + ... + a~)un = 0, (1-£ = 1, ... ,m) 

Immediately, he gives the definition of linear indepen
dence of k solutions of this system of linear homogeneous 
equations: 

Several particular solutions 

A (x) A(x) A(x) ( - 1 2 k)171 , 2 , ... , n X-, , ... , 

will be said to be independent or different, if 
cIA~.1) + c2A~) + ... + ckA~) cannot be all 

zero for Cl 1,2, ... , n, without Cll C2," • ,Ck 

being all zero, in other words if the k linear forms 

A (x) A{xl A(x) ( 1 k)1 Ul + 2 U2 + ... + n Un X , .•. , 
are independent. 18 

Not only is this a definition quite similar to the mod
em definition of linear independence but it also explic
itly shows the similarity between n-tuples of solutions and 
equations with regard to their linearity. This simple idea al
lows Frobenius to give in a couple of pages a full overview 
of the properties of the rank of a system (still defined 
implicitly19 as the maximal order of a nonzero minor). The 
main idea is to use the concept of an associated (zugeord

net or adjungirt) system, which is, in modem terms, the 
representation by equations of the orthogonal subspace. 

Let us consider the system20 

allxl + ... + alnXn 0 

(I) 

apl Xl + ... + apnxn O. 

If (AiX), A~x), ... , A~x» (X 1,2, ... , n - r), with 
r being the maximal order of nonzero minors, is a basis of 
solutions of (I), the associated system is: 

Ail)XI + ... + A~l)xn = 0 

(1*) 

A (n-r) + + A{n-r)x
I Xl'" n n O. 

. 'f (B(V) B(v) B(V» ( 1 2 ) . AgaIn I I' 2 , ... , n V=, , ... ,q lsa 

basis of solutions of (1*), then the associated system is: 

B~I)XI+'" +B~l)xn 0 

(1**) 

B~q)Xl+'" + B~q)xn = 0 

Frobenius proves that, whatever the choice of basis, 
(1**) is equivalent to (I) and q r. 

This first result on duality in fmite-dimensional vec
tor spaces shows the double level of invariance connected 
to rank both for the system and for the set of solutions. 
Moreover, Frobenius' approach allows a system to be seen 
as part of a class of equivalent systems having the same set 
of solutions, a fundamental step toward the representation 
of subspaces by equations. 

This short analysis21 shows how adopting a formal 
defmition (here of linear dependence and independence) 
may be a fundamental step in the construction of a theory, 
and is therefore an essential intrinsic constituent of this 
theory and not only a change of style. It also points out 
several epistemological difficulties attached to the concepts 
of linear dependence and independence. 

3) Epistemological synthesis. 
In his work, R. Ousman (1996) gave a test to students 

in their fmal year of lyc~e (just before entering univer
sity). Through this test, he wanted to analyze the students' 
conception of dependence in the context of linear equa
tions and in geometry before the teaching of the theory 
of vector spaces. He gave several examples of systems of 
linear equations and asked the students whether the equa
tions were independent or not. The answers showed that 
the students justified their answers through the solving of 
the system and very rarely by mentioning linear relations 
between the equations. In other words they very rarely give 
a justification in terms of linear combinations but most of 
the time in terms of equations vanishing or unknowns re
maining undetermined. Their conception of (in)dependence 
is, like Euler's, that of inclusive dependence and not linear 
dependence. Yet, this is not surprising, because these stu
dents, like Euler and the mathematicians of his time, are 
only concerned with the solving of the system. Therefore, 
inclusive dependence is more natural and more relevant for 
them. 

This established fact and our previous historical anal
ysis lead us to a pedagogical issue. When entering univer
sity, students already have ideas about concepts like linear 
(in)dependence in several contexts;22 when they learn the 
formal concept, they have to understand the connection 
with their previous conceptions. If not, they may have two 
ideas of the same concept and yet not know clearly that they 
refer to the same concept. Moreover, making the connection 
helps in giving the formal concept a better intuitive foun
dation. Yet, the students must also understand the role of 
the formal concept and have an idea of the improvement it 
brings. In the case of linear algebra, and more specifically 



106 Using History to Teacb Mathematics: An International Perspective 

of linear (in)dependence, the fonnal concept is the only 
means to comprehend all the different types of "vectors" 
in the same manner with regard to their linearity. In other 
words, students must be aware of the unifying and gener
alizing nature of the fonnal concept. Therefore we build 
teaching situations leading students to reflect on the epis
temological nature of the concepts with explicit reference 
to their previous knowledge (Dorier 1992, 1995b and 1997 
and Dorier et al. 1994a and b). In this approach, the histor
ical analysis is a source of inspiration as well as a means of 
control. Yet, these activities must not be only words from 
the teacher, nor a reconstruction of the historical develop
ment; they must reconstruct an epistemologically controlled 
genesis taking into account the specific constraints of the 
teaching context. 

For instance, with regard to linear (in)dependence, 
French students entering university nonnally use Gaussian 
elimination for solving systems of linear equations. It is 
therefore possible in the beginning of the teaching of lin
ear algebra to make them reflect on this technique not only 
as a tool but also as a means to investigate the properties 
of systems of linear equations. This does not confonn to 
the historical development, as the study of linear equations 
was historically mostly within the theory of determinants. 
Yet, Gaussian elimination is a much less technical tool and 
a better way for showing the connection between inclu
sive dependence and linear dependence, because identical 
equations (in the case when the equations are dependent) 
are obtained by successive linear combinations of the ini
tial equations. Moreover, this is a context in which such 
question as "what is the relation between the size of the 
set of solutions of a homogeneous system and the number 
of relations of dependence between the equations?" can be 
investigated with the students as a fIrst intuitive approach 
to the concept of rank.23 M. Rogalski has experimented 
with teaching sequences illustrating these ideas (Rogalski 
1991, Dorier et at. 1994a and b and Dorier 1992, 1997 and 
2000). 

Here is for instance an exercise given to the students 
to illustrate this idea: 

A magic square of order 4 and of sum zero is 
a square matrix of order 4 with real coefficients 
such that the sum along each column, each row 
and both diagonals is zero. Without any calcula
tion, give an evaluation as precisely as possible 
of the number of entries that you can freely chose 
in any magic square of order 4 and of sum zero. 

The number that the students have to evaluate is of 
course the dimension of the space of magic squares of order 
4 and sum zero. It is less than 16 (the number of entries in 

a square of side 4) and more than 16 - 10 = 6, because the 

coefficients are solutions of a system of 10 equations. To be 
more precise one must know the number of dependences, 

i.e., the rank, of the equations. Without calculation, it is 

easy to see that at least three equations are independent (for 
instance the three equations expressing that the sum along 

each of the fIrst three rows is zero), so that the rank is at 
least 3 and the dimension is therefore less than 16-3 = 13. 
It would not be very difficult to be even more precise. 

This exercise is interesting because it operates with 

large dimensions, yet the equations are quite simple. More

over its concrete framework makes the question more ac

cessible to the students, even if they do not know the fonnal 
concepts of dimension and rank. It is important though to 

prevent tedious calculations and to emphasize intuitive rea
soning even if the outcome is less accurate. 

On another level, the historical and pedagogical anal
yses confinn the fact that there is an epistemological diffi

culty in treating the concept of linear (in)dependence as a 

global property (remember the distinctions made by Euler). 

It follows that special care must be taken in the teaching re

garding this point. For instance, exercises such as the frrst 

one analyzed above can be discussed with the students. 
Moreover, the teacher, knowing the type of th~orl!mes-en
acte that students may have built, must help them in un

derstanding their mistakes and therefore in correcting them 

more efficiently. 
Finally we will give the outline of a teaching experi

ment that we have used for the fInal step when introducing 

the fonnal theory after having made as many connections 
as possible with previous knowledge and conceptions in 

order to build better intuitive foundations. 
After the definition of a vector space and subspace 

and linear combination, the notion of generator is defined. 

Because a set of generators gathers all the infonnation we 
have on the subspace, it is therefore interesting to reduce it 

to the minimum. Therefore, the question is to know when 

it is possible to take away one generator, the remaining 

vectors still being generators for the whole subspace. The 
students easily find that the necessary and sufficient con

dition is that the vector to be taken away must be a linear 

combination of the others. This provides the defInition of 
linear dependence: "a vector is linearly dependent on others 
if and only if it is a linear combination of them". This def

inition is very intuitive, yet it is not completely fonnal, and 

it needs to be specifIed for sets of one vector. It provides 

without difficulty the defInition of a set of independent vec

tors as a set of which no vector is a linear combination of 

the others. 
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To feel the need for a more formal definition, one just 
has to apply this definition. Indeed, students must answer 
the question: "are these vectors independent or not?". With 
the definition above, they need to check that each vector, 
one after the other, is a linear combination of the others. 
After a few examples, with at least three vectors, it is easy 
to explain to the students that it would be better to have a 
definition in which all the vectors play the same role. (It 

is also interesting to insist on the fact that this is a general 
statement in mathematics.) One is now ready to transform 
the definition of linear dependence into "vectors are lin
early dependent if and only if there exists a zero linear 
combination of them, whose coefficients are not all zero." 
The definition of linear independence being the negation 
of this, it is therefore a pure problem of logic to reach the 
formal definition of linear independence. A pure problem 
of logic, but in a precise context, where the concepts have 
made sense to the students with an intuitive background. 

This approach has been proven to be efficient with 
regard to the students' ability to use the definitions of lin
ear dependence and independence, even in formal contexts 
such as in the three exercises discussed in section 11.1. 
Moreover, it is quite a discovery for the student to realize 
that a formal definition may be more practical than an "in
tuitive" one. In Behaj's work, quoted above, it was clearly 
shown that this fact is not clear for many students and even 
for some of their teachers. Most of them keep seeing the 
fact that a vector is a linear combination of the others as a 
consequence of the defmition of linear dependence. There
fore they believe that this consequence is the practical way 
of proving that vectors are or are not independent, even 
if that goes contrary to their use of these definitions. Yet, 
imagine that one has to check whether three vectors u, v, 
and w are independent. If one proves that u is not a linear 
combination of v and w, there is still a chance that v and 
w would be collinear in which case the three vectors are 
dependent. Many students would conclude from the first 
step that the three vectors are independent. In doing so 
they would not be easily contradicted, because in most of 
the cases the result is true. 

One can easily imagine that starting by proving that 
one vector is not a linear combination of the others will 
get even more dangerous with more than three vectors. 
In theory, if one applies this definition, one has to check 
that each vector is not a linear combination of the others. 
There are shortcuts (like in our example, if you check that 
v and w are not collinear) but they require students to 
have a good control of the meaning of linear dependence. 
Therefore the formal definition is a good means to prevent 
false justifications. On the other hand, it is useful when one 

knows that some vectors are dependent to use it through 
the fact that one vector is a linear combination of the others 
because this is what is meaningful. 

4) Conclusions. 
Formalism is what students themselves confess to fear 

most in the theory of vector spaces. One pedagogical solu
tion is to avoid formalism as far as possible, or at least to 
make it appear as a final stage gradually. Because we think 
that formalism is essential in this theory (our historical 
analysis has confirmed this epistemological fact), we give 
a different answer: formalism must be presented in rela
tion to intuitive approaches as the means of understanding 
the fundamental role of unification and generalization of 
the theory. This has to be an explicit goal of the teaching. 
This is not incompatible with a gradual approach toward 
formalism, but it induces a different way of thinking out 
the previous stages. Formalism is not only the final stage 
in a gradual process in which objects become more and 
more general; it must appear as the only means of compre
hending different aspects within the same language. The 
difficulty here is to give a functional aspect to formalism 
while approaching it more intuitively. 

Linear dependence is a formal notion that unifies dif
ferent types of dependence which interact with various 
previous intuitive conceptions of the students. It has been 
shown above how in the historical development of linear 
algebra the understanding of this fact was essential for the 
construction of the concepts of rank and duality. In teach
ing, this questioning has to be made explicit, if we do not 
want misunderstanding to persist. Therefore, even at the 
lowest levels of the theory, the question of formalism has 
to be raised in connection with various contexts where the 
students have built previous intuitive conceptions. Formal
ism has to be introduced as the answer to a problem that 
students are able to understand and to make their own, in 
relation to their previous knowledge, in fields where lin
ear algebra is relevant. These include at least geometry 
and linear equations but may also include polynomials or 
functions, although in those fields one may encounter more 
difficulties. 

III. Conclusion 
From the example of linear (in)dependence, we can now 
draw some conclusions about the epistemological reflection 
we have conducted on the bases of our didactical and his
torical research. In the experimental teaching, we did not 
use historical texts directly with the students, even though 
we refer sometimes to historical facts, for instance when 
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introducing new concepts. Moreover, in the case of linear 
algebra, our analysis shows that teaching may gain from 
taking some distance from the historical order of develop
ment. Indeed, the unifying and generalizing aspects of the 
theory of vector spaces is not only a fundamental character 
of the theory but is also a very recent one-it only began 
to be used in the 1930s. Moreover, the final developments 
were linked essentially with functional analysis and brought 
out issues which are beyond the mathematical background 
of first year university students. 

All the subjects we can model with vector spaces at 
this level of teaching have historically been solved with 
other tools, mostly the theory of determinants. Yet, for rea
sons we have explained above, we think that Gaussian elim
ination is a much better adapted tool than determinants for 
studying linear equations and introducing basic notions of 
linear algebra. Thus the artificial genesis that our work 
led us to build for the teaching of linear algebra differs 
in many ways from the historical genesis. It is generally 
admitted that teaching should not and cannot reproduce all 
the historical aspects of the development of a mathematical 
discipline. Sometimes the constraints are only due to the 
limitations of time and cognitive or institutional aspects of 
the teaching situation; in the case of linear algebra there is 
a more complex epistemological constraint. Nevertheless, 
although artificial, the genesis induced by the teaching has 
to take the historical development into account. It cannot 
be based only on logical constraints, as it may have been 
at the beginning of modem mathematics. It must also take 
into account the whole history of linear algebra as far as 
possible, even in its latest transformations. This implies 
that the formal aspect of the theory must appear as a final 
stage of maturity, in a context where it makes sense. We 
have tried to show how this can be done concerning the 
concept of linear (in)dependence. The historical analysis is 
then a fundamental tool at least on two levels : 

(1) 	It provides a source of inspiration and an epistemo
logical control for the building of an artificial genesis. 

(2) It helps in understanding and analyzing the mistakes 
of the students. An erratic use of formal tools (us
ing logic and set theory) can then be interpreted as 
a missing connection in the ontological process. This 
is fundamental, as an erratic mistake is usually cor
rected by the teacher without further comment, and is 
therefore likely to reappear. But, if the teacher can lo
cate the missing connection in the ontological process 
leading to the mistake, a much better remediation is 
possible. 
Moreover, the historical analysis interacts with the 

pedagogical analysis on a more global level. For instance, 

in the case of linear algebra, it shows the necessity of in
teractions between different frameworks and registers of 
representation. In our experimental teaching, we have tried 
to make the student more aware of this possibility and 
its importance for a better understanding of formal con
cepts. In her doctoral dissertation, M. Dias (1998)-see 
also Alves Dias and Artigue(1995)-has shown the lack 
of use of changes of framework, register of representa
tion and point of view in traditional teaching. She is now 
building and evaluating the effects of teaching sequences 
in order to encourage cognitive flexibility in the students. 
The analysis of the historical role of the different uses of 
changes of framework, register of representation, point of 
view or style (Granger 1995) may be very interesting work 
to support this type of pedagogical analysis. We have al
ready analyzed the role of the geometrical framework in 
the emergence of vector spaces of functions (Dorier 1996), 
and are planning to enlarge this type of analysis to different 
aspects of the genesis of linear algebra. 

We think that there are many means of interaction be
tween historical and pedagogical analyses. Both of them 
provide epistemological reflections which are complemen
tary, and both for historical and pedagogical research one 
benefits by trying to emphasize the similarity and comple
mentarity of approach. We hope that this paper has shown 
the relevance of this statement in a very specific context. 
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Endnotes 
1 See, e.g., the special issue on linear algebra of The College 
Mathematics Journal 24 (1) (1993). 


2 Unlike secondary schools, for which a national program is im

posed by the ministery of education, the curricula of universities 

are decided locally, even though differences from one university 

to the other are usually superficial. 


3 The results of this work are now gathered in a book (Dorier 

1997) with the presentation of other works (in France, Canada, 

USA and Morocco). (Dorier 2000) is a revised English version 

of this book, 


4 I will not say more in this paper about the difficulties students 

may have in carrying out these standard tasks, not because there 

are none but because I will focus on another level of difficulty, 

less technical and more conceptual. 


5 The three examples given here have been tested by A. Robert 

and J. Robinet (1989). They are not original exercises, but they 

reveal important recurrent mistakes of the students, 


6 This is what French didacticans will call "un effet de contrat'"o 


7 For instance when asked what is the intersection of the two 

subspaces generated by UI. U2, and VI. V2 , students prove that 

neither U1 nor U2, are a linear combination of VI and V2, and 

conclude that the intersection is reduced to O. 


8 "On n'a qu'h regarder ces deux &}uations: 3x - 2y = 5 et 

4y = 6x - 10 et on verra d'abord qu'il n'est pas possible d'en 

determiner les deux inconnues x et y, puisqu'en eliminant l'une x, 

l'autre s'en va d'elle-meme et on obtient une &}uation identique, 

dont on est en etat de ne determiner rien. La raison de cet accident 

saute d'abord aux yeux puisque la seconde &}uation se change en 

6x 4y = 10, qui n'etant que la premiere doublee, n'en differe 

point." [Euler 1750, 226] 


9 Euler does not mean here that the two equations are the same 

but that each of them is an identity, like 0 0, i.e., always true. 


10 "5x + 7y - 4z + 3v - 24 = 0, 


2x - 3y + 5z - 6v 20 = 0, 

x + 13y - 14z + 15v + 16 = 0, 

3x + lOy - 9z + 9v - 4 0, 
elles ne vaudroient que deux. car ayant tire de la troisieme la 
valeur de 

x = -13y + 14z - 15v 16 
et I'ayant substituee dans la seconde pour avoir: 

y = (33z - 36v 52)/29 et x (-23z + 33v + 212)/29, 
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ces deux valeurs de x et de y ~tant substitu~s dans la premiere et 
la quatrieme ~uation conduiront a des ~quations identiques, de 
sorte que les quantit~s z et v resteront ind~termin~s. [ibid., 227] 

11 " La premiere ne differant pas de fa troisieme, ne contribue en 
rien a la determination des trois inconnues. Mais il y a aussi Ie 
cas, ou une des trois ~uations est contenue dans les deux autres 
conjointement ... Ainsi quand on dit que pour d~terminer trois 
inconnues, il suffit d'avoir trois ~uations, il y faut rajouter cette 
restriction, que ces trois ~uations different tellement entr'elles, 
qu'aucune ne soit d~ja contenue dasn les deux autres." [ibid., 226] 

12 This is the usual term of the time to designate what is today 
known as an algebraic curve of order 4. 

13 Euler uses this ambiguous formulation several times to express 
the fact that the equations are independent. It is another proof of 
the difficulty of the global aspect of dependence as well as of the 
difference between linear and inclusive dependence. 

14 "Quand deux lignes du quatrieme ordre s'entrecoupent en 16 
points, puisque 14 points, lorsqu'ils conduisent a des ~quations 
toutes diff~rentes entr'elles, sont suffisants pour d~terminer une 
ligne de cet ordre, ces 16 points seront toujours tels que trois ou 
plusieurs des ~quations qui en r~sultent sont deja comprises dans 
les autres. De sorte que ces 16 points ne determinent plus que 
s'il n'y en avoit que 13 ou 12 ou encore moins et partant pour 
determiner la courbe entierement on pourra encore aces 16 points 
ajouter un ou deux points." [ibid., 233] 

15 The terms "equations priocipales" and "inconnues prioci
pales" used by Rouche and Fontenay is very popular in France. 
Yet it seems that no English equivalent has been used systemati
cally. 

16 In fact he starts with a system of independent equations and 
then generalizes to any kind of system. 


17 These are k solutions. We would maybe note today A(x) 


(Aix), A~x), . .. , A~x») each of them. Therefore: ai!J.) Aix) + 

a)j)A~x) + ... + a~)A~x) 0, for each It = 1, ... ,m and 

each X = 1,2, ... , k. 


18 "Mehrere particuHtre Lt)sungen 

Aix), A~x), .. . , A~x) (X = 1,2, ... , k) 
sollen daher unhabhangig oder verschieden heissen, wenn 
cIA~) + c2A~2) + ... + ckA~k) nicht fUr a = 1,2, ... n, 
verschwinden kann, ohne dass Cl, C2, ••• , Ck sl1mmtlich gle
ich Null sind, mit andem worten wenn die k linearen Formen 
Alx)ul + A~X)U2 + ... + A~x)un (X = 1, ... , k) unhanbhll.ngig 

sind." [Frobenius 1875, 255] 


19 The term of rank (Rang) will be introduced for the first time 

in [Frobenius 1879, 1] . 

20 This is a summary of Frobenius' ideas with adapted notations 

and vocabulary. 


21 For more detail see [Dorier 1993 and 1997]. 


22 We only mentioned the context of equations here, but it is clear 

that they have conceptions in other contexts. In geometry, if they 

know the vectors (as it is the case in France) their conception 

will be close to the formal concept, yet, they had a conception 

prior to vectorial geometry, connected to the ideas of alignment 

and coplanarity. 


23 As far as we know Gauss himself never came near such an 

investigation. 
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1. Introduction 

There are quite divergent opinions about the role the history 
of mathematics could play in the presentation2 of mathe
matics itself. A very common attitude is simply to ignore 
it, arguing that a deductive approach is better suited for 
this purpose, since in this way all concepts, theorems and 
proofs can be introduced in a clearcut way. On the other 
extreme, a rather naive attitude is to follow the historical 
development of a mathematical discipline as closely as pos
sible, presumably using original books, papers, and so on. 
It is clear that both methods have serious defects. 

In a strictly deductive approach, the motivation for the 
introduction of new concepts, theories or proofs, is hidden, 
hence a deeper understanding is not easily acquired. More
over, in such an approach the emphasis is more on the 
results and less on the questions and problems that led to 
them. "From a logical point of view, only the answers are 
needed, but from a psychological point of view, learning 
the answers without knowing the questions is so difficult 
that it is almost impossible" ([14] p. vii). Finally, after 
maturity has been reached for a mathematical discipline, 
its deductive--or even strictly axiomatic-presentation is 
most suited to reveal its logical structure and completeness 
and it can be useful to those knowing the subject, or at least 
having enough acquaintance with it or with other related 
subjects. 

On the other hand, a strictly historical approach is not 
didacticallyappropriate,3 since, contrary to what is some
times naively assumed, the historical evolution of a scien
tific domain is almost never straightforward and cumula
tive. It involves periods of stagnation and confusion, and 
new concepts or proofs are not introduced in the simplest 
and most transparent way. Actually, a historical presenta
tion is primarily concerned with "an accurate record of the 
main ideas and events which played a part in the evolu
tion of the subject", examining problems and theories only 
to the extent that they are essential to an understanding 
of these events ([14] p. vi). We shall adopt an approach 
between these two extremes, in which knowledge of the 
basic steps of the historical development of a mathemati
cal subject plays an essential role in the presentation ([28], 
[52J, [53]). We may call such an approach genetic, since 
it is neither strictly deductive, nor strictly historical, but its 
fundamental thesis is that a subject is presented only after 
one has been motivated enough to do so, in the sense that 
questions and problems which this presentation may an
swer have been sufficiently appreciated. Moreover, in such 
an approach, emphasis is less on how to use theories, meth
ods and concepts and more on why these theories, methods 
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and concepts provide an answer to specific mathematical 
problems and questions. 

The term genetic is here used in a sense very close 
to that used by Toeplitz already since 1926, and it appears 
systematically in [51] and in a more or less similar way in 
[14], [37], [38], [48]. More specifically, in a genetic ap
proach it is often helpful to follow the historical evolution 
of the subject in the sense that 

(i) the teacher or author has a basic knowledge 	of the 
subject's history; 

(ii) the crucial steps 	of the historical development have 
been thus appreciated; 

(iii) 	key ideas and problems that stimulated this evolution 
are reconstructed in a modem context so that they 
become didactically appropriate for the introduction 
of new concepts, methods or theories. This usually 
implies that the historical evolution is not respected 
in any strict sense (see particularly the example in 
section 3.2); 

(iv) many details of this reconstruction are given as exer
cises, which, in this way, become essential for a full 
understanding of the subject (see below). 

In this way it is possible 

(a) to recognize conceptual, epistemological or even 
philosophical obstacles that appeared in the historical pro
cess and which may reappear in the teaching process and 
to decide whether and to what extent a subject can be pre
sented at a particular level of instruction (see [5] p. 178 
and section 3.1). 

(b) to use examples that served as prototypes in the 
historical process, thus giving the student the opportunity 
to understand the motivation behind the introduction of a 
new concept, theory, method, or proof and grasp its content 
in a more profound way.4 In addition, the student is thus 
encouraged to formulate conjectures and to determine why 
his conjectures, or other similar ones that have been put 
forward in the past, do or do not supply satisfactory answers 
to the already existing problems (see section 3.4), 

(c) to interrelate domains which at first glance appear 
completely different, thus making it possible to appreciate 
the fact that fruitful research activity in a mathematical 
domain never stands in isolation to similar activities in 
other domains, but, on the contrary, is often motivated by 
questions and problems coming from apparently unrelated 
disciplines (see section 3.3). 

(d) to make problem solving an essential ingredient of 
the presentation, indispensable for a complete understand
ing of the subject; many details of the historically rele
vant examples can be restated in sequences of exercises of 

an increasing level of difficulty, so that each one presup
poses (some of) its predecessors. In this way the student 
has the possibility of arriving at presumably nontrivial re
sults, starting from easy corollaries of the main subject; at 
the same time the size of a textbook or the teaching time is 
kept at a reasonable level (see section 3.2). This is perhaps 
the most natural way to acquire the "technical" knowledge 
of how to calculate correctly and quickly ([54] p. 281). In 
addition, by avoiding in this way the explicit treatment of 
all the details, the frequently raised objection against this 
presentation, namely, that it presupposes a good deal of 
time on the part of the teacher or author, is thus refuted. 
However, one should be careful not to abuse this point, for 
instance, by presenting fundamental concepts, theorems or 
proofs, central to the subject, through a sequence of exer
cises just to save teaching time or printed pages of a book! 

Although the above mentioned four points give a brief 
outline of what can be achieved, it should be emphasized 
that, in a genetic approach, there is no uniquely specified 
way of presentation of a given subject. Therefore, it is not 
a method, in the strict sense of an algorithm. Rather, it is a 
general attitude towards the presentation of scientific sub
jects in which the desire prevails to explain the motivation 
behind the introduction of new concepts, theories, or key 
ideas of proofs on the basis of the historical evolution of 
the subject. 

From what has already been said, it is clear that a 
genetic approach is not restricted to mathematics only, but 
that it can be applied to any scientific domain capable of 
deductive presentation, in particular to physics. Thus, in 
what follows we will illustrate this approach by consider
ing in some detail examples taken from the historical de
velopment of mathematics and physics, which at the same 
time emphasize the close relationship of these two sciences. 
Consequently, in the next section a brief account of how 
this relationship appears historically is given, whereas in 
section 3 we pass to specific, historically important, scien
tifically relevant, and didactically appropriate examples. 

2. On the relation between mathematics and 
physics 

It must be admitted that, at any level of education, there is 
often a strict separation between mathematics and physics. 
This fact reflects a corresponding separation of these sci
ences at the research level, since often physicists do not 
accept the way mathematicians think. They argue that the 
latter always stay in a universe of ideal logical rigor, hav
ing nothing to do with the real world. On the other hand, 
mathematicians are suspicious of physicists, characterizing 
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them as simple-minded users of mathematics who do not 
pay sufficient attention to logical completeness and rigor. 
However, such ideas are not compatible with the fact that, 
throughout their history, the two sciences have always had 
a close relationship clearly revealed in the work of great 
mathematicians, whose contributions to physics rival their 
purely mathematical works.5 Evidently we do not mean 
that the mathematical activity is or should be motivated 
only by its applications, for instance to physics; we simply 
want to stress the fact that their close relationship indicates 
that any difference is not so much in method or problems, 
but mainly in their purpose, [19] ch. II. Historically this 
relationship between mathematics and physics appears in 
three different ways: 

(a) There is a parallel development of physical the
ories and the appropriate mathematical framework, often 
due to the same persons. Typical examples are (i) the foun
dation of infinitesimal calculus and classical mechanics in 
the seventeenth century, mainly by Newton and Leibniz (ii) 
the development of vector analysis in the second half of the 
nineteenth century, by Maxwell, Gibbs, Heaviside and oth
ers, in connection with Maxwell's electromagnetic theory, 
[7]. 

(b) New mathematical theories, concepts or methods 
are formulated in order to solve already existing physical 
problems, or to provide a solid foundation to methods and 
concepts of physics. We may think here of classical Fourier 
analysis, emerging from the partial differential equation of 
heat conduction; or, more recently (i) Dirac's delta function 
in quantum mechanics, [11] ch. 3, and its later clarifica
tion in the context of L. Schwarz's theory of generalized 
functions [41] (ii) the foundation of ergodic theory iQ the 
20's and 30's mainly by G. Birkhoff, J. von Neumann and 
E. Hopf ([ 17] ch. 3, [25] ch. 3), motivated by the prob
lems posed by the introduction in the second half of the 
nineteenth century of Boltzmann's ergodic hypothesis in 
classical statistical mechanics ( [15] ch. 2, [2] p. 10-12, 
part II section 32). 

(c) The formulation of a mathematical theory precedes 
its physical applications. Its use is often made after the 
corresponding physical problems naturally indicate the ne
cessity of an appropriate mathematical framework. Typical 
examples here are (i) Einstein's work on the foundations of 
the general theory ofrelativity in the period 1907-1916, on 
the basis of Riemannian geometry and tensor analysis de
veloped in the nineteenth century by Riemann, Christoffel, 
Ricci, Levi-Civita and others ([35] ch. 12, [50] p. 167
168, [47] ch. 4) (ii) the invention of Heisenberg's matrix 
mechanics in 1925, in which he realized on the basis of 
purely empirical (spectroscopic) facts that atomic magni

tudes have the algebraic structure of (infinite dimensional) 
complex matrices ([59], [22] Appendix, [34] ch. Ill). 

The above examples are indicative of the intimate con
nection between mathematics and physics. Therefore, in the 
light of the discussion in section 1, while presenting them, 
their relationship cannot be ignored, but, on the contrary, 
it should be unfolded as much as possible. Their relation
ship may be used in both directions, either by motivating 
the introduction of abstract general mathematical concepts, 
methods or theories on the basis of physical problems to 
which the new mathematics provides an answer (section 
3.4), or by using mathematical arguments to clarify the 
meaning of new physical ideas or theories (sections 3.2, 
3.3). 

As an illustration of how this can be done, certain 
examples are analyzed in the next section. 

3. Specific examples 

As already mentioned in section 1, points (a)-(d) consti
tute general statements about what can be achieved by us
ing history in teaching mathematics. In what follows, these 
four points will be illustrated by outlining a genetic pre
sentation of particular examples emphasizing the intimate 
relationship between mathematics and physics; specifically, 
in connection with 

(a) the recognition of conceptual difficulties and de
ciding whether a subject can be taught at a particular level 
of instruction: The teaching of abstract algebraic concepts 
to last-year high school students;6 

(b) the motivation for the introduction of new con
cepts, methods or theories: The introduction of concepts of 
functional analysis to undergraduate mathematics students, 
on the basis of quantum mechanical problems; 

(c) the possibility to interrelate a priori different do
mains and concepts and motivate the invention of new 
mathematical methods and physical theories: Hamilton's 
unified treatement of geometrical optics and classical me
chanics, which influenced the discovery of quantum me
chanics, as it can be incorporated in an undergraduate 
course on partial differential equations (POE) and the cal
culus of variations, classical or quantum mechanics, or op
tics; 

(d) the role of problem solving: Presenting to last year 
high school students the foundations of the Special Theory 
of Relativity as an application of matrix algebra. 

3.1 Recognizing conceptual difficulties: The teaching of 
abstract algebraic concepts. Here we consider the ques
tion of whether it is possible to teach algebraic concepts 
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like group, ring, field and vector space in their full gen
erality to last-year high school students, as was done in 
many countries for several years, under the influence of 
the "modem mathematics" current in mathematics educa
tion. We study this problem on the basis of the historical 
development of the group concept. 

We first notice the following facts, confirmed by the 
author's experience of teaching the subject for three years 
in Greek schools: 

(a) In all textbooks currently used in Greek schools, 
these abstract concepts are presented in their full gener
ality while most examples are trivial 'algebraizations' of 
well-known algebraic properties of numbers accepted as 
self-evident (e.g., algebraic structures induced by ordinary 
point operations on real valued functions; cf. the scepticism 
expressed in [16] ch. 28). As a consequence of this, most 
teachers are forced to follow this approach. 

(b) Students have serious difficulties solving exercises 
that are simple applications of the definitions, e.g., solve 
the exercise: "Show that the interval (-1, 1] equipped with 
the operation 

x*y 

is an abelian group" (cf. however, section 3.2 where this 
apparently artificial exercise finds its right place). 

(c) Students cannot understand an algebraic structure 
in its abstract form; for instance, that in the same set dif
ferent operations define different structures, e.g., R2 as a 
real vector space and as the field of complex numbers. 

(d) Students do not understand the isomorphism con
cept, e.g., R2 with the structure of the field of complex 
numbers and RU {i} with the ordinary operations extended 
linearly. 

The above is of more or less general validity; Greek 
mathematics teachers agree that these facts have been con
firmed through personal experience ([56]). As a conse
quence, the official mathematics curriculum has recently 
been modified and abstract algebraic concepts playa less 
prominent role. 

The main reason for these difficulties seems to be 
that such concepts are introduced in an abstract way and 
in full generality, at a moment when the students have not 
had experience with many concrete examples. On the other 
hand, a very rough knowledge of their historical develop
ment shows that algebraic structures are introduced and 
established usually when (i) many concrete problems have 
appeared, to which a particular structure offers a (not easily 
substituted) solution (e.g., the group concept and the solu
tion by radicals of the nth degree polynomial equation) 

Oi) it becomes evident that there are sets with the same 
structure but having elements of a totally different nature 
(e.g., vectors in analytic geometry and solutions of linear 
ordinary differential equations). 

As an example supporting (i), (ii) above, we give 
a very schematic and necessarily incomplete account of 
concrete and mathematically important problems and ideas 
which played a crucial role in the development and estab
lishment of the group concept: 

(1) The problem of solving by radicals the nth degree poly
nomial equation (Galois 1832-see, e.g., [4] p. 638ff, [31] 
sections 719-720; for more details see [10] vol. I, ch. II 
section m.B) 

(2) Problems and ideas concerning transformations in ge
ometry and physics. 

(a) The geometric representation of complex numbers 
(Wessel 1797, Argand 1806, Gauss 1831), their represen
tation 3;.s ordered pairs of real numbers (Hamilton 1833
1837) and their relation to plane rotations. These motivated 
the search for generalized complex numbers with a similar 
relation to space rotations. As is well known, this led to the 
first nontrivial noncommutative algebraic structure, namely 
quaternions [53]; and it isa fact that the significance of 
the properties of operations like commutativity, associativ
ity, and so on, was appreciated only when structures were 
invented which do not obey them ([44] p. 678). 

(b) The importance of the concept of a group of trans
formations in geometry and physics. Specifically 
• 	 Klein's Erlangen program, in which geometry is defmed 

as a theory of invariants of a set under a group of trans
formations on it ([26] and the preface by Dieudonne and 
the historical analysis of its birth by P.E Russo; see also 
[48] ch. 18, particularly section 18.5, [4] p. 591-592) 

• 	 Lie groups (of transformations) applied to geometry, dif
ferential equations and mechanics, as developed from 
about 1870 onwards, especially by Lie (see, e.g., [4] p. 
591, [24] p. 157, [31] section 721; for a short account 
of the history of the theory of invariants in this con
text see [33] section 3.3; for a detailed treatment, [3] p. 
309-323). 

• 	 Galileo, Lorentz and arbitrary (differentiable) coordi
nate transformations in relativity theory (Poincar~ 1904
1905, Minkowski 1908, Einstein 1909-1915; see Ein
stein in [46] ch. VII especially section 3,7 Minkowski 
in [46] ch. V especially sections I, II, [35] ch. 12 espe
cially sections 12(c, d) and pp. 129-130). 

• 	 Isometric mappings of surfaces and more generally, of 
Riemannian manifolds, as they implicitly appear for in
stance in Gauss' Theorema Egregium (1827) and Rie
mann's generalization (1854) (see Riemann's original 
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lecture in [47], particularly pp. 144- 145 and 176, and 
the account given in [10] VoL II, pp. 197-2(0) 

(c) The development of matrix algebra by Cayley 
(1855, 1858; see, e.g., [4] section XXVL6; for his prede
cessors see [10] vol. 1, p. 95-97) and the associated linear 
representations of groups (Frobenius, Schur and Burnside, 
1896-1910) stimulated by ideas of Cayley (1854), Weber 
(1884) and Dedekind (l896)-see [10] voL I, pp. 117-119, 
[3] 	pp. 154-155. 

In view of the above outline of the historical evolu
tion of the group concept, it is clear that, in its full gen
erality, it can only be appreciated when its significance in 
the context of many concrete and mathematically relevant 
examples has been revealed.8 It is also evident that at the 
high school level this can be achieved only partially, espe
cially by presenting examples of groups of transformations, 
and therefore teaching just the most basic and elementary 
facts on abstract groups is useless or even harmful! Actu
ally the following remarks of F. Klein on abstract group 
theory have a more or less general validity in connection 
with teaching algebraic concepts in their abstract form right 
from the beginning: "[The] abstract formulation is excel
lent, but it is not at all directed to the discovery of new 
ideas and methods; rather it represents the conclusion of a 
preceding development. Hence it greatly facilitates instruc
tion insofar as one can use it to give complete and simple 
proofs of known theorems. On the other hand, it makes the 
subject much more difficult for the learner, for he is faced 
with a closed system, not knowing how these definitions 
were arrived at and absolutely nothing is presented to his 
imagination ... the method has the drawback that it does 
not stimulate thought" ([27] p. 316). 

The main conclusions to be drawn from the above 
discussion are: At the high school level th~ student can
not have experience of many important concrete examples 
of such abstract algebraic concepts, an absolutely neces
sary requirement for the significance of these concepts to 
be really appreciated.9 Therefore such concepts cannot and 
should not be taught in full generality at the high school 
level, but should be presented only implicitly through con
crete and "natural" examples, like groups of invertible func
tions under composition, linear transformation groups in 
geometry and physics (cf. the next subsection), the group 
of nth roots of unity, etc. 

3.2 The role of problem solving: Special Relativity and 
Matrix Algebra. As already mentioned in the previous 
subsection, in many countries, matrix algebra and elements 
of (finite dimensional) vector space theory are introduced 
in high school's last-year mathematics. Given that the aim 

and power of algebraic methods and concepts lies in the 
unified approach to distinct, quite different concrete prob
lems through abstraction, it is to be expected that high 
school students, having a lack of mathematical experience 
amd mathematical maturity, meet severe difficulties in the 
study of abstract algebraic concepts, like vector spaces of 
matrices, linear transformations, group structures and so 
on. Therefore, if such concepts can be taught at all at this 
level, this ought to be done by giving as many concrete 
examples as possible (cf. [52]). For instance, the matrix 
concept and matrix operations can be introduced via their 
relation to geometric linear transformations (cf. [53] sec
tions 2, 3, 5). Below we give an outline of an elementary, 
but nevertheless fairly complete account of the foundations 
of the special theory of relativity, much in the spirit of 
Minkowski's original ideas about spacetime, using simple 
matrix algebra ([46] ch. V). Of course Minkowski's lec
ture is very compact and makes no use of matrix algebra, 
a custom in mathematical physics that became established 
several years after the appearance of quantum mechanics. 
This is an example of the way the presentation of a subject 
is inspired by a general knowledge of the historical devel
opment, but does not respect it in a strict sense (cf. section 
1). The present approach is based on the presentation of 
this subject to last-year Greek high school students, with a 
mathematics and science orientation. 

Specifically we will show how the use of the algebra 
of 2 x 2 real matrices may lead to the Lorentz transformation 
in two dimensions (one spatial and one temporal) in a very 
simple way and in close analogy to a similar treatment of 
plane rotations of elementary analytic geometry. 

(i) 	 We introduce plane rotations geometrically and show 
that any such rotation by an angle 0 is described by a 
2 x 2 orthogonal matrix Ao of determinant 1 and vice 
versa, and prove that such matrices satisfy the com
position law (an example of an abelian transformation 
group) 

AoAo' = Ao+ol (1) 

(ii) 	Subsequently we may show that Ao conserves the eu
clidean norm x 2 + y2 and that it satisfies 

AAt =1 	 (2) 

At being the transpose of A and 1 the identity matrix. 
(iii) After this preparation, the two postulates of special 

relativity can be introduced, namely 
(a) the existence of inertial coordinate systems, mov

ing with respect to each other with constant ve
locity and for which Newton's law of inertia 
holds 
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(b) 	the speed of light in a vacuum is constant, equal 
to c say, in all inertial systems. 

The aim is to specify the fonn of the transfonna
tion from one inertial system to another. Since by (a) 
straight lines are mapped to straight lines, we get that 
such transfonnations are linear. 10 Then by (b) the light 
cone given by 

(3) 

is conserved, where (x, ct) are cartesian coordinates 
in the spacetime plane and it can be shown by ele
mentary, though somewhat lengthy, calculations, that 

2in general the spacetime "distance" x - c2t2 is con
stant in all inertial systems. 

(iv) 	In close analogy to plane rotations, we look for linear 
transfonnations of the plane conserving this spacetime 
"distance" and we easily fmd that the corresponding 
matrices, A say, satisfy (cf. (2» 

(4) 

where TJ is a 2 x 2 diagonal matrix with diagonal ele
ments TJll = -TJ22 = 1. Then simple algebra leads to 
the following expression for the elements aij of A 

all = a22 = "a12 = a21 = 0,,2 0
2 1 (5) 

where we have required that A is reducible continu
ously to the identity. 

(v) 	If a certain inertial system moves with velocity v rela
tive to another one, then by considering a point at rest 
with respect to the latter, it is easily derived that 

, = 	 (1- tP)-1/2, {3 vic (6) 

so that we have obtained the familiar fonn of the 
Lorentz transfonnation. 

(vi) 	It is a computational exercise to show that under ma
trix multiplication, the Lorentz transfonnations Af3 

(cf. (6» satisfy the composition law (another exam
ple of an abelian transfonnation group) 

Af3Af3' = A(f3+f3')/(l+f3f3') (7) 

which readily implies the "relativistic law of velocity 
addition" 

{3" = {3*{3' ({3+{3')/(1 + {3{3') , {3 E (-1,1) (8) 

giving a nice, nonartificial example of a group struc
ture defined on a subset of real numbers (cf. section 
3.1). 

(vii) Equation (6) gives an interesting opportunity to intro
duce hyperbolic functions, since it is thus possible to 

make more explicit the analogy between (7) and (1), 

through the parametrization {3 = tanh </>. This implies 
that (8) is equivalent to 

tanh </>" = tanh(</> + </>') 

hence (7) is equivalent to 

Many details of the above steps can be given as exer
cises, but lack of space does not permit a complete account 
of what should be given in the main presentation and what 
should be left as an exercise. More about this procedure 
and further examples are given in [58]. 

This is but one example of how the use of simple 
mathematics helps high school students to grasp the essen
tials of impOrtant physical theories, which are supposed to 
be "difficult" and unintelligible, at the same time appreciat
ing the power and beauty of abstract mathematical methods 
and concepts. It is also evident that further development 
of special relativity can be given along these lines with
out difficulty, by deriving time dilation, length contraction 
and so on, depending on the more general structure of the 
mathematics and physics curriculum in which the present 
example is incorporated. 

3.3 Interrelating different domains: Optics, Mechan
ics and Differential Equations. In a high school calcu
lus course it is possible to give a unified treatment of the 
laws of reflection and refraction, using Fennat's principle 
of Least Time as an elementary application of differential 
calculus to extremum problems (e.g., [43] pp. 25-27), This 
can be compared to more elementary geometrical proofs, 
like that of Hero ([21] ch. 22); or may be used as a first 
step for the introduction to the brachistochrone problem as 
a prototype subject that finally leads, at the university level, 
to the calculus of variations ([43] section 1.6, [32]). 

On the other hand, at an undergraduate university 
level, the basic idea that lies behind this innocent-looking 
treatment may have far reaching consequences, helping one 
to introduce naturally both new mathematical methods and 
fundamental physical ideas and concepts, as in fact it hap
pened historically. This is a good example exhibiting the in
timate connection between mathematical theories and meth
ods and physical ideas and concepts. Its presentation may 
be based on an appropriate reconstruction of the following 
historical facts: 

(a) As a mathematical theory, geometrical optics can 
be founded essentially only on Fennat's principle of Least 
Time as a variational principle. Then, using basic methods 
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of the calculus of variations, as Hamilton did in the pe
riod 1824-1832 (e.g .• [27] ch. V), the so-called Hamilton's 
eikonal POE of geometrical optics for the optical length 
of the light rays is obtained (see, e.g., [27] ch. V, [36] 
ch. I [13] part IV, section VI.l). On the other hand, the 
dynamical evolution of a classical physical system with 
a fmite number of degrees of freedom and constant to
tal (mechanical) energy follows by similar methods using 
Maupertuis' principle of Least Action, as formulated by 
Hamilton (1834-5) and Jacobi (from 1837 onwards). This 
leads to the Hamilton-Jacobi POE for Hamilton's charac
teristic function. This formal similarity of these a priori 
totally distinct physical theories, was a main motivation 
for Hamilton in developing a unified mathematical theory 
based on such variational principles ([27] ch. V, [36] ch. 
I. [13] part IV. sections VI. 2-5). 

(b) From a mathematical point of view, it is possible in 
this way to arrive naturally at the conclusion that the solu
tion of a first order POE (more precisely, the determination 
of a complete integral of it), is equivalent to the solution 
of a system of ordinary differential equations attached to 
it, the so-called Hamilton's canonical equations. Depend
ing on whether the subject is included in a mathematics or 
physics curriculum, the emphasis may be on the theoreti
cal background of the method (Jacobi's method--e.g., [45] 
sections 11.13-14, [6] sections 11.7-8) or on the solution of 
mechanical problems (Hamilton-Jacobi theory--e.g.. [20] 
sections 10.1, 10.3, [30] ch. Vrn). 

(c) From a physical point of view on the other hand, 
one may notice that the formal similarity mentioned in (a) 
above between geometrical optics and classical mechanics, 
has far-reaching consequences: geometrical optics (and in 
particular the eikonal equation) can be obtained as an ap
proximation of wave optics when the wave length of light 
is small compared with the characteristic dimensions of the 
system under investigation. In the same way, classical me
chanics (and in particular the Hamilton-Jacobi equation) 
may be thOUght of as an approximation to some (more 
accurate) wave mechanics. This in fact was the idea put 
forward by de Broglie in his work on the extension of the 
wave-particle duality from radiation to matter. It was ex
plicitly elaborated by Schrodinger, thus leading him to the 
equation bearing his name and his wave mechanics ([8], 
[39], see also [23] section 5.3, [54]). 

Actually this historical fact can be reconstructed in a 
rather interesting way by taking the mathematical similar
ity between the laws and magnitudes of geometrical optics 
and classical mechanics in the strict sense of proportion
ality, Le.• each magnitude of the one theory being propor
tional to a corresponding one of the other. in principle with 

a different proportionality factor in each case. Then sim
ple calculations show that all proportionality factors can be 
determined in terms of one constant that remains unspeci
fied. Moreover, this and the use of the wave equation for 
the wave function of optics finally yield in mechanics an 
equation mathematically identical to Schrodinger's equa
tion, with the above unspecified constant playing the role 
of Planck's constant. 11 Evidently, such an approach has im
portant advantages while teaching undergraduate quantum 
mechanics, for several reasons that were discussed in [54]. 
At the same time, it provides an interesting example of us
ing analogy as a type of reasoning distinct from deductive 
or inductive reasoning, which often played a crucial role in 
applications of mathematics to physics (for further details 
see [55]). 

3.4 Motivating the introduction of new concepts: Func
tional Analysis and the foundations of Quantum Me
chanics. As a final example, we consider the introduc
tion of abstract mathematical concepts at the level of an 
undergraduate mathematics course; specifically, we con
sider tJ:,.e interesting possibility (though not the only one!) 
of introducing some basic concepts of functional analysis 
motivated by quantum mechanical problems. 

As a theory of infmite dimensional vector spaces, 
functional analysis appears already at the beginning of this 
century in the works of Fredholm, Hilbert, Volterra, Riesz 
and others, in the study of integral equations ([9], Introduc
tion). However, it is well known that there was a great im
pulse in its development just after the invention of quantum 
mechanics (QM), which called for new mathematical con
cepts and methods. As a typical example we may consider 
von Neumann's contributions to the mathematical founda
tions ofQM, [61]. What is perhaps less known is that in his 
works he introduces for the first time concepts and meth
ods which often appear today a priori and in full generality 
in a functional analysis course, whereas this generality was 
motivated by the mathematical questions QM posed. There 
are many examples of abstract concepts whose introduction 
could be motivated on the basis of quantum mechanical 
problems. I will explain one example in some detail and 
mention briefly three others: 

(a) Undergraduate courses on functional analysis of
ten start with the definition of a Hilbert space as a linear 
space equipped with a scalar product, so that the induced 
distance makes it a complete metric space. Then a sep
arable Hilbert space is defined by the rather mysterious 
condition that there exists a countable dense subset. On 
the basis of this, one proves the theorem characterizing 
such spaces as those having either an orthonormal (ON) 
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countable subset spanning the space, or an ON countable 
subset not perpendicular to any other element, or satisfying 
a generalized Parseval identity with respect to a countable 
ON subset, and so on. Thus the question of the motiva
tion behind these defmitions is naturally raised. Therefore, 
inspired by the historical development of the subject, the 
following steps may be followed: 

(i) Describe in detail important examples of (infinite di
mensional) separable Hilbert spaces like the space 
L2(R) of Lebesgue quadratically integrable complex 
valued functions, or the space l2 of infinite complex 

sequences a = (at, a2 •... ) such that Lk lakl 2 < 
+00, a straightforward generalization of the familiar 
n-dimensional Euclidean space. 

(ii) 	It is possible to present in a simple form the ba
sic mathematical problem of matrix mechanics in
vented by Heisenberg, Born, and Jordan in 1925 and 
of Schrodinger's 1926 wave mechanics; namely, the 
diagonalization of the hamiltonian matrix H in the 
space 12 and the solution of Schrodinger's equation 
in L2(R) respectively. The crucial point here is that 
these physically and mathematically a priori totally 
different theories of atomic phenomena yield identical 
correct experimental results. Consequently, as far as 
agreement with experiment is concerned, both theo
ries should be accepted and therefore the question of 
their relation naturally arises. 

(iii) 	One can repeat the essentially heuristic and nonrigor
ous arguments of Schrodinger, to show formally that 
Schrodinger's equation reduces to a matrix eigenvalue 
problem, once an ON basis of L2(R) has been chosen 
([39] paper no 4). 

(iv) Motivated by this approach, one can show rigorously 
that l2 and L2(R) are isometric Hilbert spaces, a fact 
already apparent in the works of Riesz and Fisher in 
1907 ([3] p. 267, [12]). 

(v) Based on the heuristic approach in 	(iii), one is jus
tified in reversing the argument and considering lin
ear spaces with a scalar product spanned by a count
able ON set, thus arriving at the isomorphism of all 
such spaces and their characterization mentioned pre
viously. In fact this is essentially the approach fol
lowed by von Neumann in [61] (see also [9] p. 172 
and [49] p. 2). 
It is clear that many of the details in the above steps 

can be given as exercises, thus keeping the size of the 
presentation at a reasonable level. 

(b) The spectrum of a bounded operator and the corre
sponding spectral resolution appear already in the work of 
Hilbert (1906) on integral equations and the work of Riesz 

on compact (hence bounded) operators (1916--18). How
ever, many physically relevant quantum mechanical opera
tors are not bounded (e.g., differential operators)! This led 
von Neumann to introduce the concept of a closed operator, 
to the study of such operators which are densely defined, 
to the distinction between self-adjoint and hermitian oper
ators, and so on. ( [9] ch. vn section 4, [23] section 6.3 
pp.318-319). 

(c) The central problem of matrix mechanics was the 
diagonalization of the Hamiltonian operator by an appropri
ate similarity transformation. The physical requirement that 
quantum mechanical probabilities of energy states should 
be conserved under such transformations gives the latter in 
terms of unitary operators. This was a main motivation for 
the clarification of the spectral analysis of normal opera
tors, a special case of which are self-adjoint and unitary 
operators. 

(d) Originally, quantum mechanical operators were 
represented by infinite dimensional matrices, the diagonal 
elements of which gave quantum probabilities. This was the 
main motivation for the study of hermitian extensions of 
a hermitian operator, leading to criteria for the extension 
of a closed hermitian operator to a self adjoint operator, 
and consequently to the result that all hermitian extensions 
have the same matrix in a given complete orthonormal ba
sis. Therefore, the matrix representation of Hilbert space 
operators is ambiguous ([9] ch. VII section 4). This led to 
the conclusion, that the mathematically appropriate formu
lation of the statistical interpretation of QM is given via 
the eigenprojections appearing in the spectral analysis of 
an operator ([23] ch. 6). 

The examples presented in this section give a very 
brief outline of the way the historical development of a 
mathematical discipline can motivate its genetic presenta
tion in the sense described in section 1. 
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Endnotes 
1 This paper is based on the talk given and a 3-hour workshop 
organized, at the meeting on 'History and Education of Mathe
matics', held in Braga, Portugal from 24 to 30 July 1996 (see the 
Proceedings of this conference, Braga 1996, vol. II p. 96 and vol. 
I p. 305). 

2 By presentation we mean, either teaching in a classroom or 
writing a textbook, survey article etc. 


3 cf. [5] p. 193: "... En aucun cas, il ne saurait suffire ... , 

d'appliquer sans modification l'~tude historique It l'~tude didac

tique", see also [42] p. 13, [40] p. 211. 


4 " ••• the meaning of a concept is not completely determined by 
its modern definition, but it is the resultant of its development in 
the past as well as in the present" ([42] p. 13, my translation). 

5 For examples in this century, think for instance of Hilbert, e.g., 
in connection with the foundation of general relativity, [33] ch. 
7, Minkowski's geometrization of special relativity, [46] ch. 5, 
von Neumann's "Grundlagen der Quantentheorie," [61], and Kol

mogorov's revitalization of classical mechanics and dynamical 
system theory, [29], [1] Appendix 8. 

6 In this example the relation between mathematics and physics 
plays a secondary role, but it is more suited for our purposes than 
other better-known and better-analyzed examples, like the concept 
of velocity and its relation to the derivative of a function. 

7 That geometrically speaking, relativity theory was very close 
to Klein's Erlangen program, has been stressed by Klein himself, 
quoted in [33] p. 113. 

8 Similar comments, which however will not be given here, hold 
for the concepts of a ring, field and vector space, which evolved 
gradually in the nineteenth century as a consequence of important 
developments in algebra, number theory and geometry (see, e.g., 
[10] vol. I, chs. II, III [3] chs. 3-7, [27] chs. II, IV, VII). 

9 This seems to be historically supported as well. For instance 
(i) in its abstract form, the vector space concept was defined by 
Peano in 1888 ([ 10] vol. I, p. 94, [12]), but his work passed 
largely unoticed, presumably because it was rather premature at 
that time. On the contrary, there is a tendency to believe that 
the modern definition appeared first in 1930 in Weyl's book on 
group theory and quantum mechanics, [62] p. 1-2, simply because 
it proved rather fruitful in that context. (ii) Although Cayley had 
already defined an abstract finite group in 1854, it was not until 
the 1890's that the modern general definition was given by Weber 
([10], vol. II, p. 116, [60]). 

10 This step uses the continuity of a function of two variables 
and therefore it is more advanced in this sense. Nevertheless, it is 
intuitively clear to the students and therefore it presents no serious 
difficulties in its presentation. 

11 This approach is presented in detail elsewhere ([57]). A similar 
reconstruction has been given in [54], [18]. 
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A Historical Approach 
to Developing the 
Cultural Significance of 
Mathematics among 
First Year Preservice 
Primary School 
Teachers 

Ian Isaacs, V. Mohan Ram, 
Ann Richards 
Northern Territory University, 
Australw 

A unit of mathematics, The Cultural Origins ofMathemat
ics, was introduced to first year preservice primary mathe
matics teachers with the goal of modifying their world view 
of mathematics. By emphasizing the social and cultural 
factors that influenced the historical development of ele
mentary mathematics, it was hoped that the students would 
develop some appreciation of the cultural significance of 
mathematics. 

Introduction 

Most of the students who enter the three-year course for 
the preparation of primary teachers at the Northern Terri
tory University have a weak: background in the content of 
secondary school mathematics and a mechanistic and utili
tarian perception of the subject. About 40% are mature age 
students and the remainder are recent graduates of North
ern Territory secondary schools. Generally they hold beliefs 
about mathematics which portray this subject as (i) mainly 
concerned with the facilitating of the buying and selling of 
goods; (ii) one in which there is one best method to getting 
right answers; and (iii) including the branches of algebra 
and geometry which are useless for everyday living. 

In 1995 the new three year Bachelor of Teaching 
course, consisting of twenty-four units, provided the three 
mathematics education lecturers at the NTU with the op
portunity to introduce a unit, spanning two semesters, 
which we entitled The Cultural Origins of Mathematics. 
We hoped that this unit would give the students a broader 
perspective on the place of mathematics in the cultures of 
different societies over the last 5000 or so years and that 
it would allow them to recognize the role of mathematics 
as a response to the physical and intellectual problems of 
those cultures which eventually led to the development of 
the subject as we know it today. 

The Unit-The Cultural Origins 0/ 
Mathematics 

In this unit we aimed to modify the belief systems and per
ceptions of these preservice teachers regarding the nature 
of mathematics and the purpose of school mathematics. To 
set the scene for the geometrical ideas we planned to de
velop in the first semester, we focused on how the various 
societies from China, India, Egypt and Greece dealt with 
geometrical concepts and notions in their practical and in
tellectual life. The students explored: 

(i) 	geometry as a practical science used to solve real prob
lems, 
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(ii) geometry 	 as a constructive and aesthetic medium 

where patterns, transformations and geometrical re

lationships predominate, 

(iii) the ritualistic requirements for accurate constructions, 

(iv) 	measurement as an introduction to numbers which are 

not rational, and 

(v) logical justifications in geometry. 

