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Foreword

The articles in this volume were commissioned by the editors and have
not appeared elsewhere. “The Truth About Königsberg,” by Brian Hopkins
and Robin J. Wilson, is the only exception. It was published in May 2004 in
The College Mathematics Journal and won The Mathematical Association
of America’s George Pólya Award. It is included with the kind permission
of The Mathematical Association of America.

Indirectly, this volume is a result of a contributed paper session on Euler
organized by William Dunham and V. Frederick Rickey at the 2001 Joint
Mathematics Meetings in New Orleans. This attracted Euler enthusiasts
from all over North America. A few, Ronald Calinger, John Glaus and
Edward Sandifer, met at a local restaurant to hatch the idea of The Euler
Society. The Society had its first annual meeting in the summer of 2002.

Two years later, Arjen Sevenster, an editor at Elsevier, contacted us,
saying, “I just came across the announcement of the Third Annual Meeting
of the Euler Society: Euler 2004. I wonder, if you would be interested in
editing a volume covering the same topics of the Meeting: Euler, his work
and times, aiming to give a more or less complete picture.”

We soon found that The Euler Society alone could not provide the “com-
plete picture” the project required. Here, our friend Rüdiger Thiele stepped
in and helped introduce us to a number of his European colleagues. We owe
the participation of Wolfgang Breidert, Peter Hoffmann, Teun Koetsier,
Olaf Neumann, Karin Reich and Dieter Suisky to Thiele’s good efforts. He
also invited Michael Raith to contribute, but sadly, Raith passed away be-
fore he could contribute. Rüdiger Thiele has dedicated his own contribution
to the memory of Michael Raith. Peter Hoffmann wrote his chapter in Ger-
man, and Rüdiger Thiele worked to render it into English, the language of
the volume. Because of all of this, and because he is in all ways such a fine
friend and colleague, we dedicate this volume to Rüdiger Thiele. Without
his help, this volume would be much less than it is.
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Others deserve our recognition. The staff at Elsevier, especially Andy
Deelen and Simon Pepping, have been helpful whenever we have needed
them, as has Henk Bos, the general editor of the series, Studies in the
History and Philosophy of Mathematics. Our six-member Editorial Panel
of Ronald Calinger, Lawrence D’Antonio, Stacy Langton, Rüdiger Thiele,
Jeff Suzuki and Homer White, did yeoman work refereeing and editing the
chapters. We also thank Pat Allaire, Ken Gittelson and Theresa Sandifer
for their editorial assistance.

The authors of the chapters have been patient and professional with us,
and have written some wonderful essays.

We also thank our wives and families.

Robert E. Bradley C. Edward Sandifer
Garden City, NY Newtown, CT

August 2006

Foreword
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Introduction

C. Edward Sandifer a and Robert E. Bradley b

aDepartment of Mathematics
Western Connecticut State University

Danbury, CT 06810
USA

bDepartment of Mathematics and Computer Science
Adelphi University

Garden City, NY 11530
USA

The year 2007 marks 300 years since the birth of Leonhard Euler. This
gives historians of mathematics their first opportunity since 1983, 200 years
after his death, to celebrate an Eulerian anniversary. Academic celebrations
have three traditional forms, books, meetings, and special issues of journals.
This book, a collection of chapters written by outstanding Euler scholars
from seven different countries, is one such celebration.

Chronology and tradition provide us four opportunities to celebrate each
century, and this volume fits into a sequence of anniversary works that have
come before, and, presumably, will come after. We should probably expect
(and perhaps begin planning for) special Euler events in 2033, 250 years
after his death.

The tradition of celebrating anniversaries is not a new one, but it is not
as old as some might think. It is, of course, a social construct, and it seems
to have arisen in the late 19th century, in the same historical context that
gave us the rise of nationalism, organized sports, Manifest Destiny, leisure
time and the Victorian era.

Thus, there were no Euler celebrations in 1807, in the midst of the
Napoleanic wars. In 1830, just three years before the 50th anniversary of
Euler’s death, the St. Petersburg Academy published a kind of memorial

LOL-Ch 01-P1 of 4

 Leonhard Euler: Life, Work and Legacy
 Robert E. Bradley and . Edward Sandifer (Editors)
© 2007 Elsevier B.V. All rights reserved

C



2 C. Edward Sandifer, Robert E. Bradley

issue of academy’s Mémoires, to publish what the Academy thought were
all the remaining unpublished Euler articles (E772 to E785). The timing
of this event, though, seems more related to the Academy’s desire to pub-
lish all of Euler’s papers before everyone who knew him had died, and not
correlated with any anniversary.

The first Euler anniversary event seems to have been a small seminar
in Zürich on December 6, 1883, where Ferdinand Rudio delivered a short
biographical talk on Euler. This seminar would probably be completely
forgotten if Rudio had not published the text of his talk more than 25
years later in the wake of the 200th anniversary events of 1907.

The Americans were the first to move to initiate a major commemo-
ration of Euler’s 200th anniversary. The Carnegie Corporation, a phil-
anthropic foundation endowed by the estate of American steel magnate
Andrew Carnegie, solicited proposals for scientific projects. The American
Mathematical Society proposed publishing the complete works of Leonhard
Euler, but the Carnegie Corporation elected, instead, to fund astronomical
observatories.

Just a few years later, a similar proposal was made to the Swiss Academy
of Sciences and the Euler Commission was formed to collect and publish the
Leonhardi Euleri Opera omnia. The Opera omnia project continues today
and already extends to more than 70 volumes. It includes all of Euler’s
published papers and has started on his correspondence. The Editors are
making plans to publish many of Euler’s notebooks and other papers as
well.

Various volumes of the Opera omnia were edited by some of the most
outstanding mathematicians and Euler scholars of the 20th century: Con-
stantin Carathéodory, Ferdinand Rudio, Clifford Truesdell, René Taton,
Eduard Winter, Adolf Juškevič, Emil Fellmann and others too numerous
to list. Their Editors’ Introductions constitute some of the finest and most
authoritative Euler scholarship of the 20th century, and students of Euler
will benefit from their thoroughness and dedication for hundreds of years.

Much of the flurry of Euler scholarship shortly after 1907 was stimulated
by the decision to begin the Opera omnia. The comprehensive Verzeichnis
der Schriften Leonhard Eulers of Gustaf Eneström is a particularly impor-
tant and useful example. Throughout this volume, authors consistently use
Eneström’s numbering system (e.g. E65, E101) to refer to Euler’s books
and papers.

In contrast to the marvelous scholarship of 1907, the 200th anniversary of
Euler’s birth, world events sometimes overshadow academic events, and we
find no Eulerian observations in 1933, the 150th anniversary of his death.

The celebrations of 1957 were mostly confined to the German Democratic
Republic and the Soviet Union. Their respective Academies of Science each
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published a Sammelband, the former edited by Kurt Schröder and the latter
by M. A. Larent’ev, A. P. Juškevič and A. T. Grigor’jan, with contribu-
tions by important mathematicians including Gel’fond, Smirnov, Delaunay,
Vinogradov and Erdös. The Academy of the German Democratic Republic
also published four volumes of Euler’s letters, including the important cor-
respondence with Christian Goldbach, and one volume of his personal notes
on the meetings of the Berlin Academy. Also, the German Democratic Re-
public, the Soviet Union and Switzerland all issued commemorative postage
stamps.

The 200th anniversary of Euler’s death, 1983, was highlighted by a mar-
velous volume edited by three members of the Editorial Committee of the
Opera omnia. J. J. Burkhardt, E. A. Fellmann and W. Habicht. It con-
tains articles by well-known mathematicians including André Weil, A. O.
Gel’fond, Pierre Dugac and B. L. van der Waerden, and also comprehensive
a 42-page bibliography of secondary literature about Euler, prepared by J.
J. Burckhardt. This is an invaluable resource. Only the German Democratic
Republic issued a commemorative stamp.

As we write this Introduction, so much has changed since 1983 that this
volume could not have had its present form and content in earlier times.
First and foremost, the Soviet Union and the German Democratic Repub-
lic are gone, and along with them much of the state sponsorship of such
historical studies, especially in Russia. Hence, the language of the present
volume is English, rather than German, Russian or a mixture of languages.
Furthermore, there are more contributors from the ‘West’ than there were
in 1957 or 1983, although thanks to the efforts of Ronald Calinger and
especially of Rüdiger Thiele, scholars from Russia and the former German
Democratic Republic are well represented. Additionally, the archives in
Moscow, St. Petersburg and Berlin are far more open to western scholars
than they were during the years of the Cold War. The implicit view that
Euler studies were an essentially Eastern Bloc pursuit has evaporated.

The Internet has had three major influences on this project. First and
most obvious, email has dramatically reduced the length of the editorial
cycle. Hardworking authors and editors on different continents can progress
from a first manuscript to page proofs in a matter of days, rather than
waiting weeks for the postal system.

Second, a great many primary sources are now available on line. The
complete works of Lagrange and Gauss, for example, are entirely on line.
Euler’s Opera omnia are not on line, but digital images of the original ver-
sions of over 95% of his published works, scanned from the original 18th
century pages are available at The Euler Archive (www.eulerarchive.org).
This amazing web site is the result of efforts of Lee Stemkoski and Dominic
Klyve, then graduate students. These on-line versions lack the corrections

LOL-Ch 01-P3 of 4



4 C. Edward Sandifer, Robert E. Bradley

and the Editors’ Introductions of the Opera omnia, but they are avail-
able to everyone with an Internet connection and the editors of The Euler
Archive are gradually adding links to commentaries and translations. The
seventy-odd volumes of the Opera omnia are heavy, expensive and static,
but they are also permanent, comprehensive and well-edited. By the time
we celebrate the next Eulerian anniversary in 2033, perhaps the relative
roles of paper editions like the Opera omnia and digital editions like The
Euler Archive will be clearer.

The third major influence of the Internet is more subtle, and it affects
both the style and the content of this volume. On the World Wide Web,
the significance of an object depends both on its content and on the ways it
is connected to other objects on the Web. The same is true of a mathemat-
ical text; its significance depends both on its content and on its context.
Previous styles of discussing the history of mathematics tended to be tax-
onomical. We would describe and classify. Articles bore titles like “Euler’s
manuscript on number theory” or “Some facets of Euler’s work on series,”
titles that promise to describe and classify. Now, though, we are more in-
clined to dwell on connections and give our articles titles that emphasize
connections; “Euler and Lagrange on the foundations of analysis” or “Eu-
ler, D’Alembert and the logarithm function.” The 1957 and 1983 volumes,
in the style of their own times, had more articles with taxonomic and de-
scriptive titles, while this 2007 volume has more connective and contextual
titles.

The organization of this volume might not be obvious at first glance. We
have put the chapters that seem more biographical and historical near the
beginning of the book. This includes the articles by Calinger, Hoffmann,
Polyakhova, Breidert and Fasanelli. We have put near the end those chap-
ters that describe Euler’s influence on the mathematicians that came after
him. These are the articles by Grattan-Guinness, Caparrini, Reich and
Suisky. In between are the more internalist articles dealing with Euler’s
mathematical and scientific work, grouped roughly by topic; astronomy,
mechanics, analysis, geometry, number theory, probability and combina-
torics. Within each group, articles tend to go from the more general to the
more specific.

The reader is, of course, welcome to read the chapters in any order.
However, those unfamiliar with details of Euler’s life or with the astonishing
scope of his accomplishments in mathematics and science will probably
wish to begin with Ronald Calinger’s biographical chapter, which follows
immediately.
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Leonhard Euler: Life and Thought

Ronald S. Calinger

Department of History
Catholic University of America

Washington, DC 20064
USA

As the European Enlightenment began in the 1720s, few new accomplish-
ments in mathematics were expected. Although mathematics had not yet
become a profession in the previous century, when most of its practition-
ers came from the aristocracy or positions in medicine or law, that period
culminating in the inventions of differential calculus by Isaac Newton and
Gottfried Leibniz was considered a great age in mathematics, leaving lit-
tle to be developed. But some scholars anticipated a fecund era for the
field. 1 Above all, the research of Leonhard Euler would prove them right.
The Swiss-born Euler was to be one of the four preeminent mathematical
scientists in history, the other three being Archimedes, Newton, and Carl
Friedrich Gauss. Only for Newton and Euler did Gauss reserve the term
summus. 2

Driven by a passion for mathematics and natural science, a commitment
to build a strong institutional base for them, and an insistent defense of re-
form Christianity, Euler made seminal contributions across the mathemati-
cal sciences and was arguably the most prolific mathematician in history. At

1 Nicholas Fuss, “Lobrede auf Herrn Leonhard Euler,”in OO I.1, pp. XLIII-XCV, trans.

by John S. D. Glaus, 2005, p. 5, and Marc Parmentier, “L’optimisme mathématique,”

in G. W. Leibniz, La naissance du calcul différentiel, Paris: Librairie philosophique J.
Vrin, 1989, pp. 41-51.
2 Karin Reich, “Gauss’ geistige Väter: nicht nur ‘summus Newton’ sondern auch ‘sum-
mus Euler’,” in Wie der Blitz einschlägt, hat sich das Räthsel gelöst, Göttingen:
Niedersächsische Staats- und Universitätsbibliothek, 2005, pp. 105-115.
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6 Ronald S. Calinger

the core of his research were infinitary analysis, or differential calculus, and
rational mechanics. Along with celestial mechanics, he made them the sci-
ences par excellence of the eighteenth century. He was the principal creator
of the calculus of variations and differential equations, and he pioneered the
differential geometry of surfaces. In mechanics Euler, not Newton, formu-
lated most of the fundamental differential equations before William Rowan
Hamilton. Operating within Enlightenment rivalries, in his case with Jean
d’Alembert, Alexis Clairaut, Daniel Bernoulli, and Colin Maclaurin, he led
in transforming mechanics and astronomy into modern exact sciences based
on calculus. Euler founded continuum mechanics and advanced the study of
ballistics, cartography, dioptrics, the theory of elasticity, hydraulics, hydro-
dynamics, music theory, number theory, optics, and ship theory. Massive
and fearless computations, an extraordinary application of analysis and
analogies, an appeal to his near unerring instinct, and clarity in writing
characterize his work. Not since Claudius Ptolemy had a single geome-
ter so dominated all branches of the mathematical sciences. During the
eighteenth century four royal science institutions, in Paris, London, St.
Petersburg, and Berlin, eclipsed universities in scientific research. It was
largely Euler’s efforts that made the St. Petersburg and Berlin Academies
of Science prominent European centers. The more than 810 of his articles
and books, which fill seventy-four large volumes in the first three series
of his Opera omnia, include approximately one-third of the entire corpus
of research in mathematics, theoretical physics, and engineering mechanics
published from 1726 to 1800, while the equivalent of research articles fill
his extensive correspondence. 3

3 All but twenty of Euler’s 868 books and memoirs are listed in the Eneström index. Of
these, 819 fill seventy-four volumes of three hundred to six hundred pages each in the first

three series of his Opera omnia (abbreviated OO). There is essentially no repetition in

their materials. Series One on pure mathematics has twenty-nine volumes in thirty parts;
Series Two on mechanics and astronomy thirty-one volumes in thirty-two parts. Series
Three on physics and miscellany is comprised of twelve volumes. The Swiss Society of

Sciences began the Opera omnia in 1907. Euler suffered one misfortune: six boxes filled
with his papers were lost in 1766 during shipment across the Baltic Sea to St. Petersburg.

To 1802, 707 of Euler’s writings were published. In 1975 work commenced on a two-part
fourth series of the Opera, which is projected to consist of at least ten volumes. Section
A has begun to make accessible the over 2,840 surviving letters to and from him in
French, Latin, German, Russian, and English. Section B will examine his twelve extant

notebooks. Counting fragments discovered over the last four decades, this makes 886
works for him.

See also Rüdiger Thiele, “The Mathematics and Science of Leonhard Euler (1707 -
1783)” in Glen van Brummelen and Michael Kinyon, eds., Mathematics and the Histo-
rian Craft, Berlin: Springer, 2005, pp. 81-140 that includes an extensive bibliography,
and Clifford Truesdell, “Leonhard Euler, Supreme Geometer (1707 - 1783),” in Harold E.
Pagliaro, ed., Irrationalism in the Eighteenth Century, Cleveland: Case Western Reserve
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1. Lineage, Youth, and Formal Education

Leonhard Euler was born on Friday April 15, 1707 (n. s.), in Basel,
Switzerland. While most of Protestant and Orthodox Europe followed the
Julian calendar or old style, the city had adopted the current Gregorian
style in 1701. Euler’s birth house was probably located in the neighbor-
hood around St. Martin’s Church near the center of the city close to the
market quarter and ship landing on the Rhine River. He was the first
child of Paul Euler, an Evangelical-Reformed minister, and Margaretha
née Brucker. While “reformed” generally refers to the Protestantism of the
Calvinists and Lutherans, Basel’s variety was of a pietism stressing love and
the inner life. Leonhard’s mother Margaretha, the daughter of a hospital
minister, was from a distinguished line of artists and humanistic scholars.
Their son was baptized two days after his birth in the same St. Martin’s
church as his father had been.

The Euler (Äuler, Ewler, Öwler) family came from the town of Lindau
on Lake Constance (the Bodensee) in the German Swiss Canton. Au is
the diminutive of Äule, which refers to a small, wet field or meadow. Au
appears in the names of many small German towns, such as Dessau and
Nassau. The owner of an Äule was an Äuler (oyler). The Eulers were var-
iously called Euler-Schoelpin, signifying squint-eyed, which suggests that
they were susceptible to an eye malady. The first written record of an
Euler appeared in 1287, but a documented continuous line did not com-
mence until 1458. Lindau, though on the far side of the Canton from Basel,
had many close economic, political, and religious ties with the town. Hans
Georg Euler, the great-great grandfather of Leonhard and the grandson
of the German-speaking patriarch Hans Euler, moved to Basel in 1594.
Hans Georg obtained citizenship in Basel, became a comb- and brush-
maker, fathered fifteen children in two marriages, and lived to be ninety. 4

Apparently the next three generations were artisans, most of them comb-
makers or tradesmen belonging to hospitality guilds. They built the family’s
modest financial base. In the fourth generation, four of the fourteen male
cousins were able to become Basler Evangelical-Reformed ministers. These
included Paul Euler, who matriculated at the University of Basel in 1685
at the age of fifteen. While at the university, Paul resided at the home of
Jacob Bernoulli, under whose direction he wrote his senior thesis on ratios
and proportions. He shared rooms with the young Johann I Bernoulli. Paul
Euler completed his theological studies in 1693.

U. Press, 1972, pp. 53-54.
4 Fritz Burckhardt, “Zur Genealogie der Familie Euler in Basel,” in Basler Jahrbuch
1908, Basel: Heibing and Lichtenhahn, 1908, pp. 83-89.
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Leonhard did not spend his early youth in Basel. In June 1708 his fa-
ther was named pastor-designate to St. Martin’s church in nearby Riehen-
Bettingen. In November he was installed and the family moved to Riehen,
about five kilometers northeast of Basel. It and Bettingen combined had
a population of fourteen hundred. Supported by a sub-Mediterranean cli-
mate, these small villages were known for their rich vegetation, especially
the white blossoms of the cherry trees in the late spring and the gold and
red leaves on the grapes in the vineyards. The Eulers lived in a two-room
parsonage until it was enlarged in 1712. One room was a study and the
other living quarters. Of Leonhard’s two younger sisters, Anna Marie was
born in 1708 and Marie Magdalena in 1711. His paternal grandmother lived
with the family to her death in 1712. Johann Heinrich, the fourth child of
the Eulers, was not born until 1719, after his brother departed for studies
at the Basel Gymnasium. Leonhard was a talented child, apparently cheer-
ful and sociable. The simplicity of rural life together with the model of his
parents has its reflection in the forthright nature and even disposition of
the adult Euler.

Leonhard’s parents were his first teachers. Familiar with the humanis-
tic tradition, his mother Margaretha introduced him to Greek and Roman
classics. The elementary instruction that his father Paul offered included
mathematics, conceived as a subject underlying all natural knowledge. Paul
began not with a geometry text but with Christoff Rudolff’s Coss, or al-
gebra, the German equivalent of the Italian cosa or unknown, a two-part
work that Michael Stifel had expanded from 208 to 484 pages. Paul pos-
sibly employed a reprint from 1615 of the first edition published in 1553.
After explaining place-value notation and the four basic arithmetical oper-
ations, it examines in verbal form first, second, and third degree equations.
Euler’s unfinished autobiography notes that he diligently studied the text
for several years and made progress in solving its 434 problems, almost
all of them first- or second-degree equations. 5 He did this before moving
to lodge with his maternal grandmother in Basel and enroll in the city’s
Gymnasium, probably at age eight. Only an exceptional child of this age
could have advanced previously through the difficult Coss.

The Basel Gymnasium, a Latin school, was in a pitiful state. Students
were taught the Latin language and selections from ancient classics. Greek
was optional. Teachers did not spare the rod, and fistfights broke out in the
classroom. Like most parents, Euler’s hired a tutor, in their case a young
theologian named Johann Burckhardt, who sided with Johann I Bernoulli in
disputes with British geometers and natural philosophers, especially Brook

5 Leonhard Euler, “Autobiography,” in Emil Fellmann, Leonhard Euler, Reinbeck bei
Hamburg: Rowohlt Taschenbuch Verlag, 1995, pp. 11-13.
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Taylor. Burckhardt taught Euler the humanities and mathematics, a sub-
ject earlier struck from the curriculum by a vote of the townspeople.

In 1720 Euler matriculated at the University of Basel into the Philosoph-
ical Faculty, essentially the school of arts and sciences. He was thirteen, at
the time roughly the normal age for entering a university. The university
was in decline. Its enrollment had fallen from over a thousand students a
century earlier to just above a hundred. It had only nineteen professors, un-
derpaid and most of them mediocre. The exception was Johann I Bernoulli.
The Philosophical Faculty provided the general education preparatory to
choosing a specialty for a higher degree. Through industry and a powerful
memory, Euler mastered all his subjects. Apparently he skipped the dry
introductory mathematics lectures of Bernoulli, as Charles Darwin and
Albert Einstein would later avoid sessions of tedious college courses. At
fourteen Euler gave a speech titled “Declamatio: De Arithmetica et Ge-
ometria” commending the superiority of geometry. After giving a speech in
Latin praising temperance, he received in 1722 his prima laurea, roughly
the Bachelor’s degree. In the autumn of 1723 he completed his examina-
tions for Master of Arts. In June 1724 the seventeen-year-old Euler officially
received the degree upon giving a public lecture in Latin on his master’s
thesis, a comparison of the natural philosophy of René Descartes with that
of Isaac Newton, along with the consequences of each.

In October 1723 Leonhard’s father had required him to register for theol-
ogy to prepare for becoming a rural pastor. He had mainly to study Greek,
Hebrew, Protestant theology, and classical humanities. About this time he
began to display his photographic memory by reciting long passages from
Virgil’s Aeneid by heart, if not the complete text. He could cite the first
and last line on each page of his copy of the book. To the age of seventy, he
could remember the Aeneid entirely. The theology curriculum allowed him
to study mathematics. He had already begun to meet with Bernoulli in a tu-
torial. Spending most of his time on mathematics, he made little progress in
his other subjects. At the university, Euler had become friends with Johann
II Bernoulli, who probably helped his request for private lessons. The elder
Bernoulli offered these to other students but refused to do so for Euler. In-
stead he advised the young scholar to read diligently some difficult books
on mathematics, astronomy, and physics until he encountered obstacles.
The two were to meet on Saturday afternoons, when Bernoulli would show
Euler how to overcome the impediments and avoid unpromising routes to
solutions. Euler devoted his full energy to reducing his questions to a very
small number. When Bernoulli showed him how to conquer one difficulty,
he was delighted that ten others disappeared. Bernoulli was discovering his
student’s genius. Euler’s autobiography declares that reading masterworks
in a tutorial with a skillful teacher “is the best method to succeed in [learn-
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ing] mathematical subjects.” 6 At least it was for so talented a student. It
was probably in 1725 that the elder Bernoulli, now nearly sixty, traveled to
Riehen to persuade his former roommate Paul to allow his son to transfer
to mathematics.

In 1725 young Euler was seeking employment. Producing more gradu-
ates than needed for their own country, the Swiss had to export them. In
1725 Euler’s friends Daniel and Nicholas II Bernoulli accepted positions at
the new St. Petersburg Academy of Sciences. After the unexpected death
of Nicholas II, Euler was invited in the fall of 1726 to join the academy
in medicine with a 200-ruble pension, which he thought too small. Still he
agreed to come as soon as the weather cleared. Meanwhile he enrolled in
courses in anatomy and physiology. When the professor of physics in Basel
died, the elder Bernoulli recommended that Euler apply to fill the vacancy.
The specimen essay that he had to submit was a sixteen-page paper on
acoustics, titled “De sono,” which historians describe as his doctoral dis-
sertation. It became a classic. But the university selected faculty by lottery,
and young Euler was not a finalist. On April 5, 1727, three days after Bene-
dict Stähelin became professor of physics, Euler left Basel forever. He was
already acquiring a modest reputation. His essay on the masting of ships
submitted to the Paris Academy annual prize competition that year won
the accessit or honorable mention, though he had only boats on the Rhine
and not ocean ships to observe.

2. Into the Colossus of the North: The Groundwork of Euler’s
Research

After a journey down the Rhine River to Frankfurt-am-Main and over-
land to the north through Hamburg to Lübeck, and a rough voyage along
the coast of the Lübeck Bay and the Baltic Sea, Euler arrived in St. Peters-
burg in May 1727, two months after the death of Isaac Newton, to begin
his illustrious career. Probably through the intervention of Jakob Hermann,
Daniel Bernoulli, and Christian Goldbach, Euler was placed in the mathe-
matics rather than medical division of the dynamic new science academy. It
was in a state of consternation. Its benefactress, Empress Catherine I, the
widow and successor of Peter I, had died a week earlier. The nobility in the
new government saw the academy as a foreign intrusion in Russia and froze
funds for it; Euler had to accept a post of medic in the Russian navy that
was becoming the chief power bordering the Baltic. He served under Admi-

6 As reproduced in Emil Fellman, Leonhard Euler, pp. 11-13.
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ral de Sievers. Upon the accession of the empress Anne of Courland in 1730,
the academy’s fortunes improved. When Hermann and Georg Bilfinger de-
parted, Daniel Bernoulli succeeded Hermann in the prestigious position of
professor of mathematics. Euler declined the offer by the Russian navy for a
promotion and returned full time to the academy, replacing Bilfinger as pro-
fessor of physics. To 1733 Euler resided at Bernoulli’s home, and they often
dined together, occasionally arguing briefly over the sciences. Among the
subjects they collaborated on was Bernoulli’s forthcoming Hydrodynamica,
published in 1738.

When Daniel Bernoulli returned to Basel in 1733, Euler succeeded him.
Having an improved financial situation, in January 1734 he married Katha-
rina Gsell, the daughter of artist Georg Gsell, originally from St. Gall in
Switzerland. They purchased a wooden house on the tenth line of Vasil-
yevski Island. In November 27 their first child, Johann Albrecht, was born.
Euler named him after the president of the academy, Baron Johann Al-
brecht de Korff, and had Christian Goldbach as the godfather. These were
to be important allies. The Eulers would have a total of thirteen births,
only three sons and two daughters surviving early childhood. Katharina or-
ganized and ran the entire household, leaving her husband more time for his
research and writing. At the academy the genial Euler had some strained
relations with its despotic and crude administrator, Johann Schumacher,
especially over salary. But he avoided public disputes with Schumacher, who
was a friend of his father-in-law. He attended parties at the Schumachers’
house.

In St. Petersburg Euler pursued groundwork research that ranged across
a broad spectrum in the sciences from number theory and music theory to
astronomy and ballistics. The emphasis in his Commentarii memoirs is on
infinitary analysis and rational mechanics.

In number theory Goldbach was the major source of encouragement,
and he supplied problems demanding difficult solutions that resulted in
early achievements for Euler. In a letter of December 1729, Goldbach had
inquired whether Fermat’s conjecture is true that all integers of the form
22n

+ 1 are prime. Euler confirmed it for n = 1, 2, 3, and 4, but by 1732
proved that n = 5 is a counterexample, that is, 232 + 1 = 4, 294, 967, 297 =
641× 6, 700, 417. He had found that composite Fermat numbers must have
divisors of the form 2n+1k + 1. Once he knew this, it would have been far
easier to discover the divisor 641, the case when k = 10 gives 26(10) + 1.
In 1734 Euler discovered a fascinating interrelationship between natural
logarithms and the harmonic series. That made it possible to compute
Euler’s constant or gamma, which is
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lim
n→∞

(
1
1

+
1
2

+
1
3

+ · · ·+ 1
n
− lnn

)
= 0.577215664 . . .

Gamma is one of the important real constants that appear in analysis,
alongside the transcendental numbers π and e. To the present it is not
known whether gamma is rational, algebraic, or transcendental. In the
twentieth century G. H. Hardy promised to surrender his Savilian Pro-
fessorship at Oxford to any scholar able to prove that gamma is algebraic.

During the 1730s Euler proceeded through a first stage preparatory for
his Introductio in analysin infinitorum [E101,E102] of 1748 by completing
exhaustive calculations, perfecting computational methods, and developing
the three elementary classes of transcendental functions of infinitary anal-
ysis — the exponential, logarithmic, and trigonometric. Following Leibniz
and Bernoulli he divided functions into two classes: algebraic and tran-
scendental. It was likely Johann I Bernoulli who introduced him to the
exponential function ex, in which the exponent is the variable. Euler first
employed the symbol in a posthumously published paper on gunnery writ-
ten in 1728 or late 1727 [E853]. Newton and Bernoulli had independently
defined it by the limit of the binomial expansion (1+1/n)n as n approaches
infinity. Employing the series

e = 1 +
1
1!

+
1
2!

+
1
3!

+ . . . ,

given here in modern factorial notation, Euler later computed its value as
2.718281828, which is accurate to nine decimal places. In 1737 he computed
e as a continued fraction 7 ,

2 +
1

1 + 1

2 +
2

3 +
3

4 + · · ·
In trigonometry Euler transformed Ptolemaic chords and half chords into
numerical ratios, making the trigonometric lines into functions. Proba-
bly after reading the pioneering work of Roger Cotes and Abraham de
Moivre’s Miscellanea analytica of 1730, he discovered in 1737 that (cos .z +√
−1 sin .z)n = cos .nz +

√
−1sin.nz or in his later notation eix = cos x +

i sinx, the cardinal formula of analytical trigonometry. His massive com-
putations began to give logarithms a greater place in infinitary analysis,
but he had not yet established e as the natural base for them or uniformly
employed the letter i to represent

√
−1.

7 Eli Maor, e: The Story of a Number, Princeton: Princeton U. Press, 1994, p. 151.
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In 1736 the mayor of Danzig asked Euler to solve a recreational puzzle.
The center of the city of Königsberg in East Prussia is an island surrounded
by the River Pregel. Seven bridges spanned the river. The question was
whether a traveler could cross over the bridges in a connected walk, going
over each bridge only once, and return to the same spot. Euler considered
the puzzle simple and solved it by reason alone. By connecting the number
of bridges with the number of times the traveler entered each region, he
showed that the transit under the given conditions is impossible. His mem-
oir “Solutio problematis ad geometriam situs pertinentis” [E53], containing
his results, was an early contribution to the evolving field of geometria si-
tus or analysis situs, that is, topology. Although no graphs appear in the
memoir, it is considered the initial contribution to graph theory.

A principal reason for Euler’s becoming recognized by the late 1730s as
the leading mathematician in Europe is his exact summation in 1734/35 in
the solution of the Basel problem, the infinite series of reciprocals of square
integers, whose value is denoted today as ζ(2), where ζ(s) =

∑∞
n=1 n−s. For

more than seventy-five years, geometers had attempted to sum precisely
this slowly converging series. James Stirling’s Methodus differentialis of
1730 gives what at the time was the closest approximation, accurate to eight
decimal places, 1.644034066. While computing it in four different ways,
Euler unexpectedly arrived at the exact sum of π2/6. In December 1734 he
reported his finding to the St. Petersburg Academy. Through much labor,
he exactly summed ζ(n) for even values of n up to 12, but he failed to do so
for odd values. That Euler could not solve this part of the problem suggests
that no simple solution exists. Tome 7 of the academy’s Commentarii for
1734/35 did not appear in print until 1740; meanwhile Euler’s summation
circulated through the mail. Because his finding lacked a proof and thus
rigor, he was criticized even after he supplied one in 1743. Euler connected
the zeta function with the distribution of prime numbers and in a memoir
of 1737 introduced his famous product decomposition formula: for P the
set of primes, ∏

p∈P

(
1− p−s

)−1 =
∏
p∈P

(
1 +

1
ps

+
1

p2s
+ . . .

)
.

Multiplying out the right side gives ζ(s). The case s = 1 is the harmonic
series, which diverges. Since the corresponding product must have infinitely
many factors, Euler had indirectly proved the infinitude of primes.

Even more important for Euler’s growing reputation in the late 1730s
is the publication of his 980-page Mechanica [E15,E16] in two volumes as
a supplement to the Commentarii in 1736. 8 It broke decisively with the

8 See also Clifford Truesdell, “The Rational Mechanics of Flexible or Elastic Bodies,
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geometric format for mechanics and introduced the differential equations of
what are now called mass points. Except for Benjamin Robins in England,
who questioned its systematic use of differential equations, geometers and
natural philosophers across Europe including Johann I Bernoulli hailed it
as a landmark in physics. Its review in the Parisian Mémoires de Trevoux in
1740 concludes that Euler had created modern mechanics. In his Mécanique
analytique of 1788, Joseph Louis Lagrange called the Mechanica “the first
large publication where analysis has been applied to the science of mo-
tion.” But it is erroneous to portray the Mechanica as simply translating
into infinitary analysis much of Newton’s Principia mathematica of 1687.
The Mechanica is Euler’s first major work in his highly ambitious program
to resolve computationally the motion of bodies that are elastic, fluid, flex-
ible, and rigid — a task, which alone would have exhausted most scientific
geniuses, that he successfully completed as a component in his research
program over the next twenty years.

Among Euler’s writings in St. Petersburg to 1741 are four books. With
the Mechanica, the Scientia navalis [E110,E111] on shipbuilding and nav-
igation and the Tentamen novae theoriae musicae (Introduction to a New
Theory of Music) [E33] comprise his first St. Petersburg period trilogy.
Although completed in 1738, the Scientia navalis was not published until
Euler was in Berlin in 1749. A treatise largely finished in 1731, the Tenta-
men novae theoriae musicae was not printed until 1739. It expands upon
Ptolemy’s music theory and stresses numerical proportions of harmony. Eu-
ler was a talented teacher. For the academic Gymnasium, of which he was
a member of the examination board, he wrote a two-part text Einleitung
zur Rechenkunst (An Introduction to Arithmetic) [E17,E35] that came out
in print in two parts in 1738 and 1740.

The academy charged Euler with many duties. He served on the weights
and measures commission and cooperated in the testing of fire pumps, saws,
and scales. Spurred by Johannes Andreas Segner’s water wheel, he began
to develop hydraulic machines. He sent articles to a journal introducing the
general public to the sciences and reviewed papers by others, including an
essay on the quadrature of the circle. His activities extended even to order-
ing ink and paper for the academic printing press. He crucially assisted the
chief state project of the early academy, the Second Kamchatka (or Great
Northern) Expedition that lasted from 1734 to 1743. It was to prepare the
first accurate general map of the Russian empire and its regions by deter-
mining latitude and longitude astronomically and making better geodetic
measurements. It was the most heavily funded project at the early academy.
Euler continued to aid the French astronomer Joseph-Nicholas Delisle, and

1638 - 1788” in OO II.11, part 2, esp. pp. 15-141.
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from 1735 he directed the geography section of the academy. He computed
ephemerides and in 1737 provided uniform instructions to the expedition’s
geodesists, especially for the Russian scholar Vasilii Tatischev, who was
studying the economic possibilities of the high Urals. Euler encouraged
Gerhard Müller to collect archives on the expedition as primary sources for
a future history of Siberia.

Amid the controversies and rivalries that abounded in the Enlighten-
ment, the initially dominant Cartesians argued to the 1740s with the New-
tonians at the Paris Academy of Sciences over which science was superior,
while in German universities, Berlin, and St. Petersburg to the 1750s, Leib-
nizians and Wolffians opposed Newtonian science. Euler selectively synthe-
sized consistent elements from the first three, added his original thoughts,
and rejected Wolffian metaphysics. Cartesians and Newtonians disagreed in
one instance over the shape of Earth. Its determination would be a crucial
element in indicating which science was superior. The Cartesian theory of
vortices or whirlpools of ether in the heavens predicted an elongated spin-
dle, while Book III of Newton’s Principia mathematica surmised an oblate
spheroid flattened at the poles.

This scientific dispute, along with an upsurge in French cartography
and a desire to test improved surveying instruments, prompted the French
monarchy and the Paris Academy to send geodetic expeditions to Peru
from 1735 to 1744 and to Lapland from 1736 to 1737 to measure an arc of
meridian and thereby demonstrate the true shape of the planet. (Pierre)
Louis Moreau de Maupertuis (1698 - 1759), who led the Lapland expe-
dition, claimed upon his return that his findings showed Newton to be
correct. Euler praised Maupertuis’ data but did not find them alone defini-
tive. He awaited the data from the Peru expedition. In 1738 by assuming
that the internal density of Earth is variable, not homogeneous, Euler cor-
rectly computed the shape as less flattened at the poles than had Newton.
Earth is more an orange than a melon. Euler asserted that he still accepted
Newton’s inverse-square law of attraction, but thought it possibly in need
of a slight modification.

Euler’s reputation was sharply increasing with his winning of the presti-
gious Prix de Paris, the annual prize of the Paris Academy, three years in
a row beginning in 1738. To the competitions for these foremost scientific
awards of the eighteenth century, he was to submit eighteen essays. His
reception of the prize twelve times added to one under the name Johann
Albrecht, his eldest son, is as yet unmatched. His closest competitor, Daniel
Bernoulli, won ten times. The Paris prizes were offered in theoretical and
applied subjects in alternate years. Euler gained them in both categories,
five of them for practical papers on navigation and shipbuilding.

In 1738 Euler shared the Prix de Paris for an essay on the nature and
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properties of fire and in 1740 on the tides. At mid-century natural philoso-
phers were examining the most volatile of the four Aristotelian elements
– earth, air, fire, and water – and the theory of combustion. The domi-
nant phlogiston theory of combustion held that substances rich in phlogis-
ton burn readily. But the inability to weigh phlogiston exactly was rais-
ing doubts. Euler proposed instead that fire results from the bursting of
glass-like balls of compressed air in the pores of bodies. Two anonymous
competitors in 1738 who lost were Emilie du Châtelet and Voltaire, whose
Elements of Newton’s Philosophy appeared that year. Voltaire blamed his
loss on the Cartesian dominance at the academy, but his paper was unorig-
inal. The judges recognized that his evidence on the heating of iron derived
from the research of Petrus van Musschenbroek of Utrecht. A principal test
in confirming Newtonian dynamics on the continent was the tides. Euler
and Daniel Bernoulli were two of the winners of the 1740 prize for papers
on their ebb and flow. While both must have started with the same results,
they differed in the method of reaching them. A strict Newtonian, Bernoulli
based his work on the inverse-square law of gravitational attraction and
disagreed with Euler, who accepted Newtonian attraction but believed the
inverse-square law alone insufficient to describe all celestial motion and in-
stead began with a theory of vortices. Lunar motion and the nature and
orbits of comets were two additional crucial tests for Newtonian dynamics.
The available data were contradictory, and Euler advocated more exact ob-
servations with new telescopes, along with creating differential equations
based on either Newtonian dynamics or a slight revision to give each point
in the course of comets.

Possessed of a diffident disposition, the genial Euler rarely became up-
set and tended to avoid disputes in St. Petersburg, working within the
shelter of the academy. Throughout the 1730s, the academy had pow-
erful antagonists in the censors of the Russian Orthodox Church. They
prohibited publication of books or articles supporting Copernican helio-
centric astronomy, particularly the Russian philosophe Antiokh Cantemir’s
translation in 1730 of Bernard Fontenelle’s Conversation on the Plurality
of Worlds, which had appeared in 1686. It discusses Copernicus, Galileo,
Kepler, and Descartes on astronomy. Despite protests from the senior as-
tronomer Joseph N. Delisle, the censors suppressed its printing by the aca-
demic press until 1740. Euler quietly supported this project. In reject-
ing Newton’s corpuscular theory of light Euler did take a strong public
stance. In their correspondence in 1737, Johann I Bernoulli stated that he
was attempting to synthesize the ideas of Newton and the wave theory
of Christian Huygens. Holding to a strict analogy between the propaga-
tion of sound in air and that of light in the ether, young Euler initially
proposed a theory close to the Malebranchean notion that in the medium
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of an elastic ether pressure vibrations or waves produce light. Euler also
began critiques of Wolffian philosophy and science, which were prominent
in German-speaking Europe. Euler rejected them, finding mathematical
errors in Wolff’s books including Cosmologia generalis of 1731, and ques-
tioned the existence of animate monads as the elemental substance of the
physical world. For the moment, he kept his emerging criticisms within a
small circle. He wanted to refine his ideas through further research before
presenting them to a wider public.

Except for two serious health problems, the deaths of three daughters in
infancy, and the quartering of soldiers in his house, to which he strenuously
objected, little had disturbed the quiet life of Euler during the late 1730s.
Occasionally he was to suffer from dangerous fevers. The first occurred
in early 1735, when the academy had Euler calculate tables confirming
the midday correction for determining the latitude of St. Petersburg. In
his eulogy of Euler, Nicholas Fuss attributed the fever to exhaustion from
indefatigable labor on this project. But Euler had derived a formula that
allowed him to complete the task quickly. In 1735 stress, a fever, headaches,
and harsh weather weakened his health. He did not yet suffer a problem
with his eyesight. That came in the summer of 1738, when a near fatal fever
and an infection produced an abscess in his right eye. According to Fuss,
whose information comes from an elderly Euler, he suffered the complete
loss of sight in the right eye and was set on the path to total blindness.
But portraits of Euler and correspondence from the time suggest a gradual
weakening of vision in the right eye with occasional partial remissions.

Through the summer of 1740 the Euler family seemed settled in St. Pe-
tersburg. Euler’s sixteen-year-old brother Heinrich, who had arrived in 1735
to live with the family, was studying art, and in July 1740 a second son,
Karl Johann, was born. But when Delisle joined the Second Kamchatka
Expedition in Siberia, he left Euler and Gottfried Heinsius with the entire
work of the geography section at the academy. This alarmed Euler, who be-
lieved that more than reading and writing his examination of geographical
charts and land maps was overstraining his eyes. His right eye was already
weak, and meticulously studying charts might lead to the deterioration of
vision in his left eye, if not total blindness.

In the midst of Euler’s health problems Frederick II, who at the age of
twenty-eight had ascended the Prussian throne at the end of May, invited
him to join a renovated Royal Brandenburg Society of Sciences. The first
offer Euler found too small. He asked for the same salary that he was receiv-
ing in St. Petersburg. But getting out of imperial Russia was an appealing
prospect. After the death of Empress Anne in late 1740, life became dan-
gerous in the Russian capital, especially for foreigners. Euler was asked to
cast a horoscope for the two-month old tsar Ivan VI, but passed the honor
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to Georg Krafft, who was known as the court astrologer. The interregnum
until Elizabeth gained the throne in a coup a year later was a time of turbu-
lence. In February 1741 Euler went to the new Prussian ambassador, Baron
Axel von Mardefeld, and learned that Frederick had agreed to match his
salary. He accepted the offer but could not leave St. Petersburg until June.
He had first to negotiate his release from the academy, which Schumacher
opposed, holding that he could not be dismissed from his contract for a
year; and he suffered from another fever. After his seventy-three-year old
teacher Johann I Bernoulli learned of Euler’s move to Berlin, he sent Euler
a letter in September hoping that he would travel as far as his home city to
visit his parents. Bernoulli’s most ardent desire was to have the opportunity
to see Euler once more before he died. 9

Euler was among the eminent scholars Frederick was attempting to re-
cruit. The Prussian monarch, later celebrated as a hero of German nation-
alism, was actually Francophile, speaking German only with difficulty and
relishing French refinement and wit above the more stolid character of his
German compatriots, and his relations with the bourgeois Basler republi-
can Euler were to be strained; but his interest in enhancing the reputation
of the academy was paramount here. For co-presidents, he wanted Wolff
and Maupertuis. 10 But Wolff returned from exile in Marburg to the Uni-
versity of Halle, while in April 1741 the Austrians captured Maupertuis,
who was in Frederick’s entourage, after the battle of Mollwitz during the
First Silesian War. Recognized as a leading French scholar by an officer,
he was not killed but sent to Vienna, where Maria Theresa feted him. He
returned to Paris until 1745. Euler was to aspire to the presidency, but
never achieved it.

3. In Frederician Berlin: At the Apex of His Career

On July 25, 1741, after a rough four-week journey on the Baltic Sea
with a brief stop in Stettin, the Euler family arrived in Berlin, moving into
the Barboness house at the Potsdam Bridge near Unter den Linden Street.
Euler’s brother Heinrich left for Paris and Italian cities to continue his study
of art. From March Euler had awaited a letter from the monarch. Occupied
with the First Silesian War, Frederick did not write until September 1741

9 Paul Heinrich Fuss, ed., Correspondance mathématique et physique de quelques
célèbres du XVIIIéme siècle, New York: Johnson Reprint Corporation, 1968, 1st ed.
1843, vol. II, p. 58.
10Adolf Harnack, Geschichte der Königlich Preussischen Akademie der Wissenschaften
zu Berlin, Berlin: Reichsdruckeri, 1900, 2nd ed., Olms, 1970, vol. I.1, pp. 254-259.
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from his camp in Reichenbach welcoming him. He was pleased to learn
that Euler was satisfied to be in Berlin and gave orders for the General
Directory to pay his annual salary of 1,600 Reichsthaler. Frederick declared
that should Euler still need anything, he had only to await the return of
the king. Even so, no salary payment, official appointment, or meeting was
forthcoming. Through the end of 1741, Euler and his family lived on credit.
This did not dampen his relief to be in Berlin.

In October 1742 Euler wrote to Goldbach that he had purchased for 2,000
Reichsthaler a lovely house with a large garden. The land, which was near
to where the king planned to build the new science academy, included the
current 20 and 21 Behrenstrasse. Today it is across from the Comic Opera.
Greatly modified except for the front façade, it is currently the residence
of the Bavarian Representative. Since Euler first had to have repairs made,
the family could not move into the house until Michaelmas, September 29,
1743. In the spring the Eulers planted a garden. The common vegetables
in such gardens at the time were potatoes and tomatoes. The Euler family
shared vegetables with neighbors and sold any surplus.

For the next twenty-three years Euler resided at 21 Behrenstrasse. By
1746 his family had grown to seven. Joining Johann Albrecht and Karl Jo-
hann were Katharina Helene, born in 1741, Christoph in 1743, and Char-
lotte the next year. Each of these survived to adulthood. Yet the family
suffered from the high infant mortality of the time. A son born in 1747,
twin daughters two years later, and another son in 1750 died before their
first birthday. Euler enjoyed taking his children to the zoo and watching the
bear cubs play. Before bed, he often read Scripture to them. Euler was now
addicted to pipe tobacco. His letters to the Basel-born theologian Johann
Kaspar Wettstein-Sarasin, chaplain to the duchess of Wales, have many
requests for his preferred “good tobacco” from England, which was sent
to him through Amsterdam. Euler had few relaxations. Playing the clavier
was the foremost, and he invited composers to his house to give recitals
of their new works. In Berlin he was becoming a talented chess player. At
Euler’s house a small circle of colleagues gathered around him. To 1756
Russian students sent by the St. Petersburg Academy for Euler to tutor
boarded there. On weekdays from 10:00 to 11:00 he taught them and a few
other noble children mathematics, astronomy, and physics.

In September 1742 the Royal Brandenburg Society followed the protocol
of welcoming “the famous professor of mathematics Mr. Euler.” He was now
pressing for the founding of the Berlin or Prussian Academy of Sciences. In
wartime Prussia funding from the sole source of the sale of almanacs was
insufficient. Euler improved the computation of ephemerides, streamlined
production, and urged sales in Silesia that increased income from 10,000
to 13,000 Reichsthaler but not his projected 16,000. The sale of almanacs
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was a royal monopoly. In a letter of June 1743, the king scornfully rebuked
Euler for his “pretended funding.” The monarch believed that his “abstract
calculations from the grandeur of algebra” went against the basic rules
of computation and would yield debits rather than great revenue. 11 But
Euler did not relent. Displeased with the slow progress, the king’s favorite
Count Samuel von Schmettau and other court nobility founded the Nouvelle
Societé littéraire in 1743 to serve as a basis for the academy. Euler attended
its sessions but refused to be the director of its mathematical section until
it and the old Brandenburg Society were joined to form the planned science
academy.

In January 1744 Frederick, as part of a spectacular ritual occasion preced-
ing his thirty-second birthday, formally founded the Berlin Academy, con-
sisting of four small classes with their directors elected for life. The classes
were experimental philosophy, the term roughly equivalent to physics; math-
ematics; speculative philosophy; and literature along with philology. Four
curators from the nobility closely associated with the monarch joined the
directors in managing the academy. To Delisle in St. Petersburg Euler wrote
with some continuing dissatisfaction, “I was very much mistaken when I
thought they would put the new Academy on the same footing as that
of Paris. The thing is done. We have joined into one body the old and
the new society under the name of an Academy of Sciences.” 12 The king,
whose displeasure with the frank, independent, and bourgeois Euler was to
persist, appointed another director of the mathematics class. What most in-
terested Frederick at the academy was not Euler’s research in transforming
the mathematical sciences but his translation of Robins’ book on ballistics.

The year 1746 was important in the institutional history of the academy.
Frederick agreed to have Maupertuis draw up a new constitution based
on that of the Paris Academy. The new statutes lacked the element of
democracy that the Nouvelle Societé littéraire had enjoyed. Upon their
completion, the king in June confirmed Maupertuis as perpetual president
with autocratic powers, and the members nominally elected Euler director
of the mathematics class for life. It had taken Euler five years to obtain the
position projected in his invitation. The academy had an annual prize. The
topic for 1746 was the cause of winds. Euler headed the committee that
selected the winner, the respected Jean d’Alembert, for an abstract paper
containing new differential equations. Daniel Bernoulli, another contestant,
found the paper of d’Alembert weak; between Euler and Bernoulli, his
best friend, a small strain was developing. Though the king proclaimed

11OO, IVA.6, p. 303.
12Mary Terrall, The Man Who Flattened the Earth: Maupertuis and the Sciences in the
Enlightenment, Chicago: U. of Chicago Press, 2002, p. 239.
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himself the protector of the academy, it was to continue to experience
financial difficulties, for few members had pensions and revenue from the
sale of almanacs remained inadequate to equip the observatory and run the
academy.

Euler had many tasks at the academy. His immediate assignment was to
supervise the construction of the observatory and then its operation. The
new academy building was not completed until 1752. As a member of the
academy’s directorate, Euler headed the editorial committee selecting pa-
pers for the Mémoires section of its journal, and he managed its library. He
and the academy secretary Samuel Formey served as a buffer between the
Frenchman Maupertuis and the German-speaking members. Maupertuis
suffered from poor health. By the 1750s he had to be away more often and
for longer periods. During those absences, Euler was the acting president
of the academy. All of this did not overtax him. He also prepared almanacs
and various geographical maps to be sold to finance the academy, and he
oversaw its botanical garden, personally ordering plants and trees.

From 1746 to 1748, Euler received offers of positions from familiar quar-
ters outside Berlin and a major scientific honor. Having lost many members,
including Delisle, the St. Petersburg Academy invited Euler to return in
1746, but he declined in June. The next year Schumacher asked him to
review a paper on heat and cold by the Russian chemist, physicist, and
poet Mikhail Lomonosov. Since Lomonosov had studied under Wolff and
translated into Russian his text on physics, Schumacher expected an un-
favorable review from Euler, now an outspoken opponent of Wolff. To his
surprise, Euler praised the research of Lomonosov. His support for the
talented Russian would continue. In June 1746 Euler wrote to Wettstein
that he wished to be made a fellow of the Royal Society of London. Its
Philosophical Transactions continued to be essential to his work, and he
was closely following the observations of English astronomers, particularly
James Bradley, who had discovered an aberration of stellar light in 1729
and was near to establishing the nutation or slight wobbling of Earth’s
axis. Euler’s rivals Daniel Bernoulli and Alexis Clairaut had already been
chosen fellows. But at that time a prospective candidate had to apply for
membership, which Euler refused to do. Wettstein proceeded to nominate
him, and he was elected in 1747. Fellows had to submit a manuscript. Euler
initially offered his unpublished Scientia navalis. When word reached St.
Petersburg, the Russian admiralty finally agreed after a near decade’s delay
to finance its publication. In January 1748 Johann I Bernoulli died, and
the University of Basel offered his professorial chair to Euler, who never
responded. He chose to remain on a larger stage and believed that the post
should go to Daniel Bernoulli.

His increasing accolades notwithstanding, the republican commoner Eu-
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ler was not socially popular at the Prussian royal court. Eighteenth-century
Prussian society was aristocratic. Dictionaries defined courtly social graces.
Euler was likely put off by both the privileges and the manners of the no-
bility. Episodes from Berlin allow a glimpse into his conduct in public.
Condorcet’s éloge relates that at a social gathering at the salon of Queen
Mother Sophie Dorothea, probably shortly after New Year’s Day 1742, she
was puzzled that Euler kept responding to questions only in monosyllables.
“Why do you not wish to speak with me?” she chided him. “Madame,” he
replied, “because I have just come from a country [Russia] where if you
speak, you are done for.” 13 He had reason to say so. The St. Petersburg
academician Christian Gross had been sentenced to hang for speaking out
on the wrong side during the November palace revolution there.

More significant were Euler’s complex relations with Frederick II. Though
impressed with his accomplishments, the king and the court nobility con-
sidered him lacking in courtly manners – the same charge that had been
leveled against Galileo. 14 In a letter of October 1746 to his brother August
Wilhelm, Frederick disparaged Euler’s epigrams with new curves and de-
scribed him as a “powerful calculator . . . useful to the republic of science”
and a “Doric column” essential to the foundation of science, “though any-
thing but elegant.” 15 The king doubted that conversing with Euler would
be edifying. Referring to Euler’s eyesight problem, Frederick in November
1748 wrote to Voltaire with disdain, “We have here a great Cyclops of ge-
ometry.” 16 Yet Euler seemed to enjoy conversations, put people at ease
in them, had a sense of humor, and was a good story teller. A prodigious
reader, he also spoke knowledgably on the classics and humanities.

In Berlin from 1741 to 1766, Euler wrote or completed more than 380
memoirs and books. Their combination of depth, originality, range, and
sheer number is unmatched in the history of mathematics. While he con-
tinued to stress infinitary analysis and rational mechanics, he expanded the
core of his research to astronomy, optics, and ballistics. He began to study
electricity and magnetism as well. Relatively free of state projects during

13Marie-Jean-Antoine-Nicolas Caritat, Marquis de Condorcet, “Éloge de M. Euler,”

Histoire de l’Académie royale des Sciences, Paris, 1783 (printed 1786), pp. 37-68 and
Nicholas Fuss, “Lobrede auf Herrn von Leonhard Euler” (1783) in OO, I.1, pp. XLII-
XCV.
14Mario Biagioli, Galileo Courtier: The Practice of Science in the Culture of Absolutism,

Chicago: U. Chicago Press, 1993, chapter 1.
15A. P. Juškevič and E. Winter, eds., Die Berliner und die Petersburger Akademie der
Wissenschaften im Briefwechsel Leonhard Eulers, Berlin: Akademie-Verlag, 1959, part
I, p. 3.
16As quoted in Rüdiger Thiele, Leonhard Euler, Leipzig: B. G. Teubner Verlagsge-
sellschaft, 1982, p. 106.
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his first years in Berlin, Euler immersed himself in extensive and profound
research. This short biography has space to cover only a portion of the
highlights of his work in Berlin.

The first of Euler’s landmark books published during the 1740s was his
Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes
. . . [E65] (The Method of Finding Curves That Show Some Property of
Maximum and Minimum), completed in St. Petersburg in 1741. Its main
body was sent to the publisher, Marcus-Michael Bousquet, in May 1743
and its appendices in December. It appeared in print the next year. The
Methodus inveniendi presents Euler’s invention of the initial stage of the
classical calculus of variations, which sought to determine maximal and
minimal lengths of plane curves in the course of movements, if any exist,
and extrema among values of integrals, often called functionals. 17 While
Euler replaced the previous ad hoc cases of problems with general solutions
and arranged a hundred problems in eleven categories, making the calcu-
lus of variations an independent branch of calculus, his attention to curves
kept for it a largely geometric format. He gave his differential equation or
first necessary condition for supplying extrema for a class of functionals,
and chapter 3 contains the most elegant solution of the time to the brachis-
tochrone problem, the curve of quickest descent. At the urging of Daniel
Bernoulli, Euler added two appendices. The first, the initial general tract
on the mathematical theory of elasticity, includes the vibrating membrane
problem and Euler’s buckling formula for determining critical load and de-
ciding the strength of columns. The second appendix contains a general
form of the principle of least action. According to its twentieth-century
editor, Constantin Carathéodory, the Methodus inveniendi is “one of the
most beautiful mathematical works ever written.” 18

Even as he completed Methodus inveniendi, Euler remained active in
number theory, achieving in 1741 the first of three proofs of Fermat’s little
theorem. In modern symbols, ap−1 ≡ 1 (mod p), with p a prime and a
relatively prime to p. Euler opened a seven years’ campaign to prove all
of Fermat’s conjectures on the sums of squares. In April 1742 he wrote to
Clairaut regretting the loss of the proofs of conjectures made by Fermat,
noting that he had been able to prove only a few during the previous four-
teen years. Euler asked whether some unpublished papers of the great man
with proofs existed. He was attempting, unsuccessfully, to draw Clairaut
into number theory. Clairaut replied that he had “never heard of Fermat’s

17Jacques Hadamard, “Le calcul fonctionelles,” L’enseignement mathématiques, 1912,
pp. 1-18, in his Oeuvres, vol. 4. See also Rüdiger Thiele, “Euler and the Calculus of
Variations,” in this volume.
18Constantin Carathéodory, preface to OO, I.24, p. XI.
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theories, nor do I know what happened to his papers.” He held that the
study of number theory was “not fashionable and is said to be dry.” 19

Clairaut described as extremely subtle but unnecessary Euler’s discovery
of a method to determine whether a large number is prime. At the time
the Berlin Academy was also attempting to develop a perpetuum mobile.
Clairaut declared that to be impossible.

In 1742 and 1743 Euler also pursued a second phase of exhaustive cal-
culations in infinitary analysis preparatory to his Introductio. Apparently
a breakthrough in his perfecting of computational methods prompted this.
He devised better techniques to sum the zeta functions for even integers
less than 26. Employing Taylor expansions, deft substitutions, and other
techniques, Euler summed infinite series, especially for π and e, for the most
part more precisely than any predecessor. Continued fractions, for exam-
ple, gave e = 2.718281845904. Euler had earlier studied Moivre’s formula
(cos x + i sinx)n = cos nx + i sinnx, though not yet with the i notation,
and he now returned to it, strengthening the connection between the ordi-
nary trigonometric functions and both the exponential and the logarithmic
ones, although extending their domains to the complex numbers. By 1744
he obtained the equation eix = cos x + i sinx, from which it follows that
eiπ = −1. 20 Since Euler defined the natural logarithm as the inverse of the
exponential function, this meant that ln(−1) = iπ. Thus, the logarithm of
−1 is an imaginary number. Euler and d’Alembert soon debated the nature
of logarithms of negative numbers. 21 The study that begins with Moivre’s
formula is believed to be Euler’s concluding work on the Introductio. In
May 1743 Euler had signed a contract with Bousquet to publish it, but he
did not submit the entire manuscript for a year.

The comet of February and March 1742 must have heightened Euler’s in-
terest in its orbit and in celestial mechanics in general. He wrote to Clairaut,
Delisle, and Heinsius for their observations of the comet, so that by com-

19OO, IVA.5, p. 5
20Although he apparently never exactly wrote it in the modern form, this relation is now
called Euler’s identity. Today it is usually written as eiπ+1 = 0, which Richard Feynman

has called “the most remarkable formula in math,” because it connects these five most
important mathematical constants and has significant applications in mathematics, for

example, providing additional rigorous proofs of the infinity of primes. (Paul J. Nahin,
An Imaginary Tale: The Story of

√
−1, Princeton: Princeton U. Press, 1998, p. 67.)

This name for the relation probably arose in an early nineteenth century reference.
21Nearly a century and a quarter later, the Euler identity was essential to the strin-

gent recognition that not every real number is the root of an algebraic equation: that
transcendental numbers must exist. Charles Hermite proved in 1873 that e is transcen-
dental, and afterward attention turned to π, which was long suspected to be the same.
In a proof based on Euler’s formula, Ferdinand Lindemann was the first to demonstrate
the transcendancy of π, and David Hilbert improved upon his proof.
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parison of sightings from separate places he could map its position more
precisely. After adding observations of the comet of 1743, Euler found the
orbits of both to be nearly parabolic ellipses. He continued his research on
computing more accurately the irregularities and apsides of planetary and
lunar orbits. In competition with Clairaut and d’Alembert, he addressed
the thorny three-body problem. His textbook Theoria motuum planetarum
et cometarum [E66] of 1744 contains the first differential equations for com-
puting each point in the orbits of Earth and Mars.

Apparently Euler rather than Frederick and his courtiers in 1742 pro-
posed translating into German Robins’ Principles of gunnery, for long a
subject in applied mathematics that had strong support of the court. 22

Euler had studied artillery fire for over a decade and admired this work
of Robins. His Methodus includes an investigation of curves that apply to
ballistics. The problem of the curved paths described by mortar projectiles
in the air, or any other fluid, remained a challenge, though Euler credited
Newton with solving it. Johann Bernoulli attempted to determine whether
air resistance is proportional to v or v2, and Brooke Taylor and others
underestimated it for projectiles at higher speeds. Euler, like Newton, in-
vestigated resistance in both discontinued, rarefied fluids and air. (That
the rarefied does not apply in our world did not stop Euler from studying
possible computations for it. That kind of venture into purely theoreti-
cal situations is not uncommon among mathematicians.) Concentrating on
internal ballistics, his Neue Grundsätze der Artillerie, [E77], published in
1745, also depended on chemical science. It begins with an examination of
the nature of air and fire, citing Daniel Bernoulli’s “incomparable Hydrody-
namica,” besides considering the influence of different temperatures on the
compression of air. Essentially Euler devised thermal equations of state.
He lacked a general formula for air resistance, instead computing its effect
through a variety of rules, but found that at higher velocity only there
is no back pressure on the projectile. When applied for lesser speeds, his
techniques underestimate the resistance. In the combined Neue Grundsätze
and a series of articles to 1753, Euler devised the first accurate differential
equations for ballistic motion in the atmosphere.

To the Neue Grundsätze, Euler added annotations and appendices five
times longer than the original book. He covered explosives and artillery
topics that Robins had not. Proceeding as a physicist, Euler emphasized
practical details and numerical computations rather than guiding princi-
ples. Although imperfect, the Neue Grundsätze began to transform a col-
lection of separate rules into the first scientific work on gunnery. Publishing

22See Brett D. Steele, “Muskets and Pendulums: Benjamin Robins, Leonhard Euler,
and the Ballistics Revolution,” Technology and Culture, 35 (1994), pp. 348-382.
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this book in German indicates that it was intended to improve the compe-
tency of lower military officers. Euler’s later tables for mortar fire, included
in a French translation, were studied by Napoleon Bonaparte and used to
World War II.

From its start in 1746, the new academy had a major fissure over its prize
topic for 1747, the monadic doctrine. The issue placed Euler against the
Wolffian philosophers, who held sway in German universities. The monadic
doctrine was central to the metaphysics of Leibniz and that of Wolff. Leib-
niz had proposed monads – animate, elastic, immaterial, geometric points
of energy – as constituting the smallest components of matter. Wolff rede-
fined these as souls and generally indivisible atoms. Academicians were not
supposed to participate in the annual competitions. Euler broke that rule
when he anonymously attacked the doctrine in the pamphlet Gedancken
von den Elementen der Cörper . . . (Thoughts on the Elements of Bodies
. . . ) [E81]. Of molecules, as he termed them, Euler ascribed as their most
basic properties impenetrability, drawing on Newton, and infinite divisibil-
ity, a concept probably taken from Euclid and Leibniz. He maintained that
the laws of physics cannot empirically verify or quantify monads.

To this point Wolff, now in the autumn of his career, had expressed ad-
miration for Euler’s research in the sciences. But Euler’s treatise incensed
him, and he wrote in November 1746 to complain to the academy presi-
dent Maupertuis, who had not initially followed the quarrel since he could
not read German. Wolff dismissed Euler’s affecting “a certain supremacy
in the Republic of Letters” and declared his preference for “the thought
of Leibniz in metaphysics and philosophy to the profundity of Euler.” 23

Wolffian philosophers joined the attack on Euler’s position. This contro-
versy revealed an institutional split between the academy and universities
in north German states. At Maupertuis’ wish, Samuel Formey, the academy
historiographer and future secretary, translated the articles from German
into French. Although Formey claimed to be neutral, he became Euler’s
leading opponent. Even after Daniel Bernoulli urged him not to engage in
this metaphysical debate, Euler in 1747 in the tract Rettung der göttlichen
Offenbarung (The Rescue of Divine Revelation) [E92] extended his argu-
ment to an exercise in physicotheology. He claimed that Leibniz’s monadic
doctrine and principle of the pre-established harmony between mind and
body contradicted the traditional Christian concept of original sin. That
year Johann Justi won the Berlin Academy prize for a modest paper criti-
cizing the concept of monads. Euler’s Anleitung zur Naturlehre [E842], his

23A letter of 15 November 1746 as cited in William Clark, Jan Golinski, and Simon
Schaffer, eds., The Sciences in Enlightened Europe, Chicago: U. Chicago Press, 1999, p.
442.
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principal work on the theory of matter, was now completed, but it was lost,
not rediscovered until 1844, and published in 1862.

Euler’s battle with the Wolffian freethinkers was only beginning. In his
strictly rational method, Wolff gave the principle of sufficient reason a
lesser status than the principle of contradiction, which went against Leibniz
and Johann I Bernoulli. Euler decried the Wolffian use of the principle
of sufficient reason. The two sides also differed over mathematics. As he
developed infinitary analysis, Euler far surpassed Wolff, who retained the
primacy of geometry. Euler’s Introductio in analysin infinitorum, probably
the most influential textbook in modern mathematics, was in press, and
would appear soon in 1748.

Meanwhile, Euler was making important advances in optics, mechanics,
and the treatment of space and time. These appeared separately in three
of Euler’s papers written or published from 1746 to 1750. After rejecting
Newton’s corpuscular theory of light a decade earlier, Euler in his “Nova
theoria lucis et colorum” (New Theory of Light and Colors) [E88] of 1746
presented the most comprehensive medium theory of light during the En-
lightenment. Only for light as a pulse motion in an elastic ether did he
accept Huygens’ analogy between light and sound. Synthetic to a degree
in optics, he began to transform into algebraic language Newton’s geomet-
ric wave equations for vibratory motion. East of the Rhine, Euler’s optics
prevailed. From 1747 he intensely pursued a general method applying to
all types of mechanical systems, whether they be continuous or discrete.
That year he could treat discrete systems, but not fluid and solid media. In
1750 he completed his “Discovery of a New Principle of Mechanics” [E177],
which did not appear in the academy’s Mémoires until 1752. In it he fi-
nally recognized that the principle of linear momentum, Newton’s second
law, addresses all these systems. He was the first mathematician to express
that law by a set of differential equations of motion. He called them “the
first principles of mechanics.” Today they are known as “the Newtonian
equations.” In “Réflexions sur l’espace et le tem[p]s” (Reflections on Space
and Time) [E149], written in 1748 and published in the Mémoires in 1750,
Euler argued that space and time must be absolute, for they envelope the
principles of mechanics whose truths are incontestable. In effect appealing
to mechanics, he rejected metaphysical first principles to determine their
nature. He dismissed the claim by metaphysicians that space and time are
relative, that is, imaginary and destitute of all reality. Inertia and the mo-
tion of solid and fluid bodies, he insisted, contradict their view of time as
simply a succession of events.

Exploration and cartography continued to draw Euler’s close attention.
In a letter to Wettstein-Sarasin in England that appeared in the Philosoph-
ical Transactions of the Royal Society for 1747 [E107], he commented on
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the Russian search for a strait or northwest passage across North America,
which provides a navigable water connection between Hudson’s Bay and
the Pacific Ocean. Euler called the ongoing search a “glorious undertaking.”
Captain Vitus Bering, who had led Russia’s Second Kamchatka Expedition
into the northeast of Siberia and died in 1741, suspected that the northern
lands across from Siberia were connected to California and thus there was
no water passage. Euler worried that Bering was correct but awaited proof
from explorers.

In 1748 only seventy-five years beyond its birth, calculus had gone barely
beyond its infancy, lacking a framework that identified and systematically
arranged fundamental concepts along with a program for the development
of the field. In a letter of July 1744 to Goldbach Euler described the two-
volume Introductio “as a prodromus to analysin infinitorum,” that is, a
precalculus text. He was beginning to provide its necessary structure.

Since Leibniz, continental geometers had developed a theory of functions.
Presenting functions as autonomous objects and making them central to
calculus, the first volume of the Introductio builds a mostly methodical
and comprehensive theory for algebraic and transcendental functions. “A
function of a variable quantity [is] an analytical expression composed in
any way whatsoever of the [changing] variable quantity and numbers or
[fixed] constant quantities.” 24 Chapters two and three give rules for for-
mally combining and manipulating them and transmuting them “into other
forms.” The definition of function was evolving. Euler gave the value of e
to twenty-three decimal places in Book II of the Introductio, and chapter
eight of Book I takes π to 127 decimal places. After intensely approximat-
ing π, Euler reported this value from another geometer. 25 “For the sake
of brevity,” Euler wrote, “we will use the symbol π for the number.” 26

Beyond adopting the symbol π, this master notation builder introduced in
the Introductio the trigonometric functions as cos., sin., tang., cot., sec.,
and cosec.. But he had xx instead of x2, as did almost everyone else for
more than a century. This notation was also a convenience for typesetters.
For natural logarithms base e he had lx for lnx. He employed f(x) from his
earlier work but on this occasion used i and j for infinitely large numbers.
He had not yet adopted the ‘lazy eight’ symbol ∞ for infinity. 27 Book
Two of the Introductio unified Cartesian or analytic and for the first time
put it into its modern form. Euler also completed the manuscript for the

24Leonhard Euler, Introduction to Analysis of the Infinite, Book I, trans. by John D.
Blanton, New York: Springer-Verlag, 1988. pp. 1-5.
25Not until 1794 was the figure found wrong in the 113th place.
26Leonhard Euler, Introduction to Analysis of the Infinite, p. 101.
27The English mathematician John Wallis had introduced this symbol in the second
half of the seventeenth century.
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Institutiones calculi differentialis [E212] in 1748, but it took seven years to
publish.

In 1749 Euler’s Scientia navalis on the construction of ships and ship
propulsion was published. It provides optimal ship designs, taking into
consideration stability, handling, and speed, which oppose one another.
Outstanding in both theoretical and applied mathematics, the Scientia
navalis continued Euler’s program founding continuum mechanics. After its
release, he was concerned that the text was too difficult for navigators and
began a revision to simplify it. The timing of publication posed a problem.
Three years earlier Euler’s old competitor Pierre Bouguer, victorious over
him in the Paris prize competition in 1727, had published his Traité du
navire, which allowed Bouguer to claim priority for naval science. But Euler
was the first to give the principles of hydrostatics with variational solutions
using differential equations.

Among the hundreds of discoveries Euler now made in mathematics was
an algorithm in number theory to generate pairs of amicable or friendly
numbers, which he published in the brief memoir “De numeris amicabilis”
[E100] in Nova acta eruditorum in 1747. Two numbers are amicable pairs
if each is the sum of the proper divisors of the other. In antiquity 220 and
284 had been known to be amicable, while it is probable that Thabit ibn
Qurra in the ninth century found 17,296 and 18,416. In the seventeenth
century, Pierre Fermat added a third pair, 9,363,548 and 9,457,506, and
he gave a rule for computing amicable numbers if their factors are primes.
The liklihood is that throughout history prior to Euler, only two other pairs
may have been discovered. His “De numeris amicabilis” gives twenty-seven
new pairs, a nine-fold increase over those previously well known. Euler’s
“Theoremata circa divisores numerorum,” [E134] written in 1747 and pub-
lished in volume 1 of the Novi commentarii three years later, returns to the
subject with a potent new method for generating pairs. Introducing the
concept of number theoretical functions, he invented the sigma function,
which gives the sum of the divisors of a given number n. Building upon
methods of Fermat with prime numbers, Euler obtained sixty-one more
amicable pairs. 28

As early as 1750 Euler, who had a habit of introducing subjects that
he later developed, addressed what became in the late nineteenth century
combinatorial topology. He supplied in solid geometry an elaborate but
flawed proof that v + f = e + 2, interrelating in a convex polyhedron
the number of vertices (v), edges (e), and faces (f). The modern form,
v − e + f = 2, defines the Euler characteristic.

28For an explanation of his method, see Ed Sandifer, “How Euler Did It: Amicable
Numbers,” MAA Online, www.maa.org, November 2005, 6 pages.
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In the late 1740s, the rivalries between d’Alembert, Daniel Bernoulli,
Clairaut, and Euler intensified. The competition was not necessarily one
against all others. Bernoulli, for instance, more strongly opposed d’Alembert
than did Euler, and he, Clairaut, and Euler occasionally had d’Alembert
as a common opponent.

A problem that challenged Bernoulli and Euler from the 1730s was the
vibrating string problem, of interest in calculating musical frequencies. By
1743 they had formulated linear differential equations for loaded strings
with clamped ends. In 1746 d’Alembert derived the linear wave equation
for small vibrations of a string with such fixed ends. Although not the first
partial differential equation and not in close accord with observations, it
was the first to gain wide attention. But d’Alembert added to it many
unnecessary conditions. He maintained that the string at time = 0 was in
the equilibrium position, while Euler imagined the string at rest having
an initial position differing from equilibrium, which would set the string
in motion when it was let go. Euler, whose results did not appear in print
until 1749, produced an alternate solution, allowing in modern terminology
any piecewise continuous initial shape for the vibrating string. This was
contrary to Alembert’s solution, which allowed only one initial shape of
the string. It had to be continuous or what is today called smooth, with
continuously differentiable functions given by a single equation. A verbose
controversy thus arose in 1751 over not the physical problem but the initial
conditions. Bernoulli, who never agreed to start resolving the oscillating
systems with differential equations, introduced in 1753 the concept of a
composition of simple nodes and trigonometric series. Although the polemic
added little to mechanics, Euler found nearly everything known today in
that field concerning the vibrating string, and his abandonment of Leibniz’s
law of continuity opened the path leading to a more general conception of
the function.

In pure mathematics Euler and d’Alembert corresponded between 1746
and 1751 mainly on the logarithms of negative numbers, which both found
filled with paradoxes, 29 and imaginary roots of algebraic equations. Mau-
pertuis and one of Euler’s Basel cousins, the physicist Reinhard Battier,
delivered some of the messages. The tone of d’Alembert’s letters suggests
an attempt to stump Euler and an effort of self-promotion.

After Euler in a letter of December 1746 tactfully rejected d’Alembert’s
idea that log(−x) = log(x) for positive numbers x, d’Alembert responded
in January 1747 that the new information disturbed him. He asked Euler
to delete a portion of his treatise, titled “Recherches sur le calcul integral,”

29 In chapter 21 of [E102], for example, Euler cites the paradoxes that make difficult the
extension of the domain of the logarithm function to the set of all complex numbers.
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sent the previous year for the Berlin Academy Mémoires, which discusses
the log(−x). The logarithm controversy followed. 30 In March d’Alembert
defined logarithms as the inverse of the exponential and challenged, using
the curve of the exponential, Euler’s position that the logarithm of a neg-
ative number is imaginary. The last argument in his letter reasons that
−1 = 1/ − 1, so log(−1) = 0. d’Alembert’s contention “that logarithms
of negative numbers are real,” Euler responded in April, was “not fully
correct,” and he offered counterexamples. His letter has the symbol π to
represent what is now 2π. After informing d’Alembert in August that he
had removed the perplexing portion of his Mémoires paper, the next month
Euler read to the academy his memoir, “Sur les logarithmes des nombres
négatifs et imaginaires” (On the Logarithms of Negative and Imaginary
Numbers) [E807], but he withheld it from publication. It appeared posthu-
mously in 1862. The debate continued to December 1747, when Maupertuis
informed Euler that d’Alembert wished to suspend “his work in mathemat-
ics for a little while to reestablish [his] health.” 31

Euler wanted to drop the subject, but d’Alembert persisted with letters
in 1748 that in Euler’s judgment offered little new about logarithms of
negative numbers and were mainly argumentative. The debate diminished
and ended for Euler in September, when he commented that “the matter
of imaginary logarithms is no longer so familiar to me that I may rigor-
ously respond to your latest remarks” 32 and by October d’Alembert had
abandoned the argument. Still Euler submitted for the Mémoires in 1749 a
lengthy memoir, “De la controverse entre Mssrs. Leibnitz et Bernoulli sur
les logarithmes des nombres négatifs et imaginaires” [E168], defending his
position. It appeared two years later, deepening discord between the two
men.

Leading most to the break between the two men was competition not in
pure mathematics but in fluid mechanics. In 1749 d’Alembert submitted
an awkward paper, Essai d’une nouvelle théorie de la résistance des fluids,
for the Berlin Academy prize competition. He introduced the concept of
fluid pressure and derived several correct partial differential equations on
plane and rotationally symmetric flow, but knitted these together painfully
into a fabric of conjecture and error. Although the three man review jury
chaired by Euler found d’Alembert’s paper the best entry, Euler believed
that it did not warrant the prize. The academy’s rejection of d’Alembert’s
paper together with all others on fluid mechanics for the prize in 1750 came

30See Robert E. Bradley, “Euler, d’Alembert and the Logarithm Function,” in this

volume.
31OO, IVA.5, p. 273. Euler wished him success in his recovery.
32 Ibid., p. 294.
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as a blow to him. He thought Euler responsible, and the junior astronomer
Augustin Nathaniel Grischow, a member of the review jury and an acquain-
tance of d’Alembert, confirmed this. The academy remanded the prize to
the 1752 competition, but d’Alembert did not reenter. 33 In 1750 and 1751
Euler prepared papers on fluid mechanics simplifying and generalizing the
hydraulic theories of Johann I and Daniel Bernoulli, bringing the subject
into its final form. Without citing his source, he built upon d’Alembert’s
concept of pressure and correct partial differential equations. d’Alembert
sent a bellicose letter to Euler in September 1751, breaking with him, and
criticized him in the entry “Hydrodynamique” in volume 8 of the Ency-
clopédie. In that article, which corrected Daniel Bernoulli’s hydrodynamics,
d’Alembert held that Euler “should have given my work greater substance
on this subject and agree on the utility that he was able to obtain from
it.” 34 The immediate response of Euler to his letter is not known. Since he
did not acknowledge the controversy subsequently, the breach did not soon
heal. Expanding upon the awkward pioneering labors of d’Alembert, Euler
in three classic papers from 1753 to 1755 developed for all of hydrodynamics
an elegant mathematical foundation utilizing analysis and algebra. These
papers, which were not published until 1757, praise the researches on fluids
of Bernoulli, Clairaut, and d’Alembert, while establishing the importance
of Euler’s contribution. It is “impossible” he wrote,” not to admire the
agreement between their profound meditations and the simplicity of the
principles from which I have drawn my two equations, and to which I was
led immediately by the first axioms of mechanics.” 35

At the turn into the 1750s Clairaut, d’Alembert, and Euler vied for
supremacy in attempts to resolve the three-body or perturbational prob-
lem. In celestial mechanics the great unanswered question was whether
Newtonian attraction alone can describe all celestial motions.

By 1742 Euler, who was preparing lunar tables, had urged the compi-
lation of more telescopic observations. Although he accepted the inverse-
square law, he wanted to explore whether it gives only close approximations
for some celestial motions and thus requires a small correction for preci-
sion for objects at short distances from each other within our solar system,
such as Earth and the moon or Saturn and Jupiter in conjunction, but
negligible at greater distances. After pointing out in 1743 that Newton had
not fully explained the motion of the moon’s apogee, the farthest distance

33E. Winter, ed., Die Registres der Berliner Akademie der Wissenschaften, 1746-1766,
Berlin: Akademie-Verlag, 1957, p. 150.
34OO, IVA.1, p. 9 and Jean d’Alembert, “Hydrodynamique,” in Encyclopédie, vol. 8, p.
371 ff. , trans. by John S. D. Glaus
35Thomas Hankins, Jean d’Alembert: Science and the Enlightenment, Oxford: Claren-
don Press, 1970, p. 50.
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from Earth, Clairaut began to reexamine it. At the Paris Academy in 1747,
he announced that his differential equations and first-order approximations
based solely on attraction confirmed only roughly half of the observed mo-
tion of the lunar apogee, that is, 20◦ rather than the observed 40◦ of the
annual precession. Even though his result was not new, for Newton had
found the same without differential equations in his Principia, the calcula-
tion gave heart to critics of Newton.

In April 1748 Clairaut, who was a member of the prize commission, told
Euler of his capture of the Paris Academy prize, attempting to ascertain
solely from Newton’s law of attraction the perturbations in the orbit of Sat-
urn caused by Jupiter. Utilizing observations made by Jacques Cassini at
the Paris observatory, Euler improved procedures for computing these sec-
ular inequalities. He invented new trigonometric series, moving the study
of perturbations beyond tiresome numerical integrations. Drawing on the
latest, modified observations made with most accurate telescopes, he com-
puted coefficients for successive terms of these series. For varying motion his
new differential equations employed arbitrary constants, which perturba-
tions actually cause to vary extremely slowly. His own erroneous figures he
attributed to imprecise observations and mostly to a slight inaccuracy in the
inverse-square law at large, interplanetary distances. Pleased that Euler’s
memoir agreed with him, in November Clairaut recommended correcting
Newton’s inverse-square law of attraction by adding the small inverse of
the fourth power of distance.

But upon realizing that second-order approximations are crucial for de-
termining the motion of lunar apogee, Clairaut found his first computations
to be at fault. The second-order calculation produced a precession of the
apogee 3◦2′6′′ per lunar cycle, or about 40◦ per solar year. The actual value
is 3◦4′11′′. Clairaut retracted his statement that the lunar motion was con-
trary to Newtonian attraction and announced his new results at the Paris
Academy in 1749. When Euler learned of this, he redid his derivations in
July but found no error. His mistaken treatment of the lunar orbit as a
rotating ellipse suggested that he needed only first-order approximations
with differential equations. He was convinced that his calculations were be-
yond doubt and thus that Clairaut was wrong. While Bernoulli said that he
had pointed Clairaut in the right direction, neither Euler nor d’Alembert
knew the new procedure. Clairaut informed his Swiss colleague Gabriel
Cramer that Euler had written twice that year describing “his fruitless
efforts to find the same theory as I, and he begged me to tell him how I
arrived at them.” 36 He wanted the new method released so that it could be

36As quoted in Jean Itard, “Alexis-Claude Clairaut,” in Charles C. Gillispie, ed. in chief,
Dictionary of Scientific Biography, New York: Scribner, 1971, vol. 3, p. 283.
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mathematically proven correct or at fault, as he thought it. Whatever the
outcome, he believed its resolution would considerably benefit astronomy,
physics, and infinitary analysis.

In 1749 when the St. Petersburg Academy asked for the topic for its
competition to begin in 1751, Euler sent a list of four. Its members selected
the first, whether lunar inequalities occur in accordance with Newtonian
theory. In January 1750 Clairaut wrote to Euler that he found the prize
question “very interesting,” but he worried that no St. Petersburg aca-
demicians were competent to judge it and that it was simply Euler and
not his colleagues in Russia who had defined the topic. 37 After Euler in
a letter in June expressed impatience awaiting the publication of his com-
plete method, Clairaut submitted for the competition the paper “Theory of
the Moon Deduced Only from the Principle of attraction.” Euler, who was
the chief judge, read it with “infinite satisfaction” and learned its method.
After revising his researches on lunar theory and carrying his complicated
approximations of apsidal motion far enough, he discovered the source of
his own errors. For his past hardheadedness, Euler asked for Clairaut’s
pardon. He lavished praise on him, asserting that his work was exemplary
and gravitational attraction “is entirely sufficient to explain the motion of”
lunar apogee. These lunar studies and the prize-winning paper of Clairaut
gave “quite a new luster to the [gravitational attraction] theory of the great
Newton.” 38 But Euler still harbored a belief, partly from his study of mag-
netism, that a small corrective factor, in this case negligible, was needed
for Newton’s inverse-square law. Clairaut’s computations on lunar motion
he considered to be of the highest degree of difficulty, and he noted that
prior efforts of other astronomers to show accord between lunar apogee and
Newtonian attraction had been insufficient.

Another significant question for astronomers was whether it is possi-
ble to deduce quantitatively the precession of the celestial equinoxes, the
points when the celestial equator crosses the ecliptic, and the nutation, wob-
bling, of Earth’s axis. Since antiquity, astronomers had known the equinoc-
tial points are advancing through the zodiac. Put another way, they were
witnessing the proceeding of Earth’s axis through the fixed stars. These
two phenomena posed a further test of Newtonian attraction. In 1748 the
British royal astronomer James Bradley announced his discovery of nuta-
tion. In attracting Earth’s equatorial bulge, the sun and moon produce
precession. Euler’s prize-winning paper in 1748 considered precession in a
perturbed planet’s orbit, and in correspondence with d’Alembert he enthu-
siastically broached the subject. d’Alembert’s Recherches sur la precession

37OO, IVA.1, pp. 83-88.
38OO, II.24, p. 1
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des equinoxes of 1749 was the first study to deduce both correctly. Although
unable to follow his clumsy and difficult differential equations, Euler re-
turned to the subject in a paper the next year [E171] without mentioning
him. He devised a different method. d’Alembert claimed that both methods
were the same and was again angered that he was not cited. Euler’s article
appeared, moreover, in the volume of the Mémoires dated 1749, so a reader
could not tell which was first. Euler quickly surpassed d’Alembert in per-
fecting the differential equations. But in volume six of the Histoire of the
Berlin Academy for 1750, he gave d’Alembert his deserved credit for prior-
ity. That volume appeared in print two years later. By 1751 d’Alembert was
addressing more general French Enlightenment thought with his masterful
Preliminary Discourse to the Encyclopedia of Diderot. 39

While Euler was not generally popular at court, Frederick II valued his
applied mathematics and the prizes he won abroad. In a History of My
Times, the king was to praise him as “an ornament of the court.” After the
War of the Austrian Succession ended in 1748, Frederick II assigned Euler
more state projects, including three in 1749. He was charged to find ways
of leveling the 70-kilometer Finow canal joining the Oder River with the
Havel. That canal made Stettin a maritime port for Prussia. Euler took
his fifteen-year old son Johann Albrecht to assist him on this project. His
report concentrated on regulating pressure at the many locks. In September
he was asked to increase the hydraulic pressure in pumps and pipes of the
fountains at the royal residence of Sans Souci in Potsdam. Frederick wanted
the water jets from the fountains to reach a hundred feet in height and thus
compare with the jets at Versailles. Euler found that before forcing water
to those levels the wooden pipes even with metal binding would explode,
but in computing hydraulic pressure he omitted the effects of friction with
embarrassing results. Frederick later blamed the failure on the vanity of
mathematics. On September 15, the king assigned Euler a problem in what
is today recreational mathematics, designing a lottery for Prussia. In the
wake of two recent wars, the kingdom needed funds for pensions to widows.
Lottery income would help. Euler briefly set aside hydraulics, and in two
days had a version of a lottery offering a chance of drawing five numbers
from a group of ninety. For this lottery, he computed the fair price of tickets
and the increase in profit margins. But over the course of his career he gave
little attention to probability, later writing only eight papers on the subject.
In April 1749, fourteen years before the official Prussian lottery began,
Euler had written to Goldbach about his success in a different lottery: “I

39See Jean Le Rond d’Alembert, Preliminary Discourse to the Encyclopedia of Diderot
(1751), trans. and with an intro. by Richard N. Schwab, Chicago: U. Chicago Press,
1995.
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have won this day in a lottery 600 Reichsthaler, which was just as good as
if I had won the Paris prize this year.” 40

Euler’s strife with the Wolffians continued in the Maupertuis-König af-
fair, the leading scientific controversy of the century. The central issue was
over who should be granted priority for the principle of least action, which
now has the title Euler-Maupertuis: did it belong to the great Leibniz or to
Maupertuis? In his Essay on Cosmology of 1750, Maupertuis restated the
law: “Whenever any change occurs in nature, the amount of action is al-
ways the smallest.” He argued that it was the final law of mechanics, which
Descartes and Newton had sought, and he declared that it had universal
application and had originated in three of his papers in the Paris Academy
Mémoires. Maupertuis began to formulate it in “Loix du repos des corps”
in 1740, published it in “Accord du différentes loix de nature . . . ” in 1744,
and two years later in “Les loix du mouvement et du repos . . . ” called it
the “general principle” of mechanics. In the article “Action” in volume one
of the Encyclopédie in 1751, d’Alembert endorsed its claim to universal-
ity. But in “De universali principio aequilibri et motus” in Leipzig’s Nova
acta eruditorum, also in 1751, the Swiss mathematician Johann Samuel
König made counterclaims, which questioned the extent of the application
of the principle and thus Maupertuis’ scientific achievement, along with his
integrity.

König’s article surprised Maupertuis, and with Euler and the young Swiss
Johann Bernard Merian, a tireless ally in metaphysics, he planned a rebut-
tal. Euler actually deserved priority for the principle, for it had appeared in
the appendix on elastic curves to his Methodus inveniendi, where he wrote
“nothing at all takes place in the universe in which some rule of maxi-
mum or minimum does not appear.” Yet he steadfastly defended Mauper-
tuis. Maupertuis lacked the mathematical skill to devise differential equa-
tions for the principle, so Euler was providing these in a series of articles.
Journalists in the German press and university faculty, including Johann
Christof Gottsched and his Leipzig circle, generally treated Maupertuis
with hostility, especially for his autocratic handling of the Berlin Academy.
In the growing debate, Euler appealed to scientific authority, contrasting
the accomplishments of the “illustrious president” with those of “the pro-
fessor,” whose grasp of mechanics “was worthy only of contempt.” 41 He
dismissed König’s journalistic allies as “public quibblers,” who lacked ad-
equate knowledge to make judgments in the sciences. 42 König’s response

40Paul Heinrich Fuss, ed., Correspondance mathématique et physique du quelques

célèbres géomètres du XVIIIéme Siècle, vol. 1, p. 497.
41Mary Terrall, The Man Who Flattened the Earth: Maupertuis, p. 300.
42 Ibid., pp. 300-301.
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was unlikely enough to cast doubt upon his : an injustice that he helped
perpetuate himself, for the letter was found more than a century later.

König based his claim on a copy of a portion of an unpublished letter
of Leibniz to Jakob Hermann in Basel in October 1707 defining action and
maintained that the origins of the principle of least action had appeared
in Aristotle. Maupertuis demanded that he produce the original letter and
requested the assistance of Frederick II, for the quarrel was an attack on
the king’s academy. The monarch wrote to magistrates in Bern and Basel
asking them to check among Hermann’s papers for the missing letter, and
the Bernoullis helped in Basel. Both searches, completed by February 23,
1752, proved fruitless. No letter was found. Maupertuis then asked Abra-
ham Kästner to look among Leibniz’s papers in the Leipzig Library. On
April 5 Kästner reported that he had failed to find even one letter from
Leibniz to Hermann. On completion of the research into the matter, Mau-
pertuis called for an extraordinary meeting of the academy on April 13,
1752, and invited two noble curators to lead it. He intended to be absent.
To be sure that the German-speaking members not fluent in French could
understand it, Euler read in Latin the report on König [E186]. It was pub-
lished in French, “Exposé concernant l’examen de la lettre de Leibniz.”
[E176] Euler found König’s position untenable and asserted that the letter
fragment was “a forgery, either to malign Maupertuis or falsely to give ex-
aggerated praise for the great Leibniz, who required no such help.” 43 For
that conclusion, resting on circumstantial evidence, Euler has drawn re-
proach. Only half the academicians attended the meeting, but those present
unanimously endorsed Euler’s ruling on the letter. The letter in question,
discovered more than a century later, does not present a complete version
of the principle of least action.

In a series of articles Euler and Merian defended the academy’s judgment,
while many German and Dutch journalists and university faculty opposed
it. In two replies König rejected what he defined as the tyranny of the
academy and considered the public alone “his natural judge.” In 1752 the
debate turned from a scientific quarrel into a literary affair when Voltaire,
who was in Potsdam visiting Frederick, issued his caustic satire Diatribe
du Docteur Akakia, medicin du Pape, et du natif St-Malo, a compilation of
brief pamphlets ridiculing Maupertuis. Docteur Akakia (or Guiless), who
denotes Voltaire, pilloried the hapless native from St. Malo, who is Mau-
pertuis. Article fifteen of its first edition, which describes Professor Euler as
“our lieutenant” and “lieutenant general” to Maupertuis, still praises him
as “a very great geometer” belonging to a line from Copernicus, Kepler,

43Louis Gustave Du Pasquier, Leonhard Euler et ses amis, Paris: J. Hermann, 1927, p.
105.
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and Leibniz through Johann Bernoulli, recognizes that he put the principle
of least action into mathematical formulas, and declares that scholars who
can understand his work find it to be that of complete genius. 44 But article
nineteen holds that Euler never learned philosophy, that the formulas of
this “phoenix of algebraists” led in one instance to the notion that a body
dropped through a hole to the center of Earth would return to the surface,
and questioned his trust in resolving paradoxes by his calculations more
than logical analysis. In a play on the principle under discussion, Voltaire
proclaimed that among geometers Euler sought to produce the maximum
of calculations in published works. Later editions of Docteur Akakia drop
reference to Euler.

Even after the king issued an anonymous pamphlet titled “Lettre d’un
académician de Berlin à un académicien de Paris,” defending the academy
decision and eulogizing Maupertuis, Voltaire continued his attack. Out-
raged at Voltaire’s effrontery, the king in December had Docteur Akakia
burned by the public executioner at several places in Berlin. Whether the
booklet damaged the health of Maupertuis, who had earlier suffered a se-
ries of illnesses, is arguable. Having won his case at the Berlin Academy,
Maupertuis in the stubbornness of his criticism of König lost it before Eu-
rope’s republic of letters. Growing pressure for freedom of the press against
absolutist controls seems to have influenced the intensity of the press ac-
counts. But in this dispute Maupertuis and Euler were not isolated, as is
sometimes believed. In 1753 Georg Wolfgang Krafft at the University of
Tübingen held that Maupertuis was the sole author of the principle, and
the next year d’Alembert in the Encyclopédie article “Cosmologie” praised
Maupertuis for fashioning into a single law the impacts of hard and elastic
bodies, rejected the claims of König, and cited the elegance and directness
of Euler’s applications.

In 1753 Euler’s mother, who was used to living in the country, had him
purchase for her for 6,000 Reichsthaler a pleasant estate in Charlotten-
burg, an area then outside Berlin with royal and noble residences. After
his brother Heinrich died in 1750, he had persuaded her to come live with
him. That year Euler, Katherina, and Albrecht traveled to Frankfurt to
Katherina’s Dutch cousin Johannes Michael van Loen, a historian and the-
ologian, to meet his mother, who had arrived there from Basel. While a
devoted father, Euler sent the younger children and a tutor to live with his
mother. A decade later Berlin academicians began the story that Euler had
small children playing about him as he wrote. The relocation of the younger
children, along with Albrecht’s failure to remember his father’s doing any
household chores while he was young, casts doubt on it. But Euler appears

44Otto Spiess, Leonhard Euler, Leipzig: Verlag von Huber & Co., 1929, p. 135.
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to have kept up close contacts with his children. For relaxation, exercise,
and thinking in solitude, he liked to take frequent walks to Charlottenburg,
which was about a mile from his Berlin house.

From May 1753 to July 1754, Euler was acting president of the academy.
Earlier in April Maupertuis had asked Frederick that he be allowed to
“relinquish the administrative details of the academy during my absence to
Professor Euler,” 45 whose integrity, brilliance, and zeal for the institution
justified the appointment. The king approved the request. In his attempts
to recuperate from a lung disease, Maupertuis was staying away longer
from Berlin in the healthy “native air” of France.

Euler, who was uncomfortable with management, had to follow limits
set by Maupertuis. He showed himself to be conscientious, closefisted with
finances, and sometimes stubborn, but always equitable. The king’s desire
to add luster to his court made urgent the recruitment and retention of dis-
tinguished members. After the astronomer Johann Kies left for Tübingen,
Euler from June 1753 secretively pursued Tobias Mayer at Georg-August
University in Göttingen. The academy treasury had for the post only 550
Reichsthaler, an amount little more than Mayer was receiving, but he could
earn another 150 Reichsthaler for preparing a calendar. Frederick was ex-
pected to increase academy funding and pensions, the latter by reducing
the number of academicians. Upon his return Maupertuis would certainly
provide a higher salary, Euler assured Mayer. Meanwhile the monarch was
upset in February 1754 when chemists and physicians fought noisily in pub-
lic over their candidates for the same position. “A certain degree of anarchy
reigns in your academy,” he wrote to Maupertuis urging his return as soon
as possible. 46 Looking forward to working with Euler, Mayer in July re-
quested a minimum annual pension of 650 Reichsthaler, another 100 for
moving expenses, and free housing. 47 That month the Russian academy
sent a letter asking Euler to extend to Mayer an offer bringing higher pay,
but he withheld that information. In August Maupertuis authorized a pen-
sion of 700 Reichsthaler, 100 for moving costs, and free accommodations.
On the twenty-seventh Euler extended these terms. On the thirty-first he
informed Mayer of the Russian offer, though recommending that he re-
ject it. Mayer did so, but when he requested that his resignation from the
Georg-August University be granted, it was not. Instead Hanoverian offi-
cials asked him to state conditions that would persuade him to remain. To

45Letter of 24 April 1753 to David Köhler, as cited in Du Pasquier, Leonhard Euler et
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47Eric G. Forbes, ed., The Euler-Mayer Correspondence (1751 - 1755), New York:
American Elsevier Inc., 1971, p. 89.
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his surprise they met them, giving a salary above the Berlin amount and
sole directorship of the nearly completed Göttingen Observatory. Stating
to Euler that the Hanoverians thought more highly of him than he de-
served, Mayer declined the Berlin Academy post. 48 He was grieved not to
be able to work directly with Euler, he wrote in October, and hoped that
this decision would not harm their written association.

From 1754 Euler’s influence was expanding beyond the academy to Ger-
man universities. Confident in Euler’s identification of talent in the sci-
ences, Frederick appointed him to choose a successor to Wolff as profes-
sor and departmental chair of mathematics at the University of Halle. Al-
though Euler knew that Daniel Bernoulli would decline, he offered his friend
the post. Next Euler nominated the mathematician Johannes Andreas von
Segner from Göttingen, a severe critic of the mathematical and scientific
foundations of Wolffian philosophy. Before the appointment in 1755, Euler
persuaded the monarch to purchase all of Wolff’s equipment for Segner’s
research. In May Frederick had him invite the Swiss anatomist Albrecht
von Haller, who had recently retired from Göttingen, to be chancellor at
Halle. Euler was not enthusiastic. The king wanted Halle to attain emi-
nence among German universities, and Euler believed that Segner would
contribute more to that than von Haller. Having to comply with the king’s
wishes, he proposed a salary of 2,000 Reichsthaler. In response von Haller
requested 3,000 Reichsthaler in August and did not wish to undertake the
post for another decade. Frederick found von Haller’s terms excessive and
left further negotiations to Euler, who offered an unacceptable 2,400 Reichs-
thaler. In December von Haller declined to accept the chancellorship. But
the relations between the monarch and Euler were for the moment good.
Frederick was especially pleased that Euler had him elected one of the ten
foreign members of the Paris Academy of Sciences in 1756.

In astronomy, which remained a primary area of Euler’s research from
1751 to 1756, a critical question was whether the secular change in the
mean motion of planets is cyclical or linear. For confirming that Newtonian
attraction alone explains the mechanical operations in the solar system, re-
solving it for the large planets Jupiter and Saturn was essential. In 1752
Euler won another Paris Academy prize for a memoir using flawed alge-
bra to conclude wrongly that Jupiter and Saturn were both accelerating.
Clairaut and d’Alembert competed independently to develop a more accu-
rate lunar theory than that given in Euler’s Theoria motus lunae [E187],
his first lunar theory, in 1753. d’Alembert’s two-volume Recherches sur
differens points importans du systme du monde, which followed the next
year, had been completed in 1751. d’Alembert’s text, which was the first to

48Eric G. Forbes, ed., The Euler-Mayer Correspondence (1751 - 1755), pp. 91 - 92.
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propose an ordered sequence of increasingly refined, successive approxima-
tions, depended more on mathematical refinements than on observations.
Clairaut was d’Alembert’s principal opponent, criticizing his “long and te-
dious calculations’ and finding his work careless and his tables inferior. 49

Prior lunar tables based on Newtonian dynamics had erred by more than
5′ of longitude, while none of these three geometers had errors of less than
3′, which was insufficient for determining longitude at sea within a degree.

Refining equations from Euler’s 1748 prize-winning paper and employing
superior astronomical equipment and observations involving the distance
of the moon from a fixed star, Mayer was the first to produce accurate
enough lunar tables to find longitude within a half degree. To d’Alembert’s
attack on his and Mayer’s work, Euler responded to Mayer in June call-
ing d’Alembert a “braggard” and promised to refute his “unfounded and
jealous allegations.” 50 In May 1755 Euler urged Mayer to enter the compe-
tition for the 20,000 sterling prize the British parliament promised in 1714,
for he had perfected the method to determine the location of the moon
to within 1′, which allowed for finding longitude at sea to a half degree.
Euler’s relations with d’Alembert were broken. For a decade after 1752,
he also stopped corresponding with Clairaut, but there is no evidence of a
falling out. More likely their interests were diverging. After Euler failed to
be elected a foreign member of the Paris Academy of Sciences in 1753, a
vacancy that occurred in 1755 when Abraham de Moivre died was reserved
for the president of the Royal Society of London. But Clairaut probably
helped arrange to have Euler elected simultaneously in June as an associate
member.

In 1755 Euler’s Institutiones calculi differentialis (Foundations of Differ-
ential Calculus) [E212] appeared in print. This second part of his trilogy
on calculus he had completed in 1748, when he was forty one. The Differ-
ential Calculus identifies the elementary principles of the field and was the
first text generally to organize the field systematically. In revising Leibniz’s
calculus, Euler introduced and made standard the “differential coefficient,”
which eliminated indeterminacy over higher differentials. Chapter III con-
tends that the foundations of the calculus of the infinitely small are not so
mysterious as was thought. Euler’s calculus of zeroes distinguishes between
arithmetical and geometrical proportions. The differential, he asserted, is
zero. Euler argued that analytic expressions can be given as power se-
ries and treated functions as formal representations for computing rather
than as the modern mappings. The Differential Calculus sets out the first
extensive research program for differential calculus and related topics. In

49Thomas Hankins, Jean d’Alembert: Science and the Enlightenment, p. 37.
50Eric G. Forbes, ed., The Euler-Mayer Correspondence (1751 - 1755), p. 88.
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assessing its initial impact, it needs to be noted that four-hundred-six of the
five-hundred copies of the first edition remained unsold after six years. 51

Characteristically in transforming infinitary analysis, applying it to me-
chanics, and contributing to analytic number theory, Euler was bold, nearly
tireless, agile, and occasionally bizarre, devising fertile analogies, algo-
rithms, and formulas and making massive computations. He was unmatched
in inventing unorthodox methods for summations of infinite series with deft
interpolations, approximations, and substitutions. He followed his peerless
analytical intuition. When blocked from making further advance in some
field, he awaited a breakthrough, meanwhile pursuing other interests. When
the breakthrough occurred, he returned to an area to perfect methods and
add extensive computations. A formalist, Euler made great demands on
himself for calculations and was almost always correct. And he required
the most accurate observations and experiments to confirm his equations
in mechanics. He made a few errors. These and his scarce lapses in rigor
have gotten his work portrayed as “happy go lucky analysis” or as reck-
less. 52 This judgment seems to stress his infrequent errors and might apply
to another with a lesser intuition but seems mistaken for him. For Euler,
who had hundreds of discoveries to announce, in a few cases without proofs,
the later motto of Carl Gauss, “pauca sed matura” (few but ripe), does not
hold. For proofs, tests for convergence of infinite series were only beginning
to evolve. Euler supplied one, the integral test. A general theory of conver-
gence and satisfactory foundations for calculus would not come until the
early nineteenth century.

A frequent topic in Euler’s correspondence to 1756 was electricity. He
sought to know its physical causes and examined reports on its medical
applications. In 1752 he obtained and studied a copy of Benjamin Franklin’s
Experiments and Observations on Electricity in French translation. Euler
was later saddened to learn that in July 1753 Georg Richmann, making
measurements in St. Petersburg related to Franklin’s kite experiment, had
not taken necessary precautions and was killed. He surely helped his son
Johann Albrecht with the paper on electricity that won the prize of the
St. Petersburg Academy in 1755. At the moment that institution was at
ebb in its research. According to its Protocols, only three to five members
attended most meetings.

Euler’s mastery of the mathematical sciences was attended by a strong
concern for practical scientific technology, especially optical equipment. Eu-

51Clifford Truesdell, An Idiot’s Fugitive Essays on Science, Berlin: Springer-Verlag,
1984, p. 296.
52H. Weyl, “David Hilbert, 1862 - 1943,” no. 131 in Gesammelte Abhandlungen Berlin:
Springer, 1968, p. 124.
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ler encouraged the construction of a two-foot telescope with lenses he de-
signed in order to be able to detect Jupiter’s satellites distinctly. One result
from his study of pumps and the motion of fluids was his effort to improve
the theory of turbines, which he presented in detail in his memoir “Com-
plete Theory of Machines Which are Placed into Motion by Their Reaction
to Water” [E222] in the academy Mémoires for 1754. Another difficult sci-
entific challenge for Euler was developing a compound achromatic refractor
to improve telescopes. Chromatic dispersion limited them. In London John
Dollond, the optician to the king, who corrected errors in Newton’s optical
experiments, maintained that he had achieved largely achromatic lenses by
building upon Euler’s related mathematics, and for a long time he held a
royal monopoly on their manufacture. But Euler rejected his claim to have
constructed them. Dollond did not release his optical measurements that
indicated that no refractive indices exist for different colored rays in dif-
ferent media and that instead each must be checked individually. Perhaps
thinking as a theoretical physicist, Euler wanted an analogy to the eye or a
mathematical law covering them all. The Royal Society of London, to which
Dollond belonged, declared that he was criticizing Newton. To the contrary,
Euler believed that his research on lenses was aligned with Newton’s and
that he was simply adding computations from infinitary analysis.

In August 1755 Euler received a letter from his foremost new colleague,
the nineteen-year-old Ludovico de la Grange Tournier of Turin, better
known as Joseph Louis Lagrange. The letter was revolutionary in its pro-
posal for a way of eliminating the tedium of Euler’s geometric considera-
tions in Methodus inveniendi by reducing it entirely to analytic techniques.
Lagrange began to provide the delta algorithm of analytic variations, which
produced the Euler differential equation or first necessary condition for
maxima or minima and more. His letter started an epic in what Euler
renamed the calculus of variations. Lagrange perfected his ideas and pub-
lished them in the 1760/61 issue of the Miscellanea Taurinensia. Euler
withheld articles on the subject until afterward in order to give Lagrange
full credit for his discovery.

Through the Seven Years’ War from 1756 to 1763, Euler remained in
Berlin. The war pitted Prussia and Britain against Imperial Austria to-
gether with France and Russia over Silesia. Acting as a Prussian patriot,
Euler volunteered to translate messages in Russian intercepted by the Prus-
sian military. In the fall of 1760 he took his son Karl to study for his medical
degree at Halle, which was outside the battle zones. For his sons he would
write papers for competitions. Karl’s memoir on the average variable mo-
tion of planets won the annual prize of the Paris Academy of Sciences for
1760. Before October, when the Russian army entered Berlin, many fled
the city, but Euler stayed. Although the Russian general Count Gottlob
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Heinrich Totleben promised that his Charlottenburg estate would be safe,
Russian soldiers pillaged it. When Totleben learned of this, he exclaimed
that he had not come to make war on the sciences and reimbursed Euler
for all losses, giving sums totaling more than their value. When another
general informed Empress Elizabeth of the incident, she sent an additional
4,000 rubles.

Since the death of Maupertuis in 1759, Euler had been acting president
of the Berlin Academy in close alliance with Merian. He hoped to be named
president, but his relations were deteriorating with Frederick. The king did
not seem to comprehend that Euler’s work in the mathematical sciences was
of greater significance than the writings of the Paris savants. He had only
one candidate in mind, d’Alembert, who was a “philosophe, critic, science
editor of the famous Encyclopédie, a man of noble ancestry, and French.” 53

The last two were doubtless of more than small importance to Frederick.
Above the sciences, the monarch preferred witticisms, freethinking, and
poetry, which was not a favorite subject of Euler. In a letter to d’Alembert
on the musing of mathematicians regarding poetry, Frederick wrote: “A
certain geometer, who lost an eye while calculating, decided to compose a
minuet with a times b. If it had been played in front of Apollo, the poor
soul would have been skinned alive, as was Marsyas.” 54 Probably from
an actual episode, the monarch wrote disapprovingly of “a certain son of
Euclid” who was distracted with his computations while at the theater,
even during the most dramatic scenes.

In June 1763, Euler wrote to his friend Gerhard Müller, the secretary of
the St. Petersburg Academy, about d’Alembert, who had just rejected a
lucrative position there. Along with other French savants, he chose to con-
tinue with a small pension in Paris rather than accept a greater one in St.
Petersburg. In reference to d’Alembert’s “unbearable arrogance,” Euler de-
clared that he should “understand that he is not at all suited for [the Berlin
presidency].” 55 Euler rejected as cavalier and counter to abundant expe-
rience d’Alembert’s efforts to contradict Bernoulli’s hydrodynamic theory
and defined his debates with Clairaut in astronomy as disgraceful. Euler
was troubled by d’Alembert’s possible recommendation of the Chevalier
Louis de Jaucourt, author of the article “Monarchie” in the Encyclopédie
describing limits of royal power, as a substitute for the presidency, which
would open the way for several radical French thinkers to be admitted to

53Adolf Harnack, Geschichte der Königlich Preussischen Akademie der Wissenschaften

zu Berlin, vol. 1.1, p. 355.
54As cited in Du Pasquier, Leonhard Euler et ses amis, p. 116.
55OO, IVA.1, R1885, p. 314.



