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Preface

Ever since my high school days I have been fascinated by Evariste
Galois. The fact that a twenty-year-old could invent an exciting new
branch of mathematics has been a source of true inspiration. By the end
of my undergraduate years, however, the young French romantic had
also become a source of deep frustration. What else can you feel when
you realize that even by the age of twenty-three you have not accom-
plished anything of comparable magnitude? The concept introduced by
Galois —group theory—is recognized today as the "official" language of
all symmetries. And, since symmetry permeates disciplines ranging from
the visual arts and music to psychology and the natural sciences, the sig-
nificance of this language cannot be overemphasized.

The list of people who have contributed directly and indirectly to
this book could in itself fill more than a few pages. Here I will only men-
tion those without whose help I would have had a hard time completing
the manuscript. I am grateful to Freeman Dyson, Ronen Plesser, Nathan
Seiberg, Steven Weinberg, and Ed Witten for conversations on the role
of symmetry in physics. Sir Michael Atiyah, Peter Neumann, Joseph
Rotman, Ron Solomon, and especially Hillel Gauchman, provided
insights and critical comments on mathematics in general and on Galois
theory in particular. John O'Connor and Edmund Robertson helped
with the history of mathematics. Simon Conway Morris and David
Perrett pointed me in the right direction in topics related to evolution
and evolutionary psychology. I had fruitful discussions with Ellen Win-
ner on the topic of creativity. Philippe Chaplain, Jean-Paul Auffray,
and Norbert Verdier provided me with invaluable materials and infor-
mation on Galois. Victor Liviot helped me to understand Galois's
autopsy report. Stefano Corazza, Carla Cacciari, and Letizia Stan-
ghellini provided useful information on the mathematicians from
Bologna. Ermanno Bianconi was equally helpful concerning the mathe-
maticians from San Sepoicro. Laura Garbolino, Livia Giacardi, and
Franco Pastrone provided me with essential materials on the history of
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mathematics. Patrizia Moscatelli and Biancastella Antonio provided
important documents from the library of the University of Bologna.
Arild Stubhaug helped me to understand some aspects of Niels Abel's
life and provided important documents, as did Yngvar Reichelt.

I am extremely grateful to Patrick Godon and Victor and Bernadette
Liviot for their help with translations from French, to Tommy Wiklind
and Theresa Wiegert for translations from Norwegian, and to Stefano
Casertano, Nino Panagia, and Massimo Stiavelli for their assistance with
translations from Italian and Latin. Elisabeth Fraser and Sarah Stevens-
Rayburn provided me with invaluable bibliographic and linguistic help.
The manuscript could not have been brought to print without the skill-
ful preparation work by Sharon Toolan and the drawings by Krista
Wildt.

The research and writing associated with a book of this scope put an
inevitable burden on family life. Without the continuous support and
infinite patience of my wife, Sofie, and my children, Sharon, Oren, and
Maya, I could not have even dreamed of ever bringing the book to com-
pletion. I hope that my mother, Dorothy Livio, whose entire life has
revolved and is still revolving around music, will enjoy this book on
symmetry.

Finally, my sincere gratitude goes to my agent, Susan Rabiner, for her
incredible work and encouragement, to my editor at Simon & Schuster,
Bob Bender, for his professionalism and unrelenting support, and to
Johanna Li, Loretta Denner, Victoria Meyer, and the entire team at
Simon & Schuster for their help in producing and promoting this book.



— ONE —

Symmetry

n inkblot on a piece of paper is not particularly attractive to the
eye, but if you fold the paper before the ink dries, you may get
something that looks like figure 1 that is much more intrigu-

ng. In fact, the interpretation of similar inkblots forms the basis for the
famous Rorschach test developed in the 1920s by the Swiss psychiatrist
Hermann Rorschach. The declared purpose of the test is to somehow
elicit the hidden fears, wild fantasies, and deeper thoughts of the viewers
interpreting the ambiguous shapes. The actual value of the test as an
"x-ray of the mind" is vehemently
debated in psychological circles. As
Emory University psychologist Scott
Lilienfeld once put it, "Whose mind,
that of the client or the examiner?"
Nevertheless, there is no denial of the
fact that images such as that in figure 1
convey some sort of attractive and fas-
cinating impression. Why?

Is it because the human body, most
animals, and so many human artifacts
possess a similar bilateral symmetry? Figure1

And why do all those zoological features and creations of the human
imagination exhibit such a symmetry in the first place?

Most people perceive harmonious compositions such as Botticelli's
Birth of Venus (figure 2) as symmetrical. Art historian Ernst H. Gom-
brich even notes that the "liberties which Botticelli took with nature in
order to achieve a graceful outline add to the beauty and harmony of the
design." Yet mathematicians will tell you that the arrangements of colors
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and forms in that painting are not symmetric at all in the mathematical
sense. Conversely, most nonmathematical viewers do not perceive the
pattern in figure 3 as symmetrical, even though it actually is symmetrical
according to the formal mathematical definition. So what is symmetry
really? What role, if any, does it play in perception? How is it related to
our aesthetic sensibility? In the scientific realm, why has symmetry
become such a pivotal concept in our ideas about the cosmos around us
and in the fundamental theories attempting to explain it? Since symme-
try spans such a wide range of disciplines, what "language" and what
"grammar" do we use to describe and characterize symmetries and their
attributes, and how was that universal language invented? On a lighter
note, can symmetry provide an answer to the all-important question
posed in the title of one of the songs of rock star Rod Stewart—"Do Ya
Think I'm Sexy?"

Figure 2

I will try to provide at least partial answers to all of these questions
and many more. Along the way, I hope that the story as a whole will
depict both the humanistic side of mathematics and, even more impor-
tantly, the human side of mathematicians. As we shall see, symmetry is
the paramount tool for bridging the gap between science and art,
between psychology and mathematics. It permeates objects and con-
cepts ranging from Persian carpets to the molecules of life, from the Sis-
tine Chapel to the sought-after "Theory of Everything." Yet group

theory, the mathematical language that describes the essence of symme-
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tries and explores their properties, did not emerge from the study of

symmetries at all. Rather, this astonishingly unifying idea of modern

thought emanated from a most unlikely source—an equation that

couldn't be solved. The dramatic and tortuous

history of this equation is an essential part of

this intellectual saga. At the same time, this tale

will shed light on the loneliness of genius and

on the tenacity of the human intellect in the

face of seemingly insurmountable challenges. I

have put a tremendous effort into trying to

solve the two-centuries-old mystery of the

death of the protagonist of this story—the

brilliant mathematician Evariste Galois. I

believe that I have come closer to the truth

than was ever possible before.

The witty playwright George Bernard

Shaw once said, "The reasonable man adapts

himself to the world; the unreasonable one persists in trying to adapt the

world to himself. Therefore all progress depends on the unreasonable

man." In this book we shall encounter many unreasonable men and

women. The creative process, by its very nature, seeks uncharted intel-

lectual and emotional terrain. Brief forays into mathematical abstraction

will offer a peek into the very nature of creativity. I begin with a concise

exploration of the wonderland of symmetries.

I MMUNITY TO CHANGES

The word symmetry has ancient roots, coming from the Greek sym and

metria, which translate into "the same measure." When the Greeks

labeled a work of art or an architectural design symmetric, they meant

that one could identify some small piece of the work, such that the

dimensions of all the other parts contained that piece a precise number

of times (the parts were "commensurable"). This early definition corre-

sponds more to our modern notion of proportion than to symmetry.

Nevertheless, the great philosophers Plato (428/427-348/347 BC) and

Aristotle (384-322 BC) were quick to associate symmetry with beauty.

In Aristotle's words, "The chief forms of beauty are orderly arrange-

ment [in Greek taxis], proportion [symmetria], and definiteness [horis-
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menon], which are revealed in particular by mathematics." Following in
the Greeks' footsteps, the identification of symmetry with "due propor-
tion" was subsequently propagated by the influential Roman architect
Vitruvius (ca. 70-25 BC), and it persisted all the way through the Renais-
sance. In his De Architectura Libri Decem (Ten Books on Architecture),

literally the architectural bible in Europe for centuries, Vitruvius writes:

The design of a temple depends on symmetry, the principles of which
must be carefully observed by the architect. They are due to propor-
tion. Proportion is a correspondence among the measures of the
members of an entire work, and of the whole to a certain part
selected as standard. From this result the principles of symmetry.

The modern meaning of symmetry (first introduced in the late eigh-
teenth century) in the precise mathematical sense is really "immunity to
a possible change." Or, as mathematician Hermann Weyl (1885-1955)
once put it, "A thing is symmetrical if there is something you can do to
it so that after you have finished doing it it looks the same as before."
Examine for example the verses

Is it odd how asymmetrical

Is "symmetry"?

"Symmetry" is asymmetrical.

How odd it is.

This stanza remains unchanged if read word by word from the end to
the beginning —it is symmetrical with respect to backward reading. If
you envision the words as being arranged like beads along a string, you
could regard this reverse reading as a sort of (not literal) mirror reflec-
tion of the stanza. This stanza does not change when mirror-reflected in
the above sense—it is symmetrical with respect to such mirror reflec-
tion. Alternatively, if you prefer to think in terms of reading the poem
out loud, then the backward reading corresponds to a time reversal,
somewhat like rewinding a videotape (again, not literally, because the
individual sounds are not reversed). Phrases with this property are called
palindromes.

The invention of palindromes is generally attributed to Sotades the
Obscene of Maronea, who lived in the third century BC in Greek-
dominated Egypt. Palindromes have been extremely popular with many
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word-play wizards such as the Englishman J. A. Lindon, and with
the superb recreational-mathematics author Martin Gardner. One of
Lindon's amusing word-unit palindromes reads: "Girl, bathing on
Bikini, eyeing boy, finds boy eyeing bikini on bathing girl." Other palin-
dromes are symmetric with respect to back-to-front reading letter by
letter—"Able was I ere I saw Elba" (attributed jokingly to Napoleon),
or the title of a famous NOVA program: "A Man, a Plan, a Canal,
Panama."

Surprisingly, palindromes appear not just in witty word games but
also in the structure of the male-defining Y chromosome. The Y's full
genome sequencing was completed only in 2003. This was the crowning
achievement of a heroic effort, and it revealed that the powers of preser-
vation of this sex chromosome have been grossly underestimated. Other
human chromosome pairs fight damaging mutations by swapping genes.
Because the Y lacks a partner, genome biologists had previously esti-
mated that its genetic cargo was about to dwindle away in perhaps as lit-
tle as five million years. To their amazement, however, the researchers on
the sequencing team discovered that the chromosome fights withering
with palindromes. About six million of its fifty million DNA letters
form palindromic sequences—sequences that read the same forward and
backward on the two strands of the double helix. These copies not only
provide backups in case of bad mutations, but also allow the chromo-
some, to some extent, to have sex with itself —arms can swap position
and genes are shuffled. As team leader David Page of MIT has put it,
"The Y chromosome is a hall of mirrors."

Of course, the most familiar example of mirror-reflection symmetry
is that of the bilateral symmetry that characterizes the animal kingdom.
From butterflies to whales, and from birds to humans, if you reflect the
left half in a mirror you obtain something that is almost identical to the
right half. I will, for the moment, ignore the small if tantalizing external
differences that do exist, and also the fact that neither the internal
anatomy nor the functions of the brain possess bilateral symmetry.

To many, the word symmetry is actually assumed to mean bilateral
symmetry. Even in Webster's Third New International Dictionary, one
of the definitions reads: "Correspondence in size, shape, and relative
position of parts that are on opposite sides of a dividing line or median
plane." The precise mathematical description of reflection symmetry
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uses the same concepts. Take a drawing of a bilaterally symmetric but-
terfly and mark a straight line down the middle of the figure. If you flip
the drawing over keeping the central line in place, perfect overlapping
will occur. The butterfly remains unchanged— invariant —under reflec-
tion about its central line.

Bilateral symmetry is so prevalent in animals that it can hardly be due
to chance. In fact, if you think of animals as vast collections of trillions
and trillions of molecules, there are infinitely more ways to construct
asymmetrical configurations out of these building blocks than symmet-
rical ones. The pieces of a broken vase can lie in a pile in many different
assortments, but there is only one arrangement in which they all fit
together to reproduce the intact (and usually bilaterally symmetric) vase.
Yet the fossil record from the Ediacara Hills of Australia shows that
soft-bodied organisms (Spriggina) that date back to the Vendian period
(650 to 543 million years ago) already exhibited bilateral symmetry.

Since life forms on Earth were shaped by eons of evolution and nat-
ural selection, these processes must have somehow preferred bilateral or
mirror symmetry. Of all the different guises animals could have taken,
bilaterally symmetrical ones had superiority. There is no escape from
the conclusion that this symmetry was a likely outcome of biological
growth. Can we understand the cause for this particular predilection?
We can at least try to find some of its engineering roots in the laws of
mechanics. One key point here is the fact that all directions on the sur-
face of the Earth were not created equal. A clear distinction between up
and down (dorsal and ventral in animals, in the biological jargon) is
introduced by the Earth's gravity. In most cases what goes up must come
down, but not the other way around. Another distinction, between front
and back, is a result of animal locomotion.

Any animal moving relatively rapidly, be it in the sea, on land, or in
the air, has a clear advantage if its front is different from its rear end.
Having all the sensory organs, the major detectors of light, sound, smell,
and taste, in the front clearly helps the animal in deciding where to go
and how to best get there. A frontal "radar" also provides an early warn-
ing against potential dangers. Having the mouth in the front can make all
the difference between reaching lunch first or not. At the same time, the
actual mechanics of movement (especially on land and in the air) under
the influence of the Earth's gravitational force have generated a clear dif-
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ference between bottom and top. Once life emerged from the sea and
onto the land, some sort of mechanical devices—legs—had to develop to
carry the animal around. No such appendages were needed at the top, so
the difference between top and bottom became even more pronounced.
The aerodynamics of flying (still under Earth's gravity) coupled with the
requirements for a landing gear plus some means of movement on the
ground combined to introduce top-bottom differences in birds.

Here, however, comes an important realization: There is nothing
major in the sea, on the ground, or in the air, to distinguish between left
and right. The hawk looking to the right sees just about the same envi-
ronment it sees to the left. The same is not true about up and down—up
is where the hawk flies even higher into the sky, while down is where it
lands and builds its nest. Political puns aside, there really is no big dif-
ference between left and right on Earth, because there are no strong hor-
izontal forces. To be sure, the Earth's rotation around its axis and the
Earth's magnetic field (the fact that Earth acts on its surroundings like a
bar magnet) do introduce an asymmetry. However, these effects are not
nearly as significant at the macroscopic level as those of gravity and
rapid animal motion.

The description so far explains why bilateral symmetry of living or-
ganisms makes sense mechanically. Bilateral symmetry is also economi-
cal — you get two organs for the price of one. How this symmetry or lack
thereof emerged from evolutionary biology (the genes) or even more fun-
damentally from the laws of physics is a more difficult question, to parts
of which I shall return in chapters 7 and 8. Here let me note that many
multicellular animals have an early embryonic body that lacks bilateral
symmetry. The driving force behind the modification of the "original
plan" as the embryo grows may indeed be mobility.

Not all animate nature lives in the fast lane. Life forms that are
anchored in one place and are unable to move voluntarily, such as plants
and sessile animals, do have very different tops and bottoms, but no
distinguishable front and back or left and right. They have symmetry
similar to that of a cone—they produce symmetrical reflections in any
mirror passing through their central, vertical axis. Some animals that
move very slowly, such as jellyfish, have a similar symmetry.

Obviously, once bilateral symmetry had developed in living crea-
tures, there was every reason to keep it intact. Any loss of an ear or an
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eye would make an animal much more vulnerable to a predator sneaking
up on it unnoticed.

One may always wonder whether the particular standard configura-
tion nature has endowed humans with is the optimal one. The Roman
god Janus, for example, was the god of the gates and of new beginnings,
including the first month ( January) of the year. Accordingly, he is
always depicted in art with two faces, one in the front facing forward
(symbolically toward the coming year) and one at the back of the head
(toward the year that has passed). Such an arrangement in humans, while
useful for some purposes, would have left no space for the parts of the
brain that are responsible for the nonsensory systems. In his wonderful
book The New Ambidextrous Universe, Martin Gardner tells the story
of a Chicago entertainer who had a routine discussing the advantages of
having various sensory organs at unusual spots on the body. Ears under
the armpits, for instance, would be kept warm in the cold Chicago win-
ters. Clearly, other shortcomings would be associated with such a con-
figuration. The hearing of armpit cars would be seriously impaired
unless you kept your arms raised all the time.

Science-fiction movies invariably feature aliens that are bilaterally
symmetric. If extraterrestrial intelligent creatures that have evolved bio-
logically exist, how likely are they to possess reflection symmetry?
Quite likely. Given the universality of the laws of physics, and in partic-
ular the laws of gravity and motion, life forms on planets outside the
solar system face some of the same environmental challenges that life on
Earth does. The gravitational force still holds everything on the surface
of the planet and creates a significant discrimination between up and
down. Locomotion similarly separates the front end from the rear. E.T.
is or was most likely ambidextrous. This does not mean, however, that
any delegation of visiting aliens would look anything like us. Any civi-
lization sufficiently evolved to engage in interstellar travel has likely
long passed the merger of an intelligent species with its far superior
computational-technology-based creatures. A computer-based super-
intelligence is most likely to be microscopic in size.

Some of the capital letters in the alphabet are among the numerous
human-created objects that are symmetric with respect to mirror reflec-
tions. If you hold a sheet of paper with the letters A, H, I, M, 0, T, U, V,
W, X, Y up to a mirror, the letters look the same. Words (or even entire
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phrases) constructed from these letters and printed vertically, such as the

not-too-deep instruction

remain unchanged when mirror reflected. The Swedish pop-music

group A aBA, whose music inspired the successful musical Mamma

Mia, introduced a trick into the spelling of its name that makes it mirror

symmetric (MAMMA MIA written vertically is also mirror symmetric).

A few letters, such as B, C, D, E, H, I, K, 0, X, are symmetric with

respect to reflection in a mirror that bisects them horizontally. Words

composed of these letters, such as COOKBOOK, BOX, CODEX, or

the familiar symbols for hugs and kisses, XOXO, remain unchanged

when held upside down to a mirror.

The importance of mirror-reflection symmetry to our perception

and aesthetic appreciation, to the mathematical theory of symmetries, to

the laws of physics, and to science in general, cannot be overemphasized,

and I will return to it several times. Other symmetries do exist, however,

and they are equally relevant.
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THE FROLIC ARCHITECTURE OF SNOW

The title of this section is taken from "The Snowstorm" by the Ameri-
can poet and essayist Ralph Waldo Emerson (1803-82). It expresses the
bewilderment one feels upon discerning the spectacular shapes of
snowflakes (figure 4). While the common phrase "no two snowflakes are

alike" is actually not true at the naked-
eye level, snowflakes that have formed in
different environments are indeed differ-
ent. The famous astronomer Johannes
Kepler (1571-1630), who discovered the
laws of planetary motion, was so
impressed with the marvels of snow-
flakes that he devoted an entire treatise,
The Six-Cornered Snowflake, to the
attempt to explain the symmetry of

Figure 4 snowflakes. In addition to mirror-
reflection symmetry, snowflakes possess rotational symmetry—you can
rotate them by certain angles around an axis perpendicular to their plane
(passing through the center) and they remain the same. Due to the prop-
erties and shape of water molecules, snowflakes have typically six
(almost) identical corners. Consequently, the smallest rotation angle
(other than no rotation at all) that leaves the shape unchanged is one
in which each corner is displaced by one "step": 360 ± 6 = 60 degrees.
The other angles that lead to an indistinguishable final figure are simple
multiples of this angle: 120, 180, 240, 300, 360 degrees (the last one
returns the snowflake to its original position and is equivalent to no
rotation at all). Snowflakes therefore have sixfold rotational symmetry.
By comparison, starfish have fivefold rotational symmetry; they can be
rotated by 72, 144, 216, 288, and 360 degrees with no discernable differ-
ence. Many flowers, such as the chrysanthemum, the English daisy, and
the tickseed (coreopsis), display an approximate rotational symmetry.
They look essentially the same when rotated by any angle (figure 5).
Symmetry, when combined with rich colors and intoxicating smells, is
an underlying property that gives flowers their universal aesthetic
appeal. Perhaps no one has expressed better the associative relationship
between flowers and works of art than the painter James McNeill
Whistler (1834-1903):
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The masterpiece should appear as the flower to the painter—perfect

in its bud as in its bloom—with no reason to explain its presence—

no mission to fulfill—a joy to the artist, a delusion to the philanthro-

pist—a puzzle to the botanist—an accident of sentiment and allitera-

tion to the literary man.

What is it in a symmetric pattern that provokes such an emotional
response? And is this truly the same excitement that is stimulated by
works of art? Note that even if the answer to the latter question is an
unequivocal yes, this does not necessarily bring us any closer to answer-
ing the first question. The answer to the question, What is it in works of
art that provokes an emotional response? is far from clear. Indeed, what
quality is shared by such different mas-
terpieces as Jan Vermeer's Girl with a
Pearl Earring, Pablo Picasso's Guernica,
and Andy Warhol's Marilyn Diptych?
Clive Bell (1881 -1964), an art critic
and member of the Bloomsbury group
(which, by the way, included novelist
Virginia Woolf), suggested that the one
quality common to all true works of art
was what he called "significant form."

Figure 5By this he meant a particular combina-
tion of lines, colors, forms, and relations of forms that stirs our emo-
tions. This is not to say that all works of art evoke the same emotion.
Quite the contrary: every work of art may evoke an entirely different
emotion. The commonality is in the fact that all works of art do evoke
some emotion. If we were to accept this aesthetic hypothesis, then sym-
metry may simply represent one of the components of this (rather
vaguely defined) significant form. In this case, our reaction to symmet-
ric patterns may not be too different (even if less intense perhaps) from
our broader aesthetic sensibility. Not all agree with such an assertion.
Aesthetics theorist Harold Osborne had this to say about the human
response to symmetry of individual elements or objects, such as snow-
flakes: "They can arouse interest, curiosity and admiration. But visual
interest in them is short-lived and superficial: In contrast to the impact
of an artistic masterpiece, perceptual attention soon wanders, never goes
deep. There is no enhancement of perception." Actually, as I will show
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in the next chapter and in chapter 8, symmetry has much to do with

perception. For the moment, however, let me concentrate on the purely

aesthetic "value" of symmetry.

Dartmouth College psychologists Peter G. Szilagyi and John C.

Baird conducted a fascinating experiment in 1977 that was intended to

explore the quantitative relationship between the amount of symmetry

in designs and aesthetic preference. Twenty undergraduate students (the

most common subjects of experimental psychology) were asked to per-

form three simple tasks. In the first, they were invited to arrange eight

squares with a black dot at their centers inside a row of eighteen cells,

each of a size equal to that of the squares (figure 6a). The instructions to

the subjects were to arrange the pieces in a manner that they found

"visually pleasing." Each piece had to cover one cell entirely, and all the

squares had to be used. The second and third tasks were similar in

nature. In the second, eleven pieces had to be arranged in a 5 x 5 grid

(figure 6b). In the third, twelve cubes had to be fitted into holes in a

three-dimensional transparent structure consisting of three horizontal

planes, each containing nine square holes (figure 6c). The results showed

an unambiguous aesthetic preference for symmetrical designs. For

instance, 65 percent of the subjects created perfect mirror-reflection-

symmetric patterns in the first task. In fact, symmetry was the primary

component in the designs of most subjects (in one, two, and three di-

mensions), with perfect symmetry being the most favored condition.

The association between symmetry and artistic taste emerged not

just in experiments, but also in a more speculative theory of aesthetics

developed by the famous Harvard mathematician George David Birk-

hoff (1884-1944). Birkhoff is best known for proving in 1913 a famous
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geometric conjecture formulated by the French mathematician Henri
Poincare, and for his ergodic theorem (published in 1931-32)—a contri-
bution of paramount significance for the theory of gases and for proba-
bility theory. During his undergraduate days, Birkhoff started to be
intrigued by the structure of music, and around 1924 he expanded his
interests to aesthetics in general. In 1928, he spent half a year traveling
extensively in Europe and the Far East in an attempt to absorb as much
art, music, and poetry as he could. His efforts to develop a mathemati-
cal theory of aesthetic value culminated in the publication of Aesthetic

Measure in 1933. Birkhoff specifically discusses the intuitive feeling of
value evoked by works of art, which is "clearly separable from sensuous,
emotional, moral, or intellectual feeling." He separates the aesthetic
experience into three phases: (1) the effort of attention necessary for per-
ception; (2) the realization that the object is distinguished by a certain
order; (3) the appreciation of value that rewards the mental effort. Birk-
hoff further assigns quantitative measures to the three stages. The pre-
liminary effort, he suggests, increases in proportion to the complexity
of the work (denoted by C). Symmetries play a key role in the order
(denoted by 0) characterizing the object. Finally, the feeling of value is
what Birkhoff calls the "aesthetic measure" (denoted by M) of the work
of art.

The essence of Birkhoff's theory can be summarized as follows.
Within each class of aesthetic objects, such as ornaments, vases, pieces of
music, or poetry, one can define an order 0 and a complexity C. The
aesthetic measure of any object in the class can then be calculated simply
by dividing 0 by C. In other words, Birkhoff proposed a formula for
the feeling of aesthetic value: M = 0 ± C. The meaning of this formula
is: For a given degree of complexity, the aesthetic measure is higher the
more order the object possesses. Alternatively, if the amount of order is
specified, the aesthetic measure is higher the less complex the object.
Since for most practical purposes, the order is determined primarily by
the symmetries of the object, Birkhoff's theory heralds symmetry as a
crucial aesthetic element.

Birkhoff was the first to admit that the precise definitions of his ele-
ments 0, C, and M were tricky. Nevertheless, he made a valiant attempt
to provide detailed prescriptions for the calculation of these measures
for a variety of art forms. In particular, he started with simple geometri-
cal shapes such as those in figure 7, continued with ornaments and Chi-
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nese vases, proceeded to harmony in the diatonic musical scale, and con-
cluded with the poetry of Tennyson, Shakespeare, and Amy Lowell.

No one, especially not Birk-
hoff himself, would claim that the
intricacies of aesthetic pleasure
could be reduced entirely to a
mere formula. However, in Birk-
hoff's words, "In the inevitable
analytic accompaniment of the
creative process, the theory of aes-
thetic measure is capable of per-
forming a double service: it gives a
simple, unified account of the aes-
thetic experience, and it provides
means for the systematic analysis
of typical aesthetic fields."

Returning now from this brief
detour into the land of aesthetics

to the specific case of rotational symmetry, we note that one of the sim-
plest rotationally symmetric figures in the plane is a circle (figure 8a). If
you rotate it around its center through, say, 37 degrees, it remains
unchanged. In fact you can rotate it through any angle around a perpen-
dicular axis through its center and you will not notice any difference.
The circle therefore has an infinite number of rotational symmetries.
These are not the only symmetries the circle possesses. Reflections in
all the axes that cut along a diameter (figure 8b) also leave the circle
unchanged.

The same system can, therefore, have multiple symmetries, or be
symmetric under a variety of symmetry transformations. Rotating a
perfect sphere about its center, using an axis running in any direction,
leaves it looking precisely
the same. Or examine, for
instance, the equilateral (all
sides the same) triangle in
figure 9a. We are allowed
neither to change the shape
or size of this triangle, nor
to move it about. What



SYMMETRY 15

transformations could we apply to it to leave it unchanged? We could

rotate it by 120, 240, and 360 degrees around an axis perpendicular to the

plane of the figure and passing through point 0 (figure 9b). These trans-

formations do interchange the locations of the vertices, but if you turn

your back while somebody is performing these rotations you won't

notice anything different. Note that a rotation by 360 degrees is equiva-

lent to doing nothing at all, or rotating by zero degrees. This is known as

the identity transformation. Why bother to define such a transformation

at all? As we shall see later in the book, the identity transformation plays

a similar role to that of the number zero in the arithmetic operation of

addition or the number one in multiplication—when you add zero to a

number or multiply a number by one, the number remains unchanged.

We can also mirror-reflect the triangle about the three dashed lines in fig-

ure 9c. There are, therefore, precisely six symmetry transformations—

three rotations and three reflections—associated with the equilateral

triangle.

What about combinations of some of these transformations, such as

a reflection followed by a rotation? Don't they add to the number of

symmetries of the triangle? I shall return to this question in the context

of the language of symmetries. For the moment, however, another

important symmetry awaits exposition.

MORRIS, MOZART, AND COMPANY

One of the most familiar of all symmetric patterns is that of a repeating,

recurring motif. From friezes of classical temples and pillars of palaces to

carpets and even birdsong, the symmetry of repeating patterns has

always produced a very comforting familiarity and a reassuring effect.

An elementary example of this type of symmetry was presented in fig-

ure 3.
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The symmetry transformation in this case is called translation, mean-
ing a displacement or shift by a certain distance along a certain line. The
pattern is called symmetric if it can be displaced in various directions
without looking any different. In other words, regular designs in which
the same theme repeats itself at fixed intervals possess translational sym-
metry. Ornaments that are symmetric under translation can be traced all
the way back to 17,000 BC (the Paleolithic era). A mammoth-ivory
bracelet found in the Ukraine is marked with a repeating zigzag pattern.
Other translation-symmetric designs are found in a variety of art forms
ranging from medieval Islamic tiling in the Alhambra palace in Granada,
Spain (figure 10a), through Renaissance typography, to the drawings of
the fantastic Dutch graphic artist M. C. Escher (1898-1972; figure 10b).
Nature also provides examples of translation-symmetric creatures, such
as the centipedes, in which identical body segments may repeat as many
as 170 times.

The Victorian artist, poet, and printer William Morris (1834-96) was
a prolific producer of decorative art. Much of his work is literally the
embodiment of translational symmetry. Early in life, Morris became fas-
cinated by medieval architecture, and at age twenty-seven he started a
firm of decorators that later became famous as Morris and Company. In
a strong reaction to the increasing industrialism in nineteenth-century
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England, Morris looked for ways to revive artistic craftsmanship and to
revitalize the splendor of the decorative arts of the Middle Ages. Morris
and Company, and later the Kelmscott Press founded by Morris in 1890,
designed spectacular tiles, tableware, textiles, and illustrated manuscripts
in medieval design. But it was in wallpaper design where Morris first
achieved his incredible mastery of translation-symmetric repeating pat-
terns. A couple of his sumptuous themes are shown in figure 11. While
Morris's designs may not have been any more innovative than those of
some of his contemporaries, such as Christopher Dresser or A. W. N.
Pugin, his influence and legacy have been enormous. Morris himself was
interested in promoting arts and crafts and not in the mathematics of
symmetry. In The Beauty of Life he summarized his socio-aesthetic phi-
losophy this way:

You may hang your walls with tapestry instead of whitewash or
paper; or you may cover them with mosaic; or have them frescoed by

a great painter: all this is not luxury, if it be done for beauty's sake,
and not for show: it does not break our golden rule: Have nothing in

your houses which you do not know to be useful or believe to be
beautiful.

An interesting question is whether symmetry with respect to transla-
tion, and indeed reflection and rotation too, is limited to the visual arts,
or may be exhibited by other artistic forms, such as pieces of music. Evi-
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dently, if we refer to the sounds, rather than to the layout of the written

musical score, we would have to define symmetry operations in terms

other than purely geometrical, just as we did in the case of the palin-

dromes. Once we do that, however, the answer to the question, Can we

find translation-symmetric music? is a resounding yes. As Russian crys-

tal physicist G. V. Wulff wrote in 1908: "The spirit of music is rhythm. It

consists of the regular, periodic repetition of parts of the musical com-

position . . . the regular repetition of identical parts in the whole consti-

tutes the essence of symmetry." Indeed, the recurring themes that are so

common in musical composition are the temporal equivalents of

Morris's designs and symmetry under translation. Even more generally,

compositions are often based on a fundamental motif introduced at the

beginning and then undergoing various metamorphoses.

Simple examples of symmetry under translation in music include the

opening measures in Mozart's famous Symphony no. 40 in G Minor

(figure 12), as well as the entire structure of some common musical

forms. In the former example you can see the translational symmetry

not only within each line of the score (where the short declining gestures

are marked), but also between the first line and the second (denoted by a

and b). In terms of overall design, if we use the symbols A, B, and C to

describe entire sections of a movement, then the pattern for a rondo

as a whole, for instance, can be expressed as ABACA or ABACABA,

where the translational symmetry is apparent. Mozart's association with

objects of mathematics should come as no surprise. His sister, Nannerl,

recalled that he once covered the walls of the staircase and of all the

rooms in their house with numbers, and when no space remained, he

moved on to the walls of a neighboring house. Even the margins of

Figure 12
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Mozart's manuscript for the Fantasia and Fugue in C Major contain cal-

culations of the probability to win the lottery. No wonder then that

British musicologist and composer Donald Tovey identified the "beau-

tiful and symmetrical proportions" of Mozart's compositions as one of

the key reasons for their popularity.

Another great composer known for his obsession with numbers,

mental games, and their use in complex musical form was Johann Sebas-

tian Bach (1685-1750). Both reflection and translation feature frequently

in Bach's music on many levels. An example encompassing reflection by

a horizontal "mirror" is the opening of Bach's Two-Part Invention no. 6

in E Major (see figure 13). Imagine a mirror in the space between the two

score lines. The ascending trend marked by line a is reflected (half a bit

later) by the descending trend b, and the entire gesture is reflected and

repeated again slightly later (starting at d). Another example is provided

by the entire large-scale structure of one of Bach's most notable works,

the famous Musical Offering. The composition consists of these musical

forms:

Ricercar 5 Canons Trio Sonata 5 Canons Ricercar

It exhibits reflection symmetry (obviously not sound by sound).

Ricercar (from ricercare —"to research, or seek out") was an old

term used loosely for any type of prelude, usually in fugal style. The

great humanitarian, physician, and philosopher Albert Schweitzer

(1875-1965) was also a great Bach enthusiast. In his book J. S. Bach
he notes: "The word [ricercar] signifies a piece of music in which we

have to seek something—namely a theme." The Musical Offering also

contains ten canons, which, by construction, involve the operation of

translation. In any canon (the word means "rule"), one melodic strand
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determines the rule (in terms of melodic line or rhythm) for the second
or more voices. The second voice follows at some fixed interval of
time—a temporal translation. A simple, familiar example is

Row row row your boat
Gently down the stream
Merrily merrily merrily merrily
Life is but a dream,

where the second voice starts when the first reaches the word "gently."
The story surrounding the Musical Offering is in itself truly fasci-

nating. Three years before his death, Bach was on his way to Berlin to
visit his daughter-in-law Johanna Maria Dannemann (wife of the com-
poser Carl Philipp Emanuel Bach), who was at the time expecting a
child. Exhausted from the long journey, the aged composer made a stop
at Potsdam, then the seat of King Frederick the Great of Prussia, who
also employed Carl Philipp Emanuel. The news of Bach's arrival at the
royal palace prompted the king to cancel a planned evening concert fea-
turing himself playing on the flute in favor of an impromptu series of
recitals by Bach on seven new fortepianos. Gottfried Silbermann, the
master organ builder of the German baroque, constructed these instru-
ments. Following a virtuoso performance in seven different rooms of the
palace, Bach offered to his delighted audience to improvise a fugue on a
theme His Royal Highness would suggest. Upon returning home, Bach
developed the Musical Offering from that improvised fugue. He added
to it a set of magnificently complex canons and a trio sonata and elabo-
rated upon the other contrapuntal movements. The sonata featured a
flute (King Frederick's instrument), a violin, and continuo (keyboard
and cello). For the title of the Offering, the ever word-playful Bach
chose Regis iussu cantio et reliqua canonica arte resoluta (Upon the
King's Demand the Theme and Additions Resolved in Canonic Style),
which forms the acronym RICERCAR.

There are even more symmetries in the Musical Offering. In Canon I
(the Crab Canon), each violin plays the other's part backward, resulting
in reflection symmetry (of the score) in a vertical mirror. Finally, canons
in general were considered at the time to be some sort of symmetry puz-
zles. The composer provided the theme, but it was the musicians' task
to figure out what type of symmetry operation he had in mind for the
theme to be performed. In the case of the Musical Offering, Bach accom-
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panied the last two canons before the trio sonata with the inscription

"Quaerendo inventis," meaning "Seek, and ye shall find." As we shall see

in chapter 7, this is not very different conceptually from the puzzle posed

to us by the universe —it lies in all its glory open to inspection—for us to

find the underlying patterns and symmetries. Even the uncertainties and

ambiguities involved in the attempts to uncover the "theory of every-

thing" may have an analogy in Bach's intellectual challenge. You see, one

of the canons in the Musical Offering has three possible solutions.

Translation and reflection can be combined into one symmetry oper-

ation known as glide reflection. The footprints generated by an alternat-

ing left-right-left-right walk exhibit glide-reflection symmetry (figure

14). The operation consists simply of a translation (the glide), followed

by a reflection in a line parallel to the direction of the displacement (the

dashed line in the figure). Equivalently, you could look at glide reflection

as a mirror reflection followed by a translation parallel to the mirror.

Glide-reflection symmetry is common in classical friezes, and also in the

ceramics of native Americans in New Mexico. Whereas patterns that are

translation symmetric tend to convey an impression of motion in one

direction, glide-reflection-symmetric designs create a snakelike visual

sensation. Real snakes achieve these patterns by alternately contracting

and relaxing muscle groups on both sides of their body —when they

contract a group on the right, the corresponding group on the left is

relaxed, and vice versa.

Figure 14

We have by now encountered all the rigid transformations that result

in symmetries in two dimensions. The word rigid simply means that

after the transformation every two points end up the same distance apart

as they were to begin with—we cannot shrink figures, inflate them, or

deform them.

In three-dimensional space, in addition to the symmetry under trans-

lation, rotation, reflection, and glide reflection, we can find yet another
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symmetry known as screw symmetry. This is the type of symmetry of a
corkscrew, where rotation about some axis is combined with translation
along that axis. Some stems of plants, where the leaves appear at regular
intervals after completing the same fraction of a full circle around the
stem, possess this symmetry. Are these all the symmetries that exist?
Definitely not.

ALL ARE EQUAL, BUT . . .

The arts and sciences are chock-full of fascinating examples of symme-
try under the operations of translation, rotation, reflection, and glide
reflection, and we shall return to some of those in later chapters. An
interesting transformation that is not geometrical in nature involves
permutations—the different rearrangement of objects, numbers, or con-
cepts. For example, to test the wear of four different brands of tires you
may want to schematize a strategy that will ensure that you interchange
the positions of all the tires every month for four months, with every tire
occupying every position. If you label the brands A, B, C, D and the
positions FL (front left), FR (front right), RL (rear left), and RR (rear
right), then the four-month plan may look something like this:

MONTH FL FR RL RR

First A B C D
Second B A D C
Third C D A B
Fourth D C B A

Each row or column represents a permutation of the letters A, B, C, D.
Note that to accomplish the desired test, no row or column should con-
tain the same label twice. Squares of the 4 x 4 type presented here are
known as Latin squares, and they were studied extensively by the
famous Swiss mathematician Leonhard Euler (1707-83). Incidentally,
you may get a kick out of solving the following popular eighteenth-
century card puzzle: Arrange all the jacks, queens, kings, and aces from
a deck of cards in a square, so that no suit or value would appear twice in
any row, column, or the two main diagonals. In case you are having
trouble with this baroque brainteaser, I show a solution in appendix 1.

Permutations feature in such diverse circumstances as the changing



SYMMETRY 23

of partners in Scottish folk dancing and shuffled decks of cards. The

main concern of the operation of permutations is not so much with

which object lies where, as with which object takes the place of which.

For example, in the permutation: 1 2 3 4 —> 4 1 3 2, the number 1 was

replaced by 4, 2 was replaced by 1, 3 stayed put, and 4 was replaced by 2.

This is usually denoted by

where each number in the upper row is replaced by the number directly

underneath. The same permutation operation could have been written as

because precisely the same replacements took place, and the order in

which the numbers are written is not important. You may wonder how

can a system be symmetric (i.e., not change) under permutations? Evi-

dently, if you have ten books on a shelf and they are all different, any

permutation that is not the identity (leaving the books untouched) will

change the order. However, if you have three copies of the same book,

for example, clearly some permutations will leave the order unchanged.

The English essayist and critic Charles Lamb (1775-1834), known for

his self-revealing observations of life, had a rather strong opinion on

some such book "rearrangements." He writes, "The human species,

according to the best theory I can form of it, is composed of two distinct

races, the men who borrow, and the men who lend. . . . Your borrowers

of books—those mutilators of collections, spoilers of the symmetry of

shelves, and creators of odd volumes."

Symmetry under permutation can appear in more abstract circum-

stances. Examine the contents of the phrase "Rachel is David's cousin."

The meaning will remain unchanged if we interchange David with

Rachel. The same is not true for the phrase "Rachel is David's daughter."

Similarly, the equality between two quantities, a = b, is symmetric under

the transposition of a and b, since b = a is the same relation. While this

may seem trivial, the relation "greater than" (commonly denoted by the

symbol >) does not have this property. The relation a > b means "a is

greater than b." Permuting the letters results in b > a, "b is greater than

a," and the two relations are mutually exclusive.
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Various mathematical formulae can also be symmetric under permu-

tations. The value of the expression ab + bc + ca (where ab means "a

times b" and so on) remains unchanged under any permutation of the

letters a, b, c. As I shall discuss in more detail later, there are precisely six

possible permutations of three letters, including one (the first below)

that is the identity, mapping each letter into itself:

You can easily check that the above expression is unaltered by these per-

mutations. For instance, the third permutation changes a into b, b into c,

and c into a. The entire formula therefore changes to read: bc + ca + ab.

However, since in whichever order we either multiply numbers or add

them up the result is always the same, the new expression is equal to the

original one.

People playing roulette in a casino provide an interesting case of

symmetry under permutations. The roulette is composed of a rotating

wheel in which eighteen numbered red slots, eighteen black slots, and

two green slots commonly labeled 0 and 00 are marked. A white ball is

dropped onto the spinning wheel, and after rolling rapidly around the

rim a few times, it bounces around and eventually lands and comes to

rest in one of the slots. When the wheel is mechanically perfect, the game

of roulette is absolutely symmetric under any permutation of the play-

ers. Everybody has precisely the same chance to win or lose irrespective

of whether they are casino rats or novices, experts in probability theory

or village idiots. The expectation to win (rather to lose, about 5.3 cents

for every dollar bet, on the average) does not depend on the amount of

money being risked or on the player's strategy. While no mechanical

wheel can be truly perfect, centuries of profits for casinos prove that,

whatever small deviations may exist, they do not lead to a significant

violation of the symmetry under permutations.

Not all gambling activities are symmetric under permutations of the

players. Blackjack is a card game in which each gambler at the table plays

against the dealer. Each number card has its face value, with all the pic-

ture cards having the value of ten, and the ace offering the option of

being counted as one or eleven. The objective is to get the sum of the val-

ues of the dealt cards to be closer to twenty-one than the dealer's hand
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without exceeding twenty-one. What makes blackjack asymmetric with
respect to permutations of the players is precisely the fact that strategy is
important. In the 1960s casinos discovered the hard way the extent to
which strategy counts. Mathematician Edward 0. Thorp uncovered a
flaw in the way casinos were calculating probabilities when the deck of
cards was dwindling down. He used this information to develop an
extremely profitable method of play. In case you wonder, the casinos
have since taken corrective action. Nonetheless, it remains true that
strategy does make a difference in blackjack. Indeed, six MIT students
who communicated with card-count code words made millions in Las
Vegas in the 1990s.

Permutation symmetry and some of its scientific close cousins have
far-reaching consequences in the physics of the subatomic world, and we
shall return to some of those in chapter 7. Here I will only mention
briefly one simple example that explains an otherwise perplexing fact
about atoms of different elements—they are all roughly the same size.

Atoms somewhat resemble miniature solar systems. The electrons in
the atom are orbiting a central nucleus, just as the planets are revolv-
ing around the sun. The force that holds the electrons in their orbits, how-
ever, is electromagnetic, rather than gravitational. The nucleus contains
protons that have positive electric charges (and neutrons, which are neu-
tral), while the orbiting electrons (equal in number to the protons) are
negatively charged. Opposite electric charges attract each other. Unlike
planetary systems, which can have orbits of any size, atoms must obey
the rules of the subatomic realm—quantum mechanics. The highest
probability of finding the electrons is along certain specific, "quantized"
orbits, restricted to a particular series of discrete sizes. The permitted or-
bits are characterized mainly by their energy. Broadly speaking, the
higher the energy associated with the orbit, the larger its size. The situa-
tion is somewhat analogous to a flight of stairs, with the nucleus repre-
senting the bottom and the higher energy levels corresponding to
increasingly higher steps. Here, however, comes the puzzle. Physics, and
indeed everyday life, teach us that systems are most stable in their lowest
possible energy state (e.g., a ball rolling down the steps reaches stability at
the bottom). This would mean that whether we are dealing with the hy-
drogen atom, which has only one electron, the oxygen atom, with eight
electrons, or uranium, ninety-two electrons, all the electrons would be
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clustered in the smallest pos-

sible orbit. Because the more

electron- and proton-rich

atoms are, the stronger the

electrical attraction between

the nucleus and the elec-

trons, we would expect that

the oxygen atom would be

smaller than the hydrogen atom, and the uranium atom much smaller still

(as depicted schematically in figure 15). Experiments show, however, that

this is far from being the case. Rather, irrespective of the number of elec-

trons, the atoms are found to be roughly the same size. Why?

The explanation was given by the famous physicist Wolfgang Pauli

(1900-58). He proposed in 1925 a powerful law of nature (which won

him the Nobel Prize in 1945), known as the Pauli exclusion principle.

The law refers to some elementary particles of the same type, such as

electrons. All the electrons in the universe are precisely identical in terms

of their intrinsic properties—there is no way to distinguish one from the

other. In addition to their mass and electric charge, electrons have

another fundamental property called spin. Spin could be thought of, for

some purposes, as if the electron were a tiny ball spinning around its

axis. Quantum mechanics-the theory that describes atoms, light, and

subatomic particles—tells us that the electron spin can have only two

states (loosely analogous to the ball spinning at a specific rate in one or

the opposite direction). The Pauli exclusion principle asserts that no two

electrons can be in precisely the same state; that is, having exactly the

same orbit and direction of spin. How is this related to symmetry? To

phrase the exclusion principle more accurately, we need to realize that

quantum mechanics speaks in the language of probabilities. We can

never determine precisely the location of an electron within the atom.

Rather, we can only determine the different probabilities of finding it at

various positions. The collection of all of these probabilities is known as

the probability function. The probability function plays the role of a

map, showing us where we are most likely to find the electron. Accord-

ingly, Pauli also formulated his exclusion principle in terms of a property

of the probability function describing the motion of electrons in the

atom. He stated that the probability function is antisymmetrical with

respect to interchanging any electron pair. Such a function is called anti-
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symmetrical if transposing two electrons that move along the same orbit
and have the same spin direction changes only the sign of the function
(e.g., from plus to minus), but not its value. For instance, imagine that
the letter a symbolizes the value of some property of the first electron,
and the letter b the value of the same property for the second electron. A
function that takes the value a + b is symmetrical under the exchange of
the two electrons since a + b equals b + a. On the other hand, a function
represented by a — b is antisymmetrical, since changing a to b and b to
a changes a — b into b — a, and b — a is precisely the negative of a — b
(e.g., 5 — 3 = 2; 3 — 5 = —2).

Pauli's statement is therefore the crux of the matter. On one hand, we
know that if we interchange two identical electrons this should make no
difference whatsoever, and the probability function should remain
unchanged. On the other, the exclusion principle tells us that the proba-
bility function should change its sign (e.g., from positive to negative)
under such a permutation. What kind of number is equal to the negative
of itself? There is only one such number—zero. Changing the sign in
front of a zero does not change the value by one iota; minus zero equals
plus zero. In other words, the probability of finding two electrons with
the same spin moving along the same orbit is zero—no such state exists.

Pauli's exclusion principle tells us that electrons with the same prop-
erties don't like to be bunched up in the same place. Consequently, no
more than two electrons (one with each direction of spin) are allowed in
any given orbit. Instead of all the electrons crowding the smallest (low-
est energy) orbit, electrons are forced into successively higher-energy,
larger-size orbits. The net result is that even though the sizes of all the
quantized orbits are smaller in the heavier (more proton-rich) atoms,
electrons have no choice but to occupy an increasing number of orbits.
Amazingly, the behavior of the probability function under permutations
of electrons provides the explanation why, unlike in figure 15, atoms are
nearly equal in size.

Returning now to permutations in general, color transformation may
be considered as near kin. For any pattern that has more than one color,
such as a chessboard, the colors can be interchanged. Strictly speaking,
actual patterns are usually not symmetrical under color transformation—
they do change. A few of the imaginative designs of M. C. Escher come
just about as close as one can expect to being color symmetrical (figure
16). Note that the image does not remain truly the same when black and
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white are transposed, and neither does a chessboard. However, the gen-
eral visual impression remains the same.

Escher himself was never quite sure what had led him to his obses-
sion with translation-symmetric, color-symmetric patterns. In his own
words,

I often wondered at my own mania of making periodic drawings.
Once I asked a friend of mine, a psychologist, about the reason of my
being so fascinated by them, but his answer: that I must be driven by
a primitive, prototypical instinct, does not explain anything. What
can be the reason of my being alone in this field? Why does none
of my fellow-artists seem to be as fascinated as I am by these inter-
locking shapes? Yet their rules are
purely objective ones, which every
artist could apply in his own per-
sonal way!

Escher's retrospective musings touch
upon two important topics: the role
of symmetry in the "primitive"
process of perception, and the rules
that underlie symmetry. The latter
topic will be the subject of several
later chapters. However, since all
the information we obtain about the
world comes through our senses, the question of symmetry as a poten-
tial factor in perception becomes of immediate relevance.
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eyE s'dniM eht
ni yrtemmyS

mong all the human senses, vision is by far the most important
vehicle for perception. However, the eyes are only optical
devices; perception requires the participation of the brain.

Visual perception is a complex of processes in the brain, combining sen-
sations from the external world to produce an informative image. Our
environment produces many more signals than we can possibly analyze.
Consequently, perception involves sifting through the wealth of data
and selecting the most useful features. When human chess players con-
sider their next move, they do not mentally examine every possible
move on the board. They focus on those few moves that appear to be
most beneficial when viewed against the baseline of accumulated infor-
mation—that thing we call memory. In the Woody Allen movie The

Curse of the Jade Scorpion, Dan Aykroyd plays the boss of an insurance
company. In one scene he tells one of his investigators, C. W. Briggs
(played by Woody Allen), "You know, there's a word for people who
think everyone is conspiring against them." To which Woody Allen
replies, "Yeah—perceptive!" In reality, of course, paranoia represents a
distortion of perception.

On the face of it, visual perception must accomplish an impossible
task. It needs to transform the physical impinging of units of light
energy (called photons) on receptors at the back of the eye into mental
pictures of objects. As we shall soon see, symmetry provides an impor-
tant aid toward this goal.

First, however, we must appreciate what types of difficulties have to
be overcome. Astronomy can help to illustrate one of the many obsta-

A
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Iles involved in this process — specifically, the perception of distance.
Figure 17 shows a picture taken with the Hubble Space Telescope, peer-
ing through the spherical halo of stars surrounding the Andromeda
galaxy (known to astronomers as M31). A galaxy is a vast sweep of a few
hundred billion stars like the Sun. M31, at a distance of about 2.5 million
light-years, is one of the nearest neighbors to our own Milky Way
galaxy. (One light-year is about 6 trillion miles.) The picture in figure 17
contains about ten thousand stars in M31 and about a hundred other
galaxies that are seen in the background (some of which appear as

extended, fuzzy objects).
Here, however, comes the
problem. From simply
looking at the picture, there
is no way of telling that the
stars are in our own back-
yard, relatively speaking (at
a distance of 2.5 million
light-years), while some of
the galaxies are more than
10 billion light-years away!

Similarly, when we gaze at the world around us, the eye recognizes only
the direction of the light ray on which a photon traveled. Since the image
is projected onto a two-dimensional surface (the retina), without some
additional information the brain does not have a clue how far away the
photon originated. In the case of a relatively nearby star, astronomers
solve this problem of distance determination using a method known as
trigonometric parallax. They view the star from two different spots
along the Earth's orbit around the Sun (figure 18). During the course of
a year, the nearby star appears to shift back and forth against the very
distant (fixed) stars in the background. By measuring the angle associ-
ated with this apparent shift, knowing the diameter of the Earth's orbit,
and using simple high-school trigonometry, one can calculate the dis-
tance to the star.

Humans use their two eyes in precisely the same way to produce spa-
tial awareness. You can discover this mechanism, known as stereoscopic

vision, by the following simple experiment. Extend your arm, hold up
one finger, and look at the finger against some background. If you alter-
nately close your right and left eyes, your finger will appear to shift back
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and forth relative to the background objects. Bring the finger closer to

your eyes, and you will notice that the jump between the two positions

increases. This apparent shifting (parallax) occurs because your two eyes

view the finger from two different spots. Since the parallax depends on

the distance of the object, by measuring the angle between the apparent

positions and knowing the separation between the eyes, the brain

"trigonometrizes" the distance to the object. If you are familiar with

the relative loss of depth perception associated with closing one eye,

you may think that the role of the two eyes in stereoscopic vision has been

known since antiquity. Surprisingly, even some of the greatest researchers

in perspective missed the concept of stereoscopic vision altogether.

Mathematicians such as Euclid in ancient Greece, the Renaissance archi-

tects Brunelleschi and Alberti, the painters Piero della Francesca, Paolo

Ucello, and Albrecht Durer, and even the great Isaac Newton took the

two eyes to be a mere manifestation of bilateral symmetry, with no other

special function. The first to have noticed that two eyes can provide

something one eye cannot was the quintessential Renaissance man
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Leonardo da Vinci (1452-1519). Leonardo noted that when we look at an
object with both eyes, the right eye manages to capture some of the space
behind the object to its right, while the left eye sees around the object to
its left. Leonardo therefore concluded that "the object . . . seen with both
eyes becomes, as it were, transparent . . . but this cannot happen when an
object . . . is viewed by a single eye." In spite of this foresight, by restrict-
ing his attention only to spheres, Leonardo missed the opportunity to
discover that it was not only in the background, but also in the object it-
self, that the two eyes captured two different views. The person who es-
tablished the importance of seeing with both eyes for the perception of
distance was the German astronomer Johannes Kepler (1571-1630). In
two remarkable books, Astronomiae Pars Optica (The Optical Part of As-

tronomy), published in 1604, and Dioptrice (Dioptrics, the part of optics
that treats refraction), published in 1611, Kepler gave a detailed descrip-
tion of the optics of the eye, explained the operation of eyeglasses, and
developed a theory of stereoscopic vision. Somehow, however, Kepler's
work went relatively unnoticed, and even Charles Wheatstone, who re-
discovered the mechanism of depth perception in 1838, appears to have
been unaware of it.

Charles Wheatstone (1802-75) was born into a musical family,
and his first investigations involved sound, vibrations of various devices
such as strings and pipes, and musical instruments. In 1822 he set up
a demonstration in his father's shop in Pall Mall in London that pro-
vided music not just to the ears, but also to the eyes. This "Enchanted
Lyre" was suspended by a thin wire that passed through the ceiling to a
room above and was connected to the soundboards of a piano, a harp,
and a dulcimer. As Wheatstone played the instruments in the upper
room, the Enchanted Lyre appeared to play by itself. A very imaginative
experimentalist, Wheatstone invented the concertina (a musical instru-
ment similar to a small accordion) and patented the electric telegraph in
Britain.

Wheatstone started his experiments on stereoscopic vision in 1832
and presented his theory in a paper published on June 21,1838. The title
of the paper was "Contributions to the Physiology of Vision. Part the
First. On some remarkable, and hitherto unobserved, Phenomena of
Binocular Vision." The first paragraph of the paper describes the essence
of the finding—that the incongruity of the images on the two retinas and
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the subsequent mental processing produce a spatial perception. In
Wheatstone's words:

When an object is viewed at so great a distance that the optic axes of
both eyes are sensibly parallel when directed towards it, the perspec-
tive projections of it, seen by each eye separately, are similar, and the
appearance to the two eyes is precisely the same as when the object is
seen by one eye only. . . . But this similarity no longer exists when
the object is placed so near the eyes that to view it the optic axes must
converge; under these conditions a different perspective projection
of it is seen by each eye. . . . This fact may be easily verified by plac-
ing any figure of three dimensions, an outline cube for instance, at a
moderate distance before the eyes, and while the head is kept per-
fectly steady, viewing it with each eye successively while the other is
closed.

I have gone to some length in describing the discovery of the
processes involved in the perception of something as elementary as spa-
tial depth because this story helps to exemplify the immense hurdles
associated with developing a comprehensive understanding of percep-
tion. Theories of human perception can fill, and indeed have filled, entire
volumes. Here I will focus solely on the function of symmetry in this
process.

The role of symmetry in perception was thrust to center stage by the
school of thought known as Gestalt psychology. Psychologists Max
Wertheimer, Kurt Koffka, and Ivo Kohler, who initiated this doctrine,
set up an influential laboratory for research in psychology at the Uni-
versity of Frankfurt in 1912. One of the key problems the Gestalt psy-
chologists set out to address was that of perceptual organization—how
the small bits of information received by the senses are organized into
larger perceptual structures. How do we know which segments belong
together to form an object? How do we separate objects from one
another and how do we distinguish between object and background?
The central "law" of perceptual organization of Gestalt psychology is
known as the principle of Pragnanz, commonly referred to as the law of
"good figure" (Pragnanz means "succinctness" in German). The law
states: "Of several geometrically possible organizations, the one that is
seen is the one which possesses the best, simplest and most stable shape."
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To the Gestalt psychologists, therefore, symmetry was one of the key

elements contributing significantly to the "goodness" of the figure. An

arrangement of four dots as in figure 19 will be perceived as a square,

because the "goodness" of the square as a sym-

metrical, closed, stable form is higher than that of,

say, an arrangement of a triangle plus an extra dot.

While the Gestalt psychologists never managed to

formulate a precise theory of shape perception,

later theorists, such as the Dutch psychologist

Emanuel Leeuwenberg and the Americans Wen-

dell Garner and Stephen Palmer, expanded on

their basic principles. Garner and Palmer in particular recognized the

role of symmetries of various types (such as symmetry under rotations

and reflections) for the "goodness" of the figure.

Leeuwenberg and his collaborators developed a theory of shape rep-

resentation generally known as structural information theory. The two

fundamental concepts of this theory are codes and information loads.
Codes are simple perceptual descriptions that can generate an observed

figure. For instance, to describe a rectangle, we can start from the upper

left-hand corner and give the length of the segment that needs to be

drawn (figure 20), followed by the angle adjustment that needs to be per-

formed after that. We then give the next length, again followed by the

angular adjustment. The final code

to draw the rectangle would take

the form a 90 b 90 a 90 b 90. You

notice, however, that since the same

instructions are repeated twice, we

can simplify this code by writing

2* (a 90 b 90).

The information load measures

the complexity of the simplest code

that still gets the job done. Gener-

ally, you can compute the information load by simply counting the

number of parameters in the code (such as a, b, and 90 in the previous

example). The central idea of structural information theory is that the

"goodness" of the figure is higher the lower the information load. Sym-

metric figures contain a lower information load and are therefore higher

on the "goodness" scale. For the rectangle's code above, for instance,
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the information load is 4: the number of iterations (2); the two lengths

(a, b); and the angle (90). For an arbitrary quadrilateral figure, on the

other hand, the information load would be 8 (four lengths and four

angles).

Two other important elements in the Gestalt principles of organiza-

tion are proximity and similarity. The "law" of proximity expresses the

fact that, generally, forms that are close together are grouped together

mentally. In figure 21a we perceive columns, because the vertical spac-

ings of the dots are smaller than the horizontal ones. The converse is true

in figure 21b, resulting in the perception of rows. When the spacings are

equal (as in figure 21c), we are left with an ambiguous impression.

Shapes that are similar also tend to be grouped in association, and

similarity may sometimes be a more powerful organizational element

than proximity. In figure 22 we tend to perceive columns because of the

similarity of the dark circles, even though,

because of their proximity alone, had all the cir-

cles been dark we would have seen rows.

Symmetry plays an important role in the

recognition of similarity because it represents a

true invariant—an immunity to change. Conse-

quently, symmetry is a particularly helpful feature

for the perceptual system to use to determine

whether the observed patterns are indeed similar

or different.

Another Gestalt principle is good continua-

tion—we perceive the symbol X as two lines

crossing each other, not as one upright and one Figure 22

upside-down v connected at a vertex. Common
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fate is also a basis for grouping. We tend to group together things that

are moving at the same speed, in the same direction. The biblical prophet

Amos was already fully aware of this principle when he asked, "Do two

walk together unless they have made an appointment?"

University of California—Berkeley psychologist Stephen Palmer and

collaborators added to the principles of organization those of common

region, connectedness, and synchrony. Figure 23 demonstrates these prin-

ciples. Common region refers to the fact that elements are grouped

together when they are enclosed within a region of space (23a). Con-

nectedness means that we perceive as units elements that appear to be

physically connected (23b). Finally, synchrony reflects the fact that

simultaneous visual events are perceived as being associated (23c).

Symmetry, and in particu-

lar bilateral symmetry, is also

one of the key elements in

figure-ground segregation—
the ability to see objects as

figures that stand out from

the background. Take a quick

look at figure 24, both to the

left and to the right, and

decide which color is the fig-

ure and which one is the background. Bilaterally symmetric areas tend

to be perceived as figures against asymmetrical backgrounds. Conse-

quently, at the left of figure 24 we are inclined to identify the black areas

as figures, while at the right, the white ones are the figures. Vertical and

horizontal orientations are also more

likely to be seen as figures than any

other orientations. Finally, smaller

areas surrounded by larger ones tend

to be identified as figures, as are

meaningful or familiar shapes.

