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Preface

This book has its origin in notes which I compiled for a course on the history of mathematics at
King’s College London, taught for many years before we parted company. My major change in
outlook (which is responsible for its form) dates back to a day ten years ago at the University of
Warwick, when I was comparing notes on teaching with the late David Fowler. He explained his
own history of mathematics course to me; as one might expect, it was detailed, scholarly, and
encouraged students to do research of their own, particularly on the Greeks. I told him that I gave
what I hoped was a critical account of the whole history of mathematics in a series of lectures,
trying to go beyond what they would find in a textbook. David was scornful. ‘What’, he said,
‘do you mean that you stand up in front of those students and tell stories?’ I had to acknowledge
that I did.

David’s approach meant that students should be taught from the start not to accept any story at
face value, and to be interested in questions rather than narrative. It’s certainly desirable as regards
the Greeks, and it’s a good approach in general, even if it may sometimes seem too difficult and too
purist. I hope he would not be too hard on my attempts at a compromise. The aims of the book in
this, its ultimate form, are set out in the introduction; briefly, I hope to introduce students to the
history, or histories of mathematics as constructions which we make to explain the texts which we
have, and to relate them to our own ideas. Such constructions are often controversial, and always
provisional; but that is the nature of history.

The original impulse to write came from David Robinson, my collaborator on the course at King’s,
who suggested (unsuccessfully) that I should turn my course notes into a book; and providentially
from Alison Jones of the Oxford University Press, who turned up at King’s when I was at a loose
end and asked if I had a book to publish. I produced a proposal; she persuaded the press to accept
it and kept me writing. Without her constant feedback and involvement it would never have been
completed.

I am grateful to a number of friends for advice and encouragement. Jeremy Gray read an early
draft and promoted the project as a referee; the reader is indebted to him for the presence of
exercises. Geoffrey Lloyd gave expert advice on the Greeks; I am grateful for all of it, even if I only
paid attention to some. John Cairns, Felix Pirani and Gervase Fletcher read parts of the manuscript
and made helpful comments; various friends and relations, most particularly Jack Goody, John
Hope, Jessica Hines and Sam and Joe Gold Hodgkin expressed a wish to see the finished product.

Finally, I’m deeply grateful to my wife Jean who has supported the project patiently through
writing and revision. To her, and to my father Thomas who I hope would have approved, this book
is dedicated.
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Introduction

Why this book?

[M. de Montmort] was working for some time on the History of Geometry. Every Science, every Art, should have its
own. It gives great pleasure, which is also instructive, to see the path which the human spirit has taken, and (to speak
geometrically) this kind of progression, whose intervals are at first extremely long, and afterwards naturally proceed
by becoming always shorter. (Fontenelle 1969, p. 77)

With so many histories of mathematics already on the shelves, to undertake to write another calls
for some justification. Montmort, the first modern mathematician to think of such a project (even
if he never succeeded in writing it) had a clear Enlightenment aim: to display the accelerating
progress of the human spirit through its discoveries. This idea—that history is the record of
a progress through successive less enlightened ages up to the present—is usually called ‘Whig
history’ in Anglo-Saxon countries, and is not well thought of. Nevertheless, in the eighteenth
century, even if one despaired of human progress in general, the sciences seemed to present a good
case for such a history, and the tradition has survived longer there than elsewhere. The first true
historian of mathematics, Jean Étienne Montucla, underlined the point by contrasting the history
of mathematical discovery with that which we more usually read:

Our libraries are overloaded with lengthy narratives of sieges, of battles, of revolutions. How many of our heroes
are only famous for the bloodstains which they have left in their path! . . . How few are those who have thought of
presenting the picture of the progress of invention, or to follow the human spirit in its progress and development.
Would such a picture be less interesting than one devoted to the bloody scenes which are endlessly produced by the
ambition and the wickedness of men?. . .

It is these motives, and a taste for mathematics and learning combined, which have inspired me many years ago in
my retreat . . . to the enterprise which I have now carried out. (Montucla 1758, p. i–ii)

Montucla was writing for an audience of scholars—a small one, since they had to understand the
mathematics, and not many did. However, the book on which he worked so hard was justly admired.
The period covered may have been long, but there was a storyline: to simplify, the difficulties which
we find in the work of the Greeks have been eased by the happy genius of Descartes, and this is
why progress is now so much more rapid. Later authors were more cautious if no less ambitious,
the major work being the massive four-volume history of Moritz Cantor (late nineteenth century,
reprinted as (1965)). Since then, the audience has changed in an important way. A key document
in marking the change is a letter from Simone Weil (sister of a noted number theorist, among
much else) written in 1932. She was then an inexperienced philosophy teacher with extreme-left
sympathies, and she allowed them to influence the way in which she taught.

Dear Comrade,

As a reply to the Inquiry you have undertaken concerning the historical method of teaching science, I can only tell you
about an experiment I made this year with my class. My pupils, like most other pupils, regarded the various sciences as
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compilations of cut-and-dried knowledge, arranged in the manner indicated by the textbooks. They had no idea either
of the connection between the sciences, or of the methods by which they were created . . .

I explained to them that the sciences were not ready-made knowledge set forth in textbooks for the use of the
ignorant, but knowledge acquired in the course of the ages by men who employed methods entirely different from
those used to expound them in textbooks . . . I gave them a rapid sketch of the development of mathematics, taking as
central theme the duality: continuous–discontinuous, and describing it as the attempt to deal with the continuous by
means of the discontinuous, measurement itself being the first step. (Weil 1986, p. 13)

In the short term, the experiment was a failure; most of her pupils failed their baccalaureate
and she was sacked. In the long term, her point—that science students gain from seeing their
study not in terms of textbook recipes, but in its historical context—has been freed of its Marxist
associations and has become an academic commonplace. Although Weil would certainly not
welcome it, the general agreement that the addition of a historical component to the course will
produce a less limited (and so more marketable) science graduate owes something to her original
perception.

It is some such agreement which has led to the proliferation of university courses in the history
of science, and of the history of mathematics in particular. Their audience will rarely be students
of history; although they are no longer confined to battles and sieges, the origins of the calculus
are still too hard for them. Students of mathematics, by contrast, may find that a little history
will serve them as light relief from the rigours of algebra. They may gain extra credit for showing
such humanist inclinations, or they may even be required to do so. A rapid search of the Internet
will show a considerable number of such courses, often taught by active researchers in the field.
While one is still ideally writing for the general reader (are you out there?), it is in the first place to
students who find themselves on such courses, whether from choice or necessity, that this book is
addressed.

On texts, and on history

Insofar as it stands in the service of life, history stands in the service of an unhistorical power, and, thus subordinate,
it can and should never become a pure science such as, for instance, mathematics is . . .

History pertains to the living man in three respects; it pertains to him as a being who acts and strives, as a being
who preserves and reveres, as a being who suffers and seeks deliverance. (Nietzsche 1983, p. 67)

American history practical math
Studyin hard and tryin to pass. (Berry 1957)

Chuck Berry’s words seem to apply more to today’s student of history, mathematics, or indeed
the history of mathematics, than Nietzsche’s; history pertains to her or him as a being who
goes to lectures and takes exams. And naturally where there is a course, the publisher (who also
has a living to make) appears on the scene to see if a textbook can be produced and marketed.
Probably, the first history designed for use in teaching, and in many ways the best, was Dirk
Struik’s admirably short text (1986) (288pp., paperback); it is probably no accident that Struik
the pioneer held to a more mainstream version of Simone Weil’s far-left politics. This was followed
by John Fauvel and Jeremy Gray’s sourcebook (1987), produced together with a series of short
texts from the Open University. This performed the most important function, stressed in the British
National Curriculum for history, of foregrounding primary material and enabling students to see
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for themselves just how ‘different’ the mathematics of others might appear.1 Since then, broadly,
the textbooks have become longer, heavier, and more expensive. They certainly sell well, they
have been produced by professional historians of mathematics, and they are exhaustive in their
coverage.2 What then is lacking? To explain this requires some thought about what ‘History’ is,
and what we would like to learn from it. From this, hopefully, the aims which set this book off from
its competitors will emerge.

E. H. Carr devoted a short classic to the subject (2001), which is strongly recommended as a
preliminary to thinking about the history of mathematics, or of anything else. In this, he begins by
making a measured but nonetheless decisive critique of the idea that history is simply the amassing
of something called ‘facts’ in the appropriate order. Telling the story of the brilliant Lord Acton,
who never wrote any history, he comments:

What had gone wrong was the belief in this untiring and unending accumulation of hard facts as the foundation
of history, the belief that facts speak for themselves and that we cannot have too many facts, a belief at that time
so unquestioning that few historians then thought it necessary—and some still think it unnecessary today—to ask
themselves the question ‘What is history?’ (Carr 2001, p. 10)

If we accept for the moment Carr’s dichotomy between historians who ask the question and
those who consider that the accumulation of facts is sufficient, then my contention would be
that most specialist or local histories of mathematics do ask the question; and that the long,
general and all-encompassing texts which the student is more likely to see do not. The works
of Fowler (1999) and Knorr (1975) on the Greeks, of Youschkevitch (1976), Rashed (1994),
and Berggren (1986) on Islam, the collections of essays by Jens Høyrup (1994) and Henk Bos
(1991) and many others in different ways are concerned with raising questions and arguing
cases. The case of the Greeks is particularly interesting, since there are so few ‘hard’ facts to
go on. As a result, a number of handy speculations have acquired the status of facts; and
this in itself may serve as a warning. For example, it is usually stated that Eudoxus of Cnidus
invented the theory of proportions in Euclid’s book V. There is evidence for this, but it is rather
slender. Fowler is suspicious, and Knorr more accepting, but both, as specialists, necessarily
argue about its status. In all general histories, it has acquired the status of a fact, because (in
Carr’s terms) if history is about facts, you must have a clear line which separates them from
non-facts, and speculations, reconstructions, and arguments disrupt the smoothness of the
narrative.

As a result, the student is not, I would contend, being offered history in Carr’s sense; the
distinguished authors of these 750-page texts are writing (whether from choice or the demands
of the market) in the Acton mode, even though in their own researches their approach is quite
different. Indeed, in this millennium, they can no longer write like Montucla of an uninterrupted
progress from beginning to present day perfection, and they are aware of the need to be fair to
other civilizations. However, the price of this academic good manners is the loss of any argument
at all. One is reminded of Nietzsche’s point that it is necessary, for action, to forget—in this case,
to forget some of the detail. And there are two grounds for attempting a different approach, which

1. There are a number of other useful sourcebooks, for example, by Struik (1969) but Fauvel and Gray is justly the most used and
will be constantly referred to here.

2. Ivor Grattan-Guinness’s recent work (1997) escapes the above categorization by being relatively light, cheap, and very strongly
centred on the neglected nineteenth century. Although appearing to be a history of everything, it is nearer to a specialist study.
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have driven me to write this book:

1. The supposed ‘humanization’ of mathematical studies by including history has failed in its aim
if the teaching lacks the critical elements which should go with the study of history.

2. As the above example shows, the live field of doubt and debate which is research in the history
of mathematics finds itself translated into a dead landscape of certainties. The most interesting
aspect of history of mathematics as it is practised is omitted.

At this point you may reasonably ask what better option this book has to offer. The example of
the ‘Eudoxus fact’ above is meant to (partly) pre-empt such a question by way of illustration.
We have not, unfortunately, resisted the temptation to cover too wide a sweep, from Babylon in
2000 bce to Princeton 10 years ago. We have, however, selected, leaving out (for example) Egypt,
the Indian contribution aside from Kerala, and most of the European eighteenth and nineteenth
centuries. Sometimes a chapter focuses on a culture, sometimes on a historical period, sometimes
(the calculus) on a specific event or turning-point. At each stage our concern will be to raise
questions, to consider how the various authorities address them, perhaps to give an opinion of our
own, and certainly to prompt you for one.

Accordingly, the emphasis falls sometimes on history itself, and sometimes on historiography: the
study of what the historians are doing. Has the Islamic contribution to mathematics been under-
valued, and if so, why? And how should it be described? Was there a ‘revolution’ in mathematics in
the seventeenth century—or at any other time, for that matter; by what criteria would one decide
that one has taken place? Such questions are asked in this book, and the answers of some writers
with opinions on the subjects are reported. Your own answers are up to you.

Notice that we are not offering an alternative to those works of scholarship which we recommend.
Unlike the texts cited above (or, in more conventional history, the writings of Braudel, Aries, Hill, or
Hobsbawm) this book does not set out to argue a case. The intention is to send you in search of those
who have presented the arguments. Often lack of time or the limitations of university libraries will
make this difficult, if not impossible (as in the case of Youschkevitch’s book (Chapter 5), in French
and long out of print); in any case the reference and, hopefully, a fair summary of the argument
will be found here.

This approach is reflected in the structure of the chapters. In each, an opening section sets the
scene and raises the main issues which seem to be important. In most, the following section, called
‘Literature’, discusses the sources (primary and secondary) for the period, with some remarks on
how easy they may be to locate. Given the poverty of many libraries it would be good to recommend
the Internet. However, you will rarely find anything substantial, apart from Euclid’s Elements (which
it is certainly worth having); and you will, as always with Internet sources, have to wade through
a great mass of unsupported assertions before arriving at reliable information. The St Andrews
archive (www-gap.dcs.st-and.ac.uk/ history/index.html) does have almost all the biographies you
might want, with references to further reading. If your library has any money to spare, you should
encourage it to invest in the main books and journals; but if you could do that,3 this book might
even become redundant.

3. And if key texts like Qin Jiushao’s Jiuzhang Xushu (Chapter 4) and al-Kāshī’s Calculator’s Key (Chapter 5) were translated into
English.

www.gap.dcs.st-and.ac.uk/history/index.html
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Examples

For a long time I had a strong desire in studying and research in sciences to distinguish some from others, particularly
the book [Euclid’s] Elements of Geometry which is the origin of all mathematics, and discusses point, line, surface,
angle, etc. (Khayyam in Fauvel and Gray 6.C.2, p. 236)

At the age of eleven, I began Euclid, with my brother as my tutor. This was one of the great events of my life, as
dazzling as first love. I had not imagined there was anything so delicious in the world. From that moment until I was
thirtyeight, mathematics was my chief interest and my chief source of happiness. (Bertrand Russell 1967, p. 36)

Perhaps the central problem of the history of mathematics is that the texts we confront are
at once strange and (with a little work) familiar. If we read Aristotle on how stones move, or on
how one should treat slaves, it is clear that he belongs to a different time and place. If we read Euclid
on rectangles, we may be less certain. Indeed, one could fill a whole chapter with examples taken
from the Elements, the most famous textbook we have and one of the most enigmatic. Because our
history likes to centre itself on discoveries, it is common to analyse the ingenious but hypothetical
discoveries which underlie this text, rather than the text itself. And yet the student can learn a great
deal simply by considering the unusual nature of the document and asking some questions. Take
proposition II.1:

If there are two straight lines, and one of them is cut into any number of segments whatever, then the rectangle
contained by the two straight lines equals the sum of the rectangles contained by the uncut straight line and each of
the segments.

Let A and BC be two straight lines, and let BC be cut at random at the points D and E.
I say that the rectangle A by BC equals the sum of the rectangle A by BD, the rectangle A by DE, and the rectangle A

by EC.

If we draw the picture (Fig. 1), we see that Euclid is saying in our terms that a(x+y+z) = ax+ay+az;
what in algebra is called the distributive law. Some commentators would say (impatiently) that that
is, essentially, what he is saying; others would say that it is important that he is using a geometric
language, not a language of number; such differences were expressed in a major controversy of the
1970s, which you will find in Fauvel and Gray section 3.G. Whichever point of view we take, we
can ask why the proposition is expressed in these terms, and how it might have been understood
(a) by a Greek of Euclid’s time, thought to be about 300 bce and (b) by one of his readers at any
time between then and the present. Euclid’s own views on the subject are unavailable, and are
therefore open to argument. And (it will be argued in Chapter 2), the question of what statements
like proposition II.1 might mean is given a particular weight by:

1. the poverty of source material—almost no writings from before Euclid’s time survive;
2. the central place which Greek geometry holds in the Islamic/Western tradition.

A

B D E C

Fig. 1 The figure for Euclid’s proposition II.1.
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A second well-known example, equally interesting, confronted the Greeks in the nineteenth
century. A classical problem dealt with by the Greeks from the fifth century onwards was the
‘doubling of the cube’: given a cube C, to construct a cube D of double the volume. Clearly this
amounts to multiplying the side of C by 3

√
2. A number of constructions for doing this were

developed, even perhaps for practical reasons (see Chapter 3). As we shall discuss later, while Greek
writers seemed to distinguish solutions which they thought better or worse for particular reasons,
they never seem to have thought the problem insoluble—it was simply a question of which means
you chose.

A much later understanding of the Greek tradition led to the imposition of a rule that the
construction should be done with ruler and compasses only. This excluded all the previous solutions;
and in the nineteenth century following Galois’s work on equations, it was shown that the ruler-
and-compass solution was impossible. We can therefore see three stages:

1. a Greek tradition in which a variety of methods are allowed, and solutions are found;
2. an ‘interpreted’ Greek tradition in which the question is framed as a ruler-and-compass

problem, and there is a fruitless search for a solution in these restricted terms;
3. an ‘algebraic’ stage in which attention focuses on proving the impossibility of the inter-

preted problem.

All three stages are concerned with the same problem, one might say, but at each stage the game
changes. Are we doing the same mathematics or a different mathematics? In studying the history,
should we study all three stages together, or relate each to its own mathematical culture? Different
historians will give different answers to these questions, depending on what one might call their
philosophy; to think about these answers and the views which inform them is as important as the
plain telling of the story.

Historicism and ‘presentism’

Littlewood said to me once, [the Greeks] are not clever schoolboys or ‘scholarship candidates’, but ‘Fellows of another
college’. (Hardy 1940, p. 21)

There is not, and cannot be, number as such. We find an Indian, an Arabian, a Classical, a Western type of mathem-
atical thought and, corresponding with each, a type of number—each type fundamentally peculiar and unique, an
expression of a specific world-feeling, a symbol having a specific validity which is even capable of scientific definition,
a principle of ordering the Become which reflects the central essence of one and only one soul, viz., the soul of that
particular Culture. (Spengler 1934, p. 59)

In the rest of this introduction we raise some of the general problems and controversies which
concern those who write about the history of science, and mathematics in particular. Following
on from the last section in which we considered how far the mathematics of the past could be
‘updated’, it is natural to consider two approaches to this question; historicism and what is called
‘presentism’. They are not exactly opposites; a glance at (say) the reviews in Isis will show that while
historicism is sometimes considered good, presentism, like ‘Whig history’, is almost always bad. It is
hard to be precise in definition, since both terms are widely applied; briefly, historicism asserts that
the works of the past can only be interpreted in the context of a past culture, while presentism tries
to relate it to our own. We see presentism in Hardy and Littlewood’s belief that the ancient Greeks
were Cambridge men at heart (although earlier Hardy has denied that status to the ‘Orientals’).
By contrast, Spengler, today a deeply unfashionable thinker, shows a radical historicism in going
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so far as to claim that different cultures (on which he was unusually well-informed) have different
concepts of number. It is unfair, as we shall see, to use him as representative—almost no one would
make such sweeping claims as he did.

The origins of the history of mathematics, as outlined above (p. 1), imply that it was at
its outset presentist. An Enlightenment viewpoint such as that of Montucla saw Archimedes
(for example) as engaged on the same problems as the moderns—he was simply held back
in his efforts by not having the language of Newton and Descartes. ‘Classical’ historicism of
the nineteenth-century German school arose in reaction to such a viewpoint, often stressing
‘hermeneutics’, the interpretation of texts in relation to what we know of their time of pro-
duction (and indeed to how we evaluate our own input). Because it was generally applied (by
Schleiermacher and Dilthey) to religious or literary texts, it was not seen as leading to the rad-
ical relativism which Spengler briefly made popular in the 1920s; to assert that a text must
be studied in relation to its time and culture is not necessarily to say that its ‘soul’ is com-
pletely different from our own—indeed, if it were, it is hard to see how we could hope to
understand it. Schleiermacher in the early nineteenth century set out the project in ambitious
terms:

The vocabulary and the history of an author’s age together form a whole from which his writings must be understood
as a part. (Schleiermacher 1978, p. 113)

And we shall find such attempts to understand the part from the whole, for example, in Netz’s
study (1999, chapters 2 and 3) of Greek mathematical practice, or Martzloff ’s attempt (1995,
chapter 4) to understand the ancient Chinese texts. The particular problem for mathematics,
already sketched in the last section, is its apparent timelessness, the possibility of translat-
ing any writing from the past into our own terms. This makes it apparently legitimate to be
unashamedly presentist and consider past writing with no reference to its context, as if it were
written by a contemporary; a procedure which does not really work in literature, or even in other
sciences.

To take an example: a Babylonian tablet of about 1800 bce may tell us that the side of a square
and its area add to 45; by which (see Chapter 1) it means 45

60 = 3
4 . There may follow a recipe for

solving the problem and arriving at the answer 30 (or 30
60 = 1

2 ) for the side of the square. Clearly
we can interpret this by saying that the scribe is solving the quadratic equation x2 + x = 3

4 . In a
sense this would be absurd. Of equations, quadratic or other, the Babylonians knew nothing. They
operated in a framework where one solved particular types of problems according to certain rules
of procedure. The tablet says in these terms: Here is your problem. Do this, and you arrive at the
answer. A historicist approach sees Babylonian mathematics as (so far as we can tell) framed in
these terms. You can find it in Høyrup (1994) or Ritter (1995).4

However, the simple dismissal of the translation as unhistorical is complicated by two points.
The first is straightforward: that it can be done and makes sense, and that it may even help our
understanding to do so. The second is that (although we have no hard evidence) it seems that there
could be a transmission line across the millennia which connects the Babylonian practice to the
algebra of (for example) al-Khwārizmī in the ninth century ce. In the latter case we seem to be
much more justified in talking about equations. What has changed, and when? A presentist might

4. Høyrup is even dubious about the terms ‘add’ and ‘square’ in the standard translation of such texts, claiming that neither is a
correct interpretation of how the Babylonians saw their procedures.
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argue that, since Babylonian mathematics has become absorbed into our own (and this too is open
to argument), it makes sense to understand it in our own terms.

The problem with this idea of translation, however, is that it is a dictionary which works one
way only. We can translate Archimedes’ results on volumes of spheres and cylinders into our usual
formulae, granted. However, could we then imagine explaining the arguments, using calculus, by
which we now prove them to Archimedes? (And if we could, what would he make of non-Euclidean
geometry or Gödel’s theorem?) At some point the idea that he is a fellow of a different college does
seem to come up against a difference between what mathematics meant for the Greeks and what it
means for us.

As with the other issues raised in this introduction, the intention here is not to come down on
one side of the dispute, but to clarify the issues. You can then observe the arguments played out
between historians (explicitly or implicitly), and make up your own mind.

Revolutions, paradigms, and all that

Though most historians and philosophers of science (including the later Kuhn!) would disagree with some of the
details of Kuhn’s 1962 analysis, it is, I think, fair to say that Kuhn’s overall picture of the growth of science as con-
sisting of non-revolutionary periods interrupted by the occasional revolution has become generally accepted. (Gillies
1992, p. 1)

From Kuhn’s sociological point of view, astrology would then be socially recognised as a science. This would in my
opinion be only a minor disaster; the major disaster would be the replacement of a rational criterion of science by a
sociological one. (Popper 1974, p. 1146f )

If we grant that the subject of mathematics does change, how does it change, and why? This
brings us to Thomas Kuhn’s short book The Structure of Scientific Revolutions, a text which has been
fortunate, even if its author has not. Quite unexpectedly it seems to have appealed to the Zeitgeist,
presenting a new and challenging image of what happens in the history of science, in a way which
is simple to remember, persuasively argued, and very readable. Like Newton’s Laws of Motion, its
theses are few enough and clear enough to be learned by the most simple-minded student; briefly,
they reduce to four ideas:

Normal science. Most scientific research is of this kind, which Kuhn calls ‘puzzle-solving’; it is
carried out by a community of scholars who are in agreement with the framework of research.

Paradigm. This is the collection of allowable questions and rules for arriving at answers within
the activity of normal science. What force might move the planets was not an allowable question
in Aristotelian physics (since they were in a domain which was not subject to the laws of force); it
became one with Galileo and Kepler.

Revolutions. From time to time—in Kuhn’s preferred examples, when there is a crisis which the
paradigm is unable to deal with by common agreement—the paradigm changes; a new community
of scholars not only change their views about their science, but change the kinds of questions and
answers they allow. This change of the paradigm is a scientific revolution. Examples include physics
in the sixteenth/seventeenth century, chemistry around 1800, relativity and quantum theory in
the early twentieth century.

Incommensurability. After a revolution, the practitioners of the new science are again practising
normal science, solving puzzles in the new paradigm. They are unable to communicate with their
pre-revolutionary colleagues, since they are talking about different objects.



Introduction 9

Consider . . . the men who called Copernicus mad because he proclaimed that the earth moved. They were not either
just wrong or quite wrong. Part of what they meant by ‘earth’ was fixed position. Their earth, at least, could not be
moved. (Kuhn 1970a, p. 149)

Setting aside for the moment the key question of whether any of this might apply to mathematics,
its conclusions have aroused strong reactions. Popper, as the quote above indicates, was prepared
to use the words ‘major disaster’, and many of the so-called ‘Science Warriors’ of the 1990s5 saw
Kuhn’s use of incommensurability in particular as opening the floodgates to so-called ‘relativism’.
For if, as Kuhn argued in detail, there could be no agreement across the divide marked by a
revolution, then was one science right and the other wrong, or—and this was the major charge—
was one indifferent about which was right? Relativism is still a very dangerous charge, and the idea
that he might have been responsible for encouraging it made Kuhn deeply unhappy. Consequently,
he spent much of his subsequent career trying to retreat from what some had taken to be evident
consequences of his book:

I believe it would be easy to design a set of criteria—including maximum accuracy of predictions, degree of specializa-
tion, number (but not scope) of concrete problem solutions—which would enable any observer involved with neither
theory to tell which was the older, which the descendant. For me, therefore, scientific development is, like biological
development, unidirectional and irreversible. One scientific theory is not as good as another for doing what scientists
normally do. In that sense I am not a relativist. (Kuhn 1970b, p. 264)

It is often said that writers have no control over the use to which readers put their books, and this
seems to have been very much the case with Kuhn. The simplicity of his theses and the arguments
with which he backed them up, supported by detailed historical examples, have continued to win
readers. It may be that the key terms ‘normal science’ and ‘paradigm’ under the critical microscope
are not as clear as they appear at first reading, and many readers subscribe to some of the main
theses while holding reservations about others. Nonetheless, as Gillies proclaimed in our opening
quote, the broad outlines have almost become an orthodoxy, a successful ‘grand narrative’ in an
age which supposedly dislikes them.

So what of mathematics? It is easy to perceive it as ‘normal science’, if one makes a sociological
study of mathematical research communities present or past; but has it known crisis, revolu-
tion, incommensurability even? This is the question which Gillies’ collection (1992) attempted
to answer, starting from an emphatic denial by Michael Crowe. His interesting, if variable, ‘ten
theses’ on approaching the history of mathematics conclude with number 10, the blunt assertion:
‘Revolutions never occur in mathematics’ (Gillies 1992, p. 19). The argument for this, as Mehrtens
points out in his contribution to the volume, is not a strong one. Crowe aligns himself with a very
traditional view, citing (for example) Hankel in 1869:

In most sciences, one generation tears down what another has built . . . In mathematics alone each generation builds
a new storey to the old structure. (Cited in Moritz 1942, p. 14)

Other sciences may have to face the problems of paradigm change and incommensurability, but
ours does not. It seems rather complacent as a standpoint, but there is some evidence. One test
case appealed to by both Crowe and Mehrtens is that of the ‘overthrow’ of Euclidean geometry in
the nineteenth century with the discovery of non-Euclidean geometries (see chapter 8). The point
made by Crowe is that unlike Newtonian physics—which Kuhn persuasively argued could not be

5. This refers to a series of arguments, mainly in the United States, about the supposed attack on science by postmodernists,
sociologists, feminists, and others. See (Ashman and Barringer 2000)
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seen as ‘true’ in the same sense after Einstein—Euclidean geometry is still valid, even if its status is
now that of one acceptable geometry among many.

This point, of course, links to those raised in the previous sections. How far is Euclid’s geometry
the same as our own? An interesting related variant on the ‘revolution’ theme, which concerns
the same question, is the status of geometry as a subject. Again in Chapter 8, we shall see that
geometry in the time of Euclid was (apparently) an abstract study, which was marked off from the
study of ‘the world’ in that geometric lines were unbounded (for example), while space was finite.
By the time of Newton, space had become infinite, and geometry was much more closely linked
to what the world was like. Hence, the stakes were higher, in that there could clearly only be one
world and one geometry of it. The status of Euclidean geometry as one among many, to which
Crowe refers, is the outcome of yet another change in mathematics, later than the invention of the
non-Euclidean geometries: the rise of the axiomatic viewpoint at the end of the nineteenth century
and the idea that mathematics studied not the world, but axiom-systems and their consequences.

It may be that neither of these radical changes in the role of geometry altered the ‘truth-claims’
of the Euclidean model. Nonetheless, there is a case for claiming that they had a serious effect on
what geometry was about, and so could be treated as paradigm shifts. Indeed, we shall see early
nineteenth-century writers treating geometry as an applied science; in which case, one imagines,
the Kuhnian model would be applicable.

As can be seen, to some extent the debate relates to questions raised earlier, in particular how
far one adheres to a progressive or accumulative view of the past of mathematics. There have
been subsequent contributions to the debate in the years since Gillies’ book, but there is not yet a
consensus even at the level that exists for Kuhn’s thesis.

External versus internal

[In Descartes’ time] mathematics, under the tremendous pressure of social forces, increased not only in volume and
profundity, but also rose rapidly to a position of honor. (Struik 1936, p. 85)

I would give a chocolate mint to whoever could explain to me why the social background of the small German courts of
the 18th century, where Gauss lived, should inevitably lead him to deal with the construction of the 17-sided regular
polygon. (Dieudonné 1987)

An old, and perhaps unnecessary dispute has opposed those who in history of science consider
that the development of science can be considered as a logical deduction in isolation from the
demands of society (‘internal’), and those who claim that the development is at some level shaped by
its social background (‘external’). Until about 30 years ago, Marxism and various derivatives were
the main proponents of the external viewpoint, and the young Dirk Struik, writing in the 1930s,
gives a strong defence of this position. Already at that point Struik is too good a historian not to be
nuanced about the relations between the class struggle and mathematical renewal under Descartes:

In [the] interaction between theory and practice, between the social necessity to get results and the love of science for
science’s sake, between work on paper and work on ships and in fields, we see an example of the dialectics of reality, a
simple illustration of the unity of opposites, and the interpenetration of polar forms . . .The history and the structure
of mathematics provide example after example for the study of materialist dialectics. (Struik 1936, p. 84)

The extreme disfavour under which Marxism has fallen since the 1930s has led those who
believe in some influence of society to abandon classes and draw on more acceptable concepts such
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as milieus, groups, and actors; and Dieudonné has died without conceding that anyone had earned
his chocolate mint. Yet in a sense the struggle has sharpened, under the influence of what has been
called the ‘Edinburgh School’ or the ‘strong program in the sociology of knowledge’ (SPSK), origin-
ally propounded in the 1980s by Barry Barnes and David Bloor. For Marxists believed that scientific
knowledge (including Marxism) was objective, and hence the rising classes would be inspired to
find out true facts (as Struik’s examples of logarithms and Cartesian geometry illustrate); as Mao
famously said:

Where do correct ideas come from? Do they fall from the sky? No. Are they innate in the mind? No. They come from
social practice, and from it alone. They come from three kinds of social practice, the struggle for production, the class
struggle and scientific experiment. (Mao Zedong 1963, p. 1)

Notice that Mao too allows for ‘internal’ factors; the use of scientific experiment to arrive at
correct ideas. The Edinburgh school has led the way in an increased scepticism, even relativism
on the issue of scientific truth, and in seeing, in the limit, all knowledge as socially determined.
In one way such a view might be easier for mathematicians to accept than for physicists (say),
since the latter consider it important for their justification that electrons, quarks, and so on should
be objects ‘out there’ rather than social constructions. Mathematicians, one would think, are less
likely to feel the same way about (say) the square root of minus one, however useful it may be
in electrical engineering. In this respect, Leopold Kronecker’s famous saying that ‘God made the
natural numbers; all else is the work of man’ places him as a social constructivist before his time.

A deliberately hard test case in a recent text by some of the school goes to work on the deduction
of ‘2 + 2 = 4’, on proof in general, underlying assumptions, logical steps in proof, and so on.

So-called ‘self-evidence’ is historically variable . . . Rather than endorsing one of the claims to self-evidence and reject-
ing the other, the historian can take seriously the unprovability of the claims that are made at this level, and search
out the immediate causes of the credibility that is attached or withheld from them. Self-evidence should be treated as
an ‘actors’ category’. . . (Barnes et al. 1996, p. 190)

Because they are sociologists rather than historians, the Edinburgh school tend not to have an
underlying theory of historical change; hence they are stronger on identifying difference across
cultures or periods than on identifying the basis on which change takes place. While influenced by
Kuhn, and so seeing some sort of a crisis or breakdown in the consensus as motivating, they feel
that the actors and their social norms must have something to do with it. However, the society in
crisis may be simply the mathematical research community, in which case we are still in a modified
‘internal’ model similar to that of Kuhn (cf. the disputes about the axiom of choice cited in Barnes
et al. 1996, pp. 191–2); or it may be influenced by the wider community, as in the case of Joan
Richards’ study of the relation between Euclidean geometry and the Victorian established church
(see chapter 8). As Paul Forman, responsible for one of the best studies of the interaction of science
and society (1971), has pointed out recently (1995), the accusation of relativism seems to have
driven many advocates of the strong programme into a partial retreat from a position which was
never very historically explicit.

And yet, the hard-line internalist position is still considered inadequate by many historians, even
if they are not sure what mixture of determinants they should put in its place. Often in the last two
centuries, internal determinants seem paramount,6 though in operational research, computing

6. One could, for example, point out that knot theory, while first developed in the 1870s by an electrical engineer (Tait) to deal
with a physical problem, has proceeded according to an apparent internal logic of its own since then. See chapter 9.
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and even chaos theory one could see outside forces at work. In earlier history, when we have the
evidence (and we often do not) it often seems the other way round. In his commentary on the
‘Rectangular Arrays’ (matrices) section of the Nine Chapters (see chapter 4), Liu Hui analyses a
problem on different grades of paddy. He says, ‘It is difficult to comprehend in mere words, so we
simply use paddy to clarify’. Does he mean that the authors of the classical text first hit on the idea
of using matrix algebra and then applied it to grades of paddy for ease of exposition? We have no
evidence, but it seems easier to believe that the discovery went the other way round, from problems
about paddy (or something) to matrices.

It is easy to say that among most responsible historians now the tendency is to take both internal
and external determinants seriously in any given situation and to give them their appropriate
weight. The problem is that with the eclipse of Marxism and with doubts about Kuhn’s relevance
to mathematics, there is no very well organized version of either available to the historian. We
shall continue to appeal to Marxism (and indeed to Kuhn) where we find either of them relevant in
what follows.

Eurocentrism

I propose to show . . . that the standard treatment of the history of non-European mathematics exhibits a deep-rooted
historiographical bias in the selection and interpretation of facts, and that mathematical activity outside Europe has
in consequence been ignored, devalued or distorted. ( Joseph 1992, p. 3)

His willingness to concoct historically insupportable myths that are pleasing to his political sensibilities is obvious on
every page. His eagerness to insinuate himself into the good graces of the supposed educators who incessantly preach
the virtues of ‘multiculturalism’ and the vices of ‘eurocentrism’ is palpable and pervasive. (Review on mathbook.com)

It would appear that the argument set out by Joseph has not been won yet. I have no way of
judging the book under review (it is not Joseph’s) in the second quote, but there is an underlying
suggestion that the reviewer has heard more than enough about eurocentrism and is pleased to
find a book which is both anti-eurocentrist and intellectually shoddy, thereby supporting his or her
suspicions. This is the ‘fashionable nonsense’7 school of reviewing, and it is not going to go away;
in fact, the current anti-Islamic trend in the West, and specifically in the United States, may lend it
more support.

What is eurocentrism (for those who have not heard yet)? In general terms, it is the privileging of
(white) European/American discourse over others, most often African or Asian; in history, it might
mean privileging the European account of the Crusades, or of the Opium Wars, or any imperialist
episode over the ‘other side’. For what it might mean in mathematics, we should go back to Joseph
who, at the time he began his project (in the 1980s), had a strong, passionate, and undeniable
point. If we count as the ‘European’ tradition one which consists solely of the ancient Greeks and the
modern Europeans—and we shall soon see how problematic that is—a glance through many major
texts in the history of mathematics showed either ignorance or undervaluing of the achievements
of those outside that tradition. We shall discuss this in more detail later (Chapter 5), but his book
was important; it is the only book in the history of mathematics written from a strong personal
conviction, and it is valuable for that reason alone. It also stands as the single most influential work
in changing attitudes to non-European mathematics. The sources, such as Neugebauer on the

7. The title of a book (Sokal and Bricmont 1998) which is devoted to attacking what it sees as sloppy thinking about science by
postmodernists, feminists, post-colonialists, and many others.
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Egyptians and Babylonians, or Youschkevitch on the Islamic tradition, may have been available for
some time before, but Joseph drew their findings into a forceful argument which since (like Kuhn’s
work) its main thrust is easy to follow has made many converts. After sketching the views which
he intends to counter, Joseph characterizes three historical models which can be used to describe
the transmission of mathematical knowledge.

First, the ‘classical Eurocentric trajectory’ already referred to: mathematics passed directly from
the ancient Greeks to the Renaissance Europeans;

Second, the ‘modified Eurocentric trajectory’: Greece drew to some extent on the mathematics of
Egypt and Babylonia; while after Greek learning had come to an end, it was preserved in the Islamic
world to be reintroduced at the Renaissance;

Third, Joseph’s own ‘alternative trajectory’. This—with a great many arrows in the transmission
diagram—stresses the central role of the Islamic world in the Middle Ages as a cultural centre in
touch with the learning of India, China, and Europe and acting both as transmitter and receiver
of knowledge. The more we know, particularly of the Islamic world, the more this appears to be
a reasonably accurate picture, and while Joseph’s tone can be polemical and some of his detailed
points have been questioned, his arguments are rarely overstated. We are learning more of the
mathematics of India, China, and Islam, as of the Greeks’ predecessors, and scholars are becoming
better able to read their texts and understand their way of thinking about mathematics.

The body of the book is given over to a detailed account of the various non-European cultures and
their contributions. Interestingly, his account is now to be found substantially unchanged (if with
more detail) in most of the standard textbooks. The culture warriors may rage against fashionable
anti-Eurocentrism, but as far as mainstream teaching of the history of mathematics is concerned,
it seems to have been absorbed successfully. Again, we shall return to this point later.

The specific reasons for Eurocentrism in the history of mathematics (setting aside traditional
racism and other prejudices) have been two-fold. The first is the very high value accorded to the
work of the ancient Greeks specifically, the second the emphasis on discovery and proof of results.
These are indeed linked: much of the Greek work was organized in the form of result+proof. All the
same, there is an important point to be made here; namely, that after the Greeks it was the Arabs
who continued the tradition, with propositions and proofs in the Euclidean mode. (Khayyam’s
geometric work on the cubic equations is a model of the form.) If we contrast Islamic mathematics
of around 1200 with that of western Europe, we would have no doubt that the former was, in our
terms, ‘Western’, and the latter a primitive outsider. However, this has not, until recently, helped the
integration of the great Islamic mathematicians into the Western tradition; and if it did, it would
still leave the Indians and Chinese, with very different practices, outside it.

Indeed, the problem of Eurocentrism could be seen in Kuhnian terms as one of paradigms. The
Greek paradigm, or a version of it, is one which has in some form persisted into modern Western
mathematics8 and hence traditional histories have constructed themselves around that paradigm,
either leaving out or subordinating ways of doing mathematics which did not fit. It is only more
recently that a more culturally aware (historicist?) history has been able to ask how other cultures
thought of the practice of mathematics, and to escape the trap of evaluating it against a supposed
Greek or Western ideal.

8. Not at all times; Descartes, Newton in his early work, and Leibniz initiated a tradition in which the Euclidean mode was at least
temporarily abandoned. See chapters 6 and 7.
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1 On beginnings

Obviously the pioneers and masters of hydraulic society were singularly well equipped to lay the foundations for two
major and interrelated sciences: astronomy and mathematics. (Wittfogel, Oriental Despotism, p. 29, cited Høyrup
1994, p. 47)

Based on intensive cereal agriculture and large-scale breeding of small livestock, all in the hands of a centralized power,
[this civilization] was quickly caught up in a widespread economy which made necessary the meticulous control of
infinite movements, infinitely complicated, of the goods produced and circulated. It was to accomplish this task that
writing developed; indeed for several centuries, this was virtually its only use. (M. Bottéro, cited in Goody 1986, p. 49)

When did mathematics begin? Naive questions like this have their place in history; the answer
is usually a counter-question, in this case, what do you mean by ‘mathematics’? A now rather
outdated view restricts it to the logical-deductive tradition inherited from the Greeks, whose
beginnings are discussed in the next chapter. The problem then is that much interesting work
which we would commonly call ‘mathematics’ is excluded, from the Leibnizian calculus (strong on
calculation but short on proofs) to the kind of exploratory work with computers and fractals which
is now popular in studying complex systems and chaotic behaviour. Many cultures before and since
the Greeks have used mathematical operations from simple counting and measuring onwards,
and solved problems of differing degrees of difficulty; the question is how one draws the line to
demarcate when mathematics proper started, or if indeed it is worth drawing.1 As we shall see, the
early history of Greek mathematics is hard to reconstruct with certainty. In contrast, the history
of the much more ancient civilizations of Iraq (Sumer, Akkad, Babylon) in the years from 2500 to
1500 bce provides a quite detailed, if still patchy record of different stages along a route which leads
to mathematics of a kind. Without retracing the whole history in detail, in this chapter we can look
at some of these stages as illustrations of the problem raised by our initial question/questions. Math-
ematics of what kind, and what for? And what are the conditions which seem to have favoured its
development?

Before attempting to answer any of these questions, we need some minimal historical
background. Various civilizations, with different names, followed each other in the region which
is now Iraq, from about 4000 to 300 bce (the approximate date of the Greek conquest). Our
evidence about them is entirely archaeological—the artefacts and records which they left, and
which have been excavated and studied by scholars. From a very early date, for whatever reason,
they had, as the quotation from Bottéro describes, developed a high degree of hierarchy, slave or
semi-slave labour, and obsessive bureaucracy, in the service of a combination of kings, gods, and

1. This relates to the questions raised recently in the field of ‘ethnomathematics’; mathematical practices used, often without
explicit description or justification, in a variety of societies for differing practical ends from divination to design. For these see, for
example, Ascher (1991); because the subject is mainly concerned with contemporary societies, it will not be discussed in this book.
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their priests. Writing of the most basic kind was developed around 3300 bce, and continued using a
more developed form of the original ‘cuneiform’ (wedge-shaped) script for 3000 years, in different
languages. The documents have been unusually well preserved because the texts were produced by
making impressions on clay tablets, which hardened quickly and were preserved even when thrown
away or used as rubble to fill walls (see Fig. 1). A relatively short period in the long history has
provided the main mathematical documents, as far as our present knowledge goes. As usual, we
should be careful; our knowledge and estimation of the field has changed over the past 30 years and
we have no way of knowing (a) what future excavation or decipherment will turn up and (b) what
texts, currently ignored, will be found important by future researchers. In this period—from 2500
to 1750 bce—the Sumerians, founders of a south Iraqi civilization based on Uruk, and inventors of
writing among other things—were overthrown by a Semitic-speaking people, the Akkadians, who
as invaders often do, adopted the Sumerian model of the state and used Sumerian (which is not
related to any known language, and which gradually became extinct) as the language of culture.
A rough guide will show the periods from which our main information on mathematics derives:

2500 bce ‘Fara period’. The earliest (Sumerian) school texts, from Fara near Uruk; beginning of
phonetic writing.

2340 bce ‘Akkadian dynasty’. Unification of all Mesopotamia under Sargon (an Akkadian).
Cuneiform is adapted to write in Akkadian; number system further developed.

2100 bce ‘Ur III’. Re-establishment of Ur, an ancient Sumerian city, as capital. Population now
mixed, with Akkadians in the majority. High point of bureaucracy under King Šulgi.

1800 bce ‘Old Babylonian’, or OB. Supremacy of the northern city of Babylon under (Akkadian)
Hammurapi and his dynasty. The most sophisticated mathematical texts.

MS 1844

Fig. 1 A mathematical tablet (Powers of 70 multiplied by 2. Sumer, C. 2050 BC).
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Fig. 2 Tablet VAT16773 (c. 2500 bce).; numerical tally of different types of pigs.

Each dynasty lasted roughly a hundred years and was overthrown by outsiders, following a
common pattern; so you should think of less-centralized intervals coming between the periods
listed above. However, there was a basic continuity to life in southern Iraq, with agriculture and its
bureaucratic-priestly control probably continuing without much change throughout the period.

In the quotation set at the beginning of the chapter, the renegade Marxist Karl Wittfogel advanced
the thesis that mathematics was born out of the need of the ancient Oriental states of Egypt and
Iraq to control their irrigation. In Wittfogel’s version this ‘hydraulic’ project was indeed responsible
for the whole of culture from the formation of the state to the invention of writing. The thesis has
been attacked over a long period, and now does not stand much scrutiny in detail (see, for example,
the critique by Høyrup 1994, p. 47); but a residue which bears examining (and which predates
Wittfogel) is that the ancient states of Egypt and Iraq had a broadly similar priestly bureaucratic
structure, and evolved both writing and mathematics very early to serve (among other things)
bureaucratic ends. Indeed, as far as our evidence goes, ‘mathematics’ precedes writing, in that
the earliest documents are inventories of goods. The development of counting-symbols seems to
take place at a time when the things counted (e.g. different types of pigs in Fig. 2) are described by
pictures rather than any phonetic system of writing. The bureaucracy needed accountancy before
it needed literature—which is not necessarily a reason for mathematicians to feel superior.2

On this basis, there could be a case for considering the questions raised above with reference
to ancient Egypt as well—the organization of Egyptian society and its use of basic mathemat-
ical procedures for social control were similar, if slightly later. However, the sources are much

2. There were certainly early poems celebrating heroic actions, the Gilgamesh being particularly famous. But in many societies,
such poems are not committed to writing, and this seems to have been the case with the Gilgamesh for a long time—before it too was
pressed into service by the bureaucracy to be learned by heart in schools.
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poorer, largely because papyrus, the Egyptian writing-material, lasts so badly; there are two major
mathematical papyri and a handful of minor ones from ancient Egypt. It is also traditional to
consider Babylonian mathematics more ‘serious’ than Egyptian, in that its number-system was
more sophisticated, and the problems solved more difficult. This controversy will be set aside in
what follows; fortunately, the re-evaluations of the Babylonian work which we shall discuss below
make it outdated. The Iraqi tradition is the earliest, it is increasingly well-known, discussed, and
argued about; and on this basis we can (with some regret) restrict attention to it.

2 Sources and selections

Even with great experience a text cannot be correctly copied without an understanding of its contents . . . It requires
years of work before a small group of a few hundred tablets is adequately published. And no publication is ‘final’.
(Neugebauer 1952, p. 65)

We need to establish the economic and technical basis which determined the development of Sumerian and Babylonian
applied mathematics. This mathematics, as we can see today, was more one of ‘book-keepers’ and ‘traders’ than one
of ‘technicians’ and ‘engineers’. Above all, we need to research not simply the mathematical texts, but also the
mathematical content of economic sources systematically. (Vaiman 1960, p. 2, cited Robson 1999, p. 3)

The quotations above illustrate how the study of ancient mathematics has developed. In the
first place, crucially, there would not be such a study at all if a dedicated group of scholars,
of whom Neugebauer was the best-known and most articulate, had not devoted themselves to
discovering mathematical writings (generally in well-known collections but ignored by mainstream
orientalists); to deciphering their peculiar language, their codes, and conventions; and to
trying to form a coherent picture of the whole activity of mathematics as illustrated by their
material—overwhelmingly, exercises and tables used by scribes in OB schools. These pioneers played
a major role in undermining a central tenet of Eurocentrism, the belief that serious mathematics
began with the Greeks. They pictured a relatively unified activity, practised over a short period, with
some interesting often difficult problems. However, it is the fate of pioneers that the next generation
discovers something which they had neglected; and Vaiman as a Soviet Marxist was in a particularly
good position to realize that the neglected mathematics of book-keepers and traders was needed
to complete the rather restricted picture derived from the scribal schools. For various reasons—its
simplicity, based on a small body of evidence, and its supposed greater mathematical interest—the
older (Neugebauer) picture is easy to explain and to teach; and you will find that most accounts of
ancient Iraqi mathematics (and, for example, the extracts in Fauvel and Gray) concentrate on the
work of the OB school tradition. In this chapter, trying to do justice to the older work and the new,
we shall begin by presenting what is known of the classical (OB) period of mathematics; and then
consider how the picture changes with the new information which we have on it and on its more
practical predecessors.

At the outset—and this is implicit in what Neugebauer says—we have to face the problem of
‘reading texts’. The ideal of a history in the critical liberal tradition, such as this aims to be,
is that on any question the reader should be pointed towards the main primary sources; the
main interpretations and their points of disagreement; and perhaps a personal evaluation. The
reader is then encouraged to think about the questions raised, form an opinion, and justify it with
reference to the source material. Was it possible to be an atheist in the sixteenth century; when
was non-Euclidean geometry discovered, and by whom? There is plenty of material to support
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(a) (b)

Fig. 3 The ‘stone-weighing’ tablet YBC4652; (a) photograph and (b) line drawing.

arguments on such questions, and there are writers who have used the material to develop a case.
When we approach Babylonian mathematics, we find that this model does not work. There are,
it is true, a large number of documents. They are partly preserved, sometimes reconstructed clay
tablets, written in a dead language—Sumerian or Akkadian or a mixture—using the cuneiform
script. It should also be noted that their survival is a matter of chance, and that we have few ways
of knowing whether the selection which we have is representative. There seem to be gaps in the
record, and most of our studies naturally are directed at the periods from which most evidence has
survived.

Unless we want to spend years acquiring specialist knowledge, we must necessarily depend on
experts to tell us how (a) to read the tablets, (b) to decipher the script, and (c) to translate the
language.

It is useful to begin with an example. The tablet pictured (Fig. 3) is called YBC4652 (YBC for Yale
Babylonian Catalogue). Here is the text of lines 4–6, which is cited in Fauvel and Gray as 1.E.1(20).
The language is Akkadian, the date about 1800 bce.

na4 ì-pà ki-lá nu-na-tag 8-bi ì-lá 3 gín bí-dah. -ma

igi-3-gál igi-13-gál a-rá 21 e-tab bi-dah. -ma

ì-lá 1 ma-na sag na4 en-nam sag na4 4 1
2 gín

Note that the figures in this quotation correspond to Babylonian numerals, of which more will
follow later3; that is, where in the translation below the phrase ‘one-thirteenth’ appears, a more
accurate translation would be ‘13-fraction’, which shows that the word thirteen is not used. There
is a special sign for 1

2 . The translation reads as follows (words in brackets have been supplied by the
translator):

I found a stone, (but) did not weigh it; (after) I weighed (out) 8 times its weight, added 3 gín

one-third of one-thirteenth I multiplied by 21, added (it), and then

I weighed (it): 1 ma-na. What was the origin(al weight) of the stone? The origin(al weight) of the stone was 4 1
2 gín.

3. Except for the ‘4’ in ‘na4’, which seems to be a reference to the meaning of ‘na’ we are dealing with.
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As you can see, from tablet to drawing to written Akkadian text to translation we have stages over
which you and I have no control. We must make the best of it.

There are subsidiary problems; for example, we need to accept a dating on which there is
general agreement, but whose basis is complicated. If a source gives the dates of King Ur-Nammu
of the Third Dynasty as ‘about 2111–2095 bce’, where do these figures come from, and what
is the force of ‘about’? Most scholars are ready to give details of all stages, but we are in no
position to check. The restricted range of the earlier work perhaps made a consensus easier. In
the last 30 years, divergent views have appeared. Even the traditional interpretation of the OB
mathematical language has been questioned. An excellent account of this history is given by
Høyrup (1996). In general the present-day historians of mathematics in ancient Iraq are models of
what a secondary source should be for the student; they discuss their methods, argue, and reflect
on them. But given the problems of script and language we have referred to, when experts do
pronounce, by interpreting a document as a ‘theoretical calculation of cattle yields’, for example,
rather than an actual count (see Nissen et al. 1993, pp. 97–102), the reader can hardly disagree,
however odd the idea of doing such a calculation in ancient Ur may seem.

On a core of OB mathematics there is a consensus, which dates back to the pioneering work
of Neugebauer and Thureau-Dangin in the first half of the twentieth century. There may be an
argument about whether it is appropriate to use the word ‘add’ in a translation, but in the last
instance there is agreement that things are being added. This is helpful, because it does give us a
coherent and reliable picture of a practice of mathematics in a society about which a good deal is
known. However, it is necessarily restricted in scope, and the sources which are usually available
do not always make that fact clear. For example, most texts which you will see commented and
explained come from the famous collection Mathematical Cuneiform Texts (Neugebauer and Sachs
1946). This is a selection, almost all from the OB period, and the selection was made according to
a particular view of what was interesting. If you look at an account of Babylonian mathematics in
almost any history book, what you see will have been filtered through the particular preoccupations
of Neugebauer and his contemporaries, for whom OB mathematics was fascinating in part (as will
be explained below) because it appeared both difficult and in some sense useless. The broader
alternative views which have been mentioned do not often find their way into college histories.

It should be added that Neugebauer and Sachs’s book is itself long out of print, and almost
no library stocks it; your chances of seeing a copy are slim. Because the texts are so repetitive,
the selections (from what is already a selection) given in textbooks, in particular Fauvel and Gray,
give a pretty good picture of OB mathematics as it was known 50 years ago. All the same, they are
selections from a large body of texts. Other useful reading—again not necessarily accessible in most
libraries—is to be found in the works of Høyrup (1994), Nissen et al. (1993), and Robson (1999).
There is a useful selection of Internet material (and general introduction) at http://it.stlawu.edu/
˜ dmelvill/mesomath/; and in particular you can find various bibliographies, particularly the recent
one by Robson (http://it.stlawu.edu/˜ dmelvill/mesomath/biblio/erbiblio.html).

Exercise 1. (which we shall not answer). Consider the example given above; try to correlate the original
text with (a) the pictures and (b) the translation. (Note that the line drawing is much clearer than the
photograph; but, given that someone has made it, have we any reason to suspect its clarity?) Can you find
out anything about either the script or the meaning of the words in the original as a result? How much
editing seems to have been done, and how comprehensible is the end product?

http://it.stlawu.edu/%CB%9Cdmelvill/mesomath/
http://it.stlawu.edu/%CB%9Cdmelvill/mesomath/
http://it.stlawu.edu/%CB%9Cdmelvill/mesomath/biblio/erbiblio.html
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Exercise 2. (which will be dealt with below). Clearly what we have here, in the translation, is a question
and its answer. If I add the information that there are 60 gín in 1 ma-na, what do you think the question
is, and how would you get at the answer?

3 Discussion of the example

As is often observed, the problem above appears ‘practical’ (it is about weights of stones) until
you look at it more closely. It was set, we are told, as an exercise in one of the schools of the
Babylonian empire where the caste known as ‘scribes’ who formed the bureaucracy were trained
in the skills they needed: literacy,4 numeracy, and their application to administration. The usual
answer to Exercise 2 is as follows. You have a stone of unknown weight (you did not weigh it); in
our language, you would call the weight x gín. You then multiply the weight by 8 (how?) and add
3 gín, giving a weight of 8x + 3. However, worse is yet to come. You now ‘multiply one-third of
one-thirteenth’ by 21. What this means is that you take the fraction 1

3 × 1
13 ×21 = 21

39 and multiply
that by the 8x + 3. You are not told that, but the tablets explain no more than they have to, and the
problem does not come right without it, so we have to assume that the language which may seem
ambiguous to us was not so to the scribes. Adding this, we have:

8x + 3 + 21
39

(8x + 3) = 60

Here we have turned the ma-na into 60 gín.
Clearly, as a way of weighing stones, this is preposterous; but perhaps it is not so very different

from many equally artificial arithmetic problems which are set in schools, or were until recently.
Effectively—and this is a point which we could deduce without much help from experts, although
they concur in the view—such exercises were ‘mental gymnastics’ more than training for a future
career in stone-weighing.

An advantage of beginning with the Babylonians is that their writing gives us a strong sense of
historical otherness. Even if we can understand what the question is aiming at, the way in which it
is put and the steps which are filled in or omitted give us the sense of a different culture, asking and
answering questions in a different way, although the answer may be in some sense the same. In
this respect, such writing differs from that of the Greeks, who we often feel are speaking a similar
language even when they are not. You are asked a question; the type of question points you to a
procedure, which you can locate in a ‘procedure text’. To carry it out, you use calculations derived
from ‘table texts’; these tell you (to simplify) how to multiply numbers, to divide, and to square
them. As James Ritter says:

the systematization of both procedure and table texts served as a means to the same end: that of providing a network
or grille through which the mathematical world could be seized and understood, at least in an operational sense.
(Ritter 1995, p. 42)

It is worth noting that part of Ritter’s aim in the text from which the above passage is taken is to
situate the mathematical texts in relation to other forms of procedure, from medicine to divination,
in OB society: they all provide the practitioner with ‘recipes’ of form: if you are confronted with

4. This included not only their own language but a dead language, Sumerian, which carried higher status; as civil servants in
England 100 years ago had to learn Latin.
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problem A, then do procedure B. The ‘point’ of the sum, then, is not mysterious, and indeed we can
recognize in it some of our own school methods. First, scribes are trained to follow rules; second,
they are required to use them to do something difficult. As usual, such an ability marks them off
as workers by brain rather than by hand, and fixes their relatively privileged place in the social
order. We know something of the arduous training and the beatings that went with it; but not what
happened to those trainees who failed to make the grade.

What is mysterious in this particular case is the way in which one is supposed to get to the
answer from the question, since the tablet gives no clue. Here the term ‘procedure text’ is rather a
misnomer, but other tablets are more explicit on harder problems. With our knowledge of algebra,
we can say (as you will find in the books) that the equation above leads to:

(8x + 3)
39 + 21

39
= 60

and so, 8x + 3 = 39, and x = 4 1
2 . The fact that 39 and 21 add to 60, one would suppose, could

not have escaped the setter of the problem; but language, such as I have just used would have been
quite impossible. What method would have been available? The Egyptians (and their successors for
millennia) solved simple linear equations, such as (as we would say) 4x+3 = 87 by ‘false position’:
guessing a likely answer, finding it is wrong, and scaling to get the right one. This seems not to work
easily in this case. To spend some time thinking about how the problem could have been solved is
already an interesting introduction to the world of the OB mathematician.

Having looked at just one example, let us broaden out to the general field of OB mathematics.
What were its methods and procedures, what was distinctive about it? And second, do the terms
‘elementary’ and ‘advanced’ make sense in the context of what the Babylonians were trying to do;
and if so, which is appropriate?

4 The importance of number-writing

As we have already pointed out, Neugebauer and his generation were working on a restricted range
of material. To some extent this was an advantage, in that it had some coherence; but even so, there
were typical problems in determining provenance and date, because they were processing the badly
stored finds of many earlier archaeologists who had taken no trouble to read what they had brought
back. It is well worth reading the whole of Neugebauer’s chapter on sources, which contains a long
diatribe on the priorities and practices of museums, archaeological funds, and scholars:

Only minute fractions of the holdings of collections are catalogued. And several of the few existing rudimentary
catalogues are carefully secluded from any outside use. I would be surprised if a tenth of all tablets in museums
have ever been identified in any kind of catalogue. The task of excavating the source material in museums is of
much greater urgency5 than the accumulation of new uncounted thousands of texts on top of the never investigated
previous thousands. I have no official records of expenditures for expeditions at my disposal, but figures mentioned
in the press show that a preliminary excavation in one season costs about as much as the salary of an Assyriologist
for 12 to 15 years. And the result of every such dig is frequently more tablets than can be handled by one scholar in
15 years. (Neugebauer 1952, pp. 62–3)

5. Partly because, as Neugebauer has said earlier, tablets deteriorate when excavated and removed from the climate of Iraq.
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There is probably better conservation of tablets now than when the above was written, but
the long delay in publishing is still a problem6; and there are grounds for new pessimism now
that one hears that tablets are being removed from sites in Iraq and traded, presumably with
no ‘provenance’ or indication of place and date, over the Internet. (For a discussion by Eleanor
Robson of these and other problems which face historians in the aftermath of the Iraq war see
http://www.dcs.warwick.ac.uk/bshm/Iraq/iraq-war.htm.)

The best-known of the OB tablets can be seen as rather special. What can be recognized in them
are several features that subsequent scholars felt could be identified as truly ‘mathematical’:

1. The use of a sophisticated system for writing numbers;
2. The ability to deal with quadratic (and sometimes, if rather by luck, higher order) equations;
3. The ‘uselessness’ of problems, even if they were framed in an apparently useful language, like

the one above.

None of these characteristics are present (so far as we know) in the mathematics of the
immediately preceding period, which in itself is noteworthy. Let us consider them in more detail.

The number system

You will find this described, usually with admiration, in numerous textbooks. The essence was
as follows. Today we write our numbers in a ‘place-value’ system, derived from India, using the
symbols 0, 1, . . . , 9; so that the figure ‘3’ appearing in a number means 3, 30, 300, etc. (i.e.
3 × 100, 3 × 101, 3 × 102, . . . ) depending on where it is placed. The Babylonians used a similar
system, but the base was 60 instead of 10 (‘sexagesimal’ not ‘decimal’), and they therefore based it
on signs corresponding to the numbers 1, . . . , 59—without a ‘zero’ sign. The signs were made by
combining symbols for ‘ten’ and ‘one’—a relic of an earlier mixed system, but obviously practical,
in that what was needed was some easily comprehensible system of 59 signs. (see Fig. 4) You might,
as an exercise, think of how to design one. The place-value system was constructed, like ours, by
setting these basic signs side by side; we usually transliterate them and add commas, so that they
can be read as in Fig. 5. ‘1, 40’ means, then, what we would call 1 × 60 + 40 = 100; ‘2, 30, 30’
means 2 × 602 + 30 × 60 + 30 = 7200 + 1800 + 30 = 9030. 60 plays the role which 10 plays
in our system.

There are, though, important differences from our practice. First, it is not explicitly clear that ‘30’
on its own, with no further numbers involved necessarily means what we should call 30. It may
mean 30 × 60(= 1800) or 30 × 602(=108,000), . . . . In a problem, it will be 30 somethings—
a measurement of some kind, which is stated explicitly, for example, length or area in appropriate
units; and this will usually make clear which meaning it should have. This is not the case with ‘table
texts’ (e.g. the ‘40 times table’), which often concern simple numbers. Furthermore—compare our
decimals—‘30’ can also mean 30 × 1

60 = 1
2 , and often does.7 Or 30 × 1

60 × 1
60 and so on. If the

answer was written as 30, you should—and this is an idea which we can recognize from our own
practice—be able to deduce what ‘30’ meant from the context.

6. Robson (1999) cites an example of a collection of OB proverb texts which were published in the 1960s with no acknowledgement
by the scholarly editor that they had calculations on the back.

7. Although there were also symbols for the commonest fractions like 1
2 —see the above example—and (it seems) rules about when

you used them.

http://www.dcs.warwick.ac.uk/bshm/Iraq/iraq-war.htm
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Fig. 4 The basic cuneiform numbers from 1 to 60.

Fig. 5 How larger cuneiform numbers are formed.

You can find the details of how the system works in various textbooks; in particular, there are
plenty of examples in Fauvel and Gray. (Notice that the sum which I gave above was one in which it
was not needed—why?) Again following a general convention, modern editors make things easier
for readers by inserting a semi-colon where they deduce the ‘decimal point’ must have come, and
inserting zeros as in ‘30, 0’ or ‘0; 30’. So ‘1, 20’ means 80, but ‘1; 20’ means 1 + 20

60 = 1 1
3 . There

would be no distinction in a Babylonian text; both would appear as ‘1 20’.
To help themselves, the Babylonians, as we do, needed to learn their tables. They were, it would

seem, in a worse situation than us, since there were in principle 59 tables to learn, but they
probably used short cuts. A scribe ‘on site’ would quite possibly have carried tablets with the
important multiplication tables on them, as an engineer or accountant today will carry a pocket
calculator or palmtop; and in particular the vital table of ‘reciprocals’. This lists, for ‘nice’ numbers
x, the value of the reciprocal 1

x , and starts:

2 30
3 20
4 15
5 12
6 10
7, 30 8
8 7, 30
9 6, 40

Using this table it is possible to divide simply by multiplying by the reciprocal; dividing by 4 is
multiplying by 15 (and of course thinking about what the answer means in practical terms—what
size of number one should expect).
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This way of writing numbers is so advanced and sophisticated that it has impressed most
commentators, particularly mathematicians. The absence of a decimal point, as I have said, is
not a serious problem in practical calculations; but it could raise questions when one is asked, for
example, to take the square root (we will see this was done too) of 15. If ‘15’ means 1

4 , then it has
square root 30 = 1

2 , but if it means ‘15’, of course, it does not have an exact square root. However,
the scribe would find the square root by looking in a table, and only one answer would appear, for
any number.

The more serious problem which is often pointed out is the absence of a sign for ‘zero’. In
principle, 60 1

2 , which should in our terms be ‘1 0 30’ (one sixty, no units, 30 sixtieths) would be
written ‘1 30’, which could also mean ‘90’ (or ‘1 1

2 = 90 × 1
60 ’). It is hard to know how often this

caused confusion. One case is given by Damerow and Englund (in Nissen et al. 1993, pp. 149–50)
of a scribe who is finding the powers of ‘1, 40’, or what we would call 100. At the sixth stage one
of the figures should be a ‘0’, and is omitted. Hence this calculation, and the subsequent ones (he
continues to 10010) are wrong. However, you can see (why?) that this mistake would occur less
often than in our decimal system if we happened to ‘forget’ zeros, and so confused 105 and 15.

Exercise 3. Explain (a) how the table of reciprocals works, (b) why it does not contain ‘7’.

Exercise 4. Work out (1, 40)/(8) using the table, given that the reciprocal of 8 is 7, 30. (Check that this
is indeed the reciprocal; and verify that you have the right answer, given that 1, 40 = 100 in our terms.)

Exercise 5. (a) What is the square root of 15 if ‘15’ means 15 × 60? (b) Show that, in Babylonian
terms, there cannot be two different interpretations of a number which have different (exact) square roots.

5 Abstraction and uselessness

The discovery of the sexagesimal system is sometimes described, by those who like the word, as a
revolution. How it came about is unclear, but it does seem to have arisen quite suddenly out of a
number of near- or pseudo-sexagesimal systems, around the beginning of the OB period. Damerow
and Englund (Nissen et al. 1993, pp. 149–50) seem to consider it impractical, and claim it did
not outlast the OB period—which is difficult to reconcile with their admission that it was used
by the Greek astronomers. Here, indeed, we find our first example of the problem of connecting
similar practices across time. Sexagesimals were used in Babylon in 1800 bce, and again, mainly in
astronomy, 1500 years later. (They were still being used—with multiplication tables—by Islamic
writers in the fifteenth century ce (see Chapter 5) under the name ‘astronomers’ numbers’.) It
seems almost certain that this was a direct line of descent from Babylon to Greece. More dubious
claims are often made, though, in situations where the same result (e.g. ‘Pythagoras’ theorem’) is
known to two different societies—that there must have been either communication or a common
ancestor. Such arguments are central (for example) to van der Waerden’s fascinating but eccentric
(1983); always controversial, they have to be evaluated on the basis of the evidence.

Equations

Here, if anywhere, the mathematicians can be allowed to judge what it is to be sophisticated. In
examples like the one above, we see probably for the first time the idea of an unknown quantity—an
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unweighed stone, in this case. The Egyptians were using the same idea a little afterwards, and may
have arrived at it independently; but they did not succeed in the next step, which was a general
method for solving quadratic-type problems. It makes sense to use this term, rather than ‘quadratic
equations’, since the problems are very varied in nature; the ‘quadratic equation’ as we know it,
a combination of squares, things, and constants, begins its history properly in the Islamic period.
Fauvel and Gray’s 1.E.(f) problem 7 starts:

I have added up seven times the side of my square and eleven times the area: 6; 15

In other words, we have a square, and we are told that seven times the unknown side x (7x)
added to eleven times the area (11x2) gives 6; 15 or 6 1

4 . This leads to a simple quadratic equation,
which we would write 7x + 11x2 = 6 1

4 , with answer x = 0; 30 = 1
2 . For how it is solved, which in

particular shows where square roots were used, see Appendix A.
In addition to the relatively common equation texts, we have some texts which seem to show extra

mathematical sophistication, some of which is still subject to debate. One is the notorious ‘Plimpton
322’; for the original decoding of this see Fauvel and Gray and for a recent counter-argument,
Robson (2001); we shall not consider this here, although it is an interesting introduction to
the disagreements of historians. A simpler case is the ‘square root of 2’ tablet, which seems
straightforward in its interpretation (Fig. 6). The picture shows a square; its side is marked 30
(or 1

2 ), and the diagonal has two sexagesimal numbers marked. One is a good approximation to
√

2
(1, 24, 51, 10), the other to the diagonal

√
2/2 (42, 25, 35). Nearly the same sexagesimal numbers

will appear again when we deal with Islamic mathematicians over 3000 years later; for now it is
worth raising the question of what these numbers were used for, and how they were arrived at. In
the absence of any written procedures, we can at least admire the result.

‘Uselessness’

Sometimes mathematicians need to be reminded that mathematics, to be worthwhile, does not
have to be useless; and they have often had a two-faced attitude on the subject, pointing (e.g. when

1 2 3

(a) (b)

Fig. 6 The ‘square root of 2’ tablet YBC7289.



26 A History of Mathematics

requesting a research grant) to results which were thought useless at the time and afterwards
discovered to have an application. Well-known examples include Riemannian geometry and relativ-
ity, finite fields and the manufacture of CDs, etc. It has been a part of the case for the seriousness of
Babylonian mathematics that their problems, while apparently practical, were clearly not designed
for the real world. Rather, they were exercises in technique dressed up in practical language (because
that was the only language available). The point is often made, and can hardly be contested. Our
first example (stone-weighing) is a good illustration. So is the quadratic equation above—it would
be hard to think of circumstances in which one would want to add lengths to areas, and the
Greeks, with a more strict idea of geometry, did not have a language in which to do it. In another
example often cited, the student is given the amount of earth required to fill a ramp, and asked to
find its dimensions—exactly the opposite of the practical question. No Babylonian text theorizes
this impracticality as such, or makes a virtue of it; while Plato, as we shall see, makes a distinc-
tion between real mathematics and that which is used by artisans, the Babylonian scribes to all
appearances were trained for a career of useful tasks by solving problems with no application.

What was the point of this? To answer this question would require some thought about what the
‘point’ of any mathematical procedure is. At one level, we can imagine that the ability to deal with
increasingly difficult problems, regardless of their meaning, could be used as an examination-type
filtering mechanism within the scribal schools, marking off the bright students from the mediocre
ones; or, outside the schools, it could be a form of competition between ‘freelance’ scribes (they
existed too) who were trying to attract clients. This virtuosity is part of a whole package of skills
which were important for self-definition and for status:

According to the ‘Examination Text A’, the accomplished scribe must know everything about bilingual [that is,
Sumerian/Akkadian] texts; he must know occult writings, and occult meanings of signs in Akkadian as well as
Sumerian; he must be familiar with the concepts of musical practice, and he must understand the distorted idiom of
various crafts and trades. Into the bargain then comes mathematics . . . All that, as a totality, has a name (of course
Sumerian): nam-lú-ulù, ‘humanity’. (Høyrup 1994, p. 65)

This ‘external’ explanation does not, however, account for the particular choice of impractical
quadratic equations for the display of accomplishment. Here we have, almost, an example of Kuhn’s
‘normal science’. A technique—the solution of linear and quadratic problems using sexagesimal
numbers and tables—becomes available, for reasons which are unclear; and the scholars who make
up the community are defined by their ability to solve puzzles using the technique. In addition, they
may find the problems interesting or challenging, in a career dedicated to routine tasks (but here
we are indeed speculating). In principle, hard puzzles can generate harder ones without limit; in
terms of the historical record, it seems that either invasion or loss of interest or both put an end to
the practice.

The idea of ‘uselessness’ is one which needs to be treated with some care, however. It is easy,
considering some of the OB calculations, to deduce that their apparent practicality is a fake and
that they are simply occasions for what Høyrup calls displays of ‘scribal virtuosity’. This is the
traditional view, and many of the texts support it. However, Robson’s detailed new publication
(1999), containing a wide variety of tablets, is the basis for arguing a more complex view. An
example is a long tablet (BM96957 + VAT6598) containing a succession of problems about brick
walls. These depend crucially for their solution on one of the basic scribes’ numbers: the conversion
factors from (volume of wall) to (number of bricks in the wall) and back—an eminently practical
figure, and one which was certainly often used. The problems start with questions which give the
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measurements of the wall (length, width, and height), and ask how many bricks. Naturally, the
OB scribes (like us) used different units for width (cubits, compare inches), and length and height
(nindan, compare feet); the calculation was therefore not always a straightforward one leading to
a certain number of cubic nindan and dividing by the number of bricks in a cubic nindan. Such a
question seems both simple and practical, and just the kind of thing which a scribe in the brick-wall
construction trade might be asked. However, question 5 on the same tablet is:

A wall. The height is 1 1
2 nindan, the bricks 45 sarb [brick measure]. The length exceeds the width of the wall by 2; 20

nindan. What are the length and the width of my wall? (Robson 1999, p. 232)

The details of brick-measure and height belong to everyday practice, but it seems very unlikely that
one would ever need to answer a question of this type in a practical situation. Somewhere along
the list of problems on the tablet a link to real-world wall-building has been broken.

Exercise 6. If you are told that 72 sarb of bricks occupy a volume of 1 cubic nindan, (a) show that this
is equivalent to a quadratic problem and (b) find the answer.

6 What went before

The last example shows that there may still be more to learn about the OB period. In recent times,
a much fuller picture has emerged of the earlier period of mathematics, and it is currently perhaps
the most interesting area of research. What we have is still more a series of snapshots than a record
of discovery; in archaeology it is almost unknown to find an innovation which can be accounted for,
much less attributed to an ‘author’; but it allows us to question the idea of Babylonian mathematics
as the earliest serious practice, based on the criteria I have given.

In the first place, we know that the profession of scribe, and the scribal schools, existed for some
time before (the usual estimate is around 2500 bce for the beginning of the institution). Even in this
very early period, when the number system, while quite clear and flexible, was much less advanced
than the sexagesimal one, we find that the schools had discovered the idea of setting problems
which were both difficult and useless, if in a different way—in fact, the mixed nature of the number
system made questions which we might think easy harder. They require simple division of a very
large (i.e. impractical) number by a number which makes problems. Specifically,

that the content of a silo containing 2400 ‘great gur’, each of 480 sila, be distributed in rations of 7 sila per man (the
correct result is found in no. 50: 164,571 men, and a remainder of 3 sila) . . . (Høyrup 1994, p. 76)

A sila being roughly (it is thought) a litre, we are dealing with over a million litres, and the
proposed division by 7 (with remainder!) is an exercise in obsessive accuracy rather than a practical
problem. In the words of Jöran Friberg

the obvious implication is that the ‘current fashion’ among mathematicians about four and a half millennia ago was
to study non-trivial division problems involving large (decimal or sexagesimal) numbers and ‘non-regular’ divisors
such as 7 and 33. (Cited in Høyrup 1994, p. 76)

Friberg uses the term ‘mathematicians’ to describe those scribes and teachers who discussed such
problems; and such a usage not only sets the origin of mathematics as an independent practice
much earlier, but makes it appear much more ‘trivial’ to us. If the Babylonians can be grudgingly
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admired for solving quadratic equations, can we extend a similar recognition to the scribes of Fara
for doing rather long divisions? There has indeed been quite a controversy about what the Fara
scribes were supposed to do in answering the question; see Powell in Fauvel and Gray 1.E.5, or for
a more recent view, Melville, ‘Ration Computations at Fara: Multiplication or Repeated Addition’
in Steele and Imhausen (2002). Again, this question is perhaps best left unanswered, or as a point
for discussion. Friberg would probably justify calling the scribes ‘mathematicians’ not in terms
of their use of unrealistic examples, but in the formation of a community—again that Kuhnian
word—with a common project, whose language was a language of numbers. Training for practical
purposes seems, here too, to have generated a class of impractical exercises, if entirely different
from those which followed 500 years later.

However, this impracticality, characteristic of the school-texts which have survived, disappears
when we look at a different family of texts, the accounts from the harsh period known as
Ur III, which were the work of practising scribes and administrators. (What kind of texts survive
from which period is at least partly chance, depending on the kind of site excavated.) Dating from
the twenty-first century bce, these are in time between the Fara texts and the OB ones, and they are
both utilitarian and highly ‘mathematized’. The period, under King Šulgi, was one of increasingly
rigid centralized control of production; the aim, for a variety of industries—seed production, cattle
raising, fishing, milling, and so on—is to calculate the expected yield and the extent to which
the farmers or managers fulfil their targets. Analogies with old Soviet planning or indeed mod-
ern Western management come to mind. Accounts were complicated by the fact that almost any
quantity had a special system of units to measure it. However, the scribe is, on the whole, up to
the calculation; as usual, there are tables of conversion factors to help. Here is an example which,
according to Damerow and Englund (Nissen et al. 1993, pp. 141–2), represents ‘the calculation of
the harvest yield of the province of Lagash for the third year recorded in the text’ (Fig. 7). We begin

Fig. 7 The tablet recording harvests from Lagash, AO3448.
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by setting out the area:

1 (šár-gal) 1 (šar’u) 1 (šár) 1 (bùr) field surface

Then follow the ‘targets’; the amount which this area should produce:

the barley involved: 3 (šar’u) 5 (šár) 3 (geš’u) 3 (u) gur

Finally, the actual amount produced, and the shortfall:

Therefrom
2 (šar’u) 1 (šár) 4 (geš’u) 7 (géš) 4 (u) 2 (gur) 1 (barig) 4 (bán) gur delivered.
Deficit: 1 (šar’u) 3 (šár) 4 (geš’u) 3 (géš) 2 (u) 7 (gur) 3 (barig) 2 (bán) gur

A first observation is that a quite unnecessary number of units of measurement seem to be
involved (and there are yet more . . . ). They are of course exotic to us, but at 4000 years’ distance
we can expect that. The first row gives the area of the fields producing barley. According to Nissen
et al. 1993, pp. 141–2, 1 bùr is about 6.3 hectares; and

1 šár = 60 bùr
1 šár’u = 10 šár
1 šár-gal = 6 šár’u.

The total area is therefore (work it out) 4261 bùr or 26,844 hectares. The calculation of ‘the
barley involved’ in the second row is the ‘target’; it assumes that an area of 1 bùr produces 30 gur
(9000 litres) of grain. For the grain measure we have:

(1 bán = 10 litres)
1 barig = 6 bán
1 gur = 5 barig
1 u = 10 gur
1 géš = 6 u
1 geš’u = 10 géš
1 šár = 6 geš’u
1 šar’u = 10 šár

As you can see, the units do not proceed by uniform steps, and even multiplying the area by the
factor of 30 gur and translating it into volume units to get the target volume is quite complicated.
Hence the figures 1, 1, 1, 1 in the first row translate into 3, 5, 3, 3 in the second.

We now have to subtract the actual output from the target; and the actual figure involves a rather
excessive eight units of measurement (all the ones listed above).8

This should be enough to convince you that, while Ur III accountants’ arithmetic was
‘elementary’, it was far from simple, and considerable skill was required to get the deficit right.
(Happily, there was, it seems, not always a deficit; apparently in the first of the three years listed
on the tablet the harvest was more than expected. On the other hand—see Englund (1991)—the
targets set for labourers in factories seem generally to have been unrealistically high and calculated

8. But before we condemn the Sumerians for their complexity, it should be noted that schools in England 50 years ago taught a
system of 8 units of length—line, inch, foot, yard, rod (or pole, or perch), chain, furlong, mile—and that the factors relating them
were more complicated than the Sumerian 5s, 6s, and 10s.
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to ruin their overseers to the greater profit of the state.) Of course, we still sometimes face problems
of this multi-unit kind, such as when we try to find the time lapse between 1.25 p.m. on January 28
and 11.15 a.m. on February 2 in days, hours, and minutes; but these are rare and the metric
system is reducing them.

Exercise 7. Trace the calculation of ‘the barley involved’ through and check it.

Exercise 8. Calculate the deficit, using the table of barley measures, and find the two places where the
scribe has made a mistake.

7 Some conclusions

The above example is worth some consideration, if only because you will not often find such work
discussed. In a sense the mathematics is trivial, in another clearly not; it is highly organized,
and it needs to be accurate (although mistakes were not uncommon). It is as much a product of
the bureaucracy and the organization of scribes as are the more interesting and mathematically
impressive OB examples with which we started, and which you will usually meet; and its basic
tools—multiplication and subtraction, with ‘conversion factors’ to make it more difficult—have
also had a long history, and are still with us. The rationality of the OB system is often mentioned
to boost its credentials as the earliest real mathematics, as is the fact that it survives in our
measurements of time (minutes and seconds) and angle (degrees, minutes, and seconds). However,
even today we often in practice find we have to operate with mixed systems of measurement, and
work out the relevant sums as best we can. We could call such a procedure irrational (but on what
grounds?); it does not make the mathematics easier. Only those who have never made mistakes in
such conversions (e.g. miles and yards to and from metric) can dismiss them as not mathematical.

Appendix A. Solution of the quadratic problem

The solution given (from Neugebauer, also in Fauvel and Gray I.E.(f ), problem 7) is as follows. The
intrusive semicolons have been omitted; you will have to work out where they should come. On
the other hand, the procedure is translated into algebraic notation in brackets, so that it can be
followed more easily.

You write down 7 and 11. You multiply 6,15 by 11: 1,8,45. (Multiply the constant term by the
coefficient of x2.)

You break off half of 7. You multiply 3,30 and 3,30. (Square half the x-coefficient.)
You add 12,15 to 1,8,45. Result 1,21. (12,15 is the result of the squaring, so the 1, 21 is what

we would call (b/2)2 + ac, if the equation is ax2 + bx = c.)
This is the square of 9. You subtract 3,30, which you multiplied, from 9. Result 5,30. (This is

−(b/2) + √
(b/2)2 + ac; in the usual formula, we now have to divide this by a = 11, which we

proceed to do.)
The reciprocal of 11 cannot be found. By what must I multiply 11 to obtain 5,30? The side of

the square is 30. (‘Simple’ division was multiplying by the reciprocal, for example, dividing by 4 is
multiplying by 15, as we have seen. If there is no reciprocal, you have to work it out by intelligence
or guesswork, as is being done here.)
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Solutions to exercises

1. I shall not answer, while exercise 2 is answered in the text.
3. If the number in the left column is x, that in the right column is y where x . y = 1. How does

this work? For example, 4 . 15 = 60 (which is 1, or 1, 0 if you want to use the notation of
modern translation), and 8 × (7, 30) = 8 × 7 + 8 × (0, 30) = 56 + 4 = 60 again. More
generally, one could think of x and y as solving some equation x . y = 60k; the value of k is
immaterial, since in Babylonian notation we cannot, for example, tell the different answers 15
and ‘0,15’ (= 1

4) apart.
This process works if such a y can be found, that is, if x divides some power of 60 exactly.

(More exactly, we choose an interpretation of x which is a whole number, not a fraction.) This
will be true if (and only if ) all the factors of x are 2s, 3s, and 5s. It will therefore not work for 7.

4. (1, 40)/(8) would be calculated as 1, 40 × 7, 30 (times the reciprocal). Use the formulae:
7 × 40 (= 280) = 4, 40 and 30 × 40 = 20, 0; and take care of place value. You find the
product is

7, 0, 0 + 4, 40, 0 + 30, 0 + 20, 0 = 12, 30, 0

If you were a Babylonian scribe, and knew that the ‘1, 40’ meant 100, you would have no
difficulty in interpreting this answer as 12 1

2 .
5. 1. Of course, 15 × 60 = 900, which is a square, indeed the square of 30. So the statement

‘square root of 15 is 30’ is true also for this interpretation of 15.
2. This is a standard fact about place-value systems (unless the ‘base’ is a square). The different

interpretations of any number are, say a basic ‘x’ and x × 60k. If x = y2, then (since 60 is
not a square), x × 60k is a square if and only if k is even, say k = 2l; when x × 60k is the
square of y × 60l. So, in Babylonian terms, the square root of x is always y.