By examining the attempts of the ancient Egyptian, 

Greek, Hindu, and Chinese mathematicians to solve prob

lems related to finding lengths and areas and constructing 

polygons of specified dimensions and shapes, we hoped 

the students would begin to appreciate geometry as a tool 

for solving spatial problems. By working to solve prob

lems similar to those posed by mathematicians of the day, 
in surveying situations or the design of shapes appropriate 

for ritualistic functions, the students were challenged to 

undergo similar thought processes to those of the ancient 

mathematicians. 

Episodes from the mathematics of ancient China, In

dia, Egypt and Greece were used to illustrate and inform 

the students of the quantitative problems faced by those 

mathematicians. However, the problems were modified to 

make them readily accessible to the students. The students 

were allowed the use of modern aids and nomenclature. 

The lecturers bore in mind that problems had to be framed 

in such a way that the majority of the students would suc

cessfully solve them after a little thought. [The underly

ing assumption on which the unit was based was: Success 

breeds confidence and further success.] 

For example, rather than solve the problem posed by 

Socrates in Plato's Meno which was constructing a square 
of area twice that of 4 square units, the problem was mod

ified to finding the area of a square whose area was half of 

4 cm2 [see Figure 1]. For most of the students, it was then 

a much easier task to construct a square of area 8 cm2 • 

FIGURE 1 
Constructing a square of area 2 cm2 given a square of area 
4 cm

ACTIVITY 1 

Your task is to carry out a survey of a region which has at least 
four straight boundaries and is not a rectangle or other simple 
geometric shape, e.g., 

t::JG but not D oc ~ 
Your initial unit of measurement is to be paces, and these 

need to be maintained at an even length to ensure accuracy. You 
need to choose a recorder and a pacer and preferably check all 
your measurements using a second pacer from your group. 
In your group you will need to: 
( I) Identify your region. This should not be too small-aim for 

all distances to measure to be in the range of 30-60 paces. 
(2) Draw a rough sketch of your area labeling the vertices. 
(3) 	Measure all distances by pacing. 

"''''Remember to triangulate---Le., measure certain diagonals 
within your polygonal region so that this can be marked as 
composed of triangles whose dimensions have been measured. 

(4) Record all measurements appropriately on your sketch. 
(5) Have your pacer walk the marked 20 meter length to find how 

many of his/her paces are equivalent to 20 meters. 

Back inside 

(6) Convert all your measurements to meters and record. 
(7) 	Using the grid provided, decide on a scale which will allow 

you to convert your meter measurements to scaled values to 
provide a plan of your area which will occupy most of the 
page. 

(8) 	Use the available equipment to construct an accurate plan of 
your region on paper or in your book. Note: The calculation 
of your area will be set at a later date. 

Extension-for Week 3/4 

Use your plan to calculate the area of your region. Your final 

value should be actual area in square meters (m2

). 


Possible Methods: 

( I) Consider the region as composed of triangles and find the area 

of each triangle (accurately) and total these areas. 
(2) 	Using the scale diagram of your polygonal area, construct a 

triangle with the same area using the method of reducing the 
number of sides (week 3). 

Find the area of the resulting single triangle. 

FIGURE 2 

Task to estimate the area of a quadrilateral/pentagon 


Methodology 

This section contains a brief description of the five themes 
that the students were asked to explore during the first 
semester sessions of the unit. 

Theme 1. Geometry as a practical science used to solve 
real problems. The students were made aware of the prob
lems the Egyptians and Chinese faced in determining the 
areas of irregular shaped polygons. The students were set 
the task [see Figure 2] of estimating the lengths of the sides 

2 
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of an irregular quadrilateral or pentagon on the lawns near 
their lecture hall using only pacing. They were then ex
pected to check their estimates against those of their col
leagues in their group by converting their paces to standard 
metric measures. Subsequently the use of a scale drawing 
and historical methods of working with polygon areas were 
used to allow an area calculation. One method considered 
was the construction problem (which was solved by the 
Chinese and the Greeks) of transforming an irregular poly
gon into a rectangle or triangle of equal area. From this 
exercise it was natural to look at more sophisticated tech
niques used in China and the West in the Middle Ages to 
carry out land surveys. 

Theme 2. Geometry as a constructive and aesthetic 
medium where patterns, transformations and geometrical 
relationships predominate. Rather than follow the tradi
tional approach of using geometry as an introduction to 
deductive proof, we focused on the Islamic use of geo
metrical patterns for decorations such as those shown in 
EI-Said and Parman's Geometric Concepts in Islamic Art 
and in slides taken by V. Mohan-Ram in Pakistan. The 
students were then encouraged to construct designs (see 
Figure 3) based on these patterns. 

In this way the students were involved in identify
ing symmetric patterns in their surroundings as well as in 
designing their own patterns. They were led to reflect on 
the symmetrical properties and isometric transformations of 
simple regular polygons. These activities served as a fore-

FIGURE 3 
Design of Tiling Pattern seen in the Iran Bastan Museum [after 
El-Said, p. 13] 
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FIGURE 4 
Construction of the regular pentagon 

runner for their study of group structures to be taken up in 
the second half of the unit in Semester 2. 

Theme 3. The ritualistic requirements for accurate con
structions. The construction of various shapes used in reli
gious and occult practices such as the pentagon [see Figure 
4] were performed by the students under the guidance of 
the lecturer. The determination of the dimensions of the 
trapezium [see Figure 5] used in some Hindu altars was 
also demonstrated by the lecturer. 

For most rituals to have significance, it was believed 
that the dimensions of the ritualistic structures needed to be 
exact. Inexactitude implied imperfection and the resulting 
impurity of the ritual. We suggested that this need for per
fection was probably the initial motivation for the Hindu 
and Chinese mathematicians to develop algorithms for the 
accurate construction of the basic polygons. However, some 
mathematicians went beyond just satisfying the ritualistic 
requirements of their religions and developed algorithms 
for solving construction problems of no immediate practi
cal value. 

For example, Hindu mathematicians posed, and 
solved, the problem of how to construct a square equal in 
area to that of the sum of two other squares. The students 
were asked to conjecture how this could be done if the 
two squares had areas of 2 cm2 and 9 cm2 • This problem 
is very similar to that described by Joseph (1990, p. 231) 
in The Crest of the Peacock. This problem was also used 
as one of the examples to contrast the practical algorith
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A X D 
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AX XD = 12 padas RQ = 7 padas 

BY YC = 15 padas QY = 1 padas 

XP 5padas XY 36 padas 

PR= 23padas 

FIGURE 5 
The layout of a samassana sacrificial altar [after Joseph 
(1990), p. 230] 

mic problem solving approach of the Chinese and Hindu 
mathematicians to the theoretical deductive approach of the 
Greek mathematicians. 

Theme 4. Measurement as an introduction to numbers 
which are not rational. The construction of squares whose 
sides were not rational numbers was a challenging task 
for most of the students. Rather than solving the problem 
posed by Socrates in Plato's Meno of constructing a square 
of area twice that of 4 square units, the problem was mod
ified to finding the area of a square of area half of 4 cm2 

[see Figure 1 above]. For most of the students it was now a 
much easier task to construct a square of area 8 cm2 • This 
naturally led to the attempt to determine the square root of 
numbers like 2 and 8. The students attempted it in three 
ways: (i) by measuring the side of a square of area 2 cm2 ; 

(ii) by sketching; using the geometrical approach of Apas
tamba in his Sulbasutra [see Joseph (1990), pp. 234-236]; 
and (iii) by using trial-and-error with a calculator. These 
explorations led us to the concept of an irrational number. 
However this type of number was not fully explored at this 
time, but left to the second semester when it was to be 
reexamined as part of the study of 'Numbers.' 

FIGURE 6 

The Snake Curve [after Gerdes (1985) p. 262] 


The study of areas of polygons led us to consider 
the areas of regular polygons and the areas of circles. The 
conjecture of Gerdes (1985) was introduced regarding the 
snake curve [see Figure 6]. Constructing the snake curve 
using a string was the task the students performed to arrive 
at the Egyptian approximation for 7r [= 4(8/9)2]. 

The students next attempted to determine the value 
of 7r by calculating the ratio of the circumference to the 
diameter of selected circular discs of diameter 3.5 cm, 
7.0 cm, 10.5 cm and 14.0 cm. They then went on to look 
at Archimedes' method of 'exhausting' the circle, by con
sidering the perimeters of 6- and 12-sided regular poly
gons inscribed in a circle as an approximate measure of 
the circumference of the circle. The Chinese value of 7r 

355/113) as determined by Tsu [Joseph (1990), p. 195] 
was also mentioned. Once again we were brought into con
tact with a number which seemed to be not rational. The 
question was posed: Is it a number like the square root of 
2 or is it a new sort of number? No attempt was made to 
answer the question at this point but the promise was made 
to come back to it in the following semester. 

Theme 5. Logical justifications in geometry. The lectur
ers, however, did not evade the need for general proofs 
when we felt they were necessary. For example the Chi
nese proof [see Figure 7] based on decomposing the square 
of side (a + b) was modified [see Figure 8] to show that 
Pythagoras' theorem is true [see Joseph (1990), pp. 180
181]. 

Assessment of the unit 

Students were assessed on three sets of activities for this 
unit: (i) an oral presentation based on a professional jour
nal article which related to some aspect of the unit; (ii) 



A Historical Approach to Developing the Cultural Significance of Mathematics among First Year Preservice Primary School Teachers 127 

FlGURE 7 
(a) The kou ku theorem and (b) the modern 'translation' (after 
Joseph (1990) pp. 180-181) 

'Journal' entries which consisted of their reflections and 
reactions to the unit and a 'working log' showing their 
attempts to complete the tasks set by the lecturers; (iii) 
exercises based on the learning outcomes for the top
ics 'Working Mathematically,' 'Measurement' and 'Space,' 
from the Australian Education Council's (1994) docu
ment Mathematics-a Curriculum Profile for Australian 
Schools. The requirement that the oral presentation be re
lated to some aspect of the unit had to be relaxed as students 
had great difficulty in finding articles dealing with the his
tory of geometry in the journals available in the University 
library. For the exercises based on the leaming outcomes, 
the students were able to select how many examples they 
wished to attempt from each category. To achieve a Pass 
grade students needed to do no more than 1 or 2 exer
cises from each of the three categories, whereas students 

4 3 

3 4 

3 

4 3 

FIGURE 8 
The modified version of the kou ku theorem discussed with the 
students 

who wished to aim for a grade of High Distinction were 
expected to do outstanding work on a minimum of 4 exer
cises from each category. 

Student Reactions 

In their journals the students were required to record (i) 
their attempts at the tasks set as class activities and ex
tensions of these class activities; (ii) their perceptions and 
reactions to the lectures and tasks, and (iii) their reflections 
on the nature of mathematics and its relevance to them. 

At the end of the semester we asked the students to 
give us their opinions on the unit using a Likert style ques
tionnaire. In particular we were interested in (i) their cur
rent beliefs about the nature of mathematics as compared 
with those at the start of this unit; and (ii) their views 
about the significance of mathematics in solving quantita
tive problems in ancient societies. 

At the start of the unit, and during the development of 
the unit (as students became more confident in expressing 
their opinions), many students (about a third) expressed in 
their journals their concern at the apparent lack of relevance 
of the content and activities to their future role as primary 
teachers. Typical of this group is the followingjoumal entry 
made in the first four weeks of the course: 

Although I find this infonnation/History interest
ing it usually tends to confuse me. I also have 
difficulty relating it to current mathematics. How 
is it relevant to primary school maths? 

Others commented on the difference between this mathe
matics and the mathematics they had done in school. As 
one student put it, 

I have never been taught maths in this way be
fore, rather I have always been given a set of 
problems and been told to solve them, which has 
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made maths a boring subject. Yet when faced 
with an answer, question, and the history behind 
a particular thing it makes further questions eas
ier to handle and I found it stays ingrained in the 
memory better. 

The remaining students, about 33%, did not make any 
direct comments about the nature of the mathematics ex
plored in this course. They were either non-committal or 
they made vague brief statements such as, 'it was interest
ing' or 'it is confusing.' 

At the end of the semester 35% agreed that 'the unit 
seemed unrelated to the maths I will need to teach in pri
mary schools,' 23% were undecided whether to agree or 
disagree, and 42% disagreed with the statement. A ma
jority (57%) felt that the unit had helped them to change 
their attitude towards mathematics. However, a significant 
minority (25%) were undecided and the remaining respon
dents (18%) disagreed. 

Conclusion. Only one student (and a very able one at 
that) was capable of expressing a view congruent with that 
of the lecturers; she wrote: 

I perceive this unit as giving students the op
portunity to enhance their existing mathematical 
skills, which in time will enable them to construct 
a more reflective attitude towards teaching a sub
ject that has been traditionally seen as requiring 
genius mentality. 

Three common myths associated with Math
ematics have been based on the Genius Men
tality, that mathematics has nothing or very lit
tle to do with reality (life) and that you have 
to do everything mentally and fast and if you 
cannot then you are obviously not mathematical. 
This unit has worked towards discrediting these 
myths.... It also dispelled the myth that math

ematics is a purely Western Phenomena, it has 
given credit to the cultures that have originated 
the concepts which were prompted by their life 
styles. 

Another contributing aspect of this unit has 
been the opportunity the students have experi
enced in setting their own problems ... [it has] 
given many students the opportunity to experi
ence success as they have dictated the problems 
to match them .... 

As an introductory unit for a universal sub
ject, it has been my pleasure to have witnessed 
the "beauty" of Mathematics in Action. 

The lecturers concluded that, for the majority of stu
dents, they still had some convincing to do. We recognized 
that, at the start of the second semester, we would again 
have to emphasize the need for teachers to have a broader 
and deeper view of the subject than their pupils. We also 
agreed to explicitly link the topic of 'Numbers and Numer
ation' to primary school arithmetic in the second half of the 
unit. Likewise, when the unit was repeated in the next year, 
we would attempt to clearly relate the geometrical ideas to 
the 'Space' topics in the primary school curriculum. 
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According to our school curricula, mathematics teachers 
are not supposed to teach history of mathematics for its 

own sake. So, why are more and more universities giv
ing courses on history of mathematics to future teachers? 
"Without it, educators can't teach students to love or even 
like, to appreciate or even to understand, mathematics" (Ty
moczko, 1993, p. 14). I believe that such courses can have 
a huge impact not only on the university students' formation 
as future mathematics teachers, but also on the teachers' 
professional development. The purposes of this paper are: 

a) to describe a concrete approach of introducing history of 
mathematics to teacher training programs, and b) to address 

some benefits from this introduction to the mathematics 
teacher's professional development. 

The activity described below is one of the workshops 
of a course called Some Chapters in the History of Mathe
matics. This course is part of a wider program for elemen
tary school teachers which has as its principal aim to qual

ify professional mathematics teachers for the elementary 
school. In Israel, elementary school teachers are, in gen
eral, not specialized in mathematics education; those who 
want to teach mathematics are encouraged to participate in 
professional development programs. Several schools of ed
ucation around Israel adopted the program described here; 
one of the courses taught is the course mentioned above. 
There is a general syllabus for the course but all lecturers 
design their own activities. Eighteen teachers participated 
in the course. All of them were elementary school teachers 

and they had at least five years of experience in teaching 
mathematics. At the end of the course, the participants were 
asked to devise a didactic unit in which they integrated the 
history of some mathematical topic to its teaching. 

The topic of the workshop described in this paper was 
equations, specifically, the methods known as Regula Falsi 
or Rule of False Position (Ofir and Arcavi, 1992; Eaton, 
1967; Eves, 1958). Although elementary school teachers 
are not supposed to teach linear equations nor linear func
tions to their students, they are supposed to understand the 

mathematical principles behind them since they do teach 
ratio and proportion ideas, and they also teach how to deal 
with proportional situations. 

The participants were organized in pairs. Each mem
ber of the pair was given a different card (see Appendices 
A and B) and had twenty minutes to work individually and 
finish the tasks on it. Each card was divided into three 

parts: 

a. 	 Reading Material: A short historical background, the 
problem formulation and a verbal description of a 

method to solve the problem. 
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b. Problems to solve: 	An historical word problem to be 
translated into an equation solved by using the method 
described in part (a), and some other linear equations 
to be solved using the same method. 

c. 	Reflection Questions: A set of five questions about 
the method. 

While working on the card, the participants were asked to 
write down all their conjectures, answers, questions, and 
proofs, as well as examples and counterexamples. After 
twenty minutes of individual work, they were asked to ex
plain to their partner the method they had studied. They 
worked in pairs for almost twenty minutes. 

Following the card tasks, a very 'hot' discussion took 
place. In the following lines, the description and analysis 
of that inspiring discussion appear as follows. The main 
questions that directed the analysis were: 

1. 	What factors do the teachers fmd relevant to the an
cient methods used to solve equations? 

2. 	 Are the teachers aware of the improvement that sym
bolic notation brings to the development of mathemat
ics in general, and to solving equations in particular? 

The participants were asked to discuss the following ques
tions: 

• 	 Does the method work for all the above equations? 
• 	 Does the final answer depend on the guesses? 
• 	 Will the method work for any linear equation? 
• 	 Will the method work for any equation? 
• 	 Why do you think such a method was invented? 

The first four questions were answered correctly by 
the participants. However, almost all of them were unable 
to justify why the Rule of False Position worked nor why 
the Rule of Double False Position did. This was an ap
propriate occasion to discuss mathematical concepts such 
as proportionality, linear junctions and linear equations, 
and the rule of three. In this sense, the historical material 
allowed a review of mathematical content without causing 
embarrassment to the teachers. I believe that during this 
review, the participants deepened their own conceptual un
derstanding rather than the procedural skills involved in 
proportional reasoning. 

While the first four questions led to consensus, the last 
one was found to be a difficult question to answer since 
the participants felt they were not used to these kinds of 
questions. Some of the answers received were: 

• 	 "because it is very intuitive" 
• 	 "because they didn't like fractions" 
• 	 "because they didn't like to divide" 
• 	 "because they didn't have 0" 

Nobody mentioned anything related to symbolic notation or 
to algebra. This was an appropriate occasion to introduce 
some historical content like Egyptian rhetorical algebra, 
Greek geometric algebra, Diophantus' contribution to the 
introduction of symbolism, the Islamic extension of Baby
lonian and Greek algebra and their own geometric proofs, 
Viete's use of abbreviations or words to represent quanti
ties, and his adoption of certain letters to represent knowns 
and others to represent unknowns, and so on. 

The participants were also asked about their general 
opinion about the methods. Some of them were in favor of 
it as can be seen in their own words: 

Even if we don't teach such methods to our stu
dents, it is an historical fact that at least someone 
thought about it. So, we are in front of a math
ematical problem, that can be solved with quite 
elementary tools. 

The Regula Falsi method seems very intuitive to 
me, and I see that it also was intuitive to other 
people. I wonder what's the justification of its 
correctness. 

I liked the guessing stuff, but I'm curious to see 
how children react to it. 

But others did not find those methods and the exposure to 
them so valuable: 

I don't think it will be suitable to bring those 
methods to the class. They are not very clear and 
they rely on guessing. I don't think there is a 
place for guessing in mathematics. 

How can you be sure that your guess is a 'good' 
one? Maybe you are lucky once, but you have to 
develop a general method and not to rely on luck. 

Now, we have better methods to solve linear 
equations. So, what would be the utility of teach
ing our students such methods? 

This experience enabled the participants to expose 
explicitly-but mainly implicitly--their conceptions about 
what mathematics is about, how it develops, how it is 
learned and how it can be effectively taught. The dis
cussion that took place at the end of the workshop gave 
all the opportunity to analyze important didactic issues. In 
that sense, this workshop shows that historical problems 
can lead teachers to discuss not only mathematics content 
but also didactic issues. As an example, the workshop de
scribed here focused on the following didactic issues: 

1. 	 learning by reading; 
2. learning from examples; 
3. 	 explaining ideas through examples; 
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4. using different representations of the same concept; 
5. proving and the role of proof; 
6. 	 using historical material (not first sources but histori

cal problems) as a trigger for meaningful discussion; 
7. 	 using historical material directly connected to the con

tent taught in order to provide a humanistic perspec
tive to the content. 

For instance, the participants pointed out that while 
trying to justify the Rule of False Position, some of them 
used the traditional proportion algorithm (cross-multiply 
and divide); others tried to look for rules with the form 
y = mx in which m is the constant factor that relates the 
two quantities x and y; and others used a verbal approach. 
When they were asked to justify the Rule of Double False 
Position, teachers used several representations of the con
cept of function: table, ordered pairs, graph, and the equa
tion. They found that the rationale of this method could 
be well understood if one considered that through two dif
ferent given points, a unique straight line can be drawn. 
They asked for a proof to the correctness of the method. A 
teacher very familiar with the algebraic language gave the 
following explanation: 

If we have to solve the equation ax + b 0, we 
can consider the function y ax + b and try to 
look for its root. We know it is -bja and we will 
show that this is what you get if you follow the 
instructions [the Double False Position Method]. 
If p is the first guess, when you substitute in the 
function, you get ap +b. So, the point (p, ap +b) 
belongs to the graph of the linear function. Let 
us say (q, aq + b) is the other point. According 
to the instructions we should calculate 

(ap + b)q - (aq + b)p 
(ap + b) - (aq + b) . 

After the corresponding simplifications, you get 
that the root is indeed -bja. . " 

After this explanation, the participants discussed if. and in 
what way, this explanation constituted a proof and what 
might be the prerequisites to understand it. 

Since the utilitarian face of mathematics is widely ac
knowledged, during this workshop the participants were ex
posed to another face of the subject, the one usually called 
a humanistic face, a face that reminds us that mathematics 
is an integral part of our culture. This aspect of mathe
matics must be communicated to the students and it must 
have an influence in the ways teachers teach mathematics. 
The role that mathematics plays in our culture should be 
exposed, and teachers have a major responsibility in that 
task. 

The participants were also encouraged to think, to 
talk, and to discuss about mathematics, essential experi
ences to the development of their metamathematical knowl
edge (Vollrath,1992). They considered this workshop to be 
a meaningful type of experience involving topics in the his
tory of mathematics. It also reinforced the idea that these 
kinds of activities may provide an opportunity to expose 
and to discuss the teachers' own beliefs about mathemat
ics, mathematics teaching, and mathematics leaming. 
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Appendix A 

Card I: Regula Falsi Method 
Subject: Solution of Equations 

The following problem originated in ancient Egypt (Rhind Papyrus, 2000 Be): 

The sum of a certain number and a seventh of the same number equals 16. Compute the number. 

The solution is explained verbally on the papyrus: 

If the number was 7, the answer would be 8 since a seventh of 7 is 1 and seven plus one equals eight. If we 
multiply 8 by 2 we get 16, therefore the solution is 7 (the guess) multiplied by 2 (the correction factor). 

This is the Regula Falsi Method. 

Tasks: 
1. a. Write down the Egyptian's equation 

b. 	Check that the given answer is correct. 
2. 	The above method for solving equations was also used in the Middle Ages and appeared in the book Liber Abaci by 

Fibonacci (in the XII century). The following problem comes from this book. 
A grocer bought a certain amount of apples and paid one dinar for every 7 apples. The following day he sold all 
the apples at 1 dinar each 5 apples. His net profit was 12 dinar. How much money did he invest in the apples 
to begin with? 

a. 	Algebraically we should solve the equation using x as the amount invested. 
b. 	 Solve the equation you just wrote by using the method described above. 


guess: 

result: 

solution according to the method: 

verification: 


3. 	 Solve the following equations using the same method: 

a. 	 x+ 3'x 
24 


guess: 

result: 

solution according to the method: 

verification: 


5x 
b. 	 2x+"'3 =33 

guess: 

result: 

solution according to the method: 

verification: 


c. 	x+ 4x = 12 

guess: 

result: 

solution according to the method: 

verification: 


4. a. Does the method work for all the above equations? 
b. 	Does your final answer depend on your guess? 
c. 	Will the method work for any linear equation? 
d. Will the method work for any equation? 
e. 	 Why do you think such a method was invented? 
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AppendixB 

Card II: Double False Position Method 
Subject: Solution of Equations 

The following method for solving equations was used during the Middle Ages. It's called the Double False Position 
Method. In order to solve an equation such as 5x + 10 = 22. we first have to write an equivalent equation of the fonn 
ax + b = 0; in this case we get 5x - 12 = O. 

• 	If we make a guess and say x = 1, we will get -7, instead of 0 (the value -7 comes from the substitution of 1 in 
the pattern 5x - 12). 

• 	 If we substitute 5 for x we will get 13 instead of O. 
This is when we use the Double False Position Method, which says that the solution to the equation 5x - 12 0 is 

1·13 - 5· (-7) 
x = -1--3---:(---'-:7)--'

Tasks: 
1. 	Check that the given answer is correct. 
2. 	There are ancient collections of math problems. The following problem was taken from a collection written by 

Chuquet in 1484. 
A merchant went to 3 markets. At the first market he doubled his money and spent 30 francs. At the second 
market he tripled his money and spent 54 francs. At the third he quadrupled his money and spent 72 francs. 
When he was finished he had 48 francs. How much money did he start off with? 

a. 	 Algebraically we should solve the equation using x as the amount he had at the beginning. 
b. Solve the equation you just wrote by using the method described above. 


guess #1: 

result: 

guess #2: 

result: 

solution according to the method: 

verification: 


3. 	Solve the following equations using the same method: 
x 

a. 	x+ '3 = 24 

guess #1: 

result: 

guess #2: 

result: 

solution according to the method: 

verification: 


b. 	x+4x= 12 

guess #1: 

result: 

guess #2: 

result: 

solution according to the method: 

verification: 


4. a. Does the method work for all the above equations? 
b. 	 Does your final answer depend on your guesses? 
c. 	Will the method work for any linear equation? 
d. 	 Will the method work for any equation? 
e. 	Why do you think such a method was invented? 
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Introduction 

About 25 years ago we wrote (in an introduction to Popp, 
1975): "We make far too little use of the history of math
ematics in our everyday teaching at all levels. But before 
an effective use of it can be made, there must be a wider 
knowledge of the elementary 'facts'. Then we can proceed 
to the next step of using and integrating history into the 
general process of teaching and learning mathematics." 

It seemed to us then that history of mathematics did 
not have the place it deserves in mathematics education. 
Therefore we thought it appropriate to start with a small 
text to provide the basics of the history of some of the 
topics in the school curriculum. That was a first step in a 
long-term and ongoing program which we describe in the 
following. 

As a non-funded companion to larger funded curricu
lum development projects in mathematics, our work has 
suffered from some Objective constraints which have made 
it a low key rather than a full-fledged program. Neverthe
less, it can be called a program because: 

• 	 it is based on a rationale for the use of history of 
mathematics in mathematics education; 

• 	 it has internal coherence; 
• 	 it has produced a considerable amount of material; 
• 	 its content is intimately related to a large ongoing cur

riculum development project; 
• 	 it has a very particular population as its target, the 

middle school years (grades 7 to 9) studying the offi
cial syllabus in Israel; 

• 	 it addresses both teachers' and students' needs and 
interests; 

• 	 it includes implementation and dissemination of the 
products in teacher courses and classrooms; and fi
nally, 

• 	 it continues. 

The following description is an overview of the whole 
program, and we refer to our already published reports for 
details on particular issues. The description is divided into 
two main parts: history for teachers and history for students. 

History for teachers 

Our starting point was based on an intuitive assumption, 
which is in agreement with claims in the literature, that 
teachers can profit from studying the history of mathemat
ics (see, for example, reports by the MAA in 1935, or by the 
British Ministry of Education in 1958, and many individual 
authors such as Barwell, 1913; Jones, 1969; Shevchenko, 
1975; Grattan-Guinness, 1978; Rogers, 1980; Struik, 1980 
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and Arcavi et al., 1982). Later on, we confirmed empir
ically some initial claims and intuitions and also refined 
or redefined some of the goals, as we describe below. The 
following are the main characteristics of our work with 
teachers, as we established them a priori. 

Active participation. The book by Popp (1975) was it
self primarily devoted to teachers and designed to be read, 
in order to create a "wider knowledge of the elementary 
facts". However, our concept of historical work with teach
ers (as well as with students) was more in the direction of 
"workshops", in which teachers read and work. Thus the 
reading is not an end in itself; rather it is the raw material 
for "doing" mathematics and for oral and written discus
sions. Our aim was, and is, that learning should be achieved 
by "doing" and "communicating". 

"Conceptual" history. We decided to concentrate, as far 
as possible, on the history of the development of a math
ematical topic. In other words, we attempted to trace (at 
least in outline) the evolution of a concept or an idea, the 
different ways mathematicians in the past approached it, 
the difficulties, the gradual process of symbolization and 
formalization, and so on. Facts such as dates, biographi
cal information, some historico-mathematical context, and 
anecdotes were included, as important in themselves to de
velop historical literacy, and as necessary background to 
the "conceptual" evolution, but not as a main goal. These 
remarks are exemplified later when we describe the content 
of the Negative Numbers sequence of worksheets. 

Relevance. After deciding on our target teacher popula
tion (grade 7-9 teachers who teach according to the na
tional syllabus), we decided that studying history would 
be a relevant and motivating experience if we concentrate 
on mathematical topics central to the syllabus they teach. 
Moreover, what they study should be potentially applica
ble to their work in the classroom. Thus, we were able to 
pursue a strictly mathematical objective-to deepen teach
ers' understanding of subtleties of a topic and even to ad
dress possible misunderstandings. In our view, relevance 
is also related to didactical objectives-to discuss various 
approaches to the topic and increase teacher awareness of 
possible student difficulties, which in some cases may par
allel those found in the history of the topic. 

Although we made relevance a necessary condition, 
it was not sufficient. Within the relevant topics, we chose 
those for which we found readable sources (see below), 
and whose history, on the one hand lends itself well to the 

mathematical and pedagogical objectives described above, 
and on the other, is not too complicated. 

Primary sources. We decided to build the workshops 
around primary sources and historical documents. The sym
bols, the language and the approach of primary sources not 
only provide a genuine flavor of the past, but they also 
constitute an opportunity for some non-mediated encoun
ters with the very stuff of history. Moreover, in many cases, 
secondary sources have their problems (e.g., May, 1975, 
Bruckheimer & Arcavi, 1995a). 

However, primary sources are often difficult to read. 
Thus we were very careful in our selection, taking length 
and content complexity into account. In addition, we in
vested considerable effort in the design of worksheets to 
support the reading of these sources, as described in the 
following. 

There may be significant didactical benefit to be 
gained from studying primary sources, in that they can be 
used to enhance our sensitivity to ways of thinking and 
communicating mathematics other than those to which we 
are used. Since the mathematical topic chosen is known 
to the teachers (see relevance above), and they know they 
are facing a correct and legitimate, but different approach, 
they have to set aside for a while their own views in or
der to understand a meaningful text. We believe that if this 
kind of activity is exercised often enough, it may sensitize 
teachers towards the search for coherence, structure, and 
even "correct" conceptualizations present in much of what 
students say. 

As teachers. we very often and very quickly tend to 
dismiss student arguments when they do not exactly follow 
the lines we expect. Learning to listen to what our students 
say needs the kinds of de-centering we can exercise through 
reading and trying to understand historical sources. 

The worksheets. We created three sequences of 
worksheets--negative numbers (described in Arcavi et al., 
1982), irrational numbers (Arcavi et al., 1987), and linear 
and quadratic equations (Arcavi, 1985). 

With a few exceptions, each worksheet is based on one 
or more short extracts from primary sources, preceded by an 
introduction to set the scene and to provide some historical 
information. The extract is followed by leading questions to 
scaffold the reading: there are questions to help overcome 
the difficulty of unfamiliar (or even obscure) language and 
notation, followed by questions to apply the mathematics 
to the examples in the text or to other examples, and finally 
questions about the mathematics involved as compared to 



what we "know" about it today (see, for example, Arcavi 
and Bruckheimer, 1991). 

In order to provide an ordered record of the activity, an 
extensive summative discussion of the ideas in the work
sheets, and additional historical information, we prepared 
detailed answer sheets. 

An appendix follows with an example of a worksheet 
from the sequence on the history of negative numbers: 
"Fran~ois Viete." The contents of the three sequences of 
worksheets (each with its corresponding answer sheets) is 
as follows. 

Negative Numbers 
1 Introduction 
2 Fran~ois Viete (see appendix) 
3 Ren6 Descartes 
4 Contradictions that arose in the use of negative num

bers 
5 Nicholas Saunderson 
6 Leonhard Euler 
7 William Frend 
8 George Peacock (brought in full in Arcavi et al., 1982) 
9 Formal entrance of the negative numbers to mathe

matics 
10 Summary 

Irrational Numbers 
1 The Pythagoreans 
2 Euclid and the Elements 
3 Irrationals in the 16th and 17th centuries 
4 Rafael Bombelli (discussed in detail in Arcavi & 

Bruckheimer, 1991) 
5 Nicholas Saunderson 
6 Dedekind and the definition of irrationals 

Linear and Quadratic: Equations 
1 The Rhind Papyrus 
2 The Rule of False Position 
3 Babylonian Mathematics 
4 Euclid and the Elements 
5 AI-Khwarizmi. 

The following notes on the Negative Numbers se
quence illustrate the conceptual story in these sequences. 
The concept of negative numbers arose from their need in 
application contexts (e.g., as a model for debts, etc., as 
dealt with in the "Introduction") or by the extension of 
previous ideas (e.g., generalization in equation solving as 
dealt with also in the worksheet "Ren6 Descartes"). In the 
process, there were attempts i) to cope with apparent con
tradictions between negative numbers and the concept of 
proportion (as dealt with in the worksheet "Contradictions 
in the use of negative numbers"); ii) to extend and justify 
laws of operations (as in the worksheets "Leonhard Euler" 

Mathematics and Its History: An Educational Partnership 137 

and "Nicholas Saunderson"); iii) to reject negatives alto
gether and as a consequence the attempts to defme them 
properly (as in the worksheets "Frend" and "Peacock"). 
The formal definition arises as a need to mathematize and 
to "tighten up loose ends" (as dealt with in the worksheet 
"The Formal entry of Negative Numbers into Mathemat
ics"). 

Implementation. The sequences of worksheets were first 
used with teachers attending in-service workshops. After a 
brief introduction (in which we asked them to complete a 
questionnaire and sometimes conducted a dialogue with the 
participants about their previous experiences with history), 
we distributed the first worksheet, and encouraged teachers 
to work in small groups. While they worked, we wandered 
among the groups, with occasional interventions to add ex
tra questions or a helpful hint if needed. When most of 
the teachers had finished, we convened a general discus
sion, after which we distributed the answer sheet, which 
was read before moving on to the next worksheet. At the 
end of the sequence, we conducted a general summary, and 
asked them to complete another questionnaire. 

Following these first experiences, we extended the use 
of the materials to pre-service courses in teacher colleges, 
and as a course for university mathematics undergraduates. 
Given the form of the materials (questions and problems 
to work, and extensive printed answer sheets), we realized 
that they were also suitable for long distance learning. Thus 
we conducted correspondence courses, in which we com
mented in writing on the answers and solutions mailed to 
us by the participants, as well as sending them our prepared 

answer sheets. Recently, the negative numbers sequence is 
being adapted for another long distance learning setting: 
the internet. One of the advantages of this environment is 
the hypertext, which enables participants to access histor
ical or mathematical information according to their needs 
and timing. A first trial is currently under way. 

Some results. The response of the teachers to these expe
riences has been favorable. All the workshops and courses 
were well attended (30 to 50 participants), and the materi
als are used in teacher colleges in Israel. We have also had 
requests from abroad with occasional informal feedback. 

As mentioned above. we collected some data in the 
form of questionnaires about teachers' opinions and knowl
edge before and after the courses. A summary of these data 
is brought in, for example, Arcavi et al. (1982) and Arcavi 
et al. (1987). Here we bring some findings that we found 
particularly revealing. 
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Two of the questions posed to participants before start
ing the course on negative numbers were: 

I. 	When were the negative numbers formally defined? 
a) Before the Common Era (Babylonians, Greeks, 

etc.) 
b) Early Middle Ages (Hindus, Arabs) 
c) Between 13~1600 (Europeans) 
d) Between 16~1800 (Europeans) 
e) Between 18~1900 (Europeans). 

n. 	When did mathematicians start to use negative num
bers freely? 

a) Before the Common Era (Babylonians, Greeks, 
etc.) 

b) Early Middle Ages (Hindus, Arabs) 
c) Between 13~1600 (Europeans) 
d) Between 16~1800 (Europeans) 
e) Between 18~1900 (Europeans). 

In general, a first reaction to these questions was "I 
don't know", or "I am not sure". We encouraged partic
ipants to make guesses. Many assigned the emergence of 
negative numbers to periods much earlier than was the case. 
But most interestingly, a large number of participants as
signed an earlier date to the formal mathematical defmi
tion than to the 'free use'. We interpreted these findings as 
an indication that teachers may view mathematics and the 
evolution of mathematical ideas mostly through the lens of 
their teaching practices and curriculum organization. The 
following might seem to be the common underlying as
sumptions of their views. 

a) "Elementary school topics appeared in early 
history-secondary and university topics appeared much 
more recently." Negative numbers are usually taught in el
ementary school (or early middle school), and even though 
students may have some calculation difficulties, this is in
deed an elementary topic-thus it may have appeared quite 
early in history. 

b) "First you defme concepts, then you exercise them." 
In many classroom practices, concepts are not generally 
exercised before they have been presented, defined or ex
plained. Assigning this 'chronology' to the evolution of the 
concept would suggest that a formal definition of negative 
numbers preceded their free use. 

Indeed, alternative explanations can be offered, such 
as: some teachers may not be fully aware of what a formal 
definition is, or the order in which the questions were posed 
biased the answers, etc. Nevertheless, we suggest that our 
interpretation was valid for at least some of the participants, 
and there was confirmation of this in the answers to the 
questionnaire after the workshop. Here are some quotes 
from the responses to the question "What did you learn 

in the workshop from the point of view of (a) history, (b) 
didactics and (c) mathematics?" 

A fascinating illustration of the fact that in many 
cases the use of concepts far preceded the possi
bility of human thought to define those concepts 
in a correct way. 

It became clear to me that one should distinguish 
between didactics of mathematics and pure math
ematics. 

The informal explanation of the formulae are very 
intuitive and speak to your common sense. 

The defmition of negative numbers. 

I knew about the development from the naturals 
to the whole numbers, but I never imagined that 
there were arguments and battles even when the 
necessity for extension had been recognized. 

Such fmdings helped us to distill a goal of history of 
mathematics as a way to provide a more appropriate view 
of mathematics and mathematical activity. 

Another goal we re-established as a consequence of 
the workshop experiences, relates to teacher sensitivity to 
alternative ways of doing mathematics. In the answers to 
the questionnaire we also found the following: "I received 
support for the view that no student answer should be dis
missed, but one should relate to them all, think about them 
and discover their rationale". It seems that, by reading pri
mary sources in which notation and justification arguments 
are very different from ours, and by being compelled to 
understand them, some teachers developed more sensitiv
ity and openness towards idiosyncratic ways of doing and 
expressing mathematics. 

Finally, verbal explanations of mathematical proper
ties seem to have didactical appeal and can enrich the teach
ers' repertoire of explanations to be used when needed. 

Less comprehensive developments. In addition to the 
sequences of worksheets, history is often a component in 
many in-service activities, if not the major component cer
tainly as background. In this role, we used history in two 
ways: 

1) 	"History" as information about faces and lives behind 
the names of theorems (or concepts) and the "antiq
uity" of the issues, or 

2) 	"History" as a source of inspiration for mathematical 
and didactical developments. 

An instance of 1) is the following. Towards the end of 
a two-week teacher workshop on Euclidean geometry that 
integrates computer explorations, we devoted two sessions 



to the Euler line and the Feuerbach (nine-point) circle. In 

the introduction and conclusion we discussed the history 
of the two topics and included anecdotal material about 
Euler and the Feuerbach family as briefly described below. 
The center of the nine-point circle was not on the Euler 
line if only because the nine-point circle had not yet been 
revealed. The Feuerbach circle had only six points on it; 
the other three had already been revealed a couple of years 
earlier, but Feuerbach apparently did not know about it. 
Nevertheless, we argued in favor of calling the nine-point 
circle the Feuerbach circle (as it is usually known on the 
continent of Europe) because of his beautiful theorem-the 
Feuerbach circle of a triangle is tangent to the inscribed 
and the three escribed circles of the triangle. A little about 
the gifted and successful members of the Feuerbach fam
ily adds to the pathos of Feuerbach's short and sad life, 
including the story of his last appearance as a classroom 
teacher with a drawn sword, threatening to behead any stu
dent who could not solve the questions he had written on 
the board (see, for example, Guggenbuhl, 1955). The el
egant mathematics of this topic is thus made even more 
attractive and lively. 

An example of 2) is our long-standing romance with 
fractions, especially unit fractions, and the combination of 
fractions defined by (a/b)(fJ(c/d) = (a+c)/(b+d). This is 
certainly not a well-defined operation on the rational num
bers (i.e., equivalence classes of fractions), because differ
ent representatives (fractions) of the same rational number 
yield different results (for example, (1/2) (fJ (4/7) 5/9 
and (1/2)(fJ(8/14) 9/16.) However, it is well defined on 
individual fractions (where 4/7 =f 8/14) and models "real" 
situations. For example, the probability of drawing a white 
cube from my right-hand pocket which contains 2 identi
cal cubes, one white and one red, is 1/2. The probability 
of drawing a white cube from my left-hand pocket which 
contains 14 identical cubes, 8 white and 6 red, is 8/14. 
And when we put all the cubes in a hat, the prObability of 
drawing a white cube becomes (1/2) (fJ (8/14) = 9/16. 

The operation (fJ is also a useful technique for finding 
a number which is between the two fractions combined 
by (fJ. Chuquet in his Tripartyl used this property of (fJ to 
approximate roots of equations. This topic has led us across 
history from ancient Egypt to very modern times, and we 
have ranged widely across mathematics. 

It all started with some work with teachers on Egyp
tian unit fractions and the 2/n table on the recto of the 
Rhind Papyrus. This led. via Gillings (1972) and Bruck
heimer and Salomon (1977), to the infinite number of 
unit fraction expressions for any given fraction, to the 
Fibonacci-Sylvester2 algorithm for obtaining one such ex-
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pression. This algorithm is direct and "obvious", but the 
Farey sequence algorithm was much more surprising. The 
Farey sequence3 of order n consists of all the reduced 
fractions between 0 and 1, whose denominators do not 
exceed n, arranged in order. These sequences have two 
fundamental properties: one is that two adjacent fractions 
differ by a unit fraction, which is the property we need 
in the above algorithm. The second is that, if alb, c/d, 
e/f are consecutive fractions in a Farey sequence, then 
c/d = (a + e)/(b + I), that is, the combination of frac
tions defined above. In trying to supply some historical 
background on Farey and these sequences, we not only 
uncovered, once more, a tangled tale of attribution (Bruck
heimer and Arcavi, 1995a), but also a remarkable paper 
by Georg Pick (1859-1943) containing Pick's (area) the
orem and some geometrical proofs of the Farey sequence 
properties. We added some of the missing proofs and thus 
developed an interesting application of simple Euclidean 
geometry to algebra (Bruckheimer and Arcavi, 1995b). 

This was a "meta-use" of history, namely, the histori
cal search we undertook as background to the preparation 
of materials, inspired us to a much more interesting pre
sentation of the material itself and the mathematical inter
connections thereof. 

We came across the combination of fractions also 
in connection with some historical approximations to 7r 

(Bruckheimer and Markovits, 1986) and Simpson's Para
dox in statistics (e.g., Lord, 1990). 

None of this has, as yet, been written up as a sequence 
of worksheets in the form of those described earlier, and 
little in the form of material for the classroom as described 
in the next section. but it clearly can serve very well the 
objectives we have for both-and one more objective, at 
least-the interconnectedness of mathematics when viewed 
in an appropriate way, even at the level of grades 7-9. It 
is also remarkable, and has surprised many teachers, that 
something like the combination of fractions, which many 
regard solely as a prevalent student error, to which an ir
relevant (and unhelpful) response is commonly something 
like "that's not the way to add" with an example to show 
that it contradicts what we expect of addition, should prove 
to be so rich an historical and mathematical topic. 

History in the classroom 

We wrestled with the form of historical materials for the 
classroom for a long time and our work in this area is more 
recent. The historical aside in the regular mathematics texts 
may have a non-negligible amusement value and perhaps 
provide some motivation. Both motivation and amusement 
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in the mathematics classroom have much to be said for 
them, but we felt that history has more to offer. 

At the other extreme, an integrated historical approach 
to the whole curriculum, even though it may appeal to many 
of us, may not be practical, appropriate, or efficient at the 
present time, if at alL Therefore, we decided to develop rel
atively short (2-3 lesson periods at most) historical "hap
penings" with strong ties to the curriculum. One such is 
described in its developmental form in Ofir and Arcavi, 
1992; the "final" form is not significantly different. 

These historical happenings do not eliminate either the 
use of primary sources (where possible) or the active partic
ipation of the "learner", components which were so impor
tant to us in our work with teachers, but the doses of both 
components are in accordance with the needs and capabil
ities of grade 7-9 students. The primary sources are very 
short, often no more than a question or a 3-4 line quotation. 
The whole is meant to be teacher "driven" but not directly 
taught. Rather the teacher is there to set the scene and to 
discuss the ideas and problems with the class, but with 
much interspersed student activity. We provide the teacher 
with a detailed text of the activity and its background and 
all the illustrative material in the form of overhead pro
jector transparencies. The latter are either what we call 
"wallpaper"-such as reproductions from the original texts, 
pictures of the mathematicians, etc.--or an integral part of 
the activity-quotations, problems and their solutions, and 
issues for discussion. Each happening is narrowly focused 
on a very small topic in, or relevant to, the curriculum. 
The package the teacher receives is "self-contained" in the 
sense that it covers not only the activity itself, but also 
historical and didactical background. 

The overall general objectives of the classroom ma
terials are to enrich the mathematics in the curriculum, to 
present mathematics as a developing dynamic activity, to 
enhance the understanding of curriculum topics by compar
ing and contrasting them with the same or similar topics 
in previous forms, and to see the curriculum itself as a dy
namic entity. Most students have the impression that the 
mathematics they are learning was and will always be so, 
and this view may only be modified a generation later when 
faced with their children's homework. 

So far we have developed five such happenings: 
• Ancient numerals and number systems 
• Arithmetic in ancient Egypt 
• 1'( and the circumference of the circle 
• Word problems and equations 
• Casting out nines 

The first two present and discuss very different num
ber systems from ours, the way operations were performed 

in those systems, and touch upon the beginning of the frac
tions story described in the previous section. One of the 
specific objectives here is to consider (in greater depth than 
the curriculum itself, which also touches on other numer
ation systems) our decimal system in the light of others 
such as those of the Babylonians, Egyptians, Romans and 
the Maya. The characteristics of our decimal system with 
its advantages and possible disadvantages become more ex
plicit when they are contrasted with other systems. So far, 
we have only anecdotal evidence on the implementation 
of these first two happenings, but it is worth quoting a 
student. She was amazed by the Egyptian multiplication 
system (which can be applied to our decimal system as 
well)-doubling, selecting the appropriate "doubles" and 
adding-to the point that she engaged the teacher in a dis
cussion of why they were not taught this method before. In 
this case history was much more than motivation or amuse
ment; it was the background against which she had a seri
ous opportunity to talk about mathematics and to challenge 
the characteristics and convenience of a certain notation 
system and its profound implications for performing arith
metical operations. 

The number 1'( gets scant treatment in our curriculum 
and is sometimes misunderstood (see, for example, Arcavi 
et al., 1987). So "1'( and the circumference of the circle", 
above all else closes a gap. We consider Babylonian, Greek 
and Chinese approximations. Pythagoras's Theorem is ap
plied often and usefully and irrationality becomes a subject 
for informal discussion. The happening has a particular lo
cal flavor in its final section, in which we discuss Hebrew 
sources. For example, in the Bible 1'( is apparently taken to 
be 3, but there are other theories. In addition, we use an 
extract from the twelfth century writings of Maimonides, 
from which it seems clear that he "knew" that 1'( is irra
tional. 

"Word problems and equations" is described in detail 
in Ofir and Arcavi (1992). It is essentially a discussion 
of problems in pre-algebra which are equivalent to solving 
ax = b in algebra. Again the comparisons and contrasts 
between the methods used in the past and those the students 
have recently learned are designed to clarify and give more 
meaning to the latter. In particular, the objective is to regard 
the study of algebra in a different light, by showing what 
immense power is packed "into that little x". 

"Casting out nines" may, at first sight, seem a surpris
ing choice. After all there are plenty of mathematics topics 
which have dropped out of the curriculum, and this would 
seem to be just another one. But when we started working 
on it, we were surprised at its richness and relevance to the 
curriculum. We begin the activity with the remark that it is 
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"the story of how you [the student] would probably have 

been doing arithmetic if you had been born some sixty years 

ago [or earlier]." So, it is "history" but not only in the sense 

of an outdated and no longer in use method. The activities 

are organized around bygone textbooks which are, in this 

case, the primary sources, and show clearly that textbooks 

have changed and are changing significantly. 

There is a lot of "good" mathematics in this topic, 

which is also elementary enough to be kept well within 

the limits of grade 7-9. To give some idea of the content, 

we describe it here briefly and somewhat abstractly (more 

details can be found in Bruckheimer et al., 1995). 
First, we work on questions around the theme 

a (mod 9) . b (mod 9) ab (mod 9) and its use as a 

check for the calculation of abo The next stage is to show 

that we do not need to divide by 9 to find a (mod 9)-it can 

be found by adding the digits of a (mod 9 if necessary)

hence the name "casting out nines". Throughout we quote 

texts from earlier this century and earlier centuries; the 

quotations are usually statements (often there is no more in 

the original) which the students are asked to test, discuss, 

justify or reject. 

Once the method is understood and justified, we con

sider the question of its reliability. Casting out nines pro

vides a necessary check for correctness, but it is not suf

ficient. We use the obvious ways to demonstrate this by 

presenting a calculation that is incorrect but casting out 

nines checks out correctly. This leads to the question of 

what sort of error would remain undetected-for example, 

a copying error in which two digits are interchanged, or 

incorrect positioning of a row in the working of a long 

multiplication. In this section of the activity, we come to 

the conclusion that casting out nines has the advantage of 

simplicity, but it is not entirely reliable. We then raise a 

new question. Perhaps using the same idea, but a number 

other than 9, will give us a more reliable check, without 

undue loss of simplicity. To open the discussion we found 

an appropriate primary source in Hatton's Intire System of 
Arithmetic (1731, p. 54). 

Checks by 2 and 10 are indeed simple, but how reli
able are they? There is plenty of classroom material here. 
The final section considers, in particular, checks using 7 
(which is not simple, but more reliable in a certain sense) 
and 11 (which is simple and at least as reliable as 9, if not 
more so), and yet 11 was never popular. The appendix to the 
activity brings a remarkable primary source-a letter from 
Rev. C. L. Dodgson to Nature-about how one can find 
the quotient on division by 9 or 11, not just the remainder, 
without division. An interesting historical snippet. 

Epilogue 

We live in an era in which our approach to information and 
knowledge are undergoing significant and rapid transfor
mation. The amount of knowledge we need to cope with is 
several orders of magnitude greater than it was in the not 
so distant past. As a consequence, education in general, 
and especially mathematics education, is less committed to 
specific content and more oriented towards strategies, tools, 
heuristics and dispositions to cope with developing subject 
matter. 

This tendency is explicitly spelled out in the Pro
fessional Standards for Teaching Mathematics (NCTM, 
1991), according to which some of the major shifts in 
mathematics education consist of moving away from mech
anistic answer finding, toward conjecturing, inventing and 
problem solving; away from merely memorizing proce
dures, toward mathematical reasoning; away from treat
ing mathematics as a body of isolated concepts and proce
dures, toward connecting mathematics and its ideas; away 
from the teacher as the sole authority for right answers, to
ward mathematical evidence as verification. The Standards 
frame these shifts in terms of questions that should be not 
only legitimately asked in the classroom, but should also 
become common practice. For example, "Do you agree?", 
"Does anyone have the same answer but different ways to 
explain it?", "What is alike and what is different about 
your method of solution and hers?", "Do you understand 
what they are saying?", "Does that make sense?", "Does 

CO pre
tend to prove Multiplication by ca.Cting out the Nines, is:l. Miftake, 
as 1 have elfewhere demonfrrated; for why divide by 9 more than 
'I, or any other Digit, which would prove the 'Vork :l.S well? But 
the eafieft way is to divide the FaCtors by 10, and the ProduCt of 
the Remainers by 10, which will leave a Remainer equal to that of 
the Product divided by 10. 

FIGURE 1 
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that always work?", "Can you think of a counterexample?", 
"What assumptions are you making?", "How does this re
late to ... ?", and so on. 

The historical materials we have developed share this 
spirit. These types of question abound in both our materials 
for students and teachers. Therefore, we firmly believe that 
history is now (possibly even more that it used to be) a 
rich source for the ongoing development of educational 
materials which pursue the above objectives. 
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Endnotes 
1 The date for the original manuscript Le Triparty en la Science 
de Nombres is 1484. It remained unpublished until 1880, when its 
first section appeared in vol. Xill of the Bullettino di Bibliografia 
e di Storia delle Scienze Matematiche e Fisiche Publicato da B. 
Boncompagni. A recent English version was published in Flegg, 
Hay and Moss (1985) to commemorate 500 years of the original 
manuscript. 

2 Again it is interesting to speculate on the strange and often 
tangled tale of attribution and the historical application of name 
plaques. Apparently Fibonacci (c. 117O-c. 1250) described the 
algorithm and so did J. J. Sylvester (1814-1897) independently, 
some 700 years later. The algorithm is 'pUle common sense'. To 
find the unit fraction expression for alb, subtract the nearest unit 
fraction not greater than alb and continue thus with the remainder 
until the remainder is a unit fraction. Sylvester proved that the 
method was in fact an algorithm. 

3 Apparently it was A. L. Cauchy (1789-1857) who caused the 
sequences to be labelled with the name of J. Farey, an English 
mineralogist. Cauchy saw a translation of a letter to the Philo
sophical Magazine (1816), in which Farey noticed one property 
of the sequence (and in that he was not the first) without proving 
it. Cauchy supplied the proof quoting the conjecture from Farey's 
letter and since then the name tag has remained. 
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Worksheet: Fran~ois Viete 

Fran'tois Viete (or Franciscus Vieta in the Latin spelling), a Frenchman was born in 1540 and died in 1603. Viete studied law and most 
of his life worked in public service, devoting his spare time to mathematics, in which he made his fame. He wrote books on algebra 
and geometry. His important work, In Artem Analyticem Isagoge (Introduction to the Analytic Art), appeared in 1591. 

One of the innovations attributed to Viete is the use of letters, not only for variables, but also for coefficients. He thus made it 
possible to deal with general algebraic forms. Even though the notation in his work is more complicated than that in use today, his 
contribution to the advance of algebra is highly rated and he has been dubbed the "father of modern algebra". 

The following are excerpts from the above book. The text is taken from the English translation brought by J. Klein, Greek 
Mathematical Thought and the Origin of Algebra (MIT Press, 1968), where also more details on Viete and his contribution to 
mathematics can be found. 

VIETA'S ANALYTIC AR.T 

Precept n 
To subtract a magnitude from a magnitude 

Let there be two magnitudes A and B. and let the former be 
greater than the latter. It is required to subtracuhe less from the 
greater. ... subtraction may be fittingly effected 
by means of the sign of the disjoining or removal~ of the less 

from the grcater; and disjoined. they will be A "minus" B•••• 
Nor will it be: done differcndy if the magnitude which is sub

tracted is itself conjoined with some magnitude. since the whole 
and the parts arc not to be judged by separate laws; thus. if"B 
'plus' D" is to be subtracted from A, the remainder will be "A 
'minus' B, 'minus' D," the magnitudes B and D having been 
subtracted one by one. 

But ifDis already subtracted fromB and "B 'm.inus' D" is to 
be subtracted from A, the result will be "A •minus' B'plus' D," 
because in the subtraction ofthe whole magnitude B that which is 
subtracted exceeds by the magnitude D what was to have been 
subtracted. Therefore. it mllst be nlade lip by the addition ofthat 
magnitude D. 

The analysts. however, arc accustomed to indicate the per
formance of the removal by means of the symbol - .... 

But when it is not said which magnitude is greater or less, and 
yet the subtraction must be made. the sign of the difference is: "'", 
i.e., when the less is undetermined; as, if"A square" and "B 
plane" arc the proposed magnitudes, the difference will be:"A 
square=B plane;' or "B. plane=A square." 

VIETA'S ANALYTIC AR.T 

Precept III 
To multiply a magnitude by a magnitude 

Let there be two magnitudes A and B. [t is required to multiply 
the one by the other. .,. their product 
will rightly be designated by the word .. in or" sub," as. for 
example, "A in B," by which it will be signified that the one has 
been multipl1ed by the other ... 

If, however, the magnitudes to be multiplied, or one ofthem. 
be of two or more names, nothing different happens in the 
operation.Z7 Since the whole is equal to its parts, therefore also 
the products under the segments ofsome magnitude are equal to 
the product under the whole. And when the positive nameaS 

(nomen ad6rmatum) ofa magnitude is multiplied by a name also 
positive of another magnitude, the product will be positive, and 
when it is multiplied by a negative name (nomen negatum), the 
product will be negative. 

From which precept it also follows that by the multiplication 
ofnegative names by each other-a positive product is produced. 
as when "A-B" is multiplied by to D=O..... 

•• '~' since the product ofthe positive A and the negative 0 
is negative, which means that too much is removed or taken 
away, inasmuch as A is. inaccurately, brought forward (producta) 
as a magnitude to be multiplied... _ . 

. •• and since, similarly, the product of the negative B and 
the positive D is negative, which again means that tOO much is 
rt'moved, inasmuch as D is, inaccurately, brought forward as a 
magnitude to be multiplied... ••• Therefore, by way 
ofcompensation, when the negative B is multiplied by the nega
tive 0, the product is positive. 

Questions 
I. Translate all the formulae of Precept II and Precept III into modem notation. 