Leonhard Euler: Life and Thought 45

the academy. 56

Later in June d’Alembert, who had first met with Frederick in Wesel in
1755, had a second encounter in Berlin. For over a decade the monarch
had entreated him to come to the Berlin Academy, providing him with
monetary gifts. There was unease at court over receiving such a distin-
guished French thinker. Euler feared the worst, that either d’Alembert or
another Frenchman would be named president. Eager to pay his respects,
d’Alembert met with Euler and was astounded by his colossal memory, his
knowledge by heart of the growing number of computational formulas in
analysis, and the clarity of his logic. He had no intention of accepting the
presidency. Euler was slightly embarrassed when d’Alembert recommended
him for it and got his pension raised. From his salary, prize monies, and
investments, Euler was now wealthy. He was enchanted with the meeting
with d’Alembert. In October he wrote to Goldbach: “Our friendship is per-
fect, and one cannot tell me enough times of the pleasant things that M.
d’Alembert has said on my behalf to the king.” 57 While he would not move
to Berlin permanently, d’Alembert through correspondence with Frederick
became “the secret president” of the academy.

Euler’s growing correspondence with Müller shows that from at least
1761 he was seriously contemplating going back to Russia. His letter of May
17 states that he had sold his Charlottenburg estate for 8,500 Reichsthaler,
freeing himself in general to depart Berlin. But before the end of the war,
he would not be in a position to accept an offer from St. Petersburg.

From the close of the war in 1763 to 1766, Euler remained in Berlin.
In 1763 he became the head of the powerful French Calvinist Consistory.
To raise funds for the Prussian economy devastated by the Seven Years
War, Euler recommended a new lottery and acted as a business broker to
increase porcelain manufacturing. In July Catherine II had the academy
assessor Grigoriz N. Teplov propose terms for his return to Russia. He
recommended that Euler be conference secretary and director of the math-
ematics class of the academy with an annual pension of 1,800 rubles, that
Johann Albrecht be an ordinary professor with a pension of 600 rubles,
that Euler’s wife receive a widow’s pension, and that there be 500 rubles
to fund the family’s trip to St. Petersburg. 58 Apparently desiring a higher
pension, Euler declined this offer in July but expressed continuing interest
in a possible return. He now wished only to pursue his research. Because of
a teaching requirement, he had not considered taking a university position

56OO, IVA.1, p. 313.
57Paul Heinrich Fuss, ed., Correspondance mathématique et physique, du quelques
célèbres géomètres du XVIIIéme Siècle, p. 668
58OO, IVA.1, p. 438.
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in Holland. Euler wrote that he had been working continuously on his In-
tegral Calculus and hoped that the St. Petersburg Academy would publish
it as soon as possible. He also wanted the St. Petersburg Academy reorga-
nized and reformed, largely through a study of other academies, in order
to recapture its early dynamism. It began to implement these changes be-
fore his arrival and to fill vacant positions with his candidates. From 1763
Euler reminded Müller of his small annual pension from the St. Petersburg
Academy, purchased books for it, and continued to send articles for its
Novi commentarii. In 1765 the two men discussed the possible publication
of Goldbach’s correspondence.

From the winter of 1763/64 Euler’s position in Berlin had worsened. Re-
asserting absolutism in Prussia, Frederick assumed the academy presidency.
Selection of members and finances became critical issues. After Mauper-
tuis’ death, Euler had managed both. The nine corresponding members
selected in 1760 included Lagrange and three Germans, among them Got-
thold Ephraim Lessing. Partly from his unhappiness with Lessing, Frederick
inserted in 1764 a reservation clause that allowed academicians no voice in
choosing new members. From 1764 to 1766 Frederick named seven French-
men and two Swiss as new members. This looked to be a vindication of
the fear that Euler fear had prognosticated in a letter of October 1763 to
Goldbach that the Berlin Academy was being transformed “into a French
academy,” meaning an academy open to radical French ideas, seemed ac-
curate. Euler could not block the king’s selection of French Encyclopedists
and, to Euler’s moral distaste, Claude Adrien Helvetius, the author of the
hedonistic De l’esprit. In the winter of 1763/64 Frederick had ordered a
record made of the academy’s finances during the war. He was dissatisfied
with them and held Euler responsible. The total amount spent was 25,000
Reichsthaler. A nasty quarrel erupted over the annual sales of almanacs.
The king lacked confidence in its commissioner, David Köhler, whom Euler
defended. Köhler in fact pocketed some calendar funds. In 1765 Frederick
appointed a five-man commission led by Euler to review sales. The major-
ity concluded that a better monitoring of sales should increase revenues
from 13,000 to 16,000 Reichsthaler. Without informing them, Euler wrote
directly to the king in June with a proposal to keep Köhler in charge with
additional supervision. His letter met a rebuke from Frederick, who re-
sponded “To be sure I cannot reckon curves, but I do know that 16,000
thaler are more than 13,000.” 59 Although the king approved one of two
pensions of 400 Reichsthaler for Johann Albrecht, Euler now lost control
of finances. His position in Berlin was untenable. His struggle for the au-
tonomy of science in Prussia had failed.

59J. D. E. Preuss, ed., Oeuvres de Frederic le Grand, Berlin, 1852, vol. xx, p. 209.
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As he lost his capacity to lead the Berlin Academy in 1765, Euler began
to separate from its activities and made no secret of his desire to relocate. In
July, when Euler was excluded from public celebrations, the Prussian state
minister J. L. Dorville asked him to nominate candidates to be royal librar-
ian. One the three names that Euler submitted was a fictitious Wegelin of
St. Gall. The selection committee’s Heinrich de Catt and Formey soon re-
alized what had happened. To avoid embarrassment, Euler later indicated
that Wegelin had withdrawn his name. In December he wrote to the Rus-
sian High Chancellor Count Michail Voroncov describing his situation in
Berlin and giving terms for him and his sons to return to Russia.

Empress Catherine II was an enlightened ruler who cultivated the arts,
showered gifts upon her science academy, and offered its members protec-
tion. To bring immediate prestige to her academy, she especially wanted to
acquire Euler. She directed her ambassador in Berlin, Prince Vladimir Dol-
gorukij, to negotiate with him and grant any request that he made. Euler
posed comparatively stiff financial terms for a man of science, asking dou-
ble Catherine’s previous offer. He requested the position of vice president
of the academy with an annual salary of 3,000 rubles for him, a widow’s
pension of 1,000 rubles for his wife, an ordinary professorship with a salary
of 1,000 rubles for Johann Albrecht, and guaranteed positions in medicine
for Karl and the military for Christoph. He wanted a staff of young mathe-
maticians assembled around him, free housing and heating, and exemption
of his house from military quartering. For a scholar of Euler’s stature, the
empress thought this an inexpensive bargain. After Voroncov indicated her
positive response in a letter in January 1766, Dolgorukij officially confirmed
it.

Euler had already written to the secretary of the St. Petersburg Academy,
Jakob Stählin, that his ties with Berlin were completely severed. A personal
element was added to his unhappiness with Frederick. The king had unsuc-
cessfully forbad the marriage of one of Euler’s daughters to a nobleman and
would not guarantee an officer’s position in the army for his son Christoph.
After the Seven Years’ War, Frederick chose only aristocrats as officers. If
he was not invited to St. Petersburg, Euler claimed that he and his family
might relocate in Switzerland, Ukraine, or some Russian province.

But Euler had first to obtain permission from Frederick to leave. His first
two requests in February 1766 were met with silence, a known strategy of
the monarch. Euler’s extended family of fourteen, except for his youngest
son Christoph who was in the Prussian army, was readied to leave that
month. He knew that Frederick would refuse to release Christoph from
his military service. In March, Euler and his eldest son stopped attending
meetings of the Berlin Academy. With Swiss independence and tenacity,
Euler asked twice more for permission to depart. After the third letter,
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Frederick ordered him on March 17 to desist in his repeated request. Euler
did not. Instead his letter of April 30 asks that he and his sons Johann
Albrecht and Karl be allowed to return to Russia. With no word of thanks,
Frederick wrote tersely in two lines in May, “I permit you to quit and depart
for Russia.” 60 The king probably did not want needlessly to antagonize
his “dear sister” Catherine II. On May 29 Euler and Johann Albrecht said
their farewells at the Berlin Academy, and on June 9 the Euler party,
consisting of the fourteen family members and four servants, left Berlin.
Only Christoph had to remain in Prussia. The leave-taking was emotional;
Prussians of royal blood, notably the Margrave of Brandenburg-Schwedt
and his daughters, joined with Euler’s other students in expressing their
regrets.

The Euler party traveled overland in a small wagon caravan. At the in-
vitation of Prince Adam Czartoryski, Euler visited the Polish capital of
Warsaw, where he met with the new king Stanislaus August Poniatowski
and was feted for ten days. Upset with the loss of an eminent scholar whose
achievements he valued even as the Swiss commoner’s ways offended his
aristocratic preferences, Frederick wrote disparagingly of Euler and an-
nounced his pleasure that in September 1766 d’Alembert was able to have
Lagrange succeed Euler.

Prominent among the profusion of scientific accomplishments that had
occupied Euler during his Berlin years after 1760 is a collection of 234 let-
ters, later entitled Letters to a German Princess [E343,E344,E417], which
were sent from 1760 to 1762. When the correspondence began, Princess
Charlotte was fifteen. Euler and her father, the future Margrave Friedrich
Heinrich von Brandenburg-Schwedt, shared an interest in music. He occa-
sionally visited their palatial residence and played music with the father.
The letters written in French address natural philosophy, that is, the sci-
ences, together with philosophy and religion. They have three natural di-
visions: general science, 1 - 79, which cover the topics of music, the air,
optics, gravity, cosmology, the tides, and the theory of matter, especially
the property of impenetrability and monads; philosophy, 80 - 133, including
liberty, spirits, Christianity, language, syllogisms, evil, happiness, certainty
of scientific, moral, and historical truths, foundations of knowledge, divisi-
bility, and monads; and physical questions, 134 - 234, spanning electricity,
magnetism, lenses, the telescope, the microscope, and stellar distances.

The Letters are a high popularization presenting Euler’s synthesis in the
sciences plus his original insights, along with an apologia. He examined
the major natural philosophies, the Cartesian, Newtonian, Leibnizian, and
Wolffian, in greater detail and with a better command than any other

60OO, IVA.6, p. 393.
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popular rendering, for example the Newtonian texts of Pemberton and
Voltaire. Euler strongly defended his religious views against freethinkers
and French Encyclopedists. 61 Letter 85 describes Leibniz’s pre-established
harmony between mind and matter as “destructive to human liberty.” In
letter 115 Euler, like the Christian Platonists, divided proofs of truth into
three classes: the sensible, intellectual, and historical and moral. For the
first, he accepted Lockean sensationalism and held common ground with
the Wolffian Alexander Baumgarten, whose Metaphysica of 1739 and the
Aesthetica of 1750 hold that the senses have their own rules and perfection.
Although Euler was comparatively weak in philosophy, Immanuel Kant
read the Letters before criticizing the Wolffian rational methods and Goethe
before his research on optics. The Letters to a German Princess were not
put into print until 1768 and 1772 in St. Petersburg, probably because
Frederick was critical of the margrave. Written in an absorbing manner
and with great clarity, the work met with extraordinary success. It was
translated by 1800 from the original French into eight other languages –
Russian, German, Dutch, Swedish, Italian, English, Spanish, and Danish.
By 1840 it ran to over forty editions.

In 1765 Euler published his Theoria motus corporum solidorum (Me-
chanics of Solid Bodies) [E289]. This landmark work, which is connected
with his Mechanica on the mechanics of point masses, is often called his
second mechanics. It is the final piece in his program on a subject that took
him about thirty years to complete. He had previously provided differential
equations for the motion of fluid, elastic, and flexible bodies. The Theoria
motus corporum solidorum presents clearly and in detail his analytical re-
vision of the entire theory of rigid bodies.

In 1765 the British parliament for the first time awarded prize monies
for lunar tables for finding longitude aboard a ship when it is not in sight
of land. Growing trade and commerce had brought state patronage to sup-
port the improvement of ocean navigation. After Euler urged him to apply
for these prizes, Mayer in 1757 had sent the British board of longitude his
lunar tables that applied equations from Euler and claimed the longitude
prize. British participation in the Seven Years’ War and the partiality of
the board that did not wish to give prizes to foreigners delayed the deci-
sion. It urged John Harrison to construct a more practicable method for
determining longitude at sea. Shortly after his death in February 1765,
Mayer’s wife and surviving children were awarded part of the smallest of

61See Ronald Calinger, “Euler’s Letters to a Princess of Germany As an Expression
of his Mature Scientific Outlook,” Archive Hist. Exact Sci., 15, 1976, pp. 211-233 and
Andreas Speiser, Leonhard Euler und die deutsche Philosophie, Zurich: Orell Füssli,
1939.
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three bounties for the prize. 62 It was fixed at the sum of £3,000, and Euler
received £300. John Harrison received half of the major prize of £20,000 for
developing in England a marine chronometer giving longitude better than
the lunar method that he had successfully tested the year before. Once
the chronometer became affordable in the 1780s, it was widely adopted.
But the Mayer lunar tables remained in navigation almanacs and aided sea
travel for more than a century. Continuing his research in optics, Euler had
completed in 1765 the manuscript for his Théorie générale de la dioptrique
(“Dioptrics” or “General Theory of Lenses”) [E363].

4. During the Reign of Catherine the Great: The Second St.
Petersburg Years

On July 28, 1766, the Euler family arrived in St. Petersburg. He was fifty-
nine. The flamboyant Catherine II received him in royal fashion, exceeding
the terms of his contract. She sent him 10,800 rubles for the purchase
of a large, two-story house complete with furniture on the banks of the
Great Neva near the academy. She had set it aside for him and his family.
The empress also provided one of her cooks to run their kitchen. Euler’s
return was triumphant. Catherine granted him and his two oldest sons
the honor of a lengthy audience. She knew that some support existed to
raise him to the nobility, but she declared that his fame was greater than
any noble title. 63 In 1765 Russia had suffered a great loss in the sciences
when Mikhail Lomonosov died. Euler and Albrecht successfully began to
rehabilitate the academy. Catherine, who had already agreed to add eight
academicians, pledged to Euler to have the institution reorganized in a way
that would give more autonomy to scientific pursuits and reduce internal
strife. As the eldest and most distinguished member, he was to head all
conference meetings and was most responsible for selecting new members.

A significant development in the sciences after the first quarter of the
century had been international cooperation on expeditions. Even during
the Seven Years’ War, the Paris and St. Petersburg academies and the
Royal Society of London attempted to measure the transit of Venus as
it passes between Earth and the disk of the sun. 64 The transits occur
in pairs eight years apart and the pairings are separated by more than a

62Eric G. Forbes, ed., The Euler-Mayer Correspondence (1751 - 1755), pp. 18-19.
63Otto Spiess, Leonhard Euler, p. 187.
64See Harry Woolf, The Transits of Venus: A Study of Eighteenth-Century Science,
Princeton: Princeton U. Press, 1959.
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century. 65 Its accurate measurement was crucial to determining the mean
horizontal solar parallax and, from this, to computing the exact distance of
Earth from the sun. In 1761 Stepan Rumovskij, Euler’s foremost Russian
student, led a team to Selenginsk, Siberia, to make astronomical and me-
teorological observations but bad weather precluded gathering satisfactory
data. In 1763 and 1764 Euler corresponded with the French astronomer
Joseph Lalande on different observations of the transit and lenses made
in Paris and London. 66 In 1768 the academy ordered from Peter Dollond
a range of telescopes and other precision optical instruments, many with
achromatic lenses. Better equipped and better prepared, Rumovskij now
as the academy’s chief astronomer embarked in 1769 on a second trek that
took him to Kola, Siberia, to measure the transit. His expedition with
thirteen members included Albrecht Euler. It obtained better results, but
environmental conditions still hampered it and led to some guesses in the
data.

In May 1771 a great fire broke out in St. Petersburg, destroying about
550 houses, including Euler’s. In the general confusion, the helpless, al-
most blind Euler, who was in his bedclothes, might have died had not his
Basler handyman Peter Grimm rushed into the house to rescue him. The
library and furniture were destroyed, but Count Vladimir Orlov saved the
manuscripts. Catherine compensated Euler with 6,000 rubles to build a
new house, which was quickly done. In September 1771 he had an eye op-
eration to correct a cataract producing near blindness. Johann Albrecht
and nine physicians gathered around him to observe the brief operation.
The restoration of sight to his left eye brought a moment of rejoicing. But
in October a complication, possibly an infection, left him legally blind and
in occasional pain. Euler described his loss of sight as providing “one less
distraction.” He could still perform difficult computations in his head, such
as summing infinite series to fifty decimal places. The academy held meet-
ings three times a week. He was absent from them from September 1771 to
May 1772, when he resumed attending.

In 1773 Euler asked Daniel Bernoulli to recommend an assistant from
Basel. He was proud that he had never lost his Swiss accent and liked
to employ the Basel dialect. In July Bernoulli sent Nicholas Fuss to live
with him and be his personal secretary. Fuss was to be Euler’s closest
associate for the final decade of his life and would marry his granddaughter

65The pairings after 1600 are 1631 and 1639, 1761 and 1769, 1874 and 1882, and 2004
and 2012.
66They also discussed the path of the comet of 1759, and Lalande expressed his joy over
the reconciliation between d’Alembert and Euler.
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Albertina, 67 Albrecht’s second daughter in 1784.
In September 1773 the French philosophe Denis Diderot, the editor of the

Encyclopédie, arrived in St. Petersburg. He was quite ill. From 1759 Cather-
ine had read the early volumes of his great work and was his patroness.
Euler probably attended his induction into the St. Petersburg Academy.
According to A Budget of Paradoxes by Augustus de Morgan in 1872, Eu-
ler posed to the atheist Diderot a meaningless algebraic equation claiming
to prove the existence of God. Supposedly when the Frenchman did not
recognize this sham, he was deeply embarrassed at court and left Rus-
sia. But Euler would not have approved of such demeaning behavior. And
since Diderot had begun his career as a mathematics teacher, he would
have known enough elementary mathematics to detect such a stratagem.
He stayed only five months. Catherine found his mind exceptional and re-
quested a memorandum on founding a university that he recommended be
open and without social distinction among students, 68 but she thought
impractical his recommendations on law and agriculture, and he had an
annoying habit of grabbing her knee during conversations. To help relieve
Diderot’s strapped financial situation, she purchased his library, but she
permitted him to keep it as long as he lived.

In November 1773 Euler’s wife Katharina died at the age of sixty-seven.
The loss enormously complicated domestic life, for Katharina had managed
everything and he had done nothing. Euler was determined to remain in-
dependent and not rely on his sons, this despite the custom at the time for
an elderly parent to reside with the children and be under their care. While
knowing that his sons would oppose it, at Christmas time in 1775 Euler
broached the subject of a second marriage. Arguing that St. Petersburg so-
ciety would not understand his choice, they blocked it. Euler now suffered
another high fever and was under the care of his son Karl for two weeks.
In July 1776 Euler simply announced without consultation his impending
marriage to Katharina’s half sister, Salome Abigail, who was fifty-three. In
St. Petersburg, the Euler family attended the Reform church congregation,
essentially Calvinist, that was probably near the academy and his home. 69

Its pastor performed the wedding ceremony at Euler’s house.
A day before he became Comptroller General of France in August 1774,

Baron Anne-Robert Turgot wrote to Louis XVI proposing the publication
of two works by “the famous Leonard Euler” for textbooks in the naval

67 (1766 - 1829). Their eldest son, Paul Fuss (1798 - 1855), was the permanent secretary
of the academy from 1800 to 1826.
68Alexander Vucinich, Science in Russian Culture: A History to 1860, Stanford: Stan-
ford U. Press, 1963, pp. 192-193.
69Euler, Johann Albrecht, and Fuss tried unsuccessfully to end a rift among the French,
Swiss, and German members in the church.
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and artillery academies. One of them was the Treatise on the Construction
and Maneuver of Vessels [E426], Euler’s second ship theory, available in
French since the preceding year. Euler had been unhappy that the Scien-
tia navalis was too difficult for use among seamen. After returning to St.
Petersburg, he met often with Admiral Knowles, who pointed to the dif-
ficulties the work presented to common users. Euler removed nonessential
complications, and the Treatise on the Construction and Maneuver of Ves-
sels presented a complete ship theory comprehensible to navigators. The
other work that interested Turgot, The New Principles of Gunnery [E77] by
Robins with commentary by Euler, had first to be translated into French.
In October 1775 Turgot informed Euler that the king had agreed to fund
these publications and to send Euler 1,000 rubles “as a token of the esteem
he has for you.” Not to be outdone, Catherine gave him 2,000 rubles. Euler
was delighted. Turgot invited him to correct any errors in the originals.
The new French edition of the Treatise on the Construction and Maneuver
of Vessels appeared in 1776 and that of The New Principles of Gunnery in
1783.

In the summer of 1778 Johann III Bernoulli visited Euler. In his diary
Bernoulli noted that Euler’s general health remained good, but his vision
was so poor that he could not recognize faces. Even so, he could write clearly
with chalk in large symbols on a blackboard better than many people with
sight. On a secret mission to St. Petersburg in 1780 concerning problems
from the first partition of Poland, the Prussian margrave Friedrich Heinrich
visited Euler, who was confined to bed, and spent several hours holding his
hand and conversing with him about history and law.

During his second St. Petersburg period, a still energetic Euler became
even more prolific in articles. After 1765, he completed four hundred fif-
teen or over fifty percent of his total memoirs. Even his near blindness
did not slow him. At his service were his genius, his disciplinary intuition,
and his phenomenal memory and ability with mental calculations, together
with a small research team. It consisted of his sons Albrecht and Christoph,
together with Anders Johann Lexell, Wolfgang Ludwig Krafft, Semjon Kir-
illovič Kotel’nikov, and Rumovskij. They were joined by Michail Evseevič
Golovin and principally Fuss, who in 1774 Euler recommended be made ad-
juncts at the academy. By 1783 they comprised half the regular members
of the academy. Krafft’s father Georg had collaborated with Euler during
his first St. Petersburg period, and Golovin was a relative of Lomonosov.
Euler set the topics and initial problems for each of his theoretical papers,
most of them brief. His research team worked at his residence around a
large table with a chalk board in the middle. Although Euler could write
distinctly on it in large symbols even after 1771, apparently his assistants
used it most. When alone, the nearly blind Euler would walk around it
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for exercise. A sheen could be discerned from where he had run his hand
along its edges. During working sessions participants made computations
and Euler reviewed them to eliminate errors. Afterward all papers on the
table were put into a large portfolio. Fuss and Golovin principally recorded
Euler’s dictation. For Euler’s papers published after 1766, Fuss also made
the computations of more than 160 and Golovin 70. In addition, some pa-
pers have the handwriting of his sons. Three hundred of his second St.
Petersburg papers appeared posthumously.

To 1773 Euler wrote books, though his correspondence fell precipitously.
He had completed in Berlin three of the four books that began to be
published in1768. The first volume of his Institutionum calculi integralis,
printed in 1768 [E342], and the second in 1769 [E366], together comprises
the last part of his great trilogy on the calculus. It has hundreds of his
discoveries regarding ordinary and partial differential equations. Volume
three [E385] on the calculus of variations, which follows Lagrange’s ana-
lytic methods, was published in 1770. Euler’s Letters to a German Princess
appeared in French in three volumes from 1768 to 1772. between 1768 and
1774 Rumovskij translated it from French into Russian. 70 Lexell helped
edit the Dioptrics [E367,E386,E404], which was published in three volumes
from 1769 to 1771. Euler’s influential Complete Introduction to Algebra
[E387,E388] appeared in Russian in 1768 and 1769, and the next year in
German. It also would have editions in English, Dutch, Italian, and French.
From 1770 Euler prepared his 775-page Theoria motuum lunaea [E418], his
second lunar theory published in 1772. Among other topics it addresses the
three (mutually-gravitating) bodies’ problem. Three of his assistants, his
son Albrecht, Krafft, and Lexell, who significantly assisted with computa-
tions, are named on the title page of the Theoria motuum lunaea. Euler’s
last book, the Treatise on the Construction and Maneuver of Vessels, was
published in French the next year. By then his correspondence had declined
to less than twenty letters a year. His letters with Lagrange, an important
source of his research on number theory, calculus, and mechanics, ended
in March 1775 on the topics of elliptic integrals, paradoxes in integration,
and lost proofs of Fermat. After 1777 he sent less than five letters a year.

From 1775 to 1782 General Count Vladimir Orlov, the academy director
from 1766 to 1775, was succeeded by a follower of his, the minor poet
Sergej Domashnev. The Orlov brothers had been central in Catherine’s
coup against her husband in 1762, and she rewarded them with positions.
Neither man was supportive of the institution. Orlov believed that the

70This was the first of five editions. The second appeared in 1785, the third in 1790-91,
the fourth in 1796, and the fifth with only the first two books in 1808. All editions were
published in St. Petersburg.
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academy was useless and that the sciences were making the world more evil.
Domashnev was similar to Schumacher: arrogant, abusive and a squanderer
of funds. Disgusted, Euler began withdrawing from the business of the
academy under Orlov leaving the post of head of the academic commission
in 1774. As the Protocols show, under Domashnev he stopped attending
sessions altogether in January 1777. Even so, he continued to submit a
stream of articles read by Krafft, Fuss, and Golovin on such topics as the
lunar orbit, the integration of irrational formulas, continued fractions, and
paradoxes in the calculus of variations. After Domashnev did not respond
to a letter from the academicians protesting his breach of the rules of
academic protocols, in December 1782 they sent a letter objecting to his
actions to the academic commission and . Euler had his name added to the
signatures. After a two months’ inquest, Domashnev was dismissed. The
academicians could no longer be neglected politically.

In January 1783 when Princess Catherine Romanova Dashkova, another
favorite of Catherine II, was made the director of the academy, she asked
that along with Albrecht and Fuss, the man she called “Euler the Great”
should ride in her carriage to her first session. She begged Euler, who
felt honored, to be able to enter the academy on his arm and to have
him introduce her. Fuss guided the steps of Euler. His presence moved the
academicians to tears. When another professor, Jakob Stählin, took the
seat of honor next to the director, Princess Dashkova turned to Euler and
to the delight of his son and Fuss proclaimed, “Sit where you want and
the place you choose will naturally be the first among all.” 71 That was
the last session he attended. With support from Catherine the Great, the
St. Petersburg Academy began to pay homage to Euler during his life by
commissioning for the assembly hall an allegorical mural of the wisdom
of geometry, which included a board filled with formulas and calculations
from Euler’s second lunar theory – an extraordinary distinction for a man
of science for the time.

To his death on September 18, 1783, Euler remained enthusiastic and
perspicacious in research and teaching. He was teaching four of his grand-
children elementary mathematics, and on his last morning he instructed
a grandson, who was gifted in the sciences, and made mental calculations
that were put on the slate in his study about how high hot-air balloons
could rise. News of the success that June by the Montgolfier brothers in
launching balloon ascents in Paris, which became the topic of the moment
within the republic of letters, had just arrived in St. Petersburg. Euler
took lunch with his assistants Fuss, Lexell, and Lexell’s family. Lexell was

71Princess Ekaterina Dashkova, The Memoirs of Princess Dashkova, trans. and ed. by
Kyril Fitzlyon, Durham: Duke U. Press, 1995, p. 334.
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to be his successor. They discussed the orbit of the planet Uranus, which
William Herschel had just discovered in March of 1781, another topic that
engrossed the European reading public. Euler enjoyed dictating computa-
tions on aerodynamics and the orbit of Herschel’s planet for his assistants
to put on the blackboard and record. At tea time about five, he had been
playing with his grandson a little, and he was drinking some tea and smok-
ing a pipe. Suddenly the pipe fell from his hand. “My pipe,” he exclaimed,
and he bent over to reclaim it but was unsuccessful and stood up. For a
year Euler had endured vertigo and weakening health. Now he suffered a
stroke. Clasping both hands to his chest, he said, “I am dying” and lost
consciousness, which he never regained. He died about eleven that night.
He was seventy-six years of age. Twenty years earlier in reflecting on the
state of the soul after death, Euler had presumed that there will be a sus-
pension of the union between the body and the soul, in which the senses
influence even our dreams. In death, he believed, “we will find ourselves in
a more perfect state of dreaming.” 72

Euler was buried on Vasilyevsky Island in the Lutheran section of the
Smolensk Cemetery, which was mainly for members of the Russian Ortho-
dox Church. The four major royal science academies in Berlin, London,
Paris, and St. Petersburg as well as societies in Lisbon and Turin, to all
of which he belonged, announced their profound loss. Antoine-Nicolas de
Condorcet, the secretary of the Paris Academy of Sciences, Fuss in St.
Petersburg, and Formey in Berlin delivered the principal eulogies. On Oc-
tober 23, 1783, the Imperial Academy of Sciences in St. Petersburg held
its memorial meeting for Euler. Princess Dashkova presided, and an arch-
bishop along with many noble dignitaries were among the attendants. In
the eulogy Fuss depicted the life of Euler as a triumph of the human spirit
and the man an exemplar in the effort of his century “in enlightening
the world.” 73 At the demand of the princess, the officers of the Imperial
Academy honored Euler’s memory materially in 1785 by installing a half-
length marble bust by Jean-Dominique Rachette in the library hall of the
Kunstkammer. Euler had promised Count Orlov to prepare enough articles
to appear in the academy’s Acta and Nova acta for the next twenty years
but left enough for over forty, transcribed by his assistants. By the first
decades of the nineteenth century the modest gravestone of Euler could
not be located in the Smolensk Cemetery, even by Fuss, a participant in
the funeral. Euler’s grave marker was not rediscovered until 1830 at the

72Leonhard Euler, Letters . . .Addressed to a German Princess, New York:Harper, 1840,
vol. I, p. 310.
73Nicholas Fuss, “Lobrede auf Herrn Leonhard Euler,”trans. by John S. D. Glaus, pp.
1-2.
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burial of one of his daughters-in-law. In 1837 the academy replaced it with
a lasting monument constructed out of pink Finnish marble with the simple
inscription, Leonhardo Eulero, Academia Petropolitanae, for a scholar who
according to Turgot had “honor[ed] humanity with his genius and science
with his style.” 74

Acknowledgments: I wish to thank Robert E. Bradley and Thomas R.
West for their trenchant comments. All errors that remain are mine alone.
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Mém. Berlin, 6 (1750), pp. 185-217. Reprinted in OO, II.5, pp. 81-
108.

E186. Euler, L. 1753. Dissertation sur le principe de la moindre action . . . ,
Berlin: Michaelis. Reprinted in OO, II.5 pp. 177-178, 179-193, 194-
213.

E187. Euler, L. 1753. Theoria motus lunae exhibens omnes eius
inaequalitates, Berlin: Michaelis. Reprinted in OO, II.23 pp. 64-336.

E212. Euler, L. 1755. Institutiones calculi differentialis, Petersburg: Acad.
Imperialis. Reprinted in OO, vol. I.10. English translation of part 1:



Leonhard Euler: Life and Thought 59

Blanton, J., 2000. Foundations of Differential Calculus, New York:
Springer-Verlag.
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Leonhard Euler and Russia

Peter Hoffmann

Nassenheide
Germany

Translated by Rüdiger Thiele

1. Introduction

Every biography of Leonhard Euler, the most distinguished mathemati-
cian of the 18th century, attaches special significance to Euler’s relations
to Russia and the St. Petersburg Academy.

Leonhard Euler was born in Basel in 1707. His father was a vicar who
was interested in mathematics and who had attended lectures of Jakob
Bernoulli (1654-1705) an important mathematician in his time.

Leonhard showed mathematical ability an early age. His father expected
him to study theology. However during his study at the University of Basel
he followed his father in a different way and was attracted by the lectures
delivered by the famous mathematician Johann Bernoulli (1667-1748) the
brother of Jakob Bernoulli. Despite the outstanding performances that Eu-
ler gave in various dissertations, his applications for an academic career
in his native Switzerland failed. But in 1725 his friends Nikolaus (1695-
1728) and Daniel Bernoulli (1700-1782), both sons of his teacher Johann
Bernoulli, got positions as professors at the newly founded Academy of Sci-
ences in St. Petersburg, and later both invited Euler to follow them. In 1727
Euler accepted an appointment as adjunct of the Petersburg Academy. In
his biography of Euler, Rüdiger Thiele (born in 1943) remarked that in Eu-
ler’s homeland, where the few available academic positions were occupied
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in any case, he would never have received such a generous opportunity for
development as he did in Petersburg. So it was a decisive factor for Euler
that he had no option to stay in Switzerland, but instead had to leave the
country for Petersburg, the center of the Russian Enlightenment, where he
found an appropriate sphere of action. 1 After Euler had accepted his ap-
pointment in St. Petersburg, Christian Wolff (1679-1754), a leading figure
of the German Enlightenment, wrote to him from Marburg on April 20,
1727 that Euler would travel “into the paradise of the scholars.” 2

2. The First Petersburg Period

Indeed, for Euler this characterization of life in St. Petersburg proved
to be true in an exceptional way. Above all, the Petersburg Academy of-
fered chairs and appointments to young scientists. The staff of the Pe-
tersburg Academy was generously taken care of. The scientists received a
fixed salary, free accommodation and an additional remuneration for fire-
wood and such, which would have been unusual at German universities.
Professors received a salary of at least of 600 rubles a year, adjuncts 300.
Among the five adjuncts affiliated with the various branches of the Peters-
burg Academy, Euler was the one who most frequently lectured on new
scientific discoveries in the academic conferences. In 1730 he and all of the
other adjuncts were nominated to the rank of professor.

Circumstances in Petersburg gave the academic staff complete freedom
to choose research projects. This proved to be extraordinarily advantageous
for Euler. Stubborn scientific debates on Leibniz’ and Newton’s views of
the world divided the Academy. Euler joined the side of the Newtonian
view. That is why he sought mathematical proofs for various statements
of Newton, especially in mechanics. As a consequence, a two-volume in-
troduction to mechanics, Mechanica sive motus scientia analytice exposita,
appeared in 1736.

In his first Petersburg period Euler systematically extended his field of
research; in addition to mathematical and physical questions he considered
problems of astronomy, geography (temporarily he even was director of
the Geographical Department of the Academy), theory of music and many
other fields. Euler was one of the most active members of the Academy. In
the academic conferences he regularly lectured on his new scientific re-

1 Thiele, R: Leonhard Euler. Leipzig: Teubner 1982, p. 29.
2 Quoted according to A.P. Juškevič and E. Winter, Die Berliner und die Peters-
burger Akademie der Wissenschaften im Briefwechsel Leonhard Eulers, part 1. Berlin:
Akademie Verlag 1959, p. 41.
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sults. In 1736 alone Euler published eleven mathematical contributions
in that year’s volume of the Petersburg Academy journal, the Commen-
tarii Academiae scientiarum Imperialis Petropolitanae. At the same time
he competed in several prize problems of the Paris Academy.

Shortly after his arrival Euler learned Russian and he spoke it so well
that he was able to express himself by speaking and writing, which was
exceptional among the foreign members. 3 Admittedly, he did not speak
without an accent, but he did so in German too, where he maintained his
Swiss accent. On his way to Russia Büsching (1724-1793) met Euler in
Berlin on December 17, 1749 and reported that Euler “spoke his mother
tongue in such a strong dialect he was hardly understandable.” 4 Further-
more, Büsching added these comments describing Euler: “On his right eye
he has a fistula robbing him of half of his sight and which looks rather
nauseating. In general the celebrated algebraists are in the habit of being
scowling and tiring minds in social intercourse, but Euler is a very lively
and alert person, especially in the company of the friends.” 5

After the death of Tsarina Anna (1693-1740), the political circumstances
in St. Petersburg became unsafe. At the same time, Euler received an en-
ticing offer from the Prussian King Frederick II (1712-1786) and decided
to move to Berlin in 1741.

Euler had arrived in St. Petersburg in 1727 as an unknown but budding
scientist. When he left the city on the River Neva in 1741, he had grown
to be a researcher with an international reputation. Euler himself later felt
that the Petersburg years had forged him into a strong scientist, as can be
seen in various surviving letters that were written in his Berlin period.

3. The Berlin Period

In Berlin Euler lived rather independently. The Prussian Academy opened
in 1746. It succeeded the Societas Regia Scientiarum that had been founded
in 1700 and Euler became director of the Mathematics Section. Up to this

3 A.P. Juškevič, Leonard Ėjler. Žizn i tvorčestvo, in: Razvitie idej Leonarda Ėjlera i

sovremannaja nauka. N.N. Bogoljubov et al., eds. Moscow: Nauka 1988, pp. 15-46, cit.
p. 25.
4 P. Hoffmann, Anton Friedrich Büsching. Ein leben im Zeitalter der Aufklärung.

Berlin-Verlag Arno Spitz: Berlin: 2000. “... redet seine Muttersprache so grob, dass man

ihn kaum verstehen kann.”, p. 36.
5 Ibid. “An dem rechten Auge hat er eine Fistel, die ihm die Hälfte seines Gesichts
beraubt und ziemlich ekelhaft aussieht. Es pflegen zwar die grossen Algebraisten geme-

inglich finstere Köpfe und im Umgang beschwerliche Köpfe zu sein, er aber ist sehr
belebt und aufgeweckt, insonderheit wenn er sich unter Bekannten befindet.”
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time Euler had published five papers and submitted others to the journal
of the Society, the Miscellanea Berolinensis. Because of his comprehensive
knowledge and his broad scientific and administrative activities, Euler soon
gained an extraordinary reputation in Berlin and the Berlin Academy.

During the Berlin period Euler’s productivity was so great that in those
days no one Academy was able to publish all of his papers. Euler pub-
lished about half of his paper in Berlin and the other half in St. Peters-
burg. In addition Euler repeatedly submitted papers to the Paris Academy
and competed in the Paris Prize competition. From time to time Euler
sent long papers from Berlin to St. Petersburg for publication, and some
long books were printed in Berlin on at the expense of the Petersburg
Academy. Furthermore, important manuscripts were published in St. Pe-
tersburg including, among others, Scientia navalis seu tractatus de con-
structione ac dirigendis navibus (1749), Theoria motus lunae (1753), and
Institutiones calculi diffentialis (1755). It is noteworthy that originally the
Scientia navalis was intended to be printed in Berlin at the Petersburg
Academy’s expenses, but there was no printer in Berlin who could handle
the complicated typesetting. So Euler sent the manuscript to the printer
of the Petersburg Academy, though the proof-reading was done in Berlin.

These and other activities show that during the years he was in Berlin
Euler remained de facto an active member of the Petersburg Academy.
As a foreign member of the Academy he got an annual pension of 200
rubles. Characteristic of Euler’s feelings for Russia is the fact in Berlin he
frequently remembered his Petersburg years. There are many reports on
this matter that have not yet been comprehensively analyzed. In the 25
years Euler lived in Berlin a total of about 800 letters were exchanged,
on average three letters each month to or from St. Petersburg 6 – and
this calculation includes the time of the Seven Years War, in which the
correspondence was almost brought to a standstill and each letter was sent,
despite enormous difficulties, through neutral regions.

Frederick II once asked Euler how he had gained his knowledge. Euler
responded that he himself “and all the others who were so lucky as to belong
to the Imperial Russian Academy eventually must confess that all of what
we are we owe to the very advantageous circumstances we found ourselves
in at this Academy. Furthermore, as far as I am concerned, without this
magnificent opportunity I would have been forced to undertake some study
in which I would probably have been remained but a bungler.” 7

6 A.P. Juškevič, Leonard Ejler, p. 33.
7 Letter to J.D. Schumacher from 7./18. November 1749. In: Die Berliner und die
Petersburger Akademie der Wissenschaften im Briefwechsel Leonhard Eulers, part 2.
A.P. Juškevič and E. Winter, eds. Berlin: Akademie-Verlag 1961. “... und alle übrige,
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Büsching met Euler in December 1749 and made this note: Euler “en-
tertained us with an extensive narration on the nature of Russians whom
he had came to know during his 14-year stay in St. Petersburg. He praised
the extraordinary intellect and the skillfulness of the Russian farmers and
assured us that in comparison with the Russian farmers, the rural inhabi-
tants of the Marches [the area surrounding Berlin, the Marches or the Mark
Brandenburg] are like clod-hoppers.” 8

Euler often mentioned the Russian gift of practical ingenuity. When the
Petersburg Academy wanted a physicist who at the same time could work
as a mechanic, Euler wrote to Johann Daniel Schumacher (1690-1761), the
chief official of the academic chancery: “Obviously we are not far from the
moment that if we need skillful people in Germany then we will have to
take a Russian.” 9 In any case Euler was not in a position to recommend
a candidate suited for this job from Germany for the Petersburg Academy.
Therefore he continued: “There were skillful mechanics but they did not
study. In my opinion the Academy would most reliably get such a skill-
ful man if a young person who has studied and who possessed a good
basic knowledge of mathematics were urged to do all kinds of mechan-
ical work like wood-turning, clock-making, and glass-grinding, for which
the Academy itself would offer wonderful opportunities. After this, such
a person could be sent here for a few years where he could increase his
theoretical knowledge with me and with Herr Dr. Lieberkühn [1711-1756]
who runs a workshop in his house for glass-grinding and uses various ma-
chines. He would have all advantages of practical instruction.” 10 Euler’s

welche das Glück gehabt, einige Zeit bey der russisch-Kaiserlichen Academie zu stehen,
müssen gestehen, dass wir alles, was wir sind, den vortheilhaften Umständen, worin

wir uns daselbst befunden, schuldig sind. Dann was mich betrifft, so würde ich in Er-
mangelung dieser herrlichen Gelegenheit genöthiget gewesen seyn, mich auf ein ander
Studium hauptsächlich zu legen, worinn ich allem ansehen nach doch nur ein Stümper

würde geworden seyn”, p. 182 (letter 106).
8 Quoted according to P. Hoffmann, Anton Friedrich Büsching. Euler “unterhielt uns
mit einer weitläufigen Erzählung von der Beschaffenheit der Russen, die er in der Zeit

seines 14-jährigen Aufenthalts in Petersburg genauer kennengelernet. Den Verstand und
die Geschicklichkeit der russischen Bauren rühmte er ungemein und versicherte, dass die
märkischen in Vergleichung mit denselben wie Klötze wären”, p. 36.
9 Letter to J.D. Schumacher from 19./30. June 1753. In: Die Berliner und die Peters-

burger Akademie der Wissenschaften im Briefwechsel Leonhard Eulers, part 2. “Allem
Ansehen nach sind wir nicht mehr weit von dem Zeitpunkt entfernt, dass, wenn man

in Teutschland wird geschickte Leute nötig haben, man solche aus Russland wird ver-

schreiben müssen”, p. 312 (letter 231).
10“Geschickte Mechanicos gäbe es zwar noch, welche aber nicht studirt haben. Meiner
Meynung nach würde die Academie am sichersten zu einem solchen geschickten Mann

gelangen, wenn sie einen jungen Menschen, der studiert und in Mathematicis einen guten
Grund gelegt hätte, zu aller Gattung mechanischen Arbeiten als Drechseln, Uhrmachen,
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following conclusions are particularly expressive: “A Russian seems to be
more skillful than a German because a German artist and craftsman is
seldom able to make anything that he did not learn to make, whereas I
have always seen with surprise that even the most common Russian people
make attempts and they are often successful. Such behavior is necessary
for such purposes.” 11 Euler continued in case his proposal were accepted
by the Academy “certainly the safest way to fill the vacancy of a mechanic
would be to fill it soon and to fill the post with such a person so it could
never be done by a foreigner.” 12

Again and again Euler made great efforts to promote young Russian
scientists. From September 1743 to summer 1744 Krill Grigor’evič Razu-
moskij (1728-1803) the future President of the Petersburg Academy and his
private tutor Grigorij Nikolaevič Teplov (1725-1771,) later Secretary and
Councilor of the Academic Chancery, stayed in Berlin in Euler’s house. 13

This was one of the educational journeys the nobility usually undertook –
in this case a larger influence cannot be overlooked. Several other of Euler’s
disciples – Semen Kirillovič Kotel’nikov (1723-1806), Stepan Jakovlevič Ru-
movskij (1734-1812), and Michail Sofronov (1729-1760) - stayed in Euler’s
house in Berlin between 1751 and 1756. Later Kotel’nikov and Rumovskij
became members of the Petersburg Academy. The highly gifted Sofronov,
who had already shown a tendency towards alcoholism in Berlin, did not
realize his full potential.

Euler is well known for the expert opinions he gave on papers writ-
ten by young Russian scientists. Let us only recall his opinion concerning
papers written by Michail Vasil’evič Lomonosov (1711-1765) and Nikita
Ivanovič Popov (1720-1782). 14 And in a letter dated 27 January/7 Febru-
ary 1756 Euler reported on the good progress his disciples Kotel’nikov and
Rumovskij had made in mathematics: “... and I hope they will soon be able

Glassschleiffen anhalten wollte, wozu bey der Academie selbst die schönste Gelegenheit
wäre. Hierauf könnte man einen solchen Menschen auf etliche Jahre hierher schicken, wo
er sich bey mir in Theoreticis fester setzen, bey dem H. Dr. Lieberkühn aber, welcher

die künstliche Werkstatt in seinem Hause von Glassschleiffen und anderen Maschinen
unterhält, alle Vortheile in practis erlernen könnte”, ibid. pp. 312f (letter 231).
11“Ein Russ scheint insonderheit dazu geschickter zu seyn als ein Teutscher, denn da ein
teutscher Künstler und Handwerker selten etwas zu verfertigen imstande ist, was er nicht
gelernt hat, so habe ich immer mit Verwunderung gesehen, dass auch die gemeinsten

Russen alles unternehmen und mehrentheils glücklich ausführen. Solche Ingenia werden

aber zu einer solchen Arbeit unumgänglich erfordert”, ibid. p. 313 (letter 231).
12“... so würde dieses gewiss das sicherste Mittel seyn, die erledigte mechanische Stelle

bald auf eine solche Art zu besetzen als durch einen Ausländer nimmer mehr geschehen

würde”, ibid. p. 313 (letter 231).
13See “Vorwort (Preface)”, ibid. p. 6.
14Letter to Schumacher from 8/19 April 1749, ibid. p. 162 (letter 92).
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to make applications with such a success that it may well happen that they
surpass all of what has been done by foreigners in this science.” 15

Euler’s letters to Petersburg frequently contain his memories of Peters-
burg. In this spirit he wrote a letter to the Secretary of the Academic
Chancery Johann Daniel Schumacher about the observatory in Petersburg:
“The observatory in Petersburg can rightly be praised because for many
years now they have not economized at all in the purchase of the instru-
ments they needed and moreover even the building was favorably designed
for astronomical purposes so that we here [in Berlin] do not know a better
model to propose.” 16 This statement came to have special importance be-
cause after the death of the astronomer Christfried Kirch (1694-1740) the
Berlin observatory fell into ruin. Euler reported to Joseph-Nicolas Delisle
(1688-1768) in Paris on April 23, 1743: “Since the death of Mr. Kirch, the
observatory of the Societé has been in a sad state, so that it no longer
can be used for making observations. One could believe that the King has
destined this place to be another fortress, and for this reason he has not
made any efforts on behalf of the needs of astronomy.” 17

The Berlin Academy was designed to meet the needs of the Prussian
king. After the death of the President Pierre-Louis Moreau de Maupertuis
(1698-1759) the king himself directed the Academy. Frederick II and Euler
were very different in origin, view of life, and character. The king appre-
ciated brilliant and witty conversation, had a tendency to cynicism, and
showed no deeper understanding of mathematics, although he saw its prac-
tical use. To Frederick, Euler was merely a member of his Academy and
although the glory of Euler shined at the Academy, Frederick did not en-
gage Euler in conversation. After the death of Maupertuis, the king did not
recognize the excellent work Euler had done when Euler did his utmost and
used his influence as Director of the Mathematical Section to advance the

15“... et j’espère qu’ils seront bientôt en état d’être employés avec un tel succès qu’on

pourra bien se passer tout à fait des étrangers dans cette science [mathématiques]”, (“...
and I hope that they will soon be in a position to be employed with such success that
they may well, in fact, surpass the foreigners in this science [mathematics].”) ibid. p.

414 (letter 321).
16Das Observatorium in Petersburg kann sich mit Recht rühmen, dass es von so vielen
Jahren her an Anschaffung aller nöthigen Instrumenten nichts ist erspahret worden, und

über diese ist auch das Gebäude so vorteilhaft zum Endzweck der Astronomie angelegt

worden, dass wir allhier kein besseres Modell vorzuschlagen wissen”, ibid. p.86 (letter
35).
17L. Ėjler i Ž.-N. Delil’ v ich perepiske 1735-1765. In: Russko-francuzskie naučnye svjazi.
Leningrad: Nauka 1968. “L’Observatoire de la Societé a été jusque à present depuis la
mort de M-r Kirch dans un mauvais etat, de sort qu’on n’a presque rien pu observer.

On croiroit que le roy avoit destiné cette place à un autre batiment, et par cette raison
on n’a pas voulu faitre aucune depense pour les besoin de l’astronomie,” p. 162.
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development of the Academy. The king had never considered appointing
Euler to the Presidency - in this the king certainly was negligent.

Euler stuck to his principles, the upright views that were forged by the
middle-class of his Swiss homeland and at the same time he advocated a
deeply religious world-view. He repeatedly attacked the free-thinkers in
papers in which he provocatively criticized the opinions of the French
philosophers of Enlightenment who dominated Frederick’s court, and he
also criticized the philosophies of Gottfried Wilhelm Leibniz (1645-1716)
and Christian Wolff (1679-1754).

In addition to the instability and uncertainty at the Berlin Academy,
there were the difficulties of the Seven Years War. In 1760, Berlin was occu-
pied by Russian troops. This also affected Euler’s estate at Charlottenburg
outside of Berlin. Euler sent a letter to the Secretary of the Petersburg
Academy dated October 7/18, 1760 that said, “We had a visitor here who
on all other occasions would have been very welcome. It was always my
wish that if Berlin were to be taken by foreign troops then it might be
done by Russians. I had the delight to get to know so many brave Russian
officers.” 18 In the following letter, though, Euler reports on the devasta-
tion of his Charlottenburg estate - the order of safe keeping issued by the
Russian command came too late to protect Euler’s properties. In addition
Euler made a report recommending that his case be referred to the Russian
tsarina for the treatment he had received from the Russian officers, saying
that as a foreign member of the Petersburg Academy he certainly should
be compensated by the Russian court for the damage inflicted. In further
letters to authorities of the Petersburg Academy this topic was repeatedly
discussed. Euler did not rebuild his Charlottenburg estate but he sold it a
few years later.

For Euler, his circumstances in Berlin, especially those caused by the war,
became unbearable. The depreciation of the currency also had an impact
on Euler’s standard of living. Although Euler had taken on the many duties
of the President of the Berlin Academy, he did not occupy the presidency
and the King did not remunerate him accordingly. What is more, even after
the end of the war he could not expect rapid improvement.

When he recognized that he could not realize his ambitions, Euler re-
turned to St. Petersburg in 1766. At this time he was 59 years old. This

18Letter to Müller from 7/18 October 1760. In: Die Berliner und die Petersburger
Akademie der Wissenschaften im Briefwechsel Leonhard Eulers, part 1. A.P. Juškevič

and E. Winter, eds. Berlin: Akademie-Verlag 1959. “Wir haben hier einen Besuch gehabt,
welcher mir bey allen anderen Gelegenheiten höchst angenehm gewesen wäre. Doch habe
ich immer gewünscht, dass, wenn Berlin von fremden Truppen eingenommen werden
sollte, solches von den russischen geschehen möchte. Ich habe also das Vergnügen gehabt,
so viele wackere russische Herren Offiziere kennen zu lernen”, p. 161 (letter 120).
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is an age at which such a decision is made only after careful considera-
tion. However despite all the quarrels of the first Petersburg period, Euler
obviously had fond memories of his stay in Petersburg.

The Prussian king was very reluctant to let Euler leave and he needed to
be asked several times before approving Euler’s dismissal. Not until Euler
resigned all of his academic posts did the King finally give in with a few
laconic words and accept Euler’s application for dismissal. It is character-
istic of the King that he did not find any positive words as a reward for the
enormous work Euler did during two and a half decades at the Academy.

4. The Second Petersburg Period

In 1766 Euler returned to St. Petersburg. There he was welcomed with
honor. He received many gifts, which at once enabled him to buy a house
located in a distinguished area near the Academy building. He was regularly
seen having audiences with the Russian tsarina Catherine II (1729-1796),
who talked to him and listened attentively.

Euler’s relations with the Director of the Petersburg Academy once again
became difficult, but this was ultimately not so important. The Director
was Vladimir Grigor’evic Orlov (1743-1831), 23 years old and a younger
brother of count Aleksej Grigor’evic Orlov (1737-1808), the favorite of
Catherine II. At any rate, Euler soon withdrew from his official academic
duties at the Petersburg Academy, but this did not hamper him at all in
his concentrated scientific work.

Euler’s second Petersburg period lasted 17 years, until Euler’s death. It
became a time of rich harvest for him. He published several general mono-
graphs during these years - among them the three volumes of the Dioptrica
(1769-1771), probably prepared in Berlin, Institutionum calculi integralis
(1768-1770), also in three volumes, and the book Theoria motuum lunae
(1772) which was published by his son Johann Albrecht (1734-1800), Wolf-
gang Krafft (1743-1814), and Andreas Johann Lexell (1740-1784) under the
direction of Leonhard Euler. It contained the lunar tables Novae tabulae
Lunares as an appendix.

Although Euler went completely blind in 1771 he continued working. He
wrote and published many general papers. Due to his comprehensive mem-
ory and his outstanding power of imagination Euler was able to dictate even
complicated mathematical investigations to his young colleagues. He found
able minds and these young men became distinguished mathematicians un-
der his supervision. The most famous is Nikolaus Fuss (1755-1829), who
was born in Basel and married Albertine Euler (1766-1829), a daughter of
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Euler’s oldest son Johann Albrecht, in 1784.
Even after Euler became blind, his productivity was so huge that the

Petersburg Academy was unable to publish all of his papers. When he
died, many papers were waiting to be published, some of which appeared
soon after Euler’s death but many not until decades later.

In 1783 the highly honored Leonhard Euler died. In Petersburg his work
left a trail that can be followed through to our days. In 1769 Euler’s oldest
son Johann Albrecht had been appointed as Perpetual Secretary of the
Conferences of the Petersburg Academy, a position in which he remained
until his death in 1800. His successor was Nikolaus Fuss, also trained by
Euler.

5. Euler’s Legacy

During his lifetime Euler was always in close touch with Russia. There-
fore, it is not surprising that after Euler’s death the Petersburg Academy
gave intense care to the publishing of his remaining papers. The Academy
needed about fifty years in total to publish the many completed papers
that were left by Euler. 19 Many of his sketches, notices, and calculations
are still to be published in the collected works, the Opera omnia Euleri, in
the not too distant future.

The publication of Euler’s collected work was considered for the first
time in the middle of the 19th century in Petersburg. They began with
the publication of important letters. 20 However, this first attempt at a
comprehensive edition did not get beyond two volumes published in 1849. 21

The task was too much for the Petersburg Academy alone and, despite
repeated efforts, the Academy did not find anyone willing to take part in
this project. They negotiated mostly with Carl Gustav Jacobi (1804-1851),
a member of the Berlin Academy, but due to the financial limitations the
project broke down. 22

19See G.N. Matvievskaja, O rukopisnom nasledie i zapisnych knigach Ėjlera (On the
handwritten estate and Euler’s notebooks), in: Razvitie idej Leonarda Ėjlera (The de-
velopment of Euler’s ideas). Moscow:Nauka:1988, pp. 102-121, cit. p. 124.
20See G.N. Matvievskaja, O rukopisnom nasledie i zapisnych knigach Ėjlera (On the
handwritten estate and Euler’s notebooks), in: Razvitie idej Leonarda Ėjlera (The de-

velopment of Euler’s ideas). Moscow:Nauka:1988, pp. 102-121, cit. p. 124.
21L. Euler, Commentationes arithmeticae collectae, 2 vols. St. Petersburg 1849; L. Euler,
Opera posthuma mathematica et physica. St. Petersburg 1862.
22See P. Stäckel and W. Ahrens, Briefwechsel zwischen C.G. Jacobi und P.H. von Fuss
über die Herausgabe der Werke Leonhard Eulers, in: Bibliotheca mathematica (3) 8
(1907) 233-306; also an elarged separat edition Leipzig: Teuber 1908.
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When the Schweizerische Naturforschende Gesellschaft (Swiss Society of
Natural Sciences) was first considering the publication of a complete edition
and offered the Petersburg Academy its ideas, the Petersburg Academy
agreed at once. 23 An Euler Committee was founded in the Swiss Soci-
ety and it soon presented a plan that was supported by the Petersburg
Academy. In 1910 the Petersburg Academy placed the Euler materials
that were in the possession of the Academy at the Euler Commission’s
disposal under the condition of a speedy return. The Euler Commission
made photocopies but the return did not take place until in 1947 and
1948. 24 When the material was handed over to the Euler Commission,
Boris L’vovič Modzalevskij (1874-1928) made a list of the Euler estate
that was published as a preprint. 25 Russian scientists were involved in the
editorial work that started in these years. Even before World War I the
Russian mathematicians and members of the Petersburg Academy of Sci-
ences, Aleksandr Michajlovič Ljapunov (1857-1918) and Andrej Andreevič
Markov (1856-1922) had each undertaken the editing of two volumes of
the series and sent the completed manuscript to the Euler Commission in
Zurich. However, there were other volumes ready for printing. That is why
Ljapunov’s volumes were not published until 1920 and 1932, and Markov’s
volumes were not published until 1941 and 1944 only then in a revised
edition. 26

Due to political conditions in the late 1920’s and the 1930’s, the cooper-
ation between Soviet scientists and the Euler Commission in Switzerland
almost came to a standstill. Nevertheless, in the Soviet Union Euler’s her-
itage continued to be investigated thoroughly. In 1935, on the occasion of
the 150th anniversary of Euler’s death, an omnibus volume was published,
and many writings of Euler were translated into Russian and published. 27

23See K.-R. Biermann, Aus der Vorgeschichte der Euler-Ausgabe 1783-1907; J.J. Bur-
ckhardt, Die Eulerkommission der Schweizerischen Naturforschenden Gesellschaft, both

in: Leonhard Euler. Beiträge zu Leben und Werk. J.J. Burckhardt et a. eds. Basel:

Birkhäuser 1983, pp. 489-500, 501-510.
24G.N. Matvievskaja, O rukopisnom nasledie (On the handwritten estate), p. 125.
25B.L. Modzalevskij, Perečen’ rukopisej Ėjlera, chranjaščichsja v Archive Konferencii
imp. Akademii nauk (List of Euler’s manuscripts stored in the Archive of the Confer-
ences of the Imperial Acedemy of Sciences), Preprint 1910; G. Eneström, Bericht an

die Eulerkommission der Schweizerischen Naturforschenden Gesellschaft über die Euler
Manuskripte der Petersburger Akademie, in: Jahresbericht der Deutschen Mathematiker-

Vereinigung 22, 1-2 (1913) Abt. 2, pp. 191-205.
26See E.P. Ožigova, Ob učastie Peterburgskoj Akademii nauk (Akademii nauk SSSR)

v izdanii trudov Ėjlera (On the role of the Petersburg Academy for publishing Euler’s
works), in: Razvitie idej Leonarda Ėjlera (The development of Euler’s ideas), pp. 60-8,

cit. pp. 73f.
27L. Ėiler, Metod nachoždenija krivich linij (...), Moscow-Leningrad, Gos. Techn.-
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When the Euler estate came back to Russia to the Archive of the Leningrad
Academy, Soviet scientists got new opportunities for extensive research and
they made vigorous use of the opportunity. In 1958 Gleb K. Michailov
(born in 1929) and Vladimir Ivanovič Smirnov (1887-1974) gave the first
report on those activities. 28 Furthermore in 1962 and 1965 a very de-
tailed but not annotated list of the Euler material preserved in the Archive
of the Academy was published in two volumes. 29 Even without annota-
tions, the first volume contains a list of 2,268 letters from and to Euler
stored in the Petersburg Archive. Since the 1950’s, the Soviet Academy
and now the Russian Academy of Sciences have devoted particular atten-
tion to the opening and editing of Leonhard Euler’s correspondence, which
had not been included in the original plans Opera omnia Euleri. In cooper-
ation with the Deutsche Akademie der Wissenschaften zu Berlin (German
Academy of Sciences in Berlin), the general correspondence 30 appeared in
three volumes and the correspondence between Euler and Christian Gold-
bach (1690-1764) was published. 31 In 1963 a volume of selected scientific

teoretič. izd. “Obrazovanie,” 1934; ders., Novaja teorija dviženija luny (...), Leningrad,
Izd. AN SSSR, 1934; ders., Osnovy dinamiki toski (...) Moscow-Leningrad, ONTI

/ Glavn. red. techn.-teoretič. lit-ry, 1938; ders., Differencial’noe isčislenie (In-
stitutiones calculi differentialis), Moscow, Gostechizdat 1949; ders., Integtral’noe

osčislenie(Institutionum calculi inegralis), 3 vols. Moscow, Gos. Izd. techn.-teoret. lit.,
1956-1958; ders., Izbrannye kartografičeskie stat’i (...), Moscow, Geodezizcat, 1959; ders.,
Vvedenie v analiz bezkonečnych (...), Moscow, Fizmatgiz, 1961; ders., Issledovanija po

ballistike (...), Moscow, Fizmatgiz, 1962; further papers were published in the omnibus
“Variacionnye principi mechaniki” (Variational principles of mechanics), Moscow, Fiz-

matgiz 1959.
28G.I. Michajlov and V.I. Smirnov, Neopublikovannye materialy Leonarda Ėjlera v
archive Akademii nauk SSSR (Unpublished material of Euler in the archive of the
Academy of Sciences of the Soviet Union), in: Leonard Ėjler. Sbornik statej v cest’ 250-

letija so dnja roždenija, predstavlennych Akademii nauk SSSR (Collection of papers in
honor of the 250th birthday of Euler). Moscow: Izdatel’stvo Akademii nauk SSSR, cit.

p. 47.
29Rukopisnye materialy Leonarda Ėjlera v Archive Akademiiu nauk SSSR (Handwritten
material of Euler in the Archive of the Academy of Sciences of the Soviet Union), 2
vols.(Trudy Archiva 17 and 20). Moscow-Leningrad: Izdatel’stvo Akademii nauk SSSR
1962, Leningrad: Nauka1965.
30Die Berliner und die Petersburger Akademie der Wissenschaften im Briefwechsel
Leonhard Eulers, A.P. Juškevič and E. Winter, eds., in cooperation with P. Hoffmann,
T.N. Klado and Ju. Ch. Kopelevič, 3 vols. (=Quellen und Studien zur Geschichte Os-
teuropas, III/1-3). Berlin: Akademie-Verlag 1959, 1961, 1976.
31Leonhard Euler und Christian Goldbach. Briefwechsel 1829-1764. A.P. Juškevič and
E. Winter, eds., in cooperation with P. Hoffmann, T.N. Klado and Ju. Ch. Kopelevič
(Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin, Klasse für
Philosophie, Geschichte, Staats-, Rechts- und Wirtschaftswissenschaften, Jahrgang 1965,
No. 1). Berlin: Akademie-Verlag 1965.
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letters written by Euler to 19 scientists was published, and all letters were
translated into Russian. 32 A list of Euler’s letters were edited in Russian
by Adol’f Pavlovič Juškevič (1906-1993) and Vladimir Ivanovič Smirnov
which contained all known letters in Russia and outside. In total the list
contains 2,654 letters from and to Euler along with a short abstract. 33

In the 1970’s cooperation between the Euler Commission in Zurich and
the Soviet Academy was intensified because of the extension of the Euler
edition. 34 The correspondence and the scientific notes will be collected in
a new fourth series of the Opera omnia Euleri. In 1975 the first volume
of this series was published and contained a revised list enumerating 2,892
letters of the correspondence. 35

6. Conclusion

The topic “Euler and Russia” can be extended by some further thoughts.
During his lifetime Euler was concerned with preserving his status as a cit-
izen of Basel. He remained a Swiss citizen all his life. However, at the same
time he had built up a special relation with Russia and the Russians that
cannot be understood by a rational explanation alone. Many of Euler’s
statements show an inward solidarity with his adopted home, Russia, and
they are not just lip service. It is notable in the way Euler made remarks
about his first Petersburg period that he never made about his Berlin pe-
riod. Obviously in Berlin he did not feel at home, probably partly because
of his Swiss dialect. In the urban St. Petersburg he felt more comfortable.
On the other hand, Euler was a cosmopolitan in the spirit of the Enlight-
enment, and accordingly he did not break off his relations with the Berlin
Academy after leaving Berlin, as one might have expected. On the contrary,
he kept in touch with the Academy and in later years he even wrote some
letters to Frederick II.

In Russia, the Russian scientific community copiously restored his con-
fidence. Rightly, Euler entered Russian history of sciences as one of its
leading figures.

32L. Ėjler,Pis’ma k učenym (Letters to scholars). Moscow-Leningrad: Izdatel’stvo
Akademii nauk SSSR 1963.
33L. Ėjler. Perepiska. Annotirovannyj ukazatel’ (Correspondence. Annotated catalog).

Leningrad: Nauka 1967.
34J.J. Burkhardt, Die Euler-Kommission der Schweizerischen Naturforschenden
Gesellschaft: Ein Beitrag zur Editionsgeschichte, in: Leonhard Euler 1707-1783. J.J.

Burckhardt et al., eds. Basel: Birkhäuser 1983, pp. 501-510.
35Leonardi Euleri opera omnia, ser. 4. Leonardi Euleri commercium epsitolicum. Vol
A1: Descriptio commercii epistolici. Birkhäuser: Basel 1975.
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In January 1783 Empress Catherine II, the Great, of Russia appointed
Princess Ekaterina (Catherine) Dashkova director of the Imperial Academy
of Sciences in St. Petersburg, a position that the princess would fill to 1794
and officially hold for two more years. This selection and the return of
Leonhard Euler to Russia in 1766 were Catherine’s most important efforts
toward renovating her academy of sciences and restoring its European rep-
utation in research. An enlightened despot, she recognized that the sciences
were vital to the growth of Russia as a powerful, modern state within Eu-
rope rather than a backward realm at the fringe of the continent. While
stressing the utility of the sciences, for example the contributions of ge-
ography to the preparation of reliable maps and atlases, and the practical
value of mineralogy, metallurgy, natural history, and naval science, she
substantially supported research in astronomy, mechanics, and higher pure
mathematics. 1 After sketching to 1783 the life of Princess Dashkova, this

1 A. Kahan, “Entrepreneurship in the Early Development of Iron Manufacturing in

LOL Ch4-P1 of 22

 Leonhard Euler: Life, Work and Legacy
 Robert E. Bradley and . Edward Sandifer (Editors)
© 2007 Elsevier B.V. All rights reserved

C



76 Ronald S. Calinger, Elena N. Polyakhova

paper will examine the efforts of Euler to improve the management of the
Imperial Academy, the extraordinary deference that the Russian aristocrat
and friend of the empress gave to the plain-spoken Swiss-born commoner,
and her major achievements in directing the institution to 1790 and so
bringing Russia more into the Enlightenment.

1. Princess Dashkova: Life in Brief to 1783

In March 1744 Princess Ekaterina Dashkova was born Countess Vo-
rontsova in St. Petersburg. Her mother was Marfa and her father Count
Roman I. Vorontsov, 2 who became a Russian senator in 1760. He was
the eldest brother of Count Michael Vorontsov, 3 the Grand Chancellor
of Russia from 1758 to 1762 under Tsarina (Empress) Elizabeth and later
Tsar Peter III. Raised in the family of her uncle, the Grand Chancellor, the
young countess was well educated, studying European literature, especially
the writers of the French Enlightenment. She collected a private library of
900 volumes. Among the dignitaries she encountered in the Grand Chancel-
lor’s house was the future Catherine the Great, 4 whom she met in 1758.
Countess Vorontsova quickly became an admirer of the grand duchess’s
polished shrewdness. Count Vorontsov was also a friend of the poet, histo-
rian, grammarian, and chemist Michael Lomonosov, who often visited. In
1759 the countess married Prince Michael Dashkov. They and their children
would at first live principally in St. Petersburg but often visited Moscow
and their nearby country estate. 5

In 1761 Princess Dashkova resided in her uncle’s dacha next to the grand
duchess, who during her stay in Oranienbaum occasionally came to have
supper with the uncle or invited the princess to visit her in the evenings.
The grand duchess and the princess shared an interest in cosmopolitan
culture and readings in history and French political theory. “Bayle, Mon-
tesquieu, Voltaire, and Boileau” she wrote, were her “favorite authors.” 6

Russia,” Economic Development and Cultural Change, 10 (1961-62), pp. 395-422.
2 (1707 - 1783). See the Russian Academy of Sciences: Institute for the History of Science
and Technology, St. Petersburg Branch, the History of Ideas Section for information on
the Vorontsovs.
3 (1714 - 1767)
4 (1729 - 1796)
5 See Gunther Schlegelberger, Die Fuerstin Daschkova - eine biographische Studie zu
Geschichte Katharinas II, Berlin: Jumker and Duennhaubt, 1935.
6 The Memoirs of Princess Dashkova, trans. and ed. by Kyril Fitzlyon, Durham: Duke
University Press, 1995, esp. p. 33. The first edition of this book appeared in London
with John Calder Publishers Ltd. in 1958.
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Two others whom she carefully read were Jean-Jacques Rousseau, whom
she disdained, and Claude Adrien Helvetius, the author in 1758 of the ir-
religious De l’esprit (Essay on the Mind). Dashkova’s love of books was to
continue lifelong. She spent all her pocket money on obtaining them. The
German-born Catherine had taken easily to Russia, adopting the Orthodox
religion and learning the Russian language. Catherine’s encouragement of
Dashkova’s readings and the support she gave to the progress of her young
friend suggest that she was recruiting allies for coming political battles.
Princess Ekaterina could also provide invaluable information, for her sister
was the mistress of the Crown Prince. In December 1761 Empress Eliza-
beth died and was succeeded by Peter III, whose failure on his accession
to mention his pregnant wife possibly indicated an intention to replace
Catherine.

It was soon apparent that the deficiencies of Peter were putting Russia in
crisis and great debt. In June 1762 Catherine organized and orchestrated
a successful coup d’état. She had long planned it, but she was deeply in
debt. She had first to amass funds and wait as opposition to the emperor
increased. The Orlovs and the Dashkovs gave her crucial support. Three of
the five Orlov brothers were officers who supplied military muscle for the
coup from the Izmailovskii guard regiment. The dashing General Gregory
Orlov had become Catherine’s lover. At age nineteen, Princess Dashkova
was not simply a friend of Catherine but a political figure with growing
influence in the imperial court and within the aristocracy in St. Petersburg.
During the coup on 27 June, she put on a military overcoat and urged the
Orlovs and Catherine to act with greater dispatch lest it fail. 7 Perhaps
for political reasons, the empress afterward declared that the princess had
taken only a minimal role in it.

After the coronation of Catherine II in September 1762 in Moscow, the
traditional location for the ceremony for all Russian tsars, 8 the Dashkovs
resided with her in St. Petersburg in the Winter Palace and received strong
financial support from her. One indicator of her advancing political strength
is that as the empress became known as Catherine the Great, the princess
would be recognized as Catherine the Little. After her husband Prince
Michael died in 1764, she remained for five years on her country estate.
From 1769 to 1771 she journeyed to the Rhine valley, Frankfurt, and Berlin
as well as Geneva, where she spent time alone with Voltaire. Upon her

7 Ibid., pp. 74 - 77. See also E. R. Dashkova, “Der Staatsreich von 1762.
Denkwürdigkeiten der Fürstin Dashkow” in Denkwürdigkeiten der Kaiserin Katherina

II von Russland, Ebenhausen bei München, 1916, pp. 275-306.
8 Moscow was considered the third Rome, the second being Constantinople. The Russian
title tsar derives from Caesar.

LOL Ch4-P3 of 22



78 Ronald S. Calinger, Elena N. Polyakhova

return to St. Petersburg in 1771 she had to overcome a rash of malicious
gossip. The story spread that she was boasting of being the daughter of
a liaison between her mother and a Count Panin; another had it that she
was the count’s lover. Since she had almost no personal property, for her
wedding dowry had largely been spent on paying her husband’s debts and
the education of her children, Catherine II generously gave her 60,000 rubles
to purchase a landed estate in the countryside. 9

From 1776 to 1782 during an estrangement from the empress, Princess
Dashkova traveled to western and central Europe, visiting England, Scot-
land, Ireland, France, Holland, the German states, and Italian cities, includ-
ing Pisa, Lucca, Rome, Naples, and Venice. Without stopping after Venice,
she crossed the Tyrolese mountains to spend time in the high society of Vi-
enna, where she dined with the wily chancellor, Prince Wenzel Anton von
Kaunitz. 10 Princess Dashkova wrote regularly to Catherine II, reporting on
her studies of schools, universities, economics, culture, landscape architec-
ture, and gardening. She visited parliaments, hospitals, museums, parks,
and archaeological excavations and collected herbs and mineral samples.
She met political leaders, philosophers, scientists, writers, actors, artists,
and painters. She even composed music, mainly church hymns admired
by the English tragedian David Garrick 11 for their Rousseauan “pathetic
simplicity.” Princess Dashkova had an extensive correspondence with En-
lightenment figures, exchanging letters with the Encyclopedists Diderot,
Voltaire, and Jean d’Alembert, a member of Russia’s Imperial Academy
of Sciences since 1764. 12 From 1776 to 1779 she was in Edinburgh, where
her younger son Pavel (Paul) was a university student. The city’s leading
scholars visited her salon. Among her guests were the historians William
Robertson and Arthur Young, the chemist Joseph Black, and the economist
Adam Smith. Out of gratitude, she was to present Edinburgh University
with a magnificent cabinet of Russian medals.

In 1781 in Paris, Princess Dashkova met Benjamin Franklin. His reputa-
tion for being a distinguished man of science and advocate of human rights

9 The Memoirs of Princess Dashkova, trans. and ed. by Kyril Fitzlyon, pp. 139-140.
10 Ibid., p. 179.
11 (1717 - 1779)
12The Encyclopedists were the writers for Diderot’s famous Encyclopedia, the great-
est collaborative work of the Enlightenment. It appeared in twenty-eight volumes over
twenty-one years, starting in 1751. Among its authors were representatives of the more

radical segment of the French Enlightenment. Europe’s republic of letters, its readership
multiplying in London, Berlin, Munich, Paris, Turin, St. Petersburg, and other cities,
pursued the challenge that Immanuel Kant would later pose: “Sapere aude! (Dare to
know).” See Frank A. Kafker, The Encyclopedists as a Group, Oxford: Voltaire Foun-
dation, 1996.
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was well accepted. She found him “a very superior man who combined pro-
found erudition with simplicity of dress and manner, whose modesty was
unaffected, and who had great indulgence for other people.” 13 She was
now being placed among the Enlightenment luminaries. The French sculp-
tor Jean-Antoine Houdon, who made a marble sculpture of Jean-Jacques
Rousseau, two of Voltaire, both of them now in the Hermitage Museum,
and a half-length terracotta of Franklin, at present in the Louvre, produced
in 1780 a full-length sculpture of her in Paris. 14

In July 1782 Princess Dashkova returned to Russia to a rapprochement
with Catherine II, who was extremely cordial. The empress presented her
with a landed estate in Belorussia with 2,500 peasant serfs, which was on
a par with gifts to her court officials. 15 The princess’s energy, patriotism,
amiable disposition, understanding of the importance of the sciences to
Russia, and friendships with many scientists and writers in Europe’s re-
public of letters built the foundation for her coming appointment to the
directorship of the Imperial Academy. 16 The several portraits painted by
Russian artists in the 1780s suggest the princess’s increasing importance.
Dmitri Levitsky made the most prominent of these, a half length portrait,
and copies in 1784. 17

13The Memoirs of Princess Dashkova, trans. and ed. by Kyril Fitzlyon, p. 228.
14St. Petersburg has the famous bronze figure of “Dashkova sitting with an open book.”
It is located on the socle pedestal of the fifteen-meter monument to Catherine the Great

designed by the Russian painter M. Mikeshin and constructed in 1873.
15See The Memoirs of Princess Dashkova, trans. and ed. by Kyril Fitzlyon, pp. 194
and Sue Ann Prince, ed., The Princess & the Patriot: Ekaterina Dashkova, Benjamin

Franklin, and the Age of Enlightenment, Transactions of the American Philosophical
Society, vol. 96, pt. 1, Philadelphia: American Philosophical Society, 2005, 129 pp., esp.

p. 25.
16See Mon histoire: Mémoires d’une femme de lettres russe à l’époque des lumières, ed.
by Alexandre Woronzoff-Dachkoff et al., Paris: L’Harmattan, 1999
17 (1740 - 1822). The oil portrait was among the gifts that the princess gave her En-

glish guests the Wilmot sisters, who spent several years on her country estate. Catherine

Wilmot (1773 - 1824) received a manuscript copy of her Mon histoire in French in 1807
and Martha (1775 - 1873) letters from Catherine II and the oil portrait the next year.

Martha Wilmot, who married Reverend William Bradford, edited along with Henry

Coburn Memoirs of the Princess Dashkaw, Lady of Honour to Catherine II, Written by
Herself Comprising Letters of the Empress and Other Correspondence, which was pub-

lished in London in 1840. See also The Marchioness of Londonderry and H. Montgomery

Hyde, eds., The Russian Journals of Martha and Catherine Wilmot, 1803 - 1808, Lon-
don: Macmillan and Co., 1934, reissued in New York by Arno Press in 1971. The oil

portrait disappeared until identified in a Russian exhibition in London in 1935. It was
item w127 of the catalogue. Afterwards Mrs. Marjorie Merriweather Post, who founded

the Hillwood Museum, purchased it. The portrait is now above the central stairway of

the Hillwood Museum in Washington, D.C. See A. Bird, Eighteenth Century Russian
Painters in Western Collections: the Connoisseur, 1971, pp. 78 -83.
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2. Academic Governance: Euler, Orlov, and Domashnev

Meanwhile, in 1765 Catherine II had begun her attempt to revitalize the
Imperial Academy of Sciences. 18 A major component of her project was
her invitation to Euler to return from Berlin. In November he wrote to his
friend the astronomer Joseph Nicholas Delisle in Paris that after the death
of Pierre-Louis de Maupertuis, the president of the Berlin Academy, the
selection of new members no longer depended upon the academicians and
that he had decided to return to Russia. Catherine II, he observed, promised
a grand reform of her Imperial Academy of Sciences that would regain its
previous luster. She intended to raise the regular pension of professors to a
thousand rubles, provide them with housing near the academy, and make
eight additional appointments. 19 Euler, who was assigned to find scholars
to fill these positions, asked Delisle to indicate possible candidates. Follow-
ing Euler’s recommendation, Catherine II in October 1766 replaced with a
control commission the chancery overseeing the academy and stripped the
academy president Count Kirill Razumovskij 20 of his legal prerogatives
but not the post. Razumovskij, the hetman of Ukraine, 21 whom Empress
Elizabeth had appointed president of the institution at the age of eighteen
in 1746, was a prominent courtier but while he had been a student of Euler
in Berlin in 1743 and 1744, he was showing scant interest in the sciences. To
improve the operation of the academy, the empress created as a supplement
to him the auxiliary post of director, to which she transferred presidential
powers besides adding a large enough staff to control its departments. The
consulting commission was part of the directorship. It included five aca-
demicians: Euler, his son Johann Albrecht, Semyon Kotel’nikov, Johann
Lehman, and Stepan Rumovskij along with Jakob Stählin, the conference
secretary to 1769. The director, who was also to be a member of the com-
mittee, and the nobles associated with the academic directorship assured
the empress’s dominance over the academy.

18Catherine saw technology and science as fundamental to the growth of her state. Her

manifesto of 1763 had already addressed drawing to Russia artisans with skills in hand-
icrafts and the production of luxury items, along with manufacturers. Granting skilled
people an additional round of privileges, including tax exemptions, religious toleration,

freedom from military service, and funding for constructing factories, brought more than

30,000 immigrants to Russia, most of them from the German states.
19Leonhard Euler, Opera omnia: commercium epistolicum, IVA.1, ed. by A. Juškevič,

V. Smirnov, W. Habicht, Basel: Birkhäuser Verlag, 1975, p. 105.
20 (1728 - 1803)
21The hetman was the leader of the Don Cossacks and Ukraine on the southern border
of the Russian empire.
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The academic control commission was supposed to prepare detailed plans
for a thorough reorganization of the academy and to administer its affairs
until a new director was named and then to assist him. From his first aca-
demic meeting after his return to St. Petersburg in August 1766, Euler
worked steadily for a decade to better the administration. At the end of
1766 he submitted to the commission a memorandum that recommended
streamlining the editorial board, improving the management of publica-
tions in the academy, and increasing the financial terms for foreign scientists
invited to Russia. In February 1767 he sought as additional academic privi-
leges a raise in salaries and the elimination of censorship on imported books.
Other proposals were for relief from teaching assignments, a reduction in
internal strife, and the establishment of more adequate funding through
an expanded sale of books, journals, and calendars. While in Berlin, Euler
had effectively supported the pioneering work in St. Petersburg of Michael
Lomonosov, 22 who campaigned for educating native Russian scientists.
Lomonosov, Russia’s first eminent man of science, helped found physical
chemistry, challenged the dominant phlogiston theory of combustion on the
grounds that phlogiston could have different weights or be weightless, and
supported the wave theory of light. Throughout his career in Brandenburg-
Prussia and Russia, Euler sought a measure of autonomy for the sciences.
Following upon recent efforts of Lomonosov, who by order of President
Razumovskij had headed the educational branch of the academy from 1760
to 1765, 23 he advocated giving academicians a greater voice in running
their institution. He was less willing than Lomonosov to accept complete
aristocratic control over the academy, but only very briefly obtained lim-
ited independence for it. 24 Opposition initially by the first of two power-
seeking directors and courtiers associated with the academic commission
thwarted all of Euler’s administrative proposals. Eventually in a letter of

22 (1711 - 1765)
23As there was disorder and disorganization in the academic gymnasium and university
in St. Petersburg, Lomonosov developed a plan in the early 1750s to establish Moscow

University. Founded by Empress Elizabeth in 1755, it quickly became the leading edu-
cational center in Russia, including the sciences among its strengths. Moscow University
practically realized Peter the Great’s idea of the unity of the sciences and education

as well as helping fulfill in part Lomonosov’s vision of creating distinguished Russian
universities.
24Euler must have agreed with Lomonosov on the position of scientists in eighteenth-

century Russia. They commanded no prestige . They were state employees with no posts

in the state bureaucracy and no rights to rise to the nobility. This was opposite to the
situation in western and central Europe. Lomonosov considered this social limitation

damaging to the advance of the sciences in Russia but was unable to convince the

imperial court of this. Not until 1790 did Catherine II permit scientists to become state
consultants.
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February 1774 to Orlov, he pointedly resigned from the academic commis-
sion for himself and his son Johann Albrecht. 25 His best way now to serve
the academy, he wrote in September, was by educating and coaching new
students. As the doyen and most distinguished member of the academy,
though, Euler headed the twice-weekly general conferences in the absence
of the president and together with his son, who was made conference sec-
retary in 1769, had the chief responsibility for choosing successors to fill
vacant positions.

Neither Euler’s administrative efforts nor his blindness after his cataract
operation in 1771 slowed his extraordinary productivity in research and
publications. During his second St. Petersburg period, he wrote almost 415
memoirs and books, which amount to just over half his total publications. 26

These include the completion of two of the three volumes of his Institutiones
calculi integralis, the first published in 1768 and the second in 1770, his
three-volume Dioptrica, which appeared from 1769 to 1771, and his 775-
page Theoria motuum lunae, published in 1772 and containing his second
lunar theory. Most of his articles appeared posthumously. He set out most of
the topics for the annual prize competitions of the academy and was always
one of the judges. He helped to organize the famous expeditions to diverse
regions of Russia to observe the transit of Venus before the disc of the sun in
1769 and several others involving solar eclipses. Data from the observations
of the transit of Venus allowed him to determine the parallax angle of
the disc of the sun, which was needed to compute exactly the distance
between Earth and the sun. Although Euler’s correspondence diminished
after he left Berlin, he continued to use that means of spreading his ideas.
Letters to D. Bernoulli, Joseph Louis Lagrange, Nicholas de Condorcet,
and other geometers address integral calculus, while another to the Royal
Society of London discusses dioptrics and lunar theory. In a letter to the
Berlin Academy Euler reported on the research he had accomplished after
essentially losing his sight in 1768. He exchanged letters with noble Russian
officials and two monarchs, Frederick II of Prussia and Stanislaw August of
Poland, for whom he improved geographical coordinates to improve Polish
cartography.

General Count Vladimir Orlov, 27 a graduate of Leipzig University who
was the first director of the Imperial Academy, served from 1766 to Decem-

25Euler, Opera omnia, IVA.1, p. 326. A day before, in a letter of February 2, 1774, he

had asked Orlov to free him of work in the geography department because of his failing
eyesight.
26Emil A. Fellmann, “Leonhard Euler: Ein Essay über Leben und Werk,” in Leonhard
Euler: 1707 - 1783: Beiträge zu Leben und Werk, Basel: Birkhäuser Verlag, 1983, pp.
31 - 32.
27 (1743 - 1831)

LOL Ch4-P8 of 22



Princess Dashkova, Euler, and the Russian Academy of Sciences 83

ber 1774; his successor the minor poet Sergei G. Domashnev, 28 a follower of
the Orlovs, held the post from 1775 to 1782. The appointments were mainly
rewards for being among the leading supporters of Catherine’s coup. Nei-
ther of the two understood scientific research or had much respect for it.
They both rejected the academy’s brief degree of self-government organized
separately by Lomonosov and Euler. The court members of the commission
and the first two directors, primus inter pares on it, wanted to reestablish
a despotic bureaucracy. During a visit to St. Petersburg Count Sigismund
Ehrenreich Redern of the Berlin Academy, whose atlas Euler had published
in 1762, was horrified at Orlov’s administration. “My God,” he exclaimed
to Euler, “what an extraordinary kind of person you have for the president
[actually director] of the academy–who is against all scholars, regards the
academy as useless, and believes with Rousseau that science would make
the world only more evil.” 29 It was initially thought that Orlov would pro-
vide leadership, but in his preoccupation with the great Pugachev rebellion
he came to neglect his duties and retired. Domashnev, though a highly
intelligent graduate of Moscow University, was a worse choice. He squan-
dered the academy’s finances, was rude and arbitrary toward its members,
and flagrantly violated their institutional rights. He left vacancies unfilled,
rarely attended meetings, embezzled funds from the academy treasury, and
took for his own collection books ordered for the library. In April 1782 Do-
mashnev arbitrarily removed Kotel’nikov from the academy and soon after
attempted to transfer Kotel’nikov’s cabinet of natural history to Peter Pal-
las.

In the ensuing controversy, the academicians insisted that this “author-
itative act would overturn the entire system of academic obligation.” 30 In
August they wrote that the dismissal of Kotel’nikov violated the academy’s
1747 charter, asked Domashnev to withdraw it, and expressed no confi-
dence in him. In November 1782 they sent him a further letter of protest.
The letter was met with silence. The academicians then openly forwarded
the letter to the control commission with a call for Domashnev to be dis-
charged, and Catherine was informed of the conflict. Euler was among the
signatures. After a two month inquest, Catherine dismissed Domashnev.
Under her the Russian government would no longer ignore the few rights
of the academy’s men of science.

28 (1743 - 1795)
29As quoted in Alexander Vucinich, Science in Russian Culture: A History to 1860,

Stanford: Stanford University Press, 1963, p. 141.
30Michael D. Gordin, “Arduous and Delicate Task,” in Sue Ann Prince, ed., The
Princess & the Patriot, p. 10.
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3. Princess Dashkova as Imperial Academy Director

On 24 January 1783 with the stroke of a pen, Catherine II by decree dis-
solved the academic control commission and appointed Princess Dashkova
the director of the Imperial Academy of Sciences. Thus began an epoch in
the history of the academy. The previous night when the empress offered
her the position, the princess “had been first struck dumb with astonish-
ment,” then but quickly insisted that “I cannot accept any office which is
beyond my capacities.” 31 Her majesty rejected the objection and declared
her abler than her predecessors. Princess Dashkova knew that the empress
had the tact, shrewdness, and perseverance to get a positive answer, so re-
sistance would be futile. At the staff meeting of the empress on the morning
of the twenty-fourth, Domashnev was present. When he attempted to de-
scribe to the princess the duties she would carry as academy director, she
politely rebuffed him, saying that she “would treat its members with perfect
impartiality.” 32

At thirty-eight the princess, who was Russia’s first stateswoman and
prominent female aristocratic manager, faced a daunting challenge, be-
ginning with ending the disarray in the operations of the academy and
reestablishing stability. Salaries of members of the debt-mired academy
were in arrears, buildings in disrepair or not begun, libraries and laborato-
ries depleted, and many scientific expeditions not yet organized. Although
well educated, Princess Ekaterina was not a scientist. Apparently she had
conducted a sober, unbiased assessment of her possibilities for the director-
ship and concluded that strong administrative and organizational skills, in
both of which she had talent, together with her intellectual ability, could
produce beneficial results for years. And she had greater authority than
her two predecessors. She reported directly to Catherine. But in recogni-
tion of the prerogatives of the academicians, she would not be installed in
the position until the academy elected her. Its members were pleased, and
on January 28 they respectfully and unanimously voted for her.

On Monday 30 January 1783, Princess Dashkova was to be formally pre-
sented and announced in the Imperial Academy Conference Hall. Relieved
that the era of Domashnev had ended, all the academicians and profes-
sors of the academy gladly agreed to gather again in the conference hall in
what is now referred to as the old academy building. The former palace of
Princess Praskovea, the sister-in-law of Peter the Great, it had been since
1728 the main academy building. The Mémoires of Princess Ekaterina de-

31The Memoirs of Princess Dashkova, trans. and ed. by Kyril Fitzlyon, p. 200.
32 Ibid., p. 204.
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scribe in detail her meeting on Sunday with members and on Monday with
Euler and the events of that her first day in the academy.

“Early the previous morning, which was a Sunday, I received the visit
of all professors, officers, and servants of the academy. I told them that
I should visit the academy the next day, and I begged them that if they
had any business to discuss with me, they come to my room at any hour
convenient to them without waiting to be announced.

I spent the evening reading the reports given me and tried to make
myself familiar with the labyrinth into which I was about to venture, for
I was entirely convinced that my slightest mistake would become known
and criticized. I also tried not to forget the names of the most important
governmental inspectors and officers of the academy.

The next day before going there I paid a visit to the great Euler. I
say ‘great’ because he was, without any doubt, the greatest geometer
and mathematician of his age, besides being familiar with every branch
of science: his industry was such that even after he lost his sight he
continued his researches and made discoveries, dictating his work to Mr.
Fuss, who was married to his grand-daughter. He left behind him a great
deal of material that went to enrich the publications of the academy for
many years after his death.

Disgusted, like everyone else, with Domashnev’s behavior, he no longer
attended the academy and took no interest in its proceedings, apart from
adding his name to an occasional protest with the other members and
even writing directly to her Majesty whenever Domashnev took it into
his head to launch into some ruinous undertaking.

I begged him to accompany me to the academy at least this once,
adding that I did not claim he should bother to attend it in future, but
that as this would be my first appearance at a sitting of the scientific
body, I wanted to be introduced by him. He seemed flattered by my great
consideration for him. We had known each other for a long time, and I
may venture to say that he had a high regard for me ever since I was a
very young woman, some fifteen years before I assumed the directorship
of the academy.

Euler came with me in my carriage, to which I also invited his son, the
permanent secretary of the academy, as well as his grandson Mr. Fuss,
who since the great man was blind had the task of guiding his steps. 33

As I entered the conference hall, I said to the professors and other
members assembled that though I was an ignorant person myself, I
wanted to mark my respect for science and could find no more solemn

33Perhaps the princess did not remember for her memoirs that Fuss had not yet married
Euler’s granddaughter.
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and impressive way of doing it than by being introduced by Mr. Euler.
I spoke these few words before sitting down and noticed that Professor
Mr. Stählin had taken his place next to the Director’s chair.... I there-
fore turned to Mr. Euler and told him to sit down where he thought fit,
for any place he occupied would always be the first. His son and grand-
son were not alone in showing appreciation and pleasure at my remark,
for the eyes of the professors, who all had the highest respect for the
venerable old man, were filled with tears.” 34

The year 1783 brought increasing recognition for Princess Dashkova. Fol-
lowing the princess’s initiative, Catherine II founded in September the
Russian Academy of Language, Linguistics, Literature, and Dictionaries.
Initially proposed by Lomonosov, it became an essential element in the
fruitful development of Russian culture during the period, defined as the
empress’s Golden Age, in which she made St. Petersburg a major educa-
tional and cultural center. The princess convinced intellectuals of differing
social status to produce over a five year period the first Russian dictionary,
for which she and Catherine separately wrote some entries. The nobility,
who spoke French, found it merely an inconvenience. The empress herself
also wrote children’s stories and short plays, which she helped stage. The
theater became popular. On the advice of the princess, Catherine II in-
structed Russia’s ambassadors to purchase paintings, sketches, carvings,
medals, and books, including Voltaire’s library. Initially many were placed
in the Winter Palace. Following the empress’s example, the wealthier mem-
bers of the aristocracy decorated their homes with fine paintings and sculp-
tures. Princess Dashkova was named president of the Russian Academy of
Language in 1783 and generally received active support for it from the im-
perial court.For the next dozen years, she oversaw the two most important
academies in Russia.

As the Imperial Academy director, Princess Ekaterina set out an am-
bitious program, in general tackling an array of problems with a striking
success that she would report to the empress in 1786. Underlying her pro-
gram was an attack on the dominant view in Russia that theoretical science
was at opposites to practical applications and that a wall separated them.
Instead Princess Dashkova sought to bring out their interconnections and
the impact of progress in the sciences upon daily life. She recognized that
heavy debt and the scantiness of funding were her greatest problem.” 35 As
a start to building a sound financial base for the academy, she prepared for
the empress a detailed account of its holdings. She visited the chancellery
that oversaw its administration and finances and informed its officials that

34The Memoirs of Princess Dashkova, trans. and ed. by Kyril Fitzlyon, pp. 205 - 206.
35 Ibid., p. 206.
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henceforth it was “the common duty of us all [to] redress these [past fi-
nancial] abuses, [such as embezzlement], the shortest and most efficient
method of achieving this being to squander nothing and stop all misappro-
priations.” 36 Under Domashnev embezzlement had been rife and publicly
known. A traditional Enlightenment way to correct financial arrears was
to ask the monarch for funds, and Catherine had pledged these. But the
princess requested only a small amount for medals and earned almost the
entire budget through honest, impersonal, and meticulous administration.
She noted that debts to booksellers in Holland, Paris, and Russia were a
principal drain on finances. By astutely increasing by thirty percent the
price of academy publications, she soon reduced debts substantially. 37

The maintenance, rehabilitation, and construction of academy buildings
were fundamental to a healthy academy. Princess Dashkova solved many
related troubles. Attentive to detail, she looked at even the smallest prob-
lems, such as heating fireplaces and renting out empty basements for store-
rooms. Two apartment houses for academy members and the restoration
of Gottorp’s Globe in the circular hall of the Kunstkammer tower were
two of her largest construction projects. After the fire of 1747, the Kunst-
kammer had been rebuilt from 1754 to 1758, but in its tower the large
Gottorp’s Globe was only partly reconstructed. A rotating spherical globe-
planetarium about four meters across, it had been presented to Peter the
Great in 1713 by Duke Karl Friedrich of Holstein-Gottorp for his aid against
Sweden in the Great Northern War. Twelve people can sit within the globe
and observe the stars and the moon. The inner surface has more than a
thousand golden points representing stars, reflected by the light of a central
candle source. As a replacement for the burned design of the seventeenth
century according to maps of the sixteenth century, Princess Ekaterina had
the academician Friedrich Theodor von Schubert 38 supply a timely version
of the design of the geographical map on the outer surface of the globe.
The only detail that remains from the eighteenth century on the interior
of the Kunstkammer is the wall mural of geometry with Leonhard Euler’s
lunar formulas.

Working from these foundations completed or on the way, the princess’s
program for the academy sought to increase the prestige and importance
of its conference, decrease its bureaucracy so as to subordinate members
directly to the director, and require academicians to report regularly to

36The Memoirs of Princess Dashkova, trans. and ed. by Kyril Fitzlyon, p. 206.
37By the time she left in 1794, she had earned a half million rubles. She left the academy
with 100,000 rubles in the bank and the bookstore and library with 390,000 in the black.

See Michael D. Gordin, “Arduous and Delicate Task,” in Sue Ann Prince, ed., The

Princess & the Patriot, p. 13.
38 (1758 - 1825)
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the conference on their current research and results. She began to educate
and train more future scientists for the academy and Moscow University, re-
cruiting fifty competent students for the academic gymnasium compared to
the previous seventeen and funding them. Within three years she raised the
number to eighty-nine. She also assigned more Russian students to attend
European universities, particularly Leipzig, Heidelberg, Göttingen, and Ed-
inburgh. Princess Dashkova insured that royal monopolies and privileges
in crafts and manufacturing were strictly followed and that new results
and discoveries in the sciences were kept secret until information on them
was published in Russia. It was “to the academy’s shame,” she wrote, that
observations and discoveries made “inside the country were communicated
abroad before their publication in Russia and used by them [to their ad-
vantage] before they were here.” 39 She removed the complete confusion in
the management of the academy’s editorial board and acquired fine type for
the press. This managerial improvement and her redesign of book sales were
but two of her reforms that responded to Euler’s proposals. The printing of
the two volumes of the quarto-sized transactions, Nova acta, annually had
earlier been reduced to one volume and then for want of type suspended.
The princess’s administration and equipment acquisitions made it possible
for the academy to resume regular publication of its Nova acta, mostly
with articles left by Euler, and she had the first anthology of the writings
of Michael Lomonosov published from 1784 to 1787. 40 These publications
and the restructuring of the Russian book trade to make it more efficient in-
creased academy revenues, which she funneled into improving laboratories
and botanical gardens.

Princess Ekaterina added prizes in engineering and organized courses of
popular lectures on geometry, mathematics, and natural history, which aca-
demicians had to deliver during the summer. These courses were given in
Russian by native professors and free of charge, which made it possible for
even the impoverished children of the Russian aristocracy to attend and
benefit. Lecturers were paid two hundred rubles at the end of each course.
Having the lectures in Russian was not only to allow all students, pupils,
and lay people to learn from them but also to amplify scientific terminology
in the Russian language and enter it into daily conversation. 41 Russian, the
language of the common people, was slowly evolving beyond an elementary

39Michael D. Gordin, “Arduous and Delicate Task,” in Sue Ann Prince, ed., The

Princess & the Patriot, p. 16.
40Grand Chancellor Michael Vorontsov had been a friend and supporter of Lomonosov.
Growing up with the grand chancellor’s family, Princess Dashkova had known
Lomonosov and his work since childhood.
41Alexander Woronzoff-Dashkoff, “Books Make the Woman,” in Sue Ann Prince, ed.,
The Princess & the Patriot, p. 83.
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discourse in the sciences. For example, the trilingual dictionary of Fedor
Polikarpova, published in 1704, had lacked a definition for attraction from
Newton, a term that became associated in Russia only with Enlightenment
science. 42 In Catherinian Russia, Rumovskij’s translation of Euler’s three-
volume Letters to a German Princess from French to Russian was a notable
source of the reading public for the sciences. Its first edition appeared from
1768 to 1774; its second in 1785; and its third in 1790-91. In addition to
encouraging the natural sciences, Princess Dashkova promoted research on
the Russian language, dictionaries, and publications to enhance Russian
secondary and higher education. In 1783 she commissioned Peter Pallas to
design a uniform for all academy employees to wear. It was purple with light
yellow piping and a light green necktie. The princess wanted to make aca-
demicians more a part of the state civil service though distinct from other
groups and to suggest that science was developing as a profession. 43 Be-
fore her, Russia had not conferred the highest state honors on distinguished
academicians in the sciences. From 1783 to 1794, Princess Dashkova recom-
mended and had decorated eight academicians with the Order of St. Anna
or that of St. Vladimir. Among the recipients was Johann Albrecht Euler,
honored with the Order of St. Vladimir in 1787.

From the beginning of her directorship, a principal issue for Princess
Dashkova was the recruitment and retention of talented mathematicians
and physicists from western and central Europe. Apparently she discussed
this matter and many other organizational problems during visits with
Euler, who proposed candidates. After his death in 1783, his followers sug-
gested members of the Euler circle dedicated to elaborating and refining
the vast body of research that he left.

Notable among the scholars close to Euler and his circle was Nicholas
Fuss. 44 In 1772 Euler had asked Daniel Bernoulli in Basel to choose a
young mathematician to be his assistant. In July of that year Fuss arrived.
He thereafter lived with Euler and served as his personal secretary, help-
ing the blind genius by making computations for more than 160 memoirs.
In 1783 he was elected an ordinary member or academician in mathemat-
ics. When he threatened to leave Russia, Princess Ekaterina doubled his
salary to retain him. In the same way she kept the historian, ethnographer,
and geographer Johann Gottlieb Georgi from departing. 45 In 1784 Fuss

42Valentin Boss, Newton & Russia: The Early Influence, 1698 - 1796, Cambridge, MA:
Harvard University Press, 1972, p. 243.
43Michael D. Gordin, “Arduous and Delicate Task,” in Sue Ann Prince, ed., The
Princess & the Patriot, p. 12.
44 (1755 - 1826)
45Johann Georgi (1729 - 1802) joined the academy in 1783.
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married Albertina, the second daughter of Johann Albrecht Euler. 46 Fuss
contributed to infinitary analysis, astronomy, geometry, the mechanics of
elasticity, and the building of fortifications. 47

Another prominent scholar recruited from Euler’s circle abroad was the
German mathematician and astronomer Friedrich Theodor von Schubert,
whom the academy acquired in 1785. Schubert, having attended Greifswald
and Göttingen universities, was well known in the 1780s for his research
in cartography, celestial mechanics, spherical trigonometry and geometry.
After his candidacy was considered in the early 1780s, Princess Dashkova
in December 1784 invited him to St. Petersburg, and he arrived the next
month as an adjunct in mathematics, director of the academic library, and
chief of the ”Minz-Kabinett” and the complete collection of astronomical
and physical instruments and devices. He was asked to save and develop
the maps created by Delisle and Euler. Schubert faced the most difficult
task of putting the academic library in good order. Its problems stemmed
largely from the great fire of December 1747, which had destroyed the ob-
servatory and severely damaged the Kunstkammer Museum containing the
library. In January 1748 Euler wrote from Berlin to Delisle in Paris that
the industrious efforts of cadets – and he could have added officers – had
for the most part saved library books and journals, along with the holdings
of the museum of Peter I. 48 Between 1754 and 1758 the Russian architect
S. Chevakinsky restored the Kunstkammer except for the high tower, but
the library remained disordered. Thirty-seven years after the fire, Schu-
bert essentially finished the renovation of the library. Supported by rela-
tively lavish funds from Princess Ekaterina, he catalogued the books there,
searched for lost volumes, and ordered books and journals from western
and central Europe. 49 In 1789 Schubert was elected an ordinary member
of the academy and chairman of astronomy.

In the 1770s Daniel Bernoulli had informed Euler about the mathemat-
ical talent of his nephew Jacob II. 50 He was a student of Johann II and
Daniel Bernoulli at the University of Basel. Possibly the idea of inviting
Jacob II to Russia was discussed. After Daniel Bernoulli and Euler died

46 (1766 - 1829). They had thirteen children. Their eldest son, Paul (1798 - 1855), suc-
ceeded his father as the permanent secretary of the academy from 1826 to 1855. He
organized a partial first edition of an Opera omnia of Euler’s works and wrote a bio-
graphical article on him.
47The permanent secretary of the academy conference from 1769 to 1800 was Johann
Albrecht Euler, whom Nicolaus Fuss succeeded from 1800 to 1826.
48Leonhard Euler, Opera omnia, IVA.1, p. 104.
49Schubert was the great grandfather of Sofia Kovalevskaya (1850 - 1891) on her ma-
ternal side.
50 (1759-1789)
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Johann III Bernoulli, the director of Berlin Observatory from 1771 to 1786
and the eldest brother of Jacob II, wrote to Nicolaus Fuss to propose Ja-
cob II for the Imperial Academy. Fuss enthusiastically recommended him to
Princess Dashkova, who sent an offer to Jacob II in Venice. In 1786 Jacob II
arrived in St. Petersburg as an adjunct in mathematics. The next year, the
academicians elected him together with Schubert an ordinary member in
mathematics and astronomy. While he had taken part in geographical and
astronomical expeditions, his main scientific contributions were in various
aspects of classical and applied mechanics: rotation motion of pendulums,
elasticity theory, hydraulics, oscillation theory, and the hydrodynamics of
fluid flow in tubes. His investigations of these problems expanded upon the
brilliant results of Euler and Daniel Bernoulli. In 1787 Jacob II was also
made a professor in mathematics and physics for the Military Cadet Corps
in St. Petersburg. In 1789 he married Charlotta Euler, 51 Johann Albrecht
Euler’s fourth daughter, and so joined Fuss as a son-in-law of the younger
Euler. But two months after his marriage he accidentally drowned in the
Nevka-river, a branch of the Neva in St. Petersburg. 52 He was only thirty
years old.

From 1783 to 1789, the Imperial Academy elevated its own status by
electing famous foreign men of science and humanists as honorary aca-
demicians, members honoris causa. Princess Ekaterina and the Euler circle
were the chief contributors of names.

In 1783 the princess proposed the appointment of the historian and ratio-
nal cleric William Robertson, the principal of the University of Edinburgh
and royal historiographer, whom she personally knew. 53 Together with his
friend David Hume and Edward Gibbon, he formed the triumvirate of emi-
nent British historians during the Enlightenment. 54 A History of Scotland,
1542 - 1603, published in 1759, was his most famous work. It underwent
fourteen editions. It was followed by A History of Charles V in 1769 and A
History of the Discovery and Settlement of America in 1777. Robertson’s
skillful search for original documents, his critical synthesis and cosmopoli-

51 (1773-1831)
52His widow Charlotta married again in 1790 to John David Collins (1761-1833), a
Scotsman and the pastor of the German Lutheran Church of St. Peter’s in St. Peters-
burg. They had fourteen children. Their eldest son, Eduard Collins (1791-1840), a great-
grandson of Leonhard Euler, was the adjunct in mathematics of the Imperial Academy

from 1814 and ordinary academician in mathematics from 1820. Starting in 1824 he also

taught mathematics in St. Peter’s Lutheran School and from 1833 was its director.
53 (1721 - 1793)
54See Stephen J. Brown, William Robertson and the Expansion of Empire, Cambridge:

Cambridge University Press, 1997. These three and Voltaire were the foremost Enlight-

enment historians. No failings in Robertson’s writing and research but the growth of
knowledge led to the eventual neglect of his work.
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tan settings, and especially his exploration of the general ideas of freedom,
power, progress, and providence profoundly influenced the consciousness
of Europe. The Imperial Academy had printed in the 1770s the Russian
translation from the French of his two volumes on Charles V and would
publish his History of the Discovery and Settlement of America in 1784.

The chemist Joseph Black, another Scot who had gained the attention of
the princess during her travels, continued to correspond with her about di-
verse scientific phenomena. After the devastating Lisbon quake and tsunami
in November 1755 in which as many as 100,000 people perished, earth-
quakes were a major topic throughout the scientific community. Debate
flared over whether the Lisbon quake was a punishment for evil or there
was a scientific explanation for it. As the academy conference secretary, Jo-
hann Albrecht Euler informed Black of his election to the academy. Crown
Prince Paul, the future Paul I, later attended his lectures.

In 1786 two Germans were elected honoris causa by the academy. Both
were familiar within the Euler circle. The mathematician, astronomer, and
historian Abraham Gotthelf Kästner 55 of Göttingen University had corre-
sponded with Euler and supervised Russian students at Göttingen. Johann
Elert Bode, 56 named royal astronomer and director of the Berlin Obser-
vatory in 1786, belonged to Euler’s astronomical school. He established
the Titius-Bode Series showing nearly geometric distances between large
planets, improved the accuracy of almanacs, and produced an atlas listing
17,000 stars. The Titius-Bode Series was to be important in astronomy
through the nineteenth century. At the Berlin Observatory, Bode was a
colleague and the successor of Johann III Bernoulli, who probably recom-
mended him.

The German-born astronomer William Herschel, the discoverer in 1781 of
Uranus and its two satellites, Oberon and Titania, was one of two eminent
men of science elected members honoris causa in 1789. Euler had made
some computations of the orbit of Uranus. Herschel, residing in England,
provided a statistical foundation for stellar astronomy, observed star clus-
ters and double nebulas in our galaxy, and from 1786 to 1789 constructed
a reflector telescope twelve meters long. Later Empress Catherine II liked
to observe the moon, stars, and planets with a Herschel telescope, a gift
from George III of England. She had put the telescope at her country resi-
dence of Tsarskoe Selo and had Stepan Rumovskij, Euler’s leading Russian
student, as her personal astronomer.