6. The Babylonian answer is given in Robson (2000, p. 232); it is hard to follow, since the text
switches between ‘sarv’ (a volume unit), nindan, and cubits (at 12 cubits to a nindan). Above,
we have given the conversion factor from bricks to volume in cubic nindan instead of sarv to
reduce the number of measures. Here is a simplified version of the answer in our notation.

45 sarb of bricks occupy 15
24 cubic nindan, so that is the volume. The height is 1 1

2 , so the
area (length times width) is 5

12 square nindan. If l is the length and w the width, l = w + 7
3 ,

and lw = 5
12 ; so

w
(

w + 7
3

)
= 5

12
; 12w2 + 28w = 5

Clearly this is quadratic, and the solutions are w = 1
6 and w = −5

2 . Realistically, the wall has
width 1

6 nindan (2 cubits) and length 2 1
2 nindan.

7. We could, as above, reduce everything to the simplest units; but that is probably not what was
done. To proceed ‘properly’, start from the right (this may not have been usual, but it is our
habit). 1 bùr gives 30 gur or 3 u, from the table. 1 šár (60 bùr) therefore gives 60 × 3 u, or
3 geš’u (since there are 60 u in 1 geš’u). 1 šar’u gives 10 times this, which is 30 geš’u, or 5 šár.
And finally, 1 šár-gal gives six times this, which is 30 šár, or 3 šar’u.
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8. We now have to subtract. This time again, it is more correct to borrow along the line.
However, since you can risk making mistakes quite easily given the number of 0s in the
top row, I will reduce everything to bán. The amount due is 3,834,900 bán, the amount
delivered is 2,353,870 bán; and the deficit is 1,481,030 bán; which is 1,080,000 (1 šar’u) +
3, 240, 000 = 3 × 108, 000 (3 šár) + 72, 000 = 4 × 18, 000 (4 geš’u) + 3600 = 2 × 1800
(2 géš) + 1200 = 4 × 300 (4 u) + 210 = 7 × 30 (7 gur) + 18 = 3 × 6 (3 barig) + 2 bán. This
agrees with the scribe’s calculation apart from the figures for u and géš.



2 Greeks and ‘origins’

Socrates: Then as between the calculating and measurement employed in building or commerce and
the geometry and calculation employed in philosophy—well, should we say there is one sort of each, or
should we recognize two sorts?
Protarchus: On the strength of what has been said, I should give my vote for there being two.

(Plato, Philebus, tr. in Fauvel and Gray 2.E.4, p. 75)

1 Plato and the Meno

One feature of mathematics which has remained fairly constant from the earliest times to the
present day is a general view that its aim is to use ‘numbers’ to solve problems which arise in the
world. However, another idea has been widespread among mathematicians at least since the time of
the ancient Greeks, and its statement dates back to Plato, whose different view is summarized above:
there is a down-to-earth mathematics which you use for accounts and measuring, and there is a
superior mathematics, which I use for some other purpose. What we know of this view, what its
implications were, and its early history are the subject of this chapter. Plato—a philosopher, whose
dates are usually given as roughly 427–348 bce and who was mostly writing in the early fourth
century—is one of the central figures in the history of Greek mathematics. There are a number of
reasons for this. A simple one is that Plato dealt in some detail with mathematical questions in his
works; and, while mathematics had supposedly been practised for 200 years before his time, his
Dialogues are the earliest first-hand documents which we have. Almost equally important is that,
as the quotation indicates, Plato defined a particular view of what mathematics was, or should be.
A rough characterization is that real mathematics is more abstract—numbers are no longer num-
bers of ‘things’ or measurements of length, area, or time, but have an independent existence as
objects which you reason with. As Socrates says earlier in the same dialogue:

The ordinary arithmetician, surely, operates with unequal units; his ‘two’ may be two armies or two cows or two
anythings from the smallest thing in the world to the biggest; while the philosopher will have nothing to do with him,
unless he consents to make every single instance of his unit equal to every other of its infinite number of instances.
(Plato, Philebus, tr. in Fauvel and Gray 2.E.4, p. 75)

And while not all of his successors agreed with this approach, those who did were those who
had most influence. This is especially true of some very late writers (after 300 ce) who are the main
authorities for what we know of the history.

One of Plato’s longest and clearest mathematical discussions, often referred to, is in the dialogue
called the Meno. (For the mathematical part, see Fauvel and Gray 2.E.1 (pp. 61–67); Fowler (1999)
has text with variations of his own construction; and the whole dialogue is online for example,
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Fig. 1 The Meno argument. The large square has side 4 feet (area 16 square feet), the four small squares have side 2 feet (area
4 square feet). The four diagonals form a square of area 8 square feet.

at http://classics.mit.edu /Plato/meno.html.) What is done in this dialogue is a good introduction
to Greek mathematics—or the kind which is considered ‘typical’, the classics if you like. The
other kinds, referred to in our opening quotation, will be discussed in the next chapter. Although
the problem and the solution would easily have been available to the Egyptians or Babylonians a
thousand years earlier, what seems suddenly to be new is the appeal to argument and discussion.
The philosophical point of the dialogue is an idea about ‘knowing’. Socrates has a strange theory
that the truths which we know have not been learned but were always present in our minds and
we simply bring them to consciousness or ‘remember’ them. (He is referring to a particular kind of
truth—knowledge about triangles or the Good, not mere facts like ‘it’s raining’.) With this aim, he
calls over a supposedly ignorant slave-boy, and asks him how, if you are given a square of side 2 feet,
you can construct a square twice the size. Since the original square has an area of 4 square feet,
then the one you construct must have an area of 8. The slave-boy suggests squares of side 4 feet
(wrong, because its area is 16 square feet) and 3 feet (again wrong, area 9 square feet). He then
becomes perplexed, and admits to not knowing. Socrates then—we assume—draws the figure
shown (Fig. 1), and continues to ‘find out’ from the boy that it contains the answer to the problem.

His arguments are given in Appendix A to this chapter, and are conceptually quite simple.

1. Each of the four squares in the diagram is 2 × 2 square feet, and so has an area 4 square feet.
2. So each of the eight triangles (half of a square) has an area of 2 square feet.
3. Now look at the square made by the four diagonals. It consists of four triangles, so its area must

be 4 × 2 or 8 square feet.
4. It is therefore twice the area of the (2 × 2 square feet) square we started off with so it is the

‘square of double the size’ we were looking for.

It is easy to find fault with the way the dialogue is conducted: Socrates is in fact leading the
witness inadmissibly, putting the answer which he himself knows into the boy’s mouth, and then
claiming that he has done nothing of the kind. However, more purely mathematical objections
arise, and they relate to some key ideas about the nature of Greek mathematics. In particular,
a question which Socrates does not deal with—which is interesting given the precise use of numbers
like ‘2 feet’, ‘3 feet’, and so on—is what the length of the diagonal (the side of the ‘eight-foot square’)
is. Today, we would say that, since the area is 8, the side must be

√
8 = 2.828 . . ., which is not a

http://classics.mit.edu/Plato/meno.html
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whole number, or even a ‘rational’ number (a fraction p/q, where p, q are whole numbers). You can
approximate it as closely as you like by fractions, but the result will never be exact.

As Michel Serres points out, in a detailed discussion of the dialogue:

Nobody asks the asker: how long? He questions the ignorant slave about a content about which nobody, however,
bothers him. He found the side all right, but he did not measure it. Socrates is cheating: he knows that he will not find
the exact length. (Serres 1995, p. 105)

In fact, one reason why this particular problem has been chosen for the dialogue is perhaps—but
here, as usual, we have to start attributing motives to the Greeks—because it shows the limitations
of numbers, and the superior power of geometrical methods. The boy will never arrive at the
right answer by guessing different numbers; but Socrates can draw a picture which solves it. The
philosophers’ mathematics not only uses a more abstract idea of ‘number’, but when number
becomes a problem, it can dispense with it.1

Greeks said that ratios such as diagonal-to-side were ‘alogoi’—without a reason, irrational. More
simply, they said that the side and the diagonal were ‘incommensurable’, that is, there is no shorter
line l having the property that both side and diagonal are exact multiples of l (are ‘measured’ by l).
We shall return to these terms, and the problems they pose, later.

Exercise 1. Is it obvious that the figure which Socrates constructs in Fig. 1 is a square? Why?

Exercise 2. Why does ‘diagonal is incommensurable with side’ mean the same to us as ‘
√

2 is not a
fraction’?

Exercise 3. Why is
√

2 not a fraction anyway?

2 Literature

It is striking that near the end of the twentieth century there should appear two books arguing that much of the history
of Greek mathematics written during that century is wrong. Reviel Netz argues that it is wrong because historians
have not understood the crucial roles that language and diagrams played in shaping the deductive structure that is
Greek mathematics’ most striking characteristic. David Fowler argues that it is wrong because a key component of
the mathematics that developed in and around Plato’s academy was lost in Hellenistic times and was not rediscovered
until the Renaissance. (Berggren 2003)

The literature on ancient Greek mathematics, as the above quotation reminds us, is large and in
constant flux. We shall consider the specific problem of the ancient Greek texts themselves shortly.
For the moment, let us concentrate on what material is available on the period, as primary and sec-
ondary sources. The standard reference text is certainly Heath’s (1981), a reprint of a 1921 classic.
Because it is so old, and so much a standard work, it is the basis for most later authors’ arguments,
disagreements, and conjectural reconstructions. The main primary sources for the period we are
considering—up to and including Euclid, around 300 bce—are the works of Plato, Aristotle, and
Euclid himself. Fauvel and Gray give plentiful extracts from all of them, and all can be found easily
on the Internet. It is very strongly recommended that you read some of these texts, which vary from

1. There is evidence that Plato did know that the side of the eight-foot square was not a rational number, from the Theaetetus—see
extract in Fauvel and Gray 2.E.3, pp. 73–4. But the question is not raised in the Meno. Why not?
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quite easy to spectacularly difficult. This will give some idea of the achievements of Greek mathe-
matics, of its range, and of the limits within which it operated. In Fauvel and Gray you will also
find some useful extracts from the very late (c.450 ce) commentator Proclus, for whom see later.

With regard to secondary literature, the situation is better, since the question of the earliest
Greeks, their aims, and achievements, has seemed so important—we will discuss why later. There
are sections on the Greeks in both van der Waerden (1961) and Neugebauer (1952). They are
sometimes dated, and in van der Waerden’s case, given to conjecture using unreliable ancient
sources. The major modern works which cover the question can be dauntingly detailed, but if you
find yourself developing, as one does, an interest in Greek mathematics, they will draw you in.
The central works are probably Knorr’s (1975) attempt to account for the form of the Elements
and Fowler’s (1999) more informal but very scholarly reconstruction of what geometry might
have been like before Euclid. Netz (referred to by Berggren above) (1999) gives an intriguingly
different approach, by a consideration of actual Greek proofs and how they work, followed by a
‘sociology’ of Greek mathematicians based on the very fragmentary evidence we have about them.
We shall refer to other texts when they are useful; but these will do for the present. You have a
reasonable chance, given the prestige of Greek mathematics, of finding some or all of them in your
library.

3 An example

Being in a Gentleman’s Library, Euclid’s Elements lay open, and ’twas the 47 El. libri I [Pythagoras’ theorem]. He
[Thomas Hobbes] read the Proposition. By G—, sayd he (he would now and then sweare an emphaticall Oath by way
of emphasis) this is impossible! So he reads the Demonstration of it, which referred him back to such a Proposition;
which proposition he read. That referred him back to another, which he also read. Et sic deinceps [and so on] that at
last he was demonstratively convinced of that trueth. This made him in love with Geometry. (J. Aubrey, Brief Lives,
quoted in Fauvel and Gray 3.F.2)

While the Meno is a very illuminating discussion on a mathematical subject, it is too informal
to be a good illustration of the mainstream Greek mathematics which is our primary concern.
Socrates’ arguments make no attempt to go back to first principles, and the points he makes about
areas of triangles are treated as obvious (which they are) rather than justified in painful detail. The
mathematical argument of the Meno, if not its philosophical one, would have been easily accessible
to an Egyptian.

To see how ‘classical’ Greek mathematics claims to work, it is best to start, at least, with Euclid’s
Elements. (For texts see the bibliography.) This is a strange and complex work—some would say a
composite, or scissors-and-paste compilation of previous works; but it has been the most read and
commented of all mathematical works in history, so it deserves a central position in any account.
For that reason, we shall privilege it over the harder works of Archimedes and Apollonius, the other
main classics. It is also a sensible idea in the first place to consider it in itself as a text rather than
speculating on its origins; such speculation is natural in a history which focuses on ‘discovery’, but
other histories are available. A whole book could be written about the Elements, and many have;
the most recent and scholarly are Knorr (1975) (already mentioned) and Artmann (1999). The
work, as its title suggests, is supposed to give the student the essentials of mathematics, carefully
deduced from ‘first principles’, statements which are either in some sense obvious, or which the
reader/student can reasonably allow to be true. (‘All right angles are equal’, for example.) Here, as
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A D

B C

E F

G

Fig. 2 The diagram for Euclid proposition I.35.

an example of the approach, is a single short proposition. The aim is a simple one: to show that two
parallelograms with the same base and the same height have equal area. In Euclid’s language, they
are just called ‘equal’.

Proposition I.35. Parallelograms which are on the same base and in the same parallels equal one another.
Let ABCD and EBCF be parallelograms on the same base BC and in the same parallels AF and BC.
I say that ABCD equals the parallelogram EBCF. [Here is Euclid’s diagram (Fig. 2). The proof then

continues.]
Since ABCD is a parallelogram, therefore AD equals BC. (Proposition I.34.)
For the same reason EF equals BC, so that AD also equals EF. And DE is common, therefore the

whole AE equals the whole DF. (Common Notions 1, Common Notions 2.)
But AB also equals DC. Therefore, the two sides EA and AB equal the two sides FD and DC, respect-

ively, and the angle FDC equals the angle EAB, the exterior equals the interior. Therefore, the base
EB equals the base FC, and the triangle EAB equals the triangle FDC. (Propositions I.34, I.29, I.4.)
[So at this point, we have proved the triangles EAB and FDC are what is usually called ‘congruent’—
all sides and angles are the same. This implies that they have equal areas, of course.]

Subtract DGE from each. Then the trapezium ABGD which remains equals the trapezium EGCF.
(Common Notions 3.)

Add the triangle GBC to each. Then the whole parallelogram ABCD equals the whole
parallelogram EBCF. (Common Notions 2.)

Therefore, parallelograms which are on the same base and in the same parallels equal one
another. Q.E.D.

This result stands instead of the numerical formula which we, like the ancient Egyptians and
Babylonians, would use to relate the area of a parallelogram (and, more commonly, a triangle), to
the length of the base and to the height.

This use of the term ‘equal’, to mean having the same area, is not in Euclid’s list of definitions;
you are supposed to know what it means. Here we see it as retrospectively defined by ‘adding’
and ‘subtracting’ the triangles DGE and GBC, starting from two triangles which themselves are
equal in all respects—all sides and all angles correspond. So, ‘equal’ means having equal area; but
paradoxically, ‘area’ is undefined. In a sense the process is a sleight of hand.

Notice also that the point G is not defined, except by the diagram; and also, that the proof as
stated only works if G is as shown, that is, if CD crosses BE between the parallels. You can adjust
the proof for the case where it does not. Is this a ‘mistake’? Such minor oversights do occur, and
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have worried commentators, but they are not—perhaps you will agree—very important unless you
suppose the Elements to be perfect.

As you see—and this is Euclid’s most famous and influential characteristic—every statement
is backed up by a reference back to a previous result, or in this case to a ‘common notion’.
(If you like, like Thomas Hobbes in our opening quote, you can read ‘backwards’ from an apparently
unbelievable statement until you arrive at something you can believe.) For example, Common
Notion 1, clearly important in the proof, states that ‘if equals are added to equals, the results will be
equal’. This deductive structure (statement of proposition → proof, justified by reference back →
Q.E.D.) is still in use today. It has been usual to treat Greek mathematics as part of our Western tra-
dition, and so as similar to our own, and indeed the style of exposition and the material are familiar;
but the actual aim of the proposition is unusual from our viewpoint, as it would have been for the
Egyptians; it tells us only that two parallelograms have equal areas, instead of saying what those
areas are. Does this mean that Euclid did not think of areas as numbers? There is evidence that
he did not. To do so, you have to have a fixed unit of measure (one square foot or one square metre,
or whatever), and this the Elements is unwilling to do.2

In fact, the Elements is not a user-friendly text, to put it mildly; there are no examples, no explan-
ations of aims and objectives, or of the uses to which any result can be put. All this the reader has
to invent. And, because Euclid did not explain his aim, we have to use other sources to try and find
out what he was trying to do and why. Here are two other examples of the thinking in the Elements
to illustrate what I mean:

1. Today, we usually think of ‘Pythagoras’s theorem’ as a statement about numbers; again, this
theorem was known in much the same sense by the Egyptians and Babylonians. In these terms,
the theorem says that if a right-angled triangle has short sides of lengths a and b, and long side
(hypotenuse) c, then a2 + b2 = c2. But the theorem as stated in Euclid I.47 (see Fauvel and Gray
3.B.5, p. 115–6) is about actual squares: if you draw the squares on the three sides, then you can
cut up the squares on the two short sides and piece them together to make up the square on the
hypotenuse.

2. Again, when we want to describe the area of a circle, we—like the Egyptians—describe it by
the formula πr2, where r is the radius and π is a number which we can approximate in various
ways, depending on how accurate we want to be ( 22

7 , for example, or 3.14159.; the Egyptian
approximation was worse, but not too bad.) There is no such formula in Euclid; the only statement
about areas of circles is (XII.2—see Fauvel and Gray 3.E.3, p. 136–7): ‘Circles are to one another
as the squares on their diameters’.

This rather enigmatic sentence means in plain—slightly simplified—terms that the area of a
circle C is in a fixed ratio to the area of the square S on its diameter. (Which is four times the square
on the radius.) We could recover the usual statement if we called the ratio ‘π/4’, but that would
not be in agreement with the whole use of the term ‘ratio’ in Euclid—a ‘ratio’, whatever it is, is not
the same as a number, as we shall explain later.

Confused? It is not surprising; and the Elements, despite their prestige, have probably generated
more confusion than any other Greek mathematical work, among readers in the Islamic, medieval,
and modern European worlds. How the ancient Greeks understood them is rather unclear to us.

These examples should give some sense of the difference between Greek mathematics and our
own; and this is a useful starting point, since our problems in understanding it help us to begin

2. However, for comparison, we have Socrates’ use of numbers for areas in the Meno—‘the four-foot square’ and so on.
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with a historicist sense of difference. The classical works were using methods which are alien to us
to achieve ends, which in the main, we no longer have.3

With this in mind, let us consider what we know of Greek methods, and how far conjecture,
hearsay, and the like can help us.

Exercise 4. What steps would be needed to deduce a formula for the area of a parallelogram from
proposition I.35 above?

4 The problem of material

Acting as many inventors are known to have done in the case of their discoveries, they have perhaps feared that
their method being so very easy and simple, would if made public, diminish, not increase public esteem. Instead they
have chosen to propound, as being the fruits of their skill, a number of sterile truths, deductively demonstrated with
great show of logical subtlety, with a view to winning an amazing admiration, thus dwelling indeed on the results
obtained by way of their method, but without disclosing the method itself —a disclosure which would have completely
undermined that amazement. (Descartes Rules for the Direction of the Mind (1968a), Rule 4)

Our Greek sources, with much more material at their disposal than we have, had little difficulty
telling stories of how mathematics developed, however inventive we might find them. By the
seventeenth century when Descartes wrote, it was a different matter. New translations of the
ancient Greek writers clarified both their importance and the excessive difficulty of their work, in
comparison with the algebraic methods which could be seen as an alternative. Never one to defer
to any older authority, Descartes imagined the Greeks using easy methods of discovery, similar to
his own prescriptions for solving problems, and then making the results look hard so as to mystify
posterity. Drawing on hints in Greek authors, particularly Pappus, he opposed ‘analysis’ (a method
of discovery, in which you consider the properties of the thing you want to find and deduce what it
must be like) to the classical Euclidean ‘synthesis’ (a method of disclosure, in which you state what
the result must be, without explanation, and prove you are right). His claim was that the Greeks
had used analysis, as he would do in his own work, but destroyed the works in which it was used.
By such arguments, he not only propagandized for his own work, but started the fertile genealogy
of speculation about why the Greeks had chosen to do mathematics in such a strange way. The
tradition of ‘scholarly’ history, which began in the late nineteenth and early twentieth century
with Paul Tannéry (1887) and Sir Thomas Heath (1921), had more respect for the Greeks and less
of an axe to grind, but little more material to go on.4 In his pioneering work, Tannéry described the
problem of sources:

These writings [Euclid, Archimedes, etc.] cannot teach us the history of science; they leave us ignorant about its
origin, of its first developments, just as, since important works have been lost, they give us no way of gauging, without
having recourse to conjectures, the direction of research in higher geometry and the level of understanding which
was reached.

The history of Greek geometry must therefore appeal to other sources; it must subject those sources to a methodical
critique such as one applies in other similar cases. This is the aim which I have set myself. (Tannéry 1887)

3. It is enough to recall the classical Greek problem of ‘squaring the circle’, that is, constructing a square whose area is equal to that
of a given circle. A great deal of work was expended on this in ancient times (see Knorr 1986, for example). Grossly misunderstood
by some medieval writers (see chapter 5), it is now—for reasons which are as much to do with our different perspective as with our
greater knowledge—not a concern for mathematics.

4. The only exception was Heath’s discovery of an unknown manuscript of Archimedes’ ‘The Method’, published for the first time
in 1906. This work, which will be discussed in the next chapter, in some ways confirms Descartes’s suspicions.
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Although he has been criticized since for the way in which he used his often unreliable sources,
Tannéry was on the whole careful and many of his successors have been less so. Writing before
the Babylonian and Egyptian contributions had come to light, he saw the Greeks as the earliest
known mathematicians, and as such particularly important. But even today, the importance, and
the difficulties of source material, remain much the same.

The works of Euclid and his successors have been ‘classics’ for three major civilizations—their
own, the medieval Islamic, and the modern European. They have the advantage of being readable
(in a language which is related to a modern European language), often accessible in libraries
and now, at least in extracts, on the Internet, and clearly central to any history of mathematics;
whatever reservations one may have about Eurocentrism, and the role of the Greeks as overvalued
‘Europeans’, their methods and discoveries have had a decisive influence. However, as Tannéry
pointed out, their study needs supplementing to give us a ‘history’, and the construction of such
a history raises serious questions of method and approach.

In the first place, Greek mathematics is supposed to have started in the early sixth century bce

At this time, the Greek world consisted of what is now Greece, western Turkey, and a few colonies,
particularly Sicily. However, there are no surviving mathematical texts earlier than the discussions
in Plato’s dialogues (say about 380 bce) and no substantial writings before those of Euclid, about
70 years later. By Euclid’s time, the Greek world had changed completely as a result of Alexander the
Great’s conquests, and included what we now call the Middle East; and the centre of learning had
shifted from Athens to Alexandria in Egypt. While there are a number of substantial mathematical
texts from Euclid onwards (see table given below), there are still major gaps in the record before
it comes to an end, about 600 ce Some works said to have been written are lost, and many
well-known mathematicians have no surviving works, known or not. Here is a list, with dates, of
the main ‘important’ Greek mathematicians and one rather arbitrarily chosen memorable work for
each, where known. Euclid, Archimedes, Ptolemy, and others wrote a number of works, some lost,
some not; the table is simply there as a rough guide. An entry in italics means that the work(s) have
not survived.

Mathematician Works Rough Date

Thales None known 480 bce

Pythagoras None known 500 bce

Democritus None known 450 bce

Hippocrates Elements 420 bce

Plato Dialogues 380 bce

Eudoxus Phaenomena 350 bce

Euclid Elements 310 bce

Archimedes Sphere and cylinder 240 bce

Apollonius Conics 210 bce

Hipparchus Star catalogue 150 bce

Heron Metrics 50 ce

Ptolemy Syntaxis (‘almagest’) 150 ce

Pappus Collection 200 ce

Second, as Tannéry recognized, our sources for most of what happened are of two kinds.
The first, of course, is the works themselves; the second is descriptive material about the works
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of mathematicians scattered among other writers. While Plato and Aristotle date from the
fourth-century bce (and are in different ways very important sources), the rest are over 500 years
later, and are commentators with particular philosophical allegiances. They have often been
treated, as they should be, with suspicion, but for much of the early history they are all we
have. A particularly important source is Proclus, who, around 450 ce, wrote a commentary
on Euclid’s book I, prefaced by a general history of mathematics up to Euclid’s time and an
exposition of what, in general, the aim of the Elements was (the most recent edition is Proclus
1970). For a number of statements, Proclus is the only source; but besides his late date, his
allegiance to Plato’s philosophy and to later embroideries of it make him a source to be treated
with caution.

Third, all the works which exist are not—like the works of the Babylonians or Egyptians—
‘contemporary documents’ (manuscripts of Archimedes from his time or near it, say). As in ancient
Egypt, papyrus was used for writing, and it is extremely perishable. Manuscripts were copied and
recopied over centuries, and the earliest surviving copy of Euclid’s Elements is from the ninth-
century ce, over 1000 years after the work was written. (Details on the earliest manuscripts are
given in Fowler 1999, p. 218ff) Worse, mathematicians see no need to respect a text they are
copying if they can explain it or express its meaning more simply, and for some works the earliest
manuscripts have certainly been edited in this way. This problem is not as serious as the others, but
it exists.

More interestingly, we know very little about what kind of people in the ancient Greek world did
mathematics, and why. Archimedes wrote a few interesting letters to patrons and colleagues, but
he gives no explanation of why mathematicians are engaged in their solitary activity; and, as Netz
points out (1999, p. 284–5), the community he refers to is extremely small. And this, one would
think, was at the high point of Greek mathematics. Most of the time, the mathematicians seem
not to have left records describing their practice, their students, their aims, and thoughts about
their work. In this respect, our situation is worse than for ancient Egypt, say, where mathematics,
so far as we know, was done by a socially well-defined group of people for particular reasons. A
useful start at ‘profiling’ the world of Greek mathematicians is done by Netz (1999, ch. 7), but it is
necessarily speculative.5

In general, if we want a good basis for writing the history of any activity (witchcraft in the
seventeenth century, say, or the Vietnam War), we would like to have documents which describe
what the participants were doing; how contemporary observers saw it; and the general social
setting in which the events took place. What we have for Greek mathematics is nothing like this.
Rather, it consists of an impressive collection of major texts—less than 20 in number—with some
more minor ones, and some late and unreliable stories. The material spans a period of 1000 years
or more. If we want to think about it in a historical way, how do we do so? More contentiously, one
could ask: why do we want to?

Without even attempting the second question, we should make a particular point about
‘reconstruction’, which is one of the few methods available for dealing with the first. Whenever
the historical record is weak, one wants to fill in the gaps, supplementing slender materials with
imagination so as to form an idea of what Boudicca’s chariots were like, what was in the Holy Grail,
or the identity of Jack the Ripper. In mathematics, we attempt a reconstruction of a particular
form: briefly, to deduce an unknown proof from the fact that we are told that one existed. This can

5. In particular, Netz’s conclusion that the number of Greek mathematicians over the whole recorded history was at most
1000 gives the classic works, and in particular the Elements, a tiny readership; unless one distinguishes a higher-level ‘creative’
mathematician from someone educated well-enough to read the basic works.
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be illuminating; but, unless a document which confirms the reconstruction turns up, it must
necessarily be provisional, leaving the field open for other competitors.

5 The Greek miracle

The king moreover (so they say) divided the country among all the Egyptians by giving each an equal square parcel of
land . . . And any man who was robbed by the river of a part of his land would come to Sesostris and declare what had
befallen him; then the king would send men to look into it and measure the space by which the land was diminished, so
that thereafter it should pay in proportion to the tax originally imposed. From this, to my thinking, the Greeks learned
the art of geometry . . . (Herodotus, cited in Fauvel and Gray 1.D.4 (a), p. 21)

What the Greeks discovered — the greatest discovery made by man — is the power of reason. It was the Greeks of
the classical period, which was at its height during the years from 600 to 300 B.C., who recognized that man has an
intellect, a mind which, aided occasionally by observation or experimentation, can discover truths. (Kline (1980),
p. 9.)

The problem of why Greek mathematicians wrote their works as they did tends to be framed
as a problem of origins: there must have been some event, some discovery perhaps, which led to
what is called the ‘Greek revolution’ or ‘Greek miracle’ in mathematics. The quotation from Morris
Kline is a typical example. There is a case for using revolutionary language, on the analogy of the
sixteenth century ‘scientific revolution’; and one might try to adopt a version of Kuhn’s theory of
scientific revolutions. An obvious difficulty is our ignorance of when or how it might have taken
place. The Greek authors are not responsible for the idea that they were revolutionary, but that
should not stop us from adopting it if it seems reasonable. The ‘paradigm’ (to use Kuhn’s term) of
doing mathematics for the known Greek authors is a different one from any which went before. The
evidence that we have, suggests that their predecessors and indeed contemporaries in Egypt and
Mesopotamia were better at calculation, but quite unconcerned with formal proof.6 However, if we
accept that there was a revolution, the study of its origin has been a very problematic one, and it
does not seem well adapted to Kuhn’s framework in which the idea of a ‘scientific community’ who
pursue normal science is an essential component. We have a good record of what could be called a
scientific community in the ancient Near East, even if it may not have been much like our own, but
our knowledge of such a community at the dawn of Greek mathematics is almost non-existent.

Before the 1920s, and the publication of the Egyptian and Babylonian texts, it was universally
believed that the Greek revolution actually founded mathematics as a science—and hence, the first
truly scientific discourse. The belief lingers on among those who, either because they wish to define
scientific mathematics in such a narrow way that it excludes the sophisticated procedures of the
Babylonians, or because they have an ideological investment in a Western origin, cannot accept
the evidence that Greek mathematicians, however revolutionary, were transforming an earlier
Middle Eastern practice. To take one example, an important French ‘structuralist’ tradition adopts
the hard science/prescience distinction made by Gaston Bachelard in the 1930s (the so-called
‘epistemological break’ which founds a science, see Bachelard 2003). In the 1960s, Louis Althusser

6. One should always here remember how very fragmentary our sources are. Both Herodotus (see the quote at the opening of
this section) and Aristotle described mathematics as an Egyptian import (see Fauvel and Gray extracts 1.D.4), while Plato in his Laws
(extract 2.E.6), probably for propagandist reasons, claimed that the teaching of mathematics was better in Egypt than in Athens.
However, the state of mathematics in Egypt at that time (fifth–fourth century bce) is unknown to us.
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in For Marx gave a naive version (‘Thales opened up the “continent” of mathematics for scientific
knowledge’, 1996, p. 14); it is fair to say that the history of science was not his primary concern.
And the tradition is still present in a more sophisticated form in the ‘archaeology’ of Michel
Foucault: having described the stages of formation of a science as ‘discursive practice’ from the
lowest (‘positivity’) to the highest (‘formalization’), he continues:

mathematics [is] the only discursive practice to have crossed at one and the same time the thresholds of positivity,
epistemologization, scientificity and formalization . . . hence the fact that the beginning of mathematics is questioned
not so much as a historical event as a principle of history: a geometry emerging suddenly, once and for all, from the
trivial practices of land-measuring. (Foucault (2002), 188–9.)

As Paul Ernest points out (1998, p. 230) ‘[Foucault] has fallen victim to the popular myth about
the origins of mathematics in Greece’—and rather late in the day, it might be added. It was perhaps
one of Kuhn’s major achievements to question the simplistic division implied here between what is
scientific and what is not, to make clear that there is not a single scientific practice founded once
for all, and to exhibit science as subject to its own ‘breaks’, which cannot necessarily be described
as straightforward advances or retreats. The idea of a ‘revolution’ as founding Greek culture is by
no means confined to mathematics. It has long been a central dogma in the history of Western
culture that the Greeks—around the fifth-century bce—were responsible for the invention of the
scientific method, philosophy, rational argument, democracy, and much more. That view has been
recently challenged, at least in part, in works such as Martin Bernal’s Black Athena (1987, 1991),
which argue that there was a close relation in culture and even in language between Greece and the
Middle East, particularly Egypt.7 However, even if the changes which may have brought abstract
rational thought into being are not specifically Greek, they are significant; G. E. R. Lloyd has done
the best recent work in trying to describe them (see in particular 1979), and to distinguish a
hypothetical ‘before’ and ‘after’. Attempts at non-Kuhnian (sociological/‘external’) explanations
have included:

1. The introduction of alphabetic writing—adapted from the Phoenicians around the eighth
century bce, but probably only brought into general circulation some time later in the transition
from an ‘oral’ to a ‘written’ culture (Goody 1986).

2. The invention of coined money, about the sixth century bce. According to the Marxist thesis
of Alfred Sohn-Rethel (1978), this led to the ‘abstraction’ of things from values, and hence to
abstract thought in general—for a recent version see Seaford (2004).

3. The institution of the (more or less democratic) city–state with its tradition of public political
argument. This is the central thrust of Lloyd’s books on the subject, although he is careful to
avoid single-thesis explanations.

All of these theses may have some force, and it may, as in the case of the revolution of the
sixteenth century, be necessary to think in terms of a combination of factors. Any means for
deciding the question is almost completely lost in the fog of historical conjecture, but this has not
stopped this particularly fascinating historical problem from being the subject of wild speculation

7. For the controversy surrounding, Bernal’s theories, which is far from resolved, see for example, the website
www.blackathena.com. For several illuminating discussions of the Greeks, their innovations, and their possible indebtedness to
others, see the articles by Bernal et al. 1992 collected in Isis, vol. 83, pp. 554–607.

www.blackathena.com
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or dogmatic assertion. To be more cautious, to insist as Lloyd does on how little we know, is to risk
being found unexciting.

To some extent the status of the revolution in mathematics is linked to the others, particularly
philosophy (given Plato’s views on mathematics as a model for reasoning). From a different
viewpoint, though, mathematics could gain by being considered separately. In the first place,
the innovations in mathematics were of a very specific nature and have led to quite particular
accounts of the revolution; and in the second, to see mathematics as the product of a general
revolutionary process makes it too homogeneous.

6 Two revolutions?

[The Greeks] were certainly not the first to develop a complex mathematics—only the first to use, and then also to give
a formal analysis of, a concept of rigorous mathematical demonstration. (Lloyd 1979, p. 232)

Greek mathematical deduction was shaped by two tools: the lettered diagram and the mathematical language. (Netz,
1999, p. 89)

So far, I have concentrated on the most obvious novelty in Greek mathematics—the use of an
ordered sequence of deductions, which in Euclid appears to be from what is considered self-evident.
This interpretation of Euclid is strengthened by Aristotle’s prescriptions (for mathematics and
deductive science in general), for which see Fauvel and Gray 2.H.1, p. 93–4. It is this revolution
which is of interest to Lloyd, partly for the reason that his study concerns the wider field of rational
discourse in Greek society, whether medical, philosophical, or mathematical; and his description of
what was distinctive to the Greeks in the first quote is a good one. In the second quote Netz, looking
at the collection of documents we have as evidence of how a community worked throughout the
Greek period, concurs in seeing what was distinctive about Greek mathematics as a unified practice
based on a ‘toolkit’ of argument about lettered diagrams. However, any search for the origin of this
particular revolution, apart from general sociological speculation of the type outlined above, takes
us back to the most unreliable parts of the commentators’ story—to Thales (early sixth century
bce) and Pythagoras (around 500 bce). Proclus claims, for example, that ‘old Thales’ proved six
results, one being that the base angles of an isosceles triangle are equal (1970, p. 250/195). In
other words, if the triangle ABC has sides AB, AC equal then so are the angles B, C.

This would certainly be ‘revolutionary’ if we had any reliable evidence (which, as far as Thales
is concerned, Proclus is not). One should not discount the value of myth and late propaganda as
historical source material. But it is, in the main, source material for ‘what later Greeks thought
about their origins’ rather than for ‘what Thales did’. The idea that such a fact, which Thales’
predecessors could well have considered obvious, needed proving, and the attempt, whatever it
might be, to construct a proof, would have marked Thales’ geometry off from any earlier ideas of
what geometry (traditionally, the measurement of land . . .) was about.

Speculation about what Thales did, which was once an acceptable part of Greek mathematical
history, is now generally discounted as serious history (except as a metaphor, perhaps, for example,
by Michel Serres, 1995, p. 105). The same is true, if anything more so, for Pythagoras, who
Proclus claimed founded ‘pure’ mathematics (‘transformed mathematical philosophy into a scheme
of liberal education’, 65/53). The scholarship of Walter Burkert in particular (see 1972), has
established fairly conclusively that no mathematical discoveries can be soundly attributed to
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Pythagoras at all.8 That he did exist is a reasonable assumption, since he is referred to by Herodotus
and Heraclitus not long after his time; but not much more can be said. With reasonable evidence
that a revolution of some sort took place, we have no serious information on the state of affairs
before or on what happened; only some idea of the situation some time after. Netz makes an
interesting case for dating this ‘first revolution’ to the (rather late) time of Hippocrates, about
440 bce:

According to our evidence, mathematics appears suddenly, in full force. This is also what one would expect on a priori
grounds. I therefore think mathematics, as a recognizable scientific activity, started somewhere after the middle of the
fifth century B.C. (Netz 1999, p. 275)

His arguments are persuasive, but in the nature of things can hardly be conclusive.
However, as we have seen, there are more unusual things to be accounted for in Euclid, and

in much of what followed, than the use of argument and diagram; and the introduction of such
special features, which we could provisionally think of as the second revolution, is the one which
has particularly attracted the imaginative historians. The evidence is still a mixture of gossip
and inventive reconstruction, but there is more to it. Among the elements which need to be
explained are:

1. Euclid’s avoidance of numbers in describing lengths, areas, and so on.
2. His use—notably in book II—of a geometric language for manipulating areas where his

Egyptian or Babylonian predecessors would have used something more like what we call
algebra—see the discussion of proposition II.1 in the Introduction.

3. His theory of ‘ratios’ which are intended to replace numbers in contexts where these may not
be fractions (area of circle to square on diameter, for example, see below).

Clearly, the most economical hypotheses to explain all this would be: first, that Euclid’s practices
were the result of a ‘second mathematical revolution’; and second, that this second revolution
was—on Kuhn’s model—the result of serious problems which arose in the original practice of
rigorous mathematics which made it impossible to proceed. Both of these theses, originally put
forward around 1910, are still widely believed in a revised form; we now need to examine the
arguments for and against them.

Exercise 5. How would you prove Thales’ statement on isosceles triangles, and what assumptions would
you need?

7 Drowning in the sea of Non-identity

“But betray me,” said Neary, “and you go the way of Hippasos.”

“The Akousmatic, I presume,” said Wylie. “His retribution slips my mind.”

“Drowned in a puddle,” said Neary, “for having divulged the incommensurability of side and diagonal.”

“So perish all babblers,” said Wylie.

“And the construction of the regular dodeca—hic—dodecahedron,” said Neary.” (Beckett 1963, p. 36)

8. Nevertheless, you can of course still find long discussions of what Pythagoras did, on the Internet and even in ‘general’ histories.
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Octahedron

Cube
[Hexahedron]

Tetrahedron

Icosahedron Dodecahedron

Fig. 3 The five regular (‘Platonic’) solids.

By ‘the incommensurability of side and diagonal’, Beckett means the fact, mentioned in our
discussion of the Meno, that the ratio of a square’s diagonal to its side,

√
2, is not a fraction. But

his pub classicists most probably came across their story not in its Greek original source, but in
its popularization in the twentieth-century history of mathematics, the ‘secret’ or ‘scandal’ of the
irrationals. This story, in some more respectable form, is still widely believed. The basic ‘fact’ is that
Pythagoras founded a sect of initiates whose secret knowledge was at least partly mathematical.
He is said to have taught that ‘all is number’, where by number is meant whole number (1, 2,
3, . . .); and at the same time he or his sect attached religious/magical importance to the regular
solids (see Fig. 3).

However, you cannot construct the regular solids, at any rate those which involve pentagons,
without bringing in irrational ratios—see Appendix B. Both this, and the problem of the side and
the diagonal, suggest a difficulty or, to put it more strongly, a ‘scandal’ for Pythagoras’s supposed
programme; because if ‘all is number’, then the ratio of the side to the diagonal should be the ratio
of two numbers.

There are stories in various late writers that this was kept secret by the Pythagoreans (supposedly
because it was a problem, though this is not explicitly stated), and that the secrecy was broken.
Iamblichus, a commentator of the late third century ce (seven centuries after the events), refers
to Hippasos of Metapontum as a member of the Pythagoreans who was expelled and drowned at
sea (or some similar fate) for revealing a secret—in one version, the construction of one of the
solids, and in another, the nature of the rational and irrational. How far you accept this story, as
Beckett’s characters did, depends on your estimate of Iamblichus as a source, and he does not go
out of his way to inspire confidence. The next step for twentieth-century historians was to deduce
that the secret or scandalous nature of the irrationals for the Pythagoreans extended to the Greek
mathematical community in general; and that this accounted for their avoidance of measurement.

The definitive version of this story was due to Hasse and Scholz in the 1920s. Speaking of a ‘crisis
of foundations’ for Greek mathematics, they used it to explain Euclid’s use of proportions:

Given that the Greeks were born geometers, as they are usually held to be, it must be concluded with certainty that
after such a foundational crisis they needed to construct a purely geometric mathematics. In such a mathematics we
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should naturally also come across a theory of proportions, in which no arithmetical parts remain. (Hasse and Scholz
1928, p. 13)

It is not accidental that they were writing at the time of Russell’s paradox, when (modern)
pure mathematics was experiencing just such a crisis. Extrapolating backwards, they read the
anxiety of the ancient Greeks as a version of fin-de-siècle angst about mathematical certainty.
Although the Hasse-Scholz thesis was criticized in the years which followed its appearance (notably
by Freudenthal 1966) and never became the only accepted view, it has survived well, partly because
it does explain the problems referred to above, and because it is easy to adapt and revise. The most
recent sustained attack is by David Fowler (1999). Fowler rehearses many arguments which are
now standard: that Plato and Aristotle, who are the nearest to contemporary sources, refer to
the irrational without in any way suggesting that it was a problem; that the subject is not even
mentioned by Proclus, who is supposed to be summarizing an earlier history; that the time of the
supposed ‘crisis’ is also a time when many major mathematical discoveries were made, apparently
without trouble; and that Iamblichus is notoriously inconsistent and unreliable. (In passing, this
basic difference of opinion drives home the point about the difficulty of arriving at conclusions
about the period.) Fowler contrasts Aristotle’s hard-headed assessment (in one of many allusions to
the problem):

A geometer, for instance, would wonder at nothing so much as that the diagonal should prove to be commensurable.
(Metaphysics 983a, in Fauvel and Gray 2.H6)

with Pappus’ (third century ce) apparent confusion:

the soul . . . wanders hither and thither on the sea of non-identity . . . immersed in the storm of the coming-to-be and
the passing-away, where there is no standard of measurement. (Commentary on Book X of Euclid’s Elements, I.2)

and concludes that ‘the discovery [of the irrational] was no more than an incidental event in
the early development of mathematics’ (1999, p. 362.) While his thesis certainly advances some
useful arguments, it depends strongly on a particular reconstruction of how Greek mathematics
worked in the pre-Euclid period; while it fails to deal with a feeling that what is unusual in the
Euclidean approach (as detailed above) must have come from somewhere. And despite all arguments
against it, the discovery of incommensurability is still often thought to be the revolution in Greek
mathematics, as opposed to the simple introduction of deductive method; two of the contributors
to Gillies’ (1992) consider it as such.

Exercise 6. What is ‘regular’ about the five solids in Fig. 3?

Exercise 7. Why are there no others?

8 On modernization and reconstruction

Eudoxus’s general theory of proportions, which, from our vantage, amounts to a theory of real numbers, resolved the
anomaly that the discovery of several incommensurables had introduced into Greek mathematics. (Calinger 1999,
p. 110)

For example, the significant content of the proportion theory of Elements V is almost universally acknowledged to be
due to [Eudoxus], in some form or another, though the explicit evidence for this is very tenuous indeed . . . [A]lmost
everybody says that Eudoxus’ aim and achievement in Book V was to handle incommensurable ratios. I do not know
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how they can be so sure; for example, there is nothing to suggest this in the Elements. (Fowler, contribution to Historia
Mathematica mailing list, 1999)

Today’s history, while usually avoiding picturesque stories about drowning, still has to cope with
the problem of presentism (referred to in the introduction) and that of reconstruction (see above,
Section 4). Indeed, if we use the word ‘problem’, it is because both have their uses, and the
historian’s difficulty is to decide when they are the right tools to reach for in the box. The case
of Euclid II.1 was already cited in the introduction; those who consider it to be equivalent to
the distributive law for multiplication are, one might argue, guilty of presentism. If Euclid had
wanted to state the distributive law, he was intelligent enough to do so. In this case, the problem
is complicated by evidence that informal Greek mathematics, continuing in the Egyptian tradition,
did use precisely such a translation—see, for example, Heron (Chapter 3). This means that we have
two dividing lines to respect: between Euclid and his informal contemporaries on the one hand, and
between Euclid and ourselves, on the other. All this is part of a proper respect for differing historical
traditions. It makes the historian’s work harder, but no one said it had to be easy.

A quite different example is provided by Euclid’s theory of ‘ratios’ in book V. This complex
treatment of a ratio can be successfully modernized so that Euclid’s ratio (e.g. of the circumference
of a circle to its diameter) translates as the modern concept of a ‘real number’ (e.g. π—we now think
of the ratio as a number, and we take it for granted that it can be written as a decimal to as many
places as we like). That this is possible has been taken to mean that the Greeks, specifically Eudoxus
of Cnidus ‘invented’ the real number system over 2000 years before its development by Dedekind in
the nineteenth century. I have given an example of confident statement (in a mainstream textbook)
and scholarly doubt (in a listserv contribution) in the quotes at the beginning of this section.
Apart from doubts about Eudoxus’s role, the idea that he was concerned with what we call real
numbers in any sense is unhistorical, and is now out of favour, although the reasons for doubting
it are complex. Attacks on such ideas appear in the works of Knorr, Fowler, etc.9 However, it
is interesting that it is in the nature of mathematics that such translation can be done; it is not
possible to make a similar translation of Aristotelian physics.

Question

See if you agree with this statement, and if you do, try to explain what features of mathematics
favour the translation.

As for ‘reconstruction’, historians feel the need for it most particularly when a source refers to
some mathematician’s work without indicating how the work was proved. One then proceeds to
present a plausible version of how the proof must have gone, with the hope of throwing some light
on the state of mathematics at the time, or of supporting a thesis about it. Here are two examples:

1. In Archimedes’s The Method he states that the [volume of a] cone is the third part of the
[volume of a] cylinder having the same base and height. (This again was known to the
Egyptians, incidentally.) He attributes the discovery to Democritus ‘though he did not prove it’,
and the proof to Eudoxus. Archimedes may conceivably have had access to the works of
both Democritus and Eudoxus, supposing these to have been written down; in any case, the

9. One could also contrast the extremely complicated definition of ‘equal ratios’ in Euclid V with Dedekind’s ‘disappointingly’
simple definition of a real number (Chapter 9).
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challenge is to reconstruct what the two did. The main fact known about Democritus is that
he was an ‘atomist’, that is, regarded the universe as made up of atoms; and this has led to a
great deal of speculation on his possible use of the infinitely small. For Eudoxus there is a more
accepted reconstruction, based on the supposition that his work was much like Euclid’s—a
supposition which in turn owes something to Archimedes’s passing remark.

2. In Plato’s Theaetetus, Theaetetus claims that his teacher Theodorus was drawing diagrams to
show that a square of 3 square feet was not commensurable in respect of side with a square of
1 square foot. This relates to the problem in the Meno for the square of 8 square feet; the idea
is that the square root of three is not a fraction. Theaetetus claims that Theodorus continued
with 5, 7, up to 17, and then for some reason could go no further. This has given rise to a
great number of reconstructions of the (geometric) method which Theodorus could have used
which would have worked for 17 but not for 19. Euclid’s proof of the same result10 is of no
help; it is in his extremely difficult book X, and would work for any number you like.

Again, it can be seen that mathematics is peculiarly susceptible to this kind of ‘history’. A brilliant
example is Fowler’s (1999), which gives a plausible version of how Greek mathematicians thought
of ratios in the fourth century bce, with a great deal of mathematics and scholarly apparatus to
back it up; aside from giving a great deal of information on what we know for certain (manuscripts,
papyrus fragments, etc.) about mathematics in Plato’s time, Fowler constructs a detailed model of
how it could have worked. Reviewers have been respectful (see, for example, Berggren (2003)), but
have usually expressed natural reservations.

9 On ratios

It seems necessary to insert something here to clear up what, in classical Greek terms, a ‘ratio’
was—even if the experts are not altogether agreed on it. Euclid’s book V starts by saying that a ratio
is something which two quantities may have (simplifying, if they are of the same kind, say both
lengths, or both times, . . .). He then sets out a complicated criterion for two ratios to be equal. This
was much disliked, when it was not simply misunderstood, by his Islamic and medieval successors;
it is popularly believed that Isaac Barrow in the seventeenth century was the first mathematician
(after the Greeks?) to understand the theory.11

I have already given some simple examples. The ratio of the diagonal of a square to its side is
one; the golden ratio (see Appendix B) is another. A third is the ratio of circumference to diameter.
And so on. Here, for the record, is the definition—it is a good example of what is really difficult in
Euclid, and we shall leave it to you to spend some time thinking about its interpretation. (Or look at
the commentary in editions of Euclid, websites, etc.)

Definition V.5. Magnitudes are said to be in the same ratio, the first to the second and the third to the fourth , when, if
any equimultiples whatever be taken of the first and third, and any equimultiples whatever of the third and fourth, the
former equimultiples alike exceed, are alike equal to, or alike fall short of, the latter equimultiples respectively taken in
corresponding order. (Fauvel and Gray 3.C3, pp. 123–4)

10. That is, if x is a whole number but is not a square, then its square root is not a fraction.
11. For the medieval theory, see in particular Murdoch (1963). In particular, Murdoch claims that the eleventh-century Islamic

mathematician al-Jayyānī did have a correct understanding of the Euclidean theory (the only writer between the Greeks and Isaac
Barrow?).
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This complex definition underlies the statement (see Section 3) that circles are in the same ratio
as the squares on their diameters, for example. You can do much more with ratios, and you need
to. For example, if you increase the length of a rectangle by one ratio and its height by a second,
then you increase the area by a third, and so you have a relation of ratios which is similar to
multiplication. (But again, maybe we should avoid confusing them.) In the section ‘ Plato and
the Meno’, we saw that if side and height ratios were both what we would call

√
2, the area

would increase by 2. For a full discussion, look at at least some of book V and (if you can face it)
book X, which introduces a whole classification of different kinds of irrationals, up to fourth roots
or ‘medials’. The exact reason for much of this theory is still debated, but the underlying theory is
more or less understood.

A different take on ratios comes from astronomy, since it shows how they tie in with numbers.
Suppose that Y is the length of a year (from spring equinox to spring equinox, say), and D is the
length of a day. We need to know the ratio of Y to D (in our terms, the number of days in the year) to
have an efficient calendar, which all ancient—and modern—people needed. It complicates matters
that days are not all of the same length, but let us neglect that, as many of the ancients did. Our first
observation is that the ratio is greater than 365; we find this by using 365-day years and observing
that the date of the equinox gets noticeably earlier over a shortish period. We next introduce one
leap year in every four (one extra day), and get a better result, a ratio of (4×365+1) = 1461 to 4.
After a few hundred years, we find this is too big, and so on. If we are astronomers, we continue, as
the Babylonians and later Greeks did, to find more or less accurate approximations for the length
of the year as fractions—sexagesimal or other kinds—and construct our calendars accordingly.12

But if we are philosophers, we may well think that there is a real length of the year, and that this
fiddling with figures is beside the point. This, perhaps, is the meaning of Plato’s statement in the
Republic, which is often ridiculed, that one should study ideal stars and not simply what one sees:

We shall therefore treat astronomy, like geometry, as setting us problems for solution’, I said, ‘and ignore the visible
heavens, if we want to make a genuine study of the subject and use it to put the mind’s native wit to a useful purpose.
(Plato Republic, in F-G 2.E.3, p. 72)

Socrates even draws on the example of the calendar which we have been looking at for
his argument:

[The astronomer] will think that the sky and the heavenly bodies have been put together by their maker as well as
such things may be; but he will also think it absurd to suppose that there is anything constant or invariable about the
relation of day to night, or of day and night to month, or month to year, or, again, of the periods of the other stars
to them and to each other. They are all visible and material, and it’s absurd to look for exact truth in them. (Plato
Republic, in F-G 2.E.3, p. 72)

That the lengths of months were variable had long been known by Plato’s time; that the lengths
of days were too (since the four seasons had different lengths, for example), was perhaps a more
recent discovery. And the reaction to these facts in the Republic is that they exhibit the failings
of material stars and planets, as opposed to the ideal counterparts which were designed by their
creator. If we put this together with the statement from the Philebus which opens this chapter, we
could conclude that the ratio (e.g. of Y to D, above) is what the real mathematician uses in his kind
of mathematics; while, in the other kind used by craftsmen, surveyors, and mere star-watchers,

12. This is, it has been pointed out to me, an oversimplification of the way ancient calendars were constructed. However, perhaps
it can serve as a guide to thought.
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recourse is made to fractions of all sorts as approximations. It is hard to go further, and a concept
like ‘ratio’ shows the limits of the hermeneutic programme (‘to understand an author better than
himself ’—Schleiermacher 1978, p. 112). The understanding which underlies the concept has been
well hidden, in the nature of the texts we have; the best we can do is to try to understand the use
and to guess at the ideas which lay behind it.

Appendix A. From the Meno

Soc. Mark now the farther development. I shall only ask him, and not teach him, and he shall
share the enquiry with me: and do you watch and see if you find me telling or explaining
anything to him, instead of eliciting his opinion. Tell me, boy, is not this a square of four
feet which I have drawn?

Boy. Yes.
Soc. And now I add another square equal to the former one?
Boy. Yes.
Soc. And a third, which is equal to either of them?
Boy. Yes.
Soc. Suppose that we fill up the vacant corner?
Boy. Very good.
Soc. Here, then, there are four equal spaces?
Boy. Yes.
Soc. And how many times larger is this space than this other?
Boy. Four times.
Soc. But it ought to have been twice only, as you will remember.
Boy. True.
Soc. And does not this line, reaching from corner to corner, bisect each of these spaces?
Boy. Yes.
Soc. And are there not here four equal lines which contain this space?
Boy. There are.
Soc. Look and see how much this space is.
Boy. I don’t understand.
Soc. Has not each interior line cut off half of the four spaces?
Boy. Yes.
Soc. And how many spaces are there in this section?
Boy. Four.
Soc. And how many in this?
Boy. Two.
Soc. And four is how many times two?
Boy. Twice.
Soc. And this space is of how many feet?
Boy. Of eight feet.
Soc. And from what line do you get this figure?
Boy. From this.
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Soc. That is, from the line which extends from corner to corner of the figure of four feet?
Boy. Yes.
Soc. And that is the line which the learned call the diagonal. And if this is the proper name, then

you, Meno’s slave, are prepared to affirm that the double space is the square of the diagonal?
Boy. Certainly, Socrates.
Soc. What do you say of him, Meno? Were not all these answers given out of his own head?

Men. Yes, they were all his own.
Soc. And yet, as we were just now saying, he did not know?

Men. True.
Soc. But still he had in him those notions of his—had he not?

Men. Yes.
Soc. Then he who does not know may still have true notions of that which he does not know?

Men. He has.
Soc. And at present these notions have just been stirred up in him, as in a dream; but if he were

frequently asked the same questions, in different forms, he would know as well as any one
at last?

Men. I dare say.
Soc. Without any one teaching him he will recover his knowledge for himself, if he is only asked

questions?
Men. Yes.

Soc. And this spontaneous recovery of knowledge in him is recollection?
Men. True.

Soc. And this knowledge which he now has must he not either have acquired or always
possessed?

Men. Yes.
Soc. But if he always possessed this knowledge he would always have known; or if he has

acquired the knowledge he could not have acquired it in this life, unless he has been taught
geometry; for he may be made to do the same with all geometry and every other branch of
knowledge. Now, has any one ever taught him all this? You must know about him, if, as you
say, he was born and bred in your house.

Men. And I am certain that no one ever did teach him.
Soc. And yet he has the knowledge?

Men. The fact, Socrates, is undeniable.
Soc. But if he did not acquire the knowledge in this life, then he must have had and learned it at

some other time?
Men. Clearly he must.

Appendix B. On pentagons, golden sections, and irrationals

The folklore has it that the construction of the pentagon (and the five-pointed star, which goes with
it) were known to the Pythagoreans. When, or which Pythagoreans, is unclear, but by the time of
Euclid the key steps were the following:

1. You need to construct an isosceles triangle ABC such that angles B and C are twice angle A
(Fig. 4) This is because these angles will then be, in our terms, 72◦, and angle A is 36◦ which
is right for the star.
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A

B C

D E

Fig. 4 Constructing a regular pentagon. The angles of the pentagon are 108◦, so angles like ADE are 36◦. Hence the triangle ABC
has angles A = 36◦, B = C = 72◦. (Greek astronomers used degree measurements of angle, even if Euclid did not, so this
description is not too modernized.)

A

E

B C

x

x

x

Fig. 5 The ‘extreme and mean section’ picture. CE bisects angle C, which is twice angle A. So the triangles ABC, AEC, ECB are all
isosceles, so the lines marked x are all equal. The statement that EB : EA = EA : AB now follows by using similar triangles (CBE, ABC)
and the various identifications we have.

2. To construct the triangle, you need to divide the side AB at E so that the ratio of BE to AE is
equal to the ratio of AE to the whole of AB (see Fig. 5) This is called (by Euclid) ‘dividing the
line in extreme and mean ratio’. More fancifully in the Middle Ages it acquired the name of
the ‘golden section’ or ‘golden ratio’. If we want to use algebra: suppose AB has length 1, and
AE = x so BE = 1 − x, then

1 − x
x

= x
1

; x2 = 1 − x

which we would now solve to give x = 1
2(

√
5–1) = 0.618 . . . . This is ‘obviously’ irrational

to us (perhaps!), because of the
√

5 in it, but as usual we are not sure whether, or how, the
Pythagoreans discovered the fact. Again, Euclid’s proof is rather late in book X.13

13. Even this is simplifying. Euclid proves in book X that what he calls an ‘apotome’ is irrational, and in book XIII that the golden
ratio is an apotome.
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However, there is a simpler proof which is generally thought to be a probable reconstruction, as
follows. If you have a ratio of honest whole numbers, say 42 to 15, then you can reduce it in steps,
as follows:

42
15

= 2 + 12
15

15
12

= 1 + 3
12

12
3

= 4

ending with an exact whole number. At each stage, you have a remainder less than 1; you invert
this at the next stage, and get a whole number and a new remainder. This is Euclid’s way of finding
the ‘common measure’ or greatest common divisor for two numbers, in the above case 3, which
divides both 42 and 15. The process stops because the denominators of the fractions get smaller,
and so must finally reach 1. You cannot do this with the golden ratio, because of the way in which
it is defined. The equation

1
x

= 1 + x

which is equivalent to the one above shows that the ‘fraction’ procedure (invert the remainder, take
the whole number part away, keep the remainder, and restart), never stops.

And indeed this can be stated geometrically, as even ‘the Pythagoreans’ could have done.

Exercise 8. Explain why the fraction procedure cannot terminate.

Solutions to exercises

1. I do not think it is quite obvious. Clearly the four sides are equal, since they are diagonals
of equal squares. The other point to note is that all the triangles are isosceles (the diagonals
bisect each other by symmetry, for example). So all their small angles are just half a right
angle—as we would say 45◦—and the angles at the corners of the figure, each being
composed of two such small angles, are 90◦. This makes the figure a square. We have used
the result on angle sum of a triangle, which does not work in non-Euclidean geometry (see
Chapter 8); but then the idea of ‘square’ becomes dubious anyway.

2. (Trying to use Greek language as far as possible.) ‘Diagonal is commensurable with side’
means that there is a line L such that the side S is a multiple, say q.L, and the diagonal D
is also a multiple, say p.L. Now clearly (using arguments like the Meno), the area of the
square on S is q2 times the square on L, and that on D is p2 times the square on L; and, by
Pythagoras’s theorem, the square on D is twice the square on S. So p2 is equal to twice q2,
or, the square of the ratio of p to q equals the ratio of 2 to 1 (i.e. 2). Check that all these
implications go both ways.

3. The usual proof (see, for example, Fowler for speculation on which proof the Greeks, in
particular Aristotle, used), is the following. Suppose (p/q)2 = 2; we can assume that p
and q have no common factor. Then p2 = 2q2. It follows that p2 is even, and so p is even.
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Mirror

B D
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C

Fig. 6 Idea of proof by reflection of ‘Thales’ theorem’.

So p = 2r, say, and p2 = 4r2. Rewriting, 4r2 = 2q2, so q2 = 2r2. Hence q2 is even, and so
q is; but this contradicts the supposition that p and q have no common factor.

4. This is vaguely formulated, and rather hard to make precise. It is clear from the proposition
that the area of the parallelogram is equal to the area of the (unique) rectangle with the
same base and height. To go further, and talk of ‘multiplying base by height’, you have
to say what kind of numbers base and height are. The easy case is where the two ‘have a
common measure’ (see Exercise 2); if one is p.L and the other q.L, then it is not hard to
show that the rectangle is pq times the square of side L. To go further, you need the general
theory of ratios. In theory, this would allow you to show that a rectangle of sides

√
2 and√

3 was equal to one of base
√

6 and height 1; however, it is difficult, to say the least.14

5. There are two questions involved; one is what is an acceptable simple proof, and the other is
what proof might have been used by someone at a time when organized deductive geometry
did not exist. Euclid’s proof (I.6) is quite complicated, involving extra construction lines;
it depends on I.4, that if triangles ABC and DEF have AB = DE, AC = DF, and the angles
A and D equal, then they are congruent. In theory one could apply this to show that
if ABC was isosceles (AB = AC), then it is ‘congruent to itself ’, �ABC = �ACB. In
practice it would be more natural to use properties of reflection; for example, that ABC is
unchanged by reflection in a mirror which bisects angle A (Fig. 6). However, any of these
ideas (congruence, reflection, . . .) are at the basic starting points of geometry, and one
wonders what Thales and his contemporaries, if the story is true, would have considered
a proof.

6 & 7. The property usually taken to define the ‘regular’ solids is that their faces are all regular
polygons and all of the same kind (e.g. all squares); and that in a given solid S the same
number of polygons meet at each point, or vertex as it is usually called. If we write (p, q) to
denote the solid whose faces are p-sided, with q at each vertex, then we have:

14. Dedekind claimed in the nineteenth century (see Chapter 9) that he was the first person to have proved that
√

2 · √
3 = √

6,
and this is commonly accepted.
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(3, 3) (tetrahedron), (3, 4) (octahedron), (4, 3) (cube), (3, 5) (icosahedron), and (5, 3)
(dodecahedron). Each of p and q must be greater than 2; while the angles of a regular
p-sided polygon are π(1 − (2/p)). (Why? Check examples, and prove the rule.) The sum of
the angles at a vertex is therefore π(q − (2q/p)). This must be less than 2π for the result
to be a solid (if it is equal to 2π , the polygons lie flat). From this, with a little algebra,
pq < 2p + 2q, or (p − 2)(q − 2) < 4. It is now clear that the combinations of (p, q) which
have been given are the only ones.

There is much more on this (covering star-polyhedra, ‘semi-regular’ polyhedra, and
higher dimensions) in Coxeter (1963), an excellent introduction to the subject, with
information on its later (post-Plato) history.

8. The process cannot stop, because when you invert x, the ‘remainder’ turns out to be x
again. So you cannot (as you would with a ratio of integers, see our example) have a
sequence of ratios with smaller denominators; from which it follows that x cannot be a
ratio of integers.

Supplementary problem

I have left you one of the most interesting and typical problems in the history of early
Greek mathematics as a ‘research problem’ to think about. This is known as Hippocrates’s
quadrature of lunes. It is a clever area calculation, supposed to have been worked out by
Hippocrates of Chios before 400 bce (and so, in a sense, our earliest serious result in Greek
mathematics). You can find in Fauvel and Gray; and also some account of the transmission
line, which makes its status rather unreliable (the description comes from a text about 700
years later). Consider
1. the result;
2. how its status is evaluated by various modern historians—accepted without question,

or grudgingly, or set on one side as dubious;
3. how you would assess the importance of the result, and of its authority;
4. the problems about how Hippocrates might have arrived at it, and why.



3 Greeks, practical and theoretical

1 Introduction, and an example

But, unlike Euclid, who attempts to prove musical propositions through mathematical theorems, Nicomachus seeks
to show their validity by measurement of the lengths of strings. (Entry ‘Nicomachus of Gerasa’ in Dictionary of
Scientific Biography)

The leading Greek geometricians were all master carpenters. Euclid, the author of the Book of Principles, was a
carpenter and known as such. The same was the case with Apollonius, the author of the book on Conic Sections, and
Menelaus and others. (Ibn Khaldūn 1958, II, p. 365)

The complaints of the previous chapter about the poverty of documentary evidence for Greek
mathematics before Euclid need to be modified for the later period, say from 300 bce to 600 ce.
There is indeed a variety of material, but it is quite heterogeneous, and scattered in time and space.
We are often vague about the dates of writers, and we have to guess about their communication;
and still it seems that the survival of material is determined mainly by chance. Our first quotation
describes the work of Nicomachus of Gerasa (Jerash, in Palestine), whose arithmetical, philosoph-
ical, and musical works were treated as important in the Islamic and European Middle Ages, and
so survived although modern authorities consider him a desperately poor arithmetician. At least,
as the quotation shows, he sometimes had a practical approach which was quite different from
what we consider ‘typically’ Greek. The description of Euclid and Apollonius as carpenters runs
contrary to all the information we have from other sources, but is it simply folklore? We have no
way of knowing. How many ways were there, indeed, of being a Greek mathematician, and did
they change over the 900-year period which we are considering? Did they interact? How did the
Romans, generally portrayed as an uncultured master-race with no interest in science, contribute
to the way mathematics was done, in the period when they dominated the Greek world (say from
100 bce to 400 ce, when the ‘Roman’ part of the empire collapsed and the ‘Greek’ survived)?

For if often (e.g. with the Babylonians) we can say: ‘At this time, mathematics was used in a differ-
ent way from our own; the following methods were used, with the following ends in view’, with the
Greeks the situation is more complicated, and less well understood. The heritage which was passed
on as important, particularly from the sixteenth century, was that of Euclid, Archimedes, and those
who followed their models: axioms, theorems, and proofs. The ideology which went with it, which
I have referred to in the last chapter as due (in part) to Plato, is that mathematics should not deal
with the real world, or with applied problems. The reality is certainly more complicated; and even
accepting that we have lost many records of carpenters, tax-gatherers, architects, and engineers—
which we must suppose existed—there is quite a complexity and variety in what remains, even if
some of it is what appears to us rather low-level mathematics.
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Fig. 1 Menaechmus’s construction (from Fauvel and Gray p. 86). A and E are given, and it is required to construct B and C mean
proportionals. The parabola is given by the rule (square on DK = rectangle DF by A); the hyperbola by the rule (rectangle KD by DF =
rectangle A by E). DF equals C, and DK equals B.

A good example of the interaction of theory and practice is provided, surprisingly, by the classical
problem of the duplication of the cube. The problem seems to have surfaced some time before
400 bce in the form:

Given a cube C, to construct a cube D whose volume shall be twice the volume of C.

Using an argument similar to the one I have given in Chapter 2 (for Plato’s ‘Meno’), it is easy to
see that, if the side of C is a feet, that of D must be a 3

√
2 feet; and to generalize from doubling to

increasing in any proportion. This was done quite early. The earliest solution, by Menaechmus is
said to have involved the invention of the curves which we call conic sections. In modern notation,
we would take a parabola whose equation is y = x2 and a hyperbola whose equation is xy = 2a3.
They meet at x = a 3

√
2, y = x2 (see Fig. 1).

So far so good—see Exercise 1 for a check that this solves the problem. We have not said how
Menaechmus defined the curves, and the sources do not either. In later times, they were defined in
the first place as sections of a cone (e.g. the shadows which a lampshade casts on the walls or the
floor); the information which is encoded in the equations I have given had to be proved, and was
given its definitive form in Apollonius’s difficult (late third century bce) Conics, one of the major
works in the ‘classical’ Greek tradition. However, there are doubts about whether such arguments
were available to Menaechmus. The record which we have (which itself is late, see Fauvel and
Gray 2.F.4) is related to the problem of two mean proportionals as in Exercise 2, and looks more
like the coordinate definition which we would use. Knorr (1986, p. 62) gives a ‘reconstruction’ of
how Menaechmus might have thought of it, with criticisms of earlier reconstructions by Heath
and others.

We have a substantial amount of information on the cube-duplication problem, even if some of
it is hard to interpret. One particularly interesting source is a supposed document by Eratosthenes
(third century bce), called the ‘Platonicus’, which only survives in quotation.1 Eratosthenes gives

1. In Eutocius’ (sixth century ce) commentary on Archimedes’ Sphere and Cylinder.



Greeks, Practical and Theoretical 59

S

k : 2 a : 2

T K L

A EM N Z H

D P

G

O

R

B

S

k : 2 a : 2

T K L

A EM N Z H

D P

GO
R

B

Fig. 2 The ‘mesolabe’ (Shown for the duplication problem). The triangular plate AET is fixed, while MZK and NHL move. To find two
mean proportionals between AS and GL slide the two plates so that the meeting points R and O are in a straight line with A and G.
(Try this at home.)

a folklore account of the origin of the problem (doubling the size of the altar at Delos). Though not
reliable history, this at least has a practical appearance. He dismisses previous solutions, without
describing them in detail, as ‘impractical’ or ‘unwieldy’; and presents his own solution, by means
of a machine called a ‘mesolabe’, or ‘mean-taker’—which can construct any number of mean
proportionals between A and B, if properly calibrated (Fig. 2).

This ‘mechanical’ solution in itself goes against the standard image of Greek geometry as purely
abstract; and this is still further contradicted by Eratosthenes’s claims that the method can be used
in all sorts of ways:

We shall be able, furthermore, to convert our liquid and dry measures, the metretes and the medimnus, into a cube,
and from the size of this cube to measure the capacity of other vessels in terms of these measures. My method will also
be useful for those who wish to increase the size of catapults and ballistas. For, if the throw is to be increased, all the
elements of these engines, the thicknesses, lengths, and the sizes of the openings, wheel casings and cables must be
increased in proportion. (Eratosthenes quoted by Eutocius, in Fauvel and Gray 2.F.3.)

There seems to be some much stronger link between theory and practice here, though Knorr warns:

Eratosthenes was chiefly a man of letters, and one suspects that his vision of the practicality of a sensitive special-
purpose instrument like the ‘mesolabe’ was rather overstated. Still, the ideology behind its invention seems genuine.
(Knorr 1986, p. 212)

Knorr may underestimate the extent to which at least some Greek geometers thought of the problem
as applied—the same motive for the construction appears in the undoubtedly military work of
Eratosthenes’s near contemporary Philo of Byzantium. Here then, without straying outside the
boundaries of ‘classical’ geometry, we find a mechanical solution to a problem which is at least
being promoted for its practical uses. Clearly—and this is the point which we shall investigate in
this chapter—the nature of Greek mathematics is more complex than one might have thought. We
shall look at some examples of the later tradition which do not entirely fit into the Euclidean mould,
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including Archimedes, Heron of Alexandria, and Ptolemy. All were tremendously influential in the
later development of mathematics, and all raise interesting questions about the varieties of Greek
mathematics which were (one might guess) competing for influence over the long historical period
which concerns us.

At the same time, because of the length of the period, and the variety of the work produced, it
would be impractical in a book of this kind to try to cover everything. In particular for the important
work of Apollonius, Diophantus, and Pappus, you will have to look elsewhere.

The remarks on sources made in the previous chapter apply on the whole. The major historian
who has recently concentrated attention on the late period is Cuomo, to whose works (2000) and
(2001) we shall return in due course.

Exercise 1. Check that Menaechmus’s construction does give a line of length a 3
√

2. How would you
generalize it to solve the problem of increasing the volume of the cube by a factor m?

Exercise 2. Hippocrates of Chios (fifth century bce) showed that the general problem (multiplying a cube
by m) can be solved if, between two given lines A, B, with the ratio B : A = m, one can construct two ‘mean
proportionals’ C, D; that is so that the ratios A : C, C : D, D : B are equal. Why is this true?

2 Archimedes

Archimedes is one of the most heroized figures in the history of science; but unlike Galileo and
Newton, whose lives are available in minute detail, we know rather little about him. There is a
growing literature on him; not so much ‘biographical’ as an attempt to understand him from his
works. True, his life is better documented than that of any other Greek mathematician (with the
possible exception of Hypatia), but that is not saying much. The chief sources tend to concentrate
on a few memorable events—the ‘Eureka story’, his role in the siege of Syracuse, and his death at
the hands of a Roman soldier. His works have always been seen as uniquely brilliant and difficult,
and perhaps his portrait has been constructed to fit them; though unusually, there are letters
introducing several of the writings which are ‘personal’ as not much else is in Greek mathematics.
A late portrait of Archimedes as the absent-minded pure researcher is given in Plutarch’s Life of
Marcellus, and for whatever reason it has become influential. In line with a Platonic propagandist
viewpoint, Plutarch (while crediting Archimedes with major military inventions), claims that such
practical considerations were unimportant to him.

Yet Archimedes possessed so high a spirit, so profound a soul, and such treasures of scientific knowledge, that though
these inventions had now obtained him the renown of more than human sagacity, he yet would not deign to leave
behind him any commentary or writing on such subjects; but, repudiating as sordid and ignoble the whole trade of
engineering, and every sort of art that lends itself to mere use and profit, he placed his whole affection and ambition in
those purer speculations where there can be no reference to the vulgar needs of life; studies, the superiority of which
to all others is unquestioned, and in which the only doubt can be whether the beauty and grandeur of the subjects
examined, or the precision and cogency of the methods and means of proof, most deserve our admiration. It is not
possible to find in all geometry more difficult and intricate questions, or more simple and lucid explanations. Some
ascribe this to his natural genius; while others think that incredible effort and toil produced these, to all appearances,
easy and unlaboured results. No amount of investigation of yours would succeed in attaining the proof, and yet, once
seen, you immediately believe you would have discovered it; by so smooth and so rapid a path he leads you to the
conclusion required. (Plutarch, in Fauvel and Gray 4.B.1)
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One suspects that Plutarch had not read the works which he describes as ‘smooth and rapid’, since
later generations have found them impressive but difficult. The geometrical core, which includes
the Measurement of a Parabola and On the Sphere and the Cylinder carries on, with great ingenuity,
from the harder parts of Euclid; we shall not deal with them here, but there are good extracts
in Fauvel and Gray (see also Archimedes 2002). There is, however, more to Archimedes than
these works suggest, and some of his other surviving works contradict Plutarch’s image of the
‘pure’ mathematician. The Statics and On Floating Bodies are the most serious works of theoretical
physics, outside the framework of Aristotle’s thought, in the Greek tradition; and as such, they had
a great influence in the Renaissance, particularly on Galileo—see Chapter 6. Further evidence of
a mechanical tendency in Archimedes is provided by the strange document called the ‘Method’.
Extravagant claims have been made for this manuscript,2 for example, that it contains a version of
the calculus, and that the course of history would have been changed if it had not been ‘lost’. There
is no need for such exaggeration; The Method is, so far as we know, a very unusual work which had
no imitators, and for good reason. In his introductory letter to Eratosthenes, Archimedes describes
what he is doing, and why:

Seeing moreover in you, as I say, an earnest student, a man of considerable eminence in philosophy, and an admirer
[of mathematical inquiry], I thought fit to write out for you and explain in detail in the same book the peculiarity of
a certain method, by which it will be possible for you to get a start to enable you to investigate some of the problems
in mathematics by means of mechanics. This procedure is, I am persuaded, no less useful even for the proof of the
theorems themselves; for certain things first became clear to me by a mechanical method, although they had to
be demonstrated by geometry afterwards because their investigation by the same method did not furnish an actual
demonstration. (From Archimedes tr. Heath, in Fauvel and Gray 4.A9 (a))

The ‘Method’ referred to consists of measuring the areas of bodies (e.g. a segment of a parabola)
by ‘balancing’ them against simpler bodies (e.g. a triangle), using a division into infinitely thin
slices. (See Fauvel and Gray 4.A9(a) for an example.) Two things are striking here: first, the use of
weighing as a guide to understanding, presumably inspired by the work in the Statics—this is the
‘applied side’ of Archimedes; and second, the insistence, in the letter quoted above, that this is not a
proof, but that a proof has to be constructed once you have found the answer. (And, in some sense,
that it clarifies why the answer is what it is.) I should stress that the fact that The Method is an applied
work does not make it an easy read; if it had been, perhaps it would have been preserved and quoted
more. To describe it as ‘lost’ is only partly accurate; someone in the ninth century, and various
others before that, must have known it and thought it of enough interest to be worth copying.
However, it had no influence on the later traditions, either through Byzantium or the Islamic
world, so far as we know; and this although some Islamic mathematicians had a great respect for
Archimedes and worked hard to reconstruct alleged works of his which they did not have.

In contrast, one work of Archimedes had tremendous influence, and still does. This was his
Measurement of a Circle. It is very short—it is thought that it is only part of a longer work of which
the rest has been lost; but what remained was found immensely useful by much more simple-
minded mathematicians. The three theorems which it contains are worth quoting in full, as a
typically Greek way of approaching what we would call the problem of calculating π :

Proposition 1. The area of any circle is equal to a right-angled triangle in which one of the sides about
the right angle is equal to the radius and the other to the circumference of the circle.

2. Discovered by Heiberg in Istanbul in 1906, then lost again, but recently rediscovered, sold at Christie’s for $2 m., and subjected
to modern scientific reading methods.
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Proposition 2. The area of any circle is to the square on its diameter as 11 is to 14.

Proposition 3. The circumference of any circle exceeds three times the diameter by a quantity that is
less than one-seventh of the diameter but greater than ten parts in seventy-one.

It is clear that Proposition 2 is both wrongly placed (it depends on Proposition 3) and probably
not as Archimedes stated it (it claims as exact what is recognized in Proposition 3 to be an approxi-
mation). This of course added to the confusion of medieval readers, who tended to go for the more
usable Proposition 2; but at different times, all three parts were found useful.3 The first states (in
our terms) that the area A is 1

2 rC, where r is the radius and C is the circumference. The Greeks
sometimes worried, as we would not, whether this implied the necessary existence of a straight
line whose length was equal to the curved line C. The second states that A = 11

14(2r)2(= 22
7 r2).

The third also gives the approximation 3 1
7 for the ratio of C to 2r which is still used after over 2000

years, and was gladly taken as the ‘right’ answer by calculators who had no use for Archimedes’
more precise formulation:

3
10
71

<
C
2r

< 3
1
7

When we use the approximation 3 1
7 for π , we are therefore indebted to Archimedes, although

we probably know nothing of his methods. These were interesting in themselves, however, as an
example of how he calculated—again, a more down-to-Earth procedure than the Platonic model of
mathematics would suggest. For the upper bound of 3 1

7 , for example, he starts with a circumscribed
hexagon (Fig. 3).

Archimedes assumes that any circumscribed figure has a greater perimeter than the circle, and
proceeds to find successively smaller ones, by bisecting angles (Fig. 4); he derives the rules for the
lengths of successive sides:

Rule 1: A′ : B = A : B + C
Rule 2: A′2 + B2 = C′2

These two rules make it possible to find the perimeter of polygons with 12, 24, 48, and 96 sides As
aids in calculation, he (a) uses a fractional approximation for

√
3, whose origin is unexplained, but

which is needed in the formula for the hexagon (see Exercise 3), (b) by successive applications of
the rule gets a rather complicated fraction for the 96-sided figure, and (c) shows that this fraction
is larger that 3 1

7 . All this is a very interesting mixture of Euclid-style geometry and computation
with ratios of numbers; the way in which the fractions are written and manipulated recalls the
technique of the ancient Egyptians—unit fractions like 1

5 rather than sexagesimals. There are
repeated approximations to square roots which, while they seem correct, are not explained and so
have been the basis for much speculation. All this is just what we claimed, perhaps prematurely
(in the last chapter), Greek geometry avoided—the detailed engagement with numbers. This broad
statement, true for Euclid, Apollonius, and the ‘major’ works of Archimedes, is, as we will see,
not at all true for a variety of others. Is the ‘Measurement of the Circle’ intended as an aid for
practitioners, or simply as an exercise in technique? We have no indication. And while Archimedes
is always using the numbers (as a good geometer should) as ratios, not as absolute measures of
length, the way is open for land-measurers to use them in other ways.

3. See Chapter 6 for Kepler’s attempt to construct an infinitesimal version, around 1600.
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Fig. 3 Regular hexagon circumscribed about a circle.

B

C
u u

A�
A–A�

Fig. 4 Picture for Exercise 4.

Exercise 3. Show that the perimeter of the circumscribed hexagon is 4
√

3r.

Exercise 4. Rule 2 above is clearly Pythagoras’s theorem. But where does rule 1 come from?

3 Heron or Hero

Three centuries after Archimedes (probably in the first century ce) a very different mathematician
left a number of works which were both accessible and popular. This was Heron, or Hero of
Alexandria. (Because of translation problems, you may find either name used; I shall keep to the
more usual ‘Heron’ in what follows.) His works are not easy to find, except in small extracts, but
they are numerous and quite astonishingly diverse, dealing with theory and practice sometimes
separately and sometimes together. That he was not despised, despite his practical bent and what
some historians have seen as weak mathematical attainments, is shown by Pappus’s description of
his work—or that of his ‘school’, which in turn suggests influence.

The mechanicians of Heron’s school say that mechanics can be divided into a theoretical and a manual part;
the theoretical part is composed of geometry, arithmetic, astronomy and physics, the manual of work in metals,
architecture, carpentering and painting and anything involving skill with the hands.

. . . the ancients also describe as mechanicians the wonder-workers, of whom some work by means of pneumatics,
as Heron in his Pneumatica, some by using strings and ropes, thinking to imitate the movements of living things, as
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Fig. 5 Heron’s slot machine.

Heron in his Automata and Balancings, . . . or by using water to tell the time, as Heron in his Hydria, which appears to
have affinities with the science of sundials.4 (Pappus, in Fauvel and Gray 5.A.2)

The combination of quite classical geometry and detailed machine construction makes Heron
interesting, unusual, and hard to classify. Predictably, his machines attract considerable interest
on the Internet, notably the earliest description of a ‘slot machine’; however unmathematical this
may be, it is worth including to illustrate the variety of (some) mathematicians’ interests:

Sacrificial vessel which flows only when money is introduced (see Fig. 5)

If into certain sacrificial vessels a coin of five drachms be thrown, water shall flow out and surround them. Let ABCD
be a sacrificial vessel or treasure chest, having an opening in its mouth, A; and in the chest let there be a vessel, FGHK,
containing water, and a small box, L, from which a pipe, LM, conducts out of the chest. Near the vessel place a vertical
rod, NX, about which turns a lever, OP, widening at O into the plate R parallel to the bottom of the vessel, while at
the extremity P is suspended a lid, S, which fits into the box L, so that no water can flow through the tube LM: this lid,
however, must be heavier than the plate H, but lighter than the plate and coin combined. When the coin is thrown
through the mouth A, it will fall upon the plate H and, preponderating, it will turn the beam OP, and raise the lid of
the box so that the water will flow: but if the coin falls off, the lid will descend and close the box so that the discharge
ceases. (Heron 1851, section 21, to be found at http://www.history.rochester. edu/steam/hero)

His geometry—the ‘Metrics’—is both inside and outside the mainstream Greek tradition, giving
rough rules for how to compute combined with Euclidean proofs on occasion. The most famous
example, although not a typical one, is what has become known as ‘Heron’s formula’ for computing
the area of a triangle given its sides. The formula (see Appendix A) is very unusual in Greek
mathematics in that it requires you to multiply four lengths and take the square root. While you
could think of the product of three lengths as a volume, the product of four has no meaning
in Greek terms—and Omar Khayyam was still dismissing such ideas a thousand years later. (In
his Algebra; see Fauvel and Gray 6.A.3, p. 226.) All the same, the formula became widespread
and popular in Islamic and medieval times, and a tradition claimed that it was originally due to

4. Pappus does not note that an accurate water-clock, compared with a sundial, would show the variation in the length of solar
days; but this is not surprising, since elsewhere he criticizes water-clocks for their inaccuracy. The variation (‘equation of time’) is
derived by Ptolemy purely on theoretical grounds—see below.

http://www.history.rochester.edu/steam/hero
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Archimedes (from whom Heron derived several other results).5 If this is true, it shows Archimedes
as innovative in a more striking way than had been thought.