2. Viete explains some of the formulae. Compare his explanations with those which you (or the textbook you use) give. 

3. According to this passage, how does Viete regard negative numbers? 

4. The main mathematical preoccupation of the Greeks was geometric. How would they have demonstrated (or justified) the rules 
in Precept III? 

http:operation.Z7
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Answer sheet: Fran~ois Vi~te 

1. Precept II 
Vitte In modern notation 

"Let there be two magnitudes A and B, and let the former A,B 
be greater than the latter" A>B 
" ... and disjoined, they will be A "minus" B ..... A-B 

" ... if "B 'plus' D" is to be subtracted from A, the 
remainder will be "A 'minus' B, 'minus' D"... " A  (B + D) =A B - D 

"But if D is already subtracted from B and "B 'minus' D" 
is to be subtracted from A, the result will be "A 'minus' A (B  D) = A  B + D 

B 'plus' D"... " 

"A square = B plane" or "B plane = A square" 

Precept III 
Vitte In modern notation 

"A in B" AB, A· B or A x B 

"If, however, the magnitudes to be multiplied, or one of A(B+C) or 
them, be of two or more names, ... when the positive (A+B)(C+D) 
name of a magnitude is multiplied by a name also positive 
of another magnitude, the product will be positive, and .d(B+C) = AB+AC 
when it is multiplied by a negative name the product will .d(B-C) = AB-AC 
be negative" 

(Note: from the text in Precept n, it is clear that, in this passage, Vi~te does not mean -C standing on its own, but rather B - C, (or 
B = C), in which he will call, as later, "- C" the "negative C".) 

"... as when "A = B" is multiplied by "D = 0", since (A - B)(D - G) 
the product of the positive A and the negative 0 is A.(D-G) =AD-AG 
negative... the product of the negative B and the positive (A-B)D = AD-BD 
D is negative ... " 

(Note: By "inasmuch as A is, inaccurately, brought forward (producta) as a magnitude to be multiplied ... ". Vi~te means that we are 
required to multiply, not by A, but by A B which is less than A. Hence in the product A(D - G) "too much is removed".) 

"Therefore, by way of compensation, when the negative B (A-B)(D-G) = AD - BD - AG+BG 
is multiplied by the negative 0, the product is positive" 

Note: Vi~te's justification, although based on arguments of magnitude, seems to be more qualitative than quantitative: we twice 
subtracted too much, so we have to add some on, but there is no explicit justification that the "compensation" is exact.) 

2. The explanation will depend on the textbook and the level of the students. Thus A (B + D) = A - B - D can be justified, for 
example, by movements on the number line, or by regarding the' -' in front of the brackets as equivalent to multiplication by -1, and 
then using the distributive law. The significance of this question is in the discussion of different approaches. 

3. This point has been touched upon in the notes written in answer to Question I, but we will detail it again here. If one reads the 
quote from Vi~te superficially, one may get the impression that he deals with negative numbers and that he even "deduces" the law of 
signs in Precept m. But Vi~te did not admit negative numbers in any sense, as can be seen from 

i) In order to perform the subtraction "A 'minus' BH, the first magnitude must be greater than the second. 
ii) If one does not know which of the magnitudes is the greater, then Vi~te uses the special symbol to indicate that the smaller 

of the two is to be subtracted, i.e., to avoid obtaining a negative result. 
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iii) Stating the law of signs does not imply recognition of negative numbers. 
The Greeks were aware of the extended distributive law (see also the answer to Question 4) and that the product of two subtracted 

numbers (as opposed to negative numbers) gives a result which has to be added and not subtracted. Thus the use of the law of signs 
does not imply acceptance of negative numbers. In all our reading of historical source material, we have to be careful not to attach 
unjustified modem meaning to what we read. The strength of our modem symbolism is its generality, but in deducing that Viete's 
Precept III can be written in the form (A B)(D - G) = AD - BD - AG +BG, we have to be careful to remember the limitations 
he imposes, Le., A > B, D > G. 

4. In answer to this question we do not expect a historically faithful demonstration (see later), but rather something like the following, 
which is also found in modem school texts. 

G 

D 
D-G 

A B B 
~. 

The area of the rectangle whose sides are of length A - Band D - G is (A - B)(D - G). But from the figure, we can obtain 
this area as the area of the large rectangle (A x D), less the area of the two bounding rectangular strips (A x G and B x D), except 
that we have removed the small rectangle (B x G) twice. So we have to add it back on once. 

Since Viete was influenced by Diophantus, * it seems reasonable to suggest that he described in words and "rudimentary" symbolism, 
what the Greeks drew, so helping in the process of giving algebra an existence separate from geometry. 

To get the flavor of an original proof of what we today regard as an algebraic result, we show Proposition 7 from Book II of 
Euclid's Elements, as it appears in the 7th edition of the English version of Chales' Euclid (London, 1726, p. 106). 

The result is algebraically equivalent to a 2 + b2 = 2ab + (a - b)2, where a is the whole segment, and b is the first part. 

'E 
A 


• Diophantus of Alexandria lived in the third century CEo According to Kline, M., Mathematical Thought from Ancient to Modem Times, Oxford 
University Press, 1972, "The highest point of Alexandrian Greek algebra is reached with Diophantus." His major extant work is the apparently incomplete 
Arithmetica. 
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PRO PO S J T ION VII. 

APR. OBLEM. 

If	a Line be JiviJed, tbe Square of the 'J11bole Line 
with tbat of one of its Partl, is equ«Z to t1I,o 
RellllngllS contai,,'l, "ntIer tbe 'J11h"le Line, antI 
tbat firjl Part, together pith the Sguare of the 
othlr P.Tt. 

F LET the Line AB be divided 
E~D any wbere in C; tbeSquarc
H (A D of the Line A B, with the 
A B Square AL, will be equal to two 

C Rectangles contain'd .nnder AB 
K L and AC, with the Square of CB. 
Make the Square of AB~ and baving drawn the 
Diagonal EB, and the Lines CF and HOI; rro
long EA fo far, as that AX may be equa to 
AC; fo AL will be the Square of AC, and HK 
will be equal to AB; fo~ HA is equal to OC, 
ancl GC. is equal to CB, becaufe CI is the Square 
of CB by the CoroB. of the 4.) 

Demo"jration. 

'Tis ('vident, that the Squares AD and AL 
are equal to the ReClangles HL and HD, and 
the Square CI. Now the Re8:angle HL is con
tain'd uncler HK equal to AB, and XL equal to 
AC. In like manner the Rectanale HD is con
tain'd under HI equal to AB, and HE equal to 
AC. Therefore the Squares of AB and AC 
are eqnal to two Rectangles contain'd under 
J\B and ACJ and the Square of CB. 

In Numbers. 

Suppofe the Line AB to confift of 9 Parts, 
AC of 4, and CB of). The Square of AB 9 
is 81, and that of AC 4 is 16; which 81 3'n1 
16 added together make 97. Now one Rectangle 
under AB and AC, or four times 9, make 36, 
which taken twice, is 72; and the Square of 
CB ,is 2)'; which 72 and 2; added together 
make alfc 97. 
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Mesopotamian 
Mathematics: Some 
Historical Background 

Eleanor Robson 
University of Oxford 

Introduction 

When I was young I learned at school the scribal 
art on the tablets of Sumer and Akkad. Among 
the high-born no-one could write like me. Where 
people go for instruction in the scribal art there 
I mastered completely subtraction, addition, cal
culation and accounting. 1 

Most mathematicians know at least a little about 
'Babylonian' mathematics: about the sexagesimal place 
value system, written in a strange wedge-shaped script 
called cuneiform; about the very accurate approximation 
to )2";2 and about the famous list of Pythagorean triples, 
Plimpton 322.3 This kind of information is in most math 
history books. So the aim of this article is not to tell you 
about things which you can easily read about elsewhere. but 
to provide a context for that mathematics-a brief overview 
of nearly five millennia of mathematical development and 
the environmental and societal forces which shaped those 
changes.4 

So where are we talking about, and when? The Greek 
word 'Mesopotamia' means 'between the rivers' and has 
referred to the land around the Tigris and Euphrates in 
modem day Iraq since its conquest by Alexander the Great 
in 330 BCE. But its history goes back a good deal further 
than that. Mesopotamia was settled from the surrounding 
hills and mountains during the course of the fifth millen
nium BCE. It was here that the first sophisticated, urban 
societies grew up, and here that writing was invented, at 
the end of the fourth millennium, perhaps in the southern 
city of Uruk. Indeed, writing arose directly from the need 
to record mathematics and accounting: this is the subject 
of the first part of the article. As the third millennium wore 
on, counting and measuring systems were gradually revised 
in response to the demands of large-scale state bureaucra
cies. As the second section shows, this led in the end to the 
sexagesimal. or base 60, place value system (from which 
the modem system of counting hours, minutes and seconds 
is ultimately derived). 

By the beginning of the second millennium, mathe
matics had gone beyond the simply utilitarian. This period 
produced what most of the text-books call 'Babylonian' 
mathematics, although, ironically, it is highly unlikely that 
any of the math comes from Babylon itself: the early sec
ond millennium city is now deep under the water table and 
impossible to excavate. The third part of this article exam
ines the documents written in the scribal schools to look 
for evidence of how math was taught at this time, and why 
it might have moved so far from its origins. But after the 
mid-second millennium BCE we have almost no knowledge 
of mathematical activity in Mesopotamia, until the era of 
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150 Using History to Teacb Mathematics: An International Perspective 

the Greek conquest in the late fourth century BCE-when 
math from the city of Babylon is known. The fourth and 
final part looks at why there is this enormous gap in the 
record: was there really very little math going on, or can 
we find some other explanations for our lack of evidence? 

Counting with clay: from tokens to tablets 

But now let us start at the beginning. The Tigris-Euphrates 
valley was first inhabited during the mid-fifth millennium 
BCE. Peoples who had already been farming the surround
ing hills of the so-called 'Fertile Crescent' for two or three 
millennia began to settle, first in small villages, and then 
in increasingly large and sophisticated urban centres. The 
largest and most complex of these cities were Uruk on 
the Euphrates, and Susa on the Shaur river. Exactly why 
this urban revolution took place need not concern us here; 
more important to the history of mathematics are the con
sequences of that enormous shift in societal organisation. 

Although the soil was fertile and the rivers full, there 
were two major environmental disadvantages to living in 
the southern Mesopotamian plain. First, the annual rainfall 
was not high enough to support crops without artificial ir
rigation systems, which were in tum vulnerable to destruc
tion when the rivers flooded violently during each spring 
harvest. Second, the area yielded a very limited range of 
natural resources: no metals, minerals, stones or hard tim
ber; just water, mud, reeds and date-palms. Other raw ma
terials had to be imported, by trade or conquest, utilised 
sparingly, and recycled. So mud and reeds were the mate
rials of everyday life: houses and indeed whole cities were 
made of mud brick and reeds; the irrigation canals and their 
banks were made of mud reinforced with reeds; and there 
were even some experiments in producing agricultural tools 
such as sickles from fired clay. 

It is not surprising then that mud and reeds deter
mined the technologies available for other everyday activ
ities of urban society, such as managing and monitoring 
labour and commodities. The earliest known method of 
controlling the flow of goods seems to have been in opera
tion from the time of the earliest Mesopotamian settlement, 
predating the development of writing by millennia [Nissen, 
Damerow and Englund, 1993: 11], It used small clay 'to
kens' or 'counters', made into various geometric or regular 
shapes. Each 'counter' had both quantitative and qualitative 
symbolism: it represented a specific number of a certain 
item. In other words it was not just a case of simple one
to-one correspondence: standard groups or quantities could 
also be represented by a single token. It is often impossi
ble to identify exactly which commodity a particular token 

might have depicted; indeed, when such objects are found 
on their own or in ambiguous contexts, it is rarely certain 
whether they were used for accounting at alL The clearest 
evidence comes when these tokens are found in round clay 
envelopes, or 'bullae', whose surfaces are covered in im
pressed patterns. These marks were made, with an official's 
personal cylinder seal, to prevent tampering. The envelope 
could not be opened and tokens removed without damaging 
the pattern of the seaL In such a society, in which literacy 
was restricted to the professional few, these cylinder-seals 
were a crucial way of marking individual responsibility or 
ownership and, like the tokens, are ideally suited to the 
medium of clay. 

Of course, sealing the token-filled envelopes meant 
that it was impossible to check on their contents, even le
gitimately, without opening the envelope in the presence 
of the sealing official. This problem was overcome by im
pressing the tokens into the clay of the envelope before 
they were put inside. It then took little imagination to see 
that one could do without the envelopes altogether. A deep 
impression of the tokens on a piece of clay, which could 
also be sealed by an official, was record enough. 

At this stage, c. 3200 BCE, we are still dealing with 
tokens or their impressions which represent both a number 
and an object in one. A further development saw the sepa
ration of the counting system and the objects being counted. 
Presumably this came about as the range of goods under 
central control widened, and it became unfeasible to create 
whole new sets of number signs each time a new commod
ity was introduced into the accounting system. While we 
see the continuation of impressions for numbers, the ob
jects themselves were now represented on clay either by a 
drawing of the object itself or of the token it represented, 
incised with a sharp reed. Writing had begun. 5 

Now mathematical operations such as arithmetic could 
be recorded. The commodities being counted cannot usu
ally be identified, as the incised signs which represent them 
have not yet been deciphered. But the numerals themselves, 
recorded with impressed signs, can be identified with ease. 
For instance, one tablet displays a total of eighteen D
shaped marks on the front, and three round ones, in four 
separate enclosures. On the back are eight Ds and four cir
cles, in one enclosure.6 We can conclude that the circular 
signs must each be equivalent to ten Ds. In fact, we know 
from other examples that these two signs do indeed repre
sent 1 and 10 units respectively, and were used for counting 
discrete objects such as people or sheep. 

Using methods like this, a team in Berlin have identi
fied a dozen or more different systems used on the ancient 
tablets from Uruk [Nissen, Damerow and Englund, 1993: 



28-29]. There were four sets of units for counting different 
sorts of discrete objects, another set for area measures, and 
another for counting days, months and years. There were 
also four capacity measure systems for particular types of 
grain (apparently barley, malt, emmer and groats) and two 
for various kinds of dairy fat. A further system is not yet 
completely understood; it may have recorded weights. Each 
counting or measuring system was context-dependent: dif
ferent number bases were used in different situations, al
though the identical number signs could be used in dif
ferent relations within those contexts. One of the discrete
object systems was later developed into the sexagesimal 
place value system, while some of the other bases were 
retained in the relationships between various metrological 
units. It is an enormously complex system, which has taken 
many years and a lot of computer power to decipher; the 
project is still unfinished. 

It is unclear what language the written signs repre
sent (if indeed they are language-specific), but the best 
guess is Sumerian, which was certainly the language of 
the succeeding stages of writing. But that's another story; 
it's enough for our purposes to see that the need to record 
number and mathematical operations efficiently drove the 
evolution of recording systems until one day, just before 
3000 BeE, someone put reed to clay and started to write 
mathematics. 

The third millennium: math for bureaucrats 

During the course of the third millennium writing began to 
be used in a much wider range of contexts, though admin
istration and bureaucracy remained the main function of 
literacy and numeracy. This restriction greatly hampers our 
understanding of the political history of the time, although 
we can give a rough sketch of its structure. Mesopotamia 
was controlled by numerous city states, each with its own 
ruler and city god, whose territories were concentrated on 
the canals which supplied their water. Because the incline 
of the Mesopotamian plain is so slight-it falls only around 
5 cm in every kilometre--large-scale irrigation works had 
to feed off the natural watercourses many miles upstream 
of the settlements they served. Violent floods during each 
year's spring harvest meant that their upkeep required an 
enormous annual expenditure. The management of both 
materials and labour was essential, and quantity surveying 
is attested prominently in the surviving tablets. 

Scribes had to be trained for their work and, indeed, 
even from the very earliest phases around 15% of the tablets 
discovered are standardised practice lists-of titles and pro
fessions, geographical names, other sorts of technical ter
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minology. From around 2500 BeE onwards such 'school' 
tablets--documents written for practice and not for work
ing use--include some mathematical exercises. By this time 
writing was no longer restricted to nouns and numbers. 
By using the written signs to represent the sounds of the 
objects they represented and not the objects themselves, 
scribes were able to record other parts of human speech, 
and from this we know that the earliest school math was 
written in a now long-dead language called Sumerian. We 
currently have a total of about thirty mathematical tablets 
from three mid-third millennium cities-Shuruppak, Adab 
and Ebla-but there is no reason to suppose that they repre
sent the full extent of mathematical knowledge at that time. 
Because it is often difficult to distinguish between compe
tently written model documents and genuine archival texts, 
many unrecognised school tablets, from all periods, must 
have been published classified as administrative material. 

Some of the tablets from Shuruppak state a single 
problem and give the numerical answer below it [Powell, 
1976: 436 n19]. There is no working shown on the tablets, 
but these are more than simple practical exercises. They 
use a practical pretext to explore the division properties of 
the so-called 'remarkable numbers' such as 7, 11, 13, 17 
and 19, which are both irregular (having factors other than 
2, 3 and 5) and prime [cf. Hl!Syrup, 1993]. We also have 
a geometrical diagram on a round tablet from Shuruppak 
and two contemporary tables of squares from Shuruppak 
and Adab which display consciously sexagesimal charac
teristics [Powell, 1976: 431 & fig. 2]. The contents of the 
tablets from Ebla are more controversial: according to one 
interpretation, they contain metrological tables which were 
used in grain distribution calculations [Friberg, 1986]. 

Mesopotamia was first unified under a dynasty of 
kings based at the undiscovered city of Akkad, in the late 
twenty-fourth century BeE. During this time the traditional 
metrological systems were overhauled and linked together, 
with new units based on divisions of sixty. Brick sizes and 
weights were standardised too [Powell, 1987-90: 458]. The 
new scheme worked so well that it was not substantially 
revised until the mid-second millennium, some 800 years 
later; indeed, as we shall see, some Akkadian brick sizes 
were still being used in the Greek period, in the late fourth 
century BeE. 

There are only eight known tablets containing math
ematical problems from the Akkadian period, from Girsu 
and Nippur. The exercises concern squares and rectangles. 
They either consist of the statement of a single problem 
and its numerical answer, or contain two stated problems 
which are allocated to named students. In these cases the 
answers are not given, and they appear to have been written 
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by an instructor in preparation for teaching. Indeed, one of 
these assigned problems has a solved counterpart amongst 
the problem texts. Certain numerical errors suggest that 
the sexagesimal place system was in use for calculations, 
at least in prototype form [Whiting, 1984]. 

A round tablet from Nippur shows a mathematical di
agram which displays a concern with the construction of 
problems to produce integer solutions. The trapezoid has 
a transversal line parallel to the base, dividing it into two 
parts of equal area. The lengths of the sides are chosen in 
such a way that the length of the transversal line can be 
expressed in whole numbers [Friberg, 1987-90: 541]. No 
mathematical tables are known from this period, but model 
documents of various kinds have been identified, including 
a practice account from Eshnunna and several land surveys 
and building plans [Westenholz, 1977: 100 no. II; Foster, 
1982: 239-40]. In working documents too, we see a more 
sophisticated approach to construction and labour manage
ment, based on the new metrological systems. The aim was 
to predict not only the raw materials but also the manpower 
needed to complete state-funded agricultural, irrigation and 
construction projects, an aim which was realised at the 
close of the millennium under the Third Dynasty of Ur. 

The Ur m empire began to expand rapidly towards 
the east in the second quarter of the 21 st century BCE. 
At its widest extent it stretched to the foothills of the Za
gros mountains, encompassing the cities of Urbilum, Ashur, 
Eshnunna and Susa. To cope with the upkeep of these 
new territories and the vastly increased taxation revenues 
they brought in, large-scale administrative and economic 
reforms were executed over the same period. They pro
duced a highly centralised bureaucratic state, with virtually 
every aspect of its economic life subordinated to the over
riding objective of the maximisation of gains. These ad
ministrative innovations included the creation of an enor
mous bureaucratic apparatus, as well as of a system of 
scribal schools that provided highly uniform scribal and 
administrative training for the prospective members of the 
bureaucracy. Although little is currently known of Ur m 
scribal education, a high degree of uniformity must have 
been essential to produce such wholesale standardisation in 
the bureaucratic system. 

As yet only a few school mathematical texts can be 
dated with any certainty to the Ur m period, but between 
them they reveal a good deal about contemporary educa
tional practice. There are two serious obstacles to the con
fident identification of school texts from the Ur m period 
when, as is often the case, they are neither dated nor ex
cavated from well-defined find-spots. Firstly, there is the 
usual problem of distinguishing between competently writ

ten practice documents and those produced by working 
scribes. Secondly, palaeo graphic criteria must be used to as
sign a period to them. In many cases it is matter of dispute 
whether a text is from the late third millennium or was writ
ten using archaising script in the early second millennium. 
In particular. it was long thought that the sexagesimal place 
system, which represents numerals using just tens and units 
signs, was an innovation of the following Old Babylonian 
period so that any text using that notation was assumed 
to date from the early second millennium or later. How
ever, we now.know that it was already in use by around 
2050 BeE-and that the conceptual framework for it had 
been under construction for several hundred years. Cru
cially, though, calculations in sexagesimal notation were 
made on temporary tablets which were then reused after 
the calculation had been transferred to an archival docu
ment in standard notation [Powell, 1976: 421].7 We should 
expect, then, to find neither administrative documents us
ing the sexagesimal system nor sexagesimal school texts 
which were used to train the scribes (because, in general, 
they were destroyed after use, and we can hardly distin
guish them from later examples). 

One conspicuous exception to our expectations is a 
round model document from Girsu [Friberg, 1987-90: 
541]. On one side of the tablet is a (slightly incorrect) 
model entry from a quantity survey, giving the dimensions 
of a wall and the number of bricks in it. The measure
ments of the wall are given in standard metrological units, 
but have been (mis-)copied on to the reverse in sexages
imal notation. The volume of the wall, and the number 
of bricks in it, are then worked out using the sexagesimal 
numeration, and converted back into standard volume and 
area measure, in which systems they are written on the 
obverse of the tablet. These conversions were presumably 
facilitated by the use of metrological tables similar to the 
many thousands of Old Babylonian exemplars known. In 
other words, scribal students were already in the Ur mpe
riod taught to perform their calculations-in sexagesimal 
notation--on tablets separate from the model documents to 
which they pertained, which were written in the ubiquitous 
mixed system of notation. 

The writer of that tablet from Girsu might easily have 
gone on to calculate the labour required to make the bricks, 
to carry them to the building site, to mix the mortar, and 
to construct the wall itself. These standard assumptions 
about work rates were at the heart of the Ur m regime's 
bureaucracy. Surveyors' estimates of a work gang's ex
pected outputs were kept alongside records of their ac
tual performances-for tasks as diverse as milling flour to 
clearing fallow fields. At the end of each administrative 



year, accounts were drawn up, summarising the expected 
and true productivity of each team. In cases of shortfall, 
the foreman was responsible for catching up the following 
year; but work credits could not be carried over [Englund, 
1991]. The constants used in these administrative calcula
tions are found in a few contemporary school practice texts 
too [Robson, 1999: 31]; 

Math education in the early second 
millennium 

But such a totalitarian centrally-controlled economy could 
not last, and within a century the Ur m empire had col
lapsed under the weight of its own bureaucracy. The dawn 
of the second millennium BCE-ilie so-called Old Baby
lonian period-saw the rebirth of the small city states, 
much as had existed centuries before. But now many of 
the economic functions of the central administration were 
deregulated and contracted out to private enterprise. Nu
merate scribes were still in demand, though, and we have 
an unprecedented quantity of tablets giving direct or in
direct information on their training. Many thousands of 
school tablets survive although they are for the most part 
unprovenanced, having been dug up at the end of the nine
teenth century (CE!) before the advent of scientific archae
ology. However, mathematical tablets have been properly 
excavated from a dozen or so sites, from Mari and Terqa 
by the Euphrates on the Syria-Iraq border to Me-Thrnat on 
the Diyala river and Susa in south-west Iran. A fragment 
of a multiplication table was even discovered at Hazor in 
Israel [Horowitz, 1993]. 

We know of several school houses from the Old Baby
lonian period, from southern Iraq [Stone. 1987: 56-59; 
Charpin, 1986: 419-33]. They typically consist of several 
small rooms off a central courtyard, and would be indistin
guishable from the neighbouring dwellings if it were not for 
some of the fittings and the tablets that were found inside 
them. The courtyard of one house in Nippur, for instance, 
had built-in benches along one side and a large fitted basin 
containing a large jug and several small bowls which are 
thought to have been used for the preparation and moist
ening of tablets. There was also a large pile of crumpled 
up, half-recycled tablets waiting for re-use. The room be
hind the courtyard had been the tablet store, where over a 
thousand school tablets had been shelved on benches and 
perhaps filed in baskets too. But when the house needed 
repairs, some time in the mid-18th century BCE, the tablets 
were used as building material and were incorporated into 
the very fabric of the house itself. 
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Some of the school tablets were written by the teach
ers, while others were 'exercise tablets' composed by the 
apprentice scribes. Sumerian, which had been the official 
written language of the Ur m state, was gradually ousted 
by Akkadian-a Semitic language related to Hebrew and 
Arabic but which used the same cuneiform script as Sume
rian. Akkadian began to be used for most everyday writings 
while Sumerian was reserved for scholarly and religious 
texts, analogous to the use of Latin in Europe until very re
cently. This meant that much of the scribal training which 
had traditionally been oral was recorded in clay for the 
frrst time, either in its original Sumerian, or in Akkadian 
translation, as was the case for the mathematical texts. 

Math was part of a curriculum which also included 
Sumerian grammar and literature, as well as practice in 
writing the sorts of tablets that working scribes would 
need. These included letters, legal contracts and various 
types of business records, as well as more mathematically 
oriented model documents such as accounts, land surveys 
and house plans. Five further types of school mathematical 
text have been identified, each of which served a separate 
pedagogical function [Robson, 1999: 8-15]. Each type has 
antecedents in the third millennium tablets discussed in the 
previous section. 

First, students wrote out tables while memorising 
metrological and arithmetical relationships. There was a 
standard set of mUltiplication tables, as well as aids for di
vision, finding squares and square roots, and for converting 
between units of measurement. Many scribes made copies 
for use at work too. Calculations were carried out, in formal 
layouts, on small round tablets--called 'hand tablets'
very like the third millennium examples mentioned above. 
Hand tablets could serve as the scribes' 'scratch pads' and 
might also carry diagrams and short notes as well as hand
writing practice and extracts from literature. The teacher set 
mathematical problems from 'textbooks'-usually called 
problem texts in the modern literature-which consisted 
of a series of (often minimally different) problems and 
their numerical answers. They might also contain model 
solutions and diagrams. Students sometimes copied prob
lem texts, but they were for the most part composed and 
transmitted by the scribal teachers. Teachers also kept so
lution lists containing alternative sets of parameters, all 
of which would give integer answers for individual prob
lems [Friberg, 1981]. There were also tables of techni
cal constants--<:onventionally known as coefficient lists
many of whose entries are numerically identical to the con
stants used by the personnel managers of the Ur m state 
[Kilmer, 1960; Robson, 1999].8 
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Model solutions, in the form of algorithmic instruc

tions, were not only didactically similar to other types of ed

ucational text, but were also intrinsic to the very way math
ematics was conceptualised. For instance, the problems 

which have conventionally been classified as 'quadratic 

equations' have recently turned out to be concerned with a 
sort of cut-and-paste geometry [H~yrup, 1990; 1995]. As 
the student followed the instructions of the model solu
tion, it would have been clear that the method was right

because it worked-so that no proof was actually needed. 

The bottom line for Old Babylonian education must 
have been to produce literate and numerate scribes, but 

those students were also instilled with the aesthetic pleasure 
of mathematics for its own sake. Although many ostensi

bly practical scenarios were used as a pretext for setting 
non-utilitarian problems, and often involved Ur ill-style 

technical constants, they had little concern with accurate 
mathematical modelling. Let us take the topic of grain-piles 

as an example. In the first sixteen problems of a problem 
text from Sippar the measurements of the grain-pile remain 

the same, while each parameter is calculated in turn.9 The 

first few problems are missing, but judging from other texts 
we would expect them to be on finding the length, then the 
width, height, etc. The first preserved problem concerns 

finding the volume of the top half of the pile. 
One could imagine how such techniques might be use

ful to a surveyor making the first estimate of the capacity of 
a grain-pile after harvest-and indeed we know indirectly 

of similar late third millennium measuring practices. How
ever, then things start to get complicated. The remaining 

problems give data such as the sum of the length and top, 
or the difference between the length and the thickness, or 
even the statement that the width is equal to half of the 
length plus 1. It is hardly likely that an agricultural over

seer would ever fmd himself needing to solve this sort of 
a problem in the course of a working day. 

Similarly, although the mathematical grain-pile is a 

realistic shape-a rectangular pyramid with an elongated 
apex-even simply calculating its volume involves some 

rather sophisticated three-dimensional geometry, at the cut
ting edge of Old Babylonian mathematics as we know it. 

Further, it appears that at some point the scenario was fur
ther refined to enable mathematically more elegant solu
tions to be used in a tablet from Susa. 10 In both sets of 
problems the pile is 60 m long and 18-24 m high. It is 

difficult to imagine how a grain pile this big could ever 

be constructed, let alone measured with a stick. In short, 

the accurate mathematical modelling of the real world was 
not a priority of Old Babylonian mathematics; rather it was 

concerned with approximations to it that were both good 
enough and mathematically pleasing. 

The evidence for mathematical methods in the Old 
Babylonian workplace is still sketchy, but one can look 
for it, for instance, in canal and land surveys. Although 
these look rather different from their late third millennium 
precursors-they are laid out in the form of tables, with the 
length, width and depth of each excavation in a separate 
column, instead of in lists-the mathematical principles in
volved are essentially the same. There is one important dis
tinction though; there is no evidence (as yet) for work-rate 
calculations. This is not surprising; we are not dealing with 
a centralised 'national' bureaucracy in the early second mil
lennium, but quasi-market economies in which much of 
the work traditionally managed by the state was often con
tracted out to private firms bound by legal agreements. One 
would not expect a consistent picture of quantitative man
agement practices throughout Mesopotamia, even where 
such activities were documented. 

What happened next? 

Tracing the path to Hellenistic Babylon 


After about 1600 BeE mathematical activity appears to 
come to an abrupt halt in and around Mesopotamia. Can 
it simply be that math was no longer written down, or can 
we fmd some other explanation for the missing evidence? 

For a start, it should be said that there is a sudden 
lack of tablets of all kinds, not just school mathematics. 
The middle of the second millennium BeE was a turbulent 
time, with large population movements and much political 
and social upheaval. This must have adversely affected the 
educational situation. But there is the added complication 
that few sites of this period have been dug, and that further, 
the tablets which have been excavated have been studied 
very little. Few scholars have been interested in this period 
of history, partly because the documents it has left are so 
difficult to decipher. 

But, further, from the twelfth century BeE onwards the 
Aramaic language began to take over from Akkadian as the 
everyday vehicle of both written and oral communication. 
Aramaic was from the same language-family as Akkadian, 
but had adopted a new technology. It was written in ink 
on various perishable materials, using an alphabet instead 
of the old system of syllables on clay. Sumerian, Akka
dian and the cuneiform script were retained for a much 
more restricted set of uses, and it may be that math was 
not usually one of them. It appears too that cuneiform was 
starting to be written in another new medium, wax-covered 
ivory or wooden writing-boards, which could be melted 



down and smoothed off as necessary. Although contem
porary illustrations and references on clay tablets indicate 
that these boards were in widespread use, very few have 
been recovered-all in watery contexts which aided their 
preservation-but the wax had long since disappeared from 
their surfaces. So even if mathematics were stilI written in 
cuneiform, it might well have been on objects which have 
not surviVed. 

These factors of history, preservation and fashions in 
modem scholarship have combined to mean that the period 
between around 1600 and 1000 BeE in south Mesopotamia 
is still a veritable dark age for us. The light is beginning 
to dawn, though, and there is no reason why school texts, 
including mathematics, should not start to be identified, 
supposing that they are there to be spotted. But, fortu
nately for us, the art of writing on clay did not entirely 
die out, and there are a few clues available already. Mathe
matical and metrological tables continued to be copied and 
learnt by apprentice scribes; they have been found as far 
afield as Ashur on the Tigris, Haft Tepe in southwest Iran, 
and Ugarit and Byblos on the Mediterranean coast. One 
also fmds evidence of non-literate mathematical concepts, 
which have a distinctly traditional flavour. Not only do 
brick sizes remain more or less constant-which strongly 
suggests that some aspects of third millennium metrology 
were still in use-but there are also some beautiful and so
phisticated examples of geometrical decoration. There are, 
for instance, stunning patterned 'carpets' carved in stone 
from eighth and seventh century Neo-Assyrian palaces
an empire more renowned for its brutal deportations and 
obsession with astrology than for its contributions to cul
tural heritage. 

But perhaps more excitingly, a mathematical prob
lem is known in no less than three different copies, from 
Nineveh and Nippur.11 Multiple exemplars are rare in the 
mathematically-rich Old Babylonian period, but for the bar
ren aftermath it may be an indication of the reduced reper
toire of problems in circulation at that time. Its style shows 
that mathematical traditions of the early second millennium 
had not died out, while apparently new scenarios for set
ting problems had developed. It is a teacher's problem text, 
for a student to solve, and it is couched in exactly the sort 
of language known from the Old Babylonian period. But 
interestingly it uses a new pretext. The problem ostensi
bly concerns distances between the stars, though in fact it 
is about dealing with division by 'remarkable' numbers
a topic which, as we have seen, goes back as far as the 
mid-third millennium. 

Finally we arrive in Babylon itself-a little later than 
the Persians and Greeks did. By the fourth and third cen-
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turies BCE indigenous Mesopotamian civilisation was dy
ing. Some of the large merchant families of Uruk and Baby
lon still used tablets to record their transactions, but the 
temple libraries were the principal keepers of traditional 
cuneiform culture. Their collections included huge series 
of omens, historical chronicles, and mythological and re
ligious literature as well as records of astronomical obser
vations. It has often been said that mathematics by now 
consisted entirely of mathematical methods for astronomy, 
but that is not strictly true. As well as the mathematical 
tables-now much lengthier and sophisticated than in ear
lier times-we know of at least half a dozen tablets con
taining non-astronomical mathematical problems for solu
tion. Although the terminology and conceptualisation has 
changed since Old Babylonian times-which, after all, is 
only to be expected-the topics and phraseology clearly 
belong to the same stream of tradition. Most excitingly, a 
small fragment of a table of technical constants has re
cently been discovered. which contains a list of brick sizes 
and densities. Although the mathematics involved is rather 
more complicated than that in similar earlier texts, the brick 
sizes themselves are exactly identical to those invented in 
the reforms of Akkad around two thousand years before. 

Conclusions 
I hope I have been able to give you a little taste of the rich 
variety of Mesopotamian math that has come down to us. 
Its period of development is vast. There is twice the time
span between the first identifiable accounting tokens and 
the latest known cuneiform mathematical tablet as there is 
between that tablet and this book. Most crucially, though, 
I hope that you will agree with me that mathematics is 
fundamentally a product of society. Its history is made im
measurably richer by the study of the cultures which have 
produced it, wherever and whenever they might be. 
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son, 1998]. In general I have tried to cite the most recent, reliable 
and easily accessible sources, rather than present an exhaustive 
bibliography for the topic. 
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Nobody can hope to do justice, in one short article, to the 
two millennia of indigenous mathematical development in 
China up to the end of the 16th century.1 This article at
tempts only to convey a general flavour of ancient Chinese 
mathematics and illustrate some of its characteristic fea
tures through a few examples. An annotated bibliography 
is provided at the end for the reader's convenience.2 

Characteristic Features of 
Ancient Chinese Mathematics 

The characteristic features of ancient Chinese mathemat
ics can best be appreciated by looking at the work of the 
ancient Chinese mathematicians. Evidenced in their choice 
of topics is a strong social relevance and pragmatic orien
tation, and in their methods a primary emphasis on calcu
lation and algorithms. However, contrary to the impression 
most people may have, ancient Chinese mathematics is not 
just a "cook-book" of applications of mathematics to mun
dane transactions. It is structured, though not in the Greek 
sense exemplified by Euclid's Elements. It includes expla
nations and proofs, though not in the Greek tradition of 
deductive logic. It contains theories which far exceed the 
necessity for mundane transactions. 

We start with some ideograms (characters) related 
to mathematics. In ancient classics the term mathemat
ics ( ••) was often written as "the art of calculation" 
(.~) or "the study of calculation" (.~), indicat
ing a deep-rooted basis in calculation. The ideogram for 
"number" and "to count" (.) appeared on oracle bones 
about 3000 years ago, in the form of a hand tying knots 
on a string (see Fig. la). The ideogram for "to calculate" 
(.) appeared in three forms, according to Shuowen Jiezi 
(Analytic Dictionary of Characters) by Xu Shen (AD 2nd 
century). The first is a noun, composed of two parts, "bam
boo" on top and "to manipulate" in the bottom, with the 
bottom part itself in the form of two hands plus some (bam
boo) sticks laid down on a board, some placed in a hori
zontal position and some placed in a vertical position (see 

--' 
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Fig. Ib). The second is a verb, also written with the parts 
of bamboo and hands (see Fig. lc). The third, somewhat 
more puzzling, is in the form of a pair of ideogramatic parts 
pertaining to religious matters (see Fig. Id). It is a tanta
lizing thought that the subject of mathematics in ancient 
China was not exactly the same subject as we understand 
it today. Indeed, in some ancient mathematical classics we 
find mention of "internal mathematics" and "external math
ematics", the former being intimately tied up with Yijing 
(Book of Changes), the oldest written classic in China.3 

Besides its appearance in these ideograms, the theme 
of calculation permeated the whole of ancient Chinese 
mathematics. This is best illustrated by the calculating de
vice of the counting rods. Ample evidence confirms the 
common usage of counting rods as early as in the fifth cen
tury BCE, and these probably developed from sticks used for 
fortune-telling in even earlier days. The earliest relics from 
archaeological findings are dated to the second century BCE 
These were made of bamboo, wood and even metal, bone or 
ivory and were carried in a bag hung at the waist. The pre
scribed length in the literature (verified by' the relics) was 
from 13.86 cm to 8.5 cm, which shortened as time went 
on. The cross-section changed with time. from circular (of 
0.23 cm in diameter) to square so that the rods became 
harder to roll about. One mathematically extremely inter
esting feature is the occurrence of a red dot on a counting 
rod to denote a positive number. and a black dot to denote 
a negative number. These counting rods were placed on a 
board (or any flat surface) and moved about in performing 
various calculations. 

The Chinese adopted very early in history a denary po
sitional number system. This was already apparent in the 
numerals inscribed on oracle bones in the Shang Dynasty 
(c. 1500 BCE), and was definitely marked in the calcula
tion using counting rods in which the positions of the rods 
were crucial. Ten symbols sufficed to represent all num
bers when they were put in the correct positions. At first 
only nine symbols were used for the numerals 1 to 9, with 
the zero represented by an empty space, later by a square 
in printing, gradually changed to a circle, perhaps when 
the square was written by a pen-brush. To minimize error 
in reading a number, numerals were written alternatively 
in vertical form (for units, hundreds •... ) and horizontal 
form (for tens, thousands, ... ). In a much later mathemat
ical classic, Xiahou Yang Suanjing (Mathematical Manual 
ofXiahou Yang) of the fifth century, this method for writing 
counting rod numerals was recorded as: 

Units stand vertical, tens are horizontal. hundreds 
stand. thousands lie down. Thousands and tens 
look the same, ten thousands and hundreds look 

alike. Once bigger than six. five is on top; six 
does not accumulate. five does not stand alone. 

For instance. 1996 would have been written as 

-WeT. 

Calculation using counting rods has several weak 

points: (l) The calculation may take up a large amount of 
space. (2) Disruption during the calculation causing disar
ray in the counting rods can be disastrous. (3) The cal
culating procedure is not recorded step by step so that 
intermediate calculations are lost. Counting rods evolved 
into the abacus in the twelfth-thirteenth centuries. and by 
the fifteenth century the abacus took the place of count
ing rods. The weak points (I) and (2) were removed by 
the use of the abacus, but (3) remained, until the European 
method of calculation using pen and paper was transmit
ted in the beginning of the seventeenth century. However, 
calculation using counting rods had its strong points. Not 
only did the positions of the counting rods display numer
als conveniently, but also the positions in which these rods 
were placed on the board afforded a means to allow some 
implicit use of symbolic manipulation. giving rise to suc
cessful treatment of ratio and proportion, fractions, decimal 
fractions, very large or very small numbers, equations, and 
so on. Indeed, the use of counting rods was instrumental 
in the whole development of algorithmic mathematics in 
ancient China. 

Even a casual reading of a few mathematical classics 
will disclose the unmistakable features of social relevance 
and pragmatic orientation. From the very beginning math
ematical development was intimately related to studies of 
astronomical measurement and calendrical reckoning. The 
first written text containing serious mathematics. Zhoubi 
Suanjing (Zhou Gnomon Classic of Calculation) compiled 
at about 100 BCE-with its content dated to earlier times. 
was basically a text in astronomical study. In an ancient 
society based on agriculture. calendrical reckoning was al
ways a major function of the government. Along with that, 
mathematics was performed mainly for bureaucratic needs. 
A sixth century mathematics classic actually carried the 
title Wucao Suanjing (Mathematical Manual of the Five 
Government Departments). The titles of the nine chapters 
of the most important mathematical classic Jiuzhang Suan
shu (Nine Chapters on the Mathematical Art), which is be
lieved to have been compiled some time between 100 BCE 
and 100 CE, speak for themselves. These are (l) survey 
of land, (2) millet and rice (percentage and proportion), (3) 
distribution by progression, (4) diminishing breadth (square 
root), (5) consultation on engineering works (volume of 



solid figures), (6) impartial taxation (allegation), (7) ex
cess and deficiency (Chinese "Rule of Double False Posi
tions"), (8) calculating by tabulation (simultaneous equa
tions), (9) gou-gu (right triangles). The social relevance of 
the content of mathematical classics was so plentiful that 
historians have found in the texts a valuable source for trac
ing the economy, political system, social habits, and legal 
regulations of the time! The emphasis on social relevance 
and pragmatic orientation, in line with a basic tenet of tra
ditional Chinese philosophy of life shared by the class of 
"shi" (intellectuals), viz. self-improvement and social inter
action, was also exhibited in the education system in which 
training in mathematics at official schools was intended for 
government officials and clerks.4 

Finally let us come to the issue of mathematical 
proofs. "If one means by a proof a deductive demonstration 
of a statement based on clearly formulated defmitions and 
postulates, then it is true that one finds no proof in ancient 
Chinese mathematics, nor for that matter in other ancient 
oriental mathematical cultures .... But if one means by a 
proof any explanatory note which serves to convince and 
to enlighten, then one finds an abundance of proofs in an
cient mathematical texts other than those of the Greeks."5 
The Chinese offered proofs through pictures, analogies, 
generic examples, and algorithmic calculations. These can 
be of pedagogical value to complement and supplement 
the teaching of mathematics with traditional emphasis on 
deductive logical thinking. 

Jiuzbang Suansbu 
Jiuzhang Suanshu is the most important of all mathemati
cal classics in China. It is a collection of 246 mathematical 
problems grouped into nine chapters. There is good reason 
to believe that the content of Jiuzhang Suanshu was much 
older than its date of compilation. as substantiated by an 
exciting archaeological finding in 1983 when a book writ
ten on bamboo strips bearing the title Suanshu Shu (Book 
on the Mathematical Art) was excavated6• It is dated at 
around 200 BC and its content exhibits a marked resem
blance to that of Jiuzhang Suanshu, including even some 
identical numerical data which appeared in the problems. 
The format of Jiuzhang Suanshu became a prototype for all 
Chinese mathematical classics in the subsequent one-and
a-half millennia. A few problems of the same category were 
given, along with answers, after which a general method 
(algorithm) followed. In the very early edition that was all 
and no further explanation was supplied-perhaps it was 
to be supplied by the teacher. Later editions were appended 
with commentaries which explained the methods, corrected 
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mistakes handed down from the ancients, or expanded the 
original text. The most notable commentator of Jiuzhang 
Suanshu was Liu Hui (c. third century), some of whose 
works will be examined in the next section. 

The format of Jiuzhang Suanshu may lead one to re
gard the book as a medley of recipes for solving problems 
of specific types. Indeed many who studied from the book 
in accordance with the official system in ancient China 
might have actually regarded the book as such and thus 
resorted to rote learning just like in recitation of other clas
sics. This may explain why only a handful of mathemati
cians of some standing were produced from the tens of 
thousands of "mathocrats" who went through mathemat
ical training in the official system during two millennia, 
while most noted mathematicians in history were either 
self-educated or studied at private academies 7• 

However, upon closer scrutiny, the text reveals itself 
as quite different from a book of recipes. The body of 
knowledge contained in a classic such as Jiuzhang Suanshu 
is structured around several themes, the two main themes 
being the concept of "lu" (*, ratio) in arithmetic and the 
concept of "gou-gu" (~l8t, right triangle) in geometry. A 
brief description on how ratio forms a backbone for most 
chapters will now be given, while right triangles will be 
left to the next section. In the commentary of Chapter 1, 
Liu Hui gave a definition: "a ratio is a relation between 
numbers."g He continued to offer a working definition of 
ratio by representing it as a reduced fraction. To reduce 
a fraction the rule of "reciprocal subtraction," known to 
Westerners as the Euclidean algorithm, was introduced. 

If both numerators and denominators are divisi
ble by 2, then halve them both. If they are not 
both divisible by 2, then set up the numbers for 
numerator and denominator respectively continu
ally and alternately subtracting the smaller from 
the larger, and seek their eqUality. 

This is a good illustration of how the calculation itself is 
already a proof (or convincing argument), as can be seen 
from Problem 6 of Chapter I: 

Reduce the fraction ~i. 

(49,91) ..... (49,42) ..... (7,42) ..... (7,35) 

..... (7,28) ..... (7,21) ..... (7,14) ..... (7,7). 

Hence 49 7 x 7, 91 7 x 13, and ~i = 1
7
3' At the 

beginning of Chapter 2 Liu Hui explained the so-called 
"Rule of Three" (also found in contemporary Indian man
uscripts), which enables one to apply the concept of ratio to 
a number of situations, including distribution in direct pro
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portions or in inverse proportions (Chapters 3, 6), formu
lation and treatment of problems in excess and deficiency, 
Le., the method of "double false positions" (Chapter 7), 
and systems of simultaneous linear equations (Chapter 8). 
Although the Chinese terminology "fangcheng" (15fi), 
which is the title of Chapter 8, was adopted as a transla
tion for "equation" towards the end of the last century (and 
has become a standard term today) for a wrong but histori
cally interesting reason,9 the spirit of Chapter 8 lies rather 
in the direction of ratio than in the direction of equation. In 
the light of ratios, the technique amounting to the modern 
matrix method by Gaussian elimination arises naturally. 

In ending this section consider an example after the 
style ofJiuzhang Suanshu which blends together social rel
evance, ratio and even an application in statistical sampling. 
It is Problem 6 of Book 12 of Shushu Jiuzhang (Mathemat
ical Treatise in Nine Sections) by Qin Jiushao, published 
in 1247: 

When a peasant paid tax to the government gra
nary in the form of 1534 shi of rice, it was 
found out on examination that a certain amount 
of rice with husks was present. A sample of 
254 grains was taken for further examination. Of 
these 28 grains were with husks. How many gen
uine grains of rice were there, given that one shao 
contains 300 grains? 

(In the mensuration system of the Song Dynasty, 1 shi 
10 dou = 100 sheng = 1000 he = 10000 shao. Accord
ing to tradition recorded in Jiuzhang Suanshu, a grain of 
rice with husk was counted as half a grain of rice.) The 
answer was given to be 4,348,346,456 grains, out of the 
original 1534 x 10000 x 300 4,602,000,000 grains. 

Some Examples and 
Their Solution MethodslO 

(1) Problem 14 of Chapter 9 of Jiuzhang Suanshu is a 
word problem on right triangles: 

Two persons A (Jia) and B (Yi) stood at the 
same spot. In the time when A walked 7 steps, B 
could walk 3 steps. B walked east and A walked 
south. After 10 steps south A turned to walk in a 
roughly northeast direction to meet B. How many 
steps had each walked (when they met)? 

The rule that follows the problem essentially gives the ratio 
of the length a, b, c of the three sides of a right triangle 
with c as that of the hypotenuse, viz. 

1 1
a:b:c="2(m2 n2):mn:"2(m2+n2), 

where m : n = (a + c) : b. In this problem, m = 7, 
n = 3 and a = 10. Hence a : b : c = 20 : 21 : 29 
and b = lO~, c = 14~. The mathematical meaning of 
this result goes much deeper than just an answer to the 
problem as it stands, for it offers a way to generate the 
so-called Pythagorean triplets, i.e., (positive) integers a, 
b, c with a2 + b2 = c2. While no explicit formula for 
Pythagorean triplets was stated by the ancient Chinese, they 
were quite well-versed in these problems in which their 
Greek contemporaries were also interested, and in ancient 
Chinese mathematics arithmetic and geometry were inter
twined through calculation. The achievement becomes all 
the more astounding if one notes that the ancient Greeks 
were aware of the notions of prime number and factor
ization while their Chinese contemporaries were not. In
stead, the Chinese adopted a geometric viewpoint by look
ing for two quantities with suitable geometric interpretation 
in terms of which a, b, c can each be rationally expressed. 
In the case of Problem 14, the two quantities are the sum 
of the length of one side and the hypotenuse (a + c) and 
the length of the third side (b). The explanation offered by 
Liu Hui can be illustrated as in Figure 2. In his commen
tary Liu Hui actually described in detail how to make use 
of colored pieces and to reassemble them for a convincing 
argument. If the original diagrams of the commentary were 
extant, they would make nice visual aids! 
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From Figure 2 we can see that 

c:a:b S:T:U 

H(a + C)2 + b2] 

: (a + C)2 - H(a + C)2 + b2] : (a + c)b. 

Hence 

a:b:c H(a+c)2-b2] :(a+c)b:H(a+c)2+b2] 

~(m2 - n2) : mn: ~(m2 + n2), 

where (a + c) : b = m : n. 
The influence of this prototype classic of Jiuzhang 

Suanshu can be found in later work, for example Problem 2 
of Chapter 5 of Shushu Jiuzhang by Qin Jiushao, published 
more than a thousand years later: 

A triangular field has sides of length 13 miles, 
14 miles and 15 miles. What is its area? 

The solution was given in the book as (in modern day 
mathematical notations) 

(Area)2 = ~ [A2C2 A2 + ~2 B2 2] 

where A, B, C are the length of the three sides in decreas
ing magnitude. This is a rare gem in Chinese mathematics 
because this was perhaps the one occurrence of a triangle 
other than a right triangle in all Chinese mathematical texts 
before the transmission of Euclid's Elements into China.ll 

A probable derivation of the formula by Qin Jiushao is as 
followS. 12 First note that, from our preceding example, 

a 1
b = 2[(a+c)2 b2]/(a+c)b, 

so that 

a ~ [(a+c) (a~J]. 
Construct a right triangle with sides of length a, b, c (c is 
the hypotenuse) where a, c are lengths as shown in Figure 
3. Since C2 a2 h2 B2 c2 , we have B2 - C2 = 

c2 - a2 = b2 . Hence 

a= ~ [(a+c)- (a~J] 
=~[ B2_C2]=~[A2+C2_B2].

2 A A 2 A 

Finally, 

(Area) 2 = ~h2A2 

4 

~ [A'C' 

~(C2 _ a2 )A2 = ~(A2C2
4 4 

a2A2) 

( A' + ~' - B' ) ']. 
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An Excursion in Andent Chinese MathL:~[1'// 163 ~'<\'. 
rr~: \ '-' \, I ..{~ '~'~: \1 ~.: 

.... ", "'.f tit".. _c.
\:f:. --," ! ~ 
\0 ; oJ . ~'~ /,~ 

A 

c 

FIGURE 3 

a {!o ,_ .,---.~ ...'\0 ~ 
, 'IlA ~i"'~ 
~: ' 

(2) Early Chinese calculation of 1f is given in Problem 32 
of Chapter 1 of Jiuzhang Suanshu: 

A circular field has a perimeter of 181 steps and 
a diameter of 60 and 1/3 steps. What is its area? 

The answer was given as "the area equals half the perime
ter times half the diameter". This is a correct formula, as 

one can easily check that A = (!C)(!d) (~C)(r) = 
(1fr)(r) 1fr2. The data in this problem imply the for
mula C = 3d, which means 1f was then taken to be 3. 
In his commentary, Liu Hui explained why the formula is 
reasonable and pointed out how to obtain a more accurate 
value for 1f. He said: 

In our calculation we use a more accurate value 
for the ratio of the circumference to the diameter 
instead of the ratio that the circumference is 3 to 
the diameter's 1. The latter ratio is only that of the 
perimeter of the inscribed regular hexagon to the 
diameter. Comparing arc with the chord, just like 
the bow with the string, we see that the circum
ference exceeds the perimeter. However, those who 
transmit this method of calculation to the next gen
eration never bother to examine it thoroughly but 
merely repeat what they learned from their prede
cessors, thus passing on the error. Without a clear 
explanation and definite justification it is very dif
ficult to separate truth from falsity. 

In this passage we see a truly first-rate mathematician at 
work, who probes into knowledge handed down and seeks 
understanding and clarification, thereby extending the fron
tier of knowledge. In modern day mathematical language 
Liu Hui's method is as follows. Put 

An =area of an inscribed regular n-gon in a circle of 
radius r, 
an =length of a side of the inscribed regular n-gon, 
Cn =perimeter of the inscribed regular n-gon. 
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FlGURE 4 

Starting with a regular hexagon (n = 6) and doubling the 
number of sides, Liu Hui enlarged it to a regular 12-gon, 
then a regular 24-gon, then a regular 48-gon, and so on, 
up to a regular 192-gon. He observed that A12 3a6r = 
~C6r, A24 6a12r ~C12r, A48 12a24r !C24r, 
etc. He also knew that this was not the end but only the first 
few steps in an approximation process. He claimed, "the 
finer one cuts, the smaller the leftover; cut after cut until 
no more cut is possible, then it coincides with the circle 
and there is no leftover." We see here the budding concepts 
of infinitesimal and limit. He even gave an estimate, viz. 

A2m < A < A 2m + (A2m Am), 

as can be seen from Figure 4. With this he concluded that 
"ultimately" A = ~Cr. He also carried out the computa
tion for finding A 192 • In doing that he first established the 
formula 

A modern computer can obtain A I92 3.141032 (with 
r 1) with error term 0.001681. lnlagine how Liu Hui 
did it with only the help of counting rods over 17 centuries 
ago, obtaining A192 = 314:2~ (with r = 10). Effectively 
he calculated 1r accurate to two decimal placesl3 . 

(3) The algorithmic feature of ancient Chinese math
ematics can best be illustrated by the method of solving 
simultaneous linear congruence equations. In abstract alge
bra there is a fundamental result known as the "Chinese 
Remainder Theorem". Its name comes from a concrete in
stance, viz. Problem 26 of Chapter 3 of Sunzi Suanjing 
(Master Sun's Mathematical Manual), (c. 4th century): 

There are an unknown number of things. Count
ing by threes we leave 2; counting by fives we 
leave 3; counting by sevens we leave 2. Find the 
number of things. 

The problem became quite popular and appeared under dif
ferent names. In a much later text Suanfa Tongzong (Sys

tematic Treatise on Arithmetic) of Cheng Dawei, published 
in 1592, there appeared even a poem about it: "T'is hard to 
find one man of seventy out of three. There are twenty-one 
branches on five plum blossom trees. When seven per
sons meet, it is in the middle of the month. Discarding 
one hundred and five, the problem is done." The poem 
conceals the magic numbers 70 (for 3), 21 (for 5), 15 
(for 7) of this specific problem, whose general answer is 
2 x 70 + 3 x 21 + 2 x 15 plus or minus any multiple of 
105 3 x 5 x 7. In general, the problem is to solve a 
system of linear congruence equations 

x == ai mod mi, i E {I, 2, ... ,N}. 

Mathematicians were led to investigate linear congruences 
because of calendrical reckoning and had become quite 
deft in handling them. Already in this specific problem 
we can see a very significant step made, viz. reduction of 
the problem to solving x 1 mod mi, x 0 mod mj 
for j "# i (the solution to the original problem being 
a suitable "linear combination" of the solutions of these 
different systems). The investigation was completed by 
Qin Jiushao who named his method the "Dayan art of 
searching for unity" in his Shushu Jiuzhang (1247). He 
showed how to find a set of magic numbers for mak
ing the "linear combination". Consider the case when the 
mi's are mutually relatively prime, using modern nota
tions. (Qin Jiushao also treated the general case.) It suf
fices to solve separately single linear congruence equa
tions of the form kb == 1 mod m by putting m = mi 
and b = (mI" ·mN)/mi. The key point in the method 
Qin Jiushao employed to find k is to find a sequence of 
ordered pairs (ki' ri) such that kib == (-I)iri mod m and 
the r/s are strictly decreasing. At some point rs 1 but 
r 8-1 > 1. If 8 is even, then k = k8 will be a solution. 
If s is odd, then k = (r8 -1 - l)ks + ks-l will be a so
lution. This sequence of ordered pairs can be found by 
using "reciprocal subtraction" explained in Jiuzhang Suan

shu, viz., ri-l = riqi+l +ri+l with ri+l < ri (the process 
will stop before one reaches the case ri+l = 0), and put 
ki+l = kiqi+l + ki - 1. (Put k-l = 0, r -1 = m, ko = 1, 
ro = b.) The way the ancient Chinese performed the cal
culation was even more streamlined and convenient, since 
they put consecutive pairs of numbers at the four corners 
of a board using counting rods, starting with 

Ikll.\~ ! \' gomgto ~ 



The procedure was stopped when the upper right comer 
became a 1, hence the name "searching for unity". A typical 
intermediate step will look like 

k i Ti 

ki  1 Ti-l 

--+ 
k; 

ki - 1 

Ti 

Ti+l 

--+ 
ki 

k;+l 
Ti 

Ti+l 
if i is even 

or 

ki-l Ti-l 

ki Ti 

--+ 
ki - l Ti+l 

k i Ti 

ki+1 Ti+1 
--+ if i is odd. 

k i Ti 

One can see how the positions on a board of counting rods 
help to fix ideas. In fact, the procedure outlined in Shushu 
Jiuzhang can be phrased word for word as a computer 
program! 
(4) An example on the lighter side is Problem 34 of 
Chapter 3 of Sunzi Suanjing: 

One sees 9 embankments outside; each embank
ment has 9 trees; each tree has 9 branches; each 
branch has 9 nests; each nest has 9 birds; each 
bird has 9 young birds; each young bird has 9 
feathers; each feather has 9 colours. How many 
are there of each? 