55 (1719 - 1800)
56 (1747 - 1826)
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On 2 November 1789, Benjamin Franklin 57 was voted honoris causa, the
first American scientist so honored by the Imperial Academy. 58 Princess
Ekaterina, having learned of him in Edinburgh and gained so favorable
an impression of him during their encounter in Paris in 1781, nominated
him. Russia’s “armed neutrality” during the American War for Indepen-
dence must have pleased Franklin. Catherine II, the initiator this policy,
had refused the request of George III for troops to employ against the
American colonists. After Princess Ekaterina returned to Russia, she and
Franklin corresponded. In Paris Franklin met other Russians. In their num-
ber was Prince Dmitri A. Golitsin, the ambassador to Holland from 1769
and awarded membership honoris causa in 1778. His primary interest was
in electricity. Several of his articles speak highly of Franklin’s electrical
unitary theory. At mid-century, Georg Richmann, Lomonosov, and Franz
Aepinus of the Imperial Academy had extensively studied electricity. In a
kite experiment in lightening conducted from his laboratory at the Imperial
Academy following upon Franklin’s work, Richmann, though aware of the
dangers, was killed in July 1753. In December of that year Euler wrote a
review praising the electrical research of Lomonosov, who organized a prize
competition on electricity. Euler won first prize under the name of his son
Johann Albrecht. He could not submit a thesis with his own name, since he
was a member of the academy. He proposed an ether theory of electricity.
Aepinus’s magnum opus, Tentamen theoriae electricitatis et magnetisimi of
1759, bases electrical phenomena on Newton’s action-at-a-distance rather
than electrical atmospheres. Following Franklin’s advice, Golitsin acquired
for the academy electrical devices, probably including the electrophore,
from the laboratory of Alessandro Volta in Pavia. In the 1780s these de-
vices were crucial to the experiments of the Russian engineer and inventor
Ivan Koulibin, like Wolfgang Krafft and Johann Albrecht Euler, an inves-
tigator of electricity.

In November 1789 Princess Ekaterina and the younger Euler sent letters
informing Franklin of his selection honoris causa and sincerely apologizing
for not having done this earlier. Russia knew him for his literary as well
as his scientific works. In 1778 his writings had begun to be translated
into Russian. Poor Richard’s Almanack, the most popular, went through
six editions. In 1791 the Russian poet, historian, and translator Nikolai
Mikhailovich Karamzin published Franklin’s Autobiography, which Franklin

57 (1706 - 1790)
58See E. Dvoichenko-Markoff, “Benjamin Franklin, the American Philosophical Society

and the Russian Academy of Sciences,” Proc. American Phil. Soc., 91, No. 3 (1947),
pp. 250-257.
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himself titled Memoirs. 59

Early in 1789 the American Philosophical Society in Philadelphia, en-
joying international prominence since 1769, unanimously elected Princess
Dashkova a foreign member. Franklin, a leading founder of the society in
1743 and chosen its president, expressed in his nomination of the princess
his friendship and esteem for her. 60 In April 1789 the society mailed
Princess Dashkova a handsome diploma. She was the first woman and
the second Russian chosen for the society, 61 the first being Prince Dmitri
Golitsin. The society was to send her copies of all books that it published.
But she did not immediately receive the packet from Franklin announcing
the good news. From 1788 to 1790 Russia was at war with Sweden. In 1789
a Swedish ship intercepted the mails for Russia, including the Franklin
packet. In turn, the Russian army captured the Swedish ship in the sum-
mer. Princess Dashkova explained to the empress the “nonsense” delaying
the delivery of the packet. Her membership in APS added to her recognition
outside Russia. Previously she had been elected a foreign member of science
academies in Berlin, Dublin, Erlangen, and Stockholm. Even as her status
of Enlightenment figure continued to rise, the fall of the Bastille in Paris
in July 1789 and the ongoing French Revolution with its ideals of “liberté,
egalité, and fraternité” was to lead in 1793 to a rupture in relations with the
empress. While Princess Dashkova defended absolutism against the ideals
of the French Revolution, she opposed Catherine II’s harsh censorship and
arrest of Russian authors from 1789 for writings deemed anti-monarchical
or otherwise dangerous. 62

From Domashnev’s time, it was recognized that the old academy build-
ing, the former Princess Praskovea palace, no longer sufficed to house

59 (1766 - 1826). See A. G. Cross, N. M. Karamzin: A Study of His Literary Career,
1783 - 1803, Carbondale: Southern Illinois U. Press, 1971, and Samuel M. Lewis, J. G.
Herder and N. M. Karamzin, Urbana-Champaign: U. Illinois Press, 1992.
60Karen Duval, “A Man Made to Measure: Benjamin Franklin: American Philosophe,”
in See Sue Ann Prince, ed., The Princess & the Patriot, pp. 64-65.
61See A. Woronzoff-Dashkoff, “Princess E. R. Dashkova: First Woman Member of the
American Philosophical Society,” Proc. American Phil. Soc., 140, No. 3 (1996), pp.

405-414.
62Among the authors arrested and exiled to Siberia were Alexander N. Radishev, author
of Voyage from Petersburg to Moscow, published in 1790, and Nikolai Novikov. Radishev
was a protégé of her favorite brother Aleksandr R. Vorontsov, who after the Voyage
appeared was retired from Russian service. The time when Catherine’s favorite fell into
disfavor seems November 1793, when Princess Dashkova granted permission for the

academic press to publish the playwright Jacob Kniazhin’s critical drama Vadim from
Novgorod in issue 39 of the journal Russian Theater. Vadim, which referred to the
public assembly in medieval Novgorod, was sympathetic to republicanism. Aghast at
the French Revolution with the execution of the king, Catherine opposed Kniazhin’s
views and decided to punish Princess Dashkova for not censoring them.
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the academy’s administrative, public, and research offices. A new main
academy edifice was needed. But nothing was done, since the projected
100,000 rubles to finance its construction was not available. The reason
that Princess Ekaterina gave Catherine in the fall of 1783 for beginning
construction was that the academy required adequate space for the sale of
books, for public lectures with paid admission, and for housing for servants
of the academy. She would make the academy more than the traditional
center for scientific research and show. Under her administration it was
also to be a business enterprise earning the income to finance its principal
architectural project. At the princess’s insistence, the architect Giacomo
Quarenghi began construction in 1783. Schubert, who was to stand nearest
to Princess Ekaterina at the academy, supported its building. 63 Daily and
sometimes twice daily she inquired about progress on the rising structure.
Some of her messages were a bit imperious in their assumption that she
knew better than anyone else what had to be done. The beautiful main
academy building in neo-classical style on the Neva embankment near the
Kunstkammer Museum was completed in 1789. Today it is the main office
of the St. Petersburg branch of the Russian Academy of Sciences. Its pres-
ence is a memorial to the director who had done so much to take Russia
into the future that the Enlightenment, in its struggle with the autocracy
she served, was forging.

Acknowledgements: We are grateful to Ed Sandifer for providing pho-
tographs of the Imperial Academy’s Protokolii, to John Glaus for his trans-
lations, and to Thomas R. West for his editorial comments.

63His son, General Theodor Friedrich von Schubert of the Russian army, remembered

this in his memoirs, Unter dem Doppeladler, written in German from 1860 to 1865, and
published in 1962.
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In a treatise of 1783 Georg Christoph Lichtenberg makes a slightly pre-
mature inventory of the 18th century, listing all the historically signifi-
cant events which he thought should be handed down to the next cen-
tury. He wrote “I have seen Peter the Great, and Catherine, and Frederick,
and Joseph, and Leibniz, and Newton, and Euler, and Winckelmann, and
Mengs, and Harrison, and Cook, and Garrick.” 1 It may be astonishing that
the painter Mengs, the watch-maker Harrison, and also the actor Garrick
were esteemed as such important persons in cultural history, but it may be
more striking that philosophers so prominent as Locke, Hume, Wolff, and
Kant are missing, even if the last had but modest influence at that time.
The reason is that Lichtenberg’s inventory did not concern philosophy,
but mentioned Leibniz, Newton, and Euler only as scientists, though the
18th century was named the “philosophical” century. 2 Euler’s outstand-
ing position in Lichtenberg’s list is not primarily due to his reputation as
a philosopher. Only incidentally was he philosophically productive, and he
did not pretend to be a philosopher, because he disdained the pretended
philosophers. And his contemporaries scarcely esteemed or accepted him as
a philosopher. 3 Maybe philosophy is in any case an answer and a reaction

1 Vermischte Gedanken über die aerostatischen Maschinen, in: G. Chr. Lichtenberg,

Gesammelte Werke, hrsg. v. W. Grenzmann, Bd. 2, Baden-Baden, s. a., p. 349 [transl.

by W. Breidert].
2 Andreas Speiser, Leonhard Euler und die deutsche Philosophie, Zürich 1934, p. 3.
3 Otto Spiess, Leonhard Euler, Frauenfeld, Leipzig 1929, p. 120.
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to earlier philosophy, but Euler’s philosophising is in a very special way a
dispute with other authors’ philosophies. There is no peculiarly “Eulerian”
philosophical question, no special problem worrying or torturing him, but,
so to speak, an external motivation for his concern with philosophers and
their false doctrines. This even applies to the “Euler-Kantian question,”
so named by Speiser: 4 “What can physics provoke in metaphysics?” Of
course Euler is able to prove his originality by answering questions raised
by other philosophers.

Euler’s position in the history of philosophy is primarily characterized
by three controversies:

(i) The dualism of body and soul developed by Descartes resulted in
problems whose “solutions” provoked the monistic ontologies of mech-
anistic materialism on the one hand and of spiritualism (objective
idealism) on the other hand.

(ii) In the theory of knowledge the rationalism of the Leibnizian-Wolffian
school was irreconcilably opposed to the sensualism or empiricism
propagated by the Lockians especially in Great Britain and the United
States.

(iii) In natural philosophy the Cartesian concept of body, which defined
extension to be the essential property of body, had to give way to
the concept of body which was disseminated by Newton and Leib-
niz, including inertia or force in addition to extension. Nevertheless
Newton’s absolute space was opposed to the relativistic Leibnizian
concept of space.

In the following I intend to describe Euler’s point of view in these con-
troversies.

In 1724 Euler wrote a paper, which is lost, dealing with the distinctions
between the Cartesian and Newtonian philosophy. 5 Maybe therefore he
was influenced by doctrines of these authors, e.g. Descartes’ dualism and
Newton’s absolute space. As early as 1736 in a letter to C. L. G. Ehler
and in 1738 in letters to G. B. Buelfinger (Bilfinger) he criticized Wolff’s
Ontologia and his Cosmologia, but at that time he did not publish that
criticism. In 1741 Euler was compelled to write a letter to Wolff to dispel
the rumour that he would like to belittle Wolff’s prestige. But he expressed
his deep respect to Wolff and simultaneously he expressed a critical attitude
towards Wolffian monadism. 6

4 Speiser, l. c. (note 2), p. 9.
5 Guenter Kroeber (ed.), Leonhard Euler, Briefe an eine deutsche Prinzessin (selec-
tion), Leipzig 1965, p. 13 ff.
6 Leonhard Euler, Opera omnia, Series IV A, vol. I, Basel 1975, p. 466 (No. 2820).
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In the German Enlightenment Wolff’s rationalistic philosophy, with its
goal of logical stringency, captured the attention of every philosophising
reader. It is almost impossible to overestimate its appeal. Even Wolff’s
banishment from Halle during the reign of king Friedrich Wilhelm I signified
nothing else than a change of venue for Wolff’s activity. 7 When Friedrich
II, who later appointed Euler to Berlin, called Wolff back to Halle, this
come-back became a very triumphal procession, much to the dismay of the
pietists.

In 1745 the Berliner Akademie der Wissenschaften chose its competition
question asking either to expose or to refute or to demonstrate monadol-
ogy; and in case of demonstration the physical laws of motion should be
derived from that doctrine. 8 At that time Euler was the director of the
mathematical class of the Academy, and so he was involved in judging
the competition. Nevertheless he could not suppress his interest in it. Be-
fore the competition was finished he anonymously published his treatise
on the problem of monads in a series of papers entitled Gedancken von
den Elementen der Cörper ... [Ideas on the elements of body ...]. 9 In this
point Euler’s behaviour was unfair. It became even more awkward when
the Academy, owing to the numerous participants in the competition, ex-
tended the decision from just the philosophical class to a commission of all
the classes, of which Euler was also a member. This jury could not supply
an impartial award. And soon Euler was found to be the author of that
anonymous treatise. His supporters, e.g. the prize winner Justi, defended
Euler by the argument that it would have been necessary “to call the Ger-
man scholars’ attention to the competition in a peculiar way.” 10 Even A.
Speiser holds the opinion that Euler’s treatise was nothing but the antithe-
sis of monadology, “whose formulation he should not retain further after
the prize-question was put.” 11 Wolff disagreed with Euler’s friends, and he
tried to restrain Euler’s influence with some letters to Maupertuis, who was
the president of the Academy. At least some of the prize-essays, in which
Leibniz was defended, were published together with Justi’s prize-winning
text. “So to speak the whole process was submitted to the philosophical

7 Cf. J. Chr. Schwab, Welches sind die wirklichen Fortschritte ..., Preisschriften ueber
die Frage: Welche Fortschritte hat die Metaphysik ..., Berlin, Reprint Darmstadt 1971,
p. 19 f.
8 E. Hoppe, K. Matter, J. J. Burckhardt, editors’ introduction, in Leonhard Euler, Opera
omnia, Series III, vol. 2,.p. XI.
9 Leonhard Euler, Opera omnia, Series III, vol.2.
10Johann Heinrich Gottlob Justi, Nichtigkeit aller Einwürfe und unhöflichen Anfälle
..., Frankfurt, Leipzig 1748, p. 5.
11Loc. cit. [note 8].
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public for revision.” 12 Wolff reproached Euler for extending his recogni-
tion, which was well-deserved in mathematics, to other subjects with which
he was not sufficiently acquainted.

Euler’s motivation for his harsh attitude towards the contemporary philoso-
phers became perhaps most evident in the title of his short theological pam-
phlet: Rettung der Göttlichen Offenbarung gegen die Einwürfe der Freygeis-
ter [Rescue of the Divine Revelation from the objections of the Free-thinkers]
(1747). 13 In this treatise, among other things, the credibility of the Holy
Scriptures is defended by a comparison with the credibility of science. It
holds that even in science contradictions seem to exist, but no reasonable
person would on this account doubt the sciences, even if it is impossible to
resolve all difficulties. 14 In philosophy Euler takes up the pen only in cases
where he is convinced that he has to protect the Holy Bible or the sciences
against philosophers’ attacks or against their false doctrines. “Going to
the front against the monads, he defended his Christianity.” 15 Similarly
Ernst Mach spoke generally about the 18th century: “Theological ques-
tions were stimulated by everything, and they influenced everything.” 16

Because Mach endeavoured to eliminate theological remarks from scientific
writings, he was forced to ferret them out. In his view Euler belongs among
those authors who mixed matters of “internal private life” with the subjects
of science.

In ontology and theory of knowledge Euler attacks primarily three philo-
sophical views: the Wolffian philosophy (monadists), mechanistic mate-
rialism, and idealism (spiritualism, solipsism). In his philosophical writ-
ings he often mentions Leibniz, the Wolffians, Newton and the Cartesians,
whereas the names of particular idealists or materialists are not given.
Though Euler’s writings may give the impression that he explicitly refers
to Berkeley, 17 it is open to question whether he had any acquaintance
with Berkeley’s philosophy. Indeed, as early as in the mid-18th century
some of the compilations of philosophical positions include Berkeley as the
(only) representantative of idealism. Sometimes Malebranche is named as

12Schwab, loc. cit. [note 7], p. 26.
13Leonhard Euler, Opera omnia, Series III, vol. 12, p. 267 ff.
14 Ibidem, §§ 40-42.
15O. Spiess, loc. cit. [note 3].
16Ernst Mach, Die Mechanik, 9th ed., Leipzig 1933, Reprint Darmstadt 1963, p. 433.
17A. Speiser in: Leonhard Euler, Opera omnia, Series III, 11, p. XXIV; A. P. Juschke-

witsch, Euler und Lagrange über die Grundlagen der Analysis, in: Kurt Schroeder
(ed.), Sammelband der zu Ehren des 250. Geburtstages Leonhard Eulers der Deutschen
Akademie der Wissenschaften zu Berlin vorgelegten Abhandlungen. Berlin 1959, p. 228;
E. A. Fellmann, Leonhard Euler, in: Kindlers Enzyklopaedie Die Grossen der Welt-
geschichte, Zürich 1975, p. 518.
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a representative of solipsism, 18 but such remarks do not indicate a general
acquaintance with Berkeley, because even Kant does not mention Berkeley
in the first edition of the Critique of Pure Reason (1781), and later the
“Refutation of Idealism” in the second edition of the “Critique of Pure
Reason” does not prove any close acquaintance with Berkeley, who was
best known through descriptions in the works of his opponents, namely
Hume, Hamann and Beattie. Where Euler is dealing with the “English
philosophers,” 19 he is not thinking of any sensualistic philosophers, but of
the Newtonians. In Euler’s time, the term “materialist” meant Epicurus,
Hobbes, Coward, Spinoza, and Toland. Knutzen refers also to Dikaiarchos,
mentioned by Cicero.

Idealism always had to struggle against the fact that at the first glance it
seems to contradict the worldview of common sense. And when arguments
are missing, ridicule props up quickly. In a similar way as Diogenes intended
to “refute” the Eleatic philosophers, who denied the reality of motion, by
walking up and down, Samuel Johnson responded to Berkeley’s objective
idealism by kicking a stone. Not far from such informal “arguments” we find
another one maintaining that idealism cannot be reconciled with science.
However Ernst Mach, a phenomenalist, was quite effective as a scientist.
But there were still more arguments against idealism. Some very interesting
reasoning stems from the opposite side, i.e. from rationalistic metaphysics,
and it is based on Leibnizian optimism. It is to be found in Baumgarten’s
“Metaphysik” (§438): A world without any matter, as it was imagined by
the idealists and solipsists, is no world of maximal content, therefore it is
not one of the most perfect worlds, whereas God had to create the best of
all possible worlds. Consequently God cannot create any world as it was
imagined by the idealists. In the history of philosophy the point of that
argument is the strange fact that Berkeley, according to his own account,
introduced idealism in favour of theology. However, that situation shows
that it was possible to attack idealism also for religious reasons. But it
may be supposed that Euler was not acquainted with that argument, for
nowhere did he refer to the consequence mentioned above and deduced from
optimism, whereas he, too, holds our world to be the best of all possible
worlds.

18Martin Knutzen, Systema causarum efficientium, Editio altera, Lipsiae 1745, p. 72: “...

cum Berckeleio ceteraque Idealistarum, Egoistarum et Pluralistarum cohorte ...”. Jean
Deschamps, Cours abrégé de la philosophie Wolffienne, tome II, Amsterdam, Leipzig

1747, p. 22: “... le célèbre George Berkeley ...”.
19 e.g. in: Briefe an eine deutsche Prinzessin (letter No. 68), in: Leonhard Euler, Opera
omnia, Series III, 11, p. 147.
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In the same way as the other authors 20 who reject idealism Euler had
to concede that he was not equipped with “sufficient weapons” to beat
that philosophy, though he liked to defeat it and never would accept that
doctrine. 21

Euler arranges Wolff’s doctrines, listing eight points in his 76th letter to
a German princess:

(i) Experience shows us all bodies perpetually changing their state;
(ii) Whatever is capable of changing the state of bodies is called force;
(iii) All bodies, therefore, are endowed with a force capable of changing

their state;
(iv) Every body, therefore, is making a continual effort to change;
(v) Now, this force belongs to body, only so far as it contains matter;
(vi) It is therefore a property of matter to be continually changing its own

state;
(vii) Matter is a compound of a multitude of parts, denominated the ele-

ments of matter; therefore,
(viii) As the compound can have nothing but what is founded in the nature

of its elements, every elementary part must be endowed with the
power of changing its own state.

These elements are simple entities, i.e. monads. Euler accepts the first
two of these propositions, whereas in his view the third proposition contains
some obscurity which leads to the other errors, for the force which changes
the state of a body is always due to another body.

Euler uses this compressed exposition to emphasize the weakness of his
opponents. The rationalistic metaphysicians were of the opinion that total
division of a thing – Euler considered it to be impossible – would neces-
sarily produce indivisible monads, which would even be unextended. That
opinion was not considered to be an empirical result, rather it seemed to be
urged by pure reason. It was held that a monad had no extension, but that
its intension was more than nothing, and that it owns some states (actions,
perceptions). In contrast Euler denies that there could exist anything with-
out extension “in the world,” and moreover that an extended thing (body)
could thereby be constituted. In a letter to Goldbach (23 June/4 July 1747)
and in the Letters to a German Princess (No. 123 ff.) Euler remarks that
he considers infinite divisibility to be inconsistent with the idea of total
division. Since he refuses to accept the distinction between substances and
appearances based on them, which was an important point in monadol-
ogy, he is dogmatically at cross-purposes with the dogmatists by his taking
the concept of divisibility to be entailed in the concept of extension and

20 e.g. Diderot, Beattie, Lenin.
21Letter [note 19] No. 97.
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by his declaring the unextended to be nothing. Consequently Euler thinks
that the spontaneous change of state inherent in the monads contradicts
the law of inertia, for he cannot recognize that the law of inertia is valid
only with regard to bodies, i.e. to complexes of monads, but never for a
single monad. As a mathematician he should have been aware of the fact
that qualities of a complex of monads may differ from the qualities of its
elements, and he did know that the Wolffians never doubted the law of
inertia, but on the contrary they considered it to be the most important
law of nature. 22

Euler feels provoked to poke fun at the idea of pre-established harmony:
If the harmony between his body and his soul ended, he could accept any
other body, even one of, say, a rhinoceros. 23 He contends that such a
result would not be allowed by Leibnizian optimism. Once again, though a
vagueness of the Leibnizian-Wolffian philosophy is revealed, for it is shown
that, according to monadology, the body is superfluous. Of course, Euler is
not very interested in this consequence, because he adheres to the reality
of the bodies and to the mutual susceptibility of body and mind. One of
his reasons for this conviction is made obvious in the letters No. 92 and No.
93: the nobility of mind. By the same passages it is plain to what extent
he considers the nobility of mind, which consists primarily in freedom, to
be threatened by the Wolffians. In his view it seemed to be unbelievable
that his soul was nothing but an entity similar to the last particles of a
body. This criticism is remarkable, because it is founded on interpreting
his opponents in a materialistic way, whereas in the forgoing letter No. 76
they had been reproached with spiritualizing the body.

Leibniz and the Wolffians taught that the monads “have no windows,”
and that by the creation of monads all ideas within them were determined.
The concept of pre-established harmony was invented to guarantee the con-
cordance between these processes, but it is not needed, if the idea of missing
windows is not consistently sustained. To rationalists it seemed unaccept-
able to make the soul dependent on the body by submitting the mind to
a natural influence (influxus) of the body, 24 whereas they taught strict
determinism with regard to the mental aspect of our actions. This deter-
minism seemed to corrupt responsibility and morality. It is reported that
the Prussian king’s concern about the demoralizing effect of determinism
was one of the reasons for banishing Wolff. 25 Euler seems to have been

22Cf. e.g. Deschamps, loc. cit. [note 18], tome I, 1743, pp. 274, 315-317.
23Letter [note 19] No. 83.
24Christian Wolff, Vernuenfftige Gedancken von Gott, der Welt und der Seele des Men-
schen, Preface to 2nd ed., quoted from the 8th ed., Halle 1741.
25Letter [note 19] No. 84.
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moved by the same concern. Probably it was one of the reasons for him to
refuse mechanistic materialism, which on the one hand seemed to threaten
the existence of God, who was thought to be nothing but mind, and which
on the other hand could corrupt the freedom of an acting human being.
The postulates of practical reason make materialism unacceptable to Euler.
Afterwards Kant, in the dialectic of Critique of Pure Reason, endeavoured
to prove that it is possible to accept the totally determined causality of
nature together with freedom (in the realms of Noumena). 26 Not only in
the 18th century was Euler’s dictum valid: 27 “The chapter on freedom
is a stumbling-block in philosophy.” He struggled for his dualism mainly
against mixing the areas of self-determination (freedom of thinking) and
external determination (necessitation by external forces). “I am the ruler
of my thoughts.”

Defending psychoanalysis Sigmund Freud declared that the resistance to
new doctrines originates from general human narcissism, for an effect of
psychoanalysis is that man is no longer “the ruler in the house” (of his
soul).

Euler expresses this narcissism with very similar words. Postulating free-
dom being an essential quality of mind – just as postulating extension,
inertia, and impenetrability being essential qualities of body – he was con-
vinced of escaping from the problem of theodicy, for he thought that God
himself had withdrawn the souls from his omnipotence, which is proved by
the fact that they are able to sin. Obviously Euler does not recognize that
the problem of theodicy consists in the incompatibility of omnipotence and
sin. He considers the freedom of mind and consequently its responsibility
with respect to sin to be indispensable, but he restricts the omnipotence
of God.

Against the deterministic objections from theology and philosophy Euler
defends the freedom of man by referring to the human ability of immediate
sensation. He writes about a hypothetical journey to Magdeburg: “I feel
it well enough that I am not forced to take it, and it is always under my
control to take it or to stay at Berlin. But a pushed body adheres to a
certain force necessarily, and you cannot say that it neither does nor that
it does not enjoin that obedience.” 28 “The mind is the ruler (of action).”
Euler maintains that a person may err with respect to the question of
whether another person is free or not free, but it would be impossible to

26 Immanuel Kant, Critique of Pure Reason, A 558/B 586.
27Letter [note 19] No. 84.
28Letter [note 19] No. 85: “Ich fühle aber sehr wohl, dass ich nicht dazu gezwungen bin,
und ich beherrsche es immer, diese Reise zu unternehmen oder in Berlin zu bleiben. Ein
gestossener Körper folgt einer gewissen Kraft aber mit Notwendigkeit, und man kann
nicht sagen, dass er diesen Gehorsam gebietet oder auch nicht.”
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have any doubt about one’s own freedom. “He who feels free is free, indeed.”
An engine which considered itself being free would have some feeling and
therefore it would have a soul, necessarily entailing freedom. God’s foresight
would not be contradictory to freedom, for, it is said, an action is not caused
by foresight, but, on the contrary, the action is foreseen because it happens.
The human mind is able to begin a series of events, but the series itself is
an effect of God’s order of creation. Thus God remains, strictly speaking,
the ruler of all events in our world. Obviously Euler did not realize that
he did not resolve but only presented the problem. He joins in the chorus
adoring the creator’s infinite perfection, whose work infinitely exceeds our
understanding. Concerning the question about the origin of evil in the world
Euler argues rationally in some cases, but in the end he resorts to the idea
of an inconceivable mystery which goes beyond our intelligence but makes
it possible for God’s grace and creating power to be compatible with evil
and sin in the world. 29 Indeed, freedom is restricted with regard to the
realisation of action, but Euler holds that freedom of will is an essential
quality of mind, which cannot be removed even by God: “Man remains at
all time the ruler of volition.” 30 Euler claims to be a defender of God’s
omnipotence and of human freedom. The mind is able to have an effect on
a body, otherwise even God could not do that, and such a situation would
encourage atheism.

Euler turns away from the monistic philosophy in his time and from
monadology, and he returns to the Cartesian dualism of body and soul,
but he does not accept the Cartesian concept of body. He refuses also the
opinion that animals are mere automatic machines, and he reproaches the
Wolffians for considering human beings in the same way. In letter No. 81
Euler explains “There is a special place in the brain where all the nerves
come to an end, and just there the soul is seated or there it feels all its
impressions which are effected on it by the senses.” In letter No. 92 he says
that an hour is not bound to a place. Then he continues: “Similarly I may
say that my soul is neither in my head nor outside my head nor elsewhere,
... Therefore my soul does not exist at any place, but it operates at a certain
place ...” In letter No. 83 he tries to ridicule pre-established harmony by
the fiction of a connection between his soul and the body of a rhinoceros in
Africa, but in letter No. 93 he argues for a stationary soul, and he thinks
it is possible that immediately after death God could connect his soul with
a body on the moon.

Since Euler returns to dualism, to him those problems that provoked
the monistic philosophy return, along with the system of pre-established

29Letter [note 19] No. 89.
30Letter [note 19] No. 91.
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harmony for either resolving them or avoiding them. He is well acquainted
with these difficulties, and he refers to them in the letters again and again:
If body and mind are based on two completely distinct substances, how
could it be possible that the perceiving soul is able to “assume” something
of the material world? Indeed, sensible perception needs the fulfilment of
some conditions of the body, but nevertheless the picture on the retina is
not yet the object of the seeing soul. The problem of the provenance of
sensation, which is a hard problem in every theory of knowledge, especially
in the Kantian theory, is treated in letter No. 82. Euler compares the soul
with a man sitting in a dark room and seeing the things outside the room
via a camera obscura. Similarly the soul is considering the ends of the
nerves and receiving the impressions of the sense organs. “Though it is
absolutely unknown to us what the similarity is between the impressions
on the ends of nerves and the objects causing those impressions, these
impressions are appropriate to deliver to us a very adequate idea of the
objects.” Descartes had at least endeavoured to argue for the adequacy
of that idea, but in Euler’s writings it is merely claimed. Obviously he
does not advance to the Kantian question of whether there could be any
similarity at all. For Euler it is certain in virtue of God’s omnipotence that
a connection between body and mind can exist and, indeed, does exist.
The second principal question in the theory of knowledge is “How are they
connected?” This question was treated by the atomists of antiquity and it
is still discussed by modern brain scientists. Euler’s answer is succinct: It
is a great mystery (grand mystère)! 31 Euler is famous for his clearness and
distinctness in the foundation of mathematics and sciences, about whose
fundamental explanations Schopenhauer says “... if you hear or read them,
it is as if you exchange a bad telescope for a good one.” 32 Yet here he, of
all scholars, relies on “mystery” concerning the central point of the theory
of knowledge!

At least Lichtenberg was not convinced by Euler’s words, for he wrote
with a critical view to Euler’s Letters: “It seems to me that the concept
of ‘being’ is something taken on credit of our thinking and that there will
be nothing left any more if there are no thinking creatures. Though it
sounds simple and though I would be laughed at for saying it publicly,
nevertheless I think the ability to suppose such an idea is one of the greatest
advantages of the human mind and properly speaking one of its strangest
dispositions.” 33

31Letters [note 19] No. 80 and No. 97.
32Die Welt als Wille und Vorstellung, B. II, chap. 15.
33Loc. cit. [note 1], vol. I, p. 433 f.
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In all honesty Euler does not endeavour to suppress the gap between
body and mind, on the contrary he deliberately displays it, whereof Kant
speaks highly. 34 By separating the areas some of the scholastic questions
disappear, e.g. the question about the place and the hour of the Last Judge-
ment, and whether an angel could occupy different places at the same time,
or when God created the world. 35 Questions of such kind are based on an
improper boundary crossing, and therefore they are absurd.

In addition to the reasons which Euler took from the theory of knowledge
and from ethics for his aversion to the Wolffians he took some others from
the philosophy of science. In the Reflexions sur l’espace et le tems 36 he
starts by saying that the principles of mechanics were established so firmly
that any philosophy of nature must be founded on them. Thus the rela-
tionship of service between physics and philosophy is reversed. Furthermore
Euler recognizes the special position which is occupied by space and time
in the system of the principal concepts within the theory of knowledge:
We get the idea of space neither by sensation nor by abstraction, since a
place in space is preserved even if we remove the body completely. We get
the ideas of space and place only by virtue of (transcendental) reflexion. 37

Thus Euler reached one point of Kant’s transcendental aesthetics, i.e. the
empirical reality of space as one of the conditions of possible experience,
but he did not arrive at the other point, i.e. transcendental ideality.

In the Letters to a German Princess Euler endeavoured to reduce the
law of inertia to the theorem of sufficient reason, supposing the hypothesis
that only one body exists and that this body is at rest. For that body there
would be no reason to move in one direction rather than in another one,

34De mundi sensibilis atque intelligibilis forma et principiis (1770), §§27 and 30, note.-
Edmund Hoppe (Die Philosophie Leonhard Eulers, Gotha 1904, p. 166) wrote that
Euler’s name was not mentioned in Kant’s works, but nowadays we know (primarily

from H. E. Timerding, Kant und Euler, Kant-Studien 23, 1919, p. 18-64) more about
the relationship between Kant and Euler, especially we know Kant’s explicit and implicit
references to Euler, which all of them are assenting. Meanwhile the covering letter from

Kant to Euler attached to the book entitled Die wahre Schaetzung der lebendigen Kraefte
is available (in Kroeber’s edition of Briefe an eine deutsche Prinzessin [cf. note 5]). An
old but very detailed description of Euler’s philosophy is given in: Ernst Cassirer, Das

Erkenntnisproblem, 3rd edition 1922, Reprint Darmstadt 1971, vol. II, p. 472-485 and
501-505.
35 Indeed such questions were discussed, e. g. Albertus Magnus, Ausgewählte Texte, ed.

A. Fries, Darmstadt 1981, p. 36.
36Written 1748, published 1750, in: Leonhard Euler, Opera omnia, Series III, vol. 2.
37Euler holds that a person denying the fact that we are able to get ideas only in virtue
of “reflexion” would deceive (tromperoit) oneself. So Kant says the Leibnizian concept

of space comes from a “deception of transcentental reflexion” (Critique of Pure Reason,
A 275 / B 331; cf. also A 26 / B 42).
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therefore it will be at rest until other bodies affect it. 38 This argument is
not only founded on the theorem of sufficient reason but also, implicitly,
on the reality of absolute space, since only on this supposition it is possible
to consider one separated body as a resting body. 39 It seems Euler does
not recognize that it might be possible to prove in the same way that all
things exist everywhere, or nothing exists anywhere, because there is no
reason for its existing (or non-existing) here rather than there.

In any case a validation or a judgement depends on various criteria.
Therefore we will get different images if we consider Euler’s work as a
national achievement 40 or as a preparation for Kant, 41 whether we un-
derstand him as an important stimulator and innovator 42 or as a conserva-
tive thinker adhering to old things, 43 whether we consider him as someone
provoking philosophical discussions 44 or as an apologist for Christianity. 45

Certainly it would be a mistake to try to characterize him by any single
one of these aspects, but we should avoid a distorted picture, e. g. depict
Euler as being a ’materialist’. In spite of Euler’s realism, nowhere is there
recognizable “a really materialistic answer, given by Euler, to the ques-
tion about the relationship between body and mind, between matter and
consciousness” 46 if one reads in his letter No. 80 “that the minds are the
primary part of the world, and that the bodies are introduced to it merely
to serve the minds”. Euler not only had a mind, but he was also one of the
most important spirits in the Eighteenth Century.

38Letters [note 19] No. 71 and No. 72.
39That thought is similar to another one uttered by George Berkeley in De Motu (§58)

to prove the relativity of motion. In this case, it is true, he supposes the existence of a

single body, but he does not suppose at the same time that it is at rest.
40Spiess, loc. cit. [note 3], p. 7 f.
41Timerding, loc. cit. [note 34], p. 18 f.
42Fellmann, loc. cit. [note 17], p. 519.
43A. Schopenhauer, Die Welt als Wille und Vorstellung, vol. I, B. 2, §25.
44Fellmann, loc. cit. [note 17], p. 519.
45Spiess, loc. cit. [note 3], p. 120.
46Kroeber, loc. cit. [note 5].
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Washington, DC
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1. Introduction

Portraits have hundreds of uses and many facets. Portraits provide in-
formation on both the subject of the portrait and the artist. The portraits
of Leonhard Euler (1707-1783) described herein are portraits made during
his lifetime that are known to exist today. Only two of these original works
were made while Euler sat for the artist. The first of these two was made in
1753 by an artist in the early years of his prolific career in portrait paint-
ing. This portrait has two copies made by the artist in 1756. In the second
of the originals, made in 1778, another artist used a technique that could
insure a true recording of Euler’s face, and thus, we have the benefit today
of knowing in as much precision as was available at the time, the likeness
of Euler. In addition, this second portrait was subsequently copied by two
copper engravers during Euler’s lifetime (one of these copies of this portrait
is included here in figure 7). The reproductive prints of the original por-
traits could be used then and now in printed material and, in particular,
were used as covers of journals. The other portrait of Euler included herein,
made in 1737, is an example of a work for which Euler did not sit for the
artist.

A portrait of a famous relative of Euler’s is also included to inform the
reader about Euler’s family. His father-in-law was a portrait painter who
would certainly have made portraits of his own family, but these are not
known now. The portrait of his wife’s grandmother shows the style the
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artist might have used to portray Euler. Two other images of Euler, perhaps
made in his lifetime, are not included. One is a 1768 (?) engraving of the
1756 portrait and one of a medal made in 1781 (?).

The author’s choice of including only portraits of Euler made during
his lifetime is to assure that the likenesses are not only an 18th century
way of looking at people and objects, but also that they help in clarifying
the social attitudes in that century. The artists who created works after
1783 would probably have derived their concepts of Euler from the images
made during his lifetime as well as from information gained from those who
knew Euler, but they would have added their own time periods’ attitude
toward a person of great fame. Many of these later works were commissions
intended to venerate Euler as well as remember him. Posthumous works
include oil paintings, drawings, medals, plaques, busts, and engravings. The
engravings were collected by David Eugene Smith and a set can be seen in
the Rare Book Room at Columbia University.

2. Maria Sibylla Merian

Euler wrote that his mother-in-law, Dorothea Maria (Graff) Merian Hen-
dricks Gsell (1678-1743/5), painted butterflies and flowers. The significance
of this sentence can be understood by noting that Dorothea Maria was
the first woman commissioned by the Academy of Sciences in Petersburg
founded by Peter the Great in 1724. Having learned to paint while trav-
eling in the Dutch colony of Surinam with her mother from 1699 to1701,
Dorothea’s role in the czar’s cabinet of curiosities was to give talks and
arrange exhibits as well as paint butterflies, flowers and birds. She came to
this position following the specific invitation of Peter that she and her hus-
band, Georg Gsell (1673-1740), move to Petersburg the autumn after her
mother died in 1717. Peter had been in Amsterdam at that time to buy art
and other objects for his collection and in so doing utilized the skills of the
Swiss painter and art dealer, Gsell. In the absence of a picture of Euler’s
mother-in-law, an engraving of Dorothea Maria’s mother, Maria Sibylla
Merian, executed no later than 1717 by Jacob Houbraken 1 , is shown here.
This reproductive print is based on a drawing by Gsell, sometime after
1704, when he moved to Amsterdam.

Maria Sibylla Merian, (1647-1717), the grandmother of Euler’s second
wife, was an artist/scientist/business woman/publisher of considerable fame
from the 17th century until today. She lived in Amsterdam after spend-

1 From the collection of the Kunstmuseum in Basel.
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Fig. 1. Maria Sibylla Merian, (1647-1717), Euler’s wife’s grandmother

ing two years studying and recording wildlife in Surinam. Georg and his
two daughters from an earlier marriage boarded in the Merian household.
He became the (second) husband of Merian’s younger daughter Dorothea
Maria (around 1716). After the move to Petersburg, Georg was appointed
court painter and first curator of the Imperial Art Gallery founded in 1720.
As a painter of the Academy of Science, he made drawings for the sci-
entists there. Both he and Dorothea Maria gave art lessons. Portraits he
executed now hang in the Hermitage and the Peter and Paul Cathedral in
Petersburg.

Georg’s portrait of his son-in-law, Isaäc le Long (1683-1762), was also en-
graved by Houbraken, so it can be easily concluded that he made drawings
and perhaps paintings of his wife and his daughter, Catherine Gsell Euler
(?1707-1773), whom Euler married in 1733, as well as of Euler himself.
However none of these is known at this time.
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3. Sokolov’s mezzotint of Euler

Fig. 2. Sokolov’s 1737 mezzotint

Euler, dressed warmly in a bulky wrap over a jacket and an embroidered
vest, is presented full-face in this mezzotint made by Vasilij Sokolov in
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1737. 2 It is unclear exactly how old Euler was at the time he sat for
the portrait in Petersburg as the original 1737 painting by Johann Georg
Brucker is apparently lost. Brucker lived in Petersburg between 1733 and
1737. However, the mezzotint method of reproduction developed in the late
17th century faithfully reproduces both the tone and texture in a picture,
even though in black and white, assuring that the print is very similar to
the original oil, unlike other methods such as engraving.

Euler looks out from the picture apparently seeing with both eyes. The
blindness that removed the sight in his right eye is reported to have taken
place over time but the reason for it is not entirely clear. In his eulogy,
Nicolas Fuss, Euler’s assistant, reported that in 1735 Euler had a high
fever and was near death. He states that the fever caused an abscess and
Euler lost the sight of his right eye. Since this mezzotint is two years after
the fever the viewer is being presented with an image that is incorrect since
both eyes actually look the same. The artist apparently copied the left eye
to draw the right eye, but did not copy the area around the eye.

Sometimes in portraits there is sufficient distinctive information to sug-
gest a cause and an educated guess can be made. By examining the picture
and noticing the heavy dark circle under the right eye and the heavy fold
above the eye where the membrane keeps the fat back a trained ophthalmol-
ogist can offer a 21st century diagnosis even without knowing Euler’s life
history. The abscess, perhaps from a stye, would lead to orbital cellulitis,
secondary to the infection. This would lead to pan-uveitis with retinal de-
tachment and glaucoma, hence to phthisis and enophthalmus. In layman’s
words, the eye would get smaller and smaller and shrink like a raisin. As
shown in later portraits this shrinkage did occur. However, the fact that
Euler lived through this episode meant he was very lucky.

4. Handmann’s Pastel Painting of 1753

This famous portrait of Euler by the Swiss painter Jakob Emanuel Hand-
mann 3 (1718-1781) looks today as it did the day it was created in 1753 4 .
The brightness of the color will remain throughout the life of the painting
because the medium the artist used, pastel, does not fade or soil. Pastel

2 This reproduction is courtesy of Sergey Androsov, Senior Curator, Department of
Western European Art, The State Hermitage Museum. St. Petersburg, Russia.
3 Information on the relation between Euler and Handmann and Handmann’s paintings
is from Thomas Freivogel, Thomas Handmann, 1718-1781: ein Basler Porträtist im
Bern den ausgehenden Rokoko, Murten: Licorne-Verlag, 2002.
4 Kunstmuseum, Basel, Switzerland.
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Fig. 3. Handmann’s Pastel Painting of 1753

is pure pigment, without liquid binder, so it does not crack or blister over
time. However it is fragile because it is chalk and must be covered with
glass so it can not be brushed off. Pastel painting began to be practiced
around 1720. The technique is to stroke hard sticks of dry pigment across
an abrasive paper, embedding the color in the surface. Here, Handmann
handles the sticks delicately in the style of the studios where he had studied
earlier in Paris.

Euler posed with his chest toward the front but with his head turned
over his right shoulder so that his blind right eye is toward the wall in the
picture. Euler’s right eye has shrunken, and in later portraits the shrinkage
is more obvious. He wears an ultramarine blue silk robe with black stripes
and buttons, and wound around his head a loose blue and white silk cloth
(as was the custom since he is not wearing a wig and his head is shaved).

Handmann, an accomplished painter of landscapes and mythological fig-
ures in the rococo style, became a prolific portrait painter of his country’s
citizens with more than 500 works completed in 36 years. These careful
and realistic portraits of so many prominent citizens have aided scientists
in determining the diseases that were common in Switzerland in the 18th
century. After settling in his native land following study in France and Italy,
Handmann made few foreign journeys. It was on his one journey to Berlin
that this picture of Euler was made, one of eleven portraits he painted that
year.
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5. Handmann’s oil painting of 1756

Fig. 4. Handmann’s oil painting of 1756

In this picture Euler is portrayed wearing a bag wig tied with a black
ribbon. This style was customary for fashionable men from the 1660s to
the later 18th century for those who could afford this expensive item of
personal grooming. Wigs required considerable upkeep as well: a barber to
shave the head and to powder the wig, which was replaced or restyled every
year.

Euler sits comfortably in a chair with his left forearm leaning on a desk
holding a book. He wears a housecoat with a flaring collar over a crisp white
jabot. His outstretched middle finger and index finger of his right hand
point to mathematical computations in the open book. His folded little
finger rests on the opposite page where there are mathematical diagrams.

In 1756, using the pastel painting as a model, Handmann made the oil
painting shown 5 in figure 4. In 1756 (?), he painted another larger three-
quarter portrait (figure 5), measuring 142 by 108 cm. Euler did not see
Handmann after the artist’s trip to Berlin in 1753, for Handmann did not
leave Switzerland again and Euler did not return to his native land.

Euler’s head in all three portraits is the same, showing a three-quarter
view of the face with the quarter side turned to the right and the chest to-
ward the surface of the picture. His eye that had become blind earlier is on
the side toward the wall. The two oil portraits show neither any changes
in Euler’s countenance over the three or four years since the pastel was
made nor any further shrinkage of the right eye that would have naturally
occurred. The portraits are different, with a desk and books added to the
oils as well as the inclusion of the sitter’s hands. Thomas Freivogel, Hand-

5 Museum an der Augustinergasse, Basel.
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mann’s biographer, has concluded that Handmann charged double price for
painting hands in a portrait.

6. Handmann’s large oil painting of 1756 (?)

Fig. 5. Handmann’s large oil painting of 1756 (?)

In this large three-quarter portrait, Euler sits erect on the front of a chair
dressed in a long silk robe with wide blue-black stripes over white culottes
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and a white lacey jabot in which the collar is connected with a black tie. 6

His head is in a familiar pose with right eye to the wall, similar to that
in Emmanuel Handmann’s other 1756 portrait because the artist used his
earlier pastel portrait of Euler to make this painting.

In the background on the left is an open bookshelf; there are olive-green
draperies to the right and left. A globe is on the floor on the left behind
the right side of the chair. Euler’s right hand folds loosely over the front
edge of a carved gilded writing table, holding a feather quill pen between
his middle and index finger and apparently keeping a large paper spread
under an open book from falling off the surface. The mathematical writing
in the notebook is sufficiently large to see that it is in Latin. Euler’s left
forearm leans on the surface of the table which holds a silver ink well with
another pen, two standing books, and a golden compass.

In this same year Handmann painted a half portrait of Euler’s eldest
son, Johann Albrecht Euler, age 22. 7 This was also copied from a pastel of
1753, but that picture is not known. Johann is dressed in a similar silk robe
as Euler wears, but with the wide and narrow stripes being of green-blue,
light brown and reddish. He wears a matching house cap, not a wig. In the
background are a bookcase and the same draperies as in the portrait of
Euler. Johann’s left forearm leans on the desk next to an open snuff box.
He holds a book open leafing with his right hand. At the top of the page
the viewer can read LIII of DESSERTA[TIONES] DE NUTRITIONE [S.]
283. This book is by Johann Bernoulli, Euler’s teacher.

7. Darbes’ Painting of 1778

This often copied oil portrait of Euler with his left shoulder toward the
viewer was painted in 1778 by Joseph Friedrich August Darbes (or d’Arbes)
(1747-1810), a so-called Danish artist (born in Germany), who traveled
widely painting portraits in oil, then pastel, and finally silver-point. 8 An
oval frame around a bust without hands is the common format in his fin-
ished work. Here, Euler, pictured at age 71, no longer wears the formal
clothes shown in the earlier portraits. His large hat and the fur collar on
the coat were intended to keep the sitter warm.

The portrait records Euler’s face and general appearance accurately. The
usual portraiture technique of this artist was one of frankness. Wisps of gray

6 Deutsches Museum, Munich.
7 Private Collection.
8 There are two portraits by Darbes, one at the Tretyakov Gallery in Moscow and the
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Fig. 6. Darbes’ Painting of 1778

hair straggle down the side of Euler’s neck. His forehead is creased and his
cheeks and jowls are pulled down by gravity. There is deep thoughtfulness
in his countenance. In the familiar pose with his blind right eye to the wall,
Euler’s left eye is shown but it is not a seeing eye. That eye was operated
on for a cataract in 1772 but the follow-up treatment was not successful
in keeping his vision. The viewer can be quite certain this is what Euler
looked like in 1778.

Darbes studied in Copenhagen where he lived as a young boy and then
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Fig. 7. Kütner’s 1780 print, based on Darbes’ 1778 painting, which Kütner himself
commissioned.

moved to St. Petersburg in 1768, studying with Vigilius Erichser whose
sharp focused style strongly influenced him. Before returning to St. Pe-
tersburg in 1773, he traveled in Germany, France and Poland. His earliest
known work is dated 1774, a three-quarter portrait of Katherine II (Schloss
Fredensborg). He continued to paint many portraits of royalty until his style
went out of fashion in about 1790.

It was reported by J. G. Schadow in 1849 that Darbes, known for his
friendly and jovial disposition, used a glass pane when painting in order
to achieve the great likeness of his models. If he used this technique, he
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would be following the perspective method of Leonardo da Vinci where the
artist’s head does not move as he paints on a pane between his eye and the
sitter.

8. Further Study

Since the attribution by G. B. Andreeva that the Moscow portrait was
of Euler and was signed by Darbes was only made in 1984, those who are
interested in how Euler actually looked can expect more portraits to ap-
pear in the future. Although numerous portraits were reported by Gustav
Eneström in 1906 in Bibliotheca Mathematica, the majority of those listed
were not made in Euler’s lifetime. The changing styles of the various times
of those made posthumously give a distinctively different impression of his
profile and full face. A different model may have been used as the repro-
ductive prints do not appear to have been widespread. These too can be
studied to determine the changing perspective on a famous mathemati-
cian of both the artists and those who commissioned the artists. However,
the reproductive prints by the excellent copper engravers Samuel Gottleib
Kütner 9 (1747-1828) in 1780 and C. Darchow (active from 1782 to 1796)
in 1782 of the Darbes portrait can be considered timely likenesses of Euler.

9 The reproduction of Kütner’s print is courtesy of Jennifer Leer, Rare Book Librarian,
Columbia University.
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Introduction

As is well-known, the treatment of astronomy in Newton’s Principia
is, for the most part, geometrical in character. On occasion Newton has
recourse to results derived not geometrically but by what we would call
‘the calculus’ - without, however, explaining his procedures. Cases of such
results imported without explication occur, for instance, in his treatment
of the ‘Variation,’ 1 and in the integration in Corollary I of Proposition 40
of Book I. Newton no doubt believed that the geometrical presentation was
appropriate for making his main ideas accessible to likely readers among
his contemporaries. But this preference for geometrical formulations did
not arise solely from a concern for his readers.

In the 1660s Newton had engaged passionately in algebraic explorations.
By 1675 this early interest had cooled; in John Collins’ phrase, “he and
Dr. Barrow &c beginning to thinke mathall Speculations at least [last?]
nice and dry, if not somewhat barren . . . ” 2 Later in the decade, attack-
ing Descartes’ treatment of solid loci, Newton wrote: “their [the Ancients’]

1 See my ”Newton on the Moon’s Variation and Apsidal Motion . . . ,” in Isaac Newton’s

Natural Philosophy, eds. Jed Z. Buchwald and I. Bernard Cohen. Cambridge, MA: The
MIT Press, 2001, p.139ff.
2 Correspondence of Isaac Newton, 1:356.
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method is more elegant by far than the Cartesian one. For he [Descartes]
achieved the result by an algebraic calculus which, when transposed into
words (following the practice of the Ancients in their writings) would prove
to be so tedious and entangled as to provoke nausea, nor might it be un-
derstood.” 3 In his Geometria Curvilinea (written ca.1680), Newton allows
that analysis may be appropriate to some problems, synthesis or geome-
try to others, but his strictures against excessive algebraic complication
remain strong: “Men of recent times, eager to add to the discoveries of the
Ancients, have united the arithmetic of variables with geometry. Benefiting
from that, progress has been broad and far-reaching if your eye is on the
profuseness of output, but the advance is less of a blessing if you look at
the complexity of the conclusions. For these computations, progressing by
means of arithmetical operations alone, very often express in an intolera-
bly roundabout way quantities which in geometry were designated by the
drawing of a single line.” 4 Not always or automatically, Newton is say-
ing here, does a symbolic analysis provide the most appropriate means of
gaining or conveying insight.

Amongst mathematicians on the Continent, in contrast, the idea of de-
ducing the consequences of Newton’s inverse-square law by means of the
Leibnizian calculus would become an intensely pursued project. It was Leib-
niz’s claim to have constituted out of the new infinitesimal calculus “an
algorithm, whereby the imagination would be freed from the perpetual at-
tention to figures.” 5 Johann Bernoulli and his pupil Leonhard Euler would
be foremost among those extending and clarifying the potentialities of the
Leibnizian calculus. But already during the first decade of the 18th century
the mathematician Pierre Varignon (1654-1722) had derived a number of
theorems about central forces, some of them recognizably identical with
Newton’s results. For instance, assuming a constant force f acting in the
direction of motion, he found that

∫
fdx =

∫
0

vdv = 1
2v

2, where dx is the

element of distance and v the final velocity attained when the initial veloc-
ity is zero; this is a case of Newton’s proposition I.39. But when Leibniz
asked Varignon to articulate the three-body problem (which Newton treats
in proposition I.66) in Leibnizian style, Varignon succeeded only for the
case in which the perturbing body is fixed in position. What he lacked –
probably without recognizing the fact – was a developed calculus of the
trigonometric functions, considered as functions of angles which could in
turn be functions of time. The rules of this calculus – for instance

3 Mathematical Papers of Isaac Newton 4:277.
4 Mathematical Papers of Isaac Newton, 4:421.
5 G.W. Leibniz, Mathematische Schrifte, ed. C. I. Gerhardt (Hildesheim: Olms, 1971),
5:393.
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d

dx
sinx = cosx,

∫
cosx dx = sinx,

– had been known to Newton. But nowhere did Newton set them out ex-
plicitly. Roger Cotes expressed some of them in a work that was published
posthumously (Harmonia mensurarum, 1722), but his book was not widely
known.

As Victor J. Katz has shown, 6 it was Euler who, among the mathemati-
cians on the Continent, first became fluent in the calculus of trigonometric
functions; and first laid out the rules of this calculus systematically. He
did this in papers appearing from 1739 onwards. In 1736 he had completed
his Mechanica, a work devoted to the algebraic formulation and solution
of problems in Newtonian mechanics, but in that work the problem of
planetary motion and the three-body problem are not broached. His ap-
preciation of the importance of trigonometric functions came a few years
later, when he undertook to solve certain differential equations, in particu-
lar linear differential equations with constant coefficients. The fact, obvious
in hindsight, that the calculus of trigonometric functions is a key to the
understanding of periodic phenomena, including the motions of planets and
satellites, seems not to have been obvious to Continental mathematicians
before Euler made it so. Euler was the first to embark on the formulation
and solution of the perturbational problem - the key problem that had to
be formulated and solved if Newton’s inverse-square law was to be securely
established as the basis for planetary and lunar theory.

1. Euler’s first lunar tables, 1746

With the calculus of trigonometric functions in hand, Euler set about
deriving the inequalities of the Moon; and from the inequalities so derived
he constructed a set of lunar tables. These were published in his Opuscula
varii argumenti in 1746. In the preface to the Opuscula he speaks of these
tables as follows:

I come now to my lunar tables. Their nature and basis of construction
would require too much space to explain. I therefore only point out that
they are derived from the theory of attraction which Newton with such
happy success introduced into astronomy. Although it is claimed of sev-
eral lunar tables that they are based on this theory, I dare to assert that
the calculations to which this theory leads are so intricate, that such ta-
bles must be considered to differ greatly from the theory. Nor do I claim

6 Victor J. Katz, ”The Calculus of the Trigonometric Functions,” Historia Mathematica,
14 (1987), 311-324.
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that I have included in these tables all the inequalities of motion which
the theory implies. But I give all those equations which are detectable
in observations and are above 1/2 arc-minute. For I was able to carry the
calculation to the point of identifying the arguments of the individual in-
equalities, and I determined the true quantity of many of the equations
by the theory alone, but some I was forced to determine by observations.
We will return later to the correction of theoretically derived terms by

comparison with observation – a practice which stems from Euler, and
became a standard procedure in the lunar theory. The trust in Newton’s
inverse-square law that Euler expresses here – and also in a number of other
memoirs dating from before 1747 – was to crumble in the latter year.

2. Mutual perturbations of Jupiter and Saturn, 1748

Euler’s first attempt to cope with planetary perturbations occurred in
response to the Paris Academy’s prize contest for 1748. The prize was
offered for “a theory of Jupiter and Saturn explicating the inequalities that
these planets appear to cause in each other’s motions, especially about
the time of their conjunction.” Newton in his Principia had written of “a
perturbation of the orbit of Saturn in every conjunction of this planet so
sensible that astronomers have been at a loss concerning it.” 7

This formulation can mislead: the astronomers were not finding Saturn to
be deviating from Keplerian theory more markedly at the time of conjunc-
tion than at other times. To be sure, in the time just before, during, and
after conjunction, Saturn and Jupiter exchange much more energy than at
other times. Prior to conjunction, Jupiter’s gravitational attraction deceler-
ates Saturn, subtracting energy from that planet’s forward motion, causing
it to fall into a lower orbit with – perhaps surprisingly to the uninitiated – a
more rapid mean motion. After conjunction, the effect is just the opposite.
If the effect before conjunction were just equal to the effect after conjunc-
tion, the net effect of the interactions before and after conjunction would be
nil. But it is not quite so, because the two orbits are not concentric. If the
conjunction occurs in a part of the zodiac where the two orbits are coming
closer together, the effect after conjunction (because the two planets are
then closer together) is greater than the effect before conjunction, hence the
net effect is that Saturn rises into a higher orbit with a slower mean motion.
If the conjunction occurs in a part of the zodiac where the two orbits are
diverging, the net effect is that Saturn falls into a lower orbit with a more

7 Newton, Principia, Book III, Proposition 13.
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rapid mean motion. But these effects – a net slight slowing or slight speed-
ing up – are not immediately discernible; they make themselves known only
over time. Jupiter is affected in the way opposite to Saturn, so that when
Saturn is speeding up, Jupiter is slowing down, and vice versa. Kepler in
his Rudolphine Tables (1627) had determined Jupiter’s and Saturn’s mean
motions by a comparison of observations reported by Ptolemy ca. 150 C.E.
and by Tycho Brahe ca. 1600 C.E. During the 17th and 18th centuries as-
tronomers found Jupiter moving on average more rapidly, and Saturn more
slowly, than the Rudolphine numbers predicted. Laplace’s analysis in 1785
at length showed that Saturn falls nearly 49 arc-minutes behind its long-
term mean rate of motion, and then gets just as much ahead, the complete
cycle from mean rate back to mean rate taking about 900 years. This is the
largest perturbation in the solar system. During the same period Jupiter
gets ahead of its overall mean rate of motion by about 20 arc-minutes, and
then falls behind by the same amount before returning to its mean rate
again. On this main oscillation, smaller oscillations are superimposed. 8

Astrologers were familiar with a 900 year periodicity as the time required
for the conjunction to return to the same sign in the zodiac, but Laplace
had to rediscover the period of ‘the great inequality’ from the algebra of
the problem, which he managed to do only in 1785. For Euler, who died in
1783, the problem of Jupiter and Saturn would remain an unsolved enigma,
disturbing his confidence in the inverse-square law. 9

In response to the Paris Academy’s announcement of its prize contest for
1748, Euler wrote two memoirs, both completed in mid-1747. In the first,
which Euler presented to the Berlin Academy, he derived the differential
equations for the problem of perturbation. 10 The second, a derivation of
the perturbations of Saturn due to Jupiter, was submitted in the contest
and awarded the prize, despite Euler’s failure to account for the apparent
slowing down of Saturn or speeding up of Jupiter. 11 The excellence of

8 For a more complete explanation, see my article, “The Great Inequality of Jupiter and
Saturn: from Kepler to Laplace,” Archive for History of Exact Sciences, Vol.33 (1985),

pp.24-36.
9 Euler would have been baffled by our invocation, in this paragraph, of the word ”en-
ergy” in its 19th-century meaning. However, he could have understood the conclusions
we have drawn on the basis of Kepler’s third law. According to this law, the periods
of the planets are as the 3/2 power of their mean solar distances. If a single planet is

changing its mean solar distance, its period must also change in accordance with Kepler’s

law. The planet’s period is inversely as its mean motion.
10 [E112] “Recherches sur le movement des corps céléstes en générale,” Mémoires de
l’Académie des Sciences de Berlin 3 (1747), 93-143; Leonhard Euler, Opera omnia,

ser.2, 25, 1-44.
11 [E120] “Recherches sur la question des inégalités du mouvement de Saturne et de
Jupiter, sujet propose pour le prix de l’année 1748, par l’Académie Royale des Sciences
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Euler’s prize essay lay in the innovative methods he introduced for coping
with planetary perturbations.

In the introductory sections of both papers, Euler reported that he had
come to doubt the strict accuracy of Newton’s inverse-square law, finding
departures from it not only in the motions of Jupiter and Saturn, but also
in the Moon’s motion. It would be eventually necessary, he believed, to
imagine new hypotheses and deduce their consequences. But in his prize
paper he assumed the strict accuracy of the inverse-square law, and limited
his aim to the deduction of the perturbations of Saturn due to Jupiter
following from this assumption.

Euler formulated the algebraic problem with care. Only one of the as-
sumptions he made would he later repudiate: taking the orbital plane of
Jupiter as the reference plane; he imagined Jupiter’s orbit as remaining
unperturbed; but as he later realized (in a second prize paper of 1752 on
the same subject 12 ), whenever Jupiter perturbs Saturn, Saturn perturbs
Jupiter, and these perturbations are best addressed as simultaneous and
reciprocal. The tables of Jacques Cassini (Paris, 1740) put the inclination
of the orbit of Saturn to Jupiter’s orbital plane at about 1◦15′, an angle
Euler initially thought might almost be ignored, but he took account of it
nonetheless, and so made an important discovery, as we shall see.

In imitation of the astronomers, Euler used polar coordinates. He did not
have the helpful device, first introduced by Lagrange, of indicial notation,
but gave one letter to the radius vector of Jupiter, and an unrelated letter
to the radius vector of Saturn, and similarly for other corresponding vari-
ables and constants. For our own and the reader’s convenience, we shall use
indicial notation here, representing Jupiter’s radius vector and heliocentric
longitude by the variables r, ϕ, and Saturn’s polar coordinates by r′,ϕ′, z′.
(The variable r′, we note, is the curtate radius vector – the component of
Saturn’s radius vector lying in the plane of reference r, ϕ.) If we designate
the components of force affecting Saturn’s acceleration in the three coor-
dinate directions as P , Q, R – namely P along r′, Q at right angles to r′

in the plane of reference, and R at right angles to the plane of reference –
Euler’s three equations of motion for Saturn take the form

de Paris,” Pièce qui a remporté le prix de l’Académie Royale des Sciences en 1748 sur
les inégalités du mouvement de Saturne et de Jupiter (Paris, 1749); Leonhard Euler,

Opera omnia, ser.2, 25, 45-157.
12 [E384] “Recherches sur les irregularités du movement de Jupiter et de Saturne. Pièce
qui a remporté le Prix proposé par l’Académie des Sciences, pour l’année 1752,” in
Recueil des pieces qui ont remporté les prix de l’Académie des Sciences, t.VII (1751-
1661), Paris, 1769. Leonhard Euler, Opera omnia, ser.2, 26.
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d2r′ − r′dϕ′2 = −1
2
Pdt2 (1)

2dr′dϕ′ + r′d2ϕ′ = −1
2
Qdt2 (2)

d2z′ = −1
2
Rdt2 (3)

The factor 1/2 on the right derives from Euler’s writing the law of free fall
as ν2 = h rather than ν2 = 2gh, and taking the acceleration of free fall on
the Earth’s surface as the unit for measuring accelerative forces. However,
he proceeded at once to substitute for 1/2dt2 the expression a3 (dM)2 /S,
obtained from an equation like (1) applied to an imaginary Jupiter moving
in a circle with radius equal to Jupiter’s mean solar distance a, and with
uniform angular motion M equal to Jupiter’s mean longitudinal rate of
motion, S being the mass of the Sun.

Euler included in P , Q, and R, besides the forces actually acting on
Saturn, the components in the three coordinate directions of forces on the
Sun from Jupiter and Saturn, understood as transferred to Saturn with
directions reversed, in order that Saturn’s motions might be referred to
the Sun considered as at rest. (A geometer as acute as Daniel Bernoulli
wanted to assume the Sun at rest, but did not see how to make it so in
his theory. 13 ) If we take p, p′ as the masses of Jupiter and Saturn, ψ′ as
the latitude of Saturn above Jupiter’s orbital plane, ω = ϕ − ϕ′ as the
difference in heliocentric longitude between Jupiter and Saturn, and v as
the linear distance between Jupiter and Saturn, Euler’s expressions for P ,
Q, and R will be:

P =
(S + p′) cos3 ψ′

r′2
+
pr′

v3
+
p cosω
r2

− pr cosω
v3

,

Q=
p sinω
r2

− pr sinω
v3

,

R=
(S + p′) cos2 ψ′ sinψ′

r′2
+
pr′ tanψ′

v3
.

Finally, dividing through by S, and giving special symbols to p/S and p′/S
(we here use µ, µ′,) Euler obtained for his equations (1) - (3) expressions
of the form

d2r′ − r′ (dϕ′)2 = −a3 (dM)2


(1 + µ′) cos3 ψ′

r′2
+
µr′

v3
µ cosω
r2

− µr cosω
v3

 (4)

13See Fuss, Correspondance Mathématique et Physique de quelques célèbres Géometres
du XVIIIième Siècle, T.II (St. Petersburg, 1843, Lettre XLVIII, pp.622-625.
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2dr′dϕ′ + r′d2ϕ′ = −µa3 (dM)2 sinω
{

1
r2
− r

v3

}
(5)

d2z′ = −a3 (dM)2
{

(1 + µ′) cos2 ψ′ sinψ′

r′2
+
µr′ tanψ′

v3

}
. (6)

Equation (6), however, Euler chose to transform. Astronomers were in
the habit of using two parameters to specify the position of the orbital
plane of a planet: the longitude of the ascending node of the orbit, where it
rises to the north of the Ecliptic; and the inclination of the orbital plane to
the Ecliptic. Since the orbital plane also passes through the center of the
Sun, these parameters fix the orientation of the plane unambiguously. But
in Euler’s essay the plane of reference was the r − ϕ plane. Given a force
R on Saturn at right angles to the r − ϕ plane, the resulting variations in
latitude are reflected in variations in the node of Saturn on the r−ϕ plane,
and in the inclination of Saturn’s orbital plane to the r−ϕ plane; we label
these two parameters π′ and ρ′. At any moment,

z′ = r′ sin (ϕ′ − π′) tan ρ′

Since the orbital plane of Saturn is almost immobile, Euler wrote

dz′ = dr′ sin (ϕ′ − π′) tan ρ′ + r′dϕ′ cos (ϕ′ − π′) tan ρ′,

which assumes that π′ and ρ′ are invariable. But because of perturbation,
the parameters π′ and ρ′ are in fact variable, and he therefore also wrote

dz′ = dr′ sin (ϕ′ − π′) tan ρ′ + r′ (dϕ′ − dπ′) cos (ϕ′ − π′) tan ρ′

+
r′dρ′ sin (ϕ′ − π′)

cos2 ρ′
.

Defying logic, Euler took these two incompatible equations for dz′ as si-
multaneously true; the first reflecting the near-invariability of π′ and ρ′

during the time dt in which the planet moves through the small distance[
(dr′)2 + (r′dϕ′)2

]1/2

; the second reflecting the slow changes that π′ and
ρ′ undergo because of perturbation. By eliminating dz′ between the two
equations, he obtained an expression for dρ′:

dρ′ =
dπ′ sin ρ′ cos ρ′

tan (ϕ′ − π′)
.

Substituting in (3) his expression for R and an expression for d2z′ taking
account of the variations dπ′ and dρ′ as well as dr′ and dϕ′, and making
all possible reductions, he was able to extract two first-order equations for
dπ′ and dρ′:
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dπ′ =
µa3 (dM)2 sin (ϕ′ − π′) sin (ω − π′)

r′dϕ′

{
1
r2
− r

v3

}
(7)

d (ln tan ρ′) =
µa3 (dM)2 cos (ϕ′ − π′) sin (ω − π′)

r′dϕ′

{
1
r2
− r

v3

}
. (8)

Equations (7) and (8) represent the first beginnings of the analytical method
known as “the variation of orbital elements.” Euler himself undertook to
develop it further, extending it to the changes in other orbital elements; 14

but it would receive its classical formulation from Lagrange, who, starting
from the position of Euler’s prize memoir of 1748, showed how the varia-
tions of the eccentricity and aphelion could be determined in a way exactly
parallel to Euler’s determination of the variations of the node and tangent
of the inclination, then went on to apply the idea to the remaining two
orbital elements, the mean motion and epoch.

The solution of equations (4), (5), (7), and (8) would be straightforward
were it not for the quantity v−3. The distance v between Jupiter and Saturn
changes by a factor which can be as large as 3.418 as Jupiter moves from
conjunction with Saturn to opposition; hence v−3 can change by a factor
as large as (3.418)3 = 39.932. How to express this variable factor in such a
way that the terms involving it can be integrated?

Every term in which v−3 occurs is multiplied by the small factor µ, which
Newton put at 1/1067. Euler therefore believed it sufficient to express v−3

in terms of the mean distances of Jupiter and Saturn, namely a and a′:

v−3 =
[
a2 + a′2 − 2aa′ cosω

]−3/2
.

By substituting α = a/a′ and g = 2α/(1 + α2), Euler obtained

v−3 = a′−3
(
1 + α2

)−3/2
(1− g cosω)−3/2

.

His concern thus became that of finding a rational approximation to (1 −
g cosω)−3/2 or more generally, (1− g cosω)−s. An ordinary Taylor expan-

14Euler’s contributions to the method appeared in his [E384] Recherches sur les ir-

regularities du movement de Jupiter et de Saturne. Pièce qui a remporté le Prix pro-
pose par l’Académie des Sciences. T.VII (1751-1761), Paris, 1769; in the appendix to

his [E187] Theoria motus Lunae exhibens omnes eius inaequalitates, etc. Berlin: Im-
pensis Academiae Scientiarum Petropolitanae, 1753; in his [E232] “De motu corporum

coelestium a viribus quibuscunque perturbato,” in Novi commentarii Academiae Scien-

tiarum Imperialis Petropolitanae, t.IV (1752-1753), pp.161-196, Leonhard Euler Opera
omnia ser. II, 23; and in his [E414] “Investigatio perturbationum quibus planetarum

motus ob actionem eorum mutuam afficiuntur,” which won the Paris Academy prize

for 1756; see Recueil des pièces qui ont remporté les prix de l’Académie des Sciences,
t.VIII, p. 138.
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sion is unsatisfactory because, for Jupiter and Saturn, g = 0.8404, and the
resulting Taylor series converges too slowly for practical use; moreover, the
powers of cos ω in a Taylor series have to be transformed before terms in
the series can be integrated. Euler therefore sought to obtain a series of the
easily integrable form

q = A+B cosω + C cos 2ω +D cos 3ω + . . . (9)

He had introduced such a trigonometric series a few years earlier in a
different context; in astronomy it will henceforth play a crucial role.

To obtain the coefficients of (9), Euler carried out a logarithmic differ-
entiation:

dq

dω
(1− g cosω) + sgq sinω = 0.

Into this equation he substituted the values of q and dq/dω, then used
trigonometric identities to reduce the products sinnω× cosω and cosnω×
sinω to sums and differences of sines and cosines. He was thus able to
show that the coefficients after the first two are given in terms of the two
preceding coefficients, for instance,

C =
2B − 2sgA
(2− s) g

.

To obtain A and B he proceeded by approximation, using among other
devices the method later known as “the method of special values,” also as
“harmonic analysis;” it is essentially a way of computing Fourier coefficients
by numerical integration. Various methods of computing these coefficients
were developed later by d’Alembert and Lagrange.

Euler solved equations (4) and (5) under several different simplifying as-
sumptions: (A) that Jupiter’s orbit is circular while Saturn’s is pristinely
(before the Jovian perturbations are introduced) circular; (B) that Jupiter’s
orbit is elliptical while Saturn’s is pristinely circular; (C) that Jupiter’s or-
bit is circular while Saturn’s orbit is pristinely elliptical. Some of the terms
resulting from these several initiatives were duplications. He thus obtained
a good many terms in the longitude of Saturn that are indeed correct, but
he did not discover the terms that cause Saturn’s long-term inequalities,
because he did not suspect the involvement of terms proportional to the
third dimension in the products and powers of the eccentricities and in-
clinations of the two planets, that is, terms proportional to e3, e′3, e2e′,
ee′2, e′ tan2 ρ′, e′ tan2 ρ′. These products and powers are small and Euler
supposed the terms in which they occur to be negligible. But the double
integration that the differential equations require leads to their having the
small divisor (2M − 5M ′)2 ≈ 0◦.00084224/day, and calculation shows that
they become observationally sizable.
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In integrating (7) and (8), Euler assumed the variability of π′ to be so
slight that it could be treated as a constant. He obtained as the integral of
(7)

π′ = C ′ − µBϕ

4m2h
+ oscillatory terms. (10)

Here C ′ is a constant of integration, and µ, B,m, and h are other constants.
The import of the second term on the right of (10) is that the node of Saturn
retrogresses on the orbital plane of Jupiter.

Euler realized that the same thing would happen to any planet perturbed
by another planet: its node on the orbital plane of the perturbing planet
would retrogress. Thus the node of the Earth’s orbit will retrogress on the
orbital planes of each of the other planets, and hence the Ecliptic, which
is the orbital plane of the Earth, is in motion. Using Newton’s values for
the masses of those planets that have satellites, and hypothesizing the
densities of Mercury, Venus, and Mars to be inversely as the square roots
of their periods (an inexact hypothesis at best), Euler arrived at a figure
for the diminution of the obliquity of the Ecliptic per century, namely
−47”.5, which is close to the present-day value, −46”.8. 15 The goodness
of the result is due to compensating errors. Nevertheless, Euler was the
first to establish theoretically that the Ecliptic is in motion. A consequence
of this discovery that he did not articulate is that, besides precession of
the Equinox caused by the Moon’s and Sun’s attractions for the Earth’s
equatorial bulge (to be dealt with below), some precession of the Equinox
is caused by motion of the Ecliptic due to planetary perturbation. 16

In his memoir of 1748, Euler sought to correct his theoretically derived
terms by a comparison with observations of heliocentric longitudes of Sat-
urn, 95 of which, spanning the years from 1582 to 1745, had been listed by
Jacques Cassini in his Élémens d’astronomie. 17 In deriving the theoreti-
cal terms, Euler had presupposed the orbital elements for Saturn given by
Cassini in his Tables astronomiques; 18 but these elements are founded on
the rules of Kepler, and therefore, Euler observed, “have need. . . of some
correction, since the inequalities caused by Jupiter have been there en-
veloped in the eccentricity and position of the orbit of Saturn.” 19 To the

15Euler, [E223] “De la variation de la latitude des étoiles fixes et de l’obliquité de
l’écliptique,” Mémoires de l’Académie de Berlin 10 (1754), 1756, 296-336.
16 I do not know when clarity on this point emerged – perhaps not till after Laplace’s

discovery of the invariable plane.
17Paris, 1740; p.355 et sqq.
18Paris, 1740.
19Leonhard Euler, [E120] “Recherches sur la question des inégalités du mouvement de

Saturne et de Jupiter . . . ” Pièce qui a remporté le prix . . . 1749, Opera Omnia, II, 25,
pp. 45-157. This passage is on p. 119.
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longitude of Saturn in its Keplerian ellipse as derived from Cassini’s tables
Euler gave the expression

M ′ − 23552′′ sinE′ + 168′′ sin 2E′,

where, in accordance with Keplerian theory, M ′ is Saturn’s mean longitude
at the chosen epoch, E′ is Saturn’s eccentric anomaly as derived from M ′,
23552′′ is twice the eccentricity turned into arcseconds, and 168′′ is 5/4
the square of the eccentricity turned into arcseconds. Euler replaces M ′ by
M ′+m+Nn, wherem is a constant correcting the mean longitude at epoch,
N is the number of years since the epoch, and n is the correction of the mean
movement per Julian year. The correction of E′ he symbolized by dE′, and
replaced sinE′ by sinE′+dE′ cosE′, and sin 2E′ by sin 2E′+2dE′ cos(dE′).
Also, if the eccentricity required correction, a quantity ±x had to be added
to the coefficient 23552′′. The earlier Keplerian-style formula thus became

M ′ +m+Nn− (23525′′ + x) sinE′ − 0.11405 (dE′) cosE′

+168′′ sin 2E′ +
dE′

600
cos 2E′.

Since dE is expressed in arcseconds, the numerical coefficients contain-
ing dE (already converted to arcseconds) have here been multiplied by
2π/1296000′′ to change them back into parts of the radius.

In his observational comparisons, Euler aimed not only to correct or-
bital elements, but also to determine certain terms due to perturbation for
which his theoretical calculation had given doubtful or impossible values.
Thus for the term proportional to cos(ω − E), Euler first obtained a co-
efficient with zero denominator (on account of his failure to allow for the
motion of Jupiter’s aphelion, caused by perturbation from Saturn); from
the observations he hoped for a less perplexing result.

In all, Euler attempted to determine eight unknowns from the observa-
tions; eight simultaneous equations would therefore seem to suffice. “But
since small errors committed both in the observations and in the calcu-
lation can produce large errors in the values of these letters, we must in
this investigation choose with care the observations which will be the most
proper for this purpose, in order that from the inevitable errors in the
observations and in the calculation, there should result the least possible
error in the values of the eight letters sought.” 20

Euler’s actual procedure in combining observations involved arbitrary
choices that could lead to different outcomes. That it led to only modest
improvement in the agreement of his theory with observations was mainly
due to inadequacies in his theory: it lacked large terms crucial to a correct

20 Ibid., p.122.

LOL Ch7-P12 of 26



Euler and Applications of Analytical Mathematics to Astronomy 133

theory. But Euler’s initiative here stimulated others to attempt similar un-
dertakings, and with happier success. First of all, Tobias Mayer, in Chapter
13 of his “Abhandlung über die Umwälzung des Monds um seine Axe. . . ”,
published in 1750, 21 applied Euler’s idea in determining the inclination
of the Moon’s equator to the plane of the Ecliptic, and the longitude of
the node in which these planes intersect. He followed Euler in combining
equations so as to increase the importance of one or two terms and decrease
that of all the rest, but far more systematically than Euler had done. La-
grange in his “Théorie de la libration de la lune. . . ” remarked that Mayer
had calculated the observations “with all the precision and elegance that
one can desire. . . ” 22 Laplace had in hand a copy of Lagrange’s memoir
by February 10, 1783, when he wrote Lagrange to thank him for the gift;
and he undoubtedly studied Mayer’s procedure with care, for he used a
very similar procedure with eminent success in his ”Théorie de Jupiter et
de Saturne” of 1785. Delambre, who carried out a revision of the constants
in the latter work by means of an extended comparison with observations,
used the same method, which he always attributed to Mayer.

Meanwhile Mayer, relying on certain procedures in Euler’s prize memoir
of 1748 and making modifications in others, had developed a lunar theory
which he proceeded to refine by comparison with observations, in particular
with precise observations of the Moon’s occultations of the star Aldebaran,
carried out with the aid of a micrometer of his own design. The result,
achieved by 1753, was a lunar theory accurate to about one arc-minute;
it became the basis of the British Admiralty’s Nautical Almanac in 1767.
The Almanac’s lunar tables were corrected successively by Charles Ma-
son in 1778 and 1780, by J.T. Bürg in 1806, and by K.B. Burckhardt in
1812 – in all cases partly by inclusion of new terms from the theory, but
mainly by means of a comparison with a large number of the Greenwich
observations. The combinations of observations involved were still not free
from arbitrariness, and would not be so before the method of least squares
was known and came to be applied de rigueur. Burckhardt’s tables would
remain the basis of the Nautical Almanac until 1862.

21Kosmographische Nachrichten (Nuremberg).
22Nouveaux Mémoires de l’Académie royale des Sciences et Belles-Lettres de Berlin,
1780/1782; Oeuvres de Lagrange, V. 6.
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3. The precession of the Equinoxes and the mechanics of rigid
bodies, 1751-1765

In early 1748 James Bradley announced his discovery of the nutation of
the Earth’s axis, a small wobble superimposed on the motion of that axis
producing the precession of the Equinoxes. News of the discovery reached
the Académie des Sciences in Paris during the summer of 1748. D’Alembert,
who had been at work on his lunar theory, immediately put the theory aside,
and set about investigating the following question: Are the precession and
nutation derivable from Newton’s inverse-square law? (The strict accuracy
of Newton’s law was just then in doubt, because Clairaut, d’Alembert, and
Euler had all discovered that they could only derive from it about half the
observed motion of the lunar apse.) Reviewing Newton’s attempt to derive
the precession, d’Alembert concluded that it was deeply flawed. He worked
in haste, fearing (groundlessly as it turned out) to be forestalled by the En-
glish. His Recherches sur la Précession des Equinoxes et sur la Nutation de
l’Axe de la Terre dans le Systême Newtonian was completed in May, 1749,
and published in July. On July 20 d’Alembert sent off a copy to Euler.

Not until January 3, 1750, did Euler respond. He had, he said, long ap-
plied himself to this subject, but being unable to vanquish all the obstacles
he met with, had at length abandoned the effort. Nor had he been able
to follow the argument of d’Alembert’s treatise, but seeing in general how
d’Alembert surmounted the obstacles, he had recommenced the investiga-
tion in his own way, and has since carried it to a happy conclusion. 23

D’Alembert’s book is indeed difficult to read – “disorderly, full of ty-
pographical errors, and [containing] totally unintelligible diagrams,” as
Gabriel Cramer wrote the author. The crux of its argument lay in “d’Alem-
bert’s Principle,” but d’Alembert’s account of that principle was obscure
and in fact flawed. 24 That d’Alembert’s obtained the right result was due
to compensating errors of sign.

Euler came to the reading of d’Alembert’s treatise with a special perspec-
tive. He had long been attempting to formulate a theory of the mechanics
of rotating bodies analogous to the mechanics of linear motion. The lat-
ter was founded on the Newtonian law of force, which Euler was the first
to write in the form F = ma. The parallel law for rotation was τ = Iα,
where τ is the torque or moment of a force, I the sum

∑
mr2 or integral∫

r2dm which Euler named “moment of inertia,” and α the angular ac-

23See my “D’Alembert versus Euler on the Precession of the Equinoxes and the Mechan-
ics of Rigid Bodies,” Archive for History of Exact Sciences, 37, 233-273 for references
and further details.
24See the analysis in ibid., pp.244-245.
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celeration. Euler had applied this formula to the rolling and pitching of a
ship in his Scientia navalis, completed in 1740 but not published till 1749.
This application was mediated by the hypothesis that, given three mutu-
ally perpendicular axes of symmetry in the ship (fore-and-aft, abeam, and
vertically through the center of mass), the rotational motion about any
one of these axes is undisturbed by the rotational motions about the other
two. But the problem that had long baffled Euler was the following: Given
an arbitrarily-shaped body turning about any axis, and acted upon by an
oblique force, to find the change caused both in the axis of rotation and in
the motion.

The problem can be resolved with the aid of D’Alembert’s principle – if
the latter is correctly understood. Here is a correct formulation. 25 Let a be
the acceleration of a mass-element of a rigid body. Then a = af +ac, where
af is the acceleration of this mass-element that would result from the exter-
nally applied forces, and ac is the acceleration of this same element result-
ing from actions and constraints amongst the mass-elements. D’Alembert’s
principle means that the forces corresponding to the accelerations ac form
a system in static equilibrium, so that

∑
Mac = 0,

∑
r × Mac = 0,

whence
∑
M(a − af ) = 0,

∑
r × M(a − af ) = 0 or in integral form,∫

dM(a − af ) = 0,
∫
dM.r × (a − af ) = 0. It was because the mathe-

matical development in d’Alembert’s Recherches embodied – by grace of
compensating errors of sign – the correct conditions for rotational equilib-
rium expressed in the last equation, that d’Alembert managed to arrive
at differential equations from which the precession and nutation could be
derived. D’Alembert’s use of integrals to express such conditions was quite
new; and it was undoubtedly from his reading of d’Alembert’s treatise that
Euler derived his own similar formulation.

In the essay on the precession that Euler presented to the Berlin Academy
in March, 1750, 26 he computed the Earth’s moment of inertia on the as-
sumption that the Earth is a homogeneous sphere and also on the as-
sumption that it is a sphere with denser core. In neither case did he take
account of the flattening of the Earth, remarking that a small departure
from sphericity changes the moment of inertia but little. But his neglect of
the flattening meant that he could not determine separately the motion of
the Earth’s axis of figure and that of its instantaneous axis of rotation, as
d’Alembert had done.

In computing the torques acting on the Earth due to the attractions of
the Sun and the Moon, Euler used equatorial coordinates and assumed the

25Here we follow Truesdell, The Rational Mechanics of Flexible or Elastic Bodies, 1638-
1788, in Leonhard Euler, Opera omnia, II, 11 (2), pp.186-187.
26Leonhard Euler, Opera omnia II, 29: 92-123.
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Earth to be spheroidal. His derivation is far more direct and perspicuous
than d’Alembert’s. To transform the resulting formulas from equatorial
to ecliptic coordinates, he used the algorithms of spherical trigonometry
and thus avoided much of the complicated geometry that d’Alembert had
employed. 27

The memoir is logically incomplete, in relying on a principle “explained
elsewhere.” Also, it assumes without proof that the Earth if set rotating
about an axis slightly different from its axis of figure would continue to do
so without variation unless acted upon by external forces. The “elsewhere”
in which Euler explains the missing principle is his essay entitled “Discovery
of a New Principle of Mechanics,” presented to the Berlin Academy later
in 1750. 28 Here Euler considered a rotating body whose center of mass is
at rest, and which is subject to the action of external torques. He used a
coordinate system at rest in absolute space, with whose z-axis the axis of
rotation was initially coincident. By setting the total moments calculated
from the kinematics of rotation equal to the components of any externally
applied torque about the three coordinate axes, he obtained equations per-
mitting the determination of the infinitely small changes in the components
of the angular velocity during the time dt. The problem of the rotation of
a rigid body about a free axis was thus in principle solved. 29

The application, however, remained difficult, because the single coor-
dinate system had to be shifted after each interval dt. To eliminate this
difficulty, Euler in a new memoir presented in October 1751 introduced
a second coordinate system fixed in the rotating body; to express the re-
lation between the two systems, he introduced the now famous ‘Eulerian
angles.’ 30 With this innovation, integrations became possible; the long-
term development of the motion could be followed. Euler also showed from
his equations that in any body there exists at least one axis about which
the body can rotate without wobbling. In 1755, J.A. Segner went on to
demonstrate that in any body there exist three mutually perpendicular
axes about which it can rotate without wobbling. These axes Euler called
“the principal axes.”

A final discovery emerged in Euler’s “Du mouvement de rotation des
corps solids autour d’un axe variable,” presented to the Berlin Academy

27For a more detailed account of Euler’s derivation, see my article cited in n.23.
28Leonhard Euler, [E177] “Découvert d’un nouveau principe de Mécanique” Mémoires

de l’académie des sciences de Berlin 6 (1750) 1752, p. 185-217, Opera Omnia,II, 5:81-
108.
29A more complete explanation is provided in the article cited in n.23.
30Leonhard Euler, [E336] “Du mouvement d’un corps solide quelconque lorsqu’il tourne
autour d’un axe mobile” Mémoires de l’académie des sciences de Berlin 16 (1760) 1767,
p. 261-284, Opera Omnia II, 8: 313-356.
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in November, 1758. 31 By choosing the principal axes as the coordinate
axes fixed in the body, Euler found (“with surprise,” he says) that he could
obtain integral solutions of problems he had previously supposed to surpass
the powers of the calculus. Thus, given a body on which a rotational motion
had been imposed about a non-principal axis, he could now determine the
continuation of its motion. Spurred on by this success, he now undertook
to write his systematic treatise on the rotation of rigid bodies, Theoria
motus corporum solidorum seu rigidorum, which was published in 1765
and established the standard terminology and techniques for dealing with
the rotation of extended bodies.

4. The inverse-square law and the motion of the lunar apse

As indicated earlier, by the autumn of 1747, the three foremost mathe-
maticians in Europe – Clairaut, Euler, and d’Alembert – had independently
concluded that the inverse-square law yielded only about half the observed
motion of the lunar apse. In a meeting of the Académie des Sciences in
November Clairaut proposed amending the inverse-square law by adding
a second term which would express a variation of gravitational force in-
versely as the fourth power of the distance. The proposal aroused a storm
of protest, particularly from Georges-Louis LeClerc, Comte de Buffon, who
insisted that a two-term law was ‘metaphysically repugnant.’

From the beginning of his work on the lunar theory, Clairaut had ex-
pected to carry out a second-order calculation in order to improve the
accuracy of the coefficients of the various inequalities. Such a second-order
calculation was suggested by his mode of calculation. After deriving the
equations of motion, a clever integration had given him

f2

Mr
= 1−g sinϕ−c cosϕ+sinϕ

∫
Ω cosϕ · dϕ− cosϕ

∫
Ω sinϕ · dϕ. (11)

Here f , M , g, c, are constants and Ω is a complicated expression involving
the solar perturbing forces acting on the Moon in the radial and transverse
directions. Into (11) he had then substituted the following expression for
r, the radius vector:

r =
k

1− e cosmϕ
, (12)

31Leonhard Euler, [E292] “Du mouvement de rotation des corps solids autour d’un axe

variable,” Mémoires de l’académie des sciences de Berlin 14 (1758), 1765, p. 154-193,
Opera Omnia II, 8: 200-235.
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where k, e, and m are constants to be determined, and mϕ is the real
anomaly, reaching 360◦ when the Moon returns to its apogee. This is the
expression for an ellipse that rotates forward if m > 1. Its substitution
would be justified, Clairaut said, if, k being identified with f2M , the larger
terms in the right member of (11) could be identified with the expression
(1 − e cosmϕ). The result of the first-order calculation appeared to fulfill
this hope, for it gave him

k

r
= 1− e cosmϕ+ β cos

2ϕ
n

+ γ cos
(

2
n
−m

)
ϕ+ δ cos

(
2
n

+m

)
ϕ (13)

where n is the Moon’s mean motion divided by the difference between
the Moon’s and Sun’s mean motions, and β, γ, δ [b, g, d] evaluated in
terms of other constants in the theory were 0.007090988, −0.00949705,
and 0.00018361, respectively, hence small relative to e (known empirically
to be about 0.05).

The second-order computation that suggested itself consisted in substi-
tuting (13), with e, m, β, γ, δ left as symbols, back into (11), and reevalu-
ating the constants. Surprisingly, this led to new and impressive contribu-
tions to m, particularly from the term γ cos

(
2
n −m

)
ϕ, which arose from

the transverse component of the solar perturbing force. The constant m
proved to be 0.99164, implying a monthly apsidal motion of +3◦2′6”, just
2′5” shy of the empirical value Clairaut believed correct. He made a public
announcement of this discovery in May of 1749.

On receiving Clairaut’s news, Euler was amazed and troubled. He care-
fully reviewed his own derivation of the apsidal motion of the Moon, but
could find no error in it. How had Clairaut achieved this result? Would
Clairaut’s derivation, if subjected to a close scrutiny, in fact prove valid?

At just this time the Petersburg Academy was planning its first prize
contest. Euler, previously a resident member of that academy, and still
an associate after leaving St. Petersburg to join the Berlin Academy in
1741, offered a list of suggestions for the topic of the contest, of which the
first concerned the adequacy of the inverse-square law to account for the
inequalities of the Moon. It was this topic that was chosen by an appointed
committee of the Petersburg Academy; the question was framed as follows:

“To demonstrate whether all the inequalities observed in lunar motion
are in accordance with Newtonian theory – and if they are not, to demon-
strate the true theory behind all these inequalities, such that the exact
position of the Moon at any time can be computed by means of it.” 32

32Y.K. Kopelevich, ”The Petersburg Astronomy Contest in 1751,” Soviet Astronomy -
AJ, Vol.9, January-February, 1966, p.653.
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Euler also offered to be a member of the committee reviewing the essays
submitted in the contest, and his offer was accepted.

By March 26, 1751, Euler had in hand four of the memoirs submitted
in the contest, including one he recognized as Clairaut’s, and he wrote to
Clairaut to say

“. . . it is with infinite satisfaction that I have read your piece, which I
have waited for with such impatience. It is a magnificent piece of legerde-
main, by which you have reduced all the angles entering the calculation
to multiples of your angle ν [our angle ϕ], which renders all the terms
at once integrable. . . . I must confess that in this respect your method
is far preferable to the one I have used. However I see clearly that your
method cannot give a different result for the movement of the apogee
than mine; in which I have recently made some change, for having pre-
viously reduced all angles to the eccentric anomaly of the Moon, I have
now found a way to introduce the true anomaly in its place. Thus while
your final equation has as its two principal variables the distance of the
Moon from the Earth and the true longitude, I have directed my analy-
sis to the derivation of an equation between the longitude of the Moon
and its true anomaly, which seems to me more suitable for the usage of
astronomy.” 33

Euler’s concern here to avoid variables like the radius vector r, the ob-
servational determination of which was much less precise than that of the
angular variable ϕ, is characteristic; we will encounter this phenomenolog-
ical tendency again in his third lunar theory.

A second letter to Clairaut, dated April 10, 1751, is marked by a new
note of elation:

“I have the satisfaction of writing you that I am now altogether clear
concerning the motion of the lunar apogee, and that I find it, as you
do, entirely in agreement with Newton’s theory. This investigation has
drawn me into terrible calculations, and I have finally discovered the
source of the insufficiency of the methods I had followed previously: it
consisted in the incomplete determination of a constant of integration
– an inconvenience to which your method is not subject. But since now
two completely different methods lead to the same conclusion, no one will
refuse to recognize the correctness of your research. For myself, knowing
whereof I write, I felicitate you on this happy discovery, and I even dare
to say that I regard this discovery as the most important and the most
profound that has ever been made in mathematics. I ask your pardon
a thousand times for having doubted the rightness of your retraction,

33G. Bigourdan, “Lettres inédites d’Euler à Clairaut,” Comptes rendus du Congrès des
sociétés savants de Paris et des Départments tenu à Lille en 1928. . . , pp.34-35.
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but I believe that my stubbornness will render your victory all the more
brilliant, and will protect it from all the attacks to which it might yet
be subject. For it is very certain that there are very few persons who are
capable of recognizing the correctness of your analysis, and I am obliged
to confess that I would be yet in the same case, if I had not found a
completely different method which led me to the same result. For this is
how I am led there: instead of supposing the force of the Earth on the
Moon to be m/x2 for the distance x, I have expressed it by m/x2 − µ,
with the aim of so determining µ that I should obtain the true motion of
the apogee as given by observation. And I have at length found, contrary
to my expectation, that this term must be supposed so small, that one
can regard it without error as nothing; while according to my earlier
opinion it should have turned out to be rather considerable.” 34

Clairaut’s “Théorie de la lune déduite du seul principe de l’attraction re-
ciproquement proportionelle aux quarrés des distances,” which was awarded
the prize of the St. Petersburg Academy in the contest of 1751, was pub-
lished in St. Petersburg in 1752. 35 Euler’s second lunar theory, the Theoria
motus lunae, which as he finally revised it was intended primarily as a test,
by an independent route, of Clairaut’s claim that the observed motion of
the lunar apse was in accord with Newton’s inverse-square law, was pub-
lished by the St. Petersburg Academy in 1753. 36

5. Euler’s later thoughts on celestial mechanics; his Third Lunar
Theory

In his later years, Euler became increasingly critical of the methods in
celestial mechanics he had done so much to establish earlier. In July 1762
he read to the Berlin Academy his “Nouvelle méthode de determiner les
dérangemens dans le mouvement des corps célestes, causés par leur action
mutuelle.” 37 Here Euler advised that the attempt to achieve integrations
satisfactory for all time be relinquished, and like Clairaut and his colleagues
in determining the return of Halley’s Comet for 1759, that the calculation
be made directly from the differential equations. The position and velocity
of a body being known for some moment of time, the increments to the
position coordinates and velocity components were to be calculated from

34 Ibid., pp.36-37.
35St. Petersburg: Imprimerie de l’Académie Imperiale des Sciences, 1752.
36 It is also found in Leonhard Euler, [E187] Opera Omnia, II, 23 pp. 64-336.
37 [E398] Mémoires de l’Académie des Sciences de Berlin,19 (1763), 1770, 141-179.
Opera Omnia ser. II vol. 26.
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the differentials during successive small intervals of time. The result would
be an ephemeris giving positions at successive equal intervals of time. Since
the error could be expected to increase as the ephemeris was continued, at
some point it would become necessary to have recourse to observations
and begin over again. In a memoir of 1763, Euler showed how very exact
positions and velocities could be obtained from a series of observations of
the Moon on consecutive days by an application of the calculus of finite
differences. 38 Laplace would later utilize this method in his work on the
determination of cometary orbits.

In the early 1770s Euler added a further wrinkle: the use of a coordinate
system rotating with the mean speed of the planet or Moon. He applied
this proposal in the theory of the Moon that he submitted to the Paris
Academy in its prize contest of 1772; 39 and also in a study of the pertur-
bations in the motion of the Earth due to the action of Venus. 40 In both
cases, his blindness having become total, Euler relied on other members
of the Petersburg Academy for assistance with the numerical calculations.
In the case of the second memoir, a special desideratum was to avoid use
of trigonometric series to express the Venus-Earth distance. “In no way,”
Euler asserted, “can the irrational formula v =

√
a2 − 2ab cosϕ+ b2 be re-

solved into a convergent series, as required if the integration is to be carried
out in the usual way; for which reason we are compelled to determine our
integrals mechanically.” 41 For the Venus-Earth interaction, the parameter
g = 2ab/(a2 + b2) = 0.9497; it was thus closer to 1 than in the case of
any other two planets. Hence the series A + B cosϕ + C cos 2ϕ + . . . for
ν−3/2 would have had to be extended much farther than in the case of
other pairs of planets to obtain a pre-specified degree of precision. Euler
proposed instead to plot the functions to be integrated for 72 values of
the angle ϕ between the radii vectores of Venus and the Earth, increas-
ing by 5◦ increments; the points thus determined were to be connected by
straight lines, and the areas of the resulting trapezia added up to obtain an
approximation to the integral sought. These calculations were carried out

38 [E401] ”Nouvelle manière de comparer les observations de la Lune avec la théorie,”
Mémoires de l’Académie des Sciences de Berlin, 19 (1763), 1770, 221-234, Opera Omnia
ser. II vol. 24, pp. 90-100.
39Theoria motuum Lunae, nova methodo pertractata, una cum tabulis astronomicis,
unde ad quodvis tempus loca Lunae expedite computari possunt, incredibili studio atque

indefesso labore trium academicorum: Johannis Alberti Euler, Wolffgangi Ludovici

Krafft, Johannis Andreae Lexell, opus dirigente Leonhardo Eulero, St. Petersburg, 1772;
also Opera Omnia ser. II, vol. 22, pp. 64-336.
40 [E425] “De perturbatione motus Terrae ab actione Veneris oriunda,” Novi Commen-

tarii Academiae Scientiarum Imperialis Petropolitanae 16 (1771), 1772 426-467. Opera
Omnia ser. II vol. 26.
41 Ibid., 448.
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by Johannis Andreas Lexell. The resulting table of perturbations differed
shockingly from the widely accepted tables of Lacaille, which were based
on Clairaut’s calculation, using the ordinary trigonometric series, of the
Venusian perturbations of the Earth. In a memoir published in 1778, Euler
announced that, in relying on Lacaille’s tables, astronomers would often be
in error by 20′′ or 30′′ – an error leading to a disastrously wrong value of
the Moon’s longitude and hence to error in the navigator’s determination
of longitude at sea. 42

Laplace, at the urging of Lalande, wrote to ask the opinion of Euler and
Lexell as to the cause of the discrepancy. It was Lexell who responded:
“The principal reason of this discrepancy is to be ascribed to an error I
committed in the calculation. I judged it to be my part to correct what
was erroneous, and at the same time to treat all this material with the
greatest exactitude possible, so that no doubt will remain in the minds
of astronomers that these diverse methods lead to completely concordant
conclusions.” 43 Lexell re-did the entire calculation, using steps of 1◦ rather
than 5◦. Revising Lacaille’s values for solar parallax and the mass of the
Earth (he supposed the mass of Venus to be equal to the Earth’s mass),
he found that his values for the several major terms were proportional to
Lacaille’s, but smaller by the factor 0.702. The method of trigonometric
series was thus vindicated.

One of the ideas instantiated in Euler’s lunar theory of 1772 had occurred
to him already in the mid-1760s, if we may suppose that the “Réflexions sur
la variation de la lune” presented on April 17, 1766 to the Berlin Academy
by J.A. Euler reflects the father’s thinking. 44 young Euler began as follows:

“Although there is reason to be content with the new tables of the Moon
published by the late M. Mayer and the late M. Clairaut, since by means
of these tables we can determine the place of the Moon almost as exactly
as that of the Sun, the theory from which these tables were drawn is
still far from the perfection that could be desired; very little progress,
one must admit, has been made up to the present. The large number of
equations that it is necessary to employ to determine the Moon’s place to
an arc-minute furnishes an evident proof of this, since it follows evidently
that, to achieve a yet higher precision, the number of equations would

42 [E511] “Réflexions sur les inégalités dans le movement de la terre, causes par l’action

de Venus,” Acta Academiae Scientiarum Imperialis Petropolitanae, pars prior pro anno
1778, 297-307. Opera Omnia ser. II, vol. 27.
43A. I.Lexell, “De perturbatione in motu telluris ab actione Veneris oriunda,” Acta
Academiae Scientiarum Imperialis Petropolitanae, pars posterior pro anno 1779, 359-
360. The memoir as a whole occupies pp.359-392.
44Histoire de l’Académie Royale des Sciences et Belles-Lettres, Vol.22, pp.334-353.
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have to be increased so greatly that employing them would no longer be
practicable.”

No general solution of the three-body problem having been achieved, Young
Euler advised that the surest means of perfecting the lunar theory lies in
simplifying the question as much as possible, and in making abstraction of
several circumstances that concur in augmenting the number of inequalities.
Thus some earlier theorists had made abstraction of the inclination of the
lunar orbit to the Ecliptic and of the eccentricity of the solar orbit. They
were thus limiting themselves to determining the inequalities dependent
on m, the ratio of the Sun’s mean motion to the synodic motion of the
Moon, and on e, the eccentricity of the lunar orbit. (Young Euler fails
to mention the inequalities dependent on the ratio of the Moon’s to the
Sun’s parallax.) The general assumption here is that these several kinds of
inequality are sufficiently small that they can be calculated independently
of one another. Young Euler proposed carrying the simplification one step
farther, and limiting his investigation to the inequalities dependent on m,
that is, to those that may be included under the rubric of “the Variation.”
He asserted that, if a perfect solution of the problem of the Variation were
obtained, hardly any further difficulty would remain in determining the
true motion of the Moon.

In the case of the Variation, he obtained by calculations from the differ-
ential equations a formula accurate to 14 arc-seconds (it would be easy, he
added, to increase the precision). It gives the Variation ϕ in the Moon’s
longitude as

ϕ = 0.010191 sin 2η − 0.00007 sin 4η...,

where η is the difference between the mean longitudes of the Moon and the
Sun.

Euler’s Theoria Motuum Lunae Nova Methoda Pertractata [E418] of 1772
proposes an elaboration of these same ideas, with the addition of a rectan-
gular coordinate system, of which the x- and y-axes rotate with the mean
speed of the Moon so that the x-axis passes through the mean longitude of
the Moon. The several inequalities are partitioned into orders and mixed
orders, to be calculated separately. They are to be taken up in the following
sequence:

(i) The Variation, i.e. the inequalities dependent solely on the mean elon-
gation p of the Moon from the Sun.

(ii) The inequalities dependent on the eccentricity k = 0.05450 of the
lunar orbit, and on k2 and k3.

(iii) The inequalities dependent on the eccentricity κ = 0.01678 of the
solar orbit.
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(iv) The parallactic inequalities, depending on a/a, the ratio of the dis-
tance of the Moon from the Earth to the distance of the Sun from
the Earth, about 1/391.

(v) The reduction to the Ecliptic, dependent on the inclination i =
sin 5◦8′.5.

There follow then the mixed orders, in which terms proportional, for in-
stance, to κk, κk2, ik, etc. are to be calculated. It is a program of calcu-
lation that Euler announces in this treatise; he suggests that the carrying
out of it might take a year. The determination of such empirical constants
as the eccentricity of the lunar orbit, he points out, is an especially difficult
problem.

The question the Paris Academy had posed for its contest of 1772 was
the cause of the Moon’s secular acceleration, which had been discovered by
Halley. Reviewing the several inequalities that the Sun causes in the Moon’s
motion, Euler found none that could account for a secular acceleration. On
the other hand, an aether, such as Euler considered necessary for the prop-
agation of light, would necessarily, Euler believed, be a source of friction
in the motion of the celestial bodies; and long before he had demonstrated
that planets and satellites subject to such friction would gradually fall into
lower orbits with more rapid mean motions. 45

Euler’s program for developing the lunar theory was neglected for a cen-
tury, but at last embarked upon by George William Hill, an assistant in the
U.S. Nautical Almanac Office, in the late 1870s. Hill published a completely
numerical solution for the “Variation curve” in 1878, and his calculation of
the motion of the lunar apse insofar as it depends on the variation curve in
1877. Like Euler, he used rotating rectangular coordinates, but set the rate
of rotation equal to the Sun’s mean motion, thus obtaining a re-entrant,
periodic orbit. The remaining calculations were carried out by Ernest W.
Brown between 1892 and 1907, with the aid of a single (human) computer.
Brown used Hill’s numerical solution of the Variation curve as an interme-
diary orbit, but his development of the remainder of the theory was literal,
using letters for the constants m, e, a/a, i. The fitting of the theory to ob-
servations was carried out at Yale University between 1908 and 1919; and
the Hill-Brown lunar theory became the basis of the lunar ephemerides in
the national almanacs beginning in 1923. Both Hill and Brown employed
integrals of the equations of motion unknown to Euler. Their lunar theory
also differed from the one projected by Euler because of their adoption
of the exponential expression for sines and cosines of angles (an Eulerian
innovation whose use in astronomy had been promoted by A.L.Cauchy).

45 [E89] “De relaxatione motus planetarum,” Opuscula varii argumenti, I, 1746, pp.
245-276, Opera Omnia Ser. II, vol. 31, pp. 195-220.
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Whereas Euler had proposed seeking a theory accurate to 1 arc-minute,
Brown set the goal of a precision of 0.01 arc-second.
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1. Introduction: Indian astronomy in the Enlightenment

Even within the immense diversity of technical subjects covered by Leon-
hard Euler’s collected works—ranging from musical dissonances to the con-
struction of microscopes to orbital perturbations—the topic of traditional
Sanskrit calendrics stands out as unusual. This was the subject of Euler’s
1738 essay “De Indorum anno solari astronomico (On the solar astronom-
ical year of the Indians)”, published as an appendix to a treatise by the
historian and philologist T. S. Bayer. The present paper discusses the source
of this opusculum, and its relation to the Indian astronomical tradition and
to Euler’s other work.

Indian astronomy began to attract attention in European scholarly and
scientific circles in the late seventeenth century, when French envoys to the
Kingdom of Siam published descriptions of astronomical methods and data
encountered there, which were ultimately derived from Sanskrit sources. 1

“Native” astronomical tables and texts also attracted the notice of re-
searchers and missionaries in India itself, and subsequently of their cor-

1 Some of these accounts were published in [13] and [9]. See also the references in the
“Einleitung” by the editors of [6] in [7], Series II, vol. 30, pp. IX-X.
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respondents in Europe. Historians tried to figure out the relationship be-
tween these Indian methods and the sciences of classical antiquity, while
astronomers and mathematicians analyzed their technical features.

Questions of calendrics and chronology generally inspired the most in-
terest among historians, since they had to be resolved before artefacts and
texts could be satisfactorily dated. Astronomers, on the other hand, often
hoped for records of ancient observations that could be used to test mod-
ern theories of celestial mechanics. Cultural prejudices of various kinds fre-
quently affected interpretations: proponents of “Oriental wisdom” clashed
with “classical chauvinists” who maintained the superiority of Greek and
Roman civilization, as well as with defenders of biblical chronology. It took
well over a century before these disputes were more or less resolved into
a commonly accepted view of Indian mathematical astronomy as largely a
creation of late antiquity, combining indigenous traditions with some mod-
els and units borrowed from Hellenistic Greek astronomy. (In particular,
the zodiac and the week, along with the names of their component signs
and weekdays, were adopted from Greek sources.)

In the 1730’s, however, such controversies were still in their early stages,
as historians strove to piece together the elements of the history and lan-
guages of the ancient Orient. The story of Euler’s encounter with the Indian
solar year illustrates several characteristic trends in this struggle for under-
standing. It also showcases the flexibility and soundness of Euler’s math-
ematical common sense, while simultaneously revealing the limitations of
common sense in analyzing texts from an unfamiliar tradition.

2. T. S. Bayer and his work

Theophilus (or Gottlieb) Siegfried Bayer (1694–1738) was one of the
most active and ambitious scholars in the field of early Oriental studies,
although ultimately not one of the most successful. A German Protestant
from Königsberg, Bayer was originally interested in the history of the East-
ern churches, a subject that led him to the study of Asia and, by the time he
was twenty, to a passion for Sinology in particular. In the quarter-century
or so of his short working life, in addition to his attempts at a complete
linguistic analysis of Chinese characters, he wrote about South and West
Asian languages, Central Asian history, numismatics, calendrical and math-
ematical traditions in Asia, classical and Church history, and a variety of
related subjects.

In 1726 Bayer’s fellow Königsberger Christian Goldbach obtained for him
the chair of Greek and Roman Antiquities in the new Imperial Academy
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of Sciences at St. Petersburg; Bayer exchanged this post in 1735 for the
professorship of Oriental Antiquities. 2 Up to his death in 1738, and for
several years posthumously, his contributions almost singlehandedly repre-
sented the humanities or “historical class” in the Academy’s journal, the
Commentarii academiae scientiarum imperialis Petropolitanae. 3 In his re-
searches Bayer, like many other Enlightenment Orientalists, was attempt-
ing to trace the contours of a vast historical landscape stretching from Rome
to China, with a strong bias in favor of classical civilization as its most im-
portant feature. Thus his historical and philological studies combined bits
and pieces of research on various cultures, often rather speculatively linked
by his interpretations of the resemblances or relationships he perceived
among them.