What Heron’s work shows, perhaps more than any other, is the existence of traditions which we
do not otherwise know about—and this is a warning against easy generalizations on the nature
of Greek mathematics. The quotation from Pappus does suggest that he was considered ‘special’ at
least in his interest in machines, but it is unclear how much should be built on that; many of the
machines which he describes, such as water-clocks, were certainly not of his invention. In parts
of the Geometrica (which may not be his, but can be seen as work by his ‘school’), he solves some
quadratic problems by the Babylonian recipe; and this is taken by some scholars as a reason to fit
his work into a genealogy which stretches (with notable gaps!) from the Babylonians through to
the Islamic algebraists of the ninth century ce. However, he is also capable of advising intelligent
guesswork, and using what appear to be quite new methods. The following example is again unlike
our usual idea of Greek geometry.

In a right-angled triangle, the sum of the area and the perimeter is 280 feet; to separate the sides and find the area,
I proceed thus: Always look for the factors; now 280 can be factored into 2.140, 4.70, 5.56, 7.40, 8.35, 10.28, 14.20.
By inspection, we find 8 and 35 fulfil the requirements.

Note that the problem is not ‘well-posed’, by which I mean that it can have numerous solutions; as
an equation, it is (setting the short sides equal to a and b)

a + b +
√

a2 + b2 + 1
2

ab = 280

and of course the key point is that, for a ‘nice’ solution a2 + b2 must be a square, itself a favourite
problem. It could be seen as an extension of the Babylonian problems which give you the side
of a square plus its length; but it is considerably harder and more geometrical. Heron’s solution
continues:

For take one-eighth of 280, getting 35 feet. Take 2 from 8, leaving 6 feet. Then 35 and 6 together make 41 feet.
Multiply this by itself, making 1681 feet. Now multiply 35 by 6, getting 210 feet. Multiply this by 8, getting 1680 feet.
Take this away from the 1680, leaving 1, whose square root is 1. Now take the 41 and subtract 1, leaving 40, whose
half is 20; this is the perpendicular, 20 feet. And again take 41 and add 1, getting 42 feet, of which the half is 21; and
let this be the base, 21 feet. And take 35 and subtract 6, leaving 29 feet. Now multiply the perpendicular and the base
together, [getting 420], of which the half is 210 feet; and the three sides comprising the perimeter amount to 70 feet;
add them to the area, getting 280 feet. (Geometrica, in Thomas 1939, pp. 503–9; Fauvel and Gray 5.C.2 (c))

This calculation is completely enigmatic as it stands—we can see that Heron’s answer is correct,
but what is he doing? Thomas’s translation gives a good explanation (due to Heath) related to the
formula of Appendix A. In fact, if r is the radius of the inscribed circle, and s = 1

2(a + b + c) is half
the perimeter, then the area is sr (see Appendix A) and so the sum of perimeter and area is s(2 + r).
We can therefore ‘look for factors’, as Heron says, and guess s = 35, 2 + r = 8.

One could go on to ask how exactly, without algebra, such a procedure could have been hit upon.
Such mathematics could be thought of, in the language of Høyrup (1994) as ‘subscientific’—short
on proof, although the numerical check is given; perhaps designed to display skill and virtuosity (or,
like a crossword, to keep the mind active) rather than to be of any use. And yet the relation to the
formula of Appendix A ties it in with ‘real’ geometry. Some time later than Heron (probably—the

5. In particular, he tended to use the ‘Archimedean approximation’ 3 1
7 for π .
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dates of both are in dispute), Diophantus invented an ‘algebraic’ notation which might have made
such questions easier; but although his works were studied and commented, they had no apparent
influence on the solving of everyday puzzles for more than a thousand years.6

Exercise 5. (a) Show that, in a right-angled triangle with short sides a, b and other notation as above,
r = 1

2(a + b − c), (b) explain what Heron is doing in terms of this formula.

4 Astronomy, and Ptolemy in particular

Mathematicians sometimes have difficulty in thinking about astronomy as a part of their subject;
however, historically it is essential. Unified as a subject of study with mathematics from very early
times, it has often provided work for mathematicians and motivation for much of their enquiries;
the trigonometric functions (sin, cos, and so on) and the study of geometry on the sphere owe more
to the study of the heavens, at least in their beginnings, than to the geography of the Earth.

There are considerable problems, touched on lightly in the last chapter, in setting up a
mathematical astronomy. One could list some of them:

• find the length of the day
• find the length of the year
• before doing either of these, find a reliable way of measuring time
• find the path of the sun in the heavens, at a given place, at a given time of year.

It is worth taking time to think about these problems, and what instruments, observations, and/or
calculations you would need to answer them. All of them are non-trivial, and all need to be
understood with some finesse before we can begin to answer the subtler questions about the paths
of stars, planets, and so on, let alone eclipses of the sun and moon. Necessarily, a great deal must
already have been worked out for Plato (if it was his idea, as tradition has it) to pose the problem of
accounting geometrically for the motions of the various heavenly bodies. The restriction classically
put on these was that they must be ‘composed of uniform circular motions’—we shall see later what
this implied. The restriction had a practical advantage (circular motion is easy to work with) and
a philosophical one (it corresponds to some ideal of perfection). The explanation, as I mentioned
in the previous chapter, had to be descriptive, giving you the possibility of predicting where a body
would be at a given time. This, incidentally, made it essential for astrology, which has almost always
been a major concern for astronomers and by extension for mathematicians in general.7 On the
other hand, there was no call for a physical explanation of what force might make the heavenly
bodies move; this theory, which is not easy to reconcile with the descriptive one, was given by
Aristotle, and does not really concern us.

The major textbook of astronomy which has survived is the work of Ptolemy, who worked in
Egypt in the second century ce. While he named it the Mathematical Syntaxis (‘treatise’), from the
time of the first Arabic translations it came to acquire the name ‘Almagest’ (= Arabicized Greek

6. Specifically, until the Renaissance (chapter 6). Hypatia among the Greeks and Qusta ibn Lūqa among the Arabs are known as
students and commentators of Diophantus, and half of his work only survives in ibn Lūqa’s translation.

7. Whether or not one believes in the influence of the planets’ positions at a given time, the actual calculations which determine
them are often quite hard mathematics. Ptolemy, in his Handy Tables, simplified the work so that the practising astrologer could look
up the answer without reading his heavily theoretical Almagest.
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‘al-majistī’, the greatest), by which it is usually known. Like Euclid, it was a standard textbook for
over a thousand years, much commented and occasionally revised and criticized in the light of new
theories but only losing its popularity in the seventeenth century as the theories of Copernicus,
Kepler, and Newton came to form a solid alternative of a very different kind.

Ptolemy was not the first to develop the theory found in his book; the ideas on how the planets
move were supposedly first framed by Apollonius (second century bce) and dealt with in a textbook
by Hipparchus (a little later); but their works, superseded by the Almagest, have not survived. What
Ptolemy apparently added to Hipparchus was more accuracy and a simpler method of calculation.
His book, however, though a major primary source and very interesting (translation by Toomer
1984), is not a straightforward read, and this also is worth thinking about. Where a mathematics
textbook typically has one general subject, and starts from first principles to show you how to solve
quadratic equations, or prove Pythagoras’s theorem, or differentiate, an astronomy textbook has to
set up a large and complex apparatus of general theory, observation, and particular verifications;
and this is true of Newton’s Principia part III (the explanation of the System of the World) as much
as of Ptolemy. In the Almagest, Ptolemy first goes through the foundational assumptions: that the
Earth is spherical and fixed in the middle of the universe, that the heavens move in circles around
it, and so on. At this point, we have to set aside the fact that we ‘know’ that Ptolemy’s system is
wrong, since it is in fact an extremely good mathematical explanation of what is observed, and the
mathematics is what should concern us. So we must accept these assumptions. We then observe
that the stars have two motions: in a day they describe circles about the pole star, and in a year
they describe circles about a different axis, defined by the path of the sun—the ‘ecliptic’ (see Fig. 6).
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Fig. 6 The relation between the Earth, the poles, the equator, and the ecliptic in the geocentric (Earth-centred) model.
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Fig. 7 The chord of an angle. If θ = angle AOB = 2φ, then the chord Crd(θ ) = AB = 2r sin φ in our terms, where normally r = 60.

Again, we would say that one is ‘caused’ by the daily rotation of the Earth and the other by its
annual rotation around the sun; but that is not how it looks to the naive observer.

Having got this far, Ptolemy needs to calculate the angle between the two axes, and this leads
him into trigonometry or the theory of calculations about angles. The function which he uses is the
‘chord’ of the angle, which modern translators usually write Crd θ ; it is the chord in the sector of
the circle whose angle is θ , so Crd θ = 2r sin(θ/2), where r is the radius. The angle is written in our
modern units (degrees, minutes, and so on), while the chord is written in units of length, in a circle
whose radius is 60, using (Babylonian type) sexagesimal fractions, as for the angle (see Fig. 7). This
again is interesting; we saw Archimedes calculating with Egyptian type fractions for the circle, and
this may have been usual, but for setting results out formally in a table—which is what Ptolemy
did—sexagesimals are clearly better. They point forwards towards modern decimal notation, as well
as backwards to Babylon, and they were to be used in astronomy continuously until recently.

The table of chords (in intervals of half a degree) is worked out fairly quickly using some basic
Euclidean geometry, with some results of Ptolemy’s own. Square roots are often extracted, as they
need to be, with no indication of how; but we might suppose that something like the method Heron
uses for finding

√
720 (see Appendix A) is being used.

Next, (again this is typical of the variety of topics in the book) Ptolemy describes an instrument
for measuring the angle between the two circles, the ecliptic and the equator. He derives the angle
from his measurement, using the table of chords, as 23;51,20◦. We therefore think of the sun as
moving around this circle at a uniform speed through the 12 signs of the zodiac (each of which
takes up roughly 30◦), in one solar year of around 365 1

4 days. We can then (one would think) find
where the sun will be at any time on any day of the year; and in particular, which sign it will be in.
The problem is that, as seen from the Earth, the sun does not move through the signs at uniform
speed. The 90◦ from spring equinox to summer solstice, for example, takes two days longer than the
90◦ from summer solstice to autumn equinox. The sun is (or appears) slower in travelling through
Taurus (May) than through Leo (August).

This ‘anomaly’, one among many astronomical anomalies which have to be explained, could
be dealt with by supposing that the sun actually had a variable speed, and finding how it varied;
this was Kepler’s idea, arrived at around 1600, and it is what one would say today. But, both for
ease in calculation and because of the general (Platonic) theory, Greek astronomy did not work in
that way. Instead, Ptolemy puts forward two models of how the sun moves. They are, as he says,
equivalent (you may try to work out why), but that is not really important, since the aim of an
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Fig. 8 The epicycle model. The planet moves clockwise round a small circle (epicycle) whose centre moves anticlockwise round a
large circle (deferent) centred on the Earth. This explains why some planets (e.g. Mars) sometimes move backwards in relation to the
stars.

explanation is not so much to say what ‘really’ happens as to give an accurate description from
which you can make predictions. Again, the physics, as we would call it, is not considered. In the
first model (‘epicyclic’), the sun moves at constant speed round a small circle or ‘epicycle’; and the
centre of the epicycle itself moves at constant speed round the ecliptic, with the Earth as centre (see
Fig. 8).

The second (‘eccentric’) supposes that the sun is travelling at uniform speed around a circle, but
that the Earth is not the centre of the circle. It follows that the sun appears to be travelling more
slowly when it is further from the Earth than when it is nearer (see Exercise 8). In Appendix B, I give
the detailed working out by Ptolemy, from his observations, of where the centre of the orbit is in
relation to the Earth. This is a detailed piece of Greek numerical mathematics, based on the geometric
tradition. Is it practical? Very much so, in that it makes possible (the beginnings of ) the calculation
of where the sun will be. But it is supported by a formidable theoretical apparatus of results about
chords in a circle, angles, and so on. Considered as a whole—and this is the justification for devoting
so much time to his work—Ptolemy’s Almagest gives more of an impression of the range and variety
of Greek mathematics than any other text which we have.

Exercise 6. Show that Crd(60◦) = 60, and Crd(36◦) = 60((
√

5 − 1)/2).

Exercise 7. How would you find Crd(θ/2) given Crd(θ)?

Exercise 8. Explain the variation in the sun’s apparent speed, on the eccentric hypothesis.

Research problem. Find the two reasons why the length of the day varies (a) as we would understand it,
(b) as Ptolemy would have put it. (This is called the ‘equation of time’.)

5 On the uncultured Romans

With the Greeks geometry was regarded with the utmost respect and consequently none were held in greater honour
than mathematicians, but we Romans have delimited the size of this art to the practical purposes of measuring and
calculating. (Cicero, Tusculan Disputations, tr. Serafina Cuomo, in Cuomo 2001, p. 192)

The above quotation heads Serafina Cuomo’s chapter on the Romans; and her recent book makes
the first serious attempt to investigate and indeed question a view of their mathematics accepted
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since Cicero’s time (first century bce). Briefly, this is that the Romans in contrast to the Greeks
made no contribution to mathematics, and that any works of theirs which contain or use it, such
as Vitruvius’ architecture, are trivial in comparison with the Greek achievements. The charge has
some basis in fact, as Cuomo acknowledges—‘I would be hard put to adduce a Latin equivalent
of Euclid, Archimedes or Apollonius’, she admits (p. 194). This seems like an understatement;
where are the Latin equivalents of Heron or Nicomachus? True, these second- or third-rate
mathematicians worked under Roman rule, and may have been, like St Paul, Roman citizens.
However, they wrote in Greek, and in a tradition which was, and continued to be, overwhelmingly
Greek. The Romans, with better access to the Greek classics than the ninth-century Arabs or the
Renaissance Europeans, never seem to have felt the same need to build on their work and develop
it. And while Cuomo also interestingly makes a historicist point about the class angle contained in
Cicero’s statement (ideas of ‘the Roman’ and ‘the Greek’ were marks of different kinds of prestige,
while many users of numbers, and land-surveyors in particular, were seen as jumped-up technical
upstarts), one is still left with an underlying feeling that it is an ideological statement based on
good factual evidence. The most interesting part of her argument is a broader one, and does bear
serious consideration: that the practice of mathematical methods of some sophistication pervaded
the Roman world from top to bottom. Some of her examples, notably the charioteer whose tomb
boasts that he

drove chariots for 24 years, ran 4,257 starts and won 1,462 victories, 110 in opening races. In single-entry races he
won 1,064 victories, winning 92 major purses, 32 of them (including 3 with six-horse teams) at 30,000 sesterces . . .

(CIL 6.10048 (Rome, 146 ce), tr. in Lewis and Reinhold 1990, pp. 146–7)

testify to the power of ‘numbers’ to impress rather than to the ability to do anything with them.
However, her study of the practice of the despised land-surveyors (see also Dilke 1971), and of
Vitruvius show how an appreciation, and application of classical geometry underlay their prac-
tice. Perhaps rather than decrying the ‘low level’ of geometry present in Vitruvius’s architecture,
we should think about the fact that it was a Roman, rather than a Greek, who bothered to write
such a treatise; the architects of Greek temples were not, it would seem, given to exposition.
We have different cultures (cohabiting in the same empire) with different ideas of what a book
is for.

Similarly, the famous tunnel of Eupalinus in Samos, dated at 550–530 bce, is often cited as an
amazing example of very early practical Greek geometry; how did the builders of the tunnel, who
started from the two sides of a mountain, contrive to meet so accurately in the middle? The answer
is again that we do not know, and no Greek sources seem to have taken the trouble to explain
how such a recurrent problem could be solved. The Roman surveyors, however, organized as a
profession in which a discipline was transmitted by means of ‘textbooks’, both explained how they
did it8 and wrote instructions whose foundation is in their training in some derivative of Euclidean
geometry.

This debate is only now beginning; the same applies to the doubts which Cuomo has cast on the
idea that Greek mathematics was ‘in decline’ from (say) the time of Ptolemy, if not before. It is not so
much a question of rehabilitating the Romans (awarding points to individuals or to civilizations for
their excellence in mathematics should not be part of the business of history, though it often is).
Rather, as we saw in Chapter 1 with the pre-OB periods, it is a question of looking at practices

8. See Cuomo (2001, p. 158) for a surveyor’s account of how he helped the weeping villagers whose tunnel had manifestly gone
badly wrong.
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which have been dismissed as trivial or non-mathematical and seeing if they do in fact belong in
our history—and if so, where.

6 Hypatia

Hypatia, the daughter of Theon the mathematician, was initiated in her father’s studies; her learned commentaries
have illuminated the geometry of Apollonius and Diophantus, and she publicly taught, both at Athens and Alexandria,
the philosophy of Plato and Aristotle. In the bloom of beauty, and in the maturity of wisdom, the modest maid refused
her lovers and instructed her disciples; the persons most illustrious for their rank and merit were impatient to visit the
female philosopher; and Cyril beheld with a jealous eye the gorgeous train of horses and slaves who crowded the door
of her academy. (Gibbon, n.d. chapter XLVII)

Hypatia was born in the later part of the Roman Empire, an era when women were not free to pursue careers. This was
a time when orthodox belief effectively wiped out centuries of scientific discovery. Ancient Greek works were torched
and scholars were murdered. Hypatia was the last proprietor of the Hellenic Age wonder, the Library of Alexandria.
She is portrayed as a young adult facing the issues of a changing world. The reader will discover uncanny parallels
to many current situations within the United States and, indeed, the world. Hypatia, a real, historically documented
heroine, is a find for today’s young adults who are searching for strong, non-fiction role models. (From review of a
novel, ‘Dear Future People’, at www.erraticimpact. com/f̃eminism/html/women_hypatia.htm)

Mathematicians, like engineers and physicists, have very rarely been women—the rarity is far more
serious than (for example) for poets and painters. As a result, the study of ‘women mathematicians’
faces a serious difficulty in even getting off the ground, since there has until the twentieth century
been no continuing tradition from which to construct a history. The feminist historian (of whom
Margaret Alic 1986 was a pioneer) therefore necessarily (a) points out the existence of numerous
such women of whom we know little or nothing, and (b) attempts to weave the major lives of which
we do know something into some kind of thread. The philosopher and mathematician Hypatia,
who was stoned to death by a Christian mob in 415 ce, (this much is undoubtedly historical fact)
is the most important early, perhaps the founding figure for the tradition, and the questions which
surround her life and activity may illustrate the wider problem. For if one were to take any other
figure from Greek mathematics as ‘representative’ of something (Nicomachus as a Palestinian,
Ptolemy as an African, . . .), generalizations based on the little that is known of their lives would
be hard, although the works at least give some basis for building theories. With Hypatia, the
difficulty is the opposite one. Her life is unusually well documented, in the general context of
Greek mathematics, as the result of friendly and hostile accounts by later Christian writers. Most
particularly, her devoted pupil Synesius, bishop of Cyrene in Libya, wrote a number of letters to
her and about her which give substantial detail about her life and teaching, if from a particular
viewpoint. On the other hand, although her ability as a mathematician is well documented and at
least the titles of some works have been preserved, there is no extant text attributed to Hypatia, no
‘Hypatia’s theorem’, no discovery which tradition assigns to her. With Heron, as was noted above,
we know the works but nothing of who he was; with Hypatia, it is the other way round.

On her life and her philosophy, for which the sources are good (Synesius does not appear to
have been so interested in mathematics), Maria Dzielska’s monograph (1995) is a recent excellent
source. Dzielska begins with an account of the myths which have built up around her as an iconic
figure since the seventeenth century, and which my opening quotes illustrate. She was a victim of
Christianity and symbol of the death of the ancient learning at the hands of the new ignorance
(Gibbon); a feminist icon and precursor of (for example) Marie Curie (Margaret Alic); a symbol of

www.erraticimpact.com/feminism/html/women_hypatia.htm
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the imposition of European rule on Africa (Martin Bernal). Dzielska produces a convincing picture
of Hypatia as an influential teacher of mathematics, astronomy, and neoplatonic9 philosophy to a
circle of initiates, both pagan and Christian.

Around their teacher these students formed a community based on the Platonic system of thought and interpersonal
ties. They called the knowledge passed on to them by their ‘divine guide’ mysteries. They held it secret, refusing to share
it with people of lower social rank, whom they regarded as incapable of comprehending divine and cosmic matters
. . . Hypatia’s private classes and public lectures also included mathematics and astronomy, which primed the mind for
speculation on higher epistemological levels. (Dzielska 1995, p. 103)

She shows Hypatia becoming involved in a power struggle between factions in Alexandria in the
years following 410 which led to a witch-hunt, and eventually to her death There was, indeed, a
careful line to be drawn in late Roman times between the praiseworthy pursuit of geometry (ars
geometriae) and the damnable art of astrology (confusingly, ars mathematica)—see Cuomo (2000,
p. 39); and Hypatia was probably not the only scholar to be caught on the wrong side of the line.
Dzielska further establishes, fairly convincingly, that her age at the time was about 60 (demolishing
the image of a beautiful maiden cut down in the bloom of youth), and points out that her death
was far from marking the end of learning in Alexandria, or the Greek world generally—or even of
paganism.

Pagan religiosity did not expire with Hypatia, and neither did mathematics and Greek philosophy. (Dzielska 1995,
p. 105)

She also unearths a number of other references to women in the late Greek philosophical world,
which show Hypatia’s example to be not so unusual as had been thought.

This is helpful, but of course the historian of mathematics would like to have more, and here
as so often we enter the world of more or less ingenious conjecture. As Gibbon states, her father
was the mathematician Theon who has not been highly estimated in recent times (‘a competent
but unoriginal mathematician’, Calinger 1999, p. 219). However, like many others of the period
he studied and commented the difficult works of his predecessors, and edited the text of Euclid in a
version which was almost the only one to survive. The titles of several of Hypatia’s works—mainly
commentaries, for example, on Ptolemy and Diophantus, are known from later bibliography, and
Synesius, her student, was a philosopher not a mathematician; and by the time when Islamic
scholars recovered and translated Greek works, none of them bore her name. The scholar who
wishes to study her as a mathematician, supposing it possible, has to use a certain amount of
imaginative reconstruction. Nonetheless, in line with the revival of neglected women in antiquity,
she is given two pages in Calinger’s general history (1999), and that common and convenient
view which dismisses Theon’s works as pedestrian and second-rate attempts to pick out the more
interesting parts of them and ascribe them to Hypatia.10

Following the initial stage of ‘recovery’, where the aim was to point out Hypatia’s status and
relative neglect as a mathematician, Dzielska’s work has been well received as perhaps marking
the start of a second period in the study of women mathematicians, still rather in its infancy:
an attempt to place them in a historical context, even when (as with Byzantine Alexandria) that

9. Neoplatonism was not simply a revival of Platonism, but had elements of mysticism; as such it played a semi-religious part in
the late Roman empire.

10. For these and similar arguments see Knorr (1989), who also suggests that, since Diophantus’s Arithmetica as it survives
contains comments, the edition itself in the form we have it may have been prepared by Hypatia. Doubts are expressed by
Cameron (1990).
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context is remote and offers few opportunities for identifying role models. An assessment of her life
and works, if any can be reliably ascribed to her, while sympathizing with her difficult, ultimately
tragic situation, is not dependent either on approving her obvious ability and charisma, or on
disapproving of the élitism, and that belief that the state would be better off if run by philosophers
which she shared with other Neoplatonists.

Appendix A. From Heron’s Metrics

[Introductory note. The standard translation (e.g. the one which you will find in Fauvel and Gray)
has been changed so that there is as little as possible ‘modernization’ of Heron’s language, and
no explicit algebra. This is more difficult than one might imagine, since (a) Heron does think
of lengths as numbers, and multiply them—this happens in the first part, (b) in the geometric
proof the kind of straightforward and perhaps over-simple statements I have made about Euclid
(areas of rectangles are just areas, not products of the lengths of sides etc.) are no longer clearly
true, and it is possible that something like algebra, of an embryonic form, was in Heron’s mind
even if you cannot see it on the page. Prepositions like ‘on’ and ‘by’ indicate areas of rectangles or
multiplication, and it is unclear which is being used. Most unexpectedly, ‘the on ABC’ means the
product AB times BC, not the area of a triangle.]

There is a general method for finding, without drawing a perpendicular, the area of any triangle
whose three sides are given. For example, let the sides of the triangle be 7, 8, 9 units. Add together
the 7 and the 8 and the 9; the result is 24. Take half of this; the result is 12. Take away the 7 units;
the remainder is 5. Again take away from the 12 the 8; the remainder is 4. And then the 9; the
remainder is 3. Multiply the 12 by the 5; the result is 60. and this by 4; the result is 240. And this
by 3; the result is 720. Take the side [= square root] of this, and it will be the area of the triangle.
Since 720 does not have a rational square root, we shall reach a different [number] close to the root
as follows. Since the square nearest to 720 is 729 and it has a root 27, divide the 27 into the 720;
the result is 26 and two thirds. Add the 27; the result is 53 and two thirds. Take half of this; the
result is 26 1

2
1
3 [This is the ‘Egyptian way’ of writing 26 5

6 .] Therefore the square root of 720 will
be very near to 26 1

2
1
3 . For 26 1

2
1
3 multiplied by itself gives 720 1

36 ; so that the difference is a 36th
part of a unit. If we wish to make the difference less than the 36th part, instead of 729 we shall
take the number now found 720 1

36 , and by the same method we shall find a difference much less
than 1

36 .
The geometrical proof of this is this (Fig. 9): In a triangle whose sides are given to find the area.

Now it is possible to draw a perpendicular and calculate its magnitude and so find the area of the
triangle, but let it be required to calculate the area without drawing the perpendicular.

Let the given triangle be ABC and let each of AB, BC, CA be given; to find the area. Let the circle
DEZ be inscribed in the triangle with centre H [Euclid IV.4], and let AH, BH, CH, DH, EH, ZH
be joined. Then the [rectangle] BC times EH is twice the triangle BHC [Euclid I.41], and CA times
ZH is twice the triangle AHC, and AB times DH is twice the triangle ABH. So the perimeter of the
triangle ABC times EH, that is, the [radius] of the circle DEZ, is twice the triangle ABC.

Let CB be produced, and let BF be made equal to AD; then CBF is half the perimeter of the
triangle ABC because AD is equal to AZ and DB to BE and ZC to CE. So CF times EH is equal to the
triangle ABC. But CF times EH is the side of the [square] on CF times the one on EH.
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Fig. 9 Figure for Heron’s theorem, Appendix A.

[This is the point at which we stop being able to think geometrically; the formula is that

CF.EH =
√

CF2·EH2

But while the left hand side is a rectangle, the right has arisen by taking the product of two squares
and extracting the square root. From now on, numbers whose ‘dimension’ is 4 seem to come into
the calculation.]

So the area of the triangle ABC by itself is the area of the [square] on FC by the [square] on EH.
Let HL be drawn perpendicular to CH and BL perpendicular to CB, and let CL be joined. Then

since each of the angles CHL, CBL is right, a circle can be described about the quadrilateral CHBL
[Euclid III.31]; therefore the angles CHB, CLB are together equal to two right angles [Eucl. III.22].
But the angles CHB, AHD are together equal to two right angles because the angles at H are bisected
by the lines AH, BH, CH and the angles CHB, AHD together with AHC, DHB are equal to four right
angles; therefore the angle AHD is equal to the angle CLB. But the right angle ADH is equal to the
right angle CBL; therefore the triangle AHD is similar to the triangle CBL.

So as BC is to BL, AD is to DH, that is as BF is to EH, and interchanging as CB is to BF so is BL
to EH, that is as BK to KE because BL is parallel to EH. And putting together, as CF to BF, so is BE
to EK.

[Note. This is the rule which the translator, following the medieval Latin use, calls componendo:
if a/b = c/d, then (a + b)/b = (c + d)/d (Do you see that this works, and applies to the situation?)]

And so the [square on] CF to the [rectangle] CF by FB is as the BEC to the CEK, that is to the
[square on] EH; for in the right angled triangle EH has been drawn perpendicular to the base.
Therefore, the [square] on CF times the [square] on EH, whose side [square root] is the area of the
triangle ABC, is equal to the CFB times the CEB. And each of CF, FB, BE, CE is given; for CF is half
the perimeter of the triangle ABC, and BF is the excess, by which half the perimeter exceeds CB,
and BE is the excess, by which half the perimeter exceeds AC, and EC is the excess, by which half
the perimeter exceeds AB, since EC is equal to CZ, and BF to AZ, since it is equal to AD. So the area
of the triangle is given.

Exercise 9. Check through the calculation of the square root of 720. What method is Heron using for
finding it?
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Fig. 10 Picture for Appendix B. Earth at E, sun on circle centre Z.

Appendix B. From Ptolemy’s Almagest

(Ptolemy 1984, pp. 153–4)
Note. As already stated, lengths are in sexagesimals with the radius of the circle set equal to 60.

The sixtieths are denoted by a small letter ‘p’, corresponding to the degrees sign for angles.
In order not to neglect this topic, but rather to display the theorem worked out according to our

own numerical solution,we too shall solve the problem, for the eccentre, using the same observed
data, namely, as already stated, that the interval from spring equinox to summer solstice comprises
94 1

2 days, and that from summer solstice to autumn equinox 92 1
2 days. [Ptolemy then details his

own ‘very precise’ observations in 139–140 ce, which confirm these figures, due to Hipparchus.
These figures are all we need.]

Let the ecliptic be ABGD on centre E. In it draw two diameters, AG and BD, at right angles to each
other, through the soltitial and equinoctial points (Fig. 10). Let A represent the spring [equinox], B
the summer [solstice], and so on in order. [E is the Earth; the spring equinox occurs when the sun
is in the direction of A (in Aries), and so on. The circle just drawn is the ecliptic as we see it in the
heavens, and determines what we see.]

Now it is clear that the centre of the eccentre [i.e. of the eccentric circle] will be located between
lines EA and EB. For semi-circle ABG comprises more than half the length of the year [187 days,
as we have seen] and hence cuts off more than a semi-circle of the eccentre; and quadrant AB
comprises a longer time and cuts off a greater arc of the eccentre than quadrant BG. This being so,
let point Z represent the centre of the eccentre, and draw the diameter through both centres and
the apogee, EZH.11 With centre Z and arbitrary radius draw the sun’s eccentre �KLM, and draw

11. The apogee is the point at which the sun is furthest from the Earth; from the picture, this is where the eccentre cuts the
radius EH.
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through Z lines NXO parallel to AG and PRS parallel to BD. Draw perpendicular �TY from � to
NXO and perpendicular KFQ from K to PRS.

Now since the sun traverses circle �KLM with uniform motion, it will traverse arc �K in 94 1
2

days and arc KL in 92 1
2 days. In 94 1

2 days its mean motion is aproximately 93;9◦ and in 92 1
2 days

91;11◦. [It covers 360 degrees in a year of 365 1
4 days, so slightly less than 1◦ per day; this is where

these figures come from.] Therefore arc �KL=184;20◦ and by subtraction of the semi-circle NPO,
arc N� + arc LO = 4;20◦

So arc �NY = 2 arc �N = 4;20◦ and �Y = Crd arc �NY = 4;32p, where the diameter of the
eccentre is 120p. [Remember that our tables deal with a circle of radius 60, diameter 120.] And
EX = �T = 1

2�Y = 2; 16p.
Now since arc �NPK = 93;9◦ and arc �N = 2;10◦ and quadrant NP = 90◦, by subtraction,

arc PK = 0;59◦, and arc KPQ = 2.arc PK = 1;58◦. So KFQ = Crd arc KPQ = 2;4p, and ZX = KF =
1
2 KFQ = 1;2p. And we have shown that EX = 2;16p in the same units.

Now since EZ2 = EX2 +ZX2, EZ = 2; 29 1
2

p
where the radius of the eccentre is 60p. Therefore the

radius of the eccentre is approximately 24 times the distance between the centres of the eccentre
and the ecliptic.

[This completes the first half of the calculation, showing how far the Earth is from the centre of
the eccentric circle. It remains to find the direction of the line EZ so as to situate Z exactly; as you
can see, this follows from the ratio of EX to EZ; we would use the tangent, but Ptolemy has to use
the chord function again. The answer is that angle ZEX is 24;30◦.]

Solutions to exercises

1. If (x, y) is on the two curves, then x3 = x.x2 = x.y = 2a3; so x = a. 3
√

2. The description of
what Menaechmus did does not read quite like this—for a plausible version, see Knorr. If you
replace 2 by m in the equation of the hyperbola, then you solve the problem of increasing the
volume by m (and so the side by 3

√
m), similarly.

2. Suppose C and D are constructed. Then (rules about ratios, think of them as fractions), A : B =
(A : C).(C : D).(D : B). The three ratios in brackets are equal, so this is (A : C)3. If B : A = m, then
(cube on B):(cube on A) is m3. So (cube on C):(cube on A) is m.

3. Straightforward; the radius is the height of the equilateral triangle whose side is the side of the
hexagon. So by Pythagoras’s theorem, the side is 2/

√
3 times the radius; and the perimeter of

the hexagon is 6.r.(2/
√

3) = 4r.
√

3.
4. This depends on Euclid VI.3, which you may not know. This says that in triangle ABC, if AD

bisects angle A and meets BC at D, then AD : AB = BD : AB. (Look it up, or try to work out why it
is true.) In our case, this gives (looking at the bisected angle at the centre of the circle in Fig. 4)
A′ : B = A − A′ : C. Manipulating ratios (componendo, see Appendix A), A′ : B = A : B + C
as required.

5. (a) (See Fig. 11) In the picture, CDOE is a square, so all of its sides equal r. Hence, AE = b − r,
BD = a − r. But by the property of tangents, this means that AF = b − r and BF = a − r.
Hence, AB = AF + FB = a − r + b − r, and the result follows. (b) From the factorization,
1
2(a + b + c) = 35, 1

2(a + b − c) = 6; so a + b = 41. This is why we square 41, and get
(a + b)2 = 1681. But also the area sr equals 35 × 6 = 210, and this is (by a different
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Fig. 11 The figure for Exercise 5; with BC = a, AC = b, AB = c, and the radius of the circle = r

calculation) equal to 1
2 ab. We now subtract eight times this number (= 4ab) from the 1681,

and get 1, which must be (a − b)2. Now we know a + b and a − b, and the rest follows.
6. That Crd(60◦) = 60 follows since the triangle of angle 60◦ is equilateral. For Crd(36◦) we

use Fig. 5 of the previous chapter. Here the angle at the vertex is 36◦, and if the sides of the
isosceles triangle are the radii (and so = 60), the ratio of the base to the side is what we have
called the golden ratio, that is, (

√
5 − 1)/2. So Crd(36◦) is 60 times this.

7. Without going into tedious detail, you would follow prescriptions similar to those of
Archimedes in Exercise 4. You are dealing with inscribed polygons instead of circumscribed
ones, but the essentials are the same.

8. Suppose that the sun is travelling at uniform speed (say θ◦ per hour) round a circle, and the
Earth is at a distance a from the centre of the circle of radius r on which the sun is travelling.
Then the θ◦ which the sun covers in an hour correspond to a distance rθ , and so (roughly) to
(r/(r − a))θ seen from the Earth at the nearest point, and to (r/(r + a))θ at the furthest point.

9. I shall not give the check. The method is to take a so that a2 is near to b (in this case 720),
and replace a by 1

2(a + (b/a)) = a + (b − a2)/2a. This is a ‘standard’ approximation taught in
calculus if we write b = a2 + h = a2(1 + (h/a2));

√
b � a(1 + (h/2a2)) = a + (h/2a).



4 Chinese mathematics

1 Introduction

Fu Xi created the eight trigrams in remote antiquity to communicate the virtues of the gods and parallel the trend of
events in earthly matters, [and he] invented the nine-nines algorithm to coordinate the variations in the hexagrams.
(Liu Hui, cited Shen et al. 1999, p. 52)

Mathematics is an important subject in the six arts. Through the ages all scholars who have participated in discussions
on astronomy and calendars have to master it. However, you may consider it as a minor occupation, not as a major
one. (Yen Chih-tui (sixth century ce), cited Libbrecht 1973, p. 4)

The usual warnings to avoid thinking of ancient mathematics in modern terms seem quite
unnecessary in the Chinese case. Certainly the Chinese, like the Greeks, recognized a particular
study called mathematics (suanshu). As a component of education, they seem often to have given
it a rather subordinate role, as the second quote above shows. And yet, it was (as usual) essen-
tial for the standard preoccupations of irrigation, public works, and taxation. More particular to
the Chinese, if still widespread, was the idea that the harmony of the universe is mathematically
ordered, as the first quote expresses; guidance for future conduct can be gained from the 64 signs
of the Yijing, or ‘Book of Changes’.1 Between abstract philosophy and low-level ditch-digging
stood the essential practice of the calendar-makers and astrologers, who ensured—with variable
success—that a complicated year ran smoothly enough and unlucky events in the heavens were
accounted for. The earliest textbook, the Zhoubi suanjing (Cullen 1996), is an attempt to deal with
these questions, and the problem of harmonizing the competing periods of days, months, and
years is at least partly reponsible for the sophisticated number theory required for the ‘Chinese
remainder theorem’.

The relation of the various parts was a complex one, and yet Chinese mathematics is still often
characterized as simply ‘practical’. It is true that the bare classical texts often confront the reader as
if that were their aim; but we have already seen in the Babylonian case that more may lie beneath
the surface. Here, as an illustration, are two problems from the founding text, the Nine Chapters.

Now given a person carrying cereal through three passes. At the outer pass, one-third is taken away as tax. At the
middle pass, one-fifth is taken away. At the inner pass, one-seventh is taken away. Assume the remaining cereal is
5 dou. Tell: how much cereal is carried originally?
Answer: 10 dou 9 3

8 sheng. (Shen et al. 1999, problem 6.27, p. 345)

Now chickens are purchased jointly; everyone contributes 9, the excess is 11; everyone contributes 6, the deficit is 16.
Tell: the number of people, the chicken price, what is each?
Answer: 9 people, chicken price 70. (Shen et al. 1999, problem 7.2, pp. 358–9)

1. Although popular in the 1960s and often used in the West as an alternative to Tarot cards for fortune-telling, the Yijing
(‘I Ching’) is a serious philosophical document, among other things.
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Clearly the first question is ‘easy’, the second slightly harder, although the original reader may not
have found it so. They belong in form to a very widespread tradition, which goes back to Egypt and
Babylon. At first sight, only the specificity of the questions (the three passes clearly relate to a quite
specific terrain and mode of tax gathering) reminds us to think about who was asking them, who
they were addressing, and what was the aim. But aside from the particular organization of society,
the well-known isolation of China meant that, while there were certainly cultural influences in
both directions, they seem to have been rare and poorly documented. Furthermore, the ideas and
aims of Chinese mathematics have elements which are hard to translate into our own terms. The
questions and answers may be similar to those in other societies, but is that simply coincidence?
How should the subject be studied?

The beginner may well be daunted. If we begin around 400 bce (although there are no texts quite
that early in date), and make the conventional end with the arrival of ‘European’ mathematics
around 1600 ce,2 we have an unbroken history of nearly 2000 years. Over this period, there
are a succession of texts, similar in form—mainly lists of problems (like the ones above), with
solution and commentary. The texts will have their own technical terms, which are not only exotic
measures of length, but may refer to procedures within mathematics. Again, this helps historically
in clarifying that we are not dealing with ‘our’ culture, but it does not help our comprehension. The
non-Chinese reader is likely to know nothing of the Chinese language; it may be the second world
language, but its script and structure make it inaccessible to most. Even transliteration can be a
problem; while modern texts agree on using the now official ‘pinyin’ system, older ones will use
some other one, so that the student should be warned that the mathematician who was formerly
called Ch’in Chiu-shao is now Qin Jiushao (compare Peking and Beijing).3 We shall try to provide
some orientation on history and background; fortunately, not more than a minimum is absolutely
necessary. For more, see the references in Section 2.

Added to these difficulties, classical Chinese mathematical texts can pose quite specific prob-
lems. Their language is compressed, so that the ‘translations’ which we have may be rather free
adaptations. Some translators, in fact, (particularly Jock Hoe 1977) have tried to circumvent this
by adopting a special telegraphic form of English which may help. Furthermore, they may be
dependent on the specific calculator’s skill of manipulating counting-rods, which for a long time
was central to all work. This will have to be considered in its place, particularly in relation to claims
argued forcefully by Lam and Ang (1992) that the use of the rods led to the Chinese invention of
the place-value system and of decimal fractions. The questions usually asked, which extend some
of these considerations, are:

1. What is specifically ‘Chinese’ about Chinese mathematics?
2. To what extent can similarities between Chinese mathematics and that of other cultures (Indian,

Islamic) be attributed to cultural diffusion and to what extent are they independent? Specifically,
one could consider the decimal system, Pascal’s triangle, and methods for root extraction.

Despite its frequently mentioned restrictions, there is great diversity in Chinese mathematics,
and this chapter can only discuss a part of it. Hopefully, you will be encouraged to read further.

Exercise 1. Explain the answers to the questions from the Nine Chapters, given that 1 dou = 10
sheng.

2. The later period has been neglected, and is still less studied; we shall consider it very briefly at the end of the chapter.
3. To help, the older form will sometimes be given in brackets, and quotes—for example Yijing (‘I Ching’).
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2 Sources

The reader is comparatively well served by recent publications on Chinese mathematics. By this
I mean that they are comprehensive and good, although the local library may have to be persuaded
to invest in a copy. First among them is the classic work of Joseph Needham (1959). It has been
claimed that the mathematical part of Needham’s enormous work is the weakest, ‘superficial and
largely dependent on obsolete Western-language sources’ being a recent judgment (Sivin 2004);
but all subsequent scholars owe him an immense debt, and his emphasis on the social context
is particularly valuable. Much more recent and very full is Martzloff (1995). This is thought-
fully structured, the first part on context and the second on content. Martzloff is scholarly, and
anxious to give Chinese mathematics due credit; but he is equally cautious (some might say too
cautious) about claims which rest on evidence which is scanty or late, or on conjectures about
how things must have been. One could hardly wish for a fuller introduction, and it is highly
recommended.

Of equal value—since the classic books are at the heart of Chinese mathematics—is the fact
that several of these have been translated in the past 30 years, usually with a large amount of
discussion and background material. This is most useful since there are no selections in Fauvel and
Gray which deal with the subject. Certainly the most important is Shen et al.’s (1999) translation,
with a very full commentary, of the fundamental Nine Chapters on the Mathematical Art, which fills
the major gap; but also valuable are the translations of Cullen (1996), Lam (1977), Lam and Ang
(1992), Swetz (1992), and the commentary of Libbrecht (1973).4 The reader who can lay hands
on some or all of these will be in an excellent position to form informed judgements. On the later,
less studied period after 1600, Martzloff (1981) and Jami (1990) are both in French, but, if you
can locate and read them, they provide a good opening on current research.

For a general history of China, an introduction—with much of interest concerning the history
of science—is contained in Needham’s volume I (1954). A more recent ‘classic’ is Fairbank (1992).
Nathan Sivin has a good selected bibliography on Chinese science, including mathematics, online
(Sivin 2004), and the new Chinese section of the St Andrew’s website provides more detail on
particular topics, for example, the Nine Chapters or individual mathematicians. Finally, there is a
great deal of research activity, both in the standard publications (Historia Mathematica, Arch. Hist.
Exact Sci.) and in specialist journals addressing Chinese science. Reference to some of these will be
made where relevant.

3 An instant history of early China

The succession of dynasties, sometimes orderly and sometimes confused, which structures Chinese
history is not ‘general culture’ as the European succession of states and empires is thought to be.
What we need is a quick summary which is angled towards the main periods of mathematical
interest, so far as we know them. Because the most important discussions concern the early
period—up to about 600 ce—I shall cover that here, with brief inserts on the other key periods as
we come to them.

4. There is still no translation of the key work on which this is based, Qin Jiushao’s thirteenth-century Shushu jiushang
(Computational Techniques in Nine Chapters); but perhaps one is on the way.
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Dynasties

From earlier than 1000 bce until the revolution of 1912 which both ended the monarchy and
brought a new approach to ‘Westernization’, China (although initially smaller) was at least theor-
etically ruled by a king, later styled ‘emperor’, whose role in ensuring the harmony of the world
and the social system was essential. As is usual, emperors succeeded one another in an orderly way
on the whole, as a ‘dynasty’ (compare the dynasties of ancient Egypt, or the Tudors and Stuarts
in England); but from time to time the succession was broken, one dynasty overthrew another or
competing dynasties divided China between them. A not entirely rigid boundary, symbolized by the
Great Wall, separated China and ‘civilization’ from the successive groups of threatening barbarians
(Huns, Tatars, Mongols) outside; sometimes a successful barbarian conquest was followed by the
adaptation of the conquerors to Chinese culture.

History, including the history of writing, calendar computations, highly skilled work in bronze,
and some written texts containing basic mathematics, starts in the Zhang dynasty (‘Shang’), before
1000 bce. The dates are not certain, but the historical existence of the Zhang is not in doubt.

Zhou dynasty (‘Chou’), c.1000 to 221 bce

The form of Chinese writing, including the writing of numbers, was fixed. There must have
been considerable development of mathematics during this period, particularly its later part, but
virtually no documents survive—this is traditionally blamed on the famous ‘Burning of the Books’
by the first emperor of Qin. From about 500 bce, under a system which Needham describes as
similar to European feudalism, the country was divided into provinces (‘Warring States’) ruled by
great lords and the emperor’s authority was minimal. From this time date the main philosophical
currents, Confucianism and Daoism (‘Taoism’). These (together with Buddhism at a later date) had
varying influences on scientific outlook. In Needham’s view, Confucianism was socially orthodox
and uninterested in science, and Daoism was the reverse. Interestingly, the founding work of
Daoism, Lao-Zi’s Dao De Jing (?third century bce—estimates vary) provides one of the earliest
references to the practice of mathematics:

Good mathematicians do not use counting rods. (Lao Zi, The Dao De Jing, cited in Lam and Ang 1992, p. 22)

Lao Zi’s view of the most inventive tool of Chinese mathematics would turn out to be mistaken, as
we shall see; one could compare the dogmatism of his near-contemporary Plato. In any case, he
tells us that already in his time there were good mathematicians and more ordinary ones.

Qin dynasty (‘Ch’in’), 221–207 bce

A strong unifying and repressive government was instituted for the first time. This, although
shortlived, has always been seen as a landmark in the central organization of the country. ‘Feud-
alism’ was ruthlessly eliminated. Nonetheless, society remained rigidly stratified into ‘estates’ with
merchants, according to Confucian principles, at the bottom in prestige if not in power.

Han dynasty, 202 bce–220 ce

The overthrow of the Qin was accompanied by a relative liberalization. The main features of
subsequent Chinese society took shape, in particular rule by a bureaucracy recruited from the
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‘scholar-gentry’ by examinations. According to Liu Hui (see later), mathematics was one of the six
subjects required (the ‘six gentlemanly arts’), but it did not long remain so.

The Chinese state now occupied its classical area—that is, as far as Guangzhou (Canton) in the
south,5 and the Great Wall was completed; as Needham suggests,

to check the drift of Chinese groups towards coalescence with nomadic life, or the formation of mixed economies,
at least as much as to keep the nomads out. (Needham 1954, p. 100)

The Han is the first major period for the history of mathematics, since the first works which
were subsequently enshrined as classics were composed during the period. These include most
importantly the Nine Chapters on the Mathematical Art, of which more will follow later in
greater detail.

The 400 years which followed the Han dynasty were a time of division, conflict, and occasional
unification. However, contacts with the outside world, in particular India, increased through the
spread of Buddhism which was introduced in the first century ce. The remaining mathematical
classics date from this period, including Liu Hui’s commentary (third century ce) on the Nine
Chapters, which transforms it from a collection of questions and answers (as in Section 1) to a
mathematical text. It appears that the occupation of mathematician was respected and relatively
flourishing, even if the work produced was of varying quality.

Sui dynasty, 581–618 ce

The Sui dynasty, like the Qin, was a successful unification which ran out of steam after organizing
important canalization projects which helped to unify north and south. It marked a second point at
which mathematics gained a place on the ‘national curriculum’, and the canon of 10 classical texts
which students were required to study was fixed. In fact, a central mathematical school was set up,
but it had few students; and as the official examinations remained exclusively literary/humanistic,
it seems not to have lasted more than a few years.

4 The Nine Chapters

Though it is called the Nine Arithmetical Arts, they can reach both the infinitesimal and the infinite. (Liu Hui’s preface
to the Nine Chapters, in Shen et al. 1999 p. 53)

Whereas the Greeks of this period were composing logically ordered and systematically expository treatises, the Chinese
were repeating the old custom of the Babylonians and Egyptians of compiling sets of specific problems. (Boyer and
Merzbach 1989, p. 222)

Any consideration of Chinese mathematics has to start with the Nine Chapters or Jiuzhang suanshu,
which dominated all subsequent work in much the same way that Euclid’s Elements dominated
Western (including Islamic) mathematics for the next 1500 years. It is not the earliest classic
known—that place is held by the decidedly less mainstream Zhoubi suanjing6 (Cullen 1996). The
date and ‘authorship’ of this text is as uncertain as that of the Nine Chapters; Cullen considers it
to have been a compilation from the early Han dynasty (second to first century bce). It is a work

5. Sometimes a much wider area was covered, including Korea and northern Vietnam.
6. This title is not explicitly translated by Cullen; Needham translates it as ‘The Arithmetical Classic of the Gnomon and the

Circular Paths of Heaven’.
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which combines the theory of heavens and earth with a certain amount of trigonometry. Being
a manual for astronomers rather than a ‘textbook’, it did not have the same status as a founding
work for mathematicians.

The comparison of The Nine Chapters with Euclid has been made so often that it is something of
a cliché, which is not to say that it is without importance. In a now largely outdated discourse,
exemplified by the quote from Boyer and Merzbach, a simple contrast was made between Euclid’s
use of proof and the axiomatic method as opposed to the supposedly basic practical orientation of
the Nine Chapters. We shall see that the question is more complicated than that. Some initial points
which can be made are:

1. Although much shorter than Euclid, the Nine Chapters is a substantial work, highly structured,
with each chapter organized around a particular type of problem, and with short but full
explanations for how the problems are to be solved. Like Euclid, the work appears to be the end
of a process of development of which we have no record; the various methods described must
have been worked out in the centuries which preceded the book’s final compiling.

2. Historically, the Nine Chapters has always been supplemented by commentaries, most partic-
ularly that of Liu Hui, which add a theoretical element which is missing from the bare text.
As the recent translation points out:

Liu was a unique mathematician, well-read in both science and literature, who wrote with great style, selecting
appropriate phrases from historical and literary classics in his descriptions of the relevant scientific subjects,
and showed succeeding generations how to solve problems and also how to justify and explain the rules used.
The Nine Chapters would have remained a mere recipe book and not a complete classical mathematical textbook
without Liu’s work. (Shen et al. 1999, p. 5)

The work of commenting has continued through Chinese history since Liu, indeed in a modern
historicized style it is still ongoing. This (like the Euclid heritage) has had its positive and negative
aspects; it has provided a tradition, but has also allowed generations of mathematicians to
restrict their work within fairly narrow limits.

3. The detail given on the manipulation of counting-rods makes the book unique in its
arithmetical specificity. At key points (e.g. on extracting roots), the text goes into the pro-
cess of how to proceed with the rods with a precision which must have made clear to
readers (if not always to us) both how they should apply the procedures and why they
worked.

To illustrate some of these points, let us look again at the problem of the chickens cited in
Section 1. In the Islamic world and Europe, the method was to become known as the ‘method of
double false position’. The brief exposition and answer of the problem (with several similar ones) is
followed by the general rule.

The Excess and Deficit Rule. Display the contribution rates; lay down the [corresponding] excess and deficit below.
Cross-multiply by the contribution rates; combine them as dividend; combine the excess and deficit as divisor. Divide
the dividend by the divisor. [If] there are fractions, reduce them.

To relate the excess and the deficit for the articles jointly purchased: lay down the contribution rates. Subtract the
smaller from the greater, take the remainder to reduce the divisor and the dividend. The [reduced] dividend is the price
of an item. The [reduced] divisor is the number of people.

Liu’s commentary. Let the bottom terms cross-multiply the top, [combine and] then uniformize by the common
denominator . . . [Lay down] the contribution rates. Subtract the smaller from the greater, this is called the assumed
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difference, which is taken to be the lesser assumption. Then combine the excess and deficit to be the determined
dividend. Therefore dividing the determined dividend by the lesser assumption then gives the divisor to be the number
of people, and reducing the dividend gives the item price. (Shen et al. 1999, pp. 359–60)

The first point to note is that the general rule is already, one might say, enough; a far broader
account of what needs to be done than the pre-Greek texts which proceeded only by example. The
explicit rules of procedure seem to lead to something like a matrix:

9 6

11 16
with contribution rates at the top, and excess and deficit below. Cross-multiplying and adding
gives the ‘dividend’ (9 × 16 + 6 × 11 = 210), while simply adding excess and deficit gives
the ‘divisor’ (15). We are not told where to place these, unfortunately. These are not our
answers, but they become what we want after dividing by a third number, the ‘difference of
the contribution rates’, in our case 9 − 6 or 3. Dividend then goes to price, divisor to number
of people.

What does Liu’s commentary add? In this particular case, not very much (there are better
examples). The original has already laid down the basis of a technical language (‘divisor’, ‘dividend’,
and so on); Liu’s concern is to refine this, by introducing extra explanatory terms such as ‘the lesser
assumption’. He clearly feels, if the word ‘therefore’ means anything, that his scheme makes clear
why the solution works. Yet it is not, in any sense, a proof.

In a carefully argued essay, Karine Chemla (1997) analyses one of Liu’s more substantial com-
mentaries—the one on addition of fractions, after problem 9 in chapter 1. Her argument is that in
explaining that the commentary contains a ‘proof ’ we risk simply finding what we are looking for.
The sentences in the commentary which count as proof are only a part of the story; they break off
at a point where, typically, Liu quotes a much more general idea, from theYijing: ‘Things of one kind
come together’. What follows is a discourse on why qi (‘homogenizing’) and tong (‘uniformizing’)—
the basic procedures in adding fractions—work in the way that they do. What kind of mathematics
is it?

In other words, fractions with a common denominator can be added even if the numerators are quite different, while
fractions with different denominators cannot be added even if the numerators are close to each other . . . Multiplying
[the denominators] means fine division and reducing means rough division; the rules of homogenizing and uni-
formizing are used to get a common denominator. Are they not the key rules of arithmetic? (Shen et al. 1999,
p. 72)

What Chemla is suggesting is that in attempting to correct an unhistorical judgement—‘Chinese
mathematics had no proofs’—one may fall into an equally unhistorical claim: that the closely
argued commentaries of Liu are equivalent to ‘proofs’ in the Greek tradition. Arguably, they were
not, and Liu’s aim was a very different one: to explain for his readers how the parts of the Nine
Chapters worked and came together as a coherent whole.

Exercise 2. (a) In the general case of ‘Excess and Deficit’, suppose the price is x. If y people pay a each
the excess is b; while if they pay a1 each the deficit is b1. What are the formulae for x and y, and what
role do the ‘dividend’, the ‘divisor’, and the ‘lesser assumption’ play in finding them? (b) Use either the
previous exercise or the method from the Nine Chapters to solve problem 7.3: Now jade is purchased
jointly; everyone contributes 1

2 , the excess is 4; everyone contributes 1
3 , the deficit is 3. Tell: the number of

people, the jade price, what is each?
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5 Counting rods—who needs them?

It follows that the Hindu–Arabic numeral system originated from the rod numeral system, which was developed
centuries earlier. (Lam and Ang 1992, p. 148)

Most authors believe that counting-rods were manipulated on a special surface called the counting-board or chess-
board, which would have been to rods what the frame and the bars are to the abacus. However there is no proof that
such boards existed. (Martzloff 1995, p. 209)

What (in ancient Chinese mathematics) was done with counting rods was considered fairly well
established before the doubts raised by Martzloff,7 and the important claims for the numeral system
made by Lam and Ang, following Needham and others, make it desirable to establish what we
can. Not quite a way of writing numbers, nor simply a calculating tool, the rods were used to
combine the two in a unique way which some specialists at least see as providing an approach to
number-manipulation which was better than anything used before or since. Indeed, it seems that
‘difficult’ mathematics declined when, around the sixteenth century, the abacus replaced the rods
as the instrument of calculation.

Numbers have been written in the Chinese script at least since the Zhou dynasty in a form which
corresponds exactly to the words:

san bai ba shi qi
three hundred eight ten seven

which means: ‘387’ (as is obvious). In particular, it is in this form that they are written in the
classics such as the Nine Chapters. As Lam and Ang (1992, p. 14) point out, this means that, given
the particular nature of Chinese writing, the usual distinction between writing numbers in words
(e.g. ‘three hundred and eighty-seven’) and figures (e.g. ‘387’) disappears.

This is quite convenient in itself. However, at some time in the Zhou dynasty the counting rods
were developed as an aid to actually doing sums—one could conjecture, sums of the kinds needed
by merchants or bureaucrats. A rod was

a round bamboo stick 1 fen (about 2.5 mm) in diameter and 6 cun (about 25 cm) in length . . . (Shen et al. 1999, p. 12)

(The exact dimensions, and the materials were more variable than this description suggests.)
Placed in patterns, they could symbolize the numbers 1–9, in one of two forms or ‘series’—either
horizontal or vertical (Fig. 1).

There are references to how they were used in early classics, for example, the Sunzi suanjing,8 but
(presumably because the texts were supplemented by a teacher’s instructions) they are not explicit.
The usual explanation of their use, which follows the way in which they were used in Japan in the
eighteenth century, is that:

1. Laid out along a single row of the counting board, the rods gave the decimal representation of
a number, with an empty space denoting a ‘zero’: so ‘60390’ was represented by Fig. 2 below.

2. By convention, vertical and horizontal types alternated, so that there was less room for con-
fusion about where an empty space had occurred (‘84’ looked different from ‘804’—try to
see why).

7. Who would concede that we know a great deal, but argues that it is not quite as much as we think.
8. This is the text, of very uncertain date (between the first and fifth centuries ce?) edited and translated by Lam and Ang (1992).
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Fig. 1 Rod numbers.

Fig. 2 60390 as a rod number

3. As in our system, numbers read along the rows, while the various numbers belonging to a sum
(multiplier, multiplicand, product) occupied different rows of the board.

To clarify, here is the rather simple operation of squaring 81, from the Sunzi suanjing. This is
no more advanced than the Nine Chapters, in fact less so, but in places more explicit. The text
clearly does describe some procedure with counting rods. The pictures in rod-numbers are the
reconstruction in Lam and Ang (1992) of how the calculation would have been done, since the
numbers in the text are not rod-numbers. In the first sentence, for example, ‘nine’ would be
written , and ‘81’ would be . The roman numbers refer to the diagrams below, showing
the progress of the reconstructed calculation.

Nine nines are 81, find the amount when this is multiplied by itself. Answer: 6561.

Method: Set up the two positions [upper and lower] (i). The upper 8 calls the lower 8; eight eights are 64, so put down
6400 in the middle position (ii). The upper 8 calls the lower 1: one eight is 8, so put down 80 in the middle position
(iii). Shift the lower numeral one place [to the right] and put away the 80 in the upper position (iv). The upper 1 calls
the lower 8; one eight is 8, so put down 80 in the middle position (v). The upper 1 calls the lower 1; one one is 1, so put
down 1 in the middle position (vi). Remove the numerals in the upper and lower positions leaving 6561 in the middle
position (vii). (Lam and Ang 1992, p. 34)

The progress of this very simple example is illustrated by the rod-number diagrams (i)–(vii)
(Fig. 3); you should translate these into ‘Arabic’ numbers for yourself. Note that the terms of
the upper number are removed when they are finished with; and that the author takes it for gran-
ted that when you have put down the second 8 (stage v) you use basic rod addition to amalgamate
it with the 648 you have already and get 656.

No one has come up with a better explanation of how the system worked. The first written
records containing rod-numbers used mathematically date from the fifth to tenth centuries ce and
the most coherent ones from much later again. In the meantime, the use of rod-numbers could
have evolved. Martzloff ’s scepticism (it is no more than that) is based on the absence of evidence for
two key assumptions: the use (a) of a ‘board’ to order the calculation, and (b) of blank spaces as a
zero-equivalent at such an early date.

Let us, though, suppose the system granted, as it is widely believed to have been used and
is a reasonable interpretation of the words in the Sunzi suanjing. The question of whether this
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[i] [ii] [iii]

[v] [vi] [vii]

[iv]

Fig. 3 The stages in calculating 81 × 81 by rod numbers.

constitutes an ‘invention’ of the decimal place-value number system, like other priority questions,
then becomes serious, and needs some clarification. The counting rods, in some form, were certainly
being used about a thousand years before our first certain record of ‘Indian’ place-value numbers
(ninth century ce see next chapter). By that time, as we have seen, the Buddhists had established
a fairly regular route for pilgrims between China and India, and in the seventh century the most
famous of them, Xuan-Tsang, was defending his country’s civilization to an Indian audience:

They have taken the Heavens as their model, and they know how to calculate the movements of the Seven Luminaries;
they have invented all kinds of instruments, fixed the seasons of the year, and discovered the hidden properties of the
six tones and of music. (Needham 1954, p. 210)

Although the shapes of Indian–Arabic numbers are quite unlike those of counting-rod numbers,
Lim and Ang argue that the idea of decimal place-value computation must have been transmitted
from China, probably to India, since the way of perfoming calculations in the earliest textbooks—
in particular the Arabic texts of al-Khwārizmī and al-Uqlīdisī—is almost identical. Only the form
of the symbols from 1 to 9 was changed, with the zero or dot being devised for the empty space.

Again, this is plausible, although the records which would establish it may never be found.
However, as we have noticed, the counting-rod numbers, until the Tang dynasty (about 600 ce),
retained the status not of a way of writing numbers but of a way of working with them. The
early texts say what you must do, but nowhere do they even draw a picture of the counting-rod
number, much less insert one into the text. The counting-rod numbers, in their early life, were
‘fleeting’ (to borrow Lam and Ang’s term) and dynamic, there to be erased and transformed as
the example shows.9 Later, (perhaps from the tenth century ce—we canot be sure) they were
written in mathematical textbooks to illustrate procedure; and in the thirteenth century a zero
symbol was introduced10 but even so they did not become the current way of writing numbers.
If the idea of using a decimal number representation did diffuse to India, then it underwent an
important change, since the system became something which (a) was written down and (b) became
the principal representation of a number in everyday transactions. There may then have been
diffusion, for example, of the zero symbol, in the other direction, from India or the Middle East to
China. Assuming that the ‘Indian’ numbers did derive from the rods, they changed in becoming the

9. Interestingly, it seems that the early use of Indian numbers in the Islamic world involved erasure—they were traced on the
‘dust-board’ to which al-Uqlīdisī refers (see next chapter).

10. By Qin Jiushao, apparently (see later).
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favoured medium for writing numbers, and in this sense we could think of a two-stage ‘invention’
of the place-value system. The reader who takes a little time to try out the method of counting rods
might reflect that the written decimal place-value system which we have is not necessarily the best
for all purposes.

On one other point priority is certainly established: the Chinese from an early period were quite
happy with negative numbers, as Westerners were not. Liu is explicit on this; at the point where
the Nine Chapters give a detailed and helpful ‘Sign Rule’—‘like signs subtract, opposite signs add’—
he supplies a note on procedure:

Now there are two opposite kinds of counting rods for gains and losses, let them be called positive and negative
[respectively]. Red counting rods are positive, black counting rods are negative. (Shen et al. 1999, p. 404)

Martzloff speculates that this ease in dealing with signs may have arisen not simply from the
manipulation of debts, but from the duality underlying Chinese natural philosophy:

For example, astronomers imagined coupling the planet Jupiter with an anti-Jupiter, whose motion was deduced from
the former by inversion; diviners practised a double-sided divination with symmetrically arranged graphics; not to
mention also, of course, yinyang dualism. (Martzloff 1995, p. 200)

If Indians or Westerners ‘borrowed’ the idea of negative numbers at some much later date, they
made more heavy weather of it.

Exercise 3. Make your own set of counting rods and try to perform a simple multiplication on the lines
of the one above.

6 Matrices

So far we have only looked at the elementary parts of the Nine Chapters. This gives a wrong picture
of early Chinese mathematics, which contained some sophisticated procedures—always framed in
terms of straightforward problems with general explanation. Two in particular stand out:

1. The extraction of roots, a combination of counting-rod and geometrical arguments, which
would lead to more general algebra.

2. The solution of systems of linear equations by an equivalent of what we call matrices.

Here we shall consider the second. Once again, to translate it into modern terms (‘we are using
matrices’) is clearly a misrepresentation of the procedure of a Han dynasty mathematician using
counting rods; and yet, the comparison of the methods is an interesting one, since we can see
what elements there are in common. The subject is covered in the eighth chapter, ‘Rectangular
Arrays’, or fangcheng; and the title in itself says something about the material. A large number of
the problems concern different grades of paddy, and Liu comments, ‘it is difficult to comprehend in
mere words, so we simply use paddy to clarify’.

This is a fascinating remark, if we think of the question of abstraction. It almost seems as though
Liu is undercutting the apparent concreteness of the Nine Chapters by claiming that he, at least,
could use an abstract language (‘mere words’). This would not, of course, be algebraic symbols, but
given the nature of Chinese mathematics they could be rather similar, as we shall see. Perhaps we
should think of the characters for ‘low-grade paddy’ (or medium, or high) as a more complicated
version of the symbols x, y, and z.
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Here is the text of chapter 8, problem 1, together with the ‘Array Rule’ which solves it.

Now given 3 bundles of top grade paddy, 2 bundles of medium-grade paddy, [and] 1 bundle of low grade paddy. Yield:
39 dou of grain. 2 bundles of top grade paddy, 3 bundles of medium-grade paddy, [and] 1 bundle of low grade paddy,
yield 34 dou. 1 bundle of top grade paddy, 2 bundles of medium-grade paddy, [and] 3 bundles of low grade paddy, yield
26 dou. Tell: how much paddy does one bundle of each grade yield?
Answer: Top grade paddy yields 9 1

4 dou [per bundle]; medium grade paddy 4 1
4 dou; [and] low grade paddy 2 3

4 dou.

The Array [Fangcheng] Rule

[Let Problem 1 serve as an example,] lay down in the right column 3 bundles of top grade paddy, 2 bundles of medium
grade paddy, [and] 1 bundle of low grade paddy. Yield: 39 dou of grain. Similarly for the middle and left column.

Use [the number of bundles of] top grade paddy in the right column to multiply the middle column then merge. Again
multiply the next [and] follow by pivoting. Then use the remainder of the medium grade paddy in the middle column
to multiply the left column and pivot. The remainder of the low grade paddy in the left column is the divisor, the entry
below is the dividend. The quotient is the yield of the low grade paddy . . .

The above quotation is enough (a) to compute the basic solution, the yield of low-grade paddy
(the others can be found by substitution), (b) to show how the method is described in the Nine
Chapters. For us, the description of what to do is unclear unless you have had the terms, for example,
‘merge’ and ‘pivot’, explained to you. The process begins as follows. First, imagine counting rods
laid out (perhaps on a board) to represent the numbers used; in matrix terms:


1 2 3
2 3 2
3 1 1

26 34 39




The textbook method today would be to get enough zeros in the matrix (‘triangular form’) by
subtracting multiples of rows or columns from each other. This is nearly what the method described
does. Here is Liu’s explanation for the cryptic ‘merge’:

The meaning of this rule is: subtract the column with smallest [top entry] repeatedly from the columns with larger
[top entries], then the top entry must vanish. With the top entry gone, the column has one item absent.

How does this work? First note that we have (from the method above) multiplied the middle column
by 3 = number of bundles of top-grade. We now subtract the right column (the smaller) repeatedly
from the middle (the larger). The stages are:


1 6 3
2 9 2
3 3 1

26 102 39


 →




1 0 3
2 5 2
3 1 1

26 24 39




The differences from today’s procedure are fairly trivial. Most probably:

1. we would look for a column, for example, the left one, which could be subtracted from others
without first having to ‘multiply them up’;

2. we would say we were subtracting twice column 3 rather than saying that we were subtracting
it repeatedly.
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These are details. The method, it could be said, has not changed even if questions about different
grades of paddy are less frequent. There is, though, a more subtle difference. Confronted with such
a question, a modern textbook would call the paddy yields x, y, and z, form three equations and
then write a matrix to solve them; in the history of European mathematics, xs precede matrices
by about 200 years. In the Nine Chapters, there is no intermediary between the paddy and the
‘matrix’. There is indeed what one could call abstraction; but instead of our kind, which consists of
replacing unknowns by symbols, it inputs data directly into a solution diagram. This particular kind
of abstraction seems to have been peculiarly Chinese. It was clearly tied to the use of counting rods;
and so, we could guess, it travelled less well than some other Chinese mathematical inventions.

Exercise 4. Follow through the calculations, and check that they give the right answer; either by using
matrices (if you know them), or using counting rods (if you can find or make them), or any other way.

7 The Song dynasty and Qin Jiushao

There is no reason to doubt that the last half of the thirteenth century was the culminating point of Chinese
mathematics. (Libbrecht 1973, p. 13)

In later generations scholars were very proud of themselves and, considering [mathematics] inferior, did not teach
[or discuss] them. Only calculators and mathematicians were able to manage multiplication and division, but they
could not comprehend square-root extraction or indeterminate analysis. In case there were calculations to be per-
formed in the government offices, one or two of the clerks might participate but the position of the mathematicians
was never held in esteem; their superiors left things to them and let them do as they pleased; [but] if those who did
computations were only that sort of man, it was merely right that they should be disdained. (Qin Jiushao, Shushu jiu
zhang, preface, in Libbrecht 1973, p. 60–1)

Subsequent historians have referred to the Song dynasty (960–1279) as a ‘golden age’ for culture
in many respects, and for mathematics in particular. To mathematicians such as Qin Jiushao,
who complained of their treatment as the nerds of the Chinese hierarchy, it did not appear so.
The dynasty lost dynamism over a short period, and its territory shrank to the southern half of
China, the north being controlled by a rival ‘barbarian’ dynasty, the Jin. In the thirteenth century
which Libbrecht describes as the ‘culminating point’ the Mongols under Chinggis Khan fought a
50-year war and finally overthrew the Song rulers. They ruled under the name of the Yuan dynasty
from 1260 to 1368. The outstanding mathematics for which the period is known is distinctly
enigmatic. We have works from four apparently unrelated writers from the thirteenth/fourteenth
centuries: the prolific but fairly elementary Yang Hui, and three more surprising mathematicians
often sharing common concerns, but working in isolation, often with no official position to provide
them with problems or support. Their work is both innovative, in that it is clearly different in kind
from what has appeared before, and at the same time traditional, in that the models which it draws
on are supplied by the classics.

1. Li Zhi (1192–1279), who lived in the north, worked under the Jin rulers and later the Mon-
gols, and wrote the eccentric text called Ceyuan Haijing (‘Mirror comparable with the ocean’),
apparently dated 1248. This is entirely devoted to obtaining equations from problems of a geo-
metrical type about a town whose plan is drawn at the outset (Fig. 4). The problem is always to
find the town’s radius; the answer is always 120.
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Fig. 4 Li Zhi’s ‘round town’ form the Ceyuan haijing.

2. Qin Jiushao (c.1202–61), who worked in the south, and during a boisterous life (details on
various websites, or in Libbrecht) wrote the long and semi-practical Shushu Jiuzhang (Compu-
tational Techniques in Nine Chapters). As well as material which can be found elsewhere, this
provides the most advanced source for the ‘Chinese Remainder Theorem’: how to find a num-
ber n which leaves remainders a, b, c, . . . when divided by p, q, r, . . . .11 The Shushu jiuzhang is a
complex work, organized around practical problems but often dealing with them in far-fetched
ways. Among other things it illustrates the disturbed politics of the period by some of its ques-
tions: how to arrange soldiers in formation, how to find the distance of an enemy camp. At the
same time, the mathematics introduced into the solution of the problems seems sometimes to
pursue difficulty for its own sake.

3. Zhu Shijie (dates unknown, end of thirteenth century), another northerner, wrote two books
which were printed but never seem to have been used for teaching. Like the other ‘difficult’ Song
writings, they were probably soon forgotten. The very long (over 1000 pages) Siyuan yujian
(approximately: ‘Mirror trustworthy as jade relative to the four unknowns’, see Martzloff 1995,
p. 153) is, of course, again a collection of problems. However, it is very much more, since the
problems lead to sums of series, high degree equations (again!), in fact a highly organized
algebra whose ideas are similar to those of Li Zhi.

Since it is partly by chance that our key texts from the Song survived there may have been others.
Many of the methods, and even the problems seem to have been common, and one wonders why.

11. There is no space to deal with this problem here, or the questions raised by Qin’s treatment of it. His results were not
rediscovered until the time of Gauss (1800)—and are in some respects more general than Gauss’s work.
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Fig. 5 Following Chinese convention, south is at the top. B is the point where the walker catches sight of the tree. Other lettering
refers to the solution of the problem (later).

To give a particularly striking example: in his Ceyuan Haijing Li Zhi gives the problem:

135 pu out of the south gate [of a circular city] is a tree. If one walks 15 pu out of the north gate and then turns east
for a distance of 208 pu, the tree comes into sight. Find the diameter of the town. (Ceyuan Haijing, problem 11.18)

Li Zhi solves the problem by an equation of degree 4, with the result 240 pu. The picture is shown
in Fig. 5; clearly, its analysis requires more than basic geometry—the ‘Pythagoras’ theorem, called
gougu by the Chinese, properties of tangents and similar triangles.

On the other hand, Qin Jiushao solves an extremely similar problem by an equation of degree 10
(see Libbrecht 1973, p. 134ff)—partly, it is true, by the artifice of using ‘x2’ (as we would say) for the
diameter. There are very strong reasons to suppose that Li and Qin never met or communicated—
they lived as near contemporaries in mutually hostile parts of China. The two symbolize two kinds
of mathematician: for Qin, the world consists of watchtowers constructed on the walls of cities (see
Fig. 6), while for Li, people wander aimlessly round similar cities trying to catch sight of trees. Yet
the mathematics is much the same. What is the explanation for this sudden eruption of a ‘school’
of mathematicians who, working apparently independently, produced work which is both original
and in some ways related?

A part of the explanation is simple: it lies in our great ignorance. None of the writers, with
regard to the work which seems most striking, claims to be innovating, and some refer explicitly
to predecessors whose works are lost. The ‘Golden Age’ of the thirteenth century might therefore
appear less golden if we knew more of the ages which had preceded it. So, for example, Yang Hui
(like others) uses the ‘Pascal triangle’, but ascribes it to the eleventh-century writer Jia Xian whose
works have not survived. Even the striking notation for polynomials called the ‘tianyuan’ or celestial
element method was apparently copied from an earlier lost writer. In Libbrecht’s judgement:

[I]t is obvious that only a few names have been recorded, and that the greater part of Chinese mathematical works
have been lost. (Libbrecht 1973, p. 18)
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Fig. 6 Illustration from the Shushu jiuzhang, p. 167.

We have, as often in the early history of mathematics, an impressive part of a structure which has
survived almost by chance while the rest is missing. Failing dramatic discoveries of the texts from
the earlier period, we must be content with what remains, and try to understand the aim of this
‘school’ which was not a school. While our evidence for a ‘culture of mathematicians’ during the
Song is sparse, the books do seem to aim at a specialist audience, whether it existed or not. Libbrecht
emphasizes both the practicality of the Shushu jiuzhang:

In a splendid work on architecture, the Ying-tao fa-shih, there is a full description of materials and constructions, but
what is lacking is plans for carrying out the work: the calculation of the building materials, the number of workmen,
the provisions and wages. All this we find in Ch’in Chiu-shao’s work. (Libbrecht 1973, p. 8)

at the same time as its ‘advanced’ nature:

In Ch’in’s work all the basic operations (even the square root extraction) are taken for granted. For a beginner’s
textbook its problems are much too complex; it would be useful only for advanced students . . . It is possible that
they [the Song texts] were unsuccessful substitutes for older books written in a less advanced phase of mathematical
knowledge. But as mentioned earlier, none of the writers was a mathematics teacher; even Li Yeh [Li Zhi]’s work,
which was printed in the thirteenth century, was never used as a textbook. (Libbrecht, 1973, pp. 8–9)

What can be said at the moment is that the work of the Song mathematicians, for the student who
is prepared to overcome some formidable initial obstacles, is a really promising field of research.
While much progress has been made in understanding them, there are still controversial points
and open questions. The mixture of practical setting with the pursuit of difficulty apparently for its
own sake, while not unique to the Chinese, could lead us to think again about what mathematics
is ‘for’.
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Exercise 5. Find the equation which solves Li’s problem, and check that x = 240 is a root.

A note on ‘equations’

At various points in earlier history it has been necessary to exercise caution about using the word
‘equation’—for the activities of the Babylonian scribes, for Euclid’s book II, and so on. Still more
have we tried to emphasize that, if we write a Babylonian problem in terms of xs, it is to help
us read it and not to indicate how the authors thought of it. If this caution is noticeably absent
in those who write about the Song mathematicians, this is because what they wrote down does
look remarkably like an equation, even if it has no x and no ‘= 0’. To see this, look at Fig. 7,
which reproduces the ‘equation’ for Qin’s problem 6.2 (Martzloff 1995, p. 233ff). We translate
this as

−x4 + 15,245x2 − 6,262,506.25 = 0

The coefficients are written in a column, from the constant term downwards
(1, 0, 15,245, 0, 6,262,506.25); below each one is its ‘rank’, a verbal/symbolic description of
the power of the unknown to which it belongs. Positive (cong) and negative (yi) coefficients are
distinguished by writing the relevant word by them. It is not an equation as we know it—but it can
be seen as a convenient translation of one to the language of arrays which had been so success-
ful in the Nine Chapters; and Qin’s subsequent manipulations seem to be related to the fangcheng
method. No more an equation than an array is a matrix, it is a clearly defined tool of equivalent
sophistication. Perhaps we should still be cautious about translating it into our own terms; but we
hardly need a dictionary to do so.

Fig. 7 The equation for Qin’s problem 6.2.
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8 On ‘transfers’—when, and how?

Seek knowledge, even as far as China. (The Hadith)

Aside from the unusual nature of algebra in Song times—why was it being done, and what were
its rules of operation?—we have what is sometimes an open question, sometimes an argument
about origins. Several apparently similar techniques, most particularly the use of the binomial
triangle (‘Pascal’s triangle’) and of techniques for solving equations by approximation, seem to
have appeared both in China and in the Near East around the same time, say the eleventh to twelfth
centuries. We know of numerous contacts between China and the Islamic world, the earliest
relevant one being the compiling of a calendar—a perennial headache for the government—by a
Muslim named Ma Yize for the Emperor in the late tenth century. From then on, Muslim scholars
seem to have been frequent visitors, until under the Mongols of the Yuan dynasty (thirteenth
century) a large number of Muslim ‘artisans’ were settled in north China; and one Zhamaluding
presented the Emperor Qubilai (‘Kubla Khan’, the son of Chinggis) with yet another calendar,
and astronomical instruments. Arabic or Persian astronomical and mathematical books were also
imported. Given all this, it seems to make for historical economy to suppose that some transmission
of knowledge was taking place one way or the other. However, as with the question of ‘counting
rods’ and the decimal system, it is more complicated than we might wish. For example:

1. There is no record of any mathematician of either culture referring to work from another. As
Saidan notes:

Al-Mas‘ūdī . . . writes much about Hindu wisdom and learning, and refers to Chinese technology and social life,
but never to Chinese science. The learned al-Bīrūnī does not refer to Chinese science in his Chronology nor does
S. a‘id in his T. abaqāt. (Saidan in al-Uqlīdisī 1978, p. 455)

2. The essential works in which the Chinese methods were introduced, such as those of Jia Xian
(eleventh century), are lost and as Martzloff says:

Our knowledge of this subject is very imprecise, since it is based on extracts from 13th century works such as
those of Yang Hui or Zhu Shijie, accessible to us through the medium of 19th century editions. (Martzloff 1995,
p. 17)

3. So far as we can draw a parallel between Chinese and Islamic algebra, they seem to have been
very different pursuits.

In non-Chinese algebraic manuals, this character [the equation] is treated with the utmost care and respect; it
is studied in minute detail, in the search for the secrets of the algebraic formulae which unveil the results. This
initially involves a study of equations of degree two, since these are the most docile . . . But in medieval China, the
degree of equations is of little importance . . . Chinese equations are not exactly equations, but algebraic forms or
schemes for extracting roots, which . . . consist of sequences of numbers to be operated on, as though one were
extracting square, cube or nth roots. (Martzloff 1995, p. 261–2)

Given this, and given the specialized technical language of Chinese algebra, it is not surprising
that the question of what could have been transmitted is a hard one. Let us consider a ‘practical’
problem which leads to an equation, from Shushu jiuzhang, III.1. The problem (Libbrecht 1973,
pp. 97–9) is to find the area of a ‘pointed field’ (Fig. 8) when one knows the measurements
shown. Again, the answer could be found trivially (h1 = 36, h2 = 20 by Pythagoras; area =
1
2(30 × (36 + 20)) = 840). Again, one assumes that Qin knew the answer in setting up the
problem; and, as in the preceding question, that he knew it could be solved easily. Instead, he
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Fig. 8 The ‘pointed field’, from Qin Jiushao’s problem.

takes the numbers

A = [b2 − (c/2)2] × (c/2)2; B = [a2 − (c/2)2] × (c/2)2

(in this case, A = 90,000, B = 29,160,000). He then shows that the area satisfies the equation

−x4 + 2(A + B)x2 − (B − A)2 = 0

In fact, x = √
A + √

B, which is a root of the equation.
Feeding the numbers in, this equation becomes:

−x4 + 763,000x2 − 40,642,560,000 = 0

In the ‘Western’ world, which for our purposes at the time means Islam, the idea of applying such
exotic methods to a simple problem would have been rejected out of hand. Equations involving
only powers of x2 were known, and had been dealt with by the simple method of treating them as
quadratics in the variable ‘square of thing’ or x2, but the Chinese notation with its negative signs
would have posed difficulties.

What Qin does, and this is again odd if we suppose that he knew the answer, is to embark on a
sophisticated approximation procedure. This makes sense if you are trying to find (e.g.)

√
2 to three

or more decimal places, but for x = 840 it looks like overkill. The idea is to find the figures of the
answer one at a time. If we know (say that the answer has three figures and the first is eight, then
the equation f (x) = 0 becomes f (800 + y) = 0. Qin’s method is to use a simple way of working out
the coefficients of y in the new polynomial g(y) = f (800+y), which he demonstrates by a sequence
of rod-number diagrams. The method which he used has been known since its ‘rediscovery’ in the
nineteenth century as the Ruffini–Horner procedure.

It is now certain that some Chinese mathematicians (e.g. Qin) and some Islamic ones
(e.g. al-Samaw’al, rather earlier) knew and practised this procedure, and the question of who
might have borrowed from the other has become something of a crux in the question of what could
have been transferred. It is not our intention to go further into the details of the procedure (see
Martzloff 1995, p. 232ff and Libbrecht 1973, p. 180ff for the Chinese version and Rashed 1994,
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p. 91ff for the Islamic one). Still less are we about to discuss the priority, on which the evidence is
slender to non-existent; a recent evaluation is given by Karine Chemla (1994).

It seems almost inconceivable, however little mingling there was (e.g.) between Chinese and
Muslims at the Mongol court that some knowledge was not shared, although it may have been at a
fairly basic level. Given which, one might ask:

Why did Islamic mathematicians not learn anything of the ‘matrix’ method, and the use of
negative numbers as routinely practised by the Chinese? Why did the Chinese not learn the formula
for the volume of a sphere, the construction of the regular solids, and the properties of conics? The
problem is as much to explain what was not transferred as to find what was.

A different question arises in response to the argument that the occurrence of the same idea
in two cultures must imply copying. We could then ask (putting ourselves imaginatively into the
situation of a medieval Chinese mathematician) how difficult we think its discovery might be.
Pascal’s triangle (the one with the binomial coefficients in, Fig. 9) is a case in point. At one level, it
is a pattern of numbers which one could discover if one were playing with them idly. As Martzloff
comments (1995, p. 91) on Needham’s assertion that it was transferred from China to India: what
was the triangle, in a given culture, being used for? Ancient Indians used something like it for
problems involving combinations, Pascal for probabilities. In Samarkand and Beijing it seems to
have been more an aid towards root-extraction, via the relation of the nth row in the triangle
to the coefficients in (a + b)n. But this is not so difficult that one has to suppose its discovery to
have happened only once. Sometimes at an elementary level, the same ideas occur with the same

Fig. 9 Pascal’s triangle (from Zhu Shijie (1303)).
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numbers as examples (cf. Høyrup 1994); then one can suppose that there is a common source,
though there is usually not enough evidence to deduce what the ultimate source was.