The problem, an easy exercise in raising a number to certain 
powers, is not of much interest in itself. What is interest
ing is the frequent occurrence of such problems of a recre
ational nature in all mathematical civilizations. The me
dieval European mathematician, Leonardo Fibonacci posed 
a problem in his book "Liber Abaci" (1202)14: 

Seven old women went to Rome; each woman 
had seven mules; each mule carried seven sacks; 
each sack contained seven loaves; and with each 
loaf were seven knives; each knife was put up in 
seven sheaths. How many are there, people and 
things? 

It reminds us of a children's rhyme: "As I was going to 

Saint Ives, I met a man with seven wives. Every wife had 
seven sacks. Every sack had seven cats. Every cat had seven 
kits. Kits, cats, sacks and wives, how many were there go
ing to Saint Ives?" And then there was that similar Prob-
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lem 79 in the oldest extant mathematical text, the Rhind 
Papyrus of ancient Egypt (c. 17 century BC)15: 

Houses 7 
Cats 49 
Mice 343 
Heads of wheat 2301 
Hekat measures 16807 

19607 

David Hilbert (1862-1943) once said, "Mathematics knows 
no races .... For mathematics, the whole cultural world is a 
single country."16 
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Endnotes 
1 At the end of the sixteenth century the fIrst wave of dissemi
nation of European science in China began. What happened after 
the sixteenth century, the vicissitude of indigenous mathematical 
development and its integration with transmitted western mathe
matics, form a fascinating topic in itself, but will not be discussed 
in this article. 

2 This article is based on an introductory lecture scheduled for 
the conference on Hist6ria e EduCll\liO Matematica (Braga, Portu
gal, 24-30 July 1996). Circumstances prevented the author from 
attending. The lecture was instead given by Mr. Chun-Ip Fung, 
to whom the author owes his thanks. 

3 A typical passage can be found in the preface to Shushu Jl
uzhang by Qin Jiushao (1247). The discussion in this article will 
be confmed to "external mathematics" owing to the author's ig
norance of the aspect of "internal mathematics". 

4 For further discussion of mathematics education in ancient 
China, see: M. K. Siu, Mathematics education in ancient China: 
What lesson do we learn from it? Historia Scientiarum, 4-3 
(1995), 223-232. See also Chapter I in: F. Swetz, Mathematics 
Education in China: Its Growth and Development, MIT Press, 
Cambridge 1974. 

5 This is quoted from: M. K. Siu, Proof and pedagogy in ancient 
China: Examples from Liu Hui's commentary on Jiuzhang Suan
shu, Educational Studies in Mathematics, 24 (1993), 345-357. 
The paper contains a number of illustrative examples. 

6 It was reported in, for instance: Li Xueqin, A significant finding 
in the history of ancient Chinese mathematics: A glimpse at the 
Han bamboo strips excavated at Zhangjiashan in Jiangling (in 
Chinese), Wenwu Tiandi, 1 (1985),46-47. 

1 Such a statement has to be taken with a grain of salt! A better 
perspective can only be gained when one views mathematical 
development against a broader socio-cultural background at the 
time. In particular, the community of "mathematicians" in ancient 
China was not a well-defmed recognized group of scholars. The 
author is in the process of studying, in collaboration with A. 
Volkov, mathematical activities in ancient China in this wider 
context. 

8 Compare this with DefInition 3 of Book 5 of Euclid's Ele
ments: "A ratio is a sort of relation in respect of size between 
two magnitudes of the same kind". 

9 This might have to do with the promulgation of the thesis of 
"Chinese origin of Western knowledge" in the Qing Dynasty in an 
effort to reassert the role of indigenous mathematics. A detailed 
discussion is beyond the scope of this article. 

10 Specific reference to each problem is omitted. Most statements 
of these problems are translated by the author. But there do exist 
translated texts for Sunzi Suanjing (L. Y. Lam and T. S. Ang, 
Fleeting Footsteps: Tracing the Conception of Arithmetic and 
Algebra in Ancient China, World ScientifIc, Singapore, 1992), 
Shushu Jiuzhang (U. Libbrecht, "Chinese Mathematics in the 
Thirteenth Century: The Shu-shu Chiu-chang of Ch'in Chiu-shao, 
MIT Press, Cambridge, 1973) and Jiuzhang Suanshu (K. Vogel, 
"Neun Bucher Arithmetischer Technik", Friedr. Vieweg & Sohn, 
Braunschweig, 1968). A French translation and an English trans
lation of Jiuzhang Suanshu are under preparation. 

11 One naturally calls to mind the fonnula by the Greek mathe
matician Heron of Alexandria (c. 1st century), viz. 

(Area)2 = 8(8 A)(8 - B)(8 - C) 

where 8 (A + B + C) /2. Indeed, the two formulas are equiv

alent. 


12 It is interesting to compare it with the proof of Heron by syn

thetic geometry, which can be found in, for instance: I. Thomas, 
Greek Mathematical Works, II, Harvard University Press, 1939; 
reprinted with additions and revisions, 1980, pp. 471-477. 

13 It is interesting to compare this computation of 1l' with that by 
Archimedes, which can be found in, for instance: R. Calinger (ed), 
Classics of Mathematics, Moore Publishing, 1982; Prentice-Hall, 
1995, pp. 137-141. 

14 See: H. Eves, An Introduction to the History of Mathematics, 
4th edition, Holt, Rinehart & Winston, New York, 1976, pp. 43
44. 


15 See: A.B. Chace, The Rhind Mathematical Papyrus, Mathe

matical Association of America, Oberlin, 1927-29; reprinted by 
the National Council of Teachers of Mathematics, Reston, 1978, 
p.59. 

16 See: Constance Reid, Hilbert, Springer-Verlag, Heidelberg. 
1970, p.188. 
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Mathematicians and teachers of mathematics are frequently 
asked by students, administrators, employers and society, 
"What is mathematics good for? Why should we (take this 
course, pay for this)?" We may be troubled by how often 
the question is asked, and we may find it difficult to give 
a satisfactory answer. Yet the question is clearly important, 
and its answers give insight into the relationship between 
our discipline and our culture. 

The answers that we usually give today tend to fall 
into three categories: Pragmatic answers emphasize the 
essential role of mathematics in the natural sciences, engi
neering and computer science, economics, and other fields 
which are central to our technological society. Pedagogi

cal answers state that the study of mathematics is useful 
for training the mind in abstract thought as a prelude to 
other subjects. Aesthetic answers stress that mathematical 
problems can be interesting, challenging, satisfying, and 
otherwise bring pleasure to those who work on them. 

To put our answers in perspective, it is interesting to 
examine how another culture might answer these questions. 
In this paper, I will try to discern the view of mathemat
ics in medieval Islam. My focus will be the lifetime and 
works of the Persian scholar Abu 'Ali al-Husayn ibn 'Ab
dullah ibn Sina (980-10371), known in the west as Avi
cenna. Ibn Sina's liftetime was a creative period, when a 
large number of philosophers, mathematicians, natural sci
entists, and other creative thinkers were active. This culture 
shared many historical links with our own, and we might 
expect that it would assent to all three of the above justifi
cations for mathematical activity, with perhaps a difference 
in emphasis. Yet the culture was also different from ours 
in many ways, and it is not ~surprising that we find some 
entirely alien elements. 

Historical Background2 

During the first century after the death of the prophet Mo
hammed, the community of Islam formed a kind of Arab 
military aristocracy. The rulers, or caliphs,3 were cho
sen during this period from the Umayyad family.4 They 
led one of the most successful military campaigns in his
tory, conquering the Sasanian empire in Persia, the Byzan
tineIHellenistic areas of Syria, Palestine, and Egypt, and, 
eventually, north Africa and most of Iberia. However, the 
Umayyad government, organized like an Arabian tribe, was 
ill equipped for the administration of its large new empire. 
Non-Arabs and Arabs not in the ruling clans, even those 
who were converts to Islam, were second-class citizens. 
This caused resentment, since the new religion taught that 
all were equal before the Creator. In 749, a revolutionary 
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anny overthrew the Umayyads and replaced them with a 
line of caliphs from the 'Abassid family.5 

The succeeding three centuries of 'Abassid rule in 
Persia and Iraq were the golden age of Islamic science 
and humanities. Scholars familiar with the Hellenic, Per
sian, Babylonian and Indian traditions were united under 
one government and one common language. The society 
was very prosperous; many private libraries were founded, 
and rulers actively promoted learning and scholarship. The 
caliph Al Ma'mun (813-833) began a state project to trans
late texts from Greek, Syriac, Pahlavi, and Sanskrit into 
Arabic; many ancient works have survived to our time only 
in Arabic translation. 

The culture exhibited an astonishing degree of tol
erance, even in matters of theology.6 For example, Mo
hammed ibn Zakariya al-Razi (865-925) wrote that 

Books on medicine, geometry, astronomy, and 
logic are more useful than the Bible and the 
Qur'an. The authors of these books have found 
the facts and truths by their own intelligence, 
without the help of prophets.7 

Other writers argued vigorously against such heresies, 
but the man himself was unmolested and lived to a peaceful 
old age.8 

The above historical synopsis may puzzle readers who 
are accustomed to think of Islamic society as conservative, 
especially in matters of religion, and suspicious of or even 
hostile to outside ideas. These tendencies did develop, but 
only later, beginning a century after ibn Sina's death. Per
haps this was partly a protective reaction to the waves of 
foreign invasions-the Crusades, the Spanish reconquista, 
and the Mongol sack of Baghdad: 

At the height of its power and glory Islam ac
cepted and adapted much of the culture of the 
peoples it came in contact with. In the ages of 
its decline confidence was lost and the guardians 
of its tradition feared and resisted all foreign 
invasion.9 

Another reason for the conservative reaction was 
surely the teachings of Abu Hamid al-Ghazali (1058-1111), 
whose career and influence roughly parallel that of Saint 
Augustine. Trained in philosophy and rational theology, he 
attained a respectable position at a fairly young age, but 
then suffered a crisis of conscience, became a Sufi mystic, 
and spent the rest of his life vigorously denouncing those 
who pursued "essential truth" through rational thought: 

On the contrary, faith in prophecy is to acknowl
edge the existence of a sphere beyond reason; into 
this sphere an eye penetrates whereby man ap

prehends special objects-of-apprehension. From 
these reason is excluded in the same way as the 
hearing is excluded from the apprehension of col
ors and sight from apprehending sounds ... 10 

AI-Ghazali's influence was felt for centuries, and served 
to push scientists, mathematicians, and philosophers to the 
margins of Islamic society. 

But let us return to the lifetime of Ibn Sina and see 
what we can discover about attitudes toward mathematics 
during the golden age. 

Life and Works of Ibn Sina 

By the time of ibn Sina's birth, the power of the 'Abassid 
caliphs was much diminished. Nominally, they still ruled 
Syria, Palestine, Mesopotamia, and Persia, but in fact, east
ern and central Persia were controlled by various small in
dependent princes, and the northeast region of the caliphate, 
where ibn Sina's family lived, was threatened by Turkish 
tribesmen. Despite the uncertain political situation, cultural 
life continued to flourish. 11 

We can be fairly certain about the facts in Ibn Sina's 
life; an autobiography survives12 (with the narrative com
pleted after his death by one of his pupils), along with ma
terial by at least five medieval historians. 13 He received his 
early education in Bukhara, at the far northeastern corner of 
the caliphate, in what is today Uzbekistan (See Figure 1.14) 

Like other scholars of the day, he made his livelihood at a 
series of courts as physician, astronomer/astrologer, coun
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FIGURE 1 

Cities where ibn Sina lived, according to his autobiography. 

Bukhara, his birthplace, is the easternmost of these; the others 

represent the courts of various rulers whom he served. 




sellor, and teacher. The first such position, which he took in 
his early twenties, was in the city of Gurganj, capital of the 
province of Khwarazm. 15 There, one of his fellow scholars 
was Abu'I-Rayhan Muhammad ibn Ahmad al-Biruni, who 
is remembered today for his contributions to mathematics, 
geodesy, history, and other fields. 

Because of the instability of the times, Ibn Sina was 
forced to move frequently from one court to another. Ac
cording to one story,16 the Sultan Mahmud of Ghazna, on 
the verge of conquering Gurganj, had asked that the learned 
men of the town be sent to his court. AI-Biruni acquiesced, 
and went on to a relatively tranquil career, later accompa
nying his patron on a conquest of India and writing about 
the history and customs of that land. But Ibn Sina left 
Gurganj in the middle of the night, crossing the desert in 
an ordeal in which one of his companions died. Similar 
episodes occurred later in his life; on one occasion, his 
political enemies managed to get him sent to prison. The 
biography hints that over-indulgence in drinking and sex 
may have contributed to his death at age fifty-eight. 

Ibn Sina was a prolific writer; depending on how we 
count duplicated material and uncertain attributions, the 
number of surviving works seems to be somewhere be
tween seventy17 and two hundred and fifty.18 His al-Qanun 

fi-Tibb, an encyclopedia of medical knowledge, made the 
latinized form of his name, Avicenna, famous in Europe
Geoffrey Chaucer mentions him in the Canterbury Tales. 
His mathematical writing is less well known; much of 
it seems to consist of paraphrases and commentaries on 
works by earlier Greek, Arabic, and Indian writers, es
pecially Euclid, Ptolemy, and Nicomachus of Gerasa. AI
Daffa and Stroyls19 have partially catalogued his contri
butions to mathematics. Although they fmd his expository 
work shows understanding and "sometimes improves on its 
sources," they fmd only a handful of minor results which 
might be original. These seem to be mostly arithmetical; 
for example, "If the successive odd numbers are placed in 
a square table, the sum of the numbers lying on the diag
onal will be equal to the cube of the side; the sum of the 
numbers filling the square will be the fourth power of the 
side." (See Figure 2.) 

Certainly Ibn Sina's original mathematical output does 
not compare with that of al-Biruni. Perhaps, like Blaise 
Pascal after age thirty, he did little in mathematics because 
his attention was elsewhere. This at any rate is the opinion 
of the twelfth-century historian Ibn Funduq:2o 

a person who has tasted the sweetness of meta
physics is niggardly in spending his thoughts on 
mathematics, so he fancies it from time to time 
and then abandons it. 
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9 7 5 3 1 

19 17 15 13 11 

29 27 25 23 21 

39 37 35 33 31 

49 47 45 43 41 

FIGURE 2 

Illustration of Ibn Sina's result for a 5-by-5 array. In this case, 

the entries on each diagonal sum to 125 5 . 5 . 5, and all the 

entries in array sum to 625 = 5 . 5 . 5 . 5. 


However, even the expository work shows that he was fa
miliar with the mathematics and the attitudes toward math
ematics in his culture. He carried on an extensive corre
spondence with al-Biruni, discussing what we today might 
call foundational questions.21 He banished all traces of 
Pythagorean mysticism from number theory: 

It is customary, among practitioners of the arith
metic art, to appeal to explanations foreign to that 
art, and even more foreign to the custom of those 
who operate by deductive proof, and closer to 
the discourses of orators and poets. This must be 
renounced.22 

He added the new sciences of algebra and Indian (dec
imal) calculation to the Greek quadrivium, thus contribut
ing to the breakdown of the traditional wall of separa
tion between commensurable and incommensurable magni
tudes. Rashed23 argues that the new legitimacy of irrational 
numbers-whose values can never be known exactly-was 
a significant influence on ibn Sina's metaphysics. 

The Pragmatic Value of Mathematics 

In medieval Islam, calculation was an everyday necessity 
in the business world. By the tenth century, the place-value 
method was widely known. Thus we read in Ibn Sina's 
autobiography that his father "sent me to a vegetable seller 
who used Indian calculation, and so I studied with him ... 24 

What is interesting in this account is that, in contrast 
to the Greek attitude, ordinary calculation is considered a 
respectable part of one's education. (Ibn Sina reports on 
studying calculation after studying the Qur' an, and before 
studying logic and geometry.) Further evidence of this new 
respectability of calculation is that, in his mature writings, 
Indian calculation and algebra appear alongside the tradi
tional disciplines of arithmetic and geometry. 25 
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Although medieval Islam would agree with us that 
mathematics has practical applications, some of those ap
plications had the additional stimulus of religious duty. 
The complicated rules of inheritance in the Qur'an26 likely 
stimulated interest in algebra, diophantine analysis, and 
combinatorics. The importance of such problems is shown 
by the emphasis AI-Khwarizmi gives to them in the intro
duction to his major work on algebra: 

a short work on calculating by al-jabr and al
muqabala, confining it to what is easiest and 
most useful in arithmetic, such as men constantly 
require in cases of inheritance, legacies, partition, 
law-suits, and trade, and in all their dealings with 
one another, or where the measuring of lands, 
the digging of canals, geometrical computation, 
and other objects of various sorts and kinds are 
concerned.28 

Similarly, AI-Biruni wrote 

I say that a civilized person is keen to possess 
worldly valuables; hence the need arose for sci
ences which enable people to check the amount 
and area of possessions, when transferred from 
one owner to another, either by exchanges, or by 
inheritance. The principles of these sciences are 
called mathematics and fonnulae; they are em
bodied in the science of geometry.28 

Another Qur'anic prescription was that prayer (and thus, 
the orientation of the mosque) must always be in the direc
tion of the "sacred House of worship" in Mecca.29 Methods 
were needed for determining the qibla, or bearing to Mecca, 
from any point on earth. This stimulated an intensive study 
of geography, astronomy, and spherical trigonometry. AI
Biruni's treatise al-Kitab Tahdid al-Amakin,3o the work 
whose introduction we just quoted, was written to solve 
the qibla problem for the city of Ghazna in present-day 
Afghanistan. He continues: 

If the investigation of distances between towns, 
and the mapping of the habitable world, so that 
the relative positions of towns became known, 
serve none of our needs except the need for cor
recting the direction of the qibla, we should find 
it our duty to pay all our attention and energy to 
that investigation. The faith of Islam has spread 
over most parts of the earth, and its kingdom has 
extended to the farthest west; and every Muslim 
has to perfonn his prayers and to propagate the 
call of Islam for prayer in the direction of the 
qibla.31 

David King32 suggests that determining the qibla (and sim
ilar astronomical problems, such as determining the times 
of prayer) gave rise to two types of solutions: approximate 
solutions, most commonly used in actual situations-for 
example, many mosques in the early centuries were simply 
built facing south-and difficult, more exact, solutions de
vised by the scholars of the period. No doubt, the scholars 
who set to work on these problems got the same satisfac
tion that we do from solving an intriguing and complex 
problem. But they must have also had the extra stimulus 
of performing a religious duty, and the extra reward of 
having benefited and contributed to the piety of the whole 
community.33 To quote al-Biruni again: 

I do not think that my work on a correct deter
mination, of my exposition of the methods for 
a correct detennination, will not be rewarded in 
this world or in the hereafter. 34 

The Pedagogical Value of Mathematics 

Plato said that arithmetic, properly taught, "strongly directs 
the soul upward and compels it to discourse about pure 
numbers,,35 and that geometry "tends to draw the soul to 
truth.,,36 This attitude was adopted and expanded by Is
lamic writers. Abu Yusuf ibn Ishaq al-Kindi (c.801-c.873) 
wrote a treatise with the suggestive title In that Philosophy 
cannot be Attained except by way of Mathematics. 37 Ibn 
Nabata quotes him: 

The philosophical sciences are of three kinds: the 
first in teaching is mathematics which is intenne
diate in nature; the second is physics, which is 
the last in nature; the third is theology, which is 
the highest in nature.38 

After the time of al-Kindi, mathematics was known 
as "the first study". One consequence seemed to be that no 
one could be taken seriously as a philosopher unless one 
actually did some mathematics. This attitude is implicit in 
Ibn Sina's autobiography, since he studies first literature. 
then "Indian calculation", then Euclid. then Ptolemy, before 
turning to the study of philosophy. It may have been for this 
reason that Ibn Sina felt compelled to introduce summaries 
of Nicomachus and Euclid into his writings. 

At first glance, then, the thinkers at the time of Ibn 
Sina would have agreed that the study of mathematics is 
important to train the mind in abstract thought as a prelude 
for other subjects. Yet when we look deeper, the reasons 
for this attitude are much different from ours. In the mod
ern world, we tend to think that studying mathematics is a 
good preparation for studying quantitative subjects such as 
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engineering or economics. In medieval Islam, the reasons 
for studying mathematics were more profound. We can see 
evidence of this in the writings of the Ikhwan al-Safa ("Sin
cere Brethren" or "Brethren of Purity"). This was an un
derground sect that in tenth-century Persia was considered 
unorthodox or even heretical. Moreover, the Ikhwan were 
allied with the Isma'iliyya, the party in power in Egypt and 
inimical to the Baghdad caliphate; thus, they were viewed 
as dangerous foreign agents. We know that Ibn Sina was 
aware of their teachings, and that they were important in 
shaping his views on mathematics. In the autobiography, 
we read 

My father was one of those who responded to the 
propagandist of the Egyptians and was reckoned 
among the Isma'iliyya. From them he, as well 
as my brother. heard the account of the soul and 
the intellect in the special manner in which they 
speak about it and know it. Sometimes they used 
to discuss this among themselves while I was 
listening to them and understanding what they 
were saying, but my soul would not accept it, 
and so they began appealing to me to do it. And 
there was also talk of philosophy, geometry, and 
Indian calculation.39 

Some authors4o have speculated that Ibn Sina was a fol
lower of the Ikhwan al- Safa and that it was for this reason 
that he had to spend so much of his life fleeing from strictly 
orthodox rulers like Mahmud of Ghazna. 

The principal work of the Ikhwan al-Safa was a set of 
Treatises (Rasa' if) probably written in the mid-tenth cen
tury. Typical of their attitude toward mathematics is the 
statement that the fmal aim of geometry is to pennit the 
facuIties of the soul to reflect and meditate independently 
of the external world so that finally 'it wishes to separate 
itself from this world in order to join, thanks to its celestial 
ascension, the world of the spirits and eternal life. '41 

Karen Armstrong writes that the Ismai'iliyya 

had developed their own philosophy and science, 
which were not regarded as ends in themselves 
but as spiritual disciplines to enable them to per
ceive the inner meaning (batin) of the Qur'an. 
Contemplating the abstractions of science and 
mathematics purified their minds of sensual im
agery and freed them from the limitations of their 
workaday consciousness. Instead of using science 
to gain an accurate and literal understanding of 
literal reality, as we do, the Ismailis used it to 
develop their imagination.42 
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Here is a raison d' ~tre for mathematics which hints at a to
tally alien way of thought. "Purifying the mind" and "free
ing the consciousness" have been, at most, marginal no
tions in Western scientific culture; we do not immediately 
associate them with mathematics. 

Although the scholars of medieval Islam would assent 
to the pedagogical view of the importance of mathematics, 
they would assign it a deeper significance, and some of 
their reasons would appear strange to us. Mathematics was 
not meant merely to train the mind, but also to purify the 
souL 

Aesthetic Pleasures of Mathematics 

We have already noted how Islamic scholars spent time and 
energy developing difficult and exact solutions to some of 
the problems posed by religious duty, even when approxi
mations would have sufficed. They must have enjoyed solv
ing mathematical problems. But we have more than indirect 
evidence; some of Ibn Sina's most evocative writing deals 
with the pleasures of the intellectual life. 

There is no question that Ibn Sina viewed the exercise 
of intellect as the greatest pleasure available to the human 
spirit. Despite his religious training, he rejected the literal 
truth of those verses of the Qur' an which speak of the 
physical pleasures of Paradise. To him, Hell was literally 
the soul longing for intellectual fulfillment which can no 
longer be realized after the death of the body, and Heaven 
its opposite. Such beliefs caused him to be charged with 
heresy during his lifetime, after his death, and defInitively 
a century later by al-Ghazali. We can do no better than 
quote Ibn Sina's own words from the Kitab al-Najat, still 
eminently readable a thousand years later: 

Now the peculiar perfection towards which the 
rational soul strives is that it should become 
as it were an intellectual microcosm, impressed 
with the fonn of the All.... So it will have 
become graven after its idea and pattern, and 
strung upon its thread as a pearl is strung upon 
a necklace ... When this state is compared with 
those other perfections so ardently beloved of the 
other [sensual] faculties, it will be found to be of 
an order so exalted as to make it seem monstrous 
to describe it as more complete or more excel
lent than they; indeed, there is no relationship 
between it and them whatsoever, whether it be 
of excellence, completeness, abundance, or any 
other of the respects wherein delight in sensual 
attainment is consummated.43 
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Ibn Sina and the intellectuals of his period took pleasure in 
solving problems, and they would assent to our "aesthetic" 
reasons for studying mathematics. But their answer had a 
deeper dimension. Intellectual pleasure became the basis 
for a whole doctrine of higher and lower pleasures, and 
was conceived as a means of purifying the soul, and reach
ing contemplation of the All. This leads us into a view of 
mathematics, and intellectual study in general, which is not 
familiar to our culture. In order to better understand this, 
in the next section we briefly examine the Theory of the 
Intellect and the special place occupied by mathematics in 
medieval Islamic cosmology. 

The Theory of the Intellect44 

In the fifth book of De Anima, Aristotle wrote: 

Since in every class of things, as in nature as a 
whole, we fmd two factors involved, (1) a matter 
which is potentially all the particulars included in 
the class, (2) a cause which is productive in the 
sense that it makes them all (the latter standing to 
the former, as, e.g., an art to its material), these 
distinct elements must likewise be found within 
the soul.45 

Whatever Aristotle himself may have had in mind. later 
Greek philosophers interpreted the "matter" to be the hu
man mind, and the "cause" to be an independent nonhuman 
entity which induces the mind to produce thoughts. Alexan
der of Aphrodisias46 called this external entity "Active In
tellect," and the human mind, "Material Intellect". Plotinus, 
in the Enneads, specified the relationship between the two: 

when 'a soul is able to receive,' Intellect 'gives' 
it clear principles, and then 'it combines' those 
principles until it reaches perfect intellect.47 

Lest anyone wonder what those principles might be, 
Themistius, in a paraphrase of Aristotle available in Arabic 
translation, made the explicit connection with mathematics, 
stating as evidence for the existence of the Active Intel
lect that all persons knew, without being taught, the same 
"common notions" (KOWCl:~ €1I110~Cl:~), "first defmitions" 
(1fpwroL 'opo~), and "first axioms" (1fpwrCl: Cl:xwllCl:rCl:).48 

In the century before Ibn Sina, Abu Nasr al-Farabi 
(c. 870-950) made the notion of Active and Material In
tellect part of his cosmology.49 Like many ancient and 
medieval writers, al-Farabi envisions the terrestrial globe 
surrounded by nine concentric spheres (one each for the 
moon, sun, five planets, the fixed stars, and an outer "diur
nal" sphere). The "Necessary One", i.e., God, emanates a 
first intellect, which has two thoughts, of its Creator and of 

its own essence. From the first thought, the existence of a 
second intellect "proceeds necessarily", while the existence 
of the first (outermost) sphere "proceeds necessarily" from 
the second thought. The process is repeated nine times, 
resulting in nine spheres and nine intelligences. From the 
ninth intelligence emanates the lunar sphere and a tenth 
intelligence, which al-Farabi identifies with the Active In
telligence, an incorporeal entity radiating principles to those 
human intellects ready to receive them. A much-used anal
ogy compares this to the role of light on the human sense 
of vision; light does not create the eye, but it makes vision, 
and the perception of colors and forms possible. 

In his treatise "On the Different Meanings of the Intel
lect," al-Farabi proposed that the intellect begins by dealing 
only with perceptions of the senses. Training it to compre
hend abstractions is a step in the process which leads even
tually to "communion, ecstasy, and inspiration." Following 
Plotinus, al-Farabi believes that whenever the human soul 
has 

to a certain degree attained freedom and separa
tion from matter, the active intellect tries to pu
rify it from matter ... so that it arrives at a degree 
close to the active intellect.5o 

Ibn Sina developed his own cosmology, resembling al
Farabi's in many respects. In contrast to the mystic, who 
seeks direct knowledge of God through rejection of rational 
thought, Ibn Sina describes the attainment of the same goal 
by the embrace of rational thought and in fact by building 
a chain of syllogisms. 

One interesting feature of Ibn Sina's work is his appli
cation of al-Farabi's theory of the intellect to explain how 
the human mind constructs logical proofs, or in his own 
terms, "finds the middle term of the syllogism."51 The hu
man mind must formulate the original question. When it 
is properly prepared, it receives an "emanation" (what we 
might call an inspiration or a flash of insight) from the 
Active Intellect. It is then up to the mind to act upon and 
make sense of this emanation. If it correctly finds the mean
ing of the emanation, it can go on to formulate the middle 
term. The result can then be remembered or written down; 
the mind can then go on to repeat the process for other 
syllogisms and so build a chain of reasoning. 

With this in mind, the following sentence in Ibn Sina's 
autobiography becomes more comprehensible: 

And because of those problems which used to 
baffle me, not being able to solve the middle 
term of the syllogism, I used to visit the mosque 
frequently and worship, praying humbly to the 
All-Creating until He opened the mystery of it to 
me and made the difficult seem easy. 52 

http:intellect.5o
http:cosmology.49
http:Cl:xwllCl:rCl:).48
http:intellect.47


Although any student, or any research mathematician, 
can sympathize with Ibn Sina's frustration, it is unlikely 
that such a sentence would appear in a modem biography. 
We are accustomed to think of mathematics and religion as 
quite irrelevant to one another. 

Conclusion 

It appears that medieval Islam would agree with all three 
of the reasons that we give for studying mathematics, but 
their answers would have a different significance. Mathe
matics was practical, but among its practical applications 
was the fulfillment of religious duty. Mathematics was good 
for training the mind, but not merely to study engineering 
and economics; the grasp of abstractions was an essential 
step in the process leading the soul to heavenly conscious
ness. Mathematics was enjoyable, but this enjoyment had 
a deeper significance because it led the soul to appreciate 
higher, rather than merely sensual, pleasures. In brief sum
mary, the medieval Islamic culture differed from ours in the 
ever-present consciousness of a metaphysical dimension. 

It is easy to assume, unless we are careful, that a 
historical person was motivated by the same things that 
motivate us today. Perhaps the most difficult task for the 
historian is the attempt to lift the veils of our own cultural 
prejudice. But it is a valuable study, and one that seems 
worth pursuing. Not only does it give us greater understand
ing of history, it prepares us to empathize with the different 
world-views of our colleagues, clients, and students today, 
and perhaps can lead to a more thoughtful personal answer 
to the question "Why is mathematics important?" 
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Urban Planning in 
Renaissance Italy 

Uwe Gellert 
Freie UniversitlJt Berlin 

Introduction: The Renaissance and 
mathematics 

The period of the Renaissance is commonly held to con
stitute the entrance into modern scientific thinking-or 
at least its basis. Taking classical Greek and Hellenistic 
achievements into account and following the idea of in
quiry by systematic research, the citizens of the Renais
sance towns questioned the medieval clerical world. They 
tried to shape their modern society by the means of new ma
chines and a reformed interpretation of the system of gov
ernment in accordance with a humanistic body of thought. 

Humanism could be termed an intellectual movement 
within western history. This movement tried to revive clas
sical culture in order to use it for the benefit of general 
education. It attaches prime importance to man and hu
man values, and is often regarded as the central theme of 
Renaissance civilization. Philosophically, humanism made 
human interests the measure of all things. 

For this interest, new disciplines arose, such as as
tronomy and architecture, which unified scientific out
comes with a new imagination concerning life in society. 
But, what about mathematics, later (about 1800) called the 
queen of all sciences? Had a specified body of knowledge, 
a structured conception of mathematics, already existed? 
Are there new results in geometry widening Euclid's 'El
ements' or algebraical and arithmetical insights going be
yond the mathematics which the Arabs imported to Spain? 
What new mathematics was taught in the universities of 
Padova, Pisa and Bologna, enlarging the manuscripts of 
Toledo and Cordoba? Are we able to name famous Re
naissance mathematicians of the 15th century? 

An initial answer could be 'no'. The main task in the 
fifteenth century was to distribute the translations of Arab 
and Greek mathematics to the emerging scientific commu
nity. But, in a broader sense, including the influence and 
applications of mathematics on architecture, art, warfare, 
music, astronomy, geography, and navigation, Leonardo da 
Vinci, Alberti, Brunelleschi must be considered key figures 
in initiating the mathematization of Italian and, a few years 
later, of European society. 

Urban planning in Renaissance Italy 

The changes in the method of town planning in Italy in the 
second half of the fifteenth century serve as a significant 
example which clearly shows the rapidity of the new math
ematization. It was a time when town planning entered a 
close relationship with intense realization and symbolism 
of religious or mystic images and, consequently, opened up 
to a rational mathematical counterpart of the humanistic 
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world view. According to humanistic thought, the shape of 
the town gives an expression of the related State. 

This can be demonstrated in the modification of the 
Tuscan village Corsignano into the model town Pienza by 
Pope Pius II around 1460. The realized concept of the cen
tral place (or 'Piazza') and the new cathedral of Pienza 
curiously shows the difficulties of the step from the town 
symbolizing the church authority of the sovereign, to the 
town intending to give evidence of the sovereign's new 
identity as a humanist. The unchanged existing village of 
Pienza bears testimony to a unique mixture of irrationality, 
as well as the then newly found rationality in the Quattro
cento concept of an ideal town and society. But without 
Enea Silvio Piccolomini (1405- 1464), the son of an im
poverished nobleman of Siena, Pienza, today, would not 
have existed as a town. Piccolomini was a universally edu
cated humanist; Kaiser Friedrich III appointed him 'Poeta 
Laurentus' because of his extensive literary masterpiece; 
and his 'Cosmographia', the first scientific geography, in
fluenced Christopher Columbus. Piccolomini made his way 
as the Bishop of Trieste and later of Siena to the Vatican 
in the city of Rome. While politically engaged in a crusade 
against the Turks, he concentrated his tendencies toward 
Humanism on the modification of his native town which, 
then, he called Pienza-city of Pius. 

This modification focused on the central place, in
cluding the construction of a cathedral and palaces for the 
Pope, the bishop, and the town council, and should be in
terpreted as a demonstration of a cultural vision, rather than 
a vision of concrete modernization or of renovation. The 
central structural characteristics of this realized vision are: 

• 	 a church hall built on natural caves, with three naves 
flooded with light, 

• 	 a church fa«ade decorated by columns alluding to clas
sical temple architecture, 

• 	 the town palace of the Pope, the 'Palazzo Piccolomini', 
integrating the style of a villa by opening the rear to 
the landscape over a hanging garden as an epitome of 
artifically arranged nature, 

• 	 the connecting centerpiece, the 'Piazza', divided into 
nine sections by travertine lines, linking the heteroge
neous structures of the fa«ades and walls of the adjoin
ing buildings. 

The Palazzo Piccolomini could be considered as a very 
modem conception of official and private living, and of 
living in a town as well as with nature. The cathedral shows 
the link of the main influences of sacred architecture: the 
caves as an Etruscan place of worship, the three naves 

FIGURE 1 
The relation between the travertine lines and the surrounding 
buildings [Pieper, 1986, p. 1729] 

driving into the Romanesque period, the Gothic order of 
the big windows, and the Renaissance fa«ade. 

Concerning the level of mathematization, the main 
point of interest is the geometrical structure of the Piazza 
and, until 1978, its hidden connections with the geograph
ical position and size of the cathedral. A first hint for the 
discovery of these subtle interrelations is the unusual ori
entation of the cathedral. Normally, the chancel is directed 
to the East, but in Pienza it is oriented towards the south, 
opening the view to the Monte Amiata, which dominates 
southern Tuscany. A more sophisticated reason for this "in
correct" orientation is only observable in the equinoxes, the 
dates when the nights and the days have the same length 
in spring and autumn. On these days, the construction of 
the building is intended to give a shadow fitting into the 
geometrical order of the Piazza. 

The calculation with angles and related distances of 
the shadow is used to paraphrase an Orphic-Christian num
ber symbolism. The division of the Piazza into nine sections 
alludes to traditional views about the underworld: accord
ing to Christian tradition, Jesus Christ, after his crucifixion, 
went into an underworld consisting of nine hells. Dante 
Alighieri's "Inferno" also reported a ninefold hell (Hopper, 
1938). The calculated shadow play on the Piazza leaves 
room for interpretations in the context of light, death, and 
underworld, based on numerology and exactly constructed 
by means of mathematics. The involved rationality, how
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FIGURE 2 
Ground plan and shadow of the cathedral on equinoxes 
[Pieper, 1986, p. 1714] 

ever, is not easy to discover, and the astronomy of the cal
endar architecture of Pienza seems to be difficult: 

(1) The theoretical examination with the help of 
magnetism and with the mathematical-technical tool, the 
compass, did not allow Pius' architect Bernardo Rossellino 
(1409-1464) to correctly determine the north-south direc
tion. Although the magnetic declination of the compass was 
discovered around 1460, it was not known in Italy at that 
time. Therefore, Rossellino's determination differs 12°30' 
from the exact south; 1 a sundial situated on the Piazza 
shows this deviation, too. Consequently, nowadays, we ob
serve the congruence between the shadow and the pattern 
in the Piazza (12.5°/360°) x 24h = (5/6)h = 50 min 
after noon, As a result of this delay, Rossellino's plan had 
to take into account that the sun meanwhile drops about 
1 °26'. 

(2) The calendar architecture of Pienza also illus
trates a basic astronomical problem of the fifteenth cen
tury, the incorrectrless of the Julian calendar. The Julian 
calendar, established by Julius Caesar in 46 BCE, is based 
on a year of 365t days. Therefore, the calendar becomes 

The magnetic declination varies irregularly. The average variation is 
about 9' per year. The maximum declination for the geographical position 
of Pienza is 24°45' East or West. 

one day out every 129 years, and in the year of the con
struction (1459) it was eleven days wrong. By about 1440, 
Nicolaus von Kues (well known as Cusanus, 1401-1464), 
an important scientist, philosopher, and intimate friend of 
Pius, had drawn up a calendar reform which was not re
alized until 1582 by Pope Gregory xm. Various reasons 
relating to church policy prohibited the reform from taking 
place earlier. The decision to fix the spring equinox on the 
21st of March was carried out in 325 CE by the Council 
of Niceae, and determines the dates of Easter, the most 
important celebration in the whole ecclesiastical year. This 
holiday takes place on the first Sunday after the first full 
moon after the spring equinox. Consequently, changing the 
calendar meant changing the dates of Easter-a problem
atic question among the different Christian churches. 

A result of this disagreement between church and 
science was that Pius and his counsellors, Cusanus and 
Rossellino, were confronted with a matter of conscience 
difficult to tackle. According to exact measurement, the 
spring equinox in 1460 was not on March 21 but on March 
10/11 (in the Julian calendar). The corresponding angles of 
incidence of the sun at noon were of size a = 49°22' 
(March 21, 1460, in the Julian calendar) and f3 45°55' 
(March 10/11, 1460, in the Julian calendar). 

FIGURE 3 
The 'true' angle of incidence of the sun at noon on the 
equinoxes in Pienza 

FIGURE 4 
The angle of incidence of the sun at noon on the spring 
equinox in Pienza around 1460 according to the Julian 
calendar (on an exaggerated scale) 

1 
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But as Pope Pius II, he was aware of the implied dis
putes of a strong insistence on his scientific and humanistic 
views. On the other hand, a modem architecture and model 
town planning based on the ignorance of science in favor 
of an old and incorrect calendar must have been an intel
lectual sacrifice for the humanists, Pius and Cusanus. 

Fortunately, these mental battles are still recon
structible from the details of the cathedral: 

(a) One curious occurrence inside the building is 
the very strange-looking, artificially raised capitals of the 
columns which take the weight of the vault of the hall with 
three naves. Obviously, these capitals break the outline of 
the whole cathedral. Pius also wrote, in his "Comments" 
on the building process, that when the columns had already 
been finished and the capitals had been laid, the architect 
noticed a gap of seven feet in height, and interpreted the 
belated heightening as a fortunate and enriching error for 
the beauty of the cathedral. 

Shall we follow Pius in his "Comments"? Is it prob
able that one of the most famous and experienced Renais
sance architects 'suddenly noticed' a space of seven feet in 
height? Another interpretation is the following: The height 
of the artificial heightening of the capitals is about 2.41 m. 
Bearing in mind the difference in size between the 'Gre
gorian' and the 'Julian' angle of incidence of the sun on 
the spring equinox at noon of 3° 27', we discover that the 
2.41 m mentioned compensate for the higher position of the 
sun (the calculated difference based on the incorrect cal
endar is 2.44 m), as is easily explainable. The total height 
of the fayade responsible for the shadow is measured by 
theodolite to a = 21.41 m. The length of the shadow in 
the place is s 18.38 m. The calculation of a by using 
s and the angle of incidence of the sun a on March 21, 
1460, at noon, in the "wrong" Julian calendar proves: 

a s multiplied by tan a 

a = 18.38 m mUltiplied by tan 49°22' 

a = 21.42 m (within the scope of precision 

of the measurement). 

Calculation towards the height of the fayade on the 
true equinox b under the angle of incidence at noon of the 
sun (3 = 45° 55' shows: 

b = 8 multiplied by tan (3 

b = 18.38m multiplied by tan45°55/ 

b = 18.98m. 

Consequently, the difference a - b 21.42 m -18.98 m = 
2.44 m has been compensated by heightening the capitals 
inside the church. 

The point in the "Piazza" 
which should be 
reached by the shadow 
ofthe fayade in the 
distance of 18.38 m. 

/ 
FIGURE 5 

Belated heightening of the fa\(ade (on an exaggerated scale) 


Apparently, Pius' or Rossellino's first plan was 
founded on the true-scientific-date of the equinox. Not 
until the building was nearly fmished did Pius II at last de
cide to use the church as treasurer of truth. He consequently 
dated the equinox according to the old calendar bearing in 
mind that his mathematical model of a new town as a sym
bol for a rational society now became blurred by the rooted
ness in out-dated clerical definitions. Hence, Rossellino's 
task was to inconspicuously change the conception of the 
upper part of the building; and in the interior he succeeded 
partly through the curious shape of the capitals. On the 
other hand, he was forced to give up any proportional sys
tem on the fayade. 

(b) Among the Renaissance architects, theorists, and 
mathematicians, the best way to arrive at art and beauty was 
controversial. All parties involved agreed that proportion 
had to be regarded as mother, and queen, of all arts. The 
use of special numbers to describe and construct these pro
portions mathematically was regarded as the only method 
to reach beauty and art. Also. the source of the numbers 
ought to be from the classical period: 

• 	 Vitruvius' (84 8CE-?) 'De architectura libri decem', the 
only architectural treatise preserved which was written 
before the Common Era, was considered by Petrarca 
and Boccaccio. It was then well known among architects 
and artists, who favored the Pythagorean numbers as the 
standard for proportion. 

• 	 Rossellino. and later Andrea Palladio (1508-1580) re
ferred to Plato's expositions about the square doubling 
to gain "perfetti" proportions (Palladio, 1570) by using 
the square root of two. 

• 	 The mathematician and monk Luca Pacioli's (1445
1514) 'Divina proportione' picked up Euclid's expres
sion for the golden section and tried to link geometry 
with divine harmony. 
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• Leon Battista Alberti (1404-1472), humanist, architect, 
and mathematician, developed aesthetics of building based 
on "numerus" (number), "finitio" (relation), and "colloca
tio" (arrangement) in his treatise, "De re aedificatoria" (Al
berti, 1485). By claiming the proportion between diameter 
and height of Doric. Ionic, and Corinthian columns to be 
1:7. 1 :8. and 1:9. he emphasized the "normative demand" 
of Renaissance architecture (Thoenes, 1995), and called for 
the use of integers for the construction of proportions. 

In the fa~ade of the cathedral it is not possible to discover 
any common proportion. If, however, we reduce the total 
height of the building by 2.41 m, the standard proportion 
according to Rossellino becomes obvious: The mathemati
cal relation of the height of the basement to the top floor 
is 1: J2. 

Conclusion: Mathematics is not 'universal' 

The process of construction of the central area of Pienza 
serves as a significant example of the transition to a ratio
nal. mathematical society. 

Pius n and his humanistic counsellors viewed mass 
education as a conditio-sine-qua-non for the implementa
tion of humanism in society. Their humanism made clear 
by the concept of a cathedral integrating different epochs of 
architecture, put education at the top of the agenda. This 
focus on education aimed at accelerating the circulation 
of information. In addition, the buildings in Pienza show 
myths and mysticism contrasted with scientific methods 
and rationality and they symbolize the change in the con
sciousness of societies. 

Although Pius II intended to give evidence of the 
sovereign's new identity as a humanist, he was forced to 
act as a church authority and to give up the realization 
of the claim of scientific thought. Engaged in leaving the 
old conception of town planning, of directing all views to
wards the church and, instead,· showing Pienza as a symbol 
and an expression of modem states, he experienced the old 
constraints of working against a perfect mathematical idea. 

The concepts of humanism. social order, and scien
tific thought have changed since the fifteenth century. Ed
ucation, however, in schools and universities has become 
an unquestioned, state-run cornerstone in all Western soci
eties. In the educational process of enculturation, the role of 
mathematics is often regarded as crucial, as well as doubt
ful, and remains under discussion. 

Mathematics and science are the only school subjects 
thought of by many people to be relatively unaffected by 

the society in which learning takes place. As Bishop (1993, 
p. 225) points out, "whereas for the teaching of the lan
guage( s) of that society, or its history and geography, its arts 
and crafts, its literature and music, its moral and social cus
toms, which all would probably agree should be considered 
specific to that society, mathematics and science are usu
ally considered as 'universal'." On the contrary, the exam
ple of Pienza shows how intimately mathematics, religion, 
history, society, and politics are intertwined. However, the 
teaching of mathematics has the duty of divesting it of its 
'universality'. Mathematics should no longer be considered 
as being free of any values. 

Taking into account that mathematics is 'pregnant 
with values', the National Council of Teachers of Math
ematics (1989) identified "New Goals for Students" in the 
learning of mathematics. It describes under the heading, the 
needs of society and the needs of students, how "learning to 
value mathematics", "becoming a mathematical problem
solver", "learning to reason mathematically", and "learning 
to communicate mathematically" can fulfill social as well 
as individual demands. 

In order to follow these arguments. the beginning 
mathematization of town planning activities in Pienza could 
be interpreted as a demonstration of how the development 
of mathematics and science influenced a change in social 
concepts. 
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In this paper we map out a thread of connected de

velopments in the epistemology of number and variable. 
Instead of following a detailed historical path, we present 
some "snapshots" of these developments: from the initial 
binary Greek categories of discrete number and continuous 
magnitude, through Stevin's unification of these notions in 
the wake of the introduction of decimals; from Oresme's 
use of forms and Galileo's study of curves as a geomet
ric representation for variation, together with Vieta's idea 
of algebraic variable quantity, to Descartes' conjunction of 
these concepts in the invention of analytic geometry. Our 
intention here is to stress the epistemic shift in the concepts 
of number and magnitude and the evolution of the idea of 
a variable quantity as being of principal significance to the 
entire sweep of the history of mathematics. 

Introduction 

Two developments were instrumental in the history of num
ber and variation: (i) the identification of number with the 
geometrical continuum, and (ii) the geometrical representa
tion of variation. With regard to number, the drastic change 
that this concept underwent in evolving from the Euclidean 
conception into the unified concept of number introduced 
by Stevin in 1585 was significant. In the development of 
the concept of variable quantity, the keystone was the pos
sibility of interpreting those quantities as continuous mag
nitudes and representing them in the language of algebra. 

It has been reported [see for instance Klein, 1968 and 
Jones, 1978] that the Euclidean number concept came from 
the works of Pythagoras and Aristotle. There are two ele
ments of this history that, from our present viewpoint, are 
surprising: (i) one is not considered a number, and (ii) num

ber can only be applied to the study of discrete collections; 
in other words, there was no notion of continuity associated 
with the concept of number. It is because of these features 
that we wish to identify the point in time that number and 

(continuous) magnitude become integrated into the same 
concept. 

We must recall that Aristotle dismissed the Arrow 
Paradox by saying that time could not be made of mo
ments, and lines could not be made of points-which was 
a way of saying that the category of quantity had two dis
joint components: the discrete (number) and the continuous 
(magnitude). These components were reflected in mathe
matics as the study of magnitudes and numbers, i.e., as the 
study of geometry and arithmetic. For Aristotle, continu
ity was characterized as "never ending" divisibility, from 
which it was possible to conclude that the line could not be 
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composed of points. Lines and points belonged to different 
mathematical realms. 

The geometric continuum appeared as an abstraction 
of the physical continuum. Because of the characterization 
of continuity as never ending divisibility, it was possible to 
conclude that the continuum was not made of indivisibles. 
On the other hand, number was the prototype of discrete
ness; number was a collection of units and the unit was not 
a number. 

This scenario changed radically with the work of Si
mon Stevin. The Greek concept of number had developed 
as a result of an abstraction process applied to the material 
world. Stevin challenged the Greek viewpoint to accom
modate the utilitarian matter of measurement in the real 
world, a perspective which will be elaborated below. Nev
ertheless, Euclidean conceptions were so deeply rooted that 
Stevin found it necessary to argue against this tradition, 
both from a practical viewpoint and from what we con
sider to be an epistemological viewpoint. It was not just 
a matter of saying "one is a number" but of producing a 
substantiated argument to justify that assertion. 

Let us tum now to a more systematic account of Greek 
mathematics necessary to understand the conceptual atmo
sphere in which Stevin developed his work and, also, the 
construction of algebraic language and the notion of vari
ation. 

The Greek Concept of Quantity 

Aristotle introduced quantity as one of the eight essential 
categories of thought [Aristotle, Categories lb, 25] and 
divisibility as the fundamental operation that renders the 
classification of quantities possible. A magnitude was a 
quantity divisible ad infinitum; this defining characteristic 
was called continuity. A number was a quantity only divis
ible in a finite number of steps; this defining characteristic 
was called discreteness. The quantum, as an element of the 
class of quantities, was 

that which is divisible into two or more con
stituent parts of whiche~~h. i~ by nature a 'one' 
and a 'this'. A 'quant~m' i~ a plurality if it 
is numerable, a magnitOde if it is measurable. 
'Plurality' means that which is divisible po
tentially into non-continuous parts; 'magnitude', 
that which is divisible into continuous parts; 
... limited plurality is number, limited length is 
a line ... [Aristotle, Metaphysics, I020a, 5]. 

The following quotation illustrates why geometry and 
arithmetic were unconnected except in the particular case 
of commensurable magnitudes. In this case arithmetical 

results could be applied since these magnitudes can be 
thought of as numbers: 

The axioms that are premises of demonstration 
may be identical in two or more sciences: but in 
the case of two different 'genera' such as arith
metic and geometry, you cannot apply arithmeti
cal demonstrations to the properties of magni
tudes unless the magnitudes in question are num
bers. [Aristotle, Posterior Analytics 75b, 5.] 

The word genera (plural of genus) in this quotation 
refers to the class of objects that share certain character
istics of "birth" or generation and reveals how the differ
ences in the nature or the origin of mathematical objects 
determined Aristotle's mode of operation with them. Al
though the propositions in the two theories are analogous 
and the rules of logic the same, they could not be indiscrim
inately applied to objects with a different genesis. Euclid 
maintained a separation between arithmetic and geometry 
analogous to that of Aristotle [Jones 1978, p. 377]. Books 
I to VI and XI to XIII of the Elements are geometric, while 
Books VII to IX are arithmetic. With the exception of Book 
X, the terms number and magnitude never appear together 
in the same book. The proposition X-5, however, makes 
use of the license granted by Aristotle as follows: 

Commensurable magnitudes have to one another 
the ratio which a number has to a number. 

Aristotelian Epistemology 

For Aristotle, concepts had their origins in the physical 
world and inherited their properties and relationships from 
Nature. To acquire knowledge, Nature should be closely 
observed and scientific concepts abstracted. In the same 
way, number and magnitude were concepts extracted from 
the material world, as can be appreciated by the following 
quotation: 

All these objections, then, and others of the sort 
make it evident that number and spatial magni
tudes cannot exist apart from things. [Aristotle, 
Metaphysics, I085b, 30] 

For the Greeks what could be known was a reality 
external to the knower and independent from him. [Piaget 
1950, Chapter III, on "Mathematical knowledge and real
ity".] This epistemological position permitted the construc
tion of a satisfactory theoretical and methodological struc
ture but imposed a series of restrictions on mathematical 
objects. For our purposes we will look at the restrictions 
that can be detected in the concepts of number and magni
tude and the relations between them. 



Number and Magnitude 
In the Elements, the concept of number was based on mul
tiplicities or collections of concrete, individual and indivis
ible objects, each one of them identified with an abstract 
unit: 

A unit is that by virtue of which each of the 
things that exist is called one. [The Elements, 
VII, Def 1] 

A number is a multitude composed of units. [The 
Elements, VII Def 2] 

These defmitions, like Aristotle's definition of quantum 
quoted earlier, lead us to concepts of unit and of number 
linked to the process of counting as an activity of "reading 
figures" in things. The Greek numerical domain had a basic 
structure derived not only from how the numerical series 
was generated but also from the operation with its elements. 

Once the nature of the concepts was determined-as a 
reflection of an external physical reality-the methodology 
required to operate (manipulate) with these concepts was 
defined. The unit, the principle of generation of number, 
was the concept that resulted from abstracting the features 
that were exclusively concerned with the singularity of each 
"thing". Thus, from the Greek point of view, to think of the 
division of the unit was meaningless, since it would lose its 
essence in the same way that a thing (a man, a horse) could 
not be divided without losing its essence. The impossibil
ity of dividing the unit illustrates the essence of discrete 
quantity as defined by Aristotle. Subdivisions of a discrete 
quantity could not continue beyond the unit and, as a re
sult, only a fmite number of divisions could be carried out. 
On the other hand, geometric magnitudes-the prototype 
of continuous quantities-formed a heterogeneous domain. 
Length, area, and volume belonged to this domain. They 
shared the property of being divisible, potentially ad in
finitum, and, if they were of the same species, one could 
establish ratios and proportions among them. There was 
no structure similar to that found in the numerical do
main. Line segments, for example, formed an aggregate 
of abstract elements isolated from and independent of each 
other. Given two segments, it was possible to operate with 
them, to compare them, and to order them, but this did 
not mean that they lost their individuality. In Greek ge
ometry the straight line was just a segment that could be 
extended indefinitely, but there was no concept analogous 
to our current "real line." 

The comparison between magnitudes in terms of their 
ratios, which is the first qualitative level of the measur
ing process, led to the notion of "relative (not absolute) 
commensurability" between magnitudes. However, this was 
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not yet a classification-in the sense of an equivalence 
relation-since only two elements were taken at a time. 
Divisibility was at the root of the definition of commensu
rability and incommensurability. If it was possible to find 
a fmite magnitude that "measured" (divided exactly) two 
given magnitudes simultaneously, then these two magni
tudes were said to be commensurable. If the search for 
this "unit-magnitude" led us to take smaller and smaller 
magnitudes in a process of potentially infinite division, the 
magnitudes were said to be incommensurable. In the first 
case, the ratios behaved in a similar way to numerical ratios 
and, as a result, could be treated like the latter, according 
to proposition X-5 of the Elements. If this were not the 
case, then there was no possible link between magnitude 
and number. Greek mathematics considered the existence 
of a unit magnitude not only necessary for the practice of 
measurement but also theoretically indispensable for the 
commensurable-incommensurable characterization. 

According to Greek realist epistemology, a metric unit 
could not have the status of "absolute" that the arithmetic 
unit had, since the former did not have an "external" re
ality. To select a unit magnitude would be the equivalent 
of endowing the magnitude with attributes imposed by the 
subject and not "read" from reality itself; thus the election 
of a unit of magnitude was not independent of the activity 
of the subject. However, the unit of magnitude that resulted 
from the comparison of two commensurable magnitudes 
(their "greatest common divisor") was a unit intrinsic to 
the two magnitudes compared and consequently indepen
dent of the subject that carried out the comparison. This 
unit had the theoretical characteristics imposed by Greek 
mathematics, but it also had the drawback of not always 
being the same, since it varied as the pair of compared 
magnitudes changed. 

Accepting that the arithmetic unit and the geometric 
unit corresponded to different "genera", let us summarize 
their behavior. The arithmetic unit was not a number; the 
geometric unit was a magnitude. The arithmetic unit was 
absolute; the geometric unit depended on the magnitudes 
that were being measured. The arithmetic unit generated 
numbers; the geometric unit did not generate magnitudes. 
The differences between the two domains that we have 
highlighted make an identification between numbers and 
magnitudes in Euclidean mathematics impossible, even at 
an operational level. 

Variation in a Geometrical Context 
Now let us tum to Oresme's work, Treatise on the Config
urations of Qualities and Motions (see Clagett, 1968 for a 
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splendid English translation). There we find the study of 
variation in a geometrical context, in particular, the idea 
of a flowing quantity. Oresme introduced geometric figures 
to represent the behavior of a quality. According to him, 
the study of a body could be realized from two viewpoints: 
from an extensional one-for instance, the weight of the 
body-and from an intensional viewpoint-for instance, 
the body's temperature. In the latter case, the measurement 
was made point-by-point. Reading through the chapter "On 
the continuity of intensity" [Oresme, Part l. i, pp. 165-169], 
we find the Euclidean conception of number where Oresme 
said that any measurable thing except number could be rep
resented by a magnitude; that is, "in the manner of con
tinuous quantity". This also explains why, when talking 
about intensities, he said that "the points of a line" were a 
necessary fiction used to represent a place on the studied 
body. Each intensional measurement made on a body, was 
represented by means of a segment. A segment also rep
resented the body itself. Oresme considered the whole set 
of intensities as the gateway to the study of variation. This 
set was called a surface latitude. and it contained all the 
information about the variation of the intensity. But here a 
shift in his viewpoint appears as the surface latitude was 
used to study the variation of forms. rendering his work a 
qualitative one. 

Let us consider Oresme's study of velocity. Velocity 
was imagined as a quality acquired by a moving body. The 
terms "uniform" and "uniformly difform" were introduced 
to name a quality that did not change with time in the first 
case, and a variable latitude with a constant rate of change 
in the second case. Oresme also considered "difformly dif
form" surface latitudes. 