It was therefore typical that when Bayer wrote a monograph on the
Hellenistic kingdom of Bactria in Central Asia (Historia regni Graecorum
Bactriani in qua simul Graecarum in India coloniarum vetus memoria ex-
plicatur or “History of the Bactrian kingdom of the Greeks, in which also
the ancient history of the Greek colonies in India is explained” [3], com-
pleted shortly before his death), he concluded it with a discussion of the
relations between ancient Greek and Indian number systems, music, and
calendrics. His descriptions of these topics in his table of contents indicate
his conclusions about them:

Whether the names of the Indian numbers [come] from the Romans, or
the Persians, [or] indeed, both the Persian and Indian [names] from the
Greeks; or rather, from a common stock of languages?. . . Wisdom of the
Indians too much praised; the Indians received the names of numbers,
together with arithmetic, from the Greeks; Greek arithmetic compared
with Indian. . . The music of the Indians also seems to be received from
the Greeks; the Metonic doctrine of time among the Bactrians, and other
peoples both Indian and Chinese; the days of the week of the Indians from
the Greeks. . . 4

Moreover, Bayer added to the Historia two appendices explaining the tra-
ditional Indian calendar and timekeeping system. The explanations were
derived from the interpretations of certain members of the Protestant mis-
sion at the Danish colony of Tranquebar, south of Madras, with whom
Bayer regularly corresponded on Indological subjects. The two appendices

2 See [10], pp. 17, 20, and [1], pp. 27–28.
3 The statement to this effect in [1], p. 52, is readily confirmed by the facsimile Tables of

Contents for the Commentarii reproduced in [5], “Publication”. Of the thirty “historical
class” articles in ten volumes published between 1729 and 1750, only two were not written

by Bayer.
4 In this and all the subsequent translations from [3], my editorial additions and clari-
fications are in square brackets.
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were written respectively by one of these correspondents, C. T. Walther 5

(“The Indian Doctrine of Time,” [3], pp. 145–190, including some notes by
Bayer), and by Bayer himself based on his correspondence with Walther
and other Tranquebar missionaries (“Supplement (Paralipomena) to the In-
dian Doctrine of Time,” [3], pp. 191–200). Bayer in his preface to the book
stresses the importance of calendrical questions, extolling the sixteenth-
century antiquarian J. J. Scaliger as the founder of the field of comparative
chronology:

There is no need for me to recommend this [the Supplement] to the
intelligent. Joseph Scaliger [was] the first to realize how much this science,
abstruse to the people, merited explanation. As this incomparable elder
has not withheld even the smallest fragments, [shall] we not make the
most of the deeper and fuller [knowledge] that is given into our hands?
([3], f. 3)
His interest in calendrics and astronomy had doubtless strengthened the

bond between Bayer and some of his Academy colleagues in the sciences
class. He kept up his acquaintance with Goldbach and developed a warm
friendship with the French astronomer Joseph-Nicholas Delisle, probably
sparked by the Bayers’ sharing the Delisles’ house for a while on their
arrival in St. Petersburg. Although Bayer spoke no French and Delisle no
German, the two scholars could communicate in Latin ([10], pp. 19, 21
n. 16).

3. Euler and Bayer

It is not known exactly how or when Bayer became acquainted with the
brilliant young mathematician Leonhard Euler, who arrived in St. Peters-
burg in May 1727, shortly after his twentieth birthday. Probably Goldbach
or Delisle, with both of whom Euler worked closely, made them known
to each other. Little information survives concerning their interactions at
the Academy, but it seems that Bayer occasionally consulted Euler about
mathematical problems that cropped up in his historical researches.

A letter 6 from Bayer to Euler in January 1736 (apparently the only
surviving correspondence between them) is said to contain a request for
Euler’s views on “two books, in which reference is made to the computa-
tion of the Malabar [Indians], and on the resemblance of the method for

5 Christoph Theodosius Walther (1699–1741) served at the Tranquebar mission for
about twenty years, and composed among other works a grammar of Tamil ([1], pp. 31–
32 n. 2).
6 See [7], Series IV A, vol. 1, p. 15.
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calculating with fractions described in these books to that of the ancient
Greeks and Romans”. This doubtless relates to the comparison of Greek
and Indian arithmetic that Bayer later discussed in the 1738 Historia.

Euler’s own work in his early St. Petersburg years dealt mostly with
problems in pure and applied mathematics. The “De Indorum anno”, which
appeared after Bayer’s “Supplement” in the Historia ([3], pp. 201–213), was
his first published foray into astronomy. 7 It appears to have been inspired
by another request from Bayer, who clearly (as will be discussed below)
did not understand some of the technical details in the computations he
sought to explain. Bayer himself in his preface says merely that “Leonhard
Euler, the noted mathematician and most closely linked to me by ties of
collegiality, has now shown to some extent how welcome these [discoveries]
must be to all” ([3], f. 3).

4. Indian calendrical methods and their representation in the
appendices to Bayer’s Historia

The traditional Indian calendar is luni-solar: that is, it keeps track both
of the synodic or “moon-phase” months, like the Muslim calendar, and the
solar year, like the Gregorian calendar. Since there are between twelve and
thirteen full cycles of moon phases in one solar year, the synodic months
over time slip more and more out of phase with the seasons. This is reme-
died, as in the traditional Jewish calendar, by periodic intercalation, or
inserting of a “leap month” into certain years. However, the year of the
Indian calendar is sidereal rather than tropical, meaning that it measures
the time between successive conjunctions of the sun with a particular star,
rather than the time between successive solstices or equinoxes. This partic-
ular position with respect to the fixed stars is defined as the zero-point of
the sidereal zodiac. (Note that because Indian astronomy is geocentric, the
year represents—not just notionally but physically—a complete revolution
of the sun in a circular orbit about the stationary earth.)

The first lunar or synodic month of the year is considered to begin at the
first new moon before the start of the solar year (although some variants
of the calendar start the synodic month at full moon instead). The start of
the solar year is also the start of the first solar month, a period measured
from the sun’s entry into one of the twelve 30◦ signs of the sidereal zodiac.

7 I am indebted to Ed Sandifer for pointing this out, and also for drawing my attention to

Euler’s example of a year-length calculation in the Introduction in analysin infinitorum,
discussed below.

LOL Ch8-P5 of 20



152 Kim Plofker

The Indian calendar tracks not only the sidereal years and synodic and
solar months, but also five different sequences of smaller time-units (hence
the Sanskrit name for the calendar, “pañcāṅga” or “fivefold”). These are
the civil weekday, starting usually at sunrise; the tithi, or one-thirtieth of a
synodic month; the karan. a, or half-tithi ; 8 the naks.atra, or “constellation”,
namely 1/27 of a sidereal month, the time it takes the moon to pass through
the circle of 27 designated lunar constellations; and the yoga, the time
during which the sum of the solar and lunar longitudes increases by the
extent of a naks.atra constellation, or 360◦/27 = 13◦20′. Most of these time-
units have ritual and/or astrological significance. The most important for
common practical purposes is the day, which is sexagesimally divided into
various smaller time-units.

The methods traditionally employed in Sanskrit astronomical texts for
computing the start of a year rely ultimately on period relations involv-
ing very long cycles or eras. The mathematical principle is that of simple
proportion. Namely, if the era contains an integer number R of solar rev-
olutions or years, as well as an integer number D of civil days, then some
given integer number r of years will elapse in the time of d civil days, where

d

D
=

r

R
.

The “lord of the year”, or weekday in which the start of the (r + 1)th year
falls, is then found from d mod 7 plus the appropriate offset corresponding
to the weekday of the start of the era, or “epoch” date. The first day of
the week is Sunday.

Naturally, the value of the ratio D/R implies a particular length of the
sidereal year in days. The size of this year-length, along with the choice of
epoch/era, varies from one school of Indian astronomy to another. In the
school of Āryabhat.a, which was especially widespread in southern India,
the preferred era was the “Mahāyuga” or “great era”, sometimes denoted
simply “yuga”, containing 4, 320, 000 years and 1, 577, 917, 500 civil days,
implying a year-length of 365 days plus a sexagesimal fraction of approx-
imately 0; 15, 31, 15 day. However, the Āryabhat.a school generally reckons
dates not from the start of the Mahāyuga but rather from the beginning of
one of its subdivisions, the “Kaliyuga” or Fourth Age. The initial year of
the Kaliyuga is taken to begin on a Friday falling in the year we know as

8 Although there are consequently sixty karan. as in a synodic month, there are only
eleven distinct names for them, seven of which recur eight times each in every synodic
month, while the remaining four appear only once. It is understandable that Bayer and
his Tranquebar correspondents completely failed to grasp the rather recondite system of
the karan. as.
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3102 BCE, a date traditionally identified with the legendary battle of the
clans in the Sanskrit epic Mahābhārata. 9

Another widely-used epoch in Indian astronomy, and more common in
popular date-reckoning than the Kaliyuga epoch, is the start of the so-
called “Śaka” era associated with the Śakas or Indo-Scythians, falling in
78 CE. (This era was doubtless especially interesting to Bayer due to its
evident connection with the history of ancient Central Asia). Successive
years are also frequently identified (particularly in southern India) by their
position in what is known as the “Jupiter cycle”, a recurring succession
of sixty individually-named years. The first Jupiter cycle is held to have
commenced after 3588 years of the Kaliyuga.

Walther’s and Bayer’s remarks explain the fundamentals of Indian time
measurement and a basic procedure for finding the initial moment of a
given year, insofar as they themselves understood these concepts. Their
task was complicated by a number of factors. First, they were attempting
to explain features from a variety of related but not identical calendri-
cal systems. Second, they were comparing technical terms from different
languages, including Tamil, Sanskrit or Hybrid Sanskrit (“Graenda”, from
Sanskrit “grantha”, “verse” or “book”), and Deccani Urdu. Moreover, they
included frequent attempts at comparisons with non-Indian traditions, ap-
pealing to sources in Greek, Persian, Hebrew, Chaldaean or Babylonian,
and Chinese. It cannot have helped that most of the foreign words were
freely and sometimes inconsistently transliterated (although Greek was rep-
resented in Greek characters, and Urdu, Persian, and Chaldaean in Ara-
bic/Persian). And finally, they were apparently working from “cookbook”
computational manuals and calendars with no access to the underlying
models of Āryabhat.a-school astronomical theory, except what they gleaned
from the incomplete and/or imperfectly understood descriptions of the local
practitioners with whom Walther and his colleagues studied in Tranquebar.

The following brief overviews describe the main subjects of these appen-
dices and the points where Walther and/or Bayer came to grief in under-
standing their contents. Most of the comparisons with other chronological
traditions are here ignored.

4.1. Walther’s “Indian Doctrine of Time”

This work is divided into eleven sections, as follows:
I On minutes. The second sexagesimal subdivision of the day, equal to

24 seconds in the modern hour-minute-second system.

9 For more detailed discussions of time measurement in the Āryabhat.a school of Indian
astronomy, see [12] and [4].
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II On hours. The first sexagesimal subdivision of the day, equal to 24
of our minutes.

III On days. Civil days.
IV On the week. The seven-day week with weekday names derived from

the planets, corresponding to the Hellenistic/modern system.
V On months. The solar months and names of zodiacal signs, corre-

sponding to the Hellenistic/modern zodiac. The names of the twelve
seasonal (lunar synodic) months, translated as the European month
names from Aprilis to Martius. The names of fortnights or half-
months.

VI On the year. The solar year, described as “common” (with 365 days)
or “bissextile” (with 366 days). In fact, no Indian astronomical sys-
tem, as far as I know, actually intercalates leap days instead of the
traditional intercalary months mentioned above. It seems probable
that Walther drew this conclusion from examining tables showing
the initial weekdays of successive solar years, and noticing that the
consecutive year-beginnings were either 365 or 366 days apart, with-
out understanding the details of how they were calculated. This is
supported by Walther’s note on the topic:

The method of computing of the Indians depends on tables devised
by their predecessors, not on astronomical observation of that point
[in time] at which the sun enters Aries. The beginning of the year
occurs as the sun appears in the sign of Aries. . . The year of the In-
dians is Julian, into which the Egyptians under Roman domination
changed their own Nabonassarean [365-day] year. . . ([3], p. 167)

Walther lists the initial dates and times of a few recent years in the
Indian calendar:

42 . Kı̂laga 1728 1.15′ Tuesday
43 . Saumja 1729 1 April, midday 16.46′ Saturday
44 . Sadârana 1730 31 March, night 32.17′ Sunday
45 . Wirôdigrudu 1731 31 March, night 47.48′ Monday
46 . Paridâbi 1732 1 April, morning 3.20′ Wednesday

([3], p. 168)
VII On the sixty-year cycle. The names of the sixty years in the Jupiter

cycle.
VIII On the great cycle. The Kaliyuga of 432000 years and the three other

parts that make up the Mahāyuga. Bayer includes here a long note on
the names and supposed nature of the “constellations” (naks.atras),
karan. as, and yogas, since he believes them to have something to do
with multi-year periods:

After the 27 constellations the [Telugu Indians] set in their cal-
endar the same number of Yoga and 11 Karana. . . But it is suffi-
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ciently clear from this calendar that Yoga and Karana are cycles
of constellations. . . Yoga are assigned in their order to a particular
day, together with the Indian hour and minute that bound it. Thus
it happens that sometimes two Yoga come together in one day. But
Karana are set in no such order; I have found no cause for this, as
the nature of Karana is not yet investigated. . .

These Yoga seem to me to indicate Indian periods. For 16000
years or 266 2

3
sexagesimal cycles multiplied by 27 make 432000

years or 7366 2
3

sexagesimal cycles, which is called the Kaliyuga

period ([3], pp. 176–178).
IX On the greatest cycle. The Mahāyuga.
X On other cycles and periods. Indian names of large decimal powers.

XI On the Indian calendar. Its name pañcāṅga and its five components:
The delimiters of the festivals are: 1. Tithi, fifteen parts of a half-
month. 2. Day of the week. 3. Nakshatra, twenty-seven constella-
tions. 4. Twenty-seven Yoga. 5. Eleven Karana, in astrological no-
tions, deal with the determination of fortunate and unlucky days. . .
([3], p. 184)

Some translated excerpts and dates from an Indian calendar for 1730
are appended. Walther comments distrustfully on traditional Indian
cosmological notions, such as the placement of the moon above the
sun, the revolution of celestial bodies about Mount Meru, and the
support of the earth and causation of eclipses by a great serpent:

That Indian tables are not constructed, but received from others,
is proved from [their] total ignorance of astronomy. . . How can
those who are so ignorant of the causes of eclipses predict them in
calendars, except from tables derived by the work of others? ([3],
pp. 189–190)

4.2. Bayer’s “Supplement to the Indian Doctrine of Time”

These few pages contain excerpts and summaries of letters from Walther
and his colleagues, as follows:
– Letter from Walther, 30 January 1732. The calculation of the Indian

year: an algorithm for finding the day and fraction of a day on which
a given Indian solar year begins. The algorithm is not well understood,
especially the subtraction of a mysterious constant 1237 (see the discus-
sion in the following section). Walther’s translation of a transliterated
Sanskrit version of this procedure is as follows:
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60 is multiplied by 20; they are added to the past year. When 9 plus
400 is added, you have the time of the Śaka kings. When 3179 is
added to (this) year, you get the Kaliyuga [year]. The Kaliyuga [year]
is multiplied by 365. Add a fourth of the (same) year. Again (this)
year is multiplied by 5. 1237 is subtracted. You subtract 576 (per)
day multiplied [the Sanskrit is more nearly “divided by 576 and added
to the days”]. The sixth weekday [in Sanskrit, “Venus-day”] (is) the
beginning of the days. . . ([3], p. 193)

– Letter from Walther, 10 January 1735. Comments about the “new year”
algorithm and additional examples of recent year-beginnings from the
calendar. Walther remarks:

Our Indians do not require bissextile years or intercalary months, but
fix the hour and minute of the first day in which the beginning of the
year occurs. [They] do not readily teach anyone the mystery of their
calculations; however, it is certain that they often transfer the start
of the year to the following weekday. At any rate their year is greater
than the true tropical solar year, whence the start of the Indian year
occurs ten days later than ours. But I doubt whether this measure of
time was received by the people before about the 600’s. Because in the
Roman Empire the Julian calendar was received by a wide territory,
principally by the Egyptians, from whom I suppose our [Indians] also
received it. . .

[Bayer here remarks in a footnote: “I mistrusted this magnitude of
the Indian year. But now see the whole thing fully explained below
[by] Leonhard Euler. . .”]

About the number 1237 I cannot indicate [anything], only it is cer-
tain that it is fixed. . . For [its] general form is employed in the calcu-
lation of all years.

[Another footnote from Bayer: “At first I doubted whether this num-
ber was fixed, but now see below.”] ([3], pp. 196–197)

– Letter from Nicolaus Dal, Martin Bosse, Christian Friedrich Pressier
and Walther, 30 December 1735. Additional examples of year-beginnings
from the calendar.

– Letters from the same and from Johann Anton Sartorius, 11 January
1735. Discussion of the lunar months accompanied by a list of months
for 1734 containing 29 to 32 days.

4.3. The calculation for the start of the year

The “new year” algorithm that puzzled Walther and Bayer is actually
fairly simple, but its steps are not entirely obvious. The technique is more
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or less as follows:
– Convert the desired year in the 60-year Jupiter cycle into the number of

elapsed years of the Kaliyuga era.
– Multiply that year-number by the year-length of 365 + 1

4
+ 5

576
days.

That is the number of days elapsed between the start of the Kaliyuga
and the start of the desired year. 10

– Subtract 1237
576

or 2 85
576

from the product. This step is less easy to in-

terpret, but the integer part of the constant is probably a zero-point
correction. Since the Kaliyuga began on a Friday, subtracting two days
from the elapsed total effectively moves the zero-point to the following
Sunday, the first day of the week. The source of the accompanying 85

576
or 0; 8, 51, 15 of a day is not clear, but it may have something to do
with the traditional terrestrial longitude correction. That is, the epoch
moment is considered to have occurred at sunrise on the Indian prime
meridian passing through Ujjain, which will correspond to a somewhat
later time at a location east of the prime meridian, such as Tranquebar.
However, the fraction seems too large to be completely accounted for in
this manner.

– Divide this modified day-total by 7, and subtract (modulo 7) 1 from the
remainder. The reason for subtracting 1 is not evident. Strictly speaking,
if we wish to convert a result modulo 7 into one of a sequence of weekday-
numbers beginning with 1 (Sunday) rather than zero, we should rather
add 1 to the result. In effect, subtracting 1 from the result is equivalent
to subtracting 2 from the weekday-number. This suggests the abovemen-
tioned Friday/Sunday correction for the start of the Kaliyuga—which,
however, was already taken care of in the previous step. If this is not
in fact an inadvertent repetition of the same epoch-weekday correction
(which however is supported by the reference to “the sixth weekday”
in Walther’s translation of the rule), perhaps it represents an ad hoc
correction to a weekday discrepancy in this particular calendar.

– A year-beginning falling in the second half of a day is pushed forward to
the following weekday.

10These two steps, plus the reduction of the result modulo 7, constitute the complete

“lord of the year” computation found in Āryabhat.a-school astronomical works such as
[4], verse 1.27.
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5. Euler’s interpretations in the “De Indorum anno”

Euler’s essay 11 is not a comprehensive treatment of all the questions
raised in the “Doctrine of Time”, but rather intended primarily to clear up
certain points, probably those which Bayer specifically asked him about. In
21 numbered paragraphs, Euler deals with the year-length and the differ-
ence between the Indian and Gregorian year, the technique for computing
the moment of the start of a given year, the “transferring” of that initial
moment to the subsequent weekday, and a few other points of interest. He
begins with a straightforward analysis of the characteristics of the year,
based on the data reported by Walther:

1. The Indians do not locate the start of any year, as is the custom with
us, at the beginning of some day, but at that moment of time in which
they consider the sun to arrive at a certain fixed point. But whether this
point is the beginning of the sign Aries or instead the beginning of the
constellation Aries is not sufficiently clear from the description, in which
they say the year begins at that moment in which the sun enters Aries.
But this endpoint may be defined not only from the amount of the year,
but also from the beginning of some assigned year.

2. As for the length of this astronomical year of the Indians, it can be
deduced from the beginnings of the years 1728, ’29, ’30, ’31, ’32 included
on page 168. Certainly, by the calculation accepted among the Indians,
in which they divide the day into 60 hours, the hour into 60 minutes, the
minute into 60 seconds, it is clear enough that their year contains 365
days, 15 hours, 31 minutes and 15 seconds; which quantity, according to
our manner of dividing time, produces 365 days, 6 hours, 12 minutes and
30 seconds.

3. If this quantity is reduced to days and parts of a day, the year of the
Indians will be found to contain 365 + 1/4 + 5/576 days, which quantity
is thoroughly understood to have been accepted in their astronomical
tables, from the method described on page 194 for computing the be-
ginning of any year. The stated divisions by the number 576, which are
often repeated, clearly proclaim it. This will appear more clearly here-
after, when I have derived from this length of the year the same rule of
stated calculations that the Indians make use of.

4. Therefore the year of the Indians exceeds our tropical year compris-
ing 365 days, 5 hours, 48′, 57′′, and the excess is 23′, 33′′. . .

6. The year of the Indians agrees accurately enough with our side-
real year, in which the sun returns to the same point in the heavens

11See [6]. The translation there cited is the source of all the quotations from the “De
Indorum anno” in the present paper.
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with respect to the fixed stars, the length of which year is put by the
astronomers at 365 days, 6 hours, 10 minutes, so that the year of the
Indians differs from this year only by 2 minutes. This small error, ow-
ing to the inadequacy of observations which were retained [though] very
ancient, is easy to forgive. . .

8. Since now the length of the year which the Indians accepted is
known, it will be easy to determine from the given beginning of some
year the beginning of the following one, by adding to the beginning of
the elapsed year one weekday, 15 [sexagesimal] hours, 31′, 15′′. So if the
beginning of the year 1731 by the defined calculation is weekday 2, hour
47, 48′, 45′′, the beginning of the following year must fall on weekday 4,
hour 3, 20′, 0′′.

9. Therefore by this rule those same beginnings of all years are easily
found, which would be extracted by laborious calculation done in the
prescribed manner. . .

10. The first day of the year according to the Indians is always the
first day of the month April, but this [does] not always coincide with the
weekday in which the beginning of the year occurs; but if the beginning
of the year is celebrated in the daytime, they consider that same day
(but if the beginning of the year happens [to fall] in the night, then the
following day) as the first day of April. . .

Euler lists sample year-beginnings computed in this trivially simple way,
and notes that they agree very well with the examples quoted from ac-
tual Indian calendars (see above). He then demonstrates the agreement
of this method with the “mysterious” year-beginning algorithm quoted in
Bayer’s “Supplement”. (He has evidently deduced the correct year-length
partly from the constants in this algorithm as well as from Walther’s cal-
endar examples, since the latter show only two sexagesimal places.) Euler’s
explanation of the zero-point correction(s) is not entirely clear, but he ob-
viously grasps the basic fact that they must relate to a time offset at the
start of the Kaliyuga. After working an example, he notes some of the ways
in which the algorithm could be simplified.

13. Although the beginning of any year can be found easily by the
method used above, yet the rule described on p. 194 not only is not to be
despised, but is very useful for [finding] the given beginning of any elapsed
year. Also, just as a calculation of this sort must be undertaken with a
specified year whose beginning is known, so in that rule the first year of
the Kaliyuga is used, whose beginning should have occurred in the third
weekday, hour 51, minute 8, second 45 by the Indian measure. Whence
originates the number 1237, which is employed in the calculation.

14. Therefore for any proposed year, of which the beginning is to be
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determined, first of all the time elapsed from the beginning of the first
year of the Kaliyuga up to the proposed year is to be investigated, which
is made by adding to the past year of the sexagesimal era the number of
years elapsed from [the beginning of] the Śaka era up to the beginning
of the sexagesimal era in which is the proposed year; if 3179 years are
added to which, [there] results the interval of elapsed time from the first
year of the Kaliyuga to the proposed year.

15. If the number of years so determined is multiplied by the amount
of the year in days, namely 365 + 1/4 + 5/576, there comes out the
number of days elapsed from the first year of the Kaliyuga, from which
number—because the beginning of the first year of the Kaliyuga occurs
not in the beginning of the first day, but in hour 51, 8′, 45′′ of it, and
because the required weekday is sought not from the first, but from the
sixth—the number 2 85

576
or 1237

576
should be subtracted. Therefore if this

sum is divided by 7 (or into sevenths), [and] however many can be made
are subtracted, the integer part of the remainder will give the weekday
in which the beginning of the proposed year occurs, counted from the
sixth weekday. But the fractional part, converted to sexagesimal parts,
will give first the hour, then the minute (first as well as second [part]) in
which the beginning of the year occurs. So this calculation in accordance
with the arithmetic rules most accurately agrees with the method of
the Indians [previously] described, and hence the reasoning of the whole
stated procedure is understood. But since from the rule as it is described
it may hardly be clear in what way the fractions should be handled, we
will demonstrate the matter by an example.

16. Therefore, let it be proposed to investigate the beginning of the
present year 1736 after the manner of the Indians. Therefore the [position
in the] cycle of the past year will be 49. And the calculation will be as
follows:

60
20

1200
49

1249 past year of the Cycle
409

1658 Śaka era
3179
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4837 Kaliyuga by 365 + 1
4

+ 5
576

365

1765505
1209 1

4
1
4

Kaliyuga

1766714 1
4

4837
5

24185
1237 by the rule

22948

576 } 39 484
576

Therefore 1766754 52
576

is the number of elapsed days; [when it is] di-

vided by 7, the remainder will be 3 52
576

= 3 13
144

weekdays. So the be-

ginning of the year occurs in weekday 3 counted from the sixth, that
is, in weekday 2. And the fraction gives 5 hours and 25 minutes of that
weekday, just as we stated above.

17. And this calculation can be rendered more easy and more brief in
several ways; namely, where it should be multiplied by 365, multiplication
by unity can be substituted in place of it, since 364 can be divided by 7.
Then if the numbers to be divided by 576 have a common divisor with
576, the calculation can also be made easier by reducing fractions. But
these are of no great moment. Moreover, if 1813 is subtracted in place
of 1237, then the weekday in which the beginning of the year occurs will
be immediately obtained.

Euler then undertakes to explain some other points that had apparently
confused Bayer, namely the unequal length of calendar months and the
nature of the Yoga time-unit. Again, Euler’s confidence in the rationality of
the underlying mathematics somewhat outruns his specialized knowledge:
he interprets “months” as solar months tout court, and deduces the yoga to
be 1/27 of a sidereal month (which is actually, as noted above, the definition
of a naks.atra). Finally, he illustrates his previously proposed simplification
of the “new year” algorithm.

18. As to [what] pertains to the months of this Indian solar year, the
number of days which is allotted to individual months does not seem to
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me at all to be assigned at whim. For the Indians have as a month the
space of time in which the sun traverses a twelfth part of the ecliptic, so
that the length of a month depends on the speed of the sun. Therefore,
since the sun progresses more slowly in the summer than in the winter,
it is no wonder that the Indians make their summer months longer than
the winter [ones]. . .

20. Therefore, since from the inequality of the months it is established
[that] the inequality of the motion of the sun is not unknown to the Indi-
ans, it would be worthwhile to know what sort of table of solar equation
they use, which, however it may be, will not be much different from our
tables.

21. What the Yoga or 27 constellations of the zodiac are to the Indians
also does not seem obscure to me. For from these constellations they form
a month of the fourth type: this is clearly enough to be understood [as]
periodic lunar months, which are completed in about 27 days. Wherefore,
since the moon takes 27 days to go around the zodiac, one Yoga is seen
to be a twenty-seventh part of the zodiac and an assemblage of stars
existing in a space of this sort is without doubt one such constellation of
which 27 are numbered in the zodiac. Consequently, when they allot these
Yogas in the calendars, without doubt they wish to indicate by them the
part of the zodiac where the moon is on some day; and since the moon
sometimes in one day can enter into two constellations of this sort, it is
no wonder if sometimes two such constellations are found written in one
day.

Rule for computing the beginning of any year
First, the number of the sixty[-year cycle] in which the given year

occurs, is multiplied by 525
48

and to the product is added 371
96

. Then the

cycle of the sought year is multiplied by 1+1/4+5/576 and the product
is added to the former; when this is done, the sum is divided by 7, and
the remainder will indicate the weekday together with the hours and
minutes in which time the beginning of the year occurs. . .

Euler’s proposed “rule” is a pleasing specimen of arithmetic ingenuity,
which can be explained as follows. If the number of elapsed sixty-year
Jupiter cycles is c, and the current year is the yth year of the current
cycle, then the original “new year” algorithm instructs us to compute the
weekday w of the start of the current year as follows:

w =

[
(60c + 3588 + (y − 1))

(
365 +

1
4

+
5

576

)
− 1237

576
− 1

]
mod 7.
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These terms are just rearranged and then simplified by eliminating com-
mon factors and multiples of 7, as Euler suggested earlier, to make the
calculation “more easy and more brief”:

w =

[
60c

(
365 +

149
576

)
+ y

(
365 +

149
576

)

+(3588− 1)

(
365 +

149
576

)
− 1813

576

]
mod 7

=

[
c

(
5 +

25
48

)
+ y

(
1 +

149
576

)
+

(
3 +

71
96

)]
mod 7.

To sum up, although Euler cannot have found these questions about the
Indian calendar very interesting technically, his keen “mathematical nose”
served him well in detecting simple, logical rationales for rather cryptically
expressed concepts and rules. Occasionally his reliance on simplicity and
logic led him slightly astray from the true explanations, which however he
could not be expected to deduce from the limited information available to
him concerning Sanskrit astronomy.

6. The impact of Euler’s work

The “De Indorum anno”, like the other Indological parts of Bayer’s His-
toria, does not seem to have had any significant influence on the later
historiography of Indian astronomy. Nor did it inspire Euler himself to
explore the subject further, despite his passing expression of interest in
Indian parameters such as the solar equation. Probably if Bayer had lived,
he would have persuaded Euler to explain more such questions to him,
although it is doubtful if the results would have been very useful without
better comprehension of the sources on the Indological side.

In Euler’s 1748 Introductio in analysin infinitorum (Introduction to the
analysis of the infinite), the relation between the calendar and the year-
length resurfaces in an example on the use of continued fractions:

To express the ratio of the day to the mean solar year in the smallest
numbers as closely as possible. Since this year is 365d, 5h, 48′, 55′′,
one year contains in fraction 365 20935

86400
days. Therefore the task is to

expand this fraction, which will give the following [continued-fraction]
quotients: 4, 7, 1, 6, 1, 2, 2, 4, from which these fractions are derived:
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0
1
, 1
4
, 7
29

, 8
33

, 55
227

, 63
260

, 181
747

, etc. Therefore the hours with [their] first

and second parts, that exceed 365 days, in four years make about one
day, whence the Julian calendar has its origin. But more exactly, 8 days
are completed in 33 years, or in 747 years 181 days; whence [it] follows
[that there are] 97 excess days in four hundred years. Therefore, since
the Julian calendar adds 100 days [during] this interval, the Gregorian
[calendar] converts in four centuries three bissextile years into common
[ones]. 12

This example appears to be the only direct legacy in Euler’s later work
of his investigations into Indian astronomy. However, his collaboration
in Bayer’s chronological researches may have made him more suscepti-
ble to the “ancient data” fever so prevalent among eighteenth-century as-
tronomers. More than ten years after Bayer’s death, in a couple of letters
to Kaspar Wettstein, Euler expressed his hopes and doubts about early as-
tronomical observations—but this time from the Arabic tradition, not the
Indian:

[28 June 1749:] . . .Monsieur le Monnier writes to me, that there is, at
Leyden, an Arabic manuscript of Ibn-Jounis [ibn Yūnis]. . . which con-
tains a History of Astronomical Observations. . . I am very impatient to
see such a work which contains observations, that are not so old as those
recorded by Ptolemy. For having carefully examined the modern obser-
vations of the sun with those of some centuries past, although I have
not gone farther back than the fifteenth century, in which I have found
Walther’s observations made at Nuremberg: yet I have observed that
the motion of the sun (or of the earth) is sensibly accelerated since that
time; so that the years are shorter at present than formerly: the reason
of which is very natural. . . [T]he effect of this resistance will gradually
bring the planets nearer and nearer the sun; and as their orbits thereby
become less, their periodical times will also be diminished. . . This then
is a proof, purely physical, that the world, in its present state, must have
had a beginning, and must have an end. . .

[27 September 1749:] . . .But I will be quite annoyed if M. Lemonnier
is wrong about the contents of the Arabic manuscript that he told me
about: because I have been counting on the observations that I would
find there. I see that nowadays there is a great deal of work done on
publishing the works of the ancient Arabs, but I would infinitely prefer
works where they have given a detailed description of their observations
to ones that contain only their conclusions. Of this latter type are their
catalogues of fixed stars which are almost entirely useless to us, since the

12 [5], document E101, part 1, ch. 18 (“On continued fractions”), Example 2, p. 320.
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very observations from which they determined the places of the stars are
unknown to us. . . 13

Like many of his contemporaries, Euler recognized the great potential of
early observational records (if sufficiently precise) for testing the accuracy
of physical theories, and their cosmological implications, over long periods
of time. And like them, he ultimately gave up on the prospect of data
recovery from ancient texts, finding more scope among the moderns in
the great eighteenth-century explosion of theory and experiment in applied
mathematics.
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NL-1081HV Amsterdam
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1. Introduction

1.1. Modern kinematics

Ampère 1 introduced the name “kinematics” (“cinématique” in French)
in 1834 in an essay in which he proposed a new classification of the sci-
ences 2 . He defined kinematics as the sub-discipline of mechanics that deals
with the properties of motion without taking the causes of the motion into
consideration, in other words without considering masses and forces. In
the course of the 19th century, kinematics became a coherent research area,
encompassing the geometrical properties of motion, but also properties con-
cerning velocities and accelerations. Kinematics was born in an area where
mechanics, geometry and mechanical engineering meet. Nowadays, in par-
ticular in the science of machines and mechanisms, including the mechanical
engineering part of robotics, the subject is still of considerable interest. Eu-
ler’s contributions to kinematics belong to the pre-history of the subject.
In order to put these contributions in perpective, I will first introduce some
terminology and at the same time mention some fundamental results.

1 A.-M. Ampère, Essai sur la philosophie des sciences, Paris, 1834.
2 A classic modern text on kinematics is: O. Bottema, B. Roth, Theoretical Kinematics,

North Holland Publishers, Amsterdam, 1979. For applications to design, see for example
J. Michael McCarthy, Geometric Design of Linkages, Springer, 2000.
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In planar Euclidean kinematics one studies in general coinciding Eu-
clidean planes moving with respect to each other. In spherical kinematics
one considers the motion of coinciding Euclidean spaces with a common
fixed point. Often one restricts oneself in this case to the motion of co-
inciding spherical surfaces with respect to each other. Finally in spatial
Euclidean kinematics one studies coinciding Euclidean spaces moving with
respect to each other. Some important results are the following. In pla-
nar Euclidean kinematics, if we consider one Euclidean plane moving with
respect to another, at each particular moment the motion is either an in-
stantaneous translation or an instantaneous rotation. 3 If it is a rotation,
its center is called the instantaneous center of rotation or pole. The analo-
gous result in spherical kinematics says that at each instant the motion is
an instantaneous rotation about an axis of rotation, instantaneous. 4 And
in spatial kinematics in general at each instant there is an instantaneous
screw axis 5 : the motion of two spaces with respect to each other is a
combination of a translation along an axis and a rotation about this same
axis.

If we exclude instantaneous translation, during a planar motion of a
plane, considered as moving, with respect to another plane, considered as
fixed, the instantaneous center of rotation describes curves in both planes.
The locus of positions of the pole in the fixed plane is called the fixed
polhode, while the locus of positions in the moving plane is called the moving
polhode. During the motion, the moving polhode rolls without slipping on
the fixed polhode. This means that in general planar motion can be defined
by means of two curves rolling without slipping on each other. In spherical
and spatial kinematics we have analogous results. In spherical kinematics
motion in general can be defined by means of two (in general, non-circular)
cones, called the fixed and moving polhodes, rolling without slipping on each
other. In space, in general a motion can be defined by means of two ruled
surfaces, the fixed and moving axodes, moving with respect to each other
in a combination of rolling and slipping. 6

3 Discovered by Johann Bernoulli. Cf. Johann Bernoulli, De centro spontaneo rota-
tionis, In J. Bernoulli, Opera omnia, Tom. IV, Lausanne und Genf, 1742 (Nachdruck

Hildesheim, 1968).
4 Discovered by D’Alembert and Euler. See below.
5 Discovered by Giulio Mozzi. Cf. Giulio Mozzi, Discorso matematica sopra il rotamento
momentaneo dei corpi, Stamperia di Donato Campo, Napoli, 1763.
6 Presumably the first to study this aspect of motion in a plane and in space (with or
without a fixed point) was A.-L. Cauchy, who published in 1827: Sur les mouvements que
peut prendre un système invariable, libre, ou assujetti à certaines conditions, Reprinted

in Oeuvres IIe Série, Tome VII, pp. 94-120, Paris, 1899. The theorems are part of a

complex of results that we owe mainly to French mathematicians like M. Chasles, L.
Poinsot and O. Rodrigues.
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Instantaneous kinematics deals with the properties of motion at a partic-
ular instant. Zero order properties concern positions, first order properties
concern tangents and velocities and second order properties concern accel-
erations and radii of curvature of trajectories in the position under consid-
eration. Continuous kinematics deals with complete motions. There is also
a branch of kinematics called discrete kinematics in which one considers 2,
3, 4 or more discrete positions of a moving plane, moving sphere or moving
space. A fundamental result in discrete spherical kinematics is that given
two positions, one can always move from one of the two positions to the
other one by means of a rotation about a unique axis of rotation that is
determined by the two positions. Excluding translations, in the plane and
in space two positions define analogously an axis of rotation and a screw
axis, respectively. Discrete kinematics is useful in the design of machinery
that should move a machine element through a number of predetermined
positions.

1.2. Euler and kinematics

Before the middle of the 18th century rigid body dynamics did not exist.
There were no good methods to study the motion of a ship or the motion of
the earth about their centers of gravity. Euler was a major contributor in
this respect and his contributions to spherical and spatial kinematics are
intimately connected to this work on dynamics. As for his contributions
to spherical and spatial kinematics, he was the first to use perpendicular
Cartesian coordinate systems to describe the motion of a rigid body in
space. He introduced the so-called Euler angles and he showed the existence
of an instantaneous axis of rotation in spherical kinematics. He was also the
first to prove the existence of the axis of rotation in discrete two position
spherical kinematics.

The background of Euler’s contributions to kinematics is twofold. First
of all Euler wrote two papers on the ideal shape of gear teeth. Secondly
Euler contributed to spherical and spatial kinematics.

The papers on gear wheels are part of a development that started es-
sentially with the investigation of the ordinary cycloid: the curve described
by a point on the circumference of a circle when this circle rolls with-
out slipping on a straight line. The curve offered challenging problems to
mathematicians, 7 on the one hand, and, on the other hand, in the course
of time the curve turned out to possess physical significance. This is im-

7 Well known is Pascal’s 1658 challenge to the mathematicians of his time. Using the

pseudonym Amos Dettonville and offering 600 francs he proposed six problems on the
cycloid that he had recently solved himself.
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mediately clear if one considers some aspects of Huygens’ work. In 1673
Christiaan Huygens (1629-1695) published his Horologium Oscillatorium.
In the third part of the book Huygens introduced his theory of evolutes by
means of which he proved that if the bob of a pendulum moves between
two cycloidal-shaped plates, the bob is forced to move along an inverted
cycloid and ideally will keep time uniformly, no matter how wide it swings.
Huygens is the father of the theory of curvature of planar curves. The the-
ory was born out of the concept of two curves related by “unrolling”. It
led to the notions of involute and evolute. The easiest way to define the
relationship between evolute and involute is mechanical and visible in his
isochronous pendulum clock: Let the evolute be given. Fit a thread to the
shape of the given evolute and then unwind the thread from one end keep-
ing the thread always pulled taut. The end of the thread then describes the
involute. Huygens also considered the inverse relationship. He derives the
evolute from a given involute as follows. If P and Q are two infinitesimally
close points on a given involute, the lines perpendicular to the tangents
in P and Q intersect in a point on the evolute. From a modern point of
view the evolute is the set of all centers of curvature of the involute. The
first major contribution to the geometry of gear wheels came from France.
Charles E. L. Camus (1699-1768) published “Sur la figure des dents des
roues et des ailes des pignons, pour render les horloges plus parfaits”, His-
toire de l’Académie royale des sciences, Paris, 1733, in which he showed
that in order to get as output a uniform angular velocity from a uniform
input angular velocity it is necessary that the shapes of the two teeth are
such that they can be generated like epicycloids by rolling one and the
same curve on two different circles. Euler’s papers on the ideal shape of
gear teeth are part of this development. Euler discovered an expression for
the relationship that is nowadays called the Euler-Savary formula, a result
concerning radii of curvature in instantaneous planar kinematics. It is re-
markable that although Euler was merely studying a very specific subject,
gear wheels, the Euler-Savary formula belongs from a modern point of view
to planar theoretical kinematics and has general validity. Euler in this con-
text also discovered so-called involute gearing, nowadays the most popular
form of gearing.
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2. Euler and instantaneous planar kinematics

2.1. The Euler-Savary-formula

If we have a planar motion at a particular instant, a modern kinemati-
cian thinks of a particular position of a moving polhode with respect to
a fixed polhode. The point where the two curves touch each other is the
instantaneous center of rotation or pole. Clearly an arbitrary point P of
the moving plane describes a curve in the fixed plane. At the particular
moment under consideration P coincides with a particular point of the
curve that it describes. The tangent to the curve in this particular point
can be constructed easily by means of the pole. How about the center of
curvature in this particular point? Nineteenth century kinematicians have
extensively studied the relation between the points of the moving plane
and the corresponding centers of curvature of their trajectories in the fixed
plane. This particular relation has many properties.

Fig. 1.

Consider Figure 1, which represents the situation at a particular moment.
The fixed polhode is π1. The moving polhode is π2. The point O at which
the two polhodes touch each other is the instantaneous center of rotation
or pole at the moment that we are considering. k2 is a curve in the moving
plane. k1 is the envelope in the fixed plane of the set of positions in the
fixed plane of k2. In the position that we are considering k1 and k2 touch in
the point C. The points N1, N2, M1 and M2 are, respectively the centers
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of curvature of k1, k2, π1 and π2 corresponding to the points C and O.
Let θ be the angle between the common tangent to the polhodes and the
common perpendicular in C to k1 and k2. Then we have, in general, the
following lovely relation:(

1
ON1

− 1
ON2

)
· sin θ =

1
OM1

− 1
OM2

(1)

This is the Euler-Savary formula or theorem. The variables ON1, ON2,
OM1 and OM2 correspond to directed line segments; they have a sign. The
pole, O, is the origin of a Cartesian coordinate system with pr as positive
x-axis and pn as positive y-axis. Similarly O is also the origin of a Cartesian
coordinate system Oξη with directed line segment OC defining the positive
direction of the ξ-axis. The two systems have the same orientation. As for
the signs of the variables in the Euler-Savary formula, ONi is positive if
moving from O to Ni is a move in the direction of the ξ-axis. OMi is
positive if moving from O to Mi is a move in the direction of the x-axis.

A modern proof of the Euler-Savary formula was given in 1970 by G. R.
Veldkamp. 8

2.2. Euler and the Euler-Savary formula

In Euler’s first paper on gears, De aptissima figura rotarum dentibus
tribuenda (E249 in Opera omnia II, 17, pp. 119-135), written in the first half
of the 1750s, he phrased the condition that if the input rotation is uniform,
the output rotation should be uniform as well. He proved that this condition
implies that friction is inevitable. As for the shape of the teeth, Euler in this
paper did not succeed in going beyond what Camus had already done: for
example, if the teeth of one wheel are straight lines through the center of the
wheel, the teeth of the other wheel should consist of an arc of an epicycloid.
However, Euler’s paper Supplementum de figura dentium rotarum (E330,
Opera omnia, 17, pp. 196-219), written presumably ten years later is very
original. In this paper Euler gave a formula that is equivalent with (1).
Because Blanc and Haller in their preface to Opera omnia II, 17 quite
extensively describe the contents of this particular paper, I will restrict
myself to some supplementary remarks.

Euler did not study general planar motion at a particular instant; he
studied the form of the teeth of gear wheels. The general validity of the
formula that he discovered is an accidental spin-off of his research. This
arises because, in general, just as for for first and second order properties,

8 G. R. Veldkamp. Kinematica, Scheltema & Holkema, Amsterdam, 1970, pp. 70-72.
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a planar motion at a particular instant can be represented by a circle rolling
without slipping on another circle. This is exactly what we are dealing with
when we have planar circular gear wheels satisfying Euler’s condition of a
constant velocity ratio.

Fig. 2. BT = a, AT = b, a + b = c, AP = p, PO = r.

Euler started with Figure 2. The points A and B are the centers of the
two wheels. EOM and FON are the two profiles of the teeth of the wheels.
O is the point where the two profiles touch and the line perpendicular to the
tangent in O cuts AB in the point T . When the gear wheels are functioning,
a moment MA about A yields a moment MB about B. It is easy to see
that at the instant under consideration the ratio of these two moments
equals BT/AT . Euler argues that the condition of a constant velocity ratio
implies that the ratio of these two moments must be constant, which leads
to a kinematical result: the common normal in the point where the profiles
touch each other intersects AB in a fixed point T . From a modern point of
view T is the pole of the motion of the two gear wheels with respect to each
other. The two polhodes of the motion of the two gear wheels with respect
to each other are two circles, one with center A and one with center B. The
two circles touch in T . Clearly Euler proved a kinematical result by means
of a dynamical argument. This happened more often in the 18th century.
For example, Johann Bernoulli’s discovery of the instantaneous center of
rotation for planar motion occurred as follows. He discovered that after a
rigid body in the plane is hit by an impulsive force of which the line of
action does not pass through the center of gravity, the velocity distribution
corresponds to a rotation about, as he said, “the spontaneous center of
rotation.” 9 So here as well a kinematical result was obtained by means of
a dynamical argument.

After having established that the point T is fixed, Euler determined
several relations between the parameters depicted in Figure 2 and differ-
entiated. He basically considered a slight change in the position of the two

9 De centro spontaneo rotationis, In J. Bernoulli, Opera omnia, Tom. IV, Lausanne,
1742.
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profiles with respect to each other, using the fact that the common nor-
mal intersects AB always in the fixed point T . After some calculations this
yields that dη

dξ , the ratio of the angular velocities, is equal to TA
TB . Euler then

derives the following expression that enabled him, in principle, to calculate
in an arbitrary position the radius of curvature ρ′ of profile NOM out of
the parameters of profile EOM .

ρ′ = c · cos ω − r − p · cos ϕ − b2 cos ω · d(p sinϕ)
c · d(p · sinφ) − a2dϕ cos ω

(2)

N. B. As for the parameters, see Figure 2. In a particular position we can
assume, without loss of generality, that profile EOM is a circle and that
the center of curvature of profile NOM coincides with Q. Then dp = 0
and ρ′ = OQ. If we, moreover, introduce the footpoints R and S of the
perpendiculars from, repectively A and B, on the line PQ (See Figure 3),
it is not very difficult to show that (2) implies

RT · SQ · TP + ST · RP · TQ = 0 or
RT · TP

RP
+

ST · TQ

SQ
= 0 (3)

These are Euler’s versions of the Euler-Savary formula, accompanied by
a construction that enables the graphical determination of the center of
curvature Q of NOM if the center of curvature p of EOM is given. It is
not very difficult to show that (3) is equivalent to (1). 10

Fig. 3.

10Félix Savary (1779-1841) was the first to derive the Euler-Savary formula in its mod-

ern form. Savary’s proof can be found in Leçons et cours autographiés, Notes sur les

machines, par le professeur F. Savary, Ecole Polytechnique 1835-36 (unpublished lecture
notes; available in the Bibliothèque Nationale in Paris).
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Fig. 4.

The formula has an amazing interpretation. It turns out that when p
coincides with R, then Q coincides with S. And naturally Euler considered
the possibility that this is the case during the entire motion. The profiles
then are involutes of the circles CB and CA. See Figure 4. At this moment
Euler discovered involute gearing.

3. Euler, acceleration, spherical and spatial kinematics

3.1. Introduction

Rigid body dynamics in space is essentially more difficult than the dy-
namics of planar systems. In the middle of the 18th century Euler was
struggling to develop a satisfactory theory. And while he did so, he initi-
ated the study of the different ways in which one can represent the position
of a rigid body in space. Because the problems are difficult, the choice of the
most suitable representation is crucial. One of Euler’s first contributions,
in E112, from 1749, was the idea to describe the moving body with respect
to a rectangular Cartesian coordinate system. This was not a trivial move;
earlier Euler had used intrinsic coordinates to deal with the trajectory of a
moving point mass. 11 The idea to introduce another Cartesian coordinate

11Much later in the introduction to his book on the motion of rigid bodies, published in
1765, Euler wrote about the use of Cartesian coordinates: “These three velocities, that
we attribute in our mind to the moving point, will make the whole calculation much

easier, and because I have not used this means in my previous books on mechanics, I
ran into very complicated calculations there” “Hae enim ternae celeritates, mente saltem
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system, which moves with the body, came somewhat later. First, in his
treatment of the motion of a body, Euler tried to exploit the kinematical
discovery that a body moving about a fixed point possesses an instanta-
neous axis of rotation. However, after the introduction of two Cartesian
frames of reference, coordinate transformations drew his attention. At this
point his research in dynamics possesses overlap with algebraic problems.
Faced by very complicated equations and calculations Euler first seems to
have believed that the problem was in finding the best geometrical repre-
sentation of the motion. In other words: doing the kinematics in the right
way can reduce the complications. Yet, the discovery of the principal axes
of inertia was in this respect just as important. Below I will discuss Euler’s
contributions to kinematics related to his work on rigid body dynamics in
the following way. After a section on the notion of acceleration, I discuss
the first occurrence, completely independent of mechanics, of the so-called
Euler-angles. Euler used them in an investigation of the way in which the
equation of a surface depends on the choice of the coordinate system. Then
I discuss the separation of the motion of the center of gravity of a body and
the motion about the center of gravity. After this I discuss Euler’s work
on the instantaneous axis of rotation and his different attempts to give the
equations of motion of a rigid body a handy form.

3.2. Acceleration: Euler and Newton’s second law

The Greeks did not possess the notion of non-uniform instantaneous ve-
locity. In a development starting with the Merton College group in the
14th century the notion of instantaneous velocity was formed. Casali and
Oresme represented instantaneous velocity geometrically by means of line
segments and Galilei applied the geometrical representation to his famous
analysis of the uniformly accelerated movement of a falling object under
the influence of gravity. In this analysis the velocity of the falling object
in a vacuum is a linear function of time, which immediately leads to the
parabolic trajectory of a bullet. In the 17th century several other authors
studied other examples of retarded or accelerated motion. Torricelli, for
example, studied the trajectory of an object that possesses a constant hor-
izontal velocity and vertically a velocity that is a quadratic function of
time. And although Huygens, Newton and others studied difficult prob-
lems concerning the motion of points in a resisting medium, it took quite

puncto mobili tributae, totum negotium expedient; quo subsidio cum non sim usus in

superioribus de Mecanica libris, in nimis intricatos calculos sum delapsus.” p. 23 in

E289, Theoria motus corporum solidorum seu rigidorum (Theory of the motion of solid
or rigid bodies), first published in 1765 (Opera omnia II, 3).
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some time before acceleration acquired a status comparable to the status
of velocity. For example, in 1700, Varignon, in a paper 12 in which he ap-
plied the differential calculus to linear motion distinguished force, velocity,
distance and time, denoted by y,v, x and t, respectively. Acceleration is
not mentioned. Why? Varignon gives two general rules for linear motion.

Rule 1: v = dx
dt and Rule 2: y = dv

dt
Because Varignon equates what we nowadays call acceleration with force

he does not need a separate notion of acceleration. 13 The same happens
in D’Alembert’s Traité de dynamique of 1743. The “accelerating force” φ
is defined as follows: φdt = du, where u and t are velocity and time respec-
tively. And also when Euler in 1736 published his two volume Mechanica
sive motus scientia analytice exposita (Mechanics or the science of motion
exposed in an analytical way) on the motion of a moving mass point, he
expressed a similar view: a force can be characterized by the change that
it brings about in the motion of a point. 14

If the motion of only one mass point is considered, we do not need next
to the notion of force a separate notion of mass. We can apply Varignon’s
formula. However, as soon as we consider several masses simultaneously,
we must be able to distingush them and we can no longer “hide” them in a
notion of force. So instantaneous accceleration only became a notion that
was clearly separated from the notion of force when rigid body dynamics
was being developed. Euler played a crucial role in this development.

The early forms of Newton’s law can only be understood if one realizes
how the early physicists were measuring the different quantities that occur
in their equations. Time was measured by pedulums, instantaneous veloc-
ity was measured by a length of fall. Forces, masses and weights were all

12M. Varignon, Manière générale de determiner les Forces, les Vtesses, les Espaces, &
les Tems, une seule de ces quatre choses étant données [...], Mémoires de l’Académie

Royale, 1700, pp. 22-27.
13 In 1707 Varignon presented a second text to the Academy: “Des mouvemens, variés
à volonté, comparés entre’eux & avec les uniformes”, Mémoires de L’Académie Royale

1707. The main theorem is the following: the distance covered by a moving point with

velocity v equals
∫

vdt. The theorem is illustrated by means of many examples in which
the velocity v depends in different ways on the time t. Varignon distinguishes accelerated

and retarded motions but the notion of acceleration does not in itself play a role.
14Euler and D’Alembert did not agree about the interpretation of the equation. For
D’Alembert the notion of force was a derived notion, while it was for Euler a primary
notion and consequently φdt = du was for Euler a law and not merely definition of the

notion of force. Cf. Véronique Le Ru, La force accélératrice: un exemple de définition
contextuelle dans le Traité de Dynamique de d’Alembert, Revue d’histoire des sciences
47, 1994, pp. 475-494. The lemma on “accélération” in the ENCYCLOPÉDIE, which

was written by d’Alembert, only confirms that acceleration was not seen as being on the
same level as velocity.
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measured by weights. Accelerations could not be measured directly and,
consequently, “an examination of the literature shows a marked reluctance
to speak of accelerations more than necessary.” 15

We will briefly consider two versions of Newton’s second law in Euler’s
papers. Euler knew very well that the precise form of Newton’s second law
depends on the units of measurement. On pp. 478 - 479 of E842, Anleitung
zur Naturlehre (Originally published in Opera Postuma 2, 1862, pp. 449-
560; also in Opera omnia III, 1, pp. 16 - 180) Euler expressed Newton’s
second law is as follows:

dv = n · p · dt

M
(4)

dv is the increment of velocity, p is the force, t is time and M is the mass of
the object. Euler pointed out that we are free in the way we measure v, p, t
and M . However, the way we measure these quantities determines the value
of n. Once we made up our mind how we want to measure v, p, t and M ,
we must determine n in a specific case. E112, Recherches sur le mouvement
des corps célestes en général (Studies on the movement of celestial bodies
in general) 16 is the first paper in which Euler uses rectangular Cartesian
coordinates and decomposes Newton’s second law with respect to the three
axes. He considers the motion of a mass M . The “instantaneous change”
of the motion of the body is then expressed with respect to each of the
coordinates by means of the equation:

2dxx

dt2
=

X

M
(5)

X is the “absolute” or “moving” force, and X
M is the “accelerating force.

Euler points out that the square of the velocity
(

dx
dt

)2
expresses the height

corresponding to this velocity and that is why, he writes, the factor 2 occurs
in the formula. It was quite common to measure instantaneous velocity by
means of a length of fall. 17 This version of Newton’s second law occurs
frequently in Euler’s work.

15J. Ravetz, The Representation of Physical Quanties in Eighteenth Century Physics,

Isis 52, 1961, 7-20.
16Originally published in Mémoires de l’académie des sciences de Berlin 3, 1749, pp.
93-143 (Opera omnia II, Vol. 25, pp. 1 - 44).
17 In the case of an object falling along the x-axis X = M , so Euler’s formula (5) yields

2ddx = dt2 and this yields dx/dt = t/2 and x = t2/4. Clearly the height is the square
of the velocity at the end of the fall.
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In E292, Du mouvement de rotation des corps solides autour d’un axe
variable (On the rotation of rigid bodies about a variable axis) 18 Newton’s
law with respect to each of the three coordinates has the form

dv =
2gpdt

m
(6)

Force p and mass m are both measured by means of corresponding
weights on earth. Time t is measured in seconds. The velocity v, how-
ever, is measured by the distance covered in a second. This leads to the
introduction of the factor g. One can easily check that g is the distance
covered in one second by an object falling from a state of rest.

Although, for example, Lagrange on p. 232 of his Mécanique analytique
of 1788 applied Newton’s second law in the form F = m · dxx

dt2 , that is
without factors 2 or 2g in the accelerating force, only in the first half of the
19th century, after Ampère in the 1830s introduced the word “kinematics”
acceleration, defined in a purely kinematic way, became a separate object
of investigation.

3.3. Classification of surfaces

It is remarkable that in chapter IV of the appendix to the second volume
of his Introductio in analysin infinitorum, published in 1748, Euler, while
he was investigating surfaces in space, came up with what were later called
the Euler angles. Euler was investigating the way in which the equation of
a surface depends on the choice of the coordinate system. There are sub-
tle differences between Euler’s and our views of a coordinate system. For
example, the three perpendicular coordinates of a point do not primarily
correspond to the three projections on the three coordinate planes. The ex-
pression “point M has the three perpendicular coordinates x, y, z” meant
to Euler: Move from the origin A to the point P in the direction of the
x-axis, such that AP = x, then move perpendicular to AP from P to Q
in the direction of the y-axis such that PQ = y and finally move perpen-
dicular to the plane of APQ from Q in the direction of the z-axis over a
distance z. This is how one reaches the point M . Euler’s pictures do not
contain the three coordinate axes either. They show the route APQM from
the origin to the point M consisting of the segments AP , PQ, QM . Such
a figure defined the coordinate system. On the other hand everything that
Euler did makes perfect sense to us. He knew perfectly well what a perpen-
dicular coordinate system is. It is even so that without actually changing

18Presented in 1758 and originally published in Mémoires de l’académie des sciences de
Berlin 14, 1765, pp. 154-193 (Opera omnia II. Vol. 8, 200-235).

LOL Ch9-P13 of 28



180 Teun Koetsier

his calculations much of what he does can be summarized more efficiently
by means of vector and matrix calculus. This is very much so in his work
on rigid body dynamics.

In order to find the representation of a surface with respect to another
system, Euler changed a given (x1,y1,z1) reference frame in three steps.

Step 1: A rotation about the z1-axis plus a translation in the xy-plane.
The result is the (x2,y2,z2) reference frame. Transformation:

x1 = x2cosζ + y2sinζ − a

y1 = −x2sinζ + y2cosζ − b

z1 = z2.

Step 2: A rotation about the x2-axis in the xy-plane. The result is the
(x3,y3,z3) reference frame. Transformation:

x2 = x3

y2 = y3cosη − z3sinη,

z2 = y3sinη + z3cosη

(7)

Step 3: A rotation about the z3-axis plus a translation in the xy-plane.
Result: (x4,y4,z4) reference frame. Transformation:

x3 = x4cosθ + y4sinθ − c

y3 = −x4sinθ + y4cosθ − d

z3 = z4

(8)

Combination of these three steps give us the familiar equations:

x1 = x4A + y4B + z2C + f

y1 = x4D + y4E + z2F + g

z1 = x4G + y4H + z2I + h

(9)

with

A = cosζcosθ − sinζcosηsinθ B = cosζsinθ + sinζcosηcosθ C = −sinζsinη

D = −sinζcosθ − cosζcosηsinθ E = −sinζsinθ + cosζcosηcosθ F = −cosζsinη

G = −sinη.sinθ H = sinηcosθ I = cosη
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Euler without further ado wrote that by means of these formula we can
get the most general equation for a given surface. And indeed. Steps 1 and 2
enable us to give the original z-axis any direction. Moreover, step 3 enables
us to give the other axes the required direction as well. Euler in fact used
the insight that it is always possible to reach any position of a rigid body
with a fixed point from any other position by means of three rotations. In
his book Euler made limited use of the formulae. In Chapter V he used
them to show that one can always eliminate the mixed and linear terms
from the equation of a quadratic surface.

Although Euler’s application was original, the idea was not. “Gimbals”:
concentric rings of the type used nowadays to keep a ship’s compass in a
horizontal position, were known already in Antiquity, both in China and
in the Roman Empire. Often Cardano is mentioned as the inventor, but
also Da Vinci was familiar with the idea. 19 The invention of the so-called
“universal joint,” before Euler, by Robert Hooke (1635-1703) is based on
the same idea.

3.4. Separating the progressive motion of the center of gravity from the
rotatory motion.

Euler’s interest in rigid body dynamics was not only purely academic. A
better understanding of the motion of a ship was potentially most useful. In
the Scientia navalis, written between 1737 and 1740 and published in 1749,
the first step in Euler’s analysis of the motion of the ship is the separation
of the motion of the center of gravity of the ship from the motion of the ship
about its center of gravity. Euler would apply this separation consistently
in his work in rigid body dynamics.

In the first volume of the Scientia navalis 20 Euler proves the validity
of this separation as follows. He imagines that we apply to the center of
gravity of the body an extra force equal and opposite to the one resulting
from the composition of all forces as if they acted on the center of grav-
ity. The center of gravity will then be at rest and the separation of the
progressive motion of the center of gravity and the rotatory motion is jus-
tified because this extra force does not influence the motion of the body
about the center of gravity. Later Euler gave a kinematical version of the
argument for the separation of the progressive and rotatory motions. For
example, in E177, Découverte d’un nouveau principe de mécanique (Dis-

19For more details see: Rudolf Franke, Zur Geschichte des Cardan-Gelenks, Tech-
nikgeschichte 46, 1979, pp. 3-19.
20Vol 1, Chapter 2, Section 128.
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covery of a new principle of mechanics) 21 Euler first considered the motion
of a point mass equal to the total mass of the body under the influence of
the forces working on the body. Then he imagined that the space in which
the body moves is subjected to a motion which is equal and opposite to the
just determined motion of the center of gravity. The result is, according to
Euler, the motion of the body independent of its progressive motion. Al-
though Euler’s arguments may not be completely convincing - the motion
of a space in which a body moves can induce centrifugal and Coriolis forces
- his intuition was, as usual, correct.

As for the motion about the center of gravity, in his treatment of the
motion of a ship Euler first assumes a fixed axis of rotation. In this case
the problem can be reduced to a planar problem: Euler in fact derives the
formula (

∫
r2dm)dω = Mdt. M is the total moment of the forces bringing

about the rotation. Euler called
∫

r2dm the “moment of intertia.” However,
if there is no fixed axis of rotation the situation gets more complicated.
Euler assumed that in ships there are three perpendicular axes passing
through the center of gravity such that the motion of the body about the
center can be split in three rotational motions about these three axes.
However, he did not get any further. After finishing the Scientia navalis it
took Euler ten years to make a next move.

3.5. The instantaneous axis of rotation.

The problem to understand the motion of a ship undoubtedly stimu-
lated the development of the dynamics of a rigid body in space. However,
the problem to more precisely understand the rotation of the earth about
its axis was also important: the precession of the equinoxes had to be
explained. Newton gave the first explanation of this phenomenon 22 and
D’Alembert in his Recherches sur la Précession des Équinoxes et sur la
Nutation de l’Axe de la Terre of 1749 attempted to improve Newton’s ex-
planation. Euler wrote on the motion of the earth as well, 23 but his focus
was a general theory.

Three papers are important in the development of kinematics and dy-
namics of a rigid body after the appearance of his Introductio in analysin
infinitorum. They are E177, presented in 1750, E336 from 1751 and E292
from 1758. The papers have one thing in common. Although Euler intended

21Presented in 1750 and originally published in Mémoires de l’académie des sciences de
Berlin 6, 1752, pp. 185-217 (O.O. II. Vol. 5, 81-108).
22Principia, Book 3, Prop. 39.
23Cf. Curtis Wilson, D’Alembert versus Euler on the Precession of the Equinoxes and the
Mechanics of Rigid Bodies. Archive for History of Exact Sciences 37, 1987, pp 233-273.
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to deduce the changes in the position and the velocity distribution from
the given forces acting on the body, he starts with the inverse problem.
The components of the accelerations of the points of the rigid body are
determined with respect to a perpendicular Cartesian frame of reference.
After multiplication with the corresponding mass element, the moments
about three perpendicular axes are determined, followed by an integration
over the body. Then the resulting moments are equated to the moments of
the forces working on the body, which leads to versions of the equations of
motion that carry Euler’s name. In other respects the papers are different.

In E177 Euler considered the motion of a rigid body about a fixed point
with respect to a perpendicular Cartesian frame of reference in order to be
able to apply Newton’s second law separately with respect to each of the
coordinates. The next breakthrough was brought about by a kinematical
result: the instantaneous axis of rotation. In order to study the velocity
distribution Euler introduced a fixed Cartesian coordinate system in abso-
lute space and assumed that a point Z of the body with coordinates x, y,
z has the velocities P , Q, R in the direction of the axes. The components
of the velocity P , Q and R, are functions of x, y and z. Euler intended to
determine these functions.

Euler considered next to Z a point z with coordinates x + dx, y + dy,
z +dz and velocity components P +dP , Q+dQ and R+dR. After time dt
the position of these two points, Z and z, has changed but their distance
has not. The coordinates of their positions have become, respectively, x +
Pdt, y + Qdt, z + Rdt and x + dx + (P + dP )dt, y + dy + (Q + dQ)dt,
z + dz + (R + dR)dt.

Equating the distance of z and Z after time dt and before, while neglect-
ing higher order terms, we get

dPdx + dQdy + dRdz = 0. (10)

Euler assumes dx = dy = 0 and concludes that dR = 0, which means
that R does not depend on z. Analogously p and Q do not depend on x
and y, respectively. This enables Euler to write

dP = Ady + Bdz,

dQ = Cdz + Ddx, (11)

dR = Edx + Fdy.

Substitution in (10) yields D = −A, E = −B and F = −C. This implies
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dP = Ady + Bdz

dQ = Cdz − Adx

dR = −Bdx − Cdy

(12)

A and B cannot contain x, because p does not. C and A cannot contain
y, because Q does not. So A only depends on z. Similarly B only depends
on y and C only on x. Because Ady + Bdz is an integrable differential, we
have

dA

dz
=

dB

dy
(13)

and, analogously
dC

dx
= −dA

dz
and

dB

dy
=

dC

dx
.

A, B and C are clearly three constants, that determine the velocities of
all points at the moment t. Because the center of gravity is at rest and
coincides with the origin, which implies that P , Q and R vanish in the
origin, integration of (13) yields

P = Ay + Bz,Q = Cz − Ax,R = −Bx − Cy. (14)

Which points have velocity 0? The points for which

Ay + Bz = Cz − Ax = −Bx − Cy = 0. (15)

These points have coordinates Cu, −Bu, Au and they are on a straight
line through the origin. All other points rotate about this axis with an
angular velocity equal to √

A2 + B2 + C2. (16)

3.6. The rotation axis in discrete spherical kinematics

Did Euler discover the instantaneous axis of rotation? The answer is
that he shares the honor with D’Alembert who in his Recherches sur la
Précession of 1749, on pp. 82-83, showed that at each instant the locus of
points of the earth that are at rest with respect to the center of gravity of
the earth is an axis of rotation. Euler’s treatment concerns all rigid bodies
and, moreover, Euler added the following nice geometrical proof, which
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gave a more general result: Given two different positions of a body with
a fixed point, it is always possible to move the body from one of the two
positions to the other one by means of a rotation about an axis through the
fixed point. Euler considered in the moving rigid body a spherical surface
of which the center coincides with the center of gravity. On this surface he
considers an arc AB of a great circle that moves in a time dt to a position
ab on another great circle. Clearly AB = ab. Now prolong BA and ba until
they meet in the point C.

Fig. 5.

C moves in time dt to position c on the prolongation of ba. Now imagine a
point M outside the great circle ABC. In time dt point M moves to a point
m. CM and cm will intersect in a point O. If triangle cCO is isosceles, point
O will not move in time dt. Then point O is on the instantaneous axis of
rotation. However, this is a situation that we can bring about by choosing
M in the right way. Spherical triangle cCO is isosceles if ∠cCO = ∠CcO.

Because we have ∠cCO = ∠CcO = 180◦ − ∠acO = 180◦ − ∠ACO =
180◦ − ∠cCO − ∠ACc, we can draw the conclusion that ∠cCO = 90◦ −
1/2∠ACc. M must be chosen such that CM is perpendicular to the angular
bisector of the angle Acc. Then O is on the instantaneous axis of rotation.

Although Euler only discussed two positions of the spherical surface that
are infinitesimally close, the argument also holds for two arbitrary posi-
tions. Euler discovered here in fact the rotation axis in discrete spherical
kinematics, although he may not have been aware of it (see Section 3.10).

3.7. Euler’s first attempt to derive the equations of motion for a rigid
body in space.

After having proved in E177 the existence of an instantaneous axis of
rotation, Euler turned to the accelerations. After having introduced the
axis of rotation, it is only natural that he tried to exploit the existence
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of this axis. He expressed the ddx, ddy and ddz in terms of the position
and motion of this axis. His starting point was the fixed perpendicular
Cartesian reference frame with axes OA, OB, OC in absolute space and
a given position of the axis of rotation. Euler defined the position of the
axis by the coordinates: x = νu, y = µu, z = λu. The angular velocity is√

ν2 + µ2 + λ2. Euler now considered a point in the body with coordinates
x, y, z and he determined the components of the velocity of this point in
the direction of the axes. He gets from (14)

dx = (λy − µz)dt; dy = (νz − λx)dt; dz = (µx − νy)dt, (17)

which gives us after differentiation: 24

ddx = (ydλ − zdµ)dt + (λνz + µνy − (λλ + µµ)x)dt2

ddy = (zdν − xdλ)dt + (µνx + λµz − (νν + λλ)y)dt2

ddz = (xdµ − ydν)dt + (λµy + λνx − (µµ + νν)z)dt2.

(18)

Now Euler could apply Newton’s second law in order to determine the
components of the force needed to bring about such accelerations in a
mass element dM :

2dMddx

dt2
,

2dMddy

dt2
,

2dMddz

dt2
. (19)

Euler integrated and after having introduced the moments of inertia
about the axes, he got a first version of the three Euler equations of motion.
In the end he gave three differential equations that describe the changes
in the position of the axis of rotation through the center of gravity and
the changes in the angular velocity about this axis. However, the solution
of the equations leads to complicated calculations. So Euler assumes that
the X-axis coincides with the axis of rotation. That makes life somewhat
easier but for every other instant the coordinate axes must be changed.
Although Euler had solved the problem in principle, in practice he had not
yet reached a satisfactory solution.

3.8. Euler gives the problem another try.

Euler was not satisfied with the equations of motion that he had derived
in E177. Soon he gave the problem another try. The result is in E336. 25 The

24Clearly we would nowadays write this, for example, in the form of the following vector

equation: ddx̄
dt2

= dω̄
dt
× x̄ + ω̄ × (ω̄ × x̄) .

25E336 is in the 1760 volume of the memoirs of the Berlin Academy. That volume was
printed in 1767. Charles Blanc assumed in the preface to Euler’s Opera omnia II, 9.
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first 21 pages are devoted to kinematics and one can feel Euler searching for
the best way to represent the position, the velocities and the accelerations
of the moving body. The moving earth as a major example is clearly very
much on his mind. Euler first points out that in every rigid body we can
fix an axis MK through the center of gravity O. Moreover we can fix in
the body a meridian plane MLK. If the body is the earth, MK would be
the line connecting the poles and the meridian plane MLK would be, for
example, the meridian plane of Greenwich. Euler then chooses a perpen-
dicular Cartesian coordinate system (x, y, z) in absolute space. The z-axis
points at the zenith and the xy-plane is the plane of the ecliptic. The cen-
ter of gravity O of the body coincides with the origin O of the (x, y, z)
system. Then Euler introduces as follows three parameters p, q and r to fix
a position of the body with respect to the coordinate system. Parameter q
is the angle between the z-axis and the axis MK of the body. In Euler’s
interpretation this is the angle between the axis of the earth and the per-
pendicular to the ecliptic. In the case of the earth this parameter q is not a
constant, but the nutation is extremely small. Parameter p corresponds to
the rotation of the slanted earth axis about the perpendicular to the eclip-
tic. This parameter diminishes with about 50” every year, which causes the
precession of the equinoxes. Finally parameter p measures, in the case of
the earth, the rotation of the earth about the axis of the earth. So p grows
by 360◦ every day. 26 Although Euler repeatedly refers to motion of the
earth, his goal is a general theory.

Euler determines the position of a point Z inside the body by its distance
s to the center of gravity and two angles u and v and afterwards he is in
a position to determine the coordinates of point Z with respect to the (x,
y, z) system. This gives him three expressions containing p, q, and r, and
s, u and v. Euler subsequently first determines the instantaneous axis of
rotation and the instantaneous angular velocity. After having done so, by
way of illustration, he applies the formulae to the motion of the earth in
order to determine angular velocity and the instantaneous axis of rotation
that is the result of the daily rotation and the precession of the equinoxes.

Next he proceeds to determine with respect to the (x, y, z) coordinate
system in absolute space the components 2ddx

dt2 , 2ddy
dt2 , 2ddz

dt2 of the acceler-
ating force that works on a point mass Z. They are rather complicated
expressions in, obviously, p, q, r, s, u and v. At this point Euler introduces

on p. xxiii that E336 was written after E292, that is many years after E177. However,
it turns out that Euler must have written E336 soon after he wrote E177 and several

years before he wrote E292. Cf. Curtis Wilson, D’Alembert versus Euler etc. Archive for

History of Exact Sciences 37, 1987, pp 233-273, footnote 67.
26The three parameters p, q, and r can be interpreted as Euler’s angles.
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a perpendicular Cartesian coordinate system (x, y, z) fixed to the rigid
body and for the first time he explicitly uses formulae that are equivalent
to the ones that he had given in his Introductio in analysin infinitorum
containing the “Euler-angles” (See Section 3.3) to find the components of
the accelerating force with respect to this new Cartesian system. Euler
determines the moments of the components. He integrates over the body
and gets very complicated expressions. However, by replacing p, q and r
by what are in fact the components P , Q and R of the direction of the
instantaneous axis of rotation (and

√
P 2 + Q2 + R2 equal to the angular

velocity) Euler succeeds in giving the equations of motion a rather regular,
but still not simple form. Euler succeeds in deriving several nice results: he
shows for example that whatever shape the body has, it is always possible
find an axis about which the body can freely and uniformly. Euler derives
a third degree equation and points out that it has at least one real root.
Had he seen that the equation has always three real roots, he would have
discovered the principal axes of inertia.

3.9. E291 and E292: Euler’s derivation of the equations of motion for a
rigid body in space

Several years later, Euler described the discovery of the three perpen-
dicular axes of intertia of a body in E291. 27 They are three perpendicular
lines going through the center of inertia that are such that the body can
rotate freely about them in the sense that the centrifugal forces neutralize
each other (Opera omnia II, 8, pp. 192). Soon afterwards, Euler gave the
dynamics of a rigid body renewed attention in E292, Du movement de ro-
tation des corps solides autour d’un axe variable (written in or before 1758
and published in 1765; Opera omnia II, 8, pp. 200-235). The lovely idea in
E292 is simple: let the axes of the reference system in absolute space - at
the instant under consideration - coincide with the principle axes of inertia
in the body. The application of the idea is successful. Euler could derive
a simple version of the equations that carry his name and he succeeded in
solving several problems that he could not solve before.

Euler’s approach in E292 as for the kinematics is not different from his
approach in E177. The main difference with E177 is that Euler introduced
the angular velocity explicitly in the equations. In E177 Euler had defined
the position of the axis by the coordinates: x = νu, y = µu, z = λu, such

27The discovery was first published by Euler’s friend Andreas Segner in his Specimen

theoriae turbinum, Halle 1755. See: p. 266 of Curtis Wilson, D’Alembert versus Euler on

the Precession of the Equinoxes and the Mechanics of Rigid Bodies. Archive for History
of Exact Sciences 37, 1987, pp 233-273.
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that the angular velocity is
√

ν2 + µ2 + λ2. In E292 Euler chose perpen-
dicular fixed axes in absolute space: IA, IB, IC and described the position
of the axis of rotation IO by the angles AIO = α, BIO = β, CIO = γ. 28

The angular velocity is ω. Then he derived equations similar to (18) for
the acceleration distribution in the body. Newton’s law is then applied in
the form (6) to find the components of the forces needed to bring about
these accelerations. After having determined the moments about the axis
of the components of these forces, Euler can integrate these moments over
the whole body. The assumption that the axes of inertia coincide with the
axes in absolute space pays off immediately.

Euler subsequently considered a point Z in the body with coordinates x,
y, z, with respect to the axes IA, IB, IC respectively. Through Z Euler
took three perpendicular axes Za, Zb, Zc, parallel to IA, IB and IC. Then
he determined the components of the velocity of Z in the direction of the
axes. He gets the nowadays very well-known equations of motion

P = Maa · d.ω cos α

2gdt
+ M (cc − bb) · ωω cos β cos γ

2g
,

Q = Mbb · d.ω cos β

2gdt
+ M(aa − cc) · ωω cos γ cos α

2g
,

R = Mcc · d.ω cos γ

2gdt
+ M(bb − aa) · ωω cos α cos β

2g
.

(20)

The constants aa, bb and cc denote the moments of inertia about the
principal axes.

These equations meant for Euler a considerable step forward. It imme-
diately enables him, for example, to determine the instantaneous axis of
rotation, immediately after a body at rest is subjected to arbitrary forces.
Because at the instant under consideration ω = 0, the equations can be
solved easily.

3.10. Other formulae for the arbitrary change of position of a rigid body.

In 1775 Euler published E478,in which he reconsidered the problem of
the most general way of describing a change of position of a rigid body. 29

He introduced rectangular Cartesian coordinates (x, y, z) in absolute space
and asked himself what happens to the coordinates (p, q, r) of an arbitrary

28 In E177 he had already briefly experimented with this characterization of the axis of
rotation.
29E478, Formulae generales pro translatione quacunque corporum rigidorum, Novi com-

mentarii academiae scientiarum Petropolitanae 20 (1775), 1776, pp. 189-207. Also in
Opera omnia II, 9, pp. 84-98.
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point of the rigid body, when the body changes its position. Suppose the
new position of the origin is (f , g, h). By considering points with coordi-
nates (p, 0, 0), (0, q, 0), and (0, 0, r) and pointing out that a straight line
remains a straight line, Euler draws the conclusion that the formulae for
the transformation necessarily have the following form.

x = f + Fp + F ′q + F ′′r,

y = g + Gp + G′q + G′′r, (21)

z = h + Hp + H ′′q + H ′′r.

The constants f , g, h, F , F ′, F ′′, G, G′, G′′, H, H ′, H ′′ depend on the
change of position. Moreover, the distance of the points (p, 0, 0), (0, q, 0),
and (0, 0, r) to the point that initially coincides with the origin must remain
the same. This implies

F 2 + G2 + H2 = 1, F ′2 + G′2 + H ′2 = 1 and F′′2 + G′′2 + H′′2 = 1. (22)

Putting

F = sinζ F ′ = sinζ ′ F ′′ = sinζ ′′

G = cosζsinη G′ = cosζ ′sinη′ G = cosζ ′′sinη′′

H = cosζcosη H = cosζ ′cosη′ H = cosζ ′′cosη′′

(23)

Euler expressed the change of position in terms of the new coordinates
of the point coinciding initially with the origin and six angles. He also
showed that the values of the three angles η , η′, η′′ suffice to determine the
others. Euler was aware of what we would nowadays call the orthonormality
conditions for the columns of the transformation matrix envolved in (21).
However, here, he did not give the similar conditions for the rows of the
matrix. He would do this later in E407 presented in 1770, that we will
discuss in the next section. For the first time Euler asks here the question
whether for an arbitrary change of position such that the point coinciding
with the origin remains fixed, it is possible to bring about the same change
of position by means of a rotation about a line. Starting from (21) with
f = g = h = 0, he attacks the problem analytically, but he does not
succeed. However, Euler gives a geometrical proof, similar to the one we
discussed in section 3.6. It is possible that he did not realize that his proof
in E177 for the instantaneous case is also valid in the discrete case.
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3.11. An algebraic problem that is notable for some quite extraordinary
relations

In E407, Problema Algebraicum ob affectiones prorsus singulares memo-
rabile, presented to the Academy in Petersburg in 1770, 30 Euler considers
the following algebraic problem. Determine 9 numbers

A B C

D E F

G H I

(24)

such that the following 12 conditions are satisfied:

1. AA + BB + CC = 1; 4. AB + DE + GH = 0;

2. BB + EE + HH = 1; 5. AC + DF + GI = 0;

3. CC + FF + II = 1; 6. BC + EF + HI = 0;

7. AA + DD + GG = 1; 10. AD + BE + CF = 0;

8. DD + EE + FF = 1; 11. AG + BH + CI = 0;

9. GG + HH + II = 1; 12. DG + EH + FI = 0.

(25)

Euler compared squares like (24) satisfying conditions 1 through 12 to
magic squares. Completely analytically Euler derived expressions for the 9
unknowns in terms of the three Euler-angles. Actually the expressions are
exactly the ones of (9). It is interesting that Euler then turned to the 4-
and 5-dimensional cases, which he also explicitly solved. In fact he showed
that in the n-dimensional case we need n(n − 1)/2 parameters. Euler’s
method, also in the 4- and 5-dimensional cases is the method he applied
in his Introductio in analysin infinitorum (see section 3.3 of this paper):
He generated the solutions by means of series of successive transformations
that each only affect two of the variables. Euler wrote this paper as a
contribution to algebra and number theory. The last sections are devoted
to rational solutions of the equations. In Section 33 he pointed out that if
p, q, r, and s are four arbitrary numbers, and p2 + q2 + r2 + s2 = u, the
following formulae represent a solution to the problem.

30Novi Commentarii academiae scientiarum Petropolitanea 15, 1771, pp. 75-106 and
Opera omnia I, 6, pp. 287-315.
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A =
p.p + qq − rr − ss

u
B =

2qr − 2ps

u
C =

2qs − 2pr

u

D =
2qr − 2ps

u
E =

pp − qq + rr − ss

u
F =

2pq + 2rs

u

G =
2qs + 2pr

u
H =

2rs − 2pq

u
I =

pp − qq − rr + ss

u
(26)

Seventy years later, in 1840, Olinde Rodrigues showed that an arbitrary
change of position of a body with a fixed point can be represented in this
way. 31 That is why the parameters in (26), with u = 1, are nowadays
called the Euler-Rodrigues parameters for the representation of motion. 32

4. Final remarks

Euler’s work belongs to the pre-history of kinematics. Kinematics was
not yet an independent research area and as we have seen Euler’s contribu-
tions were all made in a non-kinematical context: a mechanical engineering
problem, a geometrical problem, a dynamical problem or an algebraic or
number theoretical problem. Although it is not complete, 33 the more or
less coherent survey of kinematics in Euler’s work that we have given illus-
trates this.

Euler’s focus was not on kinematics, which is part of the explanation
why Euler missed some results that we find rather obvious. For example,
the separation of the progressive motion of the center of gravity and the
rotatory motion about this center was very functional in Euler’s work. Yet
it prevented Euler from realizing that in general at each instant the velocity
distribution of a body moving in space is an instantaneous screw motion.

31Olinde Rodrigues, Des lois géometriques qui régissent les déplacements d’un
système solide dans l’espace, et de la variation des coordonnées provenant de ces
déplacemenst considerés indépendemmant des causes qui peuvent les produire, Jour-

nal de mathématiques pures et appliques 5, 1840, pp. 380-440.
32Cf. Malcolm D. Shuster, A Survey of Attitude Representations, The Journal of the
Astronautical Sciences 41, 1993, pp. 439-517.
33For example, I have not discussed E825, De motu corporum circa punctum fixum

mobilium ( Opera Postuma 2, 1862, pp. 43-62 and in Opera omnia: Series 2, Volume 9,
pp. 413 - 441).
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This result was first published in 1763 by the Italian Giulio Mozzi. 34 Actu-
ally it is easy to see that the composition of a translation T and a rotation
R about an axis yields a screw motion: Choose a plane p perpendicular
to the axis of R. Decompose the translation in a component T1 in plane p
and a component T2 perpendicular to P . Composition of R and T1 yields
a rotation R′ about an axis parallel to T2. R′ and T2 together represent a
screw motion. There is a similarity with Newton who in 1666 studied the
construction of tangents to kinematically defined curves. In this context
Newton distinguished three kinds of instantaneous motion: translation, ro-
tation and the composition of a rotation and a translation. 35 It is extremely
obvious that in a plane a combination of a rotation and a translation is a
rotation: draw from the center of the rotation a line perpendicular to the
direction of the translation. On this line there is a point which has a veloc-
ity opposite and equal to the translatory velocity. This is the instantaneous
center of rotation. Newton did not see it. His focus was elsewhere.

At the occasion of Euler‘s 250th birthday, in 1959, the German math-
ematician Wilhelm Blaschke (1885-1962), well-known for important work
in differential geometry, wrote a paper called “Euler und die Kinematik”
(Euler and Kinematics) 36 in which he used quaternions to derive some
basic results in instantaneous spherical and spatial Euclidean kinematics.
The paper is not about history with the exception of the first sentence in
which Blaschke says: “It is maybe little known that the quaternions were
first identified by L. Euler in a letter to Goldbach written on May 4, 1748.”
The only link between this letter and quaternions lies in the fact that in the
letter he mentioned what is nowadays called Euler’s four squares theorem:

If m = a2 + b2 + c2 + d2 and n = p2 + q2 + r2 + s2 then mn = A2 + B2 +
C2+D2, if A = ap+bq+cr+ds; B = aq−bp−cs+dr; C = ar+bs−cp−dq
and D = as − br + cq − dp.

For a reader who is familiar with quaternions, the theorem in this form
expresses the fact that the absolute value of the product of the quaternions
a − bi − cj − dk and p + qi + rj + sk is equal to the product of their
absolute values. However, it makes no sense whatsoever to say that Euler

34Marco Ceccarelli, Screw axis defined by Giulio Mozzi in 1763 and early studies on
helicoidal motion, Mechanism and Machine Theory 35, 2000, pp. 761-770. Cf. footnote

5 of this paper.
35 I. Newton, The mathematical papers of I. Newton (Edited by D. T. Whiteside), Vol.

I, Cambridge, 1967, pp. 390-391.
36Wilhelm Blaschke, Euler und die Kinematik, in Kurt Schrder, Sammelband der zu
Ehren des 250. Geburtstages LEONHARD EULERs der Deutschen Akademie der Wis-

senschaften zu Berlin vorgelegten Abhandlungen, Akademie-Verlag. Berlin, 1959, pp.
35-41.
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“identified” the quaternions in this letter. Blaschke was an outstanding
geometer, but this claim is absurd.

Yet there are other and even more striking links between Euler’s work
and the theory of quaternions. For example, if we use the unit quaternion
p + qi + rj + sk to describe the motion of a body about a fixed point, the
matrix (26) in Section 4 is exactly the transposed of the rotation matrix
for the same motion.
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1. Introduction

In his paper “Découverte d’un nouveau principe de mécanique” [E177],
published in 1752, Euler derives the equations of motion for a rigid body.
According to Clifford Truesdell, “Few indeed are works contributing so
much to mechanics as this one paper.” Euler argues that the principles of
Mechanics which were commonly accepted at that time were insufficient
to solve this problem in full generality. Consequently, he proposes a new
principle, which he takes as the fundamental axiom on which all of Me-
chanics is to be founded: it is the application of “Newton’s Second Law”
F = Ma (written in Cartesian coordinates) to each infinitesimal element
of the body. Not until several years later does Euler recognize that this
one principle is itself insufficient; one needs, in addition, the principle that
the applied torque is equal to the rate of change of rotational momentum.
In the first part of this paper, I will describe how Euler applied his new
principle to solve the problem of rigid bodies, and how he finessed his lack
of the principle of rotational momentum.

Having obtained the general equations for rigid-body motion, Euler, like
a good teacher, shows how to apply them to a concrete example, namely, a
homogeneous ball rotating about a fixed axis, which is subject to an exter-
nal torque. But after having worked out the resulting motion on the basis
of his equations, Euler then wants to give an alternative, more elemen-
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tary, demonstration, starting from first principles. Here, however, he gets
into trouble. His alternative method is not correct, and he arrives finally
at the correct result only by making another, compensating, error. It’s a
little hard, in fact, to see just where he went wrong, since his reasoning
seems rather loose, involving manipulations with infinitesimals. In the sec-
ond part, I will try to clarify the situation, and explain just what Euler’s
error was.

2. Cancellation of forces

A recent ponderous volume, the Reader’s Guide to the History of Sci-
ence, [H] has articles on many scientists and some non-scientists, including
even Ernst Mach and John Stuart Mill —but no article on Leonhard Euler.
In fact, the index to this work has only two entries for Euler. One concerns
an alleged “statistical failure” on Euler’s part in connection with the in-
equalities of the motion of Jupiter and Saturn; the other, in the article on
Maupertuis (!), mentions Euler’s support for the principle of least action.
(There are also, however, several references to a mysterious “Hans Euler”.
On inspection, these prove to be references to Leonhard. 1 )

Clearly, Euler’s achievements in physical science deserve to be better-
known. In this paper, I will discuss Euler’s derivation of the laws of motion
for a rigid body. In particular, I will consider the two papers: “Découverte
d’un nouveau principe de mécanique”, [E177], published in 1752 and “Nova
methodus motum corporum rigidorum determinandi”, [E479], of 1776.

Since some readers may be unfamiliar with the equations for rigid-body
motion, let’s see briefly what they say. We first observe, with Euler [E177,
§5], that we can separate the motion of the center of mass of the body
from its rotational motion about that center of mass. The former can be
determined from “Newton’s Second Law,” F = Ma, and need not be dealt
with here.

Let us denote by H the rotational momentum of the body, and by L the
applied torque acting on the body. (We will assume here that H and L are
computed with respect to the center of mass of the body.) A basic principle
of Mechanics (stated clearly by Euler in [E479, §§28-29]; see below) is the
principle of Balance of Rotational Momentum: L = Ḣ; the applied torque
equals the rate of change of rotational momentum. (Here I use a dot to
indicate the derivative with respect to time. Note that, by the same token,

1 There actually was a Hans Euler, rather Hans von Euler-Chelpin, who won the No-
bel Prize for Chemistry in 1929. Leonhard’s great-great-grandfather was named Hans,
according to Juškevič in the Dictionary of Scientific Biography.
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we can write the relation F = Ma in the form F = ṗ, where p = Mv is
the linear momentum, and refer to it as the principle of Balance of Linear
Momentum.)

For a rigid body, its rotational momentum depends linearly on its angular
velocity vector ω. In other words, there is a linear transformation I (in
effect, a three-by-three matrix), such that H = Iω. Here the letter ‘I’ does
not denote the identity transformation; I is called the inertia tensor. It can
be shown that I is symmetric and positive definite.

Thus, to apply the principle of Balance of Rotational Momentum, we
must compute the derivative (Iω)̇. Using a little calculus and linear algebra,
it can be shown that (Iω)̇ = I ω̇ + ω × Iω. Therefore, substituting into
the equation L = Ḣ, we get L = I ω̇ +ω× Iω. This is Euler’s equation for
the motion of a rigid body.

Since the tensor I is symmetric, it can be diagonalized. Its eigenvalues
are called the principal moments of inertia of the rigid body; the corre-
sponding eigenspaces are the principal axes. Expressing Euler’s equations
with respect to the principal axes, we get

L1 = I1ω̇1 + (I3 − I2)ω2ω3

L2 = I2ω̇2 + (I1 − I3)ω1ω3

L3 = I3ω̇3 + (I2 − I1)ω1ω2.

Here the Ii are the principal moments of inertia, the ωi are the components
of the angular velocity vector, and the Li are the components of the applied
torque.

Now, in 1750 (when E177 was presented to the Berlin Academy), Euler
didn’t know how to diagonalize the inertia tensor. 2 Consequently, when
he wrote down these equations, he had to include the terms coming from
the off-diagonal elements of I. Thus, in E177, §55, he writes the equations
in the form

2 Segner showed in 1755 (Specimen theoriae turbinum, Halle) that every rigid body has
three principal axes.
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I.
Pa

2M
=

ff dλ

dt
− nn dµ

dt
− mm dν

dt
+λνnn− λνmm− (µµ− νν)ll + µν(hh− gg),

II.
Qa

2M
=

gg dµ

dt
− ll dν

dt
− nn dλ

dt
+λµll − µνnn− (νν − λλ)mm + λν(ff − hh),

III.
Ra

2M
=

hh dν

dt
− mm dλ

dt
− ll dµ

dt
+µνmm− λνll − (λλ− µµ)nn + λµ(gg − ff).

Here M is the mass of the body, ν, µ, λ are the components of the angular
velocity vector, Pa, Qa, Ra are the components of the applied torque,
Mff , Mgg, Mhh are the diagonal terms of the inertia tensor, and −Mll,
−Mmm, −Mnn are the off-diagonal terms. 3

Euler’s equations form a system of nonlinear ordinary differential equa-
tions, which are hard to solve; and Euler does not know how to solve
them, in general. In some particular cases, they can be integrated in terms
of elliptic functions; see, for example, Whittaker’s Analytical Dynamics,
Chapter VI.

One particular case that Euler considers is that of free motion; that is,
the applied torque is zero. Even then, the motion can be quite complicated,
so Euler specializes further to the case in which the instantaneous axis of
rotation (the line spanned by ω) is steady —that is, not varying with time.
In that case, the derivative ω̇ must be parallel to ω, and hence I ω̇ must be
parallel to Iω. On the other hand, ω × Iω is clearly perpendicular to Iω,
so that in the equation 0 = I ω̇ +ω× Iω the two vectors on the right-hand

3 The factors of 2 in the denominators on the left-hand side come from the particular
units Euler uses. He explains these in §21. First, M is the weight of the body near the

surface of the Earth, so that, in our terms, M = mg, where m is what we call the
mass and g is the acceleration of gravity. Further, Euler chooses units of time t and

distance x so that if dx/dt is the speed attained by a body falling through a height v,
then v = (dx/dt)2. It follows easily that, in Euler’s units, the value of g is g = 1

2
. (Clearly,

this normalization of g involves units of both time and distance — or rather, as Euler
remarks, the relation between them. See [T1, p. XLIII]; though I do not understand
what Truesdell means there by “the ratio of the units of length and time”.) I imagine
that Euler might have found the constant 2 in his equation as follows. Write “Newton’s

Second Law” in the form F = kM(d2x/dt2), where F is the force and k is a constant of
proportionality. Taking F to be the force of gravity, we have F = M , and the distance v
fallen in time t will be t2/(2k). The speed attained will be t/k. Setting t2/(2k) = (t/k)2,
we find that k = 2.
Later, in [E479, §20], Euler takes the units of time to be seconds.

LOL-Ch10-P4 of 18



Euler on Rigid Bodies 199

side are perpendicular, and hence each must be 0. From ω × Iω = 0, we
see that Iω must be parallel to ω, whence ω must be an eigenvector of
the inertia tensor. In other words, a steady axis of free rotation must be a
principal axis. This, in fact, is the first result Euler derives in [E177]; see
§15. He works it out from scratch, before he even has the general equations
of motion.

We also see that I ω̇ = 0. Since I is nonsingular, this implies that ω̇ = 0;
in other words, not only the direction of the angular velocity vector, but
also the angular speed must be constant. In his 1776 paper [E479, §47],
Euler conjectures that this must be so (in the special case in which all the
principal moments of inertia are equal), but is unable to prove it.

It is known today that, if the principal moments of inertia are different,
then the free rotations about the axes corresponding to the largest and
smallest moments are stable, whereas the rotation about the other axis is
unstable. Since Euler does not mention this fact, I presume that he did not
know it. I have been able to trace this idea back to sometime in the 19th

century, but I do not know its history.
As Euler points out in E177, the case in which the instantaneous axis

of rotation is not steady had not been treated adequately before. 4 Euler’s
first problem is to give a mathematical description of such a motion.

Let’s first work this out in modern terms. A rotation of the body about its
center of mass is given by an orthogonal transformation Q. Differentiating
the relation QQT = 1 (where 1 is the identity transformation), we get
Q̇QT + QQ̇T = 0, whence Q̇QT = −QQ̇T = −(Q̇QT )T . Letting A =
Q̇QT , we see that A = −AT ; in other words, the transformation A is
skew-symmetric. Clifford Truesdell calls the transformation A the spin of
the motion [T4, p. 48].

Now, in three-dimensional space, there is a representation theorem for
skew-symmetric transformations: there exists a unique vector ω such that
Av = ω×v for every vector v. Of course, ω is the angular velocity vector.
If we write the matrix of A as

A =


0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 ,

4 Of course, the problem of the precession of the equinoxes, the subject of a 1749 memoir

of d’Alembert (Recherches sur la Précession des Équinoxes et sur la Nutation de l’Axe
de la Terre dans le Systême Newtonian, Paris), falls under this heading. See Curtis
Wilson, “D’Alembert versus Euler on the Precession of the Equinoxes and the Mechanics

of Rigid Bodies”, Archive for History of Exact Sciences, 37, 1987, pp. 223–273. I thank
Ryoichi Nakata for this reference.
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then

ω =


ω1

ω2

ω3

 =


ν

µ

λ

 ,

the latter expression being Euler’s. Euler constructs the angular velocity
vector in [E177, §§26–35]. Of course, Euler does not have the abstract
concept of a vector, in our sense, but he knows the direction of ω — he
describes it as the direction of the line x = νu, y = µu, z = λu — and he
also knows that the angular speed is

√
ν2 + µ2 + λ2, so that he has both

the magnitude and direction of ω.
By 1776, Euler has gone even further. In [E479, §22], he writes

x = f + FX + F ′Y + F ′′Z

y = g + GX + G′Y + G′′Z

z = h + HX + H ′Y + H ′′Z,

where X, Y , Z are the initial coordinates of some point of the body, and x,
y, z are its coordinates at time t. The coefficients F , G, H, F ′, . . ., H ′′ are
the matrix elements of our transformation Q! Furthermore, Euler knows
that this matrix is an orthogonal matrix: in §23 he writes the relations

FF +GG +HH = 1, FF ′ +GG′ +HH ′ = 0,

F ′F ′ +G′G′ +H ′H ′ = 1, F ′F ′′ +G′G′′ +H ′H ′′ = 0,

F ′′F ′′ +G′′G′′ +H ′′H ′′ = 1, FF ′′ +GG′′ +HH ′′ = 0,

which are just the conditions of orthogonality.
Since 1 is an eigenvalue of Q, it has an eigenspace consisting of fixed

points —the (cumulative) axis of rotation. The transformation Q can be
described geometrically by giving the direction cosines α, β, γ of this axis,
and the angle ϕ of rotation about the axis. In §22, Euler writes down the
equations
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F = cos2 α + sin2 α cos ϕ

G = cos α cos β(1− cos ϕ) + cos γ sinϕ

H = cos α cos γ(1− cos ϕ)− cos β sinϕ

F ′ = cos α cos β(1− cos ϕ)− cos γ sinϕ

G′ = cos2 β + sin2 β cos ϕ

H ′ = cos β cos γ(1− cos ϕ) + cos α sinϕ

F ′′ = cos α cos γ(1− cos ϕ) + cos β sinϕ

G′′ = cos β cos γ(1− cos ϕ)− cos α sinϕ

H ′′ = cos2 γ + sin2 γ cos ϕ,

which express the components of Q explicitly in terms of the geometric
quantities α, β, γ, ϕ. He derives these equations using spherical trigonome-
try.

Once Euler is able to describe the motion, he needs to apply some princi-
ple of dynamics to relate the motion to the applied force. According to him,
however, the previously known principles of mechanics were insufficient to
solve this problem. Hence he must search out and apply a new principle.
In [E177, §22], he proposes the “general and fundamental principle of all
of Mechanics”:

I. 2M ddx = P dt2, II. 2M ddy = Qdt2, III. 2M ddz = R dt2.

Of course, this is just “Newton’s Second Law”, F = Ma! How can Euler
suggest that this is a new principle?

This point has been dealt with extensively by Clifford Truesdell in his
Essays in the History of Mechanics, 5 so I will be brief. Newton in his 1687
Principia stated as his “Second Law” a principle equivalent to F = Ma. 6

He applied it, for example, to determine the orbit of a planet under an
inverse-square law of gravity. However, when he came to consider problems
about fluid motion in Book II of the Principia, he did not solve them

5 [T2]; Lectures II: “A Program toward Rediscovering the Rational Mechanics of the

Age of Reason” and III: “Reactions of Late Baroque Mechanics to Success, Conjecture,
Error, and Failure in Newton’s Principia”.
6 “Mutationem motus proportionalem esse vi motrici impressae, & fieri secundum lin-

eam rectam qua vis illa imprimitur”; see [KC, vol. 1, p. 54]. In my opinion, this means∫ t1

t0
F(t) dt = Mv(t1)−Mv(t0). In other words, Newton is here using the word ‘vis’ to

mean the time-integral of force, what today is called “impulse”.
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by applying the “Second Law”. Indeed, the different particles of a fluid
typically have different accelerations, so how would F = Ma even apply?

In the time between Newton and Euler, many questions in mechanics
were studied by Leibniz, the Bernoullis, Clairaut and d’Alembert. They
applied various principles to solve these problems: using reversed accel-
erations to reduce to a problem of equilibrium; the law of the lever; the
principle of virtual work; conservation of energy. Ryoichi Nakata, in his
talk at the Euler Conference 2002, described how the problem of a par-
ticle in a rotating tube was solved by Clairaut, d’Alembert, and Daniel
Bernoulli. 7 They did not begin by simply writing down F = Ma; appar-
ently, they didn’t even think of doing so! It is obvious today that F = Ma
is a fundamental principle of Mechanics, because Euler has taught us how
to apply it. It evidently was far from obvious in 1750.

In [E177, §20], Euler writes, “Consider an infinitely small body, or one
whose mass is contained in a single point, that mass being = M .” Although
the language here suggests that, by an “infinitely small body”, Euler means
what today we call a “point-mass” (what physicists call a “particle”), I
think that Euler has in mind also the case in which the body has an in-
finitesimal mass —in other words, that it is what today we would call an
“element of integration.” In fact, elsewhere in E177, Euler denotes its mass
by ‘dM ’, and finds the total mass by integration.

Thus, Euler has now seen how to apply F = Ma to a fluid — or, as in
the present paper E177, to a rigid body, not all of whose points have the
same acceleration. Euler’s innovation is to see that F = Ma applies to each
infinitesimal part of the body. We might write this principle in the form
dF = r̈ dM , where r is the position vector of a point of the body.

We can now derive the principle of Balance of Rotational Momentum as
follows. The rotational momentum H is defined as H =

∫
B r× ṙ dM , where

the integral is over the body B. From dF = r̈ dM , we get r×dF = r× r̈ dM ,
hence L =

∫
B r×dF =

∫
B r×r̈ dM = Ḣ. In fact, Euler carries out essentially

this same calculation (without using vector notation, of course) in [E177,
§§43–49].

But there is an error here! If we apply dF = r̈ dM to each infinitesimal
part of the body, the force dF on that part must include all the forces acting
on it. As Euler saw, these include not only the external forces acting on the
body, but also the internal forces which are necessary in order to maintain
rigidity. However, in doing our calculation, we don’t want to include the
internal forces —because we don’t know what they are!

7 See his paper, “Analysis of motion of a rotating tube including a material point by
Johann Bernoulli, Daniel Bernoulli, Clairaut, d’Alembert and Euler”, presented at the
Euler Conference 2002. See also [N].
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How does Euler deal with this difficulty? In §42, he says, “Now it is to be
remarked that the internal forces mutually cancel one another, so that the
continuation of the motion requires only the external forces, to the extent
that these forces do not mutually cancel.”

But how does he know that the internal forces must cancel out? Euler
doesn’t say.

In 1983, van der Waerden published a paper titled “Eulers Herleitung
des Drehimpulssatzes” (“Euler’s derivation of the theorem on rotational
momentum”) [V]. Van der Waerden, responding to earlier discussions by
Clifford Truesdell, 8 suggested that Euler had in mind an argument which
we first find in print in a textbook by Poisson, published in 1833. 9 Poisson
had considered the case of a finite collection of point-masses. If one assumes
“Newton’s Third Law”, so that the mutual forces between each pair of
point-masses are equal in magnitude but opposite in direction, and if, in
addition, one assumes that these forces are central, in other words, directed
along the line joining the points, then it is a matter of simple algebra, as
Poisson showed, to deduce that the mutual forces make no net contribution
to the applied torque on the whole collection of point-masses —in other
words, the internal forces “cancel out,” just as Euler claimed.

Is this really what Euler had in mind? Did he really, first of all, consider
a rigid body to be a finite collection of point masses? Actually, we have
seen that he denoted the mass of an infinitesimal part of the body by ‘dM ’,
and obtained the total mass by integration. Van der Waerden acknowledges
that Euler appears to treat the rigid body as a continuum, but he argues
that Euler knew (or believed) that the body was “really” just a finite
collection of corpuscles, and that he used the continuum model as “just an
approximation”, in the manner of modern physicists. 10

I think that this is a very anachronistic interpretation. Although 18th-
century scientists sometimes speculated that matter was formed of small
corpuscles —Euler himself made an attempt to develop a kinetic theory
of gases— the corpuscular nature of matter certainly never attained the
dogmatic status it enjoyed in the 20th century. Furthermore, Euler never
hints that the mutual forces between the parts of the body must be central,
as is required for Poisson’s proof. Finally, as Curtis Wilson points out [W2,
p. 400], Euler consistently rejected the idea of action at a distance.

8 [T3], Lectures III: “Reactions of Late Baroque Mechanics” and V: “Whence the Law

of Moment of Momentum?”.
9 Traité de Mécanique, Paris, 1833, §§552–554.
10“Er weiss aber sehr wohl, dass das nur eine Näherung ist” (van der Waerden’s italics);
[V, p. 280].
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Truesdell, on the other hand, interpreted Euler’s meaning as follows:
“Since a body does not spontaneously assume any motion in virtue of
whatever internal forces there may be within it, these do not contribute
to any of its motions as a whole.” 11 Though this may indeed have been
Euler’s thought, he never, as far as I know, states it explicitly, so that this
analysis, like any other, must remain conjectural. 12

By 1775, Euler has of course learned how to diagonalize the inertia ten-
sor. As the rigid body rotates, however, its principal axes move with it.
Consequently, if we choose our coordinate axes so that they lie along the
principal axes at some particular instant, they will, in general, no longer
do so during the succeeding instants. In his 1752 paper, Euler had tried to
simplify his equations by choosing one of the coordinate axes to be the axis
of rotation. But “it is necessary for each instant to change the position of
the three axes OA, OB, OC in order that OA always coincide with the axis
of rotation, and then we will be obliged to calculate anew for each instant
the values ll, mm, nn, ff , gg, hh, because they will vary continually as a
result of the change in the position of the body with respect to the three
axes” [E177, §57].

In E479, Euler gets around this difficulty by describing the motion of
the body in terms of the initial position of each of its body-points, using
(in effect) the mathematics of orthogonal transformations, as we have seen
above. 13 Then it becomes possible to choose the coordinate axes for this
initial position to be principal axes.

But what about the cancellation of the internal forces? As Truesdell has
emphasized, Euler in E479 states the principle of Balance of Linear Mo-
mentum (F = Ma) and the principle of Balance of Rotational Momentum
as parallel principles of mechanics (§29):

I.
∫

dM

(
ddx

dt2

)
= iP IV.

∫
x dM

(
ddy

dt2

)
−

∫
y dM

(
ddz

dt2

)
= iS

II.
∫

dM

(
ddy

dt2

)
= iQ V.

∫
x dM

(
ddz

dt2

)
−

∫
y dM

(
ddx

dt2

)
= iT

III.
∫

dM

(
ddz

dt2

)
= iR VI.

∫
x dM

(
ddx

dt2

)
−

∫
y dM

(
ddy

dt2

)
= iU.

11“Reactions of Late Baroque Mechanics”, [T3, p. 171].
12An assumption similar to ’s was made a few years earlier by Daniel Bernoulli, (“Nou-
veau probleme de mécanique résolu par Mr. Daniel Bernoulli”, Berlin, 1745; reprinted in

Die Werke von Daniel Bernoulli, vol. 3, ed. D. Speiser et al., Birkhäuser, 1987, pp. 179–
196) in connection with the motion of a particle sliding in a rigid tube. See Essays in
the History of Mechanics, p. 254; see also [N].
13 In Hydrodynamics, this description is called “Lagrangean”; see Lamb, Hydrodynam-
ics, 6th edition, p. 2.
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(The two sets of equations are printed side-by-side like this in the original
publication in the proceedings of the St. Petersburg Academy; see Essays
in the History of Mechanics, p. 261, where this page is reproduced. 14 In
the reprint in the Opera omnia, the six equations are printed one above the
other. The constant i is a scale factor corresponding to a different choice
of units from those Euler had used in E177. 15 )

How does Euler derive these equations in E479? His justification is (§27):
“it follows from the principles of motion” (“per principia motus necesse
est”)! According to Truesdell, Euler has recognized that the two principles,
Balance of Linear Momentum and Balance of Rotational Momentum, are
two independent axioms of mechanics, and hence no “derivation” of the
latter from the former is possible. Nor is it necessary to postulate anything
about the internal forces.

It is odd, however, that, having insisted so strongly in E177 that the
principle of Linear Momentum was the only principle for all of mechan-
ics, 16 Euler does not now go back to that declaration and say explicitly
that he had been mistaken, and that in fact two principles are required.

It appears to me that another possible interpretation of Euler’s procedure
in E479 is that he considered that he had derived the principle of Balance
of Rotational Momentum long ago, and that it was not necessary to revisit
that derivation.

But here, too, all we can do is speculate, since Euler (uncharacteristically)
is very laconic. I think, however, that Truesdell is quite correct to say that
Euler here recogizes these two principles —at least in practice— as the two
fundamental principles of mechanics.

Of course, the question is really indeterminate. The axioms for mechan-
ics, like those of any other branch of mathematics, can be set up in more
than one way. In Truesdell’s own book on Rational Mechanics, he derives
both Balance of Linear Momentum and Balance of Rotational Momentum
from an axiom asserting the “frame-indifference” of work [T4, vol. I, p. 62,
2d ed.].

Neither the principle of Balance of Linear Momentum nor the principle
of Balance of Rotational Momentum was completely new with Euler. As

14The entire article is now available online at the Euler Archive, www.eulerarchive.org.
15See §27. There, Euler defines i = 2g, where “g denotes the height from which a heavy
object falls in one second”. In other words, Euler’s i is the same as our customary

“acceleration of gravity”. Multiplying F = ma (where m is the mass) by i, we get

iF = Ma, where M is the weight of the body.
16E.g., §19: “We find ordinarily several such principles. . . but I remark that all these
principles reduce to a single one, which can be regarded as the unique foundation of all

of Mechanics. . . . And it is on that one principle that all the other principles must be
established. . . .”
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we have seen, the first had been stated in a somewhat different form by
Newton, who, for his part, asserted that it had been known to Galileo,
Wren, Wallis, and Huygens. The second comes ultimately from the “Law
of the Lever”, which goes back at least to Archimedes. But it is Euler’s merit
to have seen the importance and the central position of these principles in
Mechanics as a whole. Thus, it seems to me that Truesdell’s proposal that
they be called Euler’s Two Laws of Mechanics is just.