You have probably noticed that

the original Gestalt "laws" were

no more than heuristics—best-guess

principles that may work most of the time but not necessarily every

time. They used rather vaguely defined concepts, such as "goodness" or

"similarity." One may wonder why these principles work at all. The
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answer is that they probably represent a combination of learning and
evolution. As Oscar Wilde once said, "Experience is the name everyone
gives to their mistakes." Humans have been "practicing" perception for
generations, and through their endless number of perceptual encounters
they have learned what to expect. In spite of their shortcomings, the
original Gestalt principles were useful because they provided a quick
answer. When you want to find your keys, you go first to the two places
where you normally leave them, and only after that has failed do you
embark on a systematic search of the house.

Generally, recent psychological theories and experimental results
confirm the important role of symmetry in perception. Many experi-
ments show that bilateral symmetry about a vertical axis is the easiest to
recognize (i.e., is recognized fastest) and that it is exploited as a diag-
nostic property for "same—different" judgment. Basically, symmetry is a
property that catches the eye in the earliest stages of the vision process.
Symmetry is also useful for discriminating living organisms (including
potential predators) from inanimate articles and in the selection of desir-
able mates (I shall return to these topics in chapter 8). Other experiments
have demonstrated that symmetrical figures are more easily reproduced
than asymmetrical ones. In an interesting study, Stanford University
psychologists Jennifer Freyd and Barbara Tversky found that in the
first step, subjects quickly determined whether overall symmetry was
present or absent. Then, if the form was perceived as having overall sym-
metry, some individuals mentally distorted the image and assumed it
(sometimes incorrectly) to have symmetry in the details as well.

An intriguing suggestion that the preference for various types of
symmetries may be a learned characteristic comes from experiments
conducted by University of Illinois psychologist loannis Paraskevopou-
los. His subjects were seventy-six elementary-school children. Paras-
kevopoulos found that double symmetry (vertical and horizontal
reflection) was preferred at age six, bilateral symmetry (vertical reflec-
tion alone) at age seven, and horizontal symmetry (horizontal reflection)
at age eleven.

Some of the most exciting recent studies are those attempting to use
magnetic resonance imaging (MRI) to map the areas in the brain
responding to symmetry. Psychologist Christopher W. Tyler of the
Smith-Kettlewell Eye Research Institute in San Francisco presented sub-
jects with a variety of translational- and reflection-symmetric patterns.
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He found that these stimuli produced activation of a region of the occip-

ital lobe, whose function is otherwise unknown. Surprisingly, very little

or no activation was seen in other areas

with known visual functions. Tyler con-

cluded that this specialized region proba-

bly encodes the presence of symmetry in

the visual field.

The interrelation between symmetry

and orientation is also fascinating. Sym-

metrical figures do not change when

rotated, reflected, or translated in certain

ways. Many forms, however, are not sym-

metrical with respect to any transformation (except the identity, which

leaves the form untouched), and how we perceive them is definitely

affected, for instance, by their orienta-

tion. Take a quick look, for example,

at figure 25. Did you recognize it as

the map of Africa? Or, without turn-

ing the book upside down, do you

recognize the person in figure 26?

Even the perception of symmetry

may be tricky. A shape may be reflec-

tion symmetric about some axis, as in

figure 27a, but unless you turn it as in

figure 27b, so that the axis of symme-

try is vertical, you may not perceive the symmetry. Cognitive scientist

Irvin Rock of Rutgers University and collaborators conducted a series

of experiments designed to test the dependence of perception of form on

orientation. In particular, they wanted to test if the perception of bilat-

eral symmetry depends on whether the axis of symmetry is truly vertical

in the retinal image or whether it

is only perceived as being verti-

cal. The researchers used a shape

such as that shown in figure 28a

as their standard form. This

shape is symmetrical under both

vertical and horizontal reflection.

Subjects were asked to indicate
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which of the two figures, 28b or 28c, they found to be more like 28a.

Note that figure 28b was slightly changed so as not to be symmetric

about a vertical axis, but still to preserve the symmetry about the hori-

zontal axis. The converse was done for figure 28c. When the subjects

observed the figures with their heads upright, most of them chose figure

28c. This was to be expected; the Moravian-Austrian physicist and

philosopher Ernst Mach (1838-1916) had noted as early as 1914 that fig-

ures are perceived as symmetrical primarily as a result of reflection sym-

metry about a vertical axis. Here, however, came a surprise. When

observers were tilted by 45 degrees, they still selected figure 28c as being

more like Figure 28a, in spite of the fact that in this orientation, neither

28b nor 28c preserved vertical symmetry in the retinal image. From this

and other experiments, Rock concluded that "for a novel figure there is

little change in appearance when only the orientation of its retinal image

is changed." Rock found that what really matters is not even so much the

actual orientation of the figure in its environment, but the fact that we

normally assign the directions top, bottom, left, and right to figures.

These assignments typically depend on other visual cues, such as the

direction of gravity or the environmental frame of reference. Disori-

ented figures with respect to the assigned directions are not easily recog-

nized. Interestingly, Rock found that the effect on the perceived form is

minimal when the only change performed is a left-right reversal. These

results further confirm the primary importance of bilateral symmetry in

perception. Rock did acknowledge, however, that some shapes, such as

cursively written words or portraits, become very difficult to recognize

even when only the orientation of the retinal image is altered.

While symmetry acts in most cases to facilitate perception, one type of

symmetry may actually lure the eyes into a misinterpretation of what

they see. Scottish physicist David Brewster (1781-1868), who also in-

vented the kaleidoscope in 1816, noticed something strange when staring

at wallpaper with translation-symmetric repeating patterns. The prolifi-
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cacy of Morris and Company and their contemporaries ensured that such

patterns were ubiquitous during the Victorian era. To his amazement,

Brewster discovered that some of these designs literally "spring out" of

the wall and become three-dimensional illusions, now known as wall-

paper or escalator illusions, because both wallpapers and escalators have

repetitive patterns. You may be familiar already with this phenomenon

from the many Magic Eye books and posters. The fascination with these

computer-generated autostereograms—patterns that leap into three-

dimensionality when stared at with crossed eyes—reached the magnitude

of a craze in the early 1990s. Figure 29 demonstrates the surprising effect.

If you stare at it for about a minute as if you were focusing your gaze on

an image behind the page, the surfers will miraculously materialize as

three-dimensional entities. For reasons that are not entirely clear, some

people cannot perceive the illusions created by autostereograms. So, if

figure 29 did not suddenly gain depth for you, don't despair; you belong

to an exclusive club. The idea behind the Magic Eye illusions stemmed

from research in depth perception by the Hungarian-American psychol-

ogist Bella Julesz in 1959. Julesz's collaborator, psychologist Christopher

Figure 29
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Tyler of the Smith-Kettlewell Eye Research Institute, discovered in 1979

that he could use an offset print technique to generate single-image

stereograms. The basic explanation for the magic of the repeating pat-

terns is rather simple. With each eye fixed on a different member of an

adjacent pair in the repeating pattern, the brain erroneously perceives

the two objects as a single one at a

different distance (figure 30). The

reason for the brain's "failure" is,

of course, the fact that the repeat-

ing motifs create identical images

on the two retinas, giving the im-

pression that a single object is in

focus.

When the repetitive pattern is

very closely spaced and consists

of high-contrast motifs, it can

induce a very powerful illusion of motion. British op artist Bridget Riley

dazzled many observers with such hallucinatory patterns in her painting

Fall (figure 31).

With the exception of permutations and of the Pauli exclusion prin-

ciple, all the symmetries described so far were symmetries of shapes,

forms, and configurations.

They were symmetries of

objects in space, imposed

by the disposition of spe-

cific systems and perceived

through the senses. We

can see that a cathedral has

bilateral symmetry, that a

wallpaper design has trans-

lational symmetry, and

that a circle has rotational

symmetry. The symme-

tries underlying the funda-

mental laws of nature are

close kin to the above sym-

metries, but rather than focusing on external form or figure, they con-

centrate on the question: What operations can be performed on the
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world around us that would leave the laws that describe all the observed
phenomena unchanged?

THE RULES OF THE GAME

What are the laws of nature? Biologist Thomas Henry Huxley
(1825-95), the most passionate defender of Darwin's theory of evolution
and natural selection, provided the following explanation:

The chess board is the world, the pieces are the phenomena of the
universe, the rules of the game are what we call the laws of Nature.
The player on the other side is hidden from us. We know that his
play is always fair, just, and patient. But also we know, to our cost,
that he never overlooks a mistake, or makes the smallest allowance
for ignorance.

This definition, by the man who was nicknamed "Darwin's Bulldog,"
lacks ambition by modern standards. Today's physicists would like the
laws of nature not only to represent the rules of the game, but also to
explain even the existence and properties of the chessboard and the
pieces themselves!

Not until the seventeenth century did humans even dream of the
possibility that a body of laws exists that would explain everything.
Galileo Galilei (1564-1642), Rene Descartes (1596-1650), and in partic-
ular Isaac Newton (1642-1727) demonstrated for the first time that a
handful of laws (such as the laws of motion and gravity) could explain a
wealth of phenomena, ranging from falling apples and tides on the beach
to the motion of planets.

Others followed in their giant footsteps. In 1873, Scottish physicist
James Clerk Maxwell (1831-79) published his Treatise on Electricity and

Magnetism—a monumental work unifying all the electric, magnetic, and
light phenomena under the umbrella of only four mathematical equa-
tions. Building on the experimental results of the English physicist
Michael Faraday (1791-1867), Maxwell was able to show that just as the
force holding planets in their orbits and the one keeping objects on the
Earth's surface are in fact one and the same, electricity and magnetism
are simply different manifestations of a single physical essence. The
twentieth century witnessed the birth of not one but two major scientific
revolutions. First, Einstein's special and general theories of relativity
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changed forever the meaning of space and time. The latter two concepts
have become inextricably linked in the entity now known as spacetime.

General relativity also suggested that gravity is not some mysterious
force that acts at a distance, but simply a manifestation of spacetime
being warped by matter, like a rubber sheet sagging under the weight of
a cannonball. Everything moving through this warped space—such as
planets in their courses—travels not along straight lines, but on curved
trajectories. Second, on a different front, all hope for a fully determinis-
tic world was shattered with the introduction of quantum mechanics.

In Newtonian mechanics, and even in general relativity, if you some-
how knew the position of every single particle in the universe at a given
moment and how fast and in which direction it was moving at that
instant, you could both predict unambiguously the future of the uni-
verse and tell the entire story of the preceding cosmic history. The only
limitations would have been associated with rare circumstances in which
general relativity breaks down, as in the case of the collapsed objects
known as black holes. Quantum mechanics changed all that. Even the
position and velocity of a single particle cannot be determined precisely.
The only things that are deterministic about the universe are the proba-
bilities of various outcomes, not the outcomes themselves. Although for
rather different reasons, the universe is a bit like the weather—the best
we can do is predict the probability that it will rain tomorrow, not
whether it will actually rain or not. God does play dice.

With every step toward the revolutions of relativity and quantum
mechanics, the role of symmetry in the laws of nature has become
increasingly appreciated. Physicists are no longer content with finding
explanations for individual phenomena. Rather, they are now convinced
more than ever that nature has an underlying design in which symmetry
is the key ingredient. A symmetry of the laws means that when we
observe natural phenomena from different points of view, we discover
that the phenomena are governed by precisely the same laws of nature.
For instance, whether we perform experiments in New York, Tokyo, or
at the other edge of the Milky Way galaxy, the laws of nature that explain
the results of those experiments will take the same form. Note that the
symmetry of the laws does not imply that the results of the experiments
themselves will necessarily remain unchanged. The strength of gravity
on the Moon is different from that on Earth, and consequently astro-
nauts on the Moon were seen to leap to greater heights than they would
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have on Earth. However, the dependence of the strength of the gravita-

tional attraction on the Moon's mass and radius is the same as the

dependence of the Earth's gravity on its own mass and radius. This sym-

metry of the laws—the immunity to changes when displaced from one

place to another—is a translational symmetry. Without this symmetry

under translation it would have been virtually impossible to understand

the universe. The chief reason we can interpret relatively easily observa-

tions of galaxies ten billion light-years away is that we find that hydro-

gen atoms there obey precisely the same quantum mechanical laws they

obey on Earth.

The laws of nature are also symmetrical under rotation. Physics has

no preferred direction in space—we discover the same laws whether

we perform the experiment standing upright or tilted whichever way,

or whether we measure directions with respect to up, down, north, or

southwest. This is less intuitive than you might think. Recall that for

creatures that evolved on the surface of the Earth there is a clear distinc-

tion between up and down. Aristotle and his followers thought that

objects fall downward because that is the natural place for heavy things.

Newton, of course, made it clear that up and down seem different to us

not because the laws of physics depend on these directions, but because

we happen to feel the gravita-

tional pull of this relatively

large mass we call Earth under-

neath our feet. This is a change

in the environment, not in the

laws. In a way we are lucky—

the symmetries under transla-

tion and rotation ensure that

irrespective of where we are in

space, or how we are oriented,

we will discover the same laws.

A simple example can help

to clarify further the difference

between the symmetries of

shapes and of laws. The ancient

Greeks thought that the orbits

of the planets must be circular, because this shape is symmetric under

rotations by any angle. Instead, the symmetry of Newton's law of gray-
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itation under rotation means that the orbits can have any orientation in
space (figure 32). The orbits do not have to be circular; they can be, and
indeed are, elliptical.

There exist other, more esoteric symmetries that leave the laws of
nature invariant, and we shall return to a few of them and their impor-
tant implications in chapter 7. The key point to keep in mind, however,
is that symmetry is one of the most important tools in deciphering
nature's design.

Until now, our swift survey of symmetries, whether of objects or of
natural laws, has been like that of tourists in a foreign country. We have
been able to admire the scenery, but to gain a deeper understanding of
the culture we must learn to speak the language. So it's time for a crash
Berlitz course.

THE MOTHER OF ALL SYMMETRIES

Even the brief glimpse of the world of symmetries we have caught so far
makes it crystal clear that symmetry sits right at the intersection of sci-
ence, art, and perceptual psychology. Symmetry represents the stubborn
cores of forms, laws, and mathematical objects that remain unchanged
under transformations. The language describing symmetries has to iden-
tify these invariant cores even when they are masquerading under differ-
ent disciplinary disguises..

The language of the financial world, for instance, is the language of
arithmetic operations. If you want to compare at a glance the economi-
cal strengths of two companies, you don't need to read entire volumes of
prose; a comparison of some key numbers will do. When Isaac Newton
formulated his celebrated laws of motion, he also developed the lan-
guage of calculus to be able to express and manipulate them. One could
argue that one of the achievements of abstract and nonobjective art in
the twentieth century was the transformation of color into a language of
meaning and emotion. Some painters abandoned the use of form and
other visual elements almost entirely in favor of communicating exclu-
sively by color.

To explore the labyrinths of symmetry, mathematicians, scientists,
and artists light their way by the language of group theory. Like some
exclusive clubs, a mathematical group is characterized by members that
have to obey certain rules. A mathematical set is any collection of enti-
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ties, whether the components of a dismantled airplane, the letters of the
Hebrew alphabet, or a bizarre collection consisting of van Gogh's ear,
the Easter bunny, all the Albanian newspapers, and the weather on Mars.
A group, on the other hand, is a set that has to obey certain rules with
respect to some operation. For instance, one of the most familiar groups
is composed of all the integer numbers (positive, negative, and zero;
i.e., . . . —4, —3, —2, —1, 0, 1, 2, 3, 4, . . . ), in conjunction with the simple
arithmetic operation of addition.

The properties that define a group are:

1. Closure. The offspring of any two members combined by the oper-
ation must itself be a member. In the group of integers, the sum of
any two integers is also an integer (e.g., 3 + 5 = 8).

2. Associativity. The operation must be associative—when combining
(by the operation) three ordered members, you may combine any
two of them first, and the result is the same, unaffected by the way
they are bracketed. Addition, for instance, is associative: (5 + 7)
+ 13 = 25 and 5 + (7 + 13) = 25, where the parentheses, the "punc-
tuation marks" of mathematics, indicate which pair you add first.

3. Identity element. The group has to contain an identity element
such that when combined with any member, it leaves the member
unchanged. In the group of integers, the identity element is the
number zero. For example, 0 + 3 = 3 + 0 = 3.

4. Inverse. For every member in the group there must exist an
inverse. When a member is combined with its inverse, it gives the
identity element. For the integers, the inverse of any number is the
number of the same absolute value, but with the opposite sign: e.g.,
the inverse of 4 is —4 and the inverse of —4 is 4; 4 + (-4) = 0 and
(-4) + 4 = 0.

The fact that this simple definition can lead to a theory that embraces
and unifies all the symmetries of our world continues to amaze even
mathematicians. As the great British geometer Henry Frederick Baker
(1866-1956) once put it, "What a wealth, what a grandeur of thought
may spring from what slight beginnings." Group theory has been called
by the noted mathematics scholar James R. Newman "the supreme art of
mathematical abstraction." It derives its incredible power from the intel-
lectual flexibility afforded by its definition. As we shall see later in the
book, the members of a group can be anything from the symmetries of
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the elementary particles of the universe or the different shuffles of a deck
of cards to the symmetries of the equilateral triangle. The operation
between the members may be something as mundane as arithmetic addi-
tion (as in the previous example), or more complicated, such as "fol-
lowed by," for the operation of two symmetry transformations (as in a
rotation by one angle followed by a rotation by another angle).

Group theory explains what happens when various transformations,
such as rotation and reflection, are applied successively to a particular
object, or when a particular operation (such as addition) scrambles dif-
ferent objects (such as numbers) together. This type of analysis exposes
the most fundamental structures of mathematics. Consequently, when
stock market analysts or elementary particle physicists encounter what
appear to be insurmountable difficulties in the recognition of patterns,
they can occasionally use the formalism of group theory to cross over
into other disciplines and borrow tools developed there for similar
problems.

To get an inkling of the relation between group theory and symme-
tries, let's start with the simple case of the symmetries of the human fig-
ure. Humans remain almost unchanged under only two symmetry
transformations. One is the identity, which leaves everything as is and is
therefore a precise symmetry. The second is reflection about a vertical
plane—the (approximate) bilateral symmetry. Let us use the symbol I to
denote the operation of the identity transformation and the symbol r to
denote the reflection. The set of all the symmetry transformations of the
human form therefore consists of just two members: I and r. What hap-
pens if we apply these transformations successively? A reflection fol-
lowed by the identity is no different from performing a reflection alone.
Symbolically we can express this as: I o r = r, where the symbol denotes
"followed by." Note that the order is always such that the first symbol
to the right is the transformation applied first, and the other follows.
Therefore, a . b c means that c was applied first, followed by b and then
by a.

The application of two reflections successively gets the human figure
back to the original, since the first reflection interchanges left and right
and the second interchanges them back. Applying r followed by r is
therefore the same as applying the identity I: r r = I.

We can now attempt to construct something like a multiplication
table for the two symmetries, where the entry in row I and column r is
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I r, and so on. The word multiplication is used here loosely to represent

the operation between the transformations (in this case, "followed by").

The multiplication table reveals an important truth: The set of all the
symmetry transformations of the human figure is a group! Let us check

that the defining properties of a group are indeed all satisfied:

1. Closure. The multiplication table demonstrates that the combina-

tion of any two symmetry transformations by the operation "fol-

lowed by" is also a symmetry transformation. When you think

about it, this is not surprising. Since any of the two transformations

leaves the figure unchanged, so does their combined application.

2. Associativity. This is clearly satisfied, because it is true for any three

transformations of this type combined by "followed by." Indeed,

when we apply, say, / o r r, it makes absolutely no difference how

we bracket them.

3. Identity element. The identity is a symmetry transformation.

4. Inverse. The multiplication table shows that each one of the iden-

tity and the reflection transformations serves as its own inverse—

applying either of them twice gives the identity: I 
o 
I = I and

r r =

The group of symmetries of the human body contains only two ele-

ments, but the association we discovered between symmetries and

groups is a powerful one. To choose a slightly richer example, examine

the form of the three running legs in figure 33. This is the symbol of the

British Isle of Man in the Irish Sea.

This shape has precisely three symmetry transformations: (1) rota-

tion through 120 degrees about the center; (2) rotation by 240 degrees;

(3) the identity (or rotation through 360 degrees). Note that the figure is

not symmetric under reflection of any sort, because reflections make the

feet point the wrong way. We can denote the rotation by 120 degrees by

a, the rotation by 240 degrees by b, and the identity by I and examine

again what happens when we combine symmetry transformations
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through the operation "fol-

lowed by" (denoted by the

symbol 'degree'.). If werotate by 120

degrees and again by 120

degrees we obtain a rotation

by 240 degrees; meaning that

a a = b. Similarly, if we

rotate twice by 240 degrees

the result is the same as if we

rotated through 120 degrees,

because 480 degrees consists

of one complete revolution

(360 degrees = the identity)

plus 120 degrees. We therefore have b b = a. Finally, rotating through

120 degrees followed by a rotation through 240 degrees (or the other

way around) results in a rotation through 360 degrees, or

º  the "multiplica-

tion table":

We find that the set of symmetry transformations of the three running

legs symbol also forms a group. The table demonstrates closure, and the

transformations a and b are each other's inverses—applying one after the

other brings things back to the way they were, the identity.

You may begin to realize that groups will pop up wherever symme-

tries exist. In fact, the collection of all the symmetry transformations of
any system always forms a group. This is easy to understand. If A is a

symmetry transformation, that is, its application leaves the system

unchanged, and B is another symmetry transformation, then clearly so is

A B (B followed by A). Also, every transformation has an inverse,

returning things to the original state. As we shall see throughout this

book, the unifying powers of group theory are so colossal that historian

of mathematics Eric Temple Bell (1883-1960) once commented, "When-
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ever groups disclosed themselves, or could be introduced, simplicity
crystallized out of comparative chaos."

Unlike most mathematical discoveries, however, no one was looking
for a theory of groups or even a theory of symmetries when the concept
was discovered. Quite the contrary; group theory appeared somewhat
serendipitously, out of a millennia-long search for a solution to an alge-
braic equation. Befitting its description as a concept that crystallized
simplicity out of chaos, group theory was itself born out of one of
the most tumultuous stories in the history of mathematics. Almost
four thousand years of intellectual curiosity and struggle, spiced with
intrigue, misery, and persecution, culminated in the creation of the the-
ory in the nineteenth century. This amazing story, chronicled in the next
three chapters, began with the dawn of mathematics on the banks of the
Nile and Euphrates rivers.



- THREE -

Never Forget This in the
Midst of Your Equations

n an address entitled "Science and Happiness" that was pre-
sented at the California Institute of Technology on February
16,1931, Albert Einstein remarked, "Concern for man himself

and his fate must always constitute the chief objective of all technologi-
cal endeavors . . . in order that the creations of our mind shall be a bless-
ing and not a curse to mankind. Never forget this in the midst of your
diagrams and equations." Even Einstein himself could not have imag-
ined how prophetic this admonition would become less than a decade
later, during the dark days of World War II and the horrors of the Holo-
caust. The history of mathematical equations did start, however, solely
with the benefit of humankind in mind. The first equation solvers
attempted nothing more than to address specific everyday needs.

" US" AND "AHA"

Sometime in the fourth millennium BC the first Sumerian urban com-
munities came into existence in Mesopotamia, the land between the
Tigris and Euphrates rivers. Nearly half a million cuneiform tablets and
other archeological artifacts found in this area tell the story of a society
with organized agriculture, impressive architecture, and vibrant political
and cultural history. Then, as today, this fertile land was prone to inva-
sion from many directions, resulting in a frequent change of ruling pop-
ulations. A few centuries after falling before the Akkadian king Sargon I
(ca. 2276-2221 BC), Semitic Amorites took over the land of Sumer and
established their capital in the commercial city of Babylon. Conse-
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quently, the culture of the entire region between roughly 2000 and 600

BC is conventionally referred to as "Babylonian." The rapidly evolving
Babylonian society required massive records of supplies and distribu-
tion of goods. Computational tools were also needed for business trans-
actions, for agricultural projects involving the partitioning of lots, and
for the making of wills. To this end, the Babylonians developed the most
sophisticated mathematics of that time. The texts of scores of cuneiform
tablets demonstrate that the Babylonians not only mastered a variety of
arithmetic manipulations, but literally anticipated more advanced alge-
bra. Here I shall concentrate only on the emergence of "equations,"
since this is the most relevant part for the history of group theory. The
reason I have put the word equations in quotation marks is that the
Babylonians did not truly use the concept of algebraic equations in
the same way we do today. Rather, they stated problems and solved
them rhetorically, in the language of ordinary discourse. In other words,
one problem after another was solved by precise verbal instructions, but
no pattern or formula was ever identified as a general procedure.

There is little doubt that these mathematical problems first appeared
in the context of the society's need to divvy up lots of land. The words
used for the unknown quantities one needed to solve for were us
(length), sag (width), and asa (area), even when no mensuration was
involved.

The simplest equations one can formulate are the ones called linear

(they are represented by straight lines when graphed). In modern nota-
tion these are equations of the type 2x + 3 = 7, where x represents
the unknown. To solve an equation means to find a value of x for which
the equation holds true (in the above example, the solution is x = 2, since
2 x 2 + 3 = 7). Several tablets contain problems that need to be solved
using linear equations.

Sometimes to find the answer, one needed to solve for the value of
two unknowns. For instance, in one problem the values of the width and
length are called for if one-quarter of the width plus the length are equal
to 7 hands (a unit of length), and the length plus the width are equal to
10 hands. Using the algebra we learn in school, if we denote the length
by x and the width by y, this problem translates into the system of two
linear equations: 'Ay + x = 7, x + y = 10. The Babylonian scribe notes
correctly that a length of 6 hands (or 30 fingers, one hand being equal to
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5 fingers) and a width of 4 hands (20 fingers) satisfy both equations (in

appendix 2, I present for the interested reader a brief reminder of how

one solves such systems of equations).

Linear equations featured even more prominently in the mathemat-

ics of ancient Egypt. Apparently the Babylonians found them too ele-

mentary to deserve detailed documentation. Much of our knowledge of

Egyptian mathematics comes from the fascinating Ahmes Papyrus. This

large papyrus (about eighteen feet long) currently resides in the British

Museum (except for a few fragments, discovered unexpectedly in a

collection of medical papers, that are in the Brooklyn Museum).

The papyrus was pur-

chased by Scottish Egyp-

tologist Alexander Henry

Rhind in 1858 and is con-

sequently often referred to

as the Rhind Papyrus (fig-

ure 34). According to the

scribe Ahmes's own testi-

mony, he copied the papy-

rus around 1650 BC from

an original document that

had been written a couple

of hundred years earlier

(during the rule of King

Ammenemes III of the

Twelfth Dynasty). The

papyrus, described by

British scientist D'Arcy

Thompson as "one of the

ancient monuments of learning," contains eighty-seven problems. These

are preceded by a table of "recipes" for divisions and an introduction.

The introduction describes the document somewhat grandiloquently as

"The entrance into the knowledge of all existing things and all obscure

secrets." The problems that Ahmes presents and solves, on the other

hand, deal mostly with a variety of practical issues, from the fair parti-

tion of loaves of bread to the slope of pyramids. The unknown is called

aha, meaning "heap." For example, problem 26 calls for the value of aha
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if aha and its quarter are added to become 15. In modern notation we
would formulate the equation x + 'Ax = 15, to which the answer is, as
Ahmes correctly finds, x = 12.

Not all the mathematical problems in the Ahmes Papyrus address the
pressing questions of the time. Some were clearly introduced as exercises
for students, and at least one was chosen purely for its charm. Problem
79 reads: "Houses 7, Cats 49, Mice 343, Spelt 2,401, Hekats 16,807, Total
19,607." Evidently, a playful Ahmes describes here a puzzle, in which in
each of seven houses there are seven cats, each of which ate seven mice,
each of which would have eaten seven ears of wheat, each of which
would have produced seven hekats (measures) of grain. The unknown
called for in this problem is the total, which, being the sum of all houses,
cats, mice, spelts, and hekats, is clearly of no practical worth. Many have
speculated that this ancient brain twister metamorphosed over the cen-
turies into two other known puzzles. In 1202, the famous Italian mathe-
matician Leonardo of Pisa (nicknamed Fibonacci; lived ca. 1170-1240),
published a book entitled Liber abaci (Book of the Abacus). In this book,
he poses a problem that reads, "Seven old women are traveling to Rome,
and each has seven mules. On each mule there are seven sacks, in each
sack there are seven loaves of bread, in each loaf there are seven knives,
and each knife has seven sheaths. Find the total of all of them."

Half a millennium later still, in the eighteenth-century Mother Goose
collection of nursery rhymes, we find:

As I was going to St. Ives,

I met a man with seven wives.
Every wife had seven sacks,

Every sack had seven cats,

Every cat had seven kits;

Kits, cats, sacks, and wives,

How many were going to St. Ives?

Was this nursery rhyme truly inspired by the Ahmes Papyrus of
more than three thousand years earlier? Hard to believe. Note, inciden-
tally, that depending on the interpretation, the correct answer to the
nursery rhyme puzzle is either one (the narrator; all others were coming
from St. Ives) or none (the narrator does not belong in the group of
"kits, cats, sacks, and wives"). Geometrical series of this type, in which
every successive number is increased by the same multiplier, have always
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fascinated humans. Furthermore, spiritual qualities have been associated
with the number seven in both Eastern and Western traditions (e.g.,
seven days of the week, seven gods of luck in Japan, seven deadly sins).
The three puzzles might therefore have been the independent creations
of three imaginative brains, separated by centuries.

The knowledge of how to solve linear equations was not exclusive to
the Middle East. The impressive Chinese collection Nine Chapters on
Mathematical Art (Jiu zhang suan shu) was composed sometime
between 206 BC and AD 221 and was based on a yet earlier collection.
In chapter 8 of Nine Chapters, we find problems that involve no fewer
than three linear equations with three unknowns, all solved brilliantly.

The next level up, in terms of the intricacy of algebraic equations, is
represented by quadratic equations. The extra complication is intro-
duced by the fact that in such equations the unknown, x, appears
squared, as in 3x 2 + x = 4. To the novice this may not look like a dra-
matic change, yet quadratic equations are actually more difficult to solve
than linear ones. As incredible as this may sound, the topic of equations
in general and of quadratic equations in particular became the subject of
a heated debate in the British parliament in 2003. In a brilliant speech
on the curriculum at school, member of Parliament Tony McWalter
explained:

Why should anyone feel passionate about the xs and ys in a system of

equations? One answer is this: because if one does not make the

effort to see what those xs and ys conceal, one will be cut off from

having any real understanding of science. . . . Why should anyone try

to understand quadratic equations and the principles that lie behind
solving them? They underpin modern science as surely as the smelt-
ing methods of the Romans were the key to their building culture.

However, you may wonder, who were the first to have encountered the
need to formulate and solve such equations?

THE PROTECTORS OF THE PUBLIC

In the Jewish code of civil and canon law—the Talmud—we find a story
of an exilarch upon whom a huge fine had been imposed. He had to fill
a granary having a base surface of 40 upon 40 with wheat. The distressed
man went to Rabbi Huna (ca. AD 212-97), the head of the Academy of



56 THE EQUATION THAT COULDN'T BE SOLVED

Sura in Babylonia, for advice. The scholar told him, "Persuade them to

take from you [two installments:] now a surface of 20 upon 20 and after

some time another installment of 20 upon 20 and you will profit the

half." Of course the area of a square with a side of 40 units is 40 x 40 =

1,600 square units, while

the combined area of two

20 x 20 squares is only 800

square units. Rabbi Huna

takes advantage here of a

common mistake in ancient

times —the notion that the area of a figure depends entirely on its

perimeter. The Greek historian Polybius (ca. 207-125 BC), for instance,

tells us that many people of his time refused to believe that Sparta, with

a surrounding wall of 48 stadia, could have double the capacity of Mega-

lopolis, with a perimeter of 50 stadia. Figure 35 presents a simple

demonstration of how a figure with a smaller perimeter can have a larger

area. The elongated rectangle has a perimeter of 2 x (100 + 10) = 220

units and an area of 100 x 10 = 1,000 square units. The shorter rectangle

has a smaller perimeter, 2 x (50 + 40) = 180 units, yet it has twice the

area, 50 x 40 = 2,000 square units. The Greek mathematician Proclus

(AD 410-85) noted that even as late as the fifth century, members of cer-

tain communities used to cheat their fellow citizens by giving them land

of larger perimeter but smaller area than they selected for themselves. To

add insult to injury, these scoundrels used this scheme to earn a reputa-

tion for generosity.

Let us examine for a moment what is involved in resolving the

perimeter-area confusion. Suppose we have a rectangle with a perimeter

of 18 units. If we denote its length by x and its width by y, then x + y

= 9 (since the perimeter is composed of twice the length and twice the

width). Assume further that the area is given as 20 square units. This

means that xy = 20 (the area is the product of the length and width). We

therefore have the system of two equations with two unknowns:

x + y = 9

xy = 20

A straightforward way to solve this problem would be to isolate the

unknown y from the first equation (by subtracting x from both sides),

y = 9 – x, and to substitute this expression for y in the second equation:
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x(9 – x) = 20. If we now multiply through, on the left-hand side, we
obtain the quadratic equation 9x – x 2 = 20. Many Babylonian problems
leading to quadratic equations are broadly of this general form. For
instance, problem 2 in tablet 13901 in the British Museum reads, "I sub-
tracted the side from the area of my square. 870." This corresponds to
the quadratic equation x 2 – x = 870. One speculation is, therefore, that
quadratic equations came to light as an attempt by conscientious Baby-
lonian mathematicians to protect the public from manipulators and
scheming land thieves. How these mathematicians discovered the solu-
tion to the quadratic equation remains a mystery, since, while the Baby-
lonians always spell out in great detail the steps of the procedure leading
to a solution, they never tell us how they derived that procedure.

The ancient Egyptians could handle only the simplest of the quad-
ratic equations, of the type x 2 = 4, but not "mixed" equations that
included both x 2 and x. What is the solution to x 2 = 4? It is the square
root of 4, denoted as a One obvious answer is 2, since 2 x 2 = 4. That
was all the Egyptians cared about, since the number was supposed to
represent quantities such as length or loaves of bread, which have to be
positive. However, the equation x 2 = 4 actually admits a second, less
obvious solution: –2. When one negative number is multiplied by a sec-
ond negative number, the result is a positive number. In other words,
(-2) x (-2) = 4, and therefore the equation x 2 = 4 has two solutions:
x = 2 and x = –2. This is the first indication that quadratic equations
may have two different solutions, not just one. While the Babylonians
knew how to solve mixed quadratic equations, they were still interested
only in positive solutions, since the unknowns typically represented
lengths. They also avoided those cases in which two different positive
solutions could be found, since those must have struck them as illogical
absurdities.

In spite of their superb mathematical abilities, the very early Greek
mathematicians concentrated primarily on geometry and logic and paid
relatively little attention to algebra. The clear perception of form and
number as two aspects of one mathematics had to await the brilliant
mathematical minds of the seventeenth century. The great Euclid of
Alexandria, whose monumental work The Elements (published ca. 300
BC) laid the foundations of geometry, addresses quadratic equations
only obliquely. He solves the equations geometrically, by formulating
methods for finding lengths, which are in fact solutions to quadratic
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equations. Arab mathematicians were to further expand upon this type
of geometric algebra centuries later.

THE FATHERS OF ALGEBRA

The great Greek school of Alexandria produced many outstanding
mathematicians during two golden ages. Notwithstanding many ups and
downs, the city of Alexandria, its school (known as the Museum), and
the associated library, reputed to hold some seven hundred thousand
books (many confiscated from ill-omened tourists), endured for almost
seven hundred years. One of the most original thinkers of the Alexan-
drian school was Diophantus, a man sometimes called the "father of
algebra." Details of the life of Diophantus are so veiled in obscurity that
we don't know with certainty even in which century he lived, except that
it has to be later than about 150 BC (since he quotes the mathematician
Hypsicles, who lived ca. 180 BC to 120 BC) and earlier than about
AD 270 (since he is mentioned by Anatolius, bishop of Laodicea, who
took office around that time). Generally, Diophantus is assumed to have
flourished around AD 250, although the possibility that he had lived a
century earlier cannot be ruled out. We know of Diophantus's ingenious
work mostly through his major treatise, Arithmetica, which originally
contained thirteen books. Only six books in Greek have survived the
onslaught of the Muslims on the Alexandrian library in the seventh cen-
tury. An Arabic translation of what may be four more books (attributed
to the ninth-century mathematician Qusta Ibn Luqa) was miraculously
discovered in 1969.

Despite the honorific "father of algebra," most of Arithmetica actu-
ally deals with problems from the theory of numbers. Nevertheless, Dio-
phantus certainly represents a crucial stage in the evolution of algebra
that is intermediate between the purely rhetorical style of the Babylo-
nians and the symbolic forms of equations (e.g., 2x 2 + x = 3) we use
today. The German mathematician and astronomer Johannes Regiomon-
tanus could not curb his admiration for Arithmetica in 1463: "In these old
books the very flower of the whole of arithmetic lies hid, the ars rei et cen-

sus [art of the "thing" and enumeration; referring to equations with un-
knowns and arithmetic] which today we call by the Arabic name of
algebra." Diophantus demonstrated incredible creativity and skill in his
solutions to many problems. Yet he only considered positive answers,
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and even among those, only the ones that could be expressed either as
whole numbers (such as 1, 2, 3, . . . ) or as fractions (such as 2/3, 4/9, 5/13;
collectively, the whole numbers and the fractions are known as rational
numbers). As an example of Diophantus's ingenuity, consider problem 28
from the first book: "To find two numbers such that their sum and the
sum of their squares are given numbers." Clearly, this is a problem with
two unknowns (the two numbers). Yet, Diophantus succeeds by a bril-
liant trick to reduce the number of unknowns from two to one, and to ob-
tain for it a simple equation. (For the interested reader I present
Diophantus's solution in appendix 3.) The Arithmetica makes it abun-
dantly clear that Diophantus knew how to solve quadratic equations of
the three types: ax e + bx = c (where a, b, c are given positive numbers, as
in 2x 2 + 3x = 14); ax e = bx + c; and ax e + c = bx. These were precisely the
types of equations revisited by Arab mathematicians more than five cen-
turies later.

Diophantus is best known today for a special class of equations that
bears his name—Diophantine equations—and also because of his very
unusual epitaph. Diophantine equations are truly bizarre in that, on the
face of it, they appear to admit any number as a solution. Consider, for
instance, the equation: 29x + 4 = 8y. For what values of x and y does the
equality hold true? If we choose, say, y = 5, we obtain x = 36/29. If we
choose y = 1, we obtain x = 4/29, and so on. We have an infinity of val-
ues to choose from for y, and for any value we happen to choose, we can
find a corresponding x that satisfies the equation. What makes Diophan-
tine equations special is that we are actually supposed to be seeking only
solutions for x and y that are both whole numbers (such as 1, 2, 3, . . . ).
This immediately limits the possible solutions and makes them much
harder to find. Can you discover a solution for the Diophantine equa-
tion above? (If not, I present it in appendix 4.)

The most famous Diophantine equation in history is the one known
as Fermat's Last Theorem, the celebrated statement by Pierre de Fermat
(1601-55) that there are no whole number solutions to the equation x" +
y n = z n , where n is any number greater than 2. When n = 2, there are
many solutions (in fact an infinite number). For instance, 3 2 + 4 2 = 52

(9 + 16 = 25); or 12 2 + 5 2 = 13 2 (144 + 25 = 169). Miraculously, when
we go from n = 2 to n = 3, there are no whole numbers x, y, z that sat-
isfy x 3 + y 3 = z 3 , and the same is true for any other value of n that is
greater than 2. Appropriately, it was in the margin of the second book of



60 THE EQUATION THAT COULDN'T BE SOLVED

Diophantus's Arithmetica, which Fermat was eagerly reading, that he
wrote his extraordinary claim—one that took no fewer than 356 years to
prove.

A sixth-century collection known as The Greek Anthology contains
some six thousand epigrams. One of these supposedly gives us a scanty
record of the life of Diophantus:

God granted him to be a boy for the sixth part of his life, and adding
a twelfth part to this, He clothed his cheeks with down; He lit him
the light of wedlock after a seventh part, and five years after his mar-
riage He granted him a son. Alas! late-born wretched child; after
attaining the measure of half his father's life, chill Fate took him.
After consoling his grief by this science of numbers for four years he
ended his life.

Diophantus himself would have probably been somewhat offended by
the fact that his life story has been reduced to a mere linear equation, of
the type that had never really interested him. If the description is correct,
he lived to be eighty-four years old.

Recognizing that the Babylonians, Greeks, and in particular Hindu
mathematicians of the seventh century already knew how to solve qua-
dratic equations of various types, we should not be surprised that the
solution of such equations is considered today to be part of elementary
algebra. The most general form of a quadratic equation is: ax e + bx + c
= 0, where a, b, c can be any given numbers (a cannot be zero, or the
equation is not quadratic). The real question is whether there exists some
universal recipe or formula that can be relied upon to give the solutions
every time. You may have at least dim memories from high-school alge-
bra that such a formula indeed exists. It reads:

— b±.■/ b2 — 4ac
2a

In spite of its somewhat disconcerting appearance, this is really a simple
formula, which when the given values of the numbers a, b, c are substi-
tuted into it, yields immediately the values of x for which the equation
holds true. For instance, suppose we need to solve the equation: x 2 — 6x
+ 8 = 0, where a = 1, b = —6, c = 8. All we need to do is put these values
of a, b, and c into the formula above and we find the two possible solu-
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tions: x = 2 or x = 4 (the symbol ± means that we choose plus to obtain

one solution and minus to obtain the other).

Following the decline and fall of the Alexandrian school, European

mathematics seems to have gone into hibernation for almost a millen-

nium. The baton of keeping mathematics, and indeed science in general,

alive was passed on to India and the Arab world. Accordingly, the path

from Diophantus to the modern solution of the quadratic equation

passes through non-European mathematicians. The Indian mathemati-

cian and astronomer Brahmagupta (598-670) managed to solve a few

impressive Diophantine equations, as well as quadratic equations that

for the first time involved negative numbers. He referred to such num-

bers as "debts," realizing that negative numbers appear most frequently

in monetary transactions. In the same spirit, he called positive numbers

"fortunes." The rules for multiplying or dividing positive and negative

numbers were therefore stated as, "The product or ratio of two debts is

a fortune; the product or ratio of a debt and a fortune is a debt."

The man who literally gave algebra its name was Muhammad ibn

Musa al-Khwarizmi (ca. 780-850; figure 36 shows him as he appeared on

a Soviet stamp). The book he composed in Baghdad—Kitab al-jabr wa

al-muqabalah (The Condensed Book on Restoration and Balancing)—

became synonymous with the theory

of equations for centuries. From one of

the words in the title of this book (al-

jabr) comes the word "algebra." Even

the word "algorithm," used today to

describe any special method for solving

a problem by following a succession of

procedural steps, comes from a distor-

tion of al-Khwarizmi's name. While

al-Khwarizmi's book was not particu-

larly groundbreaking in terms of its

contents, it was the first to expose in a

systematic way the solutions of qua-

dratic equations. The word al-jabr,

meaning "restoration" or "comple-

tion," referred to moving negative terms from one side of the equation

to the other, as in transforming x 2 = 40x — 4x 2 (by adding 4x 2 to both



62 THE EQUATION THAT COULDN'T BE SOLVED

sides) into 5x 2 = 40x. So great was the influence of al-Khwarizmi's book
that even eight centuries later, in the masterful burlesque of the popular
romance of chivalry Don Quixote de la Mancha, we find that the bone-
setter is called "algebrista," because of his job of restoration.

The first book to include the full solution to the most general qua-
dratic equation appeared in Europe only in the twelfth century. The
author was the eclectic Spanish Jewish mathematician Abraham bar
Hiyya Ha-nasi (1070-1136; "Ha-nasi" means "the leader"). As if to
remind us of the early origins of quadratic equations, the book was enti-
tled: Hibbur ha-meshihah ve-ha-tishboret (Treatise on Measurement
and Calculation). Abraham bar Hiyya explains:

Who wishes correctly to learn the ways to measure areas and to
divide them, must necessarily thoroughly understand the general
theorems of geometry and arithmetic, on which the teaching of
measurement . . . rests. If he has completely mastered these ideas,
he ... can never deviate from the truth.

This brought to an end a long era during which Arab mathematicians
acted as the safe custodians of mathematics. Progress during the three
thousand years that followed the Old Babylonian period has been only
incremental. With the tremendous intellectual awakening of the Renais-
sance, however, the center of gravity was about to move to northern
Italy, with other western European countries soon to follow. Humanists
discovered ancient Greek works and encouraged a process of delving
into all the Greeks' accumulated knowledge, including mathematics. As
the copying of manuscripts became a major industry (according to one
report the influential Florentine banker Cosimo de Medici employed
forty-five scribes), the invention of printing with moveable type was
only to be anticipated, with the ensuing proliferation of scientific
knowledge.

There was nothing in the relatively tranquil and rather sluggish his-
tory of the quadratic equation to indicate that the next stage in the solu-
tion of equations was going to be particularly dramatic. This was,
however, only the calm before the storm. The next chapter was about to
begin.



NEVER FORGET 63

THE CUBIC

In the same way that problems dealing with areas result in quadratic
equations (because one length is multiplied by the other, producing a
length squared), the calculation of volumes of solids such as the cube
(where one multiplies length by width and by height) leads to cubic
equations. The most general cubic equation has the form ax 3 bx 2 cx
+ d = 0, where a, b, c, d are any given numbers (a has to be different
from zero). The goal of all the aspiring equation solvers was clear: to find
a formula, similar to the one for the quadratic equation, that upon sub-
stitution of a, b, c, d would give the desired solutions. The ancient Baby-
lonians did generate some tables that allowed them to solve a few very
specific cubics, and the Persian poet-mathematician Omar Khayyam
presented a geometric solution to a few more in the twelfth century.
However, the solution to the general cubic equation defied mathemati-
cians until the sixteenth century. This was not for lack of trying. Three
famous Florentine algebraists, Maestro Benedetto in the fifteenth cen-
tury and his two fourteenth-century predecessors, Maestro Biaggio and
Antonio Mazzinghi, had put considerable toil into the understanding of
equations and their solutions. Their efforts, however, proved insufficient
for the cubic. The fourteenth-century mathematician Maestro Dardi of
Pisa also presented ingenious solutions to no fewer than 198 different
types of equations—but not to the general cubic. Even the famous
Renaissance painter Piero della Francesca, who was also a gifted mathe-
matician, contributed his part to the attempts to find a solution. In spite
of these and other valiant efforts, the answer remained elusive. No won-
der that mathematician and author Luca Pacioli (1445-1517) concluded
his 1494 influential book Summa de arithmetica, geometria, proportioni
et proportionality (The Collected Knowledge of Arithmetic, Geometry,
Proportion and Proportionality) in a defeatist mood. "For the cubic and
quartic [involving x 4] equations," he said, "it has not been possible until
now to form general rules." The good news was that Pacioli's encyclo-
pedic six-hundred-page work was written in the accessible Italian. Con-
sequently, the book promoted algebraic studies even among those not
versed in Latin. At that point, practicality gave way to ambition. No one
was searching for a solution to the cubic for some practical purposes.
Solving the cubic equation had become an intellectual challenge worthy
of consideration by the best mathematical minds. Enter a modest hero
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a mathematician from Bologna named Scipione dal Ferro (1465-1526)

who unknowingly becomes part of an unfolding drama.

Scipione dal Ferro was the son of a paper maker, Floriano, and his

wife, Filippa. In the century that witnessed the invention of printing, the

production of paper became a desirable profession. Little is known of

Scipione's youth or of what motivated him to study mathematics. He

probably completed his education at the University of Bologna. This

prestigious institution, the oldest university still operating today (fig-

ure 37 shows a spectacular corridor in the oldest building, which cur-

rently houses a library), was established in 1088, and by the fifteenth

century it had gained the reputation of being one of Europe's finest.

Mathematics (beyond Euclid's basic geometry) had been made part of

the regular curriculum at Bologna by

the late fourteenth century, and in 1450

Pope Nicholas V added to the teaching

staff four positions in mathematics. In

1496, dal Ferro became one of the five

joint holders of the chair of mathemat-

ics at the university, and except for a

short leave that he spent in Venice,

he continued in this post for the rest

of his life. Although several sources

describe him as a great algebraist, no

original manuscripts of his work in

either script or printed form have sur-

vived. A collection of lecture notes

from the University of Bologna dated

to 1554-68 may include a copy of some

of dal Ferro's writings (figure 38). The passage is headed by, "From the

Cavaliere Bolognetti, who had it from the Bolognese master of former

days, Scipion dal Ferro." Scipione probably met Luca Pacioli in 1501,

when the latter was lecturing in Bologna. Pacioli was not exactly a math-

ematical powerhouse, but he was a great communicator of mathematical

knowledge. Being frustrated by his inability to solve the cubic equation,

Pacioli may have convinced Scipione, who had great dexterity in manip-

ulating expressions involving cubic roots and square roots, to try it him-

self. Around 1515, dal Ferro's efforts finally bore fruit. He created a

major mathematical breakthrough by managing to solve the cubic equa-
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tion of the form ax 3 + bx = c. In the mathematical language of the

sixteenth century such equations were described as "unknowns and

cubes equal to numbers." While this was not the most general form, it

opened the door for the discoveries

to follow. Scipione dal Ferro did not

rush to publish his curtain-raising

result. Keeping mathematical discover-

ies secret was quite common until the

eighteenth century (what a difference

from today's scientific paper chase!).

Nevertheless, he did divulge the solu-

tion to his student and son-in-law,

Annibale della Nave, and to at least one

other student, the Venetian Antonio

Maria Fiore. He also expounded his

method in a manuscript that came into

the possession of his son-in-law after

Scipione's death.

Bologna of the sixteenth century experienced a surge of interest in

mathematics. Mathematicians and other scholars were sometimes

involved in public debates and oral disputations that attracted large

crowds. In attendance were not only university officials and appointed

judges, but also students, supporters of the contestants, and spectators

who came for entertainment and for a betting opportunity. Often, the

disputants themselves would wager considerable amounts of money on

their anticipated victory. According to one description by a nineteenth-

century historian of mathematics, mathematicians were interested in

such confrontations of wits, because on their results

depended not only their reputation in the city or in the University,

but also tenure of appointment and increase in salary. Disputations

took place in public squares, in churches, and in the courts kept by

noblemen and princes, who esteemed it an honor to count among

their retinue scholars skilled not only in the casting of astrological

predictions, but also in disputation on difficult and rare mathemati-

cal problems.

Antonio Maria Fiore, who was brought into the secret of dal Ferro's

solution, was a rather mediocre mathematician. Upon dal Ferro's death,
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he also did not publish the solution immediately, even though he treated

it as if it were his to be exploited. Rather, he decided to wait for the right

moment—one that would allow him to make a name for himself. In a

society in which the • renewal of university appointments largely

depended on success in debates, possession of a secret weapon could

mean the difference between survival and perishing. The opportunity

finally presented itself in 1535, and Fiore challenged the mathematician

Niccolè Tartaglia to a public problem-solving contest. Who was this

Tartaglia, and why did Fiore select him from a long list of potential can-

didates as his opponent?

Niccolo  Tartaglia (figure 39) was born in Brescia in 1499 or 1500. His

original surname was probably Fontana, but he was nicknamed Tartaglia

(meaning "the stammerer") because of a saber cut to his mouth that he

had received at age twelve from a French soldier. The young boy was left

for dead in the cathedral in which he sought sanctuary, and he was

slowly nursed back to health by his mother. As an adult, he always wore

a beard to hide the disfiguring scars. Tartaglia came from a very poor

family. His father Michele, a postal courier, died when Niccolo  was

about six years old, leaving the widow and her children in heartbreaking

misery. Tartaglia had to stop his studies of reading and writing of the

alphabet upon reaching the letter k because the family ran out of money

to pay for the tutor. In his later retro-

spection, Tartaglia described the

completion of his education: "I

never returned to a tutor, but contin-

ued to labor by myself over the

works of dead men, accompanied

only by the daughter of poverty that

is called industry." In spite of these

ill-starred circumstances, Tartaglia

proved to be a talented mathemati-

cian. Eventually he moved to Venice

in 1534 as a teacher of mathematics,

after having spent some time in

Verona. In his mathematical memoirs

Tartaglia states that in 1530 he managed after considerable effort to solve

the cubic equation x 3 + 3x 2 = 5. This was a challenge posed to him by a

fellow Brescian, Zuanne de Tonini da Coi. Rumors of Tartaglia's claim
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that he was able to solve cubics must have reached the ears of Antonio
Maria Fiore, but the latter greeted the information with skepticism,
thinking that Tartaglia was bluffing. Confident in his ability to defeat
Tartaglia due to his secret knowledge of dal Ferro's solution, Fiore
issued the challenge. Shortly afterward, Fiore and Tartaglia reached an
agreement on the precise conditions of the contest. Each side was to pro-
pose thirty problems for his opponent to solve. The problems were then
to be sealed and deposited with the notary Master Per lacomo di Zam-
belli. The two contestants fixed a term of forty to fifty days for each to
attempt to solve the problems, once the seals were opened. They agreed
that whoever solved more problems would be considered the winner,
and in addition to honors, would receive a handsome reward suggested
for each problem (according to some sources the loser was supposed to
pick up the tab for a feast attended by the winner and thirty of his
friends). As it turned out, Fiore indeed had only one arrow to his bow—
all the problems he put forward were of the form for which he knew the
solution from dal Ferro, ax 3 bx = c. Tartaglia's list, on the other hand,
contained thirty diverse problems, each one of a different kind, in his
words, "to show that I thought little of him and had no cause whatever
to fear him."

The date of the contest was set for February 12, 1535. Various uni-
versity dignitaries and some of the Venetian intellectual high society
must have been in attendance. As the problems were presented to the
two adversaries, something totally unexpected happened. To the specta-
tors' amazement, Tartaglia blasted through all the problems thrown at
him in the space of two hours! Fiore failed to solve even one of
Tartaglia's problems. In his account of the events some twenty years
later, Tartaglia recalled:

The reason why I was able to solve his 30 [problems] in so short a

time is that all 30 concerned work involving the algebra of unknowns
and cubes equaling numbers [equations of the form ax 3 + bx = c].

[ He did this] believing that I would be unable to solve any of them,
because Fra Luca [Pacioli] asserts in his treatise that it is impossible

to solve such problems by any general rule. However, by good for-
tune, only eight days before the time fixed for collecting from the
notary the two sets of 30 sealed problems, I had discovered the gen-

eral rule for such expressions.
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In fact, a day after discovering the solution to ax 3 bx = c, Tartaglia also
discovered the solution to ax + b = x 3 . Since he also already knew how
to solve x 3 + ax e = b (the challenge posed to him by da Coi), Tartaglia
became overnight literally the world expert on the solution of cubic
equations. Nevertheless, he waved aside a suggestion from da Coi to
publish his solution immediately, explaining that he intended to write a
book on the subject. The formulae Tartaglia discovered were so compli-
cated that he found it hard to remember his own rules for the three cases.
To help himself memorize them, he composed some verses that started
with:

In cases where the cube and the unknown
Together equal some whole number, known:
Find first two numbers &firing by that same;
Their product, then, as is the common fame . . .

Tartaglia's complete verses and his formula are presented in appendix 5.

Tartaglia was now no longer an anonymous math teacher —he was a
mathematical celebrity. But in Renaissance Italy no story, even a story of
mathematics, comes without its operatic moments.

THE PLOT THICKENS

Word of the contest between Tartaglia and Fiore spread throughout
Italy like wildfire and reached one of the most brilliant and controver-
sial figures of the sixteenth century—the physician, mathematician,
astrologer, gambler, and philosopher Gerolamo Cardano (1501-76; fig-
ure 40).

Even compared to the many colorful geniuses of the Renaissance,
Cardano's life readily catches the imagination. He was the illegitimate
son of the Milanese lawyer Fazio Cardano and the much younger
widow Chiara Micheri. In his later autobiography, De vita propria liber
(The Book of My Life), Cardano delights in describing in great and
unnecessary detail all the medical problems from which he suffered early
in life, including his sexual impotence between the ages of twenty-one
and thirty-one. Encouraged by his educated father, who advised
Leonardo da Vinci in geometry on several occasions, Gerolamo studied
mathematics, the classics, and medicine at the universities of Pavia and
Padua. During his student days, gambling became his chief source of
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financial support. He played cards,

dice, and chess, turning his knowl-

edge of probability theory into prof-

its. Later in life he would transform

his addiction to gambling into an

interesting book: Liber de ludo aleae

( The Book on Games of Chance), the

first book on the calculation of prob-

abilities. Having a very loud voice

and a rude attitude, Cardano man-

aged to alienate many of his profes-

sors, and at the end of his studies, the

first ballot denied him the doctorate

of medicine with the overwhelming

vote of 47 against 9. Only after two

more rounds of votes did he finally

get the degree. While Cardano's first

attempts to obtain a position as a physician in Milan failed miserably, his

luck soon changed drastically. In 1534 he was appointed, through the

influence of his father's acquaintances, lecturer of mathematics at the

Piatti Foundation. Simultaneously, he started a clandestine practice of

medicine, in which he was extremely effective. His success did not, how-

ever, gain him the support of the College of Physicians in Milan. In 1536

Cardano decided to bring his dispute with the college to a showdown.

He published a viciously aggressive book entitled De malo recentiorum

medicorum medendi usu libellus (On Bad Practices of Medicine in Com-

mon Use). In particular, Cardano ridiculed the grandiloquent manners

of the physicians of his time: "The things which give most reputation to

a physician nowadays are his manners, servants, carriage, clothes, smart-

ness and caginess, all displayed in a sort of artificial and insipid way;

learning and experience seem to count for nothing." Incredibly enough,

not only did Cardano's offensive get him a physician's position, but by

the middle of the century he was to become one of Europe's best-known

medical practitioners, second only to the legendary anatomist Andreas

Vesalius.

Cardano appears to have thrived on controversy and competition.

This may have stemmed from his passion for gambling. He once noted,

"Even if gambling were altogether an evil, still, on account of the very
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large number of people who play, it would seem to be a natural evil. For
that very reason it ought to be discussed by a medical doctor like one of
the incurable diseases." Quick-witted and sharp-tongued, Cardano won
many disputes, both during his student days and as a mature scholar. No
wonder then that the news of the Tartaglia-Fiore contest kindled his
curiosity. At the time, he was completing his second mathematical book,
Practica arithmeticae generalis et mensurandi singularis (The Practice of
Arithmetic and Simple Mensuration), and he found the idea of including
the solution to the cubic in the book very attractive. In the few years that
followed, Cardano must have tried in vain to discover the solution by
himself. Having failed, he decided to send the bookseller Zuan Antonio
da Bassano to Tartaglia to convince the latter to reveal his formula.
Tartaglia later described his own reply in no uncertain terms: "Tell his
Excellency that he must pardon me, that when I publish my invention it
will be in my own work and not in that of others, so that his Excellency
must hold me excused." After a few rather lengthy and quite acrimo-
nious exchanges, in which Tartaglia brushed aside all of Cardano's over-
tures, he finally was lured into accepting an invitation to visit Cardano in
Milan. The bait that did the trick was a promise by Cardano to introduce
Tartaglia to the Spanish viceroy and commander in chief in Milan,
Alfonso d'Avalos. Tartaglia had written a book on artillery and such a
contact could guarantee him a nice income.

In Milan, Cardano subjected Tartaglia to a heavy dose of charming
hospitality, still attempting to schmooze the solution out of him. But
Tartaglia's lips remained sealed, at least for a while. He even rejected a
proposal that Cardano would include a special chapter in the book
heralding Tartaglia as the discoverer of the solution.

Unfortunately, from this point on, our information of the subse-
quent events relies almost exclusively on Tartaglia's far from objective
testimony. According to Tartaglia, he eventually did agree to divulge the
secret to Cardano, but only after the latter had taken the following
solemn oath: "I swear to you by the Sacred Gospel, and on my faith as a
gentleman, not only never to publish your discoveries, if you tell them
to me, but I also promise and pledge my faith as a true Christian to put
them down in cipher so that after my death no one shall be able to
understand them." This weighty conversation took place on March 25,
1539. Ludovico Ferrari, then a young secretary in Cardano's household,
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tells a rather different story. According to Ferrari, Cardano took no oath
of secrecy. Ferrari claimed to have been present at the conversation and
said that Tartaglia revealed the secret simply in return for Cardano's hos-
pitality. However, as we shall soon see, Ferrari's own objectivity is at
least as questionable as that of Tartaglia. The fact remains, nevertheless,
that the Practica arithmeticae generalis appeared in May 1539 without
Tartaglia's solution.