Although this classification procedure was, in general, 
independent of physical considerations, Oresme's way of 
considering variation endowed his representational model 
with the capability of studying motion, in particular, geo
metrically. This viewpoint is also found in Galileo's Two 
New Sciences. However, in the latter case the conceptual 
framework is very different. Let us consider Galileo' s 

Theorem I (Proposition I) 
The time in which any space is traversed by a 
body starting from rest and uniformly acceler
ated is equal to the time in which that same space 
would be traversed by the same body moving at 
a uniform speed whose value is the mean of the 
highest speed and the speed just before acceler
ation began. [Galileo in Stroik, 1969, pp. 208
209] 

An analogous version of this theorem, known as the 
Merton Rule, can be found in Oresme's Treatise on the 

Configurations of Qualities and Motions. The wording 
there is the following: 

Every quality, if it is uniformly difform, is of the 
same quantity as would be the quality of the same 
or equal subject that is uniform according to the 
degree of the middle point of the same subject. 
[Oresme 1350, Part m. vii, p. 409] 

We find it enlightening to quote Clagett on this matter. He 
says, 

[Oresme] does not, however, apply the Merton 
Rule of the measure of uniform acceleration of 
velocity by its mean speed, discovered at Oxford 
in the 1330's, to the problem of the free fall, as 
did GaliIeo almost three hundred years later, al
though Oresme of course knew the Merton The
orem and in fact gave the first geometric proof of 
it in another work, the De Conftgurationibus, but 
as applied to uniform acceleration in the abstract 
rather than directly to the natural acceleration of 
falling bodies (our emphasis) [Clagett, Op. Cit., 
pp. 13-14] 

This clearly establishes that the conceptual frame
work within which Galileo worked was not the same as 
Oresme's. The latter was interested in the general study of 
intensities and configurations. The former was interested 
in the very special case of free falling bodies. 

A New Concept of Number 

In 1585 Simon Stevin published his book L' Arithmetique 
[Stevin 1585, in Girard (ed.), 1634]. which produced an 
epistemic shift in mathematical knowledge. It was a treatise 
about the theoretical and practical aspects of arithmetic. In 
chapter X Stevin presented his (new) concept of number. 
For him, "number is that through which the quantitative 
aspects of each thing are revealed" (our translation). 

In Greek mathematics the category of quantity had 
been separated into disjoint classes: discrete and continu
ous. Stevin did not take this separation into account. Num
ber as an isolated entity was for him "continuous" in the 
Aristotelian sense, since it could be divided indefinitely 
and, in any case, it inherited the characteristics of conti
nuity or discreteness of the thing that it was quantifying. 
For example, referring to one horse. the number "one" was 
discrete; however, attached to one yard. the number "one" 
was continuous. With this formulation, continuous and dis
crete ceased to be ontological categories; they now became 
merely circumstantial properties of the objects quantified. 
The decimal notation Stevin introduced could solve the 



problems posed by the tension between fonn and content. 
In fact, as there was no distinction made within this newly 

revised category of quantity, there could be no distinction 
between the object of study of arithmetic and that of ge
ometry. The representational tool needed to cope with this 
new situation had to be flexible enough to deal with the 
problems of discrete quantity and, simultaneously, with the 
problems of divisibility. To talk about parts of unity, dec
imal notation was instrumental. This representation was 
deeply linked to the new concept of number. This is one 
of the best examples of how an adequate symbolic rep

resentation becomes an instrument with which to explore 
mathematical concepts. 

While Euclidean mathematics produced a concept of 
number by means of an empirical abstraction-in the sense 
of Piaget' s genetic epistemology-Stevin's concept was the 
result of reflective abstraction. Stevin constructed his con
cept of number from generalizing the practice of measure
ment. Here, the boundary between theoretical mathematics 
and applied mathematics faded and practical needs came 
to detennine the kind of mathematics that should be devel
oped. Stevin, as Klein says, 

puts his 'practical' commercial, financial, and en
gineering experience into the service of his 'the
oretical' preoccupation-as, conversely, his 'the
ory' is put to use in his 'practical activity.' [Klein 
1968, p. 186] 

Stevin worked out the operational aspect in a work en
titled La Disme, published shortly before L' Arithmetique. 
In that work he presented a systematization with some in
novations of the decimal notation already known by this 
time but far from being in general use. He attacked the 
theoretical problems in L' Arithmetique. There, he identi
fied magnitude and number, attributing numerical proper
ties to continuous quantities and continuity to numbers. 
From this point on, it was not possible for mathematicians 
to separate the concept of quantity from its symbolic repre

sentation. This should make clear the more abstract nature 
of the new concept of number. In fact, it is interesting to 
compare once more the Greek concept of number in which 
unity is the fundamental principle, and the one introduced 
by Stevin. 

We interpret the reflective abstraction process that led 
Stevin to his concept of number as a process by means of 
which the arithmetic operations "revealed"-in the sense 
that Stevin gave to this word in his definition of number
the actions or transfonnations that were carried out on ma
terial objects insofar as these objects could be regarded 
as quantities. For Stevin number revealed the quantity of 
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each thing. Therefore, arithmetic operations were 1#H ;: 

by the transfonnations that were carried out OIl q'}__1S. 

A very important step towards the wideuiar ,. _ 
numerical domain was to consider that results of •. t _ 

operations, carried out with numbers, were nllJllbrn. ~ 
made this point in several ways. For instance, the ........ 
argument was used repeatedly by Stevin, for wbidt __ 

harshly criticized at the time. It is first found • ~ ,-r 
where he asserted that the unit was a number. 

The part is 'of the same material' as the ~ 
The unit is a part of a multitude of units. 11ar
fore the unit is 'of the same material' as the ....... 

titude of units; but the material of a mwn..lr 
of units is number. Therefore the material of ~ 
unit is number. [Stevin 1585, p. 1] 1 

This argument presented a noticeable ambivab::r ~ 
garding its level of abstraction. The first premise. __ ~ 

is of the same matter as the whole", referred to I1'l3IrriM .. 

jects, while the second, "the unit is part of the mubiMP .. 
units", referred to mathematical, and thus abstract ~ 
The umestricted step from one level to another sbooIroa: _ 
nonnative underpinning that physical reality ga\'e r _ 

concept of number for Stevin. He sustained his ca.:zp 
of number on the basis of the arithmetical operatioDs 1lIIa 

could be carried out with it, and the operations theImrha 
on the transfonnations that could be carried out OIl .-a
(to the extent it could be quantified). These transf~ 
whose results did not alter the total quantity of the ~ 

that intervened in the process were reflected as opeaa
characterizing, in tum, the closure of the mathematical ~ 
main. 

The Choice of the Unit 

The divisibility of the unit has its roots in the context .. 
measurement processes through which a number is ass0ci

ated with a magnitude. Stevin proposed a theoretical struc

ture based on the systematization of this practice. He sug

gested the popularization of the use of decimal subdi\i
sions: 

all measurements will be divided, be they mea
surements of length, liquids, dry things, money, 
etc., by the precedent progressions of tenths and 

1 QUE L'UNITE EST NOMBRE 
La partie est de mesme matiere que son entier, 
La unite est partie de multitude d'unitez, 
Ergo I'unitl'! est de mesme matiere que la multitude d'unitez; , 
Mais la matiere de multitude d'unitez est nombre, 
Doncques la matiere d'unitl'! est nombre. 
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each one of these famous species will be called 
Commencement; for example, the Mark, Com
mencement of weights, by which gold and silver 
are weighed, the Pound, Commencement of other 
common weights; the Flemish Pound, the Pound 
Sterling of England, the Spanish Ducat, and so 
with every Commencement of coins. [La Disme, 
in Stevin 1585, p. 221] 

Stevin called each one of the units of measurement 
Commencement (beginning), independently of their na
ture or extension. He associated the numerical unit with 
this Commencement. Throughout La Disme, Stevin clearly 
showed how he established the equivalence between each 
one (and all) ofthe metric units with a single natural numer
ical unit by means of the practice of measurement. Stevin' s 
unit was thus not only the result of an abstraction from ob
jects as quantities, but mainly of an abstraction from the 
coordinated actions that were carried out in the process of 
measuring these objects. This last argument shows why his 
number concept was the result of a reflective abstraction 
process. 

Some comments on the decimal expansions are now 
pertinent. Stevin did not deny the theoretical existence of 
infmite decimal expansions. Indeed, he suggested a method, 
by means of the division algorithm, for approximating an 
infinite decimal as closely as we want [La Disme in Stevin, 
1585, p. 210]. However, there was a predominant con
cern for those objects that could be obtained (constructed) 
by means of arithmetic operations. The following quota
tion, referring to incommensurable magnitudes, describes 
the epistemological position of Stevin: 

we can never know the incommensurability of 
two given magnitudes through this experience; 
firstly because of the errors of our eyes and hands 
(which carmot see or divide perfectly), we would 
fmally conclude that all magnitudes, both com
mensurable and incommensurable, are commen
surable. And, in the second place, although it be 
possible for us to subtract the smaller quantity 
from the greater one hundreds of thousands of 
times and to continue in this way for hundreds 
of thousands of years, (if the given numbers are 
incommensurable) we would always work eter
nally, remaining ignorant of what could finally 
be found. Therefore, this form of cognition is not 
legitimate; it puts us in a position of impossibil
ity if we wish to declare of what Nature really 
consists [Stevin, p. 215] 

Now we tum to a study of some aspects of the tran
sition from arithmetical to algebraic thought. 

Viete and the Analytic Art 
The last quotation shows the importance of the arithmeti
cal operation in Stevin's conceptions. In Stevin's work the 
concept of number is justified not only because it could 
accommodate all the needed computation, but also because 
the symbolic character of his work was in line with the 
development of algebra. Stevin talked about "arithmetical 
numbers" and also about "geometrical numbers". Accord
ing to him, if the numerical value of a geometrical num
ber was unknown, it entered algebraic computations as an 
indeterminate quantity. This was not yet a genuine alge
braic variable insofar as Stevin required the homogeneity 
of the quantities involved. That is, two geometrical quan
tities could be added only if both belonged to the same 
category: length, area, or volume. Moreover this indetermi
nate quantity was a number, although it was unknown to 
us. 

The algebraic concepts underwent a very subtle de
velopment in the early seventeenth century. This first con
ception of algebra was as a kind of generalized arithmetic. 
Another viewpoint was presented in Viete's Artem Ana
lyticem Isagoge (1591) [the Appendix in Klein 1968 is an 
English translation ofViete's work: Introduction to the An
alytic Art.] In this book, one of the cornerstones of the new 
algebraic thinking, we read: 

The supreme and everlasting law of equations or 
proportions, which is called the law of homo
geneity because it is conceived with respect to 
homogeneous magnitudes, is this: 

1. Only homogeneous magnitudes are to be com

pared with one another. 

For it is impossible to know how heterogeneous 

magnitudes may be conjoined. And so, if a mag

nitude is added to a magnitude, it is homogeneous 

with it. If a magnitude is multiplied by a magni

tude, the product is heterogeneous in relation to 

both. [Viete 1591, Chapter ill, p. 324] 


In Viete's work the term "magnitude" was used in a 
general sense, not just geometrically. The magnitude one 
was looking for when solving an equation, for instance, 
could be a number. In this respect, we quote J. Klein: 

What is characteristic of this 'general magni
tude' is its indeterminateness, of which, as such, 
a concept can be formed only within the realm 
of symbolic procedure ... [the Euclidean presen
tation] does not do two things which constitute 
the heart of symbolic procedure: It does not iden
tify the object represented with the means of its 
representations, and it does not replace the real 



detenninateness of an object with a possibility 
of making it determinate, such as would be exi
pressed by a sign, which instead of illustrating a e 
determinate object, would signify possible deter::i 
minacy [Klein 1968, p.123] e 

e This was a large step towards the constitution of a sym

1 bolic mathematics; nevertheless, Viete still required the law 
of homogeneity. Furthermore. the symbolic character of 
Viete's work was (as in Stevin's case) the result of a pro
cess of reflective abstraction. In a sense the concepts ofJ 

the "new science" were obtained by a reflection on the to
tal context of that concept or, in other words, by a process 
that can be termed "symbol-generating abstraction". Viete' s 
work can be seen as the frrst work of this new discipline. 

In his book Rules for the Direction of the Mind 
[Descartes 1628 in Kolak 1994], Descartes considers the 
problem of multiplying the product ab of the magnitudes a 

and b by a third magnitude c. He says in Rule XVIII"that 
for this to be possible, "we ought to conceive (the product) 
ab as a line" [Descartes, p. 81] 

This detachment of quantities from the geometrical 
constraints was possible because of the resultant abstract 
symbolism. The quantities involved in the operational ac
tivity were abstractions of the geometrical figures not the 
figures themselves. The identification of a number with 
the symbol used to represent it led to a conceptualization 
of number as a mental entity, not anymore as the Greek 
arithmos used to count material things. In this way Viete's 
symbolic algebra, which still was arithmetical and geo
metric, became fully symbolic in Descartes' hands through 
the loss of the dimensionality of the symbols used. Before 
Viete, the main activity was the search for a formula (a set 
of procedural rules) to compute the roots of an equation 
with numerical coefficients. This activity can be seen as 
a generalized arithmetic. All the operations involved were 
performed on the numerical coefficients, and, eventually, 
the unknown also became involved in the operations. With 
Viete's work this changed radically. Now, the operation 
was the new object of study. In terms of genetic epistemol
ogy we have entered an inter-objectal stage of development 
[Piaget and Garda 1989, pp. 142-143.] As we have already 
noted, the passage to this new stage was possible because 
a process of reflective abstraction had taken place. 

if 

Variable and Variation 
The symbolic language of algebra enabled the construction 
of models at a higher level of representation. Within this 
operational field, symbols could be manipUlated like given 
quantities and related through symbolic expressions. This 
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was instrumental for the conscious study of functions as 
models designed to study sequences of stages. The table of 

values is a good example of this kind of model. Perhaps 
what is more important in this context is the use of lit
eral symbols as objects with the capacity to take numerical 
values and thus to vary on a numerical substratum. 

When analytic geometry was created, the possibil
ity of moving from a symbolic representation (the alge
braic equation) to a visual one (the graph) was estab
lished. The interplay between these two forms of repre
sentation led to the construction of deeper meanings for 
the conceptions involved. Connections controlled meaning: 
so in the encounter between the symbolic/algebraic and 

the visual/geometric conceptions, the new space for doing 
geometry-the Cartesian plane- transformed the geomet
ric study of movement previously advanced by Oresme and 
the Scholastics, who had begun a serious study of move
ment with non-Cartesian representations. Nevertheless, if 
was the new conception of space-a geometrized space
which proved to be instrumental for the development of 
infinitesimal calculus. 

Let us remark on the connection between the develop
ment of algebraic language and the study of motion in the 

geometrical context. In the Merton Rule it was important 
that the distance traversed by a body was represented as 
an area. There is a link between this fact and Descartes' 
Rule XVIII that identified all magnitudes with line seg
ments. Viete's homogeneity law stands between these two 
perspectives and reflects a former period of algebraic de
velopment. The homogeneity law was an obstacle to the 
development of algebraic language. Descartes overcame it 
through the linearization of magnitudes. In a sense, plac
ing all magnitudes in the same category made possible the 
emergence of geometrical/dynamical models in elementary 
calculus. 

We can summarize this development in the diagram 
on the next page. The Cartesian plane supplemented by 
the operational field of the new "non-dimensional" algebra, 
furnished the necessary representational tools that allowed 
the construction of models for the study of variation. 

Concluding Remarks 
The mathematical ideas which have been studied in this 
paper constitute one of the cornerstones of calculus, as iI 
was developed during the second half of the seventeeDlb 
century, mainly in the hands of Newton and Lebniz. 11Iis 
mathematical age characterized by the study of variaria. 
was possible only within a conceptual framework: m. __ 
eluded: 
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Phenomenon 
(motion) 

! 

Representation 
(of phenomena) 

! 

Extraction of operational rules 

from a particular physical context 

! 

Generalization of operational rules 


(loss of particular meanings, contextually dependent) 


1. 	A unified concept of number capable of dealing with 
discrete quantities and continuous magnitudes. 

2. 	 A form of geometrical representation that enabled the 
variable quantities to be considered as (geometrical) 
magnitUdes and thus as never ending divisible ones. 

3. A new algebraic language that emphasized the study 
of mathematical processes. 
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Combinatorics: 
a Historical and 
Pedagogical Approach 

Robin Wilson 
The Open University, UK 

In his 1666 Dissertatio de arte combinatoria, Gottfried 
Wilhelm Leibniz described combinatorics as the study of 
placing, ordering and choosing a number of objects. Since 
then, the scope of the subject has widened significantly and 
the subject is now usually taken to include the whole of 
fmite or discrete mathematics, as well as having substantial 
overlaps with set theory, computer science, and many other 
areas. 

Broadly speaking, combinatorial problems fit into one 
or more of the following categories: 
• 	 existence problems: does ... exist? Is it possible to ... ? 
• 	 construction problems: if ... exists. how can we con

struct it? 
• 	 enumeration problems: how many ... are there? Can we 

list them all? 
• optimization problems: if there are several ... , which is 

the 'best'? 
Because of their generality and wide applicability such 
problems occur throughout mathematics, in all disciplines 
and at all levels. In particular, while combinatorics is a 
fruitful area for research activity, it also yields a large num
ber of teaching problems for students with varying abili
ties. In this article, we consider four areas of combinatorics, 
outline their history, and list some student activities; their 
solutions appear towards the end of the article. 

Permutations and combinations 
There are four types of selection problems in which r ob
jects are to be selected from a set of n objects: 
• 	 if the selections are ordered and repetition is allowed, 

then the number of possible choices is nr; 
• 	 if the selections are ordered without repetition (permu

tations), then the number of choices is 

(n)r = n(n 1)··· (n - r + 1); 

• 	 if the selections are unordered without repetition (com
binations). then the number of choices is 

n) n!
( r = r!(n-r)! 

• 	 if the selections are unordered with repetition, then the 
number of choices is 

1) r + 1)!(n+; = (n 
r!(n 1)! 

An early example of ordered selections with repetition 
occurred in the seventh century BCE I ching (Book of 
changes), where the symbols for the yin and yang were 
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FIGURE 1 

combined into hexagrams (systems of six symbols) in 
26 = 64 ways; half of these are illustrated in Figure 1. 

Problem 1. Draw the rest of the 64 hexagrams. It has 
been claimed (probably incorrectly) that Leibniz used these 
hexagrams as evidence that the Chinese invented a binary 
system of numbers. How might this have been done? 

There are also early examples from India. In a medical 
treatise of Susruta (sixth century BCE), there is a discussion 
of the combinations of tastes that can be made from the 
six basic qualities sweet, acid. saline, pungent, bitter, and 
astringent. A systematic list was given of all the possible 
combinations, giving the number of possible combinations 
when taken singly, in twos, in threes, in fours, in fives, and 
all together. 

Problem 2. How many combinations are there of these 
six qualities when taken three at a time, andfour at a time? 

Other Hindu examples occur around 200 BeE in the 
work of the Jainas, where there are discussions involving 
combinations of males, females and eunuchs, and in the 
writings of Pingala, concerning the metrical rhythms that 
can be constructed from a given number of short and long 
syllables (such as - '-/ '-/ and '-/ '-/ - -). 
Later, in the sixth-century Brhatsamhita of Varaharnihira, 
it is stated that there are exactly 1820 ways of choosing 
four out of sixteen ingredients to make perfume. In the 
eleventh century, Bhaskara's Lilavati asks for the number 
of variations of the god Sambhu by the exchange of the ten 
attributes held in his several hands-the rope, elephant's 
hook. serpent, tabor, skull, trident, bedstead, dagger, arrow, 
and bow; the answer is correctly given as 3,628,800. 

Problem 3. Explain how Varahamihira and Bhaskara 
might have obtained these numbers. 

FIGURE 2 

Much early interest in permutations and combinations 
arises from various theological concerns-both Jewish and 
Christian. A Jewish text Sefer yetsirah (Book of Creation), 
possibly from the eighth century, calculates the number of 
ways of choosing two distinct letters from the 22 letters of 
the Hebrew alphabet; such calculations were considered of 
importance because various combinations of letters were 
thought to have power over nature. A later Jewish writer 
Rabbi ibn Ezra used combinations in an astrological con
text to calculate the number of possible conjunctions of 
the planets. The thirteenth-century Catalan mystic Ramon 
Lull believed that all knowledge arises from a number of 
basic categories, and by moving through all possible combi
nations of these categories one can thereby discover every
thing. He used combinatorial diagrams (Figure 2) to present 
the active manifestations of the divine attributes (goodness, 
power, etc.), and constructed models to demonstrate combi
nations of these; the inner wheels in the right-hand diagram 
rotate independently to reveal all ternary combinations of 
the letters. 

Lull's work was taken up by many Renaissance reli
gious teachers, including Marin Mersenne (who used com
binations in a musical context and exhibited all the facto
rials up to 64!, a 9O-digit number) and Athanasius Kircher 
(who exhibited a table of the 324 ordered pairs of the 18 
attributes and listed all permutations of the letters in the 
words ORA. AMEN and PATER). Leibniz was also an en
thusiast for Lull's work in his earlier years (although not 
later), and Lull's influence is clearly visible in the youth
ful work mentioned at the beginning of this article. Further 
details of Lull's followers may be found in Knobloch [6] 
or Fauvel and Wilson [7]. 

Problem 4. List all the permutations of the letters in the 
word AMEN. 

The importance of combinations arises not only from 
their combinatorial interest, but also from their appear



ance as binomial coefficients. In particular, they appear in 
the so-called 'Pascal triangle', named after Blaise Pascal 
who discussed this triangle in his 1665 TraitI'! du triangle 
arithmetique. although it had appeared many years earlier 
in a Chinese text of 1303, in lordanus de Nemore's De 
arithmetica (c. 1225), in a1-Tusi's Handbook of arithmetic 
using chalk and dust (1265), and in earlier Chinese and 
Arabic works. 

1 

2 1 

3 3 

464 1 

1 5 10 10 5 

A full discussion of the 'arithmetical triangle' and its his
tory appears in Edwards [8J. 

Problem 5. What are the next three rows ofthis triangle? 
What patterns do you notice among the numbers? 

Partitions 

A long -standing problem is to find the number p(n) of ways 
of partitioning the positive integer n into positive integers; 
the order in which the numbers appear is irrelevant. For 
example, there are five partitions of the number 4: 

4, 3 + 1, 2 + 2, 2 + 1 + 1 and 1 + 1 + 1 + 1; 

thus p(4) 5. 
It is a simple matter to write down the values of p(n) 

for small values of n; for example, 

p(l) = 1, p(2) 2, p(3) = 3, p(4) = 5, p(5) = 7, 

and so on, and a natural question is to ask for a general 
formula for p(n ). 

Problem 6. Find the values of p(6) and p(7). 

Similarly, one can ask for the number of partitions of 
a given number n into parts of certain types, such as odd 
parts, even parts, or distinct parts; when n = 4, these are 
respectively 

odd parts: 3 + 1 and 1 + 1 + 1 + 1 

even parts: 4 and 2 + 2 

distinct parts: 4 and 3 + 1 

In his 1748lntroductio in analysin infinitorum, Euler noted 
many theorems on such partitions, including the following 
results: 
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• 	 the number of partitions of n into odd parts is equal to 
the number of partitions into distinct parts. 

• 	 the number of partitions of n into an odd number of 
unequal parts is equal to the number of partitions into 
an even number of unequal parts, except when n is a 
number of the form k(3k ± 1)/2, for k 1,2, ..., in 
which case these numbers differ by 1; they are often 
called Euler's pentagonal numbers. 

Problem 7. By writing down the appropriate partitions, 
verify these results when n 6 and n 7. 

Euler also obtained his fundamental partition
generation function 

1 + p(l)x + p(2)x2 +p(3)x3+ ... 
(l+x+x2+ .. ·)(I+x2 . ·)(I+x3+x6 +... ) ... , 

from which one can successively calculate p(I),p(2), 
p(3), .... To prove this result, notice that each term in the 
product on the right contributes exactly 1 to the correspond
ing term on the left; for example, the term p(3)x3 arises 
from the terms (x3)(1)(I), (x)(x2)(I), and (1)(I)(x3) on 
the right. By writing the right-hand side as 

(1 - x)-I(I- x2)-I(I_ X3)-I ... , 

we can then subject the partition-generation function on the 
left to the tools of mathematical analysis. 

Problem 8. Use this formula to calculate the first few 
values ofp(n). 

A useful consequence of Euler's work on the partition
generating function is his recurrence relation for p(n) : 

p(n) = [p(n - 1) + p(n 2)]- [p(n 5) + p(n - 7)] 

+ [p(n 12) + p(n 15)]- .. ·, 

where the numbers 1,2,5,7,12, ... appearing in the brack
ets are the above-mentioned pentagonal numbers of the 
form k(3k ± 1)/2, for k = 1,2, .... 

Problem 9. Use this recurrence relation to find the small
est value of n for which p(n) > 100. 

The values of p(n) increase very rapidly with n. 
Euler calculated the values of p(n) up to n 69, and 
in the 1890s Percy MacMahon constructed a table of parti
tion numbers up to p(200) 3,972,999,029,388, but these 
results pale into insignificance in comparison with a 1918 
paper of Hardy and Ramanujan. In this truly remarkable pa
per, the authors obtained an almost unbelievable exact for
mula for p(n) as the nearest integer to an expression involv
ing square roots, derivatives, exponentials and 24th roots 
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of unity; further details may be found in Shiu [9]. Studying 
MacMahon's table of values, Ramanujan was able to prove 
several other results, such as: p(5k +4) is always divisible 
by 5, and p(7k + 5) is always divisible by 7. 

Problem 10. Find three numbers n such that p(n) is 
divisible by 35. 

Designs 

In 1839 the geometer Julius Plucker observed that a system 
8(n) of n points, arranged into triples in such a way that 
any two points lie in just one triple, is possible only when 
n == 1 or 3 (mod 6); for example, when n = 7, we obtain 
the following seven triples: 

1 234 5 6 7 

1234567 

234 5 671 

4 5 6 7 123 

Problem 11. Consider such systems with 9, 13, 15, 19 
and 21 points; how many triples are there in each case? 

Plucker's discovery was communicated, possibly by 
J. J. Sylvester, to William Woolhouse. editor of the Lady's 
and Gentleman's diary, who proposed a 'prize question' 
for his readers; Plucker's system 8(n) corresponds to the 
case p = 3. q 2: 

Determine the number of combinations that can 
be made out of n symbols. p symbols in each; 
with this limitation, that no combination of q 

symbols which may appear in anyone of them 
shall be repeated in any other. 

In 1847, the Rev. Thomas Penyngton Kirkman showed 
how to construct such a system 8(n) for any number n of 
this form, and three years later he described a system 8(15) 
with 35 triples partitioned into seven sets of 5 triples in such 
a way that each symbol occurs just once in each set of 5; 
this system gives a solution of the Kirkman schoolgirls 

problem, stated in 1850, in which 

fifteen young ladies in a school walk out three 
abreast for seven days in succession; it is required 
to arrange them daily, so that no two shall walk 
twice abreast. 

Problem 12. By completing the following table, solve the 
'9 schoolgirls problem' of arranging for nine schoolgirls 

to walk in groups of 3 for four days so that no two girls 

walk together more than once: 

Monday Tuesday Wednesday Thursday 

I 4 7 1 1 1 
2 5 8 4 - 6 - 8 
3 6 9 5 7  9 

The system 8(n) is now known as a Steiner triple 
system, after Jakob Steiner who studied them in 1853, 
several years after Kirkman had done so. In 1971, D. K. 
Ray-Chaudhuri and R. M. Wilson resolved a long-standing 
problem by proving that whenever n == 3 (mod 6), there 
is a Steiner triple system 8 ( n) that can be partitioned as 
in Kirkman's schoolgirls problem. 

Kirkman also constructed geometric systems with r2 + 
r +1 points and r2 +r +1 lines, with r +1 points on each 
line and r + 1 lines passing through each point, where r 
is 4 or 8 or a prime number. Such systems are now called 
finite projective planes of order r, and are finite analogues 
of the real and complex projective planes in which exactly 
one line passes through each pair of points, and exactly one 
point lies on each pair of lines. Finite projective planes are 
known to exist whenever r is a power of a prime number. 

In 1900 Gaston Tarry proved that there is no finite pro
jective plane of order 6, and after a long computer search 
in the 1980s, Clement Lam proved the non-existence of a 
projective plane of order 10. It is not known whether there 
exists a projective plane of order r for any other composite 
value of r. 

Problem 13. Show how 8(7) can be regarded as a pro
jective plane of order 2. Try to draw it. (The resulting 

picture is called the Fano plane.) 

A seemingly unrelated topic, which developed inde
pendently, is that of orthogonal latin squares. A question 
posed by 1. Ozanam in his Rtcreations matMmatiques et 
physiques (1725) is to arrange the sixteen court cards in a 
deck of cards in a 4 x 4 array, so that each value and each 
suit appears in each row and each column. A solution of 
this problem is as follows: 

J t:) Q 'V K • 
A '" 

Q • A t:) K 'VJ '" 
A • J 'V Q t:)

K '" A 'V K t:) J •
Q '" 

A square n x n array in which each of n symbols appears 
just once in each row and column is often called a latin 

square. Two or more latin squares are said to be orthogonal 
if, when they are superimposed, each of the n 2 possible 
ordered pairs of symbols appears just once. For example, 



the J. Q, K. A and <>. <:J, •• It latin squares above are 
orthogonal. as are the following two latin squares: 

A B C D A B C D AA BB CC DD 
B A D C C D A B BC AD DA CB 
C D A B D C B A CD DC AB BA 
D C B A B A D C DB CA BD AC 

latin square 1 latin square 2 1 and 2 superimposed 

Problem 14. Construct a 4 x 4 latin square with first row 
abc d which is orthogonal to both of the latin squares 1 
and 2. 

In 1782, Leonhard Euler posed the following problem: 

If there are 36 officers, one of each of six ranks from each 
of six different regiments, can they be arranged in a square 
in such a way that each row and column contains exactly 
one officer of each rank and one from each regiment? 

A solution of this problem would correspond to a pair of 6x 
6 orthogonal latin squares and Euler, unable to find such a 
pair, conjectured that no such pair exists. More generally, he 

conjectured that there is no pair of orthogonal latin squares 
of order n, for any n of the form 4k + 2. For n = 6, Euler's 
conjecture was proved by G. Tarry in 1900, but in 1959-60, 
R. C. Bose, S. S. Shrikhande and E. T. Parker astounded 
everyone by constructing a pair of n x n orthogonal latin 

squares for all n of the form 4k +2 greater than 6, thereby 
disproving all other cases of Euler's conjecture. In Problem 
14, we observed that there exist 3 mutually orthogonal latin 
squares of order 4. In the 1930s, Bose and others showed 
that a finite projective plane of order n corresponds to a 
set of n - 1 mutually orthogonal latin squares of order n, 
thereby linking these seemingly unrelated topics. 

Problem 15. By cyclically permuting the first row 
ABC D E in various ways, construct a set of four 
mutually orthogonal latin squares of order 5. (Note that 
this set corresponds to a finite projective plane of order 5, 
with 31 points and 31 lines.) 

Much of the recent interest in such systems arises from 
the design of agricultural experiments in which a field may 
need to be planted with varieties of wheat that are to be 
compared in pairs. Pioneering work in this area was carried 
out in the 1930s by Ronald Fisher and Frank Yates, and led 
to the general study of balanced incomplete block designs; 
these have been extensively investigated in the past few 
years. 
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Graph theory 

The subject of graph theory originated in the 1730s with 
Leonhard Euler's solution of the Konigsberg bridges prob
lem, in which four land areas are connected by seven 
bridges and it is required to find a route that crosses each of 

these bridges just once. Euler proved that there can be no 
such route, and showed how his method can be extended 
to any arrangement of islands and bridges. Although his 
approach was essentially graph-theoretic, he did not use 
graphs as such, and the above four-vertex graph (Figure 
3) usually drawn to represent the problem did not appear 
until the end of the nineteenth century when W. W. Rouse 
Ball inCluded the KOnigsberg problem in his book onrecre
ational mathematics [12]. 

Problem 16. The map in Figure 4 is taken from Euler's 
paper of 1736. Find a route that crosses each bridge just 
once. 

Sir William Rowan Hamilton, whose studies on non
commutative algebras led him to consider cycles on a do
decahedron passing just once through each vertex, dis

cussed another type of traversal problem. Kirkman, who 
investigated which polyhedra have such a cycle, had al

ready discussed problems of this type. Unlike the Eulerian 
problem, which has a simple solution, traversal problems 
of this kind are hard to solve. 
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FIGURE 4 

Problem 17. Find as many cycles as you can on the do
decahedron in Figure 5, visiting each letter just once, and 
ending at the starting point. How many can you find start
ing with BCPNM or with JVTSR? (Hamilton asked 
these questions in 1859.) 

R 

s 

FIGURE 5 

Problem 18. In each ofthe pictures in Figure 6, can you 
visit each letter just once and return to your starting point? 

a b a 

f lo--+---4C 

e d c 

FIGURE 6 
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FIGURE 7 

Whereas the Eulerian and Hamiltonian problems were 
essentially recreational in nature, the early study of trees 
was closely linked with the enumeration of chemical 
molecules. A tree is a connected graph without cycles; Fig
ure 7 illustrates the two different trees with four vertices. 

Problem 19. Draw the three different trees with five ver
tices. How many different trees are there with six vertices? 

If we now regard the four vertices as carbon atoms 
(with valency 4), we can construct two chemical molecules 
with formula C4H lO by adding on enough hydrogen atoms 
(with valency 1) to bring the valency of each carbon atom 
up to 4. 
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By using tree-diagrams of this kind, and building up 
the molecules step by step from their 'centres', Arthur 
Cayley was able to determine the number of chemical 
molecules (alkanes) with formula C n H 2n+2 ; further de
tails are given in Biggs, Lloyd and Wilson [IOJ. 

Problem 20. Draw the chemical molecules with formula 
C 5 H12 that arise from the 5-vertex trees in Problem 19. 
How many molecules with formula C 6 H14 arise from the 
6-vertex trees? 

The most famous problem in graph theory is the four 
colour problem, which asks whether every map can be 
coloured with just four colours in such a way that neigh
bouring countries are differently coloured. This problem, 
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due to Francis Guthrie in 1852, was communicated to Au
gustus De Morgan, who in tum communicated it to other 
mathematicians. In 1879, Alfred Kempe proved that ev
ery map can indeed be so coloured, but his proof was later 
found to be fallacious by Percy Heawood (1890). A correct 
proof was not produced until 1976 when Kenneth Appel 
and Wolfgang Haken produced an argument that involved 
the detailed analysis of almost 2000 different configura
tions of countries and hundreds of hours of computer time. 

Problem 21. The countries of the TrUJp in Figure 9 are to 
coloured red, yellow, green and blue. If three countries are 
coloured as shown, show that country A must be coloured 
red, and colour the rest of the TrUJp. 

FIGURE 9 

Heawood also gave a formula for the number of 
colours needed for maps on surfaces other than the plane 
or sphere-namely, the integer part of 

7+ y'I+48g 
2 

where 9 (?: 1) is the number of holes in the surface; for ex
ample, any map on a torus (ring doughnut), where 9 1, 
can be coloured with seven colours. Unfortunately, Hea
wood's proof was deficient and the gap was not filled until 
1968 by Gerhard Ringel and Ted Youngs. 

Problem ll. (a) Find a TrUJp on the surface of a torus 
that needs 7 colours. 

(b) How many colours are needed for a map on a 
double-torus (a surface with exactly two holes in it)? 

Solutions to tbe problems 
1. 	The remaining hexagrams are shown in Figure 10. 

Replacing the two symbols in the 64 hexagrams by 0 and 1 
gives the 64 binary words from 00000o to 111111. 
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2. 	 There are 20 combinations when taken three at a time; 
for example. sweet-add-pungent, acid-saline-pungent, and 
saline-bitter-astringent. 
There are 15 combinations when taken four at a time; for 
example, sweet-acid-saline-pungent, acid-saline-pungent
bitter, and saline-pungent-bitter-astringent. 

3. 	 Varahamihira might have said: choose the first ingredient in 
16 ways, the second in the remaining 15 ways, the third in 14 
ways and the fourth in 13 ways. This gives 16 x 15 x 14 x 13 
possibilities, but since order is irrelevant, we obtain each 
selection 4 x 3 x 2 x 1 ways; thus, the number of choices 
is equal to (16 x 15 x 14 x 13)/(4 x 3 x 2 x 1) = 1820. 
Bhaskara might have said: there are 10 choices for the first 
attribute, 9 choices for the second, 8 for the third" .. , and 
1 for the tenth, giving a total of 10 x 9 x 8 x 7 x 6 x 5 x 
4 x 3 x 2 x 1 = 3,628,800. 

4. AMEN, 	AMNE, AEMN, AENM, ANME, ANEM, MAEN, 
MANE, MEAN, MENA, MNAE, MNEA, EAMN, EANM, 
EMAN, EMNA, ENAM, ENMA, NAME,· NAEM. NMAE. 
NMEA, NEAM, NEMA. 

5. 	 The next three rows are: 

1-6-15-20-15-6-1, 1-7-21-35-35-21-7-1, 
and 

1-&-2&-56-70-56-28-8-1. 

There are many patterns; for example, each row reads the 
same forwards and baGkwards, each number (other than 1) 
is the sum of the two above it, each row adds up to a power 
of 2, etc. 

6. 	p(6) = 11; p(7) 15. 
7. First result: 	 n =6--there are 4 partitions of each type: 

odd parts: 5+1,.3+3, 3+ 1+ 1 + 1,1+ 1+ 1 + 1 +1 + 1; 
distinct parts: 6, 5 + 1, 4 + 2,3 + 2 + 1. 

n = 7-there are 5 partitions of each type: 

odd parts: 7, 5 + 1 + 1, 3 + 3 + 1, 3 + 1 + 1 + 1 + 1, 

1 + 1 + 1 + 1 + 1 + 1 + 1; 

distinct parts: 7,6+ 1, 5 + 2,4 + 3,4 + 2 + 1. 


Second result: n = 6--there are 2 partitions of each type: 

odd number of unequal parts: 6, 3 + 2 + 1; 

even number of unequal parts: 5 + 1, 4 + 2. 


n = 7-there are 2 partitions of the first type, and 3 parti

tions of the second type: 

odd number of unequal parts: 7,4 + 2 + 1; 

even number of unequal parts: 6 + 1, 5 + 2, 4 + 3. 
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8. 	 Multiplying out the brackets gives 1 + x + 2x2 + 3x3 + 
5x4 + 7x5 + ... , from which we can read off p(l) 1, 
p(2) = 2, p(3) = 3, p(4) = 5, p(5) = 7, etc. 

9. 	 We deduce successively that p(6) = 11, p(7) 15, p(8) 
22, p(9) = 30, p(10) = 42, p(l1) = 56, p(12) 77, and 
p(13) = 101, so 13 is the smallest value of n for which 
p(n) > 100. 

10. 	We seek numbers of the fonns 5k + 4 and 7k + 5-these 
numbers have the fonn 35k + 19; the three smallest such 
numbers are 19, 54, and 89. 

11. 	If there are n points, the number of triples is easily seen to 
be n(n - 1)/6; thus the required numbers of triples are 12, 
26, 35, 57, and 70. 

12. Monday: 	1-2-3, 4-5-6, 7-8-9; 
Tuesday: 1-4-7, 2-5-8, 3-6-9; 
Wednesday: 1-5-9,2-6-7,3-4-8; 
Thursday: 1-6-8, 2-4-9, 3-5-7. 

13. 	We obtain a finite projective plane with 7 points and 7 lines, 
with 3 points on each line and 3 lines through each point; 
the seven triples of 8(7) give us the points on the seven 
lines. (In any plane drawing of it, at least one line must be 
curved as in Figure 11.) 

4 	 5 

FIGURE 11 

14. 	 a b c d 


d c b a 


b a d c 


c d a b 


15. 	 ABC D E ABCDE ABCDE ABCDE 

BCDEA CDEAB DEABC EABCD 

CDEAB EABCD BCDEA DCBAE 

DEABC BCDEA EABCD CDEAB 

EABCD DEABC CDEAB BCDEA 
16. There are several possibilities, as long as we start in region 

D or E-for example, we can start in region E and cross 
the bridges in the order a-b-<:-d-e-f -g-h-i-k-m-n--p--o-
l, ending in region D. It is not possible to cross each bridge 
exactly once and return to the starting point. 

17. 	There are many possibilities-for example, 

B-C-D-F-G-H-J-K-L-M-N-P-Q-R-S-T-V-W-X-Y-Z-B. 

Starting with B-C-P-N-M, there are two possibilities: 

B-C-P-N-M-D-F-K-L-T-S-R-Q-Z-X-W-v-J-H-G-B 

B-C-P-N-M-D-F-G-H-X-W-v-J-K-L-T-S-R-Q-Z-B. 

Starting with L-T-8-R-Q, there are four possibilities-for 
example, 

L-T-S-R-Q-Z-X-W-v-J-H-G-B-C-P-N-M-D-F-K-L. 
18. 	 First picture: there is no such route; 

second picture: there are several possible routes-for exam
ple, a-b-f -e-i-c-g-k-h-d-j--a. 

19. 	 There are three trees with five vertices and six trees with 
six vertices (Figure 12). 

n=5 • • • • • -< + 
I 

+ 
n=6 • • • • • • • • • • • • I • • 

• I I • *FIGURE 12 

20. The chemical molecules arising from the 5-vertex trees in 
Problem 19 are pictured in Figure 13. There are only five 
molecules arising from the six 6-vertex trees; the last tree 

cannot give rise to a chemical molecule. 
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FIGURE 13 

21. Country A must be coloured either red or blue. 
If A is coloured blue, then F must be red, D must be green, 
and it is then impossible to colour C; so A must be red. It 
follows that F is blue, H is red, G is green, B is yellow, C 
is green, D is red, E is yellow, I is green, and J is blue. 



FIGURE 14 

22. (a) A possible map is 	as in Figure 14; the torus is shown 
here in its flattened fonn, with opposite edges identified. 
(b) For a double-torus (g = 2), Heawood's fonnula gives 
the integer part of (7 + VWi)/2 = 8.424... , which is 8; 
thus, any map on the double-torus can be coloured with 
eight colours. 

References 

Extended accounts of the historical material in this article 
may be found in Biggs, Lloyd and Wilson [I] and Wilson 
and Lloyd [2], and a shorter version of the article appears 
in Wilson [3]. Early work on combinatorics is discussed 
more fully in Biggs [4] and Katz [5]. Further informa
tion on Renaissance combinatorics is given in Knobloch 
[6] and in Fauvel and Wilson [7], a fuller treatment of 
Pascal's triangle is given in Edwards [8], and Hardy and 
Ramanujan's work on partitions is discussed by Shiu [9]. 
A more detailed account of the history of graph theory is 
given in Biggs, Lloyd and Wilson [10], which includes 
extracts from some of the works mentioned here. Several 
of the Problems in this article are taken from the Open 
University Course MT365, Graphs, Networks and Design 
[11]. 

Combinatorics: a Historical and Pedagogical Approach 199 

1. 	 N. L. Biggs, E. K. Lloyd and R. J. Wilson: 1995, "The 
history of combinatorics," Handbook ofCombinatorics (ed. 
R. Graham et al.), Elsevier Science B.V., pp. 2163-2198. 

2. 	R. J. Wilson and E. K. Lloyd: 1994, "Combinatorics," Com
panion Encyclopaedia of the History and Philosophy of 
the Mathematical Sciences (ed. I. Grattan-Guinness), Rout
ledge, pp. 952-965. 

3. 	R. J. Wilson: 1996, "History of combinatorics," Historia e 
Educa~ao Matematica (ed. E. Veloso), Braga, Portugal, pp. 
95-100. 

4. 	 N. L. Biggs: 1979, "The roots of combinatorics," Historia 
Mathematica 6, 109-136. 

5. 	 V. J. Katz: 1996, "Combinatorics and induction in me
dieval Hebrew and Islamic manuscripts," Vita Mathematica: 
Historical Research and Integration with Teaching (ed. R. 
Calinger), Mathematical Association of America, pp. 99
106. 

6. 	 E. Knobloch: 1979, "Musurgia universalis: Unknown com
binatorial studies in the age of Baroque absolutism," History 
of Science 17,258-275. 

7. 	J. Fauvel and R. J. Wilson: 1994, "The Lull before the stonn: 
combinatorics and religion in the Renaissance," Bull. Inst. 
Comb. Appl. 11, 49-58. 

8. 	A. W. F. Edwards: 1987, Pascal's Arithmetical Triangle, 
Griffin. 

9. 	 P. Shiu: 1997, "Computations of the partition function," 
Mathematical Gazette 81,45-52. 

10. 	N. L. Biggs, E. K. Lloyd and R. J. Wilson: 1998, Graph The
ory 1736-1936 (paperback reissue), Clarendon Press, Ox
ford. 

II. 	MT365, Graphs, Networks and Design: 1995, Open Univer
sity Course, The Open University, Milton Keynes, England. 

12. 	W. W. Rouse Ball: 1892, Mathematical Recreations and 
Problems of Past and Present Time (later entitled Mathe
matical Recreations and Essays), Macmillan, London. 



This page intentionally left blankThis page intentionally left blank



The History of 
Non-Euclidean 
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The sum of the angles in a triangle and 
parallelism 

If you ask somebody who is not a mathematician to give 
you a geometric fact, it is very probable that you will get 
the answer that the sum of the angles in a triangle is 180 
degrees. But if you put the same question to a mathemati
cian it is possible that you will get another question in 
return: What do you mean by a geometric fact? This is an 
interesting difference in attitude: The non-mathematician 
is ready to supply you with a mathematical fact, while the 
mathematician puts the whole issue of mathematical facts 
in doubt. This in tum must have something to do with the 
way the non-mathematician leamed his or her mathemat
ics, and since this mostly took place in school it could be 
informative to see how this "geometrical fact" is presented 
in different textbooks for schools. 

In many elementary textbooks each of the pupils is 
asked to cut out a triangle of colored paper, tear off the 
comers, put them together, and see that they (seemingly) fit 
along a ruler; since this happens for everyone in the whole 
class, the truth of the statement is evident. There is here no 
borderline between geometry and physics-the truth of a 
geometrical assertion is decided by experiment. Sometimes 
the same idea is expressed a little differently. Instead of 
tearing off the comers, one folds them together so that they 
meet in a point of the base of the triangle. More subtly, the 
pupils may not perform this folding on real paper triangles, 
but are only asked to think of doing it, or to draw pictures 
of the unfolded and the folded triangle. The experiment has 
become a thought experiment one can reason about. It is, 
of course, an unspoken assumption that such a folding is 
possible for all triangles-also in a geometry which takes 
place in the minds of the pupils. Behind this there are 
assumptions about parallelism; the triangle has been folded 
into a quadrangle with four right angles, so it is a (hidden) 
assumption that such rectangles exist, and therefore also 
parallel lines. 

Another argument is also very often met. A small line 
segment on one of the sides of a triangle is moved about; 
it is translated along the sides of the triangle and rotated 
around its comers, and it returns to its original position, 
seemingly having in all been rotated through 360 degrees, 
and the statement follows. But consider a large triangle on 
the surface of a sphere, the sides being a quarter of the 
"equator" of the sphere and two quarter-meridians stretch
ing up to the "North Pole". Moving a small arc segment 
in the same way as before along the sides and around the 
comers of this triangle back to its original position would 
seem to show that the angle sum of this triangle is also 180 
degrees. However, it is evident that it is 270 degrees, so the 
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argument cannot stand alone. It is only valid together with 
an (maybe unspoken) assumption on parallelism, namely 
that parallel translations are at all possible. In fact paral
lel translations are not possible on the surface of a sphere, 
since there are no parallel lines. Two lines-that is: two 
great circles-always meet, even twice. By the way, on the 
surface of a sphere no rectangles exist so that we see once 
more that the argument about folding a triangle contains 
hidden assumptions on parallelism. 

One can also meet more sophisticated versions of the 
argument--or experiment--on tearing off the corners of a 

triangle. One can use a tessellation of the plane with con
gruent triangles where angles from different triangles meet 
in a point and add up to 180 degrees. But also here par
allelism plays an important role without being mentioned. 
From where does one really know that such parallel strips 
crossing each other in three directions are possible? 

FIGURE 1 

Then there is the classical argument which can still 
be seen in not quite so elementary textbooks. It involves 
explicitly a line which is parallel to one of the sides of 
the triangle and goes through the opposite corner. Using a 
theorem on angles at parallel lines one sees that the angle 
at that corner together with two angles congruent to the 
other two angles in the triangle add up to 180 degrees. Of 
course this theorem on angles at parallel lines must then 
be proved first, maybe from other theorems, but finally it 
must rest on some assumption about parallel lines. 

This argument is really classical; it goes straight back 
to the oldest known source for all this, the treatment given 
by Euclid (c. 300 BeE) himself as proposition 32 of Book 
I of his Elements. The most authentic version which exists 
is still the one constructed more than 100 years ago by Jo
han Ludvig Heiberg (1854-1928, Danish) from all existing 
manuscripts. Here is the proposition in the translation by 
Thomas L. Heath (1861-1940, English) of Heiberg's text: 

Proposition 32. In any triangle, if one of the 
sides be produced, the exterior angle is equal to 
the two interior and opposite angles, and the three 
interior angles of the triangle are equal to two 
right angles. 

N

B c D 

FIGURE 2 

The figure is a little different from the one above, 

but the idea is the same, and the basic assumption about 
parallel lines on which the proof rests is Euclid's famous 
fifth postulate, or axiom, from the beginning of Book I. 
Here it is, also in Heath's translation from Heiberg: 

5. That, if a straight line falling on two straight 
lines make the interior angles on the same side 
less than two right angles, the two straight lines, 
if produced indefinitely, meet on that side on 
which are the angles less than the two right an
gles. 

It is evident that this has much to do with the sum 
of the angles in a triangle. For if the two lines Euclid is 
talking about meet somewhere then the three lines form a 
triangle, and if the sum of the three angles in a triangle is 
always 180 degrees, then the sum of the first two angles 
is necessarily less than 180 degrees. What the axiom says 
is that this is not only necessary but also sufficient for the 
two lines eventually to meet. One can add that if the sum 
of the first two angles is precisely 180 degrees, and if the 
sum of the three angles in a triangle is always 180 degrees, 
then there is no room for a third angle, and the two lines 
cannot meet. 

One might think that everything was in order and there 
was nothing to worry about. However, right from the be
ginning, Euclid's parallel axiom was seen as questionable. 
All his other axioms talked of something which could be 
seen as taking place inside the borders of a sheet of paper: 

Postulates 

Let the following be postulated: 


1. 	 To draw a straight line from any point to 
any point. 

2. 	 To produce a finite straight line continuously 
in a straight line. 

3. 	 To describe a circle with any centre and dis
tance. 

4. That all right angles are equal to one an
other. 

In contrast to this, the situation described in the parallel 
axiom might require one to go very far out to one side to 



find the intersection point of which it talks. How far? To 
the wall of Euclid's room in the Museion in Alexandria 
where he lived and worked, or to the end of Africa, or to 
the Moon, or further? How could one really be so sure of 
the truth of such an assertion? And these axioms were all 
meant to express something which was self-evident! 

Attempts to prove the parallel axiom 

Euclid himself seems to have considered the parallel axiom 
as something special. While he used the other four axioms 
freely right from the beginning, the first time he used the 
parallel axiom was in the proof of Proposition 29, just 
before he reached Proposition 32 on the sum of the angles 
in a triangle. (Book I contains in all 48 propositions, the 
last two being the theorem of Pythagoras and its converse.) 

Already in antiquity many mathematicians tried to im
prove Euclid's Elements by proving the parallel axiom from 
the other axioms and thereby Changing it into a theorem. 
They had no luck, or, if they thOUght so, others were always 
able to show that they had inadvertently built upon some
thing else which in its tum they could not prove without 
using the parallel axiom. 

There were also some who tried to resolve the problem 
by altering Euclid's defmition of parallel lines: 

23. Parallel straight lines are straight lines which, 
being in the same plane and being produced in
definitely in both directions, do not meet one an
other in either direction. 

They exchanged the last sentence with this one: 

have the same distance between them in both di
rections 

But if you take all the points equidistant to a line on one 
side of it, can you then really be sure that they constitute a 
line? One should think so, but it seemed that in any attempt 
to prove it one had to use the parallel axiom. From time to 
time one still encounters this definition in school textbooks 
whose authors probably do not know how bad an idea it 
is, since it clouds the whole issue. 

One of the Greeks who tried to prove the pararal
leI axiom was the great astronomer of antiquity, Claudius 
Ptolemy (or Klaudios Ptolemaios) (c.85-<:.165). Another 
one was the historian of mathematics (one of the first 
we know) who wrote an elaborate commentary to Book 
I of Euclid's Elements, Proclus (or Proklos) (410-485). He 
showed this theorem (which is the contrapositive of Euclid 
I, 30 and therefore equivalent to it): 

If a line meets one of two parallel lines then it 
also meets the other one. 
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From this he proved the parallel axiom. But to prove 
his claim he used this assumption: 

The distance between two parallel lines is 
bounded above. 

One should think that this was evident, but it is not; it really 
turns out to be equivalent to the parallel axiom. Many other 
statements have from time to time been tried as substitutes 
for the parallel axiom. Here are some of them; they have 
all on closer examination proved to be equivalent to it (the 
second of them is often called Playfair's axiom): 

Two lines parallel to the same line are parallel 
(Euclid I, 30). 
Through a point outside a line there is at most 
one line parallel to it (Euclid I, 31). 
Triangles can be similar without being congruent. 
Similar triangles of different size exist. 
Triangles of the same shape but different size 
exist. 
Through a point outside two intersecting lines 
there exists a line meeting both. 
Every triangle has a circumcircle (that is a circle 
through its vertices). 
Through three different points go either a line or 
a circle. 

The third, fourth, and fifth of these statements are ev
idently equivalent to each other. They are not true on the 
surface of a Euclidean sphere, since it is a theorem of Eu
clidean spherical geometry that if two triangles have equal 
angles they are congruent. The last three statements are 
true on the surface of a Euclidean sphere, so they can only 
be equivalent to the parallel axiom under some additional 
condition which fails there, as for instance that the dis
tance between points on a line is unbounded above. The 
same can be said of the first two of the statements-they 
are true on the surface of a Euclidean sphere since on that 
there are no parallels! The last two of the eight statements 
are clearly equivalent to each other; the first of them was 
used by Farkas Bolyai (see later) in his attempts to prove 
the parallel axiom. 

It would lead us too far afield to show here that all 
these statements are equivalent to the parallel axiom, but as 
an example let us look at the second one, Playfair's axiom. 
It was mentioned above that it is the same as Euclid I, 
31, so already in Euclid's Elements one will find a proof 
that it follows from the parallel axiom and Euclid's other 
axioms and theorems derived from these. Let us prove that, 
conversely, the parallel axiom follows from Playfair's axiom 
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ure of an indirect proof which later on was so eminently 
fruitful.=======-U:::::::::::::::=== n 
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FIGURE 3 

and Euclid's fIrst four axioms and theorems derived from 
them. 

Let the lines l and m be cut by a transversal t in 
points A and B such that the interior angles u and v on 
one of the sides of t have a sum less than 1800 Now let w• 

be the supplement of u at A on the other side of t; since 
u + w = 1800 we have v < w. Let n be the line through 
B making an interior angle as large as w with t (on the 
same side of t as u and v); n exists because of Euclid I, 23, 
and by Euclid I, 27, n is parallel to l. Moreover, since w 
is different from v, n is different from m. From Playfair's 
axiom it then follows that m cannot be parallel to l, so it 
intersects l in some point C. If C were on the side of t 
opposite to u and v, then v would be an exterior angle for 
6.ABC, and from Euclid I, 16 it would then follow that 
v > w, a contradiction. So C is on the same side of t as u 
and v. 

Among the many mathematicians since the time of 
Ptolemy and Proclus who proved the parallel axiom from 
statements such as the ones listed above can be mentioned: 

Alhazen (965-1041, Arabic) 
Omar Khayyam (I048-1131, Persian, the great poet) 
Christopher Clavius (1537-1612, German) 
Pietro Antoni Cataldi (1548-1626, Italian) 
John Wallis (1616-1703, English) 
Girolamo Saccheri (1667-1733, Italian) 
Johann Heinrich Lambert (1728-1777, German) 
Louis Bertrand (1731-1812, Swiss) 
John Playfair (1748-1819, Scottish) 
Adrian Marie Legendre (1752-1833, French) 
There were others, but these seem to be the most im

portant, and among them two stand out: Saccheri and Lam
bert. They both tried to give an indirect proof of the parallel 
axiom, and they both believed they had succeeded in this, 
but they had not. Nevertheless, it was precisely the fail-

Saccheri and Lambert 
Girolamo Saccheri was a logician, and strongly interested 
in the logic of indirect proofs. Since all direct proofs of 
the parallel axiom seemed to him not to have worked he 
tried an indirect one. He began with a quadrangle with two 
opposite sides of equal length, both orthogonal to the side 
between them. Omar Khayyam had also worked with such 
quadrangles, but not to the same extent, so today they are 
most often called Sac cheri quadrangles. Saccheri showed 
that the two remaining angles are equal. He also showed 
that if they are both right angles in one such quadrangle the 
same will be the case in all such quadrangles, and similarly 
if they are both obtuse or both acute. Now it was clear that 
if the parallel axiom were true one would have the fIrst of 
these three cases. On the other hand, Saccheri could show 
that in the fIrst of the three cases, or, as Saccheri put it, 
under the hypothesis of the right angle, one could prove 
the parallel axiom. 

h 

FIGURE 4 

Saccheri went on to show that in the second of the 
three cases-the hypothesis of the obtuse angle--one could 
also prove the parallel axiom from which, as already men
tioned, the hypothesis of the right angle would follow. But 
in his proof of the parallel axiom Saccheri used Euclid I, 
16 which is dependent on the unstated assumption-which 
we have already met-that the distance between points on a 
line is unbounded above. This assumption does not hold un
der the hypothesis of the obtuse angle. However, Saccheri 
had in this way apparently reached an obvious contradic
tion: if the two angles were both obtuse, they were both 
right. Therefore, if he could also deduce a contradiction 
in the third case-the hypothesis of the acute angle-he 
would have given an indirect proof of the parallel axiom. 