And a man who singled out, formulated, and set up the basic principles
of the science of Mechanics —not to mention that he showed how to apply
these principles to solve a variety of mechanical problems— such a man
deserves to be mentioned in the History of Science.

3. An Error of Euler on Rigid Bodies

indignor quandoque bonus dormitat Homerus

—Horace, Ars Poeticae, 359

Having, in E177, derived, for the first time, the equations of motion
for a rigid body, Euler, like a good teacher, shows how to apply them to
a particular example, namely, a homogeneous ball rotating about a fixed
axis, which is subject to an external torque. But after having worked out
the resulting motion on the basis of his equations, Euler then wants to
give an alternative, more elementary, demonstration, starting from first
principles. Here, however, he gets into trouble. His alternative method is not
correct, and he arrives finally at the correct result only by making another,
compensating, error. It’s a little hard, in fact, to see just where he went
wrong, since his reasoning seems rather loose, involving manipulations with
infinitesimals. In this part, I will try to clarify the situation, and explain
just what Euler’s error was.

Recall that Euler’s equations, in modern notation, are

L1 = I1ω̇1 + (I3 − I2)ω2ω3

L2 = I2ω̇2 + (I1 − I3)ω1ω3

L3 = I3ω̇3 + (I2 − I1)ω1ω2,

where the Ii are the principal moments of inertia of the body, the ωi are
the components of the angular velocity vector of the body, and the Li are
the components of the applied torque. The simple form of these equations,
in comparison with Euler’s original version in [E177, §55], is the result of
a more felicitous choice of coordinate system.

LOL-Ch10-P12 of 18



Euler on Rigid Bodies 207

Starting in §59, Euler applies his equations to a particular example: a
homogeneous ball, rotating, initially, about a fixed axis, but subject to an
external torque. 17

Euler’s own treatment of the case of the rotating ball is somewhat obscure
because of an awkward choice of coordinates. Using modern notation, we
can easily derive Euler’s result as follows. For a homogeneous ball, all the
principal moments of inertia are equal because of symmetry: I1 = I2 = I3 =
I, say. (It is an elementary exercise in calculus to show that I = 2

5MR2,
where M is the mass of the ball and R is its radius.)

In Euler’s equations, then, the nonlinear terms drop out and the equa-
tions themselves decouple. In vector notation, we can write

L = Iω̇,

where L is the torque vector and ω is the angular velocity vector. This
equation is easy to solve: taking the torque L to be constant, we get

ω = ω0 +
Lt

I
,

where ω0 is the initial angular velocity vector. (In fact, Euler solves the
equation only for an infinitesimal time t, so he does not have to make any
assumption about whether L is constant or not.)

We see that ω begins to turn in the direction of the torque (not in
the direction of the applied force). If, as Euler assumes, the applied force
F is applied at the surface of the ball, tangent to the pole of the initial
rotation, then L = R×F, where R is the radius vector, so that the torque
L is perpendicular to F. Euler is interested in the angle ϕ that the axis
of instantaneous rotation at time t (which is the direction of the angular
velocity vector ω) makes with the initial axis of rotation. For small t (again,
Euler assumes that t is infinitesimal), the angle ϕ will be small, and hence

ϕ ≈ tanϕ =
Lt

ω0I
,

(where L is the magnitude of L and ω0 is the magnitude of ω0).
At the end of E177 (§§62–63), Euler wants to give a more direct, ele-

mentary, derivation of this result. 18 To do this, he considers two separate

17As we noted above, Euler must have had in mind d’Alembert’s recent work on the
precession of the equinoxes.
18Ryoichi Nakata pointed out to me that the Opera omnia reprint of this paper contains

several errors in these sections, in comparison with the original Berlin publication, which
is available online at the Euler Archive, and also at

www.bbaw.de/bibliothek/digital/index.html

The Berlin version makes more sense, but still contains the basic error discussed below.
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Fig. 1.

motions of the ball. The first is the initial rotation with angular velocity ω0.
The second is the motion that would result from the applied torque L under
the assumption that the ball was initially at rest. For infinitesimal time t,
Euler assumes that these two motions can be added. (From our modern
point of view, the instantaneous angular velocities can be added because
they are vectors.) Let α0 be the pole of the initial instantaneous rotation
and α be the pole of the instantaneous rotation at time t (see the figure).
Let γ stand for the great-circle distance from α0 to α. By virtue of the
initial rotation, α will be rotated to α′ in the small time t. To first order,
the arc α̂α′ will be given by

α̂α′ = γω0t.

Now Euler claims that the second motion —the one generated by the
torque L in a ball initially at rest— must rotate the point α′ precisely back
to α, since α is supposed to be pole of the instantaneous rotation at time t.
But, starting from rest, the torque L will turn the ball through an angle

θ =
1
2

L

I
t2
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in time t. So since, to first order, the points α and α′ are at a distance R
from the axis of this rotation, we must have

α̂α′ =
1
2

L

I
t2R.

Comparing these two expressions for α̂α′, we can solve for γ.
But here something strange happens. Euler omits the factor 1

2 in the
second equation for α̂α′. Thus, the equation he gets is

γω0t =
L

I
t2R,

so that

γ =
Lt

ω0I
·R.

Since it is clear that γ = ϕR, this agrees with our previous result.
But something is wrong here! How can Euler get the correct result if he

has mistakenly dropped a factor of 1
2? The answer is that Euler’s method is

wrong. It is not correct to determine α by the property that it must remain
invariant under the superposition of the two motions. Rather, α, the pole
of the instantaneous rotation at time t, is the point on the surface of the
ball which is instantaneously at rest. This is not the same property.

To see this more clearly, consider the following example. Suppose that
we put the points of the real line in motion, in such a way that the position
x′ after time t of the point which was initially at x will be x′ = x+xt− 1

2 t2.
This motion is a superposition of two motions. The first, represented by
the term xt, is a motion in which each point x of the line moves away from
the origin at a constant velocity x. Since points which were initially farther
from the origin have greater velocity, in this motion the line is expanding.
The second motion, represented by the term − 1

2 t2, is a rigid motion, to
the left, which has uniform acceleration.

Now we can ask, first, which point is instantaneously at rest at time t?
The answer, clearly, is x = t, the point which makes dx′/dt = 0. On the
other hand, we can ask which point, at time t, occupies the same position
that it had initially? This requires that xt − 1

2 t2 = 0. Of course, at time
t = 0, all the points are in their initial position. But if t > 0 we can
divide by t, to get x = 1

2 t. The two answers are different (and hence so
are the questions). But if we had dropped the factor 1

2 in the equation
x′ = x+xt− 1

2 t2, then when we solved the second problem, we would have
obtained the correct answer to the first. This is essentially what Euler has
done.

How should Euler have solved the problem correctly? Instead of balanc-
ing distances, he should have balanced velocities. Thus, the point α has a

LOL-Ch10-P15 of 18



210 Stacy G. Langton

horizontal velocity γω0 to the left coming from the ball’s initial rotation.
On the other hand, the torque L generates, after time t, a velocity (L/I)tR
in the other direction. Since the point α must be instantaneously at rest,
these velocities must balance, and we have

γω0 =
L

I
tR,

whence
γ =

Lt

ω0I
R,

and we are done.
According to Clifford Truesdell:
“In true science, there are mistakes. In mathematics, a mistake may be
found by anyone — by a freshman, by an arrogant colleague from another
department, by a failure in his profession who up to that time had never
done anything correct in his life. A mathematician does not like to be
wrong, but he may be wrong, and when he is, there is no doubt and no
excuse. The truth is the truth, demonstrable, and independent of persons.
In other human endeavors, truth is contingent. The politician, the lawyer,
the physician, the general, the university official are all modest men, more
modest than most mathematicians; they are the first to admit, in theory,
that they are fallible, capable of error, perhaps even that in the (carefully
unspecified) past they have not always been right; but today, here and
now, they are never wrong, and nothing can make them wrong. The
patient can die in agony, the army can be killed off to a man, the nation
can be annexed and enslaved, the university can be overrun by a horde of
students, but the error, if any there were, lies elsewhere than with those
in command.” [T2, pp. 102–103]

Euler was a mathematician.
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The most important precalculus and calculus textbooks of the eighteenth
century were the series written in Latin by Leonhard Euler: the two vol-
umes of the Introductio in Analysin Infinitorum (Introduction to Analysis
of the Infinite, 1748) [E101,E102], the Institutiones Calculi Differentialis
(Basic Principles of the Differential Calculus, 1755) [E212], and the three
volumes of the Institutiones Calculi Integralis (Basic Principles of the Inte-
gral Calculus, 1768–1770) [E342,E366,E385]. These are the first “modern”
texts, in the sense that today’s mathematicians can read them relatively
easily without having to translate older notions such as that of fluxions
into modern terms. In particular, they use what looks like modern nota-
tion; of course, the reason for this is that Euler introduced much of our
current notation for the calculus. Nevertheless, when one considers these
texts in detail, one sees that they are not so “modern.” There is much that
is missing that would be included in a current text covering the same basic
material and there is much that Euler includes that is missing from today’s
texts. And some of Euler’s methods are quite different from modern ones.
Thus, in our survey of these basic texts, we will consider both the similar-
ities and the differences between Euler’s work and what one finds in texts
written some two hundred fifty years later.

In what follows, quotations are taken from the Blanton translations of
the Introductio and the first part of the Differential Calculus.
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1. Introduction to Analysis of the Infinite

Book I of the Introductio, Euler’s “precalculus” text, was an attempt to
develop those topics “which are absolutely required for analysis” so that
the reader “almost imperceptibly becomes acquainted with the idea of the
infinite.” [p. v] The “idea of the infinite” is certainly a critical idea in the
study of the calculus itself. But, since for us and for Euler, analysis is
concerned with functions, Euler began his work with that topic. In fact,
making functions the central topic of the book represented a change in
viewpoint in the history of analysis. Newton and Leibniz, in their devel-
opment of calculus, dealt with “curves.” And the title of the first calculus
book, by the Marquis de l’Hospital, was, after all, Analysis of infinitely
small quantities for the understanding of curves. Euler, in his studies of
differential equations in the 1730s, had gradually come to the conclusion
that the notion of “function” should be the basis of analysis. And so Chap-
ter 1 of the Introductio opens with a definition of the term: “A function
of a variable quantity is an analytic expression composed in any way what-
soever of the variable quantity and numbers or constant quantities.”[p. 3]
To understand this definition, we need to be clear on the meaning of the
various terms in it. First of all, a “variable quantity” is “one which can
take on any value,” that is, any numerical value. (Later, we will see that
Euler usually included complex numbers as well as real numbers under the
term “any value.”) Second, “constant quantities” are those which “always
keep the same value.” Finally, since “analytic expression,” seems to mean
“formula” the statement as to how these formulas are to be formed, “in
any way whatsoever,” can only be understood by considering his further
discussion.

Euler explicitly classified functions into two types, algebraic and tran-
scendental. The former are formed from the variables and constants by
addition, subtraction, multiplication, division, raising to a power, extrac-
tion of roots, and the solution of an equation. The latter are those defined
by exponentials, logarithms, trigonometry, and, more generally, by inte-
grals. Because integrals could not be discussed in a precalculus work, the
transcendental functions discussed in the Introductio were limited to the
special cases of trigonometric, exponential and logarithmic functions. Fur-
thermore, as the remainder of the Introductio showed, “in any way what-
soever” includes the notion of infinite series, infinite products, and infinite
continued fractions. Thus, as will become apparent, an important tool in
Euler’s discussion of functions is that of a power series.

Euler also made a distinction between “single-valued” and “multiple-
valued” functions. Today, it is only the former that is called a “function.”
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By the latter, Euler meant an “analytic expression” that “for some value
substituted for the variable z, the function determines several values.”[p.
7] For example, for Euler the expression

√
z represented a two-valued func-

tion and the expression arcsin z represented an infinite-valued function. He
noted that, in general, Z is an n-valued function of z if Z satisfies a poly-
nomial equation of degree n, where the coefficients are all single-valued
functions of z. On the other hand, the function z1/3 - although strictly
speaking a three-valued function - can be thought of as single-valued since
there is only a single real value corresponding to each real number z. De-
spite his discussion of multiple-valued functions, Euler concentrated, in the
remainder of the book, on single-valued functions, what we call “functions.”

In the next several chapters, Euler discussed some basic results about
algebraic functions. For example, he noted that if f is a root of the poly-
nomial p(z), then z − f is a factor of p(z). Therefore, if the roots of Z =
Azn +Bzn−1 +Czn−2 + · · ·+K are f, g, h, . . ., then Z can be factored as
Z = A(z− f)(z− g)(z−h) · · · . Similarly, if Z = A+Bz+Cz2 + · · ·+Kzn

has roots f, g, h, . . ., then Z can be factored as

Z = A

(
1− z

f

)(
1− z

g

)(
1− z

h

)
· · ·

(Note that Euler did not use subscripts, and we will try to stick as closely
to Euler’s notation as possible. Nevertheless, we realize that in results such
as these, subscripts would make the meaning much clearer for us.)

Euler then proceeded to deal with various kinds of factoring of real poly-
nomials. It appears that he is working towards at least a statement of the
fundamental theorem of algebra, the theorem that in the eighteenth cen-
tury was given as: Any polynomial with real coefficients can be factored
into the product of real linear and/or real quadratic factors. But, although
he wrote a paper in 1746 [E170] where he gave what he felt was a complete
proof of this result, he did not do so in the Introductio. What he did do is
show, for example, that complex linear factors of a real polynomial always
occur in pairs whose product is real, that if a polynomial is the product of
four complex linear factors, then it can also be represented as the product
of two real quadratic factors, and, by use of the Intermediate Value Theo-
rem, that any polynomial of odd degree has at least one real linear factor.
Euler’s chief goal in dealing with factoring, however, was to demonstrate
the partial fraction decomposition of rational functions, a task necessary
for later use in integral calculus.

After next considering how to simplify functions by appropriate substi-
tutions, he then explained how to represent rational functions as power
series. This again is preliminary to later work in developing power series
for transcendental functions. As Euler writes,
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“Since the nature of polynomial functions is very well understood, if
other functions can be expressed by different powers of z in such a way
that they are put in the form A+Bz+Cz2 +Dz3 + · · · , then they seem
to be in the best form for the mind to grasp their nature, even though
the number of terms is infinite.” [p. 50]
In fact, Euler claimed that any function can be expressed as an infinite

series – and much of the text is devoted to giving examples to convince the
reader of the truth of that statement. Among the first of these examples
is the representation of (1 + Z)m as a power series, where m can be any
rational number and Z is any polynomial function of z:

(1 + Z)m = 1 +
m

1
Z +

m(m− 1)
1 · 2

Z2 +
m(m− 1)(m− 2)

1 · 2 · 3
Z3 + · · ·

Although he made frequent use of the binomial theorem later on, he did
not discuss the convergence of this series, nor, in general, the convergence
of any power series.

The central chapters of Book I of the Introductio, and those which were
to prove most influential, are the chapters dealing with the exponential, log-
arithmic, and trigonometric functions, for it is there that Euler introduced
the notations and concepts which were to make obsolete all the discussions
of such functions in earlier texts. All modern treatments of these functions
are in some sense derived from those of Euler. Thus Euler defined exponen-
tial functions as powers in which exponents are variable and then — and
this is a first — defined logarithms in terms of these. Namely, if az = y,
Euler defined z to be the logarithm of y with base a. The basic properties
of the logarithm function are then derived from those of the exponential.

Using these properties, Euler showed how one can calculate a logarithm.
As an example, he calculated log10 5. (In the rest of this calculation, we
will simply write log for log10.) Beginning with A = 1 and B = 10, he first
calculated C =

√
AB =

√
10 = 3.16227. By the properties of the logarithm,

logC = 1
2 (logA+logB) = 1

2 ·1 = 0.5. Similarly, he calculated D =
√
BC =√

31.6227 = 5.623413 and then noted that logD = 1
2 (logB + logC) =

0.75. He continued in this manner for 26 values, eventually finding X =
4.999997, logX = 0.6989697, Y = 5.000003, log Y = 0.6989702, and then
Z =

√
XY , with Z = 5.000000 and logZ = 0.6989700. Euler noted that

this is essentially the original method of Briggs and Vlacq, but that, as he
would show shortly, there are much more efficient ways of performing this
calcululation.

Before getting to those methods of calculation, Euler demonstrated the
standard method of converting from logarithms in one base to logarithms
in a second and then pointed out that logarithm tables are “of great use
in carrying out numerical computations.”[p. 84] To demonstrate this latter
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point, he presented a few problems. For example, “Since after the flood all
men descended from a population of six, if we suppose that the population
after two hundred years was 1,000,000, we would like to find the annual
rate of growth.”[p. 86] To solve this, he assumed that the yearly increase
was 1/x, so after two hundred years, the population can be expressed as(

1 + x

x

)200

6 = 1, 000, 000.

It follows that

log
(

1 + x

x

)
=

1
200

log
(

1, 000, 000
6

)
=

1
200

(5.2218487) = 0.0261092.

He then found the “antilog” of 0.0261092 to be 1.061963, so he could solve
for x, which equals approximately 16. In other words, the yearly popula-
tion incrased by 1/16. However, he notes, if this rate were to continue for
400 years, the population would be 166,666,666,666, and “the whole earth
would never be able to sustain that population.” (Note that this problem
was written well before Malthus’s famous essay.) In another problem he
demonstrated that an annual rate of growth of only 1/144 would be suffi-
cient to double the human population in a century, thus concluding that
“it is quite ridiculous for the incredulous to object that in such a short
space of time [i.e. from Biblical creation to the present] the whole earth
could not be populated beginning with a single man.”[p. 87]

As one final example, we look at a problem in which Euler used loga-
rithms to find the value of an unknown exponent: “A certain man borrowed
400,000 florins at the usurious rate of five percent annual interest. Suppose
that each year he repays 25,000 florins. The question is how long will it
be before the debt is repain completely.”[p. 88] Setting a = 400, 000, b =
25, 000, and n = 1.05, Euler showed by use of the sum of a geometric series
that after x years, the man owes nxa− (nxb− b)/(n− 1) florins. When the
debt is paid, this value should be zero, so the resulting equation becomes:

nx =
b

b− (n− 1)a
.

By taking logarithms, we get

x =
log b− log(b− (n− 1)a)

log n
≈ 33 years.

After dealing with basic functional aspects of the logarithm and expo-
nential, Euler next developed their power series for an arbitrary base a
by use of the binomial theorem. His technique made important use of both
“infinitely small” and “infinitely large” numbers. These concepts have diap-
peared from modern mathematics, partly because their use led to numerous
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inconsistencies. However, Euler rarely erred when he used them. For exam-
ple, he noted that since a0 = 1, it follows that aω = 1+ψ where both ω and
ψ are infinitely small. Therefore, ψ must be some multiple of ω, depending
on a, and

aω = 1 + kω or ω = loga(1 + kω).
Euler noted next that for any j, ajω = (1 + kω)j , and, expanding the right
side by the binomial theorem, that

ajω = 1 +
j

1
kω +

j(j − 1)
1 · 2

k2ω2 +
j(j − 1)(j − 2)

1 · 2 · 3
k3ω3 + · · ·

If j is taken to equal z/ω, where z is finite, then j is infinitely large and
ω = z/j. The series now becomes

az = 1 +
1
1
kz +

1(j − 1)
1 · 2j

k2z2 +
1(j − 1)(j − 2)

1 · 2j · 3j
k3z3 + · · ·

Because j is infinitely large, (j − n)/j = 1 for any positive integer n. The
expansion then reduces to the series

az = 1 +
kz

1
+
k2z2

1 · 2
+

k3z3

1 · 2 · 3
+ · · ·

where k depends on the base a. Euler also noted that the equation ω =
loga(1+kw) implies that if (1+kw)j = 1+x, then loga(1+x) = jω. Since
then kω = (1 + x)1/j − 1, it follows that

loga(1 + x) =
j

k
(1 + x)

1
j − j

k
.

Another clever use of the binomial theorem finally allowed him to derive
the series

loga(1 + x) =
1
k

(
x

1
− x2

2
+
x3

3
+ · · ·

)
.

The choice of k = 1, or equivalently, a = e, gave the standard power series
for ez and ln z. The latter series, and one that is easily derived from it,
namely

ln
(

1 + x

1− x

)
=

2x
1

+
2x3

3
+

2x5

5
+ · · ·

can then be used, as promised earlier, to efficiently calculate logarithms to
the base e – and Euler proudly displayed values for the logarithms of the
first 10 positive integers to 25 decimal places.

Euler’s treatment of “transcendental quantities which arise from the cir-
cle”[p. 101] is the first textbook discussion of the trigonometric functions
which deals with these quantities as functions having numerical values,
rather than as lines in a circle of a certain radius. Euler did not, in fact,
give any new definition of the sine and cosine. He merely noted that he
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would always consider the sine and cosine of an arc z to be defined in terms
of a circle of radius 1. All basic properties of the sine and cosine, includ-
ing the addition and periodicity properties, are assumed known, although
Euler did derive some relatively complicated identities that do not usually
appear in today’s texts. For example, starting with the “sum-to-product”
rules, he derived(

tan
(
a+ b

2

))2

=
(sin a+ sin b)
(sin a− sin b)

(cos b− cos a)
(cos a+ cos b)

.

More importantly, he derived the power series for the sine and cosine
through use of the binomial theorem and complex numbers.

Euler began by deriving the cases n = 2 and n = 3 of DeMoivre’s formula
and then quoted the general result: (cos z± i sin z)n = cosnz± i sinnz. He
then concluded that

cosnz =
(cos z + i sin z)n + (cos z − i sin z)n

2
and, by expanding the right side, that

cosnz = (cos z)n − n(n− 1)
1 · 2

(cos z)n−2(sin z)2

+
n(n− 1)(n− 2)(n− 3)

1 · 2 · 3 · 4
(cos z)n−4(sin z)4 + · · ·

Again letting z be infinitely small, n infinitely large, and nz = v finite, it
follows from sin z = z and cos z = 1 that

cos v = 1− v2

1 · 2
+

v4

1 · 2 · 3 · 4
− · · ·

Similarly, Euler derived the power series for the sine. Having given the value
of π to 127 decimal places, Euler then used these power series to show how
to calculate the value of the sine and cosine for any fractional multiple m/n
of π/2.

Virtually as an aside, Euler derived the formulas relating complex ex-
ponentials to sines and cosines: e±iv = cos v ± i sin v, then used these to
develop the classic power series for the arctangent:

arctan t =
t

1
− t3

3
+
t5

5
− t7

7
+ · · · .

Noting that this series implies that π/4 = 1 − 1/3 + 1/5 − 1/7 + · · · but
that this series “hardly converges,” he then manipulated with the tangent
function to give a much more rapidly converging series for π/4, namely,
π/4 = arctan(1/2) + arctan(1/3).

Furthermore, in his chapter on trinomial factors, Euler essentially found
the expressions for the complex nth roots of unity. He began by noting that
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the real trinomial p2 −mz + q2z2 is irreducible over the real numbers and
therefore has complex linear factors whenever m2 < 4p2q2, or, m

2pq < 1.
In this case, m

2pq is the cosine of some angle φ, so m = 2pq cosφ, and we
can write the original polynomial in the form p2− 2pqz cosφ+ q2z2, whose
linear factors are qz− p(cosφ± i sinφ). It follows that the two zeros of the
polynomial are z = (p/q)(cosφ± i sinφ). In the special case of irreducible
quadratic factors of an − zn = 0, Euler noted that if p2 − 2pqz cosφ+ q2z2

is such a factor, and if r = p/q, then rn cosnφ = an and rn sinnφ = 0.
It follows that nφ is an even multiple of π, so cosnφ = 1 and r = a. The
trinomial factor then becomes a2 − 2az cos 2kπ

n + z2, with roots

z = a

(
cos

2kπ
n

± i sin
2kπ
n

)
.

Although Euler did not look at the special case a = 1, he did consider
explicitly the cases where n = 1, 2, 3, 4, 5, 6, factoring each of the polyno-
mials an − zn for those values of n into their irreducible factors and thus
determining the nth roots of an for those values of n.

The remainder of volume one of the Introductio includes much else about
infinite processes, including infinite products as well as infinite series. For
example, Euler factored the hyperbolic sine and cosine functions (although
he did not name these) as

ex − e−x

2
= x

(
1 +

x2

π2

)(
1 +

x2

4π2

)(
1 +

x2

9π2

)
· · ·

and
ex + e−x

2
=
(

1 + 4x2

π2

)(
1 + 4x2

9π2

)(
1 + 4x2

25π2

)
· · · .

Because he could also write
ex − e−x

2
= x

(
1 +

x2

1 · 2 · 3
+

x4

1 · 2 · 3 · 4 · 5
+

x6

1 · 2 · 3 · 4 · 5 · 6 · 7
+ · · ·

)
and

ex + e−x

2
= 1 +

x2

1 · 2
+

x4

1 · 2 · 3 · 4
+

x6

1 · 2 · 3 · 4 · 5 · 6
+ · · · ,

he could use the relationship between roots and coefficients of a polynomial
equation (extended to power series) to calculate the infinite sums

∞∑
n=1

1
n2k

and
∞∑

n=1

1
(2n− 1)2k

.
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The simplest of these formulas gave a solution to the question of Johann
Bernoulli as to the sum of the reciprocal squares of the integers, that is,

∞∑
n=1

1
n2

=
π2

6
.

But he could also show, for example, that the sum of the reciprocal fourth
powers equals π4

90 and that the sum of the reciprocal squares of the odd
integers is π2

8 . Similarly, Euler derived Wallis’s infinite product formula

π

2
=

2 · 2 · 4 · 4 · 6 · 6 · · ·
1 · 3 · 3 · 5 · 5 · 7 · · ·

by using infinite product representations of the sine and the cosine func-
tions. Euler also considered the equality∏

p

1
1− 1

pn

=
∑
m

1
mn

,

where the product is taken over all primes and the sum over all positive
integers. This product and sum, both generalized to the case where n is
any complex number s, are today called the Riemann zeta function of the
variable s, the study of which has led to much new mathematics. Finally,
Euler devoted the whole of chapter 16 to an introductory study of the
theory of partitions, the number of ways one can write a given number as
the sum of positive numbers. It turns out that the answer depends on the
coefficients of a power series determined by an infinite product of reciprocals
of polynomials of the form 1− xn.

With volume one being completely devoted to “pure analysis,” Euler de-
cided that he also needed a volume devoted to what we now call analytic
geometry, since “analysis is ordinarily developed in such a way that its ap-
plication to geometry is shown.”[p. vi] Thus, he began this second volume
by dealing with curves given by functions. As was customary at the time,
Euler used only a single axis, not our standard two. The “variable quantity”
x (or, the abscissa) is laid out along a horizontal straight line, while the
dependent quantity y is simply determined at each point along that hor-
izontal line by erecting a perpendicular (the ordinate) of the appropriate
length, above the line if y is positive and below if y is negative. Euler noted
that it is also possible to have the ordinate oblique to the axis of abscissas.
The curve that represents the function is then constructed by connecting
the tips of the perpendicular straight lines y. As Euler wrote, “any function
of x is translated into geometry and determines a line, either straight or
curved, whose nature is dependent on the nature of the function.”[p. 5]

Recall, however, that Euler distinguished between multiple-valued and
single-valued functions. Thus, in his introductory discussion of curves in
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general, he showed how this distinction is reflected in the geometry. For a
single-valued function, “to each abscissa there corresponds a unique ordi-
nate,” and therefore the curve extends indefinitely with the axis. But for
multiple-valued functions, each abscissa x corresponds to two or more or-
dinates y. Euler then gave several examples, with figures, explaining the
various kinds of situations which could occur, including situations where
for some values of x there are no real values of y at all. So in some cases,
the curve can be a closed curve; the curve could be simple or it could cross
itself; it may even have several parts, some of which are closed while others
go off toward infinity.

After his initial general discussions, Euler considered separately curves of
first order (i.e., straight lines), curves of second order (i.e., conic sections),
curves of third order, and curves of fourth order. Euler gave the general
equation of a straight line in the form α + βx + γy = 0, noting also that
the line is actually determined by the two ratios β : α and γ : α. Thus, two
points suffice to determine exactly one straight line. Interestingly, Euler
gave no geometric interpretations of the coefficients in the equation of a
straight line; there is nothing about slope or intercepts. However, he did
note that to find where the line intersects the axis, one simply sets y = 0
and solves.

A curve of second order is given by the equation α+βx+γy+δx2+εxy+
ζy2 = 0 and, for the same reason as before, the curve is really determined by
five ratios or, to put it another way, five points completely determine such
a curve. With that in mind, Euler discussed various properties of second
order curves in general, including such concepts as conjugate diameters,
foci, parameters, vertices, and a method of constructing a tangent. He
noted, in fact, that Newton used many of these properties of the conic
sections to solve problems in the Principia. After the generalities, Euler
showed how to recognize the three types of conic sections, the ellipse, the
parabola, and the hyperbola, noting that the essential difference “lies in
the number of branches which go to infinity.”[p. 83] The ellipse has no
part going to infinity; the parabola has two branches going to infinity;
while the hyperbola has four. He then derived the basic properties of these
three types, using their equations rather than the sectioning of a cone.
Later in volume two, Euler classified and discussed both third order and
fourth order curves, and gave a brief discussion of the curves defined by
the transcendental functions discussed in volume one, the exponential (or
logarithmic) curves and the trigonometric curves.

Euler concluded the Introductio with a systematic treatment of the study
of quadric surfaces in three-dimensional space. Euler used a single coordi-
nate plane, with only one axis defined on it, and represented the third
coordinate by the perpendicular distance from a point to that plane. But
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he did remark that it was possible to use three coordinate planes and often
described a surface by means of its trace in various such planes. He gave the
equation for a plane in three space as αx+ βy + γz = a but described the
meaning of the coefficients only in terms of the cosine of the angle θ between
that plane and the xy-plane: cos θ = γ/

√
α2 + β2 + γ2. In his discussion

of the quadric surfaces themselves, Euler began by noting that the general
second degree equation in three variables can be reduced by a change of
coordinates to one of the forms Ax2 +By2 +Cz2 = a2, Ax2 +By2 = Cz, or
Ax2 = By. The relationships among the coefficients then determined the
type of surface: ellipsoid, elliptic or hyperbolic paraboloid, elliptic or hy-
perbolic hyperboloid (now called they hyperboloids of one and two sheets,
respectively), cone, and parabolic cylinder.

2. Basic Principles of the Differential Calculus

Although much of volume one of the Introductio was largely concerned
with series, Euler considered this material as the algebra necessary for the
calculus. He discussed the calculus itself in his Institutiones Calculi Dif-
ferentialis of 1755. That work began with his definition of the differential
calculus: “[It] is a method for determining the ratio of the vanishing in-
crements that any functions take on when the variable, of which they are
functions, is given a vanishing increment.”[p. vii] Euler had already given
a definition of “function” in the Introductio, but here he generalized it
somewhat: “Those quantities that depend on others in this way, namely,
those that undergo a change when others change, are called functions of
these quantities. This definition applies rather widely and includes all ways
in which one quantity can be determined by others.”[p. vi] Thus Euler
no longer required a function to be an “analytic expression.” The rea-
son for this change is perhaps connected to the controversy among Euler,
D’Alembert and Daniel Bernoulli over the vibrating string problem and the
nature of possible solutions to partial differential equations coming from
physical situations. Euler was, naturally, well aware of the many applica-
tions of the differential calculus to geometry. He wrote, however, that in this
regard “I have nothing new to offer, and this is all the less to be required,
since in other works I have treated this subject so fully.”[p. xi] Thus, he
decided to keep the Differential Calculus as a work of pure analysis, so that
there was no need for any diagrams. Similarly, Euler did not deal with the
relationship to the subject to physics.

Because calculus has to do with ratios of “vanishing increments,” Euler
began with a discussion of increments in general, that is, with finite dif-
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ferences. Given a sequence of values of the variable, say x, x + ω, x + 2ω,
. . . and the corresponding values of the function y, y′, y′′, . . ., Euler con-
siders various sequences of finite differences. The first differences are ∆y =
y′−y,∆y′ = y′′−y′, ∆y′′ = y′′′−y′′, . . .; the second differences are ∆∆y =
∆y′−∆y, ∆∆y′ = ∆y′′−∆y′, . . .; third and higher differences are defined
analogously. For example, if y = x2, then y′ = (x+ω)2 and ∆y = 2ωx+ω2,
∆∆y = 2ω2, while the third and higher differences are all 0. Using various
techniques, including expansion in series, Euler calculated the differences
for all of the standard elementary functions. Furthermore, using the sum
Σ to denote the inverse of the ∆ operation, he derived various formulas for
that operation as well. Thus, because ∆x = ω, it followed that Σω = x
and that Σ1 = x/ω. Similarly, because ∆x2 = 2ωx + ω2, it followed that
Σ(2ωx+ ω2) = x2 and that

Σx =
x2

2ω
− Σ

ω

2
=
x2

2ω
− x

2
.

Euler then easily developed rules for Σ from the corresponding rules for ∆.
Rather than discuss the rules for finite differences, however, it will be more
useful to discuss Euler’s rules for differentials.

“The analysis of the infinite . . . is nothing but a special case of the
method of differences . . . wherein the differences are infinitely small, while
previously the differences were assumed to be finite.”[p. 64] Euler’s rules for
calculating with these infinitely small quantities, the differentials, produce
the standard formulas of the differential calculus. For example, if y = xn,
then y′ = (x + dx)n = xn + nxn−1dx + n(n−1)

1·2 xn−2dx2 + · · · . Thus dy =
y′ − y = nxn−1dx + n(n−1)

1·2 nn−2dx2 + · · · . “In this expression the second
term and all succeeding terms vanish in the presence of the first term.”[p.
77] Thus d(xn) = nxn−1dx. It should be noted here that Euler intended his
argument to apply not just to positive integral powers of x, but to arbitrary
powers. The binomial theorem, after all, applies to all powers. Thus the
expansion of (x+ dx)n does not necessarily represent a finite sum; it may
well represent an infinite series. Euler therefore concluded immediately that
d( 1

xm ) = − m dx
xm+1 and, more generally, that d(xµ/ν) = (µ/ν)x(µ−ν)/νdx.

Euler did not give an explicit statement of the modern chain rule, but
did deal with special cases as the need arose. Thus if p is a function of x
whose differential is dp, then d(pn) = npn−1dp. Euler’s derivation of the
product rule was the same as the original derivation of Leibniz, but his
derivation of the quotient rule was more original. He expanded 1/(q + dq)
into the power series

1
q + dq

=
1
q

(
1− dq

q
+
dq2

q2
− · · ·

)
,
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neglected the higher order terms, and then wrote

p+ dp

q + dq
= (p+ dp)

(
1
q
− dq

q2

)
=
p

q
− p dq

q2
+
dp

q
− dp dq

q2
.

It follows, since the second order differential dp dq vanishes with respect to
the first order ones, that

d

(
p

q

)
=
p+ dp

q + dq
− p

q
=
dp

q
− p dq

q2
=
q dp− p dq

q2
.

The differential of the logarithm requires the power series derived in the
Introductio. If y = lnx, then

dy = ln(x+ dx)− ln(x) = ln
(

1 +
dx

x

)
=
dx

x
− dx2

2x2
+
dx3

3x3
− · · ·

Dispensing with the higher order differentials immediately gave Euler the
formula d(lnx) = dx

x . With the basic rule determined, Euler discussed
numerous examples which make use of the properties of logarithms. For
example, he showed that if

y =
1
2

ln

(√
1 + x2 + x√
1 + x2 − x

)
,

then, since y = 1
2 ln(

√
1 + x2 + x)− 1

2 ln(
√

1 + x2 − x), we have

dy =
1
2 dx√
1 + x2

+
1
2 dx√
1 + x2

=
dx√

1 + x2
.

Euler calculated the differential of the exponential function two ways,
first using the logarithm and second from basic principles. Thus, if y =
ax, one can take the logarithm of both sides to get ln y = x ln a. Taking
differentials then gives dy/y = dx ln a, so that dy = y dx ln a = ax dx ln a.
On the other hand, to calculate the differential of y = ax directly, Euler
noted that dy = ax+dx−ax = ax(adx−1) and then expanded the expression
inside the parentheses by using power series:

adx = 1 + dx ln a+
dx2(ln a)2

2
+ · · ·

Neglecting higher order differentials gives adx − 1 = dx ln a, so dy =
ax dx ln a, as before.

Curiously, Euler next proceeded to calculate the differential of the arcsine
rather than the sine, with his initial approach being through complex num-
bers. Substituting y = arcsinx into the formula eiy = cos y + i sin y gives
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eiy =
√

1− x2 + i x. It follows that y = 1
i ln(

√
1− x2 + i x) and therefore

that

dy = d(arcsinx) =
1
i

1√
1− x2 + i x

(
−x√
1− x2

+ i

)
dx =

dx√
1− x2

.

On the other hand, he noted that if y = arcsinx, then x = sin y. Therefore
x + dx = sin(y + dy) = sin y cos dy + cos y sin dy. But as dy vanishes, the
arc becomes equal to its sine and its cosine becomes equal to 1. Therefore
x + dx = sin(y + dy) = sin y + dy cos y. Since cos y =

√
1− x2, it follows

that dx = dy
√

1− x2 or, again,

dy =
dx√

1− x2
.

But rather than note at this point that d(sinx) = cosx dx, Euler, sev-
eral pages later, did a new computation: d(sinx) = sin(x + dx) − sinx =
sinx cos dx + cosx sin dx − sinx. He then recalled his series expansions of
the sine and cosine and, again rejecting higher order terms, noted that
cos dx = 1 and sin dx = dx. It follows that d(sinx) = cosx dx as desired.
(To be fair to Euler, at this point he also noted that this result could be
easily derived – without power series – from the previous calculation of
the differential of the arcsine. As a consummate textbook writer, Euler
delighted in being able to derive results in several different ways.)

The central concepts of Euler’s chapter on functions of two or more vari-
ables, as in the case of functions of one variable, are that of the differential
and the differential coefficient. Euler showed, chiefly through the use of
examples, that if V is a function of the two variables x and y, then dV ,
the change in V resulting from the changes x to x + dx and y to y + dy,
was given by dV = p dx + q dy where p, q are the differential coefficients
resulting from leaving y and x constant, respectively. There is naturally
no difficulty in calculating p or q, since, in modern terms, p = ∂V/∂x and
q = ∂V/∂y. One merely applies the rules already derived, treating one
or the other variable as a constant. Euler showed further, by an algebraic
argument involving differentials, that the “mixed partial derivatives” are
equal. It follows, then, that if dV = p dx+ q dy, then ∂p/∂y = ∂q/∂x. But
Euler also claimed, with a nod to the upcoming volume on integral calculus,
that if this equality is true for the differential p dx + q dy, then “from the
principles of integration,” the differential comes from differentiating some
function V .

Euler’s text has many other features, including an introduction to dif-
ferential equations, in which he shows how to generate these from a given
equation in two variables, a discussion of the Taylor series, a chapter on
various methods of converting functions to power series, an extensive dis-
cussion on finding the sums of various series, including those for the sums of
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the various powers of the integers, and a variety of ways of finding the roots
of equations numerically. The remainder of the discussion here, however,
will center on Euler’s two chapters on finding maxima and minima. Recall
that there are no diagrams in the text and therefore no pictures of curves
possessing maxima or minima. Everything is done analytically. But Euler
began the discussion by distinguishing between an absolute maximum, a
value greater than any other of the function, and a local maximum, a value
of y taken at x = f which is greater than any other value of y for x “near”
f on either side.

Euler derived the basic criteria for a function to have a maximum or
minimum value at x = α, in terms of the first and second derivatives, by
the use of the Maclaurin series. But Euler bolstered his methodology with
numerous examples and often sought to generalize. Thus, after considering
maxima and minima for several specific polynomials, he discussed in some
detail the case of an arbitrary polynomial y = xn+Axn−1+Bxn−2+· · ·+D.
After dealing with several cases of rational functions, he considered the
more general rational function

(α+ βx)m

(γ + δx)n
.

After discussion of the lack of a power series for x2/3 around 0, and there-
fore, the necessity of formulating some different criteria for a maximum or
minimum, he dealt with the more general case x2pz/(2q−1). Most of Euler’s
examples are of algebraic functions, but he concluded with a few examples
using transcendental functions, including the functions x1/x and x sinx,
both of which required detailed numerical work to arrive at an exact solu-
tion for an extreme value.

For extrema of functions V of two variables, Euler began by considering
the special case of functions of the form X+Y where X is a function solely
of x and Y of y. In that case, a pair of values (x0, y0) such that x0 is a
maximum for X and y0 a maximum for Y clearly gives a maximum for
X + Y . For the more general case, Euler realized, by holding each variable
constant in turn, that an extreme value of V can only occur when the
differential dV = P dx+Qdy = 0, therefore only when both P = ∂V/∂x =
0 and Q = ∂V/∂y = 0. The question of determining whether a point
(x0, y0) where both first partial derivatives vanish produces a maximum,
a minimum, or neither is more difficult and, in fact, Euler failed to give
complete results. He claimed, in fact, that if ∂2V

∂x2 and ∂2V
∂y2 are both positive

at (x0, y0), then the function V has a minimum there, and if they are both
negative, there is a maximum. Euler gave several examples illustrating the
method, including V = x3+ay2−bxy+cx. He noted that an extreme value
would occur when
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x =
b2 ±

√
b4 − 48a2c

12a
,

as long as b2 − 48a2c > 0. Furthermore, since ∂2V
∂x2 = 6x and ∂2V

∂y2 = 2a,
he claimed that when a > 0 and both possible values of x are positive,
then the two extreme values are both minima. In particular, in Euler’s
special case where a = 1, b = 3, and c = 3/2, his criteria imply that
V = x3 + y2− 3xy+(3/2)x has a minimum both when x = 1, y = 3/2 and
when x = 1/2, y = 3/4. Unfortunately, Euler was wrong; the latter point
is not a minimum, but a saddle point.

3. Basic Principles of the Integral Calculus

Euler began the final part of his trilogy in analysis, the Institutiones
Calculi Integralis, with a definition of integral calculus. It is the method
of finding, from a given relation of differentials of certain quantities, the
quantities themselves. Namely, for Euler as it was for Johann Bernoulli,
integration is the inverse of differentiation rather than the determination of
an area. Thus the first part of the work dealt with techniques for integrating
(finding antiderivatives of) functions of various types while the remainder
of the text dealt with the solutions of differential equations. Although Euler
began his section on techniques with such standard results as∫

axn dx =
a

n+ 1
xn+1 + C

for n 6= −1 and ∫
a dx

x
= a lnx+ C = ln cxa,

he quickly moved on to many types of integrals, some being familiar while
others of types not usually covered in today’s texts. Thus, he notes that
to integrate any rational function, it suffices to integrate functions of the
form

A

(a+ bx)n
and

A+Bx

(a2 − 2abx cos ζ + b2x2)n
,

using the same trigonometric form of an irreducible quadratic that he had
discussed in the Introductio. The first type of integral is straightforward.
For the second, he began with the special case n = 1:∫

(A+Bx) dx
a2 − 2abx cos ζ + b2x2

=
B

ab2
ln(a2 − 2abx cos ζ + b2x2)

+
Ab+Ba cos ζ
ab2 sin ζ

arctan
bx− a cos ζ
a sin ζ

.
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In this example, as in the others discussed below, Euler considered various
special cases before generalizing. And then, once he had his general integral
results, he often specialized again, frequently calculating the same integral
in more than one way.

To integrate functions involving square roots, Euler used substitution,
although not our modern trigonometric substitutions. For example, to in-
tegrate

dx√
α+ βx+ γx2

,

he considered two cases depending on whether the quadratic polynomial
factored into two real factors or not. In the first case, he assumed the
factorization was (a+ bx)(f + gx). Then, “to remove the irrationality,” he
set (a+ bx)(f + gx) = (a+ bx)2z2, or (f + gx) = (a+ bx)z2. Solving for x
gives x = (az2 − f)/(g − bz2), and therefore

dx =
2(ag − bf)z dz

(g − bz2)2
and

dx√
(a+ bx)(f + gx)

=
2 dz

g − bz2
.

Assuming g > 0, we then have that if b > 0, the integral is

1√
bg

ln

(√
g + z

√
b

√
g − z

√
b

)
,

while if b < 0, the integral is

2√
bg

arctan

(
z
√
b

√
g

)
.

An analogous substitution works in the case where the original quadratic
polynomial is irreducible over the real numbers.

Euler next considered integration by the use of infinite series, Newton’s
favorite technique. To integrate functions involving logarithms, he invoked
the technique of what we call integration by parts. As he described this
technique, if the function V can be factored as V = PQ, and if the integral∫
P dx = S is known, then from P dx = dS, we get V dx = PQdx = QdS.

Thus, since d(QS) = QdS + S dQ, we have
∫
V dx = QS −

∫
S dQ. He

immediately applied this rule to integrating functions of the form xn lnx:∫
xn lnx dx=

1
n+ 1

xn+1 lnx−
∫

1
n+ 1

xn+1 d(lnx)

=
1

n+ 1
xn+1

(
lnx− 1

n+ 1

)
.

In another chapter, Euler dealt with numerous procedures for integration
of powers of trigonometric functions. For example, he used the substitution
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cosφ = 1−x2

1+x2 , sinφ = 2x
1+x2 to convert rational functions involving sines and

cosines to ordinary rational functions. Thus, he showed that, in the case
where a > b,∫

dφ

a+ b cosφ
=
∫

2 dx
a+ b+ (a− b)x2

=
2√

a2 − b2
arctan

(a− b)x√
a2 − b2

=
1√

a2 − b2
arctan

sinφ
√
a2 − b2

a cosφ+ b
.

Although normally Euler just calculated antiderivatives, occasionally he
calculated what we would call a “definite integral.” Thus, he first demon-
strated the reduction formula∫

xm+1 dx√
1− x2

=
m

m+ 1

∫
xm−1 dx√

1− x2
− 1
m+ 1

xm
√

1− x2.

Then, noting that the second term on the right vanished at both x = 0 and
x = 1 and that∫ 1

0

dx√
1− x2

=
π

2
and

∫ 1

0

x dx√
1− x2

= 1,

he concluded that ∫ 1

0

x2n dx√
1− x2

=
1 · 3 · 5 · · · (2n− 1) · π

2 · 4 · 6 · · · 2n · 2
and ∫ 1

0

x2n+1 dx√
1− x2

=
2 · 4 · 6 · · · 2n

3 · 5 · 7 · · · (2n+ 1)
.

(Note that Euler himself did not write limits of integration; they are put
there for clarity.)

After considering these various techniques of integration, Euler moved
on to deal with methods of solving differential equations. Euler solved the
general first order linear equation dy+Py dx = Qdx (or, in modern terms,
y′ + Py = Q) by separation of variables to get

y = e−
∫

P dx
∫
e
∫

P dxQdx.

As examples of this, he solved dy + y dx = axn dx for various values of n.
For n = 3, he found that y = Ce−x + x3 − 3x2 + 6x − 6. As promised
earlier, he showed how to integrate P dx+Qdy in the “exact” case where
∂P/∂y = ∂Q/∂x, again following the general discussion with numerous ex-
amples. He demonstrated how to find integrating factors in the case where

LOL-Ch11-P18 of 22



Euler’s Analysis Textbooks 231

P dx + Qdy is not exact, again detailing the method through various ex-
amples. He considered many cases of second and higher order differential
equations, including the linear case with constant coefficients, which re-
quired the solving of a polynomial equation. Finally, Euler concluded the
book with a long discussion of methods of solving partial differential equa-
tions.

4. Conclusions

The Integral Calculus, the Differential Calculus and the first part of the
Introductio are texts in pure analysis, so much so that, as mentioned earlier,
Euler does not even deal with applications to geometry, let alone physics.
This is, perhaps, especially surprising in the Integral Calculus since the orig-
inal motivation for the solution of differential equations came from physical
questions, questions that in fact led Euler to some of these methods of so-
lution in the 1730s and 1740s. So the modern reader may well be surprised
that in the Differential Calculus there are no tangent lines or normal lines,
no tangent planes, no study of curvature — all topics with which Euler
was fully conversant in 1740 but which only appear in some of his geo-
metrical works. And in the Integral Calculus there is no mention of the
vibrating string problem or various other vibration problems that had led
Euler to “invent” the trigonometric functions in the 1730s, nor is there any
calculation of areas nor any material on lengths of curves, or volumes, or
surface areas of solids. And then, although Euler presented an extraordi-
nary number of methods to find antiderivatives, the central technique of
modern texts for determining areas, the fundamental theorem of calculus,
did not appear. That is not to say that Euler did not know how to cal-
culate areas using antiderivatives. Euler in fact did so in various papers.
But since geometrical ideas are not present in the calculus texts, there is
no definition of the area under a curve as a function, and therefore no call
for the derivative of such a function. And until an independent definition
of area could be provided, as Cauchy did in the 1820s, this fundamental
relationship between derivatives and integrals, discovered by Newton and
Leibniz, could not be “fundamental.”

It appears that, with the exception of the second part of the Introductio,
which was filled with graphs, Euler had an abiding belief that “pure math-
ematics” had no need of diagrams. One could understand everything that
was needed by pure manipulation of symbols according to the rules that
he and others developed. (Of course, the modern theoretical underpinnings
of the calculus based on an understanding of the real number system do
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not appear here. What proofs there are are based on the use of infinitely
large and infinitely small quantities.) Euler seemed further to believe, like
Euclid two thousand years earlier, that it was unnecessary to help students
learn analysis by showing them the motivations for the various techniques
– a far cry from the standard modern opinions on the teaching of the sub-
ject. That is not to say that Euler was not a good pedagogue. He was very
patient with his readers, frequently explaining every step in an argument
while also demonstrating the same result in several ways. And he certainly
used motivations from the sciences in many of his other papers.

It is common to consider Euler’s analysis texts as the most influential
texts of the eighteenth century. But it is difficult to quantify this influence.
They are surely among the works to which Laplace referred when he wrote,
“Read Euler; read Euler. He is the master of us all.” But to figure out
who actually did read them is difficult. Certainly, the Introductio was read
frequently. For not only were Euler’s notation and methods taken up in
numerous analysis texts that followed, but also the book itself saw several
reprints even during the eighteenth century as well as translations toward
the end of that century into both French (twice) and German. On the other
hand, the Differential Calculus only has a single German translation – in
1790 – while there are no eighteenth century translations of the Integral
Calculus. The first translation, into German, appeared in 1828-30.

Certainly the techniques that Euler developed to determine derivatives
and integrals continued to appear in other texts, but his use of infinitesimals
as a basis for the calculus was gradually replaced by the idea of a limit,
beginning with the ideas of Jean d’Alembert as expressed in his articles
in the French Encyclopeédie. But it was the French Revolution and the
influence of Napoleon which really changed everything. Suddenly, with the
aristocracy removed in France, and greatly weakened elsewhere, there was
a great need for educating a new class of students who were entering the
sciences. And it was this need that inspired the writing of many new texts
in the vernacular, texts which replaced those of Euler and were the direct
ancestors of the texts of today.
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Dedicated to the memory of Michael Raith, Basel (1944-2005): a fine his-
torian and good colleague who died too young at the age of 61.

1. Expository remarks

Extremal thinking is old. With a twinkle in his eye, the contemporary
Polish mathematician Krysztof Maurin (born 1923) speaks of a mythical
origin, because soon after the Fall, mankind began to minimize, maxi-
mize, and criticize [M]. A more realistic beginning could be Dido’s remark-
able Isoperimetric Problem in antiquity (about 900 BC), by which Dido
simultaneously founded Carthage and invented the Calculus of Variations.
However, we will begin our profane history with the Bernoulli brothers in
1696. For the moment, by the Calculus of Variations we mean the treat-
ment, by any method, of problems like those posed by Jacob and Johann
Bernoulli (1654-1704 and 1667-1748 respectively). Leonhard Euler (1707-
1783) collected and extended these problems “in one of the most wonderful
books that ever has been written about a mathematical subject.” 1 . This

1 “[die] Methodus, eines der schönsten mathematischen Werke, die je geschrieben wor-
den sind” [Ca, p. ix]
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was how Constantin Carathéodory (1873-1950) described Euler’s Metho-
dus inveniendi lineas curvas maximi minimive proprietate gaudentes sive
Solutio Problematis Isoperimetrici latissimo sensu accepti (The art of find-
ing curved lines which enjoy some property of maximum or minimum or
the Solution of the isoperimetric problem taken in its widest sense) [E65].
The Methodus inveniendi does not present the Calculus of Variations in
the form we are familiar with. The reader will also notice that Euler did
not speak of the “Calculus of Variations” but of “isoperimetric problems,”
but this will be part of the story that will be told in this article.

Fig. 1. The title page of the Methodus inveniendi, Lausanne, 1744.
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Before starting the historical discussion, I would like to make some re-
marks from a modern viewpoint to give the reader a basic knowledge of
the problems arising in this paper. In the first place I will ask: What is
the Calculus of Variations? In his title, Methodus inveniendi, Euler already
gave an excellent answer, albeit in a baroque style. This was watered down
by later authors, but was resurrected by David Hilbert (1862-1943) who
gave the following definition:

Given a set of mathematical objects a, b, c, . . . and a relation so that each
element a is associated with a real number Na, then look for the element
or elements which have a minimal or maximal associated number . . . if
there is any. 2

In the classical Calculus of Variations, the elements are curves or func-
tions. In general, the relation is expressed by a definite integral like the
following, for which we seek a function y = y(x) of one variable x:

J(y) =
∫ b

a

Z(x, y, y′) dx.

Hilbert’s abstract definition, which ultimately repeats Euler’s detailed ex-
planation, leaves us no way of avoiding these questions:
i) Is there any solution (any curve or function) at all?
ii) If so, how may one find such a solution? In the first place the question

is above all to find necessary conditions for a solution.
iii) If we have found a curve (function) to consider as a solution, how may

one prove that the curve in question is, in whole or at least in part, an
actual solution?
Of course, in modern mathematics we would thoroughly discuss the an-

alytical assumptions of the problem. In Euler’s time, such questions were
not considered.

Existence of a solution

Hilbert’s explanation makes it abundantly clear that a given problem
does not necessarily have a solution. Take for Na the sequence of the recip-
rocals of the natural numbers - then the minimum 0 is not an admissible
solution and is to be excluded. A more interesting problem is a question

2 “Gegeben sind irgendwelche mathem. Dinge. Jedem ist in bestimmter geg. Weise eine
reelle Zahl zugeordent. Man soll das Ding oder solche Dinge heraussuchen, denen die

kleinste oder größte Zahl zugeordnet ist” ... “falls eine solche existiert.” Vorlesung Va-
riationsrechnung (WS 1904/05), Mathematisches Institut of the University of Göttingen,
p. 4f. See also the chapter “Calcul des variations” by M. Lecat in the French edition
of the German Encyklopädie der mathematischen Wissenschaften (ed. J. Molk), ser.
II/6.31, Paris 1913, p. 1.
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proposed by Soichi Kakeya (1886-1947) in 1917: Find a planar figure of
least area in which a needle can be completely turned around by contin-
uous movement to assume the opposite direction. Common sense uncon-
ditionally suggests the existence of such a figure, but in 1927 Abram S.
Besicovitch (1891-1970) found a surprising result: there are admissible fig-
ures a of arbitrary small area Na and hence one cannot find a figure of
minimal area. [HT, p. 91]

How may one find a solution?

In the classical Calculus of Variations, extremal thinking is supported
by infinitesimal reasoning. Because it is most natural to view variational
integrals as functions of functions, the differential calculus is a cornerstone
of the Calculus of Variations, an opinion frequently expressed by Hilbert
in his lectures: “die Variationsrechnung, die so der Differentialrechnung
als Fortführung und Verallgemeinerung an die Seite tritt (the Calculus of
Variations accompanies the differential calculus as an extension and gen-
eralization)”; 3 and by Jacques Hadamard (1865-1963) “Le calcul des vari-
ations est, pour les opérations fonctionnelles, ce que le calcul différentielle
est pour les fonctions (The Calculus of Variations is for functionals what
the differential calculus is for functions).”[H, 4:2260] So we can expect sim-
ilarities between the differential d and the variation δ, but we will also have
differences.

In general, the classical methods – mainly the vanishing of the first vari-
ation, δJ(y0) = 0 – presuppose the existence of a solution and therefore
all resulting consequences will only provide necessary conditions for a so-
lution. Such a curve or function is a candidate to be an actual solution.
However, if we are convinced that the problem actually has a solution, as
Euler was, then the necessary condition is also a sufficient one. In Adolf
Kneser’s terminology a curve C0 represented by an equation y = y0(x) or
a function y = y0(x) satisfying the necessary condition δJ = 0 is called an
extremal (Extremale [K1, p. 24]).

3 Mechanik, winter term 1905/06, lecture notes prepared by E. Hellinger, Mathema-
tisches Institut of the Universität Göttingen, p. 122; similar in Flächentheorie, sum-

mer term 1900, Hilbert’s own notes, Niedersächsische Staats- und Universitätsbibliothek
Göttingen, Handschriftenabteilung, Cod. Ms. D. Hilbert 557; “We call the Calculus of
Variations the differential calculus of functions (... wenn wir die Variationsrechnung

die Differentialrechnung der Funktionen nennen)”, Gewöhnliche Differentialgleichungen,
summer term 1912, Mathematisches Institut of the Universität Göttingen, p. 138.
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Sufficiency proofs

To produce evidence that an extremal is an actual solution (which gives
a minimizer or a maximizer), one has to take into account whether the
extremal is a solution only in part or as a whole. Mathematicians of the 18th
century often regarded such questions naively, i.e. accepted the existence
a priori; and Euler did too. An exception, not repeated until the late 19th
century, was Johann Bernoulli in his proof that the Brachistochrone is
indeed the curve of shortest descent [B1]. Guillaume de Saint-Jacques de
Silvabella (1722-1801) in his paper “On the body of least resistance”[S]
published in 1760 noticed that a curve which causes the first variation to
vanish will not, in general will be an extremum. Then in 1786 Adrien-

Fig. 2. Title page of Carathéodory’s copy of the second edition of [K1], autographed by
Kneser. Listed in Carathéodory’s hand are the the first 21 of Kneser’s 34 examples.
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Marie Legendre (1752-1833) had some doubts as to whether the second
variation is sufficient to give an extremum (as the second derivative does
in differential calculus) [Leg], a problem which was finally solved by Karl
Weierstrass (1815-1897) in 1879 [We].

There were further differences. On a sphere the great circles are extremals
(here called geodesic curves), however an extremal containing both poles is
a shortest line only on arcs between the poles. Compared with the tasks of
differential calculus, we have a completely new phenomenon here, due to
the extension.

Moreover, in a variational problem we have to consider what would con-
stitute admissible functions (curves). This question is an important part
of formulating the problem. Unfortunately the “natural” classes of admis-
sible functions of a problem will not automatically be identical with those
classes we presuppose when using differential techniques. Two commonly
used classes and the underlying function spaces in geometry and mechanics
are C2 and C1 respectively, 4 but they are not at all the natural setting
for tackling variational problems (think of optical problems with refraction
also.) Euler will notice a paradox of the Calculus of Variations in about
1770, which we will deal with in more detail in section 6 of this paper, with
its roots in the a priori use of certain admissible curves (functions) falsely
regarded as the natural ones [E735]. As mentioned above, since Weierstrass
we have known some sufficient conditions for both these function spaces and
the related extrema, for which Adolf Kneser (1862-1930) coined the terms
strong and weak extrema in 1900 (starkes and schwaches Extremum [K1,
p. 24]).

2. Prehistory

The most important papers before Euler’s research started are:
1686 Newton, “Motion in a resisting medium” (unpublished);
1696 Jacob and Johann Bernoulli, the Brachistochrone Problem and the

related isoperimetric problems, classical method of variation [B2];
1701 Jacob Bernoulli, Analysis magni problematis [B2, pp. 485-505];
1715 Taylor, Methodus incrementorum directa et inversa (London);
1716 Hermann, Phoronomia (Amsterdam, actually printed in 1715);
1718 Johann Bernoulli, Remarques [B2, pp. 527-568].

4 Function spaces the elements of which are twice and once continuously differentiable.
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3. General remarks on Euler’s work

Euler wrote some of his best papers about the Calculus of Variations.
There is no consensus as to how many he wrote on the subject. Gustav
Eneström (1852-1923) in his Verzeichnis [En] including the so called En-
eström Index published in three parts between 1910 and 1913, gives 10 ti-
tles. Three years later Maurice Lecat (1884-1951) in his Bibliographie [Lec]
of 1916 catalogued 33 titles, admittedly including the Lettres une Princess
d’Allemagne (Letters to a German Princess) [E343,E344,E417] and letters
by Euler to Daniel Bernoulli (1700-1782). The two volumes of the Euleri
Opera omnia devoted to the Calculus of Variations (ser. I, vols. 24-25) con-
tain the Methodus inveniendi [E65] and 19 papers. If we add the 10 titles of
ser. II, vol. 5, which deal with the Principle of Least Action, we have in total
30 pieces. Furthermore, we should also take into account Euler’s first paper
“Constructio linearum isochronarum in medio quocunque resistente (Con-
struction of an isochrone line in a resistant medium)” [E1], the “Anleitung
zur Naturlehre (Instruction in natural sciences)” [E842] and some others,
so in the widest sense about 35 papers might be an acceptable number. In-
cidentally, almost all of these papers were published in St. Petersburg, with
the exception of those papers on the Principle of Least Action published in
Berlin because the corresponding interactions were focused on the Berlin
Academy and Euler lived in Berlin at that time.

We can divide Euler’s contributions to the Calculus of Variations into
three periods:
i) First Period: from Euler’s first publication on the Brachistochrone Prob-

lem in a resistant medium [E1], dealing with a variational theme, which
came out in 1726, and about 1732, when he began to develop his own
approach to the Calculus of Variations,

ii) Second Period: from about 1740, when his theory began to take shape
until it culminated in his masterpiece Methodus inveniendi,

iii) Third Period: from 1755 when, thanks to Joseph Louis de Lagrange
(1736-1813), Euler had the initial idea for the analytic treatment and its
foundation.
There is also a fourth period until 1818 when Euler’s Calculus of Varia-

tions continued to appear posthumously, but we will not detail that here.
On the other hand, besides this chronological ordering of the develop-

mental stages, we may divide Euler’s papers by considering important ideas
serving as a guiding principle. Concerning this evolution, we have three (or
four) fundamental themes:
i) the early Petersburg papers as the roots of later developments,
ii) variational methods,
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iii) Langrange’s calculus, and applications of the Calculus of Variations,
especially in

iv) the principle of least action.
Finally, we should mention the extraordinary number of examples Euler

gave and for which he actually computed solutions. Carathéodory was fond
of problems, which he regarded as the true substance of mathematics. In
total he listed 66 kinds of problems in Euler’s work and his appreciation
of examples is shared by Adolf Kneser, who remarked that there is always
merit in adding a further example to Euler’s list. 5

We now begin our systematic treatment of Euler’s work.

4. First period

In the early days of the Calculus of Variations we see Johann Bernoulli’s
challenge problem about the curve of quickest descent, without resistance
or friction. In this spirit Euler published his first publication of three pages
written at the age of 18. In a resistant medium he posed the problem of
the line of quickest descent: “Constructio linearum isochronarum in medio
quocunque resistente” [E1]. One year later in the Acta Jacob Hermann
(1678-1733) gave a solution “Theoria generalis motuum (General theory of
motion)” (1727, but published in 1729), which was incorrect. It was not
until Hermann had left St. Petersburg in 1731 that Euler informed his
colleague of this error. However, Hermann had no opportunity to correct
the error since he died in 1733. It was up to Euler to attempt to improve
on Hermann’s paper. However, Daniel Bernoulli soon informed his friend
in a letter of September 12, 1736 that Euler’s improved solution still was
not correct.

The first paper on shortest lines on a general surface F (x, y, z) = 0
(not in parametric form) was published by Euler under the title “De linea
brevissima in superficie quacunque duo quaelibet puncta jungente (On the
shortest line on an arbitrary surface connecting any two points)” [E9] ap-
peared in the St. Petersburg Commentarii volume for 1728, but was not
published until 1732. In 1697, when Johann Bernoulli posed new provo-
cations for his brother, there was a remarkable discussion of what kind
of (convex) surface could be under consideration at all, i.e. which kind of

5 “Aber auch in der Variationsrechnung gilt das Wort Jacobis: es ist immer ein
Fortschritt, wenn man den Beispielen Eulers ein neues hinzuzufügen weiß.” [K2, p. 29]
Kneser refers to a well-known quotation of Jacobi: “that any progress [Fortschritt] in the

theory of partial differential equations must lead to progress in mechanics too” (lectures
on dynamics). Compare also Carathéodory in [Ca, p. x].
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Fig. 3. Figure 2 from De lina brevissima . . . [E9].

surface of revolution [T, pp. 117-131]. Notice at this time there was no
concept of analytic function, and therefore no concept of analytic surface
either. For a convex surface Euler gave a simple mechanical solution: fix a
string at one point and pull it taut in the direction of the other. Obviously,
this method fails in the case of non-convex surfaces and that is why Eu-
ler developed an infinitesimal method for general surfaces, whereby in the
tangent plane the line GMH composed of two straight lines GM and MH
is to be minimized; see figure 3.

This method is equivalent to a geometrical theorem on an osculating
plane of a geodesic (i.e. extremal space curve on a surface) at a point P ,
developed but not published by Johann Bernoulli in 1698. This theorem
states that the osculating plane intersects the tangent plane to the surface
at P at a right angle. Shortest or geodesic lines can be characterized by
this property of osculation. Obviously, Bernoulli did not teach this theorem
to his disciple, and, more generally, we may infer that in Basel Euler was
not yet involved in variational problems. Incidentally, it was a letter of
Johann Bernoulli to his son Daniel in 1727 that drew Euler’s attention to
this subject.

In 1753, Euler used the theory of shortest lines for the foundation of
spherical trigonometry, as well as for the extension of such a trigonome-
try from the spherical surface to general surfaces [E214,E215]. Thanks to
a theorem of Pierre Ossian Bonnet (1819-1892), geodesics on concave sur-
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faces are always shortest lines. This is not the case in general and required
further investigation (Jacobi theory). Moreover, in 1736 Euler published
his Mechanica [E15,E16], in which he developed an analytic geometry of
space and in which geodesics were characterized by the osculating plane.
Moreover, Euler stated that inertial motion follows either straight lines in
a plane or, more generally, geodesics on surfaces.

In 1738 we have an important milestone on Euler’s way to the Methodus,
the paper “Problematis isoperimetrici (Isoperimetric problems taken in the
widest sense)” [E27], already written in 1732. Euler’s variational method
has its roots in Jacob Bernoulli’s variational process, developed in 1697 in
the study of isoperimetric problems. However, where the Bernoulli broth-
ers solved specific problems, the disciple Euler mastered and extended the
method and ultimately he began to look for a general theory. We see this
intention in the methodical procedure he pursued in his investigations, for
example he divided the problems into groups based on the side condition
and laid down different kinds of variation for each group. Of course, be-
cause side conditions depend on the choice of the coordinate system, such
a classification is only relative.

Quite naturally, having mastered the method of Jacob Bernoulli, Euler
generalized the isoperimetric problems Jacob Bernoulli had dealt with, es-
pecially those in which arc length also appeared among the independent
variables. In Euler’s general investigation of isoperimetric problems, all of
the variables x, y, s (s = arc length) enjoyed equal rights, which should not
be the case because of the side condition ds2 = dx2+dy2 and, moreover, be-
cause of the fixed length of admissible curves (the isoperimetric condition).
In the next paper “Curvarum maximi minimive proprietate gaudientium
inventio nova et facilis (New and simple invention of curved lines which
enjoy some property of maximum or minimum)” [E56], we will see, Euler
partially corrected the mistake.

We also find remarks on the independent integral, the integrand of which
is a total differential and therefore depends not on the path of integration
but only on the endpoints. Hilbert later used such integrals to give a very
elegant two- or three-line sufficiency proof for the case of strong extrema - a
royal road. 6 Here Euler correctly pointed out that no variational problems
emerge from such integrands. Rather interestingly, he maintained that, in
the case of a plane, for any differential form Ω = A(x, y) dx + B(x, y) dy

6 Mathematische Probleme, Lecture at the Paris Meeting in 1900, problem 13. In:
Nachrichten der Akademie der Wissenschaften in Göttingen, 1900, pp. 253-297. En-

glish translation by M. Winson in: Bull. AMS, 8 (1901/02), pp. 437-479, reprinted in
Bull. AMS (New Series), 37 (2000), pp. 407-436.
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there exists an integrating factor F , an Euler multiplier, which generates a
total differential FΩ = Π with dΠ = 0.

In conclusion we remark that there is a similar paper by Alexis Claude
Clairaut (1713-1765) “Sur quelque questions de maximis et minimis (On
several question of maximum and minimum)” [Cl], independently written
in 1733 in which the side conditions are delivered by a force field, related
to his investigations on the shape of earth. 7

Euler made progress in the process of generalization and in 1736 he wrote
the paper “Curvarum maximi minimive proprietate gautentium inventio
nova et facilis (New and easy invention to find curves having a maximum or
minimum property)” [E56], published in 1741, in which he tried to unify old
results. In dealing with 40 problems he sought one general result including
his 24 specific cases. As previously noted, he became aware that for some
variational problems with constraints he was wrong, but he only noticed
this fact after he had already written 33 paragraphs. So he briefly mentioned
the fact in the introductory sentences and gave the corrections in detail,
but only in the last four paragraphs. This was typical behavior for the busy
Euler – the manuscript had probably already been sent to the printer and he
only partially remembered the manuscript. Moreover, he had aready begun
or was just about to begin the proof-reading of his textbook Methodus [E65].
Among the 24 expressions for the first variations there are only 9 (nos. I-VI,
XIII-XIV) which are correct.

Between the two papers E27 and E56 (i.e. between 1732 and 1736) Eu-
ler was engaged with the Brachistochrone Problem in a resistant medium.
He wrote “De linea celerrimi descensus in medio quocunque resistente (On
the curve of fastest descent in whatever resistant medium)” [E42], which
inspired him to allow even differential equations as constraints. Ultimately,
in “Curvarum maximi minimive proprietate gautentium inventio (The find-
ing of curves enjoying properties of maximum or minimum),” [E56] he gave
corrected results. The Brachistochrone paper “De linea celerrimi descensus
in medio quocunque resistente” was published in volume 7 of the Peters-
burg Commentarii, incidentally the same volume in which Euler used the
notation f(x) for a function f of x for the first time [E44]. In the last
pages of E56 Euler made yet another very important remark. There had
previously been no doubt concerning a principle used by Jacob Bernoulli in
1697 and later on by others to derive differential equations for solutions of
variational problems: If any curve possesses a maximum or minimum prop-
erty then each part of the curve (especially any infinitesimal part) enjoys

7 See also Daniel Bernoulli’s report to Euler on such knowledge in Paris, which he wrote
there on his journey back to Basel on September 23, 1733; “dass dergleichen problemata
den hiesigen Mathematicis nicht schwer fallen”.

LOL-Ch12-P11 of 20
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this property too. However, Euler recognized that the principle is not, in
general, true for variational problems with constraints.

5. Second period

In 1744, at the age of 37, Euler published the Methodus inveniendi [E65],
a landmark in the history of mathematics, with which he created the new
branch of mathematics we now call the Calculus of Variations, although the
name came later. Euler changed the subject from a discussion of special
cases to that of very general classes of problems. Above all, in this textbook
he set up a general analytic apparatus for writing down the so-called Euler
or Euler-Lagrange differential equations, thus extending the methods of the
Bernoulli brothers to a general theory of the first variation.

The book consists of six chapters and two very important addenda. Be-
fore sketching the contents of this book, I will mention the Scientia navalis
[E110,E111] published in 1749 but already written in 1738. Some of the
important results can already be found there, but this has not yet been
investigated thoroughly.

In the Methodus, Euler considered a general variational problem for one
function y of one variable x, in which the integrand Z was allowed to involve
derivatives of y of arbitrary order,

J(y) =
∫

Z(x, y, y′, y′′, . . .) dx.

Euler regarded the variational integral J as an infinite sum so the variables
and their variations could be inserted into the sum. He gave all changes
under consideration in tables. Euler expressed the infinitesimal changes
both of the functions (curves) under consideration and of their deriva-
tives (i.e. extremal and admissible functions/curves) and then calculated
the infinitesimal change of the variational integral, the valor differentialis
formulae.

It is noteworthy that Euler did not make a finite approximation and
then carry out limiting processes. Rather, he operated completely in the
spirit of the 18th century and its use of infinitesimals. A corresponding
approximation that substituting finite quantities for infinitesimals is easily
done and corresponds to our understanding. In 1907 Adolf Kneser showed
that this procedure, which is preferable by modern standards, is indeed
correct [K2].

Let us look at this in more detail. Supposing the existence of a curve C0

that is an actual minimizer, Euler looked at the difference in the variational
integral for any admissible curve C and the minimizer C0: ∆J = J(C) −
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J(C0). Because of Euler’s technique of variation, the difference between
the extremal and the admissible curve appears only in a few points. If
there are no constraints, Euler varies only a single point. In the case of one
constraint, Euler varies in two successive points, etc. In other words, in the
expression of ∆J only a few terms were affected and so the question reverts
to an ordinary extremal problem of the differential calculus that is already
well-known: minimize the valor differentialis formulae. Ultimately, for each
point of the extremal, Euler arrived at an equation for the differentials,
the well-known Euler differential equation, as a necessary condition that a
solution must satisfy.

Euler set up a single algorithm that worked for both minima and max-
ima. To decide which kind of extremum for a given curve C0 was, he used
a practical test and considered the sign of ∆J = J(C∗) − J(C0) for some
other admissible curve C∗. It was that simple! Today, with a better under-
standing of the existence of solutions, in particular of the question whether
there is a solution at all, we do not need to discuss why such a test will
often fail. Also Euler did not completely understand the significance of the
endpoints of the curves. In modern terms, he did not understand the cor-
responding boundary value problem of the Euler equation. Therefore he
also did not look for the so-called transversality conditions, which play an
important role in problems with free boundaries and, more generally, in
the field theory which arose principally from Fermat’s principle in optics.
In chapter 3, Euler took up isoperimetric problems involving curve length.
Carathéodory remarked that, despite some incomplete results here, we have
first-class results of such a kind even Euler did not get too often. 8 In the
next chapter Euler showed that his necessary condition, the Euler equation
remains invariant under transformations of the coordinates. This means
that despite his geometric reasoning, which rests on special coordinates,
the results are general. Thus the underlying figures are only convenient
geometrical visualizations. This observation was also made later by Joseph
Louis de Lagrange in his Méchanique analitique of 1788 [La2].

Initially, Euler based his research on a geometrical foundation, but later
on, as “Analysis Incarnate,” he considered the variables as abstract quan-
tities. In a period of transition from geometry to analysis Euler himself
remarked: “It is thus possible to reduce problems of the theory of curves to
problems belonging to pure analysis. And conversely, every problem of this
kind proposed in pure analysis can be considered and solved as a problem
of the theory of curves.” 9

8 “ . . . stellen die Resultate des Kapitels III seines Buches eine Spitzenleistung dar, wie
sie auch einem Euler nicht allzuoft geglückt ist.” [Ca, p. XXII].
9 “Corollarium 8: Hoc ergo pacto quaestiones ad doctrinam linearum curvarum perti-
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The Bernoulli brothers used diagrams in their papers, and in his early
essays (including the Methodus inveniendi) their successor Euler did the
same. However he did it more and more for the purpose of illustration and
in the end Euler presented the Calculus of Variations without any diagrams
as he generally did in all his analysis books throughout his career. Of course,
the second volume of the Introductio [E102], dealing with analytic geome-
try, is an exception. Ultimately, this transition has its logical roots in an
analytic function concept, which was first introduced by Johann Bernoulli
in 1697 in the course of his quarrels with his brother Jacob. As Johann
Bernoulli’s student, Euler started from the very beginning in 1727 with
an analytic function expression representing the function concept which he
then extended step by step. To quote Craig Fraser (born 1951): “Although
the theme of analysis was well established at that time [about 1730] there
was in [Euler’s] work something new, the beginning of an explicit aware-
ness of the distinction between analytical and geometrical methods and
an emphasis on the desirability of the former in proving theorems of the
calculus.”[F1, p. 63]

In the first appendix to the Methodus inveniendi [E65], “On elastic
curves,” Euler dealt with problems Jacob Bernoulli had already consid-
ered, but Daniel Bernoulli was most influential on Euler in this matter
and encouraged Euler to deal with elastic lines by means of a variational
problem. Euler was successful and found nine types of elastic lines and the
buckling theorem too. About a century ago Max Born (1882-1970) was
called upon to lecture in Felix Klein’s seminar more or less by chance. He
got into trouble with “Divine Felix” (1849-1925) and in the end wrote a
remarkable Ph.D. thesis with Hilbert on elastic lines, using only Hilbert’s
lecture on the calculus of variations. 10

In the second appendix “On the motion of bodies in a non-resisting
medium, determined by the method of maxima and minima” we find the
first publication of the Principle of Least Action, usually attributed to
Pierre Louis Moreau de Maupertuis (1698-1759). The problem is famous,
even notorious. it is the starting point for Joseph Lagrange, William Rowan
Hamilton (1805-1865), Carl Gustav Jacob Jacobi (1804-1851) and others,
in their foundation of mechanics and further branches of physics.

nentes ad Analysin puram revocari possunt. Atque vicissim, si huius generis quaesti in

Analysi pura sit proposita, ea ad doctrinam de lineis curvis poterit referiri ac resolvi.”
[E65, I, §32]
10Untersuchungen über die Stabilität der elastischen Linie in Ebene und Raum. Disser-

tation Göttingen 1906. Also in: Ausgewählte Abhandlungen, Bd. 1. Göttingen: Vanden-
hoeck & Ruprecht 1963, pp. 1-22.
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6. Third period

In August 1755 Euler received a letter from the 19-year-old Lagrange,
in which Lagrange announced the presentation of the Calculus of Varia-
tions in a purely analytic form, using his δ-algorithm. Indeed, Lagrange
saw how to reduce the entire process he had learnt from Euler’s papers to
a purely analytic apparatus, which functioned almost automatically. La-
grange referred to Euler’s remark in the Methodus, which encouraged him
to develop the new technique: “A method is therefore desired, free of ge-
ometric . . . solutions.” 11 Euler immediately adopted the new method and
in a lecture to the Berlin Academy in 1756, “M. Euler a lû Elementa calculi
variationum (Mr. Euler read ‘Elements of the calculus of variations’)”. [Wi,
p. 226] He confessed that he “had meditated a long time” on this subject
but “the glory of the first discovery was reserved to the very penetrating
geometer of Turin, Lagrange, who having used analysis alone, has clearly
attained the very same solution which the author [Euler] had deduced by
geometrical considerations.” 12

Euler waited until Lagrange had published on the subject in 1762 in the
“Essai d’une nouvelle méthode (Essay on a new method),” [La1] before
he committed his lecture “Elementa calculi variationum” [E296] to print,
so as not to rob Lagrange of his glory. Indeed, it was only Lagrange’s
method that Euler called Calculus of Variations. Among mathematicians
this custom lasted until the 1850s.

Lagrange relied on algorithmic and algebraic properties and the success of
his δ-formalism was immediately regarded as justification of his approach.
Moreover, in their early investigations, both Lagrange and Euler viewed
the variational operator as an additional and new operation in higher anal-
ysis. In this spirit, in “De calculo variationum,” a detailed appendix to
his Integral Calculus text, the Institutiones Calculi integralis [E385], Euler
summarized the results of the Calculus of Variations in terms of the varia-
tional operator. Here we find such results as the variation of the dependent
as well as of the independent variable and even the variation of double
integrals.

However in about 1771 Euler had a remarkable insight into how the
formal Lagrange calculus could be reduced to well-known methods of the
differential calculus. In his “Methodus nova et facilis calculum variationum
tractandi” (New and simple method to deal with the calculus of variations)
[E420] he described a kind of trick which has been used ever since. Euler

11Desideratur itaque Methodus a resolutione geometric . . . libera. [E65, II, §39]
12Euler expressed his esteem of Lagrange in the paper “Elementa calculi variationum”
[E296], related to the lecture delivered in 1756 but published a decade later.

LOL-Ch12-P15 of 20
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Fig. 4. Left: the pointiwse variation, from Methodus inveniendi [E65]. Right: the author’s
illustration of the embedding trick used in “Methodus novae . . . ” [E420].

embedded the extremal y = y0(x) under consideration in a family of ad-
missible curves y = y(x, ε) with y = y(x, 0) = y0(x) (see figure 4). The
variation of y is given by the partial derivative with respect to ε for ε = 0:
δy = ∂y(x, 0)/∂ε. Now the curve (function) is varied as a whole and not
in some points only. The modern proof of the Euler equations uses the so-
called Fundamental lemma which for a long time was regarded as obvious.
The first proof was given by Paul Du Bois-Reymond (1831-1889) in 1879
[D]. More recent developments lead to the concept of weak solutions of
differential equations (Sergeij L. Sobolev (1908-1989), Charles B. Morrey
(1907-1984), et al) and to the theory of distributions (Laurent Schwartz,
(1915-2006)).

Using partial integration in the Lagrange calculus, the integrand of the
variational integral is partly shifted onto the boundary of the domain under
consideration, thereby appearing in the form of boundary conditions. We
have seen that Euler did not completely understand boundary conditions.
In his time, these difficulties were also justified by the lack of integral
theorems in the two and three dimensions (later developed by George Green
(1793-1841), George Stokes (1819-1903), Carl Friedrich Gauss (1777-1855),
Michail V. Ostrogradski (1801-1862)).

In the 1779 paper “De insigni paradoxo (On an outstanding paradox)”
[E735], Euler made a surprising discovery, which he spoke of as a paradox in
the Calculus of Variations. In modern terms, Euler considered a variational
problem with a real analytic integrand and fixed boundaries. Surprisingly,
the minimizer is not a function of the class C2 or even of the class C1, but a
Lipschitz function which is not a solution of the necessary Euler equations.
In the example, the solution of the Euler-Lagrange equation was a relative
minimizer only, whereas Euler got the absolute minimum using a combi-
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nation of line segments. Euler naturally considered functions of the class
C2, but his example shows that the spaces C1 and C2 are by no means
the natural classes in which every variational problem should be tackled. In
1831, in a winning prize paper “Determinatio superficiei minimae rotatione
curvae data duo puncta jungentis circa datum axem ortae (Determination
of the minimal surface of rotation generated by a curve which links two
given points),” 13 Benjamin Goldschmidt (1807-1851), encouraged by C. F.
Gauss, investigated the phenomena for the catenoid, the surface of revolu-
tion of the catenary. In some cases one does not get a surface, but two discs
joined by a straight line. Half a century later, in lectures on the calculus of
variations, Hermann Amandus Schwarz (1843-1921) discussed this matter
in great detail (as was his habit). His lecture courses of 1896 and 1898 were
recorded in notes taken by John Charles Fields (1863-1932) and preserved
in the Archives of the University of Toronto. Harris Hancock (1867-1943)
has documented Schwarz’s remarks in three articles and a book. 14

We conclude with a question of Adolf Kneser posed at the Euler Confer-
ence in 1907: “Why do we rummage in rubble for some antiques?” 15 He
and I give the same answer: “To enrich the ars inveniendi, to explain the
methods by excellent examples, and last but not least to appreciate the
intellectual company.” 16 I hope you have gotten a glimpse of all these.
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de solutions des Problèmes sur les Isoperimetres, avec une nouvelle
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3. Carathéodory, C. 1945. “Basel und der Beginn der
Variationsrechnung,” in Gesammelte mathematische Schriften, vol.
2. München: Beck 1955, pp. 108-128.

4. Goldstine, H. 1980. A History of the Calculus of Variations, New
York: Springer.

5. Hildebrandt, S. 1984. “Euler und die Variationsrechnung,” in Zum
Werk Leonhard Eulers, E. Knobloch et al. Eds. Basel: Birkhäuser,
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1. Introduction

Leonhard Euler and Jean d’Alembert were never able to agree on the
proper way to extend the domain of definition of the logarithm function
to negative numbers. Beginning late in 1746, they debated the matter vig-
orously in their private correspondence, but their dispute did not become
public until 1761. At that time, there was a difference of opinion in the
mathematical community as to whose position was correct, but by 1800
even French mathematicians had abandoned d’Alembert’s point of view
[E 1980, p. 19]. Euler’s description of the logarithm as an infinitely multi-
valued function of the complex numbers, which he worked out sometime
between 1743 and 1746, is precisely the function as we define it today. In
modern notation, it is

z 7−→ ln |z|+ i(arg(z) + 2πn),

where n is an arbitrary integer and ln is the ordinary logarithm function
on positive real numbers.

The aim of this paper is to consider both sides of this debate on the loga-
rithm function, placed in the proper historical context, and to examine the
papers that each of the disputants subsequently published on the subject.
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Cajori wrote a comprehensive multi-part history of exponential and log-
arithmic functions early in the twentieth century [Cj], which included a
discussion of Euler’s letters to d’Alembert concerning logarithms. However,
Cajori only had access to a much smaller portion of the Euler-d’Alembert
correspondence than what is now available in the Opera omnia [E 1980].
In particular, Cajori had none of d’Alembert’s letters, so he could not do
justice to d’Alembert’s side of the discussion. Nor did he know of the letter
by Euler in which the topic first came up. At this time, we can be confident
that all but one of the letters concerning logarithms have been discovered.

2. Euler and D’Alembert

D’Alembert is generally not as well known to mathematicians as is Euler.
However, those in the humanities are much more likely to be familiar with
him than with Euler, since he was an editor of the Encyclopédie and was
a man of letters, rising to the rank of secrétaire perpétuel of the French
Academy. However, in his early years, he was a successful and highly orig-
inal mathematician, and his scientific credentials lent a certain legitimacy
to the encyclopedic venture and to the status of the circle of philosophes of
which he was a member. Those familiar with his mathematical career may
have some inkling of his difficult relationship with Euler, since their quar-
rels are part of the folklore of mathematics. In the nineteenth century, for
example, Libri wrote in the Journal des Savants [L] that they “frequently
engaged in battle” (“Ces deux grands géomètres eurent souvent à lutter
ensemble . . .”). Riemann discussed their conflict over the wave equation
(“der Streit zwischen Euler und d’Alembert”] in the historical survey of
trigonometric series in his Habilitationschrift [R].

Euler was genial and unpretentious, and never boasted about his dis-
coveries; this was noted by Condorcet in his Eloge [Co, p. 56-8], and the
observations have often been repeated often by later biographers. More-
over, Euler was apparently less concerned about matters of priority than
many of his contemporaries. There were incidents in which he ceded pri-
ority for discoveries that were made independently by others, even when
the priority rightly belonged to him. For example, in a letter to Stirling
of 27 July 1738 [E 1975, p. 433-4] discussing what we now call the Euler-
Maclaurin formula, he wrote “I have very little desire for anything to be
detracted from the fame of the celebrated Mr. Maclaurin since he probably
came upon the theorem for summing series before me” [Tw, p. 146]. There
was a similar case involving d’Alembert. However, we will also encounter a
case in which Euler ought to have acknowledged d’Alembert’s priority, but
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failed to do so.
By contrast, d’Alembert was vain and combative. By the late 1750s,

he “had embroiled himself with nearly all other geometers at home and
abroad” [Tr, p. 274]. Therefore, it should not be surprising that he quar-
reled with even such a genial person as Euler. However, d’Alembert had a
particular axe to grind with Euler as a result of the great disappointment
he suffered in the Berlin Prize competition for 1750.

The jury for the 1750 Berlin contest, chaired by Euler, determined that
none of the entries submitted for that year’s prize competition were wor-
thy, and so the prize was remanded to 1752 [Wn, p. 150]. D’Alembert de-
clined to enter the 1752 competition and instead published his entry himself
[A3]. Then in November of the same year, the young astronomer Augustin
Nathanael Grischow was summarily dismissed from the Berlin Academy
“for furtively contracting an engagement with the Russian Academy” [Wn,
p. 157]. Grischow (not to be confused with his father Augustin (1683-1749),
also an astronomer with the Berlin Academy) had been one of the three
judges of the 1750 competition [ibid, p. 146]. He was also an acquaintance
of d’Alembert. No doubt humiliated by the Academy’s actions, he made
trouble for his former colleagues by revealing to d’Alembert and to others
in Parisian society his version of the events that had led to the rejection of
all the entries in that competition [E 1980, p. 313]. Whatever may actually
have happened behind closed doors, d’Alembert came away with the firm
belief that Euler had recognized his entry and convinced Grischow and the
other judge (Kies) that the paper, which they considered to be the front-
runner, had not sufficiently answered the question set for the competition.

Like other prize competitions of this time, entries in the Berlin com-
petition were anonymous, identified only by a motto or dévise. Neverthe-
less, Euler could easily have identified d’Alembert’s distinctive mathemat-
ical style, so there is at least some credibility to the story. In any case,
d’Alembert believed that he had been treated unfairly and broke off his
correspondence with Euler, which had been proceeding amiably since Au-
gust 1746. For most of the rest of his career, d’Alembert treated Euler as
an adversary.

This might have marked the end of their relationship, at least until the
mid-1750s when the controversy over the wave equation erupted. However,
in 1751, when the Berlin Academy’s journal for the year 1749 appeared,
d’Alembert was greatly disturbed to find within its pages four memoirs
by Euler concerning subjects they had discussed in their correspondence.
“D’Alembert quickly took alarm. All of his work was being stolen! Even
. . . his book on the equinoxes, had not received a single mention from Euler”
[H, p. 50].

D’Alembert wrote to the Berlin Academy in June of 1752 with priority
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claims for three of these articles [E 1980, pp. 337-350]. Euler immediately
ceded priority for the problem of the precession of the equinoxes in a brief
notice that appeared in the next volume of Berlin journal [E180]. In this
note he explained that his intention was only to give an alternate proof of
the results in [A2], and he apologized for not acknowledging d’Alembert’s
priority in his article. Wilson argues that Euler’s proof is novel and more
powerful, and that it subsequently led him to the discovery of very general
principles governing the motion of rigid bodies [Wl]. In the same notice,
Euler also ceded priority to d’Alembert for the discovery of an algebraic
equation whose graph exhibits a cuspidal point of the second kind, even
though the priority rightly belonged to him; for more on this controversy,
see [Br]. Euler judged d’Alembert’s third priority claim, related to the Fun-
damental Theorem of Algebra and the representation of complex numbers,
to be without merit and never acknowledged it.

D’Alembert took exception to one more of Euler’s articles in the 1749
volume of the Berlin Mémoires, but priority was not the issue here. In-
stead, he objected to Euler’s paper on logarithms of negative and complex
numbers on on the grounds of mathematical correctness . As we will see,
these objections fell on deaf ears, and d’Alembert ultimately published his
opinions on the subject himself.

Over the course of the next 11 years, Euler and d’Alembert had no
direct contact with one another, although disagreement over the vibrating
string problem provoked a number of polemical articles in which they, along
with Lagrange and Daniel Bernoulli, engaged in a lively debate; see [Tr,
pp. 254-281]. d’Alembert also demanded satisfaction on the third of his
priority claims, but to no avail. Then in 1763, d’Alembert visited Berlin
and Potsdam as the guest of Frederick the Great, who was courting him for
the vacant presidency of the Berlin Academy. He and Euler met face to face
for the first and only time in July of that year and at the same time resumed
a polite correspondence. Although d’Alembert never accepted the King’s
offer to head up the academy, the unspoken subtext of this final portion of
their correspondence was the very real prospect that Euler might end up
as a subordinate to his former antagonist.

When Euler left Berlin for St. Petersburg in 1766, his correspondence
with d’Alembert ceased. Whereas the debate over the logarithm function
had occupied much of their early letters, the matter was never mentioned
during the 1763-66 portion of their correspondence.
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3. A History of the Logarithm Function

The logarithm function can be defined in at least two ways: it is the
inverse of the exponential function and the antiderivative of the hyperbola.
This dichotomy, which is important enough to be the basis for separate
editions of some modern calculus texts, was a complicating factor in the
debate between Euler and d’Alembert. During the course of their corre-
spondence, d’Alembert would shift from one definition to the other as he
raised a seemingly endless stream of arguments in defense of his contention
that log(−x) = log x for positive real numbers x.

There is, in fact, a third way to define the logarithm function, which
was also mentioned by d’Alembert in the correspondence. This is the def-
inition that d’Alembert actually adopted in his only published article on
logarithms [A4]. It is the original conception of the logarithm, as given in
1614 by John Napier, based on the relationship between arithmetic and
geometric series. Napier imagined two points flowing along parallel lines,
the first of whose velocity diminished geometrically while the second point
moved at a constant speed, representing an arithmetic sequence. Napier’s
own description can be found in translation in [Ca1, p. 282-289].

The logarithm as area under the hyperbola has its origin in the work of
Gregory of St. Vincent and his Opus Geometricum, published in 1647. He
studied the area under the hyperbola using his techniques of infinitesimal
analysis. Building on St. Vincent’s results, two years later Alfonso Antonio
de Sarasa recognized the logarithmic property of hyperbolic areas [Ca2, p.
258-259]. Thus, the signed area under the hyperbola between x = 1 and
x = a > 0 is the natural or ‘hyperbolic’ logarithm of a. This would give
rise to the differential equation

d(log x) =
dx

x

mentioned by Euler and d’Alembert in their correspondence.
The logarithm as the inverse of the exponential function originated with

John Wallis’ Algebra of 1685 [Cj, p. 37]. However, this point of view was not
popularized until the publication of Euler’s Introductio in analysin infinito-
rum in 1748. In any case, the real logarithm function was well understood
by the end of the seventeenth century. The extension of the domain of
definition to negative and complex numbers was a task for the eighteenth
century. Like so many mathematical advances in that century, it was a
problem that was ultimately solved by Leonhard Euler.

Euler had already come across the assertion that log(−x) = log x long
before he began corresponding with d’Alembert. It was a position that
Johann Bernoulli had expressed in his correspondence with Leibniz in 1712-
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13 and had repeated to Euler in 1727-29. In the first case, Leibniz countered
that the logarithm of a negative number is “impossible” [Cj, part 2], but
in the Bernoulli-Euler correspondence, Euler was able to make some real
progress on the problem.

Euler had been mentored by Bernoulli during his student days at the Uni-
versity of Basel. After Euler moved to St. Petersburg in 1727, the two cor-
responded regularly for nearly two decades, until shortly before Bernoulli’s
death. This correspondence is collected in [E 1998].

In November 1727 Euler wrote:

By chance, I find myself struggling with the equation y = (−1)x. It is
extremely difficult to determine what figure it describes. It is sometimes
positive, sometimes negative and sometimes imaginary, so it seems to me
that it does not make a steady line, but rather has infinitely many points
equally spaced at 1 unit on either side of the axis. [E 1998, p. 78]

Bernoulli responded to Euler’s musings in January 1728:

You ask what (−1)x signifies. I judge it thusly: if y = (−n)x then log y =
x log(−n), and so

dy

y
= dx log(−n).

However, log(−n) = log(+n), for it is generally true that

d log(−z) =
−dz
−z

=
dz

z
= d log z.

From this it follows that log(−z) = log(z), so

dy

y
= dx log(+n).

Integrating, one has log y = x log n, and from this it follows that y =
nx = 1x, and so y = 1. [E 1998, p. 83]

[We are using the modern notation log y, but Bernoulli and Euler always
wrote ly. Parentheses were also added in some places in this passage for
clarity.]

Euler must have been dissatisfied with this answer, which flies in the face
of common sense in the case of odd integers. In his next letter, he admitted
that there are arguments in favor of log(−x) = log x: “If log xx = z, then
1
2z = log

√
xx, but

√
xx is as much −x as x, so 1

2z is log x and log−x.”
[E 1998, p. 88] Euler observes that one may counter that xx has two loga-
rithms, “but whoever claims two, ought to claim an infinite number.” [ibid]
Although Euler doesn’t follow up on this at the time, it is interesting to
see him already considering the bold claim that the logarithm is infinitely
multi-valued.
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Still, Euler was not ready to accept log x = log(−x). He pointed out
that this does not follow from the equality of the differentials d log x =
d log(−x). On the other hand, both the calculus and the laws of logarithms
are consistent with log(−x) = log x+ log(−1), “hence one cannot conclude
the equality of log(−x) and log x without first showing that log(−1) is 0.”
[E 1998, p. 88]

To investigate the possibility that log(−1) = 0, Euler referred Bernoulli
to his own result on the quadrature of the circle from 1702 [Be]: given a
sector of a circle of radius a having sine y and cosine x, Bernoulli had shown
the area of the sector to be

aa

4
√
−1

log
x+ y

√
−1

x− y
√
−1

. (1)

So Euler considered the first quadrant, for which x = 0 and the area is
aa

4
√
−1

log(−1).

Euler reasoned that since the area is a finite quantity, if it were true that
log(−1) = 0, it would necessarily follow that

√
−1 = 0, whence 1 = 0.

Bernoulli did not give a satisfactory response to this objection and Euler
soon let the matter drop. Unlike d’Alembert, who would debate the same
position with Euler two decades later, Euler was too diplomatic to press
his case when his correspondent clearly wished to move on.

Returning to Bernoulli’s formula (1) with x = 0, we note that since the
area of one quadrant is πa2/4, what actually follows is that

log(−1) = π
√
−1.

Euler always gave credit for this formula to Bernoulli, even though he
himself was the first to write it explicitly [E 1980, p. 16]. The identity eiπ +
1 = 0, which we now call Euler’s Identity 1 , is an immediate consequence as
soon as one accepts the logarithm as the inverse of the exponential function.

4. The Introductio

Euler’s two-volume Introductio in analysin infinitorum [E101-2] was the
first of his three great analysis textbooks. Had he actually written it in
1748, he could have included a complete and correct description of the
complex logarithm function. However, the manuscript was completed some
time in 1743 or 1744, and it was during the long delay at the printer that

1 Curiously, it seems that Euler never wrote down this relation, although the more
general eiθ = cos θ + i sin θ was given in the Introductio.
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Euler cracked the logarithm problem. Cajori [1913, part 3] gives 1745 as
the date of the completion of the Introductio, but more recent scholarship
places the date no later than 1744, as indicated by letters between Euler
and Cramer [E 1975, p. 92].

In Book I, chapter 6 of the Introductio, Euler described the properties of
the exponential function y = az for a real variable z. He then defined the
logarithm of y to base a is to be z, and derived the laws of logarithms from
the properties of the exponential function. In the next chapter, he found
the usual series representations for ax and loga(1 + x) without the use
of differential calculus. This is achieved by considering aω for ω infinitely
small. Since a0 = 1, aω must differ from 1 by an infinitely small quantity,
say ψ. If we let ψ = kω, where k depends on the choice of a, then

aω = 1 + kω and ω = loga(1 + kω).

The series formulations arise from the application of the binomial theorem
and the clever manipulation of both infinitely large and infinitely small
quantities. Finally, the base e is the value of a which gives k = 1.

Euler clearly stated that the logarithm function is only defined for pos-
itive real numbers in Book I, chapter 6. However, in paragraph 103 in the
same chapter, he mentioned that the logarithm of a negative quantity is
imaginary (which should not be interpreted as purely imaginary in the
modern sense, but simply as a complex number).

Although Euler eventually extended the definition of the exponential,
sine, and cosine functions to the set of all complex numbers, he did not
similarly extend the domain of the logarithm function. In Book II, chapter
21, he did discuss some of the “paradoxes” that make such an extension
difficult. For example, since

1 = (−1)2 =
(
−1±

√
−3

2

)3

= (±
√
−1)4 = · · ·

it follows that

2 log(−1), 3 log
−1 +

√
−3

2
, 4 log

√
−1, · · ·

must all be equal to log 1. This might be used to suggest that log x = 0 for
all complex numbers of unit modulus. However, Euler knew Bernoulli’s for-
mula (1), although he did not mention it in the Introductio. Nevertheless,
he rejected the possibility that all of these logarithms are 0. As a conse-
quence, he could only conclude that log 1 had infinitely many values. Euler
made this plausible by considering that x = log a is a root of the “infinite
degree” equation

a = 1 + x+
x2

2
+
x3

6
+ . . . ,
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thus, an infinite number of solutions is to be expected.
In summary, Euler gave an elegant presentation of the real logarithm

function as the inverse of the exponential in Book I of the Introductio.
His incomplete description of the complex logarithm function in Book II
represented the state of his research in 1743 or 1744. By the time he began
corresponding with d’Alembert in 1746, his solution was complete.

5. The Debate between Euler and d’Alembert

The Euler-d’Alembert correspondence began on August 3, 1746, with a
brief letter written by d’Alembert to Euler. The numbering of their letters
used here was assigned by Juškevič and Taton [E 1980]. d’Alembert did not
mention logarithms in letter 1. Euler’s response and d’Alembert’s follow-
up are both lost, but Euler’s letter is nevertheless catalogued as number 2,
since there are records of its sale by a Paris antiquarian. The next letter
initiated their discussion of logarithms.

5.1. Letter 3 – December 29, 1746, from Euler

This letter was unknown to Cajori. Euler opened it with some remarks
on fluid dynamics. He then praised d’Alembert for an article on the in-
tegral calculus that he had submitted for publication [A1]. It contained
d’Alembert’s attempt to prove the Fundamental Theorem of Algebra and
Euler would include it in the Mémoires of the Berlin Academy for 1746.
After positive words about much of the paper, Euler said

However, you must permit me to be in disagreement with your feelings on
the subject of log(−x), which you believe not to be an imaginary number.
The argument you advance is drawn from the logarithmic differential
equation dy = dx/x, with which you wish to prove that the curve has
two equal branches emanating from the asymptote, due to the fact that
the equation remains the same whether one takes x to be positive or
negative. [E 1980, p. 252]

That is, d’Alembert had claimed that log(−x) = log x for positive num-
bers x. In response, Euler sketched a description of his complex logarithm
function, although he did not provide d’Alembert with any proofs. He first
noted that from the equality of the differentials of log(−x) and log x one
may only conclude that log(−x) and log x differ by a constant “which is
effectively = log(−1),” and that the equality of differentials says nothing
about whether or not that quantity is real. About that quantity, he said,
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. . . I believe that I have proved that it is imaginary and that it is =
π(1±2n)

√
−1, where π indicates the circumference of a circle of diameter

= 1, and n any whole number whatsoever.
For I have shown that, just as every sine responds to an infinity of arcs

of the circle, so the logarithm of every number has an infinite number
of different values, amongst which there is only one that is real when
the number is positive, but when the number is negative all the values
are imaginary. Therefore log 1 = π(0 ± 2n)

√
−1, n denoting any whole

number whatsoever, and letting n = 0 we will obtain the ordinary loga-
rithm log 1 = 0. In the same way we have log a = log a+ π(0± 2n)

√
−1,

where log a in the latter part indicates the ordinary logarithm of a. Now
log(−a) = log a+π(1± 2n)

√
−1, all of whose values are imaginary num-

bers. [E 1980, p. 252-253]

5.2. Letter 5 – January 29, 1747, from d’Alembert

Letter 4, written by d’Alembert on 6 January 1747, crossed in the mail
with Euler’s letter 3 and made no mention of logarithms. Early in letter 5,
d’Alembert thanked Euler for his kind words concerning [A1] and contin-
ued:

. . .With regard to log(−x), everything you tell me on this matter disturbs
me a great deal. I have not given the matter as much thought as you
have, and as I wish, if possible, not to propose anything unless it is quite
certain, I would appreciate it if you would cross out of my treatise the
portion where it is discussed, if it has not already gone to the printer.
[E 1980, p. 257]

Although d’Alembert was too shrewd to let the claim stand in his paper
if there were a reasonable chance that he was in error, he was still keen
to debate the matter privately. He never fully accepted Euler’s account
and maintained that log(−x) = log x until the end of his days. He wrote
“even though your reasoning is very keen and wise, yet I admit, Sir, that
I am not entirely convinced,” [E 1980, p. 257-258] so he began a tenacious
debate that would occupy the balance of this letter and most of each of
the six letters that followed. Consequently, the debate over the nature of
the logarithm function is the largest single topic of discussion in the Euler-
d’Alembert correspondence.

In this letter, d’Alembert raised three numbered objections. The most
interesting of these is an argument involving the area under the hyperbola.
It is most easily described using modern notation and definite integrals, but
d’Alembert actually sketched the graph of the hyperbola in the body of the
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letter and used geometric language for his argument. He simply asserted
that if a > 0, then

log(−a) =
∫ −a

1

dx

x
. (2)

He then reasoned that

log(−a) =
∫ −a

−1

dx

x
+

∫ −1

0

dx

x
+

∫ 0

1

dx

x

=
∫ −a

−1

dx

x

=
∫ a

1

dx

x

= log a

Of course, the assertion 2, when combined with the cancellation of infinite
areas in the second step, is tantamount to defining log(−a) to be log a.
Although eighteenth century analysts were not particularly sensitive to
issues of convergence, d’Alembert often was, as was Euler. In an attempt
to justify the cancellation, d’Alembert wrote:

That which confirms the real value of the ordinate while taking x nega-
tive, is that if one had been given the curve whose equation is dy = dx/x3,
i.e. whose ordinates were equal to the areas

∫
dx/x3 and whose ordinate

y was = 0 given x = 1, one could make same case for this curve as I have
for the logarithm and, following the same line of reasoning, determine
that a negative x would correspond to a real y, as it does in fact. Because
the integration gives y = − 1

2x2 + 1
2 . [E 1980, p. 258]

D’Alembert’s other points do not merit much consideration, but it is
interesting to note that one of them had the flavor of Napier’s construction,
involving “. . . two geometric progressions, . . . the terms of one of which are
positive and the other negative, and to suppose that to each of the two
of these progressions, there corresponds the same arithmetic progression.”
[E 1980, p. 258-9]

5.3. Letter 6 – March 24, 1747, from d’Alembert

Euler clearly responded to letter 5, but there is no record of it, so
d’Alembert’s reply is the next letter in the sequence. In his missing letter
from February or March of 1747, Euler appears to have addressed the fol-
lowing point, raised obliquely by d’Alembert in his second objection above.
The antiderivative of y = x−n has two branches and is symmetric about
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the y-axis for odd natural numbers n = 3, 5, 7, . . ., so why should this not
also be so for n = 1? In the missing letter, Euler evidently proposed the
example

y =
√
x+

√
x
√
x+ a,

as a curve whose behavior is suddenly different at one particular value of
the parameter. In this example, when a > 0 the curve has two branches in
the first quadrant, meeting at the origin, and is symmetric about the x-axis.
However, when a = 0 there are no branches in the fourth quadrant and the
curve exhibits a cusp at the origin, known as a cuspical point of the second
kind or the second species; see [Br] for more about the importance of this
curve in the professional relationship between Euler and d’Alembert.

Most of this letter concerns the logarithm debate, and d’Alembert has
six numbered points. In both of the first two points, d’Alembert fails to
appreciate the role of Euler’s example in probing his reasoning process. In-
stead, he dwells on the irrelevant fact that neither this particular example,
nor anything similar to it, would refute his claim that log(−x) = log x. In
another one of his points, d’Alembert considers the logarithm to be the in-
verse of the exponential for the first time in the correspondence. Yet another
point indicates nothing less than a failure of imagination on d’Alembert’s
part:

You agree that the equation dx = dy/y proves that the logarithm of −y
and that of y differ by only a constant, but you claim that this constant
is imaginary. Now this seems to me quite difficult to conceive of, for if
you imagine any function of y you wish, which is the logarithm of y,
and making y negative in this function, it becomes the logarithm of −y.
That is to say, according to you, we need to find a function of y which,
in making y negative, does not change its value, except that it gives
birth, all of a sudden, to an imaginary constant. Well, I declare that I
am unable to conceive such a function. [E 1980, p. 261]

Without a doubt, his strongest argument in this letter is his last one:

All difficulties reduce, it seems to me, to knowing the value of log(−1).
Now why may we not prove this to be 0 by the following reasoning?
−1 = 1/− 1, so log(−1) = log 1− log(−1). Thus 2 log(−1) = log 1 = 0.
Thus log(−1) = 0. [E 1980, p. 261]

5.4. Letter 7 – April 15, 1747, from Euler

Euler’s response to letter 6 is an important document. It reads very
much like a draft version of major portions of his paper [E807], which we
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will consider in detail in the next section. In [Cj, part 3], this letter is the
first letter considered, whereas Euler and d’Alembert had in fact already
exchanged four letters on logarithms and raised numerous arguments.

In this letter, Euler addressed most of d’Alembert’s objections from letter
6, including the argument that log(−1) = 0. In this passage, he assumed
that d’Alembert was familiar with Bernoulli’s formula (1):

With the same reasoning that you use to prove log(−1) = 0, you could
equally well prove that log

√
−1 = 0 for since

√
−1·

√
−1 = −1, you would

have log
√
−1+log

√
−1 = log(−1), i.e. 2 log

√
−1 = log(−1) = 1

2 log(+1)
and thus log

√
−1 = 1

4 log 1 = 0. If you do not approve of this reasoning,
you will agree that the first is no more convincing. Now, you must at least
agree that logarithms of imaginary numbers are not real, for otherwise
the expression log

√
−1/

√
−1 could not express the quadrature of the

circle. [E 1980, p. 264]

Having dealt with d’Alembert’s objections, Euler now shares more of his
insight into the matter. We observe that towards the end of this passage,
Euler uses the symbol π, whose meaning has not yet become standardized,
to represent the quantity we denote by 2π, and so the imaginary compo-
nents of the complex numbers appear to us to be too small by half.

To explain this better, let 0, α, β, γ, δ, ε, ζ, η, θ, ι, κ etc. be the logarithms
of unity, and I say that values of log(−1) will be

α

2
,
γ

2
,
ε

2
,
η

2
etc.

all imaginary, such that the double of each appears among the logarithms
of +1. However, it does not follow that the half of each of the values of
log(+1) is found among the log(−1), since −1 is but one value of

√
+1,

the other being +1, whose logarithms are

0
2
;
β

2
;
δ

2
;
ζ

2
etc.

which are precisely the same as 0, α, β, γ, δ, ε, ζ, etc. For

β

2
= α,

δ

2
= β,

ζ

2
= γ,

θ

2
= δ, etc.