9 The later period

The Ming dynasty, 1368–1644, a Chinese dynasty which overthrew the Mongol rulers, saw a
second period of ‘decline’, in that while mathematical work was still done, the emphasis was on
commenting the classics and the innovations of the eleventh to fourteenth centuries were gradually
forgotten (the works were lost, or found too difficult). Whether this was a result of the introduction
of the abacus, as some writers have suggested, or because of a renewed value given to the literary
as opposed to the practical arts, the description of the Song and Yuan as a ‘golden age’, and of
the Ming as a period of stagnation are a commonplace (and were even recognized at the time).
This was dramatically changed by the arrival of the Jesuit missionary Matteo Ricci at the end of
the sixteenth century. An able scientist himself, Ricci saw (as others have after him) the key to
conversion in the exploitation of Western science and technology, which were just entering the
period we call the ‘scientific revolution’ (see Chapter 6). Once again, the calendar was seen as a
way in:

We should change the Chinese calendar, this would enhance our reputation, the doors of China would be more open
to us, our position would be more stable and we would be freer. (Tacchi Venturi 1911–13, II, p. 285)

Besides constructing the new calendar, Ricci with his Chinese assistants translated Euclid and other
Western works, simplifying as they went along. The Jesuits successfully predicted eclipses, which
the old calendar had been failing to do, and introduced logarithms not long after they had appeared
in Europe. The fall of the Ming and their replacement by new outsiders, the Manchu Qing dynasty
(1644–1911), did not basically interrupt this programme.

Was the result a victory of the new European methods over the classical Chinese? Emphatically
not. The Jesuits hoped that the certainty of Euclid’s geometry could be related to that of their
religion—they were not the first nor the last to make the equation. Naturally, a reaction set in, and
there was a revaluation of traditional Chinese mathematics, helped by scholars who rediscovered
and edited many of the classics from the seventeenth to the nineteenth centuries. From this period
date such fascinating ‘hybrid’ figures as Mei Wending.

Euclid’s geometry is completely transfigured in Mei Wending’s three-dimensional figures, which take no account of
perspective, and in his immersion in numerical computation12 . . . At the same time Mei Wending rehabilitated ancient
Chinese techniques such as the fangcheng [array] method for solving linear systems. (Martzloff 1995, p. 25)

Again, there is much more work to be done on the history of Chinese mathematics after Ricci,
precisely because it remained in tension between a vital, indeed increasingly strong tradition and
the Western mainstream. The final victory/assimilation to Western mathematics came, naturally,
with the fall of the Emperor in 1912.

12. It has to be said that many other writers in the Middle East and in Europe had ‘transfigured’ Euclid’s geometry in different
ways by this time.
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Solutions to exercises

1. (a) We would probably call the original cereal x. Then after the three taxes have been exacted,
there is left 2

3 · 4
5 · 6

7 x = 16
35 x (which we are told is 5). Hence x = 175

16 = 10 15
16 dou; and

15
16 dou= 150

16 sheng =9 3
8 sheng. The Nine Chapters of course does not use ‘x’, but proceeds

inversely, telling you to multiply the remaining 5 by 3, 5, and 7 and divide by 2, 4, and 6 (‘the
remainders’). The result is the same.

(b) The Nine Chapters solution is given above in Section 4. We would call the number of
contributors x (say) and the price y, and arrive at simultaneous equations:

9x − 11 = y (1)

6x + 16 = y (2)

It is then usual to subtract, and get 3x = 27, so x = 9; from which y follows by substitution.
2. (a) We have:

ay − b = x (3)

a1y + b1 = x (4)

From which, subtracting, (a − a1)y = b + b1. Note that a > a1, because it gives the excess!
Hence,

y = b + b1

a − a1

Here, b + b1 is the ‘divisor’, and a − a1 (greater contribution minus smaller) is the
‘lesser assumption’.
Substituting back (see 1 (b)), and simplifying, we get

x = ab1 + a1b
a − a1

and now a1b + ab1, the result of cross-multiplying, is the ‘dividend’. (b) In this case, the
dividend is 1

2 × 3 + 1
3 × 4 = 17

6 ; the divisor is 4 + 3 = 7, and the lesser assumption is
1
2 − 1

3 = 1
6 . This gives 42 for the number of people, and 17 for the price. (The Nine Chapters

has rules for dealing with fractions, but I have assumed we do not need them.)
3. No solution required.
4. We have the matrix as simplified, and now we simplify it further. Following the fangcheng

method, multiply the first column by 3 and subtract the third column. After which, you
multiply the new first column by 5 (the first non-zero entry in the second column) and subtract
4 × the second column. Result:


0 0 3
4 5 2
8 1 1

39 24 39


 ,




0 0 3
0 5 2

36 1 1
99 24 39
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This (if z is the yield of low-grade) gives us 36z = 99 from the first column, so z = 99
36 = 2 3

4
as required. We now use the second column to find y, the medium-grade yield (5y + z = 24),
and so on.

5. (See Fig. 5.) The equation on the St Andrew’s website actually is not ‘the answer’, since it
computes the radius (correctly, as 120). If we want x to be the diameter, as the question asks,
then we must have radius = x

2 . We use the similar right-angled triangles ABC, ADE. We have
AC = x+150, BC = 208, and DE = x/2 easily. AD = 135+x/2, so by Pythagoras’s theorem,
AB = √

2082 + (x + 150)2. Since

AD
DE

= AB
BC

AD · BC = AB · DE, and (270 + x) · 208 = (
√

2082 + (x + 150)2) · x (doubling to remove the
halves). Now get rid of the square root by squaring everything; we get

2082(270 + x)2 = (2082 + (x + 150)2)x2

or

x4 + 300x3 + 22,500x2 − 23,362,560x − 3,153,945,600 = 0

I leave it to you to check that x = 240 is a solution. It would seem likely that Li knew the
answer in the first place not from solving the equation but (like most textbook writers) because
he had chosen the numbers to come out exactly; in this case so that the sides of the triangles
are in the ratio 8 : 15 : 17.



5 Islam, neglect and discovery

1 Introduction

It should be clear from the present chapter that the traditional view of the Arabs as mere custodians of Greek learning
and transmitters of knowledge is a partial and distorted one. (Joseph 1992, p. 344)

A number of medieval thinkers and scientists living under Islamic rule, by no means all of them ‘Moslems’ either
nominally or substantially, played a useful role of transmitting Greek, Hindu, and other pre-Islamic fruits of knowledge
to Westerners. They contributed to making Aristotle known in Christian Europe. But in doing this, they were but
transmitting what they themselves had received from non-Moslem sources. (Trifkovic 2002)

The history of Islamic mathematics is clearly a contested area, and recent history has if anything
sharpened the divisions. The view which Joseph described as ‘partial and distorted’ 13 years ago
lives on in some academic circles, as the quote from an admittedly right-wing anti-Islamic columnist
illustrates. It is perhaps natural that in the current context even questions about algebra in Baghdad
in the ninth century should be charged with political relevance, and voices on the fringe should
perpetuate old myths. As far as the mainstream of historians is concerned, the points made by
Joseph are almost universally conceded, as Katz’ recent respected textbook makes clear:

Islamic mathematicians fully developed the decimal place-value number system to include decimal fractions, system-
atized the study of algebra and began to consider the relationship between algebra and geometry, brought the rules
of combinatorics from India and reworked them into an abstract system, studied and made advances on the major
Greek geometrical treatises of Euclid, Archimedes and Apollonius, and made significant improvements in plane and
spherical trigonometry. (Katz 1998, p. 240)

The only quibble which could be made against this generous assessment is that Katz does not
mention the difficulties which previous scholars have had in getting such reasonable claims accep-
ted. The major obstacle has been the viewpoint, referred to by Joseph, which sees the Arabs as
transmitters rather than innovators. Why is this? We saw in the last chapter that Chinese math-
ematics, obviously outside the Western tradition, could be relegated to the sidelines as a mere
collection of isolated problems without coherence and without any idea of proof. With the math-
ematics which was developed in the Islamic world from the ninth to the fifteenth century ce, the
problem is the opposite. The work could with some justice be seen as a part of ‘Western’ math-
ematics, looking back to the Greeks and forward to the European Renaissance, and the existence of
influences is not in dispute. However, because it was a specialist field of study and the original texts
were often inaccessible, it was possible to ‘forget’ the ways in which the Islamic writers transformed
mathematics and to claim (as Trifkovic does) that they did nothing but pass it on.

To undertake a proper discussion of the history as it is now understood, it is useful to look briefly at
the West, the Islamic world, and their changing interactions. (Historians have a problem about the
choice between ‘Arabic mathematics’ and ‘Islamic mathematics’. Neither is completely accurate for
the mathematics practiced in the Islamic world between, say, 800 and 1500 ce Since a choice must
be made, we shall opt for the more inclusive ‘Islamic’.) The understanding of Islamic mathematics
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in Western Europe has gone through a variety of transformations. In the early Middle Ages, from
the eleventh to thirteenth centuries, it was highly regarded, for the good reason that the level of
achievement was visibly more sophisticated. Those works which were found most comprehensible
or useful were translated from Arabic into Latin as were the contemporaneous translations of
the Greek classics into Arabic. By the Renaissance (say by 1550) for complex reasons, there had
been a change of view, even though the West had not overall achieved the Islamic world’s level of
achievement, much less overtaken it.1 The practice of translation from Arabic was less frequent,
while the publication of original Greek texts and their translation, again into Latin, made possible
a claim that the Moderns were the direct inheritors of the Ancients. Even though, as far as algebra
and the number system were concerned, this was clearly untrue, it was a useful myth in constituting
a Renaissance world-view which built on the classics as a source of legitimacy.

We shall see later how much the work of Viète, Stevin, Descartes, and their contemporaries owed
to Islamic precursors; what is important for the moment is that it was not normal to acknowledge
the debt. It is not excessively oversimplifying to say that the broad outlines of the Eurocentric history,
which Joseph criticizes were laid down in the sixteenth century, and were the dominant version of
history until relatively recently. And yet a number of important, often striking Islamic works have
been published and studied in western Europe over the last 200 years. Their understanding, and
their incorporation into a general history remained the preserve of specialists with no impact on
the mainstream view. A better understanding of what Islamic mathematics was has had to wait for:

1. a political motivation—the demand for recognition from the Islamic world from the
1950s on2;

2. unified research programmes, partly related to that politics, which rapidly deepened and
expanded the work of study and translation in the 1950s and 1960s.

We shall have more to say about what material is and is not available in Section 2. The important
change has been not so much an increasing accessibility of sources as an increasing consciousness
of the achievements of the Islamic mathematicians. Twenty years ago,3 Roshdi Rashed, one of the
leading historical researchers, made much the same points as Joseph:

The same representation is encountered time and again: classical science, both in its modernity and historicity, appears
in the final count as the work of European humanity alone; furthermore, it is essentially the means by which this
branch of humanity is defined. In fact, only the scientific achievements of European humanity are the objects of
history. (Rashed 1994, p. 333)

New texts, new research, and persuasive arguments by respected scholars have largely allowed
Islamic mathematics to take its legitimate place in the histories; and among scholars with any
serious academic credentials one will no longer find it neglected or downgraded. The main problems
in building up a proper picture are constituted first by the great gaps in our knowledge—which
are, of course, also there for the cultures of Greece and China—and second by the sheer diversity
of activity (arithmetic, algebra, classical geometry, astronomy, trigonometry, and much else) over

1. This case is argued by Rashed (1994, appendix 2). The general point is incontestable, although there is disagreement about the
detail.

2. Said’s influential book (1978), although quite unrelated to the sciences, played a key part in making academics more self-
conscious about how they treated things ‘Oriental’.

3. Rashed’s book dates from 1984, although its English translation is 10 years later.
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what is once again a dauntingly long historical period. It should be easy for the student to approach
Islamic mathematics, like Greek, without prejudice and make a fair evaluation. Assuming this
possible, one could, if only to fix ideas, pose some questions:

1. Can one give a unified description of ‘Islamic mathematics’, given the length of time and space
and the variety of fields covered —indeed, should we even try to do so?

2. How would we evaluate the ‘Islamic contribution’ to the development of mathemat-
ical thought?

2 On access to the literature

One would naturally like to recommend, as a follow-up to the general agreement on the import-
ance of Islamic mathematics, that the student could consult texts and histories and examine—
for example—the questions raised above. Unfortunately, this is not yet the case; and here an accus-
ation of ‘neglect’ can still be made, in that access to the relevant materials remains extremely
difficult. If we start with secondary texts, that of Berggren (1986) is full, readable, and well-
informed. It is, in our current situation, where any reader should start. Rashed’s work (1994) is
more specialist, aimed at the exposition of particular points in arithmetic and algebra; it is also
expensive and less often stocked by libraries. And while Youschkevitch’s rather older text (1976) is
fuller than either of these and contains much which they exclude, it is (a) in French and (b) long
out of print. The situation for the student entering the field could be worse, but it is not very good.

With regard to primary sources, what is available reflects a long and patchy history of transla-
tion by individual enthusiasts. The relevant section in Fauvel and Gray, though it contains some
essential texts, is relatively brief; and while the works of Euclid, Archimedes, and other major Greek
mathematicians can often be found in libraries and are reprinted, this is far from being true of
the classics of the Islamic world. One initial problem is that there is no longer a canon of a few
great writers, rather a large collection of texts whose differing contributions are still in process
of assessment.4 More translation is now in progress, but there are major gaps. To take just a
few examples:

1. The earliest, founding book on algebra which underlies all subsequent work is (Muh. ammad
ibn Mūsa) al-Khwārizmī’s H. isab al-jabr wa al-muqābala (‘Algebra’, lit. ‘calculating by restoring
and comparing’, date about 825). This exists in a translation by F. Rosen, dated 1831 (The
Algebra of Muhammed ben Musa, London, Oriental Translations Fund). It has been reprinted
by Olms (1986), and is therefore in a better situation than most (useful extracts are in Fauvel
and Gray).

2. Much later, but equally important, is the algebra of Omar Khayyam (‘Ūmar al-Khayyāmī),
dating from about 1070. This has been known about for a long time; while it was first translated
in the nineteenth century by Woepcke (into French), there is a more ‘modern’ English translation

4. By an irony in the history of research schools, a large number of very interesting texts were translated into Russian by
Youschkevitch and his group in the 1950s and 1960s. Even for the readers, whoever they may be, for whom Russian is an easier
option than Arabic, they are not accessible in most libraries.
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(Khayyam 1931). This, however, is long out of print and far from easy to find. Again, there are
good extracts in Fauvel and Gray.

3. A more recent find is the startlingly innovative algebra text al-Bāhir fi-l jabr (‘The Shining
Treatise on Algebra’) of al-Samaw’al (twelfth century). This has been extensively discussed,
and good summaries of what is said in some key passages concerned with sums of series and
with polynomials are to be found both in Rashed (1994) and in Berggren (1986). However,
while there is a modern Arabic text dating from 1976 with introduction and some foot-
notes in French by Rashed, there is no translation, indeed there are no translated extracts.
And the edition itself, published in Damascus, is not likely to be stocked outside specialist
libraries.

4. Lastly, one of the most famous works, often referred to for its sophisticated calculations—
in particular the use of decimal fractions—is al-Kāshī’s Miftāh. al-h. isāb (‘The Calculator’s Key’),
written in Samarkand in the fifteenth century. This has been known and studied for over a century.
Besides several editions in Farsi (the work was popular in Iran), and a translation into Russian
by B. A. Rosenfeld in 1956, there is a modern Arabic edition, published in Cairo in 1967, and
again long out of print. I know of no English translation, or even of any plans for one; although
again one can learn something of the work’s unusual features from descriptions in Berggren (and
Youschkevitch).

There is now some serious translation underway; and since the field is very large, it is bound to
be selective. One could single out A. S. Saidan’s version of the (recently discovered) arithmetic of
al-Uqlīdisī, a fascinating work to which we shall return; and numerous translations into French by
Rashed, notably the works of Sharāf al-Dīn al-T. ūsī (1986), and of ibn al-Haytham (a large project,
ongoing). These translators (and others), being active researchers, will necessarily be selecting
those authors of most interest to them, so that the act of editing and translating is often part of the
construction of a personal ‘canon’ of what the translator considers major works. However, in the
impoverished situation already described, any such work is invaluable.

It could be argued that a serious research engagement with Islamic science should include
the acquisition of the ability to read Arabic (which some readers may have anyway). This seems
misconceived, insofar as the works concerned are considered as major historical texts. The time is
past when the student was expected to be able to have the leisure to learn languages as part of a
general liberal education, and while the specialist might need to read Euclid in Greek or the Principia
in Latin, no one would expect it of the student on a history course. In any case, as already stated,
modern Arabic editions are not easily available, and the deciphering of the difficult manuscripts
which are still our primary sources (Fig. 1) is an advanced research skill comparable to reading
Sumerian. If the major works of Islamic mathematicians deserve study on an equal footing with the
classics of other times, then they should be equally accessible. Those who research the Greek classics
are in a fortunate position, in that critical editions and translations have been made available by
scholars who (a century ago) considered it an essential part of their work. A commitment to fair
treatment for the Islamic classics is now driving a similar effort as far as they are concerned. In
a spirit of optimism, one could hope for a significant part of this vast literature, together with a
variety of analytical histories, to be readable by students in 20 years time. (And perhaps a start
should be made with al-Kāshī, see item 4.)

A good recent bibliography of sources and articles (which omits Russian works, but is other-
wise comprehensive) is by Richard Hogendijk at www.math.uu.nl/people/hogend/Islamath.html.

www.math.uu.nl/people/hogend/Islamath.html
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Fig. 1 MS, page from al-Kāshī.

And many of the out-of-print studies and aricles of the past hundred years are being
printed as part of the vast series entitled Islamic Mathematics and Astronomy, by Fuat Sezgin
(expensive, and rarely found in even the best libraries). The persistent student can find a
great deal of material, but it may involve finding a friendly librarian, and possibly some
expense.
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3 Two texts

No curiosity that occurs, no strange method unheard of, no nice idea that is liked by them who hear it will be
left out. These will be given and clearly explained, so that this book will contain everything the people enquire
about. For indeed this arithmetic is often debated by people who enquire about its whys and hows. (Al-Uqlīdisī 1978,
p. 36)

It is a characteristic of geometers that when you ask them a question on the division of figures or the multiplication of
lines, they fall into confusion and need a long time to resolve it. (Abū-l-Waf ā 1966, p. 115)

As an introduction to the nature and variety of Islamic mathematics, let us consider two texts
from around the same date (tenth century ce). Both illustrate the problem of ‘practical math-
ematics’, which is raised by the two quotes above. For symmetry, one is a book, in print in an
English translation, by an almost unknown writer; the other an untranslated book by an author
of whom a fair amount is known. The first, which is relatively easy to find, is the arithmetic, or
Kitāb al-Fus. ūl f ī al-H. isāb al-Hindī (Book of chapters on Hindu reckoning), written by al-Uqlīdisī
in Damascus in 951 ce (al-Uqlīdisī 1978). The book is one of the best sources on early arithmetic
using the decimal ‘Hindu’ system, particularly since the earlier (earliest?) one written by the famous
al-Khwārizmī has not survived in Arabic, and the various Latin translations seem all to have added
and subtracted in different ways (see al-Khwārizmī 1992). On the other hand, while al-Khwārizmī
was a notable scholar, nothing is known of al-Uqlīdisī’s life at all. The name, which means ‘The
Euclidean’ may indicate learning, but apparently people got this nickname for writing copies of
The Elements for sale. (Tenth-century Damascus must surely have been unique as a place where
copying the text of Euclid could earn you a living.) However, Greek learning makes no appearance in
al-Uqlīdisī’s text. It is long, detailed, and careful, and its world is that of street-corner calculators in
Damascus who needed to work quickly and accurately, and who found that the new number system
was ideal for their purposes. It was a competitive world—again this may appear strange—and one
in which the partisans of one method of calculation would attack another. So al-Uqlīdisī defends his
method, in phrases which are often quoted, as making it possible to carry out calculations among
the distractions of street life:

Most scribes will have to use it because it is easy, quick and needs little precaution, little time to get the answer, and
little keeping of the heart busy with the working that he [the scribe] has to see between his hands, to the extent that
if he talks, he will not spoil his work; and if he leaves it and busies himself with something else, when he turns back
to it he will find the same and thus proceed, saving the trouble of memorizing it and keeping his heart busy with it.
(Al-Uqlīdisī 1978, p. 35)

The book is outstanding in its immediacy, and in the sense that al-Uqlīdisī has of his audience
and what they need. Every rule is explained in great detail:

For example, we try to find the root of 576. We start from the six saying ‘Is, is not, is’, which falls under the five. We
seek a number to draw under the five so that if we multiply it by its like, it exhausts most of the five. We find it 2. We
insert it under the five, multiply it by its like and cast that out of the five. There remains one in place of five. We double
the two in its place, shift the four under the seven, and seek a number to draw under the six so that if we multiply it by
the four and by itself it will exhaust what is above it. We find it four. We multiply four by four, get 16, cast that out from
above. We multiply 4 by itself and drop that from above; nothing remains. We halve the four which we have doubled.
The result is 24. (Al-Uqlīdisī 1978, p. 76)

Clearly from the above, intelligence, numerical ability, and skill in following instructions are
assumed; and there is no concession to a literary style once the initial points in defence of the book
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have been made. However, al-Uqlīdisī does take the trouble to explain his rules where he thinks
it necessary. Why repeat ‘Is, is not, is’ to know where to start in root extraction? Why double
the extracted root before shifting? These questions are answered in book III chapter 6 ‘Queries on
Roots’. The book is in no way an advanced theorem–proof Greek text—but it makes no pretence
to being that. It is a completely practical text on how to do arithmetic with Indian numbers, and
the shadowy al-Uqlīdisī understands exactly what is required of such a book. We do not even know
whether his text was popular—no other writers refer to it, and it seems to have survived by chance.

There is a great contrast in the comprehensive geometric text written about the same time in
Egypt by abū-l-Waf ā al-Buzjānī. Entitled Kitāb f ī mā yah. tāju ilayhi al-s.ani’min a‘māl al-handasah (The
sufficient book on geometric constructions necessary for the artisan), this has to date only been
published in Arabic and Russian (Abū-l-Waf ā 1966, 1979). It is therefore not a text easily available
to the reader; but it has been considered important by Youschkevitch and Høyrup (who used the
Russian version) and Berggren (who used an extract translated by Woepcke in the 1850s). We have
done our best with the Russian text.

Abū-l-Waf ā was at the other end of the scale from al-Uqlīdisī; a court mathematician and
astronomer working in Baghdad who wrote (lost) commentaries on the classical works of Euclid
and Diophantus and numerous other works on mathematics, astronomy, and other sciences. That
he thought it useful to devote time to writing textbooks for artisans is the more significant. As ibn
Khaldūn says, in the passage which immediately precedes the story of Euclid as geometer (which
we quote in Chapter 3):

In view of its origin, carpentry needs a great deal of geometry of all kinds. It requires either a general or a specialized
knowledge of proportion and measurement, in order to bring the forms (of things) from potentiality to actuality in
the proper manner, and for the knowledge of proportions one must have recourse to the geometrician. (Ibn Khaldūn
1958, II, p. 365)

However, while the world of calculators who might have used al-Uqlīdisī’s book is fairly easy
to imagine from his text, the artisans who needed the ‘Book on geometric constructions’ seem
more enigmatic. It is clear that abū-l-Waf ā had in mind an actual audience, but he wished to raise
the level:

[M]ethods and problems of Greek geometry . . . and Abū-l-Waf ā’s own mathematical ingenuity are used to improve
upon practitioners’ methods, but . . . the practitioners’ perspective is also kept in mind as a corrective to otherworldly
theorizing.
Interesting passages include Chapter 1, on the instruments of construction; and 10.i and 10.xiii, which discuss the
failures of the artisans as well as the shortcomings of the (too theoretical) geometers. (Høyrup 1994, pp. 103, 312)

Indeed, the quote which opens this section is just such a criticism of geometers. As an example
of abū-l-Waf ā’s method, here is the very classical construction of a regular pentagon (Fig. 2).

If someone asks how to construct on the line AB a regular pentagon, then we raise from point B a perpendicular BC
[to AB] equal to the line AB. We divide AB in half at the point D, we describe with D as centre and radius DC the arc CE,
and we extend the line AB to the point E. Then we draw arcs with each of the points A, B as centres and with radius
equal to AE. They meet at the point G. We join the lines AG and BG. We have the triangle ABG, which is the triangle
of the pentagon. (Abu-l-Waf ā 1966, p. 71–2)

From this point on, the construction is easy (see Chapter 2, Appendix B); AGB is an isosceles
triangle whose base angles are 72◦ , and the isosceles triangles BFG and AHG which complete
the pentagon have their short sides equal to AB. There is, as Høyrup remarks, no proof; and the
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Fig. 2 Abū-l-Waf ā’s construction of the regular pentagon.

Greek ‘We . . .’ is mixed with the artisans’ ‘If someone asks you, . . . do’. And one wonders how often
artisans might have needed to construct a regular pentagon. There is an evident wish to publicize
Greek geometry and to extend its audience, as al-Uqlīdisī wishes to make propaganda for the Hindu
numbers. ‘Real’ mathematics, expounded systematically in books, has suddenly entered a realm of
popularization for practical men.

Exercise 1. Explain al-Uqlīdisī’s calculation. Why does one say ‘Is, is not, is’?

Exercise 2. Justify abū-l-Waf ā’s construction.

4 The golden age

The most venerable legal scholar Abū Bakr ibn Muh. ammad al-Yafrashī told me in Zabīd the following story: It is related
that a group of people from Fārs with a knowledge of algebra arrived during the caliphate of ‘Ūmar ibn al-Khat.t.ab
[634–644]. ‘Alī ibn Abī T. ālib—may God be pleased with him—suggested to ‘Ūmar that a payment from the treasury
be made to them, and that they should teach the people, and ‘Ūmar consented to that. It is related that ‘Alī—may God
be pleased with him—learned the algebra they knew in five days. Thereafter the people transmitted this knowledge
orally without it being recorded in any book until the caliphate reached al-Ma’mun and the knowledge of algebra had
become extinguished among the people. Al-Ma’mūn was informed of this and he made inquiries after someone who
had experience in (algebra). The only person who had experience was the Shaykh Abū Bakr Muh. ammad ibn Mūsā
al-Khwārizmī, so al-Ma’mun asked him to write a book on algebra, to restore what had been lost of (the subject).
(Brentjes 1992, pp. 58–9)

The above apocryphal story5 of the arrival of algebra links the beginning of Islam with the
beginning of mathematical knowledge among the Arabs. Significantly, however, it also introduces
a ‘group of people from Fārs’ (Persia) who are responsible for its introduction; and it illustrates
our ignorance of the first century of Islam, particularly in drawing attention to the oral tradition
and the lack of writing. All other evidence which we have tells a different story: while the origins
of Greek and Chinese mathematics are unclear and undocumented, Islamic mathematics begins

5. From the ease with which ‘Alī learns algebra, the story appears to be Shi’ite in origin, but Brentjes gives no further information
on this.



Islam, Neglect and Discovery 109

150 years later with an abundance of written texts from the ninth century ce, many of which
have survived.

As with Chinese history, Islamic history can be structured by a succession of dynasties; however,
after the earliest years this becomes confusing and it is simpler to give a broad outline. In fact, the
world which was quickly conquered by the forces of Islam was large, and it hardly ever came under
an undisputed single ruler. The conquest by those who accepted Muh. ammad’s new religion and
message of Islam, is one of the most spectacular events of history, however interpreted; between
Muh. ammad’s death in 632 ce and the end of the seventh century the whole of the Middle East,
Egypt, North Africa, Spain, Iran, and parts of India and Central Asia were incorporated into the
new state, under the rule of the khalif, first at Damascus and then at Baghdad. In the orthodox
history of Islam, the period of ‘Ūmar and ‘Alī, the companions of Muh. ammad mentioned above,
was the golden age. Subsequent rulers, as always, fell off both in personal ethics and in their human
rights record from the original standards, and the rulers who were remembered as good were (as in
the Italian Renaissance) those who at least presided over a period of peace and promoted the arts
and sciences. In this respect the Abbasid rulers of the early ninth century, particularly the khalif al-
Ma’mun (813–833), were outstanding. Indeed, the history of Islamic mathematics, like Chinese,
seems to divide naturally into two periods, an early one (say 800–1000) of quite concentrated
activity, with a large number of mathematicians, working often in collaboration; and a later one
of particular scholars, often very gifted, who, in times often of civil war or external attack, worked
either in isolation or under the patronage of local rulers. There are signs that as early as the eleventh
century al-Bīrūnī and Khayyam were looking back at the previous age and contrasting it with their
own:

We have been suffering from a dearth of men of science, possessing only a group as few in number as its hardships have
been many —persons who had recourse merely to a brief respite of time to concentrate on research and verification
of facts. Most of our contemporaries are pseudo-scientists who mingle truth with falsehood . . . In all circumstances
we seek refuge in God, the Helper. (Khayyam 1931, p. 47)

Accordingly, when there was a revival, as in the Mongol court of the conqueror Hulaghu Khan
(c.1260), or that of Timur’s grandson Ulugh Beg at Samarkand (c.1410), scholars looked back to
the period of al-Ma’mun and his ‘House of Wisdom’ at Baghdad as a model.

What was this ‘golden age’, and where did it come from? Early Islam was, as is well-known,
tolerant particularly to Jews and Christians (‘People of the Book’), and it is thought that much of
the population of this empire were slow in acquiring the Arabic language and the Islamic religion,
although both had advantages. Similarly, in the first 100 years the conquerors seem to have
been unconcerned with the remnants of Greek learning which were cultivated by scholars—often
refugees from Christian persecution—in centres like Harran in Turkey and Jundishapur in Iran.

The stage was set for a surprising union of cultures which took place in the late eighth and early
ninth centuries. This was incidentally the period in which the religion of Islam took on most of
its later form—the traditions with their injunctions about life and conduct, the legal system, and
much else. The new Abbasid dynasty who ruled from Baghdad not only favoured trade, commerce,
and public works (which, as usual, require mathematics at some level), but, particularly under
al-Ma’mun, saw a value in pure research. In the context, this meant the discovery of the work
of the Greek and Indian mathematicians, and its translation into Arabic. Scholars from what we
can see as a melting-pot—Syriac, Greek and Arabic speakers, Christian, pagan, and Muslim—
combined in the work of translation; and then immediately began to build on what they had
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translated. In fact, with such disparate sources, the idea that the Islamic work could be simple
borrowing and transmission makes no sense; a synthesis was essential. This involved raising what
appeared to be unanswered questions, and writing new books in more useful forms for practical
ends (as the examples above illustrate).

In an article which we have already cited, which forms one of the most interesting theoretical
discussions of early Islamic mathematics, Høyrup claims that this new synthesis marked a radical
change in the use of mathematics comparable to the work of the Greeks discussed in Chapter 2.

[T]he break [which led to the acknowledgment of the practical implications of theory] took place earlier, in the
Islamic Middle Ages, which first came to regard it as a fundamental epistemological premise that problems of social
and technological practice can (and should) lead to scientific investigation, and that scientific investigation can (and
should) be applied in practice. Alongside the Greek miracle we shall hence have to reckon an Islamic miracle. (Høyrup
1994, pp. 92–3)

You are referred to Høyrup’s article both for his detailed arguments in establishing the nature
of the new approach, and for his attempts to account for its origins. He considers and rejects
a number of suggestions, finally opting for a description of the nature of Islam which he calls
(perhaps unfortunately) ‘practical fundamentalism’.

We shall return to the role of Islam as religion, philosophy, and way of life later. Let us now look
at the interaction between new and old in the knowledge produced by the early mathematicians.

5 Algebra—the origins

I have established, in my second book, proof of the authority and precedent in algebra and al-muqābala of Muh. ammad
ibn Mūsā al-Khwārizmī, and I have answered that impetuous man Ibn Barza on his attribution to ‘Abd al-H. amid,
whom he said was his grandfather. (Abū Kāmil, cited Rashed 1994, p. 19, n. 3)

I have always been very anxious to investigate all types of theorems and to distinguish those that can be solved in
each species, giving proofs for my distinctions, because I know how urgently this is needed in the solution of difficult
problems. (Khayyam 1931, p. 44)

The word, in its derivation (from Arabic ‘al-jabr’, usually rendered ‘restoring’), suggests that
what we call algebra begins with the Arabs. Like all other questions of origins, this can be disputed
on various grounds; we have seen that the Babylonians knew how to solve problems which were
equivalent to quadratic equations (Chapter 1). So what was so important and influential about the
Islamic contribution? There is no better place to start than the original textbook by al-Khwārizmī.
This was enormously influential both in the Islamic world, and in medieval Europe; abū Kāmil,
as quoted above, illustrates the general agreement about al-Khwārizmī’s priority, and his method
and language survived with adaptations until the sixteenth century in Europe, when something
more like our modern notation was introduced. Part of the text of his book (1986) is reproduced in
Appendix A. This illustrates the core of the book, the treatment of quadratic equations, although
a very large part is in fact given over to ‘applications’ to practical situations (e.g. inheritance),
and to geometry. He defines ‘roots’, ‘squares’, and ‘numbers’, the three objects which enter into
his algebra, in terms of what you will do with them; the definition is not so much conceptual as
operational, and this itself throws light on how he is thinking.

A root is any quantity which is to be multiplied by itself, consisting of units, or numbers ascending, or fractions
descending. (Fauvel and Gray 6.B.1, p. 229)
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This may seem less than clear to us, but it enables a description—the first—of what a general
quadratic equation is. Note that the ‘root’, or solution, is allowed to be a fraction although not
worse.6 You will still find this language, stretched to its limits, used in Tartaglia’s rule for solving
the cubic in the 1540s (see Chapter 6). There are six forms of the quadratic equation—this is
dictated by the need for all numbers which are used to be positive. A typical one reads: ‘Roots and
squares equal to numbers’; some xs (as we would say) added to some x2s equal some number.
Al-Khwārizmī does not wish, like the Babylonians, to list particular cases and assume that you can
deduce the general rule; he wants his statement to be general, but he does not have our version
of a general symbolic language (which dates from the seventeenth century) ‘a roots + b squares
equal c numbers’. (Interestingly, although Diophantus’s Arithmetic, which did use a more abstract
notation, was translated relatively early into Arabic—ninth century, later than al-Khwārizmī—his
methods were not adopted, any more than they were in the Greek world.)

If, in a parenthesis, we consider how one is taught to solve such an equation today, the commonest
method is to give a simple literal formula, whether it is proved or not. Writing the equation
ax + bx2 = c, we deduce:

x = −a ± √
a2 + 4bc

2b

which ‘always applies’. The reason we can do this is because we can explain how to deal with
several problems raised by the formula.

First, one, or both of the values we find may be negative numbers, which were first considered as
possible solutions in India by Bhaskara in the eleventh century, and were still being argued about
400 years later; as we have seen (Chapter 4) this was found easy by the Chinese, but their attitude
seems not to have been transmitted to the West.

Second, we have to be prepared to take the square root of any number we like. This raises two
levels of problems; a ‘naming’ problem if the number is positive but not a square (say 5), which
we shall see dealt with below; and a worse one—what are we talking about at all?—if it is negative
(say −3). These were coped with at different times in more or less satisfactory ways, and a school
mathematics course will similarly try to steer the student through them progressively.

Until the sixteenth century or later, though, no such general formula was considered, since even
negative roots had to be dealt with separately if they were allowed at all. Hence the pattern which
al-Khwārizmī set for dealing with equations case by case, as set out above. After describing the
different cases, he moves on to the case ‘roots and squares equal to numbers’ mentioned above,
and deals with the problem of abstraction by alternating the general statement with its application
to the particular example ‘one square and ten roots equal to thirty-nine dirhems’.7 The solution
goes back to Babylon (‘you halve the number of roots, which gives five’), but has suddenly become
general as well as particular. It is easy to see the reasons for the long popularity of al-Khwārizmī’s
text: he has grasped the idea of explaining the method through an example, as al-Uqlīdisī was to do
in his arithmetic (and as was to become common practice in Islamic texts, and the European ones
which derived from them).

6. Note also that despite al-Khwārizmī’s role in introducing Indian numbers, they are not used in the algebra text, where numbers
are always written out as words (‘thirty-nine’).

7. Why dirhems—a unit of currency? As one might say, ‘x2 + 10x = 39 euros’. The implication is that there is a practical use for
the sum; and there is some attempt to justify this later.
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Fig. 3 Al-Khwārizmī’s first picture for the quadratic equation.

‘It is necessary’, he continues, ‘that we should demonstrate geometrically the truth of the same
problems which we have explained in numbers.’ Why is it necessary? There appear to be three
requirements for the author:

1. to state what to do in general;
2. to illustrate it in particular;
3. to prove that it works.

Is it the weight of the Greek heritage which implies that ‘proof ’ means geometry? One might
suppose so, since the Greek texts were being translated when al-Khwārizmī wrote. In any case, the
geometry looks nothing like Euclid, or even his more practically minded followers such as Heron.
The picture (Fig. 3) compared with later proofs of the same method, is completely transparent; it is
a good exercise to follow the proof through and see how verbal explanation and picture connect to
give a convincing account of why the solution is the right one.

There has been considerable discussion of how ‘good’ a mathematician al-Khwārizmī was (the
article in the Dictionary of Scientific Biography is dismissive). As already stated, the method which
he set out was ancient, wherever he derived it; and his exposition, his examples, and his proof
were (as the extract shows) at a fairly low mathematical level. However, this seems to miss an
important point; such arguments assume that mathematicians deserve study only insofar as the
work which they do is hard, while often this is not at all the case. (While Descartes was capable
of hard work in mathematics, he disliked it, and his outstanding contribution, the coordinate
representation of curves, is simple in the extreme.) What al-Khwārizmī did was to introduce a
new way of thinking about the problem which brought together solution and proof in a major
synthesis, involving both generalization and simplification. That the mathematics involved was not
very difficult was an essential reason for the method’s survival more or less unchanged over the next
600 years.

About 50 years later, Thābit ibn Qurra—who by general agreement was an able and interesting
mathematician—wrote a text on quadratic equations. In contrast to al-Khwārizmī’s treatise, it is a
mere six pages. It was translated into German during the Second World War, and later into Russian;
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Fig. 4 The diagram for Euclid proposition II.6. The line AB is bisected at C (AC = CB), and BD is added. If now AK = BD, then ‘the
rectangle AD by DB’ means the area of the rectangle ADMK; and this, together with the square on CB (which equals the square
LHEG) is said to be equal (in area) to the square CEFD on CD. The proof is fairly obvious.

the chance of finding either translation in a library is slim.8 However, it is a very interesting
document. Thābit was one of the groups of Greek translators, and much of his prolific work
expanded on Greek texts, commenting or dealing with problems which they raised. Here he uses
his knowledge to draw on Euclid’s proposition II.6 (for the case above described) and prove—in
some sense—that the formula is the right one. Unfortunately, unlike al-Khwārizmī, he does not
have an easy style, at least here.

Proposition II.6, in its particular form, says:

Let the straight line AB be bisected at the point C, and let a straight line BD be added to it in a straight line (see Fig. 4)

I say that the rectangle AD by DB together with the square on CB equals the square on CD.

Those who believe that the results of book II should be interpreted as a form of algebra interpret
this by saying: call AB ‘a’ and BD ‘b’; then BC = a/2, and CD = b + (a/2); the proposition says that:

(a + b)b +
( a

2

)2 =
(

b + a
2

)2
(1)

It is now on the whole thought unhistorical to claim that Euclid was thinking in such terms (see
the remarks on this in Chapter 2). However, there is evidence that the Islamic translators of Euclid
at some stage did come to use some sort of algebraic translation—after all, they now had algebra
to help them. In the early tenth century the philosopher al-Farābī wrote that the rational numbers
correspond to the rational quantities, and the irrational numbers to the irrational quantities (cited
Youschkevitch 1976, p. 169). The distinction between numbers and lengths, which sometimes
seemed so important to the Greeks, was being eroded, and in commentaries by Arabic writers on
Euclids books V and X (which exercised them greatly) we can find many similar examples. Thābit
does say that he is investigating the case ‘square and roots equal to numbers’; but it is typical of his
more hurried and more abstract approach that he gives no numbers as examples. You can find his
argument in Appendix B. The end-result (of the extract) is that the root which we are looking for
is ‘known’—in classical geometric terms, it can be constructed.

8. Luckey’s German version, with the original text and his discussion, is in Sezgin (ed.) 1999, pp. 195–216.
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What Thābit does next is equally interesting; he goes through his method and shows, stage by
stage, that it is the same as the method used ‘in algebra’. The ‘algebra’ is the method described by
al-Khwārizmī—without his geometric proof —and it seems reasonable on various grounds (short
separation in time, the fact that they were near-colleagues, al-Khwārizmī’s acknowledged status
as ‘founder’) to suppose that it is precisely his book which is referred to. This ‘dialogue’ casts some
light on different ways of thinking about geometry, numbers, and algebra in the earliest period of
Islamic mathematics. It would seem that Thābit is saying: ‘Anything which you can do by algebra,
I can do by Euclid book II’. If so, there is some misunderstanding both of al-Khwārizmī’s algebra
(which is about numerical recipes for solving practical problems) and of Euclid (which is about
something more abstract and quite different). More positively, we could see it as an attempt to
harmonize the down-to-earth practice of algebra with Greek theory. Whether misunderstanding
or harmonization, such a tension between theory and practice was to be of immense value in the
further development of the Islamic tradition.

We have already entered the domain of (reasonable) conjecture about what the text means, in
terms of the various ways tenth-century mathematicians thought about numbers and geometry.
The problem is what Thābit means by ‘is known’—the argument being that to say that the side (or
its square) is known is to solve the quadratic equation. There are two competing interpretations of
this. In geometric terms, it means simply that the line which represents the side can be constructed,
which is certainly true. But what has been passed over is the numerical question of what happens
when your answer is not a whole number, as it was in al-Khwārizmī’s version. If the equation is
‘square and two roots equal one’, then the answer, whichever method you use to arrive at it, is (as
we would say)

√
2 − 1. Because Thābit is avoiding using numerical examples, he gives us no idea

about whether such numbers are allowed as numbers, not as geometrically constructed lines. They
have no name.

There is a useful word for ‘having no name’ in Arabic, which was variously applied: it is ‘as.amm’,
or ‘deaf ’. This was initially aplied to certain fractions; you can say the fractions up to one-tenth
using one word, but after that you have to use phrases like ‘one part of thirteen’, and such fractions
were ‘as.amm’. But in al-Uqlīdisī’s arithmetic, the same word was applied to squares which have
no roots; by extension (since if you are thinking for example, of a square of area 5, you are also
thinking of its side) it denoted their inexpressible roots. This word translated, when the Arabic
arithmetics were put into Latin, into the Latin word for ‘deaf ’, ‘surdus’, used in the form ‘surd’
as recently as 50 years ago to refer to roots like

√
5. At some point a linguistic concept about

numbers whose names you could speak translated into a way round their unspeakability. They
are still numbers, but numbers which need phrases rather than a single word to express them.
Al-Uqlīdisī devoted some space to finding approximations for such square roots, in chapters which
follow on the exact root extraction quoted above. His formulae were not new, but the use of Indian
numbers makes the procedure more transparent. (A great deal has by now been written on this
subject. A detailed and careful summary is Karine Chemla 1994.)

Exercise 3. What kinds of combination of roots, squares, and numbers make an allowable equation, in
the terms set out by al-Khwārizmī?

Exercise 4. Why is the algebraic formula given equivalent to Euclid’s proposition II.6?

Exercise 5. How would (a) al-Khwārizmī’s method and (b) Thābit’s construction approach the equation
‘square and two roots equal to one’?
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6 Algebra—the next steps

We have heard the great eastern mathematicians have extended the algebraic operations beyond the six types and
brought them up to more than twenty. For all of them they discovered solutions based on solid geometrical proofs. God
‘gives in addition to the creatures whatever He wishes to give to them’. (Ibn Khaldūn 1958, III, p. 126)

Not much later than Thābit’s text, the Egyptian abū Kāmil wrote what is commonly considered
the ‘second-generation’ algebra after that of al-Khwārizmī.9 The work of al-Khwārizmī is explicitly
referred to, and many of the examples are the same; but much else has changed. The simple
geometrical diagram has been replaced by a reference to Euclid’s book II (as it was in Thābit’s text),
but with numbers included. For the first time, as far as we know (and our knowledge is as usual
limited), numbers have been introduced into Euclidean propositions as a matter of routine, and
proposition II.6 is being interpreted more in the ‘algebraic’ sense referred to above. If this was done
by the ancient Greeks, or by any of their successors, they were much more discreet about it than
abu Kāmil.

However, what abu Kāmil did next was even bolder, as an innovation. Again, it may arise from the
study of Euclid, in this case of his book X; but this is not made clear, and the language is completely
different. He develops a set of rules—not complete, but useful—for calculating with roots, and uses
them freely in many of his examples as if they were numbers. The result is an enormous expansion
of the collection of equations you can solve, and of numbers you can name. Oddly, this appears
not so much in dealing with whole number examples leading to square-root solutions (such as the
simple one given above), as with examples where roots are part of the data of the problem. Here is
the brief, but quite ‘hard’ problem 39:

If one says that ten is added to an amount, and the amount is multiplied by the root of five, then one gets the product
of the amount by itself. For the solution, make the amount a thing and add ten to it to give ten plus a thing. Multiply by
the root of five to give the root of five hundred plus the root of five squares equal to one square. Halve the root of five
squares to give the root of one and a quarter. The root of the sum of the root of five hundred plus one and a quarter,
plus the root of one and a quarter, equals the amount. (Abū Kāmil 1966, p. 148)

Notice that though the problem deals with numbers like
√

5, they are still expressed in words;
there is no notation for them, and there will not be one for a long time (symbols for roots began
to be used in the sixteenth century). For us, abu Kāmil’s problem needs a considerable amount of
‘unpacking’. In modern terms, setting x for the amount, it is:

(10 + x)
√

5 = x2

This abu Kāmil solves (roughly) by our usual prescriptions for quadratic equations again. In a
slightly roundabout way he changes the left-hand side into

√
500 + √

5x2. He halves
√

5 to give√
1 1

4 , and arrives at the (correct) answer

x =
√√

500 + 1
1
4

+
√

1
1
4

All these numbers are still expressed in words, as is done in the above quote. The ‘formula’, if you
like, is exactly the same as had been used by al-Khwārizmī; but the way in which it is applied has

9. This can be found in Levey’s translation of Mordecai Finzi’s medieval Hebrew version (Abu Kāmil 1966), again not easily. There
is an extract in Fauvel and Gray 6.B.2., and a very interesting and complicated equation is discussed in Berggren, p. 110–111.
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been vastly extended, without this ever being made explicit. The earlier author never said that
numbers could not be square roots, and the later one never said that they could, but all the same
the idea of what ‘numbers’ are allowed has changed.

It is easy, in the fairly open climate of discussion in Islamic mathematics, to find differences of
approach such as those described above; and they are not confined to algebra. There are explicit
arguments, for example, about the merits of those who were already being called (as they were by
Pappus) ‘the Ancients’ (al-qudamā’):

[Abū-l-Waf ā’] said how much he appreciated the book, which he considered of great value, although he regretted
that the author followed the way of the ancients in their use of the ‘cutting diagram’ and of compound ratios. He
said that he had obtained, to determine the azimuth, elegant methods which were more concise and better. (Al-Bīrūnī
1985, p. 96)

However, to use this particular quarrel (about who was the first to find a formula for trigonometry
on a sphere), or any other to divide Islamic mathematicians into ‘schools’ as has sometimes been
done seems premature, and probably misguided. Saidan in his introduction to al-Uqlīdisī (1978)
calls attention to attempts of earlier historians to distinguish those mathematicians who used
Indian numbers from those who used sexagesimals (or ‘astronomers’ numbers’ as they were called);
and points out that it was common, especially in teaching texts, to use both, since the student
might need both. As for Greek authority, it was universally recognized, and used as and when
necessary together with more ‘modern’ methods. The case of Omar Khayyam (eleventh century) is
particularly worth considering. In his algebra, he considers in detail the case of cubic equations. He
was the ‘eastern mathematician’ referred to by ibn Khaldūn who had brought the number of types
to more than 20 by introducing the various types of cubics (cubes and things equal to numbers,
and so on). Besides being the natural next step after the well-understood quadratics, these had
arisen in a number of special problems which he lists; a problem of Archimedes on cutting the
sphere, trigonometric problems such as finding sin 10◦ given that one knows sin 30◦, and so on.

As has often been noted, he acknowledges that it would be desirable to find a solution in terms
of a numerical procedure (what we would call a formula), as had been done for quadratics and as
Tartaglia and Cardano were to do in the sixteenth century.

When, however, the object of the problem is an absolute number, neither we, nor any of those who are concerned
with algebra, have been able to prove this equation—perhaps others who follow us will be able to fill the gap—except
when it contains only the three first degrees, namely, the number, the thing, and the square. (Khayyam 1931, p. 49)

Unable to achieve this, he followed the very Greek practice of drawing intersecting conic sections,
just as Menaechmus had done for the simplest case x3 = 2.10

On the whole, such a solution would have been acceptable to a Greek (supposing the problem to
have been posed in the first place). Omar was in some ways particularly close to the Greek geometers
in his outlook; he criticized ibn al-Haytham for using motion to prove the parallel postulate, and
the algebraists in general for using the ‘ungeometrical’ powers of the unknown above the third.
However, it may have occurred to him to ask a question which fits much better into the framework
of the algebra we have been discussing above: namely, if you have constructed a solution (e.g. to
x3 + x2 = 3) geometrically, what kind of a number have you found, and what can you do with it?
There is a clue; when, in a different work, he considered the difficulties in Euclid’s theory of ratios,

10. For an extract from Omar’s work see Fauvel and Gray.
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he came to a startlingly pragmatic conclusion. We should think, he says, of a quantity

not as a line, a surface, a volume or a time, but as a quantity which the mind abstracts from everything, and which
belongs to numbers, but not to absolute and true numbers, for the ratio of A to B may often not be numerically
measurable, that is to say one may not be able to find two numbers whose ratio it is . . . This is how calculators and
surveyors proceed when they speak of a half or other fraction of a supposedly indivisible unit, or of a root of five or
ten etc. (Khayyam tr. Rozenfel’d pp. 105–6, cited Youschkevitch p. 88)

In other words, the calculators and surveyors are already using numbers on the assumption
that they are the same as ‘quantities’; that if you can construct a length, there is a number which
corresponds to it (at least well enough). What is interesting is Omar’s explicit suggestion that
mathematicians could learn something from them.

Exercise 6. Show that the equation given is equivalent to abu Kāmil’s problem, and solve the equation.

Exercise 7. Use the formula sin(3x) = 3 sin x − 4 sin3 x to find a cubic equation for sin 10◦ .

7 Al-Samaw’al and al-Kāshī

The Calculator’s Key is an excellent guide to elementary mathematics, written to answer to the needs of a large public.
Considering the richness of its subject-matter, and the clarity and elegance of its presentation, this work holds an
almost unique place in the whole literature of the Middle Ages. (Youschkevitch 1976, p. 71)

It would take much more space to discuss all the varieties of mathematical practice which were
undertaken in the Islamic world, their connexions, and interrelations; although we shall return
briefly to their views on Euclid in Chapter 8. However, in a specific attempt to investigate the themes
of innovation, tradition, and continuity, let us consider two later mathematicians whose approach
was very different, al-Samaw’al (1125–1180) and al-Kāshī (d. 1429). In both cases, there are
acknowledgements of particular influences, neither is working in what we have called the Greek
tradition, and both raise interesting unsolved problems about the aim and scope of their work.
In particular, both present examples of what we might call excess, that is, calculation beyond
what is necessary or useful and here we would differ from Youschkevitch’s opinion above, with his
references to ‘elementary mathematics’ and ‘a large public’. In contrast to al-Uqlīdisī or abu-l-Waf ā,
they seem to be carried away by their subject. Why?

Al-Samaw’al appears the more straightforward case. His major work—of those which survive—
is al-Bāhir fi-l-jabr (‘The Shining Treatise on Algebra’). Written, it is said, when he was 19, it is
a conscious attempt to strengthen and deepen the results of his predecessor al-Karajī, a century
earlier. (In many respects al-Karajī had laid the foundation for al-Samaw’al’s work, so much is
undisputed; however, here we shall consider it in isolation.) The work is quite long and contains
a variety of results (on systems of linear equations, for example), but it is most celebrated for the
curious study of ‘polynomials’ (al-Samaw’al calls them ‘composed expressions’) in which:

1. the primary aim is not to find the ‘thing’—it seems, in the main, to be treated as an abstract
entity to be manipulated;

2. the powers of the thing considered are not only positive (in principle, as large as you like) but
negative; what we would call 1/x, 1/x2, . . .
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Fig. 5 Table from al-Samaw’al.

In al-Samaw’al’s famous phrase, from his introduction, his aim is to proceed ‘by operating on the
unknowns by using all the arithmetical tools which the arithmetician uses to operate on known
numbers’. In other words, you must—at least—be able to add, subtract, multiply, and divide your
‘things’ (xs and ys) any number of times. This leads to expressions which are complicated in our
terms, let alone in twelfth-century notation, where ‘1/x’ is designated by ‘part of thing’ and so on.

Al-Samaw’al wastes no time; by his fourth page he is giving a table of powers of the thing up to
the ninth, which we would call x9 and he calls ‘cube cube cube’ in the positive direction, and down
to 1/x9, or ‘part of cube cube cube’ in the negative. The table (reproduced in Fig. 5) is an interesting
mixture of notations. While the second row describes the powers in words (‘square cube’ etc.), the
first row keeps track in a more rational way by using numbers going in both directions (expressed
by letters of the Arabic alphabet), including zero. Underneath he gives the examples of powers,
positive and negative, for the numbers 2 and 3. And here another notational problem; while the
Indian numbers do very well to express 2, 4, 8, . . . , 29 = 512, the corresponding fractions have
to be written in words starting with ‘half ’ and ending with ‘an eighth of an eighth of an eighth’.
(In parenthesis, one notes that the ease with which the Egyptians, and the Greeks following them
wrote unit fractions seems to have disappeared; changes in notation are not always for the better.)
The power zero is correctly assigned to 1.

One has a sense, in the chapter on polynomials which follows, that al-Samaw’al is working at
the limits of the notational possibilities which were then available, and trying to expand them
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where he can. Sometimes an example (such as (10/a3)(a2 + a) = (10/a) + (10/a2)) is set out
and explained in words; sometimes a more general formula (such as a(b/c) = b(a/c) is described by
using a series of Arabic letters a, b, c, . . . to denote the ‘unknowns’ and the results of multiplying and
dividing them. This in itself is not new—the use of letters to denote general numbers or quantities
can be paralleled in Euclid—but in combination with the traditional algebraic language it gives
the feeling (which Rashed expresses strongly) that we have something near to a ‘new’ abstract
algebra.

The real coup is achieved when, after another 24 pages, al-Samaw’al sets out to divide two
expressions (polynomials) according to the schema shown in Fig. 6. Before the table is set up,
the problem is set out in words (with a few figures interspersed). Translated into our notation, it
amounts to dividing

20x6 + 2x5 + 58x4 + 75x3 + 125x2 + 96x + 94 + 140
x

+ 50
x2 + 90

x3 + 20
x4

Fig. 6 Table from al-Samaw’al showing division.
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by 2x3 + 5x + 5 + (10/x). This is far from being the hardest such sum which will be tackled; in
particular:

1. all the signs are positive;
2. the division has an exact result.

At this point the simple-minded reader might reasonably ask: what on earth did al-Samaw’al
have in mind? The calculations which he undertook seem to be an end in themselves, a display
of technical virtuosity on a theme which could have had no practical application, and which led
nowhere. The example shown above, by the way, is by no means the end of the story; later, a division
by ‘six squares and twelve units’ (6x2 + 12) has no exact result. He therefore simply continues
as far as possible, noting finally that any future coefficient can be determined by a formula. He is
clearly on his way to understanding a particular form of infinite series. (The calculation is discussed
in Berggren 1986, pp. 117–18.) Who the audience of his book could have been, and what they
made of his work, remains at present a mystery; no subsequent algebraist refers to it. And on the
face of it, such preoccupations give the lie to any easy characterization of Islamic mathematics as
practical or down-to-earth.

A clue could be provided by a still more obscure work of al-Samaw’al, his recently discovered
unpublished arithmetic. This is discussed at some length by Rashed (1994), where an extract is
provided (untranslated), with a promise of future publication of the whole. In this text, accord-
ing to Rashed, al-Samaw’al effectively introduced decimal fractions, using a schema very much
like the one in Fig. 6; with ascending and descending powers of 10 (successive figures in the
decimal expansion) taking the place of the powers of the unknown ‘thing’. This of course has
a much more useful appearance from our present-day viewpoint, although as Rashed concedes
by writing the numbers in a table al-Samaw’al had not yet arrived at a simple and efficient
notation.

Once the phrase ‘decimal fractions’ is mentioned, we have to deal with a long-running
controversy over who was their originator. The question is interesting, but not because it really
matters much any more. In textbooks from the 1950s or before, it was claimed that the invention
was due to Simon Stevin (Netherlands, 1574), despite the fact that al-Kāshī’s much earlier Calcu-
lator’s Key, which used them extensively, was already known widely enough . There was no obvious
line of influence from al-Kāshī to Stevin, and Stevin’s was the first European discovery; it followed
that he was the inventor.

Besides the obvious Eurocentrism of such a judgement, and the increasing evidence that
al-Kāshī’s work did influence western Europe via Constantinople and Venice,11 this illustrates
the whole problem of how one ascribes priority. The main interest in a mathematics textbook
(medieval or modern), is to explain how you use a technique, not where the author obtained it;
and this seems true even of Islamic writers who worked in a culture where citation of sources
could be quite careful. Hence even where work is original, such originality may not be claimed,
and this leaves the field wide open for historians (who may care more than is necessary) to argue
about who is copying whom, and whether a writer really understands the method he is explaining.
Al-Kāshī certainly did know what decimal fractions were; he has a technical term for them, and

11. This issue is discussed by Youschkevitch (1976, p. 75) and Rashed (1994, pp. 131–2).
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uses them simply and with facility. In some sense, his introduction of them seems to be a claim to
their invention—allowing that one does not always know who may have preceded one.

We divided the unit into ten parts, we then divided each tenth into ten parts, and then each of them into a further ten
parts, and then each of them into a further ten parts and so on, the first division being into tenths, and in the same
way the second into decimal seconds and the third into decimal thirds and so on, so that the orders of decimal fractions
and wholes are in the same relation as is the principle in astronomical numbering [i.e. sexagesimals].

We call this ‘decimal fractions’. (Al-Kāshī 1967 book 3, chapter 6)

From this (rather late) stage in his book, al-Kāshī sets out his results, where possible, in both forms,
both sexagesimal and decimal. Whether his work ‘diffused’ to Stevin, whose notation was different
and in some ways less user-friendly, is still unclear, though it appears increasingly a possibility.

But before al-Kāshī, as Rashed pointed out, stands al-Samaw’al, who also can claim a place as
inventor; and before him there appears (according to Saidan) the still earlier tenth-century figure
of al-Uqlīdisī, who seems to be using decimals in at least two places in his book. And in between
these writers there may be many others of whom we know nothing. Rashed considers the claims
of al-Uqlīdisī unacceptable; there is no sign that he was following a practice which he understood
in a systematic way. On the other hand, he may have been one of a number of reckoners who had
realized the obvious fact, as al-Kāshī states it: that, with Indian numbers as with sexagesimals,
you could continue on the right as well as on the left, with your number (e.g. ‘5’) having a smaller
meaning the farther you went. This is what al-Uqlīdisī seems to be doing when, in one of his crucial
passages, he performs a sequence of halvings on 19:

For example, we want to halve 19 five times. We say: one half of 9 is four and a half; we set the half as 5 before the
four; [remember that, Arabic being written right to left, ‘before’ means ‘to the right of ’] next, we halve the ten. We
mark the units place. That becomes 95.

Now we halve the five and the nine; we get 475. We halve that and get 2′375, the units place being thousands to
what is before it, for if we want to say what we have got, we say that halving has led to two and 375 of one thousand . . .

A great deal of ink has been spilled over that single dash between the 2 and the 375; is it a decimal
point, and why are there no others; and did al-Uqlīdisī understand the fact? A tentative conclusion
might be that he did, to some extent, but that he would not dream of ‘codifying’ the idea as al-Kāshī
did five hundred years later; he was a calculator, not a mathematician. Indeed, the illustration
shows that the actual discovery of decimal fractions is not as much of a marvel as one might
suppose. If you want to show your skill in Indian numbers by halving repeatedly, then you fall upon
them almost naturally.

Having mentioned al-Kāshī in the context of decimal fractions, let us now turn to a broader appre-
ciation of his work, and of The Calculator’s Key in particular. In the long letter to his father published
by Edward Kennedy in (1983), al-Kāshī gives a fascinating picture of the court of his patron Ulugh
Beg. This may have been the ‘end’ of Islamic mathematics as far as our official histories go, but the
society is far from being in decline; the atmosphere is one in which a sizeable and intensely com-
petitive community of scholars strive to obtain the king’s approval, primarily on the basis of their
mathematical ability. Al-Kāshī, who was not given to false modesty (in Kennedy’s classic understate-
ment) makes it clear to his father that he has consistently come out best in all of these competitions,
partly because of his skill in combining theory, calculating ability, and knowledge of the construc-
tion of instruments. It was for this unusually mathematically literate community of teachers and
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learners that al-Kāshī wrote The Calculator’s Key, a very diverse collection of arithmetic, algebra,
and geometry with results of the most various kinds. Unlike al-Samaw’al’s book, this became some-
thing of a best-seller; the British Library, which is not strong on mathematics, has four manuscripts,
two from the nineteenth century. His aims are stated at the outset, after a brief summary of his many
achievements:

Although some of these [methods] could not be discovered with the help of the six algebraic [forms] (i.e. al-Khwārizmī’s
six quadratic equations), yet in the course of this work I found numerous principles with whose help the groundwork
of arithmetic is developed by the simplest means, on the easiest road, with the greatest profit and with the clearest
exposition. I decided to write these principles and desired to clarify them so that they could be an instruction for
others and a guide for the learned. Therefore, I have written this book and collected in it all which calculators may
need, avoiding both the tedium of long-windedness and the excess of brevity. For the majority of methods I have
drawn up tables, so as to simplify examination by the geometer. All the tables established in this book have been
prepared by me and to me belongs all that is sweet and bitter in them, with the exception of seven tables . . . (Al-Kāshī
1967, intro)

Indeed, the tables are a notable contribution to the work. We may already see a heavy dependence
on the table for the exposition of complex calculations in al-Samaw’al; but in al-Kāshī they are
everywhere, as he admits. There are the standard tables (multiplication, conversion from decimals
to sexagesimals and back; sines, and so on); tables of currency conversion, of the properties of
metals and other substances; tables of the areas of polygons, and more usefully (one might think),
of different kinds of arches used in architecture (see Fig. 1). Almost always the numerical results
are more accurate than they have any reason to be, and often they are given both in decimals and
sexagesimals. As can be seen from the quote, al-Kāshī feels that they are an important contribution;
he asserts his intellectual property in them, as well as an emotional relation (the sweet and the
bitter). Most famously, beyond the ‘static’ tables, we have the ‘dynamic’ ones which show how
you do a calculation. The reader is shown how to construct them, told in detail where to draw
horizontal and vertical lines and make entries, so as (for example) to extract a root; and the often
quoted example in which he extracts the fifth root of 44,240,899,506,197 in decimals can serve
as a model.

This example (of a method which may be due to the Chinese, even if they did not carry it to such
lengths—see Chapter 4; and which al-Samaw’al worked, if with less explanation, in sexagesimals)
has been extensively discussed, in particular by Berggren (1986, pp. 53–63). When he comes to
doing the same and more in sexagesimals, it is more a summary:

In our treatise entitled ‘Treatise on the circumference’ [his calculation of π ], we have found the roots of many
numbers with many digits and adapted them in different ways. Anyone who wishes to know more can turn to this
book. Furthermore, we present here an example of the extraction of a cube root and another example of the extraction
of a cubo-cube [sixth] root, but, so as to avoid long-windedness in this book, we shall not here give an explanation of
the process [as he did for the fifth root]. It is easy for anyone who knows how to do it with Indian numbers, as it was
explained in Book 1.

At a certain point, we see, the tables, which are given, are a substitute for an explanation of
the method.

To see al-Kāshī’s style of exposition in a different context, an extract from the geometrical section
of the Calculator’s Key, on the regular solids, is in Appendix C, with the inevitable table which
sets out all the measurements you may possibly need for them. Clearly considered an outstanding
mathematician by his circle and beyond, al-Kāshī still appears something of an enigma. Given
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the obvious high culture of his milieu, one would like more information on what preceded it and
what followed; and one wonders how far the sometimes obsessive accuracy of his calculations is
motivated by the demands of practice, by competition, or by a pleasure in the activity of calculating
itself.

Exercise 8. (a) Look at the table for al-Samaw’al’s polynomial division, and try to follow through the
progress of the division, (b) show that the result of the division is 10x3 +x2 +4x+10+(8/x2)+(2/x3).

8 The uses of religion

Islam provides a whole set of fundamental values. Among these values one finds the uniqueness of truth, the lack
of contradiction between revelation and reason . . .These values, among others, have without the least doubt pushed
forth research and have fostered the creation of open scientific communities. (Rashed 2003, p. 153)

Allah is the ideal merchant. All is counted, everything reckoned . . . A more simply mathematical ‘body of religion’
than this is difficult to imagine. (C. C. Torrey, cited in Rodinson 1974, p. 81)

Earlier in this chapter it was suggested that the argument for the importance of Islamic mathem-
atics, indeed its centrality in a tradition which links Babylonians, Greeks, and ‘Moderns’, is now
established beyond argument. The idea that Islam itself played some role in the rapid development
of the Abbasid period seems also undeniable; the question is, what was it? The argument (recycled
in one of the quotes which opens this chapter) that many or even most ‘Muslim’ scientists were
not Muslim at all is easily dismissed. Although a substantial number of important early figures
belonged to tolerated non-Muslim religions, this had ceased to be true by about 1000 ce, and
many leading mathematicians did more than simply conform, actively working in Islamic law or
philosophy. If the Christians, Jews, and star-worshippers of the Fertile Crescent had it in them to
create a mathematical revolution, one might ask, why did they have to await the advent of a new
religion and social organization to do so? We could simply accept a sociological explanation (a new
empire required scientific organization on a large scale—supposing that to be true); but this does
not explain the specific value put on learning—which led to the Greek and Indian inputs—or the
ways in which it was put to use.

We are unfortunately at some distance from ninth-century Islam, which was in many ways still
in a state of flux. Either Rashed’s characterization of Islam as promoting reason, or Torrey’s more
materialistic view of it as a kind of accountancy have germs of truth, and both were argued in the
early conflicts of schools. Was there no conflict between the Qur’an and pagan learning or ‘philo-
sophy’ (falsafah)? Had God decided everything and measured it from the beginning? Theologians
discussed such points and competed for the favour of the khalifs.

For example, is what can be known in Arabic—the language of the Islamic revelation—different from Greek science
and philosophy in part because of its linguistic home? Or does there exist a universal logic of thought that transcends
(and is therefore superior to) particular expressions in use in a given culture? The h. adīth, as yet one more category,
already contain numerous admonitions about the value of knowledge, its reward and the duty to seek it, to gather and
preserve it, to journey abroad in search of it. (McAuliffe (2001–), III, p. 101)

The general question of the relation of Islam to pagan and/or practical knowledge is a large
one, and we have neither the space nor the ability to deal with it adequately. However, two points
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should be made:

1. Islam did certainly differ from Christianity (for example) in the value placed on knowledge, as
the quote above illustrates; and the language of the Qur’an itself is strongly centred on appeals
to reason:

The Koran is a holy book in which rationality plays a big part. In it, Allah is continually arguing and reasoning.
(Rodinson 1974, p. 78 (see also the following pages))

(The reason in question, though, can hardly be equated with mathematical deduction; it is
rather the deduction of our obligations to God from the beneficence of his works, and of ethical
duties from basic principles.)

2. Høyrup’s point, cited in Section 4: by the ninth century at least, Islam had become codified as a
complete system of practice, organizing every sphere of human action; from which the needs
not simply for knowledge in itself, but for knowledge to inform practice followed.

Rashed’s very recent interview provides some starting points. By claiming that the values of
Islam are specifically favourable to science, he raises the stakes, and makes some statements which
even those who are quite committed to promoting better understanding of Islamic science might
find difficult to accept. The whole interview is worth reading, since as a scholar he cannot only score
good debating points but consider difficult questions such as the ‘decline’ of Islamic mathematics
after the fifteenth century (how can it be understood and accounted for?). And he makes a more
limited but important point, which has indeed been well appreciated, for example, by Kennedy
(1983), that time has a particular value in Islamic observances which calls (one would think) for
the application of science.

Science was an important dimension of the Islamic city. One element was the time-keeping (miqat) in the mosques.
Astronomy was necessary to view the lunar crescent for religious purposes. It must not be forgotten that each of the
large mosques had an astronomer associated with it . . . (Rashed 2003)

In fact, few religions have given practical mathematicians so much to think about as Islam, with
its lunar months which start at the moment when the new crescent is visible, its carefully defined
five prayer-times a day, and its fast which ends at dusk. Astronomers worked tirelessly on the
improvement of their tables, developing the Ptolemaic and Hindu astronomy into a much more
efficient instrument; but as early as the time of Thābit ibn Qurra, who wrote on the difficult
question of the first visibility of the moon’s crescent, they came to realize that their under-
standing of atmospheric phenomena always left some doubt about the key questions of what one
could see.

The science of time was of course useful beyond a religious context, and similarly mathematics
was important to the flourishing societies throughout the Islamic world insofar as it helped with
commerce, surveying, architecture, and the various practical arts; and also in geography, the
understanding of the known world. In this religion enters again, and the tenth-century univer-
salist al-Bīrūnī can stand as a central figure, whose Coordinates of Cities made possible a general
understanding of how the various widely scattered centres were related on the globe, using a
well-developed understanding of geometry on a sphere. Both al-Bīrūnī and his modern comment-
ators have claimed more; that such knowledge was essential for religious purposes, since to design
the layout of a mosque (say in Seville) correctly it was essential to determine the qibla, the direction
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of Mecca where the faithful should turn for prayer. As he says:

[L]et us point out the great need for ascertaining the direction of the qibla in order to hold the prayer which is the
pillar of Islam and also its pole. God, be He exalted, says: ‘So from wheresoever thou startest forth, turn thy face in
the direction of the Sacred Mosque, and wheresoever ye are, turn your face thither.’ (Qur’an, Sura 2:150). (Al-Bīrūnī
1967, pp. 11–12)

The mathematicians may well have thought their knowledge essential; but mathematicians are not
always as important as they think, and George Sarton pointed out in 1933 that many medieval
mosques in North Africa and Spain have ‘incorrect’ alignments, despite the flourishing state of
mathematics in those countries.

This problem has recently been cleared up, it appears, in a detailed study of legal writings and of
the mosques themselves by Mónica Rius.12 The answer is interesting for the light it throws on the
status of mathematics: in fact, Islamic lawyers pointed out that the complex mathematical methods
were (a) sometimes uncertain—particularly in the case of longitude—and (b) not accessible to the
mass of the faithful, as they should be. They therefore allowed recourse to simpler definitions,
which of course gave more ‘approximate’ directions for prayer. This is not to say that al-Bīrūnī and
others were irrelevant; there must have been cases of mosques where the qibla was determined
by mathematics. However, here, as elsewhere, its use could be contested and the idea that it was
‘imposed by religion’ certainly begins to seem simplistic.

This example can serve as a cautionary tale on the limits of the usefulness of mathematics, which
was certainly important enough in the world of medieval Islam. As we shall see, Marxists tend to
claim that mathematics is driven by the demands of society, and mathematicians, when it suits
them, claim that they are doing vital and useful work. However, if much of the organization of Islam
was favourable to science, there were certainly times and places when science could be dispensed
with, even treated with hostility.13 To make a parallel, Descartes, Pascal, and Galileo were no less
good Christians than their predecessors. If they found that their religion could be harmonized with
a rational and practical scientific outlook, the cause is perhaps to be found in the ideological climate,
or what Marxists would call the relations of production. Accordingly, a particular difficulty in the
statement with which this section opens is that Rashed seems to be treating Islam, as religion and
philosophical outlook, as homogeneous in its positive effect on the sciences (at least during the
medieval period). It will be interesting to see how other specialist historians react.

Exercise 9. What would be necessary to know in order to determine the qibla? Given the necessary
information, how would you do it?

Appendix A. From al-Khwārizmī’s algebra

(From Fauvel and Gray 6.B.1)
A root is any quantity which is to be multiplied by itself, consisting of units, or numbers

ascending, or fractions descending.
A square is the whole amount of the root multiplied by itself.

12. La Alquibla en al-Andalus y al-Magrib al-Aqs.à, reviewed in Isis 94 (2003, p. 371).
13. Again, Rashed produces good exmples to show that an anti-science outlook cannot be equated with religious ‘orthodoxy’, but

there were trends within orthodoxy which were opposed to science.
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A simple number is any number which may be pronounced by itself without reference to root
or square.

A number belonging to one of these classes may be equal to a number of another class; you may
say, for instance,‘squares are equal to roots’, or ‘squares are equal to numbers’, or ‘roots are equal
to numbers’.

[Al-Khwārizmī then deals with examples of these cases before continuing as follows.]
I found that these three kinds: namely, roots, squares, and numbers, may be combined together,

and thus three compound species arise; that is, ‘squares and roots equal to numbers’; ‘squares and
numbers equal to roots’; ‘roots and numbers equal to squares’.

Roots and squares are equal to numbers: for instance, ‘one square, and ten roots of the same,
amount to thirty-nine dirhems’; that is to say, what must be the square which, when increased by
ten of its own roots, amounts to thirty-nine? The solution is this: you halve the number of the roots,
which in the present instance yields five. This you multiply by itself; the product is twenty-five. Add
this to thirty-nine; the sum is sixty-four. Now take the root of this, which is eight, and subtract from
it half the number of the roots, which is five; the remainder is three. This is the root of the square
which you sought for; the square itself is nine.

[. . .]
[Geometrical demonstration]
We have said enough so far as numbers are concerned, about the six types of equation. Now,

however, it is necessary that we should demonstrate geometrically the truth of the same proposi-
tions which we have explained in numbers. Therefore our first proposition is this, that a square and
ten roots equal thirty-nine units.

The proof is that we construct a square of unknown sides, and let this figure represent the square
which, together with its roots, you wish to find. Let the square, then, be ab [Fig. 3.] of which any
side represents one root. Since then ten roots were proposed with the square, we take a fourth
part of the number ten and apply to each side of the square an area of equidistant sides, of which
the length should be the same as the length of the square first described and the breadth two and
a half, which is a fourth part of ten. Therefore, four areas of equidistant sides are applied to the
square, ab. Of each of these the length is the length of one root of the square ab and also the
breadth of each is two and a half, as we have said. These now are the areas c, d, e, f . Therefore, it
follows from what we have said that there will be four areas having sides of unequal length, which
also are regarded as unknown. The size of the areas in each of the four corners, which is found
by multiplying two and a half by two and a half, completes that which is lacking in the larger or
whole area. Whence it is we complete the drawing of the larger area by the addition of the four
products, each two and a half by two and a half; the whole of this multiplication gives twenty-five
(Fig. 7).

And now it is evident that the first square figure, which represents the square of the unknown,
and the four surrounding areas make thirty-nine. When we add twenty-five to this, that is, the four
smaller squares which indeed are placed at the four angles of the square ab, the drawing of the
larger square, called GH, is completed. Whence also the sum total of this is sixty-four, of which
eight is the root, and by this is designated one side of the completed figure. Therefore when we
subtract from eight twice the fourth part of ten, which is placed at the extremities of the larger
square GH, there will remain but three. Five being subtracted from eight, three necessarily remains,
which is equal to one side of the first square ab.
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Fig. 7 Al-Khwārizmī’s second picture.
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Fig. 8 The figure for Thābit’s proof. Compare Fig. 4 (Euclid II.6). ABCD (the way of writing it seems odd, but it is necessary for the
statements to work) is the ‘squares’ of the problem, and rectangle DE (or BEGD) is the ‘roots’. Their sum is the ‘numbers’, and is
known AF = FE.

Appendix B. Thābit ibn Qurra

The first type is this: square and roots equal to numbers. The way of solving it with the help of
the sixth proposition of the second book of Euclid’s elements is as follows. We take for the square a
square ABCD, and let BE be a multiplicity of units which measures a line, equal to the given number
of roots. [So in the above example, BE is ten units.] We draw the rectangle DE [see Fig. 8]. Then it
is clear that the root is AB, and the square is ABCD. In the domain of arithmetic and numbers, it is
equal to the product of AB with a unit which measures a line. In this way, the product of AB with
a unit which measures a line is equal to the root in the domain of arithmetic and numbers. But BE
is such a number, equal to the given number of roots. And so the product of AB with BE is equal
to the roots of the problem in the domain of arithmetic and numbers. But the product of AB with
BE is the rectangle DE, as AB is equal to BD. So the rectangle DE is itself equal to the roots of the
problem. And so the whole rectangle CE is equal to the square and the roots.

[The point of the repetitions seems to be that Thābit is carefully reminding the reader that we
are working in a framework where numbers can be represented by lines, as they are in Euclids
arithmetic books; or by areas, if we make rectangles out of such lines, as happens in book X.
He has now drawn a figure equal to (square and roots) which, unlike al-Khwārizmī’s figure, is a
single rectangle.]

But the square and the roots are equal to a known number. So the rectangle CE is known, and it
is equal to the product of AE with AB, as AB is equal to AC. So the product of EA with AB is known
and the line BE is known, as the number of its units is known.

In this way, the question leads to a known geometrical problem, namely: the line BE is known,
it is produced to AB, and the product of EA with AB is known. But in the sixth proposition of
the second book of the Elements it is shown that if the line BE is divided in half at the point F,
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then the product of EA with AB together with the square on BF are equal to the square on AF. But
the product of EA with AB is known, and the square on BF is known. Hence the square on AF is
known, and so AF also is known, and if from it is subtracted BF, which also is known, there is left
the known AB, that is the root. If we multiply it by another equal to itself, we find the square ABCD
is known. This is what it was required to show.

Appendix C. From al-Kāshī, The Calculator’s Key, book 4, chapter 7

On the measurement of bodies with regular faces.
. . .

There are seven bodies. [Al-Kāshī considers not only the usual five but two semiregular solids
(see Fig. 9) which have their faces all regular, and regularly arranged, but not all the same.]

The first contains four faces, which are equilateral triangles in the sphere, that is, it is the body
bounded by four equal equilateral triangles. It appears as a pyramid with a triangular base, and
is made up of four pyramids, whose bases are its faces, and whose vertices are at the centre. The
measurement of this is as follows: take the square on the diameter of the circumscribed sphere,
and find the root of two thirds of it, and also the root of half the square on the diameter, and the
first will be the side of the base, and the second the height of the triangular side. If we multiply
one of them by half the other, we find the area of one side. If we multiply this by two ninths of the
diameter of the sphere, we find the volume.

Another way. We multiply the diameter once by 0 48 59 23 15 41 fifths, and we obtain its side,
and another time by 0 42 25 35 3 53 fifths, and we obtain the height of the triangle. And do the
rest as before.

[The main relation s =
√

2
3 · d, of the side of the tetrahedron to the diameter of the sphere,

is to be found in Euclid XIII.13 and so ‘common knowledge’ among the savants at Samarkand;
which is presumably why al-Kāshī feels there is no need to prove it. As has been said, his book is
an exposition of methods, not of proofs, although from his other works we know that he could
produce serious proofs when needed. As for the actual figures, in sexagesimals to ‘fifths’ (1/605,
or roughly 1.2 × 10−9), they follow from the standard method, which he has set out earlier, for

extracting square roots; the first number is
√

2
3 and the second

√
1
2 . It is interesting to compare

the second figure with the Babylonian version on the Yale tablet (Chapter 1, Fig. 6), which has the

Fig. 9 Al-Kāshī’s seven regular solids (the five ‘platonic’ solids of Chapter 2, and two ‘semiregular’ ones).
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Fig. 10 Al-Kāshī’s table. (Numbers are written using Arabic letters, cf fig. 5.)

value 42 25 35. Was the same method used?] Above (Fig. 10) is the table which al-Kāshī gives of
the regular solids.

Exercise 10. Take a tetrahedron with vertices

(1, 1, −1), (1, −1, 1), (−1, 1, 1), (−1, −1, −1)

(half the vertices of a cube).

(1) Why is this a regular tetrahedron?
(2) What is the length of a side?
(3) What is the diameter of the circumscribed sphere? Verify the relation which al-Kāshī gives.
(4) What do his other statements mean, and can you check them?

Can you do any of this without using coordinates?
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Solutions to exercises

1. Clearly ‘Is’ denotes an odd place (counting from the end); and the point is that your starting
point is to look at the number up to the last odd place (e.g. 5 for 576, or 13 for 1369). The
whole part of the root of this number—which is a single figure—gives you the first figure of
your answer.

You now have 2 as the root of 4, the largest square less than 5. You subtract its square (4)
from the 5, and drop down the rest giving 176. You now double the two (4 again) and put it
under the 7, so it is effectively 40. Al-Uqlīdisī’s expression means that you are looking for an x
such that 40x added to x2 ‘exhausts’ the 176 you have left. In other words, (40 + x)x = 176.
In fact this is satisfied by x = 4.

The method is simply using the usual formula for (a + b)2, with a = 20 and b = the
unknown x. If this is slightly confusing, try some other three- and four-figure squares. Then
see how it generalizes to larger ones (it does).

2. As in Chapter 2, let us use algebra to simplify. Call the length AB ‘a’. Then BC = a, BD = a/2,
and so CD = (a/2)

√
5. Hence by construction, DE = CD = (a/2)

√
5. So AE = a((1+√

5)/2).
This is the right length for the ‘golden section’ construction of Chapter 2; the triangle ABG
whose sides are in the ratio 1 : (1 + √

5)/2 : (1 + √
5)/2 has angles 36◦ , 72◦ , 72◦ , and the

construction proceeds as required.
3. Al-Khwārizmī gave six equation models, and these were always followed by his successors

through the medieval and early modern period. There are three ‘trivial’ ones: roots equal to
numbers, roots equal to squares, and squares equal to numbers; and three ‘serious’ ones, roots
and squares equal numbers, roots and numbers equal squares, and squares and numbers
equal roots. (The point is that all coefficients must be positive.) Again, because there must be
a positive solution, the form (which we would think worth including) ‘squares and roots and
numbers equals zero’ (e.g. x2 + 3x + 2 = 0) is excluded.

4. AD is equal to AB+BD, or a+b. ‘The rectangle AD by DB’ in Euclid’s language means the area
of a rectangle whose sides are equal to AD and DB, so it is the product (a + b)b. Since C is the
midpoint of AB, CB = a/2; while CD = CB+BD = (a/2)+b. From this the statement follows.

5. (a) Al-Khwārizmī’s method starts by halving the roots—result 1. Square this, result 1; add
to 1 (the ‘numbers’), result 2. Now our problem is to take the square root. If we can (call the
result

√
2 as usual), subtract half the roots, that is, 1, and get the answer

√
2 − 1. (b) The line

BE has length 2; and we must construct AB so that the square on AB and the rectangle AB ·BE
are equal to 1. We divide BE in half at F, so BF = 1. Euclid II.6 says that EA · AB together
with the square on BF (i.e. 1 + 1 = 2) equals the square on AF. So we construct a square of
area 2 (compare the Meno!); its side is AF. Subtract BF (i.e. 1), and you have the result AB. This
depends on the fact that you can construct AF, whose length is

√
2, geometrically without

saying what the length is.
6. Call the ‘amount’ x. If 10 is added to an amount (10 + x), and the amount (i.e. the sum) is

multiplied by the root of 5, we have (10 + x)
√

5. This is said to be equal to the product of the
amount (this word is being over-used) with itself; that is, to x2. So, (10+x)

√
5 = x2 as stated.

By the usual rules for quadratics: write it as x2 − √
5x − 10

√
5 = 0. Then the solution is

x = 1
2

(√
5 ±

√
5 + 4.10.

√
5
)
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Obviously for a positive solution we want the positive root, and a slight rearrangement of the
expression puts it in the form given by abū Kāmil.

7. Since sin 30◦ = 1
2 , setting sin 10◦ = y, we obtain the equation 4y3 + 1

2 = 3y.
8. Rather than try to redo the division (which is a ‘straightforward’ long division of polynomials),

consider the two tables shown in the figure. The first shows simply the dividend P arranged
in columns according to powers, with coefficients (20, 2, 58, 75,. . .); and below it the divisor
Q = 2x3 + 5x + 5 + (10/x), shifted up by three places (so times x3), ready to be multiplied
by 10 and subtracted. The second table has the 10 in the cubes place of the top row (result);
in the second row are the coefficients of P − 10x3Q; and in the third Q again, this time
shifted up by only two places and ready to be subtracted again. The process concludes when
al-Samaw’al finds that his final remainder (4+10x−2 +10x−3 +20x−4) is an exact multiple
2/x3 times Q, and we can stop.