This is what Saccheri then started to do: to draw 
consequence after consequence from the hypothesis of the 



acute angle to see if he could end up with a contradiction. 
He found more strange consequences than anyone earlier 
who had had similar ideas. But even if he found them 
strange he could not honestly say that they contradicted 
each other or the axioms (other than the parallel axiom) 
or other theorems deduced from these, so he continued to 
draw consequences until he arrived at this one: 

The distance between two lines which do not 
meet can decrease indefinitely and they will then 
have a common perpendicular in a point infinitely 
far away in which they touch each other. 

This he deemed to be "repugnant to the nature of the 
straight line" and took it to be the contradiction he had 
set out to find. He was, however, not quite content with it 
and tried to find a better one using the curve consisting of 
the points equidistant to a line on one side of it. Unlike his 
predecessors, he was quite aware that under the hypothesis 
of the acute angle such a curve is not a straight line. (By the 
way, this is also the case under the hypothesis of the obtuse 

angle: on the surface of a Euclidean sphere an equidistant 
curve to a great circle is a parallel circle and not a great 
circle.) Saccheri now computed (using infmitesimals) the 
length of an arc of the equidistant curve connecting the 
"upper" vertices of a Saccheri quadrangle. This arc had to 
be longer than the line segment connecting these vertices 
(the "fourth side" of the quadrangle), and he had already 
shown this to be longer than the base of the quadrangle 
(all this of course under the hypothesis of the acute angle). 

But he made an error in his computations and found that 
this arc had the same length as the base, and because of 

this contradiction he again rejected the hypothesis of the 
acute angle. He was still not quite satisfied, so he finished 
his book Euclides ab omni naevo vindicatus (Euclid vin
dicated of all blemish) on a note of doubt, comparing the 
clear contradiction he had reached under the hypothesis of 
the obtuse angle with the more obscure ones he had reached 
under the hypothesis of the acute angle. Perhaps he wanted 

to come to a conclusion; the book was in fact published in 
the year of his death. 

Half a century after Saccheri a similar approach was 
used by Johann Heinrich Lambert, the main difference be
ing that he started from quadrangles with three right angles; 

the question was then if the fourth angle was right, obtuse 
or acute. Alhazen had worked with such quadrangles, but 

today they are mostly known as Lambert quadrangles. Since 
a Lambert quadrangle can be thought of as half a Saccheri 
quadrangle it is not surprising that Lambert was able to 
show first that the hypothesis of the right angle gives the 
parallel axiom, next that the hypothesis of the obtuse angle 
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gives a contradiction, and finally that the hypothesis of the 
acute angle gives a long list of strange consequences. 

He found even more of these strange consequences 
than had Saccheri. In particular, he found that in every 
triangle the sum of the angles is less that 180 degrees. 
However, just like Saccheri, he ended up with a contradic
tion, again something about all points equidistant from a 
line. Lambert, though, did not publish anything, so maybe 
he was not quite convinced after all. His book Theorie 
der Parallellinien (Theory ofparallel lines) came out nine 
years after his death, twenty years after he had written it. 

One of Lambert's most remarkable statements was 
that one might almost draw the conclusion that all the 
strange consequences of the hypothesis of the acute angle 
were true on an imaginary sphere, just as the consequences 
of the hypothesis of the obtuse angle are true on a usual 
sphere. How such an imaginary sphere would look he did 
not say explicitly. 

One hundred years after Saccheri and fifty years af
ter Lambert three very different mathematicians became 
convinced (at nearly the same time) that no contradiction 
would ever appear: 

Carl Friedrich Gauss (1777-1855, German, the prince 
of mathematicians) 

Nikolai Ivanovich Lobachevsky (1792-1856, Russian) 
JOOos Bolyai (1802-1860, Hungarian) 

All three said that one could have a geometry different 
from the Euclidean geometry whose uniqueness and truth 
had never been doubted in all the long history from Pro
clus to Legendre, a geometry in which all the strange conse
quences of denying the parallel axiom were valid geometric 
theorems. 

Gauss, Bolyai and Lobachevsky 

The first to arrive at the conviction that such a non
Euclidean geometry existed was Carl Friedrich Gauss. It 
probably happened around 1820, but he did not publish 
anything about it throughout his long life. He only wrote 
of it for his own pleasure and to a very few correspon
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dents. He was the most famous mathematician of his time; 
he was quite sure that publication of these thoughts would 
create controversy; and he would not (as he said) expose 
himself to the yellings of the Bolotians. (In antiquity the 
people from BOlotia were considered by all other Greeks 
to be very coarse and not very intelligent.) For this reason, 
Gauss's work on this subject is known only from his notes 
and from letters published after his death. 

J!inos Bolyai was the son of an old friend and fellow 
student of Gauss, Farkas Bolyai (1775- 1856), who had 
himself worked in vain on the parallel axiom and who had 
warned his son against having anything to do with it. But 
in 1823 the son wrote to his father that he had created a 
strange new world out of nothing. In 1832 he published his 
discoveries as an appendix in Latin to a large book by his 
father. This book, also in Latin, was an extensive survey of 
endeavors to prove the parallel axiom; it is usually called 
Tentamen (Attempt) after the first word in its very long 
title. The appendix itself also has a long title of which this 
is only the beginning: Appendix scientiam spatii absolute 
veram exhibens (Supplement containing the absolutely true 
science of space). It is usual to call it Science of space or 
simply Bolyai' s Appendix. 

Farkas Bolyai sent an advance copy of his son's ap
pendix to Gauss who wrote back that he could not praise 
the work of his old friend's son since that would be self
praise-because he had himself had the same thoughts 
many years ago. J<1nos Bolyai was of course furious, and 
he never wrote on the subject again. But his father did; 
in 1851 he published a book, Kurzes Grundriss eines Ver
suches . .. (A short sketch of an attempt . .. ) in which he 
believed he had proved the parallel postulate. He assumed 
the truth of the statement we have already mentioned that 
through three points not on a line passes a circle, which is 
in fact equivalent to the parallel axiom. Sad to say, he had 
not understood his son's discovery. 

Nikolai Ivanovich Lobachevsky spent most of his life 
in Kazan, 720 km directly east of Moscow, on the Volga. 
He grew up there; he was a student at the University of 
Kazan (which was founded in 1804 and was regarded as the 
easternmost university in the world); he became a professor 
at the same university; and finally for many years he was 
its vice-chancellor. 

One of Lobachevsky's teachers at the university had 
been J.M.C.Bartels (1769-1836, German), who much ear
lier had been Gauss's teacher in Brunswick. It seems that in 
1815-17 Lobachevsky was trying to prove the parallel ax
iom, but that between 1823 and 1825 he became convinced 
that such a proof was not possible. He gave his first lecture 
on his discoveries in 1826 and published his first treatise 

on them in 1829: 0 nachalah geometrii (On the principles 
of geometry), in the journal of the Kazan University. If 
Lobachevsky was not the first discoverer of non-Euclidean 
geometry, he was the first to publish on it, but in Russian, 
and at a place very far away from the mathematical centers 
of Europe. 

Over the years, and in between his many professional 
and administrative duties, Lobachevsky wrote many arti
cles and books on his imaginary geometry, as he called it. 
He wrote articles not only in Russian but also in French 
and German, without ever attracting the attention his ideas 
merited. Evidently, the mathematical world did not care 
much about what someone in Kazan might think. It would 
surely have been different if Gauss had published anything 
on the subject. However, Lobachevsky sent his book Ge
ometrische Untersuchungen zur Theorie der Parallellinien 
(Geometrical researches on the theory of parallel lines) 
from 1840 to Gauss who replied appreciatively and saw to 
it that Lobachevsky was elected a member of the Scientific 
Academy of GOttingen. 

Three men were in possession of an epoch-making 
discovery, but nobody really noticed or understood what 
had happened before an Italian in 1868 proved what these 
three had only conjectured: no contradiction would ever 
occur in this new non-Euclidean geometry (provided that 
no contradictions were hidden in the old Euclidean geom
etry, which was considered unthinkable). By then all three 
discoverers were dead. 

Beltrami, Riemann, Klein and Poincare 

Four mathematicians are especially important in the next 
period of the history of non-Euclidean geometry: 

Bernhard Riemann (1826-1866, German) 
Eugenio Beltrami (1835-1900, Italian) 
Felix Klein (1849-1925, German) 
Henri Poincar6 (1854-1912, French) 
In 1868 Eugenio Beltrami showed that in Euclidean 

space geometry one could build a model of the plane geom
etry of Gauss, Bolyai and Lobachevsky. In other words, in 
Euclidean space one can find a surface whose "intrinsic" 
or "inner" geometry is non-Euclidean. On, or rather in, this 
surface one can find curves which-taken as the lines of 
a plane geometry-satisfy all the Euclidean axioms except 
the parallel axiom, and instead of that its negation. If one 
accepts Euclidean geometry, in the sense that one takes for 
granted that no contradiction will ever appear in it, then 
the existence of such a model forces one to acknowledge 
that no contradiction will ever appear in non-Euclidean ge
ometry either (since the model is embedded in Euclidean 



space)-and one is therefore forced to accept also non
Euclidean geometry. 

Beltrami's proof of the existence of such a model 
was a decisive tum, for until then everybody had (if 
they had taken an interest in it at all) believed that ei
ther Euclidean geometry was true, or non-Euclidean. Since 
one was convinced of the truth of Euclidean geometry, 
one rejected non-Euclidean geometry. But Beltrami's work 
showed definitively that if Euclidean geometry was true 
then non-Euclidean geometry was also true. 

On the other hand Lobachevsky had known-and 
maybe a few people before him-that if one imagines a 
non-Euclidean space, then in it one can fmd a type of 
surface whose "intrinsic" geometry is Euclidean, so Eu
clidean and non-Euclidean geometry are equally true. With 
this the word 'truth' changes its meaning in mathematics. 
Until this moment mathematics and especially geometry 
had been considered as a system of true statements about 
the world around us, deduced from self-evident truths, but 
from now on one was forced to regard mathematics quite 
differently, namely as something one imagines. Also, Eu
clidean space was now no more real than non-Euclidean 
space--they were both something we (only) imagine--and 
with this mathematics became an independent science in a 
new and previously quite unknown way. It became a quite 
separate science, without counterparts, detached from the 
natural sciences, more closely related to branches of art 
such as music and the visual arts, or to a large system of 
games as for example chess and draughts. 

In 1854 Bernhard Riemann gave a lecture with the ti
tle Ober die Hypothesen, we/ehe der Geometrie zu Grunde 
/iegen (On the hypotheses whieh are fundamental to geom

etry); it was published in 1868 after his death. In this lec
ture Riemann showed something that now could be seen to 
match perfectly with Beltrami's result, namely that if the 
other axioms of Euclid are relaxed somewhat, then Sac
cheri's and Lambert's hypothesis of the obtuse angle no 
longer leads to a contradiction. In this way one then gets a 
third type of plane geometry, in which there are no parallel 
lines and where it is a theorem that the sum of the angles in 
a triangle is more than 180 degrees. The sum must also be 
less than 900 degrees since the sum of the angles in the rest 
of the plane--which is a triangle with the same vertices and 
the same sides!-must also be more than 180 degrees. (If 

the angles of the original triangle are u, v, w, then the an
gles of this complementary triangle are 3600 

- u, 3600 v, 
3600 

- w). A suitable model in Euclidean space geometry 
for this Riemannian non-Euclidean geometry is simply the 
"intrinsic" geometry of the surface of a Euclidean sphere 
in which the great circles are taken as lines. Of course 
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this geometry had been known since antiquity, but no one 
had seen it is this way before. In counterpoint to this, Bel
trami's Euclidean surface, whose "intrinsic" geometry was 
a model for the Lobachevskian non-Euclidean Geometry, 
became known as a pseudo-sphere. Its Gaussian curvature 
is -1 at every point just as the Gaussian curvature of the 
usual sphere (with radius 1) is 1 at every point. 

It should be mentioned that when Riemann gave his 
lecture Gauss was in the auditorium. More than that: the 
lecture was part of Riemann's doctoral work, and he had 
(as was customary) submitted three different subjects for 
his lecture; one of them was geometrical, and it was Gauss 
who had decided that this was the one he should speak 
about. 

So now one had three plane geometries, all equally 
true: the Lobachevskian, the Euclidean and the Riemannian 
or, as they are also called, the hyperbolic, the parabolic and 
the elliptic geometry. This new insight-and also the under
standing of its consequences for mathematics as a whole
spread rapidly in the mathematical world in the last quarter 
of the nineteenth century. It is significant that the English 
mathematician William Kingdom Clifford (184-1879) al
ready in 1872 called Lobachevsky the Copernicus of math
ematics, because he had opened a new world. Also it was 
very important that two of the leading mathematicians of 
the time, Felix Klein and Henri Poincare, were both in
tensely engaged in the non-Euclidean hyperbolic geometry, 
and in the uses it could-in many surprising ways-be put 
to in other parts of mathematics. They each constructed a 
plane Euclidean model (as opposed to Beltrami's model on 
a curved Euclidean surface) of the Lobachevskian geom
etry, Klein in 1871, and Poincar~ (even in two versions) 
in 1882. Klein's model and one of Poincar~'s models use 
the inner points of a Euclidean circular disk D as their 
non-Euclidean points. The other of Poincar~'s models uses 
the inner points of a Euclidean half-plane H. Klein's model 
uses the Euclidean chords of D as its non-Euclidean lines, 
while Poincar~'s models use respectively the Euclidean cir
cular arcs in D orthogonal to the boundary of D (includ
ing the diameters of D) and the Euclidean semicircles and 
half-lines in H orthogonal to the boundary of H. Of course 
distances are distorted in all three models; angles are also 
distorted in Klein's model but not in the two models of 
Poincar~. 

A similar change took place in other parts of math
ematics, which also contributed to this new understand
ing. In algebra the correspondence between complex num
bers and the points of the plane had been established in
dependently in 1797 by Caspar Wessel (1745-1818, Nor
wegian), in 1806 by lean-Robert Argand (possibly 1768
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1822, Swiss), and at some point in between (but not used 
explicitly in any of his publications before 1848) by Gauss. 
Already in 1797 Wessel had tried-in vain-to general
ize the complex numbers in such a way that a similar 
correspondence could be established between this gener
alization and the points in space, but his paper went un
noticed. In 1837 William Rowan Hamilton (1805-1865, 
Irish) expressed the same wish in the paper in which he 
had interpreted the complex numbers as pairs of real num
bers. His work only bore fruit when in 1843 he discovered 
that one should not generalize to triplets of real numbers 
but to quadruples, and so invented his quatemions. With 
this invention, he did for algebra what Gauss, Bolyai and 
Lobachevsky had done for geometry. 

If you ask somebody who is not a mathematician to 
give you an arithmetical fact you might get the answer 
that the order of the factors (in a product of two num
bers) is arbitrary. This is precisely not the case with the 
quatemions; their multiplication is not commutative. It is 
interesting that the two Bolyais, father and son, also tried 
their hand in this area-from their home town in Transyl
vania (then in Hungary, now in Romania) where Farkas 
Bolyai had lived most of his life and Jl1nos Bolyai in his 
youth and on and off since his retirement from the army in 
1833. In 1837 they both entered a prize contest set up by 
a scientific society in Leipzig to give a rigorous geometric 
construction of imaginary numbers. Farkas Bolyai's solu
tion was taken from his Tentamen. Jl1nos Bolyai's solution 
resembled Hamilton's solution which, as mentioned above, 
was published in the same year, but which only became 
widely known in connection with his paper on quatemions 
16 years later. Neither of the Bolyais won the prize; half of 
it was given to the third contestant, a Hungarian professor. 

In our time mathematics really only deals with itself; 
to a mathematician it is in a way strange (but of course 
also pleasant) that it can be used to describe phenomena 
outside mathematics. 

Non-Euclidean geometry and physics, 
philosophy and art 
It appears from the previous sections that around 1830
and effectively from around 187O-a decisive change took 
place in mathematicians' understanding of their own sci
ence. Geometry was no longer a part of physics. Of course, 
one could still use it for description of physical situations 
and phenomena, but now one could choose among different 
geometries. This choice is not made by the mathematician 
but by the physicist, and he should choose the geometry 
that gives him the best description, the one that fits his ex

periments or his theory best. He cannot choose the "true" 
geometry, for mathematically they are equally true. 

Over time mathematicians have given physicists many 
geometries to choose among. It may also happen that a 
new geometry is invented to fit the physicist's specifica
tions; this was the case with Einstein's theory of relativ
ity. Even so-called finite geometries have been invented. 
For instance, one can have a "plane" consisting of nine 
"points" distributed on twelve "lines" with three points on 
each. Even for such geometries there are eminently practi
cal applications. 

For a physicist or some other practitioner, geometry is 
therefore now a toolbox for descriptions, and maybe also a 
guideline for theories, while for a mathematician it is the 
study of all the many different geometries. They behave 
differently, and the behavior of a geometry depends on the 
choice of fundamental relations between points and lines 
and planes; here the mathematician chooses freely and in
dependently. For the mathematician, geometry is something 
quite different from the intuitive ideas one can have of the 
organization of physical space. These ideas can be used for 
inspiration, but geometries can be built in many ways and 
can be studied without any regard to physical ideas. 

Outside the worlds of mathematics and physics the 
new geometrical insight spread more slowly, and sometimes 
under protest. Many philosophers even raised very angry 
protests. One reason why Gauss never published anything 
on non-Euclidean geometry was probably that the German 
philosopher Immanuel Kant (1724-1804) in 1781 in his 
very famous and influential book Kritik der reinen Vemun/t 
(Critique of pure reason) had placed Euclidean geometry 
as an a priori form of comprehension. When Gauss talked 
of the BoIotians. he can very well have meant the numerous 
students and followers of Kant. 

Ever since the inception of non-Euclidean geometry 
there have been philosophers who could not come to terms 
with it. Let me mention just one curious example, Kristian 
Kroman (1846-1925, Danish) who was professor of philos
ophyat the University of Copenhagen for 38 years (1884
1922) and who lectured on pedagogy at my own institution 
until 1914. As late as 1920 he published a small book both 
in a Danish and in an English version in which he believed 
he had proved the parallel axiom and thereby refuted non
Euclidean geometry. What he did was just use the argument 
one can sometimes meet-as we have seen-in elementary 
school textbooks, of moving a small line segment along the 
sides and around the comers of a triangle. 

Many artists however seized the new mathematical 
ideas with great interest. Much of modem art-from cu
bism to the very newest-would be unthinkable without the 



original inspiration from non-Euclidean geometry, and also 
from the geometries of more than three dimensions-both 
Euclidean and non-Euclidean-which mathematicians be
gan to cultivate in the last years of the nineteenth century. 
In this connection one must paticularly mention the graph
ical artist M.e. Escher (1898-1972, Dutch); many of his 
striking pictures build directly on Poincart!'s circle model 
of hyperbolic geometry. 

Outside the circles of mathematicians, physicists, 
philosophers and artists, however, there are probably very 
few who are at all aware of the existence of non-Euclidean 
geometries. This is presumably also true for many math
ematics teachers, especially at the primary and lower sec
ondary level where most pupils get their one and lasting 
impression of geometry. 

Non-Euclidean geometry and the 
mathematics teacher 
Many mathematics teachers have not in their own educa
tion heard anything about non- Euclidean geometry. It may 
therefore come as something of a shock to them that geom
etry is really not a part of physics and fundamentally does 
not deal with our physical surroundings, and that geomet
rical theorems are not true in any straightforward physical 
sense. It may then be a consolation to know that this also 
surprised and annoyed many mathematicians when it all 
began to be known around 125 years ago, and that many 
of them became accustomed to these new ideas only with 
difficulty. 

But does it matter if a teacher does not know about 
non-Euclidean geometry, one could ask. Nobody would af
ter all expect him or her to teach it to children. The answer 
is that it does matter, profoundly. If a teacher knows that 
geometry is true on its own conditions and not as a sort 
of physics or a part of it, then this teacher will perhaps 
teach Euclidean geometry differently from how he or she 
would otherwise have done it. Moreover, knowledge of the 
existence of non-Euclidean geometry gives one a different 
view of what mathematics really is, and this may leave its 
mark everywhere on one's teaching of mathematics. 

Also, in many of the subjects in school-physics, 
chemistry, biology, literature, history-one tries to be up 
to date. One would like to give the pupils an impression of 
or a feeling for what goes on in these subjects in our own 
time. It is very difficult to do the same in mathematics, one 
of the reasons being that the mathematics that one teaches 
is not new. Quadratic equations were solved and parabolas 
were drawn already in antiquity; coordinate systems, which 
created a connection between equations and curves, were 
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invented around 1640; the first real textbooks of differen
tial and integral calculus were written around 1700. It is 
of course not quite true-but nearly-that in school one 
can only teach mathematics which is at least a couple of 
hundreds of years old. It would be desirable if mathematics 
were taught in a spirit that could tell the pupils something 
about what mathematics actually is in our time. This can 
only happen if teachers of mathematics are themselves ac
quainted with this spirit, and therefore they should know 
about non-Euclidean geometry. 

Another question is then: From where in their educa
tion or further education could teachers get such knowl
edge? Only seldomly will they have been offered a spe
cialized course in non-Euclidean geometry, or will have 
taken one if offered. The natural place might be as part of 
a course in geometry. One can hope that this will happen 
more often in the future than has been the case up to now. 
Another obvious possibility is in a course in the history 
of mathematics. Such a course would be very incomplete 
if non-Euclidean geometry were not mentioned. In many 
countries history of mathematics is becoming more promi
nent in the education and further education of teachers, 
and many textbooks in the history of mathematics contain 
a whole chapter on non-Euclidean geometry, or sections 
which taken together amount to a chapter. 

Finally, it could be asked which topics from non
Euclidean geometry one could include in school mathemat
ics, assuming one wants to do more than just mention that 
Euclidean geometry is not the only possibility-with all the 
consequences this has for what mathematics really is. Such 
a topic should of course be rather concrete and intuitive; a 
possible choice could be the area of triangles. In Euclidean 
geometry the sum of the angles of a triangle is of course 
180°, whatever the area of the triangle might be. It is not so 
difficult to show that in elliptic geometry-modelled by the 
intrinsic geometry of the surface of an Euclidean sphere
the excess of a triangle, that is the amount by which the 
sum of its angles exceeds 180°, is proportional to the area 
of the triangle (or equal to it if the area is measured in 
convenient units). It is a challenge to show that in hyper
bolic geometry-e.g., modelled by the Poincart! circle-the 
defect of a triangle, that is the amount by which the sum of 
its angles is less than 180° (is defective in comparison with 
180°!), is proportional to the area of the triangle (or equal 
to it if the area is measured in convenient units). Indeed, 
the climax of such an investigation might be to frod the 
area of a so-called limit triangle, that is a "triangle" with 
angle sum 0°, with its vertices infmitely far away and its 
sides parallel! In the Poincare model the vertices of such 
a "triangle" are on the Euclidean boundary circle and can 
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FIGURE 6 

be chosen 1200 from each other, and it is interesting to 
compare the non-Euclidean area of this "triangle" with its 
Euclidean area. 

Another topic which might be touched upon in school 
mathematics is the tesselations with regular polygons of 
the elliptic, Euclidean and hyperbolic planes, the frrst and 
the last of these again modelled on the surface of a Eu
clidean sphere and in the Poincare circle. In the elliptic 
case there are five such tesselations. corresponding to the 
five regular polyhedra (and also infinitely many tesselations 
with 2-gons!). In the Euclidean case there are three (trian
gular, square, and hexagonal). In the hyperbolic case there 
are (and this is the surprise) infinitely many, even infmitely 
many with triangles, infinitely many with 4-gons, infinitely 
many with 5-gons. infinitely many with 6-gons. infinitely 
many with 7-gons. etc. The variation in these beautiful pat
terns is endless and has also inspired artists; for example. 
see Escher's three "Angels and Devils", one elliptic (carved 
on a sphere). one Euclidean, and one hyperbolic (drawn in 
a Poincare circle). 
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Scientific Research and 
Teaching Problems in 
Beltrami's Letters to 
HoDel 

Livia Giacardi 
University of Turin, Italy 

A process of mathematical reasoning is like a se
ries of chords played on the lyre of the intellect, 

which is made up of the mathematical strings 
of human thought; and the discovery of a new 

branch of mathematics is comparable to the dis
covery of a new harmonic modulation. 

- Beltrami to Gustav Wolff 

"In the science of mathematics the triumph of new con

cepts can never invalidate previously acquired truths: it 
can only alter their place or their logical basis, and increase 

or reduce their value and use. Nor can profound criticism 
ever damage the solidity of the scientific edifice, but rather 
lead to the discovery and clearer recognition of its true 
foundations."l These are the words with which, in 1868, 
Eugenio Beltrami opened his Attempt at an interpretation 
of non-Euclidean geometry, which offers an interpretation 
of Lobachevskian planimetry by means of surfaces of con
stant negative curvature or pseudospherical surfaces, thus 

providing a real substratum for hyperbolic geometry. 
This was the period during which non-Euclidean ge

ometries were just beginning to be known in Europe. One 

of the most active propagators of the new geometries in 
France was Jules Houel, as can be seen both from his 
tireless work in translating, reviewing and commenting on 
books and articles, and from his extensive correspondence. 
In Italy a similar role was played by Giuseppe Battaglini,2 

who had transformed the Giornale di Matematiche, of 
which he was editor, into an effective organ for the spread 

of Lobachevsky's hyperbolic geometry. The attitude in both 
France and Italy was, however, characterized by mistrust 
and, at times, flat rejection of non-Euclidean geometries: 
Joseph Bertrand called them une d~bauche de logique,3 for 

Eugene Catalan the non-euclidiens were inoffensifs et peut
~tre tres utiles r~veurs4 and the Paris Academie des Sci

ences was inundated .with supposed proofs of the postulate 
of the parallels. Beltrami outlined the situation in Italy in 
a letter to Placido Tardy: "I do not know if you have given 

any attention to the system of ideas which is being publi
cized under the name of non-Euclidean geometry. I know 

that Prof. Chelini is definitely against it, and that Bellavi
tis calls it madhouse geometry, while Cremona thinks it is 
debatable and Battaglini accepts it without reserve".5 

I. Eugenio Beltrami's Attempt 
The 65 letters6 which Beltrami wrote to Jules Houel be

tween 1868 and 1881 are valuable both for the clarification 
of the main doubts and misunderstandings which domi

nated the attitude of the scientific world to non-Euclidean 
geometries, and especially for the reconstruction of the gen
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esis of Beltrami's research in this field. They also bring 

out lesser-known aspects of Beltrami, such as his interest 

in the problems of teaching mathematics and his material 
construction of the pseudospherical surface. 

The main sources of inspiration lying behind the At
tempt are to be found in Gauss's theory of surfaces as 
expounded in the General Investigations of Curved Sur

faces/ in Lobachevsky's work on non-Euclidean geometry 
and in some of the results obtained by Ferdinand Minding 
on surfaces of constant negative curvature in 1839-1840. 

Some of Beltrami's own research work must be added to 
these: he had been prompted by reading a paper by La

grange on geographical maps to try to discover whether 

there were surfaces which could be represented on a plane 
in such a way that their geodesic lines were represented 
by straight lines. In an 1865 paper,8 he shows that these 
surfaces must necessarily have constant curvature. 

The Attempt was not, however, in the least influ
enced by the innovative and fruitful ideas Riemann had 

expounded in his famous 1854 lecture On the hypotheses 

which lie at the foundations of geometry.9 although Rie
mann had spent two years in Pisa at the very time when 

Beltrami was teaching geodesy there. As he wrote to An
gelo Genocchi: "Last year, when no one knew about this 
fundamental work of Riemann's, I told our good friend Cre
mona of a paper of mine where I gave an interpretation of 

non-Euclidean plane geometry, which seemed satisfactory 
to me,"l0 and again, in a letter to Houel, he said: "What 

amazes me is that for all the times I talked with Riemann 
(during the two years he spent in Pisa, shortly before his 
sad end), he never mentioned these ideas to me, though 

they must have occupied him for quite a long time, for a 
fine draft cannot be the work of a single day, even for such 
a brilliant genius.',n 

Gauss's research on surfaces was basic for Beltrami: 
"The whole of my deductions," he wrote to Helmholtz, 
"rests on the representation of surfaces by Gauss's formula 

ds2 = E du2 + 2F du dv + G dv2 
• Now, in this method, 

the relationship between the surface and the surrounding 
space is entirely overlooked: the surface is considered in 
itself, as it would be by a being who did not have any 
sense of the third dimension.',12 Indeed, as is well known, 

in his Investigations Gauss regards a surface "not as the 
boundary of a solid, but as a solid with one vanishing di
mension, flexible but non-stretchable,"13 and he formulates 

the general theory of the intrinsic geometry of a surface. 

He introduces the curvilinear coordinates of the points of 
the surface and expresses as a function of these the square 

of an element of length of an arc of a curve on the sur

face: ds2 E du2 + 2F du dv + G dv2 (the so-called first 
fundamental form). 

The geometrical properties of a surface which are in
dependent of deformations caused by bending. i.e., which 
can be expressed by means of the functions E, F and G 
alone which appear in the expression of the linear element 
and of their derivatives, constitute the intrinsic geometry of 
the surface. Gauss particularly proves that the curvature of 
a surface is a property that belongs to intrinsic geometry 
(theorema egregium). Two surfaces such that the expres
sions of their linear elements can be transformed so as to be 
identical have the same intrinsic geometry and can be ap
plied to each other (locally only). This is one of the points 
which Houel did not grasp and which Beltrami explained 
to him again and again.14 It is also important that Beltrami 
stressed that Gauss's theory of surfaces does not depend on 
the postulate of the parallels: "It seems to me," he wrote 
to Houel, "that this theory has not generally found com
plete Wardigung (appreciation), so much so that no one 
has yet noticed this crucial fact, namely that it is wholly 
independent of the postulate of Euclid."15 

Gauss's studies were continued by Minding, who was 
particularly interested in surfaces of constant negative cur
vature and, in an article in 1839,16 found the three surfaces 
of revolution to which they can be applied, among them the 
surface generated by the revolution of the tractrix around 
its own asymptote, i.e., Beltrami's pseudosphere. In a later 
article (1840),17 Minding arrived at another interesting re
sult, though without perceiving its important implications. 
He observed that the trigonometric relations in geodesic 
triangles of a surface of constant negative curvature could 
be obtained from the corresponding formulas of spherical 
geometry on a sphere of radius R by multiplying R by 
A. While Minding failed to notice that these formulas 
agree with those for the hyperbolic plane, established by 
Lobachevsky in his Imaginary Geometry (1837), Beltrami 
was aware of this fact, which he developed in his Attempt. 

He starts from the following specific expression of 
the square of the linear element of a surface of constant 
negative curvature equal to -1/R2: 

ds2 R2 (a2 
- v2 )du2 + 2uvdudv + (a2 

- u2 )dv2 

(a2 - u2 v2 )2 , 
(1) 

where a2 is an arbitrary constant.18 

He chooses this particular expression because it has 
the advantage that every linear equation involving u and v 
represents a geodesic and vice versa. From the expressions 
which supply the sine and cosine of the angle of the two 
coordinate lines at the point (u, v) it can be seen that we 

2 + v2have admissible values of u and v for u :::; a2• Re
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garding the coordinates u and v as rectangular coordinates 
x and y of an auxiliary plane, Beltrami shows that the sur
face of constant negative curvature, or rather the totality of 
its real points, is represented biunivocally in the interior of 

2 + v2the circle u = a2 (limit circle). In this representation 
the geodesics of the surface are represented by the chords 
of the circle, and the limit circle corresponds to the line 
of the points at infinity of the surface. Furthermore, two 
points in the interior of the circle identify a unique chord, 
and hence any two real points of the surface identify a 
unique geodesic. 

It must be noted that the surface here appears only as a 
two-dimensional manifold and the formula of ds 2 gives the 
law for measuring the distance between two infinitely close 
points, independently of the existence of an isometrical em
bedding of this manifold in Euclidean three-dimensional 
space. 

Studying the relation between the angle of two 
geodesics and the angle of the chords representing them, 
Beltrami finds that: 

1. 	 Two chords, which intersect in the interior of the 
limit circle, correspond to two geodesics of the surface 
which intersect at a point at a finite distance, forming 
an angle different from 0° and from 180°; 

2. Two chords, which intersect on the circumference of 
the limit circle, correspond to two geodesics which 
intersect at a point at infinity, forming a zero angle; 

3. Two chords, which intersect outside the limit circle, or 
are parallel, correspond to two geodesics which have 
no point in common on the whole real extension of 
the surface. 
Beltrami calls point 2. geodesics parallel because they 

mark the passage from the ensemble of the secants to the 
non-secants. Thus, given a geodesic (represented by the 
chord AB, Fig. 1), from every real point on the surface, 
which does not belong to it, it is always possible to draw 

FIGURE 1 
The chords P A and P B represent the two geodesics parallel 
to the geodesic represented by the chord AB. 

two geodesics parallel to the given one (represented by P A 
and P B). Hence the fifth Euclidean postulate is not valid. 

Thus Beltrami shows that Lobachevsky's non

Euclidean plane geometry can be interpreted on surfaces 

of constant negative curvature, replacing the word "straight 

line" with "geodesic". The model described above provided 

the first proof of the consistency of Lobachevskian plane 

geometry, representing as it did the non-Euclidean plane in 

the Euclidean plane. This result also removed all doubt re

garding the impossibility of proving the axiom of parallels 

by deducing it from the others relating to the straight line 

and the plane. In fact the latter are verified on a surface 

of constant negative curvature, while the fifth postulate is 

not. If the axiom of parallels could be deduced logically 

from the other axioms, then it would also have to hold true 

in the model, which is not the case. 

Beltrami then goes on to develop certain problems re

garding geometry on a surface of constant negative cur

vature, showing that the results obtained coincide with 

Lobachevsky's and Bolyai's. As far as trigonometry is con

cerned, he refers his readers to the already mentioned paper 

by Minding and the subsequent developments of Delfino 

Codazzi,19 He himself simply obtains the theorem of the 

sum of the angles of a geodesic triangle and the relationship 

of this sum with the area of that triangle; he then finds the 

angle of parallelism which corresponds to a certain distance 

8, arriving at the same formulae as Lobachevsky. 

In the second part of the Attempt, Beltrami goes on 

to consider the geodesic circumferences with a real center, 

an ideal center and an infinite-distance center. Geodesic 

circles with a given center are orthogonal trajectories of the 

geodesics passing through a fixed real point. In the same 

way Beltrami is also led to consider orthogonal trajectories 

of a bundle of geodesics, which are represented in the limit 

circle by chords concurrent at a point outside the circle or 

on its circumference. If this point is outside, the orthogonal 

trajectories are called by Beltrami geodesic circumferences 

with an ideal center; if it is on the circumference they are 

called geodesic Circumferences with an infinite distance 

center. The latter, being the orthogonal trajectories of a 

system of parallel geodesics, correspond to Lobachevsky's 

horocycles (Fig. 2). 

For each of these three cases Beltrami considers a 

specific region of the pseudospherical surface which can 

be applied on a surface of revolution. In the third case, the 

surface of revolution is of the so-called parabolic type. If 
we take as coordinate lines a = k and p = m, a family 

of parallel geodesics and their orthogonal trajectories, the 
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geodesic circumferences with an ideal center 

geodesic circumferences with a real center 

geodesic circumferences with an infmite distance center 

FIGURE 2 

linear element [1] takes the fonn 

ds2 = dp2 +e-2p/ R da2, 

which is the linear element of the pseudosphere or tractroid, 
i.e., of that surface of revolution whose meridian curve is, 
as already stated, the tractrix.20 

FIGURE 3 

Plaster models of the pseudospherical surfaces of hyperbolic, 

elliptic and parabolic types, preserved at the Department of 

Mathematics, University of Turin. 


Since the geodesic circumferences with the center at 
an infinite distance correspond to Lobachevsky's horocy
des, it may be said that a system of concentric horocycles is 
transfonned, with a bending of the surface, into the system 
of parallels of the pseudosphere, and the parallel geodesics 
a = k then fonn the meridians. Beltrami says that the re
gion of the pseudospherical surface situated on a specific 
side with respect to the line p 0 (if the radius of the par
allel is chosen equal to R) is, in his own words, "wrapped 
around" the tractroid, or pseudosphere, an infinite number 
of times. 21 

It is necessary to point out that the pseudosphere does 
not represent the whole hyperbolic plane, but only a re
stricted region, namely a horocyclic sector. This limitation 
renders the pseudosphere utterly useless as a means for 
drawing significant hyperbolic figures. Every geodesic that 
is not merely a meridian winds itself round the hom as it 
proceeds in one direction, whereas in the opposite direction 
it is abruptly cut by the cuspidal edge. 

The first explicit criticisms of the interpretation of 
Lobachevskian plane geometry described in the Attempt 
came from Helmholtz and from Klein in the years 1870
1871, and were taken up again in more detail by Genocchi 
in 1877. They raised doubts as to the existence in Eu
clidean space of an infinitely extended pseudospherical sur
face: "But we cannot," wrote Helmholtz, "in our space, 
construct a pseudospherical surface which is indefinitely 
extended towards the axis of revolution: we always arrive 
either at a limit, as in the case of the champagne glass, or 
at two limits, as in the case of the ring.,,22 (See Fig. 3.) 
Similarly, Klein held that the interpretation of hyperbolic 
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geometry on surfaces of constant negative curvature can
not "provide understanding of the whole plane, since the 
surfaces of constant negative curvature are always limited 
by cuspidal edges."23 Genocchi especially thought that "it 
must be proved that the partial differential equation which 
expresses the surfaces of constant negative curvature ad
mits at least one integral which satisfies all the conditions 
required for a pseudosphere."24 

The emphasis here is on a problem which Beltrami 
had left open, but of which, as his correspondence suggests, 
he seems to have been aware: whether there is or is not, 
in Euclidean space, a surface which represents the whole 
two-dimensional manifold of constant negative curvature 
and whose geometry coincides with that of Lobachevsky's 
whole plane. For example he wrote to HOllel: "In my At
tempt I said that the pseudospherical surface, in so far as it 
is represented by the variables u, v, is indefinitely extended 
in every direction and simply connected (einfach zusam
menhangende, according to Gauss and Riemann), and this 
is perfectly true. However, since the general integral [so
lution] of this surface in ordinary coordinates x, y, z is not 
known (it is an integral which current calculus is a long 
way from being able to supply) and since, as a result, the 
more general form of this surface is not known, it cannot 
be proved, a priori, that it can exist in ordinary space in 
the double state of indefinitely extended and simply con
nected. ,,25 

This problem was solved in 1901 by Hilbert, who 
proved that there is no regular analytical surface in three
dimensional Euclidean space (i.e., no surface completely 
free of singularities) on which Lobachevsky's plane geom
etry is valid in its entirety.26 

Shortly after the publication of Beltrami's Attempt 
Klein established the connection between the projective 
metric introduced by Arthur Cayley27 and non-Euclidean 
geometry: he showed that if the Cayley absolute is a real 
non-degenerate conic then the part of the projective plane 
in its interior is isometric to the Lobachevskian plane. 28 
Beltrami's model in a circle, described above, is a special 
case of Klein's model when the conic is a circle. 

It is clear from his correspondence with Honel that, 
as early as the summer of 1869, Beltrami had had a sus
picion that there was a link between Cayley's research and 
his own, for he wrote: "The second of these conjectures29 

would be more important, if I were able to give it a concrete 
form. because it does not exist thus far in my head except 
as a very vague concept, though it is undoubtedly based on 
truth. It is the conjecture of a strict analogy, perhaps iden
tity. between pseudospherical geometry and Cayley's theory 
on the analytic origin of metrical relations, with the help 

of the conic (or quadric) absolute."3o However, Beltrami 
did not follow up this conjecture, an omission which cost 
him some regret when, in the summer of 1872, learning of 
Klein's result, he realized he had let the distinguished Ger
man steal his thunder: "I deeply regret," he wrote to Honel, 
"having allowed Klein to anticipate me on this point which 
I had already gathered material, but to which I made the 
mistake of not giving enough importance. Besides, this way 
of looking at matters is not entirely new, and this is exactly 
why I did not hasten to publish my observation. It is closely 
connected to an observation already made by Chasles re
garding the angle of two straight lines, considered as the 
logarithm of a cross ratio; it is also connected to a theorem 
of Laguerre Verlay.,,31 

2. The cardboard models of the 
pseudospherical surface 

In 1872 Beltrami devoted the brief paper, On the sUiface 
of revolution which serves as a model for pseudospher
ical surfaces, to the study of the pseudosphere. His aim 
here was, as he himself says, "to prepare the geometrical 
elements of a material construction, if possible simple and 
exact, of the surface itself."32 Beltrami had actually been 
interested in the material construction of the pseudospheri
cal surface since 1869, when he had written to HOllel: "The 
meantime I have had a wild idea, which I shall tell you 
about ... I wanted to try to construct materially the pseudo
spherical surface, on which the theorems of non-Euclidean 
geometry are realised ....,,33 In the same letter he gave 
a detailed description of two models of pseudospherical 
surfaces which he had produced by cutting out and then 
glueing together curvilinear paper trapezia: "if ... you con
sider," he wrote, "the surface lying between two meridians, 
close enough together to allow it to be replaced, over a cer
tain length, by a plane, you can, with little bits of paper 
cut into appropriate shapes reproduce the curved trapezia 
whose true surface can be supposed to be compounded." 

We know that Beltrami made at least four cardboard 
models, one of which is still preserved in the Department of 
Mathematics of the University of Pavia. This is the one34 he 
sent as a gift to his friend Luigi Cremona on 25 April 1869, 
with a covering letter which hints, among other things, at 
the possibility of an industrial production of the model, 
the idea which prompted Beltrami to write the already
mentioned paper of 1872. 

The model (Fig. 4a) consists of curvilinear trapezia 
made of thick paper, cut out and glued together as required, 
each of them approximating a portion of a pseudospheri
cal surface lying between two meridians and two parallels. 

http:entirety.26


218 Using History to Teach Mathematics: An International Perspective 

(a) Beltrami's cardboard model, preserved at the Department of 
Mathematics, University of Pavia. 

(b) The model folded according to the pseudospherical surface 
of the hyperbolic type. 

Since overall the model approximates a geodesic circle, it 
can be described by means of the auxiliary plane, where 
it is represented by the circle of diameter AB, while the 
circle of diameter ab represents the limit circle (Fig. 5). In 
this figure the lines which correspond to those drawn by 
Beltrami on his model are identified by a heavier stroke. 
They are: 
• 	 the diameter AB, 1.029 metres long, 
• 	 the geodesic segment OC perpendicular to the diameter 

AB at its midpoint, 

• 	 the geodesic OM, symmetrical to ON with respect to 
OC (OM and ON are two geodesics parallel to AB), 

• 	 the horocycle arcs E F and E'F', tangent to each other 
and having their center at infinity, at a and b respectively 
and the geodesic H K, perpendicular to AB and tangent 
to both the horocycles E F and E'F'. 
The model can be folded (Fig. 4b) according to the pseu

dospherical surface of the hyperbolic type, referred to in the 
Attempt with the equation 

ds2 = de + cosh2 i dr/
R 

or according to the parabolic type (Fig. 4c) or simply the 
pseudosphere, whose linear element, as we have seen, is 

FIGURE 4 
(c) The model folded according to the pseudosphericaI surface 

of the parabolic type. 

These three photographs are reproduced here by kind 

permission of Professor Mario Ferrari. 


given by the formula 

ds2 dp2 + e-2p/ R da2, 

whereas it is not possible to fold the model according to 
the pseudospherical surface of the elliptical type defined 

nsb 

a'I----'l>E'-l---.:q.{· 

FIGURE 5 

Representation of the model on the auxiliary plane. 
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by 

ds2 dp2 + (Rsinh ~) 2 di.p2 

without making a cut. 35 
Beltrami was almost afraid that his interest in the mate

rial construction of the pseudosphere might be regarded as 
an eccentricity, and never missed an opportunity to insist, 
in his letters. on the importance of these material construc
tions, both as a tool for checking the results obtained and 
as a means of discovering new properties or theorems. One 
new and elegant result which he obtained is this: "Draw 
a straight line AB and at each of its points JIl[ draw the 
straight line MT which marks the direction of the parallel 
to AE relative to the distance AM. following Lobachevsky. 
The envelope of these straight lines is the meridian of the 
pseudospherical surface. It follows that the distance M N 
to the point of contact is constant.,,36 

)(~ 
.rv-r.i"" 

L? ~ 
FIGURE 6 
Drawing relating to the 'Theorem of pseudospherical 
geometry" in Beltrami's letter to HODel, 13 March 1869. 

3. Beltrami and the teaching of elementary 
geometry 

A particularly interesting, but less well known, aspect of 
Beltrami which emerges from his correspondence with 
Holle! is the attention he gave to the problems of teaching 
at both secondary school and university level. He deeply 
regretted the attitude of teachers in Italy at that time, reluc
tant as they were to open their minds: "The number of sec
ondary school teachers who concern themselves with their 
own discipline is very small here: and even those who take 
an interest do not have that feeling of didactic and scientific 
solidarity which there is in Germany and which wins atten
tive readers for any fairly serious article. "37 This interest 
not only led him often to join examining boards or commit
tees for school inspection, but also to collaborate with the 
Ministry of Education in 1884 in the modification of the 
secondary-school mathematics syllabus38 and to become a 
member of the Higher Council for Public Education. 

In addition, though indirectly, he took part in the heated 
debate over the problem of the teaching of elementary ge
ometry provoked by the Act of Parliament issued by the 
Minister Michele Coppino on 10 October 1867. This Act, 
which introduced Euclid's Elements as a textbook in clas
sical secondary schools, was really the brainchild of Luigi 
Cremona, who was at that time a member of a special 
committee whose task was to formulate new syllabi. 

Cremona was convinced that the study of mathematics 
ought to be "a means of general culture, gymnastics for the 
mind designed to develop the faculty of reasoning and to 
assist that just and healthy criterion in the light of which 
we distinguish what is true from what only appears to be 
SO,,,39 and he was also convinced that no text was bet
ter suited than the Elements to lead to the achievement of 
this aim. It was also at Cremona's prompting that in 1867, 
in Florence, the famous text was issued, known simply as 
Betti-Brioschi (the names of its authors), which offered a 
new translation of Euclid's Elements with notes and addi
tions for secondary schools.4o 

Hollel also took part in the debate caused by the publi
cation in the Giornale di Matematiche of the Italian trans
lation of 1.M. Wilson's paper, Euclid as a textbook of el
ementary geometry, published in the Educational Times in 
1868.41 Wilson pointed out the deficiencies of the Elements 
in both scientific and didactic terms, concluding perempto
rily that "Euclid is antiquated, artificial, unscientific and ill
adapted for a textbook.,,42 Understandably, Cremona and 
Brioschi reacted rather violently to this article, writing a 
joint letter43 to the editor, Giuseppe Battaglini, which ap
peared in the next issue of the Giornale. In their letter they 
tried to confute Wilson's criticisms, but they were not really 
convincing; in fact they concluded their article by admit
ting the defects of Euclid's Elements and by saying that 
they should be revised, but not distorted. 

But Hollel himself, who had been concerned with this 
subject for some time44 and who was both a friend and a 
collaborator of Battaglini's, considered it his duty to inter
vene in defense of Euclid, and sent a letter to the Gior
nale in which he stated: "I could say a great deal about 
the proofs Mr. Wilson gives that Euclid is antiquato, arti
jizioso, illogico(!!!) e inadatto come libro d'istituzione. An
tiquato, he may be: I have said so myself on occasion. Ar
tijizioso, no more so than three-quarters of modern works. 
But illogico, I deny it, and I believe he seems so only to 
those who have not completely understood him .... As to 
being inadatto come libro d'istituzione, yes and no" and 
he goes on to say that the Elements is unsuitable as a text
book "if you follow the English system of making students 
learn Euclid by heart without explanations."45 
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In the course of his correspondence with Houel, Bel
trami often mentions this debate, and his own opinion is 
clear from the following passage: "In mathematics. on the 
current question, that is to say the usefulness of the Eu
clidean method (recommended for some years), opinion is 
divided. Some teachers are comfortable with it, and think 
it good and useful; others prefer prior methods, which can 
be summed up definitively in the Geometry of Legendre. I 
thought, however, that I could note that these last belonged 
to the class of followers of routine, that is to say those who 
ask nothing better than to reduce teaching to a stereotype. 
Besides, there has been the usual phenomenon of elemen
tary papers written by people who really need to study the 

classic papers, and whom I have often wanted to remind 
of our Giusti's extraordinary epigram: 

"Write a book? don't trouble to do it 
If your readers will learn nothing through it."46 

Note 

For a history of non-Euclidean geometry, see, for exam
ple, H.S.M. Coxeter, Non-Euclidean geometry, The Math
ematical Association of America, 1998 (1st ed., University 
of Toronto Press, 1942) and B.A. Rosenfeld, A history of 
non-Euclidean geometry: Evolution of the concept ofa ge
ometric space, Springer-Verlag, Heidelberg 1988 (Original 
Russian ed. 1976). 

Further details of the pseudosphere can be found in F. 
Schilling, Die Pseudosphare und die nicht-Euclidische Ge
ometrie. Teubner, Leipzig 1931. 
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Napoli," Giornale di Matematiche, 7 (1869), 51-54. Part of this 
letter was translated by Houel into French, and published in the 
Nouvelles Annales de MatMmatique, (2) 7 (1869), 278-283, un
der the title L'enseignement de la geo~trie ~lementaire en [taUe. 

44 Cf. J. Houel, "Essai d'une exposition rationelle des principes 
fondamentaux de la geometrie el~mentaire," Archiv der Mathe
matik und Physik 40 (1863), 171-211 e Essai sur les principes 
fondamentaux de la geom~trie el~mentaire ou Commentaire sur 
les XXXII premieres propositions des Eltments d'Euclide, 1867, 
Paris Gauthier-Villars, second ed.1883. 

45 "1'aurais beaucoup de choses l'I relever dans les preuves que 
donne M. Wilson de ce qu'Euclide est antiquato, artifizioso, i/
logico (II!) e inadatto come libro d'istituzione. Antiquato, soit: 
je l'ait dit moi-meme l'I I'occasion. Artifizioso, pas plus que les 
trois quarts des ouvrages modernes. Mais ilIogico, je Ie nie, et 
je pretends qu'i\ ne Ie parait qu'l'I ceux qui ne \'ont pas compris 
entierement ... Quant l'I etre inadatto come libro d' istituzione, oui 
et non" and he goes on to say that the Elements is unsuitable as a 
textbook "si I'on suit Ie systeme anglais consistant l'I faire appren
dre Euctide par coeur sans l'expliquer," 1. Houel, "Estratto di una 
lettera del Prof. Houel al redattore," Giornale di Matematiche, 7 
(1869),50; cf. also Houe!'s letter to Cremona, Bordeaux 3 Febru
ary 1869. in L.Giacardi, "La corrispondenza fra Jules Houel e 
Luigi Cremona (1867-1878)," Quaderni della Rivista di Storia 
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della Scienza. n.l (1992), 77-94, see pp. 81-84 and Battaglini's 
letter to Houel, Naples, 2 February 1869, in Calleri, Giacardi, "Le 
lenere di Giuseppe Battaglini ... ," quoted in note 2. 

46 "En fait de mathematiques, sur la question a I'ordre du 
jour, c'est-a-dire sur I'utilitt de la mtthode euc\idienne (prescrite 
depuis quelques annres), les avis sont partagts. Quelques pro
fesseurs s'en trouvent bien, et la croient bonne et utile; d'autres lui 
prel'erent les rntthodes anttrieures, qui se resument en dtfinitive 
dans la Gtomttrie de Legendre. J'ai cru cependant pouvoir re
marquer que ces derniers appartiennent a la c\asse des routiniers, 
c'est-a-dire de ceux qui ne demandent mieux que de sttrootyper 
I'enseignement. II y a eu du reste Ie phenomene ordinaire des 
traitts tltmentaires compilts par des gens qui auraient bien 00
soin d'ttudier les traitts c\assiques, et auxquels j'ai eu souvent 
envie de rappeler Ie formidable epigrarnme de notre Giusti: 

II fare un libro e meno che niente 
se il libro fatto non ritala gente," 

letter from Beltrami to Houel, Bologna, 12 June 1870. I am grate
ful to RA. Henderson for this translation of Giusti's rhyme. 
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Abstract. The figure of De Morgan as an old man in the last 
year of his life is evoked by means of a dramatic monologue 
constructed in the style of De Morgan's trenchant writings and 
colourful personality, incorporating extracts and paraphrases from 
his work in mathematics and education. 

Our aim is to explore the possibilities of this dramatic form 
for presenting a vivid human perspective on mathematics as a 
living, growing subject By sharing the vision of a great mathe
matician and educator, and his view of the achievements of his 
contemporaries, we attempt to capture the mood of that moment in 
mathematics in Britain-the excitement, the preoccupations, and 
the sense of intellectual community across national boundaries 
and personal rivalries. 

Some themes of the presentation are: the influence of nation
alism, elitism, sectarian prejudice, and the powerful institutions 
of the time, on the development of mathematics; the profound 
effects of the full acceptance of negative and complex numbers; 
the dawning vision of the nature and reach of abstract algebra; 
the late discovery of mathematical logic and its relation to mathe
matics; the role of the imagination in mathematical creativity; the 
joyful exuberance of the mathematical community living in the 
springtime of a liberated, truly 'pure' mathematics. 

Introduction 

If we describe an item of news as 'hot off the press', or an 
act of communication as issuing 'from the horse's mouth', 
we mean to imply immediacy, relevance, veracity and au
thenticity. Similarly, in the phrases 'first-hand information', 
'eyewitness account', 'inside knowledge', a sense of value 
is conveyed; this thing is living truth-it is worth one's 
serious attention. In this article we exploit a time-honoured 
principle to serve the cause of mathematics education: we 
listen to an eyewitness account from a mathematical in
sider; we present a report from the man-on-the-spot. Au
gustus De Morgan was not only a great mathematician; he 
had a heart for communicating the excitement and fascina
tion of mathematics, and he held strong views on education 
at all levels. It is unfortunately impossible to travel back in 
time and record an interview with him, but we can attempt 
to reconstruct what he might have said----and (much more) 
how he might have said it. For we are always being told by 
psychologists that tone of voice and body-language make 
up the greater part of any act of human communication, 
and maybe we have lost more than we realize in attempt
ing to exempt mathematics from such subjectivity. While 
there may well be much to be gained from a sympathetic 
and imaginative reading of the text, this play is written pri
marily to be played before an audience, with appropriate 
passion, pathos and humour. Some suggestions for staging 
follow. 

There is no need to commit the entire text to memory, 
as you can easily deceive an audience into believing you 
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have memorized the lines by judicious use of a glass of 
water, a pipe or a cup of tea, and other objects apparently 
engaging your attention on the table in front of you. Some 
physical action will enhance the dramatic eff~t. For ex
ample, De Morgan may come in and sit down at the start, 
and make an exit during his last lines. He may walk across 
to bookshelves, or mantelpiece, at appropriate moments. It 
is not necessary to have great acting talent or experience. 
A few simple props can be very effective: a stick, a few 
photographs (of Trinity College, or people being discussed) 
on the wall or on the desk, and some books (his own, and 
those of George Boole). 

We may distinguish three main motives in eavesdrop
ping thus on the supposed reminiscences of Augustus De 
Morgan: 
• 	 to learn about De Morgan himself, and the community 

of contemporary mathematicians; 
• 	 to share De Morgan's perceptions about mathematics at 

that particular juncture (1870) in its development; 
• 	 to experience something of the communal adventure of 

mathematics-making, and so gain an insight into the na
ture of mathematics as an ongoing human enterprise. 

All three of these represent realistic goals, in my opin
ion, even for a more general audience without knowledge 
of some of the technical terms used. If the piece is to be 
used to provide context and motivation for mathematics 
students, it is perhaps better presented when the students 
have already encountered some of the ideas and names. 
Areas of mathematics which are touched on here include: 
mathematical logic, Boolean algebra, negative and complex 
numbers, quaternions, abstract algebra, vector analysis, di
vergent series, and the theory of invariants. More general 
themes which occur include: the birth of pure mathemat
ics (or the self-realization of mathematics), the relationship 
between mathematics and logic, the power of symbolism, 
and the nature of mathematical creativity. 

This short play is offered here not only to be used in 
classes, but also to encourage others to explore the use of 
theatre in bringing new life to mathematics teaching. We 
close this introduction with a suggestion and some ques
tions. 

Consider assigning students projects of the following 
form: 

Project. Write a monologue (it could take the form of a 
letter to a friend/student/parent/colleague) as from a cer
tain mathematician in a certain year, expressing hislher 
viewpoint on where mathematics is going, what's been ex
citing in the recent past, what he/she is proud of, what 
he/she hopes to achieve, whom he/she is in touch with, 

what he/she has read. Alternatively, write (and enact) an 
imaginary interview with the mathematician. 

Questions. How effective are such "windows on the 
world of mathematics" (either as student projects or as 
ready-made material for reading and enacting in class) in 
communicating the spirit of mathematics-making, and en
livening the teaching of mathematics and its history? How 
can these best be used at various levels of mathematics ed
ucation? How can the window be rendered as clean and 
transparent as possible (for example, by up-dating archaic 
language) without compromising the authenticity of the 
view? 

The Play 

Scene: Augustus de Morgan,I in 1870, during the last 
year of his life, aged 65, musing in his study. 

I think the most striking change in mathematics over my 
lifetime has been the joyous assertion of logical freedom! 
Our laws-whether of number, algebra or even geometry
are not absolute, not logically necessary after all. There are 
new geometries, new algebras, to explore--new entities, 
such as Sir William Hamilton's quaternions and Professor 
Arthur Cayley's matrices, obeying quite remarkable laws. 
And the way to all this was opened, I think, by the gradual 
acceptance of the negative numbers, closely followed by 
the imaginary numbers, as mathematicians began to realize 
the relative meaning of the terms "possible" and "impossi
ble" or, indeed, the terms "real" and "imaginary"! It is hu
man tradition, drawing upon the resources of human imag
ination, which sets the limits on the field of operation-
which erects the fences and draws the horizons. We must, 
of course, ensure that any proposed law is logically per
missible--that is, consistent with its fellows. Our structures 
are otherwise agreeably arbitrary, free creations of the hu
man spirit, regulated by considerations of convenience and 
expediency (such as the principle of permanence), or by 
considerations of elegance or the desired applicability of 
the resulting theory. 

This quality of freedom would have shocked the math
ematicians of the last century. But they were nevertheless 
unconsciously preparing the way, as tIley were won over 
by the negative numbers and the imaginary numbers, and 
swept along by the exhilarating currents of symbolic alge
bra and analysis. 