Ludovico Ferrari (1522-65) takes center stage as the next character in
this tragicomic drama. He first arrived at Cardano's house from Bologna
as a boy of fourteen. Cardano soon recognized the youngster's excep-
tional talents and took full responsibility for his education. Ferrari, how-
ever, was as irritable as he was sharp. In one brawl, at age seventeen, he
lost the fingers on his right hand. As soon as Cardano learned Tartaglia's
solution, he succeeded not only in providing a proof for it, but he also
started to work on more general cubic equations. Recall that Tartaglia
actually managed to solve only particular forms of the cubic, such as
x 3 + ax = b or x 3 = ax + b. The realization that these are only special
cases of the general equation ax 3 + bx 2 cx + d = 0 had not yet sunk in
with the sixteenth-century mathematicians. Rather, they treated each
one of thirteen different forms of cubic equations separately. At the same
time, with Cardano's encouragement, the brilliant Ferrari managed in
1540 to find a beautiful solution to the quartic equation, such as x 4 + 6x 2

+ 36 = 60x. The master and his student were now really on a roll. A
rumor that dal Ferro had left his original formula with his son-in-law
reached Cardano. In 1543 Cardano and Ferrari took a special trip to
Bologna to meet with Annibale della Nave, to whom Scipione dal
Ferro's original paper had been entrusted. There they were able to con-
firm firsthand that dal Ferro had indeed, twenty years earlier, discovered
the same solution as Tartaglia. Even if Cardano had truly given an oath
to Tartaglia, this was probably all he felt he needed to free himself of the
obligation. The oath was formally, after all, not to reveal Tartaglia's for-
mula, not dal Ferro's. In 1545 Cardano published the book regarded by
many mathematicians as marking the beginning of modern algebra —
Artis magnae sive de regulis algebraicis liber unus (The Great Art or the
Rules of Algebra Book One), commonly known as Ars magna (The
Great Art; figure 41 shows the frontispiece of the book). In this book,
Cardano explores in great detail the cubic and quartic equations and
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their solutions. He demon-

strates for the first time

that solutions can be nega-

tive, irrational, and in some

cases may even involve

square roots of negative

numbers — quantities he re-

fers to as "sophistic" — to be

dubbed "imaginary num-

bers" in the seventeenth

century. The printer Jo-

hannes Petreius of Nürn-

berg published the first

edition of Ars magna, and

it swept mathematical Eu-

rope, winning immediate

acclaim. One mathemati-

cian was, needless to say,

less respectful. Tartaglia's

fury was unimaginable. In

less than a year he published

a book, Quesiti et inventioni diverse (New Problems and Inventions), in

which he directly accused Cardano of perjury. Presenting what was sup-

posed to be a word-for-word account of all of their exchanges (even

though those had taken place a full seven years earlier), Tartaglia used

the most offensive language against Cardano. His justification: "I truly

do not know of any greater infamy than to break an oath." But was

Cardano a mathematical plagiarist? By standard scientific ethics, cer-

tainly not. The second paragraph in the opening chapter of Ars magna

reads:

In our own days Scipione dal Ferro of Bologna has solved the case of

the cube and the first power equal to a constant, a very elegant and

admirable accomplishment. Since this art surpasses all human sub-

tlety and the perspicuity of mortal talent and is a truly celestial gift

and a very clear test of the capacity of men's minds, whoever applies

himself to it will believe that there is nothing that he cannot under-

stand. In emulation of him, my friend Niccolô Tartaglia of Brescia,
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wanting not to be outdone, solved the same case when he got into a

contest with his [Scipione's] pupil, Antonia Maria Fior, and, moved

by my many entreaties, gave it to me. For I had been deceived by the

words of Luca Pacioli, who denied that any more general rule could

be discovered than his own. Notwithstanding the many things which

I already discovered, as is well known, I had despaired and had not

attempted to look any further. Then however, having received

Tartaglia's solution and seeking for the proof of it, I came to under-

stand that there were a great many other things that could also be

had. Pursuing this thought and with increased confidence, I discov-

ered these others, partly by myself and partly through Ludovico Fer-

rari, formerly my pupil.

In chapter XI ("On the Cube and First Power Equal to the Num-

ber") Cardano repeats briefly the same credit:

Scipio Ferro of Bologna well-nigh thirty years ago discovered this

rule and handed it on to Antonia Maria Fior of Venice, whose con-

test with NiccolO Tartaglia of Brescia gave Niccolo occasion to dis-

cover it. He [Tartaglia] gave it to me in response to my entreaties,

though withholding the demonstration. Armed with this assistance,

I sought out its demonstration in [various] forms. This was very dif-

ficult. My version of it follows.

Tartaglia was far from being appeased by the acknowledgment
Cardano granted him. In fact, the battle of offenses had not only heated
up, but turned into an ugly show of insults played with great ferocity
before the entire Italian public. While Cardano himself stayed clear of
the feud, his ill-tempered collaborator, Ludovico Ferrari, gladly jumped

into the role of intellectual gladiator to defend his (in his words) "cre-
ator." In response to Tartaglia's book, Ferrari issued a cartello—a letter

of challenge—that he distributed to fifty-three scholars and dignitaries
across Italy. Ferrari adopted a viciously degrading style: "By reading
your nonsense one has the impression of reading the jokes of Piovano
Arlotto [a priest who lived in the fifteenth century, known for his prac-
tical jokes]." He then goes on contemptuously and accuses Tartaglia
himself of plagiarism: "Among the more than one thousand errors in
your book I note first that in section eight you give a result by Giordano
[referring to the thirteenth-century German mathematician Jordanus
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Nemorarius, also known as Jordanus de Nemore] as your own, without
mentioning him, and this is theft." The first cartello was sent on Febru-
ary 10, 1547. Tartaglia received it on the thirteenth and took only six
days for a counterattack. He first complained about the fact that Car-
dano himself did not bother to answer:

This I advise you again that in case the said Signor Gerolamo
Cardano does not intend to write to me, acknowledging wisely that
he was wrong, then he has no reason for complaint against me.. ..
You should at least make certain that he also signs your cartel in his
own hand as your associate in this dispute.

In response to Ferrari's invitation for a public dispute on mathematics,
Tartaglia declared that he would gladly dispute with Cardano himself.
Clearly, Tartaglia saw no point in entering a contest with a youngster of
no particular distinction, where even a victory would not mean much,
and he preferred to battle with Cardano, whose reputation on the conti-
nent was on a spectacular rise. Cardano, however, was at a stage in life
where he was anxious to promote a more balanced temperament (he
advocated that scholars adopt a lifestyle of "reading love stories"), and
he remained silent.

Between February 10, 1547, and July 24, 1548, Tartaglia and Ferrari
exchanged no fewer than twelve cartelli (six challenges and six re-
sponses), all circulated to the entire intellectual high society. In spite of
the generally disparaging style, the cartelli also serve as an interesting
documentation of the knowledge of two leading Renaissance mathe-
maticians. Tartaglia's continuing attempts to drag Cardano into the dis-
pute failed miserably. In 1548, Tartaglia was offered the position of
lecturer in geometry in his hometown, Brescia. Due to the high profile
of his exchanges with Ferrari, however, the appointment was most prob-
ably made on the condition of him defeating Ferrari in a public contest.
Consequently, Tartaglia was forced, reluctantly, to commit to a debate.
The agreed-upon topics of the debate were sixty-two problems pro-
posed by the two disputants (thirty-one by each)—the ones presented in
the exchanged cartelli. Most of the problems were in mathematics, but in
the Renaissance spirit, there were also questions in other areas, such as
architecture, astronomy, geography, and optics.

The debate took place on August 10, 1548, in a church within the
garden of the Frati Zoccolanti, in Milan. All the Milanese who's who
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showed up, including the governor, Don Ferrante di Gonzaga, who was
supposed to be the ultimate arbiter. Ferrari turned up with a large
entourage of supporters, while Tartaglia may have been accompanied
only by his own brother. Cardano made sure he was out of town during
the debate. Unfortunately, no official record of either the debate itself or
the final verdict exists. In two later books, Tartaglia presents rather con-
fused accounts of the proceedings. In particular, he blames the audience
for loudly interfering and preventing him from presenting his arguments
in full. The dry facts, however, paint a rather different picture. Tartaglia
left the dispute before its conclusion, immediately after the end of the
first day. We also know that Tartaglia was denied his salary after a year of
lecturing in the position in Brescia, and he was obliged to return to his
modest teaching job in Venice. All signs point, therefore, to Tartaglia's
having suffered an agonizing and humiliating defeat in Milan. Cardano
also mentions briefly in his writings that Ferrari was more than a match
for Tartaglia.

As for the triumphant Ludovico Ferrari, his career skyrocketed. Fol-
lowing his victory, offers for positions started to pour in. Ferrari even
declined the opportunity to tutor the emperor's son for the more lucra-
tive appointment as a tax assessor for the governor of Milan. His life,
however, was to end unexpectedly, providing the final act to this drama.

Upon his return to Bologna sometime after 1556, Ferrari was accom-
panied by his sister Maddalena, a poor widow. While no direct proof of
her poisoning him in 1565 exists, her subsequent behavior and the ensu-
ing circumstances raise serious suspicion. Maddalena married two weeks
after Ferrari's death, and she transferred to her husband all the money
and property she had inherited from her brother. When Cardano came
to Bologna to retrieve some of his own books and notes, he found noth-
ing. Maddalena's husband took possession of everything, apparently
intending to publish some material in the name of his son from a previ-
ous marriage.

The history of the solutions to the cubic and quartic equations raises
interesting questions beyond the realm of mathematics. This story
would be incomplete without some contemplation on the questions of
intellectual property and proprietary rights on scientific information.
During the bitter Tartaglia-Ferrari exchanges, Ferrari claimed that
Cardano had actually done Tartaglia a service by rescuing his formula
from oblivion and planting it in a "fertile garden" — the Ars magna. But



76 THE EQUATION THAT COULDN'T BE SOLVED

was this true? Or was Tartaglia right in replying that without his formula
Cardano's garden would have remained an obscure, weedy field? There
is no question that from Tartaglia's perspective Cardano was the devil.
Not only had he broken an oath, but by doing so, he had denied
Tartaglia the recognition and fame the latter felt were rightfully his. No
credit lines in Cardano's book could have healed this wound. The fact
remained that all references from that point on were to "Cardano's for-
mula," and to his book. Worse yet, since Cardano added many solutions
and proofs of his own to all the forms of the cubic and quartic equations,
the breakthrough nature of Tartaglia's formula was lost in the shuffle.

But what about Cardano's viewpoint? Solemn oath or not, surely he
felt that he was entitled at the very least to publish his own seminal work
on the subject. Cardano's standpoint is even more understandable once
we realize (as did he) that Tartaglia was not the original discoverer of
the formula — Scipione dal Ferro was. What right did Tartaglia have to
suppress the publication of a formula that dal Ferro himself had left
for posterity? Tartaglia's claim that he was about to publish a book on
new algebra himself also does not hold water. In fact, in spite of the sub-
stantial head start that Tartaglia had on Cardano, he got distracted by the
pursuit of other projects and the book on new algebra never got off the
ground.

A couple of present-day examples of common scientific practices
concerning publication of discoveries can help to demonstrate that the
issue of ownership of discoveries is not simple. Astronomers propose on
a yearly basis for observations to be performed by the Hubble Space
Telescope. After a very detailed process of evaluation of the proposals by
panels of experts, only about one out of seven proposals is actually
selected for the observations to be executed. The data collected are made
available to the proposer within a few days after the observation takes
place. Following that, there is a proprietary period of one year, during
which only the proposer has access to the data. The proposer can use this
time to analyze the data and publish the results. After one year the data
become public, for all the astronomers in the world to use. This process
has been established first and foremost in recognition of the fact that sci-
entific discoveries (especially those made with taxpayers' funding)
belong to the community at large and should not be treated as private
property. Second, the procedures have been designed so as to discourage
scientific procrastinators from merely sitting on important data.
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At the same time, private companies that deal with, say, mathemati-
cal modeling of stock market behavior are extremely secretive about
their findings, but not more so perhaps than some chefs about their
secret recipes.

From a purely scientific point of view it would make the most sense
to refer to the formula for solving the cubic as "dal Ferro's formula,"
since there is no doubt that he was the first to discover it. This is neither
the first nor the last case, however, where scientific innovations are not
named after the true discoverer. Tartaglia's attitude with regard to intel-
lectual property appears somewhat hypocritical when one considers his
own practices. For instance, Tartaglia produced a translation of some of
Archimedes' works under his own name, when in fact he merely pub-
lished a thirteenth-century Latin translation by the Flemish scholar
William of Moerbeke. Similarly, he presented a solution to the mechan-
ics of a heavy body on an inclined plane without crediting the originator
of that solution, the German mathematician Jordanus de Nemore.

The entire dal Ferro-Tartaglia-Cardano-Ferrari sequence of events
remains one of the most controversial affairs in the history of mathe-
matics. No wonder that many historians of science have enjoyed sinking
their teeth into it. From the point of view of the present book, what is
important is that as the curtain fell on this drama, mathematicians knew
how to solve cubic and quartic equations, even if a general theory of
equations was still missing.

Cardano never denied his good fortune. In The Book of My Life he
writes:

Although happiness suggests a state quite contrary to my nature, I
can truthfully say that I was privileged from time to time to attain
and share a certain measure of felicity. If there is anything good at all

in life with which we can adorn this comedy's stage, I have not been
cheated of such gifts.

Given the role that the solution of equations was to play centuries later
in the formulation of group theory as the "official" language of symme-
try in nature and in the arts, the following historical fact stands out as an
amusing curiosity. Cardano published horoscopes of one hundred
prominent men of his century. Only one of those, the German painter
Albrecht Durer, was an artist.

To conclude this story I must add a personal note. In the summer of
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2003 I decided that I had to
find the birthplace of the true
hero of the cubic equation-
Scipione dal Ferro. After some
effort I discovered the place.
Today it is located at the cor-
ner of via Guerrazzi and via
S. Petronio Vecchio in Bolo-
gna. An easy-to-miss plaque
on the side wall marks the
house as dal Ferro's birthplace
(figure 42). I rang the entrance

Figure 42
buzzer at a few apartments

randomly, and an old lady showed up at the window of a third-floor
apartment. I explained to her in my pathetic Italian that I was research-
ing the life of Scipione dal Ferro. She told me to wait for her husband to
descend. The pleasant old gentleman explained to me in a broken mix-
ture of Italian and English that there was nothing else in the building to
indicate the fact that the man responsible for one of the major break-
throughs in algebra had lived there. We both stared silently at the plaque
for a few minutes and then parted.

After the brilliant dal Ferro-Cardano-Ferrari work, it was only nat-
ural to believe that the quintic equation, of the form ax 5 + bx 4 + cx 3 +

dx 2 + ex + f = 0, could also be solved by a formula. In fact, with the con-
fidence gained from the Ars magna, the expectation was that the solution
was right around the corner, and it prompted some of the sharpest math-
ematical minds to hunt for this treasure.

WILL TELL ALOUD YOUR GREATEST FAILING

The satirical author Jonathan Swift (1667-1745), best known for Gul-
liver's Travels, wrote an amusing poem in 1727 entitled "The Furniture
of a Woman's Mind." A few lines read:

For conversation well endu'd,
She calls it witty to be rude;
And, placing raillery in railing,
Will tell aloud your greatest failing.
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The story of the search for a formulaic solution to the quintic equation
in the 250 years following Cardano is one of great failing. It started with
another Bolognese, Rafael Bombelli (1526-72). By a historical coinci-
dence, Bombelli was born precisely in the year that dal Ferro died. Hav-
ing studied with great admiration the Ars magna, Bombelli felt that
Cardano's exposition had not been sufficiently clear and self-contained;
in Bombelli's words, "In what he said it was obscure." Consequently, he
spent two decades writing an influential book called L'algebra. Unlike
the other Italian mathematicians, Bombelli was not a university profes-
sor, but rather a hydraulic engineer. Bombelli's greatest original contribu-
tion was the realization that one cannot avoid having to deal with square
roots of negative numbers. This truly required a mental leap. After all,
what is the square root of —1 ? Clearly, no ordinary (real) number multi-
plied by itself gives —1, since even the multiplication of a negative number
by itself gives a positive result. Nevertheless, the solution to the cubic
equation (see appendix 5) sometimes produced a square root of a negative
number as an intermediate step, even when the final solution was a real
number. Cardano, who was puzzled by these "sophistic" numbers, con-
cluded that they were "so subtle that they were useless," and when he
needed to calculate with them he said he was doing so by "dismissing
mental torture." Bombelli, on the other hand, had the remarkable insight
to understand that these new numbers, which he called "plus of minus,"
were a necessary vehicle that could bridge the gap between the cubic
equation (which was expressed in real numbers) and the final solutions
(which were also real numbers). In other words, while both the beginning
and the end involve real numbers, the solution has to traverse the new
world of "imaginary" numbers. The square root of —1 was denoted by i

in 1777 by the great Swiss mathematician Leonhard Euler. The numbers
in the new vistas revealed by Bombelli's work are now called complex

numbers—these are sums of real numbers (all the ordinary numbers) and
imaginary numbers (which involve square roots of negative numbers).

There was also an important historical lesson to be learned here. The
study of equations had afforded mathematicians a first glimpse of new
kinds of numbers several times throughout history. There were the neg-
ative numbers, such as —1 and —2; the irrational numbers, such as a
that could not be expressed as fractions; and through Bombelli's work,
even imaginary numbers, such as Who knew what insights might
emerge out of the solution of the quintic?
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In the centuries that followed, cracking the enigma of the quintic
became one of the most intriguing challenges in mathematics. Unfortu-
nately, the solutions discovered by dal Ferro and Ferrari (for the cubic
and quartic, respectively) did not offer much help. These represented
brilliant but ad hoc tricks rather than methodical studies that could be
extended to equations of higher degrees. What was badly needed was a
more comprehensive theory of equations in general, rather than experi-
ments with isolated cases. To use a medical metaphor, mathematics had
to move on from the treatment of the symptoms to the understanding of
the causes and the associated side effects.

The French lawyer Francois Viete (1540-1603) and the English
astronomer Thomas Harriot (1560-1621) took steps in the right direc-
tion. They introduced improvements to both the notation used to
describe algebraic equations (which was extremely cumbersome in
Cardano's work) and to the methods of solution themselves. Viete was
also the person responsible for the word coefficients, used to define the
numbers that describe an equation (e.g., a, b, c in ax e + bx + c = 0).
Although not a mathematician by profession, Viete came on one occa-
sion to the rescue of the honor of the entire French mathematical society.
In 1593, at the end of the preface of his book Ideae matbematicae, the
Belgian mathematician Adriaan van Roomen (1561-1615) challenged all
the mathematicians of his time to decipher a problem that involved no
less than solving an intimidating equation of degree 45 (see appendix 6).
The ambassador to Paris from the Netherlands was only too delighted to
remark mockingly to King Henry IV that there was no French mathe-
matician who could solve the problem. The embarrassed king called
upon Viete for help and was pleasantly surprised when the latter was
able (according to legend) to find the positive solutions within a few
minutes, upon discovering that a trigonometric relation was underlying
the problem. In fact, Viete did much more—he showed that the equation
has twenty-three positive solutions and twenty-two negative ones.

The first serious, but alas unsuccessful, attempt at a solution of the
quintic was made by the Scot James Gregory (1638-75). Gregory is
known primarily for a reflecting telescope (the Gregorian telescope) that
he invented. During the year before he died (at the young age of thirty-
six), he had begun to doubt whether a formula for the quintic could
be found at all. Nevertheless, he did discover relations between the
solutions of various equations and their coefficients. The next step was
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taken by the German Count Ehrenfried Walther von Tschirnhaus
(1651-1708). A man of many accomplishments, from glasswork to alge-
bra, Tschirnhaus elaborated on an interesting method that for a while
gave hope that there was light at the end of the tunnel. The basic idea was
simple. If one could somehow reduce the quintic equation to equations
of a lower degree (such as the quartic or cubic), then one could use the
known solutions to those equations. In particular, Tschirnhaus was able
by some clever substitutions to get rid of the x 4 and x 3 terms in the quin-
tic. Unfortunately, there was still a major obstacle in Tschirnhaus's
method, which was soon noticed by the mathematician Gottfried Wil-
helm Leibniz (1646-1716), and after much effort in this direction
Tschirnhaus conceded defeat.

The eighteenth century brought about a renewed interest and a vig-
orous series of attacks on the problem. The Frenchman Etienne Bezout
(1730-83), who published several works on the theory of algebraic equa-
tions, adopted methods somewhat similar to those of Tschirnhaus, but
again to no avail. At that point, the most prolific mathematician of all
time entered the race.

Leonhard Euler (figure 43) was so productive that an entire volume
is needed merely to reproduce the list of his publications. Euler's body
of published works in mathematics and mathematical physics consti-
tutes about one third of all the work published in these areas during the
last three-quarters of the eighteenth century. Euler conjectured that the
solution to the quintic could be expressed in terms of some four quanti-
ties, and he concluded in a hopeful
tone: "One might suspect that if the
elimination were done carefully, it
might possibly lead to an equation of
degree 4." In other words, he also opti-
mistically believed that the problem
could be reduced to one that had
already been solved. This general phi-
losophy is characteristic of advances in
mathematics. In an old joke, a physicist
and a mathematician are asked what
they would do if they needed to iron
their pants, but although they are in
possession of an iron, the electric outlet
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is in the adjacent room. Both answer that they would take the iron to the
second room and plug it in there. Now they are asked what they would
do if they were already in the room in which the outlet is located.
The physicist answers that he would plug the iron into the outlet
directly. The mathematician, on the other hand, says that he would take
the iron to the room without the outlet, since that problem has already
been solved.

In spite of Euler's optimism, he failed to solve the general quintic.
He did manage to show, however, that a few special quintics, such as
x 5 — 5px 3 + 5p 2x — q = 0 (where p and q are given numbers), were solv-
able by a formula. This left the door open for potential future endeavors.
Next in line was the Swede Erland Samuel Bring (1736-98). A teacher
of history at Lund University by profession, Bring's favorite pastime
was mathematics. And what better riddle to solve than the quintic?
Bring achieved what appeared to be a huge step toward a solution. He
found a mathematical transformation that could reduce the general
quintic (ax 5 + bx 4 + cx 3 + dx 2 + ex + f = 0) to the much simpler form
x 5 + px + q = 0. Unfortunately, not only did even this shorter and seem-
ingly much more tractable form still present an insurmountable obstacle,
but Bring's remarkable transformation went entirely unnoticed, only to
be independently rediscovered by the English mathematician George
Birch Jerrard in the nineteenth century.

Three further undertakings, by mathematicians working nearly
simultaneously in three different countries, also fell short of producing a
solution. Still, the profound works of these mathematicians introduced
an exciting new idea into the search. In particular, they showed that
properties of the permutations of the putative solutions of equations
might have something to do with whether the equations are solvable by
a formula or not. Since this was historically the first point of connection
between the solutions of equations and the concept of symmetry, let me
give a brief explanation of the basic principle. Examine, for instance, the
quadratic equation ax e + bx + c = 0 (where a, b, c are known numbers).
One can easily show that if the two solutions of the equation (given by
the formula on page 60) are denoted by x, and x 2, then both the sum of
the solutions, x + x 2, and their product, x,x„ can be expressed in terms
of the coefficients of the equation, a, b, c (see appendix 7). In fact, x, +
x 2 = —b/a and x i x 2 = c/a. In other words, in the equation x 2 — 9x + 20
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= 0, the sum of the two solutions is equal to 9, and their product is equal

to 20. The formula for the solutions on nape 60 can in itself he exnressed

(appendix 7) as a combination of

The important point to notice here is that this expression is symmetric

under the interchange of the two solutions x, and x 2 —the formula

remains unchanged when x, and x 2 are transposed. The question raised

by the Frenchman Alexandre-Theophile Vandermonde (1735-96) and

the Englishman Edward Waring (1736-98) was whether the solution to

the quintic, and indeed equations of any degree, could not be repre-

sented by a similar, symmetric expression. This could, in principle, lead

to a formula for the solutions. The idea was picked up by the person

considered by Napoleon Bonaparte to be "the lofty pyramid of the

mathematical sciences"—Joseph-Louis Lagrange (1736-1813).

Lagrange (figure 44) was born in Turin (now Italy), but his family

was partly of French ancestry on his father's side, and he considered

himself "more" French than Italian. His father, who was originally

wealthy, managed to squander all the family's fortune in speculations,

leaving his son with no inheritance. Later in life, Lagrange described this

economic catastrophe as the best thing that had ever happened to him:

"Had I inherited a fortune I would probably not have cast my lot with

mathematics."

In his outstanding treatise (published in Berlin) Reflections on the
Resolution of Algebraic Equations, Lagrange first reviewed carefully the

contributions of Bezout, Tschirnhaus, and Euler. He then showed that

all the tricks by which solutions had been obtained for the linear, qua-

dratic, cubic, and quartic equations could be replaced by a uniform pro-

cedure. Here, however, came a nasty surprise. For degrees 2, 3, and 4, the

equations had been solved by reducing the equation to one of a lower

degree than the one being discussed (i.e., reducing the quartic to a cubic,

and so on). When precisely the same process was attempted on the quin-

tic, something unexpected happened. The resulting equation, instead

of being a quartic, turned out to be one of degree 6! The method that

had worked beautifully for degrees 2, 3, 4 failed utterly at the quintic .
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Disappointed, Lagrange concluded
that "it is therefore unlikely that these
methods will lead to the solution of the
quintic—one of the most celebrated
and important problems of algebra."

As a way out of the impasse,
Lagrange introduced a more general
discussion of permutations. Recall that
permutations are the operations that
produce different arrangements of
objects, such as the transformations of
ABC into BAC or CBA. Lagrange
made the important discovery that the

properties of equations and their solubility depend on certain symme-
tries of the solutions under permutations.

Even Lagrange's new insights, as groundbreaking as they were,
proved insufficient for a solution to the quintic. Remaining optimistic
that his analysis would generate the necessary breakthrough, he wrote,
"We hope to return to this question at another time and we are content
here in having given the fundamentals of a theory which appears to us
new and general." As history would have it, Lagrange never returned to
the quintic. Two days before his death he summarized his life thus: "My
career has come to an end; I have acquired a modicum of renown in
mathematics. I have not hated anyone, nor have I done ill by anyone; it
is good to come to the end."

There was another algebraic problem that was being debated in math-
ematical circles around the same time, and it had implications for the at-
tempts to solve the quintic. The question was: Do all the equations (of any
order) have at least one solution? For example, how do we know if there
is any value of x for which the equation x 4 + 3x 3 — 2x 2 + 19x + 253 = 0
holds true? Even more acutely, if we have an equation of degree n (where
n can be any whole number 1, 2, 3, 4, . . . ) and we allow for the solutions
to be either real or complex numbers (involving i = VJ), how many solu-
tions are there? We already know the answer in the case of the quadratic
equation—there are always precisely two solutions. But what about n = 5
or n = 17? Although many mathematicians, including Leibniz, Euler, and
Lagrange, attempted to give an answer, the definitive statement was left
to the Swiss accountant Jean-Robert Argand (1768-1822) and to the
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man acknowledged as the "prince of mathematicians" — Johann Carl
Friedrich Gauss (1777-1855; figure 45).

Gauss's genius was recognized already at age seven, when he was able
to sum the whole numbers from 1 to 100 instantly in his head, simply by
noticing that the sum consists of fifty pairs of numbers, each totaling
101. In his doctoral dissertation in 1799, Gauss gave his first proof of
what has become known as the funda-
mental theorem of algebra—the state-
ment that every equation of degree n has
precisely n solutions (which can be real
or complex numbers). Gauss's first proof
had some logical gaps in it, but he would
end up giving three more proofs during
his life, all rigorous. Argand's proof,
published in 1814, was actually the first
correct proof.

The fundamental theorem demon-
strated unambiguously that the general
quintic equation must have five solu-
tions. But could those be found by a formula? In the same year that
Gauss published his first proof for the fundamental theorem he also
expressed his skepticism about a formulaic solution to the quintic:
"After the labors of many geometers left little hope of ever arriving at
the resolution of the general equation algebraically, it appears more and
more likely that this resolution is impossible and contradictory." He
then added an intriguing note: "Perhaps it will not be so difficult to
prove, with all rigor, the impossibility for the fifth degree." Gauss would
never publish another word on this topic.

The repeated frustrations of the quintic hunters for more than two
centuries prompted the French historian of mathematics Jean Etienne
Montucla (1725-99) to use military metaphors in describing the attack
on the quintic: "The ramparts are raised all around, but, enclosed in its
last redoubt, the problem defends itself desperately. Who will be the for-
tunate genius who will lead the assault upon it or force it to capitulate?"

By another historical coincidence, the final and conclusive series of
offensives on the quintic was about to begin in the year Montucla died.
As in the case of the cubic and the quartic, this phase started with
another Italian.
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Paolo Ruffini (1765-1822; figure 46) was born in Valentano, Italy. He
was the son of Basilio Ruffini, a medical doctor, and Maria Francesca
Ippoliti. The family moved to Reggio, near Modena, during Ruffini's
teens, and it was in Modena that he studied mathematics, medicine, lit-
erature, and philosophy, graduating in 1788. Extraordinarily versatile,
Ruffini started practicing medicine and teaching mathematics at the
same time. In the wake of the French Revolution, these were extremely
uncertain times. The French army, under the command of Napoleon
Bonaparte, took one Italian town after another, capturing Modena in
1796. Ruffini was initially appointed as a representative to the Junior
Council of the Cisalpine Republic set up by Napoleon, only to lose his
teaching appointment upon refusing to pledge allegiance to the new
republic. Curiously, it was during this period of upheaval that Ruffini
did his most important work. He claimed to have proven that the general
quintic equation cannot be solved by a formula that involves only the
simple operations of addition, subtraction, multiplication, division, and
the extraction of roots.

We have to pause here for a moment to appreciate the magnitude of
Ruffini's claim. The formula for the solutions of the quadratic equation
had been known essentially since Babylonian times. The formula for the
solutions of the cubic was discovered by dal Ferro, Tartaglia, and
Cardano. Ferrari came up with the solutions to the quartic. All of these
formulae were expressed by simple arithmetic operations and the taking
of roots. Then came two and a half centuries of failed expectations, dur-
ing which some of the most brilliant mathematicians tried in vain to find
such a formula for the quintic. Now
Ruffini was claiming that he could
prove that the quintic equation could
not be solved by a formula of this type,
no matter how hard one tried. This
represented a dramatic revolution in
the thinking about equations. Mathe-
maticians have grown accustomed to
the fact that some equations are very
difficult to solve, but here Ruffini's
proof was supposed to show that in
the case of the quintic, the effort was
doomed from the start.
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Ruffini published his proof in a two-volume treatise entitled Teoria

generale delle equazioni (General Theory of Equations), which appeared
in 1799. However, the proof was extremely intricate, and the tortuous
reasoning made it difficult to follow through the 516 pages of the book.
Not surprisingly, the reaction from the mathematical world was one of
skepticism and suspicion at best. Ruffini sent a copy of Teoria to
Lagrange around 1801 but received no reply. Still not discouraged, he
sent a second copy, noting:

Because of the uncertainty that you may have received my book, I
send you another copy. If I have erred in my proof, or if I have said
something which I believed new, and which is really not new, finally
if I have written a useless book, I pray you point out to me sincerely.

Lagrange did not respond to this letter either. Ruffini tried one last time
in 1802, starting with praise for Lagrange's work:

No one has more right . . . to receive the book which I take the lib-
erty of sending to you.... In writing this book, I had principally in
mind to give proof of the impossibility of solving equations of degree
higher than 4.

Still no reply.
Thwarted by the reception his work had received, Ruffini attempted

to publish more rigorous and somewhat less abstruse proofs in 1803 and
1806. He also discussed the proof with fellow mathematicians Gian-
francesco Malfatti (who published a treatise about the quintic in 1771)
and Pietro Paoli. The latter conversations led to a final version of the
proof that was published in 1813, in a paper entitled "Reflections on the
Solution of General Algebraic Equations." Unfortunately, even this sup-
posedly more transparent proof did not make headlines in the mathe-
matical community.

In a report to the king entitled "Historical Report on the Progress of
the Mathematical Sciences since 1709," the French mathematician and
astronomer Jean-Baptiste Joseph Delambre (1749-1822) did mention
Ruffini's work briefly. He used, however, rather tentative language:
"Ruffini proposes to prove that it is impossible." The exasperated
Ruffini was quick to protest: "I not only proposed to prove but in real-
ity did prove." Even this exchange did not result in a general acceptance
of Ruffini's proof by his contemporaries and successors. Worse yet,
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Delambre explained to Ruffini that it was hopeless to expect a definitive
answer, because "whatever decision your Referees [mathematicians
Lagrange, Lacroix, and Legendre] would have reached [concerning the
validity of the proof], they had to work considerably either to motivate
their approval or to refute your proof." From some comments the el-
derly Lagrange made to the scientist and pharmacist Gaultier de
Claubry, we may gather that while he was generally impressed with
Ruffini's work, even he was not quite intellectually inclined to accept
such a revolutionary concept as the impossibility of solving the quintic
by a formula. Consequently, Lagrange never made any public statements
concerning Ruffini's proof.

In desperation, Ruffini sent his proof to the Royal Society in Lon-
don. He received a polite reply stating that while a few members who
had read his work found it satisfactory, it was not the society's policy to
publish official approvals of proofs. The one distinguished mathemati-
cian who accorded credence to Ruffini's result was Augustin-Louis
Cauchy (1789-1857). Cauchy's productivity was so prodigious (he pub-
lished a staggering 789 mathematical papers) that at one point he had to
found his own journal. In a letter received about six months before
Ruffini's death, Cauchy, generally reserved with compliments, writes:

Your memoir on the general resolution of equations is a work which
has always seemed to me worthy of the attention of mathematicians
and which, in my judgment, proves completely the insolvability of
the general equation of degree greater than 4. . . . I add moreover,
that your work on the insolvability is precisely the title of a lecture
which I gave to several members of the academy.

Even with Cauchy's appreciation, Ruffini's proof became neither widely
known nor accepted. Most mathematicians still found his arguments so
convoluted that they were unable to ascertain their soundness.

But did Ruffini truly prove that the quintic cannot be solved by a
formula that involves simple operations? With the wisdom of hindsight,
we can say that he did not quite prove it. There was still a significant gap
in the proof, where Ruffini made an assumption, without realizing that
it was necessary to prove his assumption. Instead, he was satisfied to
note that any other assumption would lead to a more complicated situa-
tion, so that "we can completely abandon it." This imperfection, how-
ever, takes nothing away from the originality of his discovery. In fact,
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none of Ruffini's contemporaries located the gap in his proof. Ruffini
was the person responsible for a revolutionary change in the approach to
equations. Instead of trying to solve the quintic, the effort was soon to
turn to attempts to prove that it cannot be solved.

When we come today to evaluate Ruffini's work, we realize that he
actually did much more than merely change ideas about the quintic
equation. He took the relations between solutions of the cubic and guar-
tic and certain permutations one step further. This marked the beginning
of the transition from the traditional algebra, which deals only with
numbers, to the roots of group theory, which involves operations
between elements of any sort. Recall that members of groups can be any-
thing from integer numbers to the symmetries of the human body. The
birth of abstract algebra was on the horizon.

Ruffini was always conscientious to a fault. He once refused a chair
in mathematics at Padua because he did not want to forsake all the fam-
ilies he was treating as a physician. Infinitely devoted to his patients,
Ruffini contracted severe typhoid fever during the 1817-18 epidemic.
He used that traumatic experience to write Memoir of Contagious

Typhus. Although greatly weakened, he continued to visit patients and
did not abandon his mathematical research. In April 1822, he was struck
by chronic pericarditis and passed away the following month. Strangely,
after his death, his work was all but forgotten, and with the exception of
Cauchy, the mathematicians who followed him essentially had to redis-
cover his ideas.

This was the setting into which two young men, perhaps the most
tragic figures in the history of science, appeared. The Norwegian Niels
Henrik Abel and the Frenchman Evariste Galois were about to change
the course of algebra forever. The life stories of these two remarkable
individuals are so heartrending that I feel compelled to describe them in
some detail in the next two chapters.



— FOUR —

The Poverty-Stricken
Mathematician

he first lines in Erich Segal's celebrated novel Love Story read,
"What can you say about a twenty-five-year-old girl who died?
That she was beautiful, and brilliant, that she loved Mozart and

Bach. And the Beatles and me." One can easily paraphrase this sad sum-
mary for Evariste Galois (1811-32) and Niels Henrik Abel (1802-29).

For Galois it would probably read something like, "What can you say
about a twenty-year-old boy who died? That he was a romantic, and a
genius, that he loved mathematics. And he succumbed to misunder-
standing and self-destruction." Or, for Abel: "What can you say about
a twenty-six-year-old boy who died? That he was shy, and a genius,
that he loved mathematics and the theater. And he was condemned to
death by poverty." The Swedish mathematician GOsta Mittag-Leffler
(1846-1927) described Abel's mathematical achievements with the
words, "The best works of Abel are truly lyric poems of sublime beauty
. . . raised farther above life's common-place and emanating more
directly from the very soul than any poet, in the ordinary sense of the
word, could produce." The great Austrian mathematician Emil Artin
(1898-1962) wrote about Galois, "Since my mathematical youth, I have
been under the spell of the classical theory of Galois. This charm has
forced me to return to it again and again." Indeed, the genius of Abel and
Galois could be compared only to a supernova—an exploding star that
for a short while outshines all the billions of stars in its host galaxy.



THE POVERTY-STRICKEN MATHEMATICIAN 91

ABEL-THE EARLY YEARS

Niels Henrik Abel was born on August 5, 1802. He was the second son

of a Lutheran pastor, Soren Georg Abel, and Anne Marie Simonsen, the

daughter of a shipping merchant (figure 47 shows silhouettes of Niels

Henrik's parents). Some years after Abel's birth, his mother reported

that she had actually given birth three months prematurely and that the

newborn showed signs of life only after being washed in red wine. The

unlikely combination of a father from a long line of men of the cloth and

a remarkably beautiful woman known for her passion for earthly

delights did not hold promise for

a successful marriage. Before Niels

Henrik was two, his father took a

post in the village of Gjerstad, replac-

ing his own father as minister. Nor-

way, which was a part of Denmark

during those years, was constantly in

the shadow of war, first by sea, with

the English fleet, then by land with

Sweden. The results of the blockade of Norway's shipping routes by

British warships were devastating. All timber exports came to a halt by

mid-1808, and the trade in grain from Denmark had become so danger-

ous that it was also reduced to a trickle. Hunger and starvation spread

over Norway in 1809. Pastor Abel barely managed to fight famine in his

own parish by convincing the people of Gjerstad to eat the previously

taboo horse meat.

Niels Henrik was taught by his father, at the vicarage, till age thir-

teen. The pastor did not take the responsibility for this early education

lightly. He had actually prepared a handwritten textbook from which

he catechized his children. The book included grammar, geography,

history, and mathematics. Amazingly, the first page on the topic of arith-

metic addition (figure 48) contains a glaring error: 1 + 0 = 0! Fortu-

nately, the world of mathematics did not lose one of its brightest stars

because of this early misinformation. In 1815 Niels Henrik was sent to

the Cathedral School in Christiania (today's Oslo). The deteriorating

family life in a house in which both parents were increasingly indulging

in alcoholism and the mother was rather free with her sexual favors

probably hastened the young boy's departure. His father wrote, "May
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God protect him! But it is without anxiety that I send him out into this

depraved world."

Niels Henrik entered the Cathedral School at a rather low point in

this institution's history. The opening of the Christiania University a few

years earlier had robbed the Cathedral School of all of its best teachers,

leaving mostly the unqualified behind. The mathematics teacher in par-

ticular, one Hans Peter Bader, was a heartless brute who terrorized the

children and often beat pupils black and blue. Niels Henrik's grades

were at first satisfactory,

even though he showed

little interest in the rather

long and dreary school

days. He tended to fall

into depression when not

in the company of friends,

correctly diagnosing him-

self later: "As it happens, I

am so constituted that I

absolutely cannot, or at

least only with the greatest

difficulty, be alone. Then I

become quite melancholy and not in the mood for work." Then, as in

later years, his great escape from the burden of life's inevitable chores

was the theater. There he could lose himself in the lives of fictional char-

acters, instead of having to struggle with problems for the solution of

which he never had the chance to receive the proper guidance. Niels

Hendrik was shy and insecure, and his relations with the opposite sex

remained very limited, not only during his student days, but in fact until

his death. By the end of 1816 Niels Henrik's performance at school was

on a slippery slope, and after having been beaten several times by Bader

he had to quit for a short period. His grades fell so low that in 1817 he

was allowed to pass the year only provisionally. In November of 1817,

however, a fateful event at the Cathedral School was to mark a dramatic

turning point in Abel's life. On November 16, a student, Henrik

Stoltenberg, was taken ill with nervous fever accompanied by typhus.

He died a week later. Eight of Stoltenberg's classmates signed statements

to the effect that the hated mathematics teacher Bader had not only vio-

lently beaten the student with his fists, but that he had continued to kick
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him even after poor Stoltenberg was lying helpless on the floor. While
beating as a cause of death was never confirmed by the medical examiner,
Bader was discharged.

As a substitute teacher the school hired Bernt Michael Holmboe
(1795-1850), a graduate of the Cathedral School himself, who was only
seven years older than Abel. Holmboe introduced a new syllabus that
started with the training of students to understand mathematical sym-
bols fully. It did not take him long to discover that the dream of every
teacher of mathematics had come true in his class—he had a genius on
his hands. After whizzing through the standard curriculum, Abel
started, with Holmboe's enthusiastic and inspiring encouragement, to
immerse himself in the original works of the great mathematicians Euler,
Newton, Laplace, Gauss, and, in particular, Lagrange. Holmboe could
not restrain his admiration. In Abel's report card for 1819 he
unabashedly exclaimed, "A remarkable mathematical genius." In the fol-
lowing year he went even further. Holmboe's assessment is written right
across all the school subjects: "With the most incredible genius he unites
an insatiable interest in and ardour for mathematics, such that quite
probably, if he lives, he will become one of the great mathematicians."
Underlying the last sentence a few words have been scratched out,
which can still be made out to read "the world's greatest mathemati-
cian." Apparently the school board insisted on Holmboe tempering his
praise. The words "if he lives" turned out to be tragically prophetic.

A STRUGGLING GENIUS

During his last year in school Abel made his first attempt at spreading
his own wings, and what an undertaking that was. With the chutzpah
characterizing only youngsters in their first venture into unfamiliar ter-
ritory, Abel tried no less than to solve the quintic equation. Here was a
mathematical problem with which the best mathematicians of Europe
had struggled for nearly three centuries, and now a high-school kid was
claiming that he had solved it. Abel showed his solution to Holmboe,
who found nothing wrong with it. Lacking the confidence of a seasoned
mathematician, however, Holmboe presented the solution to the two
mathematicians at Christiania University, Christopher Hansteen and
Soren Rasmussen. They also did not find any errors in the solution.
Realizing the magnitude of the discovery, Hansteen decided to forward
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the work to the leading Scandinavian mathematician of the time—Ferdi-
nand Degen of Copenhagen—for publication by the Danish Academy.

Degen was a pragmatic person who preferred to err on the side of
caution. Even though he found no fault with Abel's solution, he asked
that Abel send him "a more detailed deduction of his result and also a
numerical illustration" of the method—for instance, a solution to the
equation x 5 + 2x 4 + 3x 2 — 4x + 5 = 0. After all, the a priori chances that
a disciple from Cathedral School would solve one of the most celebrated
problems in mathematics were not very high. While attempting to pro-
duce specific examples, Abel discovered, to his great dismay, that his
solution was in fact incorrect. Far from signaling the end of his quest,
however, this temporary setback was about to lead Abel to a monumen-
tal breakthrough. Degen, in any case, was sufficiently impressed to offer
Abel a piece of advice. To Degen, the study of equations appeared to be
"sterile subject matter." He suggested that Abel instead concentrate his
efforts in the new field of elliptical integrals (special types of mathemat-
ical entities in calculus, called such because one can use them to calculate
the arc length of an ellipse). There, Degen said, "a serious investigator
with the proper approach . . . could discover a Strait of Magellan leading
into wide expanses of an immense analytic ocean."

Even as Abel's mathematical genius was starting to shine through,
the skies were darkening on the family front. The years 1818-20 were to
become drainingly grievous for Abel. His father the pastor managed to
get elected to the Storting (parliament) on December 10, 1817, but this
seemingly prestigious event turned into utter disaster. At first, the newly
elected and very energetic parliamentarian brought forward a few suc-
cessful bills on education. In particular, he was instrumental in the estab-
lishment of a veterinary school. However, due perhaps to a judgment
impaired by excessive drinking and an insatiable craving for self-
promotion, he was driven to commit what was tantamount to political
suicide. During one calamitous session, on April 2, 1818, he unexpect-
edly accused two representatives of unjustly imprisoning a former con-
stable of one of the ironworks. The charges turned out to be totally
unfounded, thus marking the beginning of Pastor Abel's downfall. The
political and public furor that erupted led to threats of impeachment.
Soren Georg Abel was given a last chance to apologize, which he hard-
headedly declined. In the fall of 1818, the disgraced and disillusioned
pastor returned to Gjerstad. He was increasingly inclined to drown his
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troubles in alcohol, which only brought about a rapid deterioration of
his health. When he died in 1820, no one in Gjerstad expressed much
sorrow. The morally weak widow was said to have received the consol-
ing visitors in bed, with a servant whose services went beyond house-
hold chores.

Anne Marie and Niels Henrik's five siblings were left with a tiny
pension that was far from sufficient even to support their own needs.
The question of money to allow Abel to complete his education could
not even be raised, let alone addressed. Through circumstances that were
nothing short of miraculous, Abel managed, nevertheless, to enter the
university in 1821. In an environment in which personal contact
between students and professors was generally discouraged and profes-
sors adopted a distant and aloof attitude, no fewer than three professors
volunteered to support Abel out of their own, rather shallow pockets.
This generosity persisted until 1824, when Abel finally received a
stipend to live on. During his first years at the university Abel became a
frequent and welcome guest in the house of Professor Christopher
Hansteen, and it was in a periodical started by Hansteen that Abel pub-
lished his first mathematical paper, in 1823. This was not exactly an
earthshaking article (nor was it, or Abel's second paper, comprehensible
to most of the magazine's readership). Abel's third publication, however,
"Solution of a Pair of Propositions by Means of Definite Integrals,"
addressed what was much later to become the mathematical basis of
modern radiology (for which physicist Allan Cormack and electrical
engineer Godfrey Hounsfield received the 1979 Nobel Prize in Medi-
cine).

In the meantime, Professors Hansteen and Rasmussen continued
relentlessly to search for ways to support Abel's work, and in particular
to allow him to travel abroad to expand his horizons. When one such
plea to the Academic Collegium had totally disappeared within the uni-
versity's bureaucracy, Rasmussen gave Abel a personal gift of one hun-
dred speciedaler so that he would be able to travel to Denmark to meet
Degen and other Danish mathematicians. Against all odds, therefore,
Abel spent the summer holiday of 1823 in Copenhagen. There, he dis-
covered that "the men of science think that Norway is pure barbarity"
and he did everything in his power "to convince them to the contrary."
The trip to Copenhagen had another unexpected outcome—Abel met
his future fiancee, Christine (nicknamed "Crelly") Kemp. The first
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meeting between the two took place at a party in Abel's uncle's house.
Abel asked Christine to dance, but to his and her embarrassment the
orchestra started playing what was then the new sensation—the waltz—
which neither of them knew. Disconcerted, they stared at each other for
a few minutes and then quietly left the dance floor. Abel's entire rela-
tionship with Crelly is somewhat of a mystery. After spending Christ-
mas with her in 1824, Abel shocked his friends at the university with the
announcement that he was engaged to be married. Apparently Abel
never participated either verbally or physically in any of the erotic expe-
riences that were quite typical for student life in the capital. The engage-
ment at a very young age generated a protective wall that allowed him to
avoid the need for any further explanations when the topic of women
came up. Niels Henrik never married Christine. It was unthinkable at
that time that anyone would marry before he had the means to support
a household. Sadly, Abel never reached that position. Five years after the
engagement, on his deathbed, overcome with guilt and responsibility,
Abel would ask his good friend, Baltazar Mathias Keilhau, to take care
of Crelly. "She is not pretty," he would be heard to say, "has red hair and
freckles, but is a splendid human being." Keilhau, who up to that point
had not even seen Crelly, indeed married Kemp in 1830, and the two
spent the rest of their lives together.

THE QUINTIC

Ever since his unsuccessful attempt to solve the quintic by a formula,
this subject had not left Abel's mind. While he did not ignore Degen's
advice to embark on pioneering studies in two other areas of mathemat-
ics, the obsession with the quintic persisted. Upon his return from
Copenhagen, he therefore decided to revisit this topic with fresh eyes.
Instead of attacking the problem again with the goal of finding a solu-
tion, he was now determined to show that a formulaic solution did not
exist. Recall that this was precisely what Ruffini had claimed to have
proven in a series of works in the period 1799-1813, without realizing
that his "proof" contained a serious gap. Since Ruffini's work had not
been widely publicized, Abel was unaware of it in 1823. After a few
months of intensive work, the twenty-one-year-old student from
remote Norway brought a centuries-old quest to an end. He succeeded
in proving, rigorously and unambiguously, that it is impossible to find a
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solution of the quintic equation that can be expressed as a simple for-
mula of the coefficients that involves only the four arithmetic operations
and the extraction of roots.

Let me first clarify briefly what Abel's proof means, and equally
important, what it does not mean. Abel proved that in the case of the
general quintic equation, and equations of higher degrees, one cannot
repeat what had been achieved for the quadratic, cubic, and quartic
equations. In other words, a solution to the quintic in the form of an
algebraic formula that involves only the coefficients simply does not
exist. All the toil put in by scores of brilliant mathematicians amounted
to no more than a Sisyphean effort. Abel's proof does not imply that
quintic equations cannot be solved. The quintic equation x 5 – 243 = 0,
for instance, has the obvious solution x = 3, because 3 5 = 243. Further-
more, even the general quintic equation can be solved, either numeri-
cally, using computers, or by introducing more advanced mathematical
tools, such as elliptic functions. What Abel discovered was a fundamen-
tal shortcoming of basic algebra when it comes to the taming of the
quintic. The familiar operations of addition, subtraction, multiplication,
and the extraction of roots simply reach the limit of their usefulness
when faced with the quintic. This was a monumental realization in the
history of mathematics. It changed the entire approach to equations
from mere attempts to find solutions to the necessity to prove whether
solutions of certain types exist at all.

Abel's proof is too technical to be reproduced in detail in a popular
text. I refer the more mathematically inclined readers to a clear exposi-
tion in Peter Pesic's book Abel's Proof Here let me only note that the
proof relied on the logical tool known as reductio ad absurdum. The idea
behind this method is that you prove a proposition by proving the fal-
sity of its contradictory. In other words, Abel assumed that the quintic is
solvable and showed that this assumption leads to a logical contradic-
tion.

Abel was not oblivious to the significance of his discovery. Unlike
his previous papers, which were written in the inaccessible Norwegian,
he wrote the proof for the insolvability of the quintic in French, hoping
to attract the attention of the leading mathematicians of his time. He also
decided to use the proof as his "business card," thinking that this "would
be the best introduction I could have." Accordingly, he paid the printer
Grondahl from his own pocket (probably by skipping quite a few meals)
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to produce the article in the form of a pamphlet. In order to save on the
printing expenses, however, he condensed the article "Memoire sur les
equations algebriques oU l'on demontre l'impossibilite de la resolution de
l'equation generale du cinquieme degre" ("Essay on Algebraic Equa-
tions, Where the Impossibility of Solving the General Equation of Fifth
Degree Is Demonstrated") to only a scant six pages. This parsimony
proved to be costly in other ways. The greatly abbreviated, almost tele-
graphic version was so opaque to most mathematicians that even though
Abel sent copies of the pamphlet to his friends in Copenhagen and to the
great Carl Friedrich Gauss, the paper received little attention. Gauss
apparently did not even bother to open Abel's pamphlet—after his death
the article was found, uncut, among his papers. One of the greatest mas-
terpieces of mathematical literature found no readership.

Around that time, Abel's guardian angels, Professors Hansteen and
Rasmussen, concluded that, for him to realize his full potential, it was no
longer practical for them to continue to support him out of their own
meager means. Consequently, in 1824 they applied to the Norwegian
government for a travel grant for Abel. They justified the unusual
request by noting that for this extraordinary talent "a stay abroad in
those places where the most remarkable mathematicians are, would most
excellently contribute to his scientific and scholarly education." After
the usual bureaucratic delays, the finance department did approve a
modest grant for Abel. This was a truly remarkable achievement given
the country's dire financial situation at the time. The approval did intro-
duce, however, two important modifications to the original request.
First, Abel was required to stay in Norway for another eighteen months
to "further his scholarly scientific education, particularly, perhaps in fur-
ther study of the learned languages," in order to be prepared for travel.
Second, and as it turned out more important, no money was allocated to
support Abel upon his return home. This latter omission would prove to
have devastating consequences.

A EUROPEAN EXPERIENCE

In September of 1825 Abel finally took his farewells from Crelly, who
was by then a governess for the children of a family in the small town of
Son, near Christiania, and left for the Continent accompanied by three
friends. Two of them were later to become geologists and the third a vet-



THE POVERTY-STRICKEN MATHEMATICIAN 99

erinarian. Originally, upon Hansteen's advice, Abel planned to spend
his time in Paris, after a brief stay in Copenhagen. However, when his
friends decided to go to Berlin, the horror of being left alone in Paris
convinced Abel to take a detour through Berlin. In this particular case,
Abel's mortal fear of isolation produced a fortunate outcome. In Berlin
he met an influential construction engineer who had a great passion for
mathematics and was about to become Abel's greatest admirer, fatherly
friend, and benefactor. August Leopold Crelle (1780-1855) was at first
rather unclear about the purpose of the visit of the young Norwegian,
who barely spoke German. In a letter to Hansteen, Abel described the
event:

A considerable time elapsed before I could make clear to him what
the purpose of my visit was, and it all appeared to be heading for a
melancholy end when he asked me what I had already read in math-
ematics. I took courage, and mentioned to him the works of a couple
of the foremost mathematicians. He then became very amiable and,
as it appeared, really happy. He began an extensive conversation with
me about various difficult problems which were still not resolved.
When we came to the solution of the quintic equation, and I told him
that I had demonstrated the impossibility of giving a general alge-
braic solution, he would not believe it and said he would dispute it. I
therefore gave him a copy, but he said he could not see the reason for
several of my conclusions. Others have said the same, and I conse-
quently have made a revision of it.

Following this meeting, Crelle founded a mathematical journal, usu-
ally referred to as Crelle's Journal (the official name was Journal for Pure
and Applied Mathematics), which became the premier German mathe-
matical publication of the nineteenth century. The first volume of
Crelle's Journal appeared in 1826, and it included the astonishing num-
ber of six papers by Abel (written in French and translated by Crelle).
One of those papers was a more detailed and elaborated exposition of
the proof for the insolvability of the quintic by a simple formula. Abel
was apparently still unaware of Ruffini's proof at the beginning of 1826,
but he probably discovered it around the summer of that year, via a sum-
mary of Ruffini's ideas by an anonymous author. In a manuscript dated
1828 that was published posthumously, Abel notes, "The first, and if I
am not mistaken, the only one before me who tried to prove the impos-
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sibility of the resolution of algebraic equations is the geometer Ruffini.
But his memoir is so complicated that it is difficult to judge the validity
of his reasoning. It seems to me that his reasoning is not always satis-
fying."

In the midst of these impressive scientific endeavors, the harsh reality
of his financial situation continued to haunt Abel. From his extremely
modest means he was also partially supporting his siblings. In a letter to
Mrs. Hansteen he wrote:

God bless you for not forgetting my brother [referring to his trou-
bled brother Peder]. I am so worried that things might be going
badly for him. If he should need more money than he already has
received, may I ask you to give him still a little more. When the 50
daler have been used up, I shall make arrangements for you to receive
more.

A more serious affair was about to cast a dark shadow over Abel's
expectations and future prospects. Professor Rasmussen found it no
longer possible to juggle his teaching responsibilities and his public
duties, and he resigned from the university to take a position with the
Bank of Norway. This opened up what seemed to be a golden opportu-
nity for Abel, one he had always dreamt about — a university appoint-
ment. There were, however, two other potential candidates for the
position: Abel's former teacher Holmboe and the young Niels Henrik.
When the news about the opening reached the young travelers in Berlin,
one of them, Christian Peter Boeck (himself an aspiring veterinarian),
was quick to write to Hansteen:

My cousin Johan Collett writes to me about Rasmussen's bank
appointment. What will happen to his position? Is there any hope
that Abel might obtain it upon his return, or perhaps Holmboe is
ahead of him? However reasonable the latter may be in certain
respects, it does not appear quite just, since Abel presumably ranks a
head above Holmboe.

The letter was written on October 25, 1825. The faculty met on Decem-
ber 16 to discuss and approve the recommendation for the new appoint-
ment. They recommended Holmboe to fill the vacancy. The chief reason
given for preferring Holmboe to Abel was that the latter "cannot as eas-
ily adjust himself to the comprehension of the younger students as a
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more experienced teacher, and thus would not be able to present so fruit-
fully the elementary parts of mathematics, which is the principal object
of the above mentioned position." This type of tension between talent in
teaching and aptitude for research as qualifications for an appointment is
not uncommon. In fact, I can testify from firsthand experience (having
served on scores of search committees) that discussions of this sort con-
tinue to characterize university appointments to the present day. In this
particular case, however, with one candidate being head, shoulders,
chest, and knees above the other, there is no question that the short-
sighted faculty had committed a serious error. Not entirely unaware of
their problematic decision, the Norwegian faculty concluded, "We also
consider it a duty to point out how important it is for science in general
and our university in particular that student Abel not be lost from
sight."

Even with his hopes pulverized and the realization of his uncertain
future starting to sink in, the generous-spirited Abel made every effort
to keep his friendship with Holmboe intact. In a warm letter to Holm-
boe he wrote, "Among other news he told me that you, my friend, had
been recommended to be lecturer to take the place of Rasmussen.
Receive my most sincere congratulations and be assured that none of
your friends is as pleased over it as I. Believe me, I have often wished for
a change in your position." The comradeship between Abel and Holm-
boe indeed stood this test, and they remained devoted friends for the rest
of Abel's life. The disappointed Abel did feel compelled, however, to
inform Crelly that their marriage plans had to be put on hold.

Despite these troublesome circumstances, that winter in Berlin
proved to be one of Abel's happiest times. He was extremely productive,
contributing seminal papers in integral calculus and on the theory of
sums of various infinite series. The young scientists did not miss any
opportunity to go to the theater — Abel's passion—and the students
were occasionally invited to balls or threw parties of their own. The lat-
ter events, which were quite noisy, sometimes annoyed the famous
philosopher Georg Hegel (1770-1831), who happened to live in the
same house. He was once heard to refer to his clamorous neighbors as
"Russian bears."

As spring was approaching, Abel started to make travel plans that
would bring him to his original destination—Paris. However, the
thought of being separated from his friends was again such a deterrent
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that he ended up first traveling with Keilhau to Freiberg, and then with
two more friends through Dresden, Bohemia, Vienna, northern Italy,
and Switzerland, reaching Paris only in July of 1826.

PARIS

Anyone who arrives in Paris during July or August knows what it's like.
As Abel soon found out, everybody was on vacation and away from the
capital. Still, Paris was the indisputable mathematical capital of the world,
and Abel eagerly awaited the opportunity to meet with mathematical
giants he revered. After all, the works of Cauchy, Laplace, and Legendre
constituted the bulk of Abel's bedtime reading. In his first letter to
Hansteen from Paris he exclaimed exuberantly, "I have finally arrived at
the focus of all my mathematical desires, in Paris." Little did Abel know
that the Paris visit would cause only disappointment and disillusion.

Abel took up lodging with the Cotte family at 41, rue Ste. Marguerite,
across from the famous St. Germain-des-Pres quarter. For the somewhat
outrageous sum of 120 francs a month he had an "extremely plain"
room, clean clothes, and two meals a day. The landlord, who was a "ras-
cally dilettante in mathematics" according to Abel, took him on his first
attempt to meet with the famous mathematician Adrien-Marie Legendre
(1752-1833). Unfortunately, the latter was stepping into his carriage just
as Abel arrived, and the exchange between the two was limited to a few
polite greetings. A few years later Legendre would come to regret not
having talked more with Abel while the young mathematician was still
in Paris. (They did, in fact, have a quite fruitful exchange in 1829, but this
was 1826, and the aging Legendre had no idea who Abel was.)

During his first few months in Paris, Abel worked ceaselessly on
what was to become a true tour de force, now known as Abel's theorem.
Although this theorem is not directly related to the quintic or to group
theory, it played such a major role in Abel's life that no biography of him
would be complete without it. The theorem dealt with a special class of
functions known as transcendental functions, and it vastly generalized a
relation previously obtained by Euler. It would not be an exaggeration
to say that Abel's theorem literally afforded the world of mathematics
new perspectives. The clarity and intrinsic simplicity of Abel's proof has
been likened to the classical statues of the Greek sculptor Phidias. Abel's
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originality was revealed, in particular, by his ability to turn problems
inside out. Let me give a nonmathematical example for this type of
inversion logic.

Imagine that someone suggests that one of the reasons that firearms
are so common in some inner cities is that the number of homicides is so
high—people acquire weapons in order to protect themselves. One
could, however, turn this problem on its head and submit that one of the
reasons for the frequent homicides is the unrestricted availability of
guns. In mathematics, examine for instance the relation x = V (read as
"x equals the cubic root of y"). It implies that to calculate x we need to
extract the cube root of y, as in 2 = VI However, the inverted relation
y = x 3 is precisely equivalent to the previous one (e.g., 8 = 2 3 ), yet most
people would agree that calculating the third power is much easier and
more convenient than manipulating cube roots. This was precisely the
type of insight that Abel provided in his theorem, one that had escaped
Legendre in almost forty years of work.

Abel's paper turned out to be one of his longest (it fills sixty-seven
pages in his collected works). This remarkable treatise, entitled
"Mernoire sur une propriete generale d'une classe tres &endue des fonc-
tions transcendantes" (Memoir on a General Property of a Very Exten-
sive Class of Transcendental Functions), included both the theory and
its applications. When it was completed, Abel could barely contain his
excitement. He submitted the paper with great anticipation to the
French Academy of Sciences on October 30, 1826. Here was the work,
he thought, that would be his passport to recognition. Abel was actually
present at the session at the French Institute when the paper was intro-
duced. He listened with a great sense of accomplishment as the secretary
of the academy, mathematical physicist Joseph Fourier (1768-1830),

read the introduction to the work. Cauchy and Legendre were immedi-
ately appointed as referees, and Cauchy was put in charge of communi-
cating a report to the academy.