Similarly, as the three cube roots of 1 are

1,
−1 +

√
−3

2
and

−1−
√
−3

2
,

the logarithms of these three roots will be

log 1 =
0
3
,

γ

3
,

ζ

3
,

ι

3
,

µ

3
etc.,
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the same as 0, α, β, γ, δ, ε, etc.,

log
(
−1 +

√
−3

2

)
=
α

3
,

δ

3
,

η

3
,

κ

3
,

ν

3
etc.,

log
(
−1−

√
−3

2

)
=
β

3
,

ε

3
,

θ

3
,

κ

3
,

ν

3
etc.,

and these letters α, β, γ, δ, ε, etc. are not based on pure conjecture; I have
had the honor giving you their actual values. For if π is the circumference
of the circle whose radius is = 1 [sic], then the values of log(+1) are 0;
±π

√
−1; ±2π

√
−1; ±3π

√
−1; ±4π

√
−1; ±5π

√
−1; etc. of log(−1) are

±π
2

√
−1; ± 3π

2

√
−1; ± 5π

2

√
−1; etc. [E 1980, p. 265-6]

5.5. Letter 8 – April 26, 1747, from d’Alembert

At this stage in the correspondence, most of the important points have
already been made. One of d’Alembert objections indicates that he is not
willing to follow Euler in adopting the power series definition of the expo-
nential function, for “I had objected that if x = 1/2, then ex has two values,
one positive and the other negative.” [E 1980, p. 267] He goes on to say “the
reduction of quantities to series often expresses their values incorrectly...”
It is curious that d’Alembert expresses concerns about convergence with
respect to the exponential series, and yet he is happy to cancel improper
integrals in an earlier letter. Another notable passage from this letter is
the following, where he first raises a point that he will come back to in
subsequent letters.

It is true that the formula involving sines gives those values for log(−1),
but is it quite clear that this formula gives all of the values of log(−1)?
It is this that I do not yet see . . . [E 1980, p. 268]

5.6. Letter 9 – August 19, 1747, from Euler

Among the interesting points in this letter is Euler’s confirmation that he
was able to remove the paragraph concerning log(−x) from d’Alembert’s
paper [A1] and his announcement that he has forwarded his memoir [E807]
to the Academy, “. . . where I believe I have put this matter to rest; at least
for my part, I have not the least difficulty with it, whereas I had previously
been extremely perplexed [E 1980, p. 271].”
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5.7. The Debate Winds Down

In letter 10, d’Alembert makes the curious comment that “from my point
of view, log 1 is completely indeterminate.” [E 1980, p. 274] Euler opens his
brief Letter 11, of December 30, 1747, with the following passage:

I have learned from Mr. de Maupertuis that you wish to suspend your
work in mathematics for a little while, in order to reestablish your health,
which has been considerably weakened by your great efforts. I approve so
heartily of this resolution, for which I wish you all attendant success, that
I do not wish to trouble you with a discussion of imaginary logarithms,
although I can’t think of much else that I could add to this matter that
I have not already mentioned, and I really doubt whether my paper on
this subject will be able to allay the doubts which you have taken the
trouble to describe to me. [E 1980, p. 273]

Although Euler’s intention to drop the subject is clear, d’Alembert brings
up logarithms early in 1748 in letters 12 and 14. During the summer of the
same year, the Introductio was finally published, and Euler sent d’Alembert
a copy. In letter 16 of September 7, d’Alembert reacted to Euler’s brief
mention of the problems with logarithms of negative numbers in Book II.
However, Euler had no appetite for continuing the discussion of logarithms,
and in letter 17, of September 28, he said “the matter of imaginary log-
arithms is no longer so familiar to me that I may rigorously respond to
your latest remarks . . .” [E 1980, p. 294] In letter 18, of 27 October 1748,
d’Alembert got in a brief last word, and the debate came to an end.

6. Euler’s First Memoir

On September 7, 1747, in the midst of his debate with d’Alembert, Euler
read his paper Sur les logarithmes des nombres négatifs et imaginaires (On
the logarithms of Negative and Imaginary Numbers) [E807] to the Berlin
Academy. The article was not published during Euler’s lifetime, but only
in his Opera postuma in 1862.

The paper consists of 34 paragraphs. The first seven are devoted to a
discussion of the debate between Leibniz and Johann Bernoulli, available
since 1745 in their published correspondence. The next nine contain a gen-
eral discussion of the problem, including the nature of curves with multiple
branches and, in §13, the definition of the logarithm as the inverse of the
exponential function. The series for ex is given in §16, and Euler stresses
that this will be the definitive arbiter of the value of ex, even in the case
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of square roots.

This series being regarded in analysis as completely equivalent to the
expression ex, there can be no doubt that its value is determined as soon
as x is assigned a given value, for the series is always convergent, no
matter how large the number we substitute for x. And for this reason,
we are right to hold that insofar as the expression ex represents the
number whose logarithm is = x, there can never be any ambiguity in it,
and its value is always unique and positive, whatever fraction we take
for x, so that even if x is a fraction such as 1/2, the expression for ex

will have but a single positive value. [E807, p. 274]

During the course of the next seven paragraphs, Euler discusses the para-
doxes of logarithms. He includes and elaborates upon the observations he
made in Book II of the Introductio. He describes the various hypotheses
and pieces of evidence that led him to conclude the the number 1 must
have infinitely many logarithms, using the same notation he used in letter
7 to d’Alembert.

In §24, he begins his proof that every number has an infinitude of log-
arithms. He notes the important correspondence between logarithms and
arcs of a circle, and says “we are more familiar with the circle than with
the logarithmic curve and, for this reason, the consideration of the circle
will bring us to a more perfect understanding of logarithms than even the
logarithmic curve will.”

Euler begins §25 as follows: “Consider an arbitrary arc ϕ of a circle of
radius = 1. Let x be the sine of this arc and y the cosine . . ..” In the
discussion that follows, we will interchange the roles of x and y so that
x = cosϕ and y = sinϕ, as a modern reader would expect, and we will also
use i and log in place of

√
−1 and l. In all other details, the argument is

as given by Euler.
Consider an arbitrary arc ϕ of the unit circle, with x = cosϕ and y =

sinϕ, so that x =
√

1− y2. Clearly, any arc of the form ±2nπ + ϕ has the
same sine and cosine, where n is an arbitrary natural number. Now

dϕ =
dy

x
=

dy√
1− y2

.

This observation apparently needed no further justification to readers fa-
miliar with Leibniz’ calculus of differentials. For a demonstration, consider
the diagram in figure 1: since the tangent dϕ is perpendicular to the radius
by elementary geometry, it follows that the differential triangle is similar
to the right triangle involving x and y. Thus, dϕ : 1 :: dy : x :: dx : y.

Now let y = iz, and we will have

LOL-Ch13-P16 of 24



Euler, D’Alembert and the Logarithm Function 271

1

x

y

dx

dy
dφ

Fig. 1. The unit circle and its differential triangle

dϕ =
i dz√
1 + z2

.

Euler assumed familiarity with the indefinite integral∫
dz√

1 + z2
= log(

√
1 + z2 + z) + C,

so that

ϕ =
∫

i dz√
1 + z2

= i log(
√

1− y2 +
y

i
) + C.

By considering y = 0, it is clear that C = 0. So

ϕ= i log(x− iy)

=
1
i

log[(x− iy)−1]

=
1
i

log(x+ iy).

In §26, Euler notes that the formula holds for any other arc ϕ with the
same sine and cosine, so for any integer n, we have

ϕ+ 2nπ =
1
i

log(x+ iy),

and hence
log(x+ iy) = i(ϕ+ 2nπ),
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“from which it is clear that to any number x + iy there corresponds an
infinity of logarithms.” Substituting back for x and y, we have the general
formula for the logarithm of any complex number of unit modulus:

log(cosϕ+ i sinϕ) = i(ϕ+ 2nπ).

7. Euler’s Second Memoir

When it came time to publish, Euler replaced his first memoir on loga-
rithms with a different memoir, “De la controverse entre Mrs. Leibnitz et
Bernoulli sur les logarithmes des nombres négatifs et imaginaires” (On the
Controversy between Messers. Leibniz and Bernoulli concerning the Log-
arithms of Negative and Imaginary Numbers) [E168], which appeared in
the journal of the Berlin Academy for 1749. It was 60% longer than the
original and had somewhat more detail concerning the Leibniz-Bernoulli
controversy. However, there is significant difference in the mathematical
exposition of the two papers, and this accounts for most of the difference
in length.

At two points in their correspondence (letters 5 and 10), d’Alembert de-
clared himself unconvinced by Euler’s arguments involving “formulas for
the arcs of circles” [E 1980, p. 259]. Perhaps this is why Euler took an
entirely different approach in his second article. Alternately, it may have
been the use of the integral calculus in [E807] that felt unsatisfactory to
Euler, since the logarithm ought to be an elementary topic; this explana-
tion was suggested in [Cj, part 3]. It is likely that Euler also wanted his
exposition to be similar in style and notation to his Introductio, where it
almost certainly would have been included had he discovered his results in
time. Cajori’s theory is certainly compatible with this.

After preliminary discussion, Euler proves the theorem that any given
quantity has infinitely many logarithms. Following his exposition in the
Introductio, he observes that log(1+ω) = ω for any infinitely small quantity
ω, so that

log(1 + ω)n = nω.

If n is finite, then (1+ω)n differs from 1 only by an infinitely small quantity.
So let n be infinitely large and

x = (1 + ω)n. (3)

Let y = log x, so that we we have y = nω. To find y, we first solve equa-
tion (3) to get

ω = x1/n − 1.
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From this it follows that

log x = y = nx1/n − n.

The equivalent modern statement is formulated in terms of limits. Euler
anticipated this as follows:

From this it is clear that the value of the formula nx
1
n −n will approach

the logarithm of x all the more, the larger the number n is taken, and if
we let n be an infinite number, this formula will give the true value of
the logarithm of x. [E168, pp. 156-157]

To complete the proof, Euler observes that

. . . as it is certain that x
1
2 has two values, x

1
3 three, x

1
4 four, and so on, it

is equally certain that x
1
n must have an infinity of different values. As a

consequence, this infinity of distinct values of x
1
n will produce an infinity

of distinct values of log x, so that the number x must have an infinity of
logarithms. QED [E168, p. 157]

Having proved the theorem, Euler now solves the problems of finding
all the logarithms of a given positive number, of a given negative number
and finally of an arbitrary ‘imaginary number,’ i.e. a complex number. Of
course, the results are the same as in [E807]. The arguments are longer and
feel more complicated. They certainly seem more contrived to the modern
reader, since they involve subtle properties of infinitely large and infinitely
small quantities. Unlike the first memoir, which is entirely accessible to
an undergraduate mathematics major, the second memoir is incompatible
with modern notions of analysis.

8. Conclusion: D’Alembert’s Memoir

Because of the publication lag in the Mémoires of the Berlin Academy,
d’Alembert did not see Euler’s second memoir on logarithms until after
he had stopped corresponding with him in 1751. Shortly afterwards, when
d’Alembert disputed Euler’s priority on three other articles in this volume,
he also expressed his disagreement with the substance of Euler’s logarithms
paper, which is distinguished by being the only one of the four disputed
articles to have been discussed at such significant length in their correspon-
dence.

If one considers d’Alembert’s penchant for self-promotion and demon-
strated appetite for controversy, it seems entirely plausible to that he was
disappointed not to be mentioned by name in Euler’s logarithms article,
for both the publicity that it would have afforded him, and for the pre-
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sumed opportunity to publish a rebuttal. At the time Euler composed the
article, however, he and d’Alembert were still corresponding amiably, so I
believe that Euler, convinced that d’Alembert’s position was demonstra-
bly wrong, suppressed any mention of his name only because he wished to
spare him embarrassment. The publication of Bernoulli’s correspondence
in 1745 afforded him a literary device for discussing d’Alembert’s position
while attributing it to Bernoulli.

Whatever the case, d’Alembert did submit a response to Euler’s article.
The manuscript of “Sur les logarithmes des quantités négatives,” was dated
16 June 1752. There is no mention of this manuscript in the Registres of
the Academy [Wn] and we may infer that Euler decided that it was not
fit for publication on the grounds of both its mathematical content and its
polemical tone. Instead, d’Alembert eventually published a slightly edited
version of this essay in the first volume of his Opuscules mathématiques,
described in [Tr, p. 274] as “collections of papers having little or no solid
content, not of a quality or style fit for a learned journal, but nevertheless
sufficient, with the renown of d’Alembert’s name among the ‘semi-learned,’
to be sold successfully by a commercial publisher.”

d’Alembert began his article with the following definition, in the spirit
of Napier: “We call logarithms an arbitrary series of numbers in arithmetic
progression, corresponding to an arbitrary series of numbers in geometric
progression.” [A4, p. 181-2] However, this is immediately followed by a
discussion of the exponential curve, and later in the paper d’Alenbert freely
uses the logarithmic differential equation when it suits his needs. Almost
all of the arguments in this paper had already been put forward in his
correspondence with Euler.

In his introductory remarks, d’Alembert described the structure of his
essay in the following terms.

I will first set forth the purely metaphysical reasons which permit one
to consider logarithms of negative numbers as being real. To these rea-
sons, I will add others that are purely geometrical, which seem to me to
constitute a proof, and finally, I will respond to objections. [A4, p. 183]

D’Alembert’s ‘metaphysical’ arguments are actually mathematical in na-
ture; he seems to use the designation for arguments that are meant to
persuade, but fall short of being a proof. For example, he argues by anal-
ogy with algebraic curves that a graph should only pass from real into
complex values by virtue of having ‘radical pairs.’ Thus, it is difficult to
concieve of x “passing abruptly from −∞ to the imaginary” [p. 184] as y
becomes negative in the exponential curve, since there is but a single value
of x corresponding to each positive y, all the more so since x does not take
a finite value when y = 0.
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It is interesting that these metaphysical arguments come ahead of the
mathematical ones, almost as though rhetorical and legalistic arguments
should be as important to mathematical discourse as proofs and coun-
terexamples. There is indeed a sort of scholastic tone to the whole piece:
it is almost as though his real goal here, as in his letters, was to propose
objections that would stump Euler.

However, it would be a mistake to dismiss d’Alembert as a mathematical
crank. His record of other achievements in mathematics stands on its own
merits. Also, d’Alembert probably deserves some credit for a rather modern
point of view that a function may be defined arbitrarily, whereas Euler
proceeds as though the logarithm function were somehow given a priori. Of
course, Euler’s patiently argued position on logarithms is more persuasive
to the modern reader, but the whole notion of an infinitely multi-valued
function must have seemed very odd to any mathematician in the 1740s. We
know that Euler himself struggled mightily with the difficulties presented
by the paradoxes of logarithms of negative numbers, before concluding that
every number has infinitely many logarithms.

Acknowledgement: Translations from the correspondence were jointly
done with John S. D. Glaus. Other translations are by the author.
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1. Introduction

Much of Euler’s most important work involves series. When the Editors of
the Opera omnia prepared the Series I volumes 14, 15, 16 and 16*, they used
a definition that includes infinite products and continued fractions as well as
the more traditional topics in progressions and infinite sums. If we use their
definition, then Euler published 81 papers on the subject. Only number
theory, with 96 papers, yields a larger count. However, this analysis under-
states the importance of series in Euler’s work. They form much of the basis
of Euler’s analytic worldview. Euler used series as the foundation of his
differential calculus, and as a basic tool in many other topics. Sometimes,
it is only because of a decision by the Editors of the Opera omnia that
we might think an article is mostly about series rather than something
else, like differential equations or geometry or elliptic integrals. There are
a number of landmarks in Euler’s contributions involving series. We list a
few of them:

(i) Evaluation of ζ (2) in 1735, thus solving the so-called Basel problem;
(ii) What Euler called the “interpolation of the hypergeometric series,”

what we now call the factorial numbers in 1729, thus discovering what
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we now call the Gamma function;
(iii) The gradual discovery of the Euler-Maclaurin summation formula,

beginning about 1732;
(iv) The application of series to number theory, leading, among other

things, to generating functions and the 1741 solution to Philip Naudé’s
problem on the partition of integers;

(v) The product-sum formula for the Zeta function, discovered in 1737;
(vi) The development of rapidly-converging series to enable the practi-

cal preparation of tables of logarithms, trigonometric functions and
the logarithms of trigonometric functions, starting about 1738 and
continuing throughout his life;

(vii) The identification of certain constants and their usefulness, includ-
ing γ (the so-called Euler-Mascheroni constant), e, π, and sequences
of coefficients called the Bernoulli numbers and the Euler numbers,
starting about 1736;

(viii) All of the fundamental properties of continued fractions in 1737, with
extensions and clarifications later on.

Many readers will want to add to this list.
There are at least two excellent and comprehensive accounts of Euler’s

work in series. The first is Georg Faber’s 112-page “Übersicht über die
Bände 14, 15, 16, 16* der ersten Serie,” [F] that serves as the Editor’s
preface to the three volumes (in four parts) on series in the Opera omnia.
It was written in 1935.

Faber divides his summary into several parts.
(i) 14 articles on summation formulas, especially Bernoulli numbers,
(ii) 10 articles on the Gamma function,
(iii) 13 articles on trigonometric series and series involving trigonometric

functions,
(iv) 9 articles on binomial series and binomial coefficients,
(v) 17 articles on other functions and series,
(vi) 11 articles on continued fractions and infinite products,
(vii) 7 articles involving the number π.

Like most of the Editors’ Introductions in the Opera omnia, this is a
masterpiece of 20th century scholarship. It is thoroughly and meticulously
researched and contains information almost impossible to find anywhere
else. However, it was written in 1935, and based on the vision for the Opera
omnia that was formulated about 1905. That vision reflects an 19th century
intellectual theory that relies heavily on taxonomy and classification. In this
era of relational databases, connectivity and network analysis, there are too
many questions that a taxonomical historiography cannot answer. It may
be too much to hope that the Editors of the Opera omnia might be able to
add new introductions to these key parts of the work in future editions.
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A somewhat more modern account of Euler’s early work in series is given
by Josef Ehrenfried Hofmann [H] in “Um Eulers erste Reihenstudien,” writ-
ten in 1957. This is a copiously footnoted 80-page article in a Sammelband
in which the other twenty-five articles average only 10 pages. Hofmann
traces the roots and motivation of Euler’s work through the greatest math-
ematicians of earlier times, like Fermat, Leibniz and several Bernoullis, as
well as many lesser luminaries like Goldbach, Riccati, Bilfinger, Stirling,
Maclaurin and Hermann. He uses Euler’s correspondence, as well as the
work of his contemporaries, to trace the birth and development of much of
Euler’s work on series through the First St. Petersburg period.

Both of these are excellent, though neither is recent, and they reflect the
historiography and sentiments of their times. Both are also considerably
longer than this piece can be, so this chapter must have limited but focused
ambitions.

The first part of this essay will treat Euler’s recognition of the ubiquity
and utility of the Bernoulli numbers. It is a demonstration of how the act of
giving a name to an object, the sequence of Bernoulli numbers, made that
object a powerful tool that connected previously unrelated mathematical
results.

The second part will complement the first, describing the many circum-
locutions of notation Euler used to do what modern mathematicians would
do with indicial notations like subscripts and superscripts. This will demon-
strate how the lack of a convenient and powerful notation distorted certain
kinds of mathematical developments of the era, and it will not lead to a
resolution and epiphany the way the first part does.

The two parts are related in other ways as well. Both will rely almost
exclusively on the work of Euler himself, with little reference to the contri-
butions of his contemporaries. The first part will follow Faber’s classifica-
tion very closely; it will use almost exclusively the articles Faber identifies
as relating to Bernoulli numbers. The second part, in contrast, will cut
across the taxonomy of the Opera omnia and use sources from a variety of
volumes.

2. Euler and the Bernoulli numbers

2.1. Prehistory

Bernoulli numbers are a sequence of rational numbers that arise in a
dazzling variety of applications in analysis, numerical analysis and num-
ber theory. When Charles Babbage designed the Analytical Engine in the
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19th century, one of the most important tasks he hoped the Engine would
perform was the calculation of Bernoulli numbers.

Fig. 1. Title page from Bernoulli’s Ars Conjectandi

The first few Bernoulli numbers are B0 = 1, B1 = −1
2 , B2 = 1

6 , B3 = 0,
B4 = −1

30 , B5 = 0, B6 = 1
42 .

After B1 all Bernoulli numbers with odd index are zero, and the non-zero
ones alternate in sign. They first appeared in 1713 in Jakob Bernoulli’s
pioneering work on probability, Ars Conjectandi. Jakob Bernoulli (1654-
1705) was the older brother of Johann Bernoulli (1667-1748), who was, in
turn, Euler’s teacher and mentor at the University of Basel.

Bernoulli was studying sums of powers of consecutive integers, like sums
of squares,

1 + 4 + 9 + 16 + 25 = 55

or sums of cubes

LOL-Ch14-P4 of 24



Some Facets of Euler’s Work on Series 283

1 + 8 + 27 + 64 + 125 + 216 + 343 = 784.

In modern notation (Bernoulli did not use subscripts, nor did he use Σ
for summations or ! for factorials) Bernoulli found that

n−1∑
k=1

kp =
p∑

k=0

Bk

k!
p!

(p + 1− k)!
np+1−k

If n is large and p is small, then the left hand side is a sum of a relative
large number of relatively small powers. If we know the necessary Bernoulli
numbers then the sum on the right is simpler to evaluate than the sum on
the left. Jakob Bernoulli himself is said [G+S] to have used this formula to
find the sum of the tenth powers of numbers 1 to 1000 in “less than half of
a quarter of an hour.” The answer is a 32-digit number.

Just two years after Ars conjectandi, in 1715, Brook Taylor (1685-1731)
published his book Methodus incrementorum directa et inversa. It contains
what is today called Taylor’s Theorem. Though clearly others of the era had
similar or equivalent results, Euler himself called such series “Mr. Taylor’s
series.” Soon, great varieties of functions were expanded into power series,
but at the time, apparently nobody noticed that the coefficients in the

expansion x
ex−1 =

∞∑
k=0

Bk
xk

k! involved the very same sequence that Bernoulli

had found. Bernoulli numbers are also involved in the expansions of several
other functions, including tanx, x

sin x , log
(

sin x
x

)
, among others.

2.2. 1729-1736: The Euler-Maclaurin summation formula

More than 25 years pass between the time Euler has his first ideas related
to Bernoulli numbers and the time Euler sees that relationship. In his very
first letter to Goldbach [J+W], dated 13 October 1729, Euler mentions “in-
terpolating the sums” of the harmonic series. By this, Euler means he gives

meaning to expressions like
n∑

k=1

1
k when n is not an integer. The next year

he published his results in De summatione innumerabilium progressionum
[E20]. There, Euler observes that, for integer values of n,

1− xn

1− x
= 1 + x + x2 + · · ·+ xn−1.

Integrating from 0 to 1 gives∫ 1

0

1− xn

1− x
dx = 1 +

1
2

+
1
3

+ · · ·+ 1
n

.

Since the expression on the left is well defined even if n is not an integer,
Euler declares that it interpolates the harmonic series. In particular, if
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n = 1
2 , we get the value 2− 2 ln 2. This is the value that Euler announced,

without proof, in his 1729 letter to Goldbach.
This is significant to the present discussion because it inspired Euler

to compare integrals with series. In the same article, Euler was able to

represent
n∑

k=1

1
k2 as a double integral, which, though he could not evaluate

it exactly, he was able to approximate as n became infinite, and thus get a
six-decimal place approximation to the solution to the Basel problem.

Two years later, in the next issue of the Commentarii of the St. Peters-
burg Academy, Euler extended his results from E20 in Methodus generalis
summandi progressiones [E25]. There he gives his first version of what we
now call the Euler-Maclaurin summation formula as follows:

“If the general term of index n of a progression is given by t, and if s is
the sum of all the terms up to t, then

t =
ds

1dn
− dds

1 · 2dn2
+

d3s

1 · 2 · 3dn3
− d4s

1 · 2 · 3 · 4dn4
+ etc.

in which equation dn is constant. This equation can be transmuted into
the equation

s =
∫

tdn + αt +
βdt

dn
+

γd2t

dn2
+

δd3t

dn3
+ etc.,

in which the coefficients α, β, γ, etc. have the values

α =
1
2

β =
α

2
− 1

6
γ =

β

2
− α

6
+

1
24

δ =
γ

2
− β

6
+

α

24
− 1

120
ε =

δ

2
− γ

6
+

β

24
− α

120
+

1
720

etc.”

This is all the explanation of the formula that Euler gives us. There is no
proof other than claiming that the “equation can be transmuted.” Modern
proofs of the Euler-Maclaurin formula are usually based on an analysis
of the error term for the trapezoid rule, and on properties of Bernoulli
polynomials. Such a proof would have been impossible for Euler in the
1730s.

In E25, Euler applied his new results only to summing certain kinds of
sequences, especially those for which the numerators formed a geometric
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sequence and the denominators an arithmetic or polynomial sequence. Then
between 1734 and 1736, Euler wrote four more papers, E43, E46, E47 and
E55 that extended and clarified these results. We will look more closely at
E46 and E47 in the second part of this essay.

In 1742, Colin Maclaurin independently discovered the same formula
during his studies of quadrature. The approaches of Maclaurin and Euler
combine to show how integration can be used to approximate series and,
conversely, series can approximate integrals.

2.3. 1735: The Basel problem

At the end of E20, Euler used his new methods to estimate the value of
the sum of the squares of the integers, the solution of the so-called Basel
problem, as 1.644934. To get such an accurate answer by summing the series
itself would require over 10,000 terms. He later extended his approximation
to 19 decimal places. Euler, as the best calculator of his era, eventually
recognized the value as π2

6 , and, with this key clue, he solved the Basel
problem in 1735 in De summis serierum reciprocarum [E41]. Dunham [D]
gives a clear description of Euler’s wonderful solution.

It is a mark of a good problem and of a good solution that the solution
gives more than was asked in the problem. This was certainly the case in
Euler’s solution to the Basel problem, as Euler gives not only the sum of
the reciprocals of the squares, but also the sum of the reciprocals of any
even power of the integers. He shows that

[ζ (2n)] =
∞∑

k=1

1
k2n

= A2nπ2n,

and he gives exact values for A2n through n = 6, and a recursive relation
for generating more coefficients. Later, in the Introductio in analysin infin-
itorum [E101] he gives coefficients through n = 13. At the time, Euler did
not recognize that these coefficients were related to Bernoulli’s numbers
and to the coefficients in the Euler-Maclaurin summation formula by

∞∑
k=1

1
k2n

=
22n|B2n|π2n

2 (2n)!

2.4. 1734: Gamma: The Euler-Mascheroni constant

The number we now call the Euler-Mascheroni constant and denote by
gamma (γ) made its first appearance in De progressionibus harmonicis
observations [E43]. Here, Euler uses the Euler-Maclaurin formula to sum
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series in which the numerators form geometric series and the denominators
form arithmetic series. He does not yet realize the full power of the Euler-
Maclaurin formula, and seems to think that the most interesting application
is accelerating the convergence of series for logarithms. In the course of his
calculations, he writes

1 +
1
2

+
1
3

+ ... +
1
i

= ln (i + 1) + 0.577218

where i is an infinite number.
When Euler re-visits gamma in Inventio summae cuiusque seriei ex dato

termino generali [E47], Euler calculates the sum of the first million terms
of the harmonic series to 16 decimal places. Ignoring issues of convergence,
he further describes the sum of the entire harmonic series as

= ln∞+ 0.5772156649015329.

At this stage, nobody recognized the special significance of this constant.
Euler treated things as though any series had an associated constant that
describes the difference between its sum and its associated integral. Euler
works an example involving the odd harmonic series. To find the associated
constant, he writes the series 1 + 1

3 + 1
5 + 1

7 + etc. and assumes that it is
equal to “Const. + 1

2 ln∞.” He tells us to double this series, then subtract
the harmonic series, and get 1− 1

2 + 1
3 −

1
4 + etc. He recognizes this as ln 2,

and substitutes back to get

ln 2 = 2 const. + ln∞− ln∞− 0.577215 etc.

From this, he finds that the constant associated with the odd harmonic
series is 0.6351814227307392. Euler examines the constants associated with
several other series as well, but he seems to take no notice of the other
relations between their constants and the constant for the harmonic series.

Except for one episode in 1755, which we will describe later, gamma
research was mostly idle until 1790, when Mascheroni published his Adno-
tationes ad Calculum integralem Euleri [M]. Mascheroni gives the value of

gamma as a diverging series, γ = 1
2 +

∞∑
k=1

B2k

2k , and shows how its value

arises in series expansions of integrals like
∫

exdx
x ,

∫
dx
ln x and

∫
dx

ln(ln x) . It
is because he recognized these additional properties of the constant that
gamma is known as the Euler-Mascheroni constant.

2.5. 1755: Making the trees into a forest

Let us turn now to 1755, when Euler published his Institutiones calculi
differentialis [E212]. At that time, most of the results above were known,
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but their links to Bernoulli numbers were not yet recognized. To summarize
the known results, we list:

(i) Bernoulli’s own results on summing powers of integers. Bernoulli
showed how this involved Bernoulli numbers, hence the name,

(ii) The Euler-Maclaurin summation formula,
(iii) Taylor series for various functions,
(iv) Euler’s evaluation of ζ (2n),
(v) The value of the Euler-Mascheroni constant and its relation to the

harmonic series.
Then, through all the trees, Euler sees the forest. It must have been a

wonderful feeling to see how so many different aspects of mathematics are
linked through these mysterious Bernoulli numbers.

Euler devotes almost all of chapters 5 and 6 of Part 2 of his Calculus
differentialis to results related to Bernoulli numbers, and on page 420 (page
321 of the Opera omnia edition) he attributes them to Jakob Bernoulli and
calls them Bernoulli numbers. Though de Moivre was the first one to call
this sequence the Bernoulli numbers, when Euler joined him in adopting
the terminology, it certified their importance.

Unfortunately, only Part 1 of the Calculus differentialis has been trans-
lated into English, so readers who want to enjoy it in Euler’s words must
either brave the Latin or find a copy of the rare 1790 German translation.

Euler begins his chapter 5, “Investigation of the sums of series from their
general term” with a quick treatment of Bernoulli’s results on summing
sequences of powers. Then he repeats his own results from the 1730s [E25]
on the Euler-Maclaurin formula and gives the recursive relation on the
coefficients in that formula. Euler does not mention Maclaurin, so he is
probably unaware of his work on the subject.

Then he shows how those coefficients arise from the Taylor series expan-
sions of x

1−e−x and 1
2 cot

(
1
2x

)
.

Eventually, after quite a bit of work, he lists the Bernoulli numbers,
naming them after Bernoulli in the process, and shows how they are related
to the coefficients in the Euler-Maclaurin formula.

This done, he extends occurrence of Bernoulli numbers in the expansion
of 1

2 cot
(

1
2x

)
to the more general form π

n cot
(

mπ
n

)
and uses that to relate

Bernoulli numbers to the values of ζ (2n). To end the theoretical parts of
his exposition, he gives some of the properties of the Bernoulli polynomials
and notes that Bernoulli numbers grow faster than any geometric series.

Euler spends the rest of these two chapters doing applications of Bernoulli
numbers, including calculating the Euler-Mascheroni constant, γ, to 15
decimal places.

All this is rather unexpected in a textbook on differential calculus.
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2.6. On names

The Book of Genesis recounts the story that God commanded Adam to
give names to all the beasts, and in doing so gave people dominion over the
animals. This is often interpreted metaphorically as describing the power of
giving and knowing names. The story of naming the Bernoulli numbers is
consistent with that metaphor, for once the Bernoulli numbers had a name,
their diverse occurrences could be recognized, organized, manipulated and
understood. Having a name, they made sense.

Simon Singh [S] quotes Andrew Wiles as describing the process of math-
ematical discovery with the colorful words “You enter the first room of
the mansion and it’s completely dark. You stumble around bumping into
the furniture but gradually you learn where each piece of furniture is. Fi-
nally, after six months or so, you find the light switch, you turn it on, and
suddenly it’s all illuminated.” It must have been something like this for Eu-
ler, when he saw how the “furniture” was arranged around the Bernoulli
numbers.

3. Euler and the lack of subscripts

Modern definitions of sequences and series are almost always given in
terms of a list of numbers denoted with subscripts, like xn where n is an
integer, usually starting with n = 0 or n = 1. For example, above we spoke
of the Bernoulli numbers

B0 = 1, B1 =
−1
2

, B2 =
1
6
, B3 = 0, B4 =

−1
30

, B5 = 0, B6 =
1
42

.

It is by use of such subscripts that we easily show how the numbers that
occur in the Riemann zeta function

ζ(2n) =
∞∑

k=1

1
k2n

=
22n|B2n|π2n

2 (2n)!

are related to the numbers that occur in Bernoulli’s problem of summing
powers,

n−1∑
k=1

kp =
p∑

k=0

Bk

k!
p!

(p + 1− k)!
np+1−k

or in the coefficients in the Euler-Maclaurin summation formula, sometimes
written as
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n−1∑
k=1

fk =
∫ n

0

f(k)dk−1
2

[f (0) + f (n)]+
∞∑

k=1

B2k

(2k)!

[
f (2k−1) (n)− f (2k−1) (0)

]
Without subscripts, or some tools that could perform the same functions,

Euler was not able to express such relations so compactly and elegantly.
We plan to spend the rest of this essay surveying Euler’s notation for
series, paying particular attention to the difficulties he had and the ad
hoc notations he developed. We will also notice how often he came very
close to developing a general indicial notation, and we will see that these
notations appear in a broad variety of topics.

This part of the paper should complement the first part in that it will
demonstrate that a powerful notation can be as illuminating as a unifying
terminology. It should contrast the first part in that the naming of the
Bernoulli numbers was success, but that Euler failed to discover a powerful
indicial notation. Moreover, it is different from the first part, which focused
on a relatively few works of Euler, all classified in the Opera omnia as
papers on Series. This second part will rely on a larger number of works on
Series. We emphasize that in addition to Euler’s works on Series, we could
have made most of the same points by drawing on papers on Number
Theory, Combinations and Probability and Calculus of Variations, Elliptic
Integrals, Geometry and Mechanics.

3.1. 1730: The Gamma function

Euler’s first paper on series was De progressionibus transcendentibus seu
quarum termini generales algebraice dari nequeunt, On transcendental pro-
gressions or those whose general term cannot be given by algebraic ex-
pressions [E19], written in 1730 and published in 1738. It was based on
material that Euler had included in his very first letter to Goldbach, writ-
ten in 1729, and in which he showed how to “interpolate the hypergeometric
series 1+1 ·2+1 ·2 ·3+1 ·2 ·3 ·4+etc.” We recognize these as the factorial
numbers. Euler seems to have a bit of trouble thinking of a list of numbers,
and is more comfortable connecting them as a sum, even if the resulting
series diverges.

Euler tells us that the general term of this progression can be given by
the expression

1 · 2n

1 + n
· 21−n · 3n

2 + n
· 31−n · 4n

3 + n
· 41−n · 5n

4 + n
· etc.
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It is a remarkable expression, and worthy of more attention, but here we
are interested in how he distinguishes particular terms. He speaks of the
“term with exponent n.” He takes n = 2 and gets the “termino secondo
2,” and n = 3 to get “termino tertio 6.” He also speaks in the title of the
article of the termini generales, general terms.

Even at this early date, we see that he has the vocabulary to distinguish
particular terms and to speak of general terms.

3.2. 1732: Euler sums series of polynomials

As we noted above, Euler first used the series that he later called the
Bernoulli numbers in 1732 in Methodus generalis summandi progressions
[E25]. There he denotes the Bernoulli numbers with lower case Greek let-
ters, α, β, γ, δ, ε, etc.

In other parts of E25, Euler seems fairly comfortable using the indices
that exponents provide, but he does not attach them to arbitrary coeffi-
cients, only coefficients that can be given explicitly in terms of the index.
Thus we see expressions like

αxa + βxa+b + γxa+2b + δxa+3b + etc.

and
2xa+b + 3xa+2b + ... + nxa+(n−1)b.

3.3. 1734: The Basel problem

Two years later, in 1734, Euler solved the Basel problem [E41]. Here for
the first time he discusses several different sequences of coefficients simul-
taneously. The first one is an arbitrary sequence of roots of an equation.
He denotes the roots with capital Roman letters, A, B, C, D, etc. and then
makes the brilliant step of writing the equation two ways, first as a Taylor
series, and then as an infinite product,(

1− s

A

) (
1− s

B

) (
1− s

C

) (
1− s

D

)
etc.

Then he also works with an arbitrary series

a + b + c + d + e + f + etc.

the sum of which he denotes with a Greek lower case α. The sum of products
of distinct terms taken two at a time he denotes β, taken three at a time
by γ, etc.
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He introduces a fourth sequence, P , Q, R, S, as the sum of first powers,
second powers, third powers, etc. of the terms a, b, c, etc., and he gives
relations among α, β, γ, δ, etc., and P , Q, R, S, etc.

Finally, he denotes the values ζ (2), ζ (4), ζ (6), etc. by P ′, Q′, R′, etc.
This practice, different alphabets - or different parts of the alphabet - for

different sequences, becomes Euler’s standard practice for the next several
decades. Sometimes he even resorts to the old German Fraktur alphabet,
but readers of the Opera omnia ought to be careful. Sometimes, like in the
Introductio, Euler denotes two different sequences with the symbols A, B,
C, etc., and the Editors of the Opera omnia have chosen to render one of
these sequences in Fraktur.

3.4. 1736: Integrals and sums

Two years later, in a short article [E46], Euler tries to give a geometrically
based proof of the Euler-Maclaurin summation formula. He is summing a
series a + b + c + d + e + f + etc., but this time he uses x to denote“the
term of index n.” He takes a sequence of abscissas A, B, C, etc., really
meaning them to be 1, 2, 3, etc. To approximate the sum of the series by
an integral, he finds a function y that “naturally expresses” the series at
the points A, B, C, etc. Finally, he completes the rectangle aAB with the
point β, rectangle bBC with γ, etc. This is illustrated in Euler’s Fig. 1, our
Figure 2.

Fig. 2. Euler’s Figure 1, approximating a sum with a larger integral

Here, the modern eye sees a summation that approximates an integral.
Euler means it to be an integral that can approximate the sum of a series.

Similarly, he finds a function x that naturally expresses the values β,
γ, δ, etc. This gives a curve that fits outside the rectangles, as shown in

LOL-Ch14-P13 of 24



292 C. Edward Sandifer

Fig. 3. Euler’s Figure 2, approximating a sum with a smaller integral

Euler’s Fig. 2, our Figure 3. Euler concludes that, with appropriate bounds
on the integrals ∫

ydn < a + b + c + ... + x <

∫
xdn

The innovation here is that x denotes the general term of index n. Note
how Euler over-burdens the symbol x. This is common.

To the modern reader, Euler’s figures look like Riemann’s upper sums
and lower sums, though Bernhard Riemann won’t be born until 1826. Euler,
though, was using integrals to approximate series, where Riemann used
series to approximate integrals.

3.5. 1736: Better general terms

Later that same year [E47], Euler is speaking of a general term X of
index x given by a formula involving x. He considers forms X = xn, as
well as the harmonic series, X = 1

x and sums of reciprocals of squares and
cubes, X = 1

x2 and X = 1
x3 .

This is getting closer to the idea of a sequence of numbers X with an in-

dex x. He also uses a notation
∫

X to denote what we would write
x∑

i=1

X (i),

so, for example,
∫

x1 = x2

2 + x
2 .
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3.6. 1736: Euler-Maclaurin formula works for all functions

Also in 1736, Euler realizes that the Euler-Maclaurin formula works for
arbitrary functions, not just the powers of x that he had considered to
this point. He starts with the finite sum of a progression for which the
indices are given by an arithmetic progression instead of just the sequence
of natural numbers. He represents this in a new way as

a

A +
a+b

B +
a+2b

C +... +
x

X = S.

Here, upper case letters represent the values to be summed, and the lower
case letters above represent the indices of each term. He is thinking of the
capital letters as the values we get when we substitute the lower case letters
into some function.

Euler continues to use this notation in a paper he wrote in 1739 [E122]
where he elaborates on his ideas on the Gamma function [E19] and the
interpolation of sequences of products. Here he writes

1

(f + g) +
2

(f + g) (f + 2g) +
3

(f + g) (f + 2g) (f + 3g)+etc.

He speaks of the term with index n, and, in particular, is interested in the
case n = 1

2 . He still has the vocabulary to speak of a particular term, but
his notation is not very efficient.

3.7. 1748: Introductio in analysin infinitorum

The Introductio [E101] is often called Euler’s greatest work. Though it
was published in 1748, and it was being revised as late as 1747, it was
mostly written several years earlier and probably essentially complete in
1742. The first book of the Introductio presents the material about series
that a student should understand before learning calculus. The second book
is about curves.

In the Introductio, series are almost always written as A + Bz + Cz2 +
Dz3 + etc. If there is a recursive relation among the coefficients, as in the
series expansion of 1

1−αz−βz2−γz3 , then he does not use indices, but instead
writes

D = αC + βB + γA

E = αD + βC + γB

F = αE + βD + γC

etc.
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3.8. 1750: Matching the terms with the indices

In 1750 or 1751, Euler seemed to understand that he was having trouble
with the relations between the terms and the indices of a series. The paper
he wrote on this issue [E189] is interesting for other reasons, since Euler
does an analysis that closely resembles Fourier series. He is also interested
in the interpolation of series, as in E19 and E122. Here, though, we will look
at his treatment of indices. After some introductory remarks, he describes
the series 1 + 2 + 3 + etc. as having the value x for its term of index x. He
seeks to clarify this with some examples given in a tabular form. He tells
us that the sequence of logarithms can be described as

indices 1 101 102 103 104 105 etc.

terms 0 1 2 3 4 5 etc.
Later when y is the value of a term of index x, he uses y′ to denote

the term of index (x + 1). He will enhance this notation in 1755 in the
Calculus differentialis [E212] where he will further write y′′ for the term of
index (x + 2), y′′′ for the term after that, etc.

3.9. 1761: Continued fractions and the tangent function

Early in the 1760s, Euler uses continued fractions to evaluate certain
tangents. [E280] In addition to the usual series of Roman and Greek letters,
Euler also uses Fractur. He brings back his supra-script notation from E122
when he gives the convergents of a continued fraction as

α
1
0
,

β

(a)
1

,

γ

(a, b)
(b)

,

δ

(a, b, c)
(b, c)

,

ε

(a, b, c, d)
(b, c, d)

,

ζ

(a, b, c, d, e)
(b, c, d, e)

, etc.

The Greek letters denote the convergents. The parenthesis notation rep-
resenting the numerators and denominators is described by a recursive
definition:

(a) = a

(a, b) = a (b) + 1 = b (a) + 1

(a, b, c) = a (b, c) + (c) = c (a, b) + (a)

(a, b, c, d) = a (b, c, d) + (c, d) = d (a, b, c) + (a, b)

(a, b, c, d, e) = a (b, c, d, e) + (c, d, e) = e (a, b, c, d) + (a, b, c)

etc.
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Though this might not be any clearer if written in a notation involving
subscripts and indices, it certainly would be more concise.

3.10. 1769: Operating on the terms of a series

By the end of the 1760s, Euler was ready to return to questions involving
the Bernoulli numbers. He gives the Bernoulli numbers as 1

6 , 1
30 , 1

42 , 1
30 ,

5
66 , etc., what we would call the absolute values of B2, B4, B6, B8, etc.
He wants to study the recursive relations on the coefficients ζ (2n) that he
found in E41 in his solution to the Basel problem. Recall that, in modern
notation,

[ζ (2n)] =
∞∑

k=1

1
k2n

= A2nπ2n

where

A2n =
22n|B2n|
2 (2n)!

He finds that rather than consider the coefficients, B2n, he would rather
consider B2n

2n+2 , so he asks us to construct a new sequence that he gets by
dividing the Bernoulli numbers by the sequence 6, 10, 14, 18, 22, etc. He
names the new series using the Fraktur alphabet, and shows how that series
is related to the series A, B, C, etc. that he uses to denote the coefficients
on ζ (2n).

This seems to be the first time he performs such an operation on a
sequence.

3.11. 1772: An ad hoc function notation for sequences

Just three years later, in 1772, Euler marshals all his powers to try to
solve some difficult outstanding problems [E432], like the sum of the recip-
rocals of the odd powers of integers. For the most part, he is not successful,
but not for his lack of ideas or effort. He brings back the tabular index and
term notation we saw in E189.

What is more exciting, though, is that he uses two series expressed and
manipulated by their indices. He writes one sequence, S (1), S (2), S (3),
etc., and another one Σ (1), Σ (2), Σ (3), etc. He gives explicit values for
S (n) for n = 1, 3, 5 and 7, but does not take note that in general for n
odd, he has S (n) = 1

n(n+1)2n . Some of his use of this sequence is illustrated
in the image below, extracted from the original article.
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Fig. 4. A passage from E432 showing Euler’s use of a function-like notation to denote
series

He goes on to recycle the notation S (n) to denote a sequence of polyno-
mials in x and he takes Σ (n) to be the derivative of S (n).

This is the closest Euler has come to a functioning indicial notation for
sequences, but he does not seem to recognize its utility. He seems now to
be able to denote a sequence by S (n), but only if its formula is sufficiently
complicated to make the simplification worthwhile, but then he does not
consider expressions like S (n + 1) or S (n + 2).

3.12. 1773: Recursively defined sequences

The next year, in 1773, Euler studied sequences defined by second or-
der recursive relations, and wrote a paper with the intimidating title In-
signes proprietates serierum sub hoc termino generali contentarum x =
1
2

(
a + b√

k

) (
p + 1

√
k
)n

+ 1
2

(
a− b√

k

) (
p− 1

√
k
)n

,“Special properties of
series with general term given by · · · ” [E453]. This title is not as horrible
as it seems, since such formulas describe the nth term of a sequence defined
by a second order linear recurrence relation. The Fibonacci sequence is one
such sequence.

Euler makes some substitutions so that he is considering the sequence
given by f · vn + g · un. He denotes this sequence by [0], [1], [2], [3], etc.
and the nth term by [n]. He considers several terms simultaneously as he
finds a relation among [n], [n+1] and [n+2]. Later, he performs even more
complicated operations on his indices and considers problems involving [n],
[n + ν] and [n + 2ν] and involving [n] and [2n]

Still later he considers a different sequence given by [′n] = f · vn− g ·un.
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This is a better use of indices than we saw in E432, but without assigning
a name, like S, to the sequence, as he had in E432, denoting it only by a
symbol, he does not get full use of his innovation.

3.13. 1776: Properties of binomial coefficients

As we move past Eneström number 550, we get to the papers published
after Euler’s death in 1783. Late in his life, Euler’s productivity, measured
in number of papers written, increased dramatically, as did the time be-
tween the writing of a paper and its eventual publication. Also, the order in
which the papers that interest us here were published is somewhat different
from the order in which they were written. From here on, we will describe
them in the order in which they were written.

Moreover, for the last 15 years of his life, Euler was almost completely
blind. He wrote papers by dictating them to his assistants, who included
Lexell, Georgi, Fuss, Krafft, J. A. Euler, Golovin [P], who also presented
his papers to the Academy. Their help made 1776 Euler’s most prolific
year. That year he wrote 56 articles, more than one a week. Given these
circumstances, it is possible that Euler’s late innovations in notation were
in fact as much the ideas of one or more of his assistants as they were
Euler’s. At present, we have no way of telling for sure.

In 1776, Euler was studying properties of binomial coefficients [E584],
but the paper did not get published until 1785, two years after his death.
A few years earlier, Euler had introduced the notation

[
n
p

]
to denote the

binomial coefficient we now call “n choose p.”
In E584, Euler writes one formula as

∫ [
m
x

] [
n

p+x

]
=

[
m+n
n−p

]
and

∫ [
n
x

]2 =[
2n
n

]
Euler uses an integral sign where we use a sigma to denote summation,

and he does not have a notation to indicate which of the symbols denotes
the index, x in this formula, nor to describe the values x is meant to take. He
has to give this information in text rather than in his notation The modern

way to write the first formula is
∑
x

 m

x

  n

p + x

 =

 m + n

n− p

, where

x ranges either from 0 to m or from 0 to n− p, whichever range is smaller.
This is Euler’s best use of an index yet.

3.14. 1776: Symbols for equations and factorials

In another paper written in 1776 [E652], but this one not published until
1793, Euler uses ∆ : n to denote n!, and then, as he had done in E19,
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extends it to fractional values of n.
He also assigns names to equations, like:

I. ∆ : n =
1

n + 1
(1 + α)n

and a similar equation II. Then uses equation labels in formulas to write

II
I

=
2

n + 2
· (2 + α)n

(1 + α)n

3.15. 1777: Formulas involving specific terms

In 1777, the year Gauss was born, Euler’s productivity fell to only 43
papers. In one of them [E703], which does not appear until 1798, he exam-
ines properties of the cosine expansion of b

1+e cos ϕ into a series that Euler
denotes with Γ, defining the symbol by

Γ : ϕ = A + B cos ϕ + C cos 2ϕ + etc.

Euler has a specific application in mind. Here, e represents the eccentric-
ity of an orbiting body. This particular series plays a key role in his work in
orbital mechanics, as described in the article by Curtis Wilson, elsewhere
in this volume. Its relation to Fourier series is clear and interesting, and is
worth a closer look. Here, though, we are concerned with notations.

Euler introduces an indicial notation for the coefficients of Γ, writing A
= (0), B = (1), C = (2), etc. With this notation, he can describe the values
of Γ at particular points, like

1
8
Γ : 0 +

1
8
Γ : π = A + I + R + etc.

= (0) + (8) + (16) + (24) + (32) + (40) + etc.

He also writes

Γ : ϕ = (0) + (1) cos ϕ + (2) cos 2ϕ + (3) cos 3ϕ + (4) cos 4ϕ + etc.

This leads to some difficulties, though, when he writes

S = (1 + n) (0) + (n + 1) (2n) + (n + 1) (4n) + etc.

where the factors (n + 1) are taken to be numbers, and the factors (0),
(2n), (4n), etc. are taken to be the coefficients in the series Γ.

This is part of a series of articles including Eneström numbers 246, 686,
704, 747 and 810, among others dealing with the same series, but Euler
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only uses such a well-developed indicial notation in the sequel to this paper,
E704.

In two related papers, E709 and E710, Euler becomes bolder with his
notation, using ∆ as the name of a function, and various zodiacal signs as
the values of series and integrals.

3.16. 1780: Σ and Π for sums and products

In one of 37 papers Euler wrote in 1780 [E613], Euler denotes the terms
of a series by (1), (2), (3), (4), etc., and the general term by (x). He denotes
the sum of the first x terms of the series by

∑
: x = (1) + (2) + (3) + ... +

(x). He further writes the first differences as ∆1, ∆2, ∆3, etc. and second
differences as ∆21, ∆22, ∆23, etc., and higher differences similarly. With
this notation, he can write things like

∑
: (x + 1) =

∑
x+(x + 1). He uses

similar notation for products, but here he takes his factors to be A, B, C,
etc. Then Π : 1 = A, Π : 2 = AB , Π : 3 = ABC, etc. This paper was
published in 1787.

3.17. The rest of the story

By the time he died in 1783, Euler had developed at various times several
different ad hoc indicial notations, but these notations were not generally
adopted by the mathematical community. Though it is not really the point
of this essay, one may ask when the subscript notation arose. Curtis Wilson
writes in a forthcoming article that the use of indices arises in Lagrange
before 1800, but in 1805, Legendre was still using lower case letters to
describe series [C]. Gauss used an ad hoc notation in 1810 to describe his
pivot method for systems of linear equations, but in 1822, F. D. Budan uses
a fully-developed doubly-indexed system of subscripts and superscripts in
his paper on the solution of numerical equations. (See [C], p. 233-235.) It
seems that, after a long childhood, indicial notation matured and spread
very rapidly in the second decade of the 19th century.
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F. Faber, Georg, Übersicht über die Bände 14, 15, 16, 16* der ersten
Serie, in Leonhardi Euleri Opera omnia, Ser. I, vol. 16*, Teubner,
Leipzig, 1935.

G+S. Gourdon, Xavier
and Pascal Sebah, Numbers, constants and computation, online
at numbers.computation.free.fr/Constants/constants.html, link to
Constants, Miscellaneous, Bernoulli numbers, consulted July 25,
2005.

H. Hofmann, J. E., Um Eulers erste Reihenstudien, in Sammelband
der zu Ehren des 250. Geburstages Leonhard Eulers der Deutchen
Akademie der Wissenschaften zu Berlin vorgelegten Abhandlungen,
Kurt Schrder, ed., Akademie-Verlag, Berlin, 1959.
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The Geometry of Leonhard Euler
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1. Introduction

Lagrange is supposed to have said: “If one wishes to study geometry,
then one must read Euler” (see [10]). Although Euler was not primarily a
geometer—those of his works classified as geometrical span a mere 1600 or
so pages, volumes I.26-29 of the Opera Omnia—nevertheless there is ample
justification for Lagrange’s statement.

Among Euler’s most well-remembered contributions to geometry are the
following: he was the first to recognize clearly the importance of geodesic
lines; he developed the theory of surfaces, and a general theory of space
curves. In fact he is recognized, along with Monge and Gauss, as one
of the three founders of differential geometry. His comprehensive studies
of spherical trigonometry (E.524, 698) established the notation and ap-
proach still in use today. He classified second-degree plane curves, and
did early work on the classification of curves of the third degree. Euler
excelled in the development of coordinate systems for specific purposes; he
applied the techniques of calculus to analyze geometrical problems posed
in traditional language, proved the relationship between vertices, edges and
faces for convex polyhedra (E.230, 231), and laid the foundations for graph
theory with his solution of the Königsberg Bridge problem (E.53). In an
era when classical Euclidean geometry was of minor importance for many
leading mathematicians, Euler made notable contributions to the subject:
among many other things, he proved that the three classic triangle cen-
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ters of Greek geometry – the circumcenter, orthocenter and centroid – are
collinear (E.325), thus sparking a renaissance in classical geometrical stud-
ies that steadily gained momentum throughout the nineteenth century.

Previous general discussions of Euler’s geometry have tended to focus
on well-known high points. Fellmann gives brief mention of the foregoing
contributions in [9], while Dunham [5] covers fewer high points, but offers
detailed summaries of several of Euler’s demonstrations, including the Euler
Line proof and the solution to the Königsberg Bridge Problem.

On the one hand, it is not my intent in this article to give extended
blow-by-blow accounts of a few of Euler’s most memorable arguments; nor,
on the other hand, will I duplicate Fellmann’s comprehensive summary of
Euler’s important geometrical contributions. Instead I aim to complement
these earlier accounts by following something of a mathematical stream
of consciousness through the Eulerian geometrical corpus, gently steering
clear, for the most part, of its most celebrated results. I want to convey a
sense of the everyday sorts of geometrical problems that attracted Euler’s
attention, and to shed light on the methods Euler considered, in his era of
Analysis, to be appropriate for geometers. Occasionally I will linger over
a few demonstrations or constructions whose elegance justifies their rescue
from obscurity.

2. The Tour

2.1. Reciprocal Trajectories

We begin with a brief notice of Euler’s earliest geometrical work. The
problem at hand is of the type traditional in geometry up to Euler’s time
and beyond: namely, to find geometric objects possessing certain stated
properties. Specifically, one wants to find a curve and an axis so that, when
the curve is reflected across the axis and translated parallel to that axis by
an arbitrary amount, the image intersects the original curve at a constant
given angle, usually specified to be a right angle. Such curves were known
as reciprocal trajectories. The problem was apparently first posed by the
English mathematician Henry Pemberton (1694-1771), and was assigned
to Euler by his mentor Johann Bernoulli, with the probable intention of
sharpening Euler’s calculus skills.

Euler’s first article on the subject is E.3, “A method for finding alge-
braic reciprocal trajectories.” As the title suggests, the aim is not merely
to find curves, but to find curves that may be described by some algebraic
formula. (The distinction between algebraic and non-algebraic curves is
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one that Euler keeps up through all of his geometrical work.) Euler offers
two methods for constructing reciprocal trajectories, the first due to Jo-
hann Bernoulli and a second, quite similar, one of his own devising. Both
constructions are typical of solutions to curve-finding problems throughout
Euler’s career, in that the desired curve is a locus derived from the mo-
tion of a point along a suitably chosen initial curve, that might be called a
‘seed curve.’ We describe the Bernoulli construction here. The seed curve,
which Euler discovered, is defined implicitly by the equation

y2 +
2
3
a2 = a

3
√

ax2,

for any a > 0. This curve has vertex at B = (a
√

8
27 , 0) and the x-

axis for an axis of symmetry. Letting M be any point on this curve, one
draws the horizontal segment MN headed toward the y-axis, so that MN
is congruent to the arc length along the seed curve from B to M . The
locus of the endpoint N , under the motion of M is said to be a reciprocal
trajectory (with the axis of reflection being the vertical line through B).
Of course, in order to obtain an algebraic reciprocal trajectory, one desires
the seed curve to be rectifiable, in the sense that the arc length BM can
be expressed algebraically. Euler shows that the arc length is, in fact,

y3

a2
+ y,

where y is the y-coordinate of M . From this it easily follows that the
reciprocal trajectory has equation

x =

(
y2 + 2

3a2
) 3

2

a2
− y − y3

a2
.

Euler then shows that this trajectory is the graph of an implicit equation
of degree four, and he goes on to investigate the problem of finding rec-
tifiable reciprocal trajectories of arbitrarily high degree. Euler returned
to reciprocal trajectories several times during his career, providing more
construction methods and identifying ever more general classes of solu-
tions. He once said (in E.85) that from the reciprocal trajectory problem
“Analysis trulyappears to have received augmentation that is not to be
despised.”

2.2. Reciprocal Problems, Catoptrical Curves and Curves of Constant
Width

Among the problems which require one to find curves endowed with a
given property, Euler considered several that he eventually termed ‘recipro-
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cal’ problems, in a different sense than the problem of reciprocal trajecto-
ries. 1 The idea is that when a particular type of curve satisfies some given
property, the reciprocal problem for this property is to find other curves
satisfying that property. 2 For example, an ellipse has the property that,
when one draws segments from its foci to any point M on the ellipse, the
two segments make the same angle to the tangent line to the ellipse at M .
The corresponding reciprocal problem, appearing as Problem 1 in E.771, is
stated as follows: “Given two points A and B, to find a curve so situated
that, when line segments MA and MB are drawn from any point M on
the curve, both segments are inclined equally to the curve.” Of course,
ellipses having foci A and B are one obvious set of solutions. When one
considers the reflection property of the hyperbola, one can also recognize
that hyperbolae with A and B as foci are also solutions. Euler is also able
to show, using calculus, that ellipses and hyperbolae are the only solutions.

Another example: Problem 2 in E.771 is the reciprocal problem corre-
sponding to a property obtained by tweaking the defining property of an
ellipse: given a line l and a fixed point A on l, to find a curve so that, for
any point M on the curve, when you start from A along segment AM and
reflect off the curve, meeting l again at some point O, the sum AM + MO
is some constant a. Euler is able to show that parabolas, ellipses and hy-
perbolae provide the only solutions. He offers three demonstrations, the
last of which, said to be “without calculus”, is actually a non-rigorous ar-
gument making use of infinitesimals that is worth a look, as it may shed
some light on Euler’s discovery methods.

In figure 1, m is a point on the curve (not shown) that is supposed to be
“very close” (proximum) to M. Am reflects to o on l, and p and q are the
feet of perpendiculars dropped from M and m respectively. Since M and
m are close, the angle of incidence at M is nearly equal to the the angle
of incidence at m, which in turn is nearly equal to angle Mmp. Hence the
angle of reflection at M is nearly equal to the angle of incidence at m. The
former angle is nearly equal to mMq, and the latter angle is nearly Mmp,
hence angle Mmp is nearly equal to angle mMq. This is enough to force

1 This terminology first appears rather late, in E.771: “Solution of three rather difficult

problems pertaining to the inverse method of tangents.” (The inverse method of tangents
is simply the application of integral calculus to determine the equation of a curve from
given properties of tangents to it. It is the “inverse” of differentiation.)
2 Actually, the most important reciprocal problem that Euler considered involves sur-

faces rather than curves. In E419 “On solids whose surfaces may be unfolded onto a
plane,” Euler notes that cylinders and cones may be flattened out – “developed” – onto
a plane, and asks what other kinds of surfaces have this property. E419 laid important
foundations for differential geometry; see the article by Karin Reich elsewhere in this
volume.
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Fig. 1. E771, Problem 2

the near congruence of right triangles Mmp and mMq, which share the
hypotenuse Mm. It follows that Mq ≈ mp.

Also, since
AM + MO = a = Am + mo,

we have
Am−AM = MO −mo.

But mp ≈ Am− AM, and Mq = MO − Oq. Since Mq ≈ mp, we deduce
that MO −mo ≈ MO −Oq, and so

Oq ≈ mo.

These quantities don’t look nearly equal, at least not in the diagram
shown. Euler concludes that the near equality can occur in one of two
ways: either all reflections, including MO and mo, are perpendicular to
the line l, in which case the curve is a parabola with focus A and axis of
symmetry perpendicular to l, or else o always coincides with O, in which
case we have either an ellipse or a hyperbola, with A and O as foci.

Euler appears to have been especially drawn to reciprocal problems re-
lating to conics. The first published paper examining such problems in
depth is E.83, “On certain properties of conic sections that are common to
infinitely many other curves”, which appeared in 1745. Euler notes near
the beginning: “It is clear that those properties by which the conic sections
are defined, are so proper to them that they cannot be held in common
with any other curve; but one does encounter, besides these, other proper-
ties, for which it is difficult to decide if they are proper to conic sections,
or not.” One such problem, which Euler says was inspired by a corre-
spondence with Clairaut 3 , is as follows. Say that you have a curve with
perpendicular diameters AB and aC. (See figure 2.) Suppose further that

3 Clairaut to Euler, 11 October 1741 and 4 January 1742.
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when you pick any point M on the curve, and construct the segment Cm
to a point m on the curve so that Cm is parallel to the tangent line MT
at M , then the triangle MCm has a constant area, equal to the triangle
ACa.

Fig. 2. E83, Problem 2

The problem is to find all such curves. Ellipses are only one class of
solutions: Euler finds many others that are not conic sections at all. In
fact the solutions are given in terms of a parameter z as follows

x2 =
c2 (1 + z)

(1− z2) dZ
dz + Zz

,

y2 =
c2 (1 + z)

(
(1 + z) dZ

dz − Z
)2

(1− z2) dZ
dz + Zz

,

where Z is any odd function of z, and c2 is the area of triangle ACa. Euler
points out that in the simplest case, where Z = αz for some constant α,
we have ellipses.

Perhaps the most important conic reciprocal problem that Euler consid-
ered is that of the “catoptrix.” Posed anonymously by Euler in 1745 in the
Nova Acta Eruditorum, the problem runs as follows: “Placing any given
point F that you please, to find all curves of the following nature: that
any ray proceeding from F returns to that same point F after a twofold
reflection in points M and N [of the curve].” See the figure 3.

A curve satisfying this property is known as a catoptrix. In view of
their reflection property, ellipses obviously are catoptrices, but Euler wants
to see “all” others. Euler did not give his colleagues much time to work:
the following year he presented, in the same journal, his “Solution of the
catoptrix problem” (E.85). In this short paper, Euler first gives differential
equations for the solution curves, and then a locus method, in the same
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Fig. 3. The Catoptrix

spirit as the earlier construction of reciprocal trajetories in E.3, in which
a catoptrix is traced out as the locus determined by the motion of a point
along any “seed curve” that has 180 degree rotational symmetry. In the
special case that the seed curve is a straight line, the catoptrix will be an
ellipse.

In E.85, Euler does not solve the differential equations, nor does he
demonstrate the correctness of his rather complex locus construction: “I
will announce these solutions with their analysis hidden, lest I deny to oth-
ers the opportunity of exercising their own powers on this most elegant
problem – whose solution promises to be most useful for Analysis – and of
contributing thereby their own ‘mosaic stone’ to the growth of science.” 4

Detailed solutions followed two years later in E.106.
Nobody seems to remember the catoptrix these days, but nearly ev-

ery mathematician has heard, if only in passing, of Reuleaux curves. A
Reuleaux curve, also known as a curve of constant width, is a convex curve
such that when one encloses it between any two parallel tangent lines,
the distance between the tangents is constant. Such curves can be rolled
along a flat surface without changing their height; also, the cover of a man-
hole constructed as a Reuleaux curve will not fall into the hole, no matter
how it is rotated. Although Reuleaux curves appear quite early – one can
find Reuleaux-shaped windows (not the obvious circular ones) in the Notre
Dame Cathedral – Leonhard Euler appears to have made the first rigorous
study of them in E.513, “On triangular curves”, published in 1778.

4 In E.85 Euler also remarks, somewhat mysteriously, that the catoptrix problem is
related to the problem of reciprocal trajectories, in that both problems require that “from
a given relation, which agrees [competat ] equally in two points of a curve, continuous
curved lines, endowed with this relation, are to be discovered.”
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A triangular curve is a plane figure having three curved sides, such that
the tangent lines at the point of intersection of any two of the sides coincide
with one another. Thus the sum of the angles of a triangular curve is zero
degrees. After introducing triangular curves, Euler’s first move is to define
another class of curves which arise “by evolution” from them. Here is
how evolution works. Take a line segment sufficiently long to complete
the following process: placing this segment tangent to the curve at one of
its vertices, so that one of its endpoints X lies on or outside of the curve,
roll the rigid segment along one of the available sides until it is tangent
to the next vertex. Continue rolling in this way, in the same direction,
until you have gone around the curve twice. Euler proves easily that X
will have returned to its original location, and that the locus of X under
this evolution is a curve of constant width. (Euler called Reuleaux curves
Orbiformes, because with respect to their width they resemble circles.)

But what is Euler’s primary interest in orbiformes? It is just that they
are seed curves in an easy construction of catoptrices!

Fig. 4. The Orbiformis

Taking X to be any point on the orbiformis in figure 4, form the nor-
mal segment Xx. This segment will also be normal at point x, and will
have constant length. Let O and o be midpoints of segments LX and
Lx respectively, and erect perpendiculars OZ and oz from LX and Lx,
meeting Xx at Z and z respectively. The locus of Z under the motion
of X will form a catoptrix, where segment LZ gets reflected to Zz, which
in turn reflects back to L. (In the special case where the seed orbiformis
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is a circle, the catoptrix is an ellipse with foci at L and the center of the
circle.) Euler leaves out the demonstration, “lest this treatment be drawn
out excessively,” and devotes the rest of the paper to finding triangular
curves.

2.3. Trigonoscopy

Curves of constant width are a well-remembered means to a now-obscure
end – a property that they share with the Euler line. In E. 325, “An easy
solution of certain rather difficult geometrical problems”, published in 1765,
Euler shows, using a sensible combination of analytic and synthetic meth-
ods, that the orthocenter, the centroid, and circumcenter of any triangle
are collinear and that the centroid is half as far from the circumcenter as
it is from the orthocenter. 5 What is now forgotten is that Euler did this
in order to facilitate the solution of a construction problem he had set for
himself: given the distances between the orthocenter E, the centroid F ,
the circumcenter G and incenter H of a triangle, to determine the trian-
gle itself (up to congruency). Euler does not specify what it means to
“determine” the triangle: an algebraic solution for the sides in terms of
the distances appears to satisfy him. Although simplified considerably by
knowledge of distance relationships provided by the Euler line, the algebra
involved is still rather back-breaking, and Euler must introduce several ad
hoc, non-obvious substitutions of the sort for which he was notorious in his
day. 6

We will outline the procedure by which Euler recovers the side lengths
a, b, and c of the original triangle. Because of the relationship of the points
on the Euler line, we need only to be given the distances

5 The circumcenter is the intersection of the perpendicular bisectors of the sides of the
triangle; the orthocenter is the intersection of the altitudes, and the incenter is the inter-

section of the the angle bisectors. The circumcenter is the center of the circumsribing
circle; the incenter is the center of the inscribed circle. The centroid is the intersection

of the medians of the triangle. Though Euler does not mention it, from some of his
calculations in this article one can easily deduce what is commonly known as Euler’s
Triangle Theorem: If d is the distance between the circumcenter and the incenter of a
triangle, and if R is its circumradius and r its inradius, then d2 = R (R− 2r) .
6 However, these computations and the construction problem itself were significant for
the later study, by Jacobi and others, of “invariant quantities” associated with a tri-
angle. See the articles on elementary geometry and triangle geometry in [6], and look
for a forthcoming paper “The Porisms of Poncelet” by John McCleary, whose private
communication is the source of this note.
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f = GH

g = FH

h = FG

Euler sets

p = a + b + c

q = ab + ac + bc

r = abc

Note that a, b, c are the roots of the cubic equation

z3 − pz2 + qz − r = 0,

so we are reduced to finding p, q, r. Even so, this is a mighty task, requiring
further substitutions. One solution, with those substitutions removed, is
given below as an an example:

p =

√
27f4

3g2 + 6h2 − 2f2
− 12f2 − 15g2 + 6h.

Solutions for q and r are of a similar nature, in that they may be con-
structed from f, g, h with straightedge and compass. (Euler does not point
this out explicitly, though he seems to have it in mind.)

We are now back to the cubic equation. In certain cases it will factor
easily. In one case, when H also lies on the Euler line, Euler finds that the
triangle is isosceles with

a = b =
√

3fh (4f − 3h)
f − 3h

,

c =
√

3h (2f − 3h) (4f − 3h)
f − 3h

.

In the case where EG = EH, Euler also discovers that the cubic will
factor, and he again finds the triangle side lengths.

The general case, of course, is not so simple, but Euler works out a nu-
merical example, attacking the cubic by the method of François Viète, in
which solutions are found by trisecting a certain angle. “And thus the
problem is solved easily enough through the trisection of an angle”, he
concludes. Indeed, it can be shown, although Euler does not mention it,
that his original construction problem is equivalent to the classical trisec-
tion problem, in the sense that, when one is armed with straightedge, a
compass and a device to solve Euler’s problem, one can trisect any angle,
and vice versa.

Euler’s interest in triangle construction problems may have stemmed
from his acquaintance with Phillipe Naudé (1684-1745), the president of
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Berlin Academy of Sciences prior to Euler. Naudé was very much taken
up with what he called trigonoscopy, the science of reconstructing triangles
and quadrilaterals from given bits of information about them. At any rate,
E.325 is a trigonoscopic paper, and the later article E. 749 “Certain Geo-
metrical and Spherical Matters” addresses another problem in trigonoscopy.
Here Euler stipulates that three cevians 7 Aa,Bb, and Cc of a triangle ABC
are concurrent at a point O, as shown in figure 5. If one is given only the
lengths AO, Oa,BO,Ob,CO,Oc, can one reconstruct the triangle up to
congruence?

Fig. 5. A Problem from E749

One may think of this as a generalization of another problem, familiar
to Naudé and other mathematicians of the time: namely, to reconstruct
a triangle from its medians – it being known that the medians cut one
another in 2:1 ratios. As an auxiliary to his solution, Euler establishes the
following interesting relation:

AO

Oa
· BO

Ob
· CO

Oc
=

AO

Oa
+

BO

Ob
+

CO

Oc
+ 2.

For this he gives a fairly long trigonometric proof, followed by a sequence
of successively simpler proofs involving only synthetic geometry. 8 There
are two reconstructions of the triangle: a fairly involved algebraic determi-
nation of the angles formed by the cevian segments about O, and a purely
geometric construction of the triangle itself.

7 A cevian is a line containing a vertex of a triangle.
8 For the sake of completeness, he also proves the relation for spherical triangles! The
relation itself, which desrves to be better known, has interesting mathematical extensions
that are studied in [1] and [11].
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2.4. A Digression on Method

At this juncture we pause to offer some observations on Euler’s methods
of demonstration. Certainly most of his geometrical articles, accounting for
nearly three of the four volumes in the Opera Omnia, involve quite extensive
use of calculus: indeed, some of the curve-finding problems that Euler
tackled were interesting for him primarily because of the scope they afforded
to the study of differential equations. Even in Volume 26, which is restricted
to matters treated without calculus, Euler makes extensive use of algebra
and analytic geometry. In common with other leading mathematicians
of his time, he appears to have no interest in restricting himself to time-
honored construction methods such as compass and straightedge, nor does
he exhibit any special preference for synthetic methods of demonstration.

One exception to this pattern is E. 135, appearing in 1750 and entitled
“Various Geometrical Demonstrations.” Euler begins by considering the
following problem posed by Fermat:

Fig. 6. A Problem posed by Fermat in E135

Consider a semicircle with a rectangle ABFE erected on its diameter
AB as shown in figure 6, where AE is AB√

2
in length. From any point M

on the semicircle, form segments AE and AF that intersect AB in points
R and S respectively. Then

AS2 + BR2 = AB2.

Fermat had demanded a purely geometric solution to his problem. Euler
remarks (Section 1): “By means of Analysis it is not difficult to ascertain
the truth of this [theorem], and to extract from that a [geometric] demon-
stration would not be at all difficult, but most of the demonstrations of this
sort stink so much of Analysis that they can scarcely be understood – even
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by those who are skilled in this art! We therefore require, of this propo-
sition brought forth by Fermat, a geometric demonstration, composed in
the manner of the ancient geometers, so that it may be understood even
by those who are not acquainted with Analysis.” And so Euler proceeds.
He starts with the following Lemma (recognized later as an ingredient in
the concept of separation in inversive geometry 9 ).

Lemma 1. (Linear Separation) For any collinear points X, Y, Z,W
given in that order along their line,

XW · Y Z + XY ·WZ = XZ ·WY.

One proof is given by algebra, and another by dissection of an appropri-
ately chosen rectangle.

Now to the solution of Fermat’s challenge: referring to the diagram, one
first demonstrates the similarity of triangles PEA and BFQ, whence

PE ·QF = AE ·BF = AE2.

Since
2 ·AE2 = AB2 = EF 2,

we get
2 · PE ·QF = EF 2.

Again by similar triangles, we get the same relation “lifted” to the base of
the semi-circle:

2 ·AR ·BS = RS2.

Combining this with the relation

AB ·RS + AR ·BS = AS ·BR

provided by the lemma, a little algebra results in AS2 + BR2 = AB2, as
desired.

9 Readers will note that the resemblance to Ptolemy’s Theorem: when the four points
X, Y, Z, W are arranged in this order around a circle, the same relation holds. (Later,

in E.601, Euler offered new proofs of Ptolemy’s Theorem, and even generalized it.)
In inversive geometry, two pairs of points XZ and Y W are said to separate one another
if every circle through X and Z intersects or coincides with every circle through Y and

W. When pairs of points sepate one another, the four points are either collinear or

cocyclic. It is known that for any set of four points X, Y, Z, W , the inequality

XW · Y Z + XY ·WZ ≥ XZ ·WY

holds, with equality iff XZ and Y W separate one another. See [4].
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The remainder of the paper, and by far the larger part of it, is an ap-
pendix of sorts. Therein we find various other geometrical theorems, be-
ginning with Heron’s area formula for tiriangles and culminating in the
following new result on quadrilaterals: in figure 7, where P and Q are
midpoints of the diagonals, we have

AB2 + BC2 + CD2 + DA2 = AC2 + BD2 + 4PQ2.

Fig. 7.

All of the foregoing are proved using classical synthetic methods, in
which, says Euler, “no trace of Analysis may be discerned.” 10 It is signif-
icant that Euler situates this explicitly synthetic work within the context
of a challenge, from another mathematician, to limit himself to synthetic
techniques. 11

For the most part, Euler was not averse to using any method at hand, so
long as it could shed light on a geometrical problem. For example, in E.73,
“Solution of a geometrical problem concerning lunes formed by circles”,
Euler considers a problem that he attributes to Christian Goldbach. A
lune is the area within a given circle that remains after its intersection
with another circle is taken away. If two circles C1 and C2 intersect one
another, two lunes are formed. The problem is to find a pair of congruent
line segments, one in each lune, with each line segment having one of its
endpoints on C1 and the other endpoint on C2, so that the each line segment
cuts the same area away from the lune in which it lies. Of course there are
literally countless solutions. Euler says that Daniel Bernoulli had already

10Probably the most noteworthy proof is of Heron’s Theorem; it is much simpler than
any previous argument. See [5] for a summary.
11An English translation of “Variae Demonstrationes Geometriae” by Adam Glover is
now available in the online Euler Archives under E135.
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given an easy geometrical solution 12 , but that it was only a particular one.
Euler proposes to tackle the problem with “analysis” (which in this case
means trigonometry and analytic geometry rather than calculus). He notes
that analysis is often viewed by mathematicians as an inappropriate way to
solve a geometrical problem, but he counters (see Section 1): “That which is
inconvenient about Analysis, although [such inconvenience] is customarily
alleged in the case of many geometrical problems, is to be imputed not
so much to Analysis itself as to the Analysts!” Perhaps Euler had seen
too many needlessly cluttered, obscure analytic demonstrations. 13 For the
problem at hand, Euler says that Analysis “is greatly to be preferred to the
geometrical method, since in working through [the Analysis] I will produce
a fully general solution, which with a geometrical method would scarcely
be capable of being set forth.”

2.5. Looking Ahead

The Linear Separation Lemma of E.325 was not the only occasion in
which Leonhard Euler anticipated nineteenth-century developments in clas-
sical plane geometry. In the paper E.693 “On the Center of Similitude”,
presented to the St. Petersburg Academy of Sciences in 1777, Euler takes
up a matter that his successors recognized as fundamental to the geometry
of transformations.

Euler begins by considering two segments in the plane: a longer segment
AB and a shorter one ab, and he seeks a point G, which he calls the “center
of similitude” of the two segments, for which triangle GAB is similar to
triangle Gab.

Euler’s construction of G boils down to the following, illustrated in fig-
ure 8. Extend segments AB and ab until they meet at some point O. (If
they don’t, the problem becomes very simple: the desired point G is the
intersection of lines Aa and Bb.) Now, as in the figure above, make a circle
containing OA, and a, and another circle containing O,B, and b. These cir-

12Euler says that it may be found in the Exercitationes quaedam Mathematicae of Daniel
Bernoulli, published in in Venice (in 1724, according to the Opera Omnia editor Andreas

Speiser.)
13Some of Euler’s contemporaries noticed the same thing. Condorcet writes in his
Eulogy on Euler [2]: “. . . on examining the works of the great geometricians of the last
age, even of those to whom algebra is indebted for the most important discoveries, we

shall see how little they were accusomed to handle this very weapon, which has been
brought to such a state of perfection; and it is impossible to refuse to Euler the praise
of having effected a revolution which renders algebraic analysis a mode of calculation
luminous, universal, of general application, and of easy acquisition.” (From the partial
English translation in [8].)
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cle meet at O and at another point G, the desired center of similitude. We
leave the demonstration, which involves a little work with angles inscribed
in circles, to the reader.

Fig. 8. The Center of Similitude

The significance of G is clear when one considers it from the point of view
of geometric transformations. Define a similitude as a mapping X → X ′

of the plane to itself, so that every segment AB is mapped to a segment
A′B′ in such a way that p = AB

A′B′ is constant. A similitude is so called
because it maps every triangle ABC onto a similar triangle A′B′C ′. The
similitude is said to be direct if the orientation of the image triangle A′B′C ′

is the same as that of ABC; otherwise it is said to be indirect. If p < 1,
then a similitude is contractive. It is well known that every contractive
similitude has a unique invariant point. However, there are always two
contractive similitudes mapping AB onto ab: one direct and one indirect.
Euler’s construction locates the invariant point of the direct similitude.

Euler attempts to extend his work to three dimensions. Unfortunately
he equivocates on what he means when he says that two solid figures are
“related similarly” to a point, and this equivocation dooms his efforts. The
unfortunate result constitute the only serious non-computational error that
I have found to date in all of Euler’s geometrical works. 14

14A more detailed treatment of Euler’s equivocation and its consequences may be found
in my article “Leonhard Euler on the Center of Similitude”, posted in the online Euler
Archives under E693.
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Of course Euler, in company with other eighteenth century mathemati-
cans, was aware of geometrical transformations, but generally in the context
of problems in which transformation is an explicit element. The clear ex-
ample is cartography. Euler actually made maps of Russia, and discussed
them in E. 492; in E.390 he uses complex functions to describe conformal
transformations from one plane to another; in E.490 and E.491 he shows
that there is no congruent mapping of a sphere into a plane.

Let us close with another look at conics. Given any triangle ABC, there
exists an ellipse that passes through each of its vertices, and has as its center
the centroid of ABC. Also, among all ellipses that pass through A,B, and
C, it has the smallest area. It is called the Steiner ellipse for ABC and
its discovery is commonly attributed to Steiner himself. Although the
name should probably stand – after all, the Steiner ellipse also contains
the Steiner point of ABC – Euler admirers will be pleased to know that
Euler himself came across this ellipse first, in E.692, “The solution of a
most curious problem, in which one seeks, among all ellipses that can be
circumscribed about a given triangle, the one whose area is the smallest of
them all”, presented to the St. Petersburg Academy of Sciences in 1777 but
not published until 1795. Euler’s elegant solution permits him to observe
that the area of this ellipse is

2πac sinω

3
√

3
,

where a and c are two sides of the triangle and ω is the included angle;
also, that the tangent to the ellipse at each vertex of the triangle is parallel
to the side opposite that vertex.

A similar problem considered by Euler (in E.691) is to find the ellipse
of minimal area circumscribing a given parallelogram. Having previously
solved the problem in the case of a rectangle, 15 Euler attacks the general
case of any quadrilateral, employing an oblique-angled coordinate system
based on three points of the quadrilateral. He makes enough headway to
reach a complete solution for the case of a parallelogram, finding that for a
parallelogram ACBD with diagonals AB and CD, the minimal ellipse has
its center at the intersection of the diagonals, and the tangents to the end-
points of one diagonal, say AB, are parallel to the other diagonal CD. Once
again, Euler is skirting around later geometrical developments: modern-
day geometers would solve the problem more efficiently, using projectivities
to reduce the problem about parallelograms to one about squares.

Nevertheless, how many geometers of today would have the stomach to
tackle the central problem of E.563, namely: to find the ellipse of minimal

15See E.563, “On the minimal ellipse to be circumscribed about a given parallelogram.”
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circumference circumscribing a given rectangle? Of course, in order to
begin work on this problem, Euler needs an expression for the circumference
of an ellipse. With a bit of infinitesimal analysis, Euler arrives at the
following: for the ellipse with standard equation

x2

a2
+

y2

b2
= 1,

if we set a2 + b2 = c2 and a2−b2

a2+b2 = n, then the perimeter is

√
2πc

(
1− 1 · 1

4 · 4
n2 − 1 · 1 · 3 · 5

4 · 4 · 8 · 8
n4 − 1 · 1 · 3 · 5 · 7 · 9

4 · 4 · 8 · 8 · 12 · 12
n6 − . . .

)
. 16

Further progress ensues from relating this expression, as a function of n, to
the solution of a certain Riccati equation. Ultimately, as might be expected,
Euler is unable to provide a closed-form equation for the minimal ellipse,
but he is more than happy to work out a few numerical examples.

3. Conclusion

I hope that the foregoing journey through Euler’s work has provided
some evidence that his reputation as a geometer should not rest primarily
on a short list of celebrated results. The free combination of methods, from
classical synthetic to algebraic to analytic – as illustrated in the minimal
perimeter problem and many others – constitute, on the whole, Euler’s
most notable contribution to geometry. Condorcet, in his Eulogy on Euler
(see [8]), has rightly praised this achievement:

“Thus, at certain epochs, when, after strenuous exertions, the mathemat-
ical sciences seemed to have exhausted all the resources of genius, and to
have reached the ne plus ultra of their career; all at once a new method of
calculation is introduced, and the face of the science is wholly changed.
We find it immediately, and with inconceivable rapidity, enriching the
sphere of knowledge, by a solution of an incredible number of important
problems, which geometers had not dared to attempt, intimidated by
the difficulty, if not the physical impossibility, of pursuing calculation to

16Euler remarks in passing that, in the special case where b = 0, we get

2
√

2

π
= 1−

1 · 1
4 · 4

− . . .

which transforms to
π

2
√

2
=

4 · 4
3 · 5

·
8 · 8
7 · 9

·
12 · 12

11 · 13
· . . . .
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real issue. Justice would, perhaps, demand, in favor of the man who
invented and introduced these methods, and who first taught their use
and application, a share in the glory of all those who have practiced them
with success; he has, at least, claims upon their gratitude, which cannot
be contested without crime.”

Acknowledgements: The author wishes to thank the referees for their
suggestions, which greatly improved the paper.
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Cyclotomy: From Euler through
Vandermonde to Gauss
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The word “cyclotomy” is of Greek origin and means “division of the
circle.” As a mathematical term it denotes the subdivision of a full circle
line into a given number of equal parts. Consider the unit circle x2 + y2 =
1 in the Euclidean plane with Cartesian coordinates (x, y). If this circle is
divided into n equal parts beginning with the point (1, 0) then the other
division points will have coordinates (cos 2π·k

n , sin 2π·k
n ) where k runs from

1 to (n− 1). All those points form the edges of a regular n-sided polygon.
It is well-known that by means of the imaginary quantity i :=

√
−1 one

can prove the formula

(cos α + i · sin α)n = cos nα + i · sin nα (1)

which is usually called de Moivre’s formula. But in the form (1) it is due
to Leonhard Euler (1707-1783), see [Euler 1748], cap. VIII. In particular,
the n arguments α = 2π·k

n with 0 ≤ k ≤ n−1 provide us with the n powers
1, ζn, ζ2

n, . . . , ζn−1
n of the complex number ζn := cos 2π

n + i · sin 2π
n :

ζk
n = cos

2π · k
n

+ i · sin 2π · k
n

(0 ≤ k ≤ n− 1) (2)

satisfying the equation
xn − 1 = 0. (3)
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324 Olaf Neumann

This means that Eqn. (3) has exactly n roots which are given in the tran-
scendental form (2) and which are the powers of one of them, namely ζn.
For these powers we shall adopt the name nth roots of unity common today
among mathematicians. If the exponent i is prime to n then ζi

n is called a
primitive nth root of unity since its powers 1, ζi

n, ζ2i
n , ζ3i

n , . . . run through
all nth roots of unity. 1

This way, the geometric problem of cyclotomy was entirely reduced to the
algebraic problem of solving the equations xn−1 = 0 in complex numbers.
On the other hand, in the 18th century the dominating problem in the the-
ory of equations was still the problem of solving equations “algebraically”
or “by radicals” which meant by the extraction of roots. Euler also de-
voted some papers to this topic and he was very well aware that roots like
n
√

A are only determined up to factors which are nth roots of unity. These
ambiguities led him to investigate the “binomial” equation xn−1 = 0, [Eu-
ler 1751], § § 38-48. It was Euler who succeeded in solving the equations
xn − 1 = 0 for n ≤ 10 in terms of radicals with indices < n. In his treatise
[Vandermonde 1774] Alexandre-Théophile Vandermonde (1735-1796) over-
came the difficulties occuring in the case n = 11 in a truly pioneering way.
Eventually, Carl Friedrich Gauss (1777-1855) was the brilliant architect of
a fully-fledged cyclotomy theory which among other topics solved the equa-
tions (3) by radicals at least for prime number exponents n, [Gauss 1801],
Sectio septima.

In the present paper we intend to display the evolution of ideas from
Euler to Gauss. Our first section is devoted entirely to Euler, in particular
to his solution of x7 − 1 = 0 by square and cubic roots. The second sec-
tion elucidates Vandermonde’sVandermonde innovations in the theory of
equations which parallel the work of Joseph-Louis Lagrange (1736-1813) in
many aspects. Vandermonde however far excelled Euler as well as Lagrange
by his solution of x11− 1 = 0. We shall expose a version of “pre-Gaussian”
cyclotomy theory based on the ideas and tools of Euler, Vandermonde and
Lagrange. 2 Our third section mainly discusses Gauss’s relationship to Van-
dermonde. On the example of x17− 1 = 0 we are going to make visible the
difference between the cyclotomy theories of these two mathematicians. It
is very remarkable that Vandermonde’s ideas also allow us to construct

1 The primitive nth roots of unity should not be confused with the primitive roots a 6≡ 0
(mod n) for prime numbers n which bear their name since the powers 1, a, a2, a3, . . . run

through all residue classes 6≡ 0 (mod n), in other words, a mod n should be a generator
of the prime residue class group mod n.
2 In the conceptual framework of our recent set-theoretic mathematics this version
amounts to studying the maximal totally real subfields Q(ζn + ζ−1

n ) of Q(ζn) first and
after that considering the fields Q(ζn) as quadratic extensions of Q(ζn + ζ−1

n ).

LOL-Ch16-P2 of 40



Cyclotomy: From Euler through Vandermonde to Gauss 325

the regular 17-gon by ruler and compass. 3 Our considerations will be self-
contained and entirely based on Vandermonde’s theory of quartic equa-
tions and straightforward calculations. This possibility seems to have gone
unnoticed until now. This very much begs the question whether Gauss
became acquainted with Vandermonde’sVandermonde Mémoire before or
after publishing his Disquisitiones Arithmeticae and whether Vandermonde
could have exerted some effect on Gauss. Our main thesis is that Gauss
was not esssentially influenced by Vandermonde’s algebraic work in con-
trast to conjectures formulated by Henri Lebesgue (1875-1941) and adopted
or reproduced by other authors without further examination, see [Lebesgue
1940], [Jones 1991], [Waerden], p. 79.

In the end some concluding remarks should show the reader how to link
our considerations to Gauss’s theory of cyclotomy.

Comments on mathematical facts in modern terms and notations will,
as a rule, not be given in the text but in footnotes.

1. Euler

Here we are going to explain in detail how Euler solved the equations
xn − 1 = 0 by radicals for n ≤ 10. We skip the rather easy cases n ≤ 4 and
pass at once to the equation x5 − 1 = 0. Division by x − 1 gives the new
equation x4 + x3 + x2 + x + 1 = 0 which is mirror-symmetric with regard
to the middle term x2.

1.1. Reciprocal Equations

Equations of this type were already considered by Euler in his paper
[Euler 1738], § 10 seq. There he is dealing with mirror-symmetric equations
of the general form

y2n + a · y2n−1 + b · y2n−2 + . . . + p · yn + . . . + b · y2 + a · y + 1 = 0, (4)

especially for n = 2, 3, 4, 5, and is calling them reciprocal equations since
they do not change their form when y is replaced by 1

y . 4 Now Euler observes
that the left-hand side of Eqn. (4) is a product of n quadratic factors

y2 + α · y + 1, y2 + β · y + 1, y2 + γ · y + 1, y2 + δ · y + 1, etc.

3 It should be emphasized that our construction does not explicitly use a primitive root

mod17 as a generator of all residue classes 6≡ 0 (mod 17), contrary to Gauss.
4 Aequationes huiusmodi, quae posito 1

y
loco y formam non mutant, voco reciprocas.

[Euler 1738], § 11.
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where the coefficients α, β, γ, δ, etc. satisfy an equation of degree n the
coefficients of which are nothing but linear combinations of the coefficients
of Eqn. (4) with some explicitly known rational integers. The idea behind
the factorization of Eqn. (4) can be exposed as follows. Divide Eqn. (4) by
yn and write the resulting equation in the form

(yn + y−n) + a · (yn−1 + y−n+1) + b · (yn−2 + y−n+2) + . . . + p = 0.

The kth power sum yk +y−k (0 ≤ k ≤ n) is symmetric in y and y−1, hence
a polynomial in the elementary symmetric polynomials z := y + y−1 and
y · y−1 = 1 according to the recursive relation

yk+1 +
1

yk+1
=
(

yk +
1
yk

)
· z −

(
yk−1 +

1
yk−1

)
(or by the so-called Girard-Newton formulas for power sums). Hence the
auxiliary quantity z := y + y−1 satisfies an equation

zn + a′ · zn−1 + b′ · zn−2 + . . . + p′ = 0 (5)

where the coefficients a′, b′, . . . , p′ are linear combinations of a, b, c, . . . , p
with rational integer coefficients. Denote by −α, −β, −γ, −δ, etc. the
roots of Eqn. (5), in other words

zn + a′ · zn−1 + b′ · zn−2 + . . . + p′ = (z + α) · (z + β) · (z + γ) · (z + δ) · · · .

In view of z = y +y−1 it is obvious that every root of Eqn. (4) satisfies one
of the quadratic equations

y2 + α · y + 1 = 0, y2 + β · y + 1 = 0,

y2 + γ · y + 1 = 0, y2 + δ · y + 1 = 0, etc.

whence one gets the desired factorization of Eqn. (4). Below we shall en-
counter the reciprocal equations once more in Vandermonde’s work.

1.2. Roots of Unity

After these preparations it is rather easy to solve the reciprocal equation
x4 + x3 + x2 + x + 1 = 0 by radicals. We put u := −(x + x−1) and obtain
x2 +x−2 = u2−2. In summary u2−u−1 = 0 with the roots p := 1+

√
5

2 and
q := 1−

√
5

2 . Then one has to solve the two quadratic equations x2+p·x+1 =
0 and x2 + q ·x+1 = 0 but that does not cause any problems, [Euler 1751],
§ 40. It turns out that all 5th roots of unity are rational functions (with
rational coefficients) of

√
5 and the square root

√
−10 + 2

√
5:

x =
1
4

[
−1− δ1

√
5 + δ2

√
−10− δ12

√
5
]

(6)
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with δ1, δ2 = ±1, [Euler 1751], § 40. 5 Notice that√
−10 + 2

√
5 ·
√
−10− 2

√
5 = 4

√
5.

The case n = 6 is settled by the factorization

x6 − 1 = (x2 − 1) · (x2 + x + 1) · (x2 − x + 1),

[Euler 1751], § 41.
The case n = 8 can be dealt with by the remark that x8−1 = (x2)4−1 =

0, in other words, we have to extract square roots from the solutions of
x4 − 1 = 0. Euler’s formulas show that all 8th roots of unity are rational
functions of

√
−1 and

√
2 (with rational coefficients). In a similar way,

Euler solves the equation x9 − 1 = 0 by extracting cubic roots from the
third roots of unity. Last but not least the equation x10 − 1 = 0 is solved
via the factorization x10 − 1 = (x5 − 1) · (x5 + 1), [Euler 1751], § 48.

The remaining case n = 7 requires a great amount of calculations. First
Euler follows the general approach to reciprocal equations and then sim-
plifies the resulting expressions of the 7th roots of unity carrying out some
further subtle calculations. He factorizes the equation

x7 − 1
x− 1

= x6 + x5 + x4 + x3 + x2 + x + 1 = 0

into three quadratic equations

x2 + p · x + 1 = 0, x2 + q · x + 1 = 0, x2 + r · x + 1 = 0 (7)

where p, q, r are the roots of the cubic equation

F (u) := u3 − u2 − 2u + 1 = 0. (8)

Now he applies Cardano’s formula to this equation and obtains the explicit
expressions (in our abbreviations)

p =
1
3

[
1 + 3

√
A + 3

√
A′
]
, q =

1
3

[
1 + ρ · 3

√
A + ρ2 · 3

√
A′
]
,

r =
1
3

[
1 + ρ2 · 3

√
A + ρ · 3

√
A′
] (9)

with

5 In today’s terms we have Q(ζ5) = Q(
√

5)(
√
−10 + 2

√
5) according to Euler. The

cyclotomic extension Q(ζ5)/Q is cyclic of degree 4 which can be proved by means of
Gauss’s theory.
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ρ =
−1 +

√
−3

2
, A = 7 · −1 + 3 ·

√
−3

2
,

A′ = 7 · −1− 3 ·
√
−3

2
,

3
√

A · 3
√

A′ = 7.

After that Euler goes on to solve Eqns. (7). For instance, the first equa-
tion in (7) has the roots

x =
−p±

√
p2 − 4

2
. (10)

Substituting q, r instead of p we obtain the roots of the other two equa-
tions. At this point there arises the problem of how to extract square roots
from expressions which in their turn are sums of certain cubic radicals. Eu-
ler tackles the explicit calculation of the square roots

√
p2 − 4,

√
q2 − 4,√

r2 − 4 putting v :=
√

u2 − 4 and indicating the cubic equation for v2, i.
e. the equation of degree 6 for v:

G(v) := v6 + 7v4 + 14v2 + 7 = 0 (11)

with the six roots ±
√

p2 − 4, ±
√

q2 − 4, ±
√

r2 − 4. This equation splits
up into two cubic equations according to

(v −
√

p2 − 4)(v −
√

q2 − 4)(v −
√

r2 − 4) =: v3 + p′v2 + q′v + r′ = 0

and

(v +
√

p2 − 4)(v +
√

q2 − 4)(v +
√

r2 − 4) =: v3 − p′v2 + q′v − r′ = 0.

But Euler’s choice of a suitable triple (
√

p2 − 4,±
√

q2 − 4,±
√

r2 − 4) out
of 4 possibles ones looks quite arbitrary and calls for a systematic pro-
cedure. The crucial point is that this choice can be made such that the
coefficients p′, q′, r′ take the values

p′ =
√
−7, q′ = 0, r′ =

√
−7

which results from the comparison of coefficients in the product of the
last two equations and in (11). Eventually these coefficients require a new
quadratic irrationality only. 6 To sum up we have two cubic equations

v3 ±
√
−7 · v2 ±

√
−7 = 0

6 The right factorization of G(v) is closely tied up to the quadratic residues mod 7
and will not be discussed here in detail. It seems that Euler was not aware of this fact.

Anyway we have −r′2 = 7,
√

p2 − 4 ·
√

q2 − 4 ·
√

r2 − 4 = −
√
−7. With regard to Eqns.

(10) one concludes from there that
√
−7 is a linear combination of 7th roots of unity

with rational integer coefficients. This remarkable fact was generalized by Gauss to all
prime exponents n instead of 7, [Gauss 1801], art. 356. In recent terms it means the
embedding of all quadratic number fields in cyclotomic fields. See also our subsection
2.5 after Eqn. (58).
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and Cardano’s formula gives us six values of v. These values turn out to be
rational functions (with rational coefficients) of

√
−3,

√
−7 and the cubic

radicals 3
√

B, 3
√

B′ with

B = α2
√
−7, B′ = α′2

√
−7,

3
√

B · 3
√

B′ = −7

and

α =
−1 + 3

√
−3

2
, α′ =

−1− 3
√
−3

2
, α · α′ = 7 = −(

√
−7)2.

Furthermore it is obvious how to remove the factor
√
−7 from B and B′:

3
√

B =
α√
−7

· 3
√

7α′,
3
√

B′ =
α′√
−7

· 3
√

7α

with the relation
3
√

7α′ · 3
√

7α = 7.

Euler’s definite formulas show that the 7th roots of unity are rational
functions (with rational coefficients) of the two quadratic irrationalities√
−3,

√
−7 and a single cubic radical 3

√
7α only. 7

What can be objected to in Euler’s exposition? As to the 7th roots of
unity his formulas are correct but incomplete at one point. He does not
mention the relations

3
√

A · 3
√

A′ = 7,
3
√

B · 3
√

B′ = −7,
3
√

7α′ · 3
√

7α = 7

which are indispensable in order to obtain the actual roots of the cubic
equations in question. However, we don’t hesitate to suppose that Euler
had these relations in mind as well, cf. [Euler 1738], § § 3-4, [Euler 1770],
part II, section 1, § 12.

More generally, in his 1738 and 1751 papers beyond the cubic and quartic
equations Euler does not address the important question in full generality
of how to restrict the ambiguities in expressions like n

√
A + n

√
B + n

√
C +

n
√

D + . . . for the roots of an equation of degree n. This question arises in
a natural way since every nth root n

√
A, etc. takes n values. Only later on

in his 1764 paper Euler discusses equations with solutions of the special
form ω + A n

√
v + B ( n

√
v)2 + C ( n

√
v)3 + . . . + O ( n

√
v)n−1 and obtains all

7 In today’s terminology this means that the cyclotomic number field Q(ζ7,
√
−3) =

Q(ζ7, ζ6) = Q(ζ42) is identical with the field Q(
√
−7,

√
−3, 3√7α). The Galois extension

Q(ζ7)/Q is cyclic of degree 6 which can be deduced from Gauss’s theory. Hence this
extension is the composite of Q(

√
−7)/Q and a uniquely determined cyclic extension

L/Q of degree 3. L is nothing but the splitting field of u3−u2− 2u− 1, and the “cycle”
of explicit relations q = p2 − 2, r = q2 − 2, p = r2 − 2 shows that L = Q(p, q, r) =
Q(p) = Q(q) = Q(r). We have L(

√
−3) = Q(

√
−3, 3√7α) which is a cyclic extension

of Q of degree 6. By the way, the equality 7 = α · α′ yields the unique prime factor
decomposition of 7 in the euclidean domain Z[(−1 +

√
−3)/2].
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solutions by multiplying ( n
√

v)i by the ith power of a nth root of unity
(1 ≤ i ≤ n − 1), [Euler 1764], esp. § 13, [Breuer 1921], [Euler 1928], pp.
65-94 (annotations by the editor), [Măistrova 1985].

How could one improve on Euler’s exposition using Eulerian tools only?
In hindsight it is tempting to describe all occuring quantities in terms of
roots of unity. Let ζ be a primitive 7th root of unity. Thus we have

p = −ζ − ζ6, q = −ζ2 − ζ5, r = −ζ4 − ζ3 (12)

and

p2 − 4 = (ζ − ζ6)2, q2 − 4 = (ζ2 − ζ5)2, r2 − 4 = (ζ4 − ζ3)2. (13)

Now it is rather easy to write down two suitable factors of G(v):

(v − (ζ − ζ6))(v − (ζ2 − ζ5))(v − (ζ4 − ζ3)) = v3 +
√
−7v2 +

√
−7 (14)

and

(v + (ζ − ζ6))(v + (ζ2 − ζ5))(v + (ζ4 − ζ3)) = v3 −
√
−7v2 −

√
−7. (15)

The equality
(ζ − ζ6)(ζ2 − ζ5)(ζ4 − ζ3) = −

√
−7 (16)

allows us to solve Eqn. (14) without a repeated application of Cardano’s
formula contrary to Euler. Indeed each of the three products

(ζ − ζ6)(ζ2 − ζ5), (ζ2 − ζ5)(ζ4 − ζ3), (ζ4 − ζ3)(ζ − ζ6) (17)

is symmetric in ζ, ζ−1, hence a polynomial in p or q or r as we want. For
instance, we have

(ζ − ζ6)(ζ2 − ζ5) = (ζ − ζ6)2(ζ + ζ6) = −(p2 − 4)p. (18)

This implies ζ4 − ζ3 =
√
−7

(p2−4)p immediately and it only remains for us to
calculate the reciprocal values of p and p2 − 4 which is an easy standard
exercise. 8 We will further comment on those equations from a more general
point of view in our next section on Vandermonde.

After his splendid results published in 1751 Euler was not able to settle
the case of the 11th roots of unity. He said that

“indeed the eleven roots of the equation x11−1 = 0 cannot be calculated
with the help of the accompanying equation of degree 5; since its solution
is hidden hitherto we should stop here.” 9

For us now it will be the right moment to pass to Vandermonde’s work and
his solution of x11 − 1 = 0.

8 We know the equations (8) and (11) satisfied by p and
√

p2 − 4, resp., and can write
(p2 − p− 2)p + 1 = 0 and ((p2 − 4)2 + 7(p2 − 4) + 14)(p2 − 4) + 7 = 0.
9 At vero radices undecim aequationis x11−1 = 0 exhiberi non possunt ope aequationis
quinque dimensionum; cuius resolutio cum adhuc lateat, hic subsistere debemus. [Euler
1751], § 48.
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2. Vandermonde

Without any doubt Vandermonde was an outstanding mathematician of
his time, which is confirmed by Lebesgue’s deserving and authoritative bi-
ography, [Lebesgue 1940], [Jones 1991]. He published only four mathemat-
ical papers among which there were two significant ones. The geometrico-
topological paper Remarques sur des problèmes de situation (1771) aroused
Gauss’s interest and let him speak of “the geometer Vandermonde held in
high esteem by me”, [Olbers 1900], p. 103 10 . As far as we know this is the
first documented mentioning of Vandermonde by Gauss.

Here we will mainly be concerned with Vandermonde’s extensive Mémoire
sur la résolution des équations which was read before the Paris Academy in
November 1770 but was not published until 1774. Apparently, the British
mathematician Edward Waring (1734-1798) was the first who appreciated
Vandermonde’s contributions to the theory of equations and praised his
acumen, [Waring 1782], Praefatio, pp. XXIV-XXV. More than two decades
later Lagrange commented on Vandermonde’s theory of equations rather
extensively, [Lagrange 1808], notes XIII, XIV. He said:

“Thus one may say that Vandermonde is the first who had crossed the
limits within which the solution of equations of 2 terms was constricted”,
11

Augustin-Louis Cauchy (1789-1857) in two of his papers on rational func-
tions and permutations referred to Vandermonde as well, [Cauchy 1815a,b].
No less a mathematician than Leopold Kronecker (1823-1891) praised the
memoir in the words:

“With Vandermonde’s memoir on the resolution of equations, presented
in 1770 to the Parisian Academy, began a new blossoming of algebra; the
profundity of the view which is expressed in such clear words as in this
work, arouses nothing less than our astonishment.” 12

Meanwhile, several detailed overviews of Vandermonde’s algebraic work
were published, e. g., [Loewy 1918], [Lebesgue 1940], [Wussing 1969], 2.
Kap., [Nový 1973], pp. 36-41, [Edwards 1984], § § 15-16, § § 22-23, [Waer-

10Dieser bisher fast ganz brach liegende Gegenstand, über den wir nur einige Fragmente
von Euler und einem von mir hochgeschätzten Geometer Vandermonde haben (...) Let-
ter to Olbers, October 12, 1802. Apparently, Lebesgue was ignorant of this letter.
11On peut donc dire que Vandermonde est le premier qui ait franchi les limites dans
lesquelles la résolution des équations à deux termes se trouvait resserrée. Loc. cit. Note

XIV, § 33. Lebesgue apparently did not know this assessment of Vandermonde’s work.
12Mit Vandermonde’s im Jahre 1770 der Pariser Akademie vorgelegten Abhandlung
über die Auflösung der Gleichungen beginnt der neue Aufschwung der Algebra; die Tiefe
der Auffassung, welche sich in dieser Arbeit in so klaren Worten ausspricht, erregt
geradezu unser Erstaunen. (Preface to [Itzigsohn 1888]. Cf. [Neumann 2006], § 2.)
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den 1985], pp. 77-79, [Tignol 1988], chap. 11. Here we shall concentrate
our attention on his theory of equations and its application to cyclotomic
equations.

2.1. Resolvents

In the introductory sentences of his treatise Vandermonde mentioned the
papers [Euler 1764] and [Bézout 1764] as the most significant ones of the
recent past. His own most notable innovation can be described as follows:

“Starting with the well known solution of quadratic and cubic equa-
tions, Vandermonde develops general principles upon which the solution
of equations may be based. (...) Vandermonde now asks whether the
general equation of degree n can be solved by a similar expression

1
n

[x1 + · · ·+ xn + n
√

(r1x1 + · · ·+ rnxn)n + · · ·

· · ·+ n

√
(rn−1

1 x1 + · · ·+ rn−1
n xn)n ]

in which r1, . . . , rn are the nth roots of unity.” [Waerden 1985], p. 77,
cf. [Vandermonde 1774], § VI.

Of course, x1, . . . , xn denote the roots of the given equation. Vandermonde
and Lagrange introduced (or should one say: invented?) expressions like

∆(i) := ri
1x1 + . . . + ri

nxn, (1 ≤ i ≤ n), (19)

independently of each other and almost at the same time, [Lagrange 1770-
1771], § 69. Nowadays these expressions usually are called “Lagrange resol-
vents”. The Eqns. (19) can be regarded as a system of linear equations for
x1, . . . , xn which has the solution

xk =
1
n
·

n∑
i=1

r−i
k ·∆(i) =

1
n
·

[
(x1 + . . . + xn) +

n−1∑
i=1

r−i
k ·∆(i)

]
, (20)

for 1 ≤ k ≤ n. For n ≤ 7 the reader will also find these explicit solutions
in Vandermonde in §§ VII-X.

Vandermonde and Lagrange alike observed that in (19) the whole sum
is multiplied by a nth root of unity if on the x1, . . . , xn a suitable cyclic
permutation, (say) σ, or one of its powers is performed (this permutation
depends on the sequence (r1, . . . , rn)). 13 Therefore the nth power of each

13The simplest way to see that is to number the roots x1, . . . , xn such that rk = ρk−1

where ρ denotes a primitive nth root of unity (1 ≤ k ≤ n) as Lagrange did. Under this
assumption σ can be taken as x1 7→ x2, . . . , xn 7→ x1. For odd prime numbers n = 2m+1
Vandermonde prefers to choose r1 = 1, r2 = ρ, r3 = ρ−1, r4 = ρ2, r5 = ρ−2, . . . , r2m =
ρm, r2m+1 = ρ−m, [Vandermonde 1774], § XI.
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of the expressions (19) remains unchanged under σ. We put

V (i) := (∆(i))n = (ri
1x1 + . . . + ri

nxn)n (1 ≤ i ≤ n). (21)

In many examples in § XXXVI Vandermonde is “expanding” the V (i)’s
in sums of simple σ-invariant components which he calls “partial types”
(types partiels) and each of which can be calculated separately. Lagrange’s
exposition is much more extensive than Vandermonde’s and explains the
important step from (19) to (21) as follows. For any i, consider the values
of ∆(i) under all n! permutations of x1, . . . , xn. These n! values can be ar-
ranged in groups of n values each consisting of ∆, ρ ·∆, ρ2 ·∆, . . . , ρn−1 ·∆
where ρ denotes a primitive nth root of unity. Let ∆′ run through all
n! values of ∆(i). Then the polynomial

∏
(x−∆′) splits up into factors∏n−1

i=0 (x− ρi∆) = xn −∆n. In other words
∏

(x−∆′) is actually a poly-
nomial in xn with the roots (∆′)n. Therefore, the quantity V (i) satisfies an
equation of degree (n − 1)! the coefficients of which are rational functions
of the coefficients of the given equation and the nth roots of unity.

Combining Eqns. (20) and (21) we obtain Vandermonde’s and Lagrange’s
approach

x =
1
n
·
[
(x1 + . . . + xn) +

n
√

V (1) + . . . +
n
√

V (n−1)
]

(22)

where the nth roots are to be suitably chosen. Vandermonde calls the right-
hand side of (22) a “function which one could say equals any root depending
on the meaning attributed to that function.” [Vandermonde 1774, § IV.]
Though for n > 4 neither Vandermonde nor Lagrange addresses the ques-
tion of how to choose the n suitable (n− 1)-tuples ( n

√
V (1), . . . ,

n
√

V (n−1))
out of the nn−1 possible ones. But they are well aware of the following
partial answer to this question: if, in (22), ( n

√
V (1), . . . ,

n
√

V (n−1)) gives us
a solution then (ρ · n

√
V (1), ρ2 · n

√
V (2), . . . , ρn−1 · n

√
V (n−1)) will do as well

where ρ denotes any nth root of unity, see Eqn. (20) and [Vandermonde
1774, § § VII-X.] It was only Gauss in case of cyclotomy and Niels Henrik
Abel (1802-1829) under more general assumptions who settled that ques-
tion based on the remark that the products ∆(i) · (∆(1))n−i, (2 ≤ i ≤ n−1)
as well as the V (i)’s are invariant under the same cyclic permutations of
x1, . . . , xn , [Gauss 1801], art. 360.III, [Gauss 1863], [Abel 1829], formu-
las (38)-(42), cf. [Neumann 2006], § § 2, 4. In our subsection 2.3 we shall
use this remark in order to complement Vandermonde’s most spectacular
achievement.