You know, I think the new vision of a pure, free math
ematics really dawned on us in the year- 1847 it was
when I published my Formal Logic, and my friend George 



Boole2 published his wonderful little book on The Math
ematical Analysis of Logic. I remember both books were 
published on the very same day! I recognized the prophetic 
voice at once. He was just a common boy from Lincoln, 
who was forced to leave school before he was sixteen, and 
taught himself Greek, Latin and mathematics. He became 
a school teacher to support his parents, brothers and sis
ter, and eventually opened his own school. He first made a 
name for himself when his essay won the Royal Society's 
gold medal; he crowned his career by becoming a professor 
of mathematics at Queen's College in Cork, Ireland, and 
having a fine mathematical theory named after him! That's 
an honour few of us can hope for-I would be proud to 
have one law named for De Morgan!3 

It all started when he got himself heavily involved in 
a controversy some of us were having over the nature 
of logic. Sir William Hamilton (not Sir William Rowan 
Hamilton, the Irish one;-the Scottish one this time: he 
was a baronet and a philosopher}-he claimed that logic 
was the business of philosophers. [chuckles] Well, Boole 
and I showed that it was our business-not only can logic 
be used to increase the power of mathematical language in 
striking ways, but it can be treated as a branch of mathe
matics. We call it Mathematical Logic now, and the Algebra 
that Boole invented to be a kind of Calculus of Logic we 
now call Boolean Algebra! Some laws in this Algebra look 
very surprising at first; maybe that's why it took so long in 
coming! For example: [writes] x+x = x and x·x x for 
any x; what's more, it has no negatives. Boole thoroughly 
developed his Algebra in his next book, An Investigation 
of the Laws of Thought,4 published seven years later, and 
no one will ever again be able to define mathematics as 
the science of number and magnitude!5 Benjamin Pierce, 
the American mathematician and philosopher, recently de
fined mathematics as the science which draws necessary 
conclusions. And Hermann Grassmann, the German math
ematician, calls it the science offor1Jls. It's the science of 
formal systems of rules operating with symbols ... it can 
be about anything, or nothing, like music-and it's just as 
beautiful! 

Mathematics and logic-these two have had a curious 
relationship! In spite of being bound together forever by 
Boole's revolution, hardly anyone besides Jevons and my
self can claim to have worked in both disciplines; the math
ematicians and logicians live in two camps aloof from each 
other. The mathematicians care no more for logic than logi
cians for mathematics. Here's the irony of it: the two eyes 
of exact science are mathematics and logic. Boole's genius 
taught us to see with both of them; but the mathematical 
sect puts out the logical eye, and the logical sect puts out 
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the mathematical eye, each believing that it sees better with 
one eye than two! No one knows better than I how great is 
their loss; not only do I have one foot in each camp, but I 
am blind in one eye!6 

Boole died a few years ago; he would have been de
lighted with some recent events. It seems the Germans 
have finally discovered our Peacock, a decade after his 
death, and the Irish Hamilton too. What a transformation 
has taken place since our Cambridge Analytical Society 
set out bravely to rescue British mathematics from the dol
drums! Here we are, leading the world in algebra half a 
century later! I suppose old Peacock should be given the 
credit for getting the thing started-and Herschel and Bab
bage too; and then there was Robert Murphy, and Gregory, 
and of course Boole and myself. 

And, I must say, the new generation promises to out
shine us; the line of great British algebraists continues with 
Cayley, the brilliant young Clifford, Jevons, and of course 
Sylvester (my students, the last two). I can't resist men
tioning the part myoId College at Cambridge has played: 
the illustrious line of Trinity men includes Peacock, Cayley 
and Clifford. Sylvester was a St. John's man--but do you 
know that the University would not give Sylvester a degree, 
on the grounds that he was Jewish? Nor could he teach at 
Cambridge ... that sort of thing makes my blood boil. I 
have refused all these years to allow my name to be posted 
for fellowship in the Royal Society. for similar reasons. Fel
lows are supposed to be nominated on merit, but the process 
is too much open to social influences! At least they rec
ognized Sylvester's genius-when he was only twenty-five 
they elected him a fellow. 

I had Sylvester join me at University College for a few 
years; then we lost him briefly to America, where (they 
say) a man is accepted for himself. But-poor Sylvester, 
[chuckles] he seems to be ever at war with the world 
(those were his own words!)-he was not very happy over 
there for some reason, and felt obliged to come back to 
England, in, let me see-1843, I think it was. He then 
spent many years (like Cayley) in the wilderness of actu
arial work and law. No one would have guessed that these 
two were really great mathematicians in exile, strolling 
through the Courts of Lincoln's Inn deep in mathemati
cal conversation-together creating the beautiful theory of 
invariants! At last he became a professor of mathematics 
again, in a military academy-a post quite unworthy of 
him-and he was forcibly retired last year. 

[sighs deeply] Ah-when will the great Universities of 
England honour such a man for his mathematical gifts, dis
regarding his birth and creed, and age?7 My own convic
tions have seriously affected my mathematical profession 
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twice-at the beginning and at the end of my career. After 
thirty years' service as the first Professor of Mathematics at 
University College, I felt constrained to resign. The coun
cil refused to appoint a good man to the chair of logic and 
philosophy on sectarian grounds. As I wrote in my letter to 
the chairman of council: "It is not necessary for me to settle 
when I shall leave the college; for the college has left me." 
And long ago, I found myself, like Sylvester, ineligible for 
a fellowship at my own University of Cambridge, because I 
could not in all conscience sign certain theological articles 
considered necessary to proceed to the Master's Degree. I 
described myself as "Christian unattached." God knows I 
have striven to be true to the light I have been given! At 
the end of my life, I can look back and affirm that I would 
do the same again .... Lest anyone misunderstand my mo
tives and I cause such a one to stumble, I have caused to 
be written in my will this article of faith: "I commend my 
future with hope and confidence to Almighty God; to God 
the Father of our Lord Jesus Christ, whom I believe in my 
heart to be Son of God but whom I have not confessed with 
my lips, because in my time such confession has always 
been the way up in the world." [chuckles] That will set a 
gaggle of tongues wagging!8 

Well, now, where was I? Ah, yes-those Germans! We 
may still be in front, but they have been running hard to 
catch up, and they've done some remarkable work. It seems 
that this Hermann Grassmann9 has proposed an abstract 
science of directed quantities in many dimensions. And 
Hankel has vindicated my suspicion that the "double alge
bra" of imaginary numbers constitutes the ultimate algebra 
in which the laws of arithmetic are preserved intact. No 
more general "arithmetical" algebra is possible! Peacock 
would like that! And my self-esteem is somewhat restored; 
it was not so very long ago that 1 refused to believe in 
triple or quadruple algebras of any kind. That was before 
Boole and Hamilton-and now there are Grassmann's al
gebras with exotic laws similar to Hamilton's quaternions 
and Cayley's matrices. Multiplication depends on order; 
x . y may not be equal to y . x. Ah! The mathematical 
menagerie has an inexhaustible store of surprises! 

It is truly astounding, when one comes to reflect upon it, 
how great a degree of unanimity we mathematicians have 
achieved over previously contentious issues. Not that we 
don't still have our petty differences, but I believe it would 
have been generally admitted, by about the middle of this 
century, that the only subject yet remaining (of an elemen
tary character), on which a serious schism existed among 
mathematicians, as to the absolute correctness or incorrect
ness of results, was the question of divergent series. lO And 
even those monstrous creatures are rapidly becoming do

mesticated and their somewhat embarrassing uses regarded 
as legitimate. 

What I said back in the forties about the way we should 
react to anomalies and embarrassments has been proved 
true in striking ways. The history of algebra shows us that 
nothing is more unsound than the rejection of any method 
which naturally arises, merely because of one or more ap
parently valid cases in which such a method leads to erro
neous results. Such cases should indeed teach caution, but 
not rejection. For if the latter had been preferred to the for
mer, negative quantities, and still more, their square roots, 
would have been an effectual bar to the progress of alge
bra. And think of those immense fields over which even 
the rejecters of divergent series now roam without fear! 
Those fields would not even have been discovered, much 
less cultivated and settled. 11 

How singular, in retrospect, that the burning issue of the 
reality of negative numbers should have appeared a logical 
one, and turned out in the end as a victory, not for logic, 
but for the imagination! Babbage12 saw it earlier than most 
of us in England, I think; and poor Peacock fought for the 
logical status of his Principle of Permanence, only to see 
it become a handmaid to the imagination! The realization 
has dawned slowly, but is now clear to all of us; the mov
ing power of mathematical invention is not reasoning but 
imagination! 13 

The great difficulty of the opponents of algebra-the 
so-called "pure arithmeticians"-lay in a lack of ability or 
will to accept extension of terms. They refused to admit 
any use of symbols which outstrips the limits of absolute 
number. They would forbid all extension of language,14 

and so cut themselves off from one of the great creative 
forces of the imagination, which is operative in all poetry 
and great literature: to allow the words, the symbols, to 
carry one beyond oneself! 

Perhaps this sect is extinct now. During the last century, 
its chief writers were Robert Simson, Francis Maseres and 
William Frend. So far as these opponents [of negative num
bers and symbolic algebra] set out their objections, it can 
be seen that there is much force in them against the mode 
of elementary writing then in vogue. I was casually brought 
into contact with Mr Frend15-he later became my father
in-law, of course-but this first contact was in early life at 
Cambridge, at a time when I was engaged in examination 
of the first principles of everything mathematicaL Having 
had many discussions with him, and been led thereby to 
an attentive examination of Maseres, Simson, and others, I 
long ago came to the conclusion that there is a very strong 
bias in the minds of such people, who are thus irresistibly 
led to a sweeping condemnation of almost everyone else, 
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on matters of subjective nature. The bias is a craving for 
simplicity-a craving that will, in the end, find a way of 
rejecting whatever cannot be immediately reduced to ear
liest axioms. A very unfortunate state of mind ... But I 
suspect that even those opponents played a useful part in 
the strange story of algebra-by goading others to defend 
and analyse their own principles. 16 

A strange story indeed!-where will algebra go in the 
future, I wonder? How will students of the twentieth cen
tury be taught these ideas that have been forged in such 
creative fires of the human imagination? Will they sim
ply take them for granted, unquestioning, unmoved by the 
triumphs of previous generations of mathematicians? 

[EXIT with aid o/walking stick] 

Endnotes 
1 De Morgan was active until the autumn of 1870, although in 
poor health, and he died on 18 March, 1871. More about the 
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necessary [Le., a logically necessary consequence of axioms], and 
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eth century definitions of "mathematics" illustrate: 
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6 Augustus De Morgan, "Review of a book on Geometry," The 
Athenaeum (1868), Vol.2, pp. 71-73. Boole and De Morgan de
rived mutual stimulus from each other, mutually acknowledged. 
De Morgan ascribed to "Dr. Boole's genius" the "most striking 
results ... in increasing the power of mathematical language," 
and the binding together of the "two great branches of exact sci
ence, Mathematics and Logic." Sophia De Morgan, Memoir, as 
in ref. I, p.167. As to whether the mathematicians and logicians 
remain aloof from each other in the late twentieth century, here 
is an extract from the Preface to a popular text written, not only 
for intending logicians, but for mathematicians in general: "Every 
mathematician must know the conversation-stopping nature of the 
reply he gives to an enquiry by a non-mathematician about the 
nature of his business. For a logician in the company of mathe
maticians to admit his calling is to invite similarly blank looks, 
admissions of ignorance, and a change in the topic of conversa
tion. The rift between mathematicians and the public is a difficulty 
which will always exist (though no opportunity should be missed 
of narrowing it), but the rift between logicians and other mathe
maticians is, in my view, unnecessary." A. G. Hamilton, Logicfor 
Mathematicians (Cambridge: Cambridge University Press, 1978; 
revised 1988). 

7 James Joseph Sylvester (1814-1897) was given his degrees at 
last, honoris causa, when the offending prescription was revoked 
in 1871. As if to recompense this colourful mathematician for his 
protracted struggle, he came into his own in later life. He returned 
to America, where he took up a post at Johns Hopkins University 
(1876-1884), played a major role in initiating pure mathematical 
research in the United States, and founded the American Jour
nal of Mathematics. See Karen H. Parshall & David E. Rowe, 
The Emergence of the American Mathematical Research Com
munity 1876-1900, (Providence, RI: American Mathematical So
ciety, London: London Mathematical Society, 1994). He finally 
became Savilian Professor of Mathematics at Oxford University 
in the mid 1880's, holding the post until his death. For a fas
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mann's novel ideas did not become widely known until some time 
after he published them in revised and simplified form in 1862. 
However, some historians believe that he was simply ahead of his 
time. 

10 The paragraph up to this point is based upon Augustus de 
Morgan, Trans. Camb. Phil. Soc. 8, Part II (1844), pp. 182-203; 
pub. 1849. 

11 This paragraph is taken largely from Augustus De Morgan, 
The Differential and Integral Calculus (London: Society for the 
Diffusion of Useful Knowledge, 1842), p. 566. 

12 Charles Babbage, "On the influence of signs in Mathematical 
reasoning." (Proc. Camb Phil. Soc., c. 1827). Babbage's espousal 
of the importance of convenience. over logical necessity, in the 

framing of mathematical laws, is not surprising. He was an es
sentially practical man, devoting most of his life to the design 
and construction of a series of mechanical calculating machines, 
with the idea of aiding the production of mathematical tables. 
He resigned his chair at Cambridge, after II years as Lucasian 
Professor of Mathematics, in order to devote all his energies to 
his great project. Although Babbage's work on his difference ma
chine and his analytic engine did not reach satisfactory conclusion 
in his lifetime, due to severe financial and technical constraints, 
his prophetic vision and practical laying of the groundwork give 
us good reason to call him "Father of the Computer". Through
out his life. he demonstrated the importance and power of the 
application of pure science to the work-a-day world. He became 
heavily involved in the economic functioning of the Post Office, 
as well as the pin-making industry and the printing trade. 

13 The last assertion is quoted by Morris Kline in Mathematics 
in Western Culture (New York: Oxford University Press, 1953). 
The quote appears on page 170 of the Pelican edition. 

14 Up to this point the paragraph is drawn from Augustus De 
Morgan, "On Infinity and On the Sign of Equality," Trans. Camb. 
Phil. Soc. XI, Part 1 (1864), footnote on p.38. 

15 William Frend (1757-1841) was a Fellow of Jesus College, 
Cambridge, and was mathematics Tutor to the University until 
he was dismissed in 1788, for propagating heretical theological 
views. For similar offences in 1793 he was put on trial in the 
University Vice-Chancellor's Court, and banished from University 
and College residence when he refused to retract. He subsequently 
practised as an Actuary for the Rock Life Assurance Company. 
With his henchman Francis Maseres (1731-1824), lawyer and 
constitutionalist, Frend fought a bitter, rearguard action against 
the evils of symbolical algebra, fictitious and imaginary numbers, 
priding himself on being a "pure arithmetician and a noted op
pugner of all that distinguishes Algebra from Arithmetic". For a 
good biography, see Freda Knight, University Rebel; The Life of 
William Frend, 1757-1841 (1971). 

16 This paragraph is based upon De Morgan, "On Infinity." 
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In the last eight to ten years, following the enthusiasm 
around the commemorations of the bicentenary of the death 
of lost Anast4cio da Cunha, there has been a growing in
terest in the history of mathematics in Portugal. This has 
led to the organization of several meetings, to the publi
cation of a few papers, and above all to the creation of 
a National Seminar on the History of Mathematics, which 
has been meeting once a year. 

We present here a brief summary of the three main pe
riods in which the history of mathematics in Portugal may 
be divided, with emphasis on some points which have de
served, and should go on deserving, the attention of math
ematicians. We conclude with some remarks on the histo
riography of mathematics in PortugaL 

1. Mathematics in Portugal before 1772 

In this period, and in fact in the whole History of Math
ematics in Portugal, the most important name is Pedro 
Nunes (1502-1578), the first Professor of Mathematics in 
the University after its definitive transfer to Coimbra in 
1537. Nunes' writings have been analyzed and commented 
on by Portuguese and foreign authors and, although further 
studies and researches are needed, it is possible today to 
have a clear picture of the significance of the work of the 
great Portuguese mathematician. 

We describe the main works of Pedro Nunes: 

1) In a sequence of studies, which culminated in De 
arte atque ratione navigandi (Opera, Basel, 1566), Pedro 
Nunes, following a query by sea-captain Martim Afonso de 
Sousa returning from an expedition to Brazil, made clear 
that rhumb lines-that is, the courses followed when main
taining a constant angle with the compass needle--are not 
geodesics (arcs of great circles). He understood their true 
nature; apart from trivial cases (meridians and parallels) 
in which they are circular, rhumb lines are spiral curves 
approaching the poles and winding an infinite number of 
times around them. 

2) In one of his works dealing with rhumb lines, the 
Tratado em defensam da carta de marear (Lisbon, 1537), 
Pedro Nunes stated two desirable properties for maps: an
gle preservation and the representation of rhumb lines by 
straight lines. These requirements are precisely what made 
Mercator's 1569 great world map so useful in navigation. 
A possible influence of Pedro Nunes on Mercator has been 
in the past a matter of controversy, which deserves further 
study. 

3) The book, De erratis Orontii Finoei (Coimbra, 1546; 
Basel, 1592), contains a list of sharp and detailed correc
tions to two works by the French mathematician Oronce 
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Fine (1494-1555). In those works Fine presented "solu
tions" to several classical problems, including the dupli
cation of the cube, the quadrature of the circle, the con
struction of regular polygons (all completely solved only 
in the nineteenth century) and even the detennination of 
longitude. Nunes severely criticizes these "solutions". 

4) One of Pedro Nunes' major works is the Libro de Al
gebra en Arithmetica y Geometria (Antwerp, 1567). An 
expert on sixteenth century algebra, H. Bosmans, studied 
this book in detail some decades ago. The central subject is 
the solution of equations, mainly of first, second and third 
degree. A distinctive feature is the abstraction and general
ity with which theories and problems are presented. Pedro 
Nunes uses literal notation in his rigorous algebraic proofs, 
and reasonings with letters are independent of geometrical 
considerations. Operations with polynomials are studied. 
An important work of transition before Viete's notational 
advances (Bosmans calls Pedro Nunes "one of the most 
eminent algebraists in the sixteenth century"), the Libro de 
Algebra was well known and often quoted in Europe (by 
Wallis among others). It was translated into French and 
Latin, but these versions remained unpublished. 

5) In De Crepusculis (Lisbon, 1542; Coimbra, 1571; 
Basel, 1573) Pedro Nunes studied---in answer to a ques
tion by Prince Henrique-"the extent of twilight in dif
ferent climates". Among other results, he detennined the 
date and duration of the shortest twilight for each place on 
the globe. This matter became a classic among problems 
of extremes and was tackled again a century and a half 
later by the Bernoulli brothers. Gomes Teixeira has made 
some interesting comparative remarks on the methods used 
by the Portuguese and the Swiss brothers: while the latter 
applied the newly invented calculus, Nunes resorted to the 
results and methods available to him, Le., classical geome
try and trigonometry. The De Crepusculis has been consid
ered Pedro Nunes' master work by several commentators, 
and it deserves a modem reappraisal. Upon mentioning the 
book's impact in Europe, including Tycho Brahe' s applause 
and Clavius' quotations, the Portuguese historian Joaquim 
de Carvalho says that "it reached the recognition due to 
scientific explanations, entering and flowing, often anony
mously, in the stream of exact knowledge which constitutes 
mankind's heritage" (Notes on De Crepusculis, 'Works of 
Pedro Nunes', vol. n, Lisbon, 1943). This view is appro
priate to the Libro de Algebra as well, and in fact to all 
the mathematical work of Pedro Nunes. 

Pedro Nunes is Portugal's first example of a "pure" sci
entist, for whom precision and rigor were an imperative. (In 
this respect, it is interesting to mention the quarrels he had 

with sea pilots, in which he proudly defended the superior
ity of scientifIc knowledge.) The Portuguese mathematician 
was a unique case in the Iberian Peninsula. "Spiritually 
he lived outside both nations [Portugal and Spain]", says 
J. Rey Pastor (Los matematicos espanoles del siglo XVI, 
Madrid, 1926). 

The Academy of Sciences in Lisbon started in the 1940s 
a remarkable project of publication of Pedro Nunes~Works. 
Of the six volumes planned, four were published. The series 
was suspended almost 40 years ago, at the death of Coimbra 
professor Joaquim de Carvalho, who was the main force 
behind it. 

There were a few other mathematical activities in Portu
gal in the sixteenth to eighteenth centuries, some of which 
we mention briefly. 

In 1547 Pedro Nunes was appointed to the newly cre
ated position of royal cosmographer, which carried the re
quirement of daily instruction on mathematics (applied to 
navigation). The Royal Academy of the Navy replaced the 
office of royal cosmographer in 1779. 

In the Jesuit college of Santo Antao, in Lisbon, a public 
'Aula de Esfera' (Sphere school) was in operation from 
the end of the sixteenth century until the eighteenth century. 
Besides mathematics applied to navigation, also astronomy, 
geometry and arithmetic were studied there. 

Apart from Santo Antao and their University in Evora, 
the Jesuits organized courses in mathematics throughout 
the country, in particular in the Coimbra colleges. To teach 
these courses, many foreign professors, especially Italians 
and Gennans, came to Portugal. We note the following 
names, some with works on astronomy, navigation and car
tography: C. Grienberger (1564-1636) (later Clavius' suc
cessor in the Roman college), C. Borri (1583-1632) (who 
in the early seventeenth century made Galileo and sunspots 
known in Portugal), I. Stafford (1599- 1642), D. Capassi 
(1694-1736) and G. Carbone (1694-1750). The latter two 
collaborated in the establishment of an astronomical obser
vatory at Santo Antno. 

Capassi left in 1729 for Brazil with another Jesuit pro
fessor, Diogo Soares, to carry out King Jono V's instruc
tions to draw the map of the great transatlantic state. Map 
drawing is one of the main themes of Portuguese mathemat
ica� activity in this period. Another example was the Swiss 
Jesuit Joao KOnig, who, appointed in 1682 to the chair of 
mathematics at the University of Coimbra, left four years 
later, by government order, to draw a map of Portugal. 

Around the middle of the seventeenth century, with the 
war of independence after 60 years of Spanish rule, mathe
matical studies applied to military activities received some 
impetus. A School of FortifIcation and Military Architec
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ture was created, and also in Santo Antao some attention 
was given to these topics. Later, in the eighteenth century, 
there are mathematical studies applied to artillery in mili
tary units and academies. 

What stands out from this very brief survey is the practi
calor applied nature it suggests about mathematical activity 
in Portugal in this period. Under the patronage of the state 
or in the Jesuit schools, people studied subjects seen as 
corresponding to immediate concrete needs of the nation. 

An inspection of the list of mathematical works writ
ten in this period in Portugal,or by Portuguese authors, 
reveals the same overall picture. We note a clear predomi
nance of works on subjects in what may be called applied 
mathematics: navigation, atlases and maps, astronomical 

calendars, geometry applied to fortification, arithmetic ap
plied to financial activities. Worthy of note is the frequency 
of records of astronomical observations (lunar eclipses, 
comets). Many of these texts exist only in manuscript fonn. 

It seems clear that. in the century after Pedro Nunes, 
mathematics in Portugal did not take part in the great ad
vances of the time. The persistent need to enlist the help 
of foreign professors seems related to the fact that "pure" 
mathematics was not studied per se in the country. 

This is not the place to recall the Portuguese intellectual 
and cultural frame of mind in the period under study. Its 
reflections on the mathematical life (or lack of it) stem pri
marily from the fact that the great scientific advances were 
generally associated to philosophical propositions against 
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which national political and religious authorities were on 
pennanent watch. This led to an explicit attitude of rejec
tion of novelty in teaching. 

In the first half of the eighteenth century, there is evi
dence of a change in the scientific atmosphere. Inside and 
outside the country, there appear several Portuguese with an 
interest in modem scientific trends. We note, among others, 
the names of Jacob de Castro Sarmento, with a Newtonian 
theory of tides (Theorica verdadeira das mar~s, London, 
1737); Jose Soares de Barros e Vasconcelos, astronomer 
for many years in Paris; the engineer Manuel de Azevedo 
Fortes, author of a Logica racional, geometrica e analyt
ica (Lisbon, 1744); Teodoro de Almeida, of the Oratorian 
Congregation, with his Recrearao Philosophica and Cartas 
Phisico-Mathematicas; and the Jesuits Eusebio da Veiga, 
astronomer in Lisbon, Manuel de Campos and InAcio Mon
teiro (whose books reveal he had a wide knowledge of the 
scientific advances of the time). All these authors deserve 
modem studies. 

2. Mathematics in Portugal from 1772 to 1910 

The Portuguese University was transferred to Coimbra in 
1537 by King Joao III. Its refonn in 1772 represents the 
biggest qualitative and quantitative change of the mathe
matics panorama ever carried out in a short time in Portu
gal. In December 1770 a 'Junta da Providencia Literaria' 
(Committee of Literary Providence) was created. It pre
sented a report in August 1771 under the title "Historical 
Compendium of the State of the University". Here we can 
see that Science in general and Mathematics in particular 
were in bad shape in the University. For example, in the 
60 years preceding the refonn there was only one chair of 
Mathematics and there was no professor to fill the position. 
In that document mathematics is considered "an important 
science to the good being of the Kingdom, and navigation, 
and ornament of the University." 

In the new University Statutes, approved in October 
1772 with great pomp and solemnity in the presence of 
the Marquis of Pombal, Prime Minister of King Jose I and 
the force behind these transfonnations, two new faculties 
were created: Mathematics and (Natural) Philosophy. 

Mathematics is placed in a very high position in these 
statutes: "Mathematics has such an indisputable perfection 
amongst all natural knowledge, as well as in the luminous 
exactitude of its Method, as in the admirable speCUlation of 
its doctrines, that it not only but with rigor or with property 
merits the name of Science, but also is the one which has 
credited singularly the force, the ingenuity, and sagacity of 
Man." And penalties are specified to the ones who may 

diminish the importance of the mathematical studies: "All 
those, who directly or indirectly discourage or dissuade 
somebody from the mathematical studies; ... will loose all 
the oppositions to the chairs of their respective Faculties." 

Other aspects of these statutes should be mentioned. The 
mathematics course was made up of four disciplines: ge
ometry, algebra, mathematical physics and astronomy (plus 
a supplementary discipline of drawing and architecture and 
some disciplines from the Faculty of Philosophy). The dis
cipline of geometry was compulsory in the first year for all 
University students (including those in law and theology). 

This brought some problems. For example, in 1787, a let
ter from the King directed that separate books of geometry 
should be arranged for students of law and theology. In an
other letter, in 1790, it was ordered that law students should 
not be allowed to attend the first year without passing the 
geometry exam. 

For the new Faculty of Mathematics, two Italian and 
two Portuguese professors were hired. The latter two, Jose 
Monteiro da Rocha and Jose Anastlicio da Cunha, who 
had both learned Mathematics essentially by themselves, 
deserve a special mention because of the original work 
they produced. 

Jose Monteiro da Rocha (1734-1819) studied in the Je
suit college of Bahia, Brazil, and was the main author of 
the statutes of the new Faculty of Mathematics. He orga
nized the Astronomical Observatory of the University and 
translated books by Bezout, Bossut, and Marie into Por
tuguese. His scientific work was concentrated in the areas 
of numerical methods and astronomy. In the work, Addi
tion to the Rule of Mr Fontaine to solve by approximation 
the problems that reduce to quadratures, published in the 
Memoirs of the Academy of Sciences of Lisbon, he stud
ied methods to accelerate the convergence of Fontaine's 
fonnula of approximate integration, which, as remarked 
by Tiago de Oliveira (in 'Joze AnastAsio, 0 ge6metra ex
ilado no interior,' an article published in the volume Em 

homenagem a Jos~ Anastacio da Cunha, Coimbra, 1987), 
is Richardson's extrapolation fonnula. This work presents 
upper estimates of the approximation error and deals with 
the case of improper integrals. Another work on numer
ical analysis concerns the approximate calculation of the 
volume of a barrel, a problem proposed by Kepler. Mon
teiro da Rocha wrote several works on astronomy, most 
of which were published in Paris under the title M~moires 
d'Astronomie Pratique (Paris, 1808), with translation of 

Manuel Pedro de Mello. One of the most important of these 
memoirs was the practical calculation of orbits of comets, 
discovered before Olbers, to whom it is credited. Another 
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work, praised by Delambre, concerns the prediction of the 
sun's eclipses. 

Jose Anast~cio da Cunha (1744-1787) wrote a treatise, 
Principios Mathematicos, in which he tried to give rigor
ous bases to all of mathematics. Here we fmd for the first 
time, with surprising rigor, the definition of a convergent 
series (using what later became known as the Bolzano
Cauchy condition), the definition of exponential functions 
from their power series for real and complex variables, and 
the definition of the differential of a function in a way sim
ilar to what is done nowadays. These definitions have been 
studied by several authors, including A.P. Youschkevitch 
(in Revue d' Histoire des Sciences, vol. XXVI and XXXI), 
E. Giusti, J. Mawhin, I. Grattan-Guinness (their texts ap
pear in the volume Anastacio da Cunha-174411787-o 
matematico e 0 poeta, Lisboa, 1990) and the present au
thors (in The Mathematical I ntelligencer, vol. 10, no. 1 , 
1988 and also in the volume just mentioned). Unfortunately, 
his book, although it had two editions in French, was read 
by few people and apparently did not much influence the 
development of mathematics. Cunha also wrote an Essay 
about the Principles of Mechanics, where he proposed an 
axiomatic view of mechanics, and other works presumably 
lost. 

A major task of the Faculty of Mathematics was the 
training of specialists in mathematics. One of the first to get 
a doctoral degree after the 1772 reform was Frei Alexandre 
de Gouveia, who would later become bishop of Beijing at 
a time when scientific knowledge was important in order 
to be accepted in China. Details about his action are not 
known, but he was a member of one of the most important 
scientific committees in China, the Mathematics Tribunal. 
In order to have a better idea of the impact of the training 
of specialists, we present a table of the number of doctoral 
degrees awarded in the Faculty of Mathematics until the 
end of the nineteenth century (Figure 3). 

Many of the new holders of the doctoral degree stayed 
as professors of the Faculty of Mathematics, but others 
became professors at the Military and Polytechnic Schools 
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of Lisbon and Oporto, as did many of the mathematics 
graduates. 

In the university, the quality of the professors was a 
concern. In a meeting between the Faculties of Mathemat
ics and Philosophy it was agreed that professors would be 
hired, not according to seniority, but only with "the annual 
literary works in which they should exercise and qualify in 
front of the Congregations with written and verbal mem
oirs, according with the plan that the same Congregations 
... will propose to His Majesty." This indicates some con
cern with research. 

Unfortunately, the full impact was not the one intended 
by Pombal or by Jose Monteiro da Rocha, for a long time 
Chairman of the new Faculty of Mathematics and Vice
Rector of the University. There were very few students; 
the publication of mathematics texts was not easy; and the 
political instability of the country did great harm to uni
versity life. From 1807, the year of the first Napoleonic 
invasions, until the end of the Civil War in 1834, all sci
entific activity was considerably reduced. Many professors 
were forced to abandon the university; others went into ex
ile; some were killed; and the university was closed in the 
school years of 1810-1811, 1828-1829, 1831~1832, 1832
1833, 1833-1834. (Afterwards, other periods of political 
instability perturbed the work in the University, which was 
closed in 1846-1847 and other short periods.) 

The majority of the mathematical works published in 
Portugal in the end of the eighteenth and beginning of the 
nineteenth century emanated from the Academy of Sci
ences, founded in 1799 by the Duke of Lafoes, uncle of 
Queen Maria I. The Academy began the publication of its 
Memoirs in 1787, but only in 1797 were the first mathe
matical papers published. (The frrst was by Jose Monteiro 
da Rocha on Kepler's barrel problem.) The Academy was 
very active until the French invasions and the Civil War. 

As pointed out by Portuguese mathematician Luis Wood
house in 1925, "the period in the history of mathematical 
studies in Portugal that goes from the rebirth after Pom
bal's reform of the University of Coimbra in 1772, until 
the end of the eighteenth century and afterwards in the first 
years of the nineteenth century until the deep and constant 
political perturbations eventually separated and dispersed 
the vital elements of the Portuguese mathematical science, 
is not at all without interest; it is not vain and sterile, but 
it is short." 

Only after the end of the Civil War was it possible to 
make some new real reforms of the educational system. 
The University and the Academy of Sciences resumed their 
activities, not without some difficulty. Despite the opposi
tion of the University (of Coimbra), POlytechnic Academies 



were created in 1837 in Lisbon and Oporto, and in 1911 
these originated the Faculties of Sciences of the newly 
created Universities of Lisbon and Oporto. In Coimbra, 
that same year, the Faculties of Mathematics and Philoso
phy of Pombal's reform were merged in a Faculty of Sci
ences. Conditions were thus created, with three competing 
schools, for a qualitative jump in the mathematical devel
opment of Portugal. 

Direct contacts with foreign mathematicians were scarce 
during this period. Only after 1908 did the Faculty of Math
ematics have its own budget. For the first time money was 
made regularly available for "missions ... to study a sub
ject of its chairs or other related with the Faculty of Math
ematics", with a three month duration. The first professors 
to go abroad were Luciano Pereira da Silva. Henrique de 
Figueiredo and Sidonio Pais. This last professor (later to 
become Portugal's President for a short period: he was 
murdered in 1918), was twice in Paris (in 1909 and 1910), 
where he visited several scientific institutions and attended 
talks, for example, by Mme. Curie, Langevin, Goursat, Ap
pell and Picard. 

Among Portuguese mathematicians of the nineteenth 
century we should mention: 

Manuel Pedro de Mello (1765-1833), a student of Jose 
Anastacio da Cunha, was the first hydraulics professor in 
Coimbra. a post for which he prepared himself during a 
study visit in Europe; in his lessons he followed. among 
others, Poisson's treatise on fluid mechanics. Mello's most 
important work, now lost, was a "Memoir about the pro
gram for the proof of the force parallelogram", written for a 
contest of the Royal Academy of Sciences of Copenhagen 
in 1806, in which he won the first prize. (About this contest 
we only know there were a lot of entries.) 

Daniel da Silva (1814-1878) studied in Coimbra and 
was a teacher at the Naval School. In his work "Memoir 
about the rotation of forces around a point" (1851) he de
veloped a theory on the subject without knowing Mobius' 
work, published in 1837; but this work of Mobius had some 
flaws, corrected by Darboux in 1876 and 1877. Silva's the
ory did not have these flaws, but Darboux never read the 
work of the Portuguese mathematician. He published other 
original works in number theory, geometry, and insurance, 
of which only a small part became known outside Portu
gal in 1903, through a work of the Italian mathematician 
Alasia de Quesada published in a Pavia journaL In a letter 
to Gomes Teixeira in 1877, Daniel da Silva wrote: "My 
Memoir, having many more things beyond what Mobius 
did, including a correction of an error he made. of whose 
correction Darboux is very proud, lies ignored, for almost 
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twenty-six years, in the libraries of almost all Academies of 
the world. What profit do I get from writing in Portuguese!" 

Francisco Gomes Teixeira (1851-1933) was a profes
sor in the Universities of Coimbra and Oporto. He was by 
far the most prolific Portuguese mathematician of this pe
riod, having published more than a hundred papers in many 
international scientific journals. He corresponded with and 
met personally the most distinguished European mathemati
cians of the time. Gomes Teixeira published essentially in 
analysis (series expansions, interpolation, functions of a 
complex variable, differential equations, special functions, 
etc) and in geometry (properties of remarkable curves). 
He started the first Portuguese mathematics journal, the 
Jornal de Sciencias Matematicas e Astronomicas (Journal 
of Mathematical and Astronomical Sciences) in 1877, re
placed by a broader publication in the Sciences in 1905. He 
also published several works about the history of mathemat
ics in Portugal, namely studies on Pedro Nunes, Monteiro 
da Rocha, Anastacio da Cunha and Daniel da Silva, and a 
book on the history of mathematics in Portugal, Historia 
das Matematicas em Portugal (1934). 

Other mathematicians of this period had activities that 
should be mentioned. Dantas Pereira is the author of the 
first textbook containing references to elementary probabil
ity, "Course of Studies for the Commerce and Exchequer" 
(1798) and also of a method for the approximate calcu
lation of the roots of algebraic equations (1799), not very 
different from the method later published by Homer (1819), 
according to the study of Gomes Teixeira (in his Hist6ria 
das Matematicas em Portugal, 1934). Gar~ao Stockier pub
lished in 1819 the first history of mathematics in Portugal 
(and the first history of mathematics related to a single 
country) and also several works on analysis. SimOes Mar
giochi published in 1821 a work where he obtained cer
tain formulas for the roots of the equations of degree not 
greater than 4, later rediscovered by Luiz Olivier (Crelle's 
Journal, 1826). Adriao Pereira Forjaz de Sampaio is the 
author of the first Portuguese scientific text on statistics, 
First Elements of Statistical Science (1841). Henrique de 
Figueiredo published in 1887 a work about Riemann sur
faces. Sidonio Pais was the author of the first scientific 
work on probability theory published in Portugal, with his 
thesis Introduction to the theory of the observation errors 
(1898). 

Let us sketch briefly the panorama of mathematical pub
lishing in PortugaL 

Until the middle of the nineteenth century, the 
main mathematical publications were the Memorias da 
Academia das Citncias. Only after 1857 were doctoral dis
sertations published by the University, and among these we 
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can find many interesting works, showing that Portuguese 
mathematicians of the time were aware of what was being 
done in the rest of the world. We can point out as an ex
ample the already mentioned dissertations of Henrique de 
Figueiredo and Sidonio Pais. 

Scientific research was a part of the 1772 Statutes, which 
established the creation of a "General Congregation of the 
sciences for the advancement, progress and perfection of 
the natural sciences". But this Congregation was never ac
tually in operation, and contacts with mathematicians from 
other countries were limited. It is true that the best foreign 
publications of the time were received in Portugal, but Por
tuguese mathematicians often discovered results or methods 
that were later rediscovered by others, as was the case with 
Monteiro da Rocha, Anastacio da Cunha, Gar~ao StockIer, 
Dantas Pereira or Daniel da Silva. It was only with the 
launching of the Jornai de Sciencias Matematicas e As
tronomicas in 1877 that it was really possible to develop 
relations between Portuguese and foreign mathematicians, 
mainly from Europe. Portuguese mathematicians published 
articles in this journal and these were read outside Portugal; 
also many foreign mathematicians published papers there, 
thus strengthening Portuguese awareness of mathematical 
research done outside Portugal. 

The 1772 Statutes established that there should be books 
in Portuguese for the students of every course. Some trans
lations were made, but few originals were published. Math
ematics professor Luis da Costa e Almeida even proposed 
in 1886, without success, at the 'Conselho Superior de 
Instru~ao PUblica' (High Council for Public Instruction), 
that money should be given to professors in charge of writ
ing textbooks and that this money should be equivalent to 
teaching a full year course. The first Portuguese original 
textbook that had a real impact, nationally and internation
ally, was the Curso de Analyse Infinitesimal, in three vol
umes (1887-1892), by Francisco Gomes Teixeira, which 
was the object of favorable reviews in the Bulletin des 
Sciences Mathematiques and the Bulletin of the American 
Mathematical Society. This book was adopted for a long 
time in the University and in the Polytechnic Academies of 
Oporto and Lisbon. It made widely available, for the first 
time in Portugal, many topics of advanced analysis (some 
based on research papers of Gomes Teixeira) such as par
tial differential equations, complex functions and functions 
defined by series. 

One of the best known works of this period is an 
encyclopedia of curves by Gomes Teixeira. The Madrid 
Academy of Sciences had proposed a contest in 1896 with 
the theme "Ordered catalogue of all the curves". Gino Loria 
and Gomes Teixeira both took the prize, although there was 

supposed to be only one prize and Gomes Teixeira wrote 
in a language not accepted by the rules. Later Gomes Teix
eira expanded his work and published it in French, with 
the title Traite des courbes speciales remarquables planes 
et gauches, which received a prize from the Paris Academy 
of Sciences (the referee was Paul Appell). This contains a 
wealth of information about all the classical curves, includ
ing their history. It was reissued recently by two publishers 
(Chelsea, New York, 1971; Jacques Gabay, Paris, 1995). 

3. Mathematics in Portugal since 1910 

One of the main features of mathematical activity in Por
tugal up to the end of the nineteenth century is the iso
lation of the Portuguese mathematical community. In fact 
(with the exception of Pedro Nunes) this community and 
its activity were mostly unknown abroad. In contrast, one 
of the main features of mathematical activity in Portugal 
in the twentieth century is the breakdown of this isolation. 
The breakdown started, in fact, at the end of the nine
teenth century, with Gomes Teixeira. During the first quar
ter of the twentieth century Teixeira remained the only Por
tuguese mathematician of international stature. By the end 
of the twenties other Portuguese mathematicians began to 
be known abroad and to publish their results in some of 
the best foreign mathematical journals. 

This was the case of Aureliano de Mira Fernandes 
(1884--1958). He studied at Coimbra University, where he 
received his PhD in 1910 with a thesis (mainly expository) 
on Galois Theory. In 1911 he was appointed professor in the 
recently established 'Instituto Superior T&:nico' of Lisbon 
(Lisbon School of Engineering), where he remained until 
his retirement in 1954. In the twenties he became an ac
tive researcher in differential geometry and tensor calculus. 
From 1924 until his death he published a series of papers 
on those subjects (several of them in Italian journals) and 
had many contacts with Italian mathematicians (namely T. 
Levi Civita). 

Another active mathematician in the same period was 
Jose Vicente Gon~alves (1896-1985). He studied in Coim
bra, earning his PhD in 1921 with a thesis on complex 
function theory. He was a professor in the Universities of 
Coimbra (until 1942) and Lisbon (1942-1966), and worked 
on classical analysis (inequalities, zeros of functions, infi
nite series and products, continued fractions, orthogonal 
polynomials). Although his papers were published in Por
tuguese journals and some of them were written in Por
tuguese, they became known outside Portugal (some of 
them gave rise to further research by foreign mathemati
cians, like A. Ostrowski). He was also the author of some 



very influential university manuals and some high school 
textbooks on mathematics. 

As to the institutions related to mathematical activity, 
these were, at the beginning of the century, the Faculty of 
Mathematics of Coimbra University, the Escola Polit~nica 
in Lisbon and the Academia Politecnica of Oporto. The 
last two were mainly engineering schools (although since 
1902 the three institutions gave degrees in mathematics 
for teachers of high schools). We should mention that the 
number of students who graduated was usually very small 
(varying from zero to six). 

In 1910 Portugal's political regime changed from a 
monarchy to a republic. The new leaders were greatly con
cerned with educational matters. The Universities of Lis
bon and Oporto were created. As mentioned before, the Es
cola Polit~nica of Lisbon and the Academia Polit~nica of 
Oporto were renamed as Faculties of Sciences and became 
part of the respective Universities (the Faculty of Math
ematics and the Faculty of Natural Philosophy of Coim
bra were also merged in a new Faculty of Science). Also 
some other schools were created or changed into schools 
of university level (this was the case of Lisbon's Instituto 
Superior T~nico, where Mira Fernandes was appointed 
professor). But more important than this increasing of the 
number of schools was the attempt in 1923 by the Minister 
of Instruction, Ant6nio Sergio, to organize a government 
agency for scientific research. This agency, which was es
tablished only in 1929 (the Junta de Educ~ao Nacional), 
had as one of its functions to give grants for scientific re
search and to send students to work in foreign centers of 
scientific research. 

During the thirties and forties a modernization of mathe
matical teaching in the Universities occurred with the publi
cation of new textbooks by Vicente Gon~alves, on analysis, 
and by Ant6nio Almeida Costa (1903-1978), on algebra. 

Almeida Costa graduated in 1924 from Oporto Univer
sity, where he taught from 1924 until 1952. In that year he 
moved to Lisbon University, where he remained until his 
retirement in 1973. His first interests were in mathematical 
physics and astronomy. In 1937 he received a scholarship 
to study these subjects in Berlin, where he was advised 
to study group representation theory as part of his training. 
With that study his interests shifted to abstract algebra, and 
this turned out to be his main field of activity. After his 
return to Oporto in 1939, he became very active in promot
ing abstract algebra, and it was mainly through him that 
the subject was introduced in Portugal. In addition to the 
publication of several research papers and textbooks in that 
area, he organized seminars. trying to attract young math
ematicians to work on algebra. Almeida Costa supervised 
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some PhD students and was one of the very few Portuguese 
mathematicians who founded a "School". 

The end of the thirties and beginning of the forties were 

a period of intensive and exciting mathematical activity. 
thanks to a new generation of mathematicians such as 
Ruy Luis Gomes (1905-1984), Ant6nio Aniceto Monteiro 
(1907-1980) and Hugo Ribeiro (191{}-1989). 

Ruy Luis Gomes graduated from Coimbra, where he 

was a student of Vicente Gon~alves, and there received 

his PhD in 1928, with a thesis on mathematical physics 
written under Mira Fernandes. In the following years he 
published several papers on this subject and also on real 
analysis (integration theory). He was professor in Oporto 

from 1928 until 1947. 
Ant6nio Monteiro graduated from Lisbon in 1930 and 

obtained his PhD in Paris in 1936 under M. Frechet with a 
thesis on topology. Besides this subject he also worked on 

algebra and algebraic logic. After his returning to Lisbon, 
in 1936, he began to organize courses and talks for young 

students trying to initiate them in research activities. One 
of these students, Hugo Ribeiro, said much later: "Since 

then I have never met anyone that, at the level we had, 
was so effective in promoting young people". As a result 
of this activity a mathematics research center was estab
lished in Lisbon in 1940, and, inspired by this one, another 

Was founded in Oporto in 1941 by Ruy Luis Gomes, with 
the collaboration of Almeida Costa. Monteiro played also 
a major rolh in developing this center (he lived in Oporto 

in the years 1943-45). Several monographs were published 

by these centers. In 1943 a Council for Mathematical Re
search (,Junta de Investiga~ao Mateml1tica') was created 
under the direction of Mira Fernandes, Ruy Luis Gomes 
and Monteiro. 

Another mathematician engaged in these activities was 
Hugo Ribeiro. He finished his undergraduate studies in 

1939 and was initiated in research activities by Ant6nio 
Monteiro. He received his PhD in Zurich in 1946. His 

main works were in mathematical logic (in Zurich he was 
a student of P. Bernays, F. Gonseth and H. Hopf). 

It was this generation (mainly Ant6nio Monteiro) who 
promoted, in 1937, the creation of Portugaliae Mathe
matica (still in publication), a research journal of inter

national quality, and in 1940 of Gazeta de Matematica, 
an expository and informative journal for the mathematical 

community (induding students and high school teachers). 
These initiatives received support from senior Portuguese 

mathematicians. For instance Mira Fernandes and Vicente 

Gon~alves published several papers in Portugaliae Math
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FIGURE 4 
The first issue of the journals Portugaliae Mathematica and Gazeta de Matematica 

ematica. It was also this generation who founded in 1940 
the Portuguese Mathematical Society. 

We should add that each Faculty of Science (and also 
the Engineering and Economics Schools) published jour
nals containing research and expository mathematical pa
pers, mainly by Portuguese mathematicians. Gomes Teix
eira founded the journal of the Oporto Faculty in the nine
teenth century; the others were founded in the twenties and 
thirties of the twentieth century. This shows the increasing 
mathematical activity during the twentieth century. 

Unfortunately, a great part of the above described ac
tivity was interrupted, because most of its originators (and 
some of its participants) were, for political reasons, ex
pelled from their posts (including Ruy Luis Gomes, who 
was also imprisoned more than once because of his political 
activities) or could never find a position in the Universities 
(including Monteiro and Hugo Ribeiro; the PhD obtained 
by Ribeiro in Zurich was never recognized by Portuguese 
authorities) and were forced into exile. (Portugal was under 

a right-wing authoritarian regime from 1926 until 1974.) 
Hugo Ribeiro went to the United States. Among other po
sitions he held a visiting professorship at the University 
of California, Berkeley, and a professorship at Pennsylva
nia State University. Monteiro and Ruy Luis Gomes (and 

. some other young mathematicians) went to South America 
(Brazil and Argentina). We should add that Monteiro and 
Ruy Luis Gomes played a major role in developing Math
ematics in those countries. Monteiro, for example, had a 
strong influence on L. Nachbin. Ribeiro supervised several 
PhD students in the U.S. (M. Keedy, K. Supruonowicz, D. 
Smith, Y. Wu, J. Griffm, E. Goldwasser). With the end of 
the regime in 1974 Ruy Luis Gomes returned to Oporto 
University and Ribeiro was appointed Professor there. 

In the fifties and sixties we should mention the activ
ity of J. Sebastillo e Silva (1914-1972), one of the most 
distinguished Portuguese mathematicians of the twentieth 
century. He graduated from Lisbon in 1937, was initiated 
in research by A. Monteiro in the Lisbon mathematics cen



ter and studied in Rome (1943-1945) with L. Fantappi~. 
He got his PhD in Lisbon in 1948. He was professor at 
the Lisbon Agronomy School (1950-1960) and the Lis
bon Faculty of Sciences. He published research papers on 
logic, numerical analysis and functional analysis (locally 
convex spaces and distribution theory). He was also active 
as a pedagogue, namely in the rewriting of the secondary 
school mathematics curriculum, with the introduction of 
some set theory, abstract structures, numerical anlysis, ap
plications of mathematics and statistics. He also authored 
textbooks for the new curriculum and gave special training 
courses for high-school teachers. 

There was also some activity in the history of mathe
matics (mainly about Portuguese mathematicians). Besides 
Gomes Teixeira in the beginning of the century, there was 
Vicente Gom;alves and his penetrating studies on Anastacio 
da Cunha (he also published several small notes on the 
history of mathematics). Luciano Pereira da Silva (1864
1926) and Luis de Albuquerque (1907-1992) were two 
mathematicians who worked mainly in the history of sci
ence (on the fifteenth and sixteenth century European ex
plorations and navigations). We should also mention the 
activity of Bento de Jesus Cara<;a (1901-1948), a Mathe
matics Professor at the Lisbon School of Economics (the 
Instituto Superior de Ciencias Economicas e Financeiras). 
Although he didn't publish research papers, he was an 
inspiring lecturer and author of some influential univer
sity manuals. He published in 1942-43 a very interest
ing book, Conceitos Fundamentais da Matematica (Fun
damental Concepts of Mathematics), on the history and 
philosophy of mathematics (aimed for the layman) which 
became a bestseller with several reprints since its first pub
lication. Bento Cara<;a also published some papers on those 
subjects. 

In the sixties, university teaching in Portugal underwent 
a big change at the level of the undergraduate mathematics 
curriculum, with the emergence of new topics (like topol
ogy). There were also changes in the structure of the uni
versity career, namely the creation of post-graduate courses, 
which put young graduates very early in contact with re
search. 

In spite of the increasing mathematical activity in this 
century, we may note that there was no tradition of train
ing disciples and PhD supervising. In fact the majority of 
the Portuguese mathematicians of this century were either 
self-made men (the cases of Mira Fernandes and Vicente 
Gon<;alves) or they got their PhD abroad. There were some 
exceptions. As mentioned above, Ruy Luis Gomes was a 
disciple of Mira Fernandes and Vicente Gon<;alves; the lat
ter advised Joao Farinha (1910-1957) on his work on con-
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tinued fractions; the work of J. Santos Guerreiro (1910
1987) on distributions was done under the influence of 
Sebastiao e Silva. But the main exceptions occurred with 
Almeida Costa and Antonio Monteiro, who did supervise 
PhD students and tried to create graduate schools of math
ematics. 

In the late sixties there began an exponential growth of 
the educational system which eventually reached the uni
versities. In the ensuing decades there was a huge increase 
in the number of undergraduate students and in the number 
of universities. This led to an increase in the numbers of 
doctorates and research· centers. An increasing number of 
students began to get their PhD in Portugal under the su
pervision of Portuguese mathematicians. New areas were 
developed and new research groups of international level 
were founded, namely in applied mathematics: numerical 
analysis, dynamical systems, control theory, optimization, 
statistics (to the development of this area we must attach 
the name of J. Tiago de Oliveira (1928-1992» and theoret
ical computer science. Besides these there exist in Portugal 
other research groups of an international level: we mention 
the school of functional analysis and differential equations 
(founded by J. Sebastiao e Silva) and two algebra schools 
(one founded by A. Almeida e Costa and the other by Luis 
de Albuquerque). 

4. The historiography of 
mathematics in Portugal 

up to now, only four texts have been published which de
serve to be called "Histories of Mathematics in Portugal": 

Memorias histOricas sobre alguns matematicos Portugue
ses, e estrangeiros domiciliados em Portugal, ou nas 
conquistas-Antonio Ribeiro dos Santos, 1812; 

Ensaio histarico sobre a origem e progressos das 
Matematicas em Portugal-Francisco de Borja Gar<;ilo 
Stockier, 1819; 

Les Mathematiques en Portugal-Rodolfo Guimaraes, 
1900-1909; 

Histaria das Matematicas em Portugal- Francisco Gomes 
Teixeira, 1934. 

Note the publication years. In the last 60 years there 
has not been a single attempt of a synthesis in this field. 
This is significant because the existing "Histories" in some 
way establish a paradigm, a point of view, which makes its 
influence felt on any reader trying to obtain information on 
the subject. 

It should be clear that all four works are very valu
able, and each in its own way was an important contri
bution to the study of mathematics history in Portugal. 
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Rodolfo Guimaraes, for instance, after a historical intro
duction, aims to list all mathematical texts of Portuguese 
authors, or published in Portugal, up to the end of the nine
teenth century. Gomes Teixeira carries out a deep analy
sis of the works of four important authors: Pedro Nunes, 
Anastacio da Cunha, Monteiro da Rocha and Daniel da 
Silva. As to StockIer, he was a pioneer, and his Ensaio 
had great influence. In the following paragraphs we do not 
wish to lessen these personalities and their works. 

The truth is that the above mentioned works share an 
"old fashioned" vision of Portuguese history, and this vision 
tends to obscure certain periods and to distort the approach 
to the past, in our case the mathematical past. 

This vision is the dominant one in general Portuguese 
history in the nineteenth century. It is the vision of the En
lightenment, of French Revolution influence, of liberalism. 
Very understandably, this vision has almost a "fighting" 
outlook on the recent past, and in this outlook it is practi
cally an axiom that the two centuries before the Marquis of 
Pombal were a time of darkness, intolerance and ignorance. 
The blackness is even greater when one thinks of sixteenth 
century humanism, which in Portugal was associated with 
the flowering of art, culture and science brought on by the 
Discoveries. 

This vision is faithfully reflected in StockIer's Ensaio, 
which dates from 1819: Portugal has a period of splendor 
in mathematics in the sixteenth century, in which Pedro 
Nunes stands out, then a 200-year period of decadence un
til Pombal's reform of the University of Coimbra, when 
important names like Jose Anastacio da Cunha make their 
appearance. 

Almost 100 years after the publication of StockIer's En
saio. Rodolfo Guimaraes repeats the same views almost 
verbatim in the historical introduction to his book. As to 
Gomes Teixeira, he does not transcribe nor imitate, but the 
general outlook is still the same. 

Now, the study of Portuguese general history has evolved 
a long way since the last century. In particular, the distance 
to the era of the Inquisition'and of Jesuit influence in Por
tuguese society has increased, and that period is studied and 
analyzed nowadays like any other in Portuguese history. 

But in the history of Mathematics we stayed in the same 
place. The general vision is still the same. Since studies 
about particular mathematicians and points of detail are 
rare (among the few relevant authors, besides Gomes Teix
eira, we should mention Vicente Gon~alves and Luis de 
Albuquerque), we find ourselves reduced to the endless rep
etition of the same views, without new information, making 
permanent appeal to the same sources, which are basically 
the ones indicated. 

At the present time, it seems appropriate to have clear 
ideas and propose what might pompously be called a 
change of paradigm. The above described vision, the im
portance of authors like StockIer, Guimaraes and Teixeira 
notwithstanding, seems today exhausted, truncated, hope
lessly dated and, what is worse, anaesthetizing. If we go 
on like this, long periods and many authors will remain in 
obscurity in the history of mathematics in Portugal. 

For this change we propose the following lines of ap
proach: 

1) Priority (of course non-exclusive) to the study of the 
periods 1578 (death of Pedro Nunes) to 1772 (Pombal'S 
reform of the University of Coimbra), and the nineteenth 
century. These are the periods that have received less at
tention up to now. 

2) Priority to what may be called "positive history": 
listing of authors and works (extending and completing 
Guimaraes' extraordinary catalogue), locating and micro
filming printed and manuscript mathematical texts, pub
lishing or reissuing the most significant of them. Study 
of these works. Study of the reception in Portugal of the 
great mathematical advances of the seventeenth and eigh
teenth centuries. As to the nineteenth century, study of the 
Coimbra dissertations and the Academy of Sciences mem
oirs. All this should be done, and is beginning to be done, 
with the consciousness that the history of mathematics in 
Portugal must be one of primary sources, with complete 
abandonment of acritical repetition of secondary sources. 

3) Study, with basis on the collected material, of some 
hypotheses, which might serve as guidelines and orientation 
in this effort. Examples (among others possible): 
• 	 Was there an almost exclusive emphasis on applied 

mathematics in Portugal in the sixteenth to eighteenth 
centuries? 

• 	If so, was this related in a fundamental way to the ef
fort of the Discoveries, the routine of long transoceanic 
voyages, the concrete needs resulting from contact with 
the landing territories and their populations? 

• 	 Did that emphasis have an impact on the noticeable lack 
of professors of mathematics (even at the elementary 
level) in Portugal in the eighteenth century? 

• 	 If a picture of mathematical poverty in Portugal in the 
period 1578-1772 is confirmed, is it appropriate to use 
the word "decadence", which suggests a fall of some 
(even if small) height? In other words, was Pedro Nunes 
the leader of a group of sixteenth century Portuguese 
mathematicians or was he a singularity? 

• 	 Did Portuguese mathematicians keep abreast, in a sys
tematic way, of developments in European mathematics 
in the nineteenth century? 



We end with the obvious. Nothing of this will be done 
if there is no one to do it. We believe that in a few years 
it will be possible to write a new History of Mathematics 
in Portugal. 
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1. Introductory remarks 

It is impossible to give in a short paper an account of the 
developments in mathematics in Central and South Amer
ica. A number of individuals, institutions and events rele
vant in these developments will not be mentioned. Most of 
those mentioned will appear with only brief notice. Others, 
not mentioned, do not imply a lesser academic standing. 1 
elected a few events and names which 1 deem to be a good 
starting point for further research. The history of mathe
matics in South and Central America is a field open for 
research. Several notes and a list of references in the end 
are starting points for research projects. 