Abel spent the next two months in Paris eagerly awaiting the verdict.
He felt increasingly lonely, gloomy, and anxious: "Though I am in the
most boisterous and lively place in the continent," he wrote to Holm-
boe, "I feel as though I were in a desert. I know almost nobody." Partly
perhaps because of his own melancholic mood when not surrounded by
friends, he found it difficult to communicate:
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On the whole, I do not like the French as well as the Germans; the

French are extremely reserved toward strangers. It is very difficult to

become more closely associated with them, and I dare not hope for

it. Everybody works for himself without concern for others. All

want to instruct, and nobody wants to learn. The most absolute ego-

tism reigns supreme.

As always, the theater remained Abel's principal source of amuse-

ment and joy: "I know of no greater enjoyment than to see a play by

Moliere in which Mademoiselle Mars [the best known actress of the

time, Anne-Francoise-Hippolyte Boutet, known as Mars] plays. I am

really quite enthused," he wrote. The other "attractions" of nineteenth-

century Paris left him cold:

Occasionally I visit Palais Royal [figure 49], which the French call un

lieu de perdition [a den of vice]. There one sees des femmes de bonne

volonte [women of "goodwill"] in considerable numbers, and they

are not at all intrusive. The only thing one hears is: "Voulez-vous

monter avec moi? Mon petit ami, petit méchant." [Do you want to

come up with me? My little friend, little bad boy.] Being an engaged

man I never listen to them and leave Palais Royal without the least

temptation.

One compatriot that Abel did meet in Paris was the painter Johan

Gorbitz. Gorbitz was working in the atelier of the famous histori-

cal painter Jean-Antoine

Gros, and he had lived in

Paris since 1809. Gorbitz

produced during that win-

ter the only authentic por-

trait of Abel painted during

his lifetime (figure 50). The

portrait depicts a hand-

some young man of deli-

cate features. While Abel's

mother was a woman of

great beauty, none of Abel's contemporaries mention him as being partic-

ularly good looking. The flattering portrait may therefore represent the

beautifying tendency of painters at the time.



Figure 50

THE POVERTY-STRICKEN MATHEMATICIAN 105

Perhaps the best glimpse into the
complex workings of Abel's creatively
wandering mind can be gleaned from
the pages of his Paris notebook. Among
formulae of various integrals and
expressions involving complex num-
bers, we find a menagerie of doodles
and various fragments of sentences that
hop relentlessly from one stream of
thought to the next. The page shown in
figure 51, for instance, contains (in no
particular order) the following snip-
pets of phrases: "complete solution to
the equations in which the . . . goddamn . . . goddamn, my co [infinity
sign]"; "Our Father who art in Heaven, give me my bread and beer. Lis-
ten for once," referring perhaps to his rapidly deteriorating financial sit-
uation; "Come to me in God's name"; "My friend, my beloved"; "Tell
me, my dear Eliza . . . listen . . . listen," referring either to his beloved
sister Elizabeth, to whom he sent a gift from Paris, or to some sexual
encounter implied by the language of the last phrase below; "Suleiman
the Second," referring to the Ottoman sultan of the seventeenth
century—Abel read extensively on European history before his trip;
"Come to me my friend"; "now, for once my"; "solutions to algebraic
equations"; "Come to me in all your lewdness."

Abel was extremely optimistic about the paper he had submitted to
the academy, and he was absolutely convinced that a laudatory report
was forthcoming. After all, he surmised, surely those great mathemati-
cians would recognize the value of the work. What he did not realize,
however, was the fact that the two mathematicians appointed as evalua-
tors were, for different reasons, totally unsuited to the task. Legendre
was seventy-four at the time, and he lacked the patience to go through a
lengthy manuscript that was (in his own words) "barely legible . . . writ-
ten in very thin ink, the letters badly formed." Cauchy, on the other
hand, was at the peak of his egotistical phase, or, in the words of histo-
rian of mathematics Eric Temple Bell, "so busy laying eggs of his own
and cackling about them that he had no time to examine the veritable
roc's egg which the modest Abel had deposited in his nest." The net
result of these unfortunate circumstances was that Legendre couldn't be
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bothered and Cauchy mislaid the memoir somewhere among his piles of

papers and forgot about it. Imagine this, a genuine chef d'oeuvre—as

seminal perhaps as Claude Monet's painting Impression: Sunrise for the

development of impressionism—being mislaid and lost. Only two years

later would Legendre learn of the contents of the manuscript through a

correspondence with Abel, who by then was back in Norway.

Another person who in 1829 became familiar with Abel's paper was

the great German mathematician Carl Gustav Jacob Jacobi (1804-51).

He wrote with unconcealed excitement to Legendre on March 14, 1829:

What a discovery by Herr Abel, this generalization of Euler's inte-

gral! Has anything like it ever been seen? But how is it possible that

this discovery, perhaps the most important in our century, could

have avoided the attention of yourself and your colleagues after hav-

ing been communicated to the Academy more than two years ago?

It was in response to this perplexed inquiry that Legendre gave the lame

excuse about the paper being "barely legible."

Abel spent two more months in Paris, with dwindling resources, an

increasingly gloomy mood, and deteriorating health. He made only two
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new acquaintances of note. One was the mathematician Johann Dirich-
let (1805-59), who although younger than Abel had already made a
name for himself by proving (with Legendre) Fermat's Last Theorem
for the case n = 5. That is, he proved that there are no whole numbers
x, y, z such that x 5 + y 5 = z 5 . The other was Jacques Frederic Saigey, edi-
tor of the mathematics and astronomy review Ferrusac's Bulletin, for
which Abel wrote a few articles, basically summarizing his papers in
Crelle's Journal.

What Abel thought was a nagging cold started to bother him, and
he must have consulted a few physicians. Two years later, on his death-
bed, he would be heard to exclaim, "There, you can see that it was not
true what they said in Paris — I certainly do not have consumption."
From this we can conclude that the diagnosis of the French doctors was
alarming—tuberculosis. Refusing at the time to acknowledge his med-
ical condition, even with his hopes dashed and his funds running dry,
Abel decided to leave Paris on December 26 for Berlin.

Shortly after his arrival in Berlin he became ill. These were probably
the first signs of his rapidly declining health. Crelle did his best to help
Abel financially, and Abel also received a loan from Holmboe. Miracu-
lously, neither his economic worries nor his worsening health prevented
Abel from completing his most extensive publication yet—"Research on
Elliptic Functions" is 125 pages long in his Complete Works. This trea-
tise presented an immense generalization of the familiar trigonometric
functions (e.g., sine, cosine), and it had important ramifications even into
number theory. Crelle attempted to persuade Abel to remain in Berlin
until he could secure a position for him there. Abel, however, was tired
and painfully homesick. On May 20, 1827, heavily in debt and with no
prospects for a position, he returned to Christiania.

COMING HOME

The situation in Christiania in 1827 confirmed Abel's worst fears. Recall
that the conditions of his grant were such that no provisions were made
to sponsor him in Norway. After the Department of Finance turned
down his application for an extension on his fellowship, the university
managed to come up with a small stipend for him to live on (not before
the Department of Finance reserved the right to deduct this award from
Abel's future earnings). Even with this allowance, Abel had no choice
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but to tutor schoolboys to make ends meet. Crelly, his fiancée, took a
new governess position with the Smith family, who owned ironworks in
Froland in southern Norway.

The beginning of 1828 brought with it significant financial improve-
ment. Professor Hansteen succeeded in obtaining a large grant for
studying the Earth's magnetic field, thereby enabling Abel to become his
temporary substitute at both the university and the military academy. At
the same time, Abel suddenly found himself involved in a scientific race
to publish, of a sort he had never experienced before. September of 1827

witnessed the appearance of not one but two papers on elliptic func-
tions. One was the first part of Abel's massive treatise "Research on
Elliptic Functions," and the other was a paper announcing related results
by the young German mathematician Jacob Jacobi. Not to be scooped,
Abel frantically rushed to press with the second part of his manuscript,
to which he added a note that showed how Jacobi's results could be
obtained from his own. More important from the perspective of the
present book, he stopped working on what was supposed to be his
definitive answer to the question of which equations can be solved by a
formula. This left the door open for another young genius — Evariste
Galois —to provide the answer, and in the process to introduce group
theory.

The recognition of Abel's genius was by now spreading throughout
Europe. Legendre, who began corresponding with both Abel and Jacobi
on the theory of elliptic functions, declared that "through these works
you two [Abel and Jacobi] will be placed in the class of the foremost ana-
lysts of our time." Besides the mathematical fame, the reality of Abel's
precarious economic situation started to reach the ears of some Euro-
pean mathematicians, especially through the efforts of the tireless Crelle.
In an unprecedented act of support, four eminent members of the
French Academy of Sciences wrote to King Charles XIV of Norway and
Sweden and urged him to see to it that a position commensurate with
Abel's talents would be created. The effort was to no avail.

Abel spent the summer of 1828 in Froland with Crelly and the Smith
family. This was a place where, in his words, he felt "among all the
angels." Hanna Smith, one of the daughters, then twenty years old,
described Abel later in her memoirs as being generally lively and playful.
She gives a moving description of how he used to sit with his mathemat-
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ical papers, surrounded by the ladies of the house, writing his new man-
uscripts on the thinnest paper to save on the postage cost.

The disastrous terms imposed by the stipend allocated to Abel two
years earlier came back to haunt him. The minister of finance insisted
that the collegium would "take care that the aforementioned advance, in
adequate installments be deducted from Mr. Abel's salary." While the
university refused to follow these outrageous instructions, Abel's
finances were sinking faster than a lump of lead. He concluded one of
his notes to Mrs. Hansteen that summer with, "Your most poverty-
stricken creature," and another note with, "I am as poor as a church-
mouse, . . . Yours destroyed."

By the fall of 1828 Abel was back in Christiania, preparing for the
school year to begin. For a few weeks in September he was so ill that
he had to be confined to bed. Nevertheless, in mid-December, during a
particularly cold winter, he ignored his sister's advice and left again for
Froland to spend Christmas with his fiancée. He became ill shortly after
Christmas, starting to cough to exhaustion. In spite of his debilitating
condition, he managed to produce a very brief summary of his Paris
treatise (one he feared had been permanently lost), which he sent to
Crelle's Journal. On January 9, as it became clear that Abel was spitting
blood, the district doctor was called for help. The doctor hesitated to use
the dreaded words "tuberculosis" or "consumptive sickness," which
were effectively a death sentence, and diagnosed Abel's illness as pneu-
monia. The next few months became a horrid nightmare for everyone
involved. Crelly and the two eldest daughters of the Smith family took
turns at his bedside night and day. During the painful, sleepless nights,
Abel would be heard cursing the entire medical profession for not hav-
ing made sufficient progress to be able to help him. The days were
slightly better. Abel would repeat several times that the mathematician
Jacob Jacobi was the person who could best understand the value of his
work. Sometimes Abel would collapse into self-pity and would com-
plain bitterly about the poverty that had been his most constant com-
panion. As the winter progressed, Abel's speech became more and more
hoarse by the day, to the point where his words became barely intelligi-
ble to the people around him. As April arrived, his condition was visibly
deteriorating. After an excruciating night on April 5, the young Norwe-
gian genius passed away on April 6 at 4:00 p.m., with Crelly and one of



110 THE EQUATION THAT COULDN'T BE SOLVED

the Smith sisters at his bedside. He was twenty-six years old. The devas-
tated Crelly wrote to Mrs. Hansteen on April 11: "My Abel is dead! I
have lost everything on Earth! Nothing, I have nothing left."

On April 8, still unaware of Abel's death, Crelle wrote to him from
Berlin, in ecstatic jubilation: "Now my dear, precious friend, I can bring
you good news. The Ministry of Education has decided to call you to
Berlin and employ you here."

Abel was buried in Froland on April 13, 1829, a day after a violent
blizzard. His friends paid for the gravestone. In his obituary, Crelle
wrote:

All of Abel's work is shaped by an exceptional brilliance and force
of thought . . . difficulties seem to vanish in front of the victorious
onslaught of his genius. But it was not only his great talent which...
made his loss infinitely regrettable. He distinguished himself equally
by the purity and nobility of his character and by the exceptional
modesty which made his person cherished to the same unusual
degree as was his genius.

On June 28, 1830, the French Academy of Sciences announced that
the Grand Prix for mathematical achievements would be awarded jointly
to Abel and Jacobi.

But what was the fate of Abel's Paris memoir? Following Jacobi's
exchanges with Legendre and an intervention by the Norwegian consul
to Paris, Cauchy eventually managed to uncover the manuscript in 1830.
It would take eleven more years for the manuscript to get to print.
Finally, as an almost comical conclusion to this saga of neglect, the man-
uscript vanished again during the printing process, only to resurface in
Florence in 1952.

In 2002, the Norwegian government established a fund of $22 mil-
lion to award the Abel Prize in Mathematics. This prize is presented
Nobel-style by the king of Norway. The first prize, in the amount of
$816,000, was awarded on June 3, 2003, to the famous French mathe-
matician Jean-Pierre Serre; the second prize was awarded on May 25,
2004, jointly to two other remarkable mathematicians—Sir Michael
Francis Atiyah of the University of Edinburgh and Isadore M. Singer of
MIT. This prize has finally brought the name of the mathematician who
proved that a certain equation cannot be solved by a formula to the
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attention of the general public. Ironically, the brilliant work of this poor-
est of mathematicians is celebrated with a huge monetary award.

There was one meeting that never happened during that bleak
autumn of 1826 in Paris. Unbeknownst to Abel, a young French math-
ematician who lived only a couple of miles away was starting to be
obsessed with precisely the same problems that had intrigued the young
Norwegian. Could the quintic be solved by a formula? Or even more
generally, which equations can be solved by a formula? Evariste Galois
was only fifteen when Abel was in Paris, but he was already devouring
books on mathematics as if they were adventure stories. Sadly, we shall
never know how a meeting between these two star-crossed individuals
might have changed their lives. One thing is certain: If there could con-
ceivably be an even more tragic story than that of Abel, it was that of
Galois.



- FIVE -

The Romantic
Mathematician

n the morning of May 30, 1832, a single shot fired from
twenty-five paces hit Evariste Galois in the stomach. Although
fatally wounded, Galois did not die on the spot. He remained

ying on the ground until an anonymous good Samaritan, perhaps a for-
mer army officer, perhaps a peasant, picked him up and brought him to
the Cochin Hospital in Paris. The following day, with his younger
brother Alfred at his side, Galois died of peritonitis. His last known
words were, "Don't cry, I need all my courage to die at twenty."

This was the grim end of the life of one of the most visionary of all
mathematicians—the unlikely combination of a genius like Mozart and
a romantic like Lord Byron, all swathed in a tale that rivals in its woe
that of Romeo and Juliet.

GALOIS-THE EARLY YEARS

Evariste Galois was born during the night of October 25, 1811, and was
named after the saint celebrated on October 26 (figure 52 shows the
birth certificate and appendix 8 gives the extended family tree). His
father, Nicolas-Gabriel Galois (figure 53), was an educated man, who
was managing at the time a quite reputable school for boys in Bourg-la-
Reine (today a Paris suburb)— a position he inherited from Evariste's
grandfather. In his spare time, Nicolas-Gabriel composed witty verses
and entertaining plays, both of which made him a popular guest at house
parties of the time. Evariste's mother, Adelaide Marie Demante, the
daughter of a jurisconsult in the Paris Faculty of Law, was herself well

0
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versed in classical studies. The Demante family lived almost right across

from number 54, Grand Rue—the Galois home (figure 54 shows

Galois's home, when it still existed).

In the midst of the Napoleonic era, Nicolas-Gabriel was a loyal sub-

ject to the emperor. His brother went even further to become an officer

in the Imperial Guard. The postrevolutionary times were extraordinar-

ily turbulent, however, and following his colossal defeat in Russia,

Napoleon was forced to abdicate in 1814 in favor of the Bourbon king

Louis XVIII. The megalomaniacal practices of this king, which were

accompanied by a gradual restoration of the power of the church, were

sufficient to rekindle the liberal movement, with Nicolas-Gabriel as a

vocal proponent. Riding the wave of public dissatisfaction, Napoleon

seized the opportunity to return to power in March of 1815, only to fall

again one hundred days later, this time permanently. Still, during

Napoleon's brief return, Nicolas-Gabriel was appointed mayor of

Bourg-la-Reine, a position he continued to hold even after Napoleon
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met his Waterloo (figure 55 shows Nicolas-Gabriel's equivalent of a
passport). The frequent changes of power and the chameleon-like nature
of the political climate helped to polarize French society into two rather

distinct camps. On the left were the
liberals and the republicans, broadly
inspired by the sweeping ideals of the
French Revolution. On the right were
the "legitimists" or "ultras" (short for
ultraroyalists), whose model state was
a church-dominated monarchy.

Like Abel, Evariste received his
early education at home. Adelaide
Marie offered her children a strong
background in the classics and in reli-
gious studies while also infusing them

with liberal ideas. Even after the boy's tenth birthday, Evariste's mother
regretted her original intention to send him to a school in Reims and
decided to keep him at home instead for two more years.

In October of 1823, Evariste finally did leave home, for the Parisian
boarding school Lycee Louis-le-Grand. This prestigious institution had
existed since the sixteenth century, and it counted among its illustrious
graduates people such as the revolutionary Robespierre and, later, the
novelist Victor Hugo. Prior to Galois's enrollment, the school had the
distinction of having stayed open even during the tumultuous times of
the French Revolution. In spite of its academic preeminence, the school
was housed in a prisonlike building that was in desperate need of repair.
The student body pro-
vided an excellent repre-
sentation of the entire
political spectrum in the
French society of the time,
which was a sure recipe
for unrest. Rebellion, quar-
rels among students, and
riots were the norm at
Louis-le-Grand. Disobe-
dience was further bred by
the more-stringent-than-
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military discipline enforced on the

pupils. The spartan daily program,

which started at 5:30 a.m. and ended

at 8:30 p.m. sharp, was meticulously

structured and allowed for very lit-

tle recreation time. Silence was im-

posed even during meals, which

themselves were extremely lean.

Breakfast, for instance, consisted of

dry bread and water.

In the classrooms, students sat in

pairs on bare steps, with lighting

provided by candles, one for each

pair. The sight of rats crossing the

classroom floor during lessons was

so common that it attracted no

attention. The slightest deviation

from the mandatory routines—even a mere refusal of food during

meals — resulted in solitary confinement in one of twelve special cells.

Overall, the transition from the peaceful, happy atmosphere at home to

the violent and confining milieu at school must have been quite shock-

ing for Galois.

Evariste arrived at Louis-le-Grand shortly after the conservative

Nicolas Berthot was appointed as school principal. The students sus-

pected that this assignment was but the first step in an attempt by the

right to drag the school back to its Jesuit roots. Students expressed their

discontent by refusing to chant at the chapel service and by ignoring the

customary toasts to King Louis XVIII and other dignitaries at a school

banquet on January 28, 1824. The reaction was swift and harsh-117

students were immediately expelled. Galois, who was then just in his

first term, was not involved, but was undoubtedly emotionally affected.

In spite of the humiliating conditions and the inhumanely strict dis-

cipline, Evariste's first two years at Louis-le-Grand were characterized

by considerable successes. His mother's superior preparation in the clas-

sics soon translated into distinctions for narration in Latin and for trans-

lation from Greek. In the comprehensive competitive examination, he

also received the prize for mathematics. Nevertheless, the dismal envi-

ronment took its toll. The damp winter of 1825-26 brought about a
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painful earache that persisted for many months, which did not help to
improve Galois's generally downbeat mood. The separation from his
father, with whom he used to enjoy the exchange of witty couplets, was
particularly hard on the young boy. Consequently, his schoolwork
began to deteriorate.

Outside the school walls, events were progressing rapidly. Louis
XVIII died in September of 1824 and was succeeded by his brother, who
assumed the title King Charles X. The transition was marked by a dra-
matic growth in the influence of the clergy and of the extreme-right
ultras. Conviction for the dubiously defined "crimes against religion"
could now carry the death penalty.

THE BIRTH OF A MATHEMATICIAN

The fall of 1826 witnessed Galois's first humiliating setback. This was
in the rhetoric class. While Galois's diligent if unenthusiastic efforts in
this subject had generally been appreciated
by his teacher, the new ultraconservative
school headmaster, Pierre-Laurent Laborie,
had rather different ideas. In his rigid opin-
ion Galois was too young for this advanced
class, which required "judgment that only
comes with maturity." In January, therefore,
Galois was forced, to his and his father's dis-
may, to repeat the third-year classes. Phrases
such as "original and bizarre" and "good but
singular" started appearing in the report card
describing his character. The unpleasant
experience with rhetoric, however, turned out to be a blessing in
disguise—Galois discovered mathematics. Figure 56 shows a portrait of
Galois at about this time, drawn by a classmate.

The new teacher for Preparatory Mathematics, Mr. Hippolyte
Vernier, decided to introduce a new book for the study of geometry.
This was Legendre's Elements of Geometry, which first appeared in 1794
and had rapidly become the book of choice all over Europe. This by now
classic text broke with the somewhat tedious Euclidean tradition of
high-school geometry. Legend has it that the mathematics-hungry
Galois swallowed all of Legendre's book, originally intended for a full
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two-year course, in just two days. While it is impossible to verify the

validity of this (probably exaggerated) story, there is no question that by

the fall of 1827 Galois had lost all interest in any other subject and had

become passionate about mathematics. His rhetoric teacher, who at first

misunderstood Galois's indifference in class and described his unin-

spired performance by saying, "There is nothing in his work except

strange fantasies and negligence," concluded correctly after the second

term that "he is under the spell of the excitement of mathematics. I think

it would be best for him if his parents would allow him to study nothing

but this." The third trimester only confirmed the verdict: "Dominated

by his passion for mathematics, he has totally neglected everything else."

Galois was indeed bewitched. He tossed aside the conventional text-

books and went straight to the original research papers. Galloping from

one professional mathematics article to the next as now a more ordinary

youth would with successive volumes of the Harry Potter stories, he

now immersed himself totally in Lagrange's memoirs, Resolution of

Algebraic Equations and Theory of Analytic Functions. This mind-

opening experience led to an ambitious endeavor. Totally unaware of

Ruffini's and Abel's work, Galois tried for two months to solve the

quintic. And just like the young Norwegian before him, he also thought

at first that he had found the formula, only to be disappointed later, as

he discovered an error in his solution. Figure 57 shows a later editorial

footnote referring to the

fact that Abel's error (of

thinking that he had

solved the quintic) had

been repeated by Galois,

and that "it is not the only

striking analogy between

the Norwegian geometer

who starved to death and

the French geometer con-

demned to live or die . . .

behind the lock of a

prison." As in Abel's case, this minor setback only impelled Galois on

the course to bigger things concerning the solvability of algebraic equa-

tions.

More serious hindrances were still to present themselves, some of
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Galois's own making. As Mr. Vernier correctly diagnosed, in spite of his
genius and creative imagination, Galois was never able to study method-
ically and work systematically. Extremely advanced in some subjects, he
lacked some of the most fundamental basics in others. Unaware of his
own deficiencies and turning a deaf ear to Vernier's advice, Galois tried
boldly in June of 1828 to take the entrance examination to the legendary
Ècole polytechnique a year early. The Ecole polytechnique had been
founded in 1794 as the main school for the training of engineers and sci-
entists. Lagrange, Legendre, Laplace, and other famous scientists were,
at one time or another, on the teaching staff of this institution. The
school had also been known for its liberal atmosphere. Had Galois
passed the examination, the Polytechnique would have been the perfect
breeding ground for his soaring spirits. Given his inadequate prepara-
tion, however, Galois predictably failed the exam. This blasted expecta-
tion may have been the seed for his later feeling of persecution that grew
to clear paranoiac dimensions.

Forced to continue at Lycee Louis-le-Grand, Galois enrolled in the
Special Mathematics class of Louis-Paul-Emile Richard (1795-1849).
Richard proved to be for Galois what Holmboe had been for Abel—an
inspiring and motivating teacher and supporter. Richard was not a bril-
liant mathematician himself, but was well read in the latest mathematical
developments. He immediately recognized Galois's unusual abilities and
encouraged him to engage in original research, stating enthusiastically
that "this student is markedly superior to all his school fellows." He
also noted that "this student only studies higher mathematics." Just as
Picasso's mother and sister, fully aware of his remarkable talents, kept all
of his childhood drawings, Richard kept twelve notebooks of Galois's
classwork. These documents eventually made it into the library of the
Academy of Sciences. Another mathematician whom Galois met around
the same time was Jacques-Francois Sturm (1803-55). Sturm would later
become one of the few to recognize immediately that Galois's ideas were
diamonds in the rough.

In 1829 Galois published his first mathematical paper. This relatively
minor paper dealt with mathematical objects known as continued frac-
tions. The work had applications for quadratic equations, and it appeared
in the journal Annales de mathematiques pures et appliquees. Inciden-
tally, Abel died five days after the publication of Galois's first paper. For
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Galois, this first foray into mathematical research soon turned into an ex-
plosion of new ideas. The seventeen-year-old was about to revolutionize
algebra. While Abel had shown unambiguously that the general quintic
cannot be solved by a formula that involves only the arithmetic opera-
tions and the extraction of roots, his premature death did leave open the
much bigger question: How does one determine whether anygiven equa-
tion (quintic or of higher order) is solvable by a formula or not? Recall
that many particular equations were still solvable. In principle, Abel's
proof still allowed for the possibility that every specific equation had its
own formulaic solution.

In order to answer the solvability question, Galois had not only to
introduce the seminal concept of a group, but also to formulate an
entirely new branch of algebra known today as Galois theory. As a start-
ing point, Galois picked up the theory of equations where Lagrange had
left off. He delved into relations among the putative solutions of an
equation (such as the relation x 1 x 4 = 1 between two of the four solutions
x„ x 2 , x 4 of the equation of degree 4: x 4 + x 3 + x 2 + x + 1 = 0) and
the permutations of these solutions that leave the relations unchanged
(see notes for an example). Here, however, is where his genius truly took
off. Galois managed to associate with each equation a sort of "genetic
code" of that equation—the Galois group of the equation—and to
demonstrate that the properties of the Galois group determine whether
the equation is solvable by a formula or not. Symmetry became the key
concept, and the Galois group was a direct measure of the symmetry
properties of an equation. I shall describe the essence of Galois's brilliant
proof in chapter 6. Richard was so impressed with Galois's ideas that he
submitted that the young genius should be admitted to the Ecole poly-
technique without an entrance examination. To give Galois a chance at
achieving this ambitious goal, he encouraged him to put his theory into
the form of two memoirs, which Richard himself was prepared to take to
the great Cauchy for presentation to the Academy of Sciences. The
memoirs were indeed submitted on May 25 and June 1 of 1829, intro-

duced briefly by Cauchy, and entrusted for judgment to Cauchy, Joseph
Fourier (the secretary of the academy), and mathematical physicists
Claude Navier and Denis Poisson.

More than six months after the submission, on January 18, 1830,

Cauchy wrote the following apologetic letter to the academy:
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I was supposed to present today to the Academy first a report on the

work of young Galois, and second a memoir on the analytic deter-

mination of primitive roots in which I show how one can reduce this

determination to the solution of numerical equations of which all

roots are positive integers. Am indisposed at home. I regret not to be

able to attend today's session, and I would like you to schedule me

for the following session for the two indicated subjects.

By the time the next session took place on January 25, however,

Cauchy's egotistical tendencies apparently took over once again, and he

ended up presenting only his own memoir and never mentioning Galois's

work again. This was not the end of the misfortunes associated with these

manuscripts. In June of 1829, the Academy of Sciences announced the es-

tablishment of a new Grand Prix for Mathematics. Tired of waiting for

Cauchy's verdict, and having learned from Ferrusac's Bulletin of Abel's

work on the theory of equations, Galois decided to resubmit the work,

with some modifications, as an entry for the prize. (I find no direct evi-

dence to support a speculation that Cauchy encouraged him to try for the

prize, even though some indirect evidence described later points to

Cauchy having been impressed with the work.) Galois's submission

("On the Conditions That an Equation Be Solvable by Radicals" — the

four arithmetic operations and the extraction of roots) has since been

judged to be one of the most inspiring masterworks in the history of

mathematics. The work was entered in February 1830, shortly before

the March 1 deadline. The prize committee consisted of mathematicians

Legendre, Poisson, Lacroix, and Poinsot. For reasons that are not en-

tirely clear, the academy's secretary, Fourier, took the manuscript home.

He died on May 16, and the manuscript was never recovered among his

papers. Consequently, entirely unbeknownst to Galois, his entry was

never even considered for the prize. The prize was eventually awarded to

Abel (posthumously, and justifiably, given the other entries) and Jacobi.

You can imagine Galois's anger when he learned eventually that his own

manuscript had been lost. The paranoid young man was now convinced

that all the forces of mediocrity had united to deny him a well-deserved

repute.
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DISASTER STRIKES TWICE

If June of 1829 was a relatively happy month for Galois, with his impor-

tant manuscript having been submitted to the academy, July was one of

his worst. The coronation of Charles X in 1824 had resulted in a signifi-

cant rise in the power of the church and the ultras. In Bourg-la-Reine, a

new priest joined forces with other right-wing administrators in an

attempt to demote the liberal Nicolas-Gabriel Galois from the mayor-

ship. This young priest forged the mayor's signature on a few stupid

couplets and despicable epigrams. Apparently unable to cope with the

ugly scandal that had erupted, the delicate Nicolas-Gabriel committed

suicide by gas asphyxiation. This tragedy occurred on July second,

in Nicolas-Gabriel's Paris

apartment on rue Saint

Jean-de-Beauvais, only a

stone's throw away from

Évariste's school. The

devastated youngster had

to endure yet another

emotional ordeal— a riot

broke out during the

funeral in protest against

the malicious priest's

attempt to participate in

the service. Figure 58 shows the commemorative plaque for Mayor

Nicolas-Gabriel Galois that still exists today on the wall of the Bourg-

la-Refine city hall.

One can hardly think of a worse time for Évariste to have taken his

second entrance examination to the École polytechnique. Yet, as fate

would have it, the examination took place just one month after the

funeral, on Monday, August 3, with Galois still in mourning. In the his-

tory of mathematics, this infamous examination has become almost syn-

onymous with Galileo's questioning by the Inquisition. Compared to

Galois, the two examiners, Charles Louis Dinet and Lefebure de Fourcy,

were, in historian E. T. Bell's words, "not worthy to sharpen his pen-

cils." Even though Dinet was himself a former student of the Polytech-

nique and was the teacher to have prepared none other than the great

Cauchy for his own entrance examination, these two mathematicians are
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mostly remembered today for one thing only—for having failed one of
the greatest mathematical geniuses of all time. Galois's name does not
figure at all in Dinet's list of twenty-one candidates that he regarded as
admissible.

We do not know with certainty what happened in this examination.
Speculation has it that Galois's tendency to calculate mostly in his head
and to commit only the final results to the blackboard left a bad impres-
sion in an oral examination in which he was supposed to show all of his
deliberations. Dinet in particular had a reputation for posing relatively
simple questions, but also of being utterly uncompromising when it
came to the answers. Galois's patience, which was never exemplary, must
have been stretched to the limit by the events surrounding his father's
death. According to one version, when asked to outline the theory of
arithmetical logarithms, Galois informed Dinet arrogantly, if correctly
(but see notes), that there were no arithmetical logarithms. Legend has it
that in his frustration with the examiners' inability to understand his
unorthodox methods he threw the blackboard eraser at one of them; this
story is not out of character, but is probably false—at least according to
mathematician Joseph Bertrand (1822-1900). Clearly, the failure in the
examination left Evariste deeply embittered and only enhanced his sense
of persecution. Two decades later, Olry Terquem, the editor of New
Annals of Mathematics, would say, "A candidate of superior intelligence
is lost with an examiner of inferior intelligence." A biographical note
that appeared in 1848 in the Magasin pittoresque also concluded, "For
not possessing what is known as 'blackboard experience,' for not having
exercised to solve out loud in front of a large audience those questions
of details ... Galois was declared inadmissible." Since two entrance
attempts were the maximum allowed, Galois was now forced to enter
the less prestigious Ecole preparatoire (later called Ecole normale).
There was, however, still a "small" snag. In order to be admitted, Galois
had to obtain a baccalaureate (the equivalent of a high-school diploma)
in the arts and sciences and to pass an oral examination. His total disre-
gard for anything that was not mathematics made the passing of these
exams difficult, to say the least. Even the physics examiner, Jean Claude
Peclet, wrote in astonishment, "He knows absolutely nothing . . . I have
been told that he is good in mathematics. This greatly surprises me."
Nevertheless, primarily based on his results in mathematics, Galois was
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admitted at the beginning of 1830 in the section of sciences. Figure 59

shows the first pages of two of Galois's exams—mathematics (in the gen-

eral competition of 1828) and physics (in his last general competition in

1829).

Not everything was dark in Galois's life. The year 1830 saw three

of his articles—two on equations and one on the theory of numbers—

published in the important Ferrusac's Bulletin. The first article was the

precursor to Galois's revolutionary theory of equations. The appearance

of his name in print right next to those of the leading mathematicians of

the time must have given Galois some satisfaction. In the June issue in

particular, Galois's two papers sandwiched a paper by Cauchy. During

the same year, Galois also met Auguste Chevalier, who was to become

his best friend. Auguste and his brother Michel introduced Galois to

new socialistic ideas, inspired by a religious-egalitarian philosophy

known as Saint-Simonianism (after the nobleman the comte de Saint-

Simon). The socioeconomic concepts of this ideology were based pri-

marily on the complete elimination of social inequalities. Given Galois's

passionate disposition, his increasing involvement in tempestuous polit-

ical activity spelled nothing but trouble.
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LIBERTE, EGALITE, FRATERNITE

Ever since his coronation in 1824, Charles X had incited strong opposi-
tion. The opponents to the Bourbons and their ultras-dominated gov-
ernment fell into two camps — republicans and Orleanists. The former
party, composed primarily of students and workers, expressed their rev-
olution-inspired views in the newspaper La Tribune. The latter party
wanted to replace Charles X with Louis-Philippe, duc d'Orleans, and
had Le National as their chief voice. In the elections of July 1830, the

opposition registered a landslide victory of 274 seats against the 143

for the government. Faced with abdication, Charles X attempted a coup
d'etat by issuing on July 26 an infamous series of ordinances. In the first
he declared, "Freedom of the press is suspended . . . no newspaper or
pamphlet . . . may appear in Paris, or in the departments." The other
ordinances annulled the results of the elections and set the dates for new
ones. The ordinances were accompanied by a warning from the police
prefect, directed at public places permitting the reading of forbidden
newspapers. This was more than the defiantly inclined Parisians were
prepared to tolerate. On July 27, an article by the Orleanist Louis-
Adolphe Thiers called in no uncertain terms for a rebellion of the peo-
ple. Rioting in the streets began in the early hours of the afternoon.
People could be seen carrying pieces of furniture on every street corner.
Within three days, more than five thousand barricades were erected and
heavy fighting erupted, accompanied by the chimes of all the church
bells of Paris. The students of the Exole polytechnique were making
history during those "Trois Glorieuses" ("Three Glorious Days"), as
they took charge of the fighting in and around the Latin Quarter. The
spirit and explosive energy of the Trois Glorieuses have been magnifi-
cently captured in the painting Liberty Leading the People (figure 60) by

Eugene Delacroix (1798-1863). In the crowd, behind Liberty, one can
distinguish the typical hat of a Polytechnique student.

As these fateful events were unfolding, to their unbearable frustra-
tion, Galois and his fellow students at the E,cole normale were con-
strained to hearing the sounds of the revolution from behind barred
windows and doors. The school's director, M. Guigniault, decided to use
all means, including a threat to call in the troops, to prevent his students
from participating in the rebellion. On the evening of the twenty-eighth,
Galois could not take it anymore. In desperation, he tried several times
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unsuccessfully to scale the outer wall. Bruised and defeated, he had to

accept the fact that he had missed the revolution.

When the smoke cleared, there were almost four thousand people

dead. As a compromise between the ultras and the republicans, the duc

d'Orleans entered Paris on July 30 and was crowned on August 9,

taking the supposedly conciliatory title Louis-Philippe I, king of the

French. King Charles X left for exile, and Cauchy, always a Bourbon loy-

alist, left France as well, as a tutor to Charles's grandson. Guigniault, the

ever-opportunistic director of the Ecole  normale, was quick to offer the

services of his students to the new provisional government. Galois's

contempt for his hypocritical director knew no bounds, and he was

determined to use the first opportunity to expose his cunning duplicity.

That summer in Bourg-la-Reine, Galois's family discovered to their

astonishment that the once fragile and reserved Èvariste had turned into

a passionate revolutionary who was prepared to sacrifice himself for his

republican ideals. In the following fall, as he returned to school, he

joined a militant wing of the republican party known as the Societe des

Amis du Peuple (Society of the Friends of the People). During the same

period, he befriended other young republicans who were destined to

become great political leaders: the biologist Francois-Vincent Raspail

(1794-1878), the law student Louis Auguste Blanqui (1805-81), who

later spent more than thirty-six years in prison, and the active republican

Napoleon Lebon (1807–after 1856). The society had a reputation for not
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hesitating to use aggressive and even violent means to achieve its goals.
After the arrest of its leader, Jean-Louis Hubert, the society became an
underground secret association, with Raspail as its president.

At the Fcole normale the strained relationship between the director
and Galois was rapidly progressing to a showdown. Galois kept asking
for things (such as a uniform similar to that of the Fcole polytechnique;
military training for students) that he must have known Guigniault
would not even be prepared to consider. At the same time, Guigniault's
declared policy that "good students should not be interested in politics"
was clearly something Galois could not swallow. Finally, when Guigni-
ault published a letter on December 2 attacking a liberal teacher of the
Louis-le-Grand in one of the two student newspapers, the reply was
swift and acrimonious. The newspaper La gazette des ecoles (The

Schools' Gazette) published the following letter from a "student at Fcole
normale":

The letter that M. Guigniault had inserted in yesterday's Lycie, on
the occasion of one of the articles in your newspaper, seemed to me
to be quite indecent. I thought you would be interested in any
attempt made to unmask this man.

Here are the facts to which 46 students can testify.
On the morning of 28 July, since many of the students of the

Fcole normale wished to join in the uprising, M. Guigniault told
them, twice, that he could call the police to restore order. The police
on 28 July!

On the same day, M. Guigniault said to us, with his usual pedant-
is m, "Many brave people have been killed on both sides. If I were a
soldier, I would not know what decision to take. What should I sac-
rifice, freedom or legitimacy?"

This is the man, who stuck a huge tricolor rosette on his hat the
day after. These are our doctrinaire liberals!

I should also like to inform you, sir, that the students of the Exole
normale, inspired by noble patriotic spirits, very recently presented
themselves to M. Guigniault, to inform him of their intention to
address a petition to the Ministry of Education, asking for arms, and
wishing to take part in military training, so as to be able to defend
their territory if required.



THE ROMANTIC MATHEMATICIAN 127

Here is M. Guigniault's answer. It is as liberal as his answer of 28

July:

"The request addressed to me would make us look ridiculous; it is

an imitation of what has been done in higher level institutions: it

came from below. I should like to point out that, when the same

request reached the Minister from these institutions of higher educa-

tion, only two members of the Royal Board voted in favor, and they

were precisely those on the Board not among the liberals. The Min-

ister accepted, because he feared the students' turbulence, and their

compassionate spirit, which appeared to threaten to ruin completely

the University and Ecole polytechnique." I believe that, from one

point of view M. Guigniault is right to defend himself in this way,

against being blamed for his prejudice against the new Ecole nor-

male. For him, nothing is as beautiful as the old Ecole normale,

which had everything.

We recently asked for a uniform, which was denied us; they did

not wear them at the old school. In the old school, the course lasted

three years. Although, when the new school was set up, the third

year was acknowledged to be pointless, M. Guigniault brought it

back.

Soon, following the rules of the old Ecole normale, we will only

be allowed out once a month, and will have to return by 5:00 p.m. It

is wonderful to belong to the educational system that produced men

like Cousin [referring to Victor Cousin, a philosopher and a conser-

vative member of the Education Board] and Guigniault!

Everything he does shows his narrow outlook and ingrained con-

servatism.

Sir, I hope that these details will interest you, and that you will put

them to the use you think fit, to the benefit of your estimable news-

paper.

The newspaper editors added that they had deliberately removed the
signature from the letter.

Galois neither confirmed nor denied being the author of this letter,
even though he was widely suspected. To Guigniault, however, that was
sufficient evidence to expel Galois, whom he regarded as a constant
troublemaker. In his letter of explanation to the minister of education,
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Guigniault claimed that he had "a full confession" from Galois and that
in general, he had up to that point "tolerated his unconventional behav-
ior, his laziness and his very difficult character."

The students at E,cole normale showed little support for Galois.
Those in the arts even posted a letter taking the director's side, in fear for
their future careers and most probably prompted by Guigniault. Never-
theless, from a description published in La gazette we learn that at least
one student showed some courage:

We have just heard that the Director of the Ècole normale asked each

one [of his students] individually the following question: "Are you

the author of the letter to La gazette des ecoles?" The first four

answered in the negative, while the fifth answered: "Sir, I do not

think I can answer this question, because it would help betray one of

my fellow students." M. Guigniault was extremely irritated by this

proud, noble reply.

The bitter exchanges surrounding Galois's expulsion continued for three
weeks. Letters on Galois's behalf interleaved by those backing Guigni-
ault became a constant feature in the pages of the newspapers. Galois
ended his last appeal to the students on December 30 by writing, "I am
not asking anything for myself, but speak out for your own honor and
according to your conscience."

On January 2, 1831, the Gazette des ecoles published an article by
Galois entitled "On the Teaching of the Sciences, the Professors, the
Works, the Examiners." This was a remarkable manifesto calling for a
complete reform in the instruction of the sciences. Most of Galois's com-
plaints would sound relevant even today:

Until when will the poor youngsters be obliged to listen or to repeat

all day long? When will they be given some time to reflect on this

accumulation of knowledge, to be able to coordinate [find a pattern

in] this endless multitude of propositions, in these unrelated calcula-

tions? . . . Students are less interested in learning than in passing their

exams.

Alluding probably to his own painful experiences with examiners,
Galois lamented:

Why don't the examiners pose questions to candidates other than in

a twisted manner? It seems that they fear being understood by those
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they are interrogating; what is the origin of this deplorable habit of

complicating the questions with artificial difficulties?

Unfortunately, in spite of his legitimate objections to the school sys-

tem of his time, when circumstances would force Galois to open his own

"school," it would not turn out to be a great success either.

A TURBULENT LIFE

Out of school and free to pursue his liberal dreams, Galois enlisted in the

artillery of the national guard. While this organization was proud in hav-

ing its own distinct uniform, it was more like a militia. Galois would

continue to wear the same uniform even after the artillery had been dis-

banded and the national guard reorganized to comprise only the tax-

paying populace, to which he did not belong. Not being a student,

however, had its price—Galois now had no means of support. To make

ends meet he decided to give lessons in mathematics, and a bookseller

friend allowed him to use a room in his bookstore at 5, rue de la Sor-

bonne, for this purpose. Galois placed an ad in the Gazette des ëcoles

announcing that he would hold an algebra course intended for those stu-

dents who "feeling how incomplete is the study of algebra in the col-

leges, wish to go deeper into this science." This was not a good recipe for

making money. A few dozen of Galois's republican friends first attended

as a courtesy, but they quickly dropped out of the extremely advanced

course. Galois's political activities did not help either, since they occu-

pied more and more of his time. Galois's teaching ambitions were there-

fore reduced to low-level tutoring.

On the research front, a promising event happened at the beginning

of 1831, only to turn later into vet another disappointment. Galois was

asked to resubmit his memoir to the academy. The new version of "The

Conditions for the Resolvability of Equations by Radicals" was intro-

duced on January 17, and this time mathematicians Denis Poisson

(1781-1840) and Sylvestre Lacroix (1765-1843) were charged with

reviewing it. More than two months had passed, however, with no word

from the academy. The frustrated Galois gave vent to his disgust by

sending an inquiring letter to the president on March 31, 1831, adding

sarcastically, "Sir, I would be grateful if you could relieve my concerns

by inviting Mr. Lacroix and Mr. Poisson to announce whether they have
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also lost my memoir [as did Fourier], or whether they intend to report
on it to the Academy." Even this provocative letter produced no
response.

Meanwhile, political events were starting to have a great impact on
Galois's life. The famous mathematician Sophie Germain (1776-1831),

the first woman to have broken through the prevailing gender barrier
and into the old boys' club, characterized his general attitude at the time
as having a "habit of insult." She added a sad comment: "They say he
will go completely mad, I fear this is true." In April, nineteen artillery-
men of the national guard, who refused to disarm when their unit had
been disbanded, were brought to trial. One of them was Pescheux
d'Herbinville, to whom we shall return in relation to Galois's death. To
the republicans' delight, all were acquitted on April 16 in a much-
publicized trial known as the "trial of the nineteen." The Society of the
Friends of the People organized a large banquet at the Aux Vendanges de
Bourgogne restaurant to celebrate the event. Two hundred republican
activists were in attendance on May 9, including the famous writer
Alexandre Dumas (1802-70), the biologist-politician Raspail, Galois,
and many others. In Dumas's words, "It would be difficult to find in all
of Paris two hundred guests more hostile to the government than those."
As the champagne started to flow at the end of the meal, many toasts
were proposed: to the revolutions of 1789 and of 1793, to Robespierre,
and many others. One of the more intellectually articulate toasts was
proposed by Dumas, who declared: "I drink to art! May both quill and
brush contribute as much as gun and sword to the social renewal to
which we have dedicated our lives, and for which we are prepared to
die." At one point, Galois, who was sitting at the extremity of one of the
tables, jumped to his feet and proposed a toast. Holding in the same
hand a glass of wine and an open jackknife, he was heard shouting: "To
Louis-Philippe!" The event was later described in some detail in
Dumas's memoirs:

Suddenly, in the midst of a private conversation which I was carrying

on with the person on my left, the name Louis-Philippe, followed by

five or six whistles, caught my ear. I turned around. One of the most

animated scenes was taking place fifteen or twenty seats from me.

A young man, holding in the same hand a raised glass and an open

dagger, was trying to make himself heard. He was tvariste Galois,
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since killed in a duel by Pescheux d'Herbinville, that charming
young man who made silk-paper cartridges which he would tie up
with pink ribbons.

P.variste Galois was scarcely 23 or 24 at the time. He was one of
the most ardent republicans. The noise was such that the very cause
for that had become incomprehensible.

All I could perceive was that there was a threat and that the name
of Louis-Philippe had been pronounced; the intention was made
clear by the open knife.

This went way beyond the limits of my republican opinions. I
yielded to the pressure from my neighbor on the left who, as one of
the King's comedians, didn't care to be compromised, and we
jumped from the windowsill into the garden.

I went home somewhat worried. It was clear this episode would
have its consequences. Indeed, two or three days later, Evariste
Galois was arrested.

There are some irritating inaccuracies in Dumas's description (e.g.,
concerning Galois's age), and I shall return to the issue of the identity of
the man who killed Galois later, but the basic facts are undoubtedly cor-
rect. The Gazette des &vies, which had supported Galois during his
resentful exchanges with Guigniault, published its own version of the
event in its May 12 issue: "Many toasts have been proposed; it appears
that one firebrand, said to be a student, stood up from the table, pulled
out of his pocket a dagger, and brandishing it in the air started to say:
`This is how I will be sworn in to Louis-Philippe.' " By brandishing
the knife Galois was perceived as making a threat against the king's life.
He was arrested the following day at his mother's home, held in preven-
tive detention at the Sainte-Pelagie prison, and brought to trial on June
15, 1831.

The legal proceedings opened with a series of routine questions by
the presiding judge, who basically wanted Galois to describe the events
at the banquet. Then came the unexpected. The prisoner was asked,
"Did you take out a knife . . . and utter 'To Louis-Philippe'?" To every-
one's amazement, Galois answered, "I had a knife which I had used to
cut meat in the meal. I waved it when saying, 'To Louis-Philippe, if he

betrays us.' The last words were only heard by people in my immediate
vicinity, because of all the whistling that had started . . . by people who
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understood my words as being a toast to Louis-Philippe's good health."
Taken aback, the judge inquired whether Galois truly feared that there
was a danger of the king abandoning his duties and betraying his nation.
Evariste responded, "All the king's actions, while not showing bad faith
yet, permit us to doubt his good faith." The exchange between the judge
and Galois continued for a while. Witnesses were called, both for the
prosecution and for the defense. The question of whether the meeting
was private or public became a central issue. In the latter case, Galois's
ambiguous toast could be taken as a provocation intended to incite vio-
lence against the king. Galois's own concluding remarks were cut short
by the presiding judge, who wisely perceived that the hot-blooded
youngster could bring about his own downfall with careless and inflam-
matory remarks. After deliberations that lasted only half an hour, Galois
was acquitted. According to legend, as soon as the verdict had been read,
Galois calmly collected his knife from the court's table of exhibits and
silently left the courtroom. Given that the transcript shows that during
the trial itself Galois claimed that he had lost the knife upon leaving the
restaurant, this legend cannot be substantiated. One way or another, the
temperamental nineteen-year-old found himself free on the streets again.

On June 15, the same day that Galois's trial began, the newspaper Le

globe decided to make public the story of Galois's frustrating experience
with the academy. An article written most probably by one of the
Chevalier brothers, Galois's friends, started by describing Galois's
genius and the fact that he had independently discovered the properties
of elliptic functions (which had made Abel famous). The text then
related Galois's unbelievable tribulations with the mathematical estab-
lishment. In particular, the article chronicled the misfortunes of Galois's
memoir on the solvability of equations:

Last year, before March 1st, M. Galois sent a memoir to the secretariat

of the Institute of France on the solvability of algebraic equations.

This memoir was his entry for the Grand Prix of Mathematics. It

overcame certain difficulties that even Lagrange himself had not re-

solved. M. Cauchy had conferred the highest praise on the author on

this subject. But what did that matter? The memoir was lost, the prize

was awarded [to Abel and Jacobi], without the young savant being

able to participate in the competition. In a reply to a letter to the Acad-

emy from young Galois, complaining about the negligent treatment
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of his work, all that M. Cuvier could write was: "The matter is very
simple. The memoir was lost on the death of M. Fourier, who had
been entrusted with the task of examining it." Now the memoir has
been rewritten and presented again to the Institute. M. Poisson, who
is to evaluate it, has not yet performed that duty, the result being that
for more than five months its wretched author has been waiting for a
kind word from the Academy.

Interestingly, assuming that Galois himself provided the Chevaliers
with the contents of this article, we learn that Cauchy did express his
appreciation of Galois's work, even if he failed to transmit the same
enthusiasm to the academy. Perhaps in response to the public criticism
of the academy's neglect, Poisson and Lacroix finally presented their
verdict on Galois's work. Their report is dated July 4, 1831, and it was
presented in the academy's session of July 11. This was a bomb—they
did not approve Galois's propositions. In a lukewarm report that
demonstrates clearly that Poisson and Lacroix either failed to compre-
hend or at the very least were prejudiced against Galois's innovative
group-theoretical ideas, the rapporteurs write noncommittally:

We have made all possible efforts to understand M. Galois's proof [of
the conditions under which an equation is solvable by a formula].
His reasonings are neither sufficiently clear, nor sufficiently devel-
oped for us to be able to judge their exactness, and we are not in a
position that enables us to give an opinion in this report. The author
states that the proposition that makes the special topic of his memoir
is a part of a general theory that could lead to many other applica-
tions. Frequently, it happens that different parts of a theory clarify
one another, and are easier to grasp collectively, rather than when
taken in isolation. One should therefore wait for the author to pub-
lish his work in its entirety to form a definitive opinion; but in the
state at which the part submitted to the Academy currently is, we
cannot recommend to you to give it your approval.

The academy adopted the conclusions of this negative report. Even
when we accept the fact that clarity was never Galois's strongest suit,
and that the explanations given left quite a bit to be desired, there is no
escape from the conclusion that one of the most imaginative break-
throughs in the history of algebra had still to await its acceptance by a
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conservative audience. Basically, Galois's ideas fell victim to the fact that

they were not what Poisson and Lacroix expected. The referees thought

that they would find in the manuscript a simple criterion based on the

coefficients that would tell them immediately whether or not any partic-

ular equation is solvable by a formula. Instead they found a whole new

concept—group theory—and conditions based on the putative solutions

of the equation. This was just too innovative to be accepted in 1831.

I MPRISONED

The academy's judgment delivered a huge blow to Galois. Nevertheless,

convinced of the correctness of his propositions, Galois added under

one of Poisson's critical annotations on the manuscript the words: "Let

the reader judge" (figure 61 shows the page). Embittered scientifically,



THE ROMANTIC MATHEMATICIAN 135

and violently disposed politically, his relationship with his mother also

became unpleasantly strained. He therefore left his family's home and

rented a room by himself at 16, rue des Bernardins (figure 62).

Troubles never come single file, but in battalions. Bastille Day ( July

14) was approaching, and the republicans were making plans for a large

demonstration. In particu-

lar, they wanted to conduct

a provocative ceremony

commemorating the plant-

ing some forty years earlier

of a symbolic tree of free-

dom at the Place de la

Bastille. The police took

preventive measures and

arrested many known ac-
Figure 62 tivists during the night be-

tween July 13 and July 14. Galois managed to escape imprisonment

either by not being on the police's "blacklist" or by not sleeping at his

room. Around noon on July 14, however, a group of about six hundred

people led by Galois and his friend Ernest Duchatelet, a student at the

Ecole des chartes, started to cross the Pont Neuf. Evariste was wearing

his (by then illegal) national

guard uniform and was

armed to his teeth (carrying a

few pistols, a loaded rifle, and

a dagger). Being prepared for

possible subversive gather-

ings, the police intervened

swiftly. Galois and Ducha-

telet were arrested on the

bridge, as were a few other

republican leaders at other

places. To make things worse,

Duchatelet drew a pear sym-

bolizing the king's head on

his cell wall (figure 63 shows

a caricature attributed to the

painter Honore Daumier in
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which Louis-Philippe metamorphoses into a pear). The head was drawn
next to a guillotine and accompanied by a proclamation popular with
the republicans at the time: "Philippe will carry his head to your altar,
0 Liberty." The trial of Galois and Duchatelet began on October 23,
1831. Since the charge of wearing an illegal uniform could hardly be
denied, it was quite clear that Galois would be convicted (carrying
weapons was quite common at the time). What came somewhat as a
shock was the unreasonably harsh sentence of six months in prison.
Duchatelet, who probably had a lesser reputation as a troublemaker, was
sentenced to only three months of imprisonment. (I found no evidence
whatsoever to support a speculation that Duchatelet's sentence was
reduced in exchange for his agreement to collaborate with the police.)
Galois appealed, but his sentence was confirmed on December 3. They
were both sent to the Saint-Pelagie prison (figure 64) in the Fifth
Arrondissement of Paris, not far from Jardin des plantes (the botanical
gardens). Among other arrested republicans, the biologist Raspail, him-
self a prominent leader of the Friends of the People, was particularly
provocative during his own trial in January of 1832. He went so far as to
declare that the king, who betrayed his own people, "should be buried

alive under the ruins of the
Tuileries." Needless to say, this
statement did not gain him
much sympathy with the
judges, and he was sentenced
to fifteen months at Saint-
Pelagie.

Saint-Pelagie was the type
of prison you would expect for
Paris of that period. A large
wall surrounded the entire
complex, and the buildings
containing the cells enclosed

three interior yards. Prisoners were housed according to the category of
their crimes, with political prisoners occupying one of the side sections.
Galois, who belonged to the lowest class in terms of his financial means,
most probably found himself in one of the sixty-bed dormitories. Those
who could afford it could pay their way even into private cells, with



THE ROMANTIC MATHEMATICIAN 137

food brought in from local restaurants. Most of the information on
Galois's miserable conditions in jail comes from the writings of three
people who cared for the young man: his fellow inmate Raspail, whose
Letters on the Prisons of Paris was published eight years later; the poet
Gerard de Nerval (1808-55), who was arrested in February 1832 and
even wrote a poem about the prison; and Galois's loving sister, Nathalie-
Theodore, who visited her brother as often as she could and did her best
to nourish both his body and his soul. Two dramatic incidents described
in Raspail's memoirs are particularly noteworthy. On July 29, as the
prisoners were on their third day of commemorating the "Three Glori-
ous Days," a shot fired from the rue du Puits de l'Ermite in front of the
prison injured one of the prisoners in Galois's cell. In an ensuing meet-
ing of a delegation of prisoners with the prison's chief warden, Galois,
who was a member of the delegation, apparently accused one of the
prison guards of being the shooter and further insulted the warden.
Consequently, he was thrown into the dungeon, provoking a violent
reaction from the prisoners. Raspail quotes a prisoner talking to the war-
den: "This young Galois doesn't raise his voice, as you well know; he
remains as cold as his mathematics when he talks to you." The other
prisoners voiced their agreement: "Galois in the dungeon! Oh, the bas-
tards! They have a grudge against our little scholar." Following this
exclamation of support, the prisoners took control of the prison and
order was restored only the following day. For fear of further riots,
Galois was released from the dungeon.

Raspail also gives a rather vague but disturbing description of a sui-
cide attempt by Galois. Apparently young Evariste, who had not been
accustomed to heavy drinking, was often teased by his fellow inmates to
drink himself into a stupor. "You are a water drinker, young man," they
would mock him, "0 Zanetto [the nickname given to Galois by the pris-
oners]! Leave alone the party of the republicans, and return to your
mathematics." On one such occasion, the intoxicated young man
revealed to Raspail the agony he had experienced since the death of his
father: "I have lost my father and no one has ever replaced him." He then
added a sentence that would turn out to be chillingly prophetic: "I will
die in a duel on the occasion of some coquette of low class." As Raspail
and a few other prisoners tried to lay him out on a bed, the blind drunk
Galois shouted, "You despise me, you who are my friend! You are right,
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but I who committed such a crime must kill myself!" Only the rapid
intervention of the prisoners prevented Galois from carrying out his
deadly intention.

Nerval's description of his last few minutes in prison is equally mov-
ing: "It was five o'clock. One of the inmates led me to the gate and kissed
me, he promised to come to see me as soon as he gets out of prison. He
had still two or three months to serve. This was the unfortunate Galois,
whom I did not see again, since he was killed in a duel the morning after
he regained his freedom."

However, Galois's sister, Nathalie-Theodore, depicts the most heart-
breaking picture of her brother's physical and mental state. After one
distressing visit she writes in anguish in her diary: "To endure five more
months without a breath of fresh air! This is a very bad perspective, and
I fear that his health will suffer much. He is already so tired. He does not
allow himself to be distracted by any thought, he has taken a somber
character that makes him age before his time. His eyes are hollow as if he
is fifty years old."

When not drunk, Galois spent most of his days in prison pacing
ceaselessly around the yard, usually deep in thought. The evenings were
devoted to noisy republican gatherings and patriotic ceremonies around
the tricolor flag. Nevertheless, Galois found time to write a long preface
(figure 65 shows the first page) to his outstanding mathematical mem-
oirs. This was really a harsh indictment of the entire scientific establish-
ment and its practices. The preface starts by mocking the hierarchy of
scientists and the crippling constraints imposed by the need for support.

Firstly, you will notice that the second page of this work is not

encumbered by surnames, Christian names, titles, honors and the

eulogy of some niggardly prince whose purse would have opened at

the smoke of incense, threatening to close when the incense holder

was empty. Neither will you see in letters three times as high as your

head, homage respectfully paid to some high-ranking personality

in science, or to some wise patron, a thing thought to be indispensa-

ble (I was going to say inevitable) for anyone wishing to write at

twenty.

If one were to replace the word "prince" by "funding agency," Galois's
points would remain as topical today as they were a hundred and sev-
enty years ago. As one prominent scientist once told me, "In between
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Figure 65

writing grant proposals describing what I intend to do, and writing

reports about what I have done, there is no time left to actually do any-

thing!"

Galois's preface ends in a hopeful, if scornful tone: "When competi-

tion—that is, selfishness—no longer rules in science, when people asso-

ciate with one another for study and not in order to send sealed packages

to the Academies, they will be eager to publish even small results, as long

as these are new, while adding, 'I do not know the rest.' "

A ROMANTIC IN LOVE

In the spring of 1832 a devastating cholera epidemic swept through

Europe. Paris was hit particularly hard. The contaminated water of the

Seine River claimed a daily toll of approximately a hundred deaths.
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Partly perhaps due to his fragile health, but more probably because this
was a common practice with political prisoners, Galois was transferred
on March 13 from Saint-Pelagie to a convalescent home at 84-86, rue de
Lourcine (later number 94 at the current rue Broca), where he was
placed on parole. At this home, known then as the Sieur Faultrier "house
of health," something dramatic happened: Galois fell in love. Until then,
possibly because of the dominating personality of his mother, Galois
had had no relations with women. In fact, during one of the bacchanal
sprees in prison he confided to Raspail, "I do not like women and it
seems to me that I could love only a Tarpeia or a Graccha" (two leg-
endary Roman women; Tarpeia betrayed her city to the Sabines, and
Graccha is Cornelia Gracchus, the mother/educator of Tiberius and
Gaius). The object of his flaming affection was young Stephanie Pot-
terin du Motel, who lived in the same building of the convalescent home.
Her father, Jean-Paul Louis Auguste Potterin du Motel, was a former
officer in the Napoleonic army, and her brother, who was sixteen at the
time, later became a medical doctor. The Potterin du Motels maintained
a close friendship with the convalescent home's owner.