9. This is a slightly hard exercise in spherical geometry. We have to know: (a) our latitude, say
a◦ , (b) the latitude of Mecca, say b◦ , and finally the difference between our longitude and
that of Mecca, say C◦ . (Think of this as an angle of the triangle.) We then have a spherical
triangle ABC (Fig. 11). The angle at the pole is C, and the two adjacent sides are a and b
(degrees of latitude). The qibla is determined by the angle which the line from us to Mecca
makes with North; the angle B in the figure. The ‘sine formula’ for spherical triangles:

sin b
sin B

= sin c
sin C

would give us B if we knew c, since we know b and C. But we can get c from the ‘cosine
formula’:

cos c = cos a cos b + sin a sin b cos C

(See Gray 1978, p 46)

Us (B)

Angle C

North pole (C)

Mecca (A)

a b

Fig. 11 Illustrating how you find the qibla (Exercise 9).
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10. It is easy to check that the vertices given are distant 2
√

2 from each other; which establishes
(1), since the faces must be equilateral triangles, and also answers (2). You can find the centre
of the sphere either by looking at the other half of the cube (the vertices are alternate vertices
of a cube), or by finding the centre of gravity, obviously (0, 0, 0). The radius is the length of the

line joining this to a vertex, that is,
√

3, the diameter 2
√

3. So s : d = 2
√

2 : 2
√

3 =
√

2
3 : 1.

The ‘height of the triangular side’ is the height of an equilateral triangle of side 2
√

2 in our

model, that is,
√

6 (using sin 60◦ = √
3/2). The ratio of this to d is now

√
2 : 2 =

√
1
2 : 1.

The statement about area (= half times base times height) is ‘classical’. The volume is the
area of the base (just found) times one third of the height, by the formula for the volume
of pyramids. To find the height of the pyramid, note that the three points which are not
(−1, −1, −1) have centre of gravity (1

3 , 1
3 , 1

3). The height is the length of the line which joins
this to (−1, −1, −1), and it is easy to see that this is 2

3 .d. Hence al-Kāshī’s ‘two-ninths of
the diameter’.

To prove it without using coordinates, look at Euclid XIII.13.



6 Understanding the ‘scientific
revolution’

1 Introduction

Philosophy is written in that vast book which stands forever open before our eyes, I mean the universe; but it cannot
be read until we have learnt the language and become familiar with the characters in which it is written. It is
written in mathematical language, and the letters are triangles, circles and other geometrical figures, without which
means it is humanly impossible to comprehend a single word. (Galileo, Il Saggiatore (The Assayer), tr. in Drake 1960,
pp. 183–4)

It is sensible to begin any discussion of the scientific revolution with Galileo. The above quotation,
which has been used to excess as a description of his position, at any rate serves to link Galileo’s
physics with the history of mathematics. It also illustrates the role which mathematics often plays
in accounts of the scientific revolution—as a language whose use transforms science, not as an
object of study in itself. As a result, those mathematicians for whom physics was not an obvious
interest, like Cardano and Viète—whom we will discuss later—or who were better mathematicians
than they were physicists, like Descartes, receive little or no attention in the history. Our version will
necessarily have to be skewed in a different direction—to the development of mathematics itself,
and to its interaction with physics; questions of the role of experiment and observation, which are
central to the usual history, are not really important. There were exceptional changes in the way
mathematics was done between, say, 1550 and 1700, some of which are discussed in this chapter.
The most notable, the calculus, is the subject of the next chapter, but it is generally agreed that by
the time Descartes’s Géométrie was published (in 1637), a ‘new mathematics’ had come into being;
and that the works of Viète, Stevin, Descartes, and others radically changed the way in which even
ordinary practitioners worked. Much of this had some relation to the wider scientific revolution,
but both the question of what was new and the question of origins need to be considered with due
reference to the particularity of mathematics. So let us begin by posting, as major concerns for this
chapter, some questions:

1. Was there a specific ‘mathematical revolution’ of the fifteenth to seventeenth centuries (say)?
If so, what was its nature?

2. How far can developments in physics and mathematics in the period be ‘disentangled’, that is,
to what extent do changes in one depend on the other?

3. To what external factors (if any) should we attribute any changes in mathematics which take
place?

To ask our usual naive question: what is so important about the scientific revolution? Briefly,
however it is defined it is central to the narrative of Western culture and how, for better or worse,
it is viewed. And Galileo was only the most gifted among many contemporaries who, under the
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inspiration of Plato or Archimedes, saw the transformation in terms of the introduction of ‘math-
ematical language’, in a variety of senses, into the study of the natural world. True, mathematics
had been present for a long time, in astronomy and optics and in Archimedes’s statics, for example.
However, Galileo’s statement was explicitly expansionist (as well as being related to dynamics,
his particular interest): you will have founded a proper science only if you have introduced the
mathematics which is its hidden language.

2 Literature

In almost every preceding chapter, we have complained of the difficulty of locating sources,
either primary or secondary or both. With the scientific revolution, we have the opposite prob-
lem. The major questions about the revolution (did it happen? what was its nature? what were
its causes?) have been constantly debated, and have spawned a vast literature, which even
specialists will find overwhelming. And the literature is easily accessible; the classic works of
Duhem, Butterfield, Koyré, Dijksterhuis, and Kuhn are much easier to find in libraries than
most of the other works I have recommended so far.1 The same goes for many of the primary
sources, most obviously Galileo’s works. Help is at hand in the form of H. Floris Cohen’s recent
book (1994). Cohen is not particularly interested in the development of mathematics, and his
account is if anything too painstaking, but he does describe the major currents in the history,
the authors and texts who are worth further reading. Still, the literature continues to grow,
and new theses and new material are continually coming to the forefront in the discussion.
The reader should be prepared to keep a number of disparate, even conflicting ideas in mind
(e.g. about the origin of Galileo’s dynamics) at the same time—which is no bad thing for the
historian.

About the mathematics specifically, the literature is much slimmer; even for key figures like
Galileo and Kepler, the mathematical work generally takes second place to the physics. The most
interesting and detailed discussion is hard to recommend: dealing specifically with the ‘algebraic
aspect’ of the revolution, it is Jacob Klein’s very dense and detailed book (1968), a translation of
a German text of the 1930s. Despite its title, the key arguments of this book centre on what was
revolutionary in the algebra of the period 1550–1650, and I shall be referring to them, but it is not
easy to find, not very user-friendly, and (naturally) underestimates the Islamic contribution. All of
these criticisms are frankly acknowledged by Klein in his author’s note, but the problems remain.
More recently, Hadden (1994), which draws on Klein for some key ideas, is less detailed and more
polemical, but a relatively easy read.2 The extracts in Fauvel and Gray are helpful, and there is
a special section which throws light on early modern England—which we shall not deal with, but
which is worth looking at.

Besides the problem of literature, we have a problem of timescale. Where do we start? The
seventeenth century propagandists, of whom Galileo and Descartes were the most persuasive,
tended to present their work as marking a clean break from a past of ignorance and sterile muddle-
headed scholastic disputes. The Greeks—some of them—were precursors, to be sure, but no one
else needed to be considered. This view was generally accepted as the history of science developed

1. As the key example of a ‘revolution’, the period is central in the writing of Kuhn and of his opponents, naturally.
2. See the review in Isis 86 (1995), pp. 642–3 for a criticism of this book’s attempts to have it both ways on Marxism in particular.
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as a discipline in the eighteenth and nineteenth centuries. One historian changed the situation
completely: the reactionary catholic French physicist Pierre Duhem, writing around 1900. His key
works, based on a careful study of French medieval writers, as well as of Leonardo da Vinci, aimed
to show that there had been high-quality scientific activity from the thirteenth century on, and
that the Church had played a decisive role in promoting it.3 Furthermore, and this was his main
contention, there had been no ‘revolution’; Galileo’s (physical) discoveries were already present in
the works of the Paris school in the fourteenth century; and, typically, the history of science is
continuous rather than catastrophic or revolutionary in nature.

[T]he mechanical and physical science of which the present day is so proud comes to us through an uninterrupted
sequence of almost imperceptible refinements from the doctrines professed in the Schools of the Middle Ages. The
so-called intellectual revolutions consisted,in most cases, of nothing but an evolution developing over long periods of
time. The so-called Renaissances were frequently nothing but unjust and sterile reactions. Finally, respect for tradition
is an essential condition for all scientific progress. (Duhem 1991, p. 9.)

The fact that many historians are still committed to some version of the Duhem thesis means
that a serious account of the scientific revolution needs to start some time before; which, in turn
tends to lead to an overload of often disparate information from a period of several centuries during
which mathematics was used in a variety of different ways. Because the material for this chapter is
rich, diffuse, and well, if unevenly, covered in various texts, we shall develop the story as a series of
snapshots, or meditations on particular themes. To try for any degree of completeness would be to
risk complete unreadability.

3 Scholastics and scholasticism

Although this is an instance of an unfounded mathematical formulation of a natural law that is not valid,
Bradwardine’s4 argument is by no means destitute of historical significance. (Dijksterhuis 1986, p. 191)

The question naturally arises as to what the scholastics did with their interpretation of Eudoxus. What use can one
make of the useless? (Murdoch 1963, p. 257)

Medieval science is now taken seriously, if often with the kind of patronizing despair expressed
by Dijksterhuis and Murdoch. Thanks to the detail in Duhem’s research, it is not necessary
to agree with his more extreme theses (e.g. that the Church had helped scientific research by
condemning Aristotle in 1277) to see that the work of the period preceding Galileo cannot be
dismissed out of hand. However misguided his theories and specious his arguments, he con-
tributed more than anyone else to changing our ideas of the scientific revolution by enforcing
at the very least a serious consideration of Galileo’s predecessors, even if the end result was
(as with Koyré, for example, see (1978)), to conclude that there was a decisive break rather than
a continuous evolution. The starting point of any thoughtful history is thereby pushed back; and
where, before the sixteenth century, one chooses to start is likely to be determined by something

3. There is no consensus about how one uses the terms ‘Middle Ages’ or ‘medieval’; and the problem is made worse by the fact
that so much that is obviously ‘Renaissance’ which in some sense implies post-medieval, is also obviously ‘medieval’ in period—for
example, the cathedral at Florence, or the work of Masaccio (both fifteenth century). Different ways of describing society may coexist
more or less uneasily; my ‘medieval’ is roughly from 1100 to 1500, while my ‘Renaissance’, at least in Italy, is roughly from 1350 to
1600. To complicate matters further, the term ‘early modern’ is now academically popular for (roughly) the period 1500–1700.

4. Thomas Bradwardine, fourteenth century Oxford physicist-mathematician, whose study of motion has often been considered
a precursor of Galileo’s work.
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other than ‘revolution’. For mathematicians, it is likely to be the relatively early period when the
major translations of Greek and Arabic texts were made (from Arabic into Latin, the universal
language of culture in Western Europe), in the twelfth century. While this is commonly com-
pared to the Arabic ‘age of translations’ three centuries earlier, the differences are as striking as
the similarities.

1. In the first place, the Arabic translations were (on the whole) centrally organized around an
institution—the ‘House of Wisdom’—which was linked to the central political and religious power,
the khalif. The western Christian world in which the translations were made was less centralized,
and political and religious leaders, with a few exceptions, showed no particular interest. The
Islamic translations were also widely diffused through the use of paper; Western libraries were
smaller, literacy more restricted, and paper with all its cheapness and convenience only came into
general use at around the time of the invention of printing in the fifteenth century.

2. More importantly, the ‘caste of scholars’ who had done the work of translation were not
in a position to follow it up. We have, more than usually, a difficulty in identifying scholars
as ‘mathematicians’, and the term is hardly useful before the fifteenth century. Apart from a
scattered handful of specialists, most of those who studied mathematical questions (Albert of
Saxony, Bradwardine, Oresme) should be considered physicists, philosophers, even theologians first
with an auxiliary interest in mathematics—in some cases an intelligent one, but rarely interested
either in practical problems or in following up the studies of antiquity. The difference was, most
strikingly, in the lack of mathematicians interested in the more difficult work of Apollonius or
Archimedes, for example. So, while in Baghdad we find the translators of Archimedes immediately
taking up the problems which he failed to solve, or trying to understand his solution and work
out an alternative, there is no sign that anything of the same kind was attempted in western
Europe at all. Paul Lawrence Rose has pointed out the ‘failure’ (if one wants to pass judgment) of
the scholastics to do anything useful with the major translations of Archimedes, by William van
Moerbeke in the thirteenth century.

Why were Moerbeke’s mathematical translations neglected? [True,] there are indications that Moerbeke was not at
home with the mathematics of his subject. Yet the reason for the neglect lies not with the quality of the translation,
but with the failure of medieval scholars to take up the tradition. Those responsible included scholastic philosophers
who found a little Arabo-Latin Archimedes and a lot of Adelardian Euclid sufficient for their purposes. Equally to
blame were the mathematicians including those who had perhaps encouraged Moerbeke in his project in the first
place. (Rose 1975, pp. 80–1)

At this point, the reader may be feeling in need of an explanation of the word ‘scholastic’.
It is overdue, but the meaning is a complex one. In the first place, it refers to the tradi-
tion of teaching and study centred on the universities (Bologna and Paris were founded in
the thirteenth century, then Oxford, Heidelberg, and others). A compromise between religious
orthodoxy and admiration for Aristotle, as interpreted by ibn Rushd (‘Averroes’ in European
translation) in particular led to an attachment to authority, both religious and ‘ancient’, and
to logical arguments. The teaching and reasoning style is called ‘scholastic’; its practitioners were
‘schoolmen’. The arguments were of a particular kind (what were called quaestiones), in which
a question was posed (e.g. could the sun be still and the Earth move?); the arguments on both
sides were carefully set out and a series of objections had to be dealt with in a strictly defined
format before a conclusion could be reached; in its later development this was the scholastic
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reasoning ridiculed by Galileo and Descartes, for example. Dijksterhuis makes the case against such
methods forcefully:

In fact, it had been one of the traditions of Scholasticism from the twelfth century onward to employ the so-called
sic et non method, advocated especially by Abelard; its principle was that in dealing with a given subject all the opinions
that had ever been pronounced about it and all the arguments that could be advanced for or against a certain view
were enumerated and discussed as fully as possible . . . This method, of course, presented great advantages; it bespoke
a striving after objectivity and it helped to prevent an idea, once it had been pronounced, from falling into oblivion
again. It is, however, obvious that if the method were applied too thoroughly, the disadvantages would be bound to
preponderate. (Dijksterhuis 1986, p. 167)

This method, moreover, makes some of the most interesting medieval work on mathematics
appear peculiar in a unique way. The idea that a scientific question might be decided in this way by
logical arguments ultimately derives from Aristotle. Its great virtue is that it encourages us to think
of counter-arguments to the hypotheses to which we are committed, although the way of deciding
between alternatives tended in the Middle Ages to depend on logic rather than what would now
be called scientific method. And in mathematics, where we normally accept that there is exactly
one right answer, it may seem quite contrary to the spirit of the subject. (What arguments could one
produce against a method for solving quadratic equations? The question is worth thinking about.)
It was not the method of Islamic mathematicians, even those who most respected Aristotle, so that
the ‘mathematics’ of many of the schoolmen whatever it was worth, was genuinely a new area of
enquiry. In the course of teaching mathematics in the faculty of arts, (which led to study in one of
the advanced faculties of medicine, law, or theology), they frequently raised mathematical topics in
the form of quaestiones, and tried to settle them by a form of debate.

The rational arguments of the schoolmen would not usually speak to today’s rational under-
standing, as they rested in general on the basis of Aristotle’s physics and logic (with a little Euclid),
rarely went far beyond, and were often quite confused. For an example, we could consider Albert of
Saxony’s discussion of whether it is possible to square the circle; for this see E. Grant’s sourcebook
(1978), a good source for the schoolmen generally. It seems clear that Albert did not know, or did
not understand the sophisticated methods of squaring by curves such as the quadratrix (for which
see Knorr 1986), since he made no reference to them. His equipment consisted basically of some
historians’ references to circle-squaring, and Archimedes’s Measurement of the Circle; the latter he
misunderstood in the standard way to mean that the circumference was 22/7 times the diameter.
He gives four arguments for squaring and two against, and then makes—again a typical scholastic
trick—a distinction of five meanings which ‘squaring the circle’ could have. The distinctions are
important in a scholastic argument, since clearly if you have conclusive arguments for and against
a proposition, the proposition must have different meanings in the two cases. One argument for
is simply that Aristotle said that it had been done by Antiphon and Bryson (which is not what
Aristotle said in any case). The next introduces something new:

If there could not be given a square equal to a circle, it would follow that there would take place passage from ‘greater’
to ‘lesser’, or from extreme to extreme, through all the means without ever arriving at ‘equal’ or ‘middle’. But this is
false. Therefore I prove the consequence. (Grant 1978, p. 171)

What Albert is doing here is a simple version of what we would call an existence proof —it shows
by continuity that there must exist a square equal to the circle, while completely ignoring the
problem which preoccupied the Greeks, that is, how you construct it. This argument was already
known in Greek times, but Albert’s presentation has something fresh about it. One could, critically,
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say that, however learned Albert was, he did not know very much about Greek geometry; it also
shows that his ignorance, and his determination to proceed by what could be called common sense,
led him to a new way of thinking about the problem. It is not strictly ‘modern’, but it is a break with
ancient tradition.

Finally, he defines squaring the circle ‘in the fifth way with respect to sense and to intellect’ as
the usual problem—to find a square whose area is equal to that of the circle. With respect to sense,
because you cannot perceive the difference; with respect to intellect, because you can prove they
are the same. Again we see the very specific nature of scholastic reasoning, and how odd it seems
when applied to geometry. Albert ‘proves’ that this is possible, by using

Fact 1. Archimedes’s result that the area equals half the radius times the circumference (well
known, and often used);

Fact 2. Archimedes’s ‘formula’ that the circumference is three and one-seventh times the dia-
meter (used by Archimedes as an approximation, but as we have seen quoted at least from
Heron’s time onwards as if it were exact).

Although this is a mathematical argument, if a wrong one, the whole idea of settling the question
by such a sequence of pros and cons seems to us exotic and ‘unmathematical’; and it is easy to see
why later generations were to consider the mathematicians of the Middle Ages, by and large, as
simply confused. However, in Albert’s favour, it should be said that the Greeks had failed to produce
a conclusive ‘answer’ to the circle-squaring problem, and that the idea of posing the alternative—
not to square it, but to prove that it could not be squared—was a new one, and (however poor his
arguments were) pointed in the right direction.

This poses again the question of what might be regarded as revolutionary in science. We have
a scientific practice which is unlike any that has preceded it, so it seems reasonable to describe the
change (from Greek and Islamic mathematics, say, to that of Albert) as revolutionary; and if the
revolution in some sense goes backwards, with a great deal of loss of content and sophistication,
this is partly because the questions being studied are different. Science does not only progress—this
is a modern myth, and later we shall see some alternative myths which were peddled in the sixteenth
century. And without being completely relativist, it is clear that different societies have different
ideas of what their object of study is. Our view that they are confused and/or wrong-headed should
be tempered by an honest attempt to see what they were trying to do.

Exercise 1. Given the two ‘facts’ above, how do you use them to square a circle?

4 Oresme and series

Zénon! Cruel Zénon! Zénon d’Élée!
M’as-tu percé de cette flèche ailée
Qui vibre, vole, et qui ne vole pas!

Zeno, Zeno, cruel philosopher Zeno,
Have you then pierced me with your feathered arrow
That hums and flies, yet does not fly! (Valéry 1920)

The scholastic tradition in mathematics was, as we shall see, not the only one in the Middle
Ages, but it was important. One of the best examples of new work produced by this approach
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is given by Nicolas Oresme. Oresme has been considered the originator of graphical (coordinate)
representation of quantities before Descartes.5 A particularly good example of his thinking, and of
what the Scholastics could produce at their best, is given by his discussion of infinite series in his
Quaestiones super Euclidem (Questions on Euclid).

The role of proportion in medieval thought was extremely important, both as a tool of ele-
mentary mathematics and as a philosophical theme; but the treatment of proportion in Euclid,
particularly in book V (the ‘Eudoxan theory’), was a constant problem on account of its difficulty.
A detailed account of this theme (including the various mistranslations and misinterpretations
in the medieval Euclid versions) is given by John E. Murdoch in ‘The Medieval Language of Pro-
portions’—see Murdoch 1963, pp. 237–271. The particular problem of what happened when—
in modern terms—one took successive proportions q, q2, q3, . . . and added them had preoccupied
Islamic mathematicians, because of its relation to the ‘method of exhaustion’. The point is as
follows. Euclid’s proposition X.1 states:

If two unequal quantities be given, and if from the greater, greater than half be subtracted, and again from the
remainder, greater than half be taken, and we continue successively in the same way, then it is at last necessary that
there remain a quantity less than the lesser of those given.

In the Islamic tradition, the tendency was to ask: does it have to be ‘greater than half ’.
This was answered by Nas.ir al-Dīn al-T. ūsī in his commentary: you do need (something like)
Euclid’s statement.

There is, then, underlying proposition X.1 the idea that you continue subtracting parts ‘as long
as you need to’, and that at a certain point (if they are greater than halves) you can stop. However,
it would seem that the scholastics were the first to consider the idea of taking an actual infinite
sum; and the result was expressed most clearly by Oresme.

His text is given as Appendix A to this chapter; I have tried to doctor it as little as possible, so as
to clarify exactly what he does say.

First, we should note that Oresme seems to have no doubt that you can physically add an infinite
sequence of numbers. The numbers will be positive, as the techniques for dealing with negative
numbers had not been developed, so some problems which arise in our general theory are absent.
The sum may be ‘infinite’, whatever that means, or it may be a number; but he has no doubt that it
exists. As far as I know, this is quite original. Since the days when Zeno (the ‘cruel Zeno’ of Valéry’s
poem) devised his paradoxes of the infinite in the fifth century bce, there had been strong objections
to treating a ‘completed infinity’ as opposed to a ‘potential infinity’ in Greek mathematics, which
were spelt out by Aristotle. Indeed, Oresme deals with the argument from the authority of Aristotle
before proceeding any further.

To consider what the extract says in detail, let us break the taboos on ‘presentism’, and translate
his statements into modern language. The results are as follows:

1. A geometric series a + ax + ax2 + · · · whose ratio x is ≥1 has an infinite sum; one whose ratio
is < 1 has a finite sum. [‘Second, it must be noted that . . . ’.]

2. For example, 1+ 1
2 +(1

2)2 +· · · = 2; 1+ 1
3 +(1

3)2 +· · · = 3
2 ; and generally, 1+q+q2 +· · · =

(1 − q)−1, if q < 1. [‘The first proposition is . . . The second proposition is . . . ’.]

5. This is considered in detail by Dijksterhuis (1986, p. 266), who is not an uncritical supporter of the idea of ‘revolution’; on the
whole, his verdict is that Oresme’s writings, however novel they were, cannot seriously be considered an anticipation of later ideas.
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This is, at any rate, my interpretation of the way Oresme describes the summation of
geometric series; it is hard to be sure not only because the language used is obscure but
because, since there is no proof, we cannot see how the result was arrived at.

3. On the other hand, it is possible for a decreasing series to have an infinite sum, in particular
the ‘harmonic series’ 1 + 1

2 + 1
3 + · · · has an infinite sum. The proof is the usual one. [‘The

third proposition is . . .’]. On this basis, Oresme is generally credited with discovering that what
is now called the harmonic series (whose terms decrease to zero) has an infinite sum; and,
unless an earlier candidate turns up, this seems right. He did understand that if you continued
to add (1/n)’s you would get sums which were bigger than any assigned number. In other
words, this is a particular instance where presentism gives a reasonably accurate version. We
could say that here we have a fourteenth-century mathematician finding out facts about the
convergence of series in a modern way.

Having established this to our satisfaction, we would still be left with some puzzling questions.
To begin with, what exactly was Oresme trying to do, and why does the context of his work look so
different? And, second, why did no one else deal with similar questions? Why were his results not
reproduced for so long? Certainly there seems to be no record of a general acceptance that it is all
right to use infinite sums, or of any similar use of them until much later.

The answer to all of these questions seems to lie in the framework of the discussion; the old-
style scholastic quaestio. Unlike his early modern successors, Oresme was not concerned with
series as the answers to problems in calculation. (Newton’s Method of fluxions and infinite series
is an obvious example of the later approach.) Rather, he wanted to know the answers to some
questions about ‘quantity’, and the paradox—which is already present in a concealed form in
the method of exhaustion, or in Euclid X.1—that an infinite number of finite quantities can
have a finite sum. The Greeks would not have put it like this; the scholastics, for whom the
infinite was attractive precisely because it was so fertile in contradictions and paradoxes, would.
What, asked Oresme, are the conditions for an addition ‘by proportional parts’ to be possible? The
question goes back to Zeno’s paradox of Achilles and the tortoise. What was new about Oresme’s
treatment is that he gave precise conditions in terms of the ratios, and even summed the series.
And, of course, that in going on to examine the possibility of a series which is ‘by ratios of
lesser proportionality’—decreasing—becoming infinite, he came up with the simple example of
the harmonic series.

Exercise 2. (a) What does Euclid’s statement in proposition X.1, quoted above, mean? (b) Why can you
not use proportions less than a half in general? (c) What has this to do, if anything, with sums of series?

5 The calculating tradition

Forsooth, a great arithmetician
One Michael Cassio, a Florentine . . . (Shakespeare, Othello, Act I, Scene 1)

The claim of Duhem and his successors that the discoveries of the scientific revolution were in the
main developments of earlier work by the scholastics has had the positive effect of drawing attention
to what it was that the scholastics actually did. However, like most priority claims, it makes for bad
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history—because it focuses not on the work in its context with its proper connexions so much as
on its place in an attempted genealogy; and in this instance the case can only be established:

1. by blurring the very important distinctions between the scientific aims pursued in (say) the
fourteenth and seventeenth centuries;

2. by ignoring the lack of evidence of any transmission line (say from Oresme to Descartes).

Historians are rarely (never?) free of presuppositions, but many of them are now studying the
medieval tradition for its own sake, as a particular historical tradition within mathematics. Much
of the medieval work which was supposedly important for Galileo does not seem to have featured in
his reading; and although there was undoubtedly a lively argument in progress about mathematics
and its certainty in sixteenth-century Italian universities (conducted very much along Aristotelian
lines, what is more)6 it contributed much less to the shaping of mathematical practice than the two
sources which Descartes identified—Greek geometry and Arabic algebra.

However, there was an alternative tradition, almost independent, with at least as much influence;
that of the often very low-level practical calculators who were needed to teach the sons of mer-
chants. Again we could compare the situation in Abbasid Baghdad, and again there seems to be an
important difference: that in the Islamic world skilled mathematicians such as abū-l Waf ā’ wrote
with such schools in mind, while the Western tradition seems to have been at a more basic level.

The works produced by such schools in Italy (where they were probably most important) has been
studied in detail by Warren van Egmond (1980). The texts are referred to as ‘abbacus books’; the
title is misleading, since what we call an abacus, or counting-frame, was never used. The original
text, and the most serious is one which you will often find referred to in histories, Leonardo of
Pisa’s Liber abbaci of the early thirteenth century. Leonardo was an unusually good mathematician
whose distinguishing points are that he worked outside the university; that he had the good fortune
to spend several years in the Arab world with his father, a Pisan merchant; and that he saw an
opportunity to spread the useful things which he had learned, particularly the use of Hindu–
Arabic numbers and algebra, to the practical men among whom he spent his later life. He was,
in the context of the time, an intelligent student from a ‘backward’ country who received a good
education in what was then the metropolis (North Africa), and did what he could with it when
he returned.

The immediate influence of the Liber abbaci seems to have been the diffusion among the Italian
merchants—who had an eye for what was directly useful, as the university men did not—of the
most elementary parts of the Islamic tradition. We could, then, contrast two separate ‘borrowings’
from the world of Islam: the translations of learned works, Greek and Arabic, in the universities on
the one hand, and the adoption of Indian numbers and simple algebra in the cities. These elements
were taught in ‘abbacus schools’ using books, usually simplified versions of Leonardo’s book and
often in Italian to make them more accessible. On a smaller scale, similar works were produced in
the various languages of western Europe—English, French, German, and of course their number
increased dramatically after the invention of printing in the mid-fifteenth century. Van Egmond
claims that ‘nearly all the educated men of the renaissance gained their basic mathematical educa-
tion in schools such as these, including, for example, such notables as Leonardo da Vinci and Niccolò
Machiavelli’ (van Egmond 1980, p. 8); a German printed version finds its way into that must-have

6. This not very enlightening controversy is documented in Rivka Feldhay’s article: ‘The use and abuse of mathematical entities:
Galileo and the Jesuits revisited’, in Machamer (ed). (1998, pp. 80–145).
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Fig. 1 German arithmetic book from Holbein’s ‘The Ambassadors’ (National Gallery, London).

catalogue of Renaissance things to own, the list of objects in Holbein’s The Ambassadors (Fig. 1).
He further claims that the introduction of these schools, around 1300, was commercially driven,
a result of ‘the commercial revolution of the thirteenth century’. This involved the increasing use
of devices—some new, some perhaps adaptations from the Islamic world—such as banks, letters
of credit, and bills of exchange. Later, we find more sophisticated accounting methods, leading
eventually to the famous invention of double entry bookkeeping.

[The reader, if not an accountant, may well wonder what this important development which is
so often referred to is. Briefly, it consists in the practice of entering every event (sale or purchase)
twice, once as a credit and once as a debit; it was in use in Genoa in 1340 (but possibly earlier),
and it was first properly expounded in texts in the fifteenth century, most famously by Fra Luca
Pacioli, still considered as the ‘patron saint’ of accountants. For definitions see de Roover (1937),
‘Aux origines d’une technique intellectuelle: la formation et l’expansion de la comptabilité à partie
double’, in Annales d’histoire économique et sociale 9 (1937). For its relation to the introduction of
the zero, to perspective and much else, see Rotman (1987).]

Unlike the speculations of university men, the textbooks used in abbacus schools were justified
solely by their supposed usefulness. Indeed, they did not even serve the purpose of creating a
privileged caste, as in ancient Babylonia—solving equations was a skill, not a class marker. The
calculating tradition is undoubtedly important, in contributing skills which were not obviously
learned in the more formal context of universities. However, there seems little sign that in two
hundred years the abbacus schools and similar institutions were responsible for innovation. Since
the numerical requirements were relatively simple (no astronomy, for example), the kind of soph-
isticated approaches to number found in abū Kāmil, Khayyam, or al-Kāshī were not raised. The
contents of the textbooks were often quite basic—the writing of numbers and how to calculate
with them, a little geometry (measuring circles and triangles by approximate formulae); sometimes
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‘algebra’ of the al-Khwārizmī kind and the extraction of square and cube roots were added. The
problems addressed were pseudo-practical and generally solved by methods of false position which
could be traced back to pre-Greek times:

1. A tree is 1/3 and 1/4 underground and above ground it is 30 braccia. I want to know how
long it is altogether?

2. A man had a denaro and another came to him and he asked, ‘I have one denaro. How much do
you have?’ And he replied as follows, ‘I have so much that with the same amount and with one
half of what I have and with a quarter and with your denaro it would be 100.’ How much did
he have?

3. How much does 87 gold florins 35 s. 6 d. earn in 2 years 7 months and 15 days at 10 per cent
simple interest?

[I assume, but I may be wrong, that 12 d. make 1 s. and 20 s. make one gold florin. At any rate, the introduction
of interest—which the Church condemned, and merchants used various devices to disguise—is a novelty in this
mathematics, if in other respects it looks rather like the third dynasty of Ur.] (van Egmond 1980, pp. 22–3)

These questions (more are quoted in van Egmond’s book) make clear the new input of merchants’
needs into mathematics; but also (in my view) it was not so much for ‘advanced’ mathematics as
for facility in training. Again the parallel with Ur III comes to mind. The ‘abbacus schools’ have
come recently into prominence as a ‘lowlier’ form of mathematics than that of the universities; but
it may be that claims for their influence on the major subsequent developments are overstated.

Exercise 3. (a) Do questions 1 and 2 by the method of false position. How do you think you should
approach question 3? (b) Assuming 240 pence to the pound, prove the neat calculation rule ( from a
problem in BL Add.MS): If the rate of simple interest is x pence per pound per month, then the annual rate
is 5x per cent (that is, 5x pounds for every 100).

6 Tartaglia and his friends

Let no man who is not a Mathematician read the elements of my work. (Leonardo 2004, vol. 1, opening admonitions)

It is around 1500 that the various developments sketched so far come together; the dividing line
between university and informal mathematics is, at least to some extent, broken down; and the
whole pattern of change becomes rather complex and difficult to classify. [For example, I shall
omit completely (a) the very important subject of the effect of painting and perspective, which
I recommend you to research if you are at all interested7; see Rotman (1987) and Field (1997);
(b) trigonometry, an import from the Islamic world which was both theoretically and practically
important.] Simplifying, we can trace two major threads: a rapid development in algebra and the
general idea of ‘number’ on the one hand, and (later) the beginnings of a use of the infinitely small.
Both are associated with the continuing problem of the Greek tradition; and in both cases we can
see two important simultaneous and competing developments:

1. An increased familiarity with the works of the Greeks (including Archimedes in particular)
through translation;

7. To open with a quote from Leonardo might seem, in contrast, to foreground painting; but Leonardo was interested in so many
other practical pursuits that he can be considered rather as an example of the ‘new model’ of interested artisan.
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2. A realization that the Greek writings were—depending on the author’s particular take—too
difficult, or too slow, or even mistaken, and that better methods could and should be found to
solve the pressing new problems. The ‘misunderstandings’ of Euclid which dogged the medieval
writers now change into something more creative: the invention of a method (a symbolic
algebra, a primitive calculus) which masquerades as a true understanding, but is in fact
something quite new.

The general solution of cubic equations (first half of the sixteenth century) is a good starting
off point, because with it we leave the limitations of both the university and the abbacus school
traditions. Although it was only one of several important developments around 1500, it illustrates
a number of points about this period in mathematics. Briefly, the problem was to solve equations
involving cubes of the unknown in the same way that, since al-Khwārizmī, quadratics had been
solved—that is, by some sort of recipe. Omar Khayyam had hoped that such a solution could be
found, but had to settle for his geometric constructions (Chapter 5).

The first point to note is that the history of the solution bridges the gap between university and
non-university study. The first case was found by Scipione dal Ferro, a professor at Bologna; he did
not publish it, but passed it on to his student Antonio Fiore. The general case, also not published,
was found by Niccolò Tartaglia, a prolific mathematician working outside the university. He taught
in Venetian schools, translated Greek texts—or sometimes passed off others’ translations as his
own—and wrote original works on algebra, the art of warfare and much else. Hieronimo Cardano,
to whom Tartaglia revealed his ‘secret’ was again a university man, but a very unusual one, whose
most celebrated work was in medicine and astrology; having allegedly promised not to publish
before Tartaglia did, he ‘broke’ his promise and published in his Ars Magna.

This context of secrecy was very different from what we think of as research,8 and was connected,
at least in Tartaglia’s case, with the chance of winning a reputation, and sometimes money, by
competitions in which mathematicians set each other problems and tried to defeat each other.
Clearly public knowledge of the method would ruin the contest.

The second point is that the mathematics itself is complicated and non-obvious, if all you have
at your disposal is 1500-style algebraic methods. Tartaglia could probably justify his method in
any particular case by calculation, but did he have the language for a general proof? Cardano gave
a proof derived from Euclid, as an Islamic algebraist like abū Kāmil would have done. Tartaglia’s
well-known rhyme—in his version, a mnemonic to help him remember how to get the solution—
goes as follows, for the case ‘cube and things equal to numbers’. (Resisting the temptation to
translate the sixteenth century mathematical rap song into verse, I will quote Fauvel and Gray’s
literal translation with its modern equivalents.)

When the cube and the things together
Are equal to some discrete number
[To solve x3 + cx = d,]
Find two other numbers differing in this one.
Then you will keep this as a habit
That their product should always be equal
Exactly to the cube of the third of the things.
[Find u, v such that u − v = d and uv = (c/3)3.]

8. Although cases have occurred in more recent times—one could even mention Andrew Wiles’s actions on the proof of Fermat’s
Last Theorem (see Chapter 10).
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The remainder then as a general rule
Of their cube roots subtracted
Will be equal to your principal thing.
[Then x = 3√u − 3√v.]

The point about the solution of the cubic (which is never now taught in schools, and hardly in
universities) is that it extended the simple reckoners’ algebra beyond its capabilities, if not for any
obviously useful purpose. One of the problems set by Fiore to Tartaglia in their 1535 contest sounds
very much in the reckoners’ tradition. However, it belongs in the category of problems which are
practical only in appearance; one cannot imagine it being the answer to a merchant’s needs.

A man sells a sapphire for five hundred ducats, making a profit of the cube root of his capital.
How much is this profit?

This is the equation ‘cube and thing equal 500’, or as we would say, x3 + x = 500.
How were such solutions written in the 1530s? Tartaglia’s exposition in his published letter

of 23 April 1539 to Cardano gives the answer, in a question which he seems to have chosen
particularly to display his ability to deal with difficulties:

And if it were 1 cube plus 1 thing equal to 11, it would be necessary to find two numbers or quantities such that one
is 11 more than the other, and that the product of the one by the other should be 1

27 , that is the cube of the third of

the things, whence operating as above it will be found that our thing is R/ u. cube R/ 30 31
108 plus 5 1

2 minus R/ u. cube

R/ 30 31
108 minus 5 1

2 and not other . . . (Tartaglia 1959, p. 122)

The ‘u.’ in the above is for ‘universal’; the whole means simply ‘cube root’. ‘R/’ is a common sign for
‘root’ at this time. We can recognize Tartaglia’s solution, in our notation, as

3

√√
30

31
108

+ 5
1
2

− 3

√√
30

31
108

− 5
1
2

And we can complacently note how much Tartaglia missed the use of brackets in particular, as well
as many other improvements in notation which were introduced in the next century. In any case
it seems that the arrival of formulae of this complexity meant that both the writing of algebra and
the way in which numbers themselves were thought about needed radical change; and that is what
happened. This, at any rate, is Jacob Klein’s thesis:

While, however, the ‘algebra’ which has Arabic sources is continually elaborated in respect to techniques of calculation,
for instance by the introduction of ‘negative’, ‘irrational’, and even so-called ‘imaginary’ magnitudes (numeri ‘absurdi’
or ‘ficti’, ‘irrationales’ or ‘surdi’, ‘impossibiles’ or ‘sophistici’),9 by the solution of cubic equations, and in its whole mode
of operating with numbers and number signs, its self-understanding fails to keep pace with these technical advances.
This algebraic school becomes conscious of its own ‘scientific’ character and of the novelty of its ‘number’ concept
only at the moment of direct contact with the corresponding Greek science, that is, the Arithmetica of Diophantus.
(Klein 1968, pp. 147–8)

It is probable that Klein did not know of the ‘abstract algebra’ of al-Karajī, al-Samaw‘al, and
Sharāf al-Dīn al-Tūsī; and that he did know that Diophantus was available to the Islamic world. He
also seems to have given a lesser weight to the very influential introduction of decimal fractions,
which made it possible at least to think of approximating roots, and even numbers like π , as
closely as one liked. We have looked at the question of their ‘invention’ in Chapter 5; in Europe,

9. Each of these three pairs of Latin terms is the old equivalent of one of the modern English terms, at least approximately.
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the most significant event was Stevin’s propagandist work (La Disme of 1585). Here there is a
possible debt to the Islamic world, specifically to al-Kāshī, but we are in need of further evidence.
However, even given the various possible lines of transmission from Islamic mathematics, an
analysis of what happened in the sixteenth century must take into account not just its ‘influences’,
but its own particular momentum and early-modern ideology; Stevin was an early enthusiast for
decimalization, who hoped to replace both ‘astronomers’ numbers’ (sexagesimals) and the confused
systems of measurement with which surveyors were faced.

And the surveyor or land-meter . . . is not ignorant (specially whose business and employment is great) of the trouble-
some multiplication of rods, feet, and oftentimes of inches, the one by the other, which not only molests, but also
often . . . causes error, tending to the damage of both parties . . . (Stevin 1958, p. 395)

He also was responsible for producing tables of compound interest, in which again decimals
simplified the task tremendously.

The new algebra, if we accept Klein’s thesis, has a generally accepted ‘starting point’: the redraft
by Bombelli of his algebra textbook of 1560 (published 1572). Having been shown a manuscript of
Diophantus, Bombelli changed his emphasis to accord better with his ancient model, removing the
traditional practical problems and replacing them by ones taken from Diophantus. This ‘moment’—
a change in the idea of number which overthrows many of the ancient Greek ideas in the interest
of what is simple and practical—we could call a first mathematical revolution (to answer the
first of the questions which we posed in section 1); the second is the gradual, equally un-Greek
introduction of infinitesimal processes.

Exercise 4. (a) Use Tartaglia’s method to solve the equation ‘cube and three things equal to four’, or
x3 + 3x = 4. (Hint: You are given u − v and uv; find u + v.) (b) Why do you not get the obvious answer
1? (c) Try to prove that x as given in Tartaglia’s formulation is a solution of the general cubic equation
‘cube and things equal to numbers’ (1) by algebra and (2)—if you have the patience for it—by geometry,
as Cardano did.

Exercise 5. Solve ‘cube and thing equal 500’ (as in the question of the sapphire and the ducats) by
Tartaglia’s recipe.

7 On authority

Behold, the art which I present is new, but in truth so old, so spoiled and defiled by the barbarians, that I considered
it necessary, in order to introduce an entirely new form into it, to think it out and publish a new vocabulary, having
got rid of all its pseudo-technical terms lest it should retain its filth and continue to stink in the old way . . . And yet
underneath the Algebra or Almucabala which they lauded and called ‘the great art’, all Mathematicians recognized
that incomparable gold lay hidden, though they used to find very little. (Viète, The Analytic Art, in Klein 1968,
pp. 318–9)

It has become a matter of common usage to call the barbarous age that time which extends from about 900 or a
thousand years up to about 150 years past, since men were for 700 or 800 years in the condition of imbeciles without
the practice of letters or sciences . . . but although the afore-mentioned preceding times could call themselves a wise
age in respect to the barbarous age just mentioned, nevertheless we have not consented to the definition of such a
wise age, since both taken together are nothing but the true barbarous age in comparison to that unknown time at which
we state that it [that is, the true wise age] was, without any doubt, in existence. (Stevin, Géographie, quoted in Klein
1968, p. 187)
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The question of innovation versus tradition was central to the major figures (and often the minor
ones) in sixteenth-century science. If one considered the scholastic tradition a barrier to science,
which of the Greeks did one call on to contest it? Copernicus claimed to be reviving an earlier
theory of Aristarchus, Galileo drew particularly on Archimedes, Kepler was influenced by Plato
and Pythagoras. In mathematics Aristotle was less important as a reference point, but the existence
of a third tradition, that of practical algebra with its disturbing Islamic parentage made for a three-
way contest; and many important textbooks start with explicit statements such as the above about
where their authors stand. In the apparently very different field of (English) literature, Stephen
Greenblatt10 introduced the idea of ‘self-fashioning’, or what we might call the personal makeover,
as a distinctive feature of the century:

Self-fashioning is in effect the Renaissance version of these control mechanisms, the cultural system of meanings
that creates specific individuals by governing the passage from abstract potential to concrete historical embodiment.
Literature functions within this system in three interlocking ways; as a manifestation of the concrete behaviour of
its particular author, as itself the expression of the codes by which behavior is shaped, and as a reflection upon these
codes. (Greenblatt 1980, pp. 3–4)

If we stop confining the narrow application of the word ‘literature’ to the writing which is called
creative and allow the inclusion of algebra textbooks such as Viète’s Analytic Art, Greenblatt’s
model provides a useful explanation of the projects of the new algebraists of the sixteenth and
early seventeenth centuries—Tartaglia, Cardano, Bombelli, Viète, Stevin, and Descartes. (It is of
course equally applicable to other scientists; Galileo notably was intensely aware, both as stylist
and as self-presenter, of models to be adapted and avoided; and much of what Feyerabend (1975)
presents as ‘propaganda’ could be looked at from this point of view.) The algebra texts actually solve
equations in the author’s favoured style (‘the concrete behavior of the particular author’), they
provide a model for others to imitate (‘the expression of the codes by which behavior is shaped’),
and, strikingly, they are given to programmatic statements which explain the author’s attitude to
the competing traditions and reasons for choosing a particular method or language (‘a reflection
upon these codes’). The statement which defines the author’s innovation is also a self-portrait as
the author would wish to be seen, as the extracts above show. And other aspects of Greenblatt’s
description of his self-fashioners apply easily to the mathematicians, in particular their social
mobility (p. 7) and their need of an ‘authority’ and of an opposing ‘alien’ (p. 9); as Greenblatt
points out (1980, pp. 3–4), ‘One man’s authority is another man’s alien’. However, the authorities
who shaped the mathematical discourse were (fortunately for them) unrelated to the great religious
controversies of the day, so long as the geometry of the universe was not involved. For Viète, as
his extract shows, the authorities were the ancient Greeks; while the aliens were the modern,
barbarous, and filthy (one presumes Muslim) corrupters of the ancient art.

Viète was a notable innovator who invented the first fully coherent algebraic notation (to be
superseded by the simpler version of Descartes, which we now use). His contradictory claims
(‘new, but in truth so old’) are characteristic of modernizers of the time; renewal, as is implied
in the term ‘renaissance’ has to be presented as rediscovery.11 His book is hard to read, partly
because of the notation (it is almost easier to read the traditional language of algebra which the
Italians derived from the Arabs); and partly because he invented a new language of procedure,
borrowing words from the Greek to describe his methods in solving problems, a language which no

10. The founding father of ‘new historicist’ criticism. See (1980).
11. The same strategy has been used up to the twentieth century for example, by T. S. Eliot—and no doubt after.
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one afterwards adopted. Perhaps for this reason, you will find no extracts in Fauvel and Gray which
show how he worked. Here, then, is one in its orginal form. (The ‘standard edition’ of The Analytic
Art is a good example of the loss involved when an author’s notation is updated; although it can be
read to get an overall idea of Viète’s project, the changes in terminology, such as ‘BE’ for ‘B in E’
make it both more readable and less interesting; one cannot see what innovations are specifically
Viète’s own.)

Book II Zetetic XVII. Given the difference between the roots and the difference between their cubes, to find the roots.
[Try to read through this text to see what it means, if possible, before consulting the notes below.]

Let B be the difference between the roots and D solid the difference between the cubes. The roots are to be found.
Let the sum of the roots be E. Therefore E + B will be twice the greater root and E − B twice the smaller. [Why?] The

difference between the cubes of these is B in E squared 6 + B cubed 2 which is consequently equal to D solid 8.

Therefore




D solid 4−B cube
B 3


 equals E squared

The squares being given, the root is given, and the difference between the roots and their sum being given, the roots
are given.

Accordingly the difference of the cubes quadrupled, minus the cube of the difference of the sides, being divided by
the difference of the sides tripled, there results the square of the sum of the sides.

If B is 6, D solid is 504, the sum of the sides 1N, 1Q equals 100.

Notes. A ‘Zetetic’ is Viète’s word for a method of finding out. In his notation the ‘roots’ are lines, so
the sum of their cubes is a ‘solid’, which is why he calls it ‘D solid’; his rule is that (as the Greeks
prescribed) you must always keep track of the dimensions of quantities and not set lines equal to
solids. For example, B and D solid are denoted by consonants, because they are known; while E is
a vowel, because it is unknown. Numbers come after the letters, so that ‘E squared 6’ means what
we would call 6E2.

What comes out of this, and many other examples like it in the Analytic Art, is not an outstand-
ingly difficult result. It is a systematic treatment of algebra in which the objects being manipulated
are letters, which stand not for natural numbers (as in Euclid’s arithmetic), but for quantities, and
in which the proof is not by geometry. In Viète’s example, B is 6 and D solid is 504, so that E2 is
100, and E is indeed a whole number 10. (Check this; and find the two roots.) But it is clear that
a different choice (e.g. D solid = 2, B = 1) would lead to an ‘irrational’ answer, and that nothing
in the method restricts answers to being whole numbers—or (to anticipate) to being numbers at
all. It is this which leads Klein in particular to give Viète such a high value:

But above all—and it is this which gives him his tremendous role in the history of the origins of modern science—
he was the first to assign to ‘algebra’, to this ‘ars magna’, a fundamental place in the system of knowledge in general.
From now on the fundamental ontological science of the ancients is replaced by a symbolic discipline whose ontological
presuppositions are left unclarified. (Klein 1968, p. 184)

Here, then, (if Klein is right) is the germ of Russell’s ‘Mathematics is the science in which
we do not know what we are talking about’; and its extension to physics via the definition of
‘occult’ quantities, from Newtonian force to atomic spin, whose importance is not that they can
be measured but that they can enter into equations. This is a great deal to ascribe to the work of
a lawyer whose introduction of letters, if we are to believe his English interpreter Thomas Harriot,
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was inspired by the similar language of legal case studies.12 It might be more reasonable to say
that, following the rediscovery of Diophantus, such a transformation was ‘in the air’.

Stevin by contrast appears as more practical, as can be seen from his biography (Dijksterhuis
1970). He was also more self-consciously innovatory. The quotation above shows his disregard
for the Greeks, and his belief in a ‘lost’ programme of science from an earlier wise age. This was
not completely eccentric, and was shared by a number of his contemporaries. Among the most
important inheritances of the wise age, in his view, was the decimal system of writing numbers, and
his role in promoting decimal fractions is undoubtedly related to that. When, in La Disme, he gives
the result of a division by three as a decimal with (effectively) as many 3s after the point as you like,
he has finally grasped a fact which seems to have eluded the Babylonians: the existence of repeating
decimals and their necessity.13 In his Arithmétique, he set out a deliberately ‘controversial’ view on
numbers. The orthodoxy, transmitted in a confused way by the medieval schools from the Greeks,
was that numbers (2, 3, 4, . . . ) were not magnitudes, that fractions or parts of a number were not
numbers, and that ‘one’ was not a number since it was the origin of number. How widely these
statements were believed in practice is uncertain, but Stevin enjoyed demolishing them, suggesting
that those who denied that parts of a unit were numbers were ‘denying that a piece of bread is
bread’. He concludes by a statement of theses: one is a number (thesis I); there are no absurd,
irrational, inexplicable, or surd numbers (thesis IV); and so on. Both Viète’s and Stevin’s viewpoint
can be seen as contributing to the way that mathematics shapes our view of the world today; if
we think of the law E = mc2 as an essential equation irrespective of the values of E, m, and c,
we are following Viète, while if we consider its use in telling us what happens when we substitute
particular (computed) values of m and c, we are following Stevin.

Exercise 6. Prove Viète’s formula for the difference of cubes—it is of course easiest to modernize at least
partly in your working—and deduce the formula for E squared.

8 Descartes

I have constructed a method which, I think, enables me gradually to increase my knowledge and to raise it little by little
to the highest point which the mediocrity of my mind and the short span of my life will allow it to reach. (Descartes
1968b, p. 28)

I have spent some time describing the ways in which a ‘modern’ outlook on numbers can be traced
back to the late sixteenth century. The texts in which the work is done do not look modern, because
they are written in a language which is in transition between that of the medieval world and our
own. Descartes’s Geometry, on the other hand, looks modern and is relatively easy to read—for
us; his contemporaries found it difficult, because new. This is because he had the good fortune to
invent the common notation of modern algebra (x, y for unknowns, a, b for constants; and 4xy,
for example, instead of Viète’s ‘A in E 4’.) Of course, this could be looked at another way: if his
terminology has stayed with us, it is because he had the intelligence to devise one which was
clear and easy to use. As a result of this, and more specifically of his ‘coordinate’ representation for
geometric curves, in the eighteenth century, historians of mathematics (French ones, in particular)

12. So, until recently, P. for plaintiff and D. for defendant—see any law book.
13. The Babylonians would have had to do more work, since 1

7 , the first Babylonian repeating decimal, repeats after six sexagesimal
places, not after one.
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considered Descartes the revolutionary who had freed them from bondage to the tedious methods
of the ancient Greeks, by reducing hard geometric problems to simple algebraic ones. This is a view
which is often now regarded with some suspicion, although Descartes himself promoted it:

I have given these very simple [methods] to show that it is possible to construct all the problems of ordinary geometry
by doing no more than the little covered in the four figures that I have explained. [That is, the figures which construct
a sum, a product, a quotient, and a square root.] This is one thing which I believe the ancient mathematicians did
not observe, for otherwise they would not have put so much labour into writing so many books in which the very
sequence of propositions shows that they did not have a sure method of finding at all, but rather gathered together
those propositions on which they had happened by accident. (Descartes 1954, p. 17)

It is noteworthy that Descartes here is not claiming to be rediscovering an ancient technique. In
fact, the simplicity of his methods, he claims, is a proof that the ancients did not have them—or
they would have found his results. It is sometimes claimed that he was unoriginal—the graphical
representation came from Oresme, and the algebra from Viète. Descartes did acknowledge his debt
to Viète, specifically defending himself against charges of difficulty by claiming (which he nowhere
states in the Géométrie) that he supposed his readers to be familiar with the Analytic Art.14 In
any case, his project was different and specific: the relation of geometry and algebra. A standard
modern textbook criticizes Descartes for not being more practical:

Our account of Descartes’ geometry should make clear how far removed the author’s thought was from the practical
considerations that are now so often associated with the use of coordinates. He did not lay out a coordinate frame
to locate points as a surveyor or a geographer might do, nor were his coordinates thought of as number pairs . . .

La géométrie was in its day just as much a triumph of impractical theory as was the Conics of Apollonius in antiquity.
(Boyer and Merzbach 1989, pp. 385–6)

This criticism is interesting, but, I think, misplaced. Coordinate geometry even today is not ‘intrins-
ically’ practical—even the statistician who studies whether points in a scatter graph lie near a
straight line y = ax + b, let alone the geometer who wishes to picture the curve y2 = x3 + x2

(Fig. 2) are not thinking as surveyors or geographers. On the other hand, for some practical tasks,
the new ideas were very well adapted, as Newton and Leibniz were to understand. Galileo takes a
great deal of trouble to establish using Apollonius’ Conics that a projectile describes a parabola, a
fact which follows very easily by finding its equation; and while Descartes does not deal with results
of this kind (his physics was too different from Galileo’s, and mostly confused), they are simplified
and clarified by using the methods which are to be found in his book. To see this, and to see how,
unlike Viète, he avoided the Euclidean heritage of formal definitions, propositions, and proofs,
I have given the basic construction in which coordinates first appear as Appendix B. The idea is to
draw a curve by using a simple-minded machine (a ruler which pivots, subject to constraints), and
to find the equation of the curve. The description of the machine seems more complicated than it
is in practice, and the derivation of the equation is not hard. At the end, the curve is said to be ‘of
the first kind’, by which Descartes means a conic section; the reason being that its equation is of
the second degree (quadratic) in x and y. Note that the use of machines for drawing curves could
be seen as a typically practical Renaissance innovation; but like much else, it has a long heritage,
both Greek (Eratosthenes) and Islamic, though neither is acknowledged by Descartes.

However, besides inventing a new method and a new notation, Descartes was introducing a new
style of writing mathematics, which was also to have considerable influence. All previous books in

14. Letter to Mersenne, 1637 (Descartes 1939 t. II, p. 66.)
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Europe, even those of Stevin, had been formally set out, either on the Greek model (sequence of
propositions and proofs), or on the model of the abbacus schools, which was also to some extent
that of Diophantus, and of the Chinese (sequence of problems and solutions). It could be said that
the same structure underlies the Géométrie (e.g. the extract I have given asks a question and solves
it); but the whole is absorbed into a smooth narrative which appears to lead on without a break
from one ‘discovery’ to the next, pausing for comments, explanations, or excuses for avoiding them:

But I shall not stop to explain this in more detail, because I should deprive you of the pleasure of mastering it yourself,
as well as the advantage of training your mind by working over it, which is in my opinion the principal benefit to be
derived from this science. (Descartes 1954, p. 10)

The nearest approach to this scheme is Kepler’s Astronomia Nova (see below), which purports to
be an account of his struggles to discover the laws of motion of the planets. The latter, however, is a
story of discovery, while La Géométrie is an account of how the reader should proceed. The novelty
lies in the ‘you’ of the sentence quoted above: the reader can be addressed, not in the imperative
(‘Find . . . ’, ‘Draw . . . ’) as a teacher addresses a student, but as an intelligent equal.

The fact that his contemporaries found the Géométrie difficult may help us, all the same, to guard
against an ‘unhistoricist’ approach to his work. We read it from a perspective in which, on the
whole, the translation from curves to equations and back is a familiar one. Descartes was making a
major innovation, and clearly he did not explain it as well, to a seventeenth-century audience, as he
hoped; its absorption took time, although only twenty years later young Isaac Newton was already
(by some reports) finding Descartes more congenial than Euclid.

9 Infinities

Nature is an infinite sphere in which the centre is everywhere, the circumference is nowhere. (Pascal 1966, p. 89
(no. 199))

But let us remember that we are dealing with infinities and indivisibles, both of which transcend our finite
understanding, the former on account of their magnitude, the latter because of their smallness. (Galileo 1954, p. 26)

Around 1600, more or less independently of the work in algebra, we see the first systematic use
of ‘the infinite’ in European mathematics; by mid-century it was becoming frequent, and Pascal, a
mathematical mystic, used it in a number of metaphorical statements (such as his famous ‘wager’),
as well as in an early version of the calculus. The impetus seems mainly to come from physical
applications, and from a recognition that infinities in some sense underlie Archimedes’ work,
although it may be necessary to be more careless than he was in what one allows. And indeed,
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in these early stages of what later becomes the calculus, there is a general sense of exploration,
of trying out statements to see how they sound, and (by contrast with algebra) of a loosening
rather than a sharpening of definition. While there are certainly traces in Stevin’s work, the most
interesting introduction is in Kepler’s Astronomia Nova, which presents itself (only semi-realistically)
as the account of the various false trails he followed until his final discovery of his famous planetary
laws. (The account here is largely based on a detailed analysis by Bruce Stephenson (1987).
Any analysis of such a complex text as the Astronomia Nova is contestable, but the broad lines
seem persuasive enough.) Kepler was faced by a new problem almost from the beginning. Both
Ptolemy and Copernicus explained the motion of planets—Mars in particular—as being composed
of uniform motions in a circle around a point which was not the real centre (sun for Copernicus,
earth for Ptolemy) but a point in empty space, the ‘equant’.15 The advantage of such a scheme is
that it is relatively easy to calculate using uniform motion in a circle. A modern physicist would
point out that this is ‘unphysical’, in that one is postulating a force linking the planet to the equant,
where there is no matter. Kepler’s version of this, which stemmed from his own ideas on planets,
was that the souls which animated them could perfectly well perceive the sun (for example) and its
distance and adjust their movement accordingly; but it was unreasonable to suppose them capable
of perceiving the equant. He therefore had to suppose that motion was dependent on distance from
the sun, and slowed down when the planet was further.

At this point we have two problems about velocity. The first is the old question of whether Kepler
or his contemporaries could define, or even think of ‘velocity at an instant’, as we register at an
instant that a car is travelling at 45 miles per hour. It has been suggested that Thābit ibn Qurra and
al-Bīrūnī used such an idea (see for example Hartner and Schramm 1963), but it does not seem
to have been in general use among Islamic astronomers. The first steps towards understanding
what this might mean were taken by Galileo—see below. The second was the old problem that even
velocity over a time interval was the ratio of quantities of different kinds—distance and time—
and so unacceptable in a Greek framework. Kepler’s way of avoiding these problems was to use the
‘delay’—the time taken by the planet to travel along a small interval of its orbit—in circumstances
where the intervals were approximately equal. He had to frame a hypothesis about how the delay
depended on the distance, and he tried several; but in each case, he faced the problem of adding a
large number of very small delays to arrive at the measurable time-intervals given by observations.
Here, in chapter 40, he is introducing the difficulty, supposing that the planet moves in a circular
eccentric orbit around the sun:

Since, then, the delays of the planet in equal parts of the eccentric are in the inverse proportion to the distances of
those parts [from the eccentre], but the individual points are changing their distance from the eccentre all around the
semicircle; I thought it would be no easy work to find out how the sum of the individual distances could be arrived at.
For unless we had the sum of all, which would be infinite, we could not say what was the delay of each. And so we
should not know the equation. For as the whole sum of the distances is to the whole period, so any part of the sum of
the distances is to its own time.

[Kepler began by dividing the circle into 360 degrees, but found the calculation tedious; but then he had an idea.] For
I remembered that once Archimedes also, when he was seeking the proportion of the circumference to the diameter,
divided the circle into an infinite number of triangles, but this scheme was hidden by his proof by contradiction. Hence
where before I had divided the circumference in 360 parts, now I cut the plane of the eccentric in as many lines from
the point from which the eccentricity was computed. [Fig. 3]. (Kepler 1990, pp. 263–4)

15. Even this is a serious oversimplification of the system of epicycles and equants which both needed: points which were occupied
by no real bodies, but whose rotation was a necessary part of the description of the ‘phenomena’, the observed motions.



Understanding the ‘Scientific Revolution’ 153

C

G

K

K

D

V

F

A

R
R

P

L

M

X
P

E

J

O

N

Fig. 3 Kepler’s diagram from ‘Astronomia Nova’.

This is a relatively early stage in the research; Kepler is still following a ‘wrong’ theory, and
finds a result which fails to agree with his data; and even before this he has to adjust his method
because his ideas on summing triangles do not work out. However, he has made a very bold
statement about Archimedes: that his proofs by contradiction are a way of concealing infinite
methods. This is not what the ancient Greek texts say (as far as we know), and it did not conform
to the orthodox view of them in Kepler’s time. (The Method in which Archimedes did use a sort of
infinite process was unknown at the time (see Chapter 3).) This ‘misreading’ of Archimedes was
useful to Kepler at the stage he had reached; and the idea that a circle could be thought of as a
polygon with an infinite number of sides had already been used by the mystic Nicholas of Cusa,
whose mathematical/theological thinking certainly influenced him. It recurs in his work on the
measurement of wine-barrels, which I reproduce in Appendix C—there the recourse to the infinite
is justified as simply being quicker.

10 Galileo

SAGR. But I, Simplicio, who have made the test can assure you that a cannon ball weighing one or two hundred
pounds, or even more, will not reach the ground by as much as a span ahead of a musket ball weighing only half a
pound, provided both are dropped from a height of 200 cubits. (Galileo 1954, p. 62)

And so, finally, we return to Galileo as innovator or revolutionary; he who (as in the passage
above) overthrew the authority of Aristotle by appeal to experiment. As we have already suggested,
Galileo, however committed he was to mathematics as the language of the universe, was math-
ematically on the conservative side. Despite learning from the artisans of the Venetian shipyards
(like Tartaglia) and writing his major works in the vernacular (like both Tartaglia and Descartes),
he continued to grind out propositions in the Euclidean style whose proof was by appeal to clas-
sical geometry. His two major works are valued as brilliant examples of Italian literary style; the
Dialogue on the Two Major World-Systems and the Discourses on Two New Sciences are both cast in
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dialogue form, and full of artful reasoning and rhetoric. (Misleadingly, the Dover edition of the
second work translates ‘discorsi’ as ‘dialogues’, which gives the two works the same (short) title.
In the text here we refer to it as the Discourses.) His ‘Euclidean’ bent may seem strange, given
the importance which he is often given as the inventor of ‘instantaneous velocity’, since that idea
at least would seem to need the infinitely small (or some equivalent) to define it—as the ratio
of infinitesimal distance to infinitesimal time, say. However, it relates to his extreme reverence
for Archimedes (again) as a true scientist in opposition to Aristotle. The infinitely small is per-
haps present as a subtext of his discussions of motion in the two texts. However, they tend to be
concealed by a vague description of velocity (which was in some sense Galileo’s favoured term)
as a ‘degree of swiftness’; we know what it is if it is uniform, as he often says, but that is not
really the point. The following exchange shows how, and with how little clarity, the infinite was
introduced:

SAGR:16 A great part of your difficulty consists in accepting this very rapid passage of the moving body through the
infinite gradations of slowness antecedent to the velocity acquired during the given time . . .

SALV: The moving body does pass through the said gradations, but without pausing in any one of them. So that even
if the passage requires but a single instant of time, still, since a very small time contains infinite instants, we shall not
lack a sufficiency of them to assign to each its own part of the infinite degrees of slowness, though the time be as short
as you please. (Galileo 1967, p. 22)

It has been pointed out by those who favour Duhem’s thesis that uniformly accelerated motion
was already introduced in the fourteenth century (at Merton college Oxford), and that Galileo’s key
result (that if acceleration is uniform, the time taken to cover a distance is equal to the time which
would be taken moving constantly at the mean speed) was also known. The crucial contribution
which Galileo made was the observation—which was confirmed by his experiments—that free
fall was uniformly accelerated. This, with the related deductions (e.g. that the path of a projectile
is a parabola) set him quite apart from the fourteenth century discussions of uniformly accelerated
motion in general, however much he may have drawn on them. For the Oxford men, speed was
a ‘quality’, whose intensity could vary, and the difficulties about instants of time which worried
Galileo’s characters seem not to have arisen. The fact that Galileo did return repeatedly to the
infinitely large and small, with varying degrees of sophistication, shows an increasing feeling that
a defence was needed.

Galileo better than most others (probably Kepler in particular) realized the pitfalls of reasoning
with the infinite. In the First Day of the Discourses, he devotes a long digression to the subject. Can
one divide a continuum into an infinite number of pieces? Why can one use a limiting argument
to show that a circle and a point have the same ‘volume’, although the circle is clearly much
bigger? His classic example is the first instance of what, many years later, would be called a one-one
correspondence between infinite sets. I have given it as Appendix D. The conclusion tends to a
sensible caution: one cannot use the terms ‘equal’, ‘greater’, or ‘less’ for infinite quantities. A great
deal of such caution—which derived partly from Galileo’s respect for the Greek tradition—had to
disappear for further progress to be made.

16. Both works are presented as ‘dialogues’ between three parties: Simplicio, who is the mouthpiece of Aristotelian views, Salviati,
who represents (roughly) Galileo himself, and an intelligent arbiter Sagredo, who tends to raise objections, while seeing the force of
Galileo’s arguments.
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Appendix A

(From Oresme, Quaestiones super Euclidem)

Next we inquire whether an addition to any magnitude could be made by proportional parts.
First, it is argued that it cannot be, since then it would follow that a magnitude could be

capable of being increased to an actual infinity. This consequence contradicts what Aristotle says
in the third book of Physica and also Campanus’s statement [in his commentary on the Common
Notions in Euclid I], where he distinguishes between a number and a magnitude, in that a number
can increase indefinitely and not decrease indefinitely, but the reverse is true of a magnitude.

Proof of the consequence: From the fact that the addition takes place indefinitely it follows
that the increase too takes place indefinitely.

Against this it is argued: anything that is taken away from one magnitude can be added to
another. It is possible to take away from a magnitude an infinite number of proportional parts,17

therefore it is also possible to prove that it can be increased by an infinite number of parts.
[This is the only ‘argument against’ the possibility of addition, and follows fairly closely the

quaestio structure with its objection, reference to authority, and so on. Notice (and this agrees with
the Duhem thesis, perhaps) that Aristotle’s authority is cited in argument, but is not treated as
conclusive—in fact, the counter-arguments override it. After this, Oresme goes in more detail into
the mathematics at issue, beginning with some definitions of types of ratio, which I omit.]

Secondly, it must be noted that if an addition were made to infinity by proportional parts in a
ratio of equality or of greater inequality, the whole would become infinite; if, however, this addition
should be made [by proportional parts] in a ratio of lesser inequality, the whole would never become
infinite, even if the addition continued into infinity. As will be declared afterward, the reason is
because the whole will bear a certain finite ratio to the first [magnitude] assumed to which the
addition is made . . . [Here follow some definitions on fractions.]
The first proposition is that if a one-foot quantity should be assumed and an addition were made
to it into infinity according to a subdouble [that is one-half] proportion so that one-half of one
foot is added to it, then one-fourth, then one-eighth, and so on into infinity by halving the halves
[lit. doubling the halves], the whole will be exactly twice the first [magnitude] assumed. This is clear,
because if from something one takes away successively these parts, then [one is left with nothing,
and so] from the double quantity one has taken away the double, as appears by question 1 [which
was about subtraction]; and so by a similar reasoning, if they are added.

The second proposition is this, that if a quantity, such as one foot, were assumed, then a
third were added and then after a third [of that] and so into infinity, the whole would be precisely
one foot and a half, or in the sesquialterate proportion [this is the medieval terminology for the
ratio of 3 to 2]. Furthermore, this rule should be known: We must see how much the second part
falls short of the first part, and how much the third falls short of the second, and so on with the
others, and denominate this by its denomination, and then the ratio of the whole aggregate to the
quantity [first] assumed will be just as a denominator to a numerator. [This looks very obscure, but
the meaning seems to be that, if your ratio is a fraction q so the series is a + aq + aq2 + · · · , then
the ‘falling short’ is 1 − q; and you invert this—exchange the denominator and the numerator—
to get the sum 1/(1 − q), which is the ratio of the sum to the first term a. There is no proof.]

17. This is the substance of the previous ‘question’, which deals with the successive subtractions which exhaust a magnitude, as
in Euclid X.1.
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For example: in the above the second part, which is a third of the first, differs from the first by
two-thirds, therefore the ratio of the whole to the first part or the assumed quantity is as three to
two and this is sesquialterate.

The third proposition is this: It is possible that an addition should be made, though not
proportionally, to any quantity by ratios of lesser inequality, and yet the whole would become
infinite. For example, let a one-foot quantity be assumed to which one-half of a foot is added during
the first part of an hour, then one-third of a foot in another, then one-fourth, then one-fifth, and so
on into infinity following the series of numbers, I say that the whole would become infinite, which is
proved as follows: There exist infinite parts any one of which will be greater than one-half foot and
[therefore] the whole will be infinite. The antecedent is obvious, since one-quarter and one-third
are greater than one-half; similarly from one-fifth to one-eighth is greater than one-half, and from
one-ninth to one-sixteenth, and so on into infinity . . .

Appendix B

(From Descartes 1954, pp. 51–5)

Suppose the curve EC to be described by the intersection of the ruler GL and the rectilinear plane
figure CNKL, whose side KN is produced indefinitely in the direction of C, and which, being moved
in the same plane in such a way that its side KL always coincides with some part of the line BA
(produced in both directions), imparts to the ruler a rotary motion about G (the ruler being hinged
to the figure CNKL at L).

[See Descartes’s picture (Fig. 4.). The triangle CNKL, more properly NKL, moves up and down
AB; the ruler (as the picture more or less shows) is fixed to the triangle at L and passes through a
loop or curtain-ring G which is fixed to the line AG. The curve is traced by the intersection C of the
ruler and the (produced) side KN of the triangle.]
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Fig. 4 Descartes’s curve drawing machine.
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If I wish to find out to what class this curve belongs, I choose a straight line, as AB, to which
I refer all its points, and in AB I choose a point A at which to begin the investigation. I say ‘choose
this and that’, because we are free to choose what we will, for, while it is necessary to use care in
the choice in order to make the equation as short and simple as possible, yet no matter what line
I should choose instead of AB the curve would always prove to be of the same class, a fact easily
demonstrated.

Then I take on the curve an arbitrary point, as C, at which we will suppose the instrument
applied to describe the curve. Then I draw through C the line CB parallel to GA [and meeting BA
in B]. Since CB and BA are unknown quantities, I shall call one of them y and the other x. To the
relation between these quantities I must consider also the known quantities which determine the
description of the curve, as GA, which I shall call a; KL, which I shall call b; and NL parallel to GA,
which I shall call c. Then I say that as NL is to LK, or as c is to b, so CB, or y, is to BK, which is
therefore b

c y. Then BL is equal to b
c y − b, and AL is equal to x + b

c y − b. Moreover, as CB is to LB,
that is, as y is to b

c y − b, so AG or a is to LA or x + b
c y − b. Multiplying the second by the third, we

get ab
c y − ab equal to xy + b

c yy − by, which is obtained by multiplying the first by the last. [This is
the usual ‘multiplying out’ of an equation between ratios.] Therefore the required equation is

yy = cy − cx
b

y + ay − ac

From this equation we see that the curve EC belongs to the first class, it being in fact a hyperbola.
[Without setting it as an exercise, you are encouraged to follow through this calculation to see

how Descartes has derived his equation.]

Appendix C

(From Kepler, Nova stereometria doliorum (New measurement of wine-barrels), 1615 (in 1999).

Since, the wine-barrels are made up of the circle, the cone and the cylinder which are regular
figures, they are suitable for geometrical proofs; and I shall gather these together in the first part of
this investigation. Since they were investigated by Archimedes, to read a part of his work is enough
to delight a lover of geometry. For absolute proofs which are exact in every number can be sought
in these same books of Archimedes, if anyone is not frightened by the thorny reading of them.

However, we can pass the time in certain regions which Archimedes did not reach; and even the
wiser readers can find things to please them there.

Theorem I. First we need to know the relation of the circumference to the diameter. And Archimedes
taught:

The ratio of the circumference to the diameter is very near to the ratio which the number 22 has to 7.

[Note that this is not really what Archimedes said, and the use of terms like ‘very near’ would
have been quite unacceptable in Greek mathematics. However, if this is bad enough, Kepler’s ‘proof ’
is even worse. I shall omit it, since it is not calculus so much as crude approximation using inscribed
and circumscribed hexagons. (Remember Archimedes used 96-sided figures!)].
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Fig. 5 Kepler’s picture of the circle, the straight line, and the infinitely small subdivisions.

Theorem II. The area of a circle compared to the square of its diameter has the ratio approximately
11 to 14.

Archimedes uses an indirect demonstration, which leads to a contradiction, about which many
authors have written much. But I think the meaning of it is this: [see Fig. 5]

The circumference of the circle BG has as many parts as it has points, say an infinite number; and
of these any two may be regarded as the base of an isosceles triangle of side AB—so that inside the
area of the circle there are to be found infinitely many triangles all coming together at a common
vertex A, the centre. Let the circumference then be extended to a straight line, and let the length BC
be equal to it [to the circumference], and AB perpendicular to BC. Then the bases of these infinitely
many triangles (or sectors) are imagined as lying on one straight line BC, arranged next to each
other. Let one little base [of the part of the circle] be BF, and let it be equal to CE [i.e. correspond to
CE on the straight line]; and join the points F, E, C to A.

Since the number of triangles ABF, AEC are the same on the straight line as in the circle, and the
bases BF, EC are equal, and they all have the same height BA, which is also the height of the sectors;
the triangles EAC, BAF will have the same area, and any one will equal a sector of the circle. And
since they all have their bases on the straight line BC, the triangle BAC, which is made up of all
of them, will be equal to all the sectors of the circle, that is to the area of the circle consisting of all of
them. This is what Archimedes wishes to prove by contradiction.

[The point is this. For Archimedes, you prove (say) that the area a of BG is not greater than 1
2 ×

(radius) × (circumference), by supposing it is greater. Since the perimeters of circumscribed poly-
gons are as near as you like to the circumference of the circle, this means that for some such
polygon P, a is greater than 1

2 × (radius) × (perimeter of P). But this is the area of P, which must be
greater than the area a (see Fig. 6).]

Kepler is saying: if you choose the polygon to have an infinite number of infinitely small sides,
then it ‘is’ already equal to the circle, its perimeter is the circumference, and you can avoid the
tedious proof by contradiction. What could go wrong in this procedure?

The proof then ends by showing that the triangle BAC has area ‘nearly’ 11/14 times the square
on the diameter, using theorem I.]

Appendix D

(From Galileo 1954, pp. 31–3)

SALV. I take it for granted that you know which numbers are squares and which are not.
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A

B C C�

Fig. 6 Archimedes’ idea: ABC is the triangle whose base is the circumference and whose height is the radius. BC’ is the perimeter of
the polygon, and its area equal that of triangle ABC’. If the area of the circle is greater than ABC, then it is greater than that of some
ABC’, since they approach ABC as near as you like; but then it is greater than the area of some polygon, which is absurd.

SIMP. I am quite aware that a squared number is one which results from the multiplication of
another number by itself; thus 4, 9, etc., are squared numbers which come from multiplying 2, 3,
etc. by themselves.

SALV. Very well; and you also know that just as the products are called squares so the factors
are called sides or roots; while on the other hand those numbers which do not consist of two
equal factors are not squares. Therefore if I assert that all numbers, including both squares and
non-squares, are more than the squares alone, I shall speak the truth, shall I not?

SIMP. Precisely so.
SALV. But if I inquire how many roots there are, it cannot be denied that there are as many

as there are numbers, because every number is a root of some square. This being granted we must
say that there are as many squares as there are numbers because they are just as numerous as
their roots, and all the numbers are roots . . . [Salviati develops his point, and shows that as the
proportion of squares gets smaller the more numbers we consider.]

SAGR. What then must one conclude under these circumstances?
SALV. So far as I can see we can only infer that the totality of all numbers is infinite, that the

number of squares is infinite, and that the number of their roots is infinite; neither is the number of
squares less than the totality of all numbers, nor the latter greater than the former; and finally the
attributes “equal”, “greater”, and “less”, are not applicable to infinite, but only to finite, quantities.

Solutions to exercises

1. The natural way to proceed would be as follows. Given a circle C, let a be its diameter. Construct a
line B whose length is 3 1

7 times A—this is straightforward, Euclid quite early gives a method for
dividing a line into (for example) seven equal parts. This we take to be equal to the circumference
of C, and now the area of C is equal to that of a right angled triangle whose height is A and
whose base is B. Finally, Euclid II.14 gives a method of constructing a square whose area is
equal to the triangle (you construct a ‘mean proportional’ between A and B/2, a line whose

length is
√

1
2 AB).
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2. Let us translate Euclid’s statement into algebra. You start with a quantity a. You subtract from
this k1a where k1 > 1

2 . Then you subtract again k2(a − k1a), where k2 > 1
2 , and so on. Euclid

claims that by repeating the subtractions a−k1a−k2(a−k1a)−· · · you will arrive at a quantity
less than any assigned quantity b.

In fact, after n subtractions, you have a(1 − k1)( · · · )(1 − kn). If each ki equals 1
2 , you get

(1/2n)a, which tends to 0; even more so if each ki > 1
2 .

However, the condition is actually too restrictive. By a ‘classical’ theorem, the product
a(1 − k1)( · · · )(1 − kn) tends to 0 if and only if the sum k1 + k2 + · · · is divergent.

3. Guess 12 (a multiple of 3 and 4) for the height; then underground it is 4 + 3, so above ground
it is 5, which is wrong, as we need 30. So multiply the guess by 30/5 = 6, giving 72. This is
right (24 + 18 = 42 underground, leaving 30 above).

Guess 4; then 4+4+2+1 = 11. We want it to be 99 (one denaro short of 100). So multiply
the guess (4) by 9, giving 36.

You would need to convert the 2 years 7 months and 15 days to years (assuming the interest
is annual—10 per cent per month seems extortionate, but such things did happen). Suppose a
month is 30 days, and that there are 12 in a year, to simplify. This gives 2 15

24 × 10
100 = 21

80 for
the multiplier; you then have to multiply this by the principal. The calculation looks appalling;
I do not know how a medieval student was supposed to do it.

(b) In a year—12 months—the interest is 12 pence in 1 pound, or 12
240 × 100 per cent. This

is clearly 5 per cent.
4. We have u − v = 4 and uv = 1 (divide 3 by 3 and cube). This gives (u − v)2 = 16 and so

(u + v)2 = 20. Hence, u + v = 2
√

5 and u = 2 + √
5, v = −2 + √

5.
We now take cube roots and subtract: x = 3

√
2 + √

5 − 3
√

2 − √
5.

(b) The point is of course that the difference is 1; you can check it first of all on a calculator.
Both u and v are (if you think in terms of algebraic number theory!) exact cubes of expressions
a + b

√
5; take a = ±1

2 , b = 1
2 . Hence, the difference of the cube roots is (1 + √

5)/2 −
(−1 + √

5)/2 = 1.
(c) (1) Suppose the equation is x3 + cx = d. Let x = 3

√
u − 3

√
v. Then x3 = u − v −

3( 3
√

u · 3
√

v)( 3
√

u − 3
√

v), using the formula for (a − b)3 and rearranging. If uv = (c/3)3, then
3
√

u · 3
√

v = c/3. So x3 = u − v − cx. But u − v = d, so x does satisfy the equation.
(2) It is enough to construct a geometrical decomposition which verifies the formula a3 +

3ab2 = 3a2b + b3 + (a − b)3. From there you can ‘geometrize’ the argument in part (1). I leave
the details to you.

5. This is not so pleasant, if no harder. We have u − v = 500, uv = 1
27 . So (u + v)2 = 250,000 4

27 ,
and u = 1

2(
√

250,000 4
27) + 500), v = 1

2(
√

250,000 4
27) − 500). Now write x = 3

√
u − 3

√
v

again. (This could be worked out with a calculator, if you have the patience; answer about
7.895.)

6. You are given b = x−y and d = x3 −y3. Viète points out that if u = x+y, then u+b = 2x and
u − b = 2y (obvious). Now (2x)3 − (2y)3 = (u + b)3 − (u − b)3 = 6u2b + 2b3 by expanding
the brackets and subtracting. But we know that (2x)3 − (2y)3 = 8(x3 − y3) = 8d.

We can therefore deduce u, since (by the above), 6u2b + 2b3 = 8d, so u2 = (4d − b3)/3b
(the displayed equation in the extract). Now we know x − y = b and x + y = u, and so x and y.



7 The calculus

1 Introduction

By the help of this new Analysis Mr Newton found out most of the propositions in the Principia Philosophiae. (Newton
1967–1981 8, 598–9)

The ‘new Analysis’ was what we now call the calculus; a point in learning mathematics where
many students give up, and which many others never reach. Intended to make everything easy, it is
still found a stumbling-block. What, then, is it? A simple web encyclopaedia describes it as follows:

calculus, branch of mathematics that studies continuously changing quantities. The calculus is characterized by the
use of infinite processes, involving passage to a limit: the notion of tending toward, or approaching, an ultimate value.
(http://reference.allrefer.com/encyclopedia/C/calcul.html)

While not very clear unless you know what it is already, this definition would already have been
acceptable at the end of the seventeenth century. As our opening quote suggests, the calculus
begins with Newton; and in the extract he was, typically, discussing his own work (and somewhat
bending the truth) anonymously in the third person many years after the event. He had already
made himself into a monument, as his one-time colleague and later rival Leibniz never managed
to do, and even today the work continues. The British Library, whose courtyard is incongruously
dominated by a massive statue of the man,1 lists in its catalogue 10 new books on Newton for
the year 2001 alone; and one must suppose that many lesser books have appeared, together with
articles learned and otherwise, student dissertations and entries on the many Newton websites.
Experience shows that ‘Newton-and-Leibniz’ is easily the most popular subject for student essays in
the history of mathematics—despite the difficulty of many of the early calculus texts. Is it not time
to call a moratorium, a temporary halt to all this industry? Given that most scholars have arrived at
a reasonable conclusion about the once burning question of priority in the discovery (to which this
chapter will return later), must they still be concerned with the date when Newton discovered the
inverse square law of gravitation, the reasons for his conversion from Cartesian geometry to the
methods of ‘the Ancients’, or the extent to which his religion, the pursuit of alchemy, or political
beliefs influenced his mathematics?

The answer is that at least some of the current research is important and necessary, even if much
of it seems to be lacking in the ‘social element’ which we have had occasion to single out for praise
in earlier chapters. This is partly because the story is still subject to myths and misunderstandings
(e.g. of when the calculus became widely known and available, and to whom); and partly because,
like the First World War (which has also had much too much written about its origins), the calculus
is an important founding event in European history. And while Newton and Leibniz get more

1. Modelled, ironically one must suppose, on the drawing by Blake, for whom Newton represented the blindness and alienation of
rationalism.

http://reference.allrefer.com/encyclopedia/C/calcul.html
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than their share of attention in history of mathematics courses, they are either ignored or grossly
misrepresented even in ‘historically’ minded calculus textbooks where one or both feature with
portrait as icons and founders, as Shelley Costa has pointed out:

When writing of Newton and Leibniz, 20th-century authors of calculus textbooks tend to reduce their history to
method and notation while exalting them as insightful, majestic intellectual forebears, perpetuating a mathematical
mystique that rewards genius and ignores context. (Costa, n.d.)

While what seems important from a modern point of view is the easy access to powerful results,
equally significant at the time was the questionable legality of the procedure. At least since the time
of the Greeks, mathematics had rested its claims to certainty on rules of precision in reasoning.
The new methods treated these rules with a degree of indifference from which they have never
fully recovered. The major problem was the use (which was essential) of infinitely small quant-
ities or ‘infinitesimals’ which were either zero or not zero, depending on where you were in the
argument. It had, reasonably, been assumed that the Law of Contradiction (‘if something is X it
is not also not-X’) operated in mathematics as elsewhere. The following quote from the first (and
most important) early calculus textbook shows that its power was slipping:

Postulate 1. Grant that two quantities, whose difference is an infinitely small quantity, may be taken (or used)
indifferently for each other: or (which is the same thing) that a quantity, which is increased or decreased only by
an infinitely small quantity, may be considered as remaining the same. (L’Hôpital 1696, cited Fauvel and Gray,
extract 13.B.6)

The confusion underlying this extract was fundamental to the calculus, and was essential for its
development. To make it explicit, as Bishop Berkeley was to do 40 years later, if two quantities which
differ by an infinitesimal are the same, then what is the infinitesimal there for at all? More simply, if
dx (as Leibniz called it) is infinitesimal, it differs by an infinitesimal from 0, and so is equivalent to
0. Is it then 0 or not?