The origin of mathematical knowledge is an unresolved 
issue. It is difficult to disagree that the search for explana
tions (religions, arts and sciences), systems of values and 
behavior styles (communal and societal life), the psycho
emotional and the imaginary, and models of production and 
of property are related to mathematical thinking. There is 
growing scholarship in the search for different styles and 
modes of building up knowledge in different natural and 
cultural environments, where the development of mathe
matical ideas is recognized. Obviously, in the Americas 
these developments followed different paths from Europe, 
Asia and Africa. There is no indication at all of mutual 
influences between the so-called Old World and the New 
World. 

The conquest and colonization of the lands now known 
as the Americas had as a consequence an enormous redi
rectioning of the course of development of the civilizations 
of the continent. This is a common fact of cultural dy
namics and easily seen when we observe cultures which 
had no previous contacts with the colonizer. The incorpo
ration of modes of thought of the colonizer is frequently 
noticed. Reading the chroniclers of the conquest we eas
ily recognize different ways of explaining the cosmos and 
the creation and of dealing with the surrounding environ
ment. Religious systems, political structures, architecture 
and urban arrangements, sciences and values were, in a 
few decades, suppressed and replaced by those of the con
queror. A few remnants of the original behavior of these 
cultures were and still are outlawed or treated as folklore. 
But they surely integrate the cultural memory of the peoples 
descending from the conquered. Many of these behaviors 
are easily recognized in everyday life. And mathematical 
ideas are present in everyday life. Mathematics is both a 
human endeavour and a cultural form, hence it is subjected 
to cultural dynamics. l 

The relationshiop of mathematics to cultural dynamics 
is one focal point of the research program known as Ethno
mathematics, which deals with the the generation, the intel
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lectual and social organization and the diffusion of different 
ways, styles, modes (tics) of explanation, understanding, 
learning, coping with and probing beyond (mathema) the 
immediate natural and socio-cultural environment (ethno). 
The dynamics of this process is a major problem we face 
in doing the history of ideas in every region of this world. 

The conquest paved the way to colonization. The early 
colonizers of the Americas, the Spanish and the Portuguese, 
paved the way for the French, the English and the Dutch 
colonizers and later on for African, European, and Asian 
immigrants. With them came new forms of coping with the 

environment and of dealing with daily life, and new ways 
of explanation and learning. The result was the emergence 
of a synthesis of different forms of knowing and explaining 
which were generated by and available to the different com
munities, to workers and to the people. We recognize the 
emergence very soon of new religions and new languages
the creoles-in the Americas, of new cuisines, new music 
and new arts. All of these are absolutely interrelated as a 
synthesis of the cultural forms of the ancestors. 

As a cultural form, mathematics and mathematical be
havior becomes part of societal development. Modes of pro
duction, labor and social organization are intimately con
nected with mathematical ideas. Particularly in the Ameri
cas, the variety and peculiarities of the expositions of cul
tures and the specificities of the populational migrations re
veal an effort of the colonizer to transfer, with minor adap
tions, the forms of social, economical and political orga
nization and administration prevailing in the metropolises, 
including schooling and scholarship (academies, universi
ties, monasteries). The new institutions in the Americas 
were based on the styles prevailing in the metropolises, 
mostly under the influence, and even control, of religious 
orders. 

All this, which took place during most of the sixteenth, 
seventeenth, and eighteenth centuries, occurred while new 
philosophical ideas, new sciences, new ways of production 
and new political arrangements were flourishing in Europe. 
Cultural facts produced in Europe were assimilated in the 
Americas under specific, mostly precarious, conditions. In
deed the Americas were the consumers of some of these 

new cultural facts. There is a clear co-existence of cultural 
goods, particularly knowledge, produced in the Americas 
and produced abroad. The former were consumed mostly 
by the lower strata of society, the people and workers, and 
the latter by the dominant classes. These boundaries are 
not clearly defined and the mutual influence of the result
ing intellectual productions are evident. 

This poses the following question, which permeates my 
entire research program on the colonial era: what are the 

relations between the producers and consumers of cultural 
goods? The so-called civilizatory mission, as the colonial 
expansion used to be justified, is intrinsically associated 
with this question. 

This is a question affecting the relations between 
academia and society in general, hence between the ruling 
elites and the population as a whole, and it is particularly 
important for understanding the role of intellectuality in 
the colonial era. An immediate consequence of this broader 
historical view is a critique of epistemology, which gener
ates profound historico-epistemological conflicts.2 The ba

sic question above guides my proposal for a historiogra
phy of mathematics and for what I have called "the basin 
metaphor", for which ethnomathematics comes as a funda
mental instrument of historical analysis.3 

Curiously enough, the factors influencing the consump
tion of what we might call Academic Mathematics pro
duced in an alien cultural environment, and what "out
siders" of the profession-that is, nonmathematicians
have to say about mathematics, have not been given at
tention in the prevailing historiographies. My proposal in
corporates into the History of Mathematics, in an essential 
way, the views about mathematics of aliens, in both senses, 
migrants and non-mathematicians.4 

2. Specificities of the Americas 

This paper deals with Central and South America. For 
this region we need a specific chronology. The chronology 
adopted in current historiographies of science, particularly 
of mathematics, does not apply to this region. If we con
sider mathematics as a cultural endeavor, we have to accept 
what we might call a "situated" chronology. 

My proposal is a chronology based on five major peri
ods: 
1. Pre-columbian; 
2. Conquest and early colonial times (roughly sixteenth and 

seventeenth centuries); 
3. The established colonies (eighteenth century); 
4. Independent countries (nineteenth century); 
5. The twentieth century. 

This division is justified when we look into the most rel

evant turning points in the development of the region. Of 

course, mathematical development is subordinated to the 

overall scenario of society. 


Also, geographic divisions are very important. For the 
pre-Columbian period, sources are available mainly for the 
Aztec, Maya and Inca civilizations. An enlarged concept of 
sources, mainly drawn from anthropologists, is needed to 
look into other civilizations, such as, for example, those of 
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the prairies and of the Amazon basin. Much finer divisions, 

taking into account both political and cultural specificities, 

are needed for a special study of pre-Columbian mathe
matics. A similar situation occurs in studying traditional 

African cultures. 
For the period after the conquest of the Americas, the 

most appropriate method is to follow the administrative or
ganization in Viceroyalties: Nueva Espana (roughly what is 

today Mexico and upper Central America), Nueva Granada 

(southern Central America, approximately Costa Rica, 
Colombia, Venezuela, Ecuador), Peru (roughly Peru and 

Bolivia), La Plata (roughly what is now Chile, Paraguay, 

Argentina and Uruguay) and the Viceroyalty of Brazil, 
which was a Portuguese conquest. Since independence, we 
have roughly the current political division. 

In what follows, historical periods are defined according 

to the general chronology associated with the conquest and 
colonization of the Americas. Beginning with the indepen

dence movements in the late eighteenth and early nineteenth 

century, until present times, the cultural map is roughly the 

same. 
In this paper I will not cover the developments in the pre

Columbian period. But a few remarks are necessary.5 The 

imposition of the culture of the conquerer obviously de
pended on the culture of the conquered. But our knowledge 
of the pre-Columbian period is still very incomplete. There 

was a clear effort made by the colonial regimes to ignore 

or obliterate any sense of the history or historic achieve

ment of the native cultures. Today we are faced with the 
difficult task of reconstructing the histories of these cul

tures, both looking into the chronology of the events and 
understanding the important migratory currents that shaped 
their developments. Of course, this leads us to look into the 

history of mathematics in pre-Columbian times. 
The emergence of this scholarship relies heavily on a 

new reading of the chroniclers who described the Maya 
stellae, reported on the Peruvian quipus, described Aztec 

daily life, and indeed reported on every aspect of the con

quered people. But these views are biased and, understand
ably, they failed to identify and barely recognized any form 
of mathematical knowledge in these cultures. There are 

many references from the period.6 

3. Conquest and early colonial times 

Although Mexico is not covered in the delimitation of this 

paper, it is imperative to mention the developments in the 
Viceroyalty of Nueva Espana in this period. Most of the 

developments in Central and South America are dependent 

on the important and strategic position of Mexico in the 
New World. 

In the early colonial times, the Spanish and the Por
tuguese tried to establish schools, mostly run by Catholic 
religious orders. The demands for mathematics in these 
schools were essentially for economic purposes related to 
trade, but there was also an interest in mathematics re
lated to astronomical observations. Reliance on indigenous 
knowledge was limited, but there was some interest in the 
nature of native knowledge. 

An important source justifying this assertion is the first 
non-religious book published in the Americas, an arithmetic 
book related to mining, the Sumario compendioso de las 
quentas de plata y oro que en los reinos del Piru son nec
essarias a los mercaderes y todo genero de tratantes. Con 
a/gunas reg/as tocantes al arithmttica, by Juan Diez freyle, 
printed in New Spain in 1556. It is a book on arithmetic 
as practiced by the natives, to which the author adds some 
questions on the resolution of quadratics. 

Another important source is the Historia del Nuevo 
Mundo [1653], by Bernabe Cobo.7 The archives of the 
Jesuit missionaries, as well as of other religious orders, are 
rich in historic material, but they are as yet to be explored. 

Already in the first century after the conquest, we have 
practical books published in Mexico, such as the Arte 
menor de arithmetica, by Pedro de Paz, in 1623, and 
Arte menor de arithmtfica y modo de formar campos, by 
Atanasio Reaton, in 1649. One should also notice the book 
Nuevas proposiciones geometricas, written by Juan de Por
res Osorio, in Mexico. It might be interesting to compare 
this literature with books used in the English colonies in 
North America.8 

Astronomy was a major area of interest in Latin America 
in the seventeenth century. There are important discussions 
on the meaning of comets. Many of the interpretations re
late to their purpose of conveying divine messages and mes
sages to mankind. But there were also searches for scien
tific explanations. The figure of Don Carlos de Sigtlenza y 
Gongora, of Mexico, towers. His works focus on astronom
ical observations and calculations. His Libra astronomica 
y filosofica, written in 1690, is considered one of the most 
important works of Latin American science. In it Siguenza 
y Gongora refutes prevailing astrological arguments about 
comets. 

In Brazil, research on comets was of major importance. 
We see the same tone of the reflections of Siguenza y 
Gongora in the work of Valentin Stancel (1621-1705), 
a Jesuit mathematician from Prague who lived in Brazil 
from 1663 until his death. His astronomical measurements 
are mentioned in Newton's Principia.9 Several polemical 
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exchanges of letters and papers from these times reveal 
interesting epistemological arguments. Particularly reveal
ing of the internal tensions in such established schools of 
thought as the Jesuit order are the reports on Stancel by his 
superior, Antonio Vieira (1608-1697), commenting on his 
views about the nature of comets. lO 

In the Viceroyalty of Peru we also have the same con
cerns. The first to be recognized as a mathematician in 
Peru is Francisco Ruiz Lozano (1607-1677), who wrote 
Tratado de los Cometas, essentially a treatise of medieval 
mathematics explaining the phenomenon. 

4. The established colonies 

In late colonial times, since the middle of the eighteenth 
century, a good number of expatriates and criollos played 
an important role in creating a scientific atmosphere in the 
colonies. This happened under the influence of the llus
(racion [Enlightenment], the important intellectual revival 
that began in Spain under Charles III and in Portugal under 
Jose I and his strong minister, the Marquis of PombalY 

A number of intellectuals well versed in a variety of 
areas of knowledge were responsible for introducing math
ematics to the colonies. These include Juan Alsina and Pe
dro Cervifl.o in Buenos Aires, who lectured on Infinitesimal 
Calculus, Mechanics and Trigonometry. In Peru, Cosme 
Bueno (1711-1798), Gabriel Moreno (1735-1809) and 
Joaquin Gregorio Paredes (1778-1839) are best known. 1 
do not have access to details of the life and work of these 
individuals. 

In Brazil, Jose Fernandes Pinto Alpoim (1695-1765) 
wrote two books, Exame de Artilheiros (1744) and Ex
ame de Bombeiros (1748), both focused on what we might 
call military mathematics, and both written in the form of 
questions and answers. Not much is known of his life and 
mathematical work. Where and with whom did he study? 
These are questions open for research. 

In South America, Colombia had a privileged situation in 
the pre-independence days, which was reflected in the de
velopments in the nineteenth century. A rather distinguished 
figure was Jose Celestino Mutis (1732-1808), who was the 
author of an unpublished translation of Newton, but who 
was also responsible for bringing to Colombia new ideas 
of mathematics in Colombia, mainly relying on the books 
by Christian Wolff. He was the founder of the Observa

torio de Bogota, in 1803. His most distinguished disciple, 
Francisco Jose de Caldas (1771-1816), became the direc
tor of the Observatory. Caldas was deeply involved in the 
Independence War and was shot by the Spaniards. 

In Venezuela, a Real y Pontificia Universidad de Cara
cas was founded in 1721, with no mathematics contem
plated in its plan of studies. On the other hand, in Chile, 
the Universidad Real de San Felipe, which was inaugu
rated in 1747 in Santiago, was provided with a 'catedra' 
of Mathematics. Fray Ignacio LeOn de Garavito, a self
instructed criollo mathematician, was responsible for this 
chair. But the most significant developments of mathemat
ics in Latin America in those days took place in Mexico. 
The preponderance of New Spain in the Americas in that 
period was responsible for effects of these developments in 
the rest of the Spanish colonies. 

It is important to recognize that much of the develop
ment of mathematics in Europe in the Renaissance was 
due to the incipient industrialization and to the emergence 
of new metropolises. The same is true in the colonies. 
Practical problems related to building up the economy of 
the colonies and establishing the centers of administrative 
power resulted in the development of special kinds of ap
plied mathematics. In all the colonies in the Americas ur
banization was a major challenge. The transfer of the idea 
of a European city to the new world posed quite interesting 
problems, which influenced mathematical development. A 
sort of applied mathematics attempted to answer the most 
immediate questions posed by the economy of the region, 
such as mines and urban development.12 

The influence of Mexico is particularly felt in 
Guatemala, which included Costa Rica. The most 
renowned scholar in the period is Jose Antonio Liendo y 
Goicoechea (1735-1814), who had a Mexican background. 
He taught at the Universidad de San Carlos de Guatemala, 
which had already become an important academic center 
after a new plan of studies was published in 1785. This 
plan was written in the form of 25 theses, under the title 
Temas de Filosofia Racional y de Filosofia Mecanica de 
los sentidos. de acuerdo con los usos de la Fisica; y de 
otros topicos fisico-teo16gicos segun el pensamiento de los 
modernos para ser de/endidos en esta Real y Pontificia 
Academia Guatemalteca de San Carlos ... ."13 This was 
essentially a medieval proposition. Goicoechea was respon
sible for modernizing this plan of studies and incorporating 
experimental physics into the project. He introduced math
ematics incorporating Newtonian ideas, based on the texts 
of Christian Wolff. 

5. Independent countries 

The independence of the Viceroyalties of Nueva Espafl.a, 
Nueva Granada, Peru, La Plata and Brazil was achieved in 
the first quarter of the nineteenth century. The process of 
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modernization of the newly independent countries, which 
is proclaimed in the declarations of independence, did not 
change the prevailing attitude towards mathematics. 

The political division in countries following indepen
dence is practically the same as today. The independence 
of 1821 lessened the influence of Mexico in Central and 
South America. The establishment of new universities and 
the renewal of the old ones, immediately preceding and 
after independence, generated open attitudes with respect 
to sources of knowledge on which to build up the newly 
established countries of Latin America, formerly restricted 
almost exclusively to influences coming from Spain and 
Portugal. The new countries attracted considerable atten
tion from the rest of Europe, and a number of scientific 
expeditions were sent to South America. They had a great 
influence in creating new intellectual climates throughout 
the region. This new source of intellectual interest is seen 
very strongly in the building up of large and diversified 
libraries, both public and private, and the acquisition of 
modem literature and instruments. 

In Costa Rica the colonial authorities established the 
Casa de Enseflanza de Santo Tomas in 1814, in which 
Rafael Francisco Osejo, born in 1780, taught. He wrote 
in 1830 Lecciones de aritmetica, written in the form of 
questions and answers, a common feature in that period. 
In 1843 the Casa de Enseflanza was transformed into the 
Universidad de Santo Tomas, where chairs in Engineering 
were established. But no chair in mathematics was created. 

Colombia soon attracted foreign mathematicans. The 
Italian Agustin Codazzi (1793-1859) contributed to the 
creation of Colejio Militar, founded in 1846, which at
tracted a Frenchman, Aim~ Bergeron, a graduate from the 
Ecole Polytechnique. He seems to have been responsible 
for introducing Descriptive Geometry and creating an in
terest in Colombia in a proof of the Fifth Postulate of Eu
clid. Particularly noticeable are the attempts of Indalecio 
Li~vano (1834-1913), possibly a student of Bergeron, and 
of Hermogenes Wilson. Very interesting is a later position 
taken by Julio Garavito Armero (1865-1920) in discussing 
non-Euclidean geometry and criticizing studies about the 
Fifth Postulate and ruler and compass constructions. 14 In
deed, Geometry was a major subject not only in Colombia, 
but in all of South America. An indication of this is the fact 
that the Elements de Geometrie of Andr~ Marie Legendre, 
published in 1794, was translated in Brazil by Manoel Fer
reira de Arartjo Guimarlles in 1809, in Colombia by Luis 
M. Lleras in 1866, and in Venezuela by Jesrts Munoz Tebar, 
in 1879. 

In Venezuela, the Pontificia Universidad was trans
formed into the Universidad Central de Venezuela in 1826. 
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There Jose Rafael Acevedo taught the first course in Math
ematics in 1827. Lino Pombo (1797-1862) had a role in 
founding the Academia de Matematicas de Venezuela. He 
was concerned with the preparation of teachers of math
ematics and in 1821 proposed the creation of a Escuela 
Normal de Matematicas. He wrote a complete course of 
mathematics. 

In Brazil, the evolution of mathematics followed a dif
ferent path. While as a colony Brazil was practically de
prived of cultural facilities (no universities, no libraries, not 
a single printing press), the transfer of the royal family of 
Portugal to escape the Napoleonic invasion, in 1808, was 
decisive and changed cultural life in the colony. The Por
tuguese court settled in Rio de Janeiro, where they had to 
create an infrastructure to run, from a former colonial town, 
the Kingdom of Portugal. They founded a major library, a 
botanical garden, an astronomical observatory and a mili
tary academy in 1810, where higher mathematics (calculus, 
analytic geometry, algebra and trigonometry) was taught. 
The military academy was given a higher status in 1839 
under the name Escola Militar da Corte. There doctorates 
in mathematics could be granted. This institution had a 
very strong influence in the development of mathematics 
in Brazil.15 The translation of the textbooks of Legendre, 
already mentioned above, of Lacroix and of other French 
authors, was an important factor in generating what we 
might call a mathematical style in BraziL 

Particularly interesting is the case of Joaquim Gomes de 
Souza (1829-1863), known as "Souzinha", the first Brazil
ian mathematician who visited and submitted papers to Eu
ropean academies. He presented his results in the Academie 
des Sciences de Paris and in the Royal Society. Only short 
notice of the papers were given,16 and they were posthu
mously published as Mt!langes du Calcul Integral, in an 
independent printing by Brockhaus, of Leipzig, 1889. This 
work, dealing mainly with partial differential equations, is 
permeated by very interesting historical and philosophical 
remarks, revealing familiarity of the author with the most 
important literature then available. This was possible due to 
the existence of private collections in Maranhao, his home 
state in the Northeast. The contents of these libraries, as 
well as the details of their acquisition, is as yet an open 
field of research. 

Argentina, independent since 1816, had a remarkable 
intellectual development. In 1822 there was founded the 
ephemeral Sociedad de Ciencias Ffsicas y Naturales. 17 We 
soon see the emergence of private libraries in Buenos Aires. 
Particularly important is the private library of Bernardino 
Speluzzi (1835-1898), which included the main works of 
Newton, D'Alembert, Euler, Laplace, Carnot and several 
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other modern classics. Valentin Balbin (1851-190l), while 
Rector of the Colegio Nacional de Buenos Aires proposed 
in 1896 a new study plan which included history of mathe
matics as a distinct discipline. This is probably the first for
mal interest in the history of mathematics in South Amer
ica, which eventually led to an important school of History 
of Science in Argentina. 

In Peru, developments in statistics should be mentioned, 
beginning with the the book Ensayo de estadistica com
pleta de los ramos economico-poifticos de la provincia 
de Azangaro . .. by Jose Domingos Choquechuanca (1789
1858), published in 1833. 

In Chile, the Universidad de Chile was created in 1842, 
with a Facultad de Ciencias Ffsicas y Matematicas [Fac
ulty of Physical and Mathematical Sciences]. A most distin
guished member of the faculty is Ramon Picarte, a lawyer, 
who had his paper La division reducida a una adicion, 
accepted and published by the Academie des Sciences de 
Paris in 1859.18 Much emphasis was given, in the new 
university, to teacher training. A convention with the gov
ernment of Germany provided the pedagogical support to 
reform education in the country. Fifteen German mathe
maticians, most with a doctorate, emigrated to Chile in 
1889. Again, this is an as yet unexplored field of research. 

In the course of the nineteenth century, we notice a grow
ing interest in the philosophical ideas of Auguste Comte 
(1798-1857). His philosophical doctrine, known as Posi
tivism, placed mathematics in a central position. The posi
tivistic movement was impeded by the demands of building 
up the ideological framework of the new countries. This 
was a major concern of the emerging political elites. But 
it equally had important consequences in the development 
of mathematics and the sciences in general.19 

6. The twentieth century 

The developments of early twentieth century mathemat
ics in South and Central America cannot be appreciated 
without an overall perception of the economic and politi
cal forces at the turn of the century. There is an enormous 
need for identifying documents and for the preservation of 
extant sources in the countries, as well as in smaller ad
ministrative units, the states and provinces. 

When we look into the scenario at the turn of the century, 
we see significant efforts of Germany to establish areas 
of influence in the southern part of South America. What 
Lewis Pyenson called the 'German Cultural Imperialism' is 
clearly illustrated by looking into the development of the 
exact sciences in Argentina and in Chile. A major step to 
consolidate this influence was the efforts for the develop

ment of the Observatorio Astronomico de La Plata [As
tronomical Observatory of La Plata]. Richard Gans (1890
1954), a physicist who emigrated to Argentina in 1912, 
had an important role in the development of Argentinian 
science, in particular of mathematics.2o 

Unrelated to these efforts, the Spanish mathematician 
Julio Rey Pastor (1888-1962) visited Argentina in 1917 
and decided to stay there. He was responsible for introduc
ing modern approaches to the university curriculum. His 
books were widely used in several universities in Latin 
America.21 In addition to making important contributions 
to mathematics, mainly to projective geometry, Rey Pas
tor is particularly noteworthy for his contributions to the 
history of mathematics, especially of Iberian mathemat
ics in the sixteenth century. Rey Pastor also marked new 
directions in historiography by drawing attention to the 
mathematical achievements that made possible the great 
age of navigation.22 Although Rey Pastor remained in Ar
gentina for several years, he frequently returned to Spain, 
where he was responsible for considerable developments in 
mathematics.23 

A disciple of Rey Pastor in Argentina, Jose Babim 
(1897-1983), became one of the most distinguished his
torians of science and mathematics in Latin America. His 
career as a driving force of mathematics in Argentina is 
significant. He was a founder of the Union Matematica 
Argentina, and in 1920 he became Professor at the Univer
sidad Nacional del Litoral. Besides having written many 
books and articles in non-specialized periodicals, Babini 
increased the scholarship on the Jewish medieval contribu
tions to mathematics. He wrote, in collaboration with Julio 
Rey Pastor. a major work on the history of mathematics. 24 

Unfortunately, this interesting book has not as yet been 
translated into other languages, and it is even more regret
table that it is not easily available. 

In the 1930s, some European mathematicians emigrated 
to Argentina. Among them was the distinguished Italian 
mathematician Beppo Levi (1875-1961), who established 
an important research center in Rosario and founded a well 
known journal, Mathematica Notae. Recognized for his 
seminal theorem on the theory of integral, Beppo Levi de
voted much of his research to the history of mathematics.25 

A disciple of Rey Pastor who had students from several 
countries of the region is Luis Alberto Santalo. Born in 
Spain in 1911, Santalo had studied with W. Blaschke in 
Germany and already had an international reputation when 
he emigrated to Argentina during the Spanish Civil War. 
Santalo became world renowned as one of the founders 
of modern integral geometry and became a most influen
tial scholar in mathematics, mathematics education and the 
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history of mathematics in all of Latin America. Besides his 
relevant contributions to integral geometry, Santa16 inves
tigated the history of geometric probability and published 
relevant studies on Buffon. 

In neighboring Uruguay, an important tradition of math
ematical research was established early in the twentieth 
century. A representative of this movement, particularly de
voted to the history of mathematics, was Eduardo Garcia 
de Zuniga (1867-1951). Garcia de Zuniga succeeded in 
creating a most important library concentrating in the his
tory of mathematics at the Facultad de Ingener(a de la 
Universidad de la RepUblica. in Montevideo. His research 
was mainly in Greek Mathematics and his collected works 
have been recently published.26 fu mid-century, Rafael La
guardia and Jose Luiz Massera were responsible for the 
creation of a most distinguished research group in the sta
bility theory of differential equations in the Instituto de 
Matematica y Estadistica de la Facultad de Ingeneria de 
la Universidad de la Republica. in Montevideo. This re
search group, of world reknown, attracted young mathe
maticians from all of Latin America and abroad. The mil
itary dictatorship established in Uruguay in 1971 saw in 
the declared political position of Jose Luiz Massera and 
Rafael Laguardia a reason simply to close the excellent 
mathematical library of the university and to interrupt all 
mathematical research in the country. Of course, Uruguayan 
mathematicians went to several countries where they were 
responsible for stimulating the creation of research groups. 
Massera spent all the period of the military dictatorship 
in jail and afterwards abandoned mathematical research to 
pursue a political career. Rafael Laguardia died in Montev
ideo during the political repression. More than in any other 
country under military dictatorship in South America in the 
sixties, Uruguay is an example of how a flourishing sci
entific community can be immobilized by a governmental 
decision.27 ' 

fu Brazil, positivistic ideas were building up during the 
Empire and culminated with the proclamation of the Re
public in 1889. The Escola Militar was later transformed 
into the Escola Politecnica and was the only institution 
granting degrees in mathematics. Most of the theses submit
ted reveal, in the choice of the themes, the bibliography and 
the style, a strong influence of Comptean ideas.28 But in 
the beginning of the century, a number of young Brazilian 
mathematicians were absorbing the most recent progress of 
mathematics in Europe. Among them were Otto de Alencar, 
Manuel Amoroso Costa, Teodoro Augusto Ramos and Le
lio I. Gama. fu 1916, the Academia Brasileira de Ci~ncias 
was founded. With the inauguration of the Universidade de 
Sao Paulo in 1934, new possibilities opened for mathemat-

Mathematics in South and Central America: An Overview 251 

ics in Brazil. We might say this was the beginning of sys
tematic research in mathematics in the country. Luigi Fan
tapl~ and Giacomo Albanese, distinguished Italian math
ematicians contracted by the University of Sao Paulo, re
spectively in the fields of functional analysis and algebraic 
geometry, were responsible for initiating an important re
search school in Sao Paulo. 

7. Contemporary developments: after the end 
of the Second World War 

After World War II, a number of European mathematicians 
emigrated to Latin America. Particularly important is the 
presence of Antonio Aniceto Monteiro, from Portugal, in 
Rio de Janeiro and in Bahia Blanca, Argentina.29 Also at 
this time, there began an unprecedented cultural and eco
nomic interest of the United States in South America. This 
resulted in an increasing influence of the United States 
in the development of mathematics in the region. Before 
the war, Europe was the main source of visitors and the 
place chosen by Latin Americans to go abroad for stud
ies. After the war we see a considerable number of Euro
pean mathematicians going to Latin America in different 
circumstances. Some were looking for employment, scarce 
in post-war Europe. This reason, as well as political rea
sons, brought to South America mathematicians like Andre 
Weil, Jean Dieudonne, Alexander Grothendieck and several 
other Bourbakists to the Universidade de Sao Paulo. Wil
helm Damkohler to Argentina, John M. Horv~th to Colom
bia, Kuo-Tsai Chen of China to Brazil. The Portuguese 
mathematicians Antonio A. Monteiro, Ruy L. Gomes, Ma
noel Zaluar Nunes, Antonio Pereira Gomes, and Jose Mor
gado went to Brazil and to Argentina. Manuel Balanzat 
from Spain went to Argentina and Venezuela, among many 
others. Others employed by the former colonial empires, 
specifically France and England, which were interested in 
preserving their presence in what became known as the 
Third World, were employed by cooperation agencies. fu
strumental in these efforts were national organizations such 
as the~ British Council, ORSTOM and the Cooperation 
/ram;aise, and, on an international basis, UNESCO and 
the Organization of American States. 

The growth of American influence is evident. The Or
ganization of American States was instrumental in favor
ing United States influence and exchanges. Fellowships 
for doctoral studies became relatively easy to obtain. The 
United States became the main destination of a genera
tion of young students pursuing their doctorates abroad. 
The creation of the National Science Foundation set up the 
model to be soon followed by practically every Latin Amer
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ican country through the CONICYTs, CONACYTs and the 
like. An effort of the AAAS to cooperate with homologous 
organizations in Latin America is also noted. This is a pe
riod in which we see the emergence of a scientific policy in 
the Latin American countries, with important consequences 
for the development of mathematics.30 

In the late forties, the need of an overview of mathemat
ical research going on in Latin America became clear. In 
1951, the Centro de Cooperacion Cientffiea de La UNESCO 
para Arn~riea Latina, located in Montevideo, Uruguay, or
ganized a meeting in Punta del Este, to report on mathemat
ical research going on in the region. The proceedings of this 
meeting tell us about research conducted in Latin America 
by national mathematicians and by foreigners, both immi
grants and visitors.3l 

One of these mathematicians was Leopoldo Nachbin, of 
the Universidade do Brasil. who was doing research on 
the Theorem of Stone-Weierstrass and launching the study 
of holomorphy and approximation theory in Brazil. Luis 
Santal6, then at the F aeuLtad de Cieneias de La Plata, Ar
gentina, reported on his research in integral geometry. Fran
cis D. Murnangham, from Johns Hopkins University, who 
was in Brazil with the mission of building up a research 
group in applied mathematics in the I nstituto TeenolOgieo 
de Aeronautiea in Sao Jost dos Campos, a model instituion 
of advanced technology sponsored by the Brazilian Armed 
Forces and academically modelled upon MIT, reported on 
his research on matrix theory. Mischa Cotlar, of the F aeul
tad de Ciencias de Buenos Aires reported on his research 
on ergodic theory in cooperation with R. Ricabarra. Mario 
O. Gonzalez, of the Universidad de la Habana, reported 
on his research in differential equations. Alberto Gonzalez 
Dominguez, of the Faeultad de Ciencias de Buenos Aires, 
was working on distributions and analytic functions. Carlos 
Graeff Fernandez, of the Universidad NacionaL Autonorna 
de M~xieo, was working on Birkhoff's gravitational the
ory. Godofredo Garcia, of the Faeultad de Matematieas de 
Lima, reported on general relativity; and Rafael Laguardia, 
of the lnstituto de Matematica y Estadistica de La F acultad 
de lngeneria de Montevideo, reported on his research on 
Laplace transforms. 

Foreigners included Wilhelm DamkOhler, a German spe
cialist in the calculus of variations, who emigrated to the 
Universidad Nacional de Tucuman. Argentina, and later 
went to the Universidad de Potosi, Bolivia; Peter Thullen, 
employed by the International Office of Labor in Paraguay, 
who was working on the theory of several complex vari
ables; and Kurt Fraenz, of the F acultad de Ciencias de 
Buenos Aires, who reported on the mathematical theory of 
electric circuits. Paul Halmos, who at that time was visiting 

the lnstituto de Maternatica y Estadistico de la Facultad de 
lngenieria, in Montevideo, gave an opening lecture on "Op
erators in Hilbert Spaces". The introductory lectures given 
by him in Montevideo circulated widely in Latin America. 
Augustin Duranona y Vedia, of the F acultad de Ciencias 
de La Plata; Roberto Frucht, of the Faeultad de Maternat
ieas y Fisica de Santa Maria. Chile; Pedro Pi Calleja, of 
the Facultad de Ciencias de La Plata; and Cesario Villegas 
Mane, of the Facultad de lngeneria de Montevideo, were 
invited discussants. 

This "dropping of names" should not be regarded as 
an account of what was going on in South America in 
1950. Many more individuals were active in mathematics. 
Each one of the mathematicians attending the Symposium 
deserves a study of his life and work and of his influence 
in his own country. This should be a priority theme for 
research in the history of mathematics in Latin America. 

Three years later a second symposium was convened, in 
which Julius Rey Pastor was invited to give an account of 
research in mathematics going on in Latin America. Al
though incomplete, this was an attempt to cover the main 
areas which were being developed.32 

In the fifties the Conselho NacionaL de Pesquisas/ 
CNPq [National Research Council] was created in Brazil. 
Among its institutes was the lnstituto de Maternatiea Pura 
e AplicadalIMPA [Institute of Pure and Applied Mathe
matics]. IMPA organized in 1957 the Primeiro Coloquio 
Brasileiro de Matematica [First Brazilian Mathematics 
Colloquium] in the tourist resort P~os de Caldas. Ap
proximately 50 mathematicians from Brazil, including re
searchers and graduate students, were invited. A few for
eign lecturers were also invited. The Brazilian Mathematics 
Colloquium has since then met regularly, every two years 
for two weeks in July in P~os de Caldas. These research 
schools were followed by the Escuelas Latinoarnerieanas 
de Maternatica/ELAM [Latin American Schools of Mathe
matics], held in different places each time. An overview of 
the current development of mathematics in Latin Amer
ica is given by the study of the ColOquios Brasileiros 
de Matematica and of the Escuelas Latinoamericanas de 
Maternatica, looking for participants, their geographical 
distribution, themes treated, and so on. I believe this is 
a research project needed in Latin America. 

To analyze contemporary history is a difficult task, since 
we have to refer to processes still going on and we risk 
stumbling into personal and political sensibilities. Sev
eral academicians were active in the period when military 
regimes took control of the governments of the countries 
which were showing the greatest vitality in mathematical 
research in South America. The military coups, which oc

http:developed.32
http:visitors.3l
http:mathematics.30


curred sequentially in the four countries which were most 
active in mathematical research: Brazil 1964, Argentina 
1966, Uruguay 1971, Chile 1973, precipitated an impor
tant migratory flux of mathematicians, indeed scientists in 
all areas, among these countries. These movements soon 
were directed to the few Latin American countries which 
were able to keep democratic regimes, particularly Mexico 
and Venezuela. After the redemocratization of Argentina 
(1983), Brazil (1984), Uruguay (1984) and Chile (1989), 
some scientists returned and reclaimed their positions. Oth
ers were able to maintain their positions during the military 
regimes and kept these positions after democratization. The 
dividing line between opponents and sympathizers or even 
collaborators with the military regimes is very difficult to 
draw. Obviously, personal conflicts are still latent. Political 
issues played a role in the development of mathematics in 
Latin America and continue to do so. The intense migra
tion of mathematicians, the same as in other areas, in the 
countries of Latin America, due to economic and political 
reasons, is a theme that deserves research. 

Even the participation in the UNESCO symposium re
veals a power play in the academic scenario. A number 
of mathematicians active in several countries of the region 
were not invited to the meeting. Looking into Mathemat
ical Reviews we might be able to see that the invitations 
were selective. Although it is very difficult to identify the 
reasons behind these invitations, this is also a theme which 
deserves research. 

An international symposium on "La MigracitJn de 
Cientificos en los Pafses del Cono Sur: determinaciones 
econtJmicas y po[(ticas [The Migration of Scientists in the 
Countries of the Southern Cone: Economical and Political 
Detenninants)", was convened by the FEPAI: FundacitJn 
para el Estudio del Pensamiento Argentino, in July 1986. 
The interventions and debates revealed open wounds which 
remain from the period of military dictatorship. Although 
unpleasant and somewhat painful, it is important to look 
into this period and its consequences while some of the 
protagonists are still alive. I deem this as an important and 
needed research project. 

8. Mathematics Education 

An area of research which is growing very fast in Latin 
America is mathematics education. Until the end of World 
War II there was practically no coordination and not even 
any interchange about progress and difficulties in the teach
ing of mathematics at the various levels of education. A 
link between all the educational systems was the result of 
the influence of colonial times and the use of the colo-
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nial languages. Thus, the entire bloc of Spanish speaking 
countries would show similarities, and Brazil would show 
a slight difference. These links should be a positive factor 
for mathematical education in the Americas. But sometimes 
they brought charges of interference in the educational sys
tems of the individual countries. 

In the fifties we see the begining of efforts to im
prove the educational systems of the countries. Exam
ples of these efforts are the several waves of the mod
ern mathematics movement. A decisive move was the cre
ation of the Inter-American Committee of Mathematics 
Education (IACME/CIAEM) by initiative of Marshall H. 
Stone (1903-1989). The committees. in addition to stud
ies and researches, promotes the Inter-American Confer
ences of Mathematics Education. which take place every 
four years.33 The international contacts of Latin American 
mathematics educators and colleagues from different parts 
of the world were intensified during the so-called modern 
mathematics movement. 34 

9. Increasing interest in the History of 
Mathematics 

Although we recognize some interest in the history of math
ematics since colonial times, in the last decades it has be
come a growing area of academic interest throughout South 
America. The founding of the Sociedad Latinoamericana 
de Historia de las Ciencias y la Tecnologia. in 1983, stim
ulated the organization of national societies devoted to the 
history of science, which include sections of the history 
of mathematics. Young mathematicians have recently ob
tained doctorates in history of mathematics in both Europe 
and in North America, which is a hopeful sign of maturity 
and continuing professionalization of the subject through
out Latin America. Among the research areas we see both 
European mathematics and Latin American progress in the 
mathematical sciences. A growing interest in contemporary 
mathematics in Latin America can also be noticed. 

10. Additional References 

I have tried to give an overall, although very incomplete, ac
count of a vast subject. Mexico has advanced far in the very 
attractive area of research in the History of Latin Ameri
can mathematics. In Central and South America the field 
is just beginning. Practically all the names mentioned in 
this paper, and several others not mentioned, are open to 
investigation. A few results of research are very partial 
and disperse. The project of an Encic/opedia de las Cien
cias y las T~cnicas Iberoamericanas, proposed by Mariano 
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Hormigon, will certainly put together more information on 
Central and South America. 

In addition to references given as notes, I suggest: 

Arboleda, Luis Carlos: 1985, "Dificultades estructurales de la 
profesionalizaci6n de las matematicas en Colombia," in Pe
set, Jose Luiz (ed.), La Cienda Moderna y el Nuevo Mundo, 
CSIC/SLAHCT, Madrid, pp. 27-38. 

Azevedo, Fernando de (org.): 1994, As Ciencias no Brasil, Editora 
UFRJ, Rio de Janeiro, (ed. original 1955). 

Babini, Jose: 1992, Pdginas para una Autobiografia, Pr6logo 
y notas de Nicolas Babini, Asociaci6n Biblioteca Jose 
Babini/Ediciones Letra Buena, Buenos Aires. 

D'Ambrosio, Ubiratan: 1994, "0 Seminario Matematico e 
Fisico da Universidade de Sao Paulo. Uma Tentativa de 
Institucionaliza~ao na Decada de Trinta," in Temas e Debates, 
ano VII, no. 4, pp. 20-27. 

Gonzalez Orellana, Carlos: 1985, Historia de la Educadon en 
Guatemala, Editorial Universitaria, Guatemala. 

Orellana C .• Mauricio: 1991. Resumen de las Clases del Curso 
de Historia de la Matemdtica en America Latina y Venezuela, 
Universidad Pedag6gica Experimental Libertador, Caracas, 
(mimeographed). 

Ramos, Gerardo: El desarrollo de la Matemdtica en el Penl in 
Algunos aportes para el estudio de la historia de fa dencia 
en el Peru, editor Ernesto Yepes, CONCYTEC, Lima, sid, 
pp.15-19. 

Santai6, Luis A.: 1970, "La Matematica en la Facultad de Cien
cias Exactas y Naturales de la Universidad de Buenos Aires 
en el periodo 1865-1930," in Bol. de la Acad. Nadonal de 
Ciencias, Cordoba, Torno 48, pp. 255-273. 

--: 1972, "Evoluci6n de las Ciencias en la Republica Argentina 
1923-1972," in Tomo I: Matemdtica , Sodedad Cient(fica Ar
gentina, Buenos Aires. 

Silva, CI6vis Pereira da: 1999, A Matemdtica no Brasil. Uma 
HistOria do seu Desenvolvimento, 2" edi~ao, Editora Unisinos, 
Sao Leopoldo, RS. 

Trabulse, Elfas: 1994, Ciencia y Tecnologia en el Nuevo Mundo. 
EI Colegio de MexicolFondo de Cultura Economica, Mexico. 

Zulliga, Angel Ruiz (ed.): 1995, Historia de las Matemdticas en 
Costa Rica. Editorial de la Universidad de Costa Rica, San 
Jose. 
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ica, Centro de Cooperacion Cientifica de la UNESCO para Amer
ica Latina, Montevideo, 1951. 

32 Julio Rey Pastor, "La matematica modema en Latino America," 
Segundo Symposium sobre Algunos problemas matematicos que 
se estdn estudiando en Latino Amt!rica, Villavicenzio-Mendoza, 
21-25 Julio 1954, UNESCO, Montevideo, pp. 9-20. 

33 A history of the commission is now available, in a double lan
guage (Spanish and English) edition: Hugo Barrantes & Angel 
Ruiz, Project Coordinator Eduardo Luna: La Hist6ria del Comitt! 
Interamericano de Educacion MatemdticalThe History of the 
1nter-American Committee on Mathematics Education, Academia 
Colombian a de Ciencias Exactas, Ffsicas y Naturales, Santa Fe 
de Gogota, Colombia, 1998. 

34 An account of the influences of the movement can be seen in 
the doctoral thesis of Beatriz Silva D'Ambrosio, The Dynamics 
and Consequences of the Modern Mathematics Reform Move
ment for Brazilian Mathematics Education, School of Education, 
Indiana University, Bloomington. 
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Notes on Contributors 


Abraham Arcavi received his PhD in mathematics education from the Weizmann Institute of Science in Israel. He 
presently holds a position as Senior Scientist in the Science Teaching Department of the Weizmann Institute. He 
is involved in curriculum development projects in mathematics, in in-service teacher education, and in research on 
mathematical cognition. His main research interests are in the areas of mathematics learning and teaching at the 
secondary and college levels, and history and philosophy of mathematics. 

Evelyne Barbin is Maitre de Conf6rences in Epistemology and History of Sciences of the IUFM (Institut Universitaire de 
Formation des Maitres) of the Academy of CreteiL Her historical researches concern mainly mathematical proof in 
history, and history of mathematics in the seventeenth century. She is editor of many books concerning the history of 
mathematics, including History of Mathematics, Histories of Problems (1997). She is president of the inter-IREM 
National Commission on Epistemology and History of Mathematics, a body which has worked for twenty years, in 
the IREMs (Instituts de Recherche sur I'Enseignement des Math6matiques) of France, on integrating history into 
the teaching of mathematics. 

Janet Heine Barnett, Associate Professor of Mathematics at the University of Southern Colorado, holds a doctorate in 
set theory from the University of Colorado. Her scholarly interests include the use of history as a mechanism for 
promoting mathematical understanding, and as a vehicle for promoting teacher reflection on pedagogical issues. 
Current projects include the mathematical history of Paris (jointly with G. Heine), and a historical study of the 
role of proof and intuition in the development of mathematical concepts and the implication of these developments 
for mathematics teaching. Her article "A Brief History of Algorithms in Mathematics" appears in the NCTM 1998 
Yearbook. 

Maxim Bruckheimer co-authored many books for students and teachers in the sixties. After teaching at the City University 
in London, he helped found the Open University in 1969. As Dean of Mathematics, he was responsible for the first 
multimedia courses which established the University's reputation. In 1974 he moved to the Weizmann Institute of 
Science in Israel, where he became head of the Department of Science Teaching. A major interest is the history of 
mathematics in mathematics education. He and Abraham Arcavi have produced historical worksheet materials for 
teachers and, with others, illustrated historical activities for use in the junior high school classroom. 

Jaime Carvalho e Silva is Associate Professor of Mathematics in the Mathematics Department of the University of 
Coimbra (Portugal). His main area of research is partial differential equations and he has strong interest in the 
history of mathematics and mathematics education. He has written several papers on different aspects of the history 
of mathematics in Portugal and is the author or co-author of eight textbooks for secondary school and university. 
He has coordinated the mathematics programs for secondary education in Portugal since 1995 and is the author of 
the most visited mathematics internet site in Portuguese. 

Ubiratan D'Ambrosio is Professor Emeritus of Mathematics at the State University of Campinas, UNICAMP, in Sao 
Paulo, Brazil. He has been involved for many years in the history of mathematics and its use in teaching. In 
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particular, he was instrumental in founding the discipline of ethnomathematics and has been one of its leading 
expositors. He served his university as the Director of the Institute of Mathematics, Statistics and Computer Science 
and as Pro-Rector for University Development. He is currently president of the Brazilian Society of the History of 
Mathematics and also president of the International Study Group on Ethnomathematics. 

Jean-Luc Dorier is currently Professor in a University Teacher Training Institute (I.U.P.M.) in Lyon and head of a research 
team in the field of didactics of mathematics, in Grenoble. His work focuses on the teaching and learning of linear 
algebra at university level. His interest in this didactical question led him to an extensive study of the history of 
linear algebra, and he developed a research program which includes theoretical issues on the connection between 
research in history and in didactics of mathematics. His other fields of interest include the teaching of vectors 
(in mathematics and in physics, as well as their use in technological fields), the modelling issue in mathematics, 
especially in economics oriented curricula, and the teaching of arithmetic at college level. 

Ant6nio Leal Duarte is Assistant Professor of Mathematics in the Mathematics Department of the University of Coimbra 
(Portugal). His main area of research is matrix theory, namely inverse problems for matrices with a given graph. 
He has strong interest in the history of mathematics and graph theory and has written articles on the history of 
mathematics in Portugal. Reading and book collecting, namely rare mathematical books, are his favorite hobbies 

Fulvia Furinghetti is Associate Professor of "Elementary mathematics from an advanced standpoint" in the Department 
of Mathematics of the University of Genoa (Italy). She is the co-ordinator of a group of mathematics teachers and 
researchers working in the field of mathematics education. Her educational research concerns the integration of 
history in mathematics teaching, approaches to proof, mathematical beliefs. teacher education and training. In the 
field of the history of mathematics she studies mathematics journals of the past, in particular, journals for teachers 
or students which treat problems of teaching and learning mathematics. 

Uwe Gellert has been lecturing since 1993 at the Free University of Berlin (Germany). He has worked on ethnomathematics 
and the history of mathematics, focusing on social aspects of mathematics and mathematics education. His PhD 
thesis is a socio-cultural analysis of the beliefs on which elementary teachers' professional conceptions are based. 
He currently is Assistant Professor at the Department of Education and Psychology at the Free University of Berlin. 

Livia Giacardi teaches mathematics at the University of Turin and does research in the history of mathematics. She has 
published books and papers in Italy and abroad dealing with the mathematics of ancient civilizations, the history 
of Leibnizian infinitesimal calculus, and nineteenth century Italian geometrical studies (research and teaching). She 
is preparing, as general editor, a CD-ROM (conceived as a hypertext) reproducing, with critical notes, the forty 
notebooks written for the university courses by Corrado Segre (1863-1924), the founder of the Italian school of 
Algebraic Geometry. She is a member of the boards of various Italian scientific associations. 

Lucia Grugnetti is Associate Professor of Foundations of Mathematics at the Mathematics Department in the University 
of Parma, researcher in mathematics education, history of mathematics, history of mathematics in mathematics 
education, editor of the bilingual Journal L'Educazione Matematica, Scientific Counsellor of one of the research 
groups in mathematics education in Parma, one of the two International Organizers of RMT (Rally Math~matique 
Transalpin), and member of the Committee on Mathematics Education of EMS (the European Mathematical Society). 
She has been the President of CIEAEM (Commission Internationale pour l'~tude et l'am~lioration de l'enseignement 
matMmatique) in the period 1993-1997. ' 

Georges Gu~rette was born in a small town in rural Quebec, Canada. He has taught mathematics and computer science 
at the high school level in the region of Sudbury, Ontario, Canada, for over 30 years. He is especially interested 
in fmding new ways to get students motivated in learning mathematics and in promoting students' participation in 
mathematics competitions. He is also actively involved in the implementation of the new curriculum in mathematics 
in the province of Ontario. 

Torkil Heiede was born in 1931. He was educated at Copenhagen University and was from 1963 until he retired in 
1997 a professor of mathematics at the Royal Danish School of Educational Sutdies. He is still active speaking 
and writing on diverse mathematical subjects and on their history, and also on the place of history in mathematics 
education at all levels. Since 1966 he has been a co-editor of the Scandinavian journal Normal; he is a founder 
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member of the Con Amore Problem Group, and he has now for some years been secretary of the Danish Society for 
the History of the Exact Sciences. He contributed to the MAA Notes No 40 Vita Mathematica: Historical Research 
and Integration With Teaching (1996) with a paper called "History of Mathematics and the Teacher." 

George W. Heine is the proprietor of Math and Maps, a mathematical and statistical consulting enterprise. He holds a 
doctorate in Applied Probability from the University of Colorado (Denver), where his main research interests were 
simulated annealing and Monte Carlo methods. Current interests include a study of the mathematical history of Paris 
(jointly with 1. Barnett), and the relationship between philosophy, mathematics, and religion in the Middle Ages, 

especially in Islam. 

Gavin Hitchcock is a senior lecturer in mathematics at the University of Zimbabwe. His research interests lie in general 
topology and history of mathematics; he is also concerned with the enlivening of mathematics teaching by means of 
posters, models, games, drama, and history. Recent publications include: "Dramatizing the Birth and Development of 
Mathematical Concepts: Two Dialogues," in Vita Mathematica: Historical Research and Integration in Teaching, ed. 
Ronald Calinger (MAA, 1996): 27-41; and "Entertaining Strangers: A Dialogue Between Galileo and Descartes", 
Comparative Criticism 20 (Cambridge University Press, 1998): 63-85. 

Wann-Sheng Horng is Professor of Mathematics at the National Taiwan Normal University, Taipei, Taiwan. He studied at 
the City University of New York in the late 1980s to become a professional historian of mathematics. Since then he 
has also been paying attention to the issues of history and pedagogy of mathematics. His pUblications cover basically 
two fields: (1) history of Chinese mathematics, especially its socio-cultural aspects in the nineteenth century; (2) 
integration of history of mathematics, especially a contrast of different mathematical cultures, into mathematical 
teaching. 

Ian Isaacs commenced his teaching career in the education system in Jamaica, West Indies. Later he taught for several 
years in the graduate and undergraduate programs at the School of Education, The University of the West Indies, 
Jamaica campus. He was for several years the chief mathematics examiner for the Caribbean Examination Council 
where he assisted in developing the basic and advanced level mathematics programs for secondary schools. He is one 
of the co-authors of the text foint School Mathematics for the Caribbean. Ian has served as lecturer and later senior 
lecturer at the Northern Territory University, Australia for over a decade. His main interest is in problem solving, 
and he has contributed to several national and international conferences. He has made significant contributions to 
the Teachers' Mathematics Education programs in the West Indies, Australia and more recently in Western Samoa. 
He has retired and is now serving in the Australian Volunteers Abroad Program, currently in Tanzania, in Africa. 

Anne Michel-Pajus is Professeur de Chaire Superieure in mathematics in "Classes Preparatoires" (tertiary level) at Lycee 
Claude Bernard in Paris. She is involved in in-service education at the Universite Denis Diderot in Paris, where she 
works in the IREM (Institut de Recherche sur l'Enseignement des Mathematiques) on the history and epistemology 
of mathematics, including their use in teaching mathematics. She is one of the authors of A History of Algorithms 
(1999), edited by J.L. Chabert, and one of the co-editors of Mnemosyne, a magazine for teachers, published by her 
IREM. 

Vivekanand Mohan-Ram's teaching career spans over forty years, commencing in Guyana, South America, Trinidad 
and Barbados in the West Indies and now in Darwin, Australia. His experiences as a mathematics teacher/educator 
were gained at secondary schools, teachers' colleges in Guyana, University of the West Indies, The Caribbean 
Examination Council, and at Northern Territory University, Australia where he teaches Mathematics Education, 
Technology, and Psychology. He is one of co-authors of the text Oxford Mathematics for the Caribbean, Book 
1. One of his main interests is constructing three-dimensional mathematics models to facilitate the teaching and 
learning of mathematical concepts. He has contributed to several national and international mathematics conferences 
by conducting mathematics workshops demonstrating the benefits derived from integrating pop-up engineering and 
geometrical concepts. 

Luis 	Moreno-Armella is a senior researcher in mathematics education in the Mathematics Education Department of 
the Center for Research and Advanced Studies (Cinvestav) at Mexico City. He received his BSc in the Faculty of 
Mathematics, at the National University of Colombia, and his MSc and PhD in mathematics in the Mathematics 
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Department at Cinvestav. His main research interests are the epistemology and history of mathematics from the 
perspective of mathematics education, and the mediation role of computational tools for the learning of mathematics. 
His publications include papers in such journals as Educational Studies in Mathematics, International Journal in 
Mathematics for Science and Technology and invited chapters in such books as Exploiting Mental Imagery with 
Computers in Mathematics Education, R. Sutherland & I.Mason (eds), Springer-Verlag. 

Joao Filipe Queiro is Associate Professor of Mathematics in the Mathematics Department of the University of Coimbra 
(Portugal). His main area of research is spectral inequalities for matrices and operators. He is interested in the history 
in mathematics, in particular in Portugal. He has also dealt with university policies in Portugal and published a book 
on the subject in 1995. 

Luis Radford obtained his PhD from Universit~ Louis Pasteur, Strasbourg, France. He spent several years working in 
a national training program for teachers of mathematics in Guatemala, his native country. Currently he is a Full 
Professor at Laurentian University, Ontario, Canada. His domain of research includes the teaching and learning of 
mathematics, epistemology, semiotics, and the history of mathematics. One of his current research projects deals 
with the study of constitutive cultural aspects of diverse historical modes of algebraic thinking. 

Ann Richards taught mathematics and science in secondary schools for twenty years and spent three years as a mathematics 
adviser to primary and secondary schools. For the past fourteen years she has worked with primary pre-service 
teaching students at the (now) Northern Territory University in Darwin, Australia. This work has been primarily in 
the area of mathematics education but also in science and technology education. Ann's interests are in the areas of 
visual imagery, technology in mathematics education and ethnomathematics. 

Eleanor Robson works in the Oriental Institute, University of Oxford, where she teaches the languages, history, and 
archaeology of the ancient Near East. She is a Fellow of All Souls College. After a degree in mathematics she began to 
train as a cuneiformist in order to work on Mesopotamian mathematics. A revised version of her doctoral dissertation 
was published as Mesopotamian mathematics, 2100-1600 BC (Clarendon Press, 1999). She is particularly interested 
in the social and intellectual environments in which mathematics was developed, recorded, and transmitted in the 
ancient Middle East, from earliest times to late Antiquity. 

Man-Keung Siu obtained his BSc from University of Hong Kong and his PhD from Columbia University writing a 
thesis on algebraic K -theory under the supervision of Hyman Bass. He is now a professor of mathematics at his 
undergraduate alma mater. He has published in the fields of algebra, combinatorics, applied probability, mathematics 
education, and history of mathematics. The Chinese Mathematical Society selected his book Mathematical Proofs 
(1990, in Chinese) as one of the seven outstanding books in mathematical exposition in 1991. He received a CASME 
Award from the Commonwealth Association of Science and Mathematics Educators in 1981 for the making of a 
slide show to popularize mathematics. 

Frank Swetz is Professor Emeritus of Mathematics and Education at the Pennsylvania State University. His research 
interests have focused on societal impact on the development of mathematics, its learning and teaching. He is an 
advocate of using the history of mathematics in its teaching and has given many workshops for teachers on this topic. 
Among his recent publications are From Five Fingers to Infinity: A Journey Through the History of Mathematics 
(1994) and Learning Activities from the History of Mathematics (1994). At present, he is completing a study of the 
magic square of order three, its cultural and historical significance. 

Constantinos Tzanakis (born in 1956) is Associate Professor of Mathematics at the Department of Education of the 
University of Crete, Greece. He has studied mathematics (Athens University, Greece), and astronomy (Sussex 
University, UK) and obtained his PhD in theoretical physics (Universit~ Libre de Bruxelles, Belgium). His area of 
research is mathematical physics (statistical mechanics, relativity theory and geometrical methods in physics) and 
mathematics and physics education (the relation between history and epistemology of mathematics and physics and 
their teaching). 

Guillermina Waldegg is a Senior Researcher in Science Education at the Educational Research Department of the Centre 
for Research and Advanced Studies in Mexico City. She received her BSc degree in physics at the National University 
of Mexico and her MSc and PhD in mathematics education at the Centre for Research and Advanced Studies. Her 
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main research interests are the epistemology and the history of science in relation to science education. She has 
particularly worked on the concepts of number, infinity, and mathematical and physical continuity. Her publications 
include research articles and text books for both science teachers and science students. She is the editor of Educacion 
matematica, a leading journal on mathematics education published in Spanish. 

Robin Wilson is a Senior Lecturer in Mathematics and a Fellow of Keble College, Oxford University. He is widely known 
as a popular expositor in mathematics, and has written and edited over twenty books, ranging from combinatorics 
and graph theory, via Gilbert & Sullivan, to the history of mathematics. In the last of these fields he has coedited 
Let Newton be, Mobius and his band, and Oxford figures, and is currently working on a history of combinatorics. 
His research interests lie in the history of combinatorics and in British mathematics from 1840 to 1950. 

Greisy Winicki Landman teaches at Oranim, the School of Education of the Kibbutz Movement in Israel. She works with 
pre-service primary school teachers and with secondary school teachers. She teaches courses concerning didactics of 
mathematics teaching, and she is interested in the use of the history of mathematics to improve teaching techniques. 
Nowadays she is also working with in-service teachers on the introduction of original Hebrew mathematics texts 
dating from the Middle Ages. 
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