Few love affairs in history have had more tragic consequences.
Stephanie may have initially shown some interest in the passionate and
intelligent young man, but it did not take her long to coldly reject his
advances. On the back of one of his already used papers, Galois made
copies of two of Stephanie's letters. These letters unfortunately contain
gaps in which words and syllables are missing. Most likely Galois had
torn up the originals in a rage. Later he desperately attempted to recon-
struct the words of his loved one from the fragments, as hurtful as those
words must have been.

The fate of one of the greatest geniuses ever to have lived was about
to be sealed by the heart-piercing remarks of an "infamous coquette"
who was less than seventeen years old at the time. The first letter, dated
May 14, 1832, reads:

Let's put an end to this, over that matter, please. I don't have enough

spirit to continue a correspondence of this type, but I shall try to

have enough [spirit] to converse with you, as I used to do before any-

thing happened. So that's that, Monsieur, the . . . has [or: there are]

. . . that must . . . you . . . than or: to me and not think anymore about

things that could not exist and that never would have existed.
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The letter leaves little doubt that the inexperienced and perhaps too hot-

blooded Galois did or said something to offend Stephanie or scare her

away. The cold tone suggests that the young woman was probably not

that enthusiastic to begin with. The second letter, most likely written a

few days later, was even more devastating. Stephanie was no longer

interested even in a mere friendship.

I followed your advice and I thought it over ... what has happened

. . . , come about between us, whichever name you want to call it.

Furthermore, Monsieur, be assured that most probably, there would

have never been anything more; you made wrong assumptions and

your regrets are groundless. True friendship exists scarcely other

than between persons of the same sex, especially . . . friends. . . .

moan in the vacuum that . . . the absence of any feeling of this kind

. . . my trust ... but it has been badly hurt. . . . you have seen me sad,

[you] have asked [me] the reason, I answered that my feelings had

been hurt. I thought that you would take it like any person before

whom a word is uttered from these ... one is not....

The calmness of my thoughts leaves me the freedom to judge the

people that I usually see without much reflection; this is the reason

that I rarely regret having been mistaken about them or having been

influenced in my view of them. I disagree with you about the

fee[lings] . . . more than has . . . demand nor ... [I] thank you sin-

cerely for all those [feelings] where you were willing to take steps

towards me.

Galois was devastated. The powerful effects of this affair on his

mood and emotional attitude toward life in general can be judged from

his letter on May 25 to his good friend Auguste Chevalier. At the time,

Auguste, his brother Michel, and three dozen other Saint-Simonians had

established a small community in Menilmontant, east of Paris. Galois

writes melancholically:

My dear friend,

There is pleasure in being sad, if one can hope for consolation.

One is happy to suffer if one has friends. Your letter full of apostolic

grace has given me a little calm. But how can I remove the trace of

such violent emotions as those which I have experienced? How can I

console myself when I have exhausted in one month the greatest
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source of happiness a man can have? When I have exhausted it with-
out happiness, without hope, when I am certain I have drained it for
life?

He continues with a Cassandrian description of his agonizing inter-
nal struggle: "I wish to doubt your cruel prophecy that I shall not do
research anymore. But I must admit that there may be some truth in it;
to be a scholar one must be only a scholar. My heart rebels against my
head. I do not add as you do, 'It is a pity.' " He finishes with a glimmer
of hope: "I shall see you on June 1. I hope we shall see each other often
during the first fortnight in June. I shall leave around the fifteenth for
Dauphine." But the shimmer of light at the end of the tunnel implied by
the last paragraph is quickly extinguished by the last phrase of the post-
script note: "How can a world which I detest soil me?"

Galois was never to see Auguste again.
We now come to the most intriguing part of the Galois story —his

mysterious death. Let me note at the outset that from the purely mathe-
matical point of view, or for the history of group theory and its applica-
tion to symmetries, it is unimportant why Galois died or who killed
him. However, any account of the life of this remarkable genius would
be lacking without a discussion of these issues. In particular, there are
striking similarities between the lives of the two main characters in the
saga of the equation that couldn't be solved—Abel and Galois. They
were both initially educated by a parent and inspired by a talented
teacher. Both lost their father at a young age and had attempted to solve
the same notoriously difficult problems. But this is not all. They were
both victims of the same conservative mathematical establishment
(Cauchy in particular), miserable (for different reasons) in their love
lives, and both died tragically in the flower of their youth. Yet we know
almost every minute detail of the circumstances surrounding Abel's
death, while Galois's death is veiled in mystery, controversy, and specu-
lation. This—how shall I put it? — lack of symmetry truly bothered me.
Consequently, I have made a conscious decision to invest as much time
and effort as it would take to investigate every aspect of Galois's life, and
in particular his death. I have done my best to leave no stone unturned,
have read every document I could put my hands on, and visited most of
the relevant places. I can only hope that the results justify the effort.
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A MYSTERIOUS DEATH

The known facts concerning Galois's activities between May 25 and that

fateful morning of May 30, when he faced his opponent for a duel with

pistols, are very few. On May 29, the eve of the duel, he wrote three let-

ters. One was an apologetic address "to all republicans":

I beg my patriotic friends not to reproach me for dying otherwise

than for my country.

I die the victim of an infamous coquette and her two dupes. It is in

a miserable piece of gossip that my life is extinguished. Oh! why die

for something so little, for something so contemptible!

Heaven is my witness that only constrained and forced have I

yielded to a provocation which I have tried to avert by every means.

I repent having told a baneful truth to men who were so little able to

listen to it calmly. Yet I have told the truth. I take with me to the

grave a conscience clear of lies, untainted by patriotic blood.

Adieu! What kept me alive was the public good. Forgive those

who kill me, they are of good faith.

The last words, reminiscent of those of Christ on the cross ("forgive

them; for they do not know what they are doing"), reflect traces of the

religious education he had received from his mother. Otherwise, when

taken at face value together with Stephanie's letters, the picture that

emerges from this note seems pretty clear. By words or action, Galois

offended the young woman, and her two "dupes" provoked a duel.

Galois bears no grudge against the two men who "are in good faith," and

he only regrets having been entirely truthful. One feels an element of

concession and surrender to authority in Galois's words: "only con-

strained and forced have I yielded to a provocation." I shall return to this

important point later.

Next, Galois wrote a letter addressed to two republican friends, N.L.

(almost certainly Napoleon Lebon) and V.D. (almost certainly Vincent

Delaunay):

My good friends,

I have been provoked [to a duel] by two patriots.. . . It is impos-

sible for me to refuse.



144 THE EQUATION THAT COULDN'T BE SOLVED

I beg your forgiveness for not having informed either of you. But

my adversaries have put me on my honor not to inform any patriot.

Your task is simple: prove that I have fought against my will, that

is, after having exhausted all possible means of compromise, and say

whether I am capable of lying, even on such a trivial a subject as the

one in question.

Remember me, since fate did not give me a long enough life for

my country to remember me.

I die your friend.

This depressing letter, again taken at face value, adds one important piece
of information: the opponents were "patriots," meaning active republi-
cans. The feeling of Galois yielding to authority is further enhanced: "It
is impossible for me to refuse . . . my adversaries have put me on my

honor not to inform any patriot . . . I have fought against my will."

Galois also vehemently stresses his truthfulness: "say whether I am
capable of lying."

The third and most important letter from a scientific perspective con-

tains Galois's mathematical legacy. The very long letter, addressed to his
devoted friend Auguste Chevalier, presents a concise summary of the
contents of the famous memoir rejected by Poisson and Lacroix, as well

as other works:

My dear friend,

I have made some new discoveries in analysis. The first concerns

the theory of equations, the others integral functions.

In the theory of equations, I have investigated under which con-

ditions the equations are solvable by radicals [by a formula]: this has

given me the opportunity to make this theory more profound, and to

describe all the transformations possible on an equation even when it

is not solvable by radicals.

All of this makes for three memoirs.

Galois then outlines what is known today as Galois theory, adding a few
new theorems to the contents of the original manuscript submitted to
the academy. Toward the end he notes, "You know, my dear Auguste,
that these subjects are not the only ones that I have explored." Then, giv-
ing a brief description of a few more topics, he concludes regretfully, "I
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have no time and my ideas are not sufficiently developed in that ter-

rain—which is immense."

Finally, just like Abel before him, he puts his faith in the judgment of

the German mathematician Jacobi: "Make a public request of Jacobi or

Gauss to give their opinion not as to the truth, but as to the importance

of these theorems. After that, I hope some men will find it profitable to

decipher this mess. I embrace you with effusion." Only one thing

remained to be done—introduce some order into the manuscripts them-

selves. Galois went quickly through his mathematical papers and made

some last-minute corrections and commentaries. One of those annota-

tions (figure 66) contains what has become his most memorable and

most sorrowful quote: "Je n'ai pas le temps"—"I have no time."

The duel took place in the early morning hours of May 30, 1832, near

the pond of the Glacier at Gentilly (in the current Thirteenth
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Figure 67

Arrondissement of Paris). The precise circumstances of the drama are
not known. According to the autopsy report, Galois was shot in the
stomach from the right side. The bullet pierced several parts of the intes-
tines before lodging in his left buttock. What happened next is unclear.
Did the witnesses leave the scene? Or was it one of them who took
Galois to the hospital? The Cochin Hospital records show that Galois
was brought in at 9:30 in the morning (figure 67 shows the entrance and
one of the wings of the hospital at the end of the nineteenth century) and
was assigned bed number 6 in the Saint-Denis ward. According to a
much later testimony by Galois's cousin Gabriel Demante, it was a pass-
ing peasant who transported Galois to Cochin, but a note in the Maga-

sin pittoresque, written by Pierre Paul Flaugergues, a former classmate of
Evariste's, assigns this Samaritan role to a "former officer." Galois's
younger brother Alfred, the only member of the family to have been
notified, rushed to the hospital. The attending surgeon, Dr. Denis Guer-
bois, realized immediately that the end was near, as did the two brothers.
Still fully conscious, Galois refused the services of a priest. From the
tearful Alfred, Galois requested in consolation, "Don't cry, I need all my
courage to die at twenty." Evariste Galois passed away at 10:00 a.m. on
May 31, and the death certificate was signed on June 1. The death went
almost unnoticed. The Bulletin de Paris of May 31 notes erroneously:
"Death of Legallois."
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The Lyon newspaper Le Precurseur, which had close ties with the
Friends of the People, published in its issue of June 4 and 5 the follow-
ing account (figure 68):

Paris, 1 June—A deplorable duel yesterday has deprived the exact

sciences of a young man who gave the highest expectations, but

whose precocious fame is nevertheless because of his political activ-

ities. The young Evariste Galois, condemned for a year because of a

toast proposed at the Vendanges de Bourgogne, fought with one of

his old friends, a young man like himself, like him a member of the

Society of the Friends of the People, and who was known to have fig-

ured equally in a political trial. It is said that love was the cause of the

combat. The pistol was the weapon chosen by the two adversaries,

they found it very hard, because of their old friendship, to have to

aim at each other, and they left the decision to blind fate. At point

blank range, each of them was armed with a pistol, and fired. Only

one of those weapons was loaded. Galois was pierced through and

through by the bullet of his adversary; he was transported to the

Cochin Hospital, where he died in about two hours. He was 22 years

old. L.D., his adversary, is a bit younger still.

As in many instances in which an event we are actually familiar with
is being reported in the news media, this narrative is loaded with inaccu-

Un duel deplorable a enteve hier atm sciences elu-
tes un jenne homme qui donnait les plus hautes esperan-
ces , et dont la cidébrite precoce , ne rappelle cependant
que des souvenirs politiques. Le jeune Evariste Gallois
condamne it y a un an pour des propos tenus au banquet
des Vendanges de Bourgogne , s'est batta avec tut de sea
anciens antis, tout jeune homme comme lui , comma Id
membre de la societe des ARA du People , et qui ante
pour dernier rapport avec tut, d'avoir figure (*element dans
un proces politique. On dit quo !'amour a eta la cause du
combat. Le pistolet 4tant l'artne choisie par lea deux. adver.
saires , its ont trouve trop dur pour leur aucienne amide
d'avoir it viser Can sur Ventre , et ils s'ea seat remis it
l'avengle decision du sort. A bout portant , chacun d'eux
a eta armd d'un pistolet, et a fait feu. line seule de ces
armes etait chargee. Gallois a ete perce d'outre en ourre
par la belle de son adversaire ; on l'a transporte h l'hdpital
Cochin , on it est mort an bout de dens. heures. 11. itait
14;6 de 22 ans. L. D. , son adversaire , est un pen plus
jeune encore.

Figure 68
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racies. The duel took place on May 30, not the thirty-first; the shoot-
ing was not "at point blank range" according to the autopsy report,
but from twenty-five paces; Galois did not die in two hours, but the fol-
lowing day; he was not "condemned for a year," but for six months; he
was not twenty-two but only twenty years old. We therefore have to
take the rest of the information in this article with a grain of salt. This is
particularly true when we realize that this report appeared in Lyon, far
from the capital. Nevertheless, if we were to take seriously the detailed
description of the opponent, who would that fit? The answer is easy:
Duchatelet. He was indeed a bit younger than Galois, had been arrested
with him on Pont Neuf, and had been tried just before him. But
Duchatelet's first name was Ernest, yet the article gave the initials "L.D."

There are a few more pieces of evidence that we should consider:
First, Galois's cousin, Gabriel Demante, wrote to Galois's first biogra-
pher, Paul Dupuy, that during Galois's last meeting with Stephanie,
Evariste found himself in the presence of "a so-called uncle and a
so-called fiance," each of whom provoked the duel. Galois himself con-
sistently talked of two men (both in his letter "to all republicans" and in
his letter to his friends). Any attempt to uncover the truth should there-
fore identify the two opponents, not just one.

Second, recall that the writer Alexandre Dumas, when describing the
events surrounding Galois's disastrous toast in his memoirs, named
Pescheux d'Herbinville as Galois's killer. While one would normally not
consider "D" to be the initial of d'Herbinville, the practices and style of
spelling of the nineteenth century allowed for such liberties. For instance,
Stephanie's last name is sometimes spelled du Motel, at other times
Dumotel. Even the family name on Evariste's maternal side changed from
de Mante to Demante (appendix 8). Pescheux d'Herbinville was never in
a trial with Galois but was in the "trial of the nineteen."

Lastly, the police chief Henri-Joseph Gisquet (1792-1866) wrote in
his memoirs in 1840 that Galois "had been killed by a friend."

So what does all of this add up to?

CONSPIRACY THEORIES GALORE

Quite a few of Galois's biographers concluded that Galois had been
killed by political enemies. Some of these allowed their imaginative plots
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to include even more intrigue and assumed that the "infamous coquette"
was in fact a prostitute or a mysterious police agent who acted as
a provocateur. This is not surprising. Alfred Galois himself remained
convinced throughout his entire life that his brother was the victim
of the king's secret police. But is there any convincing evidence for
such conspiracy theories? Not really. Most of these fanciful descriptions
were created before the unambiguous identification of the "infamous
coquette" as Stephanie du Motel. The "forensic" investigation that
revealed Stephanie's identity was carried out by an unlikely detective—a
Uruguayan priest. Carlos Alberto Infantozzi of the University of Mon-
tevideo simply wouldn't give up. First, he used a magnifying glass and
special lighting to uncover Stephanie's name and signature from under-
neath Galois's erasures on a few of his manuscripts. Then he painstak-
ingly sifted through the archives to discover her father's name, Jean
Louis Auguste Potterin du Motel, and the family's address at the Faul-
trier convalescent home. There is little doubt that Stephanie was neither
a prostitute nor a police agent. She eventually married Oscar Theodore
Barrieu, a language professor, on January 11, 1840. Stephanie's father
was not a medical doctor, as some biographers inferred from Infantozzi,
but a former officer in the Napoleonic army and an inspector in the
prison system. He had passed away by the time his daughter married.
Stephanie's brother, Eugene P. Potterin du Motel, did eventually become
a doctor, but was only sixteen at the time of Stephanie's "affair" with
Galois. Researcher Jean-Paul Auffray, who performed what is probably
the most extensive investigation of documents related to Galois, un-
covered another interesting fact. Denis Louis Gregoire Faultrier,
after whom the convalescent home was named, had himself been a
former captain in the national guard. After the death of Stephanie's
father, this intimate friend of the Potterin du Motel family married
Stephanie's mother. As we shall soon see, this may provide a crucial piece
in the puzzle.

So, you may wonder, why did Alfred Galois insist on his brother
having been murdered by the police? One has to remember that Alfred,
eighteen at the time, had an infinite admiration for his older sibling. To
him, the entire concept of his genius, brave, but otherwise sickly and
shortsighted brother being involved in a duel must have seemed so
unfair that foul play had to be involved. Galois's first biographer,
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Dupuy, whose extensive article was published in 1896, concluded back
then that in all of Alfred's assertions (including a totally unfounded
claim that Galois shot first into the air) "one feels a romantic invention."
Physicist and author Tony Rothman, currently at Bryn Mawr College,
reached a similar conclusion. After a thorough examination of many
biographies in 1982 (and subsequent work), he concluded that "the tales
of Bell, Hoyle and Infeld [all Galois biographers] are baroque, if not
byzantine, inventions." I fully agree.

There is one other conspiracy theory, however, that needs to be con-
sidered seriously. In one of the most recent and most extensive Galois
biographies, the Italian mathematician and historian of mathematics
Laura Toti Rigatelli proposes that the famous duel was in fact not a real
duel at all. Rather, Toti Rigatelli concluded that the depressed and disil-
lusioned Galois decided to sacrifice himself for the republican cause. The
republicans needed a corpse to stir up rebellion and he offered his —the
duel was entirely staged. Toti Rigatelli's deduction was based on wide-
ranging research, and in particular on an examination of the writings of
the prefect of police Gisquet and of one of his undercover spies, Lucien
de la Hodde.

While Toti Rigatelli's theory is certainly intriguing, I personally do
not find it particularly convincing. For her story to hold, Toti Rigatelli is
forced to claim that Galois fabricated his last three letters to "prevent
anyone from suspecting the true circumstance of his death." This would
be not only totally out of character for Galois, who always clung to the
truth as he saw it, but even inconsistent with the conspiracy theory itself.
Surely to instigate a revolution, a letter blaming the police for his death
would have been much more effective. A closer examination of Toti
Rigatelli's scenario reveals that what she regards as the strongest piece of
evidence for Galois having sacrificed himself is, in her words, his "insis-
tence on certain death" in his letters "to all republicans" and to Lebon
and Delaunay. But what else could one expect from adieu letters written
by a twenty-year-old crushed romantic the evening before a duel? Fur-
thermore, as I shall soon argue, there are reasons to believe that at least
one of Galois's opponents was much more experienced with the pistol
than the young mathematician. Galois's expectation of certain death was
therefore fully understandable. Who then killed Galois, and why was he
killed?
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THE DEATH OF A ROMANTIC

The accumulated evidence leaves very little doubt as to the reality of the
duel. The clues also indicate that this was a classic case of cherchez la

femme. Either by some careless words or by too impetuous a behavior,
Galois somehow offended the young lady, who immediately informed
two other men. When these "dupes" confronted Galois, he made the fur-
ther mistake of referring to the whole affair as "a miserable piece of gos-
sip," thus adding insult to injury. The consequences were disastrous.
Quick to defend Stephanie's honor, the two men challenged Galois to a
duel. Who were these two men? From Galois's own letter we know that
they were both republican "patriots." Galois's language also strongly
suggests that at least one of his opponents had some position of authority,
to which Galois felt compelled to yield. Both Stephanie's father, Jean
Louis Potterin du Motel, a former officer in Napoleon's Grand Army,
and the convalescent home's owner, Denis Faultrier, a former captain in
the national guard, fit the profile. Note, however, that the latter would
also be consistent with another piece of evidence. Galois's cousin de-
scribed one of the opponents as a "so-called uncle." Faultrier, the close
family friend who later married Stephanie's mother, fits this description
like a glove. As to the identity of the second adversary, the situation is
somewhat less clear. In his recent, well-researched Galois biography,
Auffray suggests that the two men were in fact Stephanie's father and
Faultrier. This ignores both the cousin's testimony (as to a "so-called
fiance") and the description in Le Precurseur, which I find difficult to ac-
cept. While the article in Le Precurseur contains many inaccuracies, those
are of the type expected from such reports. The combination of Gabriel
Demante's description of a "so-called fiance," together with the newspa-
per account, seems to add up to a presumed young lover. But who?

Ernest Armand Duchatelet, a young student at Ecole des chartes and
Galois's friend, fits the bill best. Recall that the prefect Gisquet also tes-
tified that Galois "had been killed by a friend." I have to admit that I was
unable to find any documented evidence for Duchatelet having spent
any time at the Faultrier convalescent home—he was released from
prison months before Galois's transfer there. However, since political
prisoners were customarily placed on parole in such "houses of health,"
Duchatelet might have been there prior to Galois's arrival. Furthermore,
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Galois was allowed visitors at Faultrier's and indeed his friend Auguste

Chevalier came to see him there. It would not be an incredible stretch to

assume that Duchatelet came, too. Finally, the reluctance of the two

friends (described in the newspaper) to aim at each other, and their deci-

sion to rather leave the determination of who would die to blind fate by

loading only one pistol, is fully consistent with their characters (see also

notes).

Could the opponent have been Pescheux d'Herbinville? Not very

likely. He does not fit the description in the newspaper; had very little

opportunity, if any, to meet Stephanie (being from a very different social

circle); and may even have been a homosexual (as is insinuated in

Dumas's description of him). Then why on earth did Dumas name him?

I do not know, but Dumas has been known to be wrong with such

details on many occasions. His confusing one young republican with

another would not be astonishing.

I humbly propose, therefore, that Galois's two opponents were

Duchatelet and Faultrier. Is the almost two-hundred-year-old mystery

of who killed Galois and why finally solved? Maybe. While I strongly

believe that the Faultrier-Duchatelet duo is consistent with all the

known facts, solid information is so seriously lacking that unless new

evidence surfaces in the future, many uncertainties will remain.

Assuming that my conclusion as to the identity of the two adver-

saries is correct, the picture that emerges for the events on the day of the

duel is the following: On the morning of May 30, 1832, Galois and

Duchatelet faced each other at twenty-five paces, with Faultrier waiting

for his turn. By a Russian-roulette-style procedure, Duchatelet hap-

pened to pick the loaded gun and shot Galois.

The autopsy report reveals two additional interesting pieces of infor-

mation. First, while Galois was hit from the side, he did not stand fully

sideways, in the way that would have minimized his chances of being

hit. Did he not care to live? Given his state of mind this is not impossi-

ble. After all, from Galois's bleak point of view his life story could be

summarized more or less as follows: two failed attempts to enter the

Ècole polytechnique; three memoirs rejected by the academy; two

imprisonments; and a heart broken by unrequited love. In fact, shortly

before he died, Galois drew himself as Riquet a la Houppe (figure 69), a

fictional hunchback dwarf who was very clever and chivalrous but was
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mocked by everyone around him. In the seventeenth-century tale,

Riquet cured a young woman of her stupidity and eventually won her

love, becoming the symbol of a Beauty and the Beast–type transforma-

tion. Sadly, Galois was less lucky in real life. Second, the autopsy report

describes a large bruise on Galois's head that was probably caused when

he fell. If knocked unconscious and presumed dead, this might explain a

fact that puzzled many of the Galois biographers—most (if not all) of

those present at the duel left the scene. The potential identification of

Faultrier as one of the opponents solves another mystery that intrigued

many researchers—why didn't one of the witnesses take Galois to the

hospital? In the proposed scenario, Faultrier, the "former officer," might

indeed have been the one to transport Galois to Cochin. A hint as to

Galois's ever-present memories of his father may be provided by the fol-

lowing curiosity: When asked at the hospital for his address, Galois gave

6, rue Saint-Jean-de-Beauvais, the Paris address at which Nicolas-

Gabriel had committed suicide.
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POSTHUMOUS FAME

Galois's funeral took place on Saturday, June 2. It was attended by thou-

sands of friends, members of the Friends of the People, and delegations

of students from the schools of law and medicine. The leaders of the

Friends of the People, Plagniol and Charles Pinel, delivered passionate

eulogies. If the republicans had any plans to use the funeral to provoke a

riot, these were rapidly dissipated by an unexpected turn of events. The

police prefect Gisquet, who had arrested about thirty republicans as a

preventive measure the previous evening, was keeping a close watch on

the procession. He writes in his memoirs:

On June 2, the republicans attended, in numbers of two to three

thousands, the funeral procession of Legallois [misspelling Galois],

with the intention of starting the barricades at the time of their

return; but they learned of the death of General Lamarque [a famous

general in Napoleon's army] and immediately realized the advantage

they could take of such an event and the crowd that the funeral of the

general would attract. Their plan was therefore modified: it was the

coffin of a general of the Empire, of a patriot deputy, that would give

the signal for the rebellion. The movement was therefore postponed

till the 5th.

Fate thus robbed Galois even of the

opportunity to incite a rebellion in death.

The devastated Auguste Chevalier wrote

a brief obituary that appeared in Septem-

ber 1832.

Fortunately, the gods were more gen-

erous with Galois's mathematical legacy.

Two tenacious young men, Galois's

brother Alfred and his friend Auguste

Chevalier, took it upon themselves to

ensure that Evariste's memory and his

mathematical papers would be saved

from oblivion (figure 70 shows a portrait

of Galois, drawn from memory by Alfred in 1848). Painstakingly, they

collected every piece of paper, catalogued all the manuscripts, and deliv-

ered their precious treasure to mathematician Joseph Liouville
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(1809-82). The latter, overwhelmed with admiration, started his address
to the Academy of Sciences in 1843 with, "I hope to interest the Acad-
emy in announcing that among the papers of Evariste Galois I have
found a solution, as exact as it is profound, of this beautiful theorem:
Given an irreducible equation of prime degree, to decide whether or not
it is soluble by radicals." Liouville published the memoirs in his journal
in 1846, announcing to the world, "I recognized the full exactness of the
method by which Galois proves, in particular, this beautiful theorem
[about the solvability of equations]." More recognition was soon to fol-
low. Jacobi, in whom Galois had placed his confidence, proved true to
the task. Having read Galois's papers in Liouville's Journal, he immedi-
ately contacted Alfred in an attempt to find out more on Galois's work
on transcendental functions. By 1856, Galois theory was introduced into
advanced courses of algebra in France and Germany.

The school that had expelled Galois also finally had a change of
heart. On the occasion of its centenary celebrations, the Ecole normale
asked the famous Norwegian mathematician Sophus Lie (1842-99) to
write an article that would summarize the impact of Galois theory on
the history of mathematics. Lie concluded, "It is particularly character-
istic of mathematics that two of the most profound discoveries that have
ever been made (the theorem of Abel and the theory of algebraic equa-
tions of Galois) were the work of two geometers of whom one, Abel,
was about twenty-two years old, and the other, Galois, had not reached
twenty." When the great mathematician Emile Picard (1856-1941) eval-
uated in 1897 the mathematical achievements of the nineteenth century,
he had this to say about Galois: "No one surpasses him in the originality
and the profoundness of his conceptions."

The Ecole normale came full circle when on June 13,1909, its direc-
tor, Jules Tannery, came to Bourg-la-Reine to deliver a special presenta-
tion on the occasion of the placement of a commemorative plaque on
Galois's home (figure 71 shows a letter from Tannery to the Bourg-
la-Reine mayor, and figure 72 shows the plaque on the original home).
Hardly able to control his emotions, Tannery finished with a moving
mea culpa:

I owe the honor of giving a speech here to the position which I hold

at the Ecole normale. I thank you, Mr. Mayor, for allowing me to

make an apology to the genius of Galois in the name of this school to
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which he entered reluctantly, where he was misunderstood, which

expelled him, but for which he was, after all, one of the brightest

glories.

These sincere words echoed in my ears as I stood in the Bourg-la-Reine

cemetery, where the memories of Nicolas-Gabriel and Evariste Galois

are as inseparable today (figure 73) as the father and son were during

Evariste's short life.

But how could a tool invented

for finding whether certain equa-

tions can be solved, no matter how

ingenious, evolve into a language

describing all the symmetries of

the world? After all, when we dis-

cuss symmetries, algebraic equa-

tions are not the first things that

spring to mind. Galois himself was
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not sure where his theory was going to

lead: "It would be possible to understand

fully the general thesis which I put forth

only when someone who has an application

for it reads my work carefully." This is pre-

cisely where the unifying magic of group

theory appears—that "grandeur of thought

from such slight beginnings" that the

British mathematician H. F. Baker was rav-

ing about. To fully appreciate the incredible

encompassing power of the concept started

by Galois, we shall now return to the realm

of groups and symmetries.
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Groups

alois took algebra and turned it on its ear. If you want to know
whether an equation is solvable or not, you simply try to solve
it, right? Wrong, said Galois. All you need to do is to examine

permutations of the putative solutions. How can permutations of solu-
tions we don't even know tell us anything about solvability? The fact
that permutations may provide at least some new information had long
been known in the nonmathematical world. Anagrams —words or
phrases formed by the letters of others in different order—do just that.
Take the name GALOIS, for instance. Allowing for two-word anagrams
leads us to such combinations as OIL GAS, GOAL IS, GO SAIL, and
so on. How many different arrangements (disregarding meaning) of the
letters in GALOIS can we construct? The answer is not difficult, but we
could start with an even simpler case to uncover the general rule. The let-
ters A and B allow for two arrangements: AB and BA. Three letters, A,
B, C, can form six permutations: ABC, ACB, BAC, BCA, CAB, CBA.
The pattern that emerges is simple. With A, B, C, there are three loca-
tions where the A can be placed (first, second, third). For each one of the
three choices made for A, there are precisely two places left for the letter
B (e.g., if A is second, B can be either first or third), and only one place
remains for the C. The total number of arrangements is therefore 3 x 2

x 1 = 6. The same logic applies to any number of objects. For the six let-
ters in GALOIS, there are therefore 6 x 5 x 4 x3 x2 x1= 720 differ-
ent arrangements, and for any number n of different objects there are
n x (n — 1) x (n — 2) x (n — 3) . . . x 1 permutations. To save space, the
French mathematician Christian Kramp (1760-1826) introduced the
notation n! (n factorial) to denote this last product. The number of per-
mutations of n different objects is therefore precisely n!



GROUPS 159

One of the earliest recorded studies of permutations occurs not in a
math book, but rather in a book of Jewish mysticism that dates back to
sometime between the third and sixth centuries. The Sefer yetzira (Book

of Creation) is a short, enigmatic book that proposes to solve the mys-
tery of creation by examining combinations of the letters of the Hebrew
alphabet. The general premise of the book (which is attributed by kab-
balistic legend to the Jewish forefather Abraham) is that different cate-
gories of letters form divine building blocks from which all things can be
constructed. In this spirit, the book states, "Two letters build two words,
three build six words, four build 24 words, five build 120, six build 720,

seven build 5,040."
To see how uncovering the relations among different permutations

and their properties can lead to new and deeper insights, examine the
operation that permutes GALOIS into AGLISO. This operation is rep-
resented by (in the notation introduced in Chapter 2):

GALOIS)
AGL I SO

where each letter in the upper row is replaced by the letter directly
underneath it. Specifically, G is replaced by A, A by G, L stays the same,
0 by I, I by S, and S by 0.

What happens if we apply the same operation twice? You can easily
check that performing precisely the same substitutions a second time
turns the AGLISO into GALSOI. Imagine now that starting with
GALOIS, a computer that has gone haywire repeats the same operation,
say, 1,327 times. Can we predict the final outcome? Of course, we could
find the result the hard way, by applying the operation again and again,
but this is extremely tedious and surely prone to many mistakes. Is there
an easier way to find the answer? You may want to spend a few minutes
thinking about this problem, since its deciphering reveals interesting
properties of permutations that are in the spirit of Galois's proof. In any
case, I will give the solution presently.

On the recreational mathematics side, permutations and their char-
acteristics featured prominently in at least two very famous puzzles—
the 14-15 puzzle and Rubik's Cube.

The 14-15 puzzle was introduced in the 1870s by America's greatest
puzzlist, Samuel Loyd (1841-1911), and for a while it drove the entire
world crazy. At the time, Loyd was already the foremost composer of
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chess problems in the United States, as well as a chess columnist in sev-

eral magazines. Even before the celebrated 14-15 puzzle, however, he

began publishing a wide variety of other types of mathematical puzzles.

The 14-15 puzzle consists of a grid of 4 x 4 tiles numbered 1-15 (fig-

ure 74a). The general goal was to slide the tiles up, down, or sideways

and rearrange them in serial order from any initial configuration. The

particular version of the 14-15 puzzle that caused all the commotion was

one in which all the numbers were in regular order with the exception of

the 14 and 15, which were reversed (as in figure 74b). Loyd offered a

prize of one thousand dollars to the first person who could present a

series of slides that would lead to the swapping of only the 14 and the 15.

The puzzle created an unprecedented mania and fascinated people from

all walks of life. Loyd's son, who later published a fascinating collection

of his father's mind-boggling riddles (called Cyclopedia of Puzzles),

wrote in his description of the universal infatuation that "farmers are

known to have deserted their plows" to struggle with the stubborn puz-

zle. In reality, Loyd knew very well that he had risked absolutely noth-

ing by offering the prize—he could prove that the puzzle couldn't be

solved. To understand the crux of Loyd's proof, consider, for example,

the following permutation:

You can easily discover that this permutation is achievable from Loyd's

1-15 grid, if originally arranged in serial order (as in figure 74a). Even if

you don't have Loyd's grid at hand, by mentally tracing the following

sequence of moves (where every number represents the one to be slid to
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the blank space)— 15, 14, 13, 9, 5, 6, 7, 8, 12, 15 — you will find that it

produces the desired permutation above. Let us count up how many

pairs of numbers in this permutation are out of their natural order. For

instance, in the natural order, 6 comes after 5, but in this permutation the

order of 6 and 5 is reversed. We can take each digit in the second row in

turn and count up the number of reversals:

1 contributes no reversals 0 reversals

2 contributes no reversals 0 reversals

3 contributes no reversals 0 reversals

4 contributes no reversals 0 reversals

6 is followed by 5 1 reversal

7 is followed by 5 1 reversal

8 is followed by 5 1 reversal

12 is followed by 5, 10, 11, 9 4 reversals

5 contributes no reversals 0 reversals

10 is followed by 9 1 reversal

11 is followed by 9 1 reversal

15 is followed by 9, 13, 14 3 reversals

9 contributes no reversals 0 reversals

13 contributes no reversals 0 reversals

14 contributes no reversals 0 reversals

Total number of reversals 12

The total number, 12, is even, so this particular permutation is called

an even permutation. Similarly, when the number of reversals is odd, we

speak of an odd permutation. A little experimentation will convince you

that, by design, the permutations that can be achieved with Loyd's toy

are always even, as long as you start with the natural order and end up

leaving the bottom right-hand corner empty. Since reversing just the one

pair of number 14 and 15 results in an odd permutation (1 reversal), no

matter how hard you try, you can never recover the natural order. Loyd

was assured that he would never have to pay the offered prize.

If the 14-15 puzzle somehow caught your fancy and you happen to

be in possession of Loyd's toy, you may want to try the following: From

the initial configuration with the 14 and 15 reversed (Figure 74b), can

you reach the natural order if the vacant square in the final configuration

is at the upper left-band corner (as in figure 74c)? The answer is pre-

sented in appendix 9.
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About a century after the appearance of Loyd's puzzle, the Hungar-

ian architect Ernö Rubik came up with an even more sophisticated, and

hugely popular, device. Rubik's Cube (figure 75) consists of a 3 x 3 x 3

matrix of smaller cubes. The faces of the small cubes are painted in dif-

ferent colors, and the faces of the

large cube are pivoted such that they

can be rotated in different directions.

The objective of the puzzle is to pro-

duce a configuration in which each

face of the large cube is composed of

a single color. Rubik invented the

cube in 1974, and by 1980 it became

an international sensation. For about

three years the Rubik craze swept the

world. From little children at school

to CEOs in fancy offices, everybody

was trying to solve the cube, and to

do it in ever-shorter time. In honor of the inventor, on June 5, 1982,

Budapest hosted the first world championship for the fastest cube solver.

Nineteen national contests that had been held earlier produced champi-

ons who came to Budapest. The winner, Minh Thai of the United States,

accomplished the task in an astonishing 22.95 seconds, even though the

cubes used in the competition were new, and therefore slower in their

rotations than their "broken in" counterparts. Still shorter times have

been recorded since. At the time of this writing, Jess Bonde of Denmark

has registered the shortest time achieved in an official championship —

16.53 seconds! Even if one were to exclude the innumerable imitations

of Rubik's Cube, a staggering number of more than 200 million cubes

have been sold to date worldwide.

Since there are no fewer than 43,252,003,274,489,856,000 different

patterns that the cube can exhibit, you can imagine that nobody has

actually tried them all to solve it. Rather, each move of Rubik's Cube

may be represented as a permutation of its vertices. Indeed, the solution

to the cube's puzzle can be cast entirely in the language of group theory.

Mathematician David Joyner of the U.S. Naval Academy has even

schematized a complete course in group theory around Rubik's Cube

and similar mathematical toys.

Returning now to the GALOIS-AGLISO puzzle presented at the
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beginning of this section, how can we find what permutation would be
obtained after 1,327 applications of the same transformation? First, note
that the operation leaves the letter L unchanged, in the third position.
Second, we discover that the letters 0, I, S are permuted in such a way
that the effect is to move them "round in a circle" (as in figure 76). This
is similar to a basketball practice routine in which the players form a line
and after shooting to the basket each player returns to the back of the
line. Permutations of this type are called cyclic permutations. An impor-
tant property of cyclic permutations is that they return to the original
order after a fixed number of applications called the period. Figure 76

shows that the cyclic permutation of 0, I, S is of period 3 — the order
OIS is recovered after three steps. The last point to notice about the
GALOIS-AGLISO operation is that the letters G and A are transposed,
returning to their original order after every two operations. If we put all
of these pieces of information together, we discover an easy way to crack
this problem. Since 0, I, S return to their initial order every three steps
and G, A every two steps (and L remains unchanged), we recover the
original word GALOIS every 3 x 2 = 6 steps (you can check this by
repeating the substitutions six times). The number 1,327 is equal to 6 x
221 + 1. This means that after the 1,326th (= 6 x 221) step, the letters
spell GALOIS, and then the one extra step simply changes that to
AGLISO —the final word. There is an important lesson to be learned
here: The analysis of the properties of the permutation allowed us to pre-
dict with confidence the final outcome without actually having to per-
form the experiment. This was the basic philosophy behind Galois's
theory as well. He discovered an ingenious way to determine whether an
equation is solvable from an examination of the symmetry properties of
permutations of its solutions.

Just as two consecutive shuffles of a deck of cards produce nothing
more than a different shuffle, performing one permutation followed by
another results in yet a third permutation. Consequently, permutations
obey the closure requirement of groups automatically. Recall that clo-
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sure means that combining two group members by the group operation
yields another group member. For instance, the set of all the positive
numbers (integers, fractions, and irrational numbers) forms a group
under the operation of ordinary multiplication. In particular, the
requirement of closure is satisfied, because the product of any two posi-
tive numbers is also a positive number. The identification of permuta-
tions as crucial mathematical objects worthy of study thus set Galois on
the road to formulating group theory.

GROUPS AND PERMUTATIONS

Permutations and groups are intimately related. In fact, the group con-
cept was born out of the study of permutations. For Galois, this was
only the first step in a series of ingenious inventions and ideas that paved
the way to his brilliant proof.

Let me provide a brief reminder of the precise definition of a group
introduced in chapter 2. A group consists of members that have to obey
four rules with respect to the group operation. As an example, take the
collection of all the possible deformations that can be performed on a
piece of Play-Doh, with the operation being defined as "followed by."
The rules are as follows. First, the combination of any two members by
the group operation has to produce another member (this property is
called closure). Obviously, a deformation of the Play-Doh followed by
a second deformation simply generates another deformation. Second,
the operation has to be associative, meaning that when three ordered
members are combined, the result does not depend on which two are
combined first. Successive transformations such as the Play-Doh defor-
mations satisfy this rule automatically. Third, the group must contain a
"status quo" or identity element, that when combined with any other
member, it leaves that member unchanged. For the Play-Doh, the defor-
mation "do nothing" plays this role. Finally, for every member of the
group, there must be an "as you were" or inverse element, such that
when a member is combined with its inverse the combination yields the
identity. For every Play-Doh deformation, there exists a counterdefor-
mation that restores the original shape.

Examine now the collection of all possible permutations of the three
numbers 1, 2, 3:



Here, in order to be able to refer to them, I have labeled each one of the

different operations. The identity, which takes each number into itself, is

denoted by I. Each of the operations t„ t2 , and t, transposes or inter-

changes two of the numbers while leaving the third one intact. The two

operations s, and s 2 are both cyclic permutations, moving the numbers

round in a circle.

Observe now what happens when we apply two permutation opera-

tions successively. Recall that what is important is which number

replaces which, and not the order in which they are written. Take,

for instance, t, followed by s1. The operation t, takes 1 into itself and

then s, changes the 1 into 2. The net result is therefore the transforma-

tion 1 —> 2. At the same time, t, replaces 2 by 3 and then s1,replaces the

3 by 1, producing the net outcome: 2 —> 1. Finally, 3 is transformed into

2 by the operation t1,and then back into 3 by the operations,.We find

that t, followed by s, gives the permutation:

which is precisely the operation t,. In other words, if the symbol

denotes the operation "followed by," we found that s1 t1 = t, (recall that

the operation applied first is always to the right).

The complete "multiplication table" for the six permutations takes

the form:
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where the entry in, say, row s 2 and column t 3 gives the outcome of s,. t„
which is At first glance this table may look like a mess, but a closer
inspection reveals an important truth: The collection of all the permuta-
tions of three objects forms a group. In fact, this statement is true for the
permutations of any number of objects. The table demonstrates both
closure (combining any two permutations of three objects gives another
permutation of three objects) and the fact that every permutation has an
inverse—one that "undoes" the effect of the first. In this case, you can
check that s, and s, are each other's inverses — applying one after the
other restores the original order (s i o s, = I; s,. s, = I). Similarly, each of
the operations t„ t,, t 3 is its own inverse. That is, applying any one of
them twice restores the status quo (t, t 1 = I; t2 ° t2 = I; t 3 o t 3 = I). The
group of all the n! permutations of n different objects is commonly
denoted by S,,. The number of members in a group is called the order of
the group. The order of the group of permutations of three objects, S„
for instance, is 6, because there are precisely six such permutations.

Why should we care whether permutations form groups or not? Not
only because historically these were the objects that gave birth to the
group concept in the first place, but also because these particular groups
are in some sense at center stage in group theory.

To demonstrate the special role of groups of permutations, inspect
again the symmetries of the equilateral triangle. Recall that there were six
such symmetries leaving the triangle unchanged, corresponding to the
identity, rotation through 120 degrees, rotation through 240 degrees,
and reflection about three axes (see figure 9, page 15). In chapter 2 we
discovered that the set of symmetries of any object forms a group. Since
the group of symmetries of the triangle has precisely the same number of
members as the group of permutations of three objects—both are of
order 6—it makes sense to wonder whether these two groups are some-
how related. But what does a counter-clockwise rotation of the triangle
by 120 degrees actually do (figure 77)? It simply takes vertex A and

moves it from position 1 to
position 2. At the same time,
it moves vertex B from posi-
tion 2 to position 3 and ver-
tex C from position 3 to
position 1. In other words,
we can look at this rotation
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as nothing but a permutation of the positions 1, 2, 3 with respect to the

vertices of the rotating triangle:

Similarly, each one of the remaining five symmetries of the triangle cor-

responds to one of the other permutations—the structure of the two

groups is identical! This establishes an unexpected and intimate link

between symmetries and permutations, through the theory of groups.

This realization forms the basis for an important theorem proven in 1878

by the English mathematician Arthur Cayley (1821-95). In simple lan-

guage, the theorem states a very remarkable fact: Every group is cast

in the same mold as a group of permutations. That is, in spite of the

immense latitude that the definition of groups allows, there is always a

group of permutations that for all practical purposes is identical to any

group. In the mathematical jargon, two groups that have the same struc-

ture or the same "multiplication table," such as the group of permuta-

tions of three objects and the group of symmetries of the equilateral

triangle, are called isomorphic. To give another example, recall from

chapter 2 that the group of symmetries of the human figure contains two

members—the identity and reflection about a vertical plane (the latter

representing bilateral symmetry). The "multiplication table" for this

group under the operation "followed by" (where I and r denote the

identity and reflection, respectively) takes the form (because applying

the reflection twice restores the original figure):

Examine now the simple group composed of the two numbers 1 and —1

with the operation of ordinary multiplication. The multiplication table

(this time literally) for this group is:
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If you inspect the two tables you discover immediately that they have

precisely the same structure once you make the correspondence I H 1,

r H —1. The group of symmetries of the human body is isomorphic to
this two-member multiplication group.

In addition to the fundamental concept of groups of permutations,

there was another clever mathematical tool that Galois needed to enable

him to embark on the proof that the general quintic (and any higher

degree equation) cannot be solved by a formula. This was the idea of a

subgroup. Like some splinters of political parties or organizations that

occasionally become parties themselves, certain subsets of the members

of a group may by themselves satisfy all the four requirements of being

a group (closure, associativity, identity, inverse). In that case the subset is

said to form a subgroup. For instance, the two permutations I and t 3 on

page 165 form a subgroup of the group of permutations of three objects

S„ because /. t 3 = t3 , and t,. t, = I (see table on page 165), implying clo-

sure and meaning that both t 3 and I are their own inverses. If we divide

the order (number of members) of the parent group (6 in the case of 53)
by the order of the subgroup (2 for the above subgroup) we obtain the

composition factor. In the above example the composition factor is 6 ± 2

or 3. The fact that this turned out to be a whole number is not an acci-

dent. An important theorem due to Lagrange ensures that this will

always be the case: The order of a finite subgroup always evenly divides

the order of its finite parent group. You will never find that a group of

order 12 has a subgroup of order 5, 7, or 8; it may have subgroups of

order 2, 3, 4, or 6.

Galois was now in possession of all the tools he felt he needed for the

proof, but a hugely imaginative leap was still required to put all of these

elements together to create a coherent picture. Mathematical history was

about to be made.

GALOIS'S BRILLIANT PROOF

In a famous Sidney Harris cartoon, two scientists are seen next to a

blackboard covered with equations. One points to the phrase "THEN A

MIRACLE OCCURS, " which is written between two complex equations,

and the caption reads: "I think you should be more explicit here in step

two." Galois's insight was nothing short of a miracle. In the history of

science, even great discoveries can usually be traced to something that
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was "in the air" at the time. These are ideas whose time has come. Most
physicists would agree, for instance, that had Einstein not suggested his
theory of special relativity, from which the famous equation E = rnc2
emerged, someone else would have sooner or later come up with the
same idea. One notable exception, where there was almost nothing "in
the air" where the same grand vision would have probably material-
ized only much, much later—is Einstein's theory of general relativity.
This is the notion that the force of gravity merely reflects the geometry
of space and time. Massive bodies warp spacetime around them just as a
heavy bowling ball causes a trampoline to sag. In their motion around
the Sun, planets follow curved orbits not because of some unfathomable
attraction, but because of this warping. This idea represented such a rev-
olution in the perception of the very fabric of the universe that the
famous American physicist Richard Feynman (1918-88) once said, "I
still can't see how he thought of it." Even today, ninety years after the
first paper on general relativity, Einstein's intuition is still astonishing (I
shall return to general relativity in Chapter 7).

Many mathematicians are similarly awed when they think about
Galois. Joseph Rotman of the University of Illinois told me, "Galois's
invention of groups was a stroke of genius. After all, the great mathe-
matician Abel, who worked on the problem of solvability by radicals at
the same time, did not come up with group theory. Indeed, only Cauchy,
on his return to France in the 1840s, seemed to appreciate Galois's
achievements, and Cauchy's intense group theoretical studies led to the
use of group theory in other fields of mathematics." Algebraist Peter
Neumann of Oxford University added, "Galois had an extraordinary
insight towards the understanding of groups in their own right, but
equally extraordinary was his understanding of how they could be used
in the theory of equations—ultimately creating what we now call Galois
theory (which, after all, is the modern theory of equations)."

So, how did Galois prove his inventive propositions? Even just the
essence of Galois's proof is somewhat technical, but it provides such a
unique window into his unsurpassed creativity that it is definitely worth
the effort required to penetrate it. Following the logical steps of the
proof is like having walked through the labyrinth of Mozart's mind
while he composed one of his symphonies.

The proof contains three crucial ingredients, all marked by original-
ity and imagination. Galois started by showing that every equation has



170 THE EQUATION THAT COULDN'T BE SOLVED

its own "symmetry profile" — a group of permutations (now called the

Galois group) that represents the symmetry properties of the equation.

The importance of this step cannot be overemphasized. Before Galois,

equations were always classified only by their degree: quadratic, cubic,

quintic, and so on. Galois discovered that symmetry was a more impor-

tant characteristic. Classifying equations by their degree is analogous to

grouping the wooden building blocks in a toy box according to their

sizes. Galois's classification by symmetry properties is equivalent to the

realization that the shape of the blocks—round, square, or triangular—

is more fundamental. Specifically, the Galois group of an equation is the

largest group of permutations of the putative solutions that leaves the

values of certain combinations of these solutions unchanged. For

instance, take the group of permutations of two objects. This group is

composed of two members —the identity and the operation that inter-

changes the two objects. Now examine the quadratic equation. We can

denote its two putative solutions by x, and x 2 . Clearly, the combination

that is the sum of the two solutions, x, + x„ remains unchanged under the

operation of both members of the group of permutations of two objects.

The identity leaves x, and x 2 intact, and exchanging x, and x 2 simply

transforms x, + x 2 into x 2 + x„ which has the same value. For equations

of degree n, we know from Gauss's fundamental theorem of algebra that

they have n solutions. The maximum number of possible permutations of

n solutions is n!, and the group containing all of these permutations is the

group we previously called S. Galois was able to prove that for any

degree n, one can always find equations for which the Galois group is

actually the full S. In other words, he showed that at any degree, there

are equations that possess the maximum symmetry possible. There are

quintic equations, for instance, for which the Galois group is S5.
The second ingredient in Galois's proof was yet another innovation.

Having already introduced the concept of a subgroup, Galois now gave

that concept an additional twist by defining a normal subgroup. Take for

example the group of six permutations of three objects, S 3 . You can eas-

ily check that a subset composed of the three operations I, s„ s 2 (see page

165) forms a subgroup of S3 . Closure is guaranteed by the fact (see mul-

tiplication table on page 165) that s, 0 s, = s„ s, 0 52 = s,, and s, and s 2 are

each other's inverses (s,. s, = I). Let us denote this subgroup of three

members by T Now suppose that we take any member of T, such as s„
and we "multiply" it from the left by a member of the parent group S„
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say t 1 , and from the right by the inverse of that same member (which
happens to be also t„ because t 1 is its own inverse). That is, we construct
the sequence of operations t 1 

0 s,. t,. Using the "multiplication table" on
page 165 we discover that s i

. t, = t„ and that t 1
. t, = s„ In other words,

t 1 
0 s,. t, = s 2 , and s, is in itself a member of the subgroup T If any mem-

ber of a subgroup satisfies this property (that multiplying it from the left
by a member of the parent group and from the right by the inverse gives
a member of the subgroup), then the subgroup is called a normal sub-

group. You can easily verify that T is indeed a normal subgroup of S 3 . In
fact, T is the maximal (of the highest order) normal subgroup of S 3 . In
general, if a group has normal subgroups at all (other than the group
itself), one of these would be the largest. In turn, this maximal subgroup
may have as offspring normal subgroups of its own. One of those would
again be of the highest order. In this way, an entire genealogy of maximal
normal subgroups can be traced. We can use the family tree of these sub-
groups to create a sequence of composition factors (order of the parent
group divided by that of the maximal normal subgroup). In the case of S,

and T the composition factor is 6 ÷ 3 = 2. The only normal subgroup
that T has is the simplest, in fact trivial, group —the one composed of the
identity I alone. This group is of order 1. Therefore, the composition
factor between T and its normal subgroup is 3 ÷ 1 = 3. The hierarchy of
generations of groups S„ 7; and the one composed of I alone therefore
give us the sequence of composition factors 2, 3.

Nowhere did Galois's genius shine brighter than in the third step of
his proof. Here he put to use all of those creations of his imagination.
The question that even the great Abel had left open—What does it take
for an equation to be solvable by a formula? — was about to be answered.
Galois showed that to enjoy the luxury of a formulaic solution, equa-
tions must have a Galois group of a very particular type. Specifically,
Galois called a group solvable if every single one of the composition fac-
tors generated by its descendant maximal normal subgroups was a prime
number (divisible only by 1 and itself). He then was able to fully justify
the use of the name "solvable" by proving that the condition for an equa-
tion to be solvable by a formula is that its Galois group should be solv-
able. Essentially, Galois showed that when the Galois group of an
equation is solvable, the process of the solution of the equation can be
broken up into simpler steps, each involving only the solution of equa-
tions of lower degree.
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How is the theorem used in practice? In the case of the general cubic,
for instance, the equation is most symmetric when its Galois group is 53
(the group of all the permutations of the three solutions). 5 3 , however,
is definitely solvable—as we have just seen, both composition factors
2 and 3 are prime numbers. Consequently, the general cubic is solv-
able by a formula, as indeed dal Ferro, Tartaglia, and Cardano had
shown. For the general quintic, on the other hand, Galois started in a
similar way, by first demonstrating that there are equations for which
the Galois group is the group of permutations of 5 solutions, S 5 . Here,
however, came the punch line. Galois proved that 5 5 as a group is not
solvable (one of the composition factors turns out to be 60, which is not
a prime number). The quintic, therefore, has the wrong sort of Galois
group. This completed the proof that the general quintic equation (and
similarly, any general equation of a higher degree) is not solvable by a
formula. One of the most intriguing problems in the history of mathe-
matics was finally put to rest once and for all. To accomplish this Her-
culean task, however, Galois had not only to come up with brilliant
ideas, but also to invent an entirely new branch of mathematics and to
identify symmetry as the source of the most essential properties of equa-
tions.

The definitive word on the insolvability of the quintic by a formula
may sound at first as a disappointing result, but to what treasures this
"disappointment" has led. The biblical story of King Saul comes to mind.
When the donkeys of Kish, Saul's father, had strayed, Kish told his son,
"Take one of the boys with you; go and look for the donkeys." This
search for the lost donkeys led Saul to the prophet Samuel, who anointed
the young man to be the first king of Israel. Galois's search for a solution
to the quintic produced the "supreme art of mathematical abstraction" —
group theory.

THE DATING GAME

Even though not invented with that grand purpose in mind, group the-
ory turned out to be the "official" language of all symmetries. The
prominent role that permutations play in group theory may appear at
first glance to be somewhat surprising. After all, while we are all fully
aware of symmetries, permutations do not strike us as being as conspic-
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uous in our everyday lives. Permutations do show up, however, even if

stealthily, and sometimes in the most unexpected places.

Consider the all-important problem of finding a partner for mar-

riage. Moving on from one chance encounter to the next, everyone is

searching for a true soul mate. But how does the searcher know when

she or he is the one? Can it be (as in the movies) that when you see this

one particular person you immediately know that there is no one else for

you in the entire world? Or, to use the words of one of the characters in

the movie Serendipity, when should you stop looking for Mr./Ms. Right

and be happy with "Mr./Ms. Good-Enough-for-Right-Now"? To trans-

form this life-changing problem into one that is more tractable, it helps

to make a few simplifying assumptions. Suppose that the average female

or male meets during the appropriate period in life four people who

could be considered potential spouses (I shall discuss situations involv-

ing a different number of candidates later). Assume further that had the

partner seeker been able to examine all four candidates, he or she would

have been able to rank them from the worst (denoted by 1) to the most

suitable (denoted by 4), with no two ranking precisely the same. Chance

usually does not allow for the luxury of seeing all potential partners at

once. Furthermore, social etiquette coupled with common decency nor-

mally prohibit one from going back to a previously rejected candidate.

Rather, life's flow carries men and women through a series of meetings

occurring in random order. Consequently, for four potential partners,

each one of the following 4! = 24 permutations of the order of the meet-

ings has the same probability:

The sequence 3142, for instance, means meeting the second-best candi-

date first, the worst candidate second, the best candidate third, and the

second-to-worst candidate last. Waiting for Mr./Ms. Right to show up as
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the last candidate in this case would certainly not have produced the

most desirable result. Indeed, too protracted a process may result in

diminishing returns. So, what are the poor young (and not-so-young)

people supposed to do? Or, more specifically, how can the spouse

hunters maximize their chances for finding the best partner?

The first thing to realize is that a general strategy for addressing pre-

cisely such (clearly simplified) problems does exist. If the number of

potential partners is 4, the idea is to choose a number, call it k, between

1 and 4. Then, after having met and scrutinized k — 1 potential partners,

to choose the first one that is better than all of those previously exam-

ined (or, if none is, to choose the last one). For instance, if k = 2, the idea

would be to look carefully at the first candidate (k — 1 = 1) and then

choose the first potential partner that is better than the one already

tested (recall that the assumption is that one cannot return to a previous

potential partner). The rationale behind this strategy is obvious—on one

hand it takes full advantage of the information that has already been

gathered, and on the other, of the fact that the future is unknown. The

general strategy does not tell you, however, which value to choose for k.

To decide that, we have to find out which value of k gives the highest

probability for choosing the best candidate (number 4). For k = 1 (k — 1

= 0), for instance, the first candidate ends up being chosen. For this

selection to be the best, the seeker relies on the six permutations in the

order of the encounters in which 4 appears first: 4321, 4312, 4231, 4213,

4132, 4123. Clearly, the probability of hitting one of these six permuta-

tions out of the existing twenty-four possibilities is one out of four. This

is easy to understand—the partner seeker has not yet met any of the can-

didates, and there is one chance out of four to find the best one in the

first rendezvous. The same is true for k = 4. In this case (k — 1 = 3), one

is betting on the chance of the fourth and last candidate being better than

any of the previous three. This corresponds to the six permutations

3214, 3124, 2314, 2134, 1324, 1234, in the order of the meetings, and the

chances of hitting those are again one out of four. For k = 3 (k — 1 = 2),

the spouse searcher meets two of the potential partners and then chooses

the first one that comes subsequently and is better than both. The per-

mutations that will result in the best choice (number 4) are in this case:

3241, 3214, 3142, 3124, 2341, 2314, 2143, 1342, 1324, 1243. For instance,

if the order of encounters was 3241, the seeker meets first candidates

3 and 2 and then, since number 4 is better than either of those two, num-
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ber 4 would be the one chosen. When the order is 3214, the third candi-

date (number 1) is not better than the first two, and therefore the search

continues and leads to number 4. The list above (for k = 3) shows that in

this case there are ten permutations that produce the best choice. The

chances of success are therefore 10 ± 24 or about 42 percent. Finally, for

k = 2 (k — 1 = 1), the choice is for the first candidate that is better than

the first one seen. You can check that the permutations resulting in "net-

ting" number 4 in this case arc: 3421, 3412, 3241, 3214, 3142, 3124, 2431,

2413, 2143, 1432, 1423. For instance, when the order is 3412, the second

candidate is already better than the first, so this candidate would be

selected. On the other hand, when the order is 3214, the spouse seeker

rejects the second and third candidates, since they are not better than the

first, and has to await the last potential partner to find one that is better.

Since k = 2 yields the desired result in eleven of twenty-four occasions,

or a probability of success of about 46 percent, this is the best strategy to

adopt. A similar calculation shows that k = 3 gives the highest chances if

the number of potential partners is 5, 6, 7, or 8. If the number of poten-

tial spouses is 9 or 10, you would maximize your chances with k = 4.

Life is, of course, much more complex than this oversimplified

model, especially when it comes to affairs of the heart. The choice of a

partner is too serious a matter to be reduced to a mere examination of

permutations. Nonetheless, it remains true that permutations may pop

up where least expected. The general strategy outlined above, by the

way, could be applied to many other (especially less critical) circum-

stances, from choosing a used car to picking a family dentist. If the num-

ber of potential options is very large (say, larger than thirty), one can

prove mathematically that the "37 percent rule" produces the best

chances of success. That is, examine 37 percent of the potential cars,

restaurants, or family physicians and then choose the first one that is

better than anything you've seen before. (In case the more mathemati-

cally inclined readers wonder where such a strange number as 37 percent

came from, it is approximately equal to 1 e, where e is the base of the

natural logarithms.)

SHAKEN, NOT STIRRED

Finding the love of your life through mathematics is not the only

process where permutations are thrust into the limelight. Lotteries com-
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molly provide such situations, and nowhere more dramatically so than
in the 1970 Vietnam era draft lottery.

On November 26, 1969, President Richard Nixon signed an execu-
tive order that instructed the Selective Service to establish a random
selection sequence for induction. The executive order stipulated that the
lottery would be based on birth dates, but it provided no specific
instructions on the precise method of drawing the dates.

This was not the first time in history when a draft was supposed to be
based on some sort of lottery. The biblical story of the judge Gideon is
particularly intriguing. God first told Gideon, "The troops with you are
too many to give the Midianites into your hand. Israel would only take
the credit away from me, saying, 'My own hand has delivered me.' Now
therefore proclaim this in the hearing of the troops, 'Whoever is fearful
and trembling, let him return home.' " Thus Gideon sifted them out;
twenty-two thousand returned, and ten thousand remained.

In the second "lottery" stage, God imposed on Gideon a second
selection criterion. Gideon was asked to take his troops down to the
water to drink. He was then told to choose only those three hundred
who lapped the water, "putting their hands to their mouths," and to
release all the rest "who knelt down to drink water" directly, "as a dog
laps." Clearly, Gideon's "lottery" was far from a random selection—all
the possible permutations of the pool of candidates were not treated
equally. Many interpretations have been suggested for the peculiar
choice of the second criterion. The simplest is that the entire scheme was
used merely to select a small number of people, in order to amplify the
impression of the miraculous victory. More elaborate explanations relate
the kneeling to practices used in the worship of other gods, or the use of
the hands (rather than drinking directly from the stream) to a demon-
stration of being considerate and not greedy.