For the actual calculation of the V (i)’s Vandermonde proves the main
theorem on symmetric polynomials and then is able to obtain the known
solutions of the cubic and quartic equations anew, [Vandermonde 1774], §§
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V, VII, XII-XIII, XIX-XXII. As to the general equations of degree n > 4
he does not arrive at any substantial steps towards an “algebraic” solution.

For the composite degrees n = 4, 6, 8, 9 Vandermonde indicates modified
“explicit” solutions in §§ XIII-XVII. In these cases there are indices i having
a common divisor d > 1 with n, say n = n′d, i = i′d. Then formally we can
write n

√
(∆(i))n = n′

√
(∆(i))n′ . Now the expression ∆(i) looks simpler than,

e. g., ∆(1) insofar as it contains the dth powers of the nth roots of unity
only, in other words the n′th roots of unity only. The n roots x1, . . . , xn are
arranged in n′ groups of d summands each. These groups of d summands
have the form

xk + xk+n′ + xk+2n′ + · · ·+ xk+(d−1)n′ (1 ≤ k ≤ n′). (23)

Starting from ∆(2) or ∆(3) or ∆(4), resp., Vandermonde succeeds to build
up explicit solutions after permuting the x1, . . . , xn suitably in ∆(2) or ∆(3)

or ∆(4), resp. Certain sums of the special kind (23) occur three decades later
in Gauss’s cyclotomy theory again and are baptized by Gauss as periods,
[Gauss 1801], art. 343. 14 This fact had led Lebesgue to the conjecture that
for Gauss the concept of period could have been suggested by his early
reading of Vandermonde, [Lebesgue 1940], pp. 33-34, 38. From a purely
mathematical point of view this hypothesis looks at least well admissible
but we reject it for various reasons which will be discussed in our next
section on Gauss.

2.2. Quartic Equations and 5th Roots of Unity

As announced above for the quartic equation

(x− a)(x− b)(x− c)(x− d) = x4 + Nx3 + Px2 + Qx + R = 0

with the roots a, b, c, d Vandermonde indicates the solutions in the modified
and elegant form

x =
1
4

[
ε1
√

(a + b− c− d)2 + ε2
√

(a + c− b− d)2

+ ε3
√

(a + d− b− c)2
]

+
1
4
(−N) (24)

with ε1, ε2, ε3 = ±1 and ε1ε2ε3 = +1, [Vandermonde 1774], § XIII. The
same formulas can be found with Lagrange, [Lagrange 1770-1771], § 32.
Vandermonde leaves it at that although the conditions imposed on ε1, ε2, ε3

14Precisely speaking the Gaussian “periods” are always sums of roots of unity, and
the number of terms is the number of these roots. In Gauss’s language Vandermonde’s
cyclotomy theory is based on the “periods of 2 terms” ri + r−i.
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are still insufficient to select the admissible triples of square roots as realized
by Lagrange. But the latter author shows the way out when we take into
account that the quantity

Π := (a + b− c− d)(a + c− b− d)(a + d− b− c)

is invariant under all permutations of a, b, c, d. Hence Π = −N3+4NP−8Q
is known from the given equation. 15 Therefore we should stipulate that√

(a + b− c− d)2 ·
√

(a + c− b− d)2 ·
√

(a + d− b− c)2 = Π.

On the other hand, the squares (a + b − c − d)2, (a + c − b − d)2, (a +
d − b − c)2 are only permuted with each other when we permute a, b, c, d
in all possible ways. Therefore those squares satisfy an equation of third
degree the coefficients of which can be calculated by means of the given
equation, [Vandermonde 1774], § XVI. We shall use this fact in our last
section to construct the regular 17-gon by ruler and compass circumventing
the primitive roots (mod 17) and closely following Vandermonde’s ideas.

Without loss of generality in the given equation we can assume N = 0.
Then according to Eqn. (24) the solutions are sums of three square roots.
This fact was as early as 1738 published by Euler who wrote

x =
√

A +
√

B +
√

C

and deduced a cubic equation for A,B,C, [Euler 1738], § 5. Moreover,
he derived the equality

√
A ·

√
B ·

√
C = −Q/8 which coincides with La-

grange’s condition (notice the factor 1/4 in Eqn. (24)). As in Eqn. (24)
Euler indicated the three remaining roots in the form

√
A−

√
B −

√
C,

√
B −

√
A−

√
C,

√
C −

√
A−

√
B

which indeed means nothing but Eqn. (24).
Vandermonde uses his approach to quartic equations just described above

in order to solve the 5th cyclotomic equation

x5 − 1
x− 1

= x4 + x3 + x2 + x + 1 = 0.

In this case he obtains a reducible auxiliary equation of degree 3 which
eventually gives

x =
1
4

[
−1 + ε1

√
5 + ε2

√
−5 + 2

√
5 + ε3

√
−5− 2

√
5
]

(25)

15Lagrange himself erroneously wrote +N3−4NP +8Q which was realized by the editor
J.-A. Serret.
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with ε1, ε2, ε3 = ±1 and ε1ε2ε3 = +1, [Vandermonde 1774], § XXIII. Here
the square roots should be chosen such that

√
5 ·
√
−5 + 2

√
5 ·
√
−5− 2

√
5 = −5.

Of course, this result should coincide with (6). This follows indeed from[√
−5 + 2

√
5 ±

√
−5− 2

√
5
]2

= −10± 2
√

5.

2.3. 11th Roots of Unity

The unquestionable apex of Vandermonde’s theory is the representation
of the 11th roots of unity by means of radicals which has no counterpart in
Lagrange’s work at that time, see [Vandermonde 1774], § XXXV. Vander-
monde’s own exposition was very sketchy whereas some three decades later
Lagrange at length commented on Vandermonde’s solution of x11 − 1 = 0
and x5 − 1 = 0, [Lagrange 1808], Note XIV. First of all, for the reciprocal
equation

x11 − 1
x− 1

= x10 + x9 + . . . + x + 1 = 0

with the roots r, r2, . . . , r10 Vandermonde calculates the auxiliary equation

x5 − x4 − 4x3 + 3x2 + 3x− 1 = 0

with the five roots

a := −r − r10, b := −r2 − r9, c := −r3 − r8, d := −r4 − r7, e := −r5 − r6.

Then he goes on to write down a series of intrinsic relations among those
roots:

a2 = −b + 2, b2 = −d + 2, c2 = −e + 2, d2 = −c + 2, e2 = −a + 2, (26)

ab = −a− c, bc = −a− e, cd = −a− d, de = −a− b, (27)
ac = −b− d, bd = −b− e, ce = −b− c, (28)

ad = −c− e, be = −c− d, (29)
ae = −d− e, (30)

a + b + c + d + e− 1 = 0. (31)
16 Vandermonde’s further constructions are based on his fundamental ob-
servation that the relations (26)-(31) are only permuted with each other

16 In recent terminology these relations entail that the subdomain Z[a, b, c, d, e] = Z[a] =
Z[b] = Z[c] = Z[d] = Z[e] of the number field Q(a, b, c, d, e) = Q(a) = Q(b) = Q(c) =
Q(d) = Q(e) is the (torsion-free, hence free) abelian group Z · 1 + Z · a + Z · b + Z · c +
Z · d + Z · e with the relation (31). Its rank is 5 which follows from the irreducibility of
x10 + x9 + . . . + x + 1 according to [Gauss 1801], art. 341.
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when one applies the cyclic permutation (abdce) =

 a b c d e

b d e c a

 and its

powers to a, b, c, d, e. To use his resolvents (19) he has to take into consid-
eration the 5th roots of unity 1, ρ, ρ2, ρ3, ρ4 where ρ denotes a primitive 5th
root of unity. That is why he introduces the expressions

Θ(i) := a + ρi · b + ρ−i · d + ρ2i · c + ρ−2i · e
= a + ρi · b + ρ4i · d + ρ2i · c + ρ3i · e (32)

(1 ≤ i ≤ 4) which are multiplied by ρ−i when one performs the cyclic
permutation (abdce). Vandermonde’s own notations are

∆(1) := Θ(1), ∆(2) := Θ(4), ∆(3) := Θ(2), ∆(4) := Θ(3). (33)

Hence the quantities
V (i) := (∆(i))5 (34)

are invariant under (a b d c e) and Vandermonde concludes from his explicit
calculations that all V (i)’s are linear combinations of 1, ρ, ρ2, ρ3, ρ4 with
rational integer coefficients. Then the Eqns. (22) and (34) enable him to
display a, b, c, d, e by means of iterated square roots and 5th roots.

Here we want to emphasize how important the relations (26) are and
first we are going to prove the following assertion.

Lemma.
Let

f(x) = (x− x1)(x− x2) · · · (x− xn)

be a polynomial such that there is a rational function ϑ(X) with the prop-
erty

x2 = ϑ(x1), . . . , xi+1 = ϑ(xi), . . . , x1 = ϑ(xn).

Let W (x1, . . . , xn) be a rational function the coefficients of which are con-
sidered to be invariant under the cyclic permutation (x1 . . . xn). Suppose
that, moreover, W is invariant under the cyclic permutation (x1 . . . xn).
17 Then W depends only on the elementary symmetric polynomials of
x1, . . . , xn, i. e. on the coefficients of f(x).

17The reader of today should notice that a permutation of x1, . . . , xn need not be an

automorphism of the splitting field of f(x). For instance, with the function ϑ(X) =
1/(1 − X) and the assumptions x1 be an arbitrary element 6= 0, 1 of the base field,
x2 = ϑ(x1) = 1/(1 − x1), x3 = ϑ(x2) = (x1 − 1)/x1 the polynomial f(x) splits into
linear factors. Our remark shows that the Lemma is of purely combinatorial nature and
does not pertain to Galois theory properly.
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Proof. Put W ′(X) := W (X, ϑ(X), ϑ2(X), ϑ3(X), . . . , ϑn−1(X)). Then we
have W ′(x1) = W (x1, . . . , xn). The invariance of W gives us W ′(x1) =
W ′(x2) = · · · = W ′(xn) and further

W =
1
n
· (W ′(x1) + · · ·+ W ′(xn)).

The right-hand side is symmetric in x1, . . . , xn. This means that W depends
only on the elementary symmetric polynomials of x1, . . . , xn which was to
be proved. 2

By the way, the proof is modeled on the arguments in Abel’s paper [Abel
1829]. In Vandermonde’s case the premises of the Lemma are satisfied by
ϑ(X) = −X2 + 2 in view of (26). Now we can reproduce his results on the
V (i)’s and are additionally able to handle the relations between the radicals
5
√

V (i).
Relations (26)-(31) allow us to write any rational function W (a, b, c, d, e)

in the form

W = A · a + B · b + C · c + D · d + E · e + F. (35)

For our numerical calculations the following corollary will be of some use.
Corollary.

If W = A · a + B · b + C · c + D · d + E · e + F is invariant under the cyclic
permutation (abdce) then

W =
1
5
· (A + B + C + D + E) + F. (36)

(See [Lebesgue 1940], pp. 35-36.)
Proof. Applying the permutation (abdce) and its powers to W we obtain

the additional equalities

W = A · b + B · d + C · e + D · c + E · a + F (37)

W = A · d + B · c + C · a + D · e + E · b + F (38)
W = A · c + B · e + C · b + D · a + E · d + F (39)
W = A · e + B · a + C · d + D · b + E · c + F. (40)

Taking the average of the right-hand sides of (35), (37)-(40) we get

W =
1
5
· (A + B + C + D + E)(a + b + c + d + e) + F

and with regard to (31) we have the formula (36).2
Of course, the explicit determination of the V (i)’s requires a great amount

of calculations. Vandermonde relies on his expansions of the V (i)’s in sums
of (abdce)-invariant terms exposed in § XXVIII of his treatise. Here we
indicate the final results only:

V (1) = 196 + 130ρ− 90ρ4 − 255ρ2 + 20ρ3 (41)
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V (2) = 196 + 130ρ4 − 90ρ− 255ρ3 + 20ρ2 (42)
V (3) = 196 + 130ρ2 − 90ρ3 − 255ρ4 + 20ρ (43)
V (4) = 196 + 130ρ3 − 90ρ2 − 255ρ + 20ρ4. (44)

The quantities x1, x2, x3, x4, x5 are now expressions of the form

x =
1
5

[
1 +

5
√

V (1) +
5
√

V (2) +
5
√

V (3) +
5
√

V (4)
]
. (45)

After inserting the explicit values of the 5th roots of unity Vandermonde
obtains

5
√

V (1) = 5

√
11
4

(
89 + 25

√
5− 5

√
−5 + 2

√
5 + 45

√
−5− 2

√
5
)

(46)

5
√

V (2) = 5

√
11
4

(
89 + 25

√
5 + 5

√
−5 + 2

√
5− 45

√
−5− 2

√
5
)

(47)

5
√

V (3) = 5

√
11
4

(
89− 25

√
5− 5

√
−5 + 2

√
5− 45

√
−5− 2

√
5
)

(48)

5
√

V (4) = 5

√
11
4

(
89− 25

√
5 + 5

√
−5 + 2

√
5 + 45

√
−5− 2

√
5
)

. (49)

He leaves it at that and does not take care of the ambiguities of the radicals.
It is not difficult to calculate

∆(1) ·∆(2) = ∆(3) ·∆(4) = 11.

This means that the four quantities ∆(1),∆(2),∆(3),∆(4) are complex num-
bers of modulus

√
11 since a, b, c, d, e are real numbers and either of the two

couples (∆(1),∆(2)), (∆(3),∆(4)) consists of numbers which are complex
conjugate to each other. For the radicals we have the relations

5
√

V (1) · 5
√

V (2) =
5
√

V (3) · 5
√

V (4) = 11. (50)

Moreover, we have further relations at our disposal since the products
(∆(1))2 ·∆(4) and (∆(1))3 ·∆(3) turn out to be (abdce)-invariant as well. For
our purposes it will be sufficient to calculate (∆(1))2 ·∆(4) since we know
already (∆(1))5. It is not difficult to expand our product of three factors
in a sum of 7 (abdce)-invariant terms following an idea of Vandermonde at
that. We skip the details of the calculations and indicate the final result:

(∆(1))2 ·∆(4) = S(a3) + (ρ2 + 2ρ4)S(ab2) + (ρ4 + 2ρ3)S(ad2) +

+(ρ + 2ρ2)S(ac2) + (ρ3 + 2ρ)S(ae2)

+(2 + 2ρ2 + 2ρ3)S(abd) + (2 + 2ρ + 2ρ4)S(abc)

= 11(−2ρ + 2ρ2 + ρ3).
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In these equations the symbols S(...) denote the sums taken over all expres-
sions which result from the argument after applying the cyclic permutation
(abdce) and its powers to that argument. 18 For the radicals in Eqn. (45)
we obtain the relation(

5
√

V (1)
)2

· 5
√

V (4) = 11(−2ρ + 2ρ2 + ρ3). (51)

The equations (50) and (51) taken together show us that all radicals 5
√

V (i)

are uniquely determined by the value of 5
√

V (1). Hence the formula (45)
yields five values of x only as it should be expected.

2.4. “Vandermonde’s Condition”

In § § VI, XXXVI Vandermonde affirms to the reader that for primes n =
2m+1 the auxiliary equation of degree m associated with xn− 1 = 0 “can
always be solved easily”. It seems he formed this opinion on the examples
for n ≤ 11. Was Vandermonde really right ? How could he himself have
generalized his method from n = 11 to other primes as well ? We are
going to expose his basic ideas in as much generality as is possible without
abandoning the framework of his treatise.

Let n = 2m + 1 be an odd prime and r be a primitive nth root of unity.
We define m quantities in an upper numbering as follows:

x(k) := −rk − r−k (1 ≤ k ≤ m)

and some of them in a lower numbering :

xi := −r(2i) − r−(2i) (0 ≤ i).

Now it is evident that Vandermonde’s method hinges on the relations (26).
In our setting we have x2

i = −xi+1 + 2. From there we conclude that Van-
dermonde’s method will work if and only if the xi will run through the
whole set {x(1), . . . , x(m)}. This can happen if and only if there are pre-
cisely m unordered pairs {2i mod n,−2i mod n}. The latter condition is in
turn equivalent to the condition that m be the least positive exponent k
with 2k ≡ ±1 (mod n) or, in other words, 2m ≡ ±1 (mod n) and 2k 6≡ ±1

18The equality (−2ρ + 2ρ2 + ρ3)(−2ρ4 + 2ρ3 + ρ2) = 11 shows us that the complex

number (∆(1))2 ·∆(4) has the correct modulus
(√

11
)3

. The factorization of 11 can be
refined such that one obtains the unique prime decomposition of 11 in the euclidean

domain Z[ρ]:

11 = (ρ2 + ρ3 − ρ4)(1 + ρ2 − ρ3)(ρ3 + ρ2 − ρ)(1 + ρ3 − ρ2).
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(mod n) for 0 < k < m. For sake of brevity we shall call this “Vander-
monde’s condition”.

The special prime numbers n = 2m + 1 such that m is also a prime
number satisfy this condition. Indeed for the prime number 5 we have
22 ≡ −1 (mod 5). Further for primes n = 2m + 1 > 5 the primes m are
odd. In this case we can prove even more. For every g, 2 ≤ g ≤ m, either
g mod n or (−g) mod n is a primitive root mod n. Indeed, g2 ≡ 1 (mod n)
is excluded, thus g mod n has order m or 2m. If gm ≡ 1 (mod n) then
(−g)m = −gm ≡ −1 (mod n) and (−g) mod n is a primitive root mod n.
19 In particular, if 2 is a primitive root mod n then we have 2m ≡ −1
(mod n), and a congruence 2k ≡ ±1 (mod n) with 0 < k < m is excluded.
On the other hand, if (-2) is a primitive root mod n then we have (−2)m ≡
−1 (mod n), hence 2m ≡ 1 (mod n), and a congruence 2k ≡ ±1 (mod n)
with 0 < k < m is impossible since m is odd.

Thus the class of primes just discussed contains 25 primes < 1000, namely

5, 7, 11, 23, 47, 59, 83, 107, 167, 179, 227, 263, 347,

359, 383, 467, 479, 503, 563, 587, 719, 839, 863, 887, 983.

Besides we have 75 further primes < 1000

3, 13, 19, 29, 37, 53, 61, 67, 71, 79, 101, 103, 131, 139, 149,

163, 173, 181, 191, 197, 199, 211, 239, 269, 271, 293, 311,

317, 349, 367, 373, 379, 389, 419, 421, 443, 461, 463, 487,

491, 509, 523, 541, 547, 557, 599, 607, 613, 619, 647, 653,

659, 661, 677, 701, 709, 743, 751, 757, 773, 787, 797, 821,

823, 827, 829, 853, 859, 877, 883, 907, 941, 947, 967, 991

for which Vandermonde’s condition can be checked immediately. 20 Among
the primes < 100 only the numbers 17, 31, 41, 43, 73, 89, 97 do not satisfy
Vandermonde’s condition. In particular, 17 is missing there. Nevertheless
one can construct the regular 17-gon by ruler and compass following Van-
dermonde’s ideas in a slightly modified way as we will show in our last
section. A further remark refers to the so-called Fermat primes of the form
Fk = 2(2k) + 1 like 3, 5, 17, 257 and 65 537 (further instances are not

19 In his paper [Loewy 1918], p. 192, Loewy overlooked this fact and referred unneces-

sarily to [Abel 1829], § 3, theorem, in order to underpin his arguments.
20This sequence of primes was very quickly computed with the help of the tables [Jacobi
1956]. For every prime n < 1000 these tables contain the least positive primitive root mod
n g, the map i 7→ N ≡ gi (mod n) (table of “numeri”), the inverse map N 7→ ind(N)
(table of “indices”) and two further tables, ind(x) 7→ ind(x+1) and ind(x) 7→ ind(x−1).
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known until now). For k > 1 we have 2(2k) = (−2)(2
k) ≡ −1 (mod Fk)

where the exponent 2k is less than 1/2 · (Fk − 1) = 2(2k−1). In other words,
for a Fermat prime with k ≥ 2 Vandermonde’s method would never work
immediately.

2.5. “Pre-Gaussian” Cyclotomy Theory

Despite of all limitations in Vandermonde’s work we feel entitled to agree
with Alfred Loewy (1873-1935) who said that

“Vandermonde was the first who saw and carried out the right method
to solve the equation x2m+1 = 1 for prime numbers 2m + 1”, [Loewy
1918], p. 194. 21

Let n = 2m+1 be a prime without further restrictions for the time being
and r a primitive nth root of unity. Here we are going to develop a fragment
of cyclotomy theory entirely based on the ideas and tools of Euler, Van-
dermonde and Lagrange. In short we will expose a kind of “pre-Gaussian”
cyclotomy theory. Throughout we will abstain from the conscious use of
primitive roots mod n for arbitrary primes n, in other words, from the use
of a powerful tool due only to Gauss.

With the notations just introduced above the m quantities x(1) = −r −
r−1, . . . , x(m) = −rm − r−m in the upper numbering satisfy an equation

F (x) = xm − xm−1 − (m− 1)xm−2 +

+(m− 2)xm−3 +
(m− 2)(m− 3)

1 · 2
xm−4 − · · ·

= 0, (52)

[Vandermonde 1774], § VI. All x(i)’s are power sums of r, r−1, therefore
polynomials of each other with rational integer coefficients since all nth
roots of unity r, r2, . . . , r2m 6= 1 are primitive and can replace each other.
The nth roots of unity r, r−1, r2, r−2, . . . , rm, r−m in this order just are the
roots of m quadratic equations

y2 + x(i) · y + 1 = 0 (1 ≤ i ≤ m), (53)

this means

(x(i))2 − 4 = (ri − r−i)2, y =
−x(i) ±

√
(x(i))2 − 4
2

= ri or r−i. (54)

21Vandermonde hat demnach, wie man wohl sagen kann, als erster die richtige Meth-
ode zur Auflösung der Gleichung x2m+1 = 1 für primzahliges 2m + 1 erkannt und
durchgeführt.
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Conversely, assume for the moment that only the equations (52) and (53)
would be given. Denote for any i the solutions of (53) by r, r−1. Then
x(i) = −r − r−1. Inserting this equality in Eqn. (52) we will get

rn − 1
r − 1

= rn−1 + rn−2 + . . . + r + 1 = 0.

This means that r, r−1 really are nth roots of unity and the m disjoint pairs
{rk, r−k} exhaust all nth roots of unity 6= 1.

Moreover we observe that for any pair (i, j) of indices the quotient

ri − r−i

rj − r−j
=

(ri − r−i)(rj − r−j)
(rj − r−j)2

=
(ri − r−i)(rj − r−j)

(x(j))2 − 4

is symmetric in r, r−1, hence a rational function of r + r−1 = −x(1) with
rational coefficients. This means that any two square roots

√
(x(i))2 − 4,√

(x(j))2 − 4 differ from each other only by a rational function of x(1) with
rational coefficients. In particular, every nth root of unity is a rational
function (with rational coefficients) of x(1) and a single quadratic radical√

(x(i))2 − 4 where i can be chosen arbitrarily. Anticipating some further
considerations, we inform the reader that below, for odd m, this result will
be reinforced considerably; insofar as in this case the radicals

√
(x(i))2 − 4

can be replaced by
√
−n. This explains Euler’s successful treatment of the

7th roots of unity.
Euler’s equation (11) can also be generalized to the equation satisfied by

the 2m quantities ±
√

(x(i))2 − 4. The polynomial

G(x) :=
m∏

i=1

(
x−

√
(x(i))2 − 4

)(
x +

√
(x(i))2 − 4

)

=
m∏

i=1

(x2 − (x(i))2 + 4) (55)

has coefficients which are symmetric in x(1), . . . , x(m) and, therefore, ratio-
nal integers. Thus G(x) shows the desired properties.

Furthermore we have

(ri − r−i)2 = −(1− r2i)(1− r−2i) (56)

for all exponents i. Multiplying all these m equations we obtain(
m∏

i=1

(ri − r−i)

)2

= (−1)m ·
m∏

i=1

(1− r2i)(1− r−2i)

= (−1)m · (x2m + x2m−1 + · · ·+ x + 1)|x7→1

= (−1)m · n (57)
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since r2, r−2, r4, r−4, . . . , r2m, r−2m are all nth roots of unity 6= 1. Taking
the square root and using Eqns. (54) we see that

m∏
i=1

√
(x(i))2 − 4 = ±

m∏
i=1

(ri − r−i) = ±
√

(−1)m · n . (58)

The last equality shows us that the square root
√

(−1)m · n is a linear
combination of the nth roots of unity with rational integer coefficients. This
remarkable (and momentous) fact could very well have been proved by
Euler, Lagrange or Vandermonde but it wasn’t. The case n = 3 is obvious
whereas the cases n = 5, 7 are settled implicitly in the calculations of the
nth roots of unity with Euler, Lagrange and Vandermonde. The proof in
the general case is due to Gauss (whose proof is different from the one given
here), [Gauss 1801], art. 356.

A closer inspection exhibits that the product
∏m

i=1(r
i−r−i) has the form

of a polynomial H(r, r−1) in r, r−1 with rational integer coefficients and the
property H(r−1, r) = (−1)m ·H(r, r−1). From there it follows that for even
m H(r, r−1) is symmetric in r, r−1, hence a polynomial in r + r−1 = −x(1)

and r ·r−1 = 1 with rational integer coefficients. In other words, for even m
the quadratic radical

√
(−1)m · n =

√
n is already a polynomial in x(1) or in

any other x(i). For odd m we have H(r−1, r) = −H(r, r−1) and H(r, r−1)
takes the special form

±
√
−n = H(r, r−1) = (r − r−1) · S(r, r−1) =

= (r − r−1) · P (x(1)) = ±
√

(x(1))2 − 4 · P (x(1))

with a symmetric polynomial S and some polynomial P . From there we
deduce that the two square roots

√
−n and

√
(x(1))2 − 4 differ from each

other only by a rational function of x(1). In summary, for odd m the nth
roots of unity are rational functions of x(1) (or of any other x(i)) and

√
−n

with rational coefficients. In a more explicit manner we can write

ri − r−i = ±
√
−n∏

j 6=i(rj − r−j)
.

The numerator of this quotient is symmetric in r, r−1, therefore a polyno-
mial in x(1). Together with the definition x(i) := −ri−r−i this gives us the
desired result since x(i) is a polynomial in x(1).

2.6. “Vandermonde’s Condition” Again

Now in order to treat xn − 1 = 0 or, more precisely, the equation (52)
using Vandermonde’s ideas one has to impose on n the restriction that
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2m ≡ ±1 (mod n) and 2k 6≡ ±1 (mod n) for 0 < k < m. The series of the
primes in question contains 100 primes < 1000 and begins as follows:

3, 5, 7, 11, 13, 19, 23, 29, 37, 47, 53, 59, 61, 67, 71, 79, 83, ...

Our aim is to solve Eqn. (52) by mth roots of unity and radicals of index
m. Under Vandermonde’s condition we can switch to the lower numbering
and on the analogy of (26)-(31) we have the “cyclic” relations

x2
i = −xi+1 + 2 (1 ≤ i ≤ m− 1), x2

m = −x1 + 2

as well as m(m − 1)/2 formulas for the products xi · xj (i < j). All these
relations are only permuted with each other when one performs the cyclic
permutation (x1 . . . xm). Let ρ be a primitive mth root of unity. Then one
has to form the expressions

∆(i) = x1 + ρi · x2 + · · ·+ ρ(m−1)i · xm (1 ≤ i ≤ m− 1)

and their mth powers V (i) which turn out to be invariant under the per-
mutation (x1 . . . xm). Now we can apply the Lemma and see the V (i)’s
to be linear combinations of the mth roots of unity with rational integer
coefficients. Unfortunately, Vandermonde himself proves this fact only for
n = 5, 11 in § § XXIII, XXXV. That is why here we have interpolated the
Lemma in our comment on Vandermonde’s text.

All products ∆(i) · ∆(m−i) are also invariant under the permutation
(x1 . . . xm), and it is not difficult to expand them in sums of (x1 . . . xm)-
invariant terms which can be calculated separately.

∆(i) ·∆(m−i) = (x2
1 + · · ·+ x2

m)

+
[m−1

2 ]∑
j=1

(ρji + ρ−ji) · (x1xj+1 + x2xj+2 + · · ·+ xmxj)

+
1
2
(1 + (−1)m)(−1)i(x1x[m

2 ] + · · · )

= (−1 + 2m) + (−1)(−2) = n.

These equalities show us that all resolvents ∆(i) are 6= 0. More precisely,
∆(m−i) is the complex conjugate of ∆(i) since x1, . . . , xm are real numbers,
hence ∆(i) is a complex number of modulus

√
n.

On the analogy of (45) we obtain “explicit” solutions of (26). First of all,
with regard to xi+1 = −x2

i + 2 we see that

x2
i+1 − 4 = x2

i · (x2
i − 4),

(
−xi ±

√
x2

i − 4
2

)2

=
−xi+1 ∓

√
x2

i+1 − 4

2
.
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Therefore, beginning with the solutions r, r−1 of y2 + x1 · y + 1 = 0
we can arrange all solutions of the quadratic equations in the sequence
r, r−1, r2, r−2, r4, r−4, . . ..

The polynomial (55) can be specified very easily using Eqn. (52). With
respect to the quantities±

√
x2

i − 4 = ±
√
−xi+1 − 2 we put x2 := −xi+1−2

and form the polynomial

(x2 + x1 + 2)(x2 + x2 + 2) · · · (x2 + xm + 2) =: G(x)

which can be derived immediately from (52):

G(x) = (−1)m · F (−x2 − 2) = (−1)m · F (−x2 − 2). (59)

Here F (x) denotes the polynomial in (52) with the zeroes x1, . . . , xm.

2.7. 7th Roots of Unity

To round off this section on Vandermonde we would like to treat the
equation xn − 1 = 0 for n = 7 following Vandermonde’s ideas whereas the
cases n = 3, 5 are left to the reader. With a primitive 7th root of unity r

and a primitive 3rd root of unity ρ = −1+
√
−3

2 we define

x1 = −r − r6, x2 = −r2 − r5, x3 = −r4 − r3,

∆(1) = x1 + ρ · x2 + ρ2 · x3, ∆(2) = x1 + ρ2 · x2 + ρ · x3.

In our case Eqn. (52) takes the form

F (x) := x3 − x2 − 2x + 1 = 0

which of course is nothing but Euler’s equation (8). The quantity ∆(1) ·∆(2)

is a symmetric polynomial in x1, x2, x3:

∆(1) ·∆(2) = x2
1 + x2

2 + x2
3 − x1 · x2 − x2 · x3 − x3 · x1 = 7.

In § III Vandermonde indicates the expansion of (∆(1))3 in (x1x2x3)-
invariant components which reads as follows:

(∆(1))3 = (x3
1 + x3

2 + x3
3) + 3ρ(x2

1x2 + x2
2x3 + x2

3x1) +

+ 3ρ2(x1x
2
2 + x2x

2
3 + x3x

2
1) + 6x1x2x3.

Now by means of the specific relations

x1x2 = −x1 − x3, x2x3 = −x2 − x1, x3x1 = −x3 − x2 (60)

one calculates each component of (∆(1))3 and (∆(2))3, resp., rather easily
and obtains

(∆(1))3 = (−7) · 1 + 3
√
−3

2
, (∆(2))3 = (−7) · 1− 3

√
−3

2
.

LOL-Ch16-P24 of 40



Cyclotomy: From Euler through Vandermonde to Gauss 347

This way Euler’s solutions of (8) occur here again. In the next step Euler’s
equation (11) satisfied by ±

√
−x1 − 2,±

√
−x2 − 2,±

√
−x3 − 2 shows up

when we use Eqn. (59):

0 = G(x) = −F (−x2 − 2) = x6 + 7x4 + 14x2 + 7.

Furthermore, our previous general considerations show that the 7th roots of
unity are rational functions of

√
−7,

√
−3 (via the 3rd roots of unity) and a

single cubic radical. Thus the results of Euler’s calculations are confirmed.
We see that the approach to x7 − 1 = 0 à la Vandermonde is at least
conceptually superior to Euler’s due to the use of the relations (60).

It is to be regretted that Vandermonde did not consider the case n = 13
in detail. In this case he could have observed the phenomenon of “periods
of 4 or 6 terms” according to Eqn. (19) not yet occuring in the former
cases n = 7, 11. Let r be a primitive 13th root of unity and ρ = 1+

√
−3

2
be a primitive 6th root of unity. In our previous notations we obtain six
resolvents ∆(1), . . . ,∆(6) among which there are the quantities

∆(2) = (x1 + x4) + ρ2(x2 + x5) + ρ4(x3 + x6),

∆(4) = (x1 + x4) + ρ4(x2 + x5) + ρ2(x3 + x6)
and

∆(3) = (x1 + x3 + x5) + ρ3(x2 + x4 + x6).
In these expressions the terms are summed according to the powers of ρ,
thus new combinations of the 13th roots of unity show up like the “periods
of 4 terms”

x1 + x4 = r(20) + r−(20) + r(23) + r−(23),

x2 + x5 = r(21) + r−(21) + r(24) + r−(24),

x3 + x6 = r(22) + r−(22) + r(25) + r−(25),

and the “periods of 6 terms”

x1 + x3 + x5 = r(20) + r−(20) + r(22) + r−(22) + r(24) + r−(24),

x2 + x4 + x6 = r(21) + r−(21) + r(23) + r−(23) + r(25) + r−(25).

The reader should notice that here in each sum the total number of terms
is counted as the number of roots of unity involved in the sum but not with
respect to the pairs (ri, r−i).

3. Gauss

How did Gauss come to study the cyclotomy? Could he have been in-
fluenced by Vandermonde? Before discussing these questions we are going
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to look at his biography and the mathematical writings to which he had
access in his early years. Gauss spent his childhood and early youth in
Braunschweig (Brunswick) where in 1792 at age of 15 he entered the Col-
legium Carolinum which was a semi-academic science-oriented institution
preparing young men for a career as well-qualified loyal bureaucrats and
military personnel. The library of the Carolinum was unusually good and
gave Gauss access to many of the best and most advanced textbooks in
mathematics and the sciences and to classics like Isaac Newton’s (1643-
1727) writings and John Wallis’s (1616-1703) “A Treatise of Algebra”. But
it should be stressed that rather recent investigations into the extant cata-
logues of the Carolinum library have shown this library did not have writ-
ings of Pierre de Fermat (1601/1607? - 1665), Euler, Waring, Vandermonde,
Lagrange and Adrien-Marie Legendre (1752-1833), let alone the publica-
tions of the learned academies in Berlin, Paris, St. Petersburg and London,
[Küssner 1979], pp. 32-40. In October 1795 Gauss moved to Göttingen and
enrolled as a student of classical philology and mathematics at the uni-
versity. Gauss was a zealous user of the excellent Göttingen library which
was one of the best all over Europe in its time. At last he could study
the masters like Euler and Lagrange and their treatises on mathematics
and the sciences in the publications of the European academies. G. Waldo
Dunnington (1906-1974) compiled an impressive record of the books which
Gauss had borrowed from the library, though in this record the summer
semester 1796 is missing, [Dunnington 2004], pp. 398-404. Little is known
about Gauss’s first semester but beginning with March 30, 1796, we have
his invaluable mathematical diary (Notizenjournal) where a great many of
entries refer to number theory and algebra, [Gauss 1796-1814].

3.1. The 17-Gon

It is well-known and often quoted that Gauss’s first entry in his diary
reads as follows:

“The principles upon which the division of the circle depends, and geo-
metrical divisibility of the same into seventeen parts, etc.”, [Gauss 1796-
1814]. 22

After almost three weeks, on April 18, 1796, he had written a short an-
nouncement of his discoveries in cyclotomy whereas this communication
was published under the date of June 1, 1796, [Gauss 1863-1933], vol. I,
p. 3. Gauss emphasized the then completely unexpected constructibility of

22English translation quoted after [Dunnington 2004], p. 469. Original in Latin: Prin-
cipia quibus innititur sectio circuli, ac divisibilitas eiusdem geometrica in septemdecim
partes etc..
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the regular 17-gon and some other polygons by ruler and compass. More-
over, he wrote that these results are only “a corollary of a theory which is
not yet complete”. The “complete theory” was eventually exposed in his
first major opus Disquisitiones arithmeticae (1801), more precisely, in the
seventh section of this work, [Gauss 1801]. Unfortunately, little is known
about when, how and why Gauss began to study the problems of cyclo-
tomy. He was hardly led to his theory by geometrical problems, probably
algebraic and arithmetical questions got the theory going, cf. [Bachmann
1911], pp. 32-40. This opinion is backed by Gauss’s letter to the mathe-
matician, physicist and astronomer Christian Ludwig Gerling (1788-1864)
from January 6, 1819, where he said that as early as in his first semester
in Göttingen he had obtained an important result in cyclotomy before he
discovered the constructibility of the 17-gon, [Gauss 1863-1933], vol. X/1,
p. 125. The result in question concerns the equation xn − 1 = 0 for prime
numbers n = 2m + 1. Gauss had seen that it would be appropriate to
subdivide the nth roots of unity (6= 1) r, r2, . . . , rn−1 into two groups de-
pending on whether the exponent with r be a quadratic residue mod n or
a quadratic non-residue mod n. The sum over either group is nothing but
a period of m terms in his later terminology. These sums

τ1 =
m∑

i=1

ri2 , τ2 =
m∑

i=1

rh·i2 (61)

where h denotes a quadratic non-residue mod n were thoroughly studied
by Gauss, and they turned out to be quadratic irrationalities. Especially,
he found the quadratic equation

x2 + x− (−1)m m

2
= 0

satisfied by the two sums. Moreover, he could prove that

4(xn − 1)
x− 1

= Y (x)2 − (−1)mnZ(x)2

for some polynomials Y, Z with rational integer coefficients. To these results
he alluded in his letter to Gerling, and this means he had discovered no less
than the close and extremely important connections between cyclotomy,
quadratic irrationalities and quadratic residues! These facts fit very well
with Gauss’s studies on quadratic residues at that time and his efforts
to prove the reciprocity law of quadratic residues. Eventually, his second
entry in the diary on April 8, 1796, testified the first complete proof of that
fundamental law. A systematic exposition of his first results in cyclotomy
was given by Gauss in 1801, as he indicated to Gerling, [Gauss 1801], art.
124, 356, 357.
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Now one could ask, how did Gauss then proceed to discover the con-
structibility of the 17-gon? In the case of x17−1 = 0 we have the two sums
τ1, τ2 of 8 terms each according to Eqn. (61). We share Paul Bachmann’s
(1837-1920) opinion that most probably in a flash of genius Gauss had seen
how further to subdivide the sums of 8 terms each into 2 suitable sums of
4 terms each, further into sums of 2 terms each and to end up with the
17th roots of unity, [Bachmann 1911], p. 40. The principle of the iterated
subdivisions is of arithmetical nature, and that is what Gauss had called
“the interconnection of all roots on arithmetical grounds” (Zusammenhang
aller Wurzeln unter einander nach arithmetischen Gründen) in his letter
to Gerling, see also [Reich 2003]. The basic fact which Gauss had used was
the existence of primitive roots mod n for any prime number n, i. e. the ex-
istence of such residue classes g mod n that the powers 1, g, g2, g3, . . . , gn−2

run through all residue classes mod n. This fact was first formulated by Eu-
ler and Johann Heinrich Lambert (1728-1777) but its first complete proof
is due to Gauss, [Gauss 1801], art. 55-56 (with comments on Euler and
Lambert). Those primitive roots mod n allowed Gauss to order the nth
roots of unity in the series r, rg, r(g2), r(g3), . . . , r(gn−2) where each member
just is the gth power of the preceding one. It is this series which gives us
the “right” order of the roots of unity for any prime number! For n = 17
one can choose g = 3 mod 17 whereas Vandermonde’s methods do not work
because 24 ≡ −1 (mod 17). In the general case let n−1 = e ·f be a factor-
ization. A period of f terms is determined by a geometric sub-progression
of 1, g, g2, g3, . . ., gn−2 mod n with quotient ge mod n. This means a
period of f terms is a sum

ηh = rh + rhge

+ rhg2e

+ · · ·+ rhg(f−1)e

(62)

where h denotes an arbitrary exponent 6≡ 0 (mod n). There is every reason
to believe that Gauss first developed the theory of periods and only after
that the solution of xn − 1 = 0 by means of Lagrange (-Vandermonde)
resolvents. One should notice that only half of a year later, on September
17, 1796, Gauss made a note in his diary of the expressions coincident with
the Lagrange (-Vandermonde) resolvents. Like Vandermonde he hoped then
for “a new method by means of which it will be possible to investigate,
and perhaps try to invent, the universal solution of equations.” 23 The
application to the cyclotomic equations is mentioned in January 1797 and
July 1797.

23English translation quoted after [Dunnington 2004], p. 472. Complete original in Latin.
Nova methodus qua resolutionem aequationum universalem investigare forsitanque in-
venire licebit. Scil[icet] transm[utetur] aeq[uatio] in aliam, cuius radices αρ′ + βρ′′ +
γρ′′′ + · · · , ubi n

√
1 = α, β, γ etc. et n numerus aequationis gradum denotans.
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We have no evidence whatsoever that Vandermonde could have known
or used the existence of primitive roots mod n in the general case. At least
this marks the decisive difference between him and Gauss. Even in the
simplest cases n = 5, 11 Vandermonde did not mention nor use that 2 is a
primitive root mod n. Nevertheless Lebesgue made the assertion that Gauss
followed Vandermonde “step by step” in his exposition of the cyclotomy
theory but there “he perfected Vandermonde very much”. For instance, as
to the periods, Lebesgue says that “the method is that of Vandermonde, the
results are those of Gauss”, [Lebesgue 1940], p. 38. We maintain that this
judgement goes too far since Vandermonde like Euler confined himself to
the sums r+r−1, i. e. to periods of 2 terms in Gauss’s sense, the introduction
of which is clearly suggested by the reciprocal equations without any further
sophistication.

Let us return for a while to the regular 17-gon as promised above.
Lebesgue claimed that Vandermonde “had not understood the full im-
portance of his method”, and he attempted to convince the reader that
the constructibility of the 17-gon could have been derived rather trans-
parently from Vandermonde’s method [Lebesgue 1940], p. 42. For “that
method would have given Vandermonde the roots of x17 − 1 = 0 by means
of radicals of index 16, therefore, by means of superposition of square
roots”. Apparently, here Lebesgue alluded to Eqn. (22) applied to x17−1

x−1 =
x16 + x15 + · · ·+ x + 1 = 0, in other words to a representation of the 17th
roots of unity by sums of radicals 16

√
V (i). But the formation of the V (i)’s

is inseparably tied up to a suitable order of the 17th roots of unity 6= 1.
Otherwise one could not prove that the V (i)’s would actually be linear com-
binations of the 16th roots of unity with rational coefficients. Hence one
is in urgent need of a primitive root mod 17 which cannot be found with
Vandermonde.

This situation raises a question: are there ways different from Lebesgue’s
which do prove the constructibility of the regular 17-gon à la Vandermonde?
Our answer will be affirmative, and we are going to pursue such a way. Of
course Vandermonde’s Mémoire suggests to us to start with Eqn. (52) of
degree 8

x8 − x7 − 7x6 + 6x5 + 15x4 − 10x3 − 10x2 + 4x + 1 = 0 (63)

which has the roots −ri − r−i, (1 ≤ i ≤ 8), for a primitive 17th root of
unity r. We shall use a suitable lower numbering of these roots which looks
as follows:

x1 = −r − r−1, x2 = −r2 − r−2,

x3 = −r4 − r−4, x4 = −r8 − r−8,
(64)
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x5 = −r6 − r−6, x6 = −r12 − r−12,

x7 = −r7 − r−7, x8 = −r3 − r−3.
(65)

For the first line we obtain

xi+1 = −x2
i + 2 (1 ≤ i ≤ 3), x1 = −x2

4 + 2, (66)

whereas the second line gives us

xi+1 = −x2
i + 2 (5 ≤ i ≤ 7), x5 = −x2

8 + 2. (67)

Moreover, we have

x1 + x2 + · · ·+ x7 + x8 − 1 = 0. (68)

Obviously these relations correspond to Eqns. (26) and (31). All of the 28
products xixj , (1 ≤ i < j ≤ 8), have the form (−xk − xl) which follows
immediately from the definitions. But these products mingle the two lines
(64) and (65) with each other, for instance, one has x1x2 = −x1−x8, x5x6 =
−x5 − x1. Thus there is no complete analogue to (27)-(30). Moreover, we
can jump from the first group (64) to the second one (65) according to

xi+4 = −r6i − r−6i = −x6
i + 6x4

i − 9x2
i − 6 (1 ≤ i ≤ 4) (69)

and it is possible to jump back according to

xi−4 = −r3i − r−3i = x3
i − 3xi (5 ≤ i ≤ 8). (70)

Still the two quadruples (x1, x2, x3, x4) and (x5, x6, x7, x8) are each acces-
sible to Vandermonde’s basic ideas. One can factorize Eqn. (63) of de-
gree 8 in two equations each of degree 4 with the roots x1, x2, x3, x4 and
x5, x6, x7, x8, resp. Calculating the coefficients of those equations comes
down to forming the products xixj which are known from the definitions.
The resulting equations are

(x− x1)(x− x2)(x− x3)(x− x4)

= x4 + τ1x
3 − (τ1 + 2)x2 − (2τ1 + 3)x− 1 = 0 (71)

and

(x− x5)(x− x6)(x− x7)(x− x8)

= x4 + τ2x
3 − (τ2 + 2)x2 − (2τ2 + 3)x− 1 = 0 (72)

with the abbreviations

τ1 =−x1 − x2 − x3 − x4

= r + r2 + r4 + r8 + r9 + r13 + r15 + r16 (73)

and

LOL-Ch16-P30 of 40



Cyclotomy: From Euler through Vandermonde to Gauss 353

τ2 =−x5 − x6 − x7 − x8

= r3 + r6 + r12 + r7 + r10 + r5 + r11 + r14. (74)

These quantities coincide with the ones in Eqn. (61) which is checked very
easily. One calculates without difficulty

τ1 + τ2 = −1, τ1 · τ2 = −4 (75)

and this gives us immediately

τ1 = −1/2 + 1/2
√

17, τ2 = −1/2− 1/2
√

17. (76)

Thus the coefficients in the Eqns. (71) and (72) require the quadratic ir-
rationality

√
17 only. Further each of those equations can be solved by

Vandermonde’s methods, and it remains for us to show that this could
indeed be done by iterated square roots. Obviously it will suffice to solve
one of the Eqns. (71), (72). To this end we fall back upon Vandermonde’s
solution (24) of quartic equations and obtain for Eqn. (71)

x =
1
4

[
1 + ε1

√
α + ε2

√
β + ε3

√
γ
]

(77)

with ε1, ε2, ε3 = ±1, ε1ε2ε3 = +1, the three quantities

α = (x1 + x2 − x3 − x4)2,

β = (x1 + x3 − x2 − x4)2,

γ = (x1 + x4 − x2 − x3)2

and the condition √
α ·
√

β · √γ = 7τ1 + 12. (78)

α, β, γ satisfy a cubic equation the coefficients of which are polynomials
in τ1 with rational integer coefficients with regard to (71). In our case the
relations (61) allow us to apply the Lemma of our subsection 2.3 to the
sequence (x1, x2, x3, x4). Of course the reference to the Lemma is unneces-
sary in principle but it tells us what we will have to calculate. In particular,
we see that α, γ are permuted with each other under the cyclic permutation
(x1x2x3x4) whereas the quantities

β and
α− γ√

β
=

4(x1 − x3)(x2 − x4)
x1 + x3 − x2 − x4

are left fixed. Hence the latter ones are rational functions of τ1 with rational
coefficients. Straightforward calculations show us that

α = A + B
√
−τ1 + 8, β = −τ1 + 8, γ = A−B

√
−τ1 + 8

with polynomials A,B in τ1 with rational coefficients.
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Thus the cubic equation with the roots α, β, γ turns out to be reducible
if one admits coefficients of the form s + t

√
17 with rational numbers s, t.

From Eqn. (78) it follows that
√

α · √γ has the form C + D
√
−τ1 + 8 with

polynomials C,D in τ1 with rational coefficients. Hence
√

γ can be written
as (E + F

√
−τ1 + 8) ·

√
α where E,F denote some polynomials in τ1 with

rational coefficients.
In summary, in order to obtain x1, x2, x3, x4 we can make do with only

the three square roots
√

17,
√
−τ1 + 8 and

√
α =

√
A + B

√
−τ1 + 8. A

17th root of unity is obtained after solving a further quadratic equation
the coefficients of which are polynomials in the square roots already con-
structed. This shows us that all we need to produce the 17th roots of unity
is to solve a chain of quadratic equations. As a consequence it is possible
to construct the regular 17-gon by ruler and compass.

Our last question concerning the 17-gon to be answered is: how to link our
construction à la Vandermonde to Gauss’s construction? [Gauss 1801, art.
365], [Reich 2003] The key to the answer is the union of the two sequences
(64) and (65) in a single sequence induced by the iteration of the map
r 7→ r6. This way we go forth and back between (64) and (65), and the new
sequence of 8 terms will be:

x1, x5, x2, x6, x3, x7, x4, x8. (79)

We can do it this way since 6 mod 17 is a square root of 2 mod 17 and there-
fore turns out to be a primitive root mod 17, which can be verified easily.
The exponents occuring in the first sequence (64) are just the quadratic
residues mod 17 whereas the exponents occuring in the second sequence
(65) are the quadratic non-residues mod 17. The xi’s are Gauss’s periods
of 2 terms × (-1). Moreover, the sequence (79) is a “cycle” insofar as the
successor of every member xi has the form ϑ(xi) = −x6

i +6x4
i −9x2

i −6 with
the polynomial ϑ(X) = −X6 +6X4− 9X2− 6. The cycle is actually closed
since ϑ(x8) = x1. We remember that the sums x1 +x2 +x3 +x4 = −τ1 and
x5 + x6 + x7 + x8 = −τ2 are the two Gaussian periods of 8 terms × (-1).
The 4 sums x1 + x3, x2 + x4, x5 + x7, x6 + x8 do not occur explicitly in
our considerations à la Vandermonde, but they coincide with the 4 Gaus-
sian periods of 4 terms × (-1). Gauss’s systematic use of these periods is a
further advantage of his construction over our construction in addition to
the conscious use of a primitive root mod17. The successive subdivision of
the periods into periods of fewer terms gives Gauss a clear guideline to ob-
tain the quadratic equations to be solved. Indeed this allows him to avoid
equations of degree 4 or 8 which occur in our approach to x17 − 1 = 0.
Especially, the equalities

(x1 + x3)(x2 + x4) = (x5 + x7)(x6 + x8) = −1
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give Gauss the equations

(x− (x1 + x3))(x− (x2 + x4)) = x2 + τ1x− 1 = 0

(x− (x5 + x7))(x− (x6 + x8)) = x2 + τ2x− 1 = 0.

As soon as the periods of 4 terms will be known one would be able to
calculate the periods of 2 terms in view of the equtions

(x− x1)(x− x3) = x2 − (x1 + x3)x− (x6 + x8) = 0,

(x− x2)(x− x4) = x2 − (x2 + x4)x− (x5 + x7) = 0.

For further details of Gauss’ cyclotomy theory we refer the reader, of
course, to the Disquisitiones Arithmeticae and its important unfinished
and posthumously published continuation Disquisitionum circa aequationes
puras ulterior evolutio, [Gauss 1801], [Gauss 1863]. The structure of Gauss’
theory is elucidated in Richard Dedekind’s (1831-1916) excellent review of
Bachmann’s book [Bachmann 1872] where Dedekind, in particular, empha-
sized how important the concept of irreducibility is in this theory and the
development of algebra following Gauss, [Dedekind 1873], see also [Neu-
mann 2006].

3.2. Gauss and Vandermonde

Gauss happened to know at least Vandermonde’s geometrico-topological
paper Remarques sur des problèmes de situation (1771) and to think highly
of it which is testified twice, namely by his letter to the physician and
astronomer Wilhelm Olbers (1758-1840) on October 12, 1802, and a note
dated from January 22, 1833, in his papers, see [Olbers 1900], p. 103, [Gauss
1863-1933], vol. V, p. 605, vol. X/2, Abhandl. 4, pp. 46-48, 58. As far as
we know, nowhere else can we find any trace of Gauss’s reading of Van-
dermonde. Neither Dunnington’s list of books that Gauss borrowed from
the Göttingen University Library during the years 1795-1798 nor Karin
Reich’s recent investigations into Gauss’s relations with France give any
further direct hints of his preoccupation with Vandermonde. [Dunnington
2004, pp. 398-404], [Reich 1996] Only Dunnington’s list for the date of
January 4, 1797, notices that Gauss borrowed Waring’s Meditationes Al-
gebraicae from the Göttingen University Library, [Dunnington 2004], p.
400. 24 Waring’s book is not mentioned in Martha Küssner’s monograph
on Gauss’s and his “world of books”, [Küssner 1979]. Moreover, in the

24The Göttingen University Library has copies of the second (1770) and the third (1782)
editions of Waring’s book (third edition with the shelf mark 4 Math. II, 9069 < 3 >, HG-
FB). As far as I could see Waring, unfortunately, did not indicate where Vandermonde’s
paper was published.
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extant personal scientific library of Gauss (kept in the Gauss archives of
Niedersächsische Staats- und Universitätsbibliothek Göttingen) there are
no writings of Vandermonde. 25

Though a special detail is of some interest to our considerations. Vander-
monde’s paper on “problems of situation” mentioned in the introductory
sentence of this subsection was printed in one volume together with his
algebraic Mémoire. Any user of this volume could hardly overlook Van-
dermonde’s algebraic treatise, and the old Göttingen University Library
does have a copy of that volume (with the shelf mark Phys. Math. III
2550). There is every reason to believe that this very copy was in Gauss’s
own hands. Thus one must assume that he became acquainted with Vander-
monde’s algebraic treatise not later than in 1802. Paul Stäckel (1862-1919),
expert on all kinds of Gaussiana, discoverer of the Notizenjournal and co-
editor of the Werke, even held the opinion that Gauss knew Vandermonde’s
Mémoire when he was writing his Disquisitiones Arithmeticae, see [Loewy],
p. 195, [Gauss 1863-1933], vol. X/2, Abhandl. 4, p. 58.

Above all, we share Stäckel’s view that Gauss in his theory of cyclotomy
was then not influenced by Vandermonde. In favour of this view Stäckel
refers the reader to Gauss’s letter to Gerling in 1819, discussed in the
preceding subsection. In our opinion the peculiar construction of the 17-
gon based on Vandermonde’s ideas could very well have been carried out
by any mathematician who would have studied Vandermonde’s Mémoire
thoroughly and, first of all, who would have asked how to construct the
17-gon. But with Gauss the construction of the 17-gon appears to have
been more a fortunate breakthrough on a broad background (“a corollary
of an incomplete theory”) than the final completion of a construction which
Gauss would have striven for.

Already at several places in the present paper we discussed Lebesgue’s
attempts to make plausible direct links of Gauss to Vandermonde. In sum-
mary we could not find those attempts convincing since they do not fit the
known sources.

A special comment should be given on the situation in 1808. In that year
Lagrange published the new editon of his voluminous Traité de la résolution
des équations numériques de tous les degrés where inter alia he reproduced
at length Vandermonde’s solution of x11− 1 = 0 (though supplemented by
the use of

√
−11), [Lagrange 1808], Note XIV, § § 28-36. On the other hand,

in that same year Gauss was writing a manuscript on “pure equations”
continuing the Disquisitiones Arithmeticae but left unfinished. [Gauss 1863]
We know this detail from a letter of Gauss to Olbers from July 3, 1808,
where Gauss acknowledged to have received a copy of Lagrange’s treatise

25Communicated by Karin Reich to the author, e-mail from June 8, 2004.
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and gave some critical comments on this work. At the latest at that time
Gauss should have drawn his attention to Vandermonde’s solution of x11−
1 = 0. The more it is surprising that Gauss in his manuscript did not
mention Vandermonde although there he also treated the equation x11 −
1 = 0 applying his own theory to it, [Gauss 1863], artt. 13, 17, see also
[Bachmann 1872], pp. 96-98.

There remains the question: why did Gauss not quote Vandermonde’s
Mémoire in his published writings or in his papers? Our present knowledge
of the diary, of his letters and other documents allows us to give one answer
only: we will probably never know.

Acknowledgement: I am very grateful to Dr. David Green (Jena) for his
linguistic help.
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given at the University of Utrecht. October 29, 1937.

LEBESGUE, Henri 1940. L’œuvre mathématique de Vandermonde. Thalès,
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in Mathematical Invention

Jeff Suzuki

Department of Mathematics
Brooklyn College

Brooklyn, New York 11210
USA

1. Introduction

When discussing the history of mathematics, André Weil once said that
“its first use for us is to put or to keep before our eyes ‘illustrious examples’
of first-rate mathematical work” [1, p. 204] to provide useful insights into
the process of mathematical research. Here we present one such example:
that of Euler, who turned number theory from an amateur’s playground to
a vital part of mathematics.

2. Fermat and Number Theory

Euler’s work in number theory began with Fermat’s conjectures. In Eu-
ler’s time, these conjectures could be found in three main sources. The last
to be written, but the first to be printed, were the letters that made up
the Commercium Epistolicum (1658); next were Fermat’s notes on Bachet’s
edition of Diophantus’s Arithmetic, which were compiled by Fermat’s son
Samuel (1670); finally, Fermat’s own treatises and some of his correspon-
dence which appeared in Varia Opera (1679).
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The Commercium Epistolicum came about because of a chance meet-
ing between Fermat and Kenelm Digby. Digby was, among other things,
adventurer, courtier, agent provocateur, alchemist, and brewer, but his im-
portance to Fermat was his relationship to the scientists and scholars who
would later form the Royal Society. During a diplomatic visit to France in
1656, Digby suffered an attack of kidney stones, and retired to southern
France for his health. It was around this time that he met Fermat, and the
two began to correspond. Digby played the role of an English Mersenne,
passing letters between Fermat, Frenicle de Bessy, van Schooten, Wallis,
and Brouncker. Although only a small fraction of the Commercium dealt
with the theory of numbers, it would be the first widespread publication of
Fermat’s conjectures.

Fermat chose to model his version of number theory after Diophantus’s
Arithmetic, which posed problems and provided a specific solution, usually
based on clever algebraic manipulations. For example, Book II, Problem 9
asked to express a number that was the sum of two squares as a sum of two
other squares. Diophantus took the number 13 = 22 + 32, and assumed (in
modern notation) 13 = (x+2)2+(2x−3)2. This gave rise to a homogeneous
quadratic equation with two rational solutions. Unfortunately problems like
this gave Wallis and others the impression that number theory consisted
only of clever calculations and algebraic reductions, and thus held little in
the way of real mathematical interest.

Letter XXXVII (April 7, 1658) contains the first appearance of actual
theorems (as opposed to problems):

Conjecture 1. There is no right triangle with rational side lengths whose
area is the square of a rational number.

This statement is equivalent to “Fermat’s Last Theorem” for n = 4. The
conjecture immediately following is the “Last Theorem” for the n = 3 case:

Conjecture 2. There is no integral cube that is the sum of two rational
cubes.

Fermat provided no proof of either proposition.
In his last letter (June 1658) Fermat presented propositions for which he

claimed he had a “most sound proof.” Among these propositions were:

Conjecture 3. Every number is a square or the sum of two, three, or four
squares.
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Conjecture 4. Every prime p of the form p = 4n + 1 is the sum of two
squares.

Conjecture 5. Every prime p of the form p = 3n + 1 is the sum of a
square and three times another square.

Conjecture 6. Every prime p of the form p = 8n + 1 or p = 8n + 3 is the
sum of a square and twice another square.

Fermat declined to provide the proofs. He might have hoped other math-
ematicians would find their own proofs and in the process discover (as he
had) the joys of number theory.

Fermat also posed some unsolved problems. To enlist Wallis’s help, he
turned to flattery:

We know that Archimedes did not scorn the propositions of Conon, which
were certainly true, but unproven, eventually setting forth true and most
subtle demonstrations. Why therefore can we not hope for similar help,
a French Conon from an English Archimedes? [4, Vol. I, p. 404]

The propositions which he claimed true “in the fashion of Conon” were the
following:

Conjecture 7. Numbers of the form 22n

+ 1 are prime for all n.

Today numbers of this type are known as Fermat numbers, with Fn =
22n

+ 1.

Conjecture 8. If p is a prime number of the form p = 8n−1, then 2p can
be written as the sum of three squares.

Conjecture 9. The product of two prime numbers ending in 3 or 7 and
of the form 4n + 3 is the sum of a square and five times another square.

Wallis declined to pursue number theory, and he speaks for all his con-
temporaries when he writes in Letter VII:

. . . I looked upon problems of this nature (of which it is easy to contrive
a great many in a little time,) to have more in them of labour than either
of Use or Difficulty.[8, Vol. II, p. 766]

Wallis later expressed a belief that nothing of significance rested on the
truth or falsity of these conjectures [8, Vol. II, p. 782].

Fermat died in 1665. The notes he made in Bachet’s edition of Diophantus
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were compiled by his son Samuel, and published in 1670. We will only repeat
only one conjecture from Fermat’s Diophantus; it is, of course:

Conjecture 10. The equation xn + yn = zn has no solution in integers
for n > 2.

What is interesting is that this particular claim appears only in the
Diophantus, and nowhere else in Fermat’s writing. Indeed, except for Con-
jecture 2 in the Commercium, the only references to the Last Theorem are
indirect, as in his challenge to other mathematicians to find a cube (or
fourth power) that is the sum of two cubes (or two fourth powers). It is
probable that Fermat had a proof (or had the outline of a proof) for the
n = 3 and n = 4 cases; it seems unlikely that he had a general proof.

The last major source of Fermat’s number theory appeared in 1679, when
the Varia Opera appeared. This work includes some of Fermat’s correspon-
dence, as well as most of his mathematical treatises. In it, Fermat repeats
Conjecture 7 in several letters, though it is only in the Dissertation tripar-
tie that we see why Fermat considered the conjecture important. Fermat
argued that the problem of inserting p − 1 mean proportionals between
two given numbers would be maximally difficult if p was prime; hence he
was interested in a formula that would generate arbitrarily large primes.
Fermat’s argument is spurious, but it is interesting to note that Fermat
numbers do play a role in constructibility in a manner entirely different
from that envisioned by Fermat.

If we judge the value of a mathematical discovery by how often it is used
in subsequent investigations (the “citation” principle), then Fermat’s most
important discovery appeared in the Varia Opera as part of a letter dated
October 18, 1640 to Frenicle de Bessy:

Conjecture 11. Every prime number divides a power, minus one, of any
given number, and the aforementioned power is always a divisor of the
prime minus one.

In modern terms if p is prime, then p divides am − 1 for some m, and
in that case m divides p− 1. Fermat omitted an obvious requirement, that
p and a have no common factors. This is a more general form of what is
usually referred to as Fermat’s Little (or Lesser) Theorem.

Fermat’s attempt to interest his contemporaries in number theory failed,
and while his failure cannot be attributed to any single cause, we will point
out three key aspects of Fermat’s presentation. First, he presented number
theory as a set of problems to be solved, rather than generalizations to be
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made, so it appeared as a collection of unrelated results. Moreover, Fermat
gave no reason why number theory might be important, so mathematicians
were drawn to other fields, such as analysis, where the applications were
much more apparent. Finally, where Fermat presented a proposition, he did
so without proof, but at the same time claimed possession of a proof, so
number theory appeared to be a guessing game between Fermat and other
mathematicians. Thus for sixty-five years, number theory languished.

3. Goldbach and Euler

Christian Goldbach would stimulate Euler’s interest in number theory,
but only after attempting and failing to interest others in the subject.
On December 18, 1723 Goldbach posed a Diophantine problem to Daniel
Bernoulli: To find four numbers such that the pairwise product of any
two, plus 1, was a square (this is similar to Diophantus’s Book III, Prob-
lem 10: to find three numbers so that their pairwise products, added to
a given number, was square). Then on February 2, 1724 Goldbach posed
a variant: given one number, to find three more so the pairwise products,
plus 1, were squares. Like Fermat, Goldbach posed problems rather than
suggested general results, though in his letter of September 13, 1724 to
Bernoulli, Goldbach mentioned that Jacques Ozanam (1640-1717) proved
the difference of two fourth powers could not be a square (again, equiva-
lent to Fermat’s Last Theorem for n = 4). 1 Bernoulli had little interest in
pursuing number theory, though on June 29, 1728 he wrote to Goldbach
with one of his results:

I will finish with a problem which appears to me very curious and which I
have solved. Thus: to find two unequal numbers x and y so that xy = yx.
There is one solution among the whole numbers, namely x = 2 and y = 4
(because 24 = 42), but one can give an infinite number of broken [real]
numbers which solve this problem. There are other [questions] of this
type of which I will say nothing [5, vol. II, p. 262].

Thus like Fermat’s correspondents, Bernoulli took only a passing interest
in number theory.

Goldbach finally found a willing investigator in Euler, though it took
some effort. As a parting note in a letter of December 1, 1729, Goldbach
asked:

1 Ozanam was the author of a number of excellent mathematics texts, including one
that helped to found recreational mathematics.
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Do you know of Fermat’s observation that all numbers of the form 22x−1
+

1, such as 3, 5, 17, etc., are prime, something that he himself was unable
to show, and no one after him has shown [5, Vol. I, p. 10].

Euler, like so many of Fermat’s correspondents, thought the result unimpor-
tant: “Probably nothing can be discovered from this observation of Fermat”
[5, Vol. I, p. 18]. Indeed, since the result had been obtained empirically, Eu-
ler doubted its validity (or the validity of any result obtained solely on the
basis of scientific induction).

Goldbach was persistent, however, and tried to encourage Euler to work
on the problem by suggesting means of approach. Goldbach’s suggestions
were of varying quality. On May 22, 1730 he noted that the remainders,
when squares of the terms in an arithmetic sequence were divided by a
prime number, formed a periodic sequence, an observation that Euler would
use later (though not in connection with the Fermat numbers). He offered
the additional observation that if p 6= 2n, then 2p + 1 had divisors; he gave
284 + 1, with divisor 17, as an example.

Meanwhile Euler began to study Fermat’s work, and on June 4, 1730
Euler wrote to Goldbach expressing some enthusiasm for number theory.
Euler’s attention was caught by the “not inelegant theorem” that every
number could be expressed as the sum of four squares. Euler mentions other
Fermat conjectures on the resolution of numbers as the sum of polygonal
numbers and cubes, “whose proofs would contribute greatly to analysis”
[5, vol. I, p. 24]; hence number theory, while worthy of pursuit on its own
merits, could also shed useful insight into other areas of mathematics.

Goldbach’s next “contribution” to the investigation of the Fermat num-
bers was on June 26, 1730 (June 15 O.S.):

It is likely that the least divisor (1 and the number itself not being
considered as divisors for this purpose) of any number of the form a2x

+1
is of the form n2x

+ 1, but this has not yet been completely examined,
except in a single case, namely x = 1, which is easy to demonstrate [5,
vol. I, p. 26].

Hence, Goldbach notes, a proof of Fermat’s conjecture would follow: if it is
true that the least divisor n2x

+1 is of the form a2x

+1, then if n = 2, then
a can only be 1 or 2, but if a = 1, then 12x

+ 1 = 2, which does not divide
22x

+ 1, and if a = 2, then the least divisor is the number itself, which is
thus prime.

Euler pointed out almost immediately (June 25—presumably new style)
that Goldbach’s claim is untrue: if a = 34 (where 342 + 1 = 1157 has
least divisor 13), a = 76 (where 762 + 1 = 5777 with least divisor 53), and
numerous other cases.

Despite Goldbach’s help, Euler made progress and on November 25, 1731
Euler announced a crucial discovery:
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Finally consider the formula 2n − 1, which cannot be prime unless n is
prime, and consider the cases where 2n − 1 is not prime, although n is.
These exceptions are n = 11, n = 23, n = 83, and all the remaining
primes less than 100 make 2n−1 prime. 2 Indeed, 211−1 can be divided
by 23, 223− 1 by 47, 283− 1 by 167. Upon this is based the not inelegant
theorem: 2n − 1 can always be divided by n + 1, whenever n + 1 is a
prime number. Thus 222−1 can be divided by 23. Often as well 2n/2−1,
and indeed 2n/4 − 1 etc., can be divided by n + 1, and from this the
investigation of the case where 2n − 1 is prime is not difficult [5, vol. I,
p. 59-60].

Euler is announcing a restricted form of Fermat’s Little Theorem, namely
that if p is prime, then 2p−1−1 is divisible by p. As a more general form of
this result appeared in Fermat’s Varia Opera, it seems that Euler’s read-
ing of Fermat’s works has to this point been only cursory. As we shall see,
Fermat’s Little Theorem is the easiest and most general path to finding fac-
tors of the Fermat numbers, and Euler would return to the Little Theorem
many times during his number theoretic investigations.

In the meantime, Euler discovered that Fermat’s conjecture was in fact
false, and presented his results to the Academy on September 26, 1732.
“Observationes de theoremate quodam Fermatiano aliisque ad numeros
primos spectantibus” (E26) was the first of nearly 100 papers on number
theory published by Euler; though mathematically insignificant, it hints at
things to come.

E26 begins with a discussion of the possible factors of an+1. Euler begins
by stating two propositions:

(i) If n = 2m + 1, then an + 1 has a factor of a + 1.
(ii) If n = p(2m + 1), then an + 1 has a factor of ap + 1.

Euler gave no proof, but these follow easily from straightforward factoriza-
tion of an + 1.

Thus in order for an + 1 to be prime, n must be a power of 2 and, of
course, a must be even. These conditions are necessary but not sufficient,
and Euler gives several counterexamples:

(i) a2 + 1 has a factor of 5 whenever a = 5b± 3.
(ii) 302 + 1 has divisor 17 and 502 + 1 has divisor 41.
(iii) 104 + 1 has divisor 73.
(iv) 68 + 1 has divisor 17.
(v) 6128 + 1 has divisor 257.

What insight might we gain from this list of counter-examples and the
disproof of Conjecture 7? From the first counter-example, the observant
reader will note

2 Euler omits n = 37, though in an earlier letter he noted 223 divides 237 − 1.
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(5b± 3)2 + 1 = 25b2 ± 30b + 32 + 1

Hence it seems that if one wishes a2 + 1 to be divisible by some prime p,
one need only let a = (pb ± c) where c2 + 1 is divisible by p. For small
primes p, trial and error would suffice to find c so c2 + 1 is divisible by
p. Thus since 42 + 1 = 17, we have a2 + 1 divisible by 17 whenever a =
17k± 4; since 92 + 1 = 82 is divisible by 41, we have a2 + 1 divisible by 41
whenever a = 41k ± 9. Thus the first two counter-examples can be viewed
as direct results of naive number theory—uninteresting results of the very
type dismissed by Wallis and others.

But what of examples iii through v, and Euler’s factorization of F5 =
225

+ 1? It seems likely that Euler had already suspected the validity of
Conjecture 11 and used it to find potential factors.

If a prime p divides an + 1, then p divides (an + 1)(an − 1) = a2n − 1,
and thus by Conjecture 11 2n is a divisor of p− 1. Thus p is a prime of the
form 2nk + 1. Hence the possible factors of 104 + 1 are primes of the form
8k + 1: the first few primes of this form are 17, 41, and 73, and three trial
divisions suffice to find a factor. For 68 + 1 the possible factors are primes
of the form 16k + 1: 17 is the first prime of this form, and a single trial
division suffices to find a factor. Finally 6128 + 1 might have prime factors
of the form 256k + 1, and 257 is again the first of these.

For 225
+ 1 = 232 + 1, Euler only needed to examine primes of the form

64k + 1. The first few primes of this form are 193, 257, 449, 577, and the
actual factor 641. Thus five trial divisions would have sufficed to find the
factor; “Hence [the Fermat numbers are] not a solution to the problem of
finding a prime that exceeds any given number” [3, Series 1, Vol. II, p. 3]. It
is interesting to note that Fermat could have found a factor of 225

+1, and
the computations were well within his capabilities (and if not, within those
of Frenicle de Bessy, a more assiduous calculator). At least one of them
should have been capable of disproving Conjecture 7. That they failed to
do so is a minor mystery.

Did Euler in fact use Fermat’s Little Theorem to find a factor of F5?
Euler’s fame as a calculator makes it plausible that trial division was the
method used to find the factor 641. However, there are two pieces of ev-
idence that support Euler’s use of Fermat’s Little Theorem. The first is
that Euler mentions that he found the factor through “a long method”
that opened the way for similar problems to be resolved: this suggests a
general method like Conjecture 11 rather than a method like trial division;
the “length” in this case would encompass the discovery of Conjecture 11 as
well as its application to finding potential factors. More definitively (though
perhaps less reliably), we will see that fifteen years later Euler claims that
Conjecture 11 was precisely how he found the factor 641.
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At the end of E26, Euler notes that he believes (but has not yet proven)
that if a, b are not divisible by a prime n + 1, then an − bn is divisible
by n + 1. Consequently 2n − 1 is divisible by the prime n + 1, which is a
specific instance of Conjecture 11. Euler concludes E26 with six “theorems”
(theorema) he believes valid, but had not yet obtained a proof. The first
was:

Conjecture 12. If n is prime, then all powers with an exponent of n− 1
will leave a remainder of 0 or 1 when divided by n.

This is what most books on elementary number theory call Fermat’s
Little Theorem: namely that if p is prime and a is relatively prime to p,
then ap−1 ≡ 1 mod p. We shall refer to this particular conjecture as Euler’s
form of Fermat’s Little Theorem.

In addition, Euler stated some generalizations of Conjecture 12:

Conjecture 13. If n is prime, then any number raised to the power
nm−1(n− 1), divided by nm, will have remainder 0 or 1.

Conjecture 14. If m, n, p, q , . . . are distinct primes not dividing a, and
A is the least common multiple of m− 1, n− 1, p− 1, q − 1, . . . , then aA

divided by mnpq · · · leaves a remainder of 0 or 1.

4. Fermat’s Little Theorem: First Proof

If Fermat had a proof of Conjecture 11 (or its special case, Conjecture
12), he did not write it down. Leibniz proved the theorem some time before
1683, but the proof only appears in manuscript and was not brought to light
until 1894 [2, Vol. I, p. 59]. Thus Euler was the first to publish a proof.
He presented “Theorematum quorundam ad numeros primos spectantium
demonstratio” (E54) to the St. Petersburg Academy on August 2, 1736.

By now Euler was firmly convinced that number theory was a mathe-
matical discipline worth pursuing. He is rather less enamored of Fermat’s
methods, however, and criticizes Fermat’s lack of proof and reliance on (sci-
entific) induction: after all, Fermat’s conjecture on the primality of num-
bers of the form 22n

+ 1 seemed well-supported by observation, but it was
nonetheless false. This casts doubt on the validity of all conjectures based
on observation.

Euler proves his form of Fermat’s Little Theorem by induction; this may
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be the first induction proof to appear in post-Newtonian mathematics (in-
duction had already appeared in some of Pascal’s work and in the work of
Levi ben Gerson, as well as Leonardo of Pisa’s Liber Quadratorum). More-
over, he not only gives a proof, but carefully elaborates upon the process by
which the proof came about; thus E54 is a good example of mathematical
epistemology.

First, Euler shows that 2p−1 − 1 is divisible by any prime p; this follows
from the binomial expansion

(1 + 1)p−1 = 1 +
p− 1

1
+

p− 1
1

p− 2
2

+
p− 1

1
p− 2

2
p− 3

3
+ . . .

Since there are p terms in the series, the number of terms is odd; subtracting
1 leaves an even number of terms, which Euler proceeds to group pairwise:

p− 1
1

+
p− 1

1
p− 2

2
+

p− 1
1

p− 2
2

p− 3
3

+. . . =
p

1
p− 1

2
+

p

1
p− 1

2
p− 2

3
p− 3

4
+. . .

Since p is an odd number, the last term is p
1

p−1
2

p−2
3

p−3
4 · · · 2

p−1 = p, and
thus every term in the series is divisible by p. Thus 2p−1− 1 is divisible by
p.

Unfortunately the proof as given is not amenable to generalization, so
Euler sought a different proof inspired by a corollary: If 2p−1−1 is divisible
by some prime p, so is 2p−2; conversely, if p divides 2p−2 and p 6= 2, then
p must divide 2p−1 − 1. This time the binomial expansion gives us:

(1 + 1)p − 2 = 1 +
p

1
+

p

1
p− 1

2
+

p

1
p− 1

2
p− 3

3
+ . . . + 1− 2

where all the remaining terms obviously have a factor of p. If p is taken to
be an odd prime, then since p divides 2p − 2 = 2(2p−1 − 1) and p does not
divide 2, then it must divide 2p−1 − 1.

Note that this proof emerged from a corollary to the main result. Al-
though listing corollaries is not new, Euler was more diligent than most in
providing an exhaustive listing of the consequences of a theorem. As we
shall see, some of the corollaries were trivial and we might classify them as
examples, but others played important roles in the proofs of later theorems.

After proving this corollary Euler notes that if p divides 2p−1−1, then p
will also divide 2k(p−1)−1, and thus p divides 4p−1−1, 8p−1−1, 16p−1−1,
and so on. It seems that Euler is considering the following path to the
proof: we need only show that a prime p divides ap−1 − 1 when a is prime;
consequently p will divide ap−1− 1 when a is a power of a prime. If we can
then show that p divides ap−1− 1 when a is a product of primes or powers
of primes, we are done.

The task seems daunting, but the very first step along this path to the
proof will reveal a shortcut. We must first prove 3p−1 − 1 is divisible by
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some prime p (not equal to 3). Fortunately Euler has given two proofs of
the divisibility of 2p−1−1; we can use the second to show, first, if p divides
3p − 3 and p 6= 3, then p divides 3p−1 − 1. Again we use the binomial
expansion:

(1 + 2)p = 1 +
p

1
2 +

p

1
p− 1

2
4 +

p

1
p− 1

2
p− 2

3
8 + . . . + 2p

Since every term is divisible by p except the first and last, we have 3p−2p−1
divisible by p. But 3p − 2p − 1 = 3p − 3 − (2p − 2), and p divides the last
two terms, so p must also divide 3p − 3.

We might be tempted to prove the theorem for a = 5, but note instead
that the proof for 3 = 2 + 1 depended on the validity of the theorem for
2. This gives us an induction step: If ap − a can be divided by a prime
p, then so can (a + 1)p − (a + 1). The proof of the induction step follows
by binomial expansion, and the proof of Fermat’s Little Theorem follows
immediately. As a postscript to E54, we note that the induction proof of
Fermat’s Little Theorem is not well-known, so it is periodically rediscovered
by mathematicians great (Laplace and Cauchy and insignificant ([7]).

5. Fermat’s Little Theorem: Second Proof

In 1740, pro-Slavic elements gained control of the Russian government,
and a purge of the pro-German elements which had dominated Russia for
a generation was inevitable. For this and other reasons Euler accepted a
position at the Berlin Academy of the Sciences, where he would spend
the next twenty-six years. However, Euler maintained his membership in
the St. Petersburg Academy, and continued to correspond with Goldbach;
much of his work in number theory in this period would be communicated
to Goldbach first and only later presented to the Berlin Academy.

Euler’s second proof of Fermat’s Little Theorem first appeared in a letter
to Goldbach dated March 6, 1742. First Euler proved that any prime p
divided (a + b)p − ap − bp using the binomial expansion of (a + b)p. If
a = b = 1, this implied that any prime p divided 2p − 2, and if p 6= 2, then
p divided 2p−1 − 1. If a = 2, b = 1, then p divides 3p − 2p − 1, but since p
divides 2p− 2, then p must also divide 3p− 3 and again, if p 6= 3, p divides
3p−1 − 1.

Next, Euler shows that if p divides ap−a, then p divides (a+1)p−a−1;
this is the induction step from his first proof of Fermat’s Little Theorem.
Thus if p does not divide a, then p divides ap−1 − 1 and Fermat’s Little
Theorem, as stated by Euler, follows.

LOL-Ch17-P11 of 22



374 Jeff Suzuki

Euler then proves an important result, which will eventually lead to a
proof of Conjecture 4: If p is a prime of the form 4n−1, it cannot divide the
sum of two squares a, b that are relatively prime to p. This follows because
p = 4n−1 must divide a4n−2−b4n−2, and thus it cannot divide a4n−2+b4n−2

(since if it did, it could divide their sum and their differences, and thus p
would divide both 2a4n−2 and 2b4n−2, which is impossible if p is assumed
relatively prime to a, b). Since 4n−2 = 2(2n−1) (Euler calls this an “odd-
even” number, a reference to Greek number theory), then a4n−2 + b4n−2

has a factor of a2 + b2. Thus p cannot divide a2 + b2. Conversely, any prime
divisor of the sum of two squares must be a prime of the form 4n + 1.

These results and proofs, substantially unchanged, were presented to the
Berlin Academy on March 23, 1747 as “Theoremata circa divisores nu-
merorum” (E134). Euler opens E134 with a defense of number theory as
a legitimate area for mathematical research. In support of this viewpoint,
Euler points to the existence of seemingly true but as-yet-unproven propo-
sitions in number theory: this establishes the superiority of number theory
over, say, geometry, since (by Euler’s argument) the more abstruse truths
are also those harder to prove. That these truths seem unimportant misses
the point: not only is there value in knowing any truth, but the very act
of proof may bring to light methods of proof that can be used in other
problems, an idea he first stated in his June 4, 1730 letter to Goldbach.

The proof of Fermat’s Little Theorem, and that the prime factors of
a2 + b2 must be of the form 4n + 1, are essentially the same as those in his
letter to Goldbach. Euler continues E134 by classifying potential divisors
of a4 + b4 (2 or primes of the form 8n + 1) and a8 + b8 (2 or primes of the
form 16n + 1). With these two specific cases dealt with, the generalization
to prime divisors of the form a2m

+ b2m

is transparent: the only possible
divisors are 2 or primes of the form p = 2m+1n + 1. Hence in the case of
Fermat’s claim that 225

+ 1, one has only to examine primes of the form
64k + 1; this, he claims, is how he found the factor 641.

E134 concludes with a number of results on power residues. It is the
first extensive treatment of the subject, and Euler’s Theorem 11 is the first
to provide a general solution to the congruence xm ≡ 1 mod p, namely: If
a = f2± (2m+1)α where p = 2m+1 is prime and f , α are arbitrary, then
p divides am − 1. Euler then gives six corollaries to this result, then three
examples, which he solves (we will leave the solutions as an exercise for the
reader):

(i) Find a so a2 ± 1 is divisible by 5.
(ii) Find a so a3 ± 1 is divisible by 7.
(iii) Find a so a5 ± 1 is divisible by 11.

As with his previous works, Euler begins the process of generalization by
proving a specific instance: in this case (Theorem 12) if a = f3±(3m+1)α,
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with p = 3m + 1 prime, then am − 1 is divisible by 3m + 1. The proof of
these two cases allows the generalization to be made (Theorem 13): If a =
fn ± (mn + 1)α, where p = mn + 1 is prime, then am − 1 is divisible by
mn + 1.

6. The Sum of Four Squares

On June 17, 1751 Euler presented “Demonstratio theorematis Fermatiani
omnem numerum sive integrum sive fractum esse summam quatuor pau-
ciorumve quadratorum” (E242) to the Berlin Academy. In it Euler makes
significant progress towards proving Fermat’s Conjecture 3, though he in
fact proves that all rational numbers can be written as the sum of four
rational squares. Lagrange would provide the finishing touches in a 1770
paper, though his proof was subsequently improved by Euler a few years
later.

Of greater importance is that E242 foreshadows the development of group
theory, a theme that will carry Euler through the next phase of his number
theoretic work. In particular, Euler proved a restricted form of Fermat’s
Little Theorem based not, as in Euler’s first two proofs, on the binomial
expansion, but on group theoretic properties.

Euler considers the remainders when the squares of the integers are di-
vided by some prime p. If we consider the sequence of squares

1, 4, 9, . . . , p2, (p + 1)2, . . . , 4p2, (2p + 1)2, . . .

it is clear (Theorem 2) that the remainders upon division by p form a se-
quence with period p. These remainders will necessarily omit some numbers
less than p; in particular, if we consider the first p− 1 squares

1, 4, 9, 16, . . . , (p− 4)2, (p− 3)2, (p− 2)2, (p− 1)2

it is clear that the terms equidistant from the ends have the same remainder
on division by p. Thus we need only consider the remainders when the
squares of the numbers 1, 2, 3, . . . p−1

2 are divided by p. Euler claims that
there are exactly p−1

2 remainders. Euler did not show this, but a proof is
trivial: if two of the squares have the same remainder, then their difference
is divisible by p, so either the sum or difference of their roots is divisible
by p; however, this is impossible since the sum and difference are both less
than p.

After a few more pages Euler proves that if r is any remainder, then all
powers of r are also remainders (Theorem 5). Since there are only finitely
many remainders, then (Corollary 3) an infinite number of powers of r
must have equal remainders on division by p. Taking two of these powers
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with equal remainders, rm and rn, then p must divide their difference
rm−rn, and consequently p must divide rn(rm−n−1); hence (since r < p),
p must divide rλ−1 for some λ. This is a restricted form of Fermat’s Little
Theorem.

7. Fermat’s Little Theorem: Third Proof

Euler converted the basic idea in this proof of a restricted form of Fer-
mat’s Little Theorem into a proof of the full theorem, presented on Febru-
ary 13, 1755 to the Berlin Academy. There are three noteworthy facts about
“Theoremata circa residua ex divisione potestatum relicta” (E262). First,
Euler identifies the theorem as one of Fermat’s, which he had not done
previously. In addition, Euler proves the theorem in the form it was origi-
nally stated by Fermat. Third and most important, the paper takes several
crucial steps towards the development of group theory.

The format of E262 is similar to Euler’s other papers on number theory:
each theorem is followed by a number of corollaries, and the corollaries
are usually the basis of the proof for a later theorem. Euler focuses on the
remainders when a power of a is divided by a prime p. If p does not divide
a, then p cannot divide any power of a (Theorem 1); thus, since there
are only p− 1 possible remainders, then the terms of the infinite sequence
1, a, a2, a3, . . . , must include some terms with the same remainder on
division by p (Corollary 2). Several results on the behavior of the remainders
follow; Euler then shows how these properties can be used to show that the
remainder when 7160 is divided by 641 is equal to 640 “or −1.” It is possible
(though by no means certain) that this, rather than direct division, was how
Euler identified 257 as a factor of 6128 + 1.

With Theorem 3 Euler takes an important step: If a is relatively prime
to p, a prime number, then there exists an infinite number of terms in the
geometric sequence 1, a, a2, a3 . . . which will have a remainder of 1 when
divided by p, and the exponents of these terms will form an arithmetic
sequence. The proof is straightforward: Since there must be at least two
terms with the same remainder, say aµ and aν (where we may assume
µ > ν), then their difference aµ− aν = aµ(aµ−ν − 1) is divisible by p; since
no power of a is divisible by p, then aµ−ν − 1 must be. Letting λ = µ− ν,
then every term in the sequence

1, aλ, a2λ, a3λ, a4λ, a5λ, a6λ . . .

must also leave a remainder of 1 upon division by p.
Most of the proofs that follow this point in E262 are based on closure

properties and counting arguments, and place minimal reliance on symbolic
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manipulation. For example, to show (Theorem 7) that if λ is the least
power for which aλ ≡ 1 mod p, then the remainders when the terms of the
sequence

a, a2, a3, . . . , aλ−1

must be all different, Euler assumes that two are the equal, aµ and aν ,
where we may assume ν < µ < λ; hence aµ−aν = aν(aµ−ν −1) is divisible
by p, and so is aµ−ν , which is impossible since λ > µ− ν was assumed the
least power to leave a remainder of 1 when divided by p. Moreover, since
anλ ≡ aλ mod p, then the sequence of remainders repeats itself with period
λ (Theorem 8). Consequently if p is a prime number and all numbers less
than p appear as remainders, then λ = p− 1 (Theorem 9).

The proof of Theorem 10 foreshadows another important idea in group
theory: that of a coset of a subgroup. In this case, Euler proves that if
the number of remainders λ is less than p − 1, then the number of non-
remainders is at least as great as the number of remainders. This follows
because if we consider the remainders when the terms of the sequence

1, a, a2, a3, . . . , aλ−1

are divided by p, the λ remainders are distinct. By assumption there exists
at least one non-remainder k; then the terms of the sequence

k, ak, a2k, a3k, . . . , aλ−1k

are also distinct and non-remainders. Following this are a number of corol-
laries and theorems of the form: If λ < p−1

n , then λ ≤ p−1
n+1 . It follows that

λ must be a divisor of p−1 (Theorem 13)—Fermat’s Little Theorem in the
form stated by Fermat. As a consequence we have Fermat’s Little Theorem
in the form stated by Euler (Theorem 14), that if p is prime and not a di-
visor of a, then ap−1 ≡ 1 mod p. Euler, incidentally, did not credit Fermat
with having conjectured that this might be true for some divisor λ of p−1.
As with E134, Euler proves Fermat’s Little Theorem partway through the
paper and devotes the rest of the paper to the theory of power residues.

8. Fermat’s Little Theorem: Fourth Proof

On June 8, 1758 Euler presented “Theoremata arithmetic nova methodo
demonstrata” (E271) which includes his fourth proof of Fermat’s Little
Theorem, though Euler actually proves a generalization now called the
Euler-Fermat Theorem. Like E262, the method of proof involves little sym-
bolic algebra and many group theoretic ideas. It is instructive to compare
the proofs in E262 with those in E271.
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E262 began by considering the remainders when a geometric progression
1, a, a2, . . . where a was divided by p. E271 begins by considering the
remainders when an arithmetic progression a, a+d, a+2d, . . . was divided
by p.

Many of the results in E271 are analogous to those in E262: for example,
there must be terms with the same remainder. However there is a crucial
difference: if n is relatively prime to the difference d, then the n terms in the
arithmetic sequence from a to a + (n− 1)d must, upon division by n, yield
every number less than n as a remainder (Theorem 1); we have no such
guarantee of a complete set of remainders with the geometric sequence.

Euler takes advantage of the one-to-one correspondence between the re-
mainders 0, 1, 2, . . . , n − 1 and the terms of the arithmetic sequence a,
a + d, a + 2d, . . . , a + (n − 1)d in Theorem 2. If some remainder r is rel-
atively prime to n, then the corresponding term of the sequence a + νd is
also relatively prime to n; if r and n have a common factor, then so do
a + νd and n. Hence the number of terms in the sequence a, a + d, a + 2d,
. . . , a + (n − 1)d relatively prime to n is equal to the number of numbers
less than n that are relatively prime to n.

Since the number of numbers less than n that are relatively prime to
n seems to be important, Euler spends the next few pages delving into
the properties of what is now called the Euler φ-function (a notation first
used by Gauss). We note in passing that, although arithmetic sequences led
Euler to the φ-function, Euler then abandoned arithmetic sequences and
returned to the geometric progressions of E262.

The proof of the Euler-Fermat theorem begins with Theorem 7, which is
a repeat of a result from E262, namely that given any x relatively prime to
N , there must be some least power ν where xν leaves a remainder of 1 when
divided by N . Euler then shows (Theorem 8) that the remainders when the
sequence 1, x, x2, x3, . . . are divided by N are closed under multiplication
and exponentiation; the proof is by straightforward algebraic manipulation.
Thus (Theorem 9) the number of distinct remainders when the powers of x
are divided by N is either equal to the number of numbers less than N that
are relatively prime to it, or is a divisor of this number; this is a proof based
on the coset idea. This implies (Theorem 10—the Euler-Fermat Theorem)
that xν leaves a remainder of 1 when ν equals the number of numbers less
than N that are relatively prime to N , or some divisor of this number.
Since (in modern terms) if N is prime, then φ(N) = N − 1, this implies
Fermat’s Little Theorem in the form originally stated by Fermat; as in
E262, Euler did not indicate that Fermat suggested this might be true for
ν that divided φ(N).
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9. Results on Quadratic Forms

Let us now turn to quadratic forms (see Fermat’s Conjectures 4, 5, and
6). On September 9, 1741 Euler communicated further “curious proper-
ties” he had discovered about numbers of the form a2 ± mb2; additional
results followed on August 28, 1742, though he was as yet unable to prove
any of them. Most of these conjectures would appear (still unproven) in
“Theoremata circa divisores numerorum in hac forma paa± qbb contento-
rum” (E164), presented in 1747 to the Berlin Academy. Euler lists some 59
theorems on quadratic forms but only a handful of proofs. Many of Euler’s
conjectures coincide with Fermat’s: Euler’s Theorem 2 is Fermat’s Conjec-
ture 4; Theorem 5 is Conjecture 6, and Theorem 8 is an alternate form
of Conjecture 5. One is reminded uncomfortably of Wallis’s complaint: the
conjectures do not seem particularly profound, and little of consequence
seems to hinge on their truth or falsity.

On May 6, 1747 Euler wrote to Goldbach and announced:
I can now prove that, I. All prime numbers of the form 4n+1 are the sum
of two squares, and also II. All non-primes of the form 4n + 1, provided
they have no divisors of the form 4n− 1, are also the sum of two squares
[5, Vol. I, p. 415].

Euler’s proof is as follows: first, he shows that the product of two numbers
that are each the sum of two squares is likewise the sum of two squares;
next, if a number that is the sum of two squares is divisible by another
number that is the sum of two squares, then their quotient is likewise the
sum of two squares. Both proofs are based on symbolic manipulation. Next
Euler shows that if a number divides the sum of two squares relatively
prime to one another, then the number itself is the sum of two squares.
This is proven using Fermat’s method of infinite descent, and is one of the
few places where Euler used this particular method.

Finally, Euler is ready to prove the main result, that all primes p of the
form 4n + 1 are the sum of two squares. By Fermat’s Little Theorem, p
must divide a4n−b4n, so p must divide exactly one of a2n+b2n or a2n−b2n.
Euler claims (but is as yet unable to prove) that there must be a pair of
relatively prime numbers a, b where p cannot divide a2n−b2n; consequently
there exists a sum of squares that p divides, and hence p itself must be the
sum of two squares.

This proof, again largely unchanged, was presented to the Berlin Academy
on March 20, 1749 as “De numeris, qui sunt aggregata duorum quadrato-
rum” (E228). One especially interesting feature about E228 is that Euler
begins by listing all numbers less than 200 that are the sum of two squares
as well as the numbers less than 200 that are not the sum of two squares;
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he then uses observations on this list to help establish some conjectures
(which he then proves).

For example, it is trivial to show algebraically that if N = a2 + b2, then
N must either be divisible by 4, or of the form 8n + 1 or 8n + 2. We know,
of course, not to expect the converse to be true, but we also know that
denying the automatic validity of the converse is a learned, not instinctive,
response. Euler simply pointed to the list to provide counterexamples to
the converse.

It took a little over a year for Euler to complete the proof; again, the
first appearance of the final proof was in a letter to Goldbach (April 12,
1749). In order to prove that there must be some a, b for which p does not
divide a2n − b2n, Euler considers the sequence

1, 22n, 32n, 42n, . . . , (4n)2n

Then the first differences

22n − 1, 32n − 22n, 42n − 32n, . . . , (4n)2n − (4n− 1)2n

cannot all be divisible by p, since if they are, then all the differences are so
divisible, and in particular the 2nth difference will be. But the 2nth differ-
ence will equal (2n)! which cannot be divisible by p (since by assumption
p = 4n + 1 is prime). Subsequently Euler presented “Demonstratio theore-
matis Fermatiani omnem numerum primum formae 4n + 1 esse summam
duorum quadratorum” (E241) to the Academy (October 15, 1750)

Euler’s next major results on quadratic forms make up one of his more in-
teresting papers, “Specimen de usu observationum in mathesi pura” (E256),
presented to the Berlin Academy on November 22, 1753. Here Euler makes
his method of approaching a problem very clear; ironically, Euler is not
able to get very far in his investigations!

Literally translated, E256 is “Examples of the use of observation in pure
mathematics.” Among other things, Euler is showing that observation (and
conjecture) play a crucial role in the development of a mathematical idea.
In E256 Euler lists all numbers less than 500 of the form a2 + 2b2. From
this list he makes eight observations; Observation 7 is the same as Fer-
mat’s Conjecture 6. Euler then proves many of these observations, mainly
through clever symbolic manipulation, though Euler’s proof of Theorem 9
(no number of the form 2a2 + b2 is divisible by a prime not of that form)
uses Fermat’s method of infinite descent. The stumbling block is showing
that every prime p must divide some number of the form 2a2 + b2.

At this point Euler notes that the proof applies to ma2 + b2 only as long
as m+1

4 does not exceed 4; worse yet, since 3(1)2 +12 = 4 has prime divisor
2 6= 3a2 + b2, the method only works for m = 1 (the sum of two squares)
and m = 2 (the sum of a square and twice another square). Thus by the
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end, Euler notes he is unable to make significant headway on Fermat’s
Conjecture 6.

It took six more years before Euler made further progress on quadratic
forms. “Supplementum quorundam theorematum arithmeticorum, quae in
nonnullis demonstrationibus supponuntur” (E272) was presented to the St.
Petersburg Academy on October 15, 1759. As in the earlier papers, Euler
is able to show, through clever algebraic manipulation, that every prime
divisor of a number of the form a2 + 3b2 is itself of the same form. Thus
if p is a prime of the form 6n + 1, then p must divide a6n − b6n, and so p
divides either a2n− b2n or a4n + a2nb2n + b4n. If p divides the latter factor,
we are done, since f2 +fg+g2 =

(
f + 1

2g
)2 +3

(
1
2g

)2. Euler then considers
the differences

22n − 1, 32n − 1, 42n − 1, . . . , (6n)2n − 1

which cannot all be divisible by p, since in that case the 2nth differences
would also be divisible by p, and the 2nth differences are (2n)!.

E272 is near the beginning of significant slowdown in Euler’s work on
number theory. In 26 years Euler published 25 papers on number theory;
during the 1750s alone Euler presented 13 papers on the subject. But during
the 1760s, Euler would only present four papers on number theory (one of
which had been originally presented in the 1750s). It was not until 1770
that Euler resumed his earlier pace in publishing papers on number theory.
That year marked the publication of his Algebra, which contained a proof
of the impossibility of integer solutions to x3 + y3 = z3.

10. Fermat’s Last Theorem

In his correspondence, Fermat claimed or implied the impossibility for
n = 3 and n = 4, but only a sketch for the proof of the n = 4 case has been
found. The only reference to the famous “last theorem” in its full generality
occurs in the Diophantus of 1670, and it is not until February 25, 1748 that
Euler mentions Fermat’s Last Theorem:

Fermat says in his Observations on Diophantus that the equation xn =
yn +zn is impossible among the rationals, except for the cases n = 1 and
n = 2; that is, a sum of two cubes cannot be a cube, nor can the sum
of two biquadrates be a biquadrate, nor in general can the sum of two
higher powers equal a like power [5, Vol. I, p. 446].

Euler had already proven the n = 4 case. On June 23 and August 16, 1738,
he presented “Theorematum quorundam arithmeticorum demonstrationes”
(E98). The theorem in question is that neither the sum nor difference of two
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biquadratics could be a square (i.e., x4±y4 = z2 has no integral solutions).
This particular theorem has two corollaries of consequences: first, it implies
the impossibility of integral solutions to x4 + y4 = z4. Second, it proves
Fermat’s Conjecture 1. Euler noted that a proof of this last had already
been given by Frenicle de Bessy, but it depended on properties of right
triangles and was so obscure and convoluted that it took considerable effort
to understand. Thus Euler sought and presented a clearer and more analytic
proof. The proof is largely accomplished through symbolic algebra and a
few parity arguments. There are very few new methods in this proof.

Euler claimed a proof of the n = 3 case as early as August 4, 1753, but
this proof did not appear until his Algebra (1770), and the proof presented
is incomplete. Portions of the proof in the Algebra are reminiscent of work
done by Euler in E272; indeed, Euler noted a possible connection between
his work in E272 and a proof of Fermat’s Last Theorem. The connection for
the n = 3 case is this: if x3± y3 = z3, then z3 = (x± y)(x2±xy + y2). But
this second factor is x2±xy+y2 = x2±xy+ 1

4y2+ 3
4y2 =

(
x± y

2

)
+3

(
1
2y

)2.
Hence the sum or difference of two cubes factors into a product consisting
of the sum or difference of their roots, and a number expressible as p2+3q2.
We may assume that x, y, and z have no common factors; hence one factor
of z must be a number of the form p2 + 3q2. Euler assumed without proof
that numbers of this form are products of primes of this form. In a like
manner, other quadratic forms may play a role as factors of numbers of the
form xn ± yn. Unfortunately neither Euler nor anyone else would be able
to convert this speculation into a viable proof.

For the n = 3 case Euler factored p2 + 3q2 as (p + q
√
−3)(p − q

√
−3).

Through the use of this variant of Gaussian integers, and an implicit as-
sumption of unique factorization, Euler was able to construct a descent
proof that showed the impossibility of the n = 3 case. As in his proof for
the n = 4 case, Euler’s proof rested primarily on symbolic manipulations
and parity arguments, and introduced little in the way of new methods.

The Algebra marked Euler’s return to number theory, and soon he would
return to and even exceed the pace he set before his slow decade of the
1760s. But while the pre-1760 papers broke new ground, established power-
ful new tools, and reinvented the subject as one fit for serious mathematical
investigation, the post-1770 papers were, by and large, of little significance.
Fortunately Euler’s work had inspired a new convert to number theory: his
successor at Berlin, Joseph Louis Lagrange. Lagrange and later Legendre
would carry the investigation of number theory forward until the age of
Gauss.
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Euler and Lotteries
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1. Introduction

Generally there are two kinds of lotteries. The first, and probably the
oldest, is to have m tickets sold to m players, where the tickets are uniquely
numbered, say 1, 2, . . . , m. A winning number is determined by drawing
one of the m numbers at random. The second kind, typically called a lotto,
is to have each of the m players choose r numbers from a set of n numbers.
At the draw t numbers are chosen at random without replacement from
the n available. A winning number is determined by a player matching the
selected combination chosen. Euler analyzed both kinds of lotteries.

The first style of lottery dates from at least the fifteenth century or earlier
[Ewen 1972]. Earliest evidence is from the Low Countries, particularly cities
such as Ghent, Utrecht and Bruges. The first French lottery dates from the
1530s and the first English one from the 1560s. In this kind of lottery as it
evolved in the sixteenth and seventeenth centuries, winning numbers were
chosen using two lottery wheels, as illustrated in William Hogarth’s famous
engraving The Lottery 1 . One wheel contained the m tickets and the other
wheel contained m slips, some with a prize to be awarded written on it and
the remainder blank indicating no prize. A lottery with, for example, one

1 The engraving may be viewed on various internet sites. See for example,
http://www.library.northwestern.edu/spec/hogarth/Politics2.html.

LOL-Ch18-P1 of 10

 Leonhard Euler: Life, Work and Legacy
 Robert E. Bradley and . Edward Sandifer (Editors)
© 2007 Elsevier B.V. All rights reserved

C



386 D. R. Bellhouse

large prize, ten secondary prizes and one hundred third prizes would have
111 non- blank slips, one for each of the 111 prizes to be awarded, and m−
111 blanks. Both wheels were rotated. To determine the prize allocation, a
lottery ticket from one wheel was drawn without replacement and matched
to a slip drawn from the other wheel, again without replacement. This
continued until all the prizes were distributed. Drawings from this type of
lottery, which for convenience will be called a blanks and prizes lottery,
could take several days or weeks.

Modern lotteries of this type have tickets printed in multiples of 10b for
b typically of value 3, 4, 5, or 6. Each digit of the ticket takes one of the
numbers 0 through 9. Prizes are awarded by matching the last two digits
of the ticket, the last three and so on to matching all the digits for the
largest prize. This simplifies the drawing of the winning numbers. Winning
numbers can be drawn by choosing independently at random b integers
from 0 through 9 using b machines with numbered balls in them.

The lotto was an Italian invention. In its original form five (= t) num-
bers were chosen at random and without replacement from one hundred
(= n) probably by mixing one hundred numbered pieces of rolled parch-
ment in a box and having an unbiased observer draw five. Players could
bet on correctly guessing any one, two, three, four or all five of the five
numbers drawn. These bets were called extrait, ambe, terne, quarterne and
quine respectively. Tradition has it that the lotto grew out of betting on
the outcomes of elections by lot in Genoa in the early seventeenth century.
[Bellhouse 1991] has assessed the evidence and found it conflicting; sev-
enteenth century sources on the Genoese election system show that there
were only two people elected out of a pool of 100 and it was not by lot.
To add to the mythology, the lotto’s invention was attributed to a man
named Benedetto Gentile [Ewen 1972]. Interestingly, benedetto is the Ital-
ian word for “blessed” and gentile is the word for “kind” so that the in-
ventor’s name was probably invented to reflect an avid player’s perception
of this game (blessed) and his appeal to the goddess of fortune (kind).
Part of the mythology was in place by the 1660s. A broadside [Anon 1662]
promoting a Genoese-style lottery in England claimed that the lottery was
invented by the state of Genoa “for their pleasure and fortune in the choice
of their senators.”

A common modern lotto that is run in Canada and several European
countries is the 6/49 in which six numbers are chosen from 49. One differ-
ence from the Genoese lotto is that the modern player chooses six numbers
for a ticket and wins prizes depending upon how many of the player’s
numbers turn up in the draw rather than betting on one or two, or more,
specific numbers to show. The other major difference is that in the modern
lotto the prize distribution is based on a pari-mutuel system while in the
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Genoese version there were fixed payoffs for each of the bets. The Genoese
system could lead to bankruptcy of the lottery promoter if a large prize
were won and only a few tickets were sold.

2. Euler’s First Analysis

Whatever the true origins of the lotto were, it spread throughout Europe
during the mid-eighteenth century. It first showed up in Vienna in 1752
[Palgrave 1912] under Empress Maria Teresa of Austria. France was next
to take on this lottery; it was initially proposed by two Italians, writer and
librettist Ranieri de’ Calzabigi (also Calsabigi) and the adventurer Giacomo
Casanova [Serwer 2005], [Stigler 2003]. Calzabigi was the first director of
the French lotto, taking a cut of the proceeds, and Casanova received a
pension and six sales offices as his reward. The lottery ran under the name
Loterie de l’École militaire. Prussia, under Frederick II, followed in 1763
with the implementation of its lotto; the lottery ran out of Berlin. There
was again a Calzabigi and Casanova connection. Ranieri’s younger brother,
Anton Maria, was the one who convinced Frederick to start the lottery
[Serwer 2005]. Casanova arrived in Berlin two years after the beginning of
the lottery. According to Casanova [1970], the Berlin lotto “was doing well,
and fortunately had never suffered an unlucky drawing.” By the time of
Casanova’s arrival, Frederick was trying to put the financial risk of the
lottery operation onto Calzabigi and Casanova offered Calzabigi some help
in trying to convince Frederick to continue to underwrite the risk. The last
draw in 1765 lost Frederick twenty thousand crowns [Casanova 1970]. The
next year Frederick had a new director of the Prussian lottery, the music
critic, theorist and composer, Friedrich Wilhelm Marpurg [Brown 2005].

From Prussia the lotto spread through several other German states. The
Austrian lottery is still running today under the name of Zahlenlotto; the
French lottery ceased operation in 1836 and the Prussian lottery in 1810.
By the eighteenth century, n was reduced from 100 to 90 and t remained
at 5.

In the same year that Prussia ran its first lotto, Euler read a paper
before the Berlin Academy giving a detailed and general analysis of it. 2

Bradley [Bradley 2004] has given a concise description of Euler’s analysis
of this lotto as well as Euler’s later writings on this lotto. Euler’s paper
was published posthumously [E812]. One of the basic results that Euler

2 Euler’s papers and letters dealing with problems in probability, including lotteries,

have been translated into English by Richard J. Pulskamp and can be found on the
internet at http://cerebro.xu.edu/math/Sources/Euler/.
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obtained was to find a formula for winning the bet of correctly guessing r
of the t numbers chosen out of the total of n available at the lottery draw.
He did this for the cases r = 1 . . . 5 since r = 1 is the extrait bet, r = 2
is the ambe bet, and so on. Euler showed that the probability of correctly
guessing r is given by

r∏
i=1

(t− i + 1)

r∏
i=1

(n− i + 1)
.

This is the reduced form of the hypergeometric probability r

r

  n− r

t− r


 n

t


after expanding the combinatorial symbols and simplifying. Euler argued
directly to the reduced form using products of conditional probabilities.
Euler then went beyond the common simple bets and considered all possi-
ble betting outcomes that could be obtained from this game. Suppose at
the draw t numbers are drawn from n and the player bets on r numbers
to show. Euler found the probability that a player would be correct on
s = 0, 1, 2, . . . , r of his numbers to show, again for the cases r ≤ 5. Euler
obtained, again in reduced form, the hypergeometric probabilities r

s

  n− r

t− s


 n

t

 (1)

Using these probability calculations, Euler calculated three practical sce-
narios for payouts on all the bets and took into account the possibility of
taking a profit for the lottery promoters. The payout on any bet was pro-
portional to the inverse of the probability of winning that bet.

Euler’s 1763 presentation of his analysis of the lotto before the Berlin
Academy was probably motivated by the running of the first Prussian lotto
that year. The results that Euler obtained all had a practical motivation in
the context of a generalization of the 5/90 lottery bounded by the typical
bets of the day on this lotto. Further, the origins of Euler’s interest in
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the lotto probably stem from a practical question posed to him by his
employer Frederick II in 1749. In a letter dated September 15 of that year
[Euler 1986], Frederick asked Euler to examine a lottery scheme that had
been proposed to him by another Italian, this one named Roccolini. Euler’s
response, which came two days later, contains all the elements and issues
that he covered in 1763 but in a more simplified fashion.