The point is, of course, that any mediocre person can break the laws of logic, and many
do. What Newton and Leibniz did was to formalize the breakage as a workable system of
calculation which both of them quickly came to see was immensely powerful, even if they
were not entirely clear about what they meant. The new methods built on Descartes’s geo-
metry; that geometry had raised a number of important questions about how to find tangents
to curves, their lengths, and their areas, and the calculus was to provide the means of find-
ing rapid solutions. Mathematics became, in a sudden transition, both easy and difficult; easy
for the circle of initiates who learned how to use the method, and difficult for the outsiders
who could understand neither what was being done nor how it was justified. ‘There goes a
man hath writt a book which neither he nor any body else understands’ remarked a sceptical
Cambridge undergraduate of Newton2; and the contradictory dogmas of the early calculus per-
haps mark the origin of a widening split between the world of the ‘serious’ mathematician and the
amateur.

Already it may be clear that this chapter differs from the preceding ones in covering a much
shorter period; instead of hundreds of years, we are dealing with the relatively short time which
separates the 1660s (when the calculus did not exist) from the 1720s (when it was on its way to
becoming the dominant method for answering a wide range of mathematical questions). Indeed,
appropriately for the science of the infinitely small, the historians often seem to be focusing

2. Cited Iliffe (1995, p. 174).
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on extremely short intervals of time, so that the question of whether Leibniz received three
communications about Newton’s work in June 1676 or two in July (see Hofmann 1974, p. 231)
comes to have capital importance.

Such infinitesimals are not properly the concern of this chapter, which will rather try to focus on
the larger questions. How did the change take place? Why was such a dubious way of proceeding so
quickly accepted? What end did it serve, and who profited? And what were the positive and negative
effects of all the quarrels? This chapter will try to give a broad outline of the history, with reference
to such questions.

Note. The material which is dealt with in this chapter is necessarily mathematically harder than
that of the previous chapters. The reader who is unfamiliar with the ideas of the calculus (and they
do still form a major part of mathematical culture) will therefore have to skip some of the detail;
it is not possible to omit it from the text without losing what the history is about.

2 Literature

As has already been indicated, the literature is large and many-sided. To begin with the primary
sources, the whole of Newton’s mathematical work is available in an excellent modern edition,
edited by D. T. Whiteside (Newton 1967–81). Substantial extracts of the Principia (from books I and
III) are available on the Internet at www.members.tripod.com/gravitee—it is not clear whether
it is intended to extend this selection. Fauvel and Gray’s sourcebook is good on the period also,
giving some essential Newton material and the bulk of Leibniz’s key 1684 paper, plus the opening
of L’Hôpital’s book. The other works of Leibniz and the Bernoulli brothers are less accessible, and
usually in Latin; and while L’Hôpital’s book was quite well translated in the eighteenth century (see
quote above), there is no modern edition.

With the secondary sources, the question is really that of differentiating between ways of
thinking about history. There are, for example, numerous biographies of Newton, of which the
definitive one is Richard Westfall’s massive (1980), supplemented by Gjertsen’s handbook (1986);
and there is a comparable, if less comprehensive biography of Leibniz by Aiton (1985). Close to the
biographical are studies of the small community of late seventeenth-century scientists who were
able to appreciate and develop the calculus; for example, Hall (1980) and Hofmann (1974). And
third, there are more technical, one could say ‘internal’, studies of what was involved in the early
calculus, its techniques, and how practitioners saw what they were doing: these include particu-
larly Guicciardini (1999), various essays of Henk Bos, with summaries and further thoughts in
(1991), and Dupont and Roero (1991).3

However, all of these works, even the most ‘external’, are dealing with a tiny community, in
comparison with the wider society in which the calculus was born and flourished. The obvious
reason for this is that, at the outset and for quite a time afterwards, it was found incomprehensible
outside a small circle. It is significant that Bishop Berkeley’s damning critique in The Analyst dates
from 1734, but still gives the impression that to a well-informed bishop the methods of the calculus
were relatively new. Although L’Hôpital’s 1696 text was an attempt at a popularization, intended
to have the same impact as Descartes’s Géométrie, written in French in a very similar style and

3. This book is often referenced. Apart from being in Italian, it seems almost impossible to find, but as a detailed study of Leibniz’s
paper, it is very interesting. Perhaps one can hope for a translation.

www.members.tripod.com/gravitee
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acknowledging the debt, its circulation was certainly more restricted. And yet the circle of savants
with whom the principals corresponded, and who were interested in the same questions was much
wider; such practical questions as, why did the planets move as they did? What was the reason for
the tides, and could they be predicted? What was the shape of a freely hanging chain, of a loaded
beam, or of a sail? It is rare to find this practical background included in modern discussions of a
body of work which, however clearly it constituted a ‘new mathematics’, was embedded in a whole
family of other practices which have now been forgotten.

Of these, more will follow later; but for the time being, we should refer to two key texts from
the 1930s. The first, the Soviet historian Boris Hessen’s The Social Origins of Newton’s Principia in
Hessen (1971), is occasionally referred to as an example of the crude Marxist approach; however, it
has been recently reprinted, and is still worth reading. The second, the American sociologist Robert
Merton’s (1970), is a founding text for the sociology of science; but, as Merton acknowledges in his
introduction, subsequent readers have focused more on the early chapters which (following Weber
and Tawney) relate the pursuit of science to Puritanism and the ‘Protestant Ethic’ than on the later
ones which, qualifying and extending Hessen’s analysis, relate the problems studied by scientists
to the demands of expanding capitalism. Merton’s strength is his awareness of the wider (mainly
English) scientific community, so that figures like Halley and Wren who hold a minor place in the
mathematical history are seen as much more important in terms of ideology, patronage and influ-
ence. The specific nature of the calculus is not addressed by either writer; accordingly, as often in the
interface of mathematics and physics, the kinds of source material available for study are not easy
to harmonize. [And, it should be added, a problem for this chapter: how do we separate the history
of the calculus from Newton’s Principia? The latter is both broader (after all, Newton’s concern was
with physics, and the deduction of the system of the world from the basic laws of motion) and nar-
rower (because of the peculiar way in which the calculus was used, or not used in the Principia—see
later).]

Note on the use of texts. Few periods in the history of mathematics have been as badly served in
translation as the prehistory and early history of the calculus. At a time when the exact notation
which was being used by the participants (some of whom used traditional geometrical language,
some cartesian equations, and many a confused mixture), many histories ‘translate’ the work of
Wallis, James Gregory, and the early Newton and Leibniz indiscriminately into language which the
modern reader can recognize—even when, like Gregory, they were hostile to Cartesian symbolism.
Both Hofmann’s (1974) and Westfall’s (1980) are given to a free use of translation—even if it is
usually acknowledged as such; so that for example, Collins is said in his 1675 report on English
work for Leibniz to have shown how the arc [of a circle]

s = r tan−1(t/r) =
∫ t

0
r2 · dx/(r2 + x2)

may be found (Hofmann 1974, p. 135). The reader whose suspicions are aroused by the use of
the integral sign which Leibniz was to invent in October of that year (and not publish for another
ten years), will find on looking up the source that what Collins said was very different, but the fact
that most of the original sources are hard to come by and mainly in Latin makes the question of
accurate transcription the more important. Fortunately this situation is changing, and the more
recent works of Guicciardini and Bos are textually faithful.
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3 The priority dispute

We shall not discuss the shamefully bitter controversy as to the priority and independence of the inventions by Newton
and Leibniz. (Boyer 1949, p. 188)

In one word he told me the secret of success in mathematics: Plagiarize! (Tom Lehrer, song, ‘Lobachevsky’)

Boyer represents a gentlemanly school of thought (now rather old-fashioned) according to which
mathematicians should behave courteously towards one another. In this view, the controversy
which opposed the supporters of Newton and Leibniz between 1700 and 1720 (with an acute
period in the 1710s) was an unfortunate aberration. The most superficial look at the long history
of mathematics and mathematicians shows that this is not in fact the case. We have already seen
the quarrels of Tartaglia and Cardano in the sixteenth century, and there have been many worse
ones since: one could cite Pascal and Torricelli on the cycloid, (1650s), Legendre and Gauss on the
method of least squares (1790s), and countless others (an internet search for ‘priority dispute’ is
instructive throwing up an instance in topology from 1996 in particular). What gave the argument
about the calculus its peculiar bad taste was the involvement of the Royal Society, and of its
president Newton, in adjudicating on the dispute.

Regrettable or not—and history can rarely afford regrets—the dispute provides a useful way
into the history of the calculus and its diffusion. In fact, it is clear from the way in which the
arguments developed that in 1690 ‘the invention of the calculus’ was not a subject for discussion,
while 20 years later it was generally agreed that something of great importance had been invented,
and the question of who had copied whose prior invention was vital. British chauvinism (which
one might suppose to be a major factor) played its part, but was a secondary issue. Indeed, Newton
in his youth was notably more open to Continental ideas, those of Descartes in particular, than
his seniors; and he continued to show repect for those foreign scientists, such as Huygens, who
were not in direct competition. Equally, he had frequently engaged in more or less acrimonious
disputes with British colleagues such as Hooke and Flamsteed. The scientific milieu of the time
was generally suspicious and paranoid; discoverers withheld publication for fear of being copied,
and then, when their unpublished discoveries were found by another, accused them of plagiarism.
(And, one must suppose, they were sometimes right.) The practice of anonymous publication (in
which authors often referred to themselves in the third person—‘the distinguished Mr Leibniz has
proved’) was unhelpful, both in establishing who had done what, and in subsequent controversies
often conducted via anonymous or pseudonymous attacks.

The question of priority (as distinct from plagiarism) was in fact settled quite early. As we shall
see, Newton’s version of the calculus was very similar to Leibniz’s, both in its qualities and its
defects, and dated from about 10 years earlier (1665 as against 1675). The question of plagiarism
is more unpleasant and complex, since Newton’s version was not published in his lifetime, but was
seen in manuscript by a number of people. Leibniz in the early 1670s knew of some of Newton’s
work, chiefly by accounts in letters from London; and most famously, by two devious and obscure
letters from Newton himself, which contained references to his most important work in the form of
anagrams, which Leibniz was hardly in a position to decipher. This may seem absurd as a way of
communicating scientific results but was again not uncommon at the time, and this may give some
indication of what was supposed to constitute ‘publication’. As Gjertsen says (in his entertaining
article ‘Anagrams’, 1986, p. 16):

The advantages of the ploy were obvious. Priority was established yet nothing was given away to potential
rivals . . . Invariably in Latin, clueless, and of immense length, they were virtually insoluble.
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Modern scholars (see particularly Hall 1980) are agreed that Newton’s communication was both
too late and too obscure to exercise any serious influence on what was effectively an independent
discovery by Leibniz, with his own ideas and notation. He too delayed publication, and was only
forced into a brief announcement of his results in 1684 by fears that he in turn was losing priority.

It took about 20 years, and the rapid success of the Leibnizian calculus in the 1690s, for any
question of priority/plagiarism to arise; and it entered its acute phase about 1710. Both players
had by then acquired schools of students, defenders and partisans. Newton’s attitude to those who
disagreed with him, whether scientifically or politically, is often described as hostile to the point
of paranoia; and while Leibniz, committed to a rational belief that this is the best of all possible
worlds, was in many ways a contrast, he did not like suggestions that his own ideas were in any way
unoriginal.4 Following accusations and counter-accusations, the Royal Society in March 1712
appointed a committee composed almost entirely of Newton’s supporters to investigate whether
Leibniz had been unjustly accused by the quarrelsome Newtonian John Keill. Newton supplied the
committee with documents proving his priority (his unpublished manuscripts, and letters from
various of the parties involved), and apparently also drafted the final report (pompously titled
Commercium epistolicum, the exchange of letters), which concluded:

That the Differential Method [Leibniz] is One and the same with the Method of Fluxions [Newton] Excepting the name
and Mode of Notation . . . and therefore wee take the Proper Question to be not who Invented this or that Method but
who was the first Inventor of the Method . . .

For which Reasons we Reckon Mr Newton the first Inventor; and are of Opinion that Mr Keill in Asserting the same
has been noways Injurious to Mr Leibniz. (Newton 1959–77, 5, p. xxvi)

Those who are looking for examples of Anglo-Saxon hypocrisy can find plenty in the Commer-
cium epistolicum, and still more in the ‘Report’ on it which Newton wrote for the Royal Society’s
Transactions—an anonymous review of a document which he had largely written. (It is from this
review that the quotation at the head of the chapter is taken.) All the same, the document did make
clear, as Newton had never previously done, the nature and extent of his early work, and thus,
however partisan, it cleared up the question of priority. The charge of plagiarism against Leibniz,
who died soon afterwards, was never serious enough to stick; indeed one could ask what is the
nature of intellectual property in mathematics, and how far plagiarism is to be condemned. Pierre
de Montmort, one of several who heroically tried to reconcile the parties, made the key point: one
should look at who used it, how, and with what results.

On the invention of the calculus he [Montmort] would not comment, he said, but Leibniz and the Bernoullis had been
its true and almost sole promoters.

It is they and they alone who taught us the rules of differentiation and integration, the way to use the calculus to find
tangents to curves, their points of inflection and reversal, . . . & who finally, by many and beautiful applications of the
calculus to the most difficult problems of mechanics, such as the catenary, the sail, the spring, the quickest descent,
and the paracentric, have set us and our descendants on the path of the most profound discoveries. (Westfall 1980,
pp. 784–5, citing Montmort’s letter to Brook Taylor of 18 December 1718, Corr. 7, 21–2)

It was Leibniz’s calculus which was most successfully used, and which still dominates our notation;
and when in the twentieth century the record was finally set straight with the publication of his
manuscripts from the 1670s, no one was left to care.

4. His most devoted student Jakob Bernoulli found this to his cost early on when he misguidedly suggested that Leibniz’s methods
were similar to the earlier ones used by Isaac Barrow. He had to make a humble apology for what was clearly a mistake, but
understandable when the calculus was still not fully understood, and Leibniz himself was not helping to make it clearer.
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Fig. 1 Indian calculation of the arc. If y is the arc AC, a = AB is the ‘Sine’ of the angle AOC, BO the ‘Cosine’, and R the radius. a/b is
then the tangent, and the series gives y in terms of a and b (or a/b) and R.

4 The Kerala connection

We may consider Madhava to have been the founder of modern analysis . . . (Joseph 1992, p. 293)

Joseph’s downright and still controversial statement calls attention to the ‘other priority question’—
whether the calculus was discovered (to put the claim at its strongest) in Kerala, south-west India,
in the late Middle Ages.5 Here we have a contest which is not among mathematicians (there
is no record of an Indian seventeenth-century mathematician staking a claim for the calculus),
but among contemporary historians, whose interests are different. Specifically, Joseph and others
aim to attack the ‘Eurocentric’ story of mathematical discovery by drawing attention to parallel
discoveries in non-European contexts.

The problem is here, that the material is both unfamiliar and very inaccessible, although it has
been, in a very weak sense, known about since Charles Whish wrote about it in the 1830s. What
seems undeniable is that a number of astronomical texts from Kerala, whose dating is probably
between 1400 and 1600, give very sophisticated infinite series formulae for what we now call sin x,
cos x, and the inverse tangent of x (the arc of the angle whose tangent is x, see Fig. 1). If the
radius of the circle is R, when the angle is 45◦ the arc is πR/4 and the tangent is 1; and this gives
in particular a formula for what we know as π . Series such as these were an important building
block in the calculus as Newton developed it, in fact his early papers give equal importance to the
calculus and the use of infinite series as ‘new’ methods. Similarly, the simplest of the formulae was
found by Leibniz early in his career (but, as he was disappointed to hear, had been found by others
before): it is commonly known as Gregory’s series. In Jyesthadeva’s sixteenth-century version it is
usually quoted as follows (see for example, Joseph 1992, p. 290):

The first term is the product of the given Sine and radius of the desired arc divided by the Cosine of the arc. The
succeeding terms are obtained by a process of iteration when the first term is repeatedly multiplied by the square of the
Sine and divided by the square of the Cosine. All the terms are then divided by the odd numbers 1, 3, 5, . . . . The arc is
obtained by adding and subtracting respectively the terms of odd rank and those of even rank. It is laid down that the
Sine of the arc or that of its complement whichever is the smaller should be taken here as the given Sine. Otherwise
the terms obtained by this above iteration will not tend to the vanishing magnitude.

5. The subject of medieval Keralan mathematics is a very promising one for the enterprising researcher. The field is small, and
the source material is not vast, even if much of it may be hard to locate (the Royal Asiatic Society library, near Paddington, may
be helpful). The aspiring researcher needs to be prepared to learn Sanskrit and probably Malāyalām, but the rewards could be
substantial.
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Here ‘Sine’ and ‘Cosine’ mean the lines AB, BO in the diagram (Fig. 1.)—sine and cosine multiplied
by the radius. In some respects this is like Leibniz’s series:

arc = Rx − R
x3

3
+ R

x5

5
− R

x7

7
+ · · · (1)

which becomes our ‘modern’ series for tan−1(x) by setting R = 1. Like the Leibnizian series, it is
forthright about the use of an infinite number of terms, a novelty in India it would seem as it was
to be in Europe. The equation (1) is, though, rather different from the form in which it was given by
the Keralans, since (as the quotation above indicates) they wrote the formula in verse, and in words,
without any use of symbols at all. One could add that since there is on the whole no explanation
of how the series were arrived at, we can only guess at the methods; but we shall see that the
seventeenth-century European mathematicians were often silent about how they had found their
series and integrals, for their own reasons. In Keralan sources the original discovery is ascribed to
Madhava, a famous fourteenth-century writer whose mathematical works are mostly lost. On the
credit side, the practical Keralans realized that the series (1) is useless for computation; you can add
50 terms and you will still be making mistakes in the second figure of π/4, because your next term
will be 1

101 , roughly 0.01. They accordingly refined the series to give a number of others, more
useful, but still without explanation. In all this, they can rightly claim 100 years’ priority, at least.

We have here a prime example of two traditions whose aims were completely different. The
Euclidean ideology of proof which was so influential in the Islamic world had no apparent influence
in India (as al-Bīrūnī had complained long before), even if there is a possibility that the Greek tables
of ‘trigonometric functions’ had been transmitted and refined. To suppose that some version of
‘calculus’ underlay the derivation of the series must be a matter of conjecture.

The single exception to this generalization is a long work, much admired in Kerala, which was
known as Yukti-bhasa by Jyesthadeva; this contains something more like proofs—but again, given
the different paradigm, we should be cautious about assuming that they are meant to serve the same
function. Both the authorship and date of this work are hard to establish exactly, (the date usually
claimed is the sixteenth century), but it does give explanations of how the formulae are arrived at
which could be taken as a version of the calculus.

As I have stressed before, in dealing with al-Samaw‘al’s algebra (for example), or the use of series
by Oresme, this ‘anticipation’ as such (who was first?) is not a sensible object of history. Even if we
could establish the existence of a ‘transmission line’ from sixteenth-century Kerala to seventeenth-
century Europe (see Donald F. Lach 1965 for some evidence), we must recognize the existence of
what Kuhn called incommensurability; different research efforts and a different language of science
directed to different ends. What we know of Keralan society in the period is rather unlike the Europe
of the Scientific Revolution, in particular there is no evidence of interest in the use of mathematics
for warfare, mining, book-keeping, and so on.6 The series of Madhava and his followers are—when
translated into algebraic notation—the same as those found in Western Europe in the seventeenth
century, but the translation has the effect of changing the aim and context of the work. It seems
of more value historically to study the Kerala tradition in itself, with reference to its own society
(how and where it was used, for example) than to argue about its role as a precursor. We can use
the Keralan material to attack ideas of the uniqueness of Western discoveries, and for that matter
to point out alternatives to the Western way of doing mathematics; but these projects ask us to see

6. This is not to say that evidence may not come to light in future.
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the Indian work as, precisely, not a version of the (later) European ‘method of infinite series’, let
alone that broader field which we call the calculus.

Exercise 1. Derive equation (1) from Jyesthadeva’s formulation.

5 Newton, an unknown work

Observing that the majority of geometers, with an almost complete neglect of the ancients’ synthetical method,
now for the most part apply themselves to the cultivation of analysis and with it have overcome so many formidable
difficulties that they seem to have exhausted virtually everything apart from the squaring of curves and certain topics
of like nature not yet fully elucidated: I found not amiss, for the satisfaction of learners, to draw up the following
short tract in which I might at once widen the boundaries of the field of analysis and advance the doctrine of series.
(Newton 1967–81, 3, p. 33)

So what was it that Newton, and later Leibniz, invented (assuming with the Royal Society that
they were essentially the same)? To clarify, consider the ‘fundamental problem’ of finding tangents.
A variety of ad hoc methods were around by the 1660s, following on from the rather complicated
one which Descartes had proposed (see Fauvel and Gray 11.A.9). For us today, (and this is how
Newton and Leibniz saw it), the question can be posed:

Problem. Given a curve specified by an equation between x and y, to find the tangent at the point
whose coordinates are (x, y) (see Fig. 2).

It is easy to see that we know the tangent if we know its gradient (its inclination to the x-axis), and
this is now usually given—once you know calculus—by the expression ‘dy/dx’. You will probably
have been told that this is not a fraction, and that dy and dx do not mean anything on their own.
Many students naturally find this idea confusing, if few question it, and indeed this is not how it
started out. Instead, a number of writers in the mid-seventeenth century had arrived at the idea
that the tangent was the line which joined two infinitely near points on the curve; and the challenge
was to find a simple way of working out what that line was.

In one respect, Newton was more inventive. His fundamental idea was that the curve was
described by the motion of a point in time, and that the tangent was the direction of its velocity at
an instant. In itself, the idea could be thought of as a geometrical one; but if the curve was described
in Cartesian form by coordinates x, y, then one could also think of the x-velocity and y-velocity

T
O

P
(x, y)

Fig. 2 PT is the tangent at the point P on the curve.
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separately. This is how Newton’s first private draft of his ideas begins, if with no explanation of
where he is heading:

As if the body A with the velocity p describe the infinitely little line (cd =)po in one moment, in that moment the
body B with the velocity q will describe the line (gh =)qo. For p : q :: po : qo. So that if the described lines bee
(ac =)x, & (bg =)y in one moment, they will bee (ad =)x + po and (bh =)y + qo in the next. (Newton 1967–81, 1,
p. 414)

There is no record that this draft was shown to anyone; and if it had been, it might well have
been found strange. Newton was confidently using Descartes’s notation of xs and ys for varying
quantities, but he had added, as a new feature, that these quantities varied in time. He had, it
appears, read Galileo (at least the Dialogues), but this bold introduction shows how far he was
prepared to go beyond Galileo and Kepler in thinking of infinitely short distances and times. ‘It
is possible that Dr Barrows Lectures might put me on considering the generation of curves by
motion, tho I not now remember it’, he reflected many years afterwards (Westfall 1980, p. 131);
but as Westfall points out, the idea was quite widespread (it went back to the Greeks, like so much
else, in the case of Archimedes’s spirals), and the cycloid (path of a fly glued to a rotating wheel)
which was currently being bitterly argued about, was a prime example. In any case, if the idea of
generating curves by motion was old, the idea of motion in an infinitely small instant was relatively
new, and the use of coordinates to describe it even newer. Where Galileo, as we saw, had to go
through a substantial argument to explain how one could make sense of ‘velocity at an instant’,
and where Kepler avoided defining it at all, Newton took it for granted; and, moreover, by using an
infinitely small time o, he worked the argument backwards, to deduce from a (supposed known)
velocity p an infinitely small change po in the x-coordinate. The infinitely small quantities are not
introduced or defended—they are simply there. [The idea of a ‘moment of time’ o presupposes
some measurement of time which remains unclear, as Westfall points out (1980, p. 134), but the
advance is still substantial.]

What Newton did next in the 1665 tract was naturally to bring in a curve, in its Cartesian form.
He supposed that x and y were related by an equation:

x3 − abx + a3 − dyy = 0 (2)

where a, b, d are constants, and he showed how to find its tangent using his idea of change in time.
Rather than Newton’s complicated equation (whose curve he did not draw), let us look at a

simpler one, say (in seventeenth-century notation) y + xx = ax, which is the curve represented in
Fig. 3. If the velocities—or, as Newton was later to call them, ‘fluxions’—of x, y are p, q, then in the
moment o, x becomes x + po and y becomes y + qo. The point A′ whose coordinates are x + po and
y + qo is (a) still on the curve and (b) infinitely near to the original one A.

Since the new point is on the curve, we have y + qo + (x + po)(x + po) = a(x + po). Because the
two points are infinitely near, the line AA′ which joins them is the tangent. Subtracting the original
equation, and expanding the brackets, we get:

qo + 2xpo + ppoo = apo

We now divide this by o to get q + 2xp + ppo = ap. We want a relation between p and q (see
Exercise 2). Discard the term ppo, which is infinitely small (this is the important part), and you end
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Fig. 3 A and A′ are infinitely close on the curve (a parabola, represented as a polygon with infinitely small sides). AA′C is
the tangent at A; it meets the x-axis at C and BC is the ‘subtangent’. BB′ = TA′ is dx, and AT (negative in the picture) is dy.

up with:
q
p

= a − 2x

(If you are familiar with the calculus, you will notice that the right-hand side is obtained by
differentiating ax − xx, according to the usual rules; and Newton began to formulate such rules for
dealing with the velocities of curves.) In the seventeenth century, they found the tangent by finding
the ‘subtangent’—the length BC in Fig. 3.—which is equal to yp/q; in our case, y/(a − 2x). [We
can also say that y is a maximum when x = a/2, since then q = 0 so the tangent is horizontal.]

As Newton summed up his method:

Hence may bee observed: First, that those termes ever vanish in which o is not because they are the propounded
equation [in our example, y + xx = ax]. Secondly the remaining Equation being divided by o those termes also vanish
in which o still remaines because they are infinitely little. Thirdly that the still remaining termes will ever have that
forme which by the first preceding rule [the rule for differentiating] they should have. (Newton 1967–81, p. 387)

Newton realized that he had made a major discovery; there are references in his texts on
calculus from the 1660s to the possibility of solving with ease problems which had been diffi-
cult or impossible before. As we have seen, he took no serious steps to make it public. Under
pressure (he said, from Dr Barrow), he finally in 1670 produced a serious Latin exposition, untitled,
unfinished, generally known as the Method of Fluxions and Infinite Series. Where the 1665 notes had
been essentially for his own use, this was (in intention) addressed to a circle of practitioners—‘for
the satisfaction of learners’, as he puts it in the quotation which opens this section. Unfortunately,
it did not reach even that narrow circle, although it was passed around among friends to the point
of becoming dog-eared7; and its existence was only generally made known 30 years later in the
priority dispute. However, it remains the clearest guide we have to what Newton’s early calculus
was like at the time of its discovery. The variable quantities x and y are in this text called ‘fluents’;
and their rates of change have the name ‘fluxions’ (which was to become a fixture in English math-
ematical language for a century). The relationship of differentiation—finding the fluxion—and

7. See Gjertsen (1986), p. 157. The exact date when the Method of Fluxions was observed to be dog-eared is a typical point of
contention in Newton studies.
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integration—finding the fluent—is established as the central problem; so is the fact that you can
find areas by finding fluents. In Appendix A, I give his method of finding tangents—the easiest
application—with an example. It is worth comparing with Leibniz’s text for its greater clarity and
(fairly) good explanations. The work, as far as it went, was well set out, and would have been more
than a ‘useful guide for beginners’ if they had been allowed to see it.

There has been naturally considerable speculation (a) on why Newton did not publish it and
(b) on what would have been the effect if he had. It might well, to begin with, have mystified
its readers as Leibniz’s later publication did, but the fact of publication would inevitably have
brought clarification and improvements. Unfortunately, by 1670, his interests had already turned
away from mathematics, and in Westfall’s opinion ‘[n]early all of Newton’s burst of mathematical
activity in the period 1669–71 can be traced to external stimuli’ (1980, p. 232). As we have seen,
reasons for publication in the late seventeenth century were varied, and correspond badly with the
image which is often presented of a new open scientific society. While some were free with their
ideas, anxiety about theft and arguments about priority were widespread, and it was common for
publication, whether by book or in a letter, to take place to forestall a potential rival and stake
a claim for a discovery, rather than to reach an interested audience. ‘Huygens, for example, had
no intention of revealing his great discovery at once, but he did want to safeguard his priority by
allusions in letters to his friends’, is a typical comment (Hofmann 1974, p. 107); and Huygens
was one of the more open publishers. The nascent ‘community of savants’ of the mid-seventeenth
century had created a climate in which reputation and national rivalry rather than actual financial
reward often encouraged scientists to be secretive; and Newton, always isolated and increasingly
suspicious, needed little encouraging. For the next 15 years his main attention was focused on
the pursuits of alchemy and biblical study, whose importance in his own estimation of his work
equalled that of mathematics.

Exercise 2. Suppose given infinitely near points A = (x, y) and A′ = (x + po, y + qo) as above. Show
that the line AA′ has gradient q/p.

Exercise 3. Follow through the argument which leads to the gradient of the tangent to y + xx = ax,
above. What are its strengths and weaknesses?

Exercise 4. Try to do the analogous calculation for the curve given by equation (2). What problems arise
in finding the ratio q/p?

6 Leibniz, a confusing publication

For what I love most about my calculus is that it gives us the same advantages over the Ancients in the geometry of
Archimedes, that Viète and Descartes have given us in the geometry of Euclid or Apollonius, in freeing us from having
to work with the imagination. (Leibniz letter to Huygens, 29th Dec. 1691, in Gerhardt 1962, 2, p. 123)

If no one knew what was going on in 1670, by 1690 it is fair to say that the few who did have
an idea were either confused or misinformed. It would be quite inaccurate to suppose that there
was a recognized object called ‘the calculus’ which was clearly destined to be the way ahead for
mathematics. Leibniz’s discovery, as is always pointed out, was different in many repects from
Newton’s; but they shared a common language to the extent that they could communicate, even if
(as in the case of Newton’s letters) partly for the purpose of concealment. Also like Newton, Leibniz
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was in no hurry to publish—it took nine years from his discovery of the method in 1675 to his first
paper, which revealed very little; and he was only forced into publication by an apparent claim to
priority by his friend Tschirnhaus. Rushing into print, he produced what must surely be one of the
worst of all path-breaking papers, with no proofs, few and contradictory explanations and a long
list of misprints.

About the 1684 paper a great deal has been said. It had almost no impact at the time, because
it was so obscure; probably only Leibniz himself believed that he had revealed a revolutionary
discovery to the world. And yet, today, in spite of the quite marked differences between seventeenth-
century calculus and our own, a reader who knows what calculus is about can form a fair idea
of his aims and method; as with Descartes’s Géométrie, his language, which must have seemed so
strange, has passed into common currency, and his rules for differentiation which his readers had
to take on trust are (roughly) the ones we learn in school. A historical take on the paper, then,
might properly contain two components:

1. What was Leibniz trying to communicate?
2. How might his communication have been received by a reader?

It would have been easier for readers who had been softened up by Newton’s version of the calculus,
but there were none of them, and the new notation (dx, dy for infinitesimals or ‘differentials’ and∫

for integrals) was quite unconnected with anything which had gone before. There are two
extracts from the 1684 paper (Fauvel and Gray 13.A.3., pp. 428–34) in Appendix B to illustrate
the difficulties.

What is noteworthy about Leibniz’s exposition (and is often noted) is that at the outset the
differentials dx, dy, and so on are not infinitely small. They are ‘quantities’ whose only property
is that (for example) dy/dx is the gradient of the tangent to the curve specified by some equation
between x and y. The rules which Leibniz then gives for working out differentials are introduced,
to say the least, abruptly: ‘Now, addition . . .’. However, they do make it possible to work out the
relations between dx and dy. So, for example, using d(xv) = x dv + v dx, we can easily deduce that

d(x2) = 2x dx

Equally, if y = x2, x = √
y; and, using the above equation,

d(
√

y) = dx = 1
2x

d(x2) = 1
2
√

y
dy

And many other formulae can be obtained by more or less ingenious applications of the ‘Leibniz
rule’ for multiplication. The problem is that the rule is stated without proof; and its proof depends
on some sort of limiting argument—in the language of 1684, you need to use the fact that dx
and dy are infinitesimal. Nor is the proof to be found later in the paper; the simple version due to
L’Hôpital is given in Section 8.

What Leibniz does next must have seemed still more perplexing; as shown in the second extract,
he uses the d procedure a second time to arrive at something called, for example, d dv. Since we have
a rather vague idea of how dv has been defined, we may well ask how the preceding methods could
possibly be applied to it to get a second differential. We shall have to wait, although the descriptions
of its properties (in distinguishing maxima from minima, for example) show that it is useful.
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However, it is only after three pages of this exposition of ‘rules’ for the calculus, which tells you
how to get results with no idea of why they should be true, that Leibniz is prepared to assert that
dx, dy, and so on can be taken infinitely small. In this sense, his paper is less open than Newton’s
early writings; among the reasons usually claimed are:

1. that the fact that the calculus worked was more important for him than the meaning of the
symbols which it used;

2. that he was not entirely happy with the infinitely small himself, and was prepared to deny that
he was using it if he could find another defence.

A particular viewpoint drawing on Leibniz’s philosophical work holds that as a rationalist he was
committed to a strong belief in the power of written signs to achieve results in the world. One of
his projects in the late 1670s was for a ‘Universal Characteristic’, which would allow all meanings
in all languages to be unambiguously expressed, and so finally put an end to human strife (since
there would be nothing to argue about).

It was now clear to Leibniz that in order to discover the alphabet of human thought and realise the universal charac-
teristic, it would be necessary to analyse all concepts and reduce them to simple elements by means of definitions, then
to represent the simple concepts by appropriate symbols and invent symbols for their combinations, and finally . . . to
demonstrate all known truths by reducing them to simple, evident principles. (Aiton 1985, p. 78)

Compared with this ambitious programme, which of course was never undertaken, the calculus
seems a minor achievement. It might be thought that his calculus works in opposition to the
rational aim of the characteristic; its status as ‘marks on paper which perform a function’ is quite
divorced from its doubtful meaning. Still, in some way for Leibniz, that was its beauty. If the
scientific community could accept that it worked, they would have agreed on a common project
for the betterment of mankind. In fact, the heart of the paper—and this is perhaps the answer
to the question about his aim—lies in his use of the word ‘algorithm’. The reader is being told
how to follow a set of mechanical rules (indeed, Leibniz had also invented a calculating machine)
which will make it possible to solve with ease a vast number of previously unsolved problems.
The justification of the procedure, which was present in Leibniz’s unpublished notes from his time
10 years before in Paris, is secondary to its exposition as method.

Here there is perhaps another parallel between Newton and Leibniz which helps to explain their
delays in publishing and the confusion of what they wrote: that both were still unsure about how
much they needed the infinitely small, or whether given time and application, which neither of them
had, they could dispense with it. Leibniz’s attempts to explain infinitesimals in later years are many,
and often contradictory—sometimes they exist, sometimes they are convenient fictions. A new
generation of less sophisticated mathematicians had to adopt and promote the methods, often
without much encouragement from their supposed patrons, before they became general currency.

Once we arrive at the infinitesimal ‘arguments’ in the 1684 paper, they are the ones—already in
use before Leibniz’ time—which were to become standard, however strange they may seem to us.
A curve ‘is’ a polygon with an infinite number of angles, and its tangent ‘is’ simply one of the sides
of this polygon, produced (see Fig. 3 again). The first of these ideas, as we have seen, goes back to
Nicholas of Cusa (see Chapter 6) if not earlier. They could be used, as they were later, to justify the
rules for differentiation, and much else.

Why (apart from the hurried publication already mentioned) did Leibniz produce his invention,
which he had spent some time developing, in such an unsatisfactory form? The statements which
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we have claiming pride in the discovery, such as the one which opens this section, come in the
main from some time later when others had taken the trouble to understand and explain it. And
we can see the prestige of the calculus growing with the priority quarrel; that something had
been plagiarized meant that it was worth plagiarizing, and vice versa. While the paper was clearly
found more than difficult at the time, some of its faults cannot be judged by later standards. Since
Descartes at least, the importance of proof of results had been declining. As Guicciardini (citing
Bos as authority) says:

[I]t was common in the early [and one might add, late] seventeenth century to give priority and publicity to the
geometrical construction which solves the problem, rather that to the analysis necessary to achieve such a construction
(an analysis which was often kept hidden by mathematicians) . . . (Guicciardini 1999, p. 98)

This is not to say that construction and proof were not often argued about, and unproved results
or inadequate proofs challenged. However, Leibniz’s paper was too murky even to warrant such a
challenge, and only a series of later explainers (and a stream of errata issued in the journal) finally
made it readable to later generations.

Interestingly, almost as an afterthought to the confusions of the paper itself, there appears a hint
of what the new methods can do:

It is required to find a curve WW such that, its tangent WC being drawn to the axis, XC is always equal to a given
constant line a. [Fig. 4.] Then XW or w is to XC or a as dw is to dx. If dx (which can be chosen arbitrarily) is taken
constant, hence always equal to, say, b, that is, x or AX increases uniformly, then w = a

b dw. Those ordinates w are
therefore proportional to their dw, their increments or differences, and this means that if the x form an arithmetic
progression, then the w form a geometric progression. In other words, if the w are numbers, the x will be logarithms,
so that the curve is logarithmic.

Leibniz claims this is a problem which Debeaune proposed to Descartes, and which Descartes could
not solve. Typically, this is not quite true; the problem is a simplified reformulation of Debeaune’s
problem, and Descartes did give a solution (see Fauvel and Gray 13.A.2 for the details, including

X
–0.5 0 C 0.5 1.5 2.521

2
w

W

W
dw

dx

–1.5

4

6

8

–1

Fig. 4 The example (exponential/logarithmic curve) from Leibniz’ paper.
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Leibniz’s manuscript notes). However, none of this matters in terms of the impact such a solution
would have had on any supposed audience. Rapidly solving a problem which, in contemporary
terms, was interesting and difficult, it must have been, of all the sections of the paper, the one
which most invited the reader to make an effort, and it is unfortunate that it came at the end. In our
terms, we would say that XC (the subtangent) is w/(dw/dx), and we require this to be a constant a.
We derive the equation

dw
dx

= a.w (3)

which has the solution w = Aeax, or (as Leibniz says) x is proportional to the logarithm of w.
Leibniz’ solution is, in our terms, ‘from first principles’. First, he has to assume that dx is constant.
In modern notation this is always an unspoken assumption, based on the choice of x as the
‘independent variable’ in terms of which w is expressed. (Bos 1991, chapter 5 is an interesting
essay on the nature of the ‘early calculus’ which brings this point out.) Next, he notices that as you
add dx to x, you change w to w + dw = w + (b/a)w = w(1 + (b/a)). (Note that if dx is infinitely
small, which it should be, then so is b, but this is not stated.) Hence, as Leibniz states, arithmetic
progression in the xs corresponds to geometric progression in the ws. We would then say that w
was a power function (e.g. ex) of x, but in the 1680s they were not used to such functions. Hence
Leibniz’s statement goes the other way round: x is a logarithmic function of w.

Exercise 5. Deduce the formula for d(x2) from that for d(xv). Next, see if you can generalize to d(xn),
where n = 3, 4, . . .

Exercise 6. Solve the differential equation (3). What properties of differentials and integrals have you
had to use?

7 The Principia and its problems

After they had been some time together, the Dr asked him what he thought the Curve would be that would be described
by the Planets supposing the force of attraction towards the Sun to be reciprocal to the square of their distance from
it. Sr Isaac replied immediately that it would be an ellipsis, the Doctor struck with joy and amazement asked him how
he knew it, Why saith he I have calculated it, Whereupon Dr Halley asked him for his calculations without any further
delay, Sr Isaac looked among his papers but could not find it, but he promised to renew it, & then to send it him.
(De Moivre quoted in I. B. Cohen 1971, pp. 297–8)

‘The Dr’ is Newton’s friend Halley, and the above breathless quote (all those commas) is the classic
account of how Halley’s question on the paths of planets plunged Newton into three years’ intense
mathematical work which issued in the Principia (1687). If its three massive volumes may have
been as strange and new as Leibniz’s work, they were certainly more impressive, and backed
up by a formidable apparatus of proof. As the quote above indicates, the work deduces (using
Newton’s three laws as starting point) that the observed paths of the planets are compatible with
an inverse-square law of attraction; and—more uncertainly—that such a law is the only one
which can account for the observations. Whatever he may have said—as in the opening quote of
the chapter—about his calculus having been used to deduce his results, the book presents itself as
new physics demonstrated by means of old (i.e. of course, Greek) mathematics. The reasons for this
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are complicated. As has been pointed out for example, by Hall, the work would have been doubly
unfamiliar to its readers if it had used both a new physical and a new mathematical language:

To the few skilled mathematicians in Europe around 1685 who were capable of understanding Newton’s mathem-
atical arguments at all, however expressed, the form he actually adopted in Principia was far more convenient and
familiar than either the method of fluxions—known to no one but Newton—or the Leibnizian differential calculus . . .

(Hall 1980, p. 30)

And there was already enough that they could and did disbelieve in the physics—notably the idea
of a force of gravitation acting at a distance through a vacuum, which seemed pure mystification
in contrast to Descartes’s ideas. The Principia is intended to follow the model of Archimedes’
physical texts—the Statics and On Floating Bodies, although it is far longer; with a set of first
principles and rigorous deductions from them. Furthermore, Newton, who had as we have seen
been an enthusiastic ‘modernist’ and follower of Descartes in the 1660s, had changed his position
radically, for reasons which were mostly, it seems, concerned with his interests outside physics and
mathematics. He now (whatever his private practice) took every occasion to attack the modern
algebraic school of geometry to which he had once belonged, and scribbled ‘Not Geometry’ in the
margin of his copy of Descartes. During the 1670s, he had immersed himself in his studies on
alchemy and on the meaning and chronology of the Old Testament, on which his views were very
unorthodox. Rather like Stevin 100 years earlier, he had come to believe in a golden age of ‘first
knowledge’, which the Greeks had corrupted; that, for example, the rotation of the earth round
the sun was known to the Egyptians and to Pythagoras. He planned additions to the Principia
which would have explained this ancient learning (he had worked hard on reconstructing lost
Greek texts); had they been published, the work would have been seen as definitely eccentric, and
would probably have attracted much less admiration. For example, he drafted an explanation of
the ‘occult’ force of gravitation which would have convinced none of the sceptics:

Thus far I have explained the properties of gravity. But by no means do I consider its cause. However I will say in
what sense the Ancients theorized about it. Thales held that all bodies were animate, inferring this from magnetic and
electrical attractions . . . He taught that everything was full of Gods, and by Gods he meant animate bodies.8

We need to consider one example to clarify how the Principia might have appeared—and indeed
how it appears to us, when we can read it. I have reproduced as Appendix C the crucial deduction
of Kepler’s area law, which is often cited as an example. The statement is Newton’s version of the
area law; as he had found, the law (equal areas are swept out in equal times) follows simply from
the supposition that the body—always supposed to be a ‘particle’, concentrated at a point—moves
under a force which is directed to the immovable centre S from which the areas are calculated.
The proof is in two parts. The first part is good Greek geometry, if physically untrue. We think
of the body as being moved in a succession of jerks (‘by a great impulse’) at equal time intervals,
rather than moving smoothly, the impulses being directed to the centre S. We find (as in Fig. 5)
that it moves in a polygon, and that the successive triangles have equal areas. We now suppose the
number of triangles increased ‘in infinitum’, which is no longer Greek geometry at all, but the now
familiar argument that an infinite-sided polygon is a curve. Newton asserts that the force now acts
continually, and areas remain proportional to times.

8. Gregory MS fo. 13, cited Iliffe (1995, p. 172). Leibniz’s ideas on the nature of atoms or ‘monads’ and the souls which animated
them were equally strange; but they were not linked to an ideology which tried to validate ideas by their antiquity.
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Fig. 5 Newton’s picture for Principia I, proposition 1.

This argument does not use Newton’s version of the calculus; it is a more careful version of
the infinitesimal arguments which were being used by many of his predecessors (Pascal, Huygens,
Wallis, and others). This does not make it any better, however. It is true that I have omitted the intro-
ductory material, in particular Cor. IV, Lem. III, which states that the limit of a polygon is a curve;
and that this contains the theory justifying the passage to a limit. Such infinitesimal geometry gives
the arguments in the Principia a superficial robustness. What Leibniz’s (and Newton’s) calculus has
which the Principia does not is the security, and the ease of calculation supplied by algebra. In this
respect, Newton’s decision to turn away from Descartes’s algebraic methods made things harder
for him, and for his readers.9 And this choice of a method of exposition made it quite unclear to
what extent the two obscure new works, Leibniz’s calculus and Newton’s physics, were related.

8 The arrival of the calculus

By 1700 the calculus, or the method of fluxions, as it was now being called in England, had become
a success story. This could hardly have been guessed from the beginnings as they have been sketched
above. Both Newton and Leibniz had acquired a circle of interested students who attempted to find
out what they could about the new methods, and to publicize them. In mathematical terms, Leibniz
had some unexpected good fortune. Two Swiss brothers, Jakob and Johann Bernoulli, understood
very early that something was to be gained from understanding his theory. Later, they were to claim
that they toiled away to master it in a period of weeks; in fact, it took more like three years during
which they wrote abjectly to Leibniz requesting some clarification:

Of this method of yours, if you could deign to impart some ray of light (which I earnestly beseech) to me—as much as
you can spare given your very weighty affairs—by doing so you would make me not a mere admirer of your inventions
but also a worthy esteemer and a publicist. (Letter of Jakob Bernoulli to Leibniz, quoted in Roero 1989)

9. Many stories circulate about the perplexity of the Principia’s immediate audience. John Locke (who was not a mediocre
mathematician, in terms of the culture of the time) had to be given an outline by Huygens; ‘he confessed that there were “very few
that [had] Mathematicks enough to understand his Demonstrations” ’. (Iliffe, 1995, p. 173.)
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Leibniz was in Italy and did not reply to this crawling letter (there is more in the same vein).
However, the brothers’ persistence bore fruit; in the end, as Jakob had prophesied, they clarified,
adapted, and extended Leibniz’s method so that it could solve a vast range of problems; and they
proved effective and aggressive propagandists. As Roero characterizes it, the Bernoullis can be
credited with the ‘rediscovery’ of the Leibnizian algorithm (Roero 1989, p. 142).

Instructed by Johann, in 1696 the Marquis de l’Hôpital produced what might have seemed
impossible 10 years earlier, an ‘elementary’ introduction to the theory, the Analyse des infiniment
petits, pour l’intelligence des lignes courbes.10 In this admirable book, the student can with relative
ease learn both how the calculus works and why it works. A certain amount of what, in terms of
all previous mathematical practice, would be considered nonsense must be accepted along the way
(the problems are identical to those I have already indicated in Newton’s theory); but within its own
boundaries the theory works, and you will not make mistakes. The serious limitation of the Analyse
is that it deals only with differential problems and does not touch integration. (Information on that
was to come from various sources, notably Newton’s Quadratura curvarum, in 1704.) However, you
can for the first time find a published proof of the ‘Leibniz rule’ for the differential of a product.

Proposition II. To find the differentials of the products of several quantities multiplied, or drawn into each other. (Fauvel and
Gray 11.B.6.)

The differential of xy is y dx + x dy: for y becomes y + dy, when x becomes x + dx; and therefore xy then becomes
xy+y dx+x dy+dx dy. Which is the product of x+dx into y+dy, and the differential thereof will be y dx+x dy+dx dy,
that is, y dx + x dy: because dx dy is a quantity infinitely small in respect of the other terms y dx and x dy: For if, for
example, you divide y dx and dx dy by dx, we shall have the quotients y and dy, the latter of which is infinitely less than
the former.

Whence it follows, that the differential of the product of two quantities is equal to the product of the differential of the
first of these quantities into the second plus the product of the differential of the second into the first.

The core ‘problem’ of early calculus is neatly set out here; and you cannot really derive the product
rule for differentials in any other way. The differentials dx, dy are serious quantities which cannot be
neglected, and which enter into the formula for d(xy). And yet their product dx dy can be neglected.
You can get used to doing things this way, but its justification is still shaky. However, at least what
was obscure in Leibniz has become transparently clear. If you suspend your worries about the
infinitely small, it is easy to follow the instructions, and (for example) to find tangents to any curve.

From the moment that the new methods became at all understood, the Leibnizians had to defend
them against those who held (with some justice) that they broke the rules of correct practice in
mathematics. In the 1690s, Leibniz was already defending his ‘new analysis’ against Nieuwentijt
(a Dutch philosopher), and the continued success of the calculus against such attacks is a good
demonstration of how much importance its defenders attached to its value in producing results,
as opposed to mere logical coherence. The most damning and serious attack was to come, some
years after the founders were dead, from Bishop George Berkeley. Berkeley’s The Analyst (1734) is
logically (and in terms of classical mathematics) hard to fault, as well as being fine rhetoric; which
perhaps goes to show that logic is not always what determines the progress of mathematics. He
made the well-founded point that it is bad logic to claim that a theory is correct because it leads
to correct conclusions (it is often possible to deduce the truth from false assumptions). And by
a careful analysis of the version of the ‘product rule’ for differentiation given in the Principia he

10. One feels that L’Hôpital deserves some credit, although it is now recognized that his text is essentially due to Johann Bernoulli
and his introduction to Fontenelle. Such is the destructive power of scholarship.
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showed that it worked because two errors in calculation happened to cancel. (It just happened that
one of the advantages of the early calculus was that this cancellation of errors had the status of
a general rule.) Attacking the new scientists of what was becoming called the ‘Enlightenment’
for transferring their belief from theology to fictions in mathematics (he was particularly incensed
against Halley, who was believed to have died an atheist), he asked for example:

Whether mathematicians, who are so delicate in religious points, are strictly scrupulous in their own science? Whether
they do not submit to authority, take things upon trust, and believe points inconceivable? Whether they have not
their mysteries, and what is more, their repugnancies and contradictions? (Berkeley, in Fauvel and Gray 18.A.1,
pp. 557–8)

The point was a good one, but it was largely ignored. Eighteenth-century mathematicians divided
into those who genuinely believed that infinitesimals existed, and those who justified the methods
of the calculus by their results in the belief that a sound foundation would arrive sooner or later.
D’Alembert, the key Enlightenment figure and editor of the Encyclopédie, advised the student in
theological terms: ‘Allez en avant, et la foi vous viendra’ (Go forward, faith will come to you). Faith
and science, indeed, had neatly exchanged places.

9 The calculus in practice

So far, the story seems to be a purely ‘internal’ one, with problems within mathematics being
argued over and solved in competing ways by professors (or diplomats, or men of independent
means) in universities or coffee-houses. To go a little further, we need to consider the kinds of
problems which were of interest, and what constituted a ‘solution’; as well as the ways in which
mathematicians—who are always trying to justify their bizarre activity to themselves and to the
outside world—thought of the possible practical outcomes of their work. Some light is thrown
on this by the often provocative essays of Henk Bos (1991); from whom I draw one particularly
interesting example.

One of the classical challenge problems which the mathematicians of the 1690s set one
another—in the interests both of propaganda for the calculus and of internal competition—was
the description of the curve which a heavy chain follows hanging under gravity (Fig. 6). History
books will in general tell you that the problem was solved by Leibniz, l’Hôpital and the Bernoullis
using the calculus; but reference to their papers (which are neither easy to access nor to read, being
in Latin in Gerhardt (1962, vol. V) shows that the story is somewhat more complicated. The naive
reader would assume that the ‘solution’ was an equation for the catenary in the form y = f (x),
where x is horizontal and y vertical; and reference to a ‘modern’ textbook, if they still deal with the
topic, will show that this is how it is now expressed:

y = a cosh
(x

a

)
= a

(
1
2

(ex/a + e−x/a)

)

However, as Bos shows, despite the allegiance of all parties to Descartes’s geometry, the idea that a
curve was specified by its equation was not the norm. You could describe a curve ‘by quadrature’
(give the y-coordinate, say, as the area under another curve—obviously difficult, since you have
to measure a curved area); or ‘by rectification’ (give it as the arc-length of a curve—much better,
since you only have to stretch a string along the curve and measure it).
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Fig. 6 The catenary y = a cosh(x/a) = (a/2)(ex/a + e−x/a).

[Jakob Bernoulli] wrote that one should at least give a construction by quadrature of an algebraic curve. It was
better to give a construction by rectification of an algebraic curve, or a ‘pointwise construction’ . . . The best way to
represent a curve, however, was a construction by curves ‘given in nature’ (as the Elastica or, e.g., the Catenary. (Bos
1991, p. 34).

We seem to have a vicious circle here; if the catenary is so natural that it is best to represent other
curves by means of it, then what point is there in trying to find another way of describing it? The
point is illustrated, in a slightly surreal way, in Leibniz’s paper which ‘solves’ the problem. It should
be noted that the solution (given in Gerhardt 1962, vol. V, pp. 258–63, in French for easy reading)
is a purely geometrical construction of points on the curve, with no proof, either by old-fashioned
geometry or by calculus; and that the same is true of the slightly different versions of the other
competitors.

Having shown that the catenary was related to the logarithm (it involves the function ex), Leibniz
proposed that ships at sea should have a chain suitably suspended among their instruments, so that,
if they lost their invaluable tables of logarithms, they could work them out from measurements on
the curve.

Question. Given the equation of the catenary, how would you use measurements on a chain to
work out log z?

Question. Is this an entirely stupid and impractical idea, or is it on the contrary ingenious and
practical?

The catenary was only one of a host of practical and pseudo-practical problems for which the
calculus proved to be uniquely well-adapted, partly because it dealt with rates of change. So we
find it applied to the flight of cannon-balls in a resisting medium; to the vibrations of stretched
strings; to the shape of sails, and so on. These mundane problems took their place with the grander
questions of the movement of the planets and the shape of the earth which Newton had discussed
in the Principia.
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And it is now time to return to a version—if possible updated—of Boris Hessen’s thesis: that the
whole concern of the Principia was with precisely those questions whose solutions were urgently
required by the British bourgeoisie.

At that time the most progressive class, it demanded the most progressive science . . . The necessity arose of not merely
empirically resolving isolated problems, but of synthetically surveying and laying a stable theoretical basis for the
solution by general methods of all the aggregate of physical problems set for immediate solution by the development
of the new technique.

And since (as we have already demonstrated) the basic complex of problems was that of mechanics this encyclopaedic
survey of the physical problems was equivalent to the creation of a harmonious structure of theoretical mechanics
which would supply general methods of resolving the tasks of the mechanics of earth and sky. (Hessen 1971,
pp. 170–1)

If for ‘Principia’ we read ‘calculus’ and for ‘British’ we read ‘European’, is there any way of sustaining
this thesis? The problem is worth the attention of the next generation of historians.

Exercise 7. Using the equilibrium of a section of the chain, AB (where, say, A is the lowest point), derive
the equation of the catenary given above.

10 Afterword

Boyer’s history of the calculus (1949) ends tidily with the nineteenth-century reformulation of
analysis—usually ascribed to Weierstrass in the 1860s—which banished infinitesimals and made
everything rigorous (in principle, after the model of Greek geometry) again. Whether this vindicated
Berkeley or the hopeful analysts who expected that their methods would sooner or later (in this
case much later) be justified, is unclear. However, it is worth mentioning that any impression that
mathematicians stopped using such ill-founded methods once they had been shown the correct ones
is very oversimplified, since mathematics is a large subject—by 1860 it was already out of hand—
and not all areas are going to come under the same régime. In particular, the rigorous justification
of the calculus is, on the whole, too hard to be taught outside universities, while its results are so
useful that they need to be available much earlier. Hence, the language of infinitesimals lingered
on. Here are two examples from personal experience.

1. At school, at the age of 17, we were taught to find areas of curves, in particular those given
by ‘polar equations’ involving the coordinates r, θ as in Fig. 7. The heart-shaped curve shown is
appropriately called a ‘cardioid’, and its equation is:

r = a(1 + cos θ)

To find the area, we used the ‘element of area’; the infinitely small triangle of height r and angle dθ .
As a triangle, it has area 1

2 r2 ·dθ—this may not be immediately obvious, but it follows by neglecting
second-order infinitesimals, and we were told that it was true. Since θ runs from 0 to 2π , the area
inside the curve is ∫ 2π

0

1
2

a2(1 + cos θ)2 · dθ
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Fig. 7 A cardioid, r = 2(1 + cos θ); and an element of area.

which (you can either believe this or work it out) is a relatively simple integral, leading to the answer
3πa2/2.

2. At university, calculus was taught rigorously (see above), and one had to forget all one thought
one had learned about differentiation. However, when one came to study differential geometry—
the geometry of curves and surfaces—it was another matter altogether. The textbooks (from the
1950s) which were used still picturesquely define the ‘line element’ ds on a surface as the distance
between two neighbouring points, as though a point had a neighbour; and similarly we learned
about infinitely small areas and the shape of an infinitely small ellipse near a point. (This language
was indeed what Einstein used to formulate his general theory of relativity (1919), which was
differential geometry par excellence.) Such formulations disappeared from universities, at least in
England, in the 1960s with the arrival of a serious modernization drive, which introduced the
ideas of Elie Cartan and Georges de Rham. The term dx was still allowed (and much the same things
could be done with it), but it meant something finite, more abstract, sounder in logic but harder to
grasp.

3. And today? Infinitesimals are still certainly used by working mathematicians in areas which
have not been modernized; and physics, being more results-driven, is full of them. But to discuss
the methods which physicists allow themselves would require much more space—see Chapter 10
for some thoughts on the subject.

Exercise 8. Sketch some points on the curve r = a(1 + cos θ), with a suitable choice of a, and verify
that it looks as I have drawn it.

Appendix A. Newton

(From On the method of fluxions and infinite series (in Newton 1967–81, 3, pp. 121–7).

PROBLEM 4

TO DRAW TANGENTS TO CURVES

MODE 1.

Tangents are drawn to curves according to the various relationships of curves to straight lines
[i.e. according to the coordinate system]. And in the first place let the straight line BD be ordinate to
another straight line AB as base and terminate at the curve ED. Let this ordinate move through an
indefinitely small space to the position bd so that it increases by the moment cd while AB increases



184 A History of Mathematics

T A B b
E

D
d

c
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Fig. 9 Newton’s ‘cissoid’.

by the moment Bb, equal to Dc [Fig. 8]. Now let Dd be extended till it meets AB in T : this will then
touch the curve in D or d and the triangles dcD, DBT will be similar, so that

TB : BD = Dc : cd

When therefore the relationship of BD to AB is exhibited in any equation by which the curve is to
be determined, seek the relation of the fluxions by Problem 1 and take TB to BD in the ratio of the
fluxion of AB to that of BD; then will TD touch the curve at D.

EXAMPLE 3. Let ED be a conchoid of Nicomedes described with pole G, asymptote AT and
distance LD, and let GA = b, LD = c, AB = x, and BD = y. [Fig. 9]. Because of the similar triangles
DBL and DMG there will be

LB(
√

cc − yy) : BD(y) :: DM(x) : MG(b + y)

and so b + y times
√

cc − yy = yx. Having gained this equation I suppose
√

cc − yy = z and thus
I have two equations bz + yz = yx and zz = cc − yy. With their help I seek the fluxions of the
quantities x, y, and z (by Problem 1), [these are called m, n, r, respectively] and from the first there
comes br + yr + nz = nx + my, and from the second 2rz = −2ny, or rz + ny = 0. On eliminating
r, there arises −bny/z − nyy/z + nz = nx + my. By resolving these there comes

y : z − by
z

− yy
z

− x(:: n : m) :: BD : BT
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In consequence, since BD is equal to y, BT will be z − x − (by + yy)/z. This is −BT = AL + (BD ×
GM/BL). Here the sign−prefixed to BT indicates that the point T must be taken on the side away
from A.

Note. Newton’s exposition of how to find tangents is very clear. Of his various examples,
I think that the ‘conchoid’, whose equation and picture he gives, is the clearest; as Whiteside
says in his note (1967–81) it is taken from an example of Descartes, who did not bother to write
the equation. It is given here more as an example of style than as an encouragement to follow
through the calculation One notational point: in Newton’s ms, the fluxions of x, y, z are called
m, n, r as above. This makes it unclear which fluxion belongs to which variable, and once Leibniz’s
d-notation became common, Newtonians adopted the clearer practice of writing ‘pricked’ (dotted)
letters ẋ, ẏ, ż. Whiteside, perhaps again for clarity, uses these in his translation—it is one of the few
points where he changes Newton’s text—and I have changed them back, since this is how they
appeared in the original.

Appendix B. Leibniz

From ‘A new method for maxima and minima as well as tangents, which is neither impeded by fractional nor irrational
quantities, and a remarkable type of calculus for them’ (1684), reproduced from Fauvel and Gray 13.A.3.

1. Let an axis AX [Fig. 10]11 and several curves such as VV, WW, YY, ZZ be given, of which the
ordinates VX, WX, YX, ZX, perpendicular to the axis are called v, w, y, z respectively. The segment

Fig. 10 Leibniz’s illustration for his 1684 paper.

11. Dupont and Roero point out (1991) that the original picture given by Leibniz in the paper is usually wrongly reproduced in
copies (in particular in Fauvel and Gray). Figure 10 is from Leibniz’s works, and hopefully correct.
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AX, cut off from the axis is called x. Let the tangents be VB, WC, YD, ZE, intersecting the axis
respectively at B, C, D, E. Now some straight line selected arbitrarily is called dx, and the line which
is to dx as v (or w, or y, or z) is to XB (or XC, or XD, or XE) is called dv (or dw, or dy, or dz), or
the difference of these v (or w, or y, or z). Under these assumptions we have the following rules of
the calculus.

If a is a given constant, then da = 0, and d(ax) = a dx . . . Now addition and subtraction: if
z−y+w+x = v, then d(z−y+w+x) = dv = dz−dy+dw+dx. Multiplication: d(xv) = xdv+v dx,
or, setting y = xv, dy = x dv + v dx. It is indifferent whether we take a formula such as xv or its
replacing letter such as y. It is to be noted that x and dx are treated in this calculus in the same
way as y and dy, or any other indeterminate letter with its difference. It is also to be noted that
we cannot always move backward from a differential equation without some caution, something
which we shall discuss elsewhere.

2. When with increasing ordinates v its increments or differences also increase (that is, when dv
is positive, d dv, the difference of the differences, is also positive, and when dv is negative, d dv is also
negative), then the curve turns toward the axis its concavity, in the other case its convexity.

3. Knowing thus the Algorithm (as I may say) of this calculus, which I call differential calculus, all
other differential equations can be solved by a common method. We can find maxima and minima
as well as tangents without the necessity of removing fractions, irrationals, and other restrictions,
as had to be done according to the methods that have been published hitherto. The demonstration
will be easy to one who is experienced in these matters and who considers the fact, until now not
sufficiently explored, that dx, dy, dv, dw, dz can be taken proportional to the momentary differences,
that is, increments or decrements, of the corresponding x, y, v, w, z . . . We have only to keep in
mind that to find a tangent means to connect two points of the curve at an infinitely small distance,
or the continued side of a polygon with an infinite number of angles, which for us takes the place of
the curve. This infinitely small distance can always be expressed by a known differential like dv, or
by a relation to it, that is, by some known tangent.

Appendix C. From the Principia

Book I, Proposition 1, Theorem 1. (Reproduced from Fauvel and Gray 12 B.5.)

The areas which revolving bodies describe by radii drawn to an immovable centre of force do lie in the same
immovable planes, and are proportional to the times in which they are described.

(See Fig. 5.)
For suppose the time to be divided into equal parts, and in the first part of that time let the body

by its innate force describe the right line AB. In the second part of that time, the same would (by
Law I.), if not hindered, proceed directly to c, along the line Bc equal to AB; so that by the radii
AS, BS, cS, drawn to the centre, the equal areas ASB, BSc, would be described. But when the body
is arrived at B, suppose that a centripetal force acts at once with a great impulse, and, turning
aside the body from the right line Bc, compels it afterwards to continue its motion along the right
line BC. Draw cC parallel to BS meeting BC in C; and at the end of the second part of the time,
the body (by Cor. I. of the Laws) will be found in C, in the same plane with the triangle ASB. Join
SC, and, because SB and Cc are parallel, the triangle SBC will be equal to the triangle SBc, and
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therefore also to the triangle SAB. By the like argument, if the centripetal force acts successively in
C, D, E, &c., and makes the body, in each single particle of time, to describe the right lines CD, DE,
EF, &c., they will all lie in the same plane; and the triangle SCD will be equal to the triangle SBC,
and SDE to SCD, and SEF to SDE. And therefore, in equal times, equal areas are described in one
immovable plane: and, by composition any sums SADS, SAFS, of those areas, are one to the other
as the times in which they are described. Now let the number of those triangles be augmented, and
their breadth diminished in infinitum; and (by Cor. 4, Lem. III.) their ultimate perimeter ADF will
be a curve line: and therefore the centripetal force, by which the body is perpetually drawn back
from the tangent of this curve, will act continually; and any described areas SADS, SAFS, which
are always proportional to the times of description, will, in this case also, be proportional to those
times. Q.E.D.

Solutions to exercises

1. If the ‘Sine’ is equivalent to R sin θ (where θ is the angle, expressed in radians), then the ‘Cosine’
is R cos θ , and the arc is Rθ . Now, x in the series (1) is the tangent, tan θ = sin θ/ cos θ ; and
this clearly is the same as the quotient of the Sine by the Cosine, since the Rs cancel. Now the
first term is the product of the Sine and the radius divided by the Cosine (i.e. Rx). To get from
each term to the next, we multiply by the square of the Sine and divide by the square of the
Cosine; that is, we multiply by the square of the tangent, or x2. We then divide successively by
1, 3, 5, . . . and alternate the signs; the result is:

Rθ = Rx − (Rx)x2

3
+ (Rx)x4

5
− (Rx)x6

7
+ · · ·

which is the series (1).
2. The gradient of the tangent is (increase in y)/(increase in x)= AT/TA′ = qo/po = q/p.
3. The strength is the (relative) simplicity of calculation. Once you have grasped the sequence

(subtract the expression for A from the expression for A′; divide by o; cross out any terms left
which still have o in them), it becomes automatic. The weakness is the fuzzy logic. Why is it all
right to set o = 0 at the end of the argument but not at the beginning?

4. We have (x + po)3 − ab(x + po) + a3 − d(y + qo)2 for the equation of A′. Subtracting the
equation of A, we get

3x2(po) + 3x(p2o2) + p3o3 − abpo − d(2yqo + q2o2) = 0

Divide by o and discard the terms which still have an o or o2 in them; you get 3x2p−abp−2dyq =
0 which gives the ratio of q to p, or, as we would say, dy/dx:

q/p = (3x2 − ab)/2dy.

5. By the rule: d(x2) = x dx + dx x = 2x dx. Generally, d(xn) = d(xn−1 · x) = xn−1dx + d(xn−1)x.
From this we deduce by induction (which was not very commonly used or well formalized in
the 1680s, but still . . .) the usual formula:

d(xn) = nxn−1dx
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6. The simplest method of solution is to divide by w and multiply by x (so all like terms are
together):

dw
w

= a · dx.

(We have had to assume that we can do this, but this is quite allowable on the assumption
that differentials are ‘quantities’ of some kind. We now suppose that we know that dw/w =
d(ln(w)), that is, effectively we integrate both sides: ln(w) = ax + k, or equivalently w = Aeax.

7. (Not easy.) Let the arc length from A to B be s, then the weight W is ρgs (ρ = density/unit
length). The horizontal components give T0 = T cos ψ , and the vertical give T sin ψ = ρgs.
Hence,

ρgs = T0 tan ψ

This is called the ‘intrinsic equation’. Note that tan ψ = dy/dx. On the other hand, ds2 =
dx2 + dy2 (from an infinitesimal triangle), so ds/dx = √

1 + (dy/dx)2. Write u for dy/dx, and
differentiate the intrinsic equation. You get:

k · ds
dx

= k
√

1 + u2 = du
dx

where k = ρg/T0. Now, if you know that the integral of 1/(
√

1 + u2) is sinh−1(u) (look it up),
the rest follows:

kx = sinh−1(u); u = sinh(kx); y = 1
k

cosh(kx)

using u = dy/dx, and noting that u = 0 when x = 0.
8. You have: θ = 0, r = 2a, which has cartesian coordinates (2, 0); θ = ±π/2, r = a, with

coordinates (0, ±1); and θ = −π , r = 0, giving (0, 0). These provide a basis, and you can add
others.



8 Geometries and space

1 Introduction

Most people are unaware that around a century and a half ago a revolution took place in the field of geometry that was
as scientifically profound as the Copernican revolution in astronomy and, in its impact, as philosophically important
as the Darwinian theory of evolution. (Greenberg 1974, p. ix)

It is a general conviction that geometry, with all its truths, is valid with unconditioned generality for all men, all times,
all peoples, and not merely for all historically factual ones but all conceivable ones. (Husserl 1989, p. 179)

The aim of this chapter is to consider one of the classic ‘stories’ in the history of mathematics:
the origin of non-Euclidean geometry. Although in some ways a part of the arrival of modern,
abstract mathematics (which is generally thought to be about itself ) as a replacement for tra-
ditional mathematics (which is, again in our usual version, about things and the world), the
story has traditionally been told as one of a particular process of discovery; the problem of Euc-
lid’s parallel postulate, and the invention of the non-Euclidean geometries by Lobachevsky and
Bolyai in the 1820s. It has the virtues of good stories: a connected thread, even a hero/heroes,
gropings for a solution followed by an unexpected twist. Its defects, as historians are sometimes
anxious to point out, are that history is more complex, and to construct such a story some
important details must be left out or simplified. The ‘classical’ history (Bonola 1955) which is
full, careful, and scholarly, is nearly 100 years old, and not surprisingly for some time there have
appeared criticisms, attempts to tell the story differently, or to tell a different story altogether.
The questions raised are typical ones in the history of scientific revolution, which were already
discussed by Bachelard in the 1930s: when mathematicians discover a completely different way
of doing mathematics (in this case, geometry), are they adding to the old mathematics, repla-
cing it, or giving us a new perspective from which the old (Euclidean) is a special case of the
new? To what extent is the previous pursuit of Euclidean geometry made invalid or irrelevant?
And so on.

Before we start, we face various problems; one particular one concerns geometry itself. Partly
(but not only) as a result of the ‘revolution’ to which the quote refers, the study of geometry has
gradually become something of a second-class subject, at least in universities. True, Pythagoras’s
theorem and the criteria for congruent triangles are still part of ‘general culture’, but their
epistemological status tends to be hazy. So the reader might take a moment to reflect on two
questions.

1. What is geometry about—what is its subject-matter?
2. How do we know that its results are true?

The answers to these will of course be influenced by your education as well as by personal opinion,
but to have thought about them may help. In previous chapters, a too definite knowledge of
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Fig. 1 The figure for postulate 5.

modern mathematics was perhaps a handicap to evaluating the mathematics of the past. But
it is an equal handicap to start with no view at all, and the questions above are meant to
elicit one.

To return to the story, the ‘simplest’ version, which still has wide currency and has the merit of
simplicity, runs roughly as follows:

1. From the beginning of Euclid’s geometry, and possibly even earlier, dissatisfaction with his
apparently perfect system was centred on the so-called ‘parallel postulate’. This says (in one version)
that if the angles α, β in Fig. 1 add up to less than two right angles, then the lines l, l′ meet. Another
version, which is perhaps easier to understand, is ‘Playfair’s axiom’: there is a unique straight line
through A which is parallel to l′, (does not meet it); and this line makes the angles add up to two
right angles as stated. It was felt that this was not intuitively obvious, and should be provable using
the other axioms, or from ‘first principles’.

[It was, on the other hand, reasoned that if the angles added up to two right angles exactly, then
AB, DE would not meet (they would be parallel). A quick way of ‘seeing’ this is as follows. If the
angles on one side are two right angles, so are the angles on the other. If the lines meet on one side,
then by symmetry they must meet on the other side too. But this implies that there is not a unique
straight line joining two points (the two points where they meet), which is unreasonable.]

2. For roughly two millennia there were attempts to prove the postulate. Recorded efforts were
made by Proclus (fifth century), Thābit ibn Qurra (ninth century), ibn al-Haytham (tenth century),
Khayyam (eleventh century), Nas.ir al-Dīn al-T. ūs.ī (thirteenth century); and, in ‘modern’ times,
by a number of writers some well-known, others obscure. It is worth noticing that the ‘parallels
problem’ was never regarded as a key question in mathematics. Obviously it was more important
to those (like the Arabs) who valued the Greek classics, but even so, it was often seen as rather a
blind alley, pursued by eccentrics.

3. The last major serious ‘proof ’ within the context of classical geometry was due to an Italian
priest, Gerolamo Saccheri, published in 1733. This refined a framework for the problem (division
into three cases) which is perhaps originally due to al-T. ūs.ī. We start by constructing a quadrilateral
ABCD, (Fig. 2) with the angles at B and C both right angles, and the sides AB and CD equal. It is
then easy to show that the angles at A and D are equal. If we have the parallels postulate, we can
deduce that they are right angles (try to see how); but without it, we do not know this. Saccheri
distinguished cases according to whether these two angles are right angles, acute, or obtuse; and
describes these as the ‘hypothesis of the right (acute, obtuse) angle’—HRA, HAA, HOA for short.
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Right angle Obtuse angle Acute angle

Fig. 2 Saccheri’s three hypotheses.

HRA corresponds to Euclid’s geometry with postulate 5 included; it is what we normally take to be
true. His idea was to get a contradiction by carefully spelling out the consequences of the HOA and
HAA, so that the HRA would be left as the only true geometry. The proof which he thought he had
was in fact wrong, but the idea of the three hypotheses was to be very useful; and in developing his
‘proof ’ he deduced a great many consequences which must follow if we assume the HAA; this, as
we will see, is the difficult case, which amounts to denying Postulate 5.

Saccheri proved that in fact these are three mutually exclusive choices: if, say, the HAA is true for
one quadrilateral then it is true for all. There are various other ways of looking at this distinction.
For example, with the HOA there are no parallels (we shall consider how this can happen later),
while with the HAA there are an infinite number of lines through a point P which do not meet a
given line l. Again, with the HOA (the HAA), all triangles have angle-sum greater than (less than)
two right angles.

4. After Saccheri, attempts at proof continued, but gradually new elements involving explicit
measurement (such as trigonometry) were brought in—and at the same time we see an increasing
tendency to doubt the possibility of effectively proving the postulate. Gauss1 in particular became
convinced (some time around 1800) that a consistent geometry in which the postulate was untrue
could be constructed; but he confined his thoughts to private correspondence.

5. In the 1820s, two independent researchers, N. I. Lobachevsky and Janos Bolyai, both of whom
had been trying to prove the postulate, chose a different aim: to construct a consistent geometry
based on the ‘acute angle’ hypothesis. Note the similarity, though, to Saccheri’s programme. In
each case the idea was to assume such a geometry possible, but Saccheri hoped to deduce a
contradiction, while Lobachevsky and Bolyai did not. Both published their results in obscure places
(in Russia and Hungary) in the 1820s2; and both works were more or less forgotten. However,
each of them proved some important and unexpected properties of the alternative ‘non-Euclidean’
geometry, and went a long way towards making it an interesting study in its own right. This is the
‘Copernican revolution’ referred to in our opening quote.

6. Although Lobachevsky and Bolyai had constructed their non-Euclidean geometries, they had
not proved them consistent. This is not a merely pedantic point; it would theoretically still be
possible to prove non-Euclidean geometry inconsistent, and so deduce postulate 5 after all. A wider
variety of geometries (more or fewer dimensions, varying rules of measurement) were outlined
by Riemann in his groundbreaking paper of 1854, and publicized in the years which followed by
Helmholtz; and in particular, the meaning of ‘non-Euclidean’ was clarified. Proof of consistency

1. Who should have much more than a passing reference; he was the dominant mathematician in almost all fields in the years
from 1800 to 1840.

2. To be precise: Lobachevsky’s first memoir, ‘Theory of Parallels’ in Russian, was in the Kazan Messenger in 1829; Bolyai’s ‘Science
Absolute of Space’, in Latin, was published in 1831 as an appendix to his father’s Tentamen.
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was achieved in stages through the later nineteenth century by Beltrami, Klein, and Poincaré
among others, by the characteristically modern method of defining ‘models’ for the new geometry.
Of this again, more will follow later.

7. As a result of these developments, it was realized that there was no unique geometry, and the
way was open to the modern understanding of a ‘geometry’ as the study of an axiom-system which
asserts certain properties of objects called (for example) ‘points’, ‘lines’, etc., without reference to
what these names may mean. The unique geometry of Euclid has been replaced by a multiplicity
of geometries, which are equally valid as objects of mathematical study. Because they were the first
to suggest an alternative to Euclid, Lobachevsky and Bolyai can be seen as the founding fathers of
this revolution.

Note. The reader who has no idea of what non-Euclidean geometry is, let alone what a model of it
might be, should consider the well-known picture ‘Circle Limit III’ by Moritz Escher (Fig. 3). In this,
which is a picture of non-Euclidean geometry’s version of a plane,

1. the curved lines are to be thought of as straight;
2. all the triangles (and all the fish) are to be considered as having the same size;
3. the bounding circle is ‘at infinity’, and lines which meet there are parallel. The calcula-

tions underlying the picture are set out by H. S. M. Coxeter at www.ams.org/new-in-math/
circle_limit_iii.pdf.

Fig. 3 ‘Circle Limit III’ by Moritz Escher.

www.ams.org/new-in-math/circle_limit_iii.pdf
www.ams.org/new-in-math/circle_limit_iii.pdf
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We have given the traditional outline of the story, and it is easy to criticize. An up-to-date,
serious history of mathematics such as this one claims to be obviously ought to be cautious of a
narrative which (a) supposes that a single project has occupied researchers for over 2000 years
(from Euclid’s time to the nineteenth century) and (b) points to a single discovery, at the end of this
time-span, as a founding event or revolution. The problem of the story of non-Euclidean geometry
is the problem of stories in general in history. How far has a generally confused situation been
simplified to produce a neat narrative? Has the meaning of the terms changed over the period? What
other issues, of philosophy, or the varying meaning of the word geometry need to be taken into
account?

In presenting the traditional history first, the intention is not to expose it to ridicule, but to raise
some genuine problems. In a thoughtful discussion (cited in Fauvel and Gray 16.C.5), Gray raises
the main problems of what he terms the ‘standard narrative’ for the major revolutionary period,
that is, roughly from 1730 to 1860; but before dealing with these, a similar assessment needs to
be attempted for the much longer earlier period. There seems to be an essential continuity in the
history from 300 bce to the mid-eighteenth century, and a discontinuity for some time after that,
whether it is termed a ‘revolution’ or not. Is the continuity genuine, where does the discontinuity
come from, and what do either of them have to do with wider questions about how we conceive of
space and the world? The fact that Kant, whose famously influential ideas on space were founded
on Euclidean geometry, wrote just before Lobachevsky and Bolyai is often remarked on; but is it just
chance?

Instead of the usual lengthy discussion of source-material, it is easy to give a relatively short
reading-list here; and at the head of it will naturally stand Jeremy Gray’s excellent study (1979).
This book is not only about the history of parallels, and it is the better for that; and it is useful in
covering both mathematical and philosophical questions, with a natural bias to the mathematical.
The lengthy history of attempts to prove the postulate (particularly in the Islamic period) is dealt
with rather briefly, but this can be justified by the greater interest of the eighteenth and nineteenth
centuries. And Gray consistently pays attention to the context—what other kinds of geometry were
of importance, and receiving attention—so that non-Euclidean geometry is given its proper place
as one contender in an often quite diverse field.

As Gray remarks, the older work of Bonola (1955) is still the final authority; it is all the more
important since it includes the main founding works of Lobachevsky and Bolyai as appendices.
Probably because of Gray’s particular interest, the source material reproduced in the chapter on
the subject in Fauvel and Gray (chapter 16) is generous, with extracts from Greek and Islamic
writers in earlier chapters in particular; as regards the standard narrative, it is a very useful
complement to Gray’s book.

Dating from the same period as Gray is Torrelli (1978), which is important in covering, one
would think, much the same questions (how did geometry change in the nineteenth century, and
why?), but with relatively little common ground. Much more attention is paid to rival methods of
axiomatics, and to ideas of what the subject matter should be. As a result, the cast of characters is
richer, including not only mathematicians but physicists and philosophers as well as those who, like
Helmholtz, Mach, and Poincaré, tried to combine the various disciplines. Finally, Joan Richards’
(1988) provides an enlightening antidote to a narrative centred on research mathematicians,
showing the reception of the new ideas on geometry in the rather special case of England, where
the teaching curriculum and humanistic values played a central part in what one might have
expected to be purely mathematical debates.
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2 First problem: the postulate

Let us return to Euclid’s postulate 5.3 It is worth noting that postulates 1–4 require the reader to
accept what might, in reasonable terms, be considered ‘obvious’: for example, that a circle can be
described with any given centre and any given radius. However, even then there is a disjunction
between geometry and ‘experience’. Would the statement still be so obvious, one might ask, if the
radius were chosen to be a million miles? As Torrelli points out:

In the closed Aristotelian world not every straight line can be produced continuously as required by Postulate 2, and
not every point can be the centre of a circle of arbitrary radius as demanded by Postulate 3. (Torrelli 1978, pp. 8–9)

This is an example of how the non-specificity of the postulates is useful; one does not have to
consider such questions.

What postulate 5 says is different in kind. However, it is essential in constructing that Euclidean
geometry which most of us would consider sensible. Not only the standard result on the angle-sum
of triangles (two right angles), but the very existence of rectangles and squares (figures with four
right angles at the corners) depend on it. And so, as a consequence, does much of what for the
Greeks’ predecessors was known and used, for example, the Pythagoras theorem.

In its classical form, postulate 5 reads:

If a straight line, falling on two other straight lines, makes the two interior angles on one side less than two right
angles, then the two straight lines, produced indefinitely, will meet on the side on which are the two angles less than
two right angles.

This at first simply appears hard to understand; but what it states is indicated by Fig. 1 above. If we
have such a diagram, and α + β < 180◦ , then the two lines will meet as stated. Note the two other
points:

1. ‘produced indefinitely’; that is, we are allowed to make the lines as long as is necessary;
2. ‘on that side’; that is, they will meet on one side, and not on the other.

While now perhaps comprehensible, the postulate—if we think about it—is asking us to accept
quite a strong statement. Once again, if we were allowed to think in terms of numbers, we would
find that it contains an assumption that geometry continues to work at arbitrarily large distances.
Trigonometry tells us, for example:

Claim: If (in radians) α = β = (π/2) − 10−10, and the transversal is of length 1 cm, then the
distance to the meeting point is roughly 1

2 · 1010 cm.

In other words, for postulate 5 to be true of ‘the world’, we must again conclude that the world has
infinite extent. For evidence that the Greeks in general did not think this, it is enough to consider
Archimedes (a very sophisticated Greek) who discusses the size of the universe in his Sand-Reckoner
(see Fauvel and Gray 4.A.2). What figure he came up with is unimportant for our purposes; the
main point is that it was a finite one. Hence, the ideally produced lines of geometry might go beyond
the boundaries of the universe—and conceptually, one can see how an idealized straight line might
continue after the universe had stopped. This points to an interesting disjunction between geometry
(an ideal study) and the study of the real world. In this respect, Plato’s point (see Chapter 2) that

3. Numbering in Euclid is sometimes problematic, and some authors (Bolyai in particular) call it axiom 11.
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geometers are, or should be studying ‘forms’ rather than things in the world makes more sense
than appears at first sight.

And yet, of course, Euclidean geometry was, and still is vital for surveyors, architects, and
town-planners who care nothing for how far a line can be produced but who very much want to
use the basic results about triangles, rectangles, lengths, and areas. The ‘ideal’ geometry, which in
Greek terms is a fiction, founds the geometry which people need. Worse, a naive reading, at least
of Euclid’s early books, might lead us to think that we were studying on a flat earth, particularly
if we use the variant definition of a straight line as ‘the shortest distance between two points’. The
Greeks knew the earth was round—Eratosthenes measured its radius. Al-Bīrūnī (see Chapter 5)
used sophisticated spherical geometry, in which the shortest distance between two points is a
great circle, to find routes between cities and determine the qibla. But in this ‘geometry’, all lines
eventually meet, as is shown in Fig. 4, and the standard results referred to above are not true. They
are, however, so nearly true that in (say) town planning, as opposed to long sea or air journeys, any
error in Pythagoras’s theorem could not be detected by our measuring instruments.

These two ways in which Euclidean geometry failed to measure up to the real world are worth
bearing in mind when we consider its problems. For both Greek and Islamic geometers we find that
the question is not strictly: ‘How do parallel lines behave in the world’? Rather, it is how they behave
in geometry. Here, then, we need to pause and make a historicist evaluation of what, in proving
postulate 5 (or any other Euclidean study) Euclid’s successors were after. The title ‘Ideas of Space’
given to Gray’s book is not, or has not always been a characterization of geometry.