Oddly enough, even though conducted thousands of years later, the
1970 draft lottery also suffered from problems with randomization.

The procedure itself was simple enough. The officials tucked scraps
of paper with the 366 dates of the year (including February 29) into cap-
sules. One by one, these capsules were drawn from a bowl on December
1, 1969. Every man born between 1944 and 1948 was assigned a draft
number corresponding to the order in which his birth date was picked.
For instance, the first date drawn was September 14, and all men with
that birthday were assigned no. 1. Men born on June 8 (the last capsule
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drawn) were assigned no. 366. Clearly, every drawing represents a per-

mutation of the 366 dates. The smaller his draft number, the higher the

chances that a man would actually be drafted. The table below shows the

average lottery numbers by month obtained in the 1970 lottery.

One does not have to be a trained statistician to detect a clear trend in

these numbers. While the average numbers for the months January–May

stay fairly constant, there is a marked and almost steady decline in the

numbers corresponding to the months June–December. November and

December, in particular, had considerably lower average numbers than

those of January–May. The consequences were disturbing—men born

late in the year had a significantly higher likelihood of being drafted into

a difficult war.

Under true randomization, each one of the possible orderings of the

dates has an equal probability of one in 366! (the number of possible per-

mutations), and you would expect the average number for the different

months to be roughly the same, around 183 or 184. Instead, the data

show that each of the first six months had an average number above this,

while each of the last six months had an average number below it. Statis-

ticians were able to demonstrate that the probability for a pattern such as

the one exhibited in the table to occur in a truly random selection

process was less than 1 in 50,000. How did this happen?

The description of the procedure that set the lottery up provides

some important clues:

The men counted out 31 capsules and inserted in them slips of paper

with the January dates. The January capsules were then placed in a

large, square wooden box and pushed to one side with a cardboard

divider, leaving part of the box empty. The 29 February capsules
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were then poured into the empty portion of the box, counted again

and then scraped with the divider into the January capsules. Thus,

according to Captain Pascoe [chief of public information for the

Selective Service System], the January and February capsules were

thoroughly mixed. The same process was followed with each subse-

quent month, counting the capsules into the empty side of the box

and then pushing them with the divider into the capsules of the pre-

vious month. Thus, the January capsules were mixed with other

capsules 11 times, the February capsules 10 times and so on, with

the November capsules intermingled with others only twice and the

December ones only once. . . . In public view, the capsules were

poured from the black box into the two-foot-deep bowl. Once in

the bowl, the capsules were not stirred. . . . The persons who drew

the capsules . . . generally picked ones from the top, although once in

a while they would reach their hand to the middle or to the bottom

of the bowl.

This detailed account leaves little doubt that it was the insufficient

mixing, which resulted from placing the capsules month by month, that

was the culprit in the ensuing nonrandom risk. Following some public

criticism, the procedure was corrected in the 1971 draft lottery. To be

sure, perfect randomization may be more difficult to achieve in practice

than one might suspect. Take, for instance, what is considered to be the

fairest thing people have come up with for deciding randomly between

two difficult choices—tossing a coin. The probability of getting heads

or tails is equal, right? Not quite. A recent study by statisticians Persi

Diaconis and Susan Holmes of Stanford University and Richard Mont-

gomery of the University of California Santa Cruz shows that due to

imperfect tossing (which even results sometimes in the coin not flipping

at all) a coin is more likely to land on the same face it started out on. The

bias is not huge—a coin will land the same way it started about 51 per-

cent of the time—yet it shows that even such simple things cannot be

taken for granted. No one is better equipped to examine whether some-

thing is random or not than Diaconis. He is the statistician who demon-

strated that it takes the average card player no fewer than seven shuffles

to create a random order in a deck of cards. He is also known for expos-

ing and debunking various "psychic" phenomena. Diaconis's extensive

experiments with coins show that you should never make any important
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decision based on a penny spinning on the table on its edge. Because of

the extra weight on the head side, such pennies land as tails much more

frequently than as heads.

As important as they are, however, permutations by themselves are

far from being the whole story when it comes to group theory— groups

lead into much vaster expanses of abstraction. In particular, if two appar-

ently distinct problems are characterized by groups that are isomorphic

to each other (have the same structure), this is a heavy hint that the two

problems may be more closely connected than you might have sus-

pected.

THE SUPREME ART OF ABSTRACTION

In a book entitled The Natural History of Commerce which appeared in

1870, John Yeats writes, "No amount of abstract reasoning would have

led us to discover the properties and uses of iron." He was probably

right. Yet abstraction is precisely what has given mathematical structures

their portability. They can be carried over from one discipline to the next

and from one conceptual environment to another.

Cayley's theorem—that every group, irrespective of its members or

the operation between them, is essentially a carbon copy of (is isomor-

phic to) a group of permutations—set the stage for the understanding of

groups as abstract entities. Cayley's own work, and subsequent innova-

tive developments by the mathematicians Camille Jordan, Felix Klein,

Walter von Dyck, and others, showed that one could start with essen-

tially any group and then literally strip it of most of its specifics until

nothing was left but the bare essentials. That undraped skeleton is suffi-

cient for capturing the structure and all the important properties

of groups. An analogy that inevitably springs to mind is that with the

twentieth-century art school of minimalism. There too, the goal of

artists such as Carl Andre, Donald Judd, Robert Morris, and others was

to focus attention on the most fundamental and to reduce visual form to

its utmost simplicity. Essentially by design, the appreciation of minimal

art, and indeed of mathematics, has always been primarily intellectual,

and therefore learned, rather than intuitive.

Starting with groups of permutations (the only groups known at the

time), Cayley took a giant leap and formulated his first intuitions about

the abstract group concept as early as 1854. As in Galois's case, however,
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his original ideas were so far ahead of their time that they attracted no

attention. As historian and math-education critic Morris Kline once put

it, "Premature abstraction falls on deaf ears, whether they belong to

mathematicians or to students." Intellectually, therefore, Cayley (figure

78) could be regarded as one of Galois's most direct successors. Cayley's

life, on the other hand, stands out in stark contrast to that of the ill-fated

French romantic. Arthur Cayley's teachers at King's College in London

immediately recognized his unusual mathematical abilities. As he con-

tinued his education in Cambridge, the head examiner of the university

ranked Cayley as being "above the first." The young man lived up to his

teachers' expectations; even before the

age of twenty-five, Cayley already had

two dozen mathematical papers to his

name. His overall prolificacy is matched

only by Cauchy and Euler. Unlike the

violent ups and downs (mostly downs!)

in Galois's life, Cayley's life ran smoothly

and successfully. After his insightful,

if relatively unnoticed, papers of 1854,

Cayley turned his attention to other

important mathematical topics, but he

returned to groups with a bang in 1878.

In a series of four seminal papers he man-

aged to move group theory toward the

very center of mathematical investigation. Indeed, following Cayley's

work, it took only four more years for abstract, axiomatic definitions of

groups to emerge.
Mathematics scholar James R. Newman writes in his monumental

compilation The World of Mathematics that "the Theory of Groups is a

branch of mathematics in which one does something to something and

then compares the result with the result obtained from doing the same

thing to something else, or something else to the same thing." This baf-

fling statement could hardly be taken as an acceptable definition in a dic-

tionary, yet it captures the level of abstraction that has become group

theory's hallmark. Let me use a few nonmathematical examples to

explain the concept.

The same joke can be rephrased differently for distinct contexts and

circumstances. A physicist wanting to express disparaging contempt for
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someone's intellectual abilities (not that they ever do that . . . ) might say,

"He is so dense, light bends around him." One who grew up in the

Internet generation might use, for the same purpose, the image "I don't

think his URL allows outside access." A tax consultant could say, "If

brains were taxed, he'd get a refund," and a chemist might choose the

words "He's got an IQ of about room temperature." Similarly, the rid-

dle with the powers of seven that appeared, centuries apart, in the

Ahmes Papyrus, in Fibonacci's book, and in the Mother Goose nursery

rhymes (chapter 3) was essentially the same, even though the wording

was different. Finally, one could argue that many fairy tales, such as

"Snow White" and "Cinderella," are really the same story in different

packaging: an evil stepmother tortures a princess-to-be until a handsome

prince rescues the damsel in distress. Groups allow for a similar abstrac-

tion. An identical group structure can describe what appear to be rather

disparate concepts. I will demonstrate this unifying power of groups

with a few relatively simple examples.

Start with four operations that can be performed on any pair of jeans.

X will denote the operation "turn the trousers back to front" (while

you're not wearing them!). Y stands for "turn the trousers inside out." Z

represents "turn the trousers back to front and inside out," and I will

denote the identity, meaning do nothing. The composition of two oper-

ations (denoted by "°")  is simply achieved through "followed by." You

can easily check that these operations form a group. In particular, each of
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Consider next an interesting operation commonly denoted by the

symbol A that can combine (in a certain fashion) any two sets of objects.

For instance, if set A is composed of cats that have at least some black

patches in their fur and set B of cats that have at least some white fur,

then A AB yields the set of cats that have either black or white patches in

their fur, but not both. Graphically, if A and B are symbolically repre-

sented by the areas of the circles in figure 79, then A A B corresponds to

the shaded area-delta  joins the sets together excluding the overlap. Take

now the following four simple sets. Set X has only one object in it: a

chicken. Set Y also contains just

one object: a cow. Set Z is com-

posed of two objects: a cow and a

chicken. Set I is the empty set,

which has no object whatsoever

in it (this set's function is similar

to the role of zero in ordinary

addition). Now use the operation

deltato combine any two of these

sets. For instance, X delta Z = Y, because the set of objects that are in Xor

Z but not in both is the set containing a cow. Similarly, Y 0 I = Y,

because there is a cow in Y which is clearly not in the empty set I. The

set I therefore plays the role of the identity. Each of X, Y, Z is its own

inverse, because the set of objects that are not in both X and Xis clearly

empty: X deltaX = I.You can easily check that the sets X, Y, Z,Icombined

by the operation delta form a group, the table of which is:

But, this is precisely the same table as the one we have just obtained for

the trousers transformations! Even though both the group members in

the two cases and the group operation were entirely different, the two

groups have an identical structure—they are isomorphic to each other.

Could this be merely a consequence of the fact that the two groups we
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have chosen are somewhat peculiar? To convince ourselves that this is

not the case, let us consider a very ordinary group of rotations. To visu-

alize the transformations we are about to perform more easily, you may

want to use some rectangular box with different patterns on its faces,

such as a matchbox or a thick book. Examine the following four opera-

tions (figure 80):

X— a half turn about the axis labeled x.

Y—a half turn about the axis labeled y.

Z—a half turn about the axis labeled z.

/— the identity, that leaves the box "as is."

Some experimentation will show that if you perform, for instance, X fol-

lowed by Y, you obtain the same result as if you have performed opera-

tion Z. At the same time,

if any of X, Y, Z is per-

formed twice, the initial

configuration (the iden-

tity) is restored. The table

of this group is again iden-

tical to the previous two

tables—this geometrical

group is also isomorphic

to the jeans group and the

chicken-cow group.

Perhaps nowhere was

the application of group

theory more surprising

than in the field of an-

thropology. An extremely

complex kinship-marriage system that was discovered among the Kari-

era, a tribe of Australian Aboriginals, left anthropologists baffled. Each

Kariera belongs to one of four classes or clans: Banaka, Karimera, Bu-

rung, and Palyeri. Marriage and the association of descendants to classes

were found to obey the following strict rules:

I. A Banaka can only marry a Burung.

2. A Karimera can only marry a Palyeri.

3. The children of a male Banaka and a female Burung are Palyeri.
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4. The children of a male Burung and a female Banaka are Karimera.

5. The children of a male Karimera and a female Palyeri are Burung.

6. The children of a male Palyeri and a female Karimera are Banaka.

Perplexed by this unusual system, the famous French anthropologist

Claude Levi-Strauss (born 1908) described the rules to compatriot

mathematician Andre Weil (1906-98) in the 1940s, hoping that the latter

would identify some guiding pattern. Weil was the perfect person to turn

to. In addition to his outstanding mathematical skills, he was obsessed

with languages and linguistics. His passion for Sanskrit and knowledge

of ancient texts, such as the religious epic Mahabharata, even gained him

his first appointment at the Aligarh Muslim University in India. After

some contemplation, Weil was indeed able to translate the entire Kariera

scheme into the language of group theory. In order to reproduce Weil's

explanation, I shall denote the four classes as follows:

Banaka —A
Karimera—B

Burung— C

Palyeri—D

The conjugal rules (1) and (2) above—that is, that an A can only

marry a C (and vice versa), and a B can only marry a D —may be repre-

sented by the following "family" correspondence, denoted by "f":

Notice that if this permutation is performed twice, it restores the origi-

nal order —f o f = I (where I is the identity; f takes A into C and C into

A, so applying f twice takes A into itself and the same for all the other

letters). According to the rules of descendants 3-6, the class of

the children can be determined either by their paternal ancestors (e.g.,

the child of a male Banaka is always a Palyeri) or by their maternal ones

(e.g., the child of a female Banaka is always a Karimera). Using the sym-

bols for the classes and p and m for the paternal and maternal rules

respectively, this can be expressed by the two permutations:
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Note again that pop = I and m m = I. Also, each two of the permuta-

tions f, p, m operating in succession produce the third (e.g., f op = m). We

are now in the position to construct the complete "multiplication table"

for the four permutations I, f p, and m:

We discover that not only do the Kariera marriage-kinship rules form a

group, but closer inspection of the multiplication table will convince

you that this group is also isomorphic to the jeans/chicken-cow/

rotations group! In fact, we could think of this table as describing any

abstract group in which each of three members X, Y, Z is its own inverse,

and the combination of any two gives the third.

Incidentally, you may wonder whether the complex Kariera kinship

rules could somehow be translated into a western-civilization equiva-

lent. They can. Imagine two families, Smith and Jones. Members of both

families live in New York and in Los Angeles. Four classes could then

be defined: Smith family members living in New York; Smith family

members living in Los Angeles; Jones family members in New York;

Jones family members in Los Angeles. The rules could be formulated

as follows: A Smith can only marry a Jones (and vice versa), and a New

Yorker can only marry a Los Angeleno (and vice versa). The children

live at the mother's residence but adopt the father's family name. These

(obviously contrived) kinship rules produce precisely the same structure

as that of the Karicra.

Clearly, no one suspects that the Kariera knew group theory. The

group-theoretical description of their marriage rules may not even have

been entirely necessary for anthropological research. Nevertheless, ana-

lyzing the rules in this fashion can reveal underlying structures that are

otherwise difficult to recognize or may be missed altogether. Stripping

groups from different disciplines to their bones is analogous in many

ways to the analysis of structures of different languages. The recognition

of the interconnections among, say, all Indo-European languages has
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been achieved through a similar process. Claude Levi-Strauss's extensive

analyses in the area of social anthropology, as expressed in his Elemen-

tary Structures of Kinship, are therefore generally acknowledged as the

driving force behind modern structuralism—the search for underlying

units and the rules that govern how they are put together.

Structuralism derived its organizing principles from, and was inspired

by, the linguistic work of the Swiss linguist Ferdinand de Saussure

(1857-1913). Saussurc abandoned the traditional approach to languages,

which was based primarily on historical and philological studies, in favor

of a structural analysis. A structuralist examining an airplane built out of

Legos would not care much if the model can actually fly. Instead, much

like a group theorist, the structuralist would recognize that there are dif-

ferent kinds of building blocks, and that these basic units are connected

together according to very specific rules. In language, the elements could

be the phonemes that make all the speech sounds (of which there are

thirty-one in English), and the rules would be the grammar according to

which words can be ordered. The fact is that with a rather limited set of

grammar rules and a finite set of phonemes or terms, humans have been

able to produce impressive works such as Shakespeare's plays, Dante's

Divine Comedy, and the Encyclopaedia Britannica. Even toddlers are

able to utter entire phrases nobody has ever expressed before. The aston-

ishing pace at which children are capable of learning languages, and the

similarities in both the learning process itself and the characteristic errors

made by children all across the globe, have motivated the idea of a univer-

sal grammar. Just as group-theoretical principles underlie all symmetries,

the theory of universal grammar postulates that all the languages have un-

derlying principles of grammar that are innate to all humans. In some

sense, universal grammar is not really a grammar, but an initial state of the

language faculty that all humans possess. Note that this does not mean

that all languages have the same grammar, only that there are common

and invariant basic rules. Insights of this type, partly derived from struc-

turalism, have been applied both to linguistic theory and to cognitive

psychology by the influential MIT researcher Noam Chomsky. In Italy,

novelist and philosopher Umberto Eco is also known for his detailed

structuralist analyses in the area of the meaning of signs (semiotics) in so-

cial and literary contexts.

Given the philosophical parallels between group theory and linguis-

tics, it should come as no surprise that just around the same time that
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Saussure was revolutionizing linguistics, the Norwegian mathematician
Axel Thue (1863-1922) was introducing the concept of a formal lan-
guage — a set of words (or strings of characters composed of some alpha-
bet) that can be described by some formal grammar (a set of precisely
defined rules). A very simple example of a formal language could be a set
of strings composed of the letters g and 1. The "grammar" could be
defined, for instance, by the rules:

1. Start with g.
2. Every time you encounter the letter g in a word, replace it with gl.
3. Every time you encounter the letter 1, replace it with lg.

You can verify that this language would include words such as g, gl, gllg,
gllglggl, and so on. Formal languages play an important role in computer
science and in complexity theory (concerned with the intrinsic complex-
ity of computational tasks). If Thue's definitions of formal linguistics
look reminiscent of the elements and definitions of group theory, this is
not an accident. The two topics are intimately related, especially through
an important problem known as the word problem: Decide whether, by
using replacements allowed by the grammar, any two given words may
be transformed into one another.

To what conclusion do all of these examples lead us? Groups can
reach the same level of abstraction one normally associates only with
ordinary numbers. Whether we speak of seven samurai, seven good
years, seven days of the week, seven brides for seven brothers, or seven
politicians (actually, I am not sure who wants to speak about them),
these are all manifestations of the same abstract entity—the number
seven. Similarly, the four groups we have just encountered (the trouser
transformations, the Kariera, and so on) are all specific realizations of
one and the same abstract group. Serendipitously, by constituting a
group of permutations, the Kariera rules offer yet another manifestation
of Cayley's theorem—there indeed exists a group of permutations that is
identical in structure to the other three groups.

Mathematicians usually refer to groups that are isomorphic to
each other as if they are only one group. The particular group realized
by the jeans and the Kariera rules is known as the Klein four-group, after
the German mathematician Felix Christian Klein (1849-1925). Klein
was responsible for a major breakthrough in the application of group
theory—the recognition that geometry, symmetry, and group theory are
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unavoidably linked. In fact, not merely linked. Klein showed that in

many respects, geometry is group theory. This surprising statement rep-

resented such a dramatic break with the traditional view of geometry

that it deserves a more detailed exposition.

WHAT IS GEOMETRY?

Around 300 BC the Greek mathematician Euclid of Alexandria pub-

lished what was to become the best-selling mathematical textbook of all

time— The Elements. In this thirteen-volume opus, Euclid laid the foun-

dations of the Euclidean geometry we learn in school, and until the nine-

teenth century this was the only geometry known. Euclid attempted

to build an entire theory of geometry on a well-defined logical base.

Accordingly, he started with only five postulates or axioms, assumed to

hold true, and sought to prove all the other propositions on the basis of

those postulates by logical deductions. Axioms are like the rules of the

game, the "truth" of which is not to be disputed. If you want to change

the axioms you would be playing a different game. For instance, the first

axiom states, "Between any two points a straight line may be drawn."

Euclidean geometry describes propositions that are deduced to be true if

this and the other axioms hold. The second, third, and fourth axioms

were equally concise, but the fifth one was different, more complicated

in its formulation, and consequently it had a more convoluted history.

Even Euclid himself was probably not entirely happy with his fifth

axiom, since he tried to avoid it for as long as he could—the proofs for

the first twenty-eight propositions in The Elements do not make use of

the fifth axiom. The version of the fifth axiom, known as the parallel
axiom, most often cited today is named after the Scottish mathematician

John Playfair (1748-1819), even though it appeared first in the commen-

taries of the Greek mathematician Proclus in the fifth century. It states:

"Given a line and a point not on the line, it is possible to draw exactly

one line parallel to the line through that point." Over the centuries, a

number of discontented geometers attempted unsuccessfully to prove

the fifth axiom from the first four, in an effort to formulate a more eco-

nomical geometry. These were not complete failures, however, since

they did provide new insights. In particular, these attempts led to an

understanding that many other alternative formulations of the fifth

axiom are possible, all equivalent to one another. Eventually, this wind-
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ing path opened the way for the development of new, non-Euclidean

geometries.

The first to have made significant progress in the direction of non-

Euclidean geometries, albeit without realizing it himself, was the Jesuit

Giovanni Girolamo Saccheri (1667-1733). In a work that was quite

remarkable for its time, Euclides ab omni naevo vindicatus (Euclid Freed
from All Flaws), Saccheri examined an intriguing "what if?" question—

what if the sum of the angles of a triangle is not equal to 180 degrees (as

we learn in Euclidean geometry), but is greater or smaller? Could one

still construct a logical geometry that is self-consistent? About a century

later, Legendre picked up where Saccheri had left off and showed in his

famous geometry book (the one studied by Galois) that the statement

that the sum of the angles is equal to 180 degrees is completely equiva-

lent to Euclid's fifth postulate (that is, one can assume either of the two

to hold true and prove the other). Both Saccheri and Legendre, however,

failed to grasp the full implications of these alternative possibilities, and

they ended up getting bogged down by incorrect contradictions.

Nonetheless, these works and complementary research by the Alsatian

mathematician Johann Heinrich Lambert (1728-77) helped to focus

attention on the "parallel postulate," which by 1767 was dubbed "the

scandal of elementary geometry" by the French mathematician Jean

d'Alembert. Four mathematicians from three countries—Gauss, Bolyai,

Lobachevsky, and Riemann—were eventually responsible for formulat-

ing correctly the first non-Euclidean geometries. In these new geome-

tries the fifth postulate is in fact replaced with one of its negations:

"Through a point not on a line, there is either more than one line paral-

lel to the given line or none." Or equivalently, the sum of the angles in a

triangle is either less than 180 degrees or greater than 180 degrees.

Visualizing how such geometries may be realized is not difficult.

Examine the three surfaces in figure 81. Euclidean geometry is the geom-

etry of flat space, of the type that is encountered on a desktop. In this

geometry, parallels (assumed to be infinite) never meet, and the angles of

any triangle always sum up to 180 degrees. On a surface shaped like a

curved saddle, on the other hand, the sum of a triangle's angles is always

less than 180 degrees. On the surface of a sphere, such as the surface of

the Earth, the sum of a triangle's angles exceeds 180 degrees (in the par-

ticular case shown in the figure the sum is actually 270 degrees). The

saddle-shaped geometry is known today as hyperbolic geometry. Janos
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Bolyai (1802-60), a young Hungarian mathematician, worked out many

of the features of this geometry by 1824. In a letter to his father, the

mathematician Farkas Bolyai, Janos could not restrain his exhilaration

with the discovery: "I have created a strange new world, out of nothing."

By 1831 the exuberant Janos completed a detailed description of his new

geometry. Since the father was about to publish a massive treatise (the

Tentamen) on the foundations of geometry, algebra, and analysis, Janos

prepared his manuscript in the format of an appendix to his father's

book. A letter from Gauss, to whom the work had been sent for review,

quickly dampened Bolyai's enthusiasm. Gauss first expressed his admi-

ration for the ideas in the paper, but he was also quick to point out that

"the entire content of the work . . . coincides almost exactly with my

own meditations which have occupied my thoughts for the past thirty or

thirty-five years." While there is no doubt that Gauss had indeed antici-

pated on his own most if not all of Bolyai's results, he had never pub-

lished them (apparently for fear that the radically new geometry would

be regarded as philosophical heresy). Bolyai's realization that he was not

the originator of the idea was devastating to him. He became deeply

embittered, and his subsequent mathematical work lacks the imaginative

quality of hyperbolic geometry.

Unbeknownst to either Bolyai or Gauss, the Russian mathematician

Nikolai Ivanovich Lobachevsky (1792-1856) published in 1829 an entire

treatise heralding hyperbolic geometry as an alternative to Euclidean

geometry. Since the work appeared in the obscure Kazan Messenger,

however, it went almost entirely unnoticed until a French version was

published in Crelle's Journal in 1837. In 1868, the Italian Eugenio Bel-

trami: (1835-1900) finally put the Bolyai-Lobachevsky geometry on the

same footing as that of the Euclidean geometry.

Gauss's brilliant student Georg Friedrich Bernhard Riemann

(1826-66) first discussed elliptic geometry, such as one encounters in its

simplest form on the surface of a sphere, in a classic lecture delivered on
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June 10, 1854. Riemann's paper makes the top ten list of many mathe-

maticians. One of the key differences between elliptic geometry and

Euclidean geometry is that on the surface of a sphere the shortest dis-

tance between two points is not a straight line. Rather, it is a segment of

a great circle, whose center coincides with the center of the sphere (as

is the case for the equator or meridians on a globe). Flights from Los

Angeles to London take advantage of this fact and do not follow what

would appear to be a straight line on the map, but rather a great circle

that bears northward from Los Angeles (figure 82). You can easily check

that any two great circles meet in two diametrically opposite points (e.g.,

two meridians, which are parallel at the equator, meet at the two poles).

Consequently, there are no

parallel lines at all in this

geometry. Riemann took the

abstract non-Euclidean con-

cepts much further and intro-

duced curved spaces in three

and even higher dimensions.

In some of these, the nature of

the geometry could change

from place to place, being

elliptic in some regions and

hyperbolic in others. A crucial

difference between Riemann's

work and the research of all of

his predecessors (including the great Gauss) was a change in perspective.

When Gauss analyzed a curved two-dimensional surface, he looked at it

as someone would study the surface of a globe—from an external, three-

dimensional point of view. Riemann, on the other hand, examined the

surface of the same globe from the perspective of a painted dot on that

surface.

The non-Euclidean geometries may appear at first blush as nothing

but the futile if ingenious inventions of too-imaginative mathematical

minds. As we shall see in the next chapter, however, the solutions to Ein-

stein's equations describing the structure of space and time turned out

unexpectedly to require precisely the classes of geometries described

above. Riemann's perspective, that which stems from being a part of

the curved space under consideration, is at the foundation of modern
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cosmology—the study of the universe as a whole. If you think about it

for a moment, this is an absolutely astounding fact. Saccheri's seemingly

innocent "what if?" question about Euclid's fifth postulate has led to no

less than the consideration of geometries that provided the tools Einstein

needed to explain the cosmic fabric. Just as Galois's theory of groups has

become the language of symmetries and non-Euclidean geometry the

language of cosmologists, this type of "anticipation" by mathematicians

of the needs of physicists of later generations has repeated itself many

times throughout the history of science.

The generalization and abstraction of geometry was a welcome

development, but by the 1870s the proliferation of geometries appeared

to be getting totally out of hand. In addition to all the non-Euclidean

geometries above, there was a motley collection of projective geometry
(dealing with properties of geometric figures under projection, as when

an image on celluloid film is projected onto a movie-theater screen); con-
formal geometry (which deals with angle-preserving compactifications

of spaces); differential geometry (the study of geometry using calculus);

and many others. If, as Plato believed, "God is a geometer," which of

all these geometries gets the divine

approval? This was the point at

which the twenty-three-year-old

Felix Klein (figure 83 shows him at a

later age) came to the rescue with his

group-theoretical approach and

order started to crystallize out of

chaos.

In a seminal lecture entitled

"Comparative Review of Recent

Researches in Geometry" delivered

in 1872 at the University of Er-

langen, Klein boldly reversed the

roles of symmetry and geometries.

In his words, "There are transformations of space that do not alter at all

the geometrical properties of figures. By their nature, these properties

are, in effect, independent of the position occupied in space by the figure

being considered, of its absolute size, and of its orientation." Before

Klein, mathematicians had thought primarily in terms of geometrical

objects, such as circles, triangles, or solids. Instead, Klein suggested in
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his so-called Erlangen program that the geometry itself is characterized

and defined not by the objects, but rather by the group of transforma-

tions that leaves it invariant. Take for instance the group of rigid

motions—the motions that preserve distances and angles, and conse-

quently shapes. Since such motions are the bread and butter of Euclid-

ean geometry, the latter can be defined as the geometry that remains

invariant under all the transformations that are in the group of rigid

motions. A circle of a given radius remains the same circle no matter

how you turn it. Two triangles that overlap precisely (and are the subject

of so many theorems in Euclidean geometry and a constant source of

headache to high school students) stay congruent even if you translate,

rotate, or reflect them. Klein's radical idea, however, allowed for a much

wider variety of geometries to exist. Other transformations, which

might twist or stretch the objects, could define new geometries. In other

words, the unifying basic concept that is the backbone of every geome-

try is the symmetry group. Even though each one of the many geometries

may be based on a different group of transformations, the fundamental

blueprint for all geometries is the same. In projective geometry, for

instance, distances are clearly not invariant. The model captured on film

for the original King Kong movie was only eighteen inches tall, very dif-

ferent from its fifty-foot screen image. Projective geometry is therefore

characterized by a different group of symmetry transformations from

that of Euclidean geometry (concepts such as "hexagonal" or "elliptical"

are preserved in projection). According to Klein, what mathematicians

have to do to define a geometry is to provide a group of transformations

and to identify the ensemble of entities that remain unchanged under

those transformations. These ideas have been later expanded upon and

endowed with much greater depth by two mathematical giants: the Nor-

wegian group theorist Sophus Lie (1842-99) and the towering figure of

late-nineteenth-century mathematics—the Frenchman Henri Poincare

(1854-1912).

With Klein's innovative Erlangen program, Cayley's abstraction of

groups, Lie's tendency toward structural thinking, and Poincare's all-

embracing mathematics, it was starting to become clear that symmetry

and group theory provide the underpinning for much of mathematics. In

fact, to Poincare, "all mathematics was a matter of groups." Areas that

previously appeared to be totally unrelated, such as the theory of alge-

braic equations, a multitude of geometries, and even number theory
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(through seminal works by Euler and Gauss), became suddenly unified

by one basic structure. Even though Klein was regarded by some of the

(rather arrogant) Berlin mathematicians of his time as "a charlatan with-

out real merit," he still had another elegant result in his repertoire. With

one group-theoretical masterstroke he combined algebra with geometry

and connected it all back to— believe it or not—Galois's work on the

quintic. This was not a one-man show, however. The Prussian Leopold

Kronecker and the Frenchman Charles Hermite paved the road to these

deep interconnections.

THE RETURN OF THE QUINTIC

Leopold Kronecker (1823-91) represented one of those truly rare com-

binations of gifted mathematician and successful businessman. His

unusual ability to recognize and immediately befriend people who were

on the rise in either the financial or mathematical world also proved very

useful for the promotion of his own career. Some of Kronecker's main

mathematical contributions came in the theory of elliptic functions (the

topic on which Abel wrote his famous 125-page paper) and the theory of

algebraic numbers (numbers that are the solutions of certain algebraic

equations).

In 1845, Kronecker's uncle on his mother's side passed away. The

uncle had been a prosperous banker and a farming-enterprise executive.

The management of his affairs was thrust upon the shoulders of the

young mathematician, who had just passed the oral examination for his

doctoral thesis on August 14 of that year. Kronecker took the responsi-

bility with great energy and uncompromising thoroughness. While the

demanding job forced him to spend the following eight years as a busi-

nessman, he did not neglect his mathematics. Where others in his posi-

tion might have taken up an easier subject to occupy their leisure time,

Kronecker devoted his efforts to gaining what was probably the deepest

understanding of Galois's theory among all of the late-1840s mathemati-

cians (recall that Galois's memoirs were published by Liouville in 1846).

The result was a crystal-clear memoir on the solvability of equations that

was published in 1853. In his description of the work, historian of math-

ematics E. T. Bell is lavish with praise: "Kronecker took the refined gold

of his predecessors, toiled over it like an inspired jeweler, added gems of

his own, and made from the previous raw material a flawless work of art
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with the unmistakable impress of his artistic individuality upon it."

Having returned fully to mathematics, Kronecker spent the next five

years mounting a direct attack on the quintic equation. As you recall,

both Abel and Galois proved that the general quintic couldn't be solved

by a formula that involves simple operations on the coefficients, not that

it could not be solved at all. Yet the actual method of solution remained

elusive. As is often the case with scientific discoveries whose time has

come, just as Kronecker was attempting to finally crack the quintic, a

French mathematician was also busy doing precisely the same thing.

Charles Hermite (1822-1901) was the sixth child of Ferdinand Her-

mite and Madeleine Lallemand, who had five boys and two girls. During

Charles's childhood, as the family's drapery business prospered, the

family moved from Dieuze to the larger city of Nancy. After attending a

school in Nancy, followed by the Lycee Henri VI in Paris, Hermite

entered the Louis-le-Grand, some eleven years after Galois had left that

institution. His mathematics teacher there was—you guessed it—the

same Louis Richard who had been Galois's mentor. The gifted teacher

was again quick to recognize in Hermite "a young Lagrange." If you

have ever doubted that history has a habit of repeating itself, consider

this. While at Louis-le-Grand, Hermite published two mathematical

papers. One of them was entitled "Considerations on the Algebraic

Solution of the Equation of the Fifth Degree." This was an interesting

paper that demonstrated that Lagrange's method of solution (chapter 3)

could not work. The title and contents of the paper also showed, how-

ever, that at least at age twenty, Hermite was still totally unaware of

either the works of Abel or of Galois (not that anyone else in the math-

ematical world was aware of Galois's work at the time). To continue the

parallelism between Hermite's school experiences and those of Galois

one step further, Hermite also tried for the Lole polytechnique. Unlike

the wretched Evariste, he passed the entrance examination, but was

ranked only sixty-eighth. Then, to add insult to injury, after only one

year at the Polytechnique, Hermite was forced out because of a physical

handicap, a disabling deformity in his right foot.

Hermite returned to the quintic equation in the late 1850s, and his

paper on the subject appeared in 1858 —the same year that Kronecker

also published a paper with an identical title: "On the Solution of the

General Equation of the Fifth Degree." Hermite's result was spectacular.

Using a special kind of elliptic function, he was able, for the first time, to
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solve the general quintic. The centuries of repeated attacks had finally

paid off.

Kronecker even went one step beyond. First, he obtained practically

the same solution as Hermite, but using a different approach, closer in

spirit to Galois's ideas. Second, in a subsequent paper published in 1861,

he dug into the underlying reasons for the success of the method he had

employed. In other words, Abel and Galois proved that the general

quintic couldn't be solved by a formula; Kronecker tried to understand

why it could be solved by elliptic functions. Another achievement of

Kronecker was the publication (in 1879) of a simpler, shorter, and

better-organized version of Abel's proof. He also corrected a minor error

in the original rather lengthy proof (which fortunately had no effect on

the outcome). This set the stage for Felix Klein's decisive assault.

The philosophy behind Klein's investigation was really quite simple.

Earlier in this chapter we used the familiar properties of the group of

symmetries of the equilateral triangle and those of the group of permu-

tations of three elements to show that the two groups are really one and

the same (isomorphic). Klein turned this logic on its head. He first

showed that two seemingly disparate groups are isomorphic and then

exploited this fact to unveil the reasons for this unexpected connection.

Klein's findings were published in 1884 in a massive tract with the out-

landish title Lectures on the Icosahedron and the Solution of Equations of
the Fifth Degree. How are the two topics in the title related? Klein

started with a simple examination of the solid known as the icosahedron

(figure 84). Plato regarded this beautiful solid as one of the basic con-

stituents of the cosmos (the others being the tetrahedron, the cube, the

octahedron, and the dodecahedron, all collectively known as the Pla-
tonic solids). The icosahedron has twelve vertices, twenty faces (each an
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equilateral triangle), and thirty edges (the lines where two faces meet).

Klein first showed that there are precisely sixty rotations that leave the

icosahedron unchanged. These are (figure 84): four rotations through

multiples of 72 degrees about lines joining opposite vertices (for a total

of twenty-four); two rotations through 120 degrees about lines joining

the centers of opposite faces (for a total of twenty); half turns about lines

joining the midpoints of opposite edges (for a total of fifteen); the iden-

tity, which leaves it "as is." Klein then showed that these rotations form

a group. Next, he examined a particular group of permutations of the

five putative solutions to the quintic equation. More specifically, he

examined only the even permutations (which contain an even number of

transpositions). Since there is a total of 5! = 120 permutations of five ele-

ments, there are precisely 60 even permutations (and 60 odd ones). Then

came the checkmate. Klein proved that the icosahedral group and the
permutations group are isomorphic. But, recall that Galois's proof on the

solvability of equations relied entirely on the classification of equations

according to their symmetry properties under permutations of the solu-

tions. The unexpected link between permutations and icosahedral rota-

tions allowed Klein to weave a magnificent tapestry in which the quintic

equation, rotation groups, and elliptic functions were all interwoven.

Just as the completion of a jigsaw puzzle reveals the full picture, the fun-

damental interconnections discovered by Klein provided the definitive

answer as to why the quintic could be solved by elliptic functions.

The unifying power of group theory was so overwhelming that by

the end of the nineteenth century it was becoming clear that its reach

would overflow the boundaries of pure mathematics. Physicists, in par-

ticular, were starting to take notice. First, through Einstein's theory of

general relativity, geometry was recognized as a key property of the uni-

verse at large. Then symmetry was identified as the foundation from

which all the laws of nature ultimately spring. These two simple truths

virtually guaranteed that the search for an all-encompassing theory of

the cosmos would turn largely into a search for underlying groups.



— SEVEN —

Symmetry Rules

N
 ature has been kind to us. Being governed by universal laws,

rather than by mere parochial bylaws, she has given us an

opportunity to decipher her grand design. Unlike in the

real estate business—where everything is location, location, location—

neither our location in space nor our orientation with respect to the

Earth, Sun, or the fixed stars makes any difference for the laws of nature

we deduce. If not for this symmetry of the laws of nature under transla-

tions and rotations, scientific experiments would have to be repeated in

every new laboratory across the globe, and any hope of ever under-

standing the remote parts of the universe would be forever lost. This is a

powerful concept. When Newton first proposed that the dynamics of

celestial bodies could be described by mathematical formulae, and that

on top of that, these formulae expressed universal laws, this provoked

understandable reactions throughout Europe. The explanation of falling

apples would hardly have been sufficient to cause much of a sensation.

The motions of the planets, on the other hand, had always been regarded

as the unmistakable work of God's guiding hand. The eighteenth-

century poet Alexander Pope probably expressed the feelings of many

when he wrote:

Nature and Nature's laws lay hid in night:

God said, Let Newton be! and all was light.

Newton, himself a piously devout man, had no intention of bringing the

omnipresence of God into question. In his scientific masterpiece Prin-

cipi a (figure 85 shows the front page) he wrote, "This most beautiful sys-

tem of the sun, planets, and comets, could only proceed from the counsel

and dominion of an intelligent and powerful Being. And if the fixed stars
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are the centres of their like sys-

tems, these, being formed by the

like wise counsel, must be all sub-

ject to the dominion of One."

Nevertheless, the notion of the

universe as some sort of machine

did make it even into some con-

temporary artworks, such as the

impressive painting A Philosopher

Lecturing on the Orrery, by

Joseph Wright of Derby (figure

86). This was part of the transfor-

mation from the Greek organismic

universe that treated the cosmos as

a biological organism to the mech-

anistic universe.

The world around us appears

as transient as the clouds. The histories of humankind, of the Earth, of

the solar system, of the entire Milky Way galaxy, and even of the uni-

verse as a whole are marked by relentless, sometimes violent changes,

albeit on different time scales. Fortunately, the laws of nature are less

ephemeral. When astronomers observe a galaxy that is a billion light-

years away, the light entering the aperture of their telescope at that

Figure 86
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moment has been on its way for a billion years. In other words, tele-

scopes are true time machines—they give glimpses of the universe's dis-

tant past. As far as we can tell, Mother Nature does not allow any

amendments to her constitution—the laws of nature have not changed in

any noticeable way, at least since the time the universe was no more than

a second old. Laws with a more fleeting existence would have made it

very difficult for physicists (if those existed at all) to unravel the cosmic

history.

SPACETIME

The symmetry of the laws of nature extends well beyond mere transla-

tions and rotations. The laws don't care, for instance, how fast or in

which direction we move. You must have encountered the simplest man-

ifestation of this fact in a train station. You sometimes can hardly tell

whether it is your train or the one on the adjacent track that is moving.

Two observers moving at constant velocities (i.e., with neither the speed

nor the direction of motion changing) will find nature to obey precisely

the same laws, irrespective of whether one is shooting for the sky in a

futuristic rocket at 99 percent of the speed of light while the other is sit-

ting lazily on the back of a giant turtle. Galileo and Newton had already

recognized this important symmetry between observers moving at con-

stant velocities, but Einstein gave it an enormous emphasis and a totally

unanticipated twist in his theory of special relativity. One part of this

symmetry is relatively straightforward. The question, "When does New

York stop at this train?" may be phrased surrealistically but is in fact

perfectly legitimate even in Newtonian physics. A person on a train

could definitely regard that train as standing still while everything else is

moving. Einstein, however, formulated this symmetry so as to agree

with the unexpected experimental result that the speed of light always

comes out to be the same, irrespective of how the source of light or the

observer is moving. In other words, to the symmetry dictating that the

laws of physics (including the laws of electromagnetism and light)

should appear the same to all uniformly moving observers, he added

another one: The speed of light is precisely the same for all observers.
The constancy of an absolute speed of light was an implicit feature of

Maxwell's equations (the theory of electromagnetism), but at first blush

it appears extremely counterintuitive. In fact, it seriously strains our
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common sense of how things behave. When someone flings an apple

forward while driving a convertible car (luckily not many drivers do

that), the apple's speed with respect to the ground is the sum of the speed

of the car and the speed at which the apple is being thrown. In the same

way, we might expect that if that convertible were coming directly

toward us, the speed that we would measure for the light emitted by its

headlights would be the sum of the speed of light (about 670 million

miles per hour or 300 million meters per second) and the speed of the car.

Einstein tells us, however, and numerous experiments confirm, that this

is not the case. Rather, even if the car were moving at the incredible speed

of 99.99 percent of the speed of light, the speed that we would record for

the light from its headlights would remain unchanged, at 670 million

miles per hour. Furthermore, the same would be true if we were to mea-

sure the speed of the light emitted by the car's taillights as the car is

receding away at speeds close to the speed of light. Before we delve into

the implications of this crucial finding, let us examine for a moment what

might have happened had the speeds of sources been added to (or sub-

tracted from) the speed of light. Figure 87 shows crossing runways in an

airport. The airplane traveling south has just landed at high speed. As it

is about to enter the intersection, the pilot notices a baggage cart coming

into the intersection from the

west. The pilot swerves rap-

idly to avoid a collision. Sup-

pose now that an observer is

watching the entire incident

from the south leg of the

crossroads. To make the point

clearer, assume that the land-

ing airplane is moving very

close to the speed of light. If

the speed of light were not

constant, the observer would

see the light reflected from the

airplane moving toward him

at nearly twice the speed of light (the sum of the speeds of the airplane

and of light). The light reflected from the slow cart, on the other hand,

would approach the observer at the speed of light (since it is reflected

perpendicularly to the direction of motion). Consequently, light from
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the plane would reach the observer significantly earlier than the light

from the cart. The observer would see the plane swerve violently with

no apparent reason whatsoever. The constancy of the speed of light to

all observers eliminates such paradoxes in which effects precede their

causes.

To ensure the symmetry of the laws of physics for uniformly moving

observers, as well as the invariance of the speed of light, the theory of

special relativity had to pay a price. Einstein discovered that space and

time cannot be treated as separate entities. Rather, they are inseparably

tethered together by symmetry. Einstein's original paper on special rela-

tivity had the unassuming title "On the Electrodynamics of Moving

Bodies" (figure 88 shows the front page), yet, as the following example

will show, it literally changed our perception of reality.

Imagine that over a period of a few years you are videotaping an

apple resting on a table as it ages and disintegrates. What this (none too

exciting) film is really capturing is the "motion" of the apple through

time, as opposed to its motion through space. Time, according to special

relativity, is a fourth dimension that has to be added to the familiar three

dimensions of space. When the apple is propelled at some speed, it nec-

essarily travels through all four dimensions, since as the apple cruises

through space, time is progressing too. Will the moving apple age at the

same rate as the stationary apple? The surprising answer of special rela-

tivity is that it will not. The faster the apple journeys through space, the

slower its "clock" will tick, as seen by an observer at rest. As the apple's

speed approaches the speed of light, its time (for an observer at rest) will

slow down to a crawl. This might sound utterly unbelievable had it not

been unambiguously confirmed by a multitude of experiments. For

instance, an elementary particle called a muon is constantly being pro-

duced in the Earth's upper atmosphere by the bombardment of high-

energy particles known as cosmic rays. The fact that these muons can

travel through tens of miles of the atmosphere is due entirely to the rel-

ativistic slowing down of the muons' internal "clocks." At rest, muons

live only about two-millionths of a second before decaying into lighter

particles. For such short lives, even had they whizzed through space at

the speed of light, the travel time through the atmosphere would be

more than ten times longer than the muon lifetime (in the absence of rel-

ativistic effects). Researchers who timed and counted such muons

between the summit and foot of Mount Washington in New Hampshire
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Figure 88

in 1941 confirmed that the traveling muons lived longer, just as predicted

by special relativity. Experiments in 1975, in which muons were acceler-

ated to 99.94 percent of the speed of light, showed that such fast-lane

muons lived twenty-nine times longer than their counterparts at rest,

again in full agreement with the expectations from special relativity.

OK, you may think, but muons are bizarre elementary particles and

not normal clocks. Would the watches on our wrists or our heartbeats

also slow down if we were to move at speeds approaching the speed of

light? Well, an experiment in 1971 used actual clocks. Physicists Joseph

Carl Hafele and Richard Keating flew around the globe in opposite

directions on commercial Pan Am flights. They carried with them four

atomic clocks that were synchronized at the beginning of the trip with a

stationary clock in Washington, D.C. At the end of the trip, the clocks

that traveled eastward (and therefore faster than the Earth's spin)

showed, as expected, an elapsed time shorter by 59 billionths of a sec-

ond, while those that traveled west (effectively moving slower than the

clock in D.C.) recorded times that were longer by 273 billionths of a

second.

One of the key predictions of special relativity is that the velocities of

a body through the space and time dimensions always combine to give

precisely the speed of light. A muon at rest, for instance, has its entire

"velocity" pointing in the time direction, as it "travels" only through

the time dimension. For muons in motion, the larger the component of

their velocity through space, the slower they "age," with their time com-
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ing effectively to a halt (for observers at rest) as the muons' speed

approaches the speed of light. Light itself always travels through three-

dimensional space at precisely the speed of light. Special relativity tells

us that nowhere can light travel at any other speed, nor is it ever possible

to catch up with light—light can never be at rest. In this sense, perceiv-

ing light is a bit like the perception of motion in a movie. Each frame in

the film captures a slightly different scene, and when these frames are

flashed rapidly and successively before our eyes we can see the motion.

When the film is stopped, the motion disappears. We can see light only

when it is moving at the speed of light.

Oddly enough, in spite of his incredible intuition and deep insights

in physics, Einstein's attitude toward pure mathematics was at first

rather lukewarm. As a student in Zurich, his less-than-perfect atten-

dance in the math classes of mathematician Hermann Minkowski

(1864-1909) gained him the title "lazy dog." Through an ironic twist of

history, once Einstein published his theory of special relativity, it was

none other than Minkowski himself who used symmetry to put the the-

ory on a firm mathematical basis. Minkowski showed that space and

time may be "rotated" as a four-dimensional entity, just as a sphere can

be rotated in three-dimensional space. More important, in the same way

that a sphere is symmetric (i.e., it does not change) under rotation

through any angle about any axis, Einstein's special relativity equations

are symmetric ("covariant" in the physics lingo) under these spacetime

rotations. This remarkable symmetry of the equations has become

known as Lorentz covariance, after the Dutch physicist Hendrik

Antoon Lorentz (1853-1928), who first described these transformations

in 1904. You will probably not be too surprised to hear that the collec-

tion of all the symmetry transformations of the Minkowski spacetime

forms a group, similar to the group of ordinary rotations and transla-

tions in three dimensions. This group is known as the Poincare group,
after the outstanding French mathematician who refined the mathemat-

ical basis of special relativity.

Suspicious at first ("ever since the mathematicians have invaded the

relativity theory, I myself no longer understand it"), Einstein slowly

began to grasp the incredible power of symmetry. If the laws of nature

are to remain unchanged for moving observers, not only do the equa-

tions describing these laws need to obey Lorentz covariance, the laws
themselves may actually be deduced from the requirement of symmetry.
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This profound realization has literally reversed the logical process that

Einstein (and many of the physicists who followed him) employed to

formulate the laws of nature. Instead of starting with a huge collection of

experimental and observational facts about nature, formulating a theory,

and then checking whether the theory obeys some symmetry principles,

Einstein realized that the symmetry requirements may come first and

dictate the laws nature has to obey. Let me demonstrate this type of

input-output reversal using a few simple analogies.

Suppose you have never seen a snowflake before, but you are asked

to guess its general shape. Clearly, you cannot even start without at least

some information. Even a picture of one ray of the snowflake (figure 89)

is not very helpful—you cannot guess the form of an elephant from its

tail. Now, however, you are given some additional facts —you are told

that the general shape is symmetric under rotations through 60 degrees

about its center. This instruction immediately limits the possibilities to

six-cornered, twelve-cornered, eighteen-cornered, and so on snow-

flakes. Since nature usually opts for the simplest, most economical solu-

tion, six-cornered snowflakes (as in figure 90) would be an excellent

guess. Symmetry imposes such rigid constraints that the theory is being

guided, almost inevitably, to the truth.

As a somewhat more intricate example, imagine that biologists in a

distant solar system investigate the "DNA" structure of all life forms on
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their planet. After years of work they discover that life is always based

on very long strands of "DNA" that come in seven different configura-

tions, such as the ones in figure 91. A careful inspection of the different

strip "designs" reveals that each one of them can be obtained by a sym-

metry operation or a combination of symmetry operations on the basic

symbol b. For instance, the first strand involves only translation sym-

metry— a motif is simply shifted repeatedly. The second strand repre-

sents a glide reflection, which, as you recall (chapter 1), involves mirror

images that are translated in relation to one another. The fourth strand

is obtained by translation and reflection about a horizontal mirror

line. The sixth "DNA" pattern can be

obtained in several different ways —for

instance, through successive transla-

tions of four symbols, or through suc-

cessive glide reflections of a pair of

reflected symbols. In an attempt to for-

mulate their findings in the language

of a law, the extraterrestrial biologists

might conclude that all DNA strands

are arranged in patterns that are sym-

metric under combinations of transla-

tions, rotations, reflections, and glide

reflections. Suppose, however, that the

biologists had a hunch to begin with

(maybe after discovering a few strands), that DNA strands have to obey

some symmetries. They could then approach the problem from the

opposite end and require at the outset that DNA strands would be sym-

metric. Clearly, there is no way to guess the basic motif—it could look

like b, like a star, or like the AFLAC duck. However, once the motif is

discovered, one can use group theory to prove that there are only seven

distinct strip patterns that can be formed using combinations of the

above four symmetries. All other patterns are merely variations on the

seven different themes. In other words, the requirement of symmetry in

this case dictates unequivocally the number of frieze patterns that exist.

Princeton mathematician John Horton Conway has given amusing

names to the seven different types of strip patterns. The names corre-

spond to the pattern of footprints obtained when each of the actions is
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repeated: hop, step, jump, sidle, spinning hop, spinning sidle, spinning

jump.

The symmetries of the laws of physics under translations, rotations,

and uniform motion (including the invariance of the speed of light) are

absolutely essential to our understanding of space and time, but they do

not in themselves impose the existence of new forces or new particles. As

we shall soon see, however, the attempts to understand gravity, and to

unify all of the basic forces of nature, have elevated the significance of

symmetry principles to a yet higher level—symmetry has become the

source of forces.

A WEIGHTY SYMMETRY

The brilliance of special relativity expanded the horizons of the symme-

try of the laws of physics to all uniformly moving observers. But, you

may wonder, what about accelerating observers? By and large, most

motions we observe around us are not uniform—they start from rest,

come to a rest, or involve deflections, curves, or rotations. If the laws of

electromagnetism, say, were to break down, or even just change signifi-

cantly in a rocket accelerating from its launch pad, we would not be able

to send astronauts into space. Einstein was not prepared to accept this

as an option. Indeed, why should the laws depend on how the observer

is moving? Moreover, accelerated motion is so ubiquitous —from the

motion of planets around the Sun to sprinters on a track—that any the-

ory that does not discuss acceleration is hopelessly incomplete. Another

obvious deficiency of special relativity was the fact that the theory

totally ignored gravity. Yet gravity is everywhere, and unlike electro-

magnetism from the forces of which one can shield, there is no way to

evade gravity's grip. One of Einstein's main goals became, therefore, to

extend symmetry's reach even further. In particular, he felt that the laws

of nature have to look precisely the same not only to observers moving

with constant velocities, but to all observers, whether in a laboratory

that is accelerating along a straight line, rotating on a merry-go-round,

or moving in whichever way. Just as the fictional biologists in the previ-

ous section could have started with the symmetry principle and then

deduce from it the seven possible strip patterns, Einstein also wanted to

put symmetry first. Inspired by the Lorentz covariance of special rela-
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tivity (the fact that the equations do not change under rotations of space-

time), he now required general covariance, implying symmetry of the

laws of nature—whichever those may be —under any change in the

space and time coordinates. This was not a trivial requirement. After all,

about a million whiplash injuries per year in the United States alone

demonstrate that people do feel sudden accelerations. Every time we

take a sharp turn with the car we feel our body being pushed sideways

by the centrifugal force, and airplanes hitting air pockets make our

stomachs physically leap into our throats. On the face of it, there

appears to be an unmistakable distinction between uniform and acceler-

ating motion. When you ride a train or an elevator that moves at a con-

stant speed, you don't feel the motion. Your point of view—that you are

at rest while everything around you is moving—is as valid as that of the

people waving good-bye on the platform or those waiting patiently in

the hotel lobby. When an astronaut's cheeks get pulled down forcefully

at launch, on the other hand, she definitely feels the acceleration. So how

can the laws of physics be the same even in accelerating frames of refer-

ence? What about these additional forces? The culminating solution to

this puzzle was Einstein's crowning achievement, one that took him

years to conceive. Let us try to follow his train of thought as he sought

to establish symmetry as the source of the laws of physics.

Imagine life in an accelerating boxcar (figure 92). If the boxcar is con-

stantly accelerating to the right, we know from everyday experience that

everything will be pushed backward (to the left in the figure). The lamp

hung from the ceiling, for instance, would be tilted from the vertical

direction. Every object dropped to the floor would fall at an angle, and

every person sitting in a chair

facing forward would feel

pressure both from the seat

underneath and from the

back of the chair. This is very

easy to understand. If a man

in the boxcar drops his keys,

the horizontal speed of the

keys remains unchanged (apart from small changes due to the air's resis-

tance) and equal to the speed the keys had at the instant they were

dropped. At the same time, the boxcar itself continuously accelerates to

higher and higher speeds. The keys are therefore left behind, resulting in
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a path that is tilted backward. Here, however, comes an important real-

ization. The experiences of the person in the accelerating boxcar are no

different from those one would have if gravity itself were stronger and

were tilted, instead of pointing straight down. Put differently, the gravi-

tational force produces precisely the same phenomena as those observed

in accelerated motion.

Consider another situation. When you stand on a bathroom scale

inside an elevator that is accelerating upward, the scale will register a

higher weight (because your feet exert a greater pressure on the scale)—

as if gravity became stronger. An elevator accelerating downward would

feel like a weaker gravity. In the extreme case that the elevator's cable

snaps, you and the scale would be free-falling in unison, and the scale

would register zero weight. (This is not a recommended weight-loss

procedure, however—think of what the scale would record when the

elevator does eventually hit the bottom of the shaft!) Astronauts float

"weightless" inside the space station not because they are outside the

reach of the Earth's gravity, but because both the station and the astro-

nauts undergo the same acceleration toward the Earth's center—they are

both free-falling.

While pondering various thought experiments of this type, Einstein

was eventually led in 1907 to an electrifying conclusion: The force of
gravity and the force resulting from acceleration are in fact the same. This

powerful unification was dubbed the equivalence principle—acceleration
and gravity are two facets of the same force; they are equivalent. Inside a

free-falling elevator it is impossible to tell whether you are weightless

because the elevator is accelerating downward or because gravity has

been miraculously "switched off." Einstein described that moment of

epiphany he had in 1907 in a lecture delivered in Kyoto in 1922: "I was sit-

ting in the patent office in Bern [Switzerland] when all of a sudden a

thought occurred to me: If a person falls freely, he won't feel his own

weight. I was startled. This simple thought made a deep impression on

me. It impelled me toward a theory of gravitation." Medical laboratories

take advantage of the equivalence principle all the time. They use cen-

trifuges to whirl fluids rapidly to separate substances of different densi-

ties. The centrifuges act as artificial-gravity machines. The acceleration of

the rotational motion is equivalent to an increased gravitational force.

A statement of a pervasive symmetry accompanied the equivalence

principle—the laws of physics, as expressed by Einstein's equations of
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general relativity, are precisely the same in all systems, including acceler-

ating ones. That is, the laws are symmetric under any change in the

spacetime coordinates. So why are there apparent differences between

what is observed, say, on a merry-go-round and in a laboratory at rest?

Those, general relativity tells us, are only differences in the environment,

not in the laws themselves. In the same way that up and down appear to

be different on Earth (in spite of the symmetry of the laws under rota-

tions) because of the Earth's gravity, observers on the merry-go-round

feel the centrifugal force that is equivalent to gravity. In other words, the

symmetry among all frames of reference, including accelerating ones,

necessitates the existence of gravity. As the examples of the accelerating

boxcar and the elevator have shown us, the laws of physics in an acceler-

ating frame are indistinguishable from those in a frame that experiences

gravity.

Armed with the powerful insights afforded by the equivalence prin-

ciple, Einstein felt that he was finally ready to tackle the two most

intriguing questions that Newton's theory of gravitation had left totally

unanswered. First and foremost was the million-dollar "how" question:

How does gravity do its trick? Or alternatively: How can the Sun, which

is at a distance of almost a hundred million miles from Earth, exert an

inescapable gravitational pull that holds the Earth in its orbit?

Newton was fully aware of the fact that he had no answer:

Hitherto we have explained the phenomena of the heavens and of

our sea by the power of gravity, but have not yet assigned the cause

of this power [emphasis added]. This is certain, that it must proceed

from a cause that penetrates to the very centres of the Sun and plan-

ets, without suffering the least diminution of its force . . . and propa-

gates its virtue on all sides to immense distances, decreasing always as

the inverse square of the distances. . . . But hitherto I have not been

able to discover the cause of those properties of gravity from phe-

nomena, and I frame no hypotheses.

Second, there was the disturbing conflict between special relativity

and Newton's notion of gravity. While the former states definitively that

no mass, energy, or information of any sort can propagate faster than

light, Newton envisaged gravity as exerting its force instantaneously

across the vast expanses of space. Such a "speedy" gravity could have

opened the door to some truly bizarre and undesired phenomena. For in-
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stance, if the Sun were to suddenly disappear, all the planets in the solar

system would immediately start to move along nearly straight lines, since

the force holding them in elliptical orbits would vanish. However, the

Sun would actually disappear from view to people on Earth only about

eight minutes later, since it takes light that long to traverse the Sun-Earth

distance. If inhabitants of Neptune existed, they would start their

journey into cold space a full four hours before they would see the Sun

disappearing. Such cause-and-effect topsy-turviness would turn our per-

ception of reality into an incomprehensible nightmare. Being a firm be-

liever in the correctness of both special relativity and the equivalence

principle, Einstein realized that the time had come for a complete over-

haul of Newton's theory of gravitation.

The first hints of the possibility of a warped spacetime may have

dawned upon Einstein from another intriguing thought experiment.

This had originally been proposed by physicist Paul Ehrenfest

(1880-1933) and later became known as Ehrenfest's paradox. One of the

known results of special relativity is that the length of moving bodies, as

measured by observers at rest, contracts along their direction of motion.

The contraction is larger the higher the speed. This is no illusion —a

moving rod can be momentarily confined in a space in which it would

not fit when at rest. Consider then what happens to a flat object, such as

a compact disc, when it is spinning very rapidly. Since the circumference

rotates faster than the interior, it would contract more. This would dis-

tort and warp the shape of the disk. Once the idea of acceleration as a

source of warps was introduced, Einstein would not let go of it. He con-

cluded that acceleration would warp the very fabric of spacetime. And,

according to the equivalence principle, if acceleration can cause space to

be curved, so can gravity. This became the essence of general relativity—

gravity warps and bends spacetime in the same way that circus trapeze

artists cause the safety net on which they land to sag. Just as heavier

objects would cause a more pronounced distortion in a trampoline, the

higher the mass of a body, the more curved spacetime becomes in its

vicinity. The path of a Jeep negotiating sand dunes in the Sahara is deter-

mined by the shape of the undulating terrain. Similarly, the paths of the

planets around the Sun are a consequence of the curvature the Sun pro-

duces in spacetime. The planets are simply seeking the most direct route,

and the shapes of their orbits reveal the curved geometry of spacetime.

Within the framework of a warped spacetime, gravity's influence is
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definitely not instantaneous. Einstein calculated that disturbances in

the shape of spacetime propagate like ripples in a pond, precisely at the

speed of light. If the Sun were to miraculously disappear, the vanishing

of its gravitational influence would reach Earth in eight minutes—

simultaneously with its visual disappearance. This gratifying result elim-

inated the last nagging problem of Newtonian physics.