There were previously published analyses of the Genoese lotto with at
least two in the eighteenth century, [Bernoulli 1709] and [de Bessy 1729].
In Nicolaus Bernoulli’s case the analysis formed part of his doctoral thesis
on the use of probability in law. For Frenicle de Bessy, writing in the 1660s
or 70s, it was an example he used to illustrate combinatorial calculations.
Both obtained the result in (1) for n = 100, t = 5, r = 5 and 1 ≤ s ≤ 5 ,
i.e. only the cases of a player picking five numbers and correctly matching
some or all of the five numbers chosen at the draw. Based on the payouts
that were known in his time Bernoulli also computed the expected return
in the lottery run in his day. Euler seems to have been unaware of these
earlier analyses.

Why was the 1763 paper not published in Euler’s lifetime? Was Euler
informed of the earlier work and then chose not to publish? That seems
unlikely since Euler’s results were more general in scope than the earlier
work. There are at least two other possible explanations. The first is that
Euler may have presented his 1763 paper only to celebrate or advertise
the first Prussian lotto and never intended to have his analysis printed. In
a later comment on probability calculations regarding the prize structure
in the lotto [E338], Euler said that probability calculations for the prizes
were quite easy to obtain from basic probability arguments. Euler’s initial
analysis had been lying around since 1749 when he responded to his king’s
request; now that the lotto was actually being run it was time to make these
basic and simple results public. Another explanation is through Euler’s
strained relationship with Frederick II, which is described in, for example,
[Cajori 1927]. Euler handled most of the administrative work in the Berlin
Academy after the death of the Academy’s president Maupertuis in 1759.
Despite Euler’s work, Frederick allowed the presidency to remain open and
then made himself president in 1763 after failing to convince D’Alembert to
take the position. That same year Frederick wrote to Euler about another
lottery proposition. In the letter [Euler 1986], Frederick asked Euler “not
[to] make a scandal of it again” 3 with respect to the calculations he made
on it. Perhaps Frederick was angered by Euler’s 1763 presentation of his
lotto analysis. It revealed what could or should be paid as prizes; and that

3 From Pulskamp’s translation of the letter.
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almost certainly differed from what was actually paid, which probably was
a much lesser amount. Consequently, the paper was not published.

3. Euler’s Later Analyses

Euler’s first analysis of the lotto was highly practical in the sense that
it analyzed an actual lottery in play by giving rules for determining the
payoffs in the prize structure. His next paper on the lotto was read before
the Berlin Academy in 1765 [E338]. It bore no relation to any of the typical
bets being made in the lotto and so was, perhaps, safe on political grounds.
It was also an analysis of a challenging mathematical problem using the
lotto as a model. The problem was to determine the probability of seeing
sequences of numbers in the lotto draw [E338]. Again in the lotto, at any
draw, t numbers are chosen at random without replacement from the n
available; a lotto player can bet on seeing r ≤ t of the numbers from the
set of n numbers.

A sequence of length l is any run of l consecutive numbers in the numbers
drawn. If t numbers are drawn for the lotto there is only one possible
sequence of length t, two possible sequences, one of length t−1 and another
of length 1 and so on to t possible sequences each of length 1 (or equivalently
no sequences of consecutive numbers). The enumeration of sequences is a
problem in partitions. Euler refers to the different types of partitions as
“species”. For t = 5 and general n the possible types of partitions are in

Total Number

Euler’s Species Lengths Number of distinct

‘Species’ Descriptions l of Types of

Number Sequences Sequences

I a, a + 1, a + 2, a + 3, a + 4 5 1 1

II a, a + 1, a + 2, a + 3, b 4, 1 1 2

III a, a + 1, a + 2, b, b + 1 3, 2 1 2

IV a, a + 1, a + 2, b, c 3, 1, 1 3 2

V a, a + 1, b, b + 1, c 2, 2, 1 3 2

VI a, a + 1, b, c, d 2, 1, 1, 1 4 2

VII a, b, c, d, e 1, 1, 1, 1, 1 5 1

Table 1

The enumeration of species for t = 5
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table 1, where a, b, c, d and e are integers such that 1 ≤ a, b, c, d, e ≤ n.
The probability of seeing a certain type of “species” or partition appear

is the number of ways in which the partition can occur divided by the
number of selections of the t numbers from n. Euler proceeds to find these
probabilities. On a case-by-case basis Euler evaluated all the probabilities
for each type of partition for general n and t = 2, 3, 4, 5, 6 . Once he worked
his way up to t = 6, Euler then gave a general formula for the probability.
Suppose that the lotto draw, of t numbers from n, yields a partition in
which there are k sequences with only p distinct types of them. Suppose
further that in the partition there are αi sequences each of length li , where
i = 1, . . . , p. Then

∑p
i=1 αili = t and

∑p
i=1 αi = k. Euler’s formula for the

probability that this particular partition will show is
k∏

j=1

(n− t− j + 2)

/
p∏

i=1

αi! n

t

 . (2)

For example, in the table above take Euler’s “Species [partition] IV”. In
this case p = 2, k = 3 with α1 = 1, l1 = 3, α2 = 2, and l2 = 1. Then
1 · 3 + 2 · 1 = 5 = t, 1 + 2 = 3 = k and the probability in (2) reduces to

3 · 4 · 5(n− 5)(n− 6)
n(n− 1)(n− 2)(n− 3)

,

as obtained by Euler for this special case. As noted in [Bradley 2004] prior
to this lottery paper Euler had already studied partitions extensively.

Euler’s next research into lotteries was again motivated by a practical
problem. In 1763 a proposal was made to Frederick II for a lottery to be
run in Cleves, one of the territories under Prussian control. Frederick wrote
to Euler about the proposal to ask his opinion of it. It was a blanks and
prizes lottery with a twist to it. There were five classes, or sets of drawings,
of the lottery over the course of a year. The lottery was to be run yearly
for ten years. In each of the five draws there were 50,000 ticket numbers
with 8,000 prizes. The twist was that at the end of the five draws if a ticket
number had never been selected for a prize it was given a small consolation
prize for up to 30,000 tickets. Euler noted the uncertainty involved for the
lottery promoter since there could be as few as 10,000 consolation prizes
if all the numbers were different over the five draws and as high as 42,000
if the same set of 8000 numbers were drawn five times in a row. Euler
also noted that it was highly unlikely that the extremes would occur and
thought that the number of consolation prizes was more likely to be around
the middle value of 26,000.
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Although Euler’s analysis of this lottery was published in the proceedings
of the Berlin Academy [E412], it was not submitted to the Academy until
1769, after Euler had returned to St. Petersburg. This may have reflected
Frederick’s possible unease with a public analysis of a lottery in operation.
Euler’s practical motivation for his analysis that he gave in his paper was
a thinly disguised version of the 1763 proposal given to him by Frederick.
Euler stated that the lottery proposal shown to him had five classes with
10,000 tickets and 1,000 prizes, again with a consolation prize if the ticket
number had not been drawn in any of the five draws. He immediately
generalized the problem to k classes with m tickets and p prizes. He then
went on to calculate the complete probability distribution for the number of
consolation prize winners at the end of the k draws. From a very complex
distribution he showed that the expected payoff for a consolation prize
valued at 1 per winner is very simply expressed as

(m− p)
(

m− p

m

)k−1

. (3)

For the lottery that Frederick initially asked Euler about, the expected
number of winners, obtained on setting m = 50, 000 and p = 8, 000 in
(3), is 20,991 rather than the middle value 26,000. Euler generalized the
problem further by allowing the number of prizes to vary over the draws.

Euler continued to use the lotto as a model for problems in probability. In
1785 he considered the following problem [E600]. Suppose a lotto in which
t numbers are chosen without replacement from n is run d times. What is
the probability that at least n − x of the numbers show in the d draws of
the lottery? Again, this is not motivated by a practical gambling problem.
Rather, it is a difficult mathematical problem given in a real context. Euler
showed that the probability is given by n

t

d

+
n−x−t∑

i=1

(−1)i

 x + i− 1

x

  n

x + i

  n− x− i

t

d

 n

t

d
.

Euler’s method of demonstration of the results in the problem differs
from his earlier work on lotteries. In his first three papers, Euler started
from the simpler cases, derived the results and moved to the general case.
In this paper Euler starts with the general solution and then provides some
examples.

The general problem tackled by Euler in this last paper originates in
Problems 18 and 19 of De Moivre[De Moivre 1711]. There De Moivre used
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a single die as his model so that for his situation t = 1 and n is the number
of faces on the die. Further, De Moivre considered the cases in which a
specified number of the faces on the die show. [Todhunter 1865] (p. 160)
notes that, besides Euler, a number of authors looked at the problem over
the years 1772-1795. Euler wrote his paper after he had become blind so
that he may not have been familiar with the papers on the same problem
written in the 1770s.

Euler carried out some other work in probability, analysing the card
games Treize and Pharaon, for example. He also investigated problems in
the calculation of life annuities. Probability and its applications were not
Euler’s main mathematical interest, making up only a very small fraction of
his total research output. What he did produce in the area of lotteries was
of high quality, tackling both practical problems for actual lotteries that
were run and difficult mathematical problems posed within a gambling
framework.
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In addition to all his other mathematical achievements, Euler discovered
the first significant results in many fields of modern combinatorics. In this
chapter, we survey this work spread over some fourteen publications.

In the first section, we consider Euler’s work on partitions of integers, fo-
cusing on three articles and a book that span his career. The second section
addresses various types of squares that Euler considered — magic, Graeco-
Latin, and chessboards. The final section samples Euler’s contributions to
the study of binomial coefficients, the Catalan numbers, derangements, and
the Josephus problem. We omit the bridges of Königsberg and the polyhe-
dral formula as they are treated elsewhere in this volume.

1. Partitions

In 1699 Leibniz wrote to Johann Bernoulli asking about “divulsions of
integers,” now called partitions. A basic problem is determining the number
p(n) of ways that a positive integer n can be written as the sum of positive
integers; for example, p(4) = 5, corresponding to the sums 4, 3 + 1, 2 + 2,
2+1+1 and 1+1+1+1. Variations of this basic problem ask for partitions
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of n into a given number of parts, or into distinct parts, odd parts, etc. For
example, we can write the number 10 as the sum of exactly three positive
numbers in eight ways,

8 + 1 + 1 7 + 2 + 1 6 + 3 + 1 6 + 2 + 2

5 + 4 + 1 5 + 3 + 2 4 + 4 + 2 4 + 3 + 3

Notice that four of these are partitions with distinct parts.
The first publication on partitions of integers came from a presentation

that Euler made in 1741 to the St. Petersburg Academy [E158]. Euler
answered two questions posed by Philip Naudé and stated what became
known as the pentagonal number theorem. We present his arguments from a
later publication, his celebrated Introductio in Analysin Infinitorum [E101],
in which his main method of proof is generating functions; Euler often
repeated his results on partitions, in some cases providing multiple proofs.

Naudé’s Question 1: In how many ways can the number 50 be written as
the sum of seven distinct positive integers? To answer this, Euler considered
the following infinite product in x and z, organized in increasing powers of
z.

(1 + xz) (1 + x2z)(1 + x3z)(1 + x4z)(1 + x5z)(1 + x6z) · · ·

= 1 + z(x + x2 + x3 + x4 + x5 + x6 + x7 + x8 + · · · )

+z2(x3 + x4 + 2x5 + 2x6 + 3x7 + 3x8 + 4x9 + 4x10 + · · · )

+z3(x6 + x7 + 2x8 + 3x9 + 4x10 + 5x11 + 7x12 + · · · )

+ · · ·

(1)

What does a term such as 4x10z3 indicate? Each x10z3-term arises from
one of the four products x7z · x2z · xz, x6z · x3z · xz, x5z · x4z · xz, and
x5z · x3z · x2z. These products correspond to the above four ways that we
can write 10 as a partition of three distinct positive integers.

However, we do not want to have to compute the coefficient of x50z7

from the terms of this infinite product. Writing m(µ)i for the number of
ways of writing m as the sum of µ “inequal” integers, Euler established the
following recurrence relation:

(m + µ)(µ)i = m(µ)i + m(µ−1)i

With this, it is not hard to compute 522 as the answer to Naudé’s first
question.

Naudé’s Question 2: In how many ways can the number 50 be written
as the sum of seven positive integers, equal or unequal? Here Euler con-

LOL-Ch19-P2 of 14



Euler’s Science of Combinations 397

sidered another infinite product in x and z, this time with factors in the
denominator.

1
(1− xz) (1− x2z) (1− x3z) · · ·

=
(

1
1− xz

) (
1

1− x2z

) (
1

1− x3z

)
· · ·

= (1 + xz + x2z2 + x3z3 + · · · )(1 + x2z + x4z2 + · · · ) · · ·

= 1 + z(x + x2 + x3 + x4 + x5 + x6 + x7 + x8 + · · · )

+z2(x2 + x3 + 2x4 + 2x5 + 3x6 + 3x7 + 4x8 + 4x9 + · · · )

+z3(x3 + x4 + 2x5 + 3x6 + 4x7 + 5x8 + 7x9 + 8x10 + · · · )

+ · · ·

(2)

Here, a term such as 8x10z3 indicates the eight ways (given above) that
we can write 10 as the sum of three positive integers. Again, there is a
recurrence relation. Writing m(µ) when the parts need not be distinct,
Euler established the following equation:

m(µ) = (m− µ)(µ) + (m− 1)(µ−1)

¿From this, we can determine that the answer to Naudé’s second question
is 8496. But Euler first established a connection between the two questions.
He deduced the number of partitions with µ distinct parts from the formula

m(µ)i =
(

m− µ(µ− 1)
2

)(µ)

— in particular, the number of unrestricted seven-part partitions of 50 is
equal to the number of distinct seven-part partitions of 50 + 21 = 71.
Euler also discussed the connection between the numbers of parts in a and
the maximum number of parts; for example, 8496 is also the number of
partitions of 50− 7 = 43 that use only the numbers 1, 2, . . . , 7.

This revolutionary paper ends with a celebrated formula that Euler had
mentioned in his correspondence (see [B]), but had not yet proved. If we
let z = 1 in equation (2) we can combine the expressions in x to give

1
(1− x)(1− x2)(1− x3) · · ·

= 1 + x + 2x2 + 3x3 + 5x4 + 7x6 + 11x7 + 15x8 + 22x9 + · · ·

where the coefficient of xk is the total number of unrestricted partitions of
k. But now consider the reciprocal of this infinite product. From extensive
computations Euler concluded that
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P = (1− x)(1− x2)(1− x3) · · ·
= 1− x− x2 + x5 + x7 − x12 − x15 (3)

+x22 + x26 − x35 − x40 + x51 + · · ·

where the exponents are the generalized pentagonal numbers, (3k2 ± k)/2.
This result is now known as Euler’s pentagonal number theorem.

Euler devoted a chapter of his 1748 Introductio [E101] to partitions,
expanding on the results from the previous article. It includes one of the
most striking and elegant applications of generating functions to partitions.
Letting z = 1 in equation (1) and combining the expressions in x we obtain

Q = (1 + x)(1 + x2)(1 + x3)(1 + x4)(1 + x5)(1 + x6) · · ·
= 1 + x + x2 + 2x3 + 2x4 + 3x5 + 4x6 + 5x7 + 6x8 + 8x9 + · · ·

where the coefficient of xk is the total number of partitions of k into distinct
parts. Again, we consider the reciprocal of this infinite product. With the
infinite product P as defined in equation (3), we note that the terms of

PQ = (1− x2)(1− x4)(1− x6) · · ·
are factors of P , so that we can divide P by PQ. This leaves

P

PQ
=

(1− x)(1− x2)(1− x3) · · ·
(1− x2)(1− x4)(1− x6) · · ·

= (1− x)(1− x3)(1− x5) · · · = 1
Q

so that Q can now be written as

Q =
1

(1− x)(1− x3)(1− x5) · · ·

=
(

1
1− x

) (
1

1− x3

) (
1

1− x5

)
· · ·

= (1 + x + x2 + x3 + · · · )(1 + x3 + x6 + x9 + · · · ) · · ·
= (1 + x + x1+1 + x1+1+1 + · · · )(1 + x3 + x3+3 + x3+3+3 + · · · ) · · ·

in which the coefficient of xk gives the number of partitions of k into odd
parts, not necessarily distinct. This proves a surprising theorem:

The number of partitions of k into distinct parts equals the number of
partitions of k into odd parts.

As an example, note that there are six partitions of the number 8 into
distinct parts (8, 7 + 1, 6 + 2, 5 + 3, 5 + 2 + 1, and 4 + 3 + 1) and six
partitions of 8 into odd parts (7 + 1, 5 + 3, 5 + 1 + 1 + 1, 3 + 3 + 1 +
1, 3 + 1 + 1 + 1 + 1 + 1, and 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1).

The chapter concludes with generating-function proofs of the facts that
each positive integer can be expressed uniquely as a sum of distinct powers
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of 2 and can also be uniquely expressed as a sum and difference of distinct
powers of 3.

Euler continued his exploration of partitions with a paper presented in
early 1750 [E191]. This is his longest article on partitions, filled not so much
with new material, but rather with numerous examples and tables. Writing
n(∞) for what is now known as p(n), he established that

n(∞) = (n− 1)(1) + (n− 2)(2) + (n− 3)(3) + · · ·+ (n− n)(n)

which he then used recursively to suggest a recurrence relation for n(∞);
this also follows from the still unproved pentagonal number theorem (3).

n(∞) = (n− 1)(∞) + (n− 2)(∞) − (n− 5)(∞)

−(n− 7)(∞) + (n− 12)(∞) + · · ·

Andrews [A] asserts that “No one has ever found a more efficient algorithm
for computing p(N). It computes a full table of values of p(n) for n ≤ N
in time O(N3/2).”

Later in 1750, in a letter to Christian Goldbach, Euler finally proved
the pentagonal number theorem (3). He eventually published two proofs,
and also considered properties of the pentagonal numbers themselves, such
as that each pentagonal number is one-third of a triangular number; see
Bell [B] for a detailed account of this pentagonal-number result throughout
Euler’s work. Interestingly, the function that sums the divisors of a number
— for example,

∫
10 = 1 + 2 + 5 + 10 = 18 in Euler’s notation — shares

almost the same recurrence relation; Euler also devoted several articles to
this divisor function.

Euler returned to partitions once more in a presentation of 1768 [E394],
in which he combined two previous restrictions on partitions – the number
of parts and how large each part can be. The running example for much
of the article used only 1, 2, . . . , 6 as parts, and Euler’s computation of the
coefficients in (x + x2 + · · · + x6)n was simplified by the use of various
recurrence relations; for example, Euler established that

n(6) =
(n− 1)(n− 1)(6) − (48− n)(n− 6)(6) − (43− n)(n− 7)(6)

n− 6
as an example of the formulas that can be derived from these methods.

The article also considers the problem of partitions with varying con-
straints. In particular, Euler considered three-part partitions where the
first part is 6 or less, the second is 8 or less, and the third is 12 or less. The
576 resulting partitions of the numbers from 3 to 26 are specified by the
coefficients of

(1 + x + · · ·+ x6)(1 + x + · · ·+ x8)(1 + x + · · ·+ x12)
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whose computations are simplified by generating-function techniques. The
coefficients for xk, k = 3, 4, . . . , 14 are as follows:

exponent 3 4 5 6 7 8 9 10 11 12 13 14

coefficient 1 3 6 10 15 21 27 33 38 42 45 47

The coefficients of xk for k = 15, 16, . . . , 26 are the reverse of these, from
47 down to 1.

Although Euler was not the first mathematician to consider generating
functions or partitions of integers — De Moivre [dM] had used generating
functions in 1718 to analyze multiple-step recurrence relations — he was the
first to treat them in a thorough and general way. A thorough early history
of partitions, drawing on some of Euler’s correspondence and including
work of his contemporaries, is given in Dickson [D]. Generating functions
have since become an essential tool in combinatorics and number theory,
“a clothes line on which we hang up a sequence of numbers for display”
(see Wilf [W]). Even though Hardy and Ramanujan obtained a stunning
exact formula for the partition number p(n), the theory of partitions has
remained a very active area of research with many impressive results and
many outstanding problems (see Andrews and Eriksson [AE]). Even so, we
can still agree with Andrews [A] that “Almost every discovery in partitions
owes something to Euler’s beginnings.”

2. Squares

In 1776, Euler delivered a short article On magic squares to the St.
Petersburg Academy [E795]. Such an arrangement of integers, already long
familiar, is an n × n square with the numbers 1, 2, . . . , n2 arranged in such
a way that the numbers in each row, each column, and each of the two
diagonals have the same sum. After discussing what this sum must be,
Euler introduced Latin and Greek letters to help him to analyze magic
squares: each Latin letter stands for a multiple of n from 0 to n(n− 1) and
each Greek letter has a value from 1 to n. With each individual cell assigned
both a Latin and a Greek letter in such a way that no pair is repeated, he
was able to determine values for the letters so that the sums give a magic
square. An example of such a 3 × 3 square is given in Table 1. Note that
the left-hand square has each letter occurring exactly once in each row and
column, and is an example of what is now known as a Graeco-Latin square
(because of Euler’s notation).

A 4 × 4 non-Graeco-Latin square appears in Table 2, with the associated
magic square obtained by using the specified values. Although the square is
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aγ bβ cα 2 9 4

bα cγ aβ 7 5 3

cβ aα bγ 6 1 8

Table 1
Graeco-Latin square for n = 3 and associated magic square from a = 0, b = 6, c = 3; α =
1, β = 3, γ = 2.

aα aδ dβ dγ 1 4 14 15

dα dδ aβ aγ 13 16 2 3

bδ bα cγ cβ 8 5 11 10

cδ cα bγ bβ 12 9 7 6

Table 2
Non-Graeco-Latin square for n = 4 and associated magic square from a = 0, b = 4, c =
8, d = 12; α = 1, β = 2, γ = 3, δ = 4.

not Graeco-Latin (notice that α appears twice in the first column, a twice
in the first row), it still yields a magic square. Euler’s article closes with
descriptions (depending on whether n is even or odd) of how to construct
magic squares of any size.

Euler remained interested in the problem of Graeco-Latin squares. Three
years later, in 1779, he presented one of his longest published papers, Inves-
tigations on a new type of magic square [E530]. It begins with the celebrated
“36-officers problem:”

Six regiments are each represented with six officers, one per rank — can
they be placed in a 6 by 6 formation such that there is one officer of each
regiment in each row and column, and one officer of each rank in each
row and column?

Euler claimed that the answer is no, and embarked on a thorough study of
Graeco-Latin and Latin squares.

By the second page, Euler had replaced his Graeco-Latin notation with
pairs of numbers, the second written in superscript; we give an example
in Table 3. He gave several general methods for building Latin squares, of
which the “double march” is illustrated in Table 3 on the right — notice
how the square divides into four smaller Latin squares involving 1 and 2 or
3 and 4. There are also single, triple, and quadruple marches.

He also used these methods (and others) to build Graeco-Latin squares
of odd order and orders that are multiples of 4; however, none of the meth-
ods produced a 6 × 6 Graeco-Latin square. Euler suspected that there are
none, claiming that he would have come across one in his investigation
if any existed, while recognizing that an exhaustive search would be very
lengthy. There is no formal conjecture of the general case, but he stated
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11 43 24 32 1 2 3 4

22 34 13 41 2 1 4 3

33 21 42 14 3 4 1 2

44 12 31 23 4 3 2 1

Table 3
Revised notation for Graeco-Latin squares, and example of a “double march.”

that a Graeco-Latin square of order 4k + 2 would have to be “completely
irregular” and seemed to doubt that there are such. Euler’s article also
includes enumeration of Latin squares of small orders under certain con-
ditions and a discussion of collections of Latin squares any two of which
can be combined into a Graeco-Latin square. For example, notice in Table
3 that the Latin square of base numbers on the left can be combined with
the Latin square on the right to make a Graeco-Latin square, and the same
is true for the Latin square of superscript numbers.

An exhaustive search in the next century verified Euler’s conjecture for
6 × 6 Graeco-Latin squares, showing that Euler was right about the 36
officers problem. However, the general 4k + 2 conjecture was shown to be
false in 1960 by Bose, Shrikhande and Parker (see Klyve and Stemkoski
[KS] for details); this result was so unexpected that it was reported on the
front page of the New York Times. A related research area is that of finding
“mutually orthogonal Latin squares:” are there n− 1 Latin squares of size
n × n with the property that any two of them constitute a Graeco-Latin
square? (The three 4 × 4 Latin squares of Table 3 are an example.) This
is an area of contemporary research (see Mullen [M]).

Recently, there have been uninformed claims in the media that Euler
invented the popular number puzzle Sudoku in which 9 × 9 Latin squares
satisfy the additional requirement that no number should be repeated in
the principal 3 × 3 subsquares. While a completed Sudoku puzzle is a Latin
square, none of Euler’s 9 × 9 examples of Latin squares has the form of
a Sudoku puzzle. The closest he came were the 4 × 4 examples of Table
3 (each set of numbers in the left-hand square), which coincidentally have
the additional structure that each 2 × 2 corner contains 1, 2, 3, and 4.

However, Euler did write on a topic in recreational mathematics that
relates to squares. His paper Solution of a curious question that does not
seem to have been subject to any analysis is based on a 1759 presentation to
the Berlin Academy about knight’s tours on chess boards of various sizes
[E309]. The question is how to have a knight make its L-shaped moves
around the board and visit each square exactly once (now known as a
Hamiltonian cycle!). Euler demonstrated many such tours on standard 8
× 8 and other size boards, often producing tours with high degrees of
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symmetry. A knight’s tour is shown by labeling consecutive positions, as
in Tables 4 and 5.

37 62 43 56 35 60 41 50

44 55 36 61 42 49 34 59

63 38 53 46 57 40 51 48

54 45 64 39 52 47 58 33

1 26 15 20 7 32 13 22

16 19 8 25 14 21 6 31

27 2 17 10 29 4 23 12

18 9 28 3 24 11 30 5

Table 4

Closed knight’s tour of an 8 × 8 board with half-turn symmetry about the center of the
board.

For an n × n board, the labels are 1, 2, . . . , n2 — could a knight’s tour
give rise to a magic square? This is not a question Euler posed; the closest
such path given in the article is the 5 × 5 example of Table 5: the diagonals,
as well as rows and columns including the center, all sum to 65, but this
seems coincidental. Computers have recently been used to conclude that
there are no 8 × 8 “Euler knight tours,” but if the requirement about
diagonal sums is removed, then there are 140 such tours (see Jelliss [J]).

7 12 17 22 5

18 23 6 11 16

13 8 25 4 21

24 19 2 15 10

1 14 9 20 3

Table 5
Non-closed knight’s tour of a 5 × 5 board.

3. Other Topics

Binomial coefficients

Many of Euler’s articles incorporate binomial coefficients; here we high-
light three articles that consider properties of these numbers with integer
arguments.
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In a 1776 presentation to the St. Petersburg Academy [E575], primarily
about integrals, Euler collected several facts about binomial coefficients,
using notations very similar to those used today. One primary result, in
modern notation, is the following equation:(

n

0

)(
p

q

)
+

(
n

1

)(
p

q + 1

)
+ · · · =

(
p + n

q + n

)
Later in the same year, Euler presented an article generalizing binomial

coefficients to higher-degree polynomials [E584]. He first reviewed the re-
lationship between (

n

p

)
and the coefficients of (1 + z)n, and properties such as the sum of squares
(a special case of the preceding formula) and(

n + 1
p + 1

)
=

(
n

p

)
+

(
n

p + 1

)
Euler then moved on to trinomial, quadrinomial, and higher-order coeffi-
cients. In particular, the coefficients of (1+z+zz+z3)n (to use his notation
for squares) for small values of n are given in the following partial table,
where the columns correspond to the degree of z.

n\k 0 1 2 3 4 5 6 7 8 9 10 11 12 13

0 1

1 1 1 1 1

2 1 2 3 4 3 2 1

3 1 3 6 10 12 12 10 6 3 1

4 1 4 10 20 31 40 44 40 31 20 10 4 1

5 1 5 15 35 65 101 135 155 155 135 101 65 35 15

6 1 6 21 56 120 216 336 456 546 580 546 etc.

Table 6

Coefficient of zk in (1 + z + z2 + z3)n, the quadrinomial coefficients.

He showed that these coefficients, indexed here with 4, satisfy(
n + 1
p + 3

)
4

=
(

n

p + 3

)
4

+
(

n

p + 2

)
4

+
(

n

p + 1

)
4

+
(

n

p

)
4

and the general relationship(
n

0
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4

(
m

0

)
4

+
(

n

1

)
4

(
m

1

)
4

+ · · · =
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3n

)
4

.
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In 1778, Euler returned to these coefficients in another presentation in
the same venue [E709]. By writing

(1 + z + zz + z3)n = (1 + z(1 + z + zz))n,

he related the quadrinomial coefficients to the binomial and trinomial ones.
For example, again writing subscripts for the degree so that binomial coef-
ficients are indexed by 2, we have(

n

4

)
4

=
(

n

4

)
2

(
4
0

)
3

+
(

n

3

)
2

(
3
1

)
3

+
(

n

2

)
2

(
2
2

)
3

+
(

n

1

)
2

(
1
3

)
3

=
(

n

4

)
2

+ 3
(

n

3

)
2

+ 3
(

n

2

)
2

Catalan numbers

In a letter of 4 September 1751 to Christian Goldbach [EG], Euler dis-
cussed the problem of finding the number of different ways that a polygon
can be broken into triangles using diagonals. After considering several ex-
amples, he gave the formula

2 · 6 · 10 · 14 · 18 · 22 · · · (4n− 10)
2 · 3 · 4 · 5 · 6 · 7 · · · (n− 1)

which we now call the (n-2)nd Catalan number, usually written as

1
n− 1

(
2n− 4
n− 2

)
.

Euler closed his letter with the generating function associated with this
sequence, a topic that he and Goldbach discussed in subsequent correspon-
dence:

1 + 2a + 5a2 + 14a3 + 42a4 + 132a5 + · · · = 1− 2a−
√

1− 4a

2a2

Derangements

Many of Euler’s articles discuss probability and games of chance, espe-
cially lotteries. One that is relevant here is his Calculation of the proba-
bility in the game of coincidence [E201], published in 1753. Two players
have identical decks of cards, shuffled, which they turn over one at a time.
If they turn over the same card at any turn, the first player wins and the
game ends. The second player wins only if the cards are different at every
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turn. Euler explained that this is equivalent to numbering the cards and
checking to see if the second player turns over card n on turn n, and showed
that the probability of the second player winning is

1
2
− 1

6
+

1
24
− 1

120
+

1
720

− · · · = 1
e

In 1779, Euler returned to this topic with The solution of a curious
question in the science of combinations, presented to the St. Petersburg
Academy [E738]. No longer motivated by the card game, he asked for the
number of ways that the sequence a, b, c, d, e, ..., can be reordered such that
no letter is in its original position. We will write D(n) for this, suggest-
ing the later name “derangement” for such an ordering. Euler derived the
following two identities, and showed their equivalence:

D(n) = (n− 1)(D(n− 1) + D(n− 2)),

D(n) = nD(n− 1) + (−1)n

The Josephus problem

We close with another topic in recreational mathematics, a staple of
discrete mathematics textbooks. Suppose that n people stand in a circle.
Moving clockwise, we remove every kth person. Which person is the last to
be removed? This is known as the Josephus Flavius problem, named for the
Jewish historian and general and an intricate suicide pact which left him
the last man standing. In Observations about a new and singular type of
progression, presented to the St. Petersburg Academy in 1771 [E476], Euler
included several tables of data. For instance, with fifteen people, removing
every fourth one gives the following order of removal:

4, 8, 12, 1, 6, 11, 2, 9, 15, 10, 5, 3, 7, 14, 13

He then analyzed the general problem to develop a recursive procedure
for determining the number of the last person removed. In many cases the
recursive step is just adding the number skipped to the previous answer.
To demonstrate that the procedure is feasible, Euler gave the computations
to show that if there are 5000 people and every ninth person is removed,
then the last one standing is number 4897.

Note: Euler’s publications are cited below by their Eneström number.
All are reprinted in Leonhard Euleri Opera omnia, abbreviated OO. Most
are available electronically at The Euler Archive, http://eulerarchive.org,
which also links to some English translations.
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H. Fuss ed., 1845.

J. G. Jelliss Knight’s Tour Notes, http://home.freeuk.net/ktn/
KS. D. Klyve and L. Stemkoski, Graeco-Latin Squares and a Mistaken

Conjecture of Euler, College Mathematics Journal 37 (2006) 2–15.
dM. A. de Moivre, The Doctrine of Chances: A Method of Calculating

the Probabilities of Events in Play, 1718. (Reprinted: American
Mathematical Society, 2000.)

M. G. Mullen, A Candidate for the “Next Fermat Problem,” The
Mathematical Intelligencer 17 (1995) 18–22.

W. H. Wilf, generatingfunctionology, Academic Press, 1990.

LOL-Ch19-P14 of 14



The Truth about Königsberg
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Euler’s 1736 paper on the bridges of Königsberg is widely regarded as the
earliest contribution to graph theory–yet Euler’s solution made no mention
of graphs. In this paper 1 we place Euler’s views on the Knigsberg problem
in their historical context, present his method of solution, and trace the
development of the present-day solution.

1. What Euler didn’t do

A well-known recreational puzzle concerns the bridges of Königsberg. It
is claimed that in the early eighteenth century the citizens of Königsberg
used to spend their Sunday afternoons walking around their beautiful city.
The city itself consisted of four land areas separated by branches of the
river Pregel over which there were seven bridges, as illustrated in Figure 1.

1 This article has previously appeared in The College Mathematics Journal, 35(3), pp.

198–207. It won The Mathematical Association of America’s George Pólya Award in
2005. It is included here with the kind permission of The Mathematical Association of
America.
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Fig. 1. Königsberg

The problem that the citizens set themselves was to walk around the city,
crossing each of the seven bridges exactly once and, if possible, returning
to their starting point.

If you look in some books on recreational mathematics, or listen to some
graph-theorists who should know better, you will ‘learn’ that Leonhard
Euler investigated the Königsberg bridges problem by drawing a graph of
the city, as in Figure 2, with a vertex representing each of the four land
areas and an edge representing each of the seven bridges. The problem is
then to find a trail in this graph that passes along each edge just once.

Fig. 2. The Königsberg graph

But Euler didn’t draw the graph in Figure 2—graphs of this kind didn’t
make their first appearance until the second half of the nineteenth century.
So what exactly did Euler do?
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Fig. 3. Seventeenth-century Königsberg

2. The Königsberg bridges problem

In 1254 the Teutonic knights founded the Prussian city of Königsberg
(literally, king’s mountain). With its strategic position on the river Pregel,
it became a trading center and an important medieval city. The river flowed
around the island of Kneiphof (literally, pub yard) and divided the city into
four regions connected by seven bridges: Blacksmith’s bridge, Connecting
bridge, High bridge, Green bridge, Honey bridge, Merchant’s bridge, and
Wooden bridge: Figure 3 shows a seventeenth-century map of the city.
Königsberg later became the capital of East Prussia and more recently
became the Russian city of Kaliningrad, while the river Pregel was renamed
Pregolya.

In 1727 Leonhard Euler began working at the Academy of Sciences in
St Petersburg. He presented a paper to his colleagues on 26 August 1735
on the solution of ‘a problem relating to the geometry of position’: this
was the Königsberg bridges problem. He also addressed the generalized
problem: given any division of a river into branches and any arrangement
of bridges, is there a general method for determining whether such a route
exists?

In 1736 Euler wrote up his solution in his celebrated paper in the Com-
mentarii Academiae Scientiarum Imperialis Petropolitanae under the title
‘Solutio problematis ad geometriam situs pertinentis’ [2], numbered E53 in
the Eneström index. Euler’s diagram of the Königsberg bridges appears in
Figure 4. Although dated 1736, Euler’s paper was not actually published
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until 1741, and was later reprinted in the new edition of the Commentarii
(Novi Commentarii . . . ) which appeared in 1752.

Fig. 4. Diagram from Euler’s 1736 paper

A full English translation of this paper appears in several places—for
example, in [1] and [6]. The paper begins:

1. In addition to that branch of geometry which is concerned with dis-
tances, and which has always received the greatest attention, there is an-
other branch, hitherto almost unknown, which Leibniz first mentioned,
calling it the geometry of position [Geometriam situs]. This branch is
concerned only with the determination of position and its properties; it
does not involve distances, nor calculations made with them. It has not
yet been satisfactorily determined what kinds of problem are relevant
to this geometry of position, or what methods should be used in solv-
ing them. Hence, when a problem was recently mentioned which seemed
geometrical but was so constructed that it did not require the measure-
ment of distances, nor did calculation help at all, I had no doubt that it
was concerned with the geometry of position—especially as its solution
involved only position, and no calculation was of any use. I have there-
fore decided to give here the method which I have found for solving this
problem, as an example of the geometry of position.

2. The problem, which I am told is widely known, is as follows: in
Königsberg . . .

This reference to Leibniz and the geometry of position dates back to 8
September 1679, when the mathematician and philosopher Gottfried Wil-
helm Leibniz wrote to Christiaan Huygens as follows [5]:

I am not content with algebra, in that it yields neither the shortest
proofs nor the most beautiful constructions of geometry. Consequently,

LOL-C20-P4 of 12



The Truth about Königsberg 413

in view of this, I consider that we need yet another kind of analysis,
geometric or linear, which deals directly with position, as algebra deals
with magnitudes . . .

Leibniz introduced the term analysis situs (or geometria situs), meaning
the analysis of situation or position, to introduce this new area of study.
Although it is sometimes claimed that Leibniz had vector analysis in mind
when he coined this phrase (see, for example, [8] and [11]), it was widely
interpreted by his eighteenth-century followers as referring to topics that
we now consider ‘topological’—that is, geometrical in nature, but with no
reference to metrical ideas such as distance, length or angle.

3. Euler’s Königsberg letters

It is not known how Euler became aware of the Königsberg bridges prob-
lem. However, as we shall see, three letters from the Archive Collection of
the Academy of Sciences in St Petersburg [3] shed some light on his interest
in the problem (see also [10]).

Carl Leonhard Gottlieb Ehler was the mayor of Danzig in Prussia (now
Gdansk in Poland), some 80 miles west of Königsberg. He corresponded
with Euler from 1735 to 1742, acting as intermediary for Heinrich Kühn,
a local mathematics professor. Their initial communication has not been
recovered, but a letter of 9 March 1736 indicates they had discussed the
problem and its relation to the ‘calculus of position’:

You would render to me and our friend Kühn a most valuable service,
putting us greatly in your debt, most learned Sir, if you would send us the
solution, which you know well, to the problem of the seven Königsberg
bridges, together with a proof. It would prove to be an outstanding ex-
ample of the calculus of position [Calculi Situs], worthy of your great
genius. I have added a sketch of the said bridges . . .

Euler replied to Ehler on 3 April 1736, outlining more clearly his own
attitude to the problem and its solution:

. . . Thus you see, most noble Sir, how this type of solution bears little
relationship to mathematics, and I do not understand why you expect a
mathematician to produce it, rather than anyone else, for the solution is
based on reason alone, and its discovery does not depend on any math-
ematical principle. Because of this, I do not know why even questions
which bear so little relationship to mathematics are solved more quickly
by mathematicians than by others. In the meantime, most noble Sir, you
have assigned this question to the geometry of position, but I am igno-
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Fig. 5. Ehler’s letter to Euler

rant as to what this new discipline involves, and as to which types of
problem Leibniz and Wolff expected to see expressed in this way . . .

Around the same time, on 13 March 1736, Euler wrote to Giovanni Mari-
noni, an Italian mathematician and engineer who lived in Vienna and was
Court Astronomer in the court of Kaiser Leopold I. He introduced the
problem as follows (see Figure 6):

A problem was posed to me about an island in the city of Königsberg,
surrounded by a river spanned by seven bridges, and I was asked whether
someone could traverse the separate bridges in a connected walk in such
a way that each bridge is crossed only once. I was informed that hitherto
no-one had demonstrated the possibility of doing this, or shown that it
is impossible. This question is so banal, but seemed to me worthy of
attention in that geometry, nor algebra, nor even the art of counting was
sufficient to solve it. In view of this, it occurred to me to wonder whether
it belonged to the geometry of position [geometriam Situs], which Leibniz
had once so much longed for. And so, after some deliberation, I obtained
a simple, yet completely established, rule with whose help one can imme-
diately decide for all examples of this kind, with any number of bridges
in any arrangement, whether such a round trip is possible, or not . . .
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4. Euler’s 1736 paper

Euler’s paper is divided into twenty-one numbered paragraphs, of which
the first ascribes the problem to the geometry of position as we saw above,
the next eight are devoted to the solution of the Königsberg bridges problem
itself, and the remainder are concerned with the general problem. More
specifically, paragraphs 2–21 deal with the following topics (see also [12]):

Fig. 6. Euler’s letter to Marinoni

Paragraph 2. Euler described the problem of the Königsberg bridges and
its generalization: ‘whatever be the arrangement and division of the river
into branches, and however many bridges there be, can one find out whether
or not it is possible to cross each bridge exactly once?’
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Paragraph 3. In principle, the original problem could be solved exhaus-
tively by checking all possible paths, but Euler dismissed this as ‘laborious’
and impossible for configurations with more bridges.

Paragraphs 4–7. The first simplification is to record paths by the land
regions rather than bridges. Using the notation in Figure 4, going south
from Kneiphof would be notated AB whether one used the Green Bridge
or the Blacksmith’s Bridge. The final path notation will need to include
an adjacent A and B twice; the particular assignment of bridges a and b
is irrelevant. A path signified by n letters corresponds to crossing n − 1
bridges, so a solution to the Königsberg problem requires an eight-letter
path with two adjacent A/B pairs, two adjacent A/C pairs, one adjacent
A/D pair, etc.

Paragraph 8. What is the relation between the number of bridges connect-
ing a land mass and the number of times the corresponding letter occurs in
the path? Euler developed the answer from a simpler example (see Figure
7). If there is an odd number k of bridges, then the letter must appear
(k + 1)/2 times.

Fig. 7. A simple case

Paragraph 9. This is enough to establish the impossibility of the desired
Königsberg tour. Since Kneiphof is connected by five bridges, the path
must contain three As. Similarly, there must be two Bs, two Cs, and two
Ds. In Paragraph 14, Euler records these data in a table.

region A B C D

bridges 5 3 3 3

frequency 3 2 2 2

Summing the final row gives nine required letters, but a path using each of
the seven bridges exactly once can have only eight letters. Thus there can
be no Königsberg tour.

Paragraphs 10–12. Euler continued his analysis from Paragraph 8: if
there is an even number k of bridges connecting a land mass, then the
corresponding letter appears k/2+1 times if the path begins in that region,
and k/2 times otherwise.
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Paragraphs 13–15. The general problem can now be addressed. To il-
lustrate the method Euler constructed an example with two islands, four
rivers, and fifteen bridges (see Figure 8).

Fig. 8. A more complicated example

This system has the following table, where an asterisk indicates a region
with an even number of bridges.

region A∗ B∗ C∗ D E F ∗

bridges 8 4 4 3 5 6

frequency 4 2 2 2 3 3

The frequencies of the letters in a successful path are determined by the
rules for even and odd numbers of bridges, developed above. Since there
can be only one initial region, he records k/2 for the asterisked regions. If
the frequency sum is one less than the required number of letters, there is
a path using each bridge exactly once that begins in an asterisked region.
If the frequency sum equals the required number of letters, there is a path
that begins in an unasterisked region. This latter possibility is the case
here: the frequency sum is 16, exactly the number of letters required for
a path using 15 bridges. Euler exhibited a particular path, including the
bridges:

E a F b B c F d A e F f C g A h C i D k A m E n A p B o E l D.

Paragraph 16–19. Euler continued with a simpler technique, observing
that:

. . . the number of bridges written next to the letters A, B, C, etc. to-
gether add up to twice the total number of bridges. The reason for this
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is that, in the calculation where every bridge leading to a given area is
counted, each bridge is counted twice, once for each of the two areas
which it joins.

This is the earliest version known of what is now called the handshaking
lemma. It follows that in the bridge sum, there must be an even number
of odd summands.

Paragraph 20. Euler stated his main conclusions:

If there are more than two areas to which an odd number of bridges lead,
then such a journey is impossible.
If, however, the number of bridges is odd for exactly two areas, then the
journey is possible if it starts in either of these two areas.

If, finally, there are no areas to which an odd number of bridges lead,
then the required journey can be accomplished starting from any area.

Paragraph 21. Euler concluded by saying:

When it has been determined that such a journey can be made, one still
has to find how it should be arranged. For this I use the following rule: let
those pairs of bridges which lead from one area to another be mentally
removed, thereby considerably reducing the number of bridges; it is then
an easy task to construct the required route across the remaining bridges,
and the bridges which have been removed will not significantly alter the
route found, as will become clear after a little thought. I do not therefore
think it worthwhile to give any further details concerning the finding of
the routes.

Note that this final paragraph does not prove the existence of a journey
when one is possible, apparently because Euler did not consider it necessary.
So Euler provided a rigorous proof only for the first of the three conclusions.
The first satisfactory proof of the other two results did not appear until
1871, in a posthumous paper by Carl Hierholzer (see [1] and [4]).

5. The modern solution

The approach mentioned in the first section developed through diagram-
tracing puzzles discussed by Louis Poinsot [7] and others in the early-
nineteenth century. The object is to determine whether a figure can be
drawn with a single stroke of the pen in such a way that no edge is repeated.
Considering the figure to be drawn as a graph, the general conditions in
Paragraph 20 take the following form:
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If there are more than two vertices of odd degree, then such a drawing
is impossible.

If, however, exactly two vertices have odd degree, then the drawing is
possible if it starts with either of these two vertices.

If, finally, there are no vertices of odd degree, then the required drawing
can be accomplished starting from any vertex.

So the 4-vertex graph shown in Figure 2, with one vertex of degree 5
and three vertices of degree 3, cannot be drawn with a single stroke of the
pen so that no edge is repeated. In contemporary terminology, we say that
this graph is not Eulerian. The arrangement of bridges in Figure 8 can
be similarly represented by the graph in Figure 9, with six vertices and
fifteen edges. Exactly two vertices (E and D) have odd degree, so there
is a drawing that starts at E and ends at D, as we saw above. This is
sometimes called an Eulerian trail.

Fig. 9. The graph of the bridges in Figure 8

However, it was some time until the connection was made between Euler’s
work and diagram-tracing puzzles. The ‘Königsberg graph’ of Figure 2
made its first appearance in W. W. Rouse Ball’s Mathematical Recreations
and Problems of Past and Present Times [9] in 1892.

Background information, including English translations of the papers of Euler [2] and

Hierholzer [4], can be found in [1]; an English translation of Euler’s paper also appears

in [6].
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(cah. 10) (1810) 16–48.
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The Polyhedral Formula
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Carlisle, PA 17013
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On November 14, 1750 Leonhard Euler sent a letter from Berlin to his
friend Christian Goldbach in St. Petersburg announcing his discovery of
a simple relationship between the features on a polyhedron [19, p. 332–3].
This observation, now known as Euler’s polyhedral formula, is one of the
most beloved theorems in mathematics. (A 1990 survey of mathematicians
found the polyhedral formula to be the second most beautiful theorem in
all of mathematics [40].) Euler stated the theorem as follows [11] 1 .

THEOREM: In every solid enclosed by plane faces, the number of faces
along with the number of solid angles exceeds the number of edges by two.

This relationship is typically expressed as F −E + V = 2 where F , E, and
V denote the number of faces, edges, and vertices of a polyhedron.

Euler wrote two papers on the polyhedral formula, both published in
1758. The first paper, written in 1750, contains the statement of the the-
orem [10], and the second, written the following year, contains his proof
[11] (henceforth we shall refer to them by their Eneström index numbers,
E230 and E231, respectively). Euler wrote these two papers because he was
interested in classifying all polyhedra. He wanted to develop the theory of
stereometry (solid geometry) just as it had been developed for planimetry
(planar geometry). He did not achieve his goal of classifying all polyhedra,
and he never returned to this topic after publishing these two papers.

Euler’s seemingly elementary observation proved to be an important the-
orem in mathematics that was generalized in many directions. The ideas

1 A full English translation of [11] can be found at [12].
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contained in Euler’s formula were later extended to polyhedra with non-
trivial topology, polyhedra in higher dimensions, planar graphs, topological
of surfaces, other topological spaces, and abstract algebraic entities. From
these generalizations countless applications were found.

In this paper we present Euler’s proof of the polyhedral formula. We look
closely at his hypotheses and his proof, discuss the flaw in his argument
and show how it can be repaired. We also present the related work of
other mathematicians prior to 1850. It is during this period that the theory
for polyhedra develops, whereas after 1850 the focus becomes much more
topological.

1. The polyhedral formula

In his letter to Goldbach, Euler wrote, “It astonishes me that these gen-
eral properties of stereometry have not, as far as I know, been noticed by
anyone else” [19]. In 1750 all of the accumulated knowledge about poly-
hedra was metric. There were many theorems and formulas about volume,
surface area, angle measures, inscribability, etc. No one prior to Euler (ex-
cept, as we will see, Descartes) looked at polyhedra with an eye toward
their combinatorial properties.

It was not only the formula that went unnoticed prior to 1750. In this
same letter Euler described “the junctures where two faces come together
along their sides, which, for lack of an accepted term, I call acies” [19].
Until he gave them a name, no one had explicitly referred to the edges of
a polyhedron. Acies is a Latin term which is comonly used for the sharp
edge of a weapon, a beam of light, or an army lined up for battle. Giving
a name to this feature may seem to be a trivial point, but it is not. It is a
crucial observation that the edge of a polyhedron is an important feature to
count. For the faces of a polyhedron Euler uses the well established Latin
term hedra, which translates to face or base. He refers to the vertices of a
polyhedron as angulus solidus, or solid angles.

It is clear that Euler understood the importance of these three features.
In E230 he wrote [10]:

Therefore three kinds of bounds are to be considered in any solid body;
namely 1) points, 2) lines and 3) surfaces, or, with the names specially
used for this purpose: 1) solid angles, 2) edges and 3) faces. These three
kinds of bounds completely determine the solid.

Viewed in this light we see that Euler’s formula is a way of relating objects
of different dimensions – the zero-dimensional vertices, one-dimensional
edges, and two-dimensional faces. This theorem and Euler’s 1736 solution to
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the Bridges of Königsberg problem [9] were among the earliest contributions
to the young field of analysis situs, or topology.

In E230 Euler begins his study of stereometry. In this paper he states the
polyhedral formula, and he verifies that it holds for a variety of polyhedra,
but he is unable to give a proof. In E231 he recalls:

After the consideration of many types of solids I came to the point where
I understood that the properties which I had perceived in them clearly
extended to all solids, even if it was not possible for me to show this in a
rigorous proof. Thus, I thought that those properties should be included
in that class of truths which we can, at any rate, acknowledge, but which
it is not possible to prove.
Then in E231 he gives a proof. The idea of the proof is to cut away

vertices, one at a time, until four vertices remain. This excision is done in
such a way that F −E +V remains unchanged at each step. At the end the
resulting polyhedron is a triangular pyramid which satisfies the polyhedral
formula. Thus the original polyhedron does as well. We now give Euler’s
argument in more detail.

Begin with a polyhedron P having F faces, E edges, and V vertices.
Choose any vertex O of P . We must remove O in such a way that that
the resulting polyhedron P ′ has V − 1 vertices. O can be any vertex of P ,
but if P is a pyramid we may wish to avoid choosing O as the apex, for
in this case P ′ will collapse into a polygon (although Euler remarks that
a polygon, thought of as a polyhedron with two faces, still satisfies the
formula).

Remove O by cutting away triangular pyramids. For each excised pyra-
mid one vertex is O and the other three are vertices adjacent to O in P . A
simple case is shown in Figure 1.

Fig. 1. Removing the vertex O by cutting away pyramids

More specifically, if the degree of O is n, then the n vertices adjacent
to O form a (perhaps nonplanar) n-gon. By adding n − 3 diagonals we
triangulate this polygon into n− 2 triangles, T1, . . . , Tn−2. The n− 2 pyra-
mids we cut away have the triangles Ti as bases and the vertex O as the
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apex. Notice that since there are several ways to triangulate a polygon, this
decomposition is not unique.

We must now determine the number of faces and edges in P ′. First we
make two simplifying assumptions: that all of the faces of P meeting at
O are triangular, and that no pair of neighboring triangles Ti and Ti+1

are coplanar (the polyhedron in Figure 1 has both of these properties). In
this case, we cut away the n faces meeting at O and added back the n− 2
triangles, T1, ..., Tn−2. Likewise we cut away the n edges meeting at O and
added back the n−3 edges between the Ti. Thus, P ′ has F −n+(n−2) =
F − 2 faces and E − n + (n− 3) = E − 3 edges.

Now, consider the case that there are ν nontriangular faces meeting at
O. When the triangular pyramids are removed they cut through these ν
faces, and in each case leave behind part of a face and create a new edge
(see Figure 2). So, we remove n faces and add back n−2+ν, and we remove
n edges and add back n− 3+ ν. Thus P ′ has F − 2+ ν faces and E− 3+ ν
edges.

Fig. 2. When this vertex is removed we find ν = 1 (middle) and µ = 1 (right).

Suppose that among the triangles T1, . . . , Tn−2 on P ′ there are µ pairs
of coplanar neighbors (see Figure 2). Each pair of such neighbors merge to
form a single face, thus we lose one edge and one face. So, in total we add
back µ fewer faces and µ fewer edges. Thus, P ′ has F − 2+ ν−µ faces and
E − 3 + ν − µ edges.

Although the numbers of edges and faces may go up or down when a
vertex is removed, the difference between the number of edges and the
number of faces decreases by one,

(E − 3 + ν − µ)− (F − 2 + ν − µ) = E − F − 1.

Continue cutting away vertices in this way, removing n in total, until only
4 remain. Thus we obtain a triangular pyramid (with 4 faces and 6 edges).
The difference in the number of edges and faces is E − F − n = 6− 4 = 2
and the number of vertices is V −n = 4. Solving for n and substituting we
have E − F − (V − 4) = 2, or F − E + V = 2.
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Although we omit the proof here, Euler uses this same technique to prove
a second theorem, that the sum of all the plane angles of a polyhedron is
2π(V − 2) (a plane angle is an angle in the polygon forming a face of the
polyhedron). In E230 Euler proved that this theorem is equivalent to the
polyhedral formula. He was the first mathematician to publish the angle
sum formula, but, as we will see, it was known to Descartes.

2. The flaw and the repair

In 1924 Henri Lebesgue pointed out that Euler was not sufficiently careful
when he gave his proof of the polyhedral formula [22]. The first problem
is that he never defines the objects he is studying. The second problem is
that he is too casual when describing the decomposition process. As we
will see, Euler’s proof fails for both convex and for nonconvex polyhedra.
However, in the case of convex polyhedra, Euler’s proof can be salvaged.

Euler does not use the word polyhedron. Instead he refers to “solids
enclosed by plane faces” (solida hedris planis inclusa). We could take
this phrase to be synonymous with polyhedron, but in 1750 there was no
explicitly-stated definition of polyhedron either. As Poincaré wrote, “the
objects occupying mathematicians were long ill defined; we thought we
knew them because we represented them with the senses or the imagina-
tion; but we had of them only a rough image and not a precise concept
upon which reasoning could take hold” [30]. It is reasonable to believe that
Euler, like the Greeks, made the unstated assumption that every polyhe-
dron is convex. It was not until the nineteenth century that mathematicians
attempted to formulate a precise definition. One should consult Lakatos’
excellent book [21] for an extended discussion of the many attempts to
define polyhedron.

Convexity is important for Euler’s decomposition algorithm. It may be
impossible to cut away a vertex when the polyhedron is not convex in its
vicinity (such as the vertices around the waist of the hourglass in Figure 3).
It may be impossible to remove a locally convex vertex when the polyhedron
is nonconvex (such as the apex of the polyhedron in the center). As a
worst-case scenario it may be impossible to remove any single vertex using
Euler’s method. In the third polyhedron in Figure 3 the vertices located in
the indentations cannot be removed at all, and when the vertex located at
the center of a star is removed the number of vertices decreases by six, not
by one.

Problems may arise for convex polyhedra as well. Euler does not give
instructions for how to decompose a polyhedron. Instead he presents a few
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Fig. 3. Various counterexamples to Euler’s method of proof.

examples and describes how to decompose these polyhedra. The following
example shows that after a vertex is removed, a convex polyhedron may
become nonconvex. Here, the vertex to be removed, O, has four adjacent
vertices A, B, C, and D. He writes:

This can be done in two ways (Fig. 3 [our Figure 4]): two pyramids will
have to be cut away, either OABC and OACD or OABD and OBCD.
And if points A,B,C, D are not in the same plane the resulting solids
will have a different shape accordingly.

Fig. 4. Removing O yields a convex (middle) and a nonconvex (right) polyhedron.

It is not difficult to see that if A, B, C, and D are not coplanar, then one
of resulting solids will not be convex. He does not acknowledge that one
decomposition is acceptable and the other is not. This example shows that
Euler was not concerned, or not aware of issues of convexity when drafting
his proof.

Worse still, Lebesgue showed that it is possible to apply Euler’s algorithm
to a convex polyhedron and obtain a degenerate polyhedron that fails to
satisfy the polyhedral formula. In Figure 5 we see that one choice yields
a polyhedron while the other choice yields two polyhedra joined along an
edge. Similarly, we may obtain two polyhedra joined at a vertex or two
disjoint polyhedra (see Figure 6). None of these polyhedra are topological
balls. However, like the vertex O in Figure 5, the vertices labeled O in
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Fig. 5. Euler’s technique, applied to the polyhedron on the left may (middle) or may
not (right) produce a polyhedron.

Figure 6 can be removed in such a way that the resulting polyhedron is
convex.

Fig. 6. More degenerate polyhedra

Indeed, as Samelson shows in [33], given any convex polyhedron we can
decompose it in the way Euler intended. The only stipulation is that at each
stage in the decomposition, the pyramids must be chosen strategically, not
arbitrarily. Essentially, this amounts to finding a triangulation T1, ..., Tn−2

that preserves the convexity of the polyhedron.
Recall that the convex hull of a set is the smallest convex set containing

this set. It is easy to see that a polyhedron is convex if and only if it is
the convex hull of its vertex set. Thus, if we take the vertex set for P ,
remove the vertex O, and then take the convex hull, we obtain a convex
polyhedron P ′. Doing so creates a convex cap in place of the removed
vertex. This cap may produce the desired triangulation T1, ..., Tn−2, but in
some cases (corresponding to µ 6= 0) some of the new faces may have more
than three sides. These faces may be triangulated arbitrarily. Notice that
it is only in this case that the choices can be made in the removal of O.
Even in this case the resulting polyhedron P ′ is unique.
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3. Legendre’s proof

The first rigorous proof of the polyhedral formula was given by Adrien-
Marie Legendre in 1794. The proof appeared in the first edition of his
popular textbook Élements de Géométrie [23]. His elegant proof is not a
reworking of Euler’s proof, but presents a completely new and unexpected
approach. The proof is not a combinatorial proof, but instead it uses metric
properties of spheres.

The key ingredient in the proof is a theorem proved independently by
Thomas Harriot in 1603 [28] (he did not publish the result) and Albert
Girard in 1629 [16]. They showed that a geodesic triangle on a sphere of
radius r with interior angles a, b, and c has area

A = r2(a + b + c− π).

More generally, a geodesic polygon with interior angles a1, a2, . . . , an has
area

A = r2(a1 + . . . an − (n− 2)π).

To prove Euler’s formula, place the polyhedron inside a sphere (which
we assume to be the unit sphere) and project the edges and vertices onto
the sphere from the sphere’s center. In this way the faces of the polyhedron
project to geodesic polygons. The sphere has area 4π, but the area can also
be computed by summing the areas of the F geodesic polygons. By the
Harriot-Girard theorem, the area is

4π =
I∑

i=1

ai +
F∑

j=1

(nj − 2)π =
I∑

i=1

ai + π
F∑

j=1

nj − 2πF.

where the first sum is taken over all interior angles of all of the geodesic
polygons. Since the sum of the interior angles that meet at a vertex is 2π
we have Σai = 2πV . Since each edge borders two faces πΣnj = 2πE. Thus
we obtain

4π = 2πF − 2πE + 2πV.

Dividing by 2π we obtain Euler’s formula.
Legendre, like Euler, assumed his polyhedron was convex. That way we

can take any point inside the polyhedron to be the center of the sphere.
However, in 1810 in the appendix to [31] Louis Poinsot remarked that
Legendre’s proof applies without alteration to any polyhedron that has
such a central point from which the projection can be made (so-called star-
convex polyhedra). Thus, Poinsot was the first person to explicitly show
that some nonconvex polyhedra satisfy Euler’s formula.
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4. The exceptions of Lhuilier, Hessel, and Poinsot

At the beginning of the nineteenth century mathematicians were trying
to come to grips with Euler’s formula. They wanted to determine exactly
which polyhedra satisfied Euler’s formula, or using the terminology of Jo-
hann Friedrich Christian Hessel, which polyhedra were Eulerian.

Some stated the polyhedral formula only for convex polyhedra, not know-
ing or not caring that it held more generally. E. de Jonquières wrote that,
“in invoking Legendre, and like high authorities, one only fosters a widely
spread prejudice that has captured even some of the best intellects: that the
domain of validity of the Euler theorem consists only of convex polyhedra”
[7]. For, as D. M. Y. Sommerville writes, “convexity is to a certain extent
accidental, and a convex polyhedron might be transformed, for example,
by a dent or by pushing in one or more of the vertices, into a nonconvex
polyhedron with the same configurational numbers” [36]. Others erred in
the other extreme by stating that it applied to all polyhedra.

The first few decades of the nineteenth century saw several examples of
non-Eulerian polyhedra. In 1811 the Swiss mathematician Simon-Antoine-
Jean Lhuilier wrote a long paper on polyhedra [24] and submitted a memoir
to Joseph Diaz Gergonne’s journal Annales de Mathématiques, but it was
too long to print. (It is amusing to note that l’huilier means “the oilcan”
or “the one who oils,” thus Lhuilier may be called “The Oiler.”) In 1813
Gergonne published his own shortened account of Lhuilier’s paper [25] and
included in it ideas of his own.

In this memoir Lhuilier gives three classes of counterexamples to Euler’s
formula, or exceptions as he called them. An example of each type of ex-
ception is shown in Figure 7. The first polyhedron has a face that is not
simply connected—it is topologically an annulus. Lhuilier remarked that
every “inner polygon” within a face would increase by one the quantity
F − E + V . The second polyhedron has the shape of a polyhedral torus.
Lhuilier observed that each “tunnel” decreased the alternating sum by two.
Finally, the third example is a cube with a cube-shaped cavity in the inte-
rior. This exception was inspired by a mineral in the collection of his friend
Professor Pictet that had a colored crystal suspended inside a clear crystal
(In 1832 Hessel also found such a crystal—in his case he identified it as
a lead sulphide cube within a calcium chloride crystal [17].) Each cavity
increases the alternating sum by two.

Thus Lhuilier proposed a modified version of the polyhedral formula. A
polyhedron with T tunnels, C cavities, and P inner polygons satisfies

F − E + V = 2− 2T + P + 2C.

(This is the earliest incarnation of the topological theorem that the Euler
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Fig. 7. Lhuilier’s exceptions: annular faces, tunnels, and cavities

characteristic of a topological surface of genus g is 2− 2g)
In his account of Lhuilier’s work Gergonne wrote, “one will easily be

convinced that Euler’s Theorem is true in general for all polyhedra, whether
they are convex or not, except for those instances that will be specified” [25].
However, there are exceptions that do not fit comfortably into Lhuilier’s
three classes. In Figure 8 we see a polyhedron with a face possessing two
inner polygons that share a common vertex; a polyhedron with a branched
tunnel in it; a polyhedron with a torus-shaped cavity; and a polyhedral
torus without an obvious tunnel.

Fig. 8. Complicated polyhedra

In 1832 Hessel, a mineralogist who is most well-known for his mathe-
matical investigation of symmetry classes of minerals [2], presented five
exceptions to the polyhedra formula [17]. Shortly after submitting the pa-
per he learned of Lhuilier’s memoir from two decades earlier and discovered
that three of his five exceptions coincided with Lhuilier’s. Hessel believed
that many people were unaware of these important exceptions, so he de-
cided not to withdraw the publication [21]. His two new exceptions are
shown in Figure 9. One is a polyhedron formed from two polyhedra joined
along an edge and the other is a polyhedra formed from two polyhedra
joined at a vertex. It is debatable whether these figures should be classified
as polyhedra, but they certainly fail to satisfy the polyhedral formula.

In 1810 Poinsot wrote about the four star polyhedra shown in Figure 10
[31]. Unbeknownst to Poinsot, two of the four star polyhedra, the great and
small stellated dodecahedra, can be found in Kepler’s Harmonice Mundi
from 1619 [20], and prior to that they appeared in artwork by Wentzel
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Fig. 9. Hessel’s exceptions to the polyhedral formula

Jamnitzer and Paolo Uccello, respectively. Poinsot was the first to present
the other two polyhedra, the great dodecahedron and the great icosahedron,
in a mathematical context, although the former is also seen in the artwork
of Jamnitzer. This collection of four polyhedra is now referred to as the
Kepler-Poinsot polyhedra.

Fig. 10. The Kepler-Poinsot polyhedra: great and small stellated dodecahedra, the great

dodecahedron, and the great icosahedron

The Kepler-Poinsot polyhedra are not exceptions to Euler’s formula if
they are viewed as nonconvex polyhedra formed from triangular faces. How-
ever, both Kepler and Poinsot imagined that these polyhedra had self-
intersecting faces and were in fact regular. For instance, when we view
the great dodecahedron as a polyhedron with 12 pentagonal faces it does
not satisfy the polyhedral formula (it has 30 edges and 12 vertices, thus
12 − 30 + 12 = −6). The other three polyhedra are also exceptions. We
now know that the Kepler-Poinsot polyhedra do not obey the polyhedral
formula because they are not topological spheres.

5. Cauchy’s proof

The first two of Augustin Louis Cauchy’s many mathematical papers
concerned the theory of polyhedra. They were completed in 1811 and 1812
while he was a engineer working at the harbor of Cherbourg, before he
began his mathematical career. He proved that the four Kepler-Poinsot
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polyhedra were unique [3]. He proved his famous rigidity theorem—a con-
vex polyhedron is completely determined by its faces [4]. He also gave a
new proof of Euler’s polyhedral formula and extended it in several new,
important directions [3]. Both papers appeared in 1813.

The first notable feature that distinguishes Cauchy’s proof from Euler’s
and Legendre’s is that it applies to polyhedra that are hollow, not solid.
Despite what some historians contend, Cauchy still viewed polyhedra as
solid, but his proof used the “convex surface of a polyhedron.”

In Cauchy’s proof we begin by choosing a face, and then “by transporting
onto this face all the other vertices without changing their number, one
will obtain a plane figure made up of several polygons contained in a given
contour” [3] (Figure 11).

Fig. 11. Cauchy projected the polyhedron into the bottom face.

In 1813 Gergonne describes this process as follows: “Take a polyhedron,
one of its faces being transparent; and imagine that the eye approaches
this face from the outside so closely that it can perceive the inside of all
the other faces; this is always possible when the polyhedron is convex. The
things being so arranged, let us imagine that on the plane of the transparent
face a perspective is made of the set of all the others” [25]. Lakatos puts
a modern spin on Gergonne’s idea by suggesting that a camera be placed
near the removed face, then the network will appear on the photographic
print [21].

Thus, Cauchy realized that it is sufficient to relate numbers of faces,
edges, and vertices in this planar network of polygons, or what we would
today call a planar graph or map. Cauchy proved that every such graph
satisfies F − E + V = 1. Then it is easy to complete the proof of the
polyhedral formula since the graph has the same number of edges and
vertices as the polyhedron and it has one fewer face.

Cauchy begins his proof by triangulating the graph (see Figure 12). He
argues that doing so not change the quantity F −E +V . Then, “we remove
successively the various triangles, so that only one remains in the end,
starting with those that border the external contour, and then removing
only those which, by earlier reductions, have one or two sides belonging to
that contour” [3]. In one case the triangle can be removed by taking away
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one edge and no vertices (such as the removal of triangle number 1), and
in the other case the triangle can be eliminated by removing two edges and
a vertex (such as the removal of triangle number 2). In either case, the
quantity F − E + V remains unchanged. Thus, since F − E + V = 1 for
the final trangle, F − E + V = 1 for the original graph.

Fig. 12. The order of triangle removal from the triangulated graph

Cauchy’s proof was later criticized. Just as Euler ran into trouble by
failing to give explicit instructions on what order to remove the pyramids,
Cauchy does not give instructions on how to cut away the triangles. If we
are not careful it is possible to follow Cauchy’s algorithm and obtain a
disconnected graph, for which relation fails to hold (see Figure 13).

Fig. 13. Cauchy’s method can yield a degenerate polygon

Freudenthal writes the following about : “In nearly all cases he left the
final form of his discoveries to the next generation. In all that Cauchy
achieved there is an unusual lack of profundity. . . He was the most superfi-
cial of the great mathematicians, the one who had a sure feeling for what
was simple and fundamental without realizing it” [15]. Cauchy’s proof of
the polyhedral formula is an apt example of this. The proof applies to very
broad class of polyhedra. Using the language of today, the polyhedron must
be a topological sphere and have simply connected faces. These properties
are guaranteed by convexity, but convexity is by no means necessary. In the
statement of his theorem he omits the word convex, giving the impression
that he realized the power of the proof. However, in the proof he explicitly
states that he is considering convex polyhedra. He never addresses this in-
consistency. Some historians, such as Steinitz [38] and Lakatos [21], claim
that Cauchy knew his proof applied to some or perhaps all nonconvex poly-
hedra but this is not clear from what he wrote.
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Regardless of whether he recognized that the result could be extended
easily to some nonconvex polyhedra, it was quickly seen by others. In 1813,
the same year that Cauchy’s paper was published, Gergonne gave his own
proof of Euler’s formula. Afterward he wrote, “one might prefer still, with
reason, the beautiful proof of Mr. Cauchy, who has the precious advantage
of not assuming that the polyhedron is convex” [25].

Just like Cauchy did not recognize the full strength of his proof for poly-
hedra, he also did not see the full strength of his theorem for graphs. This
theorem was generalized by Cayley in 1861 [5] who showed that it applies
to graphs with curved edges (this fact was noticed independently by List-
ing in 1861 [27] and Jordan in 1866 [18]). Moreover, Cauchy proved the
theorem for any collection of polygons contained in a polygonal outline.
We now know that it applies to any connected planar graph.

In this same paper Cauchy gives a glimpse of the higher-dimensional
generalization of Euler’s formula. He proves that if faces, edges, and vertices
are inserted into the interior of a convex polyhedron dividing it into P
convex polyhedra and if the total number of faces, edges, and vertices
(including those in the interior) is F , E, and V , then they satisfy −P +
F − E + V = 1. This equality shows that the Euler characteristic of the
3-ball is 1. In 1855 Schläfli generalized Cauchy’s result to polytopes (as
they are now called) of all dimensions. [35].

6. Von Staudt’s proof

The first half of the nineteenth century saw several exceptions to Euler’s
formula and many new proofs. We will not give an account of all of the
proofs here (see e.g., [25,37]). All of the proofs that appeared before 1847
apply comfortably to convex polyhedra, and in some cases they can be
extended to a broader class of polyhedra. However, no one had yet given
a broad classification of Eulerian polyhedra. It was in this year that Georg
Christian von Staudt, in his book Geometrie der Lage [39], finally gave a
very general set of criteria that describe Eulerian polyhedra. Von Staudt’s
criteria for the polyhedra, which he assumed were hollow, are:

(i) It is possible to get from any vertex to any other vertex by a path of
edges.

(ii) Every simple closed path of edges divides the polyhedron into two
components.

He then gave a beautiful argument that proved that any polyhedron
satisfying these hypotheses is Eulerian. We now give a brief sketch of von
Staudt’s proof (using modern terminology).
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Create a spanning tree for the edges of the polyhedron. Such a tree is
shown in second image in Figure 14 as a thick solid line. This tree has V
vertices. By property (1) the tree is connected, thus it contains V −1 edges.

Fig. 14. Von Staudt’s algorithm applied to a cube

Now, place a new vertex inside each face. Draw a dashed edge from
one face to an adjacent face whenever the two faces are not separated by
an edge of the first tree. Property (ii) implies that this graph is connected.
Moreover, this graph is a tree, for if it contained a circuit, then by property
(ii) the original path would not be connected. Since this tree has F vertices,
it has F − 1 edges. Every edge in the original polyhedron is either in the
original spanning tree or is crossed by a dashed edge. Thus the number of
edges of the polyhedron is:

E = (V − 1) + (F − 1).

Rearranging terms we obtain F − E + V = 2.

7. Prehistory of the polyhedral formula: Descartes’ lost notes

By 1860 the polyhedral formula was well-known and it had Euler’s name
firmly attached to it. It was in this year that Foucher de Careil discovered
a note hand-written by Gottfried Leibniz indicating that René Descartes
knew the polyhedral formula in approximately 1630, 120 years before Eu-
ler’s proof.

The story of the document now called De Solidorum Elementis is fasci-
nating and unlikely. Descartes died in Sweden in 1650 while visiting Queen
Christina. After his death his personal effects were shipped back to Paris,
but they were nearly lost when the boat wrecked in the Seine. After his
unpublished manuscripts were hung to dry, they were made available for
public inspection. During a visit to Paris in 1675-6 Leibniz copied some of
Descartes’ notes, including De Solidorum Elementis. Descartes’ document
was never seen again and Leibniz’s copy was lost until its discovery in a
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dusty cupboard of the Royal Library of Hanover in 1860. (For more details
see [13].)

This document contains Descartes’ observations on polyhedra. It has the
angle sum formula that appeared in Euler’s E230 and E231. It also has a
relation between the numbers of plane angles, faces, and vertices (P , F ,
and V , respectively), P = 2F +2V −4. As Euler proved, the first formula is
equivalent to the polyhedral formula, and second can be transformed into
the polyhedral formula by substituting P = 2E.

Some historians contend that Descartes’ knowledge of these relations en-
titles him to credit for discovering the polyhedral formula. As de Jonquières
wrote, “It cannot be denied then that he knew it, since it is a deduction
so direct and so simple, we say so intuitive, from the two theorems that
he had just stated” [13]. Today we frequently encounter the polyhedral
formula called the Descartes-Euler formula.

Other historians point to the importance of edges in the polyhedral for-
mula. They argue that polyhedral formula is a theorem about dimension—
that it must relate the numbers of cells of 0, 1, and 2 dimensions. There is
no indication that Descartes viewed polyhedra in this way. Lebesgue, after
carefully examining the manuscript, wrote, “Descartes did not enunciate
the theorem; he did not see it” [22].

8. After 1850

As Pont wrote, “After one hundred years of history (1750–1850), the the-
orem of Euler traversed the various stages allocated to an honest theorem:
empirical appearance, approximate statement, proof in a particular case,
exact statement, generalization” [32]. However, during this time no one no-
ticed the topological significance of Euler’s formula. This observation came
in 1861 in a long work by Johann Benedict Listing, a student of Gauss [27].
Listing is known as one of the early pioneers of topology. We can thank
him for coining the term “topology” in the title of his 1847 Vorstudien zur
topologie [26] and for co-discovering the Möbius strip (along with Möbius).

In the second half of the nineteenth century the mathematical subject
called topology began to take shape with contributions from Jordan, Rie-
mann, Möbius, Klein, Betti, Dyck, and others. In a series of papers starting
in 1895 Poincaré unveiled the blueprint for the field of algebraic topol-
ogy and gave the first truly modern interpretation of Euler’s formula [29].
The alternating sum, now referred to as Euler characteristic (or the Euler-
Poincaré characteristic), is one of the most fundamental topological in-
variants. The myriad applications of the Euler characteristic are far too
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numerous to list.
In order to appreciate the current state of algebraic topology it is im-

portant to recognize the important contributions of Euler and the other
mathematicians who studied polyhedra from 1750 to 1850.
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3:169–189, 1813.

26. J. B. Listing. Vorstudien zur topologie. Göttinger studien (Abtheilung
1), 1:811–875, 1847.
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Wissenschaften, volume 3 (Geometrie), pages 1–139. Leipzig, 1922.

39. K. G. C. von Staudt. Geometrie der Lage. Nürnberg, 1847.
40. David Wells. Are these the most beautiful? Math. Intelligencer,

12(3):37–41, 1990.

LOL-Ch21-P19 of 20



LOL-Ch21-P20 of 20

This page intentionally left blank



441

On the Recognition of Euler among
the French, 1790-1830

I. Grattan-Guinness

Middlesex University at Enfield
Middlesex EN3 4SF

England

1. The rise of Paris to mathematical eminence

When Jean d’Alembert, Daniel Bernoulli and Leonhard Euler died within
18 months of each other in 1782 and 1783, a generation of researchers
passed and the inheritance came to their principal successors. This change
also established Paris as by far the main mathematical centre, a status that
it was to enjoy until well into the 1820s. The initial figures, some already
well recognized, were C. Bossut (1730-1814), G. Monge (1746-1818), P.S.
Laplace (1749-1827) and A.M. Legendre (1752-1833); and their ranks were
augmented considerably in 1787 when J.L. Lagrange (1736-1813) moved to
the Paris Academy from his post at Berlin’s equivalent.

The French maintained their dominating status in mathematics dur-
ing the period treated here, not only by the happenstance of producing
major figures but especially for the explicit encouragement given to sci-
ence and engineering by the new regime that followed the revolution of
1789. The Ecole Polytechnique, founded in 1794, was an important focus,
partly for its employment of all the figures named above as teachers or
as graduation examiners. This next generation included J.B.J. Delambre
(1749-1822), L. Carnot (1753-1823), G. Riche de Prony (1755-1839), J.B.J.
Fourier (1768-1830), J.N.P. Hachette (1769-1834), L. Puissant (1769-1843)
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and A.M. Ampère (1775-1836); apart from Delambre, all were also involved
with the school for some period and purpose.

An especially important reason for the success of the school was its pol-
icy of recruiting talented students. Several of them went on to pursue im-
portant careers in mathematics, engineering and science, some within the
school itself, some at the various other schools and professional institu-
tions (especially in civil and military engineering) available in the country,
and some at both. These ranks include J.B. Biot (1774-1862), L. Malus
(1775-1812), L. Poinsot (1777-1855), C.L.M.H. Navier, (1785-1836), S.D.
Poisson (1781-1840), A.J. Fresnel (1788-1827), J.V. Poncelet (1788-1867),
A.L. Cauchy (1789-1857) and G.G. Coriolis (1792-1843).

The task addressed here is to describe the place accorded to the contribu-
tions of Euler by this cohort, and also by many contemporaries who made
up the community in total. The primary and historical literature on the
achievements involved is far too vast to be treated in detail. The most sub-
stantial single source is [Grattan-Guinness 1990a], where many historical
items are cited and recommended for further information. Historical arti-
cles on several of the major books are provided in [Grattan-Guinness 2005,
chs. 12-14, 16-21, 24-28]. To my knowledge the question of Euler’s in-
fluence on the French has been treated explicitly, though briefly, only in
[Grattan-Guinness 1983], [Grattan-Guinness 1985a]; but the literature on
Euler and/or the early 19th century contains many individual pieces of
evidence on his place and influence.

2. Varieties in the calculus and mechanics

For all mathematicians of the mid and late 18th century, by far the main
part of mathematics was the calculus and its use in mechanics. Three tra-
ditions of the calculus were in place: Newton’s fluxions (though largely
confined to British mathematicians); the differential and integral theory,
set out by Leibniz and modified by Euler with his addition of the differ-
ential coefficient, the forerunner of our derivative; and Lagrange’s version,
reducing the calculus to a branch of algebra by assuming that a mathe-
matical function f(x + h) could always be expanded as a power series in
h, with the ‘derived functions’ defined from the coefficients of h. In each
tradition the integral was specified (‘defined’ is too strong a term) as some
sort of inverse of the fluxion, differential or derivative. A fourth tradition
of founding the calculus was to be created by Cauchy, as we see in section
9 below.

As well as the core topics of differentiation and integration, an impressive
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body of knowledge lay in the general theory of solutions of ordinary and
partial differential equations. In addition, many particular methods were
found to solve equations of various kinds. These achievements, especially
the second, led to quite a wide range of special functions and infinite series;
they also encouraged the theory of polynomial and other equations, in
particular properties of their roots.

Mechanics lay alongside this empire, and indeed constituted an even more
enormous subject in its own right. It too had three traditions in place by the
late 18th century [Grattan-Guinness 1990b]: one based upon central forces
and Newton’s various laws; another relying upon ‘live forces’ and their
relationship to work; and a third, often called ‘analytical’, where principles
such as d’Alembert’s, least action and virtual velocities held sway.

The range of phenomena and artefacts handled within mechanics can be
fairly divided into five branches; the descriptive italicised adjectives that
follow are mine. Proceeding from the rather large to the very small, we
have celestial mechanics, where all heavenly bodies were treated as mass-
points; planetary, where the major questions included the shapes of these
bodies, now taken to be extended, and related topics such as Lunar theory,
topography and the tides; corporeal, including the basic principles of the
subject (as required by the three traditions just mentioned), and topics
such as sound, elasticity theory and fluid mechanics; engineering, covering,
for example, friction studies of various kinds, machines including water-
wheels and turbines, and structures such as arches; and a little work on
molecular structure.

3. Euler’s place: preliminary remarks

The question addressed here concerns the ways in which Euler’s contri-
butions were to be adopted, adapted or maybe ignored by the cohort of
French mathematicians from around 1790 up to 1830. Two parts of that
output need to be noted: the very many papers and books that appeared by
the time of his death; and the papers, around 100 in number, that the Saint
Petersburg Academy published posthumously in their Mémoires until 1830.
I shall not take account of his manuscripts or letters, as the former were
not then available while the latter were known only to their correspondents
and maybe a few others.

Firstly, let us note that all sorts of specific results due to Euler were
known, stated in textbooks and monographs. In addition, some of his main
results or methods had become part of the mathematical furniture; the
calculus with the differential coefficient, for example, and the exposition
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of perturbation theory in celestial mechanics by expanding the principal
variables in infinite trigonometric series. So the place of Euler was sure,
although often not explicitly stated; as time went by, the newer authors
may not have known that Euler was their original source for notions that
they learnt from textbooks and other writings by intermediate authors. In
addition, at that time references to others’ works were not given system-
atically in science in general, and the tradition of ending a paper or book
with a list of works did not commence until the late 19th century. Since
lack of evidence is not evidence of lack, the place of Euler is doubtless
underestimated in the account to follow.

4. Euler or Lagrange in the calculus and analysis?

These two mathematicians were arguably the two main sources and in-
fluences on others, at least into the early 19th century. In analysis and es-
pecially the calculus there were specific differences in their approaches. In
all aspects of mathematics Lagrange was an algebraist; that is, not just did
he use algebra, like everybody else, but he sought to reduce mathematical
theories to algebraic principles. His reliance upon Taylor series mentioned
above is typical (and important); the claim was that only the normal al-
gebraic operations were needed to develop the calculus. (He allowed for
exceptional cases when a function and/or its derivatives took infinite val-
ues.) An important theory adjoint to the differential and integral realms
was the calculus of variations: Euler had made important innovations, and
indeed the name is due to him, but its generality and algebraic formulation
owed most to Lagrange. He publicised his approach in the books Théorie
des fonctions analytiques (1797), and Leçons sur le calcul des fonctions
(1804 and later editions), which were based upon his teaching at the Ecole
Polytechnique.

Now the calculus was a much broader subject than (common) algebra, so
that the algebraic brief had to be extended. Fulfilling this aim encouraged
some followers (more than Lagrange himself) in the development of algebras
that were new in the sense that their ‘objects’ were neither numbers nor
geometrical magnitudes. One algebra was that of differential operators,
based upon forming the operations of differentiation as D := d/dx and
integration

∫
:= 1/D, where ‘1’ is the identity operator. The other was

functional equations, such as f(x)f(y) = f(x + y) (to take a very simple
example), where the unknown is the function f .

The measure of support for Lagrange’s approach and these algebras was
quite well supported by the French, and it can be seen as an eclipse of Euler.
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But Euler’s version of the differential and integral calculus retained its great
popularity, especially in applications; it was used in some way in almost
all the contexts reviewed below. However, the balance was different in the
general theory of ordinary and partial differential equations. There Euler
had made important contributions – for example, on singular solutions –
but Lagrange had rather taken over with his theory of general solutions of
various kinds, which had been further developed by Laplace, Monge and
others.

So the inheritance of the calculus for the French was several-sided. Two
substantial and contrasting monographs published in the later 1790s exem-
plify the differences.

The physicist J.A.J. Cousin wrote the first one in two volumes. In his
second volume he covered quite a wide range of differential equations, and
so gave Euler’s contributions quite a reasonable coverage; but in the first
volume he praised the use of limits and judged the differential method to be
imperfect; he even interpreted ‘dy/dx’ as the limiting value of the difference
quotient [Cousin 1796, vol. 1, esp. pp. 151-153].

A different balance comes from Lagrange’s successor as professor at the
Ecole Polytechnique, namely Lacroix. His mathematical mentor was nei-
ther Euler nor Lagrange but the Marquis de Condorcet (1743-1794), not
a major mathematician but a significant representative of Enlightenment
philosophy. Together they prepared an edition of the Lettres (1787-1789), a
few years after Condorcet prepared the eloge of Euler for the old Académie
[Condorcet 1786]. Later Lacroix wrote a very praising article on Euler for
a general multi-volume biography project [Lacroix 1815].

One of the effects on Lacroix of this kind of philosophy was the desire to
present all theories, not just one preferred approach. His major publication
was a huge Traité du calcul différentiel et du calcul integral, which appeared
in two three-volume editions [Lacroix 1797-1800], [Lacroix 1810-1819]. In-
terested in the history of mathematics, he endowed his book with a level of
scholarship unique for that time: in the table of contents he listed the many
original texts that he had consulted, and he finished the book with a com-
bined name and subject index. The latter is particularly useful, as it shows
that the entry for Euler is about 50 percent longer than that for Lagrange.
The main difference lay in the mass of particular results about series and
functions, from which Lacroix reported quite a large selection; otherwise
he cited both men for their versions of the calculus and contributions to
the general theory of ordinary and partial differential equations.

In the latter context Lacroix added a long and interesting footnote on
the notations for the multi-variate calculus. He found unnecessary Euler’s
use of brackets to denote partial differential coefficients (such as ‘(dz/dx)’),
but he was quite critical of the capacity of Lagrange’s primes to distinguish
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apart partial derivatives [Lacroix 1797-1800, vol. 3, pp. 10-12]. In the sec-
ond edition he elevated the passage to the main text of the first volume
[Lacroix 1810-1819, vol. 1, pp. 242-246]. Elsewhere in his book he intro-
duced the name ‘differential coefficient’ [Lacroix 1797-1800, vol. 1, p. 98];
Euler had not used any special name.

5. Euler or Lagrange in mechanics?

Lagrange’s intent in mechanics was similar; again he wanted to alge-
braise it, as the title of his treatise, Méchanique analitique [Lagrange 1788],
makes clear. The long-suffering word ‘analytic’ meant ‘algebraic’ here, as
he stressed in his oft-quoted remark in the preface that ‘one will not find
Figures in this Work:’ algebra was the only guarantee of the generality and
rigour with clarity that major branches of mathematics should exhibit.
Hence he drew upon principles such as d’Alembert’s, least action and ‘vir-
tual velocities’, which could be formulated algebraically, including using
the calculus of variations; from them he obtained the basic equations for
dynamics that are now named after him. Other principles, in particular,
Newton’s laws and the conservation of energy, came out as theorems. He
also included in his book some short historical passages, which became
more influential than they deserved.

Again the reaction was mixed. The theory was capable of extension, no-
tably with the theory of ‘Lagrange-Poisson’ brackets to solve canonically
the equations of motion, which the aged Laplace and his young disciple
Poisson developed between 1808 and 1810. But in general the approach
showed its strength best in the systematic exposition and assembly of re-
sults already found; it was not normally conducive to the creative side of
mechanics. There Newton’s and the energy/work traditions were kinder,
especially for their ready appeal to geometry and spatial situations.

The position of Euler was rather peculiar. He made substantial use of
Newtonian mechanics: indeed, some of its normal features are actually due
to him, such as the notion of the mass-point, and taking the second law
exclusively in the form F = ma and applying it in any direction. (For
some reason Lagrange attributed this last innovation to the Scot Colin
MacLaurin [Lagrange 1788, pt. 2, sec. 1, art. 3]. Euler’s handling of pertur-
bation theory was mentioned in section 3, and he adapted Newton’s laws in
continuum mechanics, especially in fluid mechanics and elasticity theory.
However, in the 1740s he had also been one of the main advocates of the
(new) principle of least action, upon which he failed to draw in these and
other later contributions!
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In addition to the Newtonian and analytical traditions in mechanics, a
third approach based upon energy and work was put forward as a general
one by Carnot in the 1780s; in contrast to Lagrange’s belief that dynamics
was reducible to statics, he stressed dynamics and mechanical situations
involving impact. The role of Euler here was modest, though he had used
‘quantity of action’ in connection with his advocacy of the principle of least
action. Several engineer scientists connected with the Ecole Polytechnique
furthered Carnot’s tradition with enthusiasm: Hachette, Navier, Coriolis
(who coined ‘work’) and Poncelet stand out.

These men will have gained some insights as students from the engineer
de Prony, who was with Lagrange a founder professor of mathematics at
the Ecole Polytechnique, and led the teaching of mechanics. Further, while
Lagrange taught his calculus for only a few years, de Prony held his chair
for 20 years, when he switched to graduation examiner.

De Prony published several volumes of his lecture courses at the school, of
which the first, Mécanique philosophique [de Prony 1800], is the best known
and most interesting, although incomplete. In this work he made explicit
his attachment to Enlightenment philosophy, in particular classifying parts
of mechanics in various ways: synoptic tables, and especially the division of
almost all of the right hand pages into four columns listing the notations,
definitions, theorems and problems. At first glance the book seems to be
very Lagrangian: lots of algebra, and no diagrams. But the algebra is not
variational but rather trigonometry, especially to express components of
notions such as force and moment. In his preface he acknowledged his
sources: major writings by Lagrange and Laplace, but ‘The principal works
that have furnished me with my material are those of Euler’ [de Prony 1800,
vii].

The same features apply also to de Prony’s later textbooks, even the
Leçons de mécanique analytique [de Prony 1810-1815] (complete, and ad-
mitting quite a few diagrams). However, in his final Part on machines he
made little use of Euler’s writings on science and technology, which for
some reason were little used by anybody.

A broadly similar impression about Euler comes from the second edition
of Bossut’s treatise on hydrodynamics [Bossut 1796]. In his lengthy ‘Pre-
liminary discourse’ he reviewed much of the literature of the 18th century,
with a notable emphasis on the concerns of engineers; he even cited one of
Euler’s books on the navigation of vessels. As with de Prony, his discussion
of the basic equations both of equilibrium and motion of fluids avoided
variational techniques.

Other notable texts came from graduates of the school. The first was
Poinsot’s book Elémens de statique ([Poinsot 1803, and many later edi-
tions]. His opening chapter was an important account of the ‘couple’ (his
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word), a major feature of statics of which nobody had previously taken
proper account. Then he considered various general conditions for equilib-
rium that drew upon virtual velocities, and also included a detailed survey
of machines, which belonged most closely to the energy/work tradition;
and throughout he made much use of diagrams.

In 1811 Poinsot’s non-friend Poisson put out the first edition of his Traité
de mécanique based upon his teaching at the Ecole Polytechnique. One
might expect to read a version of Lagrange’s treatise for learners, but this
is not so: the calculus of variations was used sparely. Following a long prac-
tice among the French, his basic principle was d’Alembert’s, which served
not only as a fundament for analytic mechanics but also as the justifica-
tion for Newton’s laws; Poisson used especially the second law fairly often
(but never mentioned Newton once). At least that theory was presented;
Poinsot’s recent book on mechanics was ignored completely.

6. On Laplace and his own place

The mixed picture is evident also with our third major figure: Laplace
[Gillispie 1998]. His reputation, already high, rose still spectacularly when
he began to publish his Traité de mécanique céleste, of which the first four
volumes appeared as [Laplace 1799-1805]. This work was authoritative for
all aspects of celestial and planetary mechanics, and also for many aspects
of the calculus, and some series and solutions of various partial differential
equations.

Laplace is credited with the remark: ‘Read Euler, he is the master of
us all’. 1 Both Euler and Lagrange featured strongly in his work (though
he did not much fancy the new algebras). For example, he made much
use of Euler’s use of trigonometric series; but he also adapted Lagrange’s
marvellous attempt to prove mathematically that the planetary system was
stable, a decisive rejection of Euler’s (and also Newton’s) view that God was
responsible for stability. Among other sources, for Lunar theory he made
most use of d’Alembert’s formulation. Many of the analyses were as much
his own as anybody else’s. For example, for the theory of equipotential
surfaces and the attraction of a heavenly body to an external point he
solved the partial differential equation now named after him and solved it
with the help of functions that also took his name in the 19th century but

1 Unfortunately our closest source for Laplace’s remark is [Libri 1846]. This article, part
of a review of an edition of 18th-century mathematical correspondence, is cited in the
biographical article on Euler [Anonymous 1857], which therefore may also be by Libri.
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then became called ‘Legendre functions’; the use of both names reflects a
pretty competitive situation since the 1770s.

A striking feature of Laplace’s opening sections was his use of one of
Euler’s posthumous papers: [Euler 1793], in which Euler had proved that
torque obeyed the same kind of linearity that obtained with moments.
Laplace quickly used it to define the invariable plane of a system of point
masses (the planetary system being the case most in mind) in terms of
maximal torque [Laplace 1799-1805, Book 1, art. 20]. This use of Euler is
not only noteworthy in its own right; it is also a very rare case of anybody
using a posthumous paper by Euler.

7. Laplace’s programme of molecular physics, and the
alternatives

In the last volume of his treatise Laplace began to make public his grow-
ing interest in physics, which did not have a high status in science at that
time. He analysed the path of light through the atmosphere, and then added
two lengthy supplements to the fourth volume on capillarity. Common to
both analyses was a principle that “all” phenomena, mechanical or physi-
cal, were to be interpreted as actions between the elementary ‘molecules’
of which the pertaining bodies were presumed to be composed. He based
upon it an ambitious programme for physics, for which he recruited several
able younger colleagues, mostly graduates of the Ecole Polytechnique.

In particular, Laplace adopted a corpuscular theory of light, which was
then the more popular type of theory among French physicists (see, for
example [Haüy 1806, vol. 2, 134-401]; it was to be the most successful part
of his programme. The most important theorist and experimentalist was
Malus; among other achievements, he saw that the principle of least action
could be used to explain double refraction (an insight that Laplace was
to purloin and extend), and he coined the word ‘polarisation’ because he
assumed that the moving particles of light oscillated about an internal axis,
like the poles of a magnet.

This kind of theory was bad news for fans of Euler, who had adopted
a wave theory of light. He had studied especially reflection, refraction and
aberration, the latter leading to an interesting exchange about achromatic
lenses with the Englishman John Dollond, who upheld Newton’s corpuscu-
lar theory [Speiser 1962] – the only detail in which Euler was mentioned in
Haüy’s long account of optics just cited. But bad news turned to good, in
that from the mid 1810s onwards Fresnel began to elaborate such a theory.
He construed light to be the result of disturbance from equilibrium of the
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tiny particles in the assumedly punctiform aether. He appealed to analo-
gies with mechanics whenever useful: principles such as the cosine law of
decomposition, and ‘energy’ conservation for double refraction. However,
in his papers and letters he referred only once to Euler’s theory, and then
in passing [Fresnel 1822, art. 1].

By the 1820s even Laplace was admitting the quality of Fresnel’s theory;
it was the main confrontation of his programme. However, it was not the
first, which had occurred over heat diffusion. From the mid 1800s Fourier
had much exercised himself over this topic, giving it the first extensive
mathematical treatment. Philosophically he adhered to a kind of positivism
(the word that Auguste Comte was to coin, with Fourier much in mind):
heat was heat, to be exchanged with its opposite, cold. He had derived the
diffusion equation by the normal (Eulerian) version of the differential and
integral calculus, and took no interest in the molecularist re-derivation that
Laplace offered in 1809: the loyal Poisson was to pursue the idea from the
mid 1810s onwards, but nobody took much interest in it.

So Euler was present in Fourier’s derivation of the equations, but not
in the preferred solutions: trigonometric series (not to be confused with
Euler’s technique in celestial mechanics) for finite bodies, and integrals for
infinite ones. Now Euler had found the Fourier series in [Euler 1798] as a
mathematical exercise (as Lacroix was to point out to Fourier), but he did
not exploit it physically; in particular, he never changed his stance of the
1740s when in the famous debate over the analysis of the vibrating string
he had preferred the functional solution of the wave equation, a kind of
solution that was normally favoured at that time.

The other main developments in the new mathematical physics lay in
the study of ‘electricity’ (mostly electrostatics) and magnetism. Here the
Laplacians enjoyed some success, thanks mainly to the efforts of Poisson
(around 1812 and 1824 respectively). However, molecularism took a lim-
ited role; Poisson made much use of the electric and magnetic fluids that
were supposed to exist. Euler had said little technical about either sub-
ject, though several of the Lettres treated magnetism. Further, naturally
he did not anticipate electromagnetism, which was to obsess Ampère from
1820 to around 1827 – and to attract little interest among the Laplacians.
However, once again his form of the calculus was preferred there, and in-
deed was extended importantly into line and surface integrals; Poisson had
already made some use of the latter in his contributions to magnetism.
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8. Continuum mechanics, molecular and otherwise

Contemporary with these innovations in mathematical physics, mechan-
ics continued to be studied in all its branches. The most important parts not
yet treated were fluid mechanics and elasticity theory, where the Parisian
talent for rivalry was well to the fore, especially between Poisson, Cauchy
and Navier, with Fourier sniping on occasion.

On fluid mechanics, in the 1750s Euler had applied Newton’s second law
to a differential parallelepiped and using also his own notion of pressure;
Lagrange had later substituted the method that came to be known as ‘the
history of the particle’, which made use of the calculus of variations. The
results of both men were restricted to shallow fluid bodies. Shortly after
the death of Lagrange in 1813, the mathematical and physical class of the
Institut posed a prize problem for 1814 on the propagation of waves in a
deep fluid body. Cauchy won it; Poisson, already a member of the class,
contributed two papers at the same time. He based his treatment upon Eu-
ler’s method, while Cauchy drew upon Lagrange’s; one might have expected
the preferences to be the other way round. As usual, Cauchy produced the
more profound results (in particular, he found Fourier’s integral theorem,
in apparent independence of Fourier), but not especially because of his use
of Lagrange’s method.

In elasticity theory, the class had already run in 1811 a problem on
the motion of an elastic lamina. This problem, partly inspired by the sand
experiments of the Austrian acoustician Ernst Chladni, seems to have been
tailored for Poisson, who was then not yet a member of the class, to produce
another Laplacian molecular exercise. He did produce one eventually, but
the prize was won by Sophie Germain, after three versions and important
help from Lagrange and Legendre. The basic ideas, however, were hers, and
drew upon Euler’s work.

More significant developments began in the late 1810s, with a string
of papers from Navier, Cauchy and Poisson. Navier worked his way from
elastic rods and planes to solids and also viscous fluids. Some of Euler’s as-
sumptions were used in the formation of the equations, but for solution he
appealed to Fourier’s new methods. Poisson predictably was very molecu-
larist. Cauchy as usual eclipsed everybody, with a long string of analyses in
terms of stress and strain (to use the names which William Rankine was to
introduce). Some of the models were molecular while others not, and it is
not easy to tell why each type was chosen. He then adapted his method to
study dispersion within the framework of Fresnel’s optics. As usual he was
spare in references, and he may not have drawn much upon either Euler or
Lagrange.
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9. A new tradition for the calculus: the impact of Cauchy

Student at the Ecole Polytechnique in the mid 1800s, a decade later
Cauchy was appointed professor of analysis and mechanics there in the
changes that accompanied the restoration of the Catholic monarchy, to
which he was fanatically attached. His teaching was disliked by students
and staff for its inappropriate content for an engineering school, and also
for his failure to coordinate with other courses; but mathematically it was
of immense importance.

Cauchy formulated a fourth version of the calculus. It was grounded upon
a proper theory of limits that itself was based upon the careful studies of
infinite sequences of values and not just the modestly developed notions
that his predecessors had achieved. In its terms he defined the derivative as
the limit of the difference quotient and the integral as the limit of a sequence
of partition sums, and he allowed in both cases for the possibility that the
limit did not in fact exist. As one offshoot, by means of counter-examples he
refuted in 1822 Lagrange’s belief in the universality of the Taylor expansion.
His new version (which was not motivated by these counter-examples) was
bad news for all predecessors, Euler included; but it gradually became
adopted worldwide, especially among those mathematicians who stressed
rigour. However, Euler’s version long continued to retain its high status
among those figures concerned with applications, who included Cauchy’s
colleagues at the school.

As part of his reliance upon a theory of limits, Cauchy also revised the
theory of functions and of infinite series, defining continuity of the former
and convergence of the latter in terms of the proven existence of the limiting
value. All previous criteria were substantially revised; in particular, much
of Euler’s production of sums of series was rejected as illegitimate, and only
from the end of the 19th century was it rehabilitated within the theory of
summability and formal power series.

10. Three smaller topics

10.1. Geometry

Euler’s Introductio in analysin infinitorum (1748) was divided into two
distinct volumes. The first one covered many aspects of (real- and some
complex-variable) analysis and the theory of functions, and became a stan-
dard reference for these topics. The second one helped substantially to
launch analytic and coordinate planar and solid geometry [Boyer 1956, chs.
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7-8]. Among French mathematicians Monge and Puissant were active, and
[Lacroix 1799b] and [Biot 1802] produced textbooks that appeared in many
later editions. The subject also featured in the treatises on the calculus by
Cousin and Lacroix mentioned in section 4. Once again Lagrange tried to
algebraise the theory, but this time with limited success.

In addition, the Introductio itself was translated into French and pub-
lished as [Euler 1796-1797]. The task was fulfilled by the school-teacher
J.B. Labey, who later also published a translation of the Lettres.

10.2. Number theory

Number theory was a very recondite subject, with few practitioners; how-
ever, three of them were Euler, then Lagrange, then Legendre. In his Essai
sur la théorie des nombres [Legendre 1798, and later editions] Legendre
treated the algebraic side of the subject. The topics covered included reduc-
tion of quadratic forms, sums of squares, cyclotomy, reciprocity properties,
certain equations and their roots, and Fermat’s ‘last’ and other theorems.
In his preface he duly praised Euler, and acknowledged Lagrange (and also
C.F. Gauss in the later editions). This was valuable tribute from the com-
munity of French mathematicians; but it was a small one, since Legendre
was its only regular practitioner to the subject in the period treated here.

10.3. Probability and mathematical statistics

Some of Euler’s contributions to analysis bore upon these topics: in par-
ticular, the beta and gamma functions and the hypergeometric series. In
addition, he wrote on the errors of observation, games, tontines and lot-
teries, and mortality and annuity tables [Sheynin 1972]. Some of this work
lay in interactions with contemporaries, especially Bernoulli and Lagrange.
However, few French worked in these fields; mainly Laplace and some Pois-
son, with a short burst from Fourier and a textbook by Lacroix. They do
not appear to have made much use of Euler’s offerings, which seem never
to have been much used.

11. Three general surveys

I complete this appraisal with three French sources of the 1800s that give
us further insight about Euler’s status. The first is the massive Histoire des
mathématiques of E. Montucla. He died in 1799, just as he was writing
and proof-reading a Part of the third volume. The project was taken over
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by Montucla’s friend the astronomer J.J. Lalande, who edited the surviv-
ing manuscripts and wrote the rest himself, drawing on colleagues such
as Lacroix for certain sections. The third and a fourth volume appeared,
as [Montucla 1802]. The books contain a huge amount of information, al-
though often surprisingly spare of symbols.

A noteworthy feature of the volumes is the entry for Euler in their index:
‘Euler, the greatest geometer of the eighteenth century’ [Montucla 1802,
vol. 4, 678]; no other figure was characterised in such a way, though the
names of persons in the index are poorly furnished. Further, while Eu-
ler was mentioned a lot, some details are missing. Take, for example, the
Part in progress when Montucla died, a long and rather untidy account
of the calculus and analysis during the 18th century; he noted Lagrange’s
approach to the calculus [Montucla 1802, vol. 3, 260-270], but he did not
describe Euler’s introduction of the differential coefficient. Again, in the
next Part, on optics, his waval theory was mentioned less than one might
have expected.

In the last two Parts, on mechanics and machines, the text adopted La-
grange’s Méchanique analitique as the main guide, including its little his-
torical essays. So, while Euler duly appeared in the discussions of some of
the basic principles, his later contributions were rather summarily treated.
Further, as usual he did not feature in (Lalande’s) review of machines and
technology, even though the bibliographical information there was quite ex-
tensive. Carnot was also omitted; de Prony’s engineering treatise Nòuvelle
architecture hydraulique [de Prony 1790-1796] was a leading source.

Also published in 1802 was our second source, the second volume of a
much shorter (but also prosodic) history of mathematics written by Bossut.
Most of the book treated the history of the calculus from its creation by
Newton and Leibniz, and much of the text was taken up with applications
[Bossut 1802]. Euler featured a fair amount in the parts of the book cover-
ing his career period, though perhaps less than one might have expected.
But he was better served than was Lagrange, since Bossut adopted the pe-
culiar policy of omitting all figures then still living. Perhaps in response to
the criticisms, a few years later he issued an expanded version of his book,
coming right up to date. Euler featured rather more than before, especially
in applications (including optics and some technology); he had more page
entries than anybody else in the index, and was praised on several occa-
sions [Bossut 1810, esp. pp. 148-150]. But he still left out the differential
coefficient.

Our last source also comes from that time. As a permanent secretary
of the scientific class of the Institut de France, in 1809 Delambre had to
present to Emperor Napoléon a book-length survey of progress in the
‘mathematical sciences’ (pure and applied) during the past glorious 20
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years. As for Lalande, Lacroix helped him with the purer mathematical
sections [Delambre 1810]. Lagrange and Laplace were naturally the leading
authors, but Euler was next, with more entries than even for Legendre; he
was mentioned over a score of times, of which several were more than pass-
ing references. However, the balance again was rather askew: reasonable for
the calculus and mechanics, but nothing on technology, or on cartography.

12. Concluding remark

As one might expect, Euler was a major background figure for the French
in the period treated here, and for several topics he was a good deal more
prominent. The pure mathematics seems to have been the most visible part
of his achievement, and several parts of his work in celestial, planetary and
continuum mechanics; the technology survived much less well.

The main figure ‘in between’ Euler and his French successors is Lagrange,
their senior member from 1787 until his death in 1813. More importantly,
he differed from Euler substantially on the adopted principles of both the
calculus and mechanics. The ‘competition’ between them is hard to evalu-
ate. Lagrange had put forward impressive general theories, but their utility
was limited, especially in applications or the creative sides of theories. But
the use of Newton’s laws in mechanics can only be seen as a partial affir-
mation of Euler’s position, where nominally the principle of least action
should have been as prominent as it was with Lagrange. Finally, while La-
grange’s published references to Euler were rather slender, on his deathbed
he praised Euler to the skies: ‘read Euler, because in his writings all is clear,
well calculated, because they teem with beautiful examples, and because
one must always study the sources’ [Grattan-Guinness 1985b, art. 4].
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1. Introduction

In the course of his examination of Euler’s paper “A more accurate de-
velopment of the formulae found for the equilibrium and motion of flexible
threads” [E608], C. Truesdell wrote:

“The reader will have remarked Euler’s mastery of the methods of vecto-
rial algebra; the formulae we have presented are shortened by the use of
vector symbols, but the operations indicated are those used by Euler.”
[Truesdell 1960, p. 383]
There is, of course, some exaggeration in this statement. If we agree

that vector calculus is a theory of the composition of directed segments
expressed by means of an algebraic symbolism, it is a matter of fact that
there is no trace of such ideas in the writings of Euler. On the contrary,
as we will see, there are many reasons to believe that Euler did not fully
understand the vectorial character of the entities and the operations that
occur in his purely algebraic calculations. 1

1 In this article I use the term “vector” quite freely. It would have been more appropri-
ate to employ everywhere the locution “directed segment,” for this is what these early

authors had in their minds, but its usage would have led to a cumbersome mode of

expression. The difference is significant: a vector is, strictly speaking, an element of a
vector space.
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Truesdell had previously given a different and more just estimation of
the role of Euler in the development of vector calculus:

“The expression of the laws of motion in rectangular Cartesian co-ordi-
nates is also of the greatest importance. Today this possibility is so ob-
vious that many scientists seem to believe that Newton himself used
Cartesian co-ordinates, but of course this is not so. [. . . ] The importance
of the use of Cartesian co-ordinates lies deeper than in mere simplicity;
in these co-ordinates the addition of vectors located at different points
is so natural as to become customary at once, and the possibility of
performing this addition lies at the heart of the classical conception of
space-time.” [Truesdell 1960, p. 252]
In fact, Euler has the merit of having constantly referred all quantities

to rectangular axes fixed in space in his works from about 1750 onward. It
is clear that from the Cartesian representation of physical quantities their
vectorial character can easily be judged; let us recall Heaviside’s observa-
tion:

“I ought to also add that the invention of quaternions must be regarded
as a most remarkable feat of human ingenuity. Vector analysis, without
quaternions, could have been found by any mathematician by carefully
examining the mechanics of the Cartesian mathematics, but to find out
quaternions required a genius.” [Heaviside 1892, vol. 2, p. 557]
However, the task of extracting the concept of vector from analytic ge-

ometry and mechanics turned out to be more difficult than Heaviside had
imagined.

2. On Euler’s conception of vectors

What then was Euler’s conception of the geometrical representation of
vectors? Perhaps, a clearer account can be found at the beginning of his
“Attempt at a metaphysical demonstration of the general principle of equi-
librium” [E200], where he defines the concept of force:

“One calls force everything that can change the state of bodies, both of
their movement and of their rest. [. . . ] In each force there are two things
to consider: the quantity and the direction. By quantity one understands
how much a force is greater or smaller than another, and the direction
allows us to know in which sense every force acts on bodies to disturb
their state.” 2 [E200, p. 246 (author’s translation)].

2 “On nomme force, tout ce qui est capable de changer l’état de des corps, tant de leur
mouvement que du repos [. . . ] Dans chaque force il y a deux choses à considerer, la
quantité & la direction: par la quantité on comprend combien une force est plus grande
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This description is not much different from those employed today in high
school textbooks. 3 Yet it would be wrong to assume that Euler was able
to interpret all quantities that appeared in his formulae in terms of the
composition of directed segments.

An example of Euler’s inability to judge the vectorial character of a
geometric entity occurs in his