Be that as it may, the influence of Euclidean thinking over subsequent geometers was naturally
enormous, even when they misunderstood him. Consequently, it is not surprising that the terms
in which Proclus stated the problem (in the sixth century ce—and they were already old by then)
remained constant for so long:

This ought to be struck from the postulates altogether. For it is a theorem—one that raises many questions, which
Ptolemy proposed to resolve in one of his books—and requires for its demonstration a number of definitions as well as
theorems. (Proclus 1970, cited in Fauvel and Gray 3.B1)

In other words: (a) the postulate is not ‘reasonably acceptable’ in the sense that the others are,
and (b) it should be proved to be a consequence of assumptions which are acceptable. This was
the long-term programme at least up to 1700. As can be seen, it was not, in any sense, a problem
about the coherence or otherwise of Euclidean geometry, which was by universal agreement the
geometry. Rather, it was a problem about constructing a proof of the postulate. Notice also that,
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Fig. 4 Geometry on the surface of a sphere. Any two ‘straight lines’ l and l′ meet (twice), at A and B.
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while Proclus agreed that to prove the postulate one would need extra definitions and theorems, he
did not say that one would need an alternative postulate. One needed, essentially, to provide a way
of seeing why what did not appear self-evident could be made so. Such were the terms of reference,
again until the seventeenth century. The recurring problem is that what is self-evident to one writer
may be illegitimate to another; and that almost anyone who made a serious attempt agreed that the
problem was difficult (necessarily, or it would not have preoccupied so many eminent predecessors)
and accordingly a proof could not be simple.

In a detailed analysis reproduced as Fauvel and Gray 6.C.3, Youschkevitch describes the various
proofs from the Islamic period and their flaws. As an example of one which seems quite adequate,
we could consider ibn al-Haytham’s proof, reproduced as Fauvel and Gray 6.C.1. Khayyam criticises
it (loc.cit. 6.C.2) for using the idea of motion, but in fact this is not the major problem. Euclid used
ideas of motion implicitly in places, and Thābit ibn Qurra in discussing the same question gave a
reasoned defence. Here is how ibn al-Haytham begins:

Let us start with a premise for that, and that is: ‘When two straight lines are produced from the extremities of a finite
straight line, containing two right angles with the first line, then every perpendicular dropped from one of these two
lines on the other is equal to the first line, which contained two right angles with these two lines.’ [The meaning must
be (see Fig. 5) that the angles actually are two right angles, not as sometimes in Euclidean-language that they add to
two right angles—otherwise the statement is obviously untrue.] Thus, every perpendicular dropped from one of the
afore-mentioned lines on the other contains a right angle with the line from which it was dropped. An example of this
is as follows: there is extended from the two extremities of line AB two lines AG, BD, and the angles GAB, DBA are each
right. Then point G is assumed on line AG and from it perpendicular GD is dropped on line BD. I say, then, that line GD
is equal to line AB. The proof of that is that nothing else is possible. (Fauvel and Gray, p. 235)

Notice first, that ibn al-Haytham states clearly what he is using as a replacement for the parallel
postulate. (It is again equivalent, since it essentially asserts the existence of rectangles.) Second, he
does not consider it self-evident, despite the bold ‘nothing else is possible’; because he goes on to
prove his statement from what he does consider self-evident, or at least more basic geometry. The
details are quite complex; you can follow them through in the source and find, if you can, where
something ‘equivalent’ to postulate 5 is being used as an assumption.

Exercise 1. (a) How does the ‘angles of a triangle’ theorem’ follow from the parallel postulate in either
of the forms cited above? (b) Let AB be a straight line; construct AC, BD perpendicular to AB and on the
same side of it, so that AC = BD. What would you need to show (1) that the angles at C and D are right
angles, (2) that AB = CD?

Exercise 2. Prove the ‘Claim’ above about the distance of the meeting-point.

A

G

B

D

Fig. 5 Ibn al-Haytham’s method—basically to construct a rectangle. Angles A, B, and G are right angles; the statement is then that
AG must be equal to BD. (We shall find Lambert discussing quadrilaterals of this type much later.)
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3 Space and infinity

As lines (so loves) oblique may well
Themselves in every corner greet:
But ours so truly parallel,
Though infinite, can never meet. (Andrew Marvell, The Definition of Love, in 1972, p. 50)

The point has already been made that the axioms of Euclid’s geometry do not properly apply to
what Greeks thought of as ‘space’; and this distinction between the two objects of study seems
to have remained constant until about 1600. That lines can indeed be infinite is, on the other
hand, apparently assumed by Marvell in the quote above (about 1650), a neat poetic formulation
of postulate 5. Something had changed in the way space was thought about which was to pose
further problems. Geometry had not only to be ‘self-evident’ in terms of some idea of common
sense, it was necessary that it should describe the world.

It would appear that Thomas Bradwardine (fourteenth century), in a typically scholastic
approach, was among the first to consider the idea of infinite space—if not as where we live
then as a property of God:

God must imagine the site of the world before creating it; and since it is absurd to imagine a limited empty space, what
God imagines is the infinite space of geometry. . .‘Indeed, He coexists fully with infinite magnitude and imaginary
extension and with each part of it’. (Torelli 1978, p. 28, quoting Bradwardine, De causa Dei)

Of course, such speculations coexisted with the more extreme ones such as whether God could
create a triangle whose angles did not add to two right angles; but in terms of a unification of
geometric space with the actual universe, the idea gained ground through more radical early
modern thinkers such as Giordano Bruno (sixteenth century), Descartes, and finally Newton. Was
Descartes’s need for infinite space (‘the extension of the world is indefinite’) related to his revolution
in geometry? It would not appear so, since Descartes’s plane is still an abstract one, a copy of Euclid’s
with numbers introduced. [And if you look back to the extracts from the Geometry in Chapter 6,
you will see that he needs parallels to introduce the numbers.] Rather, it is a consequence of his
physical law, equivalent to Newton’s First Law, that

a freely moving body will always continue to move in a straight line—thereby perpetually performing the construction
demanded by Euclid’s second postulate—and this would be impossible if every distance in the world were less than or
equal to a given magnitude. (Torelli 1978, p. 24, referring to Descartes Princ. Phil)

We noted in Chapter 7 the importance of Greek geometry for Newton’s later work, specifically
the Principia. Indeed, Newton went further than Descartes by constructing a vast scheme of how
all matter in the universe behaved. Here the universe was explicitly identified with the space of
Euclidean geometry, in which straight lines have indefinite extension. (Infinite, if you are freer
in your language.) Again, it was impossible for the laws of physics to work without such an
identification, but it is important to stress that this was relatively new. If Newton had to some extent
borrowed the idea from Descartes he certainly made it much more explicit in the whole geometric
and deductive structure of the Principia. With Descartes and Newton, a great step forward is
achieved, in that geometry can apply to physical space. As for the application of postulate 5,
it means that any inclined lines (in the same plane) will meet somewhere in the universe. The
drawback of this is that questions about geometry may become identical with questions about the
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Fig. 6 Classical descriptive geometry as it is still practised today. The three projections are united to give a general view, using the
algebra of vectors.

world, at least for some geometers.4 Of course, in a sense this has always been so; but the idea
that the study of geometry was derived from knowledge of the world, whether innate (part of our
mental structure) or empirical (derived from observation) became a dominant one for the next two
centuries. The contrast with Plato’s view that geometrical ideas were in some way above practice is
striking.

The main developments in geometry from Newton’s time on—and this is important when we
come to consider the relative importance of the ‘new’ geometries—concerned, naturally, the
increasing introduction of coordinates and of calculus as tools. To study curves and surfaces
meant to study their equations, even if diagrams were used as aids to understanding. In the late
eighteenth century, the French geometer Gaspard Monge developed what was called ‘descript-
ive geometry’ a key subject in the immensely influential École Polytechnique. Very fashionable
throughout the nineteenth century, and still surviving as an essential part of practical training
although unknown in most mathematics departments, descriptive geometry was the study of
three-dimensional figures via their projections—plans, elevations, and so on; the breaking down
of a figure into its projections, and its reconstitution from them (Fig. 6); and it leaned heavily
on calculus in its more sophisticated parts. Partly because the use of coordinates was central,
partly because of the importance of practical application, it was not concerned with the ques-
tion of the world. In 1837 we find Monge’s follower Michel Chasles praising him precisely for
avoiding those diagrams (‘figures’) which were an essential starting point in thinking, say, about
parallels.

[A]lthough descriptive geometry . . . by its nature makes an essential use of figures, it is only in its practical and
mechanical applications, where it plays an instrumental part, that it needs them: no one more than Monge thought
of and practised geometry without figures. There is a tradition in the École Polytechnique that Monge knew to an
amazing degree how to make his audience imagine the most complicated forms of extension in space, and their most
hidden properties, without any other aid but his hands, whose movements followed his words admirably . . . (Chasles
1837, p. 209)

4. In an earlier draft, I used the phrase ‘confused with’ rather than ‘identical with’; but the confusion is more that of the historian,
who has to try to understand, from Newton on, whether a geometer is describing an abstract construction or the empirical universe.
Sometimes, but not always, the geometer will explain.
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Fig. 7 Traditional perspective generates the ‘ideal line’ at infinity XY of projective geometry. The lines CA, DB are parallel and meet
at infinity at X in the ‘extended plane’; similarly AB, CD meet at Y.

Indeed, even the study of projective geometry, which is still taught as a very abstract subject, was
initially an offshoot of descriptive geometry5 and was regarded as the study of space enriched by
those ideal points and lines ‘at infinity’ which we find in perspective drawings (Fig. 7). Parallel
lines, in defiance of postulate 5, could meet provided that their meeting point was in that imagined
exclusion zone which was termed the ‘line at infinity’; the Euclidean structure of space was not
challenged, however strange that may seem. Perhaps the strongest expression of the prevailing
orthodoxy was given by Bolzano in 1817 when he attacked the use of geometry to prove results in
analysis:

But it is clear that it is an intolerable offense against correct method to derive truths of pure (or general) mathematics (i.e.
arithmetic, algebra, analysis) from considerations which belong to a merely applied (or special) part, namely, geometry.
(Bolzano, in Fauvel and Gray 18.B.1, p. 564)

Geometry was an applied subject, since its truth was derived from our knowledge of the world.
This point would have been almost unquestioned by Bolzano’s readers, even if they did not share
his conclusions. It was not contested by Lobachevsky and Bolyai, and it would not be for some
sixty years. It is only with hindsight that we see non-Euclidean geometry as pointing towards a
democracy of geometries in which all may have equal status and truth-claims are no longer the
issue.

4 Spherical geometry

When God Almighty intended the creation of mankind, He purposely designed the creation of the earth at first, and
gave it the consolidating force to evolve its natural shape, I mean that which is truly spherical. (Al-Bīrūnī 1967, p. 24)

We are about to confront the major problem of this chapter; that the mathematics which underpins
non-Euclidean geometry is, at times, difficult both conceptually and in terms of sheer calculation.
The ideas of Lobachevsky and Bolyai need their formulae to work, and the formulae are far from
intuitive. Following a common precedent, we shall therefore consider first the ‘geometry’ which
is defined on a sphere—think, as usual, of the Earth—by taking ‘straight lines’ to be lines of
shortest distance, that is great circles. This corresponds to Saccheri’s HOA. By what one might call

5. The founder, Poncelet, was one of Monge’s students.
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coincidence, it has always been dismissed as the HAA has not, as clearly contrary to what is obvious.
In Section 1, I gave it a quick dismissal; a more interesting one rests on Euclid’s proposition I.16.

In any triangle, if one of the sides is produced, then the exterior angle is greater than either of the interior and opposite
angles.

Euclid’s proof, together with a picture which illustrates how it fails to work on a sphere, is given as
Appendix A. In his discussion of the ‘standard account’, Gray raises the question of why spherical
geometry (which was, as he says, ‘well known throughout the entire period’) was not seen as an
answer to the question (i.e. whether the fifth postulate could be deduced from other self-evident
facts). It may be the mere fact that obvious Euclidean postulates, like the existence of circles of
arbitrary radius, were untrue in spherical geometry; or it may be that other simple defects such as
are brought to light in the failure of proposition I.16 were responsible. In any case, the aim of this
section is not so much to discuss this ‘what if ’ question (why did geometers not see the sphere as an
answer?), but to look at what was known of that geometry and how it influenced later thinking.

Already in the time of the Greeks, as has been mentioned, it was recognized that a line of shortest
distance on a sphere (let us call the sphere S) was an arc of a ‘great circle’—the intersection of S
with a plane through the centre (Fig. 4). Because of their importance in astronomy, the Greeks, in
particular Ptolemy gave attention to understanding spherical triangles (triangles whose sides are
shortest lines on a sphere), and the Islamic mathematicians who had (roughly) our trigonometric
functions to help them were able to derive the key formulae for ‘solving’ them, which are given in
Appendix B.

The formulae are essential if we are to find our way about on a sphere; they have been used
by geographers ancient and modern. Of much less interest to geographers, but more to mathem-
aticians, is something about the angle-sum of spherical triangles which was discovered by Albert
Girard in the seventeenth century: that

1. the angle-sum A + B + C is always greater than π (so much is obvious);
2. the ‘excess’ A+B+C−π increases with area; in fact, it is precisely equal to (1/R2)×area(ABC).

This is easy to see for the triangle all of whose angles are π/2, which makes up an eighth of the
sphere (why?). To see that the excess is simply a multiple of the area is a subtler argument, but
acceptable if you are prepared to take a little time thinking about pasting triangles together.

The way in which Girard’s formula might lead to a better understanding of what it means to deny
postulate 5 seems first to have occurred to Johann Heinrich Lambert, whose posthumous Theory
of parallels appeared in 1786. (Indeed, Lambert is singled out as a key transitional figure by Gray
(1979, ch. 5) for this and other reasons.) It was Lambert who, by reasoning with quadrilaterals
again, arrived at a key consequence of the HAA:

[I]t is not only the case that in every triangle the angle sum is less than 180◦, as we have already seen, but also that
the difference from 180◦ increases directly with the area of the triangle. (Lambert, in Fauvel and Gray p. 518)

Second, he saw that in consequence an HAA geometry must, like a spherical geometry, have an
absolute measure of length. This comes from reasoning with a quadrilateral ADGB (Fig. 8) in which
AB = AD and the three angles A,B,D are right angles, but the fourth (G) may not be:

Since the angle has a measure intelligible in itself [i.e. as a fraction of 360◦ ], if one took e.g. AB = AD as a Paris foot
and then the angle G was 80◦ this is only to say that if one should make the quadrilateral ADGB so big that the angle G
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Fig. 8 Lambert’s quadrilateral.

was 80◦ : then one would have the absolute measure of a Paris foot on AB = AD. (Lambert, in Fauvel and Gray,
pp. 517–8)

Lastly, Lambert recognized that the area formula he had found was the ‘negative’ of the area
formula for spherical triangles; the defect π − (A + B + C) replaces the excess as the measure of
area. As Gray remarks, he was nearly there. In another sense, he was not there at all; he could see
very clearly what a non-Euclidean geometry must be like, but he went no further in claiming its
existence than the unfortunate statement that it might hold on an imaginary sphere—which no
amount of modern reinterpretation can make sense of. This perhaps is the key point at which one
is justified in asking Gray’s question (1979, p. 155), why did the development take so long—in this
case, from the 1780s to the 1820s? Not excessively long, perhaps; and it should be remembered
that the pursuit of parallels was, as already mentioned, outside the mainstream. It was notoriously
a problem for masochists, eccentrics, or those with unrealistic ambition.

Exercise 3. (a) What does Lambert’s statement about absolute measurement mean? (b) How could it be
justified?

5 The new geometries

In fact, one sees not only that no contradiction is reached, but one soon feels oneself facing an open deduction.
While a problem given a proof by contradiction should head fairly quickly for a conclusion where the contradiction
is clear, the deductive work of Lobachevsky’s dialectic settles itself more and more solidly in the mind of the reader.
Psychologically speaking, there is no more reason to expect a contradiction from Lobachevsky than from Euclid. This
equivalence will no doubt later be technically proved thanks to the work of Klein and Poincaré; but it is already present
at the psychological level. (Bachelard 1934, p. 30)

At this point, rather than continue with the detail of the story,6 the reader may reasonably want
to know what is meant by saying that Lobachevsky and Bolyai ‘constructed a geometry’. What is
it to construct a geometry? This is the ‘Copernican’ aspect of the discovery—no one before had
tried to do such a thing. Following on the Euclidean model, one would reasonably ask for a set of
rules or axioms—maybe not this time self-evident—which are full enough for a substantial theory
to be deduced from them. Let us suppose, as the innovators did, that you simply deny postulate 5.

6. The key stages between Lambert and Lobachevsky–Bolyai can be found in Gray (1979), chs. 6–9 or Bonola (1955, Chapter III).
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This means that you are adopting what Saccheri called the hypothesis of the acute angle. The
simple negation of postulate 5, though, is:

There exists a straight line, falling on two other straight lines, which makes the two interior angles on one side less
than two right angles, such that the two straight lines, produced indefinitely, never meet.

This is impossibly vague, and cannot be made a basis for any serious deductions. To have a workable
geometry, one would need—at least in the terms understood in the 1820s—to have rules for when
triangles were congruent, rules for angle sum, rules for areas of figures, and so on. In other words,
one would need measurement of a kind, and to construct a new geometry was in a certain way to
define a new way of measuring. This was to be made explicit by Riemann in the 1850s, but it was
not how Lobachevsky and Bolyai proceeded. Their expositions were surprisingly similar, each with
its advantages; Bolyai’s is perhaps the clearer, Lobachevsky’s the more complete.

It is easiest to start with Lobachevsky’s clarification of the vague statement above. Properly
analysed, he claimed, it must go as follows:

All straight lines in a plane which go out from a point can, with reference to a given straight line in the same plane, be
divided into two classes—into cutting and not-cutting.

The boundary lines of the one and the other class of those lines will be called parallel to the given line.
From the point A let fall upon the line BC the perpendicular AD, to which again draw the perpendicular AE (Fig. 9). . .
In passing over from the cutting lines, as AF, to the not-cutting lines, as AG, we must come upon a line AH, parallel

to DC, a boundary line, upon one side of which all lines AG are such as do not meet the line DC, while upon the other
side every straight line AF cuts the line DC.

The angle HAD between the parallel HA and the perpendicular AD is called the parallel angle (angle of parallelism),
which we will here designate by 
(p) for AD = p. (Lobachevsky, in Fauvel and Gray 16.B.3, pp. 524–5)

The above definition is hardly more sophisticated than the work of Lambert. Its essential importance
is that it changes the imprecise negation of postulate 5 into a precise statement about angles and
their relation to lengths; with every p is associated a 
(p). It is, of course, crucial in constructing
a sensible geometry that 
(p) depends only on p, but this follows from the ‘elementary’ results
which Lobachevsky gives at the outset. These include the standard rules for when two triangles
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Fig. 9 Lobachevsky’s diagram.
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are congruent, of which more later. Staying for the moment with ‘internal’ factors, we can see an
obvious reason for the relatively late development of the theory; that the actual function 
(p) was
quite a sophisticated one, whose formulation would have been difficult for (say) Leibniz but was
fairly accessible a century later. It is in fact given by

sin(
( p)) = sech(Kp)

or

tan
1
2

(
( p)) = e−Kp

Here K is the constant of ‘curvature’ appropriate to the space. It is analogous to 1/R for a sphere
of radius R—the bigger K is, the more curved the space. From this, a great deal of detailed
understanding of ‘non-Euclidean space’ follows; in particular the triangle formulae (Appendix B),
and Lambert’s area-defect formula of the previous section. For the fuller development of
Lobachevsky–Bolyai geometry, you are referred either to the expositions in Gray (1979), or the
actual sources, which are quite readable, in Bonola (1955). For a modern explanation of what it is,
and how it works, in what is called the ‘Poincaré model’, see Thurston (1997, Chapter 2).

Exercise 4. How would you prove that two equal line-segments determine the same angle of parallelism?

Exercise 5. Check that the two formulae given for 
(p) are equivalent; and that 
( p) is a decreasing
function of p, with 
(0) = π/2, 
(p) → 0 as p → ∞.

6 The ‘time-lag’ question

Gray’s question—why did it take so long?—actually divides into two parts, as the story is usually
understood. The first is the delay from Saccheri (1733) to Lambert to Lobachevsky–Bolyai (1820s);
this, it has been argued, can be accounted for. More serious is the delay from the invention to the
wider reception of the new geometries, which was in about 1866, that is, roughly 40 years. One
could ask (for example):

1. Why did it take so long for the new geometries to reach the ‘public domain’?
2. If the conditions were favourable for two (three counting Gauss) independent discoveries in the

1820s, why were there no further such discoveries in the next 40 years?

If we say that the discoveries occurred in the 1820s because the problem, and its particular
solution were ‘in the air’, we have to explain why the solutions were neither noticed nor duplicated
in the years that followed. Conversely, if the historical conditions were not right for a solution we
have more of a problem in explaining the occurrence of three. There is no particularly easy answer
to this dilemma. The isolation of Lobachevsky and Bolyai and the caution of Gauss are usually
invoked as sufficient reasons for the neglect of their work.

The development of non-Euclidean geometry in Central and Eastern Europe was half-hidden from the public owing to
the obscurity of two of its creators and the shyness of the third. (Torelli 1978, p. 110)

However, as Torelli implicitly acknowledges, the fact is that, since geometry was now firmly believed
to be about ‘space’, or the world of physics and of everyday life, the question which non-Euclidean
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geometry addressed—what sort of a world do we live in?—was not considered. In this sense, the new
geometries were outside the mainstream which we have referred to above. One of Lobachevsky’s
expositions of his system, the ‘Géométrie Imaginaire’ was published in the highly respected Journal
für die reine und angewandte Mathematik in 1837; it aroused no response. This was the year of
Chasles’s ‘History’ referred to above, in which all the important modern developments focused
on were in projective geometry, then (as we have seen) considered as an extension of Euclidean
geometry.

The question of the geometry of space, as a possible subject for doubt, was famously raised in
a new and finally extremely influential form by Gauss’s student Bernhard Riemann in his 1855
paper ‘On the Hypotheses which lie at the basis of Geometry’. This also suffered a time-lag; it was
not published until 1866, and although it is a key document of modern mathematics it is not an
easy read. (W. K. Clifford’s English translation is to be found on www.maths.tcd.ie/pub/HistMath/
People/Riemann /Geom/WKCGeom.html, and elsewhere.) Because it allows for a very large variab-
ility of structure, it is both a founding text of modern physics, specifically Einstein’s General Theory
of Relativity and an opening towards the modern mathematical view which divorces the study of
geometries from any ideas of what the world may be like.

It will follow from this that a multiply extended magnitude is capable of different measure-relations, and consequently
that space is only a particular case of a triply extended magnitude. But hence flows as a necessary consequence
that the propositions of geometry cannot be derived from general notions of magnitude, but that the properties
which distinguish space from other conceivable triply extended magnitudes are only to be deduced from experience.
Thus arises the problem, to determine the simplest matters of fact from which the measure-relations of space can be
determined; a problem which from the nature of the case is not fully determinate, since there may be several systems of
matters of fact which suffice to determine the measure-relations of space—the most important system for our present
purpose being that which Euclid has laid down as a foundation. (Riemann 1873, p. 14)

Riemann’s aims here deserve some closer attention. They are, in his words, to determine the
‘simplest matters of fact’ from which we can discover the geometry of space. Such matters of fact
might include (for example) the rules for congruence of triangles; the possibility of prolonging lines
indefinitely; even the axiom of parallels. Equally, they might not, in which case one would have to
include something else in their place. While not questioning that geometry was the study of space,
he wished to examine what presuppositions we bring to that study and how far—by experiment,
intuition, or whatever—we can justify them, and use them for deducing what space must be. It
had three dimensions, that much was certain; that is the meaning of the forbidding phrase ‘triply
extended magnitudes’; and one had rules for measuring the lengths of curves within it. Guided by
the analogy of Gauss’s work on surfaces, Riemann thought of ‘straight lines’ in space as curves
of shortest length and gave rules, at least in outline, for how such lines could be found. He also
considered the question of what geometry space would need in order to satisfy one reasonable
presupposition: that rigid bodies could be moved around in it without changing shape. (This is to
speak in mechanical terms. A more geometrical view is that the ordinary rules for congruence
hold.) The answer is that what Riemann called the ‘curvature’ of space would have to be constant
from point to point; and that this is satisfied in three cases:

1. Euclidean geometry;
2. Geometry on a sphere, or something like it (which Riemann considered)—this is Saccheri’s

HOA;

www.maths.tcd.ie/pub/HistMath/People/Riemann/Geom/WKCGeom.html
www.maths.tcd.ie/pub/HistMath/People/Riemann/Geom/WKCGeom.html
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Fig. 10 The parallax of a star. p is the width of the Earth’s orbit, and the lines l, l′ are perpendicular to the diameter. In January (July)
the line to the star makes an angle α(β) with the line in question. The parallax is the angle α + β, which equals γ in Euclidean
geometry, and so is very small for large distance. In non-Euclidean geometry it can never be smaller than π/2 − 
(p).

3. Lobachevsky–Bolyai or ‘hyperbolic’ geometry. This was not considered by Riemann, but when
his ideas came to be publicized, particularly by Helmholtz in the 1870s, it had become widely
known and could be seen as another candidate.

Helmholtz wrote a number of articles setting out his view that alternative models for space
should be considered (and tested). In particular, he wrote for the new English journals Nature and
Mind; and an extract from one of his articles is included as Appendix C. By this time it had been
established that hyperbolic geometry was free from contradiction (the model argument). However,
this did not settle the question of whether it was worth considering, which hinged on whether
space could conceivably have such a geometry. Lobachevsky had already considered the question
of measurements to determine this, and Helmholtz clarified the point:

All systems of practical mensuration that have been used for the angles of large rectilinear triangles, especially all
systems of astronomical measurement which make the parallax of the immeasurably distant fixed stars equal to zero
(in pseudospherical space the parallax even of infinitely distant points would be positive), confirm empirically the
axiom of parallels and show the measure of curvature of our space thus far to be indistinguishable from zero. It
remains, however, a question, as Riemann observed, whether the result might not be different if we could use other
than our limited base lines, the greatest of which is the major axis of the earth’s orbit. (Helmholtz 1979, p. 258)

The ‘parallax’ of a star S (Fig. 10) is the angle α + β in the diagram, which in Euclidean geometry
equals γ (and so is vanishingly small when the star’s distance is much bigger than p, the diameter
of the Earth’s orbit). In non-Euclidean geometry, the smallest possible value of α + β is (roughly)
π/2−
( p). Interestingly, the fact that this is, for practical purposes, zero was used as an argument
against the Copernican theory; if the Earth moved, it was argued, the stars would have a measurable
parallax. By the nineteenth century it was accepted that the Earth did move, but the parallax was
too small to measure.7

7 What revolution?

Let us not forget that no serious work toward constructing new axioms for Euclidean geometry had been done until
the discovery of non-Euclidean geometry shocked mathematicians into reexamining the foundations of the former.
We have the paradox of non-Euclidean geometry helping us to better understand Euclidean geometry! (Greenberg
1974, p. 57)

7. Sirius, the obvious candidate as it is both bright and close, has a parallax of 0.0377 seconds of arc.
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I discovered [about 1890] that in addition to Euclidean geometry there were various non-Euclidean geometries, and
that no one knew which was right. If mathematics was doubtful, how much more doubtful ethics must be! (Russell,
cited in Richards 1988, pp. 204–5)

The term ‘Whig history’, which is only used by historians to denigrate the work of other historians,
describes a way of constructing the narrative so that the process of history is seen as one of
development towards the present; which itself is seen as a good state of affairs, if not the best.
Mathematicians, who find it difficult enough to imagine that mathematics could be done in any
way which is better than our present one, are particularly given to Whig history, and the quotation
above (non-Euclidean geometries were good because they led to the construction of necessary
axiom-systems) is a mild example. In its defence, it does at least provide (a) a structure for the
bare record of events, and (b) a starting-off point for more sophisticated narratives, which can
criticize it. In this section, we shall examine how far the story of the discovery and assimilation of
non-Euclidean geometry, outlined above, can be made sense of as part of a wider development of
geometry.

The natural endpoint of that development, as implied by Greenberg, is not the mere acceptance
of non-Euclidean geometry, but the modernization of the subject as a whole. The problem is that
the latter—the development of axiom-systems, and the increasing insistence that geometry was
not about ‘space’ at all, but about any entities which might satisfy the axioms—occurred later still,
during the years from 1890 to 1910. Peano (1889), was the first to produce an axiom-system
which he declared to be ‘free-standing’, that is, independent of any possible meanings which one
might give to terms like ‘point’, ‘line’, and so on.

We are given thus a category of objects called points. These objects are not defined. We consider a relation between
three given points. This relation, noted c ∈ ab, is likewise undefined. The reader may understand by the sign 1 any
category of objects whatsoever, and by c ∈ ab any relation between three objects of that category[. . .] The axioms
will be satisfied or not, depending on the meaning assigned to the undefined signs 1 and c ∈ ab. If a particular
group of axioms is satisfied, all propositions deduced from them will be as well. (Peano 1889, quoted in Torelli
1978, p. 219)

More picturesquely, Hilbert, whose axiom system became the most influential put it:

If I conceive my points as any system of things, e.g. the system love, law, chimney-sweep, . . . and I just assume all my
axioms as relations between these things, my theorems, e.g. the theorem of Pythagoras, will also hold of these things.
(Hilbert, cited in Torelli 1978, p. 251)

This was a radical change in how geometry was thought about. That the views of Hilbert and his
followers were not generally accepted—and are not universally believed even today among research
mathematicians—is less important than that they were voiced, and carried weight. They outlined
a programme for a new view of geometry which (since Hilbert was not obscure, indeed he was the
most respected of mathematicians) had to be taken seriously.

Non-Euclidean geometry was ‘revolutionary’ in its successful construction of a geometry which
was not Euclidean, so much is obvious. How much in this subsequent development of geometry
can be attributed to it is an altogether more problematical question. From a broader point of
view, the axiomatization of geometry, while it clearly owed something to the problems which
had arisen, should be seen as a part of the wider tendency to axiomatization in mathematics
during the late nineteenth century. Peano, indeed, is more often remembered for his axioms
for the natural numbers than for his geometric ones, and Hilbert and Russell similarly had
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a strong belief that the way to make mathematics ‘safe’ was through the construction of axiom
systems.

In fact, in the whole period from the ‘rediscovery’ both of Lobachevsky–Bolyai and of Riemann
in the late 1860s up to 1900, the main questions about geometry were not about ‘foundations’.
This is where Joan Richards (1988) provides a useful view of working mathematicians concerned
not only with research but with what provided the best education for young men at Cambridge,
what should be taught in schools, what was most uplifting, and many other questions which hardly
seem now to be on the agenda.8 Her restriction to England is not a serious one; although English
mathematicians were certainly less research oriented and tended to be more conservative than
their French, German, or Italian counterparts, they were in touch with the debates which were
going on and contributed to them. Helmholtz’s propaganda for non-Euclidean geometry, as we
have seen, was published in England, and promoted by Clifford, while at the end of the century the
generation of Russell and G. H. Hardy abruptly set out to force Cambridge mathematics into the
continental mainstream.

Almost coincidentally, quite different events in physics separated geometry from empirical
investigations of the world. What geometric form the universe might have was an interesting
scientific question for Riemann, for Helmholtz, indeed until 1906. In Newton’s theory it was
a perfectly flat three-dimensional Euclidean space, in which one could (theoretically) determ-
ine the place and time of any event. The nineteenth-century revisions of geometry amounted
to questioning the nature of the space component. Much more serious problems were raised,
however, by Einstein’s special theory of relativity which—by denying the idea of simultaneity—
effectively killed off the concept of a unified three-dimensional space as a physical object of study.
The geometers had been studying something which had no physical reality. The general theory
of course reintroduced Riemannian geometry (which Einstein learned with considerable diffi-
culty), but in a way so complex that questions about the shape of the universe were turned
into questions about the nature of solutions to some difficult differential equations. Axioms,
and the shape of triangles, in the Einsteinian universe were not the guide which they always
had been.

In trying to present alternative versions of the simple story of ‘Copernican revolution’
with which this chapter opened, there is no need to belittle or downgrade the work of the
founders of non-Euclidean geometry; the record speaks for itself. Rather, we hope that the
reader may be encouraged to think about geometry itself, its changing nature at different
times, and how far the work of Lobachevsky and Bolyai may be said to have influenced those
changes.

Appendix A. Euclid’s proposition I.16

In any triangle, if one of the sides is produced, then the exterior angle is greater than either of the
interior and opposite angles. Let ABC be a triangle, and let one side of it BC be produced to D.

I say that the exterior angle ACD is greater than either of the interior and opposite angles CBA
and BAC.

8. There was a typically ‘Victorian’ view that the certainty of geometry supported the certainty of theological arguments for the
existence of God. It accordingly acquired a religious, even a political importance.
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Fig. 11 The picture for Euclid I.16.
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Fig. 12 A ‘large’ triangle on a sphere, and the way in which proposition I.16 fails.

Bisect AC at E. Join BE, and produce it in a straight line to F. Make EF equal to BE, join FC, and
draw AC through to G (see Fig. 11)

Since AE equals EC, and BE equals EF, therefore the two sides AE and EB equal the two sides CE
and EF, respectively, and the angle AEB equals the angle FEC, for they are vertical angles. Therefore,
the base AB equals the base FC, the triangle ABE equals the triangle CFE, and the remaining angles,
equal the remaining angles, respectively, namely those opposite the equal sides. Therefore, the
angle BAE equals the angle ECF.

But the angle ECD is greater than the angle ECF, therefore the angle ACD is greater than the
angle BAE. Similarly, if BC is bisected, then the angle BCG, that is, the angle ACD, can also be proved
to be greater than the angle ABC. Therefore in any triangle, if one of the sides is produced, then the
exterior angle is greater than either of the interior and opposite angles. Q.E.D.

This proposition fails in the ‘geometry’ of shortest lines on a sphere. In fact, it is not
hard to construct triangles in which it is untrue; one such is shown in Fig. 12. Where does
the proof fail? The point F constructed above no longer falls ‘inside’ the angle ACD, as seems
obvious from the Euclidean picture; and so the angle ECD is no longer greater than the angle
ECF. Hence, although the previous steps in the proof work, the crucial use of ‘greater than’
does not.
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Fig. 13 Solving a spherical triangle.

Appendix B. The formulae of spherical and hyperbolic trigonometry

To state these, we need a convention, since the formulae will vary with the radius of the sphere.
The ancient convention was to work with a sphere of radius 60, but let us simply call the radius
R = 1/K, K being the ‘curvature’ of the sphere. So, the bigger K is, the more curved the sphere—
the smaller its radius.

Now for any arc on S of length a, Ka is a number between 0 and 2π . And the two key formulae
in ‘solving’ a spherical triangle ABC as in Fig. 13, already mentioned in connexion with al-Bīrūnī’s
work, are:

sin(Ka)
sin A

= sin(Kb)
sin B

= sin(Kc)
sin C

the analogue of the ‘sine formula’, and

cos(A) = − cos(B) cos(C) + sin(B) sin(C) cos(Ka)

one of two analogues of the ‘cosine formula’. The first of these goes over into the ordinary sine
formula when Ka, Kb, Kc are small (tend to zero).

The hyperbolic formulae are simply related to the spherical; one ‘replaces’ cos by cosh and sin by
isinh when dealing with lengths (but not with angles, since only the ordinary functions apply to
angles). They are, then,

sinh(Ka)
sin A

= sinh(Kb)
sin B

= sinh(Kc)
sin C

and

cos(A) = − cos(B) cos(C) + sin(B) sin(C) cosh(Ka)

Exercise 6. Prove the statement above, about the limit of the spherical sine formula for small values of
Ka, Kb, Kc.

Exercise 7. Use the second formula in the case when the angle A = 0 to deduce the formula for 
(p).
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Appendix C. From Helmholtz’s 1876 paper

[Reproduced in (1979, pp. 249–50. Helmholtz, to simplify his argument, considers two-
dimensional ‘beings’ constructing geometry from observation of the world in which they live.]

But intelligent beings . . . might also live on the surface of a sphere. Their shortest or straightest line
between two points would then be an arc of the great circle passing through them. Every great
circle passing through two points is divided by them into two parts. If the parts are unequal, the
shorter is certainly the shortest line on the sphere between the two points, but the other, or larger,
arc of the same great circle is also a geodesic, or straightest, line; that is, every smallest part of it is
the shortest line between its ends. Thus the notion of the geodesic, or straightest, line is not quite
identical with that of the shortest line . . .

Of parallel lines the sphere-dwellers would know nothing. They would declare that any two
straightest lines, if sufficiently extended, must finally intersect not only in one but in two points.
The sum of the angles of a triangle would be always greater than two right angles, increasing as the
surface of the triangle grew greater. They could thus have no conception of geometric similarity
between greater and smaller figures of the same kind, for with them a greater triangle must have
greater angles than a smaller one. Their space would be unlimited, but would be found to be finite
or at least represented as such.

It is clear, then, that such beings must set up a very different system of geometric axioms from
that of the inhabitants of a plane or from ours, with our space of three dimensions, though the
logical processes of all were the same; nor are more examples necessary to show that geometric
axioms must vary according to the kind of space inhabited. But let us proceed still further.

Let us think of reasoning beings existing on the surface of an egg-shaped body. Shortest lines
could be drawn between three points of such a surface and a triangle constructed. But if the attempt
were made to construct congruent triangles at different points of the surface, it would be found that
two triangles with three pairs of equal sides would not have equal angles. The sum of the angles of
a triangle drawn at the sharper pole of the body would depart further from two right angles than
if the body were drawn at the blunter pole or at the equator. Hence it appears that not even such a
simple figure as a triangle could be moved on such a surface without change of form.

Solutions to exercises

1. (a)The ‘Aristotle proof ’ (see Fauvel and Gray 3.B.4 (b) and (c)) is the nicest. Let ABC be a triangle;
draw PAQ through A parallel to BC. (See Fig. 14.) Then ∠PAC + ∠ACB are two right angles;
and ∠PAC + ∠CAQ are also two right angles (angles on a straight line). So ∠ACB = ∠CAQ.
(This is just the alternate angle theorem.) Similarly, ∠ABC = ∠PAB. But the sum of the three
angles ∠PAB, ∠BAC, ∠CAQ is two right angles (straight line again); so the same is true of the
three angles in the triangle, which we have proved equal to them.

(The key point is that the line PAQ has the ‘alternate angles property’ with respect to both the
transversals AB,AC, which will only be true if the property is equivalent to being the unique
parallel.)

(b) (See Fig. 15.) This is best thought of as a result about so-called ‘Saccheri quadrilaterals’,
see later. To stay strictly in the framework of what Euclid would have done (one imagines): the
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Fig. 14 Proof of the ‘angles of a triangle’ theorem.
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Fig. 15 Figure for Exercise 1(b).
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Fig. 16 The figure for Exercise 2; AB is 1 cm.

point is that CD must be parallel to AB. In fact, if the angles ∠BAC, ∠ACD are greater than two
right angles, then CD must meet AB on the left, say at E, and by symmetry it must also meet on
the right at F. But then there are two straight lines joining E,F.

Accordingly, CD does not meet AB, so ∠BAC, ∠ACD are together equal to two right angles;
since ∠BAC is a right angle, this means that ∠ACD is one, and similarly for the fourth angle.
Once we have this, it is easy to use congruent triangles to show that AB = CD.

2. See Fig. 16. We have: distance to meeting point is length of CD, or 0.5 tan α = 0.5/ tan(10−10)

For such a small angle, we can approximate tan x by x, arriving at CD = 0.5 × 1010 as
stated.

3. (a) (See Fig. 8) What is meant is that the angle G is a (decreasing) function of the length AB,
and so to any angle G there corresponds a unique length AB of the side of the quadrilateral.
As a result, you can define a measure of length not by arbitrary choice, as is done in Euclidean
geometry, for example, by giving a fixed value to the length of a metre or ‘Paris foot’; but by
stating that your unit will be that length AB which corresponds, say, to 80◦ for the angle G.
(b) This follows from the angle-sum theorem. In fact, the area of ABGD is twice the area
of triangle ABG. By the angle-sum theorem, this is 2C(π − ∠GAB − ∠ABG − ∠BGA) =
2C(π − π/4 − π/2 − α/2) = C(π/2 − α), where C is the relevant constant for the geometry
and α is the angle at G. It follows that the angle G is a decreasing function of the area ABGD,
and so of AB.

4. Let AD be perpendicular to BC, and A′D′ to B′C′, and suppose that AD = A′D′. Now let AF
be a cutting line from A to BC, and construct F′ on B′C′ so that D′F′ = DF. Then it is easy
to see that ADF, A′D′F′ are congruent triangles (equal sides and included right angle), and so
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Fig. 17 Figure for Exercise 7.

∠D′A′F′ = ∠DAF. (This is where it is essential that the rules for congruent triangles work, but
Lobachevsky has assumed they do.) Hence angles at A′ define cutting lines on B′C′ if the same
angles at A define cutting lines on BC—and obviously vice versa. This is enough to conclude
that the angles of parallelism are the same for the two line-segments.

5. If t = tan(x/2),

2t
1 + t2 = 2 tan(x/2)

sec2(x/2)
= 2 sin(x/2) cos(x/2)

(writing tan as cos/sin, and sec as 1/cos), which is sin x. Hence, the second formula is
equivalent to:

sin(
( p)) = 2e(−Kp)

1 + e−2Kp =
(

1
2

(eKp + e−Kp)

)−1

= sech(Kp)

As p increases from 0 to ∞, cosh( p/K) increases from 1 to ∞, and its inverse sech decreases
from 1 to 0. Since by definition 
( p) is between 0 and π/2, the first equation implies that 
( p)
decreases from π/2( p = 0) to 0 ( p → ∞).

6. As x → 0, sin x/x → 1. Hence, to first order in the lengths a, b, c, the ‘sine formula’ can be
replaced by a/ sin A = b/ sin B = c/ sin C, the usual formula.

7. If A = 0, we are in the situation where the sides b, c are parallel in Lobachevky’s sense.
We consider a triangle (cf. Fig. 17) with B = π/2 and C = 
(a). The formula gives 1 =
0 + sin(
(a)) cosh(Ka), using cos(π/2) = 0, sin(π/2) = 1. This can be transformed into the
first version of the formula for 
(a).



9 Modernity and its anxieties

1 Introduction

If in summing up a brief phrase is called for that characterizes the life center of mathematics, one might well say:
mathematics is the science of the infinite. (Weyl 1949, p. 66)

Pure mathematics is the class of all propositions of the form ‘p implies q’, where p and q are propositions each
containing at least one or more variables, the same in the two propositions, and neither p nor q contains any constants
except logical constants. (Russell 1903, p. 3)

The ‘long twentieth century’, which should end our narrative, has seen more mathematics, as well
as more changes to what mathematics means to those who do it or those who use it than the whole
of preceding history. Those who had tried to define what mathematics was in its long past had
certainly not come up with answers as extremist, or as ‘unmathematical’ in appearance as either
Hermann Weyl or Bertrand Russell; and yet both answers now seem to belong to a bygone era. Even
Alan Turing’s paper on computable numbers, which more than ever stands as a founding document
for ‘where we are now’ is hard for the modern reader to construe; not only because Turing was
writing in a difficult field, but because the problems he was addressing belong to a time which,
a mere 70 years later, has long disappeared. As a minimal strategy in managing the material, we
have had to divide it in two, taking Gödel’s 1931 paper as a useful cut-off point. This chapter, then,
will deal with the central concerns which led up to the crisis of the years from 1900 to 1930; who
was affected and how they dealt with it; and how, in some sense, it ended. At the same time, it
seems essential to remember that the crisis was the concern only of a few mathematicians, although
those were among the most important ones. Hence, in the interests of balance—and also because
foundational questions provide painfully few opportunities for pictures—we shall consider parallel
developments in algebra and topology, particularly knot theory. These are also part of the story, in
that if there is a ‘twentieth-century outlook’ characterized by increasing abstraction and formalism,
it can be seen spreading even to such apparently down-to-earth subjects as the classification of
knots. Naturally, a very large part of the field has still been omitted, most particularly all that has
to do with physics. There may be some compensation in the next chapter, but the reader must
remember the arbitrariness of our selection.

As we shall see, the natural beginning of the story precedes the twentieth century by some
30 years. The world of mathematicians by that time was substantially professionalized around
great institutions of teaching and research in Germany and France and lesser ones in many other
countries. While this state of affairs remained constant, it should be borne in mind at each stage
(a) that the number of people so employed was tiny in comparison with today and (b) that it was
more or less constantly growing in response to the demands of society—not for mathematicians
(who needs them?) but for engineers, accountants, statisticians, and the like. That this growing
community chose to concern themselves chiefly with the definition of the numbers, or with how to
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tell two knots apart, was their business; one can speculate on how this related to what was going on
in the economic sphere, and we shall try to raise some questions. However, their main function as
employees of the state (which they usually were) was to teach, and to uphold the prestige of their
institutions.

2 Literature

The mathematics of the early twentieth century has been patchily studied. Because the crisis of
foundations provides such rich material for the historian, it is easily the best covered, with very
full sourcebooks edited by van Heijenoort1 (1967) and Mancosu (1998), as well as chapters in
Grattan-Guinness (1980). Corry’s recent work on the origins of abstraction (2004), if rather dry,
is useful on ground which in the main will not be covered here. Added to these, and to a growing
volume of articles in journals, the period has naturally been an attraction to biographers who
have often had access to their subjects or to close friends; one could cite Cantor (Dauben 1990),
Russell (Russell 1967; Monk 1997, 2001), Hilbert (Reid 1970), Brouwer (van Dalen 1999), Weyl
(Wells 1988), Ramanujan (Kanigel 1991), Noether (Dick 1981), and so on. They are not properly
‘histories’, but they can be excellent sources. All this, as well as the texts themselves—which,
it must be said, are usually extremely difficult as should be expected of mathematics today—are
useful material. Two interesting early twentieth-century works of fiction have ‘mathematicians’ as
their heroes—Musil’s (1953) and Ford Madox Ford’s (2002); however, the fact is fairly marginal
to the lengthy unfolding of the two novels.

Because of their difficulty, the remarks made in Chapter 8 apply even more here. Almost no
twentieth-century mathematical discoveries find their way into an undergraduate course, although
any course on linear algebra, or group theory, or analysis will be taught in a way that was only
settled around 1950. We shall face constant problems of presentation, and must hope for the
reader’s patience. Modern mathematics does not easily lend itself to being democratized; Hilbert
(1900), introducing his very difficult list of problems for the next century, attributed to an unnamed
‘old French mathematician’ the saying: ‘A mathematical theory is not to be considered complete
until you have made it so clear that you can explain it to the first man whom you meet on the
street’, but little of Hilbert’s own work, or of what has been done since, stands up to the test.

3 New objects in mathematics

Es steht schon bei Dedekind [That’s already in Dedekind]. (Emmy Noether (frequently), quoted in Dick 1981, p. 68)

As a clutch of Victorian professors, avuncular, ascetic and a little disheveled, they [Dedekind and Cantor] were
gathering unawares around the cradle of an infant Briar Rose that would one day be christened Modernism. (Everdell
1997, p. 31)

To arrive at real proofs of theorems (as e.g.
√

2
√

3 = √
6), which to the best of my knowledge have never been

established before. (Dedekind 1948, p. 22)

1. It is usual to point out that Jean van Heijenoort was Trotsky’s secretary during the 1930s, only later becoming a distinguished
historian of mathematical logic. And it is indeed an interesting footnote.
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Mathematicians can only feel flattered by William Everdell’s breathless placing of them as the
forerunners of Rimbaud, Freud, Joyce, Picasso et al., even if Dedekind’s statement of what he did
seems something of a let-down. He was aware of this himself:

[T]he majority of my readers will probably be disappointed in learning that by this commonplace remark the secret of
continuity is to be revealed. (Dedekind 1872, in Fauvel and Gray 18.C.1, p. 575)

Nonetheless, the work of Richard Dedekind and his more adventurous friend Georg Cantor on
numbers, the continuous and the infinite, did lead to a reshaping of mathematics if not the whole
world-view. Indeed, after a relatively short time it brought about the ‘crisis of foundations’, which
began some time around 1903, became acute in the 1920s, and was in some sense killed off,
if in no way settled, by the work of Kurt Gödel in 1931. The problems which arose were about
sets; and a first reasonable question is, how did mathematics, which as long as we have known it
has been about numbers and geometry, come to concern itself with sets? It has to be understood
that now even more than before, the world of mathematics was becoming fragmented, and these
concerns were not those of the average university teacher, let alone the engineer or statistician.
We are concerned for the moment with a relatively small research élite working mainly in France
and Germany, and the crisis as it developed came out of their attempts to make some sense of the
calculus which, as we have seen (Chapter 7) made very little sense as theory although it worked
well in practice.

Dedekind’s statement on what he could prove stands as an important pointer. To discuss what
problems his definition was meant to solve would take us too far back but the fundamental idea
was, in the words of one commentator:

to find definitions from which the basic theorems on limits could be proved. (R. Bunn, in Grattan-Guinness (ed.) 1980,
p. 222)

Briefly, you needed limits to define both derivatives and integrals properly; and hence to deal
with the problems of the calculus, and with numerous other problems, notably the behaviour of
Fourier series, which had arisen since. Dedekind’s definition of real numbers, as the necessary
foundation for the calculus of limits, is reproduced in Appendix A. It is more popular and easier
to understand than Cantor’s—though still not much taught in calculus courses—and as such it
is indeed a founding document of modernism in mathematics, if nowhere else. Given the set R
of all rational numbers (i.e. fractions— 1

3 , 7
5 , and so on), which for the time being we consider

unproblematic, Dedekind considers the problem of characterizing, say,
√

2. This is not rational—
there is a ‘hole’ in the rational numbers where the square root of 2 should be. The idea is to define
the real number to be the hole. Less mystically, we consider the ‘cut’ defined by the two sets:

L = {x ∈ R : x < 0 or x2 < 2}; U = {x ∈ R : x > 0 and x2 > 2}
(See Fig. 1.) Everything in L is less than

√
2, everything in U is greater;

√
2 is the missing point

between.

a

a

b c d e f

Fig. 1 Dedekind cut. The number α divides the left-hand class L (which contains rational numbers a, b, c) from the right-hand class
(which contains d, e, f ).
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In Dedekind’s definition, one takes
√

2 to be the cut. This might be considered slightly vague too,
and later writers who subscribed to Cantor’s set theory (such as Russell) defined it to be the lower
set. Which you do is a detail. The two important points are:

1. Once the definition has been made, it is easy to do arithmetic (adding, multiplying, even taking
roots etc.) with such numbers.

2. The further operation of taking limits (e.g. of an increasing sequence x1, x2, . . . which is
bounded above) is equally easy.

3. On the other hand, however you look at it, you have ‘defined’ a number to be something which
is not a number. For thousands of years, mathematics has been about numbers and geometrical
figures. It now, suddenly, is about something else. Has it then changed?

Underlying all this were ideas which were to come much later: that the objects of mathematics
were not actual things-in-themselves (as one thinks of a triangle, say, or the number ‘7’), but the
rules which they obeyed. Any way of constructing objects which obeyed the rules endowed them
with existence, and two different ways of construction, if the results obeyed the same rules, could
be thought of as the same—we would now in suitable circumstances use the word ‘isomorphic’. We
have already seen this in Chapter 8, where the non-Euclidean plane was constructed as a surface
with new rules about what constituted ‘straight line’ and ‘angle’.

Even today, such metaphysics are considered beyond the scope of the high-school student or
(often) the first-year college student. At the time they were new, just beginning to be explored, and
only a strong feeling—backed up by examples—that intuitive ideas of number were not reliable
enough drove the process forwards. Nothing makes clearer the fundamental change underlying
the new outlook than the fact that it seemed immediately necessary to go back further and set the
natural numbers {0, 1, 2, 3, . . .} on a secure foundation, although they had previously troubled no
one. Gottlob Frege was in 1884 to define these as sets too. ‘3’, for example, meant the set of all sets
which could be put in a 1-1 correspondence with a (previously defined) set, say S3, which had three
elements—so that ‘3’ meant ‘the set of all sets with three elements’. [It is Frege’s way of defining
S3 which stops the definition from being circular.]

Bit by bit, among these mathematicians—mainly German, but to include Peano (Italian), Russell
(British),. . . —more and more things which had seemed obvious were to need proof; when part of
the edifice seemed sound, one started to worry about its underpinnings, so that by the 1920s we
find Hilbert, probably the ablest mathematician of the time, taking time out to show how one could
prove that 1 + 2 = 2 + 1.2 The drive for sound foundations was a strong one, and on the whole
fruitful; it is interesting that it is an episode which can be considered closed, in that mathematicians
have returned to a naive condition of assuming that what they do works (although the procedures
of physicists may still worry them). The process of investigation, however, brought the worlds of
mathematics and philosophy into a much closer relationship.

The relationship was by no means a new one; almost all philosophers since Plato had reflected on
mathematics, and many mathematicians (Descartes, Pascal, Leibniz, Bolzano) were philosophers as
well. But the dependence on set theory and logic introduced a new outlook into both mathematics

2. Hilbert, ‘The New Grounding of Mathematics’, (1922) in Mancosu (1998, p. 207). The implication of triviality is of course
unfair; Hilbert was showing how a formal minimal axiom system for arithmetic could be used to establish all necessary results. All
the same, the image is a striking one.
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and philosophy, and in mathematics it meant a return to doubt, to the search for what was wrong,
what Morris Kline many years later was to call the ‘loss of certainty’ [Kline 1980].

Exercise 1. Check that the relation
√

2.
√

3 = √
6 does indeed follow from the cut definition by showing

(a) that there is a unique positive real number
√

n whose square is n, for any integer n > 0;
(b) that if we define a.b for positive real numbers in the obvious way—you may need to take a little care

in doing this—
√

2.
√

3 = √
6;

(c) (Not as difficult as it looks . . . ) Let x1, x2, x3, . . . be a sequence of real numbers (defined by cuts)
which is bounded above, that is, there exists M such that xi < M for all i. Prove that there exists M0
(least upper bound) such that:
(1) xi ≤ M0 for all i;
(2) if y < M0, then for some i, xi > y.

(d) Define a real number to be an infinite decimal, that is, a series of type x = a + .a1a2a3 . . . , where
a is an integer and the ais are numbers between 0 and 9. In other words, x is the sum of the series

a + a1

10
+ a2

102 + a3

103 + · · ·
What problems arise in devising a rule for adding such numbers?

4 Crisis—what crisis?

It seemed unworthy of a grown man to spend his time on such trivialities, but what was I to do? There was something
wrong, since such contradictions were unavoidable on ordinary premisses. (Russell 1967, p. 147)

In [this] light, mathematics appears as a monstrous ‘paper economy’. Real value, comparable to foods in economics, is
only possessed by the singular, the quintessentially singular. Everything general, and all existential statements partake
in it only indirectly. And yet we, as mathematicians, very seldom consider the redemption of this ‘paper money’! It
is not the existential theorem that is the treasure, but the construction carried out in the proof. (Weyl, ‘On the New
Foundational Crisis in Mathematics’ (1921), in Mancosu 1998, p. 98)

The behaviour of many leading mathematicians in the years 1900–1930 is so uncharacteristic
that the reader may feel more in tune with the mathematical aims of the Chinese than with those
of Hilbert, Brouwer, Russell, and their contemporaries. Why was the mathematical enterprise
suddenly seen as so insecure? How did it come about that mathematicians were bitterly divided into
competing schools of thought, who went so far as to call each other ‘Bolshevist’ (Hilbert against
Brouwer and Weyl) or ‘non-Aryan’ (Brouwer against his opponents); and to fight about presence
at conferences and editorship of journals? The year 1900 saw Hilbert’s calm summing-up of the
progress of mathematics, and his famous list of problems awaiting solution in the new century. His
mood was optimistic:

This conviction of the solvability of every mathematical problem is a powerful incentive to the worker. We hear within
us the perpetual call: There is the problem. Seek its solution. You can find it by pure reason, for in mathematics there
is no ignorabimus. (Hilbert 1900)

Still, it should be noted that the first two problems deal with foundations: Cantor’s ‘continuum hypo-
thesis’ and the consistency of the axioms for arithmetic (however defined). Already, it appeared,
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work needed to be done on the axioms. There were some disagreements about what should be done,
but Cantor’s set theory underpinning Frege and Dedekind’s arithmetic seemed to provide a good
programme.

Nonetheless, as Gray points out in a recent article (2004), there were signs of what could be called
‘anxiety’ about foundations. They could be traced back much earlier; in 1810 Bolzano had said:

However the greatest experts of this science [i.e. mathematics] have in fact always answered, not only, that the edifice
of their science is still no completely finished and self contained building; but also, that the foundation wall of this
otherwise splendid building is itself not yet completely firm and regular; or, to speak without pictures, that even in the
elementary lessons of all mathematical disciplines many gaps and imperfections are to be found. (Bolzano, (1810))

However, it was only at the end of the century that a general optimism about the power of mathem-
atics began to give way to doubt—and indeed it would be hard otherwise to account for the amount
of work that was by then under way in an attempt to shore up the building. Any familiarity with
critical work on the culture of the period will show that anxiety and modernism go together like
a horse and carriage. How far mathematics caught a general infection, and how far it contributed
to it are questions yet to be settled.

The crisis came naturally: it appeared that set theory as (following Cantor) it had been freely
used (a) was inconsistent and (b) demanded extra articles of belief which were hard to accept.
Inconsistency followed from the so-called ‘Russell paradox’ of 1903.3 The problem—if you have
not seen it before—is the following. Dedekind and Cantor had introduced sets to deal with numbers.
However, if real numbers ‘were’ sets, one also wanted to deal with sets of sets, and so on (perhaps)
indefinitely. In Cantor’s general set theory, which he imagined worked, given any property P one
had a set of all things with property P (the ‘axiom of comprehension’).

The problem was that, once the language became this general, the subject became the province
of philosophers, who may choose to replace numbers by philosophical objects such as the golden
mountain or black swans. The way was wide open for Russell, standing between mathematics and
philosophy, to devise the simple example of the property:

P: x is a set and x is not an element of itself (x /∈ x).

For example, the set of all sets is an element of itself (this already shows signs of an infinite regress).
So is the set of all things which are non-human; or the set of all things which can be described
in English sentences of less than 18 words. On the other hand, most sets (numbers, black swans,
students in the classroom) are not elements of themselves. If S is the set determined by the property
P, then one can derive a contradiction both from S ∈ S and from S /∈ S. Our first quote shows
Russell himself, disturbed at the paradox, feeling both that grown men should not worry about
such things (but then who should?) and yet that they had to be settled.

Various attempts were made to be more restrictive about how sets were used; they had become
too much a part of how the leading mathematicians thought to be given up altogether. Zermelo
around the same time tried to produce a system of axioms for set theory which would both avoid
paradoxes and do what mathematicians needed. He came up with what was in a way as shocking
as Russell’s paradox: the ‘Axiom of Choice’ (1904). This could be thought of as a modern analogue

3. As so often, there is a priority question here; Zermelo had already described the paradox in a letter to Husserl.
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to Euclid’s postulate 5: no one liked it, but it became clear (and Zermelo pointed out) that a great
many people4 had, without acknowledgement, been using it. The usual statement is:

Given a set of sets {Xα} indexed by α ∈ A, there exists a function f on the indexing set A such that for each α, f (α) ∈ Xα .

In other words, given any collection of sets, you can pick out—think of it as ‘electing’—one
representative from each of them. This is easy to agree if the set A is finite, although it might be
far from practical if (say) it contained 1025 elements. It is when it is infinite that it begins to look
dubious.

At this point, the problems probably disturbed some mathematicians intensely, but they did
not seriously divide them. Again, Gray finds a point in O. Perron’s 1911 inaugural lecture to
demonstrate the existence of argument, indeed doubt about the adequacy of procedures:

Indeed, there is one branch of mathematics today over which opinion is divided, and some consider right what
others reject. This is the so-called set theory, in which the certainty of mathematical deduction seems to be becoming
completely lost. (Perron, cited in Gray 2004, p. 41)

It was the attack initiated by L. E. J. Brouwer on a much more fundamental principle, the ‘Law of
the Excluded Middle’, which created a situation in which mathematicians became intemperate and,
for a short period, made the world of mathematics more exciting than it had been since the time
of Newton and Leibniz. This is not surprising, because the Law of the Excluded Middle underpins
the kind of mathematics which derives from the Greeks. From the simple, and apparently harmless
statement:

Either P is true, or P is false.

applied to a proposition P, the Greeks derived their peculiar method of ‘proof by contradiction’,
which is still such a favourite. To prove that P is true, you suppose that it is not. By a chain of
deduction, you derive a contradiction (‘Which is absurd’). Therefore the assumption that P is not
true must have been wrong, and hence it must be true.

This principle was used constantly by Euclid: to take a random example, as early as book I
proposition 7 on isosceles triangles (‘If in a triangle two angles equal one another, then the sides
opposite the equal angles also equal one another’). You suppose one of the two sides greater, and
derive an absurd conclusion.

Many students, to be sure, feel uncomfortable about this kind of proof, but they learn to consider
it acceptable. What was considered doubtful, even wrong, what Weyl (under the shadow of the
approaching German hyper-inflation) described as ‘paper money’ was the use of the law in existence
proofs applied to infinite sets. Ironically, one of the neatest examples of such a proof is due to
Brouwer himself, and is still an essential element in beginning topology courses. This is the Brouwer
Fixed Point Theorem, which asserts:

Let D be the disk {(x, y) : x2 + y2 ≤ 1}, and let f be a continuous mapping from D to D (i.e. for (x, y) ∈ D, f (x, y) is also
in D, and depends continuously on (x, y)). Then there exists a fixed point: for some (x0, y0), f (x0, y0) = (x0, y0).

The proof of this proceeds by supposing that there is no fixed point (Fig. 2); we join each f (A) to A,
and continue to the boundary circle C, which it hits at g(A). The mapping g, which fixes C, is shown
to be ‘impossible’ by methods which had been developed a little earlier (see ‘topology’ below).

4. Particularly in France, where opposition was strongest.
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Fig. 2 Brouwer fixed point theorem.

We have therefore a contradiction from supposing that there are no fixed points. Are we allowed
to deduce that there is one? Brouwer the prover of the theorem would have said yes, but Brouwer
the philosopher was emphatically against the idea. The theorem (see Weyl above) gives you no idea
of where the fixed point is.

Unlike the axiom of choice, the law of the excluded middle is venerable and would be hard to
give up. Yet it was simple for the intuitionists to find examples where it seemed not to work, often
relating to conjectures which were unsolved such as Fermat’s Last Theorem; an example from
Weyl is given in Appendix B(i). It is interesting since the conjecture which it draws on (whether
any numbers of form 22n + 1 are prime for n > 4) is still unsettled, and is the object of searches
taking years of computer time and superspeedy search programs. Hence one might say there is still
a question of belief for mathematicians, at least for those who are interested: is it the case that either
the statement ‘no such numbers are prime’ or ‘one of the numbers is prime’ is true? An intuitionist
would say that you cannot assert such an either/or, since implicitly it means that you can search
through all the integers and decide the question.

It is important to realize how radical the intuitionists were in their aims. Where the work of
making the calculus rigorous left all the results in place, only changing the proofs so that they
made sense without the infinitely small, Brouwer and Weyl were forced into a situation where they
declared large parts of contemporary mathematics to be unacceptable and meaningless. Brouwer’s
concise formulation of his programme, to which he gave the name ‘intuitionist’ some time after
1907, is in Appendix B(ii). Note that he bans two things: the free use of sets and the law of the
excluded middle.

The problem for the intuitionists, as time went on, was that their destructive programme was
much easier to understand than their various attempts to be constructive. Weyl agreed that the
‘honest’ real numbers were the ones which one could calculate by a well-defined procedure;
examples include

√
2, π , cos(0.5), or even �∞

i=0(1/is) for s rational; roughly what Turing not
long after was to call ‘computable numbers’. Yet he also wanted to keep, in his words, ‘the con-
tinuous ‘spatial soup’ that is poured between these [Euclidian] points’ (In Mancosu 1998, p. 132).
Bogged down in an attempt to preserve something of the ‘continuum’, even the infinite, intuitionist
mathematics, which was seen as the way of the future by many in the 1920s, became a difficult
and rather arcane specialist study by the 1930s—and survives as such.

There is a tempting analogy with the famous study of 1920s German physics by Paul Forman
(1971). Forman argued that physics, in the Weimar republic, had to adapt to a milieu in which
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precision and abstraction were seen as impoverished forms of thought, associated with Germany’s
defeat; and that the stress on uncertainty and subjectivity in the new physics of Heisenberg and
Schrödinger deflected such criticisms. Intuitionism—which had in fact started some time before—
perhaps owed some of its popularity to a similar reaction.

Exercise 2.
(a) A shop contains an infinite number of pairs of socks S1, S2, . . . . I want to choose one sock from

each pair.
(1) Why will I need the Axiom of Choice to do it?
(2) Why will I not need the axiom if I am dealing with pairs of shoes?

(b) Show using the Law of the Excluded Middle that there exist numbers x, y such that x, y are irrational
but xy is rational. [Hint: Start with x = √

2.] What would be an intuitionist view of this argument?
(c) (Bolzano-Weierstrass theorem—hard!). Let x1, x2, . . . be an infinite sequence of numbers in the unit

interval [0, 1]. (1) Show that there is a subsequence xi1 , xi2 , . . . which tends to a limit x. (2) What,
from the intuitionist point of view, has gone wrong here?5

5 Hilbert

I remember how enthralled I was by the first mathematics class I ever attended [at the University]. . . It was Hilbert’s
famous course on the transcendence of e and π . (Weyl, quoted in Reid 1970, p. 201)

In mathematics . . . we find two tendencies present. On the one hand, the tendency towards abstraction seeks to
crystallise the logical relations inherent in the maze of materials . . . being studied, and to correlate the material in
a systematic and orderly manner. On the other hand, the tendency towards intuitive understanding fosters a more
immediate grasp of the objects one studies, a live rapport with them, so to speak, which stresses the concrete meaning
of their relations. (Hilbert 1999)

We have delayed mentioning David Hilbert perhaps longer than we should, because although
a central figure in the crisis, he was much more. His broad achievements and immense influence
have made him something of a folk-hero, at least among mathematicians, although we are unlikely
to see a film of his relatively uneventful life. For 30 years he dominated mathematics at Göttingen,
and made Göttingen the centre of the world; and one would have to go a long way today to find
a teacher who could transfix students on the subject of the transcendence of e and π ,6 if that
particularly late nineteenth-century subject is still taught. He has been well served by Constance
Reid’s biography (1970), with an excellent mathematical section by his favourite student Weyl.
Genial, productive, liberal, he remoulded the style of mathematics in algebra (particularly), and
in the foundational disputes which were to be such a central preoccupation, where he stood in
direct opposition to the intuitionists—and here Weyl’s defection was to be a cause of distress, if not
permanently so.

Rather than a film, Hilbert could make a good subject for a Greek tragedy, of downfall resulting
from an excess of ambition. We have already seen his announcement in 1900 of his belief that any
problem could be solved, to which Brouwer took such exception. The attacks of the intuitionists
and the notable weaknesses in set theory forced him into constructing an ingenious position; but

5. This exercise and the preceding one have been borrowed, with their solutions, from Assad J. Kfoury at BU.
6. That is, that neither of them satisfies an algebraic equation anxn + an−1xn−1 + · · · + a0 where an, . . . , a0 are integers.
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one which with hindsight is more ambitious than anyone before or since has thought necessary
or possible. The proposal was as follows. One would define mathematics to be (a) a set of formulae
constructed on simple lines and (b) a finite set of axioms which characterized some of those
formulae as true; plus standard rules for deduction. If you take the axioms to be those which define
basic properties of natural numbers (and Hilbert did, as did Russell and Whitehead in Principia
Mathematica (1910–1913)), then you can of course deduce arithmetic of a simple kind; and if you
add some infinite processes, you can define real numbers à la Dedekind and deduce calculus and
geometry. To a certain extent, you do not care what the axioms, or formulae refer to. The question is
not about what numbers are, but about how they behave; and this is why Hilbert was (by others)
called a ‘Formalist’. ‘In the beginning was the sign’, was a typical quote, which has been interpreted
in any number of ways. (Part of ) his statement of aims, which at the time he seems to have believed
completed, is reproduced in Appendix C.

You now, in Hilbert’s programme, shift to a different register called ‘metamathematics’. (One
could make a parallel with other twentieth-century studies where the activity, once pursued for its
own sake, becomes the object of study.) Looking at the process of forming provable formulae, you
ask two questions:

1. Completeness. Is it possible, given any formula P, to determine that it is true or false? An
obvious example is the formula:

There exist natural numbers x, y, z and p > 2 such that xp + yp = zp

necessarily capable of being proved true or false? (True, we know the answer now, but Hilbert did
not.) If so, the system is called complete.

2. Consistency. Is it impossible, in the system, to deduce both P and ‘not P’? If so, the system is
called ‘consistent’.

We have stressed the immense ambition of this programme, but the field was completely new,
and Hilbert had an often justified confidence in the rapid progress of mathematics. Around 1929,
his student von Neumann seemed to have a proof, which only needed a little patching to make
it work.

The next part of the story is well known. In 1931 a young Austrian, Kurt Gödel, announced
a proof that neither completeness nor consistency were provable; more strictly, that they could
not be established by the finite methods which (under pressure from the intuitionists) were seen
as necessary. It was a perfect piece of Hilbert-type mathematics—and Gödel was much more
a formalist than an intuitionist—but it effectively destroyed the programme.

When Hilbert first learned about Gödel’s work from Bernays, he was ‘somewhat angry’. . .The boundless confidence
in the power of human thought which had led him inexorably to this last great work of his career now made it almost
impossible for him to accept Gödel’s result emotionally. (Reid 1970, p. 98)

Retired, and with his last attempt to make mathematics secure defeated at least provisionally,
Hilbert had to watch in disbelief as his best colleagues and students—Courant, Landau, Noether,
Weyl, and von Neumann, were either forced out of Göttingen by the Nazis or left because they were
unable to endure life under the Third Reich. He survived a few more years in Göttingen among
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the ruins:

Sitting next to the Nazis’ newly appointed minister of education at a banquet, he was asked, ‘And how is mathematics
in Göttingen now that it has been freed from the Jewish influence?’

‘Mathematics in Göttingen?’ Hilbert replied. ‘There is really none any more’. (Reid 1970, p. 205)

6 Topology

In an attempt to show some of what went on outside the world of foundational disputes, we consider
the rise of topology. This, it has to be said without any personal parti pris is the success story of
twentieth-century mathematics, barely existing at the beginning of the century and intruding into
all other fields by the end. While there are obviously multiple reasons for this, we could give two:
first, that any problem which requires the passage from a simple local statement to a more difficult
global one (what can electromagnetic fields be like in the presence of currents? what shape can the
space-time of Einstein’s relativity have?) is a topological question; and second, that the machinery
was in place, or could be developed to solve such problems. A great many problems in topology
are hard, but not as hard as the continuum hypothesis, or Langlands’s conjecture on automorphic
forms; and a great many of the ablest mathematicians have devoted their time to them. It can
therefore be seen as a domain of Hilbertian optimism, in which questions are successively raised
and dealt with.

The time has now arrived when topologists consider their subject, however young, has a his-
tory; rightly so, and luckily there are two substantial contenders, Dieudonné (1989) and James
(1999). These provide the groundwork which more professional historians are now sifting over and
commenting. It is normal to consider the subject, properly considered, as just over a hundred years
old. Aside from two famous excursions by Euler, it was originated and given its name by Möbius and
Listing, classifying surfaces in the mid-nineteenth century; but serious methods of study became
available at the end of the century with Poincaré, who extended the field to higher dimensions and
gave it its first major theorem (‘Poincaré duality’) and its most enduring problem (the ‘Poincaré
conjecture’).

At this point, the methods of argument were not such as would have been recognized elsewhere,
for example, in algebra; and topology was perhaps fortunate in having as its originator Poincaré,
who was more interested in finding results than in defining exactly what he was talking about. His
object of study was:

(1) what Riemann would have called (and we now call) ‘manifolds’—curves, surfaces, . . . up to
any number of dimensions (think of the unit sphere in Rn+1)7

(2) under the relation of ‘homeomorphism’ (same shape); continuity is preserved, but not
distance.

To give standard examples: (a) manifolds of different dimensions are not homeomorphic (e.g. the
circle C and the torus T in Fig. 3); (b) nor are the sphere S and T; (c) but T and the knotted torus
T′ are (Fig. 4). Poincaré’s method was to decompose a manifold into ‘cells’,rather like the faces of
a polyhedron; and to derive numbers from the cell decomposition.

7. This field of acceptable objects was later to be substantially extended; no longer manifolds, no longer finite dimensional, . . .
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Fig. 3 Circle, torus, and sphere.

Fig. 4 A torus and a knotted torus (which, incidentally are linked), are homeomorphic.

Again, this was very unlike Göttingen mathematics. It looked forwards (nothing like it had been
done before) and backwards (it went against the growing current of abstraction and the need for
certainty). How was one to be sure that two different cell decompositions gave the same numbers?
It took some time for a satisfactory proof to emerge, but in the meanwhile the handful who were
interested in topology were happy to make a start with Poincaré’s ideas and methods, and his
‘invariants’. And, interestingly and importantly, his main followers came not from France, but from
America (Veblen, and then Alexander) and Germany (Dehn, Heegaard, and then Reidemeister).
Under their influence, and that of the Russian Alexandrov, a close associate of Noether, topology
in the 1920s and 1930s became ‘algebraic topology’. In discussions with Noether, Alexandrov
realized that Poincaré’s invariants concealed a group.8 What had been the intuitive subject par
excellence had been forced to define itself. As we shall see, worse was to come. All the same, as
we meet it in Seifert and Threlfall’s classic Lehrbuch der Topologie of 1934 (reprinted as 1980), the
language may seem strange, and almost all of today’s methods are missing (homotopy groups,
exact sequences, fibre spaces, . . .) but the basic objects are in place.9 What perhaps most strikes
today’s reader is that the Lehrbuch is packed full of attractive and illuminating pictures (see Fig. 5).
As an image of the kind of work that topologists do (cutting out knots and gluing them in with
a twist, say), they are an invitation to read further, even though the text is not always easy. While
topology was a great deal more abstract, it was still the most graphic of mathematical pursuits.

8. There is an account of this in Corry (2004, p. 245), with mention of a possible claim by Mayer.
9. As time went on higher-dimensional applications became more important, so that Seifert-Threlfall is still the ‘easiest’ reference

for two and three dimensions.
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Fig. 5 The ‘dodecahedral space’ from Seifert and Threlfall’s book. This is obtained from a solid dodecahedron by gluing opposite
faces (marked I, II, III, IV, V) as shown in the picture.

Fig. 6 A knot (‘true lover’s knot’) with eight crossings.

The changes which took place can be well illustrated by the specific case of knots. Unlike the
subject-matter of topology in general, these are easy to understand, and what they are, in basic
terms, has remained the same since they were first systematically studied by Tait (in response
to a failed theory of Lord Kelvin) in the 1870s.10 For that reason, they provide a particularly
interesting index of what does change. One thinks of a knot (Fig. 6) as a closed curve (a ‘circle’)
in three dimensions, and defines two knots to be equivalent if one can be deformed into the other;
so much is more or less obvious. Also immediately clear to Tait, and probably to the reader, is that
one can represent a knot unambiguously by projecting it down into a plane (as in the figure) using
broken lines to mark which strand goes under at each crossing. Of course, this ‘diagram’ is far
from unique, and the very simplest question is how one tells whether two diagrams determine the
same knot. Since that would require a language of diagrams, it is already perhaps too difficult. Tait
determined all knots which had diagrams with up to eight crossings, and made some important and
hard conjectures. This, it must be remembered, was without using any of the still-to-be invented
tools of topology.

10. Tait referred to earlier work of Gauss and Listing, but he is usually considered the founder.
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Around 1910, Dehn and Wirtinger were aware of the tables of knots (or knot-projections)
compiled by Tait, and could see that beneath them a question of topology, treatable by Poincaré’s
new methods, might lie. The problem was that the knot K was just a circle, the ambient space just
R3. The answer was to consider the ‘difference’, R3 − K. Not a ‘manifold’ in Poincaré’s sense, since
it was infinite, this still seemed a good subject for treatment. It is attractive in philosophical terms
to note that the first step forward (rather like Dedekind’s?) replaced studying the knot by studying
the hole which was left when you removed it.

One of Poincaré’s most interesting invariants was a group, which we now call the ‘fundamental
group’ of X, π1(X); and he had given a means of computing it from a cell decomposition. Although
the ‘cells’ in R3 − K were not obvious, Dehn and Wirtinger did arrive at a description of generators
and relations for the group π1(R3 − K).11 An excellent first stage, this ran up against serious
problems relating to how little was known about such presentations. When did two define the same
group? Was the problem even (in intuitionist, or Gödelian terms) decidable? (It is not.) Information
can be gathered about the group when you are lucky, but how can you enforce luck?

The next major advances were due to Alexander and Reidemeister in the 1920s. There may be
various priority questions to disentangle here, on which Epple has commented (2004), but they
need not concern us here. The first point is that a new definition of a knot was found useful.
‘Simplexes’ (triangles, tetrahedra, etc.) were seen, correctly, to be a more precise way of finding
your way around than Poincaré’s more general ‘cells’; and so a knot K was defined to be a closed
polygon in three dimensions. An ‘elementary equivalence’ was defined to be one of the type shown
in Fig. 7 where you replaced the side AB of the triangle by the sides AC, CB, or vice versa—provided
that K did not meet the interior of the triangle. And, finally, K and K′ were equivalent if you could
get from one to the other by a sequence of elementary equivalences.

This was a substantial change. Was it proved equivalent to the previous definition? I am not
sure, and in a way it is not so important as the new language. While the new knots look pretty
much like the old, and in actual drawing topologists often smooth out the corners for reasons of
aesthetics or laziness, there is still a greater precision which is involved specifically in the ‘elementary

A

B

C

1

Fig. 7 Elementary equivalence. The shaded triangle ABC does not meet the other strands of the knot, so AB can be replaced by the
two edges AC, CB.

11. That is, π1 is the set of all expressions in (say) x1, x−1
1 , . . . , xk , x−1

k (generators), subject only to the rules which follow from
requiring certain expressions R1, . . . , Rl in the xs (relations) to equal 1. See a book on group theory.
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Type I Reidemeister move

Type II Reidemeister move

Type III Reidemeister move

Fig. 8 The three Reidemeister moves. Type I flips a loop over; type II pulls one looped strand over another; type III takes a strand
through a crossing.

equivalence’. Given this definition, Reidemeister was able to show that two knot projections were
equivalent if and only if you could go from one to the other by a sequence of ‘Reidemeister moves’,
as shown in Fig. 8.

On the face of it this is a rather unambitious result; and indeed it was a rather small basis for
the construction of more and easier invariants by Reidemeister and Alexander. However, again it
illustrates a major change in the way mathematicians treat their subject-matter. For Tait, a knot
is obvious; it is represented by a picture, and we know what it means to say that two knots are
the same. For Reidemeister, we have to construct meticulous (and finitistic!) definitions both of
the object ‘knot’ and of the relation ‘the same’. The payoff is a relation between diagrams which
guarantees sameness. This too may not be easily checkable; however, if we construct a function of
a knot diagram (as several authors were to do in the 1980s), we can show that we have a ‘knot
invariant’ by showing that the function does not change under the three Reidemeister moves. The
study of knots has become a kind of algebra.

Exercise 3.
(a) Show that the two knots shown (Fig. 9) are equivalent directly.
(b) Show that they are equivalent using Reidemeister moves. How many have you used?
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1

2

34

Fig. 9 Two knots, each with four crossings. The crossings on knot 1 are labelled 1, 2, 3, 4 (and obviously those on knot 2 could be
labelled similarly).

7 Outsiders

I have not trodden through a conventional university course, but I am striking out a new path for myself. I have made
a special investigation of divergent series in general and the results I get are termed by the local mathematicians as
‘startling’. (Ramanujan to Hardy, January 1913)

If one proves the equality of two numbers a and b by showing first that a ≤ b and then that a ≥ b it is unfair; one
should instead show that they are really equal by disclosing the inner ground of their equality. (Noether, quoted in
Weyl 1935)

The community of mathematicians in 1900 was restricted almost entirely to white males, as one
might expect. Today, the restriction is less complete, although one would not want to make any very
strong claims about the progress which has been achieved. At the beginning of the century stand
two very different figures, Srinivasa Ramanujan and Emmy Noether, whose stories are often told
as exemplary, and who certainly show the different ways in which unusual individuals could break
into the closed world of mathematicians; what they could achieve, and what were the necessary
limits of that achievement. They were both quite exceptional—and would be today—for completely
different reasons.

When Ramanujan came from Madras to study with the already famous number theorist
G. H. Hardy in Cambridge in 1914, he came from a situation where mathematical research was
not far advanced, and Indians had little chance of making headway in it. (Despite this, he had
had articles published in the Journal of the Indian Mathematical Society.) In the well-known story, he
was forced to leave his wife, to make an unwelcome adjustment in Cambridge to a hostile climate
and uneatable food, and finally to ruin his health, in order to study with the only mathematician
who had taken the trouble to respond to his extraordinary letters. Rather than looking back on the
outsider status which he had to endure as something belonging to a distant past, one might wonder
how likely it is today that a clerk without a university degree, writing to a professor at Princeton
(say) in such terms would be fortunate enough to get a similar response.

It is a cliché in writing about Ramanujan to describe the difficulty of assessing what he con-
tributed to modern mathematics—quite aside from the difficulty of the mathematics themselves.
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To take a ‘proper’ historical viewpoint one needs to have some understanding of what his work
meant to him, what it meant to number theorists in Cambridge at the time, and why it has con-
tinued to be important.12 In the quotation above, he describes his interest in ‘divergent series’.
This at least restricts the field a little, and it helps to fix ideas (if it gives no idea of the scope of his
thinking) to remember that at the age of 17 he was investigating the simplest such series, �1/n
(see Oresme, Chapter 6), and had calculated Euler’s constant

γ = lim
n→∞

(
�n

k=1
1
k

− log n
)

to 15 decimal places. One sees an interest in infinity, and in its control; in regularity as infinity is
approached. And Hardy’s attempts to understand his friend’s thought—as between Cambridge pub-
lic school atheist and pious Brahmin—convey images of an infinity which is capable of generating
all primes.

Whatever ideas or traditions may have underlain Ramanujan’s thought, his practice was solidly
in a successful nineteenth-century tradition of hard number theory (modular functions) which
went back to Dirichlet. Indeed, his weakness in supplying proofs would not have been as suspect
in Dirichlet’s time as it was a hundred years later. However, he had the special advantages both of
working with Hardy (undoubtedly among the best in the field) and of his own ‘intuition’. Both of
these enabled him to go further than his contemporaries. It also helped that his directions were not,
in general, ones which anyone else had thought of or imagined would be worth pursuing. A famous
example, whose exact history still seems uncertain, is the formula for the partition number; and
since this (unlike some of his other work) is easy to describe, it is worth a mention.

For any natural number n, the partition function p(n) is defined to be the number of ways in
which n can be written as a sum of natural numbers (unordered): easily, p(1) = 1 ((1)), p(2) =
2 ((2), (1, 1)), p(3) = 3 ((3), (2, 1), (1, 1, 1)), and p(4) = 5 ((4), (3,1), (2,2), (2,1,1), (1,1,1,1)
in obvious notation). Work had been done since the time of Euler to find formulae for p(n); and
Ramanujan claimed that he had such an exact formula. Hardy was unable to believe this—the usual
best hope would be for an ‘asymptotic formula’, which describes limiting behaviour. Naturally, too,
Ramanujan was unable to explain, if he knew, why his formula was right. As a result, what we
now have is known as the rigorously proved ‘Hardy–Ramanujan asymptotic formula’, found in
1916–17:

p(n) ∼ 1

4n
√

3
eπ

√
2n/3

Here ‘an ∼ bn’ means that an/bn → 1 as n → ∞. The formula is at least relatively simple, and
gives an idea of how fast the partition function grows. The much more complicated exact function,
which may or may not be what Ramanujan found, was proved by Rademacher in 1937.

To say that Ramanujan’s mathematics was tangential, let alone marginal to twentieth-century
mathematics would be absurd given the influence of his published work, his unproved conjectures,
let alone his unedited notebooks. Perhaps his work should stand rather as an image of modern
mathematics’ capacity for absorbing anything however ‘different’ and setting it to work in its vast
theorem factory.