The fact that Einstein turned curved spacetime into the cornerstone

of his new theory of the cosmos created a need for mathematical tools to

describe such spaces. The math classes he had missed at school came

back to haunt him. Fortunately, the former math skeptic had someone

to turn to—Marcel Grossman (1878-1936), Einstein's old classmate, and

an accomplished mathematician. In an uncharacteristically helpless

tone Einstein repented: "I have become imbued with great respect for

mathematics, the more subtle parts of which I had previously regarded

as sheer luxury!" The ever-reliable Grossman did not fail to deliver. He

pointed Einstein both to the non-Euclidean geometry of Riemann and

to mathematical methods developed by the mathematicians Elwin

Christoffel, Gregorio Ricci-Curbastro, and Tullio Levi-Civita. Recall

that Riemann had in fact "anticipated" precisely the machinery that Ein-

stein needed — a geometry of curved spaces in any number of dimen-

sions. The introduction of calculus into geometry through the branch

known as differential geometry, and the development of tensor calculus

further allowed for precise calculations to be carried out (tensors are

"boxes of numbers" that can represent spaces in any number of dimen-

sions). After a few dead ends in the years 1912-15, Einstein decided to

follow his main guiding light—the symmetry of all frames implied by

the principle of general covariance. His intuition bore fruit, and at the

end of 1915, general relativity, an all-embracing theory of spacetime and

gravity, was born (figure 93 shows the front page of the paper). In a note

to theoretical physicist Arnold Sommerfeld, Einstein could not hide his

exuberance: "Be sure you take a good look at them [the equations of

general relativity]; they are the most valuable discovery of my life."

Einstein was the first to acknowledge his debt to mathematics. In an

address to the Prussian Academy of Sciences in 1921 he declared, "We

may in fact regard [geometry] as the most ancient branch of physics. . . .

Without it I would have been unable to formulate the theory of relativ-

ity." In a lecture in 1933 he added, "The creative principle [of science]

resides in mathematics."
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Almost from the day of its first appearance, the underlying symme-

try and logical simplicity of general relativity won it many admirers

among the greatest physicists of the time. Ernest Rutherford (who dis-

covered the atomic nucleus) and Max Born (a quantum mechanics pio-

neer) later compared the theory to a

work of art.

One of the key predictions of gen-

eral relativity was the bending of light

rays under the influence of gravity. In

particular, the Sun was predicted to

bend starlight from distant stars posi-

tioned directly behind it. For the light

from the Sun not to totally overwhelm

the light from the stars, the observa-

tions had to be carried out during a

total solar eclipse, when the Moon

blocks out the Sun's light. The idea at

the basis of the experiment was simple:

By comparing a photograph taken

during a solar eclipse to a photograph

of the same patch of the sky taken when the starlight is undeflected, one

could attempt to measure the apparent slight shifts in stellar positions

caused by the bending of light.

The observations, by two British teams, took place during the solar

eclipse of May 29, 1919, but Einstein did not receive the final confirma-

tion of the results until September 22. The two teams, one led by the fa-

mous British astrophysicist Arthur Eddington (1882-1944), found an

average deflection of 1.79 seconds of arc, which agreed perfectly (within

the expected experimental errors) with the prediction of general relativ-

ity. The joyously enthusiastic Einstein was quick to inform his mother.

The confirmation of general relativity was formally announced in a joint

meeting of the Royal Society and the Royal Astronomical Society in

London on November 6, 1919, and was rightfully pronounced to be "one

of the greatest achievements in the history of human thought." The next

day, the entire world woke up to the news of a "Revolution in Science"

(figure 94 shows the article in the London Times of November 7, 1919),

and Einstein was instantly propelled to the unexpected status of a media

star. Not that everybody fully understood all the implications of the new
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theory. According to a popular anecdote, a reporter asked Eddington

whether it was true that the theory of relativity was so complicated that,

except for Einstein, only two other people in the world could really un-

derstand it. Eddington sat silently for a few minutes. The reporter en-

couraged Eddington not to be too modest, to which Eddington replied,

"Not at all, I was just trying to figure out who the other person was."

Even today, I am in total awe of the following wondrous chain of ideas

and interconnections. Guided throughout by principles of symmetry,

Einstein first showed that acceleration and gravity are really two sides of

the same coin. He then expanded the concept to demonstrate that gravity

merely reflects the geometry of spacetime. The instruments he used to de-

velop the theory were Riemann's non-Euclidean geometries—precisely

the same geometries used by Felix Klein to show that geometry is in fact a

manifestation of group theory (because every geometry is defined by its

symmetries—the objects it leaves unchanged). Isn't this amazing?

Recall that Galois was rather uncertain about the potential applica-

tions of his group-theoretical ideas. The combined power of the imagi-

nations of mathematicians such as Klein, Lie, Riemann, Minkowski,

Poincare, and Hilbert "joined forces" with the unsurpassed physical

intuition of Einstein to turn symmetry and group theory into the most

basic descriptors of spacetime and gravity.

INTO THE QUANTUM WORLD

As important as symmetries are for the laws describing spacetime

and gravity, their importance is magnified even further in the realm of

the subatomic particles. Unlike in classical physics, where the word
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particle usually conjures up an image of something like a tiny billiard

ball, in quantum theory —the the theoretical framework used in particle

physics—particles can behave as waves. The state of any system and its

time evolution are described by an entity called the wavefunction. The

wavefunction of an electron is a probability wave, used, for instance, to

determine the probability of finding the electron at a certain position

with a particular spin direction. Since all the electrons in the universe are

identical, the only way to distinguish one from the other is by their

energy, momentum (product of mass and velocity in classical physics),

and spin. These basic quantities are defined in quantum mechanics by

the response of the wavefunction to various symmetry transformations

in space and time. The energy, for instance, reflects the change in the

wavefunction that results from shifting the time coordinate (equivalent

to the resetting of the clocks). Let me explain this concept briefly. Imag-

ine that two photographers take a picture of the circular waves that

propagate from the point of impact of a pebble thrown into a pond. The

flashes on both cameras are set to go off precisely at 8:00 a.m. However,

one of the two clocks that control the flashes happens to be off by one

second. This means that although the two cameras will record the same

wave, they will record it at slightly different phases. Where one photo-

graph shows a crest in the wave, the other may show a trough, and vice

versa. Quantum mechanics defines the energy of a system, such as the

electron, through the change in the phase of its wavefunction (measured

in cycles of the wave) caused by resetting the clocks by one second. Sim-

ilarly, the momentum of the electron characterizes the change in the

phase of the wavefunction under a slight translation in space. While

these definitions do relate basic physical properties to symmetry trans-

formations, they probably sound surprisingly abstract. Anyone who

had some high-school physics may remember that quantities such as

energy and momentum are normally associated with a rather different

concept—conservation laws. Conservation laws reflect the fact that

some quantities can neither be created nor destroyed—they have the

same values whether we measure them today, tomorrow, or a million

years from now. The conservation of energy is the physical equivalent of

the phrase "there is no free lunch." If we could get energy out of noth-

ing we wouldn't be paying more at gas pumps every time oil production

dwindles. Conservation of momentum is familiar to anyone who has

watched billiard balls collide. You will never see the two balls rolling
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backward (toward the player)—the total momentum of the recoiling

balls has to combine to equal the momentum of the cue ball. Conserva-

tion laws are the physicist's breakfast, lunch, and dinner. Experimental

particle physicists, for instance, use huge accelerators to smash particles

into one another. These accelerators are gigantic structures (the one in

Geneva, Switzerland, uses a circular tunnel that is seventeen miles long),

in which subatomic particles are accelerated to extremely high energies.

The goal is to probe the fundamental forces on shorter and shorter dis-

tances, and to produce heavier particles that are predicted theoretically

to exist. The experimenters take advantage of the fact that the total

energy and momentum of the collision products have to be precisely

equal to those of the incoming particle and the target (because of the

conservation laws) to determine even the properties of particles that can-

not be detected directly by the experimental apparatus.

On the face of it, therefore, we seem to have two unrelated defini-

tions. On one hand, basic quantities such as energy and momentum are

defined through the response of the wavefunction to symmetry trans-

formations. On the other, the same quantities are associated with con-

servation laws. What is the precise relation between symmetries of the

laws of physics and conservation laws? The unexpected answer was

given by the German mathematician Emmy Noether (1882-1935), and it

is usually referred to as Noether's theorem. Before I explain this result,

however, I want to describe very briefly the life of this extraordinary

woman, in order to shed some light on the type of difficulties a woman

experienced in a male-dominated mathematical world.

Emmy Noether was born in Erlangen, Germany, where her father

was a professor of mathematics. Emmy's original intention was to be-

come a language teacher of French and English, but at age eighteen she

decided instead to study mathematics. This turned out to be easier said

than done. Although women had been allowed to enroll at universities in

France since 1861, this was still not permitted officially in the conserva-

tive Germany of 1900. The academic senate at the University of Erlangen

declared in 1898 that the admission of female students would "overthrow

all academic order." Nevertheless, Emmy was at least given special per-

mission to attend some courses. After successfully passing exams in

Nurnberg, Gottingen, and Erlangen and benefiting from the slow but

gradual changes in the gender bias, she was eventually awarded a doctor-

ate in mathematics in 1907. This was not, however, the end of her battles
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with the German academic establishment. Even though Noether was in-

vited in 1915 by David Hilbert and Felix Klein to join the faculty at Got-

tingen, these two renowned mathematicians had to fight the university

authorities for four more years before she was formally allowed to teach.

During the period of the letter exchanges and verbal skirmishes with the

administration, Hilbert tricked the bureaucrats by permitting Emmy to

lecture in courses advertised officially under his own name.

Noether proved the theorem bearing her name in 1915, shortly after

her arrival at Gottingen. She started by examining continuous symme-

tries. These are symmetries under transformations that can be varied

continuously, such as rotations (where the rotation angle can be changed

continuously). The symmetry of a sphere, for instance, holds under arbi-

trarily small rotations, unlike the discrete symmetry of a snowflake,

which is symmetric only under rotations by multiples of 60 degrees. The

result that Noether obtained was stunning. She showed that to every

continuous symmetry of the laws of physics there corresponds a conserva-

tion law and vice versa. In particular, the familiar symmetry of the laws

under translations corresponds to conservation of momentum, the sym-

metry with respect to the passing of time (the fact that the laws do not

change with time) gives us conservation of energy, and the symmetry

under rotations produces conservation of angular momentum. Angular

momentum is a quantity characterizing the amount of rotation an object

or a system possesses (for a pointlike object it is the product of the dis-

tance from the axis of rotation and the momentum). A common mani-

festation of conservation of angular momentum can be seen in figure

skating—when the ice skater pulls her hands inward she spins much

faster.

Noether's theorem fused together symmetries and conservation

laws—these two giant pillars of physics are actually nothing but differ-

ent facets of the same fundamental property.

With the rise of the Nazis to power, Noether, whose parents were

both Jewish, was forced to leave Germany, and she moved to Bryn

Mawr College in the United States. She continued to lecture at Bryn

Mawr and Princeton until her sudden death, following surgery, in 1935.

In his memorial address, mathematical physicist Hermann Weyl alluded

to the struggles Emmy Noether had to endure because of her gender: "If

we in Gottingen often chaffingly referred to her as 'der Noether' (with

the masculine article) it was also done with a respectful recognition of
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her power as a creative thinker who seemed to have broken through the

barrier of sex."

Most of the symmetries we have encountered so far had to do with a

change in our viewpoint in space and time. Many of the symmetries

underlying elementary particles and the basic forces of nature are of a

different type—we change our perspective on the identity of particles.

This may sound alarming; an electron is always an electron, right? Not

really, when it comes to the fuzziness of the quantum realm.

Recall that the only thing that is certain in quantum mechanics is that

everything is uncertain. Only probabilities can truly be determined. An

electron can be in a state in which it is spinning neither definitely in one

sense nor in the other. Rather, the state is a mixture of spinning clock-

wise with spinning counterclockwise. More surprisingly, electrons can

be in states that mix them with another elementary particle called a neu-

trino. The neutrino is a particle of almost zero mass and no electric

charge. Just as the Moon can be full, dark, and anything in between, par-

ticles can carry the label "electron," "neutrino," or be a mixture of both,

until we perform a specific measurement (such as that of the electric

charge) that can distinguish the two. The realization of this ability of

particles to metamorphose between different states took physicists an

important step toward the unification of all the forces of nature.

Newton was the first to introduce the concept of unification. His

theory of gravity unified the force that keeps our feet on the ground with

the force that holds planets in their orbits. Before Newton no one sus-

pected that one force is responsible for both. Michael Faraday and James

Clerk Maxwell introduced the second major unification—they proved

that electric and magnetic forces are in fact the same force in different

guises. Varying the electric field generates a magnetic field and vice versa.

In addition to the gravitational and electromagnetic forces, we currently

distinguish in nature two nuclear forces. One, the strong nuclear force, is

what holds protons and neutrons tightly bound together in the atomic

nucleus. Without it, protons would fly apart due to their mutual electro-

magnetic repulsion, so no element other than hydrogen (which has only

one proton) would have ever formed. The weak nuclear force is respon-

sible for the radioactive decay of uranium, and it transforms a neutron

into a proton, while creating in the process an electron and an antineu-

trino (the "antiparticle" of the neutrino). These radioactive decays were
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first discovered experimentally in 1896, but their association with the

weak nuclear force was clarified only in the 1930s.

In the late 1960s, physicists Steven Weinberg, Abdus Salam, and Shel-

don Glashow conquered the next unification frontier. In a phenomenal

piece of scientific work they showed that the electromagnetic and weak

nuclear forces are nothing but different aspects of the same force, sub-

sequently dubbed the electroweak force. The predictions of the new

theory were dramatic. The electromagnetic force is produced when elec-

trically charged particles exchange between them bundles of energy

called photons. The photon is therefore the messenger of electromagnet-

ism. The electroweak theory predicted the existence of close siblings to

the photon, which play the messenger role for the weak force. These

never-before-seen particles were prefigured to be about ninety times

more massive than the proton and to come in both an electrically

charged (called W) and a neutral (called Z) variety. Experiments per-

formed at the European consortium for nuclear research in Geneva

(known as CERN for Conseil Europeen pour la Recherche Nucleaire)
discovered the W and Z particles in 1983 and 1984 respectively. (Inci-

dentally, Dan Brown's bestselling thriller Angels and Demons has

brought the research at CERN to the attention of millions of readers.)

The W and Z are eighty-six and ninety-seven times more massive

than the proton (respectively), just as the theory predicted. This was

undoubtedly one of symmetry's greatest success stories. Glashow, Wein-

berg, and Salam managed to unmask the electromagnetic and weak

forces by recognizing that underneath the differences in the strengths of

these two forces (the electromagnetic force is about a hundred thousand

times stronger within the nucleus) and the different masses of the mes-

senger particles lay a remarkable symmetry. The forces of nature take the

same form if electrons are interchanged with neutrinos or with any mix-

ture of the two. The same is true when photons are interchanged with

the W and Z force-messengers. The symmetry persists even if the mix-

tures vary from place to place or from time to time. The invariance of the

laws under such transformations performed locally in space and time has

become known as gauge symmetry. In the professional jargon, a gauge
transformation represents a freedom in formulating the theory that has

no directly observable effects—in other words, a transformation to

which the physical interpretation is insensitive. Just as the symmetry of
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the laws of nature under any change of the spacetime coordinates

requires the existence of gravity, the gauge symmetry between electrons

and neutrinos requires the existence of the photon and the W and Z mes-

senger particles. Once again, when the symmetry is put first, the laws

practically write themselves. A similar phenomenon, with symmetry

dictating the presence of new particle fields, repeats itself with the strong

nuclear force.

QUARK, QUARK, GROUP

Protons and neutrons, the particles that make up the atomic nucleus, are

not "elementary." They are composed of elementary building blocks

called quarks. The name quark was chosen by particle physicist Murray

Gell-Mann in 1963. He settled on a word that combines a dog's bark

with a seagull's squawk, coined by the famous Irish novelist James Joyce

in Finnegans Wake:

Three quarks for Muster

Mark!

Sure he hasn't got much of

A bark

And sure any he had it's all

Beside the mark.

Quarks come in six "flavors" that were given the rather arbitrary names:

up, down, strange, charm, top, and bottom. Protons, for instance, are

made of two up quarks and one down quark, while neutrons consist of

two down quarks and one up quark. Other than ordinary electric

charge, quarks possess another type of charge, which has been fancifully

called color, even though it has nothing to do with anything we can see.

In the same way that the electric charge lies at the root of electromag-

netic forces, color originates the strong nuclear force. Each quark flavor

comes in three different colors, conventionally called red, green, and

blue. There are, therefore, eighteen different quarks.

The forces of nature are color blind. Just as an infinite chessboard

would look the same if we interchanged black and white, the force

between a green quark and a red quark is the same as that between two

blue quarks, or a blue quark and a green quark. Even if we were to use

our quantum mechanical "palette" and replace each of the "pure" color
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states with a mixed-color state (e.g., "yellow" representing a mixture of

red and green or "cyan" for a blue-green mixture), the laws of nature

would still take the same form. The laws are symmetric under any color

transformation. Furthermore, the color symmetry is again a gauge sym-

metry — the laws of nature do not care if the colors or color assortments

vary from position to position or from one moment to the next.

We have already seen that the gauge symmetry that characterizes

the electroweak force—the freedom to interchange electrons and

neutrinos dictates the existence of the messenger electroweak fields

(photon, W, and Z). Similarly, the gauge color symmetry requires the

presence of eight gluon fields. The gluons are the messengers of the

strong force that binds quarks together to form composite particles such

as the proton. Incidentally, the color "charges" of the three quarks that

make up a proton or a neutron are all different (red, blue, and green), and

they add up to give zero color charge or "white" (equivalent to being

electrically neutral in electromagnetism). Since color symmetry is at the

base of the gluon-mediated force between quarks, the theory of these

forces has become known as quantum chromodynamics. The marriage

of the electroweak theory (which describes the electromagnetic and

weak forces) with quantum chromodynamics (which describes the

strong force) produced the standard model—the basic theory of elemen-

tary particles and the physical laws that govern them.

If you are starting to feel a bit dizzy from all of these different ele-

mentary particles, you are not alone. The famous physicist Enrico Fermi

(1901-54), who was considered the "last universal scientist" (meaning

that he knew all the areas of physics), is quoted to have once said, "If I

could remember the names of all these particles [far fewer were known

at his time], I'd be a botanist." Some of the exotic properties of elemen-

tary particles have made it even into popular culture. Physicist and

author Cindy Schwarz has compiled an entire collection of prose and

poetry about elementary particles, written by students at Vassar College.

One such poem, by Vanessa Pepoy, is entitled "Chromodynamics":

Rouge vert bleu

Trinity of color.

Fundamental.

Organizational.

Principle.
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Contained within

A particle,

White light

Invisible.

You may have noticed that particles that are involved in gauge sym-

metries tend to form families of closely related kin (e.g., protons and

neutrons). Historically, even before the suggestion that protons and neu-

trons are both composed of three gluon-exchanging quarks, physicists

noticed striking similarities between these two intranuclear neighbors.

Not only are they very close in mass, but also the strong force between

them is indifferent to whether it is acting between two neutrons, a neu-

tron and a proton, or any two mixed states of the two. With the advent

of high-energy particle accelerators in the 1950s, an entire particle zoo

seemed to have emerged. In an attempt to put some order into the rap-

idly proliferating menagerie, Murray Gell-Mann and the Israeli physi-

cist Yuval Ne'eman noticed that the protons and neutrons looked very

similar to six other particles. They also identified other such extended

families of eight or ten members. Gell-Mann called this symmetry the

"eightfold way," alluding to the eight principles in the Buddhist path of

self-development that are supposed to lead to the end of suffering. The

realization that symmetry is the key to the understanding of the proper-

ties of subatomic particles led to an inevitable question: Is there an effi-

cient way to characterize all of these symmetries of the laws of nature?

Or, more specifically, what is the basic theory of transformations that

can continuously change one mixture of particles into another and pro-

duce the observed families? By now you have probably guessed the

answer. The profound truth in the phrase I have cited earlier in this book

revealed itself once again: "Wherever groups disclosed themselves, or

could be introduced, simplicity crystallized out of comparative chaos."

The physicists of the 1960s were thrilled to discover that mathematicians

had already paved the way. Just as fifty years earlier Einstein learned

about the geometry tool-kit prepared by Riemann, Gell-Mann and

Ne'eman stumbled upon the impressive group-theoretical work of

Sophus Lie. Lie's ideas have become so central to high-energy physics

that a few words about this outstanding mathematician are in order.

Sophus Lie (figure 95) arrived at mathematics in a somewhat round-

about way. At the Royal Fredrik's University of Christiania (today's
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Oslo) he demonstrated neither a particular passion for nor an unusual

ability in mathematics, even though he did study the works of Abel and

Galois. One of his teachers, Ludvig Sylow (1832-1918), himself a

famous mathematician, confessed later that he never would have guessed

that the young Lie would become one of the greatest mathematical

minds of the century. Yet, after a few years of hesitation, during which

he had been haunted by suicidal tendencies, Lie turned his interests

more and more toward mathematics. In 1868 he finally concluded that

"there was a mathematician hidden

inside me."

During trips to Berlin and Paris

in 1869 and 1870, Lie met and be-

friended Felix Klein. In Paris he also

met Camille Jordan (1838-1922), and

the latter convinced him that group

theory could play a crucial role in the

study of geometry. The combined

efforts of Lie and Klein in this arena

provided the seeds for Klein's cele-

brated Erlangen Program on the

group-theoretical characterization of

geometry.

In 1870, political events complicated the continued collaboration

between the two young mathematicians. The outbreak of the Franco-

Prussian War forced Klein to leave Paris for Berlin. Lie tried to hike his

way to Italy, but he only made it as far as Fontainbleau, where he was

arrested. To French army officials the dense mathematical papers of the

Norwegian surely looked like the encoded messages of a German spy.

Fortunately for Lie, the French mathematician Gaston Darboux inter-

vened and released him from prison. Two years later, the University of

Christiania did not repeat the mistake it had made with Abel. The fac-

ulty and officials recognized Lie's unusual talents and created a mathe-

matics chair for him. Lie continued to collaborate with Klein on and off

until 1892, when an ugly dispute erupted between the two. Partly this

had to do with Lie's perception that he had not received the appropriate

recognition for his role in the development of the Erlangen Program. In

1893 Lie issued a statement that publicly attacked Klein and declared, "I

am no pupil of Klein nor is the opposite the case, although this might be
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closer to the truth." Klein did not help the situation by calling attention

(supposedly in "defense" of Lie's actions) to the mental problems from

which Lie had suffered during the late 1880s. None of these events take

anything away from Lie's genius.

The two Norwegian giants of the end of the nineteenth century, Lie

and Sylow, fully acknowledged their intellectual debt to the shining star

of Norwegian mathematics — Abel. For a period of eight years they

undertook the painstaking task of preparing and publishing Abel's com-

plete works. Around the same period, Lie started to work on groups of

continuous transformations (such as translations and rotations in ordi-

nary space). This project culminated with the publication of an extensive

theory and a detailed catalog of such groups between 1888 and 1893 (in

collaboration with the German mathematician Friedrich Engel). The

members of the class of continuous groups studied by Lie have later

become known as Lie groups.

Lie groups were precisely the instruments Gell-Mann and Ne'eman

needed to characterize the underlying pattern of the newly discovered

zoo of particles. Much to their delight, the two physicists found out that

the German mathematician Wilhelm Killing (1847-1923) and the French

mathematician Elie-Joseph Cartan (1869-1951) had made their job even

easier. Recall that for his proof on the solvability of equations Galois de-

fined some special subgroups called normal subgroups (chapter 6). When

a group has no normal subgroups (other than the two trivial subgroups,

one composed only of the identity and the other being the group itself), it

is called simple. Simple groups are the basic building blocks of group the-

ory in the same sense that prime numbers (divisible only by themselves

and 1) are the building blocks of all the integer numbers. In other words,

all the groups can be constructed from simple groups, and the simple

groups themselves cannot be decomposed any further by the same

process. Killing outlined the classification of the simple Lie groups in

1888; the classification was completed and perfected by Cartan in 1894.

There are four infinite families of simple Lie groups, and five exceptional

(or sporadic) simple groups that do not fit into any of the four families.

Gell-Mann and Ne'eman discovered that one such simple Lie group,

called "special unitary group of degree 3," or SU(3), was particularly well

suited for the "eightfold way" — the family structure the particles were

found to obey. The beauty of the SU(3) symmetry was revealed in full

glory via its predictive power. Gell-Mann and Ne'eman showed that if
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the theory were to hold true, a previously unknown tenth member of a

particular family of nine particles had to be found. The extensive hunt for

the missing particle was conducted in an accelerator experiment in 1964 at

Brookhaven National Lab on Long Island. Yuval Ne'eman told me some

years later that, upon hearing that half of the data had already been scruti-

nized without discovering the anticipated particle, he was contemplating

leaving physics altogether. Symmetry triumphed at the end—the missing

particle (called the omega minus) was found, and it had precisely the

properties predicted by the theory.

All the symmetries that characterize the standard model (e.g., the

symmetry of color exchange among quarks) can be represented as a prod-

uct of simple Lie groups. The pioneering attempt to describe such physi-

cal symmetries mathematically was carried out by physicists Chen Ning

Yang and Robert Mills in 1954. Appropriately, the equations that de-

scribe the weak force (in analogy with Maxwell's equations, which de-

scribe electromagnetism) are known as Yang-Mills equations. Through

the works of Weinberg, Glashow, and Salam on the electroweak theory

and the elegant framework developed by physicists David Gross, David

Politzer, and Frank Wilczek for quantum chromodynamics, the charac-

teristic group of the standard model has been identified with a product of

three Lie groups denoted by U(1), SU(2), and SU(3). In some sense,

therefore, the road toward the ultimate unification of the forces of nature

has to go through the discovery of the most suitable Lie group that con-

tains the product U(1) x SU(2) x SU(3).

The experience with special and general relativity and the standard

model of elementary particles can lead to only one conclusion. Symme-

try and group theory have an uncanny way of directing physicists to the

right path. This may seem somewhat surprising at first, since the

requirement of symmetry imposes rather rigid constraints. As we have

seen, once a pattern extending to infinity in one dimension is confined to

obeying the rigid-motions symmetries, only seven distinct strip patterns

are allowed. Even in two dimensions, one can prove that repeating
((
wallpaper" patterns are limited to seventeen. Similar restrictions are

forced upon any theory that incorporates symmetry. Don't these con-

straints inhibit the freedom the theory might have otherwise had? They

do, and this inhibition is a desirable outcome. Physicists are searching

for one theory that explains the universe, not for many, all doing the job

equally well. Had I presented you with twenty-three different theories
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of Galois's death in chapter 5, all fully consistent with the available evi-

dence, you would probably not have been very satisfied. Symmetry

helps us not only to avoid the false starts and the blind alleys, but also to

cross the most difficult parts, the "decisions, decisions" phases that char-

acterize choices.

The Bible tells us that when the Israelites left Egypt, they were led in

the desert by "a pillar of fire by night, to give them light." Symmetry has

been the scientists' pillar of fire, leading toward general relativity and the

standard model. Can it also lead to a unification of the two?

THE HARMONY OF THE STRINGS

Historians like to point out that some social revolutions have been

mistakes, when judged retrospectively. By contrast, the two scientific

revolutions of the twentieth century have been unquestionable suc-

cesses. General relativity predicted the bending of light by astronomical

objects, the existence of the collapsed objects we call black holes, and the

expansion of the universe, all of which have been observationally con-

firmed. Quantum theory has been confirmed in electrodynamics to an

astonishing precision, and its crown jewel—the standard model—has

successfully captured and predicted all the properties of the known sub-

atomic particles. Here, however, lies the problem. We have a hugely suc-

cessful theory for the largest astronomical scales (stars, galaxies, the

universe) and another one for the smallest subatomic scales (atoms,

quarks, photons). This might have been all right had the two worlds

never had to meet. But in a universe that started to expand from a "big

bang" — an extremely compact and ferociously hot state—it was un-

avoidable that the paths of general relativity and quantum mechanics

would cross. Many pieces of evidence, such as the formation of the ele-

ments of the periodic table, point to the fact that even the large was once

small. Furthermore, some entities, such as black holes, live in both the

astronomical and the quantum domains. Consequently, in the wake of

Einstein's unsuccessful attempts to unite general relativity with electro-

magnetism, many physicists have engaged in the greatest unification

effort of them all—of general relativity with quantum mechanics.

The biggest stumbling block that has traditionally plagued all the

unification endeavors has been the simple fact that on the face of it, gen-

eral relativity and quantum mechanics really appear to be incompatible.
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Recall that the key concept of quantum theory is the uncertainty princi-

ple. When you try to probe positions with an ever-increasing magnifica-

tion power, the momenta (or speeds) start oscillating violently. Below a

certain minuscule length known as the Planck length, the entire tenet of

a smooth spacetime is lost. This length (equal to 0.000 . . . 4 of an inch,

where the 4 is at the thirty-fourth decimal place) determines the scale at

which gravity has to be treated quantum mechanically. For smaller

scales, space turns into an ever-fluctuating "quantum foam." But the

very basic premise of general relativity has been the existence of a gently

curving spacetime. In other words, the central ideas of general relativity

and quantum mechanics clash irreconcilably when it comes to extremely

small scales.

The current best bet for a quantum theory of gravity appears to be

some version of string theory. According to this revolutionary theory,

elementary particles are not pointlike entities with no internal structure,

as the standard model would have you believe, but tiny loops of vibrat-

ing strings. These infinitely thin, rubber-band-like loops are so small

(on the order of the Planck length; about a hundred billion times smaller

than the proton) that to the resolving power of present-day experiments

they appear as points. The beauty of the principal idea of string theory

is that all the known elementary particles are supposed to represent

merely different vibration modes of the same basic string. Just as a violin

or a guitar string can be plucked to produce different harmonics, differ-

ent vibrational patterns of a basic string correspond to distinct matter

particles, such as electrons and quarks. The same applies to the force car-

riers as well. Messenger particles such as gluons or the W and the Z owe

their existence to yet other harmonics. Put simply, all the matter and

force particles of the standard model are part of the repertoire that

strings can play. Most impressively, however, a particular configuration

of vibrating string was found to have properties that match precisely the

graviton—the anticipated messenger of the gravitational force. This was

the first time that the four basic forces of nature have been housed, if ten-

tatively, under one roof.
You might have thought that an achievement of this magnitude—the

Holy Grail of modern physics —would be immediately hailed by the

entire physics community. Yet the reaction in the mid-1970s was rather

different. Years of frustration with the attempts to unify general relativ-

ity with quantum mechanics have acted to build a thick wall of skepti-
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cism. The claim by physicists John Schwarz of the California Institute of

Technology and Joel Scherk of the P,cole normale superieure in France

that string theory finally unites gravity with the strong force was uni-

versally ignored. This situation persisted for over a decade. During that

period, almost every step forward was followed immediately by the

discovery of some subtle difficulty, resulting in nine-tenths of a step

backward. The breakthrough finally occurred in 1984, when physicists

Michael Green, then at Queen Mary College, and John Schwarz demon-

strated that string theory might indeed provide the ultimate unification

everyone was looking for. A frenzy of activity ensued as some of the best

theoretical minds engaged in the hunt for what appeared to be the

sought-after "theory of everything" — the ultimate foundation on which

the rest of physics can be built. As is often the case in science, however,

the burst of enthusiasm (dubbed the "first superstring revolution") soon

gave way to a phase of frustration-rich hard work. Unlike in the case of

SU(3), where all the mathematical tools had been in place, waiting for

the physicists to make use of them, string theorists had to develop some

of the mathematics as they went along. Nevertheless, as we shall see in

the next section, groups still provided the right language to describe the

underlying patterns.

So, how does string theory propose to resolve the fundamental con-

flict between the smooth geometry of general relativity and the violent

fluctuations of quantum mechanics? By imparting some fuzziness even

to spacetime, similar to the one quantum mechanics imparts to the posi-

tions and motions of particles.

Imagine that you want to draw a cloud. If the cloud you pick out in

the sky for modeling is relatively distant, near the horizon, you can

probably reproduce the shape that you observe quite accurately. If, on

the other hand, the cloud is relatively close by, it becomes increasingly

difficult to capture every twist and turn of its tiny wisps. Zooming far-

ther in, down to the submolecular scale, will make any reproduction

attempt hopeless. String theory asserts that by treating the elementary

particles and the force messengers as dimensionless pointlike objects,

physics attempted to probe the universe on scales that are below the

limit that makes any sense. In other words, since strings, the most basic

constituents of the universe, are extended objects with sizes on the order

of the Planck length, sub—Planck-length distances are outside the realm

of physics. By concentrating only on super—Planck-length scales, one
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can eliminate the violent fluc-

tuations and avoid conflict.

Not surprisingly, the fuzziness

in the string-theoretical frame-

work changes the nature of

events in spacetime. While in

the standard model every

interaction between two parti-

cles occurs at a precisely well-

defined point in spacetime,

agreed upon by all observers,

the situation in string theory is

different (figure 96). Due to

the strings' extended nature,

we cannot say precisely when and where two strings interact. Both the

location and the time of the interaction are "smeared out." The situation

may be likened (only superficially) to our inability to predict when and

where a wishbone pulled apart from both ends will break.

Having barely recovered from the revolution in the understanding of

spacetime introduced by Einstein's relativity, physicists had to readjust

to the new concepts introduced by the string revolution. Fortunately,

one familiar concept has not only survived the revolution, but has

reached its pinnacle through string theory.

NOT JUST SYMMETRY-SUPERSYMMETRY

The laws of nature do not depend on where, from which angle, or when

we use them. They are symmetric under translations, rotations, and the

passing of time. They are also identical for all observers, irrespective of

whether these are moving at constant velocities or accelerating. This is

the essence of Einstein's principle of general covariance. Just as the uni-

formly moving observers can declare themselves at rest, with everything

around them being in motion, so can the accelerating observers. The lat-

ter are fully justified in claiming that the extra forces they feel are due to

a gravitational field (according to the equivalence principle). By 1967

physicists thought that no other symmetries that are associated only

with changing our vantage point in space and time could exist. In fact,

there even existed a theorem that claimed to prove that this was the case.
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To many physicists' surprise, intensive research during the subsequent

four years led to the discovery that quantum mechanics allows for one

additional symmetry. This unexpected symmetry was dubbed supersym-
metry.

Supersymmetry is a subtle symmetry based on the quantum mechan-

ical property spin. Recall (from chapter 1) that the spin of the electron is

an intrinsic property, much like its electric charge, that resembles in some

respects classical angular momentum—as if the electron were spinning

around its axis. Unlike classically spinning bodies, such as tops, however,

where the spin rate can assume any value fast or slow, electrons always

have only one fixed spin. In the units in which this spin is measured quan-

tum mechanically (called Planck's constant) the electrons have half a unit,

or they are "spin-W' particles. In fact, all the matter particles in the stan-

dard model—electrons, quarks, neutrinos, and two other types called

muons and taus—all have "spin a." Particles with half-integer spin are

known collectively as fermions (after the Italian physicist Enrico Fermi).

On the other hand, the force carriers—the photon, W, Z, and gluons—all

have one unit of spin, or they are "spin-1" particles in the physics lingo.

The carrier of gravity—the graviton—has "spin 2," and this was precisely

the identifying property that one of the vibrating strings was found to

possess. All the particles with integer units of spin are called bosons (after

the Indian physicist Satyendra Bose). Just as ordinary spacetime is associ-

ated with symmetry under rotations, the quantum-mechanical spacetime

is associated with a supersymmetry that is based on spin. The predictions

of supersymmetry, if it is truly obeyed, are far-reaching. In a universe

based on supersymmetry, every known particle in the universe must have
an as-yet-undiscovered partner (or "superpartner"). The matter particles

with spin X, such as electrons and quarks, should have spin 0 superpart-

ners. The photon and gluons (that are spin 1) should have spin-a super-

partners called photinos and gluinos respectively. Most importantly,

however, already in the 1970s physicists realized that the only way for

string theory to include fermionic patterns of vibration at all (and there-

fore to be able to explain the constituents of matter) is for the theory to be

supersymmetric. In the supersymmetric version of the theory, the

bosonic and fermionic vibrational patterns come inevitably in pairs.

Moreover, supersymmetric string theory managed to avoid another

major headache that had been associated with the original (nonsuper-

symmetric) formulation — particles with imaginary mass. Recall that the
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square roots of negative numbers arc called imaginary numbers. Before

supersymmetry, string theory produced a strange vibration pattern

(called a tachyon) whose mass was imaginary. Physicists heaved a sigh of

relief when supersymmetry eliminated these undesirable beasts.

Needless to say, all the underlying symmetries and patterns of the

current versions of string theory are described by groups. One version,

for instance, known by the intimidating name the Heterotic type E 8 x
E„ is based on one of the sporadic Lie groups.

The next critical step in the confirmation or refutation of string the-

ory will be, of course, to be able to discover the predicted supersymmet-

ric particles. Physicists hope that this is within the reach of the Large

Hadron Collider, or LHC, at CERN. Around 2007, this world's largest

accelerator is expected to reach energies that are almost eight times

higher than those achievable today. If the superpartners are indeed

found, their properties will provide crucial clues as to what the ultimate

theory might be. If they are not found, this could be an indication that

the theory is going in the completely wrong direction.

String theory progresses at such an incredible pace that anyone

outside the circle of its day-to-day practitioners finds it very difficult to

follow in detail. The current research continues to be spearheaded by

Edward Witten of the Institute for Advanced Study at Princeton and

many others too numerous to name here. The mathematics used in these

studies is becoming progressively more and more advanced. Not only

are ordinary numbers replaced by an extended class of numbers known

as Grassmann numbers (after the Prussian mathematician Hermann

Grassmann), ordinary geometry is also being superseded by a special

branch known as noncommutative geometry that has been developed by

the French mathematician Alain Connes.

In spite of the cutting-edge tools that have become the theory's hall-

mark, string theory is in fact in its infancy. One of the string theory pio-

neers, the Italian physicist Daniele Amati, characterized it as "part of the

21st century that fell by chance into the 20th century." Indeed, there is

something about the very nature of the theory at present that points to

the fact that we are witnessing the theory's baby steps. Recall the lesson

learned from all the great ideas since Einstein's relativity —put the sym-
metry first. Symmetry originates the forces. The equivalence principle—

the expectation that all observers, irrespective of their motions, would

deduce the same laws—requires the existence of gravity. The gauge
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symmetries—the fact that the laws do not distinguish color, or electrons

from neutrinos — dictate the existence of the messengers of the strong

and electroweak forces. Yet supersymmetry is an output of string theory,

a consequence of its structure rather than a source for its existence. What

does this mean? Many string theorists believe that some underlying

grander principle, which will necessitate the existence of string theory,

is still to be found. If history is to repeat itself, then this principle may

turn out to involve an all-encompassing and even more compelling sym-

metry, but at the moment no one has a clue what this principle might

be. Since, however, we are only at the beginning of the twenty-first cen-

tury, Amati's characterization may still turn out to be an astonishing

prophecy.

As you have seen in this chapter, physicists have exalted symmetry to

the position of the central concept in their attempts to organize and

explain an otherwise bewildering and complex universe. This raises a

few intriguing questions. First, why do we find symmetry so attractive?

Second, and perhaps more difficult, are the symmetry-based group-

theoretical explanations truly inevitable? Or is the human brain some-

how tuned to latch onto only the symmetric aspects of the universe? In

order to understand why symmetry appeals so strongly to us, we must

understand how it affects the human mind.
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— EIGHT —

Who's the Most
Symmetrical of Them All?

or how long do you think you could bear to have a civil con-

versation with the man in figure 97 before the lopsided appear-

ance of his glasses would drive you nuts? Or suppose you
enter somebody's house and you discover that the pictures hung on the

walls display an "arrangement" such as the one in figure 98. Wouldn't

you instinctively want to adjust each and every one of them? How and

why did this craving for bilateral symmetry develop in the human mind?

One of the goals of evolutionary psychology is to answer precisely these

types of questions.

Evolutionary psychology is a science that attempts to combine the

best of two worlds—evolutionary biology and cognitive psychology.

In this view, the human mind is really

a collection of numerous special-

purpose modules that were designed

and shaped by natural selection to

solve very specific adaptive problems.

An adaptive problem is any challenge

posed by the environment, to which

the human ancestors' minds needed to

rise in order for these two-legged crea-

tures to survive and reproduce success-

fully. In other words, according to

evolutionary psychology pioneers Leda Cosmides and John Tooby, the

human mind is a bit like a Swiss army knife, with many different "gad-

gets," each one designed for a specific task. Evolutionary psychologists

F
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Figure 98

reject ideas about more general-purpose processes in the mind. They

argue convincingly that all the problems hominids have ever had to face

were always specific in nature rather than general.

Clues coming from a variety of areas, ranging from biology and

anthropology to archaeology and paleontology, suggest what the most

crucial adaptive problems might have been. In broad terms these include

escaping from predators, identifying the right food, forming alliances,

supporting offspring and close kin, communicating with other humans,

and selecting mates. Where does symmetry come into all of this?

FEARFUL SYMMETRY

Few could compete with Oscar Wilde in the battle of one-liners. In The

Picture of Dorian Gray he declares, "A man cannot be too careful in the

choice of his enemies." Jokes aside, from an evolutionary point of view

this is a very perceptive observation. Genes cannot fulfill one of their

main tasks—getting themselves passed intact to the next generation—if

their carrier manages to get him- or herself devoured by a predator. Any

genes that somehow help an animal to escape from predators would

therefore inevitably be favored by natural selection. Such genes would

participate in the evolutionary construction of mental "predator-

avoidance modules." The tasks of these modules are pretty obvious.

First and foremost, potential predators have to be detected. Without
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early detection, no action can be taken, and the consequences can be

catastrophic. Only in subsequent stages do other functions need to be

activated—real dangers have to be distinguished from false alarms, and

responses have to be triggered accordingly. Consequently, the predator-

avoidance modules have to be primarily predator-detection devices.

Numerous experiments show that the perceptual systems of many

creatures, from honeybees and pigeons to humans, are highly sensi-

tive to bilateral symmetry. Symmetric patterns are both detected faster

than asymmetrical ones and are easier to learn and retrieve from mem-

ory. Could these cross-species capabilities be somehow related to the

predator-avoidance needs? What was the precise adaptive problem that

the perceptual hardware/software was trying to solve? A clue to the

answer may be gleaned from asking the question differently: In a world

devoid of churches, cars, airplanes, and other human-made artifacts,

what looks bilaterally symmetric? The answer is as plain as the nose on

one's face—animals and humans! In fact, while the rear end of a lion is

also bilaterally symmetric, the symmetry there is not nearly as striking

as that of its front view. In other words, the detection of bilateral sym-

metry translates for an animal more or less into "I am being watched."

The watcher's intentions need not necessarily be malicious—he, she, or

it might simply be enjoying the view or selecting a mate. Yet there is no

question that early detection of bilateral symmetry could mean the dif-

ference between life and death to the subject of attention.

Neuroscientist Joseph LeDoux of the Center for Neural Science at

New York University is one of the pioneers of the study of emotions as

purely physiological, as opposed to behavioral, phenomena. LeDoux is

not interested in complex feelings, such as the mingling of love and com-

pulsion or the conscious struggle invoked by the interplay between

desire and jealousy. Rather, he studies the brain circuitry that leads to

the emotion of fear. LeDoux finds that the response to fear is a cognitive

unconscious that does not involve "the higher processing systems of the

brain." Put plainly, the brain's predator-detection module faces the same

dilemma encountered by any designer of burglar alarm systems. On

one hand the designers want the system to be able to respond instanta-

neously to any break-in attempts, but on the other, they want to mini-

mize the number of false alarms. On balance, however, a delayed

response could prove much more costly and dangerous than a few false

alarms. Not surprisingly, therefore, LeDoux finds that the brain oper-
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ates through two separate neural pathways. One shorter "quick and

dirty" route allows animals to respond to potentially dangerous stimuli

even before the brain has fully analyzed the stimuli. The other "high

road" passes through the sensory cortex and benefits from more exten-

sive processing.

Central to the immediate emotion (rather than the conscious feeling)

of fear is the amygdala—a small almond-shaped structure in the fore-

brain (amygdala is Latin for "almond"). LeDoux used chemicals that

stain neurons to trace the brain circuitry in rats and to map the precise

path that fear takes. This is a significant step beyond the mere "pulling

habits out of rats" approach that has characterized much earlier, purely

behavioral studies. LeDoux found that as soon as one rat sounds the first

alarm (in the form of high-pitched screams), the signal received by other

rats goes straight from their sensory thalamus (the dual-lobe gray matter

that relays sensory signals) to the amygdala. The amygdala in turn, upon

reception of a powerful stimulus, triggers the entire defense system. The

response can be either in the form of freezing—to avoid being seen—or

in the heart racing and hormones flooding the bloodstream. These hor-

mones help provoke the appropriate course of action —the rat either

runs for its life or prepares to fight the predator.

The amygdala seems to govern the fear response in all species that

have this structure, including humans. Research showed that a woman

with a brain lesion in the amygdala entirely lost her ability to detect and

recognize any facial expressions related to fear.

Clearly, the "quick and dirty" mechanism is likely to trigger quite a

few false alarms and unnecessary panic attacks. However, the thalamus

also sends information to the more accurate signal-processing center—

the sensory cortex. This slower pathway eventually provides the amyg-

dala with a more reliable representation of the actual stimulus and stops

the animal from overreacting.

As we have just seen, the bare detection of bilateral symmetry could

at times set off the siren that puts the entire (cognitive unconscious) fear

machinery into motion. Bilateral symmetry can also act, under different

circumstances, as an antipredator defense mechanism in itself. Many

animals (known collectively as aposematic animals) use various signals,

such as distinctive odors, sounds, and color patterns, to advertise their

risk or distastefulness to predators. Some butterflies, for instance, have

large, conspicuous eyespots that are concealed at rest but are exposed
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when a potential predator is detected. The sudden appearance of a pair

of "eyes" often confuses the predator sufficiently so as to give the but-

terfly an opportunity to flee. Among the various visual warning signals

that aposematic creature use, bilaterally symmetric ones have proven

to be the most effective.

Specifically, fascinating

experiments that have

subjected artificial paper

"butterflies" with differ-

ent wing patterns to pre-

dation from domestic

chicks have shown that

the protective value of

such visual warning dis-

plays is enhanced by large

and symmetric pattern

elements. In the experiment conducted by Swedish researchers, the

paper butterflies (figure 99) were affixed under plastic petri dishes, and

food crumbs were placed inside each dish. In each treatment, forty-five

monochrome black butterflies with palatable crumbs and forty-five

aposematically signaling butterflies with unpalatable quinine-treated

crumbs were placed on the floor. The aposematic butterflies had either a

symmetric or asymmetric warning pattern, and each group of chicks was

exposed to one type (symmetric large, symmetric small, or asymmetric)

of unpalatable signaling butterfly. The experimental results suggested

that asymmetry in the patterns impairs the efficacy of the aposematic

signals. The researchers concluded that this was probably due to the fact

that deviations from symmetry elicit a weaker neural response and

thereby make the signal more difficult for the chicks to detect, remem-

ber, or associate with unpalatability. Collectively, the findings of this and

similar research lead to an interesting conclusion: Prey species possess-

ing warning coloration may be subjected to a natural selection for large

and bilaterally symmetric patterns.

The. British statesman and philosopher Edmund Burke (1729-97)
said once that "no passion so effectually robs the mind of all its powers

of acting and reasoning as fear." This is probably true, but the cognitive

unconscious response to fear, occasionally triggered by the detection of

symmetry, may sometimes be all that is needed to avoid a predator. Sim-
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ilarly, in the signaling arena, the provocative display of symmetric,

aposematic signals provides in some cases a protective shield against

potential predators.

The role of symmetry in both types of predator-avoidance mecha-

nisms (detection and signaling) is a negative one. Symmetry acts in some

sense as a repelling agent, if an important one. Can it also provoke an

encouraging, inviting stimulus? The process of mate selection shows that

indeed it can, perhaps even more so than you might expect.

BIRDS DO IT, BEES DO IT,

EVEN EDUCATED FLEAS DO IT

Avoiding predators and eating the right food are very important for sur-

vival. From the genes' perspective, however, survival is only a means to

an end. Even if all humans had successfully implemented the ideas in

comedian George Burns's book How to Live to Be 100—Or More, this

in itself would be of no use whatsoever to the genes, unless these humans

also had offspring. Reproduction and the passing of genes to the next

generation is what genes are really all about. As evolutionary biologist

and author Richard Dawkins has put it, "An organism is just a gene's

way of making more genes."

In some species, individuals can reproduce by themselves—they

divide in two, and each part becomes a new creature. Nature clearly

decided that this asexual process is less fun, because most of the 1.7 mil-

lion or so species on Earth engage in sexual reproduction. More seri-

ously, sexual reproduction must offer an adaptive benefit to species, or it

would not be so prevalent. The obvious difference (between the sexual

and asexual routes) is that offspring produced sexually can benefit from

the swapping of their parents' genes. The new and improved genetic

makeup can limit damage caused by harmful mutations and can enhance

the fitness of the offspring. In order to fully exploit the advantages of

sex, however, individuals have to select the most appropriate mates.

"Most appropriate" from the genes' point of view means a mate with

characteristics that increase the chances of survival and reproduction of

the offspring. This translates into two main traits: high quality of genes

(in terms of fitness), and capability of parental care. Here I shall concen-

trate on the first of these properties, since it is the one most directly

related to symmetry.



WHO'S THE MOST SYMMETRICAL OF THEM ALL? 239

Offspring inherit 50 percent of their genes from each parent. Conse-

quently, mating with someone with "good" genes is vitally important.

This realization goes back to Darwin himself, who recognized that in

addition to being driven by natural selection for survival, evolution is

also shaped by sexual selection through mate choice. Here, however,

comes the main puzzle. Clearly our ancestors were not equipped with

DNA-testing kits, so how could any individual assess the genetic fitness

of his or her potential mates? Even with DNA-testing facilities becom-

ing available today, most humans still don't rely on them for the choice

of their sweethearts, nor will the voluntary mate choices of long-tailed

widowbirds or peahens ever depend on such testing. A complete under-

standing of the process of mate selection requires no less than the unrav-

eling of all the mysteries of sexual attraction, which is clearly far beyond

the scope of the present book. Of the many interesting aspects of this

problem I shall discuss only those related specifically to symmetry.

So how are mates being chosen? Fundamentally, both animals and

humans are looking for (among other things) some reliable fitness indi-

cators. They search for those biological characteristics that have specifi-

cally evolved to signal and advertise fitness. Note that this means that

during the same period that these fitness signs have evolved, so has the

ability of the sensory system to detect and recognize them. That is, a

baboon's flaming red butt would be useless from an evolutionary per-

spective without a concomitant preference for red butts evolving in the

perception system of potential mates. Male trait and female preference

coevolve to even more extreme characteristics as long as the mating ben-

efit is not balanced by some oppositely directed natural selection force.

Much research suggests that one of the most powerful fitness indicators

is bilateral symmetry. In order to appreciate this concept, examine the

particular and oft discussed case of the peacock's tail. A large, perfectly

symmetric tail announces to the world loud and clear: "My proprietor is

free of parasites and has had no distorting mutations." Bird parasites are

so common and they mutate so rapidly that any bird that can demon-

strate having conquered them has to possess very healthy genes. A para-

site-infested peacock would have a drab, asymmetric tail. In other

words, precise symmetry can be a very clear indication of developmen-

tal stability. Even relatively small deviations from perfect symmetry

(termed fluctuating asymmetry) can reveal how well the genome is suited

to the environment.
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The association between mate choice and genetic quality received a

significant boost from an influential work by biologists William Hamil-

ton and Marlene Zuk in 1982. The researchers examined blood parasites

in North American birds and their potential relation to striking display.

The results suggested that animals indeed choose mates for genetic dis-

ease resistance by screening for characteristics whose expression is

dependent on health. Other experiments, with barn swallows (by

Swedish biologist Anders Moller) and with zebra finches (by British

biologists John Swaddle and Innes Cuthill), also showed that females use

symmetry as a criterion in partner preference.

A corresponding sensitivity to symmetric patterns had to develop on

the receiving end of the fluctuating asymmetry signals. Biologists Randy

Thornhill, Andrew Pomiankowski, and colleagues have proposed that

preferences for symmetry have evolved in animals precisely because of

the fact that the degree of symmetry in signals indicates the signaler's

quality. Symmetry cannot be faked. You may wonder why any animal

would grow such a large and difficult-to-manipulate ornament as the

peacock's tail in the first place. The Israeli biologist Amotz Zahavi pro-

posed a very plausible answer that has become known as the handicap

principle. With hindsight, Zahavi's idea is very simple: The high cost (in

terms of difficulty of growing and handling) of the sex ornament is just

what makes it a reliable fitness and mate-choice indicator in the first

place. If someone tells you on the phone that she loves you, this is very

nice, but if she uses her last dime for a ticket to fly all the way from Japan

to see you, this demonstrates a deeper level of commitment. High-cost

and high-maintenance ornaments work because those are precisely the

qualities that inspire more confidence in a potential mate. Higher-

quality males can presumably afford to spend the extra energy that is

required for such extravagant displays.

Not all agree that the preference for symmetry is necessarily a conse-

quence of symmetry being a fitness indicator. In an interesting paper

entitled "Symmetry, Beauty and Evolution," Swedish biologist Magnus

Enquist and British engineer Anthony Arak proposed that symmetry

preferences may arise simply because symmetrical objects are more eas-

ily recognized than asymmetrical ones, irrespective of their orientation.

After all, one of the problems faced by animals is the need to recognize

objects in different orientations and positions in the visual field. Any

help that the perception system can get would be appreciated and prob-
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ably preferred, resulting in a sensory bias for symmetry. Enquist and

Arak used artificial neural networks as models of recognition systems.

Neural networks are computer systems loosely based on the operation

of the brain that are able to learn from experience in order to improve

their performance. In the experiments by Enquist and Arak, the prefer-

ence for symmetry was definitely a sensory exploitation—a consequence

of the need to recognize signals—and it had nothing to do with the

assessment of genetic quality. Similar results were obtained in a separate

artificial neural network experiment by Cambridge biologist Rufus

Johnstone. Again the implication was that mating preferences for sym-

metry evolve as a simple by-product of selection for mate recognition,

rather than because of the relation between the degree of fluctuating

asymmetry and mate quality.

From the perspective of the discussion here, however, it does not

really matter whether the preference for symmetry in mate selection

in the animal kingdom is a result of a search for quality or for recog-

nition. Preferences for symmetry might have evolved for a variety of

reasons. The important point, however, is that there is a preference for

symmetry—symmetry plays a crucial role in animal mate selection.

WHAT'S LOVE GOT TO DO WITH IT?

Humans are very complex animals. An inseparable mixture of evolu-

tionary psychology, culture and ethnicity, various beliefs, and personal

interests and traits determines what humans find attractive. Yet, deep

down, the genes' desire to procreate is still one of the powerful forces

within the human mind. In the search for a healthy, fertile mate, our

minds are programmed no differently from those of our Stone Age

ancestors. Beauty may be in the eye of the beholder, but as evolutionary

psychologist David Buss has put it, "Those eyes and the minds behind

the eyes have been shaped by millions of years of human evolution."

The sense of what is attractive is largely determined by an adaptive deci-

sion-making machinery that has evolved at least partially for mate selec-

tion.

If you think that attractiveness is unimportant, think again. Anna

Kournikova was ranked around seventieth in women's tennis through-

out most of 2003, yet she made millions of dollars more in endorsements

than players ranked significantly higher. In case you wonder why, here
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is a hint—she was also featured twice on the cover of Maxim magazine.

The creators of the ABC News program 20/20 conducted an experiment

to gauge how often attractive men and women get preferential treat-

ment. In one test in Atlanta, two actresses dressed alike were each made

to stand helplessly next to a car that had run out of gas. For the more

average looking of the two, a few pedestrians stopped, but only to point

her to the nearest gas station. For the more attractive actress, no fewer

than a dozen cars stopped, and six drivers actually went to get her gas!

In a second experiment, 20/20 hired two men to apply for a job. The

two candidates had similar education and work experience, and even the

small differences that did exist in their résumés were deliberately ironed

out. There was, however, one noticeable difference between the two

men—one was very attractive while the other was more ordinary look-

ing. Believe it or not, the interviewer was eager to have the more attrac-

tive man return as soon as possible for a tryout day, while the more

plain-looking man got a "don't call us, we'll call you" reply.

Even the area in the brain that responds to beauty has been identified.

Researchers Hans Breiter, Nancy Etcoff, Itzhak Aharon, and their col-

laborators used magnetic resonance imaging (MRI) to investigate the

activity in men's brains when they were shown pictures of particularly

attractive women. They found that beauty triggers the same area in the

brain that is triggered by food (when the person is hungry) or by other

subjects of addiction (e.g., when a compulsive gambler sees a roulette

wheel).

For a long time it has been assumed that the criteria for beauty are

largely cultural, and therefore learned rather than innate. More recent

studies by University of Texas at Austin psychologist Judith Langlois

have totally overturned this conventional wisdom. Langlois first had

adults rank pictures of both white and black females for attractiveness.

Then the pictures were shown in pairs (one more attractive than the

other) to infants in two age groups —two to three months and six to

eight months old. Infants in both age groups were found to gaze longer

at the faces ranked more attractive. Similarly, one-year-old infants were

found to play for a significantly longer time with facially attractive dolls.

Other studies tested for changes in taste across cultures. Psychologist

Michael Cunningham found an incredible consensus in the judgment of

facial attractiveness of women of different races by men of different

races. The agreement persisted even when different degrees of exposure
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to Western mass media were considered. Studies that were performed

across geographical and ethnic boundaries (e.g., with Chinese, Indian,

South African, and North American men) produced very similar results.

Taken together, all of these studies seem to indicate that there do exist

some universal criteria for attractiveness, and that attractive faces enjoy

a far-extending appeal that emerges very early in life and is consistent

across cultures. The beauty detectors may not quite be innate, but the

human mind may have innate basic rules from which templates of attrac-

tiveness are constructed.

So maybe there is a bias for "lookism," but what is it that men and

women find attractive? Biologist Randy Thornhill, psychologist Steve

Gangestad, and ethologist Karl Grammer have amassed a large body of

evidence that shows that symmetry is a key factor. Thornhill, Gange-

stad, and their colleagues measured symmetry in close to a thousand

students on different facial features (placement of eye corners, pupils,

cheekbones, edges of mouth, and so on) and body features (foot breadth,

hand breadth, elbow breadth, ear length, length of second and fifth fin-

gers, and so on) to develop an overall index of asymmetry. When Thorn-

hill and Gangestad correlated these data with independent ratings of

attractiveness, they found that less symmetrical people in either body or

face were considered less attractive.

In a separate study, Grammer and biologist Anja Rikowski found a

relation even between symmetry and attractive body odor. In a study

that involved sixteen males and nineteen females, each subject wore a

T-shirt on three consecutive nights under controlled conditions. Imme-

diately after use, the T-shirts were deep frozen, and just before the eval-

uation of odor they were reheated to body temperature. Fifteen subjects

of the opposite sex then rated the smell for sexiness on a seven-point

scale. Twenty-two other men and women evaluated portraits of the sub-

jects for attractiveness, and indices of symmetry of the subjects were

calculated based on seven traits. The results showed that facial attrac-

tiveness and sexy body odor go hand-in-hand for female subjects. More-

over, the males found that the more symmetric the body of a woman, the

sexier her smell. Interestingly, women found the smell of more symmet-

ric men to be more attractive only when the women were in the most

fertile phase of their menstrual cycle.

Most surprisingly perhaps, Thornhill and Gangestad discovered a

relationship between symmetry and women's orgasms. The researchers
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reasoned that if the women's orgasms are in fact an adaptation designed

for securing healthy genes for their offspring, then women should expe-

rience more orgasms with more symmetrical mates. Conducting a study

with eighty-six heterosexual student couples, the researchers found that

indeed the women whose partners were most symmetrical experienced a

significantly higher frequency of orgasms. Somewhat unexpectedly, the

researchers did not find any correlation between female orgasm during

sex and the level of romantic attachment or the sexual experience of the

partners. Before any female reader rushes to find a symmetrical guy, I

should note that studies also show that the most symmetrical men invest

the least in their relationships and cheat more often on their mates.

Female orgasm seems to be less about bonding with a great person than

about a cold Stone Age evaluation of the mate's genetic endowment.

Independent research by psychologists Todd Shackelford and Randy

Larsen showed that symmetry in the human face correlates very well

with other fitness indicators, on both the physiological and the psycho-

logical sides. In particular, men with asymmetric faces were found to be

more likely to suffer from depression, anxiety, headaches, difficulties in

concentrating, and even stomach problems. Women with facial asymme-

try were also found to be of poorer health and more prone to emotional

instability and depression. Furthermore, symmetry is also another cue

to youth, because the older people get, the less symmetrical their faces

become.

The picture that emerges is very suggestive. Just as in the animal

kingdom the process of mate selection may have identified symmetry as

a good fitness indicator, for humans too, bilateral symmetry has been

equated with developmental stability, youth, and resistance to various

debilitating pathogens. The result, in terms of animal/human "magne-

tism," was inevitable—symmetric has become almost synonymous with

attractive.
I do not want to leave you with the impression that symmetry is the

only quality that affects attractiveness. Psychologist Judith Langlois and

her collaborators emphasize averageness in the face as being most attrac-

tive. Langlois generated computer composites of four, eight, sixteen, and

thirty-two faces. To her surprise she found that the composite faces were

uniformly judged to be more attractive than the individual faces from

which the composites were made. Sixteen-face composites were ranked

above four- or eight-face composites, and the thirty-two-face composite
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was found most attractive. While composite faces tend, by construction,

to also be more symmetric, Langlois found that even after the effects of

symmetry have been controlled, averageness was still judged to be

attractive. These findings argue for a certain level of prototyping in the

mind, since averageness might well be coupled with a prototypical tem-

plate.