12. To the extent that (for example) Deligne’s solution of the Ramanujan conjecture in the 1970s with the full apparatus of late
twentieth-century algebraic geometry (I forbear to give details) is for many mathematicians an achievement on a level with Wiles’s
proof of the Taniyama–Shimura conjecture.
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While Ramanujan had to receive an accelerated schooling in what then counted as up-to-date
number theory, and much else, from Littlewood and Hardy, Emmy Noether was in a much more
usual European situation; trained in a rather old-fashioned approach to a central topic—crudely,
the relation of algebra to geometry—she came into contact with Hilbert and others who were in
the process of transforming it, abandoned her earlier lines of work and took the ideas which she
had received so much further as to have a crucial influence on the next generation. It would be
easy to point out how far she was from receiving the kind of recognition which a man would have
received in her career, and being a Jew and a Communist did not help in 1920s Germany. Forced
out of her untenured position at Göttingen by the Nazis, she found refuge at the women’s college
of Bryn Mawr, and by the time of her death had already made a decisive impact on the course of
mathematical history. Again, the central ideas are not easy to explain; however, one should try since
they are so much at the centre of what happened in twentieth-century mathematics (and at least
they are easier than those of Ramanujan). Partly they came from editing Dedekind’s posthumous
papers, partly from current work on polynomials, but she unified the two into what, as a result
of her work has become known as the general theory of ‘rings’ and ‘ideals’, the latter defined
by Dedekind. [A ring R is a set in which addition and multiplication can be defined, satisfying
(to simplify) the same sensible rules as they do for integers; a subset I ⊂ R is called an ideal if
(a) a + b ∈ I when a and b ∈ I, and (b) ab ∈ I when a ∈ I (not necessarily b). Example: the set
of all multiples of 6 in Z is an ideal, usually written (6).] These ideas entered into two apparently
disparate areas of mathematics.

1. In algebraic geometry, it had become common to consider not so much the curve C (for example)
defined by an equation like a2x2 − b2y2 − 1 = 0 (Fig. 10), but the ring of all polynomial
functions in x and y; the functions which vanished on C were then an ideal. Similarly for
algebraic manifolds (varieties) of higher dimensions. Instead of studying the geometric object,
(it came to be realized) one could equally well study the ideal.

2. In number theory, one routinely considered ‘number rings’, such as the set of all m + n
√−5,

where m and n are integers. It was to study these, their sometimes strange division and
factorization properties, and so to solve arithmetical problems that Kummer and Dedekind had
introduced ideals, or ‘ideal numbers’ in the first place.

What Noether observed is clear from the above description—but only because the description
has been framed in the terms which she devised: that these two families of questions were both
concerned with the structure of ideals in a particular type of ring (it is now called ‘Noetherian’).
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Fig. 10 Curve (hyperbola) with equation as in text; a = 1/5, b = 1/3.



Modernity and its Anxieties 231

The idea of structure unified two apparently disparate areas of mathematics. It was to become more
and more important through those who drew inspiration from her writings.

As we have suggested earlier, Noether is too unusual a figure to be in any sense ‘typical’ in
the short list of women in mathematics. Women emerge to take a place as major figures in
this history almost at its last moment. And while one can and should find space for the skilled
amateur Ada Byron, Countess of Lovelace as a ‘joint forerunner’ of the computer, or for Sofia
Kovalevskaya as a high-quality contributor to nineteenth-century analysis, the place of Noether,
like that of Ramanujan, goes well beyond the category of prizes awarded in a special outsiders’
category. Without her, the drive to abstraction which we shall chart later might well have developed
unstoppably, but her work of the 1920s certainly set a particular shape on it.

Appendix A. The cut definition

(From ‘Continuity and irrational Numbers’ reproduced in Fauvel and Gray pp. 575–6.)

From the last remarks it is sufficiently obvious how the discontinuous domain R of rational numbers
may be rendered complete so as to form a continuous domain. [Earlier] it was pointed out that every
rational number a effects a separation of the system R into two classes such that every number a1
of the first class A1 is less than every number a2 of the second class A2; the number a is either the
greatest number of the class A1 or the least number of the class A2. If now any separation of the
system R into two classes A1, A2, is given which possesses only this characteristic property that every
number a1 in A1 is less than every number a2 in A2, then for brevity we shall call such a separation
a cut and designate it by (A1, A2). We can then say that every rational number produces one cut
or, strictly speaking, two cuts, which, however, we shall not look upon as essentially different; this
cut possesses, besides, the property that either among the members of the first class there exists
a greatest or among the numbers of the second class a least number. And conversely, if a cut
possesses this property, then it is produced by this greatest or least rational number.

But it is easy to see that there are infinitely many cuts not produced by rational numbers.

Appendix B. Intuitionism

(Weyl, in Mancosu 1998, p. 97)

(i) [Weyl] Let us, for example, assume that ‘n has the property E’ means that 22n+4 + 1 is a prime
number, and that property Ē means the opposite (22n+4 + 1 is a composite number). Now consider
the following. The view that it is in itself determined whether there is a number with property E, or
not, is surely based on the following idea: The numbers 1, 2, 3, . . . may be tested, one by one, for the
property E. If such a number with property E is found, the answer is yes. But if such a termination
does not occur, that is to say, after a completed run through the infinite number sequence, no number
of kind E is found, then the answer is no. Yet this point of view of a completed run through an
infinite sequence is nonsensical.

(ii) [Brouwer] 1. The Axiom of Comprehension, on the basis of which all things with a certain
property are joined into a set . . . is not acceptable and cannot be used as a foundation of set theory.
A reliable foundation is only to be found in a constructive definition of a set. 2. The axiom of the
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solvability of all problems as formulated by Hilbert in 1900 is equivalent to the logical Principle of
the Excluded Middle; therefore, since there are no sufficient grounds for this axiom and since logic
is based on mathematics—and not vice versa—the use of the Principle of the Excluded Middle
is not permissible as part of a mathematical proof. The Principle of the Excluded Middle has only
scholastic and heuristic value, so that theorems that in their proof cannot avoid the use of this
principle lack all mathematical content.

Appendix C. Hilbert’s programme

(Hilbert, ‘The New Grounding of Mathematics’, in Mancosu 1998, p. 204)

But we can achieve an analogous point of view if we move to a higher level of contemplation, from
which the axioms, formulae, and proofs of the mathematical theory are themselves the objects of
a contentual investigation. But for this purpose the usual contentual ideas of the mathematical
theory must be replaced by formulae and rules, and imitated by formalisms. In other words, we
need to have a strict formalization of the entire mathematical theory, inclusive of its proofs, so
that—following the example of the logical calculus—the mathematical inferences and definitions
become a formal part of the edifice of mathematics. The axioms, formulae, and proofs that make
up this formal edifice are precisely what the number-signs were in the construction of elementary
number theory . . . and with them alone, as with the number-signs in number-theory, contentual
thought takes place—that is, only with them is actual thought practiced. In this way the contentual
thoughts (which of course we can never wholly do without) are removed elsewhere—to a higher
plane, as it were; and at the same time it becomes possible to draw a sharp and systematic distinction
in mathematics between the formulae and formal proofs on the one hand, and the contentual ideas
on the other.

In the present paper my task is to show how this basic task can be carried out in a rigorous and
unobjectionable manner, and to show that our problem of proving the consistency of the axioms
of arithmetic and analysis is thereby solved.

Solutions to exercises

1. (a) We have already done this—the definition of ‘
√

2’ works for the square root of any number.
(That is, except when the number is already a square; then of course one defines (for example)√

4 to be 2, which is already rational, and not a problem.)
(b) First we must define the product of two positive real numbers. We use the upper classes,

otherwise we keep having to make special provision for the negative numbers. Let U and U ′
(sets of rational numbers) be the upper classes belonging to the positive real numbers a and a′.
Then all numbers in each of these are positive. Define V to be the set of all z such that z ≥ uu′
for some u ∈ U, u′ ∈ U ′. (This is complicated, but ensures that V obeys the rules for an upper
class; that is, if z ∈ V and z′ > z, then z′ ∈ V.) By definition, aa′ is the real number whose upper
class is V.

[What happens when aa′ is rational—for example, π and 2/π?]
Now let V be the upper class for

√
2.

√
3, and V ′ the upper class for

√
6; we have to show they

are the same. If z ∈ V, z ≥ aa′, where a2 > 2 and (a′)2 > 3. So z2 > a2(a′)2 > 6, and clearly
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z ∈ V ′. The other way round is harder. Suppose z2 > 6, we must decompose z as a product. For
some n, z2 > 6 + (1/n). Choose a rational number a with a2 > 2 and a2 < 2 + (1/3n). Then,

z2

a2 >
6 + (1/n)

2 + (1/3n)
= 3

so z = aa′ as required.
(c) Here it is much easier to use the lower classes. Let Li be the lower class belonging to xi,

and simply define L to be the union of the Lis: all rational numbers a which are in at least one
of the Lis. Then L is not all of the rationals; in fact, if a > M, a is in none of the Lis, so not in L.
And it is easy to check that L satisfies the requirements for a lower class. Hence, L defines a real
number M0.

Since each Li is contained in L, M0 is greater than each xi. Now suppose y is a real number
< M0. Then there is a rational number a such that y < a < M0. From the definition of M0, a
is in Li for some i. Hence, a < xi and so y < xi.

(d) I put this in because, naively, one might think that defining real numbers as infinite
decimal fractions was good enough, and one needs to realize that adding them is com-
plicated by the possibility of having to ‘carry’ indefinitely far back. Consider the difference
between:

0.12345 + 0.87654 = 0.99999

and
0.12345 + 0.87655 = 1.00000

A change in the fifth decimal place changes all the results of the addition.
2. (a) Socks being identical, one needs a function which to each pair of socks Si assigns just one

sock si. The axiom of choice will ensure this (but you cannot do it by hand). On the other hand
with shoes, there is a natural rule: simply choose the left shoe of each pair. [In set-theoretic
terms, it is a difference between ordered and unordered pairs.]

(b) The number
√

2
√

2
is either rational or irrational. If it is rational, we have the example

we are looking for (since
√

2 is irrational anyway). If it is irrational, then take x = √
2

√
2

, and
y = √

2. xy = √
2

2 = 2 is rational and we are done in this case too.
Intuitionist critique: The procedure is not constructive; since, if we do not know which of

the two alternatives is true, we do not know which procedure to follow.

[Further complication; it can be proved that
√

2
√

2
is irrational. If we use this, then of course

we have a proof without the law of the excluded middle.]
(c) Let a0 = 0 and b0 = 1. We construct inductively an interval [an, bn] of length 1/2n.

Suppose [an, bn] constructed. Then:

1. if [an, (an + bn)/2] contains infinitely many elements of the set, let an+1 = an and bn+1 =
(an + bn)/2;

2. if not (so the other half contains infinitely many elements), let an+1 = (an + bn)/2 and
bn+1 = bn.

The sequences an, bn, clearly both converge, to the same limit x; and at least one of them must
contain infinitely many distinct elements. This is the sequence we are looking for.
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Intuitionist critique: we have no way of telling which of the two cases (1), (2) holds at each
point; so we cannot apply the law of the excluded middle.

3. The simple way of seeing this is that the right-hand knot is obtained from the left-hand one
by pulling the top loop out and lifting it downwards, so as to surround the whole diagram.
If we want to use Reidemeister moves, begin with knot 2 and tilt the diagram slightly. The long
edge at the bottom can then be taken up through the diagram to the top (say above it) using
Reidemeister move 2 for the two bottom loops and move 3 for each of the four crossings in
turn. When this is finished, you find that you have not quite knot 1, but one which differs by
two loops which can be removed by Reidemeister move 1. The total number of moves (I think)
is then 2 + 4 + 2 = 8.
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1 Introduction

I am not thinking of the ‘practical’ consequences of mathematics . . . at present I will say only that if a chess problem
is, in the crude sense, ‘useless’, then that is equally true of the best mathematics; that very little of mathematics is
useful practically, and that that little is profoundly dull. (Hardy 1940, p. 29)

Mathematical formalism, however, whose medium is number, the most abstract form of the immediate, . . . holds
thinking firmly to mere immediacy. Factuality wins the day; cognition is restricted to its repetition; and thought
becomes mere tautology. (Adorno and Horkheimer 1979, p. 27)

In 1936, the year when the Spanish Civil War broke out, Lancelot Hogben wrote a book called
Mathematics for the Million—an unexpected best-seller, which still sells today. The aim was to
educate the masses in mathematics, since:

The mathematician and the plain man each need one another. Maybe the Western world is about to be plunged
irrevocably into barbarism. If it escapes this fate, the men and women of the leisure state which is now within
our grasp will regard the democratization of mathematics as a decisive step in the advance of civilization. (Hogben
1936, p. 20)

Hogben’s judgement stands in opposition to that of Hardy (what is good in mathematics is not
useful); and equally to that of Adorno and Horkheimer, also writing in the 1940s (mathematization
is everywhere, and to mathematize ideas is to deprive them of their creativity). The mathematics
which he aimed to democratize was not easy—it included algebra, the calculus, and statistics—but
both in content and in presentation it would have been found trivial by Hardy, and not surprisingly,
it included no recent results. How has the democratization of mathematics fared during the last
70 years—and is anyone still convinced that it is either possible or desirable?

It seems difficult, in mathematics, to approach the history of the present—or even of the recent
past. School history programmes and TV history channels thrive on the wars and oppressions of
the last 100 years; but they have a clear narrative line to help them, and ample resources in the
form of film and picture archives. With regard to the history of any science, and of mathematics
in particular, there seems to be too much of it; it is too difficult, too diffuse, and it is hard to put
the various narratives together to point a moral or adorn a tale. The historian begins by being
grateful to Andrew Wiles, who, having proved the outstanding theorem of mathematics (‘Fermat’s
Last Theorem’) in the closing years of the twentieth century, has at least provided the story with
a neat, if provisional ending. However, it is a rather special kind of ending, centred on the rarefied
world of universities and extremely hard pure mathematics. It could serve as a model for what, in
mathematics, is undemocratic. A contemporary Hogben could, at a pinch, include a chapter on
the exposition of Gödel’s Theorem (proved in 1931), but might find it pointless except as a lead-in
to Turing’s work, and so, as we shall see, to computers. He would have no time at all for Wiles’s
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proof, which is perfectly in the Hardy mode: 100 pages long, understood only by a small circle,
and, while possibly applicable in its results (see later), certainly not in the methods it takes to
get there.

And yet mathematics, at all levels of subtlety and difficulty, is everywhere present in the world
we live in. One may ridicule the failures of ‘smart bombs’ to hit their targets, or of satellites to
find the weapons they are supposedly searching for; but the technology which they rely on, and
that which guides robots on Mars, and makes it possible to find optimal routes for motorists, is all
underpinned by mathematics of various kinds. The computer, which we shall have to consider, is an
essential part of much of this technology, and is in part a spin-off of the early twentieth century’s
preoccupation with logic and the constructible. But there are many more diverse inputs. When an
architectural design programme translates building specifications (breeze-blocks, windows, doors,
joists) into three-dimensional views of the projected construction, it is using the ability of the
computer to translate keystrokes or mouse movements into the eighteenth-century language of
Monge’s descriptive geometry (see Chapter 8). At the more advanced level of Tomb Raider or in the
animations of The Matrix, the same trick is being worked for jumps and turns in three dimensions,
using the classical dynamics developed by d’Alembert and Euler. When we buy, pay bills, or consult
our bank balance on a ‘secure website’ our data are encrypted using (perhaps) the properties of
large prime numbers, or even elliptic curves, which also play a part in the design of CDs; this most
classical part of mathematics, (Wiles’s preoccupation, one could say) is now intensively modernized
and even—for obvious reasons—subject to intellectual property law. If, rather than historians, we
were simply surveyors of the field of what mathematics is doing in 2004, it would be hard to
avoid intoxication, an endless list, and, somewhere along the line, a word like ‘awesome’. We
could hardly any longer agree with Hardy’s assertion that practical mathematics is by its nature
trivial. On the other hand, the pessimists among us might, like the 1940s Marxists Horkheimer
and Adorno, conclude that what is creative about human thought has been lost in its universal
mathematization.

From the historian’s viewpoint, then, what stands out about the development of mathematics in
the later twentieth century? First, we have an extremely rapid growth in the uses of mathematics,
the number of people employed, and the amount of work done; this really begins after the Second
World War. Second, as far as pure mathematics is concerned, we have seen a tendency towards
increasing abstraction, which has now perhaps peaked, but which was very influential in the mid-
century. Third, we have the rise of new forms of ‘applied’ mathematics; most obviously computer
science and statistics, but including a number of others (operational research, control theory, . . .).
There have been other major and important developments, but these will be enough to be going on
with. Even to connect such a brief list into some kind of coherent account will obviously involve
leaving out a great deal, and the variety of what is left may still seem confusing. It’s the mathematics
which we have now, for better or worse, and for that reason alone it deserves our attention.

2 Literature

The historians of mathematics, who are so dedicated and scholarly on the Greeks and the Chinese,
have not been as productive on the present. A vast amount of historical work has been pro-
duced on the Second World War; even the collapse of the Soviet Union a mere 16 years ago
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has its serious historians. Where are the comparable works on the development of chaos theory,
category theory, and financial mathematics? Naturally there is a problem: many of the actors
are still alive, and the writer must usually be cautious about describing them. As in the previ-
ous chapter, the best sources are often biographies of mathematicians who are either dead (Alan
Turing, Hodges 1985, John von Neumann, Macrae 1992) or cooperative (John Nash, Nasar
1998, Smale, Batterson 2000). The best of these add valuable information on the wider scene—
Hodges on Cambridge, Nasar on Princeton, at key periods. Mathematicians are also given, in
their retirement, to producing autobiographies and reminiscences, of variable value. And indi-
vidual spectacular developments are covered in more or less journalistic accounts which attempt
to popularize and promote a view of what the writer finds exciting: Gleick (1987) on chaos,
Singh (1997) on Fermat’s Last Theorem, even perhaps Hofstadter’s over-the-top mathematical
rhapsody (1979).

Corry (2004) on abstraction and Dieudonné (1989) and James (1999) on topology, mentioned
in the last chapter, continue to be useful; and we shall draw on Segal’s interesting specialist account
(2003) of mathematics under the Third Reich. However, the full history of the period is still to
be told.

The previous chapter’s remarks about difficulty apply again, of course; even if one can follow
the popularizers of chaos theory with their coffee-table pictures, what can one do about Wiener
measure, étale cohomology, or topological quantum field theory? Faced with the mathematical
world of today, the popular consumer is naturally tempted to give up on the content and settle
for an experience of awestruck wonder: who are the people who carry on this strange, remote,
abstracted activity, and why do they do it? Accounts of how they operate always seem to miss
something.

Professor Mazur sipped his cappuccino and listened to Ribet’s idea. Then he stopped and stared at Ken in disbelief.
‘But don’t you see? You’ve already done it! All you have to do is add some gamma-zero of (M) structure and just run
through your argument and it works’. (Singh 1997, p. 221)

Is it, then, just a question of getting access to Barry Mazur’s brand of cappuccino? In Singh’s portrait
of Wiles, we have the mathematician as secretive solitary obsessive—set against the background
of a research community which has the opposite values, exchanging ideas over coffee. In Sylvia
Nasar’s book on Nash, and still more in the ‘spectacularly dumb’ (Taylor 2001) Russell Crowe
film version of it, we have the mathematician as paranoid–schizoid, a genius haunted by demons.
Most recently, if perhaps least seriously, Mark Haddon (2003) contributes a new element by
presenting the mathematical genius as a sufferer from Asperger’s Syndrome, physically unable to
construct human relationships, numbering his chapters by primes. The ‘mathematician-problem’
has become another object for consumption, a way of selling books, TV programmes, films, etc.
In the old (1960s) situationist language of Guy Debord, the activity of mathematicians, especially
at its most arcane and difficult level, has become part of the ‘Spectacle’, and so removed from
historical thought.

With the destruction of history, contemporary events themselves retreat into a remote and fabulous realm of
unverifiable stories, uncheckable statistics, unlikely explanations and untenable reasoning. (Debord 1990)

It will be an uphill struggle for this chapter to do any better, but it is our aim to try.
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3 The Second World War

Pure mathematics (in the narrowest sense) has a meaning only as a means of education to a formal character-building
that is consciously employed for service to the entire people.

Mathematical character-building: that is, cultivation of the masculine principle in spiritual life. (E. A. Weiss, cited
in Segal 2003, p. 193)

To assemble sufficient aircraft to implement the strategy required the diversion of several squadrons from Bomber
Command to Coastal Command, a proposal that was fiercely resisted by Air Chief Marshal ‘Bomber’ Harris, who
demanded of Churchill, ‘Are we fighting this war with weapons or the slide rule?’ Churchill puffed on his cigar and
replied, ‘That’s a good idea. Let’s try the slide rule.’ The results of the strategy turned out almost exactly as Blackett
and his colleagues had predicted. (Anecdote reported on www.orsoc.org.uk/conf/black.htm)

The involvement of mathematicians, and scientists in general, in the Second World War is in itself
a vast field of study. In mathematics one naturally begins by thinking of the allied effort, the origins
of operational research, the computer, the Enigma Code. All these are important, and were to lead
to an increasing collaboration of mathematicians with the military after the war, which chapters
in Nasar (1998) describe in some detail. However, the story begins some time earlier, with the rise
of Nazism in Germany. Our two quotes set up a somewhat facile contrast, with the Nazis involved
in cloudy rhetoric about the national spirit while the down-to-earth Allies see the point of using
the slide-rule. Easy as this is, it is not a gross distortion.

Like many others, German mathematicians who were Jewish (Landau and Courant) or com-
munist (Zorn) or in the case of Emmy Noether both, were surprised when they found that the Nazi
régime actually proposed to dispense with their services, however distinguished they might be. For
Noether it was easy—she did not have a titular post. For Landau, considerable manoeuvring was
necessary, including a student ‘boycott’ of his classes; but he was eventually forcibly retired.

The combined expulsion of Jews from their university positions and exodus of many non-Jews
(like Weyl and von Neumann) who found Nazi Germany uncongenial was catastrophic for math-
ematics in Germany. At the same time, in keeping with the Nazi programme, there was an attempt
to define what German mathematics should be. This posed a challenge, given the nature of the
subject. It was too easy to see all mathematics as part of the abstract intellectualism which the
Nazis wished to overthrow, which of course would be unfortunate for any mathematicians how-
ever patriotic who wished to hold on to jobs in universities. Drawing on some of Brouwer’s ideas
(although Dutch, he was a strong German nationalist in the period), a group of mathematicians,
some convinced Nazis or at least right-wing nationalists, some simply opportunists, presented an
image of two opposing kinds of mathematics: crudely, Nordic/concrete/intuitive versus Jewish
(or French)/abstract/cerebral. As the main spokesman Bieberbach put it:

[T]he whole dispute over the foundations of mathematics is a dispute of contrary psychological types, therefore in the
first place, a dispute between races. (Quoted in Segal 2003, p. 365)

The turn towards intuitionism as a model for ‘German mathematics’ was not by any means uni-
versal, but for a short time it was influential, particularly under the ascendancy of Bieberbach,
a time-server who succeeded in dominating the depleted German scene in the early 1930s. The
(Jewish analyst) Landau’s definition of π in his classic textbook as ‘twice the smallest positive x for
which cos(x) = 0’ (where cos(x) is defined as a series, 1 − (x2/2!) + (x4/4!) − · · · ) was easy to
characterize as such a retreat from the ‘natural-intuitive’.

www.orsoc.org.uk/conf/black.htm
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There is no independent realm of mathematics, independent of intuition and life: the struggle over the foundations [of
mathematics] that now rages is in reality a racial conflict: ‘Political rootedness gives thinking its style!’

Since German mathematics is rooted in blood and soil, the state ought to and must support and cultivate it . . .

(‘New Mathematics’, by ‘P.S.’, cited in Segal 2003, p. 267)

It would appear that the Nazi command—who had a high regard for rationalism when it came
to organizing train time-tables—were too ideologically confused to make adequate use of the
mathematicians whom they had left, except in special favoured fields like aeronautics1 and, with
a brief but deadly effect, rocketry. Reduced though they were, they could have participated more
fully in the war effort, ranging as they did from dissidents to patriotic conservatives to committed
Nazis; an effort was made to enlist their skills in the later part of the war, but by then it was
too late.2

Germany’s loss was to a quite outstanding extent America’s gain, most particularly Princeton’s.
Overcoming fears, which were strong at Harvard, that they would end up with an excess of Jews,
Princeton used money from Rockefeller to build up a research department. Even more fortunately,
a gift from a New Jersey department store owning family, the Bambergers, endowed the Institute
for Advanced Study to which Einstein went.

Kurt Gödel, the Viennese wunderkind of logic, came in 1933, and Hermann Weyl, the reigning star of German
mathematics, followed Einstein a year later . . . Practically overnight, Princeton had become the new Göttingen.
(Nasar 1998, p. 54)

For once, the high-flown language reflects the reality. By 1936, solid Cambridge men like
G. H. Hardy and the young Alan Turing saw Princeton as a useful place to spend a year. [It has more
or less retained its dominant position ever since, in the face of stiff competition from a dozen equally
deserving American universities.] And, at Princeton and elsewhere in the United States (and indeed
Britain), refugees from Hitler were willing to take part in the war effort; and (in contrast to the Nazis)
the governments learned how to use them.

The most high-profile part of the story, the atom bomb project, is really a part of the history
of physics rather than of mathematics (see later for the difference); but mathematicians were
widely employed on it; often mentioned is von Neumann’s ‘conclusion that large bombs are better
detonated at a considerable altitude than on the ground’ (Macrae 1992, p. 209). Besides this
limited and spectacular application, many of the most distinguished of them were involved in what
could be seen as more routine work; planning resources, codebreaking, and ballistics. All of these,
which might seem a distraction from ‘real’ theorem-proving mathematics, led to the development
of new fields which were later promoted as the answer to the problems of peace (i.e. government
and business) as well as war. Norbert Wiener, in the United States, contributed the field which he
was to name ‘cybernetics’, the science of control, while his counterparts in Britain (Blackett and
others) devised the equally ambitious science of operational research. Again, Allied commanders
showed much less resistance to the use of such abstractions than did the Nazis.

There had to be some pattern that the methodical Germans were using to plant their mines along the convoy routes to
Britain. Johnny [von Neumann] was asked to work out mathematically what these patterns might be, and how best to
counter them. (Macrae 1992, p. 207)

1. Here the practical Göring had some influence.
2. The best-known example, the brilliant Nazi mathematician Teichmüller, was conscripted and died on the Russian front in 1943.

It seems unlikely that this would have happened in Britain or the United States.



240 A History of Mathematics

Idealism—the conviction that the war was not mere national defence but the defence of
civilization—powered the enlistment of many mathematicians, and other scientists, in the war
effort. Conscientious objectors were rare, and although André Weil unusually decided not to enlist,
he was prepared (as Oppenheimer was)3 to cite the warlike Hindu scriptures in support of the war
effort:

The law is not ‘Thou shalt not kill’, a precept which Judaism and Christianity have inscribed—to what avail?—in their
commandments. The Gita begins with Arjuna, ‘filled with the deepest compassion’, stopping his chariot between two
armies, and ends with his acceptance of Krishna’s injunction to go to combat unflinchingly . . . Arjuna belongs to
a caste of warriors, so his dharma is to go to combat. (Weil 1992, p. 124)

Indeed, from the Second World War onwards, mathematicians were to find that their dharma did
not always involve simply sitting in libraries and proving theorems.

4 Abstraction and ‘Bourbaki’

On these foundations, I state that I can build up the whole of the mathematics of the present day; and if there is
anything original in my procedure, it lies solely in the fact that, instead of being content with such a statement,
I proceed to prove in the same way as Diogenes proved the existence of motion4; and my proof will become more and
more complete as my treatise grows. (Bourbaki 1948)

For Bourbaki the fields to encourage were few, and the fields to discourage were many. (Mandelbrot 1989)

The drive to a more abstract view of mathematics, which has been both admired and deplored
as peculiar to the twentieth century, had its roots early on in the foundational enterprise. The
schools of axiom-builders often claimed that it was not important what their axioms referred to:
Hilbert was quoted as saying that one should be able to replace the words ‘points, lines, planes’ in
the axioms of geometry with ‘tables, chairs, beer-mugs’; and Russell characterized mathematics as
the science ‘in which we do not know what we are talking about, nor whether what we are saying
is true’. However, if we think of the abstract viewpoint as one in which one aims systematically
to lose sight of any actual real-world objects to which the discourse refers, and to concentrate on
the relations and structures which connect those objects, then the high point of abstraction came
in the 1940s and 1950s, and the leading spirits in carrying through a programme for making
all mathematics more abstract were a strange revolutionary band of young French university
teachers who formed a semi-secret society under the collective name ‘N. Bourbaki’. Typically, the
name derived from a juvenile prank—the invention of a mathematician whose name was borrowed
from a Greek general under Napoleon III.

A high-spirited male clique from typically French élite-school backgrounds, the Bourbakists
(Henri Cartan, Claude Chevalley, Jean Delsarte, Jean Dieudonné, André Weil, and a later ‘second
generation’ after the war) did not set out to call the foundations of mathematics in question. Their
aim was more straightforward, and more understandable: they felt that they had received atrocious
and antique teaching. They had, as an alternative, learned of new ideas from Germany, particularly
those of Hilbert and Emmy Noether as embodied in van der Waerden’s ground-breaking new
algebra textbook; and they decided to produce a series of textbooks which would form a complete
new course of mathematics from the ground up. Did they aim for their books to be set texts?

3. Oppenheimer’s famous description of the atomic bomb as ‘brighter than a thousand suns’ is from the Bhagavad-Gita.
4. That is, by walking.
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Possibly. The folklore of the group is large, and growing, even though almost all of the founders are
now dead; and there are interviews and more or less gossipy histories (e.g. Mashaal 2002) which
show a series of photographs of young men meeting and presumably arguing about their project
in the sunshine, in the French countryside. The contrast could not be more complete between
the frozen impersonal texts of the Éléments de mathématiques and the apparently anarchic obscene
atmosphere, part party, part student meeting, in which their content was hammered out.

[W]e almost surprised ourselves when for the first time we approved a text as ready to go to press. This was the Fascicule
de Résultats [volume of results] of set theory, adopted in its definitive form just before the war. A first text on this theory,
prepared by Cartan, had been read at the ‘Escorial Congress’; Cartan, who had been unable to attend, was informed
by telegram of its rejection: ‘Union intersection partie produit tu es démembré foutu Bourbaki’ [Union intersection subset
product you are dismembered fucked Bourbaki]. (Weil 1992, p. 114)

An extract from the introduction to Bourbaki’s Algebra is provided in Appendix A, to show with
what severity he stated his aims and method. Before analysis could begin, the real numbers had to
be defined; before the real numbers, the elements of topology; before that, the theory of sets. The
student faced a long march before arriving (say) at the least upper bound theorem which we have
seen causing such problems earlier on. The ‘second-generation’ Bourbakist Pierre Cartier provides
a balanced evaluation of strengths and weaknesses of the project:

Bourbaki knew where to go: his goal was to provide the foundation for mathematics. They had to submit all math-
ematics to the scheme of Hilbert; what van der Waerden had done for algebra would have to be done for the rest
of mathematics. What should be included was more or less clear. The first six books of Bourbaki comprise the basic
background knowledge of a modern graduate student.

The misunderstanding was that many people thought that it should be taught the way it was written in the
books. You can think of the first books of Bourbaki as an encyclopedia of mathematics, containing all the necessary
information. That is a good description. If you consider it as a textbook, it’s a disaster. (Senechal 1998)

This is slightly disingenuous; it is rare to come across an encyclopaedia which is equipped with
a complete set of exercises. All the same, there were few who used the complete Éléments as their
textbook. What was much more important about it was that its existence profoundly influenced the
way in which a large number of mathematicians thought about their subject; and some of them
used their thinking to write more readable textbooks of their own, in which the ideas of structures,
the emphasis on the mapping rather than the object, and so on, became foregrounded. The writer
of a textbook can, and usually does pick and choose from available material without necessarily
overt plagiarism. In any case, neat Bourbaki was hard to plagiarize; but a watered down version
became increasingly dominant outside France as well as inside.

The Bourbakists had no particular interest in axiom systems as a means of saving mathematics
from contradiction.5 They did see axiom systems as the basic tool in defining ‘structures’, which
were to be central to the whole way in which the Éléments was presented. As has been pointed
out, the idea of structure was one which, among so many other definitions, was never defined;
but numerous individual structures (group, ring, topological space, uniform space, . . .) permeated
the text and were central to its particular way of thinking. It became almost a reflex in France, if
one had fallen under the spell of the Elements, to speak not of defining a group but of ‘providing
(munir de) a set with a group-structure’.

5. Nor were they interested in a number of other things—probability theory, for example, and physics.
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Let us look at an example. To define the sine and cosine functions in chapter VIII (general
topology), Section 2 (‘measure of angles’),6 Bourbaki used the group isomorphism from the (mul-
tiplicative) unit circle U in the complex numbers C = R2 to the quotient group R/Z. He then
‘endowed’ the set A of ‘half-line angles’ (�̂1, �2) (see Fig. 1) with a group structure, and showed it
was isomorphic to U. Finally:

1. if θ is an angle in A, you define cos θ to be the real part of the complex number in U
corresponding to θ ;

2. if x is a real number, you define cos x using some homomorphism from R to A.

At this point, Bourbaki points out the need to decide the least positive value of x ∈ R which
corresponds to 1 ∈ U, and discusses the merits of 360, 400, and a number called 2π (‘we will prove
the existence of such a number later’). [This account is of course simplified; in Bourbaki it takes
four pages, with everything proved.] As a reward, you finally get one of the author’s rare pictures—
the graphs of the trigonometric functions (Fig. 2).

This hardly qualified as a philosophy in the sense that the great systems of Russell, Brouwer,
and Hilbert did, but it was certainly a practical ideology, and defined an orthodoxy about what
one liked or disliked in mathematics. Much has been written, particularly by opponents, about
the hegemony of Bourbakist ideas in France from 1945 on, and their insistence that their way
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Fig. 1 The ‘half-line angle’ (�̂1, �2) is the angle of rotation from the first line to the second.
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Fig. 2 The graphs of sin x, cos x, and tan x from Bourbaki’s Topologie Générale VIII, p. 105.

6. Which, as we have mentioned, Landau did using series.
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of teaching was the only right one. It never extended even over all of France, but where it was
entrenched, it could be fairly intolerant. If installed as head of an unreformed mathematics
department, a Bourbakist was capable of purging the library of most of its books and writ-
ing out orders for replacements—Bourbaki, naturally, but also the seminars of Henri Cartan,
the works of van der Waerden, Eilenberg, MacLane, Steenrod, and subscriptions to the Annals
of Mathematics, and the publications of the American Mathematical Society. More disastrous
was the brief incursion of Bourbakism into the French high-school curriculum in the 1960s
(paralleled by what, in the United States was called ‘new math’); the idea of replacing times
tables by theorems about Z caused confusion among teachers and students and was eventually
withdrawn.

We have expressed doubts about the responsibility of mathematicians for ‘modernism’. In the
more minor case of the philosophical movement called structuralism, the case is clearer. In a text
for the ‘Que-sais-je’ series explaining structuralism to the general public (1970), Jean Piaget cited
Bourbaki as his first example before proceeding to the social sciences, adding that ‘the structural
models of Lévi-Strauss, the acknowledged master of present-day social and cultural anthropology,
are a direct adaptation of general algebra’ (p. 17). The influence appears directly in an anecdote of
André Weil:

In New York, I had met the sociologist [sic] Lévi-Strauss, and we had hit it off quite well. I had solved for him a problem
of combinatorics concerning marriage-rules in a tribe of Australian aborigines. (Weil 1992, p. 185)

Mathematics never consciously progressed to post-structuralism; nor did Lévi-Strauss repay the
debt by teaching the Bourbakists some useful elements of anthropology.

Exercise 1. (From Bourbaki, Algebra, chapter I, §1, §7.)

(i) Show that the only triplets (m, n, p) of natural numbers �= 0, such that (mn)p = m(np) are: (1, n, p),
n and p being arbitrary; (m, n, 1) where m, n are arbitrary; and (m, 2, 2) where m is arbitrary.

(ii) If G is a finite group of order n, prove that the number of automorphisms of G is ≤ nlog n/ log 2

(show that there exists a system of generators {a1, . . . , am} of G such that ai does not belong to the
subgroup generated by a1, a2, . . . , ai−1 for 2 ≤ i ≤ m; deduce that 2m ≤ n, and that the number of
automorphisms of G is ≤ nm).

5 The computer

The distinctive characteristic of the Analytical Engine, (from the earlier Difference Engine) . . . is the introduction into
it of the principle which Jacquard devised for regulating, by means of punched cards, the most complicated patterns in
the fabrication of brocaded stuffs . . . We may say most aptly that the Analytical Engine weaves algebraical patterns just
as the Jacquard-loom weaves flowers and leaves. (Lovelace, Note A, on Menabrea’s description of Babbage’s engine
(1843), in Fauvel and Gray 19.B.4, p. 392)

An automatic computing system is a (usually highly composite) device, which can carry out instructions to perform
calculations of a considerable order of complexity—for example to solve a non-linear partial differential equation
in 2 or 3 independent variables numerically. (von Neumann 1945, p. 7)

It may appear somewhat surprising that this can be done. How can one expect a machine to do all this multitudinous
variety of things? The answer is that we should consider the machine as doing something quite simple, namely carrying
out orders given to it in a standard form which it is able to understand. (Alan Turing, ‘Intelligent Machinery’, cited in
Hodges 1985, p. 318)
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Well, who did invent the computer? Once one examines the history carefully, there is obviously
no single answer—unlike, say, the telephone. The claims of Charles Babbage and Ada Lovelace in
the mid-nineteenth century are attractive, and they have the advantage of being British; but the
machine which they designed was never built. Between their outlines and the actual machine-
building stands one undoubted landmark, Alan Turing’s 1937 paper ‘On computable numbers’.
This was Turing’s first paper, and it was pure mathematics; it dealt with the one part of Hilbert’s
programme which Gödel had not demolished—did there exist a procedure for determining which
formulae were provable (the Entscheidungsproblem)? The work was similar to Gödel’s, but with an
interesting difference of style. Turing’s famous image for computing real numbers (the problem he
aimed to prove undecidable) was via a machine, and the machine followed automatic instructions
to read and write.

A section of his paper is reproduced as Appendix B. It is easy, to begin with, to point out
that a Turing machine is not a computer, since it is infinite. (‘In general the arrangement of
the memory on an infinite tape is unsatisfactory in a practical machine’, Turing was to observe
10 years later—ironically? (Hodges 1985, pp. 318–9)) It is also not a physical machine, merely
a description of one. However, if one looks at its method of procedure, it is definitely ‘computer-
like’. The usual modern description—a slight variation on Turing’s paper—uses the following
specifications:

1. At a given time, the machine is in a state (one of a finite set) and in a given position on the ‘tape’.
2. It now reads the symbol at its current place on the tape.
3. Having done this, it then can change the symbol in its current position, or move left or right, or

a combination.
4. Which of the tasks specified in 3 is carried out is entirely determined by the machine’s state 1,

and by the symbol which it has read 2.

The tasks initially assigned seem distinctly boring (Turing starts by designing a machine which
will compute the sequence ‘1010101 . . .’), but since the ‘tape’ is infinite, it is easy to define the
universal Turing machine which will compute any computable number.

Turing was at that stage as innocent of engineering as any Cambridge mathematician might
be. ‘Mrs Turing [Alan’s mother] had a typewriter’, says Hodges. Definitely less sophisticated as
a machine than Ada Lovelace’s Jacquard loom, the typewriter seems to have served well enough
for what was at the time a theorem and a ‘thought-experiment’.

The next stage is well, if not always accurately known and somewhat contested. The Americans
are certain that they invented the computer (although a long-standing wrangle between von
Neumann and his collaborators leaves the balance of credit uncertain), the British in their more
modest way feel that they were responsible. Turing has an able advocate in Andrew Hodges; his
tragic end, prosecuted under Britain’s primitive homosexuality laws, victimized and finally driven
to suicide in 1954 certainly inspires sympathy. The case is a romantic one:

And it was thus that in this remote station of the new Sigint7 empire, working with one assistant in a small hut, and
thinking in his spare time, an English homosexual atheist mathematician had conceived of the computer. (Hodges
1985, p. 295)

7. Signals intelligence.
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John von Neumann, the other mathematician involved, a Hungarian refugee who turned Cold
Warrior, has his supporters, particularly in the US military and business establishment; and a bio-
graphy which is sympathetic to his role in both is available (Macrae 1992); naturally, he appears
less the outsider than Turing.

While all the other computer makers were generally heading in the same direction, von Neumann’s genius clarified
and developed the paths better than anyone else. (Shurkin, cited in Macrae 1992, p. 287)

Certainly large teams were involved on both sides of the Atlantic in the years following Second
World War; the introduction of fast electronic components was crucial in making it possible to
build machines which would perform the required tasks. John von Neumann was employed by the
US Army from 1937 (the year of ‘Computable Numbers’) to advise on problems in ballistics. These
were some of the difficult problems which he mentions in our second quote, but it was not until the
end of the war that he learned of machines under construction which could help. These machines
could, essentially, solve a single problem extremely fast; they belong to engineering history. They
resembled the Turing machine which computes just one number.

There is no evidence that von Neumann had read ‘Computable Numbers’, although he was in
Princeton and writing a letter of recommendation for Turing when it was published. In any case,
the step which he and Turing took (and then had to get engineers to implement) was equivalent
to replacing the one-task Turing machine by the universal one. While they were not abstract
mathematicians in the post-1930 mould, they were both influenced by the logical ‘revolution’ of
the early part of the century; in terms of this revolution, instructions like ‘add’ or ‘move right’
had the same status as signs on the paper, tape, or whatever as numbers. Hence we arrive at the idea
of the ‘programme’, a stream of instructions and numbers which are encoded as numbers.

Minor cycles fall into two classes: Standard numbers and orders . . . These two categories should be distinguished from
each other by their respective first units . . . i.e. by the value of i0. We agree accordingly that i0 = 0 is to designate
a standard number and i0 = 1 an order. (Von Neumann 1945, p. 45)

The engineering work of producing various machines for various jobs is replaced by the office work of ‘programming’
the universal machine to do these jobs. (Turing in Hodges p. 293)

The two quotations express the same idea, arrived at by Turing and von Neumann almost simul-
taneously in the year 1945. Hidden from us, it happens all the time inside our machines, and it is
probably second nature to us. To write (in old-fashioned programmers’ language):

X = 1
FOR I = 1 TO 100
X = 1 + 1/X
NEXT I
PRINT X

is to write a sequence of instructions to the machine. In von Neumann’s terms, ‘1’ and ‘100’ are
numbers; while all the other signs (‘=’, ‘for’, ‘next’) are instructions, when suitably read. Here,
with what Turing is already calling (if in quotes) ‘programming’, is the decisive mathematical input
into the computer. The question of invention, for mathematicians, goes no further (fortunately).
Development, under the relentless pressure of late capitalism’s understanding of how much time
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could be saved, how many expensive workers replaced8 has been much faster than any of the
pioneers could have imagined. Mathematicians have, of course, continued to contribute directly
and indirectly; and the fact that your machine not only can calculate partial differential equations—
which you probably do rarely—but can respond when you type the letters ‘Dear’ by (a) storing an
encoded form of the letters in memory, (b) displaying them on your screen in Times New Roman,
and (c) asking you if you need help in writing a letter is, in itself, a form of debased practical
mathematics. We have come a long way from Mrs Turing’s typewriter.

Exercise 2. (a) Devise a Turing machine which will change the natural number n (in binary digits) into
n + 1 (e.g. 11 to 100, or 110 to 111). [Hint: Your machine will need to move to the left as it reads and
changes the number, for obvious reasons.] (b) What is the programme fragment above intended to do?

6 Chaos: the less you know, the more you get

Then [Lorenz] walked down the hall to get a cup of coffee. When he returned an hour later, he saw something
unexpected, something that planted the seed of a new science. (Gleick 1987, p. 16)

It’s the paradigm shift of paradigm shifts. (Ralph Abraham, cited Gleick 1987, p. 52)

The final nail in the coffin of a crude Marxist history of mathematics would seem to be provided
by chaos theory. Surely, the argument would run, if mathematicians hope to gain something for
their tedious profession their aim must be to persuade the Emperor that they can predict what is
coming and so make more crops grow, defeat famines, warn against attack. Yet, it would seem, they
can invent a theory whose main thrust is that, however precisely determined all these processes
may be, they are unknowable. A butterfly in Brazil can cause a typhoon on the Isle of Wight. There
is no point (or so some have said) in long-range weather forecasting—or, one might suppose, in
long-range anything. The Emperor might as well sack the mathematicians and watch the butterflies.

And yet, if you search for ‘chaos theory’ + ‘finance’ + ‘prediction’ on Google, you come up with
4300 hits, among them the following (which sounds definitely optimistic):

With chaos, financial understanding grows exponentially, creating new software and hardware to understand and
manage increasing risk. (Scholes 2002)

There seems to be a great deal of interest out there. Is this simply an application of the old
deterministic mathematical principle that there’s one born every minute? It is easy to be cynical,
and chaos theory (as its name suggests) faces a continual risk of expanding beyond all reasonable
bounds; and so becoming too formless for the historian to describe it in as centred and confident
a way as (say) the Bourbakists. James Gleick’s book (1987) reflects this, ranging over a great
number of different bodies of work which call themselves chaos (or are so called by others), a great
panorama with no central landmark on which the reader can fix attention. Even so, in that the
main outlines of the subject were already fixed by the late 1980s, it is still a useful popular guide to
the variety of ways in which it can be viewed.

Moreover, through the 1970s and 1980s, chaos theory not only became fashionable among
mathematicians, and among the journalists like Gleick who try to find out what they are up to; it

8. The analogy with the Jacquard loom and its impact on the handloom weavers (a typical image of hardfaced early capitalism) is
a striking one.
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was found to be an easily teachable and attractive subject on university courses. This could not have
been the case in the early days of Edward Lorenz’s surprise ‘discovery’ referred to in our first quote;
another case of the mathematician’s inspiration through coffee. The folklore account, which seems
reliable enough, makes clear that the use of computers was essential in the breakthrough. Lorenz
was solving complicated systems of differential equations by using a primitive (by our standards)
computer programme; and the discovery referred to was what is now called ‘sensitive dependence
on initial conditions’; or, popularly, ‘the butterfly effect’. A tiny variation in the starting point f (0)

for the solution of an equation would lead to a large variation in f (t) as t grew, and Lorenz created
just such a tiny variation ‘by mistake’ (i.e. by leaving out the last three figures of the decimal for
f (0), which the computer had stored in memory but not displayed) (Fig. 3).

Lorenz’s system was a particular one—a toy model for a weather system—and many classical
systems (think of a pendulum, or the motion of a planet) do not have this behaviour, otherwise the
edifice of mechanics becomes problematical. We only ever know the initial conditions approxim-
ately, and if a small error is going to increase beyond all bounds, then how is the model going to be
of any use?

All the same, once sensitive dependence was discovered, it made sense to try to understand the
phenomenon. Two things made the field much more easily accessible. The first was the idea, which
came from the mathematicians around Steve Smale at Berkeley, that one can replace the hard
study of differential equations by the much easier study of maps f : X → X when iterated. [Usually
X is the line, or the plane, or a suitable subset.] One considers what happens when one repeats f
indefinitely. getting a sequence of maps:

f1 = f ; f2 = f ◦ f ; f3 = f ◦ f ◦ f ; . . .

The second was the arrival in the 1980s of the desktop computer, vastly simpler, quicker and
more graphically oriented than Lorenz’s model, with the help of which a second-year university
student (say) can study such equations and draw pictures. It is less fashionable now, but at the
time it was a favourite occupation to write and run programmes in one’s preferred language which
would compute the iterations of some map and draw gaudily coloured pictures of its behaviour on

Fig. 3 The ‘butterfly effect’. Two solutions of Lorenz’s equation with very close starting points (at the left) eventually follow
completely different paths (at the right).
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the screen. The most popular of all was the quadratic map (just ax2 + bx + c), in two forms: real
(Feigenbaum) and complex (Mandelbrot).

The underlying mathematics, after these simplifications, is not particularly difficult, although dif-
ficult and interesting results have been proved about such systems. Also, naturally, not everything
which was studied was chaotic; but quite simple maps could have both chaotic regions and other
more stable ones. The theory was simple, and the results were often surprising. The presentation,
particularly in Robert Devaney’s classic textbook (1992), could be clear and (relatively) access-
ible, and one would have the benefit of the striking pictures, absent from the average differential
equations course. What really seized the imagination of teachers, students, and popularizers alike
was the possibility that the computer—necessarily a finite system—could provide an image of
infinite complexity, the ‘Mandelbrot set’ being the universal icon which symbolized this. In one
well-known example, ‘Douady’s rabbit’ (Fig. 4), one is considering the behaviour of the complex
function f (z) = z2 + c where c = −0.12 + 0.75i under iteration. Within the grey area, f n(z) → ∞
as n → ∞; while within the black area there is a periodic orbit of period 3:

z0, z1 = f (z0), z2 = f 2(z0), f 3(z0) = z0

which is attracting; if z is in this area, f n(z) tends to cycle round the periodic orbit as n → ∞. And
the diminishing ‘rabbit-ears’ of the picture invite the viewer to visualize an infinite process, present
in the idealized mathematics if only suggested on screen.

The inside and the outside are regions where f shows stable, non-chaotic behaviour, but the
boundary which separates the two—the ‘Julia set’—is, as might be expected, chaotic. This is true
both in the obvious sense that an arbitarily small deviation from the boundary will land you in
one or other of the stable sets, and also in the sense that nearby points on the boundary behave
completely differently under iteration. Considering such images one can ask, is chaos theory going
to be used more as a guide for analysing systems or as a means of producing art?

Fig. 4 ‘Douady’s rabbit’. Let f (z) = z2 + c (a quadratic function), and c = 0.12 + 0.75i. Then the black area, a region in the
complex plane, represents all z such that iterations of f (z) do not tend to infinity.
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Statistics, in the form of hypothesis testing developed in the early twentieth century, gave a useful
way of dealing with the unpredictable; even apparently random processes are regular. We may not
know when any particular carbon14 nucleus will decay to nitrogen14, but we know the statistics
of the process as applied to a large number of nuclei, and so can use it within limits for reliable
dating. Chaos theory can be seen as the mirror image of statistics, asserting that even some com-
pletely deterministic processes cannot be used for accurate prediction. How can these viewpoints
be reconciled? It depends on one’s point of view. No matter how much information one has about
the weather on July 1, one’s forecasts for July 15 will be limited by the variability which arises from
sensitive dependence—this is chaos theory’s input. On the other hand, observation of the weather
over a long period makes possible some reasonable predictions about the mean July temperature
and rainfall—this comes from statistics. Asked about the effect of the French Revolution in the
1950s, the Chinese Prime Minister Zhou Enlai replied ‘It is too early to say’; and this is certainly
a reasonable response to the problem of assessing the contribution of the very young ‘paradigm
shift’, if there is one, associated with chaos theory.

Exercise 3. (a) Consider the function f (z) = z2 on the unit circle C, or |z| = 1 in the complex plane.
Find all periodic points of period n, that is, points z such that f n(z) = z. How many points of period 4

have prime period 4, that is, f n(z) �= z for 0 < n < 4?
Show that given z, and ε > 0, we can find z′ and an integer n such that: (1) d(z, z′) < ε;

(2) d(f n(z), f n(z′)) > 1
2 , where d denotes distance on the circle. (This is sensitive dependence, for a very

simple map).
(b) Define g(z) = z2 + c where z is complex. Show that g has (in general) two fixed points z0, z1; and

that the condition that one of them should satisfy |g′(z)| = 1 is that c lies on a curve (a cardioid) in the
c-plane. (This curve bounds the largest area in pictures of the Mandelbrot set.)

7 From topology to categories

We cannot think any object except by means of the categories; we cannot know any object except by means of
intuitions corresponding to these concepts. (Kant 1993, p. 117)

[M]athematics is about to go through a second revolution at this moment. This is the one which is in a way completing
the work of the first revolution,9 namely which is releasing mathematics from the far too narrow limits imposed by
‘set’; it is the theory of categories and functors . . . (Dieudonné, 1961 lecture, cited in Corry 2004, p. 383)

‘Algebraic topology’, which we have seen in process of defining itself in the 1920s, had progressed
by the 1950s to a massively successful and integrated subject. Indeed as the century progressed it
was constantly growing and subdividing (like most other fields in mathematics) into further areas
of specialization. Any kind of survey which took in Smale’s horseshoe map (Fig. 5), Vaughan
Jones’s knot invariants, and the wide variety of contributions made by Michael Atiyah at the
interface of topology, differential equations and even physics would become a whole chapter in
itself. We should, though, find space to consider topology’s illegitimate child category theory which
succeeded in doing what, as we have seen, the Bourbakists failed to do: to provide a clear idea of
what was meant by ‘structure’.

9. Axiomatization and structure, briefly.
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Fig. 5 The ‘Smale horseshoe map’ is often quoted as an example of chaotic behaviour. The map f takes the square, stretches it, and
folds it over into the horseshoe shape. (Think of making puff pastry, if that helps). If the map f is repeated over and over again, most
ponts in the square end up outside; those that remain inside (forever) wander around chaotically.

The reason why the idea came from topology is interesting in itself. As we have seen, Alexandrov,
(with some help from Noether) came to understand that many basic topological ‘invariants’ asso-
ciated to a space X a group G(X). It was also realized—indeed it had been implicit for some time—
that if you had a continuous map f from X to Y, then you would be given a homomorphism G(f )
from G(X) to G(Y). This is true10 of the fundamental group π1(X), defined by looking at loops
in X. f maps loops in X to loops in Y, and so—with appropriate care! (see a textbook)—defines
a homomorphism of groups from π1(X) to π1(Y).

Even this observation was probably too trivial to deserve a formal language. However, let us give
it one, following Eilenberg and MacLane in their path-breaking paper of 1942. We say that we have
a category when we have a set of ‘objects’ (e.g. spaces or groups), and maps (‘morphisms’) between
the objects (e.g. continuous maps or homomorphisms); and obvious rules for how the maps should
behave:

1. given X, it has an ‘identity morphism’ 1X ;
2. given morphisms f from X to Y and g from Y to Z, the composition g ◦ f from X to Z is defined,

and (of course);
3. (h ◦ g) ◦ f = h ◦ (g ◦ f ) if the compositions of morphisms are defined.

So, topological spaces (and continuous maps) form a category usually called Top; and groups
(and homomorphisms of groups) form a second category, which we call Gp.11 A functor from Top
to Gp is a machine G which

(i) to any object X in Top assigns an object G(X) in Gp;
(ii) to any Top-morphism f from X to Y assigns a Gp-morphism G(f ) from G(X) to G(Y);

(iii) such that identity maps go to identity maps, and compositions to compositions.

10. Strictly, it is not. The fundamental group needs a ‘basepoint’ to define it, and so is defined on the category of ‘spaces with
a basepoint’.

11. The quotation from Kant, which opens the chapter, and which places what he called ‘categories’ at the centre of thought, is
probably irrelevant—there is no evidence that Eilenberg and MacLane had Kant in mind. And yet one wonders where the word came
from.
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Fig. 6 This object (also called a ‘string worldsheet’) is (a) a surface, (b) the story of two strings which (reading time upwards)
coalesce and then divide again, (c) a morphism in the category of strings from the two loops at the bottom to the two loops at the top.
(See Baez, n.d).

You may (if you have done any of this kind of mathematics before) find that this is an amazingly
enlightening idea; or you may sympathize with P. A. Smith, who allegedly said of Eilenberg and
MacLane’s work that he had never read a more trivial paper in his life (Corry 2004, p. 361).
The ideas of category, functor and (still more important, but there is no space for it) natural
transformation were in any case unexpectedly useful for the algebraic topologists of the 1940s and
1950s as they tried to pin down the ways in which one structure (group, or family of groups, etc.)
carried information about another (space).

However, equally obviously, the way in which they are defined above has nothing to do with
topology; and the ideas of category theory, besides becoming (naturally) a rapidly burgeoning
field on their own account, were taken over in algebra, algebraic geometry, number theory, even
analysis in the 1950s and 1960s. As with the ‘old’ abstract Bourbaki viewpoint, there were those
who warned that the new categorical viewpoint was doing nothing but turn out trivialities (‘general
nonsense’ was a term much in use among those who needed the theory but did not wish it to be
thought that that was all they were doing). And, if we remarked with alarm in the last chapter that
mathematics had moved from its traditional concerns to become centred on sets, category theory
(as Dieudonné points out in his early celebration of the idea) is capable of finding sets too restrictive.
Where next?

The attentive reader will notice that a category by no means escapes the set theoretic problems
of the last chapter, and ‘all groups’ is much too large a set to be dealing with if one wants to avoid
paradoxes. Sometimes this worries those who use categories; sometimes they assume that they,
or the reader, is taking care in some specified way. Everything connects; and in the last 30 years,
we have learned to see a category as defining a topological space; and to construct categories in
which the sets of morphisms themselves have some extra structure. And (as a guard against the
accusation of excessive abstraction) we could exhibit the category, crucial for string theory, whose
objects (simplifying again) are sets of strings (circles); while the morphisms from one set of strings
S1 to another set S2 are surfaces (see Fig. 6) whose upper boundary is S1, and lower boundary S2.

8 Physics

He now pushed away the paper, covered with formulae and symbols, on which the last thing he had written was
an equation of state of water, as a physical example, in order to apply a new mathematical operation that he was
describing. (Musil 1953 vol. 1, p. 128.)



252 A History of Mathematics

All this was familiar to me from my research in high-energy physics, but until that moment I had only experienced
it through graphs, diagrams, and mathematical theories. As I sat on that beach my former experiences came to life;
I ‘saw’ cascades of energy coming down from outer space, in which particles were created and destroyed in rhythmic
pulses; I ‘saw’ the atoms of the elements and those of my body participating in this cosmic dance of energy; I felt its
rhythm and I ‘heard’ its sound, and at that moment I knew that this was the Dance of Shiva, the Lord of Dancers
worshiped by the Hindus. (Capra 1983, p. 9)

One quite unexpected development, particularly of the mid to late twentieth century, has been that
physics has become detached from mathematics. This does not mean that physicists in general see
their subject in terms of the dance of Shiva; Capra is to be seen as a symptom, an index of the kind
of statement which some people on the margins of physics now think they can get away with. The
relation between physics and mathematics was close, almost incestuous until fairly recently. In the
golden age of the eighteenth century, following Newton, physics or ‘rational mechanics’ could be
seen as a particular kind of mathematics; the study of certain principles—first those laid down in
the Principia, and later more abstract versions such as the Principle of Least Action. While physics
necessarily did need experimentalists to advance (in new fields like electricity and magnetism, for
example), it was possible to be a mathematician and study the diffusion of heat, or the vibrations
of a drum, without leaving one’s desk—as Kovalevskaya, in the late nineteenth century, solved the
problem of the rotating top. Such, in the early twentieth century, was Musil’s hero Ulrich, using
formulae and symbols to describe an equation of state of water. We can see this happy situation
as an outcome of the Scientific Revolution (Chapter 6), which saw the behaviour of the physical
world as ordered by mathematical laws.

Indeed, which laws they were was not immediately important, and both the special and the
general theories of relativity provided more employment for mathematicians, by replacing one
mathematical description by another. However, by the 1920s it appeared that the physicists were
becoming more impatient. Early formulations of the quantum theory were investigated and seen to
work before their often ad hoc mathematical underpinnings were certified legal. Further, a combin-
ation of doubt about the continuum (Chapter 9) and uncertainty about measuring the extremely
small raised some questions—which had been left in suspension—about whether traditional math-
ematics was as well-adapted to the universe as one had hoped. Nevertheless, the new quantum
theory remained completely dependent on quite complex mathematical ideas. In his classic article
‘The Unreasonable Effectiveness of Mathematics in the Natural Sciences’, Eugene Wigner cites the
example of the helium atom.

The miracle occurred only when matrix mechanics, or a mathematically equivalent theory, was applied to problems for
which Heisenberg’s calculating rules were meaningless. Heisenberg’s rules presupposed that the classical equations
of motion had solutions with certain periodicity properties; and the equations of motion of the two electrons of the
helium atom, or of the even greater number of electrons of heavier atoms, simply do not have these properties, so that
Heisenberg’s rules cannot be applied to these cases. Nevertheless, the calculation of the lowest energy level of helium,
as carried out a few months ago by Kinoshita at Cornell and by Bazley at the Bureau of Standards, agrees with the
experimental data within the accuracy of the observations, which is one part in ten million. Surely in this case we ‘got
something out’ of the equations that we did not put in. (Wigner, 1960)

Simplified, the helium atom is a three-body problem (nucleus and two orbiting electrons (Fig. 7)),
and while experimenters could observe the energy levels, mathematical physicists—again working
on paper—did calculations as Wigner describes to check whether theory and observation agree.
They were, however, increasingly growing apart from the dominant trends in pure mathematics, in
spite of a serious engagement in the field by, among others, Weyl, Noether, and van der Waerden,
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Fig. 7 The ‘classical’ model of the helium atom: two electrons orbiting a nucleus. The quantum model, which fails to distinguish
between the electrons and smears them out over a wide radius, is too difficult to draw.

all ‘modernists’. In the 1930s John von Neumann wrote a book (1996) one of whose aims was
to show that the theory could be adequately developed without the bizarre functions which Dirac
had introduced.12 Twenty years later, Laurent Schwarz developed a respectable mathematical
theory (‘distributions’) in which Dirac’s functions made perfect sense. But physicists could not wait
20 years to be allowed to proceed.

The situation grew worse in the 1940s with the ‘success’ of quantum electrodynamics—the
study of fields which were, at least potentially, infinite systems of particles. This is certainly a sign
of the unreasonable effectiveness of something, but not of mathematics as most mathematicians
would accept it. To quote an online encyclopedia’s summary:

It was immediately noticed, however, that self-interactions of particles would give rise to infinities, much as in classical
electromagnetism. At first attempts were made to avoid this by modifying the basic theory . . . But by the mid-1940s
detailed calculations were being done in which infinite parts were just being dropped—and the results were being found
to agree rather precisely with experiments. In the late 1940s this procedure was then essentially justified by the idea of
renormalization: that since in all possible QED processes only three different infinities can ever appear, these can in effect
systematically be factored out from all predictions of the theory. (www.wolframscience.com/reference/notes/1056a)

Confused? A more sophisticated form of the theory, ‘dimensional renormalization’, involved
writing the equations in 4 + ε dimensions (where they were not infinite), calculating the infin-
ite term as ε → 0 and removing it. It looks like nonsense to many mathematicians, but it gives
accurate predictions.

And yet, theoretical physicists still behave, as they used to, like a kind of mathematician, writing
down equations and manipulating them according to agreed rules to see if they work; the fact that
most conventional mathematicians do not understand or believe the rules is immaterial. Moreover,
they constantly find it useful to raid developing parts of ‘pure’ mathematics—Riemann surfaces,
knots, complex three-manifolds, . . .—for some idea which may be useful in a new model. Worse,
there has been traffic the other way; important theorems in ‘pure’ mathematics have been proved by
(in particular) Ed Witten by methods which many find suspect since they derive from the most high-
flown of infinite physical procedures. Have we returned to the dark ages of Newton and Leibniz? An
interaction of physics and mathematics is being preserved, but the power relations have shifted; and

12. Specifically, δ(x), infinite when x = 0 and zero otherwise; and, worse, the derivatives of δ(x).

www.wolframscience.com/reference/notes/1056a
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for many mathematicians there is a strong temptation to see Fritiof Capra’s intoxicated description
of the Tao of modern physics as the literal truth.

9 Fermat’s Last Theorem

I think I’ll stop here. (Andrew Wiles, Cambridge, 1993)

Before beginning I would have to put in three years of intensive study, and I haven’t that much time to squander on
a probable failure. (Hilbert 1920, on being asked why he did not attempt to prove Fermat’s Last Theorem)

And so to Andrew Wiles. One would like to say, after all the international excitement, that his proof
was in some way peripheral to this story, an isolated result. This is obviously not so, although the
reasons are quite complex. The fact that Wiles was stimulated in childhood by E. T. Bell’s romantic
personalized anecdotal book Men of Mathematics to nurse an ambition to solve the problem is in
itself an index of the power which a certain view of the history of mathematics can exercise.
The Last Theorem (FLT for short in what follows) states, if you have not seen it before, that the
equation

xn + yn = zn

has no solutions (x, y, z) in non-zero integers, for n > 213; it was claimed by Fermat in the 1630s,
but never proved, and has remained a challenge ever since. Andrew Wiles (of Princeton, however
much the English like to claim him as their own) announced its proof in 1993; flaws were found
in the proof, but a corrected version with help from Richard Taylor appeared in 1994 and is now
accepted. His famous ending to his Cambridge lecture quoted above (translation: I have solved
the most difficult problem there is, but I am too modest to say so) has become a favourite tag
for mathematicians.

Without going into detail on the history of FLT, we should note its role in the development of
ideals and factorization theory by Kummer and Dedekind in the mid-nineteenth century. There is
an illuminating study on this by Catherine Goldstein (1995) which shows up the historicity of the
problem; the difference between the seventeenth-century context of Fermat and the nineteenth-
century one of Kummer:

At the end of the eighteenth century, number theory was still no more than a flower-filled country lane, disdainfully
ignored by the great mathematical roads. Jean-Étienne Montucla, the first historian of mathematics, was still able to
write: ‘Geometry is still the general and only key to mathematics.’ A woman, Sophie Germain, prevented by her sex
from following a course of higher education, was still able successfully to solve certain cases of Fermat’s problem by
elementary methods and to maintain a real exchange with Gauss . . . Whatever the always keen interest Gauss always
had in numbers, one is still very far from Kummer, who began his researches on this field as soon as he was appointed
to a university post. (Goldstein 1995, p. 367)

The context of the late twentieth century is different again, of course. FLT, far from being the
problem (if it had ever been so) had become marginal, and it plays little part in the work of such
key number theorists as Hardy, Ramanujan, and André Weil. Interest in what one might have

13. There are of course plenty of solutions for n = 2; these are the ‘Pythagorean triples’.
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considered either a hopeless pursuit or a backwater was revived by Ken Ribet’s work in linking it
to a central concern of modern number theory—the modularity conjecture. Ribet, one could say,
gave the theorem a little contemporary relevance; and Wiles produced not a ‘classical’ but a very
contemporary theorem.

What of his work-habits? They also can be seen as belonging to the late twentieth-century
setting. By the 1980s number theory had been a ‘professional’ study for 150 years; now, with
diminishing funding and constant demands for publication to justify the researcher’s existence,
it had become (like the rest of mathematics) intensely competitive. Wiles’s understanding that
news of his work on the conjecture might stimulate others to enter the field may appear paranoid,
but is perhaps not as unusual as Singh makes out with his images of loneliness, deviousness,
silence, and withdrawal. And there is a contrast with the more social ethic of 20 years earlier in
the chapters where he clarifies the crucial role of a number of others, most notably Taniyama,
Shimura, and Weil (for the fundamental conjecture on elliptic curves), and Frey and Ribet (for
the construction of a particular curve which links FLT to the Taniyama–Shimura–Weil conjec-
ture). The fact that the latter conjecture seemed no easier than FLT itself 14 is also important
if we are to have a balanced view of the history, rather than one centred on a 300-year-old
problem. It is hard: already in 1993 t-shirts were on sale in Cambridge which read: ‘Fermat’s
Last Theorem proved by Andrew Wiles at the Isaac Newton Institute’. Jaundiced mathematicians
might well object that no single one of the statements was true, but history books will print the
legend.15

What kind of mathematics are we talking about? This is late twentieth-century number the-
ory of a very advanced kind. For all his ‘seclusion’, Wiles’s paper is packed with references to
work published during the previous five years. More generally, the key conjecture relates elliptic
curves and modular forms, and without a great deal of theory about both of these abstruse and
difficult mathematical objects developed in the previous century, there would certainly have been
no result.

Singh makes a brave attempt to explain the various objects in terms of analogies (the idea that
the L-series of a modular form is its ‘DNA’ is certainly striking, even if a number theorist would find
it strange—do they replicate?). Elliptic curves are, in the crudest sense, easy: they are defined by an
equation

y2 = x3 + ax + b

where 4a3 + 27b2 �= 0 (to ensure no double roots of the cubic, as Omar Khayyam knew). The
picture (Fig. 8) shows one such; but to do number theory one must (a) think of a and b as rational
numbers, and (simultaneously) (b) consider all solutions of the equation with (x, y) in C, a four-
dimensional picture which we have difficulty drawing— although ‘intrinsically’, if we forget the
space it is in, it looks like a torus (Fig. 9)

To give more details, to try to explain modular forms, etc., would take us outside the aim of this
book, if not outside history; and other sources (e.g. van der Poorten 1996) can do it better than
I can—you are encouraged to consult them.

14. In fact, Wiles’s paper proves enough of the Taniyama conjecture to settle FLT, but not all of it; the full conjecture has since been
settled by Breuil, Conrad, Diamond, and Taylor.

15. John Ford: The Man Who Shot Liberty Valance, 1962.
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Fig. 8 Graph of y2 = x3 − x.

Fig. 9 A torus (again); this is the shape of a (complex) elliptic ‘curve’ in the complex projective plane; two real dimensions, one
complex dimension.

Appendix A. From Bourbaki, ‘Algebra’, Introduction

HOW TO USE THIS TREATISE

1. The treatise takes mathematics at its beginning, and gives complete proofs. Consequently its
reading presupposes, in principle, no mathematical knowledge, but only a certain habit of
mathematical reasoning, and a certain ability to abstract.

Nonetheless, the treatise is particularly aimed at readers who have at least a good knowledge
of the subjects taught, in France, in courses of ‘mathématiques générales’ (abroad, in the first or
first two years of university), and, if possible, a knowledge of the essentials of the differential
and integral calculus.

2. The first part of the treatise is devoted to the fundamental structures of analysis (on the
meaning of the word ‘structure’ see book I, chapter 5); in each of the books into which this
part is divided, we study one of these structures, or several structures which are closely related
(book I, Theory of Sets; book II, Algebra; book III, General Topology; books to follow: Integration,
combinatorial topology, differentials and integrals of differentials, etc.) . . .

The method of exposition followed in the first part is axiomatic and abstract; it proceeds on the
whole from the general to the particular. The choice of this method was imposed by the principal
aim of this first part, which was to provide solid foundations for all the rest of the treatise, and even
for the whole of modern mathematics.

Appendix B. Turing on computable numbers

We have said that the computable numbers are those whose decimals are calculable by finite means.
This requires rather more explicit definition. No real attempt will be made to justify the definitions
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given until we reach §9. For the present I shall only say that the justification lies in the fact that the
human memory is necessarily limited.

We may compare a man in the process of computing a real number to a machine which is only
capable of a finite number of conditions q1, q2, . . . , qR which will be called ‘m-configurations’. The
machine is supplied with a ‘tape’, (the analogue of paper) running through it, and divided into
sections (called ‘squares’) each capable of bearing a ‘symbol’. At any moment there is just one
square, say the rth, bearing the symbol S(r) which is ‘in the machine’. We may call this square
the ‘scanned square’. The symbol on the scanned square may be called the ‘scanned symbol’. The
‘scanned symbol’ is the only one of which the machine is, so to speak, ‘directly aware’. However, by
altering its m-configuration the machine can effectively remember some of the symbols which it has
‘seen’ (scanned) previously. The possible behaviour of the machine at any moment is determined
by the m-configuration qn and the scanned symbol S(r). This pair qn,S(r) will be called the
‘configuration’: thus the configuration determines the possible behaviour of the machine. In some
of the configurations in which the scanned square is blank (i.e. bears no symbol) the machine writes
down a new symbol on the scanned square: in other configurations it erases the scanned symbol.
The machine may also change the square which is being scanned, but only by shifting it one place
to right or left. In addition to any of these operations the m-configuration may be changed. Some of
the symbols written down will form the sequence of figures which is the decimal of the real number
which is being computed. The others are just rough notes to ‘assist the memory’. It will only be
these rough notes which will be liable to erasure.

It is my contention that these operations include all those which are used in the computation of
a number. The defence of this contention will be easier when the theory of the machines is familiar
to the reader. In the next section I therefore proceed with the development of the theory and assume
that it is understood what is meant by ‘machine’, ‘tape’, ‘scanned’, etc.

2. Definitions.
Automatic machines.
If at each stage the motion of a machine (in the sense of §1) is completely determined by the

configuration, we shall call the machine an ‘automatic machine’ (or a-machine). For some purposes
we might use machines (choice machines or c-machines) whose motion is only partially determined
by the configuration (hence the use of the word ‘possible’ in §1). When such a machine reaches one
of these ambiguous configurations, it cannot go on until some arbitrary choice has been made by an
external operator. This would be the case if we were using machines to deal with axiomatic systems.
In this paper I deal only with automatic machines, and will therefore often omit the prefix a-.

Computing machines.
If an a-machine prints two kinds of symbols, of which the first kind (called figures) consists

entirely of 0 and 1 (the others being called symbols of the second kind), then the machine will be
called a computing machine. If the machine is supplied with a blank tape and set in motion, starting
from the correct initial m-configuration, the subsequence of the symbols printed by it which are of
the first kind will be called the sequence computed by the machine. The real number whose expression
as a binary decimal is obtained by prefacing this sequence by a decimal point is called the number
computed by the machine.

At any stage of the motion of the machine, the number of the scanned square, the com-
plete sequence of all symbols on the tape, and the m-configuration will be said to describe the
complete configuration at that stage. The changes of the machine and tape between successive
complete configurations will be called the moves of the machine.
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Solutions to exercises

These are perhaps unduly hard, but it is almost impossible to find easier ones; and of course, no
exercises have been included on Fermat . . .

1. (a) If (mn)p = m(np), then mnp = m(np). This means that either m = 1 (since then all powers
of m are the same) or np = np and m is arbitrary; equivalently, np−1 = p. This is possible (1) if
p = 1, n arbitrary; or (2) if n = p = 2.

(b) Finding a system of generators is easy; inductively, one chooses any a1. If a1, . . . , ai−1
have been chosen and do not generate the group, one chooses some ai in G but not in the
subgroup generated by a1, . . . , ai−1. Since G is finite, eventually the process ends.

From the characterization of the generators, one deduces that the products ai1 , . . . aik with
i1 < i2 < · · · < ik are all different. There are 2m of these, so 2m ≤ n. And any automorphism f
of G is determined by f (a1), . . . , f (am). Since there are at most n possibilities for each of these,
the number of automorphisms is ≤ nm. Now using m log 2 ≤ log n, m ≤ log n/ log 2, which
proves it.

2. (a) The tape must of course not only contain the figures, but a symbol to tell the machine
where the number stops; it must therefore read something like ‘x1011’, where ‘x’ means ‘stop
here’ (otherwise the machine would have to move on in case of finding other figures!) At the
start, the machine is at the rightmost position, and it reads and writes moving left. We can
characterize the states as: S (start), N (not carrying), C (carrying), and F (finish). Rules are:
1. If state is S and symbol read is 0, change state to N, change symbol to 1, move left. If symbol

read is 1, change state to C, change symbol to 0, move left.
2. If state is N and symbol read is 0 or 1, move left and do not change state or symbol. If

symbol read is x, change state to F, do not change symbol, stop.
3. If state is C and symbol read is 0, change state to N, change symbol to 1, move left. If symbol

read is 1, change symbol to 0 and do not change state, move left.
4. If state is C and symbol read is x, change symbol to 1, move left, write x, change state to

F, stop.
(b) The programme computes the sequence:
x0 = 1; xn = 1 + (1/xn−1). these are (the computer’s approximations to) the successive

steps in the continued fraction

1 + 1
1 + (1/1 + · · · )

This is the solution of x = 1 + (1/x), or (1 + √
5)/2. How accurate the answer is depends on

the number of places stored in the computer by the particular programme you are using. What
is printed is the 100th approximation, which will probably be quite close. (In one version which
I used, after about 25 steps the programme did not fix, but got into a two-cycle: a, b, a, b, . . .
where a and b differed in the last decimal point. This illustrates the way in which the finiteness
of computers affects the result.)

3. (a) f 2(z) = z4, f 3(z) = z8, and in general f n(z) = z(2n). Hence, f n(z) = z if z(2n) = z. Discount
z = 0 (we are on the circle), and we are left with z(2n−1) = 1; z is a (2n − 1)th root of 1,
exp(2kπ/(2n − 1)).
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In the case n = 4, 2n − 1 = 15; z = exp(2kπ/15). If k = 0, z is of period 1 (fixed), while
if k = 5, 10, z is of period 2 (using 22 − 1 = 3). The other twelve fifteenth roots of 1 give
three 4-cycles.

Already with these facts, sensitive dependence looks likely. It is easy to prove if we write
z = eiθ ; then what we have called d(z, z′) is just |θ − θ ′|. Now f takes θ to 2θ . Given z and ε,
let n be such that (1/2n+1) < ε, and let z′ = exp i(θ + (1/2n+1)); then f n(z) = exp i(2nθ) and
f n(z′) = exp i(2nθ + 1

2).
(b) Fixed points are given by z2 + c = z, or z = 1

2(1 + √
1 − 4c). Now g′(z) = 2z, and so at

a fixed point |g′(z)| = |1 + √
1 − 4c|. If |g′(z)| = 1, write |2z| = 1, z = 1

2 exp(iθ). Then

c = 1
2

exp(iθ) − 1
4

exp(2iθ)

from the original equation. So c has coordinates (1
2 cos θ − 1

4 cos 2θ , 1
2 sin θ − 1

4 sin 2θ). This
describes a cardioid as θ goes from 0 to 2π .



Conclusion

Yesterday all the past. The language of size
Spreading to china along the trade-routes; the diffusion
Of the counting-frame and the cromlech;
Yesterday the shadow-reckoning in the sunny climates...
Yesterday the classic lecture
On the origin of Mankind. But today the struggle. (W.H.Auden, ‘Spain’, 1936.)

Only an alert and knowledgeable citizenry can compel the proper meshing of the huge industrial and military
machinery of defense with our peaceful methods and goals, so that security and liberty may prosper together. Akin
to, and largely responsible for the sweeping changes in our industrial-military posture, has been the technological
revolution during recent decades. In this revolution, research has become central; it also becomes more formalized,
complex, and costly.

A steadily increasing share is conducted for, by, or at the direction of, the Federal government. Today, the solitary
inventor, tinkering in his shop, has been overshadowed by task forces of scientists in laboratories and testing fields. In
the same fashion, the free university, historically the fountainhead of free ideas and scientific discovery, has experienced
a revolution in the conduct of research. Partly because of the huge costs involved, a government contract becomes
virtually a substitute for intellectual curiosity. For every old blackboard there are now hundreds of new electronic
computers. The prospect of domination of the nation’s scholars by Federal employment, project allocations, and the
power of money is ever present and is gravely to be regarded. (Speech by Dwight D. Eisenhower, 1961.)

At the end of this book, we look to the present and the future as the above quotations do. For the
young Auden, the history of mathematics lay in the past, while the present belonged to agitation,
rifles and comrades. For the old ex-president Eisenhower, technology was central, its nature was
changing, and it was, as he was in a good position to know, controlled by what he termed the
‘military-industrial complex’. Both of them belong to a time which seems remote, and mathematics
continues to be produced — for what, and for whom? The military have certainly not reduced their
demands, and they have money to spend.

Researchers at Duke, Georgia Institute of Technology, Stanford University and the University of Michigan will each
take on different parts of developing the enabling mathematical underpinnings of this technology with $6 million in
Defense Advanced Research Projects Agency (DARPA) funding, which will be administered through the U.S. Army.

The objective...is the development of ‘detection and classification algorithms for multi-modal inverse problems.’ That
means developing mathematical rules – called algorithms – to ‘train’ and control multiple sensors that, with increasing
precision, could detect invisible signals emanating from such targets, and trace those signals back to their sources –
a technique called inversion.

‘The targets could be land mines, targets under trees like tanks or troops, or targets in underground bunkers or caves,’
said the overall administrator of the grant. (Report in www.spacedaily.com, April 2002.)

www.spacedaily.com
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Is the development of algorithms (the word comes by a circuitous route from the name
al-Khwārizmī, chapter 5) to trace targets in underground bunkers1 an indicator of how
mathematics, and you, readers, as mathematicians, relate to today’s ‘struggle’?

This book is long enough already; and to raise serious questions about mathematics’ present is
really a question for another book. Still, in the fashionable language of course objectives, it could be
useful to consider what you have learned. It’s not usual today to see history as a source of ‘lessons’,
and mathematicians rarely think that by understanding the past they might avoid repeating its
mistakes. Still less do they appeal to the court of history, or, like politicians, claim that it will
absolve them. We have seen mathematicians — Archimedes, Qin Jiushao, Galileo, Alan Turing —
getting involved in ‘history’, making political choices which may have had little to do with their
mathematical tastes. Do we judge them? We ourselves, having acquired their necessary skills, will
inevitably go out into the world and (like anyone else) become immersed in history, if of a different
sort. It may indeed be that we seek to be among the recipients of a large grant from the US Army.

Mathematics is traditionally seen as a peculiar kind of human activity. Hard, pure, exact
and faultless it is divorced from the day-to-day concerns of ordinary people, and has little or
nothing to say about their real-life problems. And yet it is a cliché by now that various applica-
tions of mathematics from computing to coding to accountancy pervade the world today. They
are not pure, they are not always even reliable 2. The student attracted by the traditional
image of mathematics might wish rather to be studying one of the seven ‘Millennium Problems’
(www.claymath.org/millennium/). Although not all to be classed as pure research — they include
problems in hydrodynamics and quantum field theory — they are all goals for the academically
ambitious, lead to a prize of $1,000,000 each and could allow a mathematician to escape the job
market and enjoy a life of leisure. A simple sum shows that few of this book’s readers can hope to
attain this goal.

For most of the world, a shrinking market and increased globalization constrain choices, though
they may provide unexpected windfalls. The advice to train as a software developer, which
the American Mathematical Society was tendering to graduates ten years ago, rings hollow as
illustrated with human detail in Business Week in March 2004:

As Stephen and Deepa emerge this summer from graduate school – one in Pittsburgh, the other in Bombay – they’ll find
that their decisions of a half-decade ago placed their dreams on a collision course. The Internet links that were being
pieced together at the turn of the century now provide broadband connections between multinational companies
and brainy programmers the world over. For Deepa and tens of thousands of other Indian students, the globalization
of technology offers the promise of power and riches in a blossoming local tech industry. But for Stephen and his
classmates in the U.S., the sudden need to compete with workers across the world ushers in an era of uncertainty. Will
good jobs be waiting for them when they graduate? ‘I might have been better served getting an MBA,’ Stephen says.

Worse, Deepa is likely in turn to find herself losing her job as the software companies find yet
cheaper sources. Not only is mathematics, as we suggested above, less different from other human
activities than its idealized, originally Greek model might lead us to suppose. Mathematicians
as a caste are less sharply marked off by their unique abilities from others. The corporations
which employ them may ask in addition for a range of skills from Powerpoint presentations to a

1. Having cited this as an application of mathematics to military uses, and so automatically undesirable, we should in fairness
note that the UN in October 2004 recommended its application as preferable to the Israeli Army’s wholesale demolition of houses in
Gaza where there might (in their opinion) be a bunker.

2. The failure of a US Patriot missile in 1991 leading to the loss of 28 lives, which was due to accumulated ‘rounding errors’ is
often cited.

www.claymath.org/millennium/
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nodding acquaintance with intellectual property law. As in ancient Babylon, the military-industrial
complex is looking for trained personnel with the widest possible range; and mathematics as an
isolated nerdy pursuit of those unable to communicate their insights is no longer the goal, if it ever
was. This book would like to encourage readers by assuring them that the enriching culture of the
history of mathematics will make them more marketable, but we have a legal and moral duty to be
truthful. The knowledge that empires rise and fall is no use and not much comfort if you are out of
work in Pittsburgh.

Teachers, who deserve special words of praise and encouragement, may escape the global market
for longer — particularly if they choose to teach at a level or in a country where e-learning is too
difficult or expensive to be widely applied. They will be subject to the usual pressures to produce
results, and the mathematics to be taught will change constantly, particularly at the secondary
or higher level. The varieties of mathematics available are evolving, as we saw in chapter 10,
and computers, which do afford more scope for experiment and visualization than traditional
mathematics, have often become cheap enough, even outside the developed world, to be considered
essential learning aids. Teaching flourishes under conditions where it is freed from control and
dogmatism; the understanding that mathematics has a history can help with this (as we saw
Simone Weil claiming in the introduction). And here this book may be of use, in a modest way.

Is a different future possible? Nearly forty years ago, the universities which Eisenhower had
seen as controlled by government were in revolt. The radical mathematician Steve Smale received
the highest award (the Fields Medal) at the Moscow International Congress of Mathematicians,
1966; he chose the admittedly small and élite setting of the congress to launch an attack on the
United States’ war in Vietnam — and simultaneously (and with even less tact) against the Soviet
invasion of Hungary eight years earlier. Attacked by his government, he was seen by his peers as
the spokesman of a generation who wanted change. Remembered as an inspiring ‘moment’ by
many mathematicians and others, the episode was also something of a one-off, an idiosyncratic
statement which was not followed up by a widespread withdrawal of mathematicians from the
world of army grants and corporate employment. In today’s situation where mathematicians are
increasingly involved (like all citizens) with the problems of war and global inequality, they need to
consider their common destiny and how as participants in an international civil society they might
take action to control it.
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