Cognitive scientist David Perrett of the University of St. Andrews in

Scotland found that faces we find attractive are often appealing because

they look like our own, or like the faces of our parents. Intrigued by

these results, I called him up during a visit to St. Andrews, to find out

why he thought that was an adaptive choice. He first emphasized that

for the mind to be able to help with mate selection it has to be a learning

system. "Specifically," he added, "the mind needs to have the ability to

lock onto things that are relevant from the immediate environment—

like symmetry or averageness. Finding someone with resemblance [to

you or to your parents] attractive may also make sense, since your fam-

ily has already succeeded in surviving through the evolutionary path."

Other factors that affect mate selection are related to indicators of

fertility, resources, and capacity and willingness for parental care. For

instance, studies by psychologist Devendra Singh show that almost uni-

versally, men prefer women with the classical "hourglass" figure charac-

terized by a waist-to-hip ratio of 0.7. The adaptive reason behind this

preference may be the fact that this ratio was also found to be a good fer-

tility indicator. A potentially related preference was also found for breast

symmetry. Other surveys find that women generally prefer men who are

somewhat older than themselves, probably because of the female prefer-

ence for males with resources.

Even the brief description of results and ideas from evolutionary

psychology that I have presented in this chapter seems to lead to an in-

escapable conclusion. Either because of mate selection, cognition, preda-

tor avoidance, or a combination of all three, our minds are attracted to
and are finely tuned to the detection of symmetry. The question of

whether symmetry is truly fundamental to the universe itself, or merely

to the universe as perceived by humans, thus becomes particularly acute.
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DOES SYMMETRY REALLY RULE?

Imagine what would have happened if the human eye were sensitive

only to blue light. Prior to the development of any other light detectors,

scientists would have naturally concluded that everything in the uni-

verse is blue (even just the thought gives me the blues). Similarly, a pest

control company that manufactures humane mousetraps that are three

inches long might conclude that all mice are shorter than three inches,

because all the mice actually trapped would be of such lengths. These are

simple examples of observational selection effects— filterings of physical

reality introduced by unrecognized biases either in the methods of

observation or the observational tools. Could our mind's preference for

symmetry introduce a similar bias in our perception of what is truly fun-

damental in the universe?

I need to emphasize here again that I am focusing on the symmetries

of the laws of nature and their description using group theory, not on the

symmetry of any particular structures in nature. Perfect crystals are

examples of the latter. They look precisely the same when we move

within the crystal by certain amounts in various directions. Crystallog-

raphy is the science studying the structures and properties of assemblies

made of very large numbers of identical units. The units themselves may

be composed of atoms, molecules, or, in a more abstract context, even

pieces of computer code. A typical question in crystallography might be,

how can a large number of identical units be arranged in space so that

each unit will "see" identical surroundings? Group theory is the bread

and butter of crystallography—the attempts to answer the above ques-

tion resulted in a proof that there exist only 230 different types of spatial

symmetry groups (just as there are only 7 different symmetry groups of

linear strip patterns; see chapter 7).

Symmetry principles manifest themselves also in the structure of a

variety of biological molecules and organisms, from crystallized pro-

teins and DNA to viruses. All of these symmetries are obviously impor-

tant, since they represent stable (minimum-energy) systems, which in

turn form minerals and living things. However, these are not symmetries

that underlie the basic laws of nature.

When it comes to the laws, there is absolutely no doubt that symme-

try and group theory are extremely useful concepts. Without the intro-

duction of symmetry and the language of groups into particle physics
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the description of the elementary particles and their interactions would

have been an intricate nightmare. Groups truly flesh out order and iden-

tify patterns like no other mathematical machinery.

In an interview in 1985, Harvard mathematician Andrew Gleason

said, "Of course mathematics should work in physics! It is designed to

discuss exactly the situation that physics confronts; namely, that there

seems to be some order out there — let's find out what it is." In addition

to its usefulness, symmetry removes redundancies from the description

of both real and abstract systems. For instance, imagine that a certain

system is represented symbolically by the string of characters

XYZXYZXYZXYZXYZ .

We can use the translational symmetry of the symbols to remove the

redundancy and reduce the description to the much more compact form

5 "-(XYZ), reading as "repeat the substring XYZ five times." Similarly, in

the string

UVWXYZZYXWVU

we can use the reflection symmetry to reduce the string to

SYM(UVWXYZ), where the operator SY M indicates this type of reflec-

tion. The real question is, therefore, whether symmetry is indeed

embedded in nature's fabric or if it only represents a convenient way for

us to build a dialogue with physical reality. This is not an easy question.

In certain steps along the road toward the ultimate theory of the uni-

verse, symmetry appears to be more fundamental than in others. The

basic symmetry between any two observers that underlies relativity, for

instance, is an exact symmetry that appears indeed to characterize

nature's ways. On the other hand, one of the early models for atomic

nuclei, known as the Elliott model, was described by a symmetry (and an

associated group) even though that symmetry was known to be only

approximate, and almost certainly not fundamental.

One potential problem with some of the gauge symmetries assumed

to underpin the standard model is that of symmetry breaking. Let me

explain this concept briefly. Examine the top view of a dinner table

in figure 100, where the small plates are for bread. All the seats around

the table are identical, and from the viewpoint of any person sitting

at the table, left and right are indistinguishable. The configuration is

therefore symmetric both under rotation (through integer multiples of
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360 ± 8 = 45 degrees) and under reflection (about eight axes). As soon,

however, as bread is served and the first person puts it on a plate (to her

left, I am told), the symmetry is "spontaneously broken." Left and right

become distinct, and rotational invariance is lost.

Recall that in the electroweak theory, electromagnetism and the weak

force are two sides of the same coin (chapter 7). The force carriers—the

photon, W, and Z— are interchangeable. A question that immediately

emerges is, why then do these two forces have such different manifesta-

tions (e.g., one is a hundred thousand times stronger than the other) in

today's universe? The standard model puts the blame on symmetry

breaking. According to the most

popular scenario, shortly after the

moment our universe came into exis-

tence (the event we call the "big

bang"), there was perfect symmetry

between electromagnetism and the

weak force. At the huge temperatures

that characterized this phase, pho-

tons and W and Z particles were truly

indistinguishable. As the universe

expanded and cooled down, however,

it underwent a phase transition—not

unlike the freezing of a liquid—in which symmetry breaking occurred.

This is supposed to have happened when the universe was a tiny fraction

(about 10- 12 ) of a second old. The liquid analogy can, in fact, be carried

one step further. A liquid looks the same however you turn it—there is

no preferred direction. This symmetry is lost, however, when the liquid

freezes. The crystalline structure that emerges has some preferred axes.

The breaking of the symmetry between the electromagnetic and weak

forces that was associated with the cosmic "freezing" is believed to have

generated the differences we observe today. The W and Z were endowed

with masses while the photon remained massless. The range of the weak

force is limited to distances of the order of the size of the nucleus only

because of its sluggish, heavyweight carriers.

To the uninitiated the above description may sound a bit like an

imaginative fairy tale. Such a person may think that particle physicists

have invented a symmetry that is supposed to characterize the basic

forces of nature, and when the present-day universe was found not to
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obey that symmetry, they concocted a very convenient symmetry-

breaking scenario. Actually, the status of the theory is much more solid

than the above description suggests. Many predictions of the standard

model have been spectacularly confirmed experimentally (chapter 7).

Even more important, experimental tests of the entire scheme of sym-

metry breaking will become feasible soon. In the same way that the

freezing points of liquids can be estimated from atomic masses and the

energies that bind atoms together, the known parameters of the standard

model can be used to estimate the energy at the point of symmetry

breaking. The required energies are either already within the reach of a

large particle accelerator—such as the Tevatron at the University of

Chicago's Fermilab — or will be achievable by CERN's Large Hadron

Collider around 2007. At the very least, these experiments are expected

to tell us whether the theoretical ideas of symmetry breaking are on the

right track. The same experiments could also test the predictions of

supersymmetry. Recall that if the real world obeys supersymmetry, then

a whole host of new particles is waiting to be discovered. The spin-14

electron should have a spin-0 partner (called a "selectron"), the spin-1

photon should have a spin- "photino" partner, and similar partners are

predicted to exist for every particle in the standard model.

Strictly speaking, however, even an experimental confirmation of

symmetry breaking and supersymmetry will not prove unambiguously

that symmetry is fundamental, as opposed to useful. As we have seen,

supersymmetry is still only a feature of string theory, rather than its

source. The underlying principle of the theory is still to be unveiled, and

it may or may not prove to be a symmetry principle.

There is another reason why we should exercise some caution before

we hail symmetry as the main mover in the genesis and workings of the

universe, and group theory as its primary language. This reason can per-

haps be best demonstrated using the example of the Kariera kinship-

marriage rules. Recall that these rules of an Aboriginal tribe were shown

to form a group that has the same structure as the famous Klein four-

group. There is no doubt, however, that the Kariera did not intend their

rules to represent any particular mathematical structure. We are there-

fore faced with a situation where we have identified a mathematical tool

that provides a perfect description of the reality, but where the true rea-

sons for that reality remain unknown. The actual motivation that has led

the Kariera to choose this particular set of maxims may have relatively
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little to do with the order we have recognized in it, even though a deeper

analysis might reveal that these rules provide for a stable society.

While I was struggling with this question of how fundamental sym-

metry really is, I decided to conduct a small survey among some of the

world's top physicists and mathematicians to find out what their

thoughts on the subject were. Steve Weinberg, Nobel Prize laureate in

physics in 1979 and one of the key players in the development of the

standard model, agreed that symmetry might not be the most funda-

mental concept in the ultimate theory. He added, "I suspect that at the

end the only firm principle will be that of mathematical consistency." Ed

Witten, recipient of the Fields Medal in mathematics in 1990 and the per-

son who brought about the second string revolution, also stressed that

"there are still missing or unknown ingredients in string theory" and

that "some concepts, such as Riemannian geometry in general relativity,

may prove to be more fundamental than symmetry." Sir Michael Atiyah,

who received the Fields Medal in 1966 and the Abel Prize in 2004,

alluded to human-mind-driven selection effects. "We come to describe

nature with certain spectacles," he said. "Our mathematical description

is accurate, but there may be better ways. The use of exceptional Lie

groups may be an artifact of how we think of it." The last phrase, in par-

ticular, reminded me of another interesting statement by the famous

mathematician and philosopher Bertrand Russell (1872-1970): "Physics

is mathematical not because we know so much about the physical world,

but because we know so little; it is only its mathematical properties that

we can discover." In other words, Russell saw even our description of

the universe through mathematics as being dangerously close to some

sort of selection effect. Freeman Dyson, one of the principal figures in

the development of quantum electrodynamics and recipient of the Wolf

Prize in physics in 1981, offered, as always, his unique perspective: "I

feel that we are not even at the beginning of understanding why the uni-

verse is the way it is." After a few seconds of reflection, he added, "Even

such simple things as our ability to tell whether a line is perfectly

straight, or to distinguish between a circle and an ellipse, are mysteries in

themselves." Concerning symmetry, he confessed that he does not much

like the word "fundamental" and prefers to use "fruitful" when referring

to symmetry as the source of forces (as in the case of the gauge symme-

tries of the electroweak theory). Finally, he noted that symmetry and
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group theory have become much more powerful descriptors since the

introduction of quantum mechanics.

What can we conclude from all of these insights in terms of the role

of symmetry in the cosmic tapestry? My humble personal summary is

that we don't know yet whether symmetry will turn out to be the most

fundamental concept in the workings of the universe. Some of the sym-

metries physicists have discovered or discussed over the years have later

been recognized as being accidental or only approximate. Other sym-

metries, such as general covariance in general relativity and the gauge

symmetries of the standard model, became the buds from which forces

and new particles bloomed. All in all, there is absolutely no doubt in my

mind that symmetry principles almost always tell us something impor-

tant, and they may provide the most valuable clues and insights toward

unveiling and deciphering the underlying principles of the universe,

whatever those may be. Symmetry, in this sense, is indeed fruitful.

In The Feynman Lectures on Physics, a book based on a course given

by the famous physicist Richard Feynman during the academic year

1961-62, Feynman concludes his discussion of symmetry thus:

So our problem is to explain where symmetry comes from. Why is

nature so nearly symmetrical? No one has any idea why. The only

thing we might suggest is something like this: There is a gate in Japan,

a gate in Neiko, which is sometimes called by the Japanese the most

beautiful gate in all Japan; it was built in a time when there was great

influence from Chinese art. This gate is very elaborate, with lots of

gables and beautiful carving and lots of columns and dragon heads

and princes carved into the pillars, and so on. But when one looks

closely he sees that in the elaborate and complex design along one of

the pillars, one of the small design elements is carved upside down;

otherwise the thing is completely symmetrical. If one asks why this

is, the story is that it was carved upside down so that the gods will

not be jealous of the perfection of man. So they purposely put an

error in there, so that the gods would not be jealous and get angry

with human beings. We might like to turn the idea around and think

that the true explanation of the near symmetry of nature is this: that

God made the laws only nearly symmetrical so that we should not be

jealous of His perfection!
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Symmetries associated with the laws of nature are not the only topic

in which Galois's legacy has generated and continues to generate new

ideas. We can get at least a taste of this incredible heritage by examining

a few simple examples, spanning a range of artistic and intellectual activ-

ities from music to modern algebra.

WHAT PASSION CANNOT MUSIC RAISE AND QUELL?

The title of this section is taken from "A Song for St. Cecilia's Day," by

the famous English poet and dramatist John Dryden (1631-1700). The

feast of St. Cecilia (November 22) commemorated the legend that this

patron saint of music invented the organ. The theme of this poem is a

tribute to the power of music. Indeed, few art forms are as allied to both

emotional states and the rhythm of the human body as music is. Our

breathing and heartbeat, for instance, are intimately correlated with the

level and nature of our activities and with the intensity of our excitement

or fear. Many pieces of music, none perhaps more so than Ravel's cele-

brated Bolero, provide a direct reflection of these rhythms of life. In fact,

in Blake Edwards's 1979 movie 10, the Bolero was declared to be the per-

fect soundtrack for making love. As I noted already in chapter 1, to say

that symmetry plays a major role in music is to state the obvious. Con-

sequently, it was only to be expected that group theory would describe

musical structures and patterns beautifully.

The notes on a piano keyboard provide the simplest example of a

groups-music relationship. The pitch of a tone is characterized by the

number of vibrations per second (e.g., of a string), the frequency. Fre-

quency is measured in vibrations per second or hertz (denoted by Hz),

after the German physicist Heinrich Rudolf Hertz. For example, the fre-

quency of middle C (or "do" in the major scale) on the piano keyboard

(figure 101) is about 261.6 Hz. The frequency of A 4 (or "la") is 440 Hz.

The octave is defined so that the ratio of frequencies is precisely equal to

2. One octave higher than middle C has a frequency of 261.6 x 2 = 523.2

Hz, and one octave lower has a frequency of 261.6 2 = 130.8 Hz.

Notes that are separated by a precise whole number of octaves have the

same name and they sound alike. In the "equally tempered system" pop-

ularized by Bach in his impressive collection of preludes and fugues, all

keys have equal status. The ratio between the frequencies of any two

adjacent keys is the same and equal to 1.05946. This number (equal to the



twelfth root of 2) is obtained simply by the requirement that when

raised to the power 12 (there are twelve semitones or half steps in the

octave) it gives a ratio of 2, corresponding to the tone one octave higher.

The Greek mathematician Pythagoras is traditionally credited with

the discovery that two notes that correspond to frequencies whose ratio

is equal to the ratio of two simple whole numbers (such as 3:2) yield har-

monious ("consonant") and pleasing sounds. A perfect fifth, for

instance, is characterized by a frequency ratio of 3:2, which corresponds

to a separation by seven semitones (the seventh power of 1.05946 is very

close to 1.5). A perfect fourth corresponds to a frequency ratio of 4:3 and

five semitones.

Since there arc twelve semitones in the octave, we can conveniently

represent them on a clock face, as in figure 102. We can now move from

any note to any other note by performing precisely the same operation

as when we calculate the hour in the day. That is, when we want to know

what will be the time 9 hours after

7:00 p.m., we calculate 7 + 9 = 16 =

4:00 a.m. (because 12 is considered

also as 0). Adding numbers in this

fashion is called in the mathemati-

cal lingo addition modulo 12. For

instance, 8 + 7 = 15 = 3 (modulo

12), and 10 + 2 = 12 = 0 (modulo

12). The semitones of the equally

tempered system obey the same

rules. If you want to know which

note is 10 semitones above D# (fig-

ure 102), you calculate 3 + 10 = 13

= 1 (modulo 12) = C#. The set of numbers {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

11} or the corresponding notes on the musical scale form a group under

the operation of addition modulo 12. You can easily check closure—e.g.,
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9 + 4 = 13 = 1 (modulo 12)—and associativity. The identity is the

number 0, and any number has an inverse. For instance, the perfect fifth

(corresponding to 7 semitones) is the inverse of the perfect fourth (cor-

responding to 5 semitones), since 7 + 5 = 12 = 0 (modulo 12). This

makes good sense even from a

purely musical perspective, since

when these two intervals are

combined, this corresponds to a

frequency ratio of 3/2 x 4/3 = 2,

which is precisely an octave—

which gives the same sound. In

fact, very appropriately, musi-

cians call two intervals that combine to give an octave "inversions" of

each other. Another example of two such inversions (figure 103) is the

minor third (ratio of 6:5; 3 semitones) and the major sixth (ratio of 5:3; 9

semitones), since 3 + 9 = 12 = 0 (modulo 12).

Groups show up not only in the musical scale, but also in the struc-

ture of certain forms of music. A simple case is that of the round — a type

of short canon in which each voice enters in turn to sing the same

melody, as in the familiar "Frère Jacques" (figure 104).

If we denote the four different phrases by A, B, C, D respectively

(figure 104), then the structure is represented by AABBCCDD (each

phrase is repeated), and the round for four voices takes the form

Note that if a fifth voice were to enter, it would simply be repeating

or doubling the first voice. In fact, starting with any voice, if we were

to continue to add voices, then four voices down the line would result

in doubling. We could now denote by a the instruction "come in two
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bars later." This moves us from one voice to the next. Symbolically, a2

(or a a) would denote "come in four bars later," a 3 (a - a a) would be

"come in six bars later," and a 4 ("come in eight bars later") would result

in doubling of the same voice, or the identity. You can easily verify that

the four instructions I, a, a 2, a' (where I is the identity) form a group

under the operation "multiply" (e.g., a and a 3 are each other's inverses

since a a 3 = a 4 = I).

Clearly, neither Bach nor any of the other classical composers had

group theory in mind when they composed their music. Group theory

inevitably finds its way into the description of musical patterns simply

because of its very nature as a language of symmetries. Some twentieth-

century composers, most notably Arnold Schoenberg, Alban Berg, and

Anton Webern from the Second Viennese School, were said to have

flirted more deliberately with mathematically based music. In particular,

in the "method of composing with twelve tones" used in such pieces as

Berg's Lyric Suite, or Schoenberg's Piano Concerto, all harmonies are

based on a "twelve-tone row" that is in fact a permutation of the com-

mon twelve chromatic notes. A twelve-tone row could be used either

in its original order (selected by the composer), or it could be further

transformed by some operations. Three basic operations used by the

Viennese composers were row inversion, retrogression, and retrograde

inversion. In row inversion, descending intervals were replaced by

ascending intervals, and vice versa. For instance, if the original row

started with C and rose a perfect fourth to F, then the inverted row fell a

perfect fourth to G (figure 102). The retrogression reversed the order of

the melodic jumps. If the last jump in the original row was up a major

third, then this would be the first jump of the new row. Finally the ret-

rograde inversion applied both the row inversion and the retrogression

simultaneously. You can easily convince yourself that these three trans-

formations together with the identity ("do absolutely nothing") form a

group under the operation "followed by." In particular, each member of

this group is its own inverse.

Many people, including avid concertgoers, feel discomfort with

Schoenberg's atonal music, as they do with similarly experimental pieces

by Igor Stravinsky, Aaron Copland, Pierre Boulez, Luciano Berio, and

many others. Members of this anti-atonality audience would probably

argue that the use of mathematics by these composers (if indeed deliber-

ate) did not help the quality of the music. However, irrespective of what
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one's opinion on atonal music may be, there is no denial of the fact that

Schoenberg's and even more so Webern's "mathematical" experimenta-

tion opened the door to interesting avant-garde New Music and was the

inspiration for serialism. This revolution in composition replaced all the

traditional rules and conventions by a structural series of notes that gov-

erns the entire development of the composition. Fascinating music by

such composers as Olivier Messiaen and Milton Babbitt originated from

this radical change of tenets.

Music represents an art form in which only the very basic concepts of

groups have been implicated. The development of group theory itself,

however, did not stop at the beginning of the twentieth century. Rather,

a proof in group theory that was completed only in August of 2004 is in

some respects the most complex proof in the history of mathematics.

THE "THIRTY YEARS' WAR,"

OR THE TAMING OF THE MONSTER

Scientific endeavors are often a search for the most basic building blocks.

Regarding the structure of matter, this centuries-long quest has led to the

discovery of molecules and atoms, then of protons and neutrons, then of

the elementary particles of the standard model (quarks, electrons, neutri-

nos, muons, taus), and finally to the suggestion of strings. In the vast ex-

panses of space, astronomers are now searching for the first stars and

clusters of stars to have formed in the universe—the building blocks of

today's giant galaxies. In group theory, the hunt has been for a classifica-

tion of all the simple groups (which have no nontrivial normal sub-

groups) from which all other groups can be constructed. As we have seen

in chapter 7, the landmark classification of the simple Lie groups was car-

ried out at the end of the nineteenth century by Wilhelm Killing and Elie

Cartan. Lie groups are the groups of continuous transformations (such as

rotations in three dimensions) that were defined by Sophus Lie in 1874.

By their very nature, Lie groups have an infinite number of elements (e.g.,

there is an infinite number of possible rotation angles). Still, it suffices to

specify a finite number of parameters to fully characterize any Lie group.

For instance, the elements of the group of rotations of a circle in the plane,

usually denoted by SO(2) or U(1), are fully determined by specifying one

parameter —the angle of rotation. The dimension of this group is there-

fore 1. The group of rotations of a sphere in three-dimensional space can



WHO'S THE MOST SYMMETRICAL OF THEM ALL? 257

be characterized by three parameters — two angles that identify the axis of

rotation and one angle for the rotation itself. This group, denoted by

SO(3), therefore has dimension 3. Killing and Cartan managed to find

four infinite families of Lie groups (traditionally known as A,,,, B„„ C„„

D„„ for values of m = 1, 2,3, . . . ), and five sporadic groups that were in-

dividual "one-offs" that did not fit into any of the families. These spo-

radic groups are normally called G2, F4, E6 , E„ and E 8 , and they have

dimensions of 14, 52, 78, 133, and 248 respectively. As I have described in

chapter 7, the simple Lie groups play a crucial role in the standard model

and may prove to be an essential tool in string theory.

The classification of the finite simple groups turned out to be a much

more daunting task than its Lie-group equivalent. By the end of the

nineteenth century there were six infinite families and five sporadic

(exceptional) finite simple groups known. One of those families was

defined by none other than Galois himself as he was struggling with the

insolubility of the quintic. Recall that in an even permutation of a set of

objects, there is an even number of reversals from the natural or original

order (chapter 6), while in an odd permutation the number of reversals

is odd. For instance, 1324 represents an odd permutation of 1234,

because it involves only one reversal (3 appears before 2), but 4321 rep-

resents an even permutation because you can check that it involves six

reversals. We already know (chapter 6) that the collection of permu-

tations of n objects forms a group with n! elements. In fact, Cayley's

theorem states that every group has the same structure as a group of

permutations. The set of even permutations of any number of objects

also forms a group — a subgroup of the full group of permutations. This

is easy to understand: If one permutation involving an even number of

reversals is followed by a second even permutation, then clearly the total

number of reversals is also even, implying closure. The groups of even

permutations are known as the alternating groups. Galois showed that

the alternating groups obtained from permutations of more than four

elements are all simple, and this was precisely the property he used to

prove the insolvability of the quintic by a formula.

A second family of simple groups that was known to mathematicians

at the end of the nineteenth century was of the type we have encountered

with the musical scale. In the same way that the numbers zero to eleven

form a group under the operation of addition modulo 12, the numbers

zero to n — 1 form a group under addition modulo n for any value of n.
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Groups of this type are known as cyclic groups, and cyclic groups with a

prime number of elements are simple. The four other families of finite

simple groups were equivalent in many ways to corresponding families

of Lie groups. In 1955, the French mathematician Claude Chevalley

(1909-84) discovered new families of simple groups. In fact, the sporadic

Lie groups were found to be the source of families of finite simple

groups. Eventually, eighteen families of simple groups were identified.

The story of the sporadic simple groups started with the French

mathematician Emile Leonard Mathieu (1835-90). Between 1860 and

1873, while studying finite geometries, Mathieu discovered the first five

sporadic simple groups that were later named after him. The smallest of

these has 7,920 elements, and the largest 244,823,040. An entire century

passed before the next sporadic simple group was discovered by

Yugoslav mathematician Zvonimir Janko in 1965. This and several other

simple groups had been predicted to exist before they were actually "dis-

covered." Just as the SU(3) symmetry predicted the existence of the

omega minus particle, Janko managed to prove that if a simple group

with certain properties was to exist, it absolutely had to consist of

175,560 elements. After pages and pages of calculations, Janko's search

bore fruit and he succeeded in constructing the simple group now called

J1. Janko's discovery ended a century of hibernation and marked the

beginning of a decade of discovery. Between 1965 and 1975 no fewer

than twenty-one sporadic simple groups were constructed, bringing the

total to twenty-six (in addition to the eighteen families). The largest of

the twenty-six exceptional groups, usually referred to as the "monster,"

contains the staggering number of

elements! For the prime-number aficionados, this number is equal to

The monster was predicted to exist by the German mathematician Bernd

Fischer and the American Robert Griess (independently) in 1973, and it

was constructed by Griess in 1980. Fischer discovered in addition four

other sporadic groups, as did Janko in Australia and Germany. In En-

gland, John Conway discovered three more.
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The identification of eighteen families and twenty-six sporadic sim-

ple groups was just the starting point for what turned out to be one of

the most impressive and challenging projects in the history of mathe-

matics. The goal was clear: to prove unequivocally that this classification

truly exhausted all the possibilities of finite simple groups. In other

words, prove that every finite simple group is either a member of one of

the eighteen families or is one of the twenty-six sporadic groups. The

man who took charge of this awe-inspiring project, Daniel Gorenstein,

later called it the "thirty years' war" because much of the classification

effort was achieved during the three decades between 1950 and 1980.

Daniel Gorenstein (1923-92) grew up in Boston, studied at Harvard,

and became interested in finite groups during his undergraduate days.

During World War II, he taught mathematics to the military as part of

the war effort. After the war he returned to Harvard for graduate school,

completing his doctorate in 1950. Following a few years in which he

worked primarily in the field of algebraic geometry, he returned to finite

groups in 1957 and became involved with the classification of finite sim-

ple groups in the academic year 1960-61.

In addition to the actual discoveries of the twenty-one sporadic sim-

ple groups, two other events were instrumental in setting the stage for

the massive assault on the classification problem. One was a lecture

delivered in Amsterdam in 1954 by the German-American mathemati-

cian Richard Brauer (1901-77). In this seminal lecture, Brauer proposed

a method of classification that relied on the identification of small
"nuclei" of the simple groups that resembled in their properties the par-

ent groups themselves. Brauer's idea was to use these nuclei as the first

step in checking whether any arbitrary group can indeed be identified

with one of the known simple groups.

The second crucial element for the classification war was an impor-

tant theorem that was proved in 1963 by University of Chicago mathe-

maticians Walter Feit and John Thompson. The theorem basically states

that every finite simple group (that is not cyclic) must have an even num-

ber of elements. While the correctness of this statement had been antici-

pated already in 1906 by the British mathematician William Burnside

(1852-1927) and was known as the second Burnside conjecture, the actual

1963 proof by Feit and Thompson filled an entire issue (255 pages) of

the Pacific Journal of Mathematics. The impact of this proof was enor-

mous. Both the ideas and the methods introduced in the paper became
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the foundation for the classification effort. As Gorenstein described in

1989, "Largely under the impetus of the odd order theorem [the Feit-

Thompson theorem states equivalently that finite groups with an odd

number of elements are solvable], there was an awakening interest in

finite group theory. Throughout the next decade and a half a long list of

gifted young mathematicians, who were to play a prominent role in the

classification proof, were attracted to the field." Armed with Brauer's

insights and with the Feit-Thompson theorem, Gorenstein outlined in

1972 a bold sixteen-step plan to complete the classification proof. He

expressed cautious optimism that the full proof could be achieved by the

end of the twentieth century.

Given that the proof turned out to involve about a hundred mathe-

maticians who produced some fifteen thousand pages of proof in some

five hundred journal articles, Gorenstein's original estimate for the time

necessary to complete the proof certainly did not seem excessive. In fact,

Ohio State mathematician Ron Solomon, one of the leaders of the

endeavor, wrote in 1995, "Not a single leading group theorist besides

Gorenstein believed in 1972 that the classification could be completed in

this century." As is often the case in mathematics, however, one person

can make a big difference. For the classification theorem, that person

was Caltech mathematician Michael Aschbacher. Through a series of

lightning assaults he cracked a few of the major stumbling blocks, blast-

ing through much of the proof. In Gorenstein's words:

There were a great many other group theorists who made significant

contributions to the classification proof. But it was Aschbacher's

entry into the field in the early 1970s that irrevocably altered the

simple group landscape. Quickly assuming a leadership role in a sin-

gle minded pursuit of the full classification theorem, he was to carry

the entire "team" along with him over the following decade until the

proof was completed.

Indeed, to everyone's amazement, the proof was thought to have been

completed as early as 1983. Still, because of the almost unmanageable

length of the proof, Gorenstein, Solomon, and mathematician Richard

Lyons joined forces in 1982, launching a revision project whose goal was

to produce a shorter, more coherent version of the proof. In the years

that followed, a few significant gaps have been identified in the main

proof. The last of these was finally closed in August 2004, in a two-
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volume work by Aschbacher and University of Illinois mathematician

Stephen Smith. The Gorenstein-Lyons-Solomon revision project is also

proceeding well, with six monographs already published or in press.

Nevertheless, at least five more years will be needed to complete this

monumental undertaking.

The study of finite groups in recent years is intricately connected

with a rich variety of other areas of mathematics, from topology to

graph theory. Some suspected but not yet fully explored potential con-

nections to quantum field theory may also exist.

Galois introduced the group concept and constructed the first family

of finite simple groups with a modest goal in mind—to prove which

equations are solvable by a formula and which are not. He surely would

have been delighted to see what those humble beginnings have yielded.

Ron Solomon described the results of the "thirty years' war" beauti-

fully: "The eruption of mathematics during the heyday of the study of

simple groups generated amazing insights into the structure of finite

groups and uncovered several of the most fascinating objects in the

mathematical firmament."



- NINE -

Requiem for a
Romantic Genius

f the many thousands of mathematicians to have lived since

ancient Babylon, who have been the most influential? Mathe-

matician and author Clifford Pickover conducted an informal

survey asking precisely this question, and he presented the list of the top

ten names in his entertaining book Wonders of Numbers. Evariste Galois

is on that distinguished roster (at number eight), even though this tor-

mented romantic died at twenty. What is it that makes certain individu-

als so creatively superior to all others? And how is it possible that such

an abundantly overflowing creativity would manifest itself at such a

young age? If I could actually provide precise answers to these ques-

tions, I am sure that many psychologists, biologists, educators, and cor-

porations would be very appreciative. Since I can't, however, I will

instead briefly present some of the current thoughts on these topics and

examine if and how they apply to Galois.

First, let me clarify that by extraordinary creativity I mean a process

that has a significant cultural impact—an idea or act that brings about a

meaningful change. Obvious examples include Sigmund Freud's found-

ing of psychoanalysis and Newton's formulation of the laws of motion.

University of Chicago psychologist Mihaly Csikszentmihalyi has

insightfully pointed out that by its very nature, creativity is not just

something that happens inside someone's head. To be able to declare any

idea or accomplishment "creative," we must compare it to some existing

criteria and standards. For instance, we can say without any qualification

that Einstein's general relativity is one of the most creative theories of all

time only after we judge it against the background of all other physical
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theories of the universe. Creativity therefore always involves relations

among at least three components: the creative person; the domain in

which the creative act occurs (e.g., mathematics or some part thereof,

music, literature); and the field of players or practitioners who act as

gatekeepers and judges (e.g., other mathematicians, museum curators,

literature readers, and critics). By any standards, Galois was astonish-

ingly creative. This young man's ideas changed mathematics in a pro-

found way. The new domain that he established—group theory—has

expanded far beyond the boundaries of pure mathematics into the

realms of visual arts, music, physics, and wherever symmetries can be

found.

As I noted above, understanding how creativity works is something

that intrigues not only cognitive scientists, neurologists, and educators.

Large companies and corporations are scrambling to find ways to foster

creativity and innovation among their employees. Many millions of dol-

lars are being spent every year on seminars, retreats, brainstorming ses-

sions, and special courses, all designed with the specific purpose of

producing the next Bill Gates. But can the sources of creativity be iden-

tified? Or are creative ideas merely sparked by chance and stray bits of

knowledge cleverly snatched from loosely related disciplines?

THE SECRETS OF A CREATIVE MIND

The English poet Owen Meredith (the pseudonym of Edward Robert

Bulwer-Lytton, earl of Lytton) said once, "Genius does what it must,

and Talent does what it can." This is an interesting quote, since it com-

bines and contrasts two terms that may occasionally overlap with cre-

ativity, but which shouldn't be confused with it — "talent" and "genius."

Over the centuries, there have certainly been many talented painters and

inventors, but very few (if any) who could match Leonardo da Vinci for

creativity. On the other hand, to be creative —that is, to bring about a

paradigm shift—one does not necessarily have to be a genius. In partic-

ular, many studies show that beyond a certain level of IQ, probably

around 120, there is no clear correlation between intelligence and cre-

ativity. In other words, true creativity probably requires some degree of

intelligence, but there is absolutely no guarantee that a person with an

IQ of 170 will be any more creative than one with an IQ of 120. One of

the main reasons why there is no "explanation" of creativity is precisely
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the fact that all humans are creative at some level. When you cannot

open a jar and you grab a towel to prevent your hand from slipping, you

have come up with a creative solution. When a kid at school writes a

friend's phone number on the back of his hand, he responds creatively to

an urgent need. At the end of the day, even the most creative people ever

to have lived still had to use a human mind.

Another point to remember is that creative outbursts in different

domains do not admit easy comparisons. As Harvard cognition and

education researcher Howard Gardner has observed, "Creative break-

throughs in one realm cannot be collapsed uncritically with break-

throughs in other realms; Einstein's thought process and scientific

achievements differ from those of Freud, and even more so from those of

Eliot [the poet T. S. Eliot] or Gandhi. A single variety of creativity is a

myth." In spite of these caveats, in an almost desperate attempt to get to

the bottom of creativity, researchers (including Gardner himself) have

often relied on trying to identify common traits in many creative indi-

viduals. The hope has been that characteristics shared by most represent

potential sources for outstanding creativity. Qualities that have been

examined include physiological features in the brain, personality traits,

various cognitive characteristics (such as the ability to make remote

associations), and societal circumstances in both the immediate (e.g.,

family and close friends) and more global (e.g., ethnic, political) envi-

ronments. We can get at least a taste of the degree to which various cre-

ativity models work from a simple exercise that is based on the concepts

of the scientific method. The latter represents the organized approach to

explain a collection of observed facts with a model. This idealized

process can be summed up by three words: induction, deduction, verifi-

cation. More explicitly, the scientific method begins with the gathering

of experimental or observational facts. On the basis of those facts a

model, a scenario, or sometimes a complete theory is constructed.

Finally, the model or theory is tested against new experiments, observa-

tions, or the collection of new facts that had not been used in the formu-

lation of the model itself.

We can follow a simple version of this general philosophy by exam-

ining how Galois measures up against some agreed-upon "template" of

personality traits of the creative mind, as long as Galois himself has not

been used in the creation of that "template." The latter requirement
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turned out to be easy to satisfy— I did not find Galois's name on any of

the lists compiled by creativity researchers. The first thing I should note

is that there is a very good reason why I have put the word "template" in

quotation marks —no such "template" truly exists! Even if someone has

the genetic predisposition for creativity as a painter, unless this person

also has access to the proper training and boasts some connections in the

art world, chances are we would never hear of her or him. Moreover, not

all creators, not even those within a given domain, are alike. As Csik-

szentmihalyi has put it, "Michelangelo was not greatly fond of women,

while Picasso couldn't get enough of them." Similarly, in chapter 3 we

have seen that Cardano flamboyantly burned the candle at both ends,

while dal Ferro, who contributed to the solution of precisely the same

mathematical problems, was reclusive and modest. Nevertheless, as

Boston College psychologist Ellen Winner has noted about gifted chil-

dren, "For those who do [the emphasis is mine] make it into the roster of

creators, a certain set of personality traits proves far more important

than having a high general IQ, or a high domain-specific ability, even

one at the level of prodigy. Creators are hard-driving, focused, domi-

nant, independent risk-takers." While researchers have not been able to

discern with any certainty whether personal characteristics can indeed

be the direct causes of creativity, there is little doubt that some qualities

are intimately involved in the creative process. So what are these traits?

Psychologists John Dacey and Kathleen Lennon emphasize tolerance of

ambiguity—the ability to think, operate, and remain open-minded in

situations where the rules are unclear, where there are no guidelines, or

where the usual support systems (e.g., family, school, society) have col-

lapsed. Indeed, without the competence to function where there are no

rules, Picasso would have never invented cubism and Galois would not

have come up with group theory. Tolerance of ambiguity is a necessary

condition for creativity.

Psychologist Csikszentmihalyi concentrates on a somewhat related

quality, which he refers to as "complexity." Complexity means to be able

to harbor tendencies that normally appear to be at opposite extremes.

For instance, most people are somewhere in the middle of the contin-

uum between being rebellious or highly disciplined. Very creative indi-

viduals can alternate between the two extremes almost at the drop of a

hat. Csikszentmihalyi interviewed many dozens of creative people from
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a wide range of domains, stretching from the arts, humanities, and sci-

ences to business and politics. Based on these interviews, he compiled a

list of ten dimensions of complexity—ten pairs of apparently antitheti-

cal characteristics that are often both present in the creative minds. The

list includes:

1. Bursts of impulsiveness that punctuate periods of quiet and rest.

2. Being smart yet extremely naïve.

3. Large amplitude swings between extreme responsibility and

irresponsibility.

4. A rooted sense of reality together with a hefty dose of fantasy

and imagination.

5. Alternating periods of introversion and extroversion.

6. Being simultaneously humble and proud.

7. Psychological androgyny —no clear adherence to gender role

stereotyping.

8. Being rebellious and iconoclastic yet respectful to the domain of

expertise and its history.

9. Being on one hand passionate but on the other objective about

one's own work.

10. Experiencing suffering and pain mingled with exhilaration and

enjoyment.

Interestingly, psychologist Ellen Winner finds that child prodigies

usually exhibit only one extreme of the spectrum of characteristics—

they tend to be intense, driven, and introverted. We should remember,

however, that gifted children are still in the soaking-up knowledge

mode, rather than in the creative mode. The reality that most prodigies

do not become particularly creative in their adult life may reflect (among

other things) the fact that only a small fraction of the wunderkinder

actually possess the capacity for complexity.

Even though Csikszentmihalyi's list is clearly only suggestive at best,

it actually describes Galois astonishingly well. Galois was, in many

ways, the epitome of contradictions and complexity. Take, for instance,

his letter of May 25 to Auguste Chevalier: "How can I console myself

when I have exhausted in one month the greatest source of happiness a

man can have?" Can one imagine larger mood swings? Or examine the

following description in one of Raspail's letters from prison. Galois's

behavior oscillates between calm and eruption:
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He was wandering around the prison yard, one day, deep in thought,

as if he was daydreaming. He had the sickly look of a man who was

barely physically present on earth, and who was kept alive only by

his thoughts.

Our bully boys shouted out: "Hey, you may be only twenty, but

you are an old man! You cannot take your drink, can you? Drinking

frightens you, doesn't it?" He then marched straight to confront the

danger, emptied down his throat an entire bottle, all at once, and

threw it at his teaser.

Being smart but naïve, realistic yet imaginative, simultaneously

rebellious and respectful toward mathematics and mathematicians, are

combinations of traits that could have been invented to literally describe

Galois. How else would you characterize his experiences with the

entrance examinations to the Ecole polytechnique, his acrimonious

exchanges with his school principal, his paranoiac interactions with the

mathematical establishment, and his confrontations with the law?

Psychological androgyny—being on one hand very sensitive and

more "feminine" and on the other aggressive and offensive—was

another obvious Galois trait. Consider the following letter, which he

wrote from prison to his aunt, Celeste-Marie Guinard:

My dear aunt, I have been told that you are sick and bedridden. I feel

the need to let you know how sorry I am, and this feeling is further ag-

gravated by the fact that I am deprived of the pleasure of seeing you,

since I am confined to my room and cannot visit anybody. You were

kind enough to think of sending me presents. It is very pleasant to re-

ceive reminders of the living, while being in a tomb. I hope you will be

in good health when I leave the prison. My first visit will be to you.

Hard to believe, but this is the same person about whom mathematician

Sophie Germain had written the following to her friend and colleague

Guglielmo Libri Carucci dalla Sommaja: "Having returned home, he

[Galois] continued his habit of insult, a taste of which he gave you after

your best lecture at the Academy. The poor woman [Galois's mother]

fled her home, leaving just enough for her son to live on."

Dacey and Lennon identify a few additional traits that in their opin-

ion contribute to tolerance of ambiguity and to its role in promoting cre-

ativity. One of these—stimulus freedom—is what we might call the
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ability to think outside the box. To a large extent, the very essence of cre-

ativity is the capacity to break out of common assumptions and to

escape any preexisting mind-sets. Let me give a very simple example of

this type of stimulus freedom. You are given six matches of equal length,

as in figure 105, and the objective is to use them to form exactly four tri-

angles, in which all the sides of all the

four triangles are equal. Try this for a

few minutes, but be aware that the

solution requires an unconventional

approach. In case you have not suc-

ceeded, don't despair; most people

have trouble with this problem. The

solution is shown in appendix 10.

Galois's proof concerning which equa-

tions are solvable by a formula (chapter 6) is the embodiment of think-

ing outside the box—to answer a question about algebraic equations he

invented a whole new domain in mathematics.

There is another characteristic that appears to be shared by many cre-

ative individuals (especially creative men), and that applies to Galois as

well—the loss of a father early in life. Among nearly a hundred creative

interviewees, Csikszentmihalyi actually found that no fewer than three

out of ten men and two out of ten women were orphaned by the time

they reached their teens.

How can the loss of a father stimulate creativity? Life deals young-

sters who have lost their fathers a complex hand that is a mixture of bur-

den and opportunity. On one hand, there is the huge psychological

burden of having to live up to the perceived expectations of the missing

father. On the other, such youngsters have the immense opportunity of

truly inventing themselves. The French philosopher Jean-Paul Sartre

(1905-80) observed in his autobiographical Les mots (Words): "The

death of Jean Baptiste [Sartre's father] was the big event of my life: it sent

my mother back to her chains and gave me freedom. . . . Had my father

lived, he would have lain on me full length and would have crushed me.

As luck had it, he died young." This is surely an overly cynical view.

While some creators, including possibly Abel and Galois, may have been

driven toward independence and curiosity by the death of their fathers,

many others thrived on the support they had received from their fami-

lies. There are cases, for instance, where the father and son were both
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Nobel Prize laureates. Niels Bohr received the physics prize in 1922, and

his son Aage Bohr received it in 1975. An even more impressive example

is that of William Henry Bragg and his son William Lawrence Bragg.

The father-son team won the Nobel Prize in physics together in 1915,

when Lawrence was only twenty-five.

Galois accomplished all of his brilliantly seminal work on group the-

ory before the age of twenty-one, Abel's genius dazzled the mathemati-

cal world before this poor mathematician was twenty-seven. Should we

be surprised? Not really. Some of the most creative mathematicians,

lyric poets, and composers of music were extraordinarily young when

they produced their best work. Most painters, novelists, and philoso-

phers, on the other hand, continue to create and are often at their peak

well into old age. Music critic and novelist Marcia Davenport (1903-96)

expressed this reality beautifully: "All the great poets died young. Fic-

tion is the art of middle age. And essays are the art of old age."

I asked Sir Michael Atiyah, the recipient of the 2004 Abel Prize, why

he thought mathematicians were so insightful early in life. He answered

immediately:

In mathematics, if you are of quick mind, you can get to the "front

line" of cutting-edge research very quickly. In some other domains

you may have to read entire thick volumes first. Moreover, if you

have been for too long in a certain domain, you get conditioned to

think like everybody else. When you are new, you are not compelled

to the ideas of the people around you. The younger you are, the more

likely you are to be truly original.

Psychologist Howard Gardner makes a similar distinction between

mathematicians and scientists on one hand and artists on the other:

It is important to note here a decisive difference from creation in the

sciences or mathematics. Individuals in these latter areas begin to be

productive at an early age and certainly have the option of making

numerous innovations during their early years. However, unlike the

arts, these domains progress and accumulate at a rapid rate, stimu-

lated by the discoveries of the most creative individuals; tools fash-

ioned earlier in life may become irrelevant or dysfunctional.

Creative minds in mathematics can even be distinguished from those in

the other sciences in that they often don't obey what Gardner calls the
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"ten-year rule." This is the observation that many creative individuals

make a breakthrough after ten years of work in their domain. Both Abel

and Galois had the guts to attack the quintic while still in high school!

They gave the definitive answer to its solubility at or before their early

twenties, well ahead of when the ten-year rule would have applied.

There is one other aspect of Galois's personality that fits current

thinking about creativity—the fact that he exhibited strong symptoms of

paranoia. His continual delusions of being persecuted and haunted by

mediocrity certainly went beyond normal. Genius has often been linked

to mental disorder. Already in ancient times, the Roman philosopher

Seneca wrote that "no great genius has ever existed without some touch

of madness." In 1895, psychiatrist W. L. Babcock published an article

entitled "On the Morbid Heredity and Predisposition to Insanity of the

Man of Genius" in which he claimed that like proneness to early death,

genius was a characteristic of inferior genetic makeup. On a more solid

basis, recent research supports the general association of creativity with

psychopathology. For instance, psychologist Arnold Ludwig examined

the lives of more than a thousand creative individuals and found that

about 28 percent of the prominent scientists experienced at least some

sort of mental disturbance. The fraction increased to a staggering 87 per-

cent among outstanding poets. Psychologist Donald MacKinnon, then

of the Institute for Personality Assessment and Research at the Univer-

sity of California, Berkeley, conducted an extensive psychometric eval-

uation of many creative mathematicians, architects, and writers. The

findings showed that the creative individuals consistently scored higher

on dimensions that are indicative of various affective disorders such as

schizophrenia, depression, and paranoia. The conclusion from these and

numerous similar studies is, as University of California, Davis psychol-

ogist Dean Keith Simonton puts it, "The genius-madness link may be

more than myth." I should note that, as in Galois's case, the levels of

the disorder were rarely found to be so high as to debilitate the creative

individual. Galois and many other creative geniuses possessed enough

ego-strength and other mental resources to help contain their psycho-

pathology. Yet the evidence for this Faustian bargain that creative minds

often have to negotiate is quite compelling. The English essayist Sir Max

Beerbohm (1872-1956) expressed his own experience with this phenom-

enon: "I have known no man of genius who had not to pay, in some
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affliction or defect either physical or spiritual, for what the gods had

given him."

As compelling as the case may be for Galois fitting the profile of a

creative genius, we have to wonder, was there also something distinc-

tively special about his brain?

THE STORY OF TWO BRAINS

Albert Einstein died on April 18, 1955, at Princeton Hospital in New

Jersey. Thomas S. Harvey, the pathologist who performed the autopsy,

removed the great scientist's brain, dissected it into 240 pieces, and

embedded the pieces in a plastic-like substance called celoidin.

Evariste Galois died on May 31, 1832, at the Cochin Hospital in

Paris. The pathologist opened his skull and conducted a thorough exam-

ination of his brain. This is truly astonishing, given that Galois was shot

in the stomach and died of peritonitis. More than half of the autopsy

report is devoted to the brain.

For more than two decades, no one, not even Einstein's family, knew

that Einstein's brain was being kept in jars at Harvey's home. In 1978,

Steven Levy, then a reporter for the New Jersey Monthly, tracked Har-

vey down at his home in Wichita, Kansas. After a long conversation with

the reporter, Harvey admitted that he had the brain. Out of a box labeled

"Costa Cider," he pulled the two Mason jars that contained the brain

that had brought about a revolution in science.

Since then, Harvey has allowed three teams to examine parts of the

brain. University of California, Berkeley anatomist Marian Diamond

and her colleagues published a paper on Einstein's brain in 1985. They

found that the ratio of neurons to glial cells (the cells that support and

protect neurons) in one part of Einstein's brain was smaller than the

ratios in eleven normal brains. While the authors concluded that the

larger number of glial cells per neuron might indicate that Einstein's

neurons worked harder—needed more energy—than normal, this inter-

pretation was later questioned by other researchers. A second paper,

by Britt Anderson of the University of Alabama at Birmingham, was

published in 1996. Anderson and Harvey showed that while Einstein's

brain weighed less than the average (2 pounds 11.4 ounces compared

to 3 pounds 1.4 ounces for the average; 1,230 grams compared to
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1,400 grams) it packed more neurons in a given area. Finally, in 1999,

McMaster University neuropsychologist Sandra Witelson and her col-

leagues discovered what was hailed as a potential key to Einstein's

genius. The inferior parietal region that is thought to be used for mathe-

matical reasoning was found to be 15 percent wider than normal. In

addition, a groove (sulcus) was found to be partially missing in that area.

The researchers argued that the absence of that fissure could have

resulted in more effective communication among neurons. Although

interesting, all of this research could not be regarded as conclusive. After

all, even though Witelson's study used thirty-five brains as a control

group, it had only one brain in the experimental group—Einstein's.

The remaining pieces of Einstein's brain were eventually brought

by Harvey to their final resting place—the Pathology Department at

Princeton Hospital. When asked why he took the brain in the first place

(Einstein's body was cremated), Harvey explained that he felt obligated

to salvage the precious gray matter for posterity.

The autopsy report on Galois's brain reads:

Stripped of its envelope, the skull presents the two pieces that form

the coronal in young children, being joined at an obtuse angle. This

has at most a width of one-fifth of an inch. At the edge where the

coronal sutures the parietal bones, one can see a deep, flat, circular

depression, which follows the joint between the two bones; the pari-

etal humps are very developed, wide apart from one another; the

development of this portion is remarkable, by comparison to the

occipital bone .. .

Once the skull is opened, the inner walls of the frontal sinuses

are very close; the remaining space is less than one-fifth of an inch; in

the middle of the skull's dome, two depressions correspond to the

humps described above . . .

The brain is heavy, its convolutions large, its crevices deep, espe-

cially on the lateral parts; there are protuberances matching the cavi-

ties of the skull; one in front of each anterior lobe, two on top of the

upper face; the cerebral substance is generally soft; the ventricular

cavities are small, empty of any serous fluids; the pituitary gland is

voluminous and contains gray granulations; the cerebellum is small;

the weight of the brain and the cerebellum together is three pounds,

two ounces, less one-eighth of an ounce.
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Why did the pathologist examine Galois's brain so thoroughly when

the cause of death was obvious? The first sentence in the report may pro-

vide a hint: "Young Galois Evariste, 21 years of age, a good mathemati-

cian, known primarily for his ardent imagination, has just succumbed in

12 hours to acute peritonitis, caused by a bullet shot from 25 paces." My

hunch is that the pathologist was driven by the same curiosity that

caused Harvey to take Einstein's brain. The pathologist was aware of

both Galois's reputation as a mathematician and of his fiery, passionate

imagination, and he felt compelled to examine the brain for potential

clues as to the origin of these attributes. As in Einstein's case, the

autopsy did not reveal any clear "smoking gun." Still, this was probably

a worthwhile effort, since its goal was to unveil the mind of a person

who stood, in both mathematics and politics, at the heart of revolution-

ary romanticism.

INDIVISIBLE

Unlike in most other sciences, in mathematics ideas have a lasting value.

Aristotle's views of the universe are interesting historical curiosities but

nothing more. The theorems in Euclid's Elements, on the other hand, are

as valid, as correct, and as immortal today as they were in 300 BC. This

is not to say the mathematics is stagnant. Far from it. Just as new gener-

ations of telescopes expand our horizons without necessarily invalidat-

ing previous findings in the nearby universe, mathematics continually

reveals new vistas while building on existing knowledge. The perspective

may change but the truths do not. Mathematician and author Ian Stew-

art expressed this reality beautifully: "In fact, there is a word in mathe-

matics for previous results that are later changed: they are called

`mistakes.' "

Galois's ideas, with all their brilliance, did not appear out of thin air.

They addressed a problem whose roots could be traced all the way back

to ancient Babylon. Still, the revolution that Galois had started grouped

together entire domains that were previously unrelated. Much like the

Cambrian explosion—that stunning burst of diversification in life forms

on Earth—the abstraction of group theory opened windows into an

infinity of truths. Fields as far apart as the laws of nature and music sud-

denly became mysteriously connected. The Tower of Babel of symme-

tries miraculously fused into a single language.
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Web designer Brenda C. Mondragon manages an inviting website

entitled "Neurotic Poets." Her first line on the romantic English poet

Percy Bysshe Shelley (1792-1822) reads: "The spirit of revolution and

the power of free thought were Percy Shelley's biggest passions in life."

One could use precisely the same words to describe Galois. On one of

the pages that Galois had left on his desk before leaving for that fateful

duel, we find a fascinating mixture of mathematical doodles, interwoven

with revolutionary ideas (figure 106). After two lines of functional

analysis comes the word "indivisible," which appears to apply to the

mathematics. This word is followed, however, by the revolutionary slo-

gans "unite; indivisibilite de la republique" ("unity; indivisibility of the

republic") and "Liberte, egalite, fraternite ou la mort" ("Liberty, equal-

ity, brotherhood, or death"). After these republican proclamations, as if

this is all part of one continuous thought, the mathematical analysis

resumes. Clearly, in Galois's mind, the concepts of unity and indivisibil-

ity applied equally well to mathematics and to the spirit of the revolu-
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tion. Indeed, group theory achieved precisely that — a unity and indivis-

ibility of the patterns underlying a wide range of seemingly unrelated

disciplines.

There are two other phrases that catch the eye among Galois's scrib-

bles. One, "Pas l'ombre," almost certainly refers to the phrase "pas

l'ombre d'un doute" ("without the shadow of a doubt"). Again, Galois

would have had such convictions about both the correctness of his

mathematical proofs and of his republican ideals. The second phrase,
"une femme" ("a woman"), is a sad reminder of the annoyingly trivial

circumstances that were about to cause his untimely death only a few

hours later.

The famous Indian poet Rabindranath Tagore (1861-1941) wrote

that "death is not extinguishing the light. It is putting out the lamp

because dawn has come." This was certainly true in Galois's case. His

insights announced the dawn of a new era in mathematics. He belongs to

that very exclusive club of those who are genuinely immortal.

Generations of young mathematicians moved by Galois's tragic

story and pointless death have found consolation in his incredible legacy.

Through this gratification, they were spared the fate of some of the more

impressionable youth who a few decades before Galois's time had read

Goethe's masterpiece The Sorrows of Young Werther. The romantic

agony of Goethe's sensitive protagonist touched a universal chord. The

story was so powerful that it inspired a series of youthful suicides all

across Europe. Incidentally, one might have thought that such passion

has long since disappeared from a much more cynical world. Yet the

spontaneous outpouring of grief that followed Princess Diana's death

has demonstrated that romanticism isn't quite dead yet. Galois's story

continues simultaneously to sadden and inspire even today, and the

spirit of his work permeates much of modern mathematics. I can find no

better words to describe this contrast between the perishability of the

flesh and the endurance of the ideas than those in Emily Dickinson's

poem:

Death is a Dialogue between

The Spirit and the Dust.

"Dissolve" says Death —The Spirit "Sir

I have another Trust"—
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Card Puzzle

A solution to the card puzzle on page 22. The goal is to arrange the jacks,

queens, kings, and aces in a square so that no suit or value would appear

twice in any row, column, or the two main diagonals.
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Solving a System of
Two Linear Equations
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. .

Diophantus's Solution

This represents Diophantus's solution to problem 28 from the first book

of Arithmetica (mentioned on page 59).

We need to find two numbers such that their sum and the sum of

their squares are given numbers. Suppose that the sum is 20 and the sum

of the squares is 208. Diophantus does not designate the numbers by

x and y, but rather by 10 + x and 10 — x, taking advantage of the fact that

the sum has to be 20. The equation he obtains for the sum of the squares

is therefore



APPENDIX 4

A Diophantine Equation
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Tartaglia's Verses and Formula

Tartaglia's rules for solving the three forms of the cubic were put into

verses (page 68 of the text). The translation by Ron G. Keightley reads:

In cases where the cube and the unknown

Together equal some whole number, known:

Find first two numbers diff'ring by that same;

Their product, then, as is the common fame,

Will equal one third, cubed, of your unknown;

The residue of their cube roots, when shown

And properly subtracted, next will give

Your main unknown in value, as I live!

As to the second matter of this kind,

When cube on one side lonely you shall find,

The other terms together being bound:

Two numbers from that one, once they are found,

Together multiplied, swift as a bird,

Give product clear and simple, of one-third

Cubed of th'unknown; by common precept, these

You take, cube rooted; add them, if you please,

T'achieve your object in their sum with ease.

The third case, now in these our little sums,

From the second is solved; for, as it comes,

In kind it is the same, or so say I!

These things I found— O, say not tardily—

In thrice five-hundred, four and thirty more,

Of this our age; the gallant proof's in store

Where City's girt by Adriatic Shore.

When the cubic equation is of the form

x 3 + px = q



For example, substitutingp = 6 and q = 20 from the above example (and

taking the positive square roots), gives the positive solution x = 2.

Examine, however, the following equation considered by Bombelli

(page 79 in the text):

Here, p = –15, q = 4. You can easily check that substituting these values

into the formula above gives

Here the intermediate step involves the square root of the negative num-

ber –121. Yet a simple inspection reveals that x = 4 is a solution of the

original equation. While Bombelli managed to solve this specific equa-

tion using an ingenious trick, the general problem of dealing with square

roots of negative numbers was solved only with the introduction of

complex numbers.
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Equating the two sides and collecting terms we obtain:

Substituting both expressions into the formula for x above, Bombelli

found the solution
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Adriaan van Roomen's Challenge

The equation presented by van Roomen was (page 80 in the text):

where C is a known number. In particular, he asked for a solution when

Viete, who already knew the formula for the sines and cosines of na

(where n is any integer and a is some angle), was able to use this knowl-

edge. He recognized that the left-hand side of the equation is the expres-

sion for 2 sin 45a, when the latter is expressed in terms of 2 sina.
Therefore, by simply finding the value of a such that 2 sin 45a = C,

gives the solution to van Roomen's equation as x = 2 sina.
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The Galois Family Tree

On Evariste's paternal side I have uncovered only the following, starting

with Evariste's grandfather:

Jacques Olivier Galois (Evariste's grandfather)

Born 1742 at Ozouer-le-Voulgy (Seine-et-Marne)

Married Marie-Jeanne Deforge (Evariste's grandmother)

Died at Bourg-la-Reine on May 12, 1806

Evariste's grandparents had six children:

Marie Anne Olivier Galois

Born November 3, 1768

Married Joseph Martin Blondelot

Marie Antoinette Galois

Born October 20, 1770

Married Denis Francois Le Guay

Theodore Michel Galois

Born March 14, 1774

Married Victoire Antoinette Grivet

Nicolas-Gabriel Galois (Evariste's father)

Born December 3, 1775

Married Adelaide Marie Demante (Evariste's mother)

Died July 2, 1829

Maria Pauline Galois

Born September 7, 1778

Married Andre Robert Hyard

Jacques Antoine Raphael Galois

Born 1781
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Auffray (2004) lists another son—Jean Baptiste Olivier—but I did not

find his name in the Bourg-la-Reine lists. He also spells the middle name

of the next-to-last daughter as Apolline (instead of Pauline).

Nicolas Gabriel Galois and Adelaide Marie Demante had three chil-

dren:

Nathalie Theodore Galois

Born December 26, 1808

Married Benoit Chantelot

Evariste Galois

Born October 25, 1811

Died May 31, 1832

Alfred Galois

Born December 18, 1814

Married Pauline Chantelot

The following generations look as follows:



I have extensive information on the generations that followed Antoine-

Marie Demante and Celeste-Marie Demante, but I do not present it,

since it is not directly related to Galois.



APPENDIX 9

The 14-15 Puzzle

The original configuration in Samuel Loyd's 14-15 puzzle (page 160 in

the text):

can be changed into the following configuration:



APPENDIX 10

Solution to the Matches Problem

With six matches of equal length (figure 105), we need to form four tri-

angles in which all the sides are equal. The naive tendency is to attempt

to solve the problem in two dimensions (with the matches lying on a

desktop), where no solution exists. The "outside the box" solution is to

construct a tetrahedron in three dimensions (as in the figure below). This

automatically forms four triangles with equal sides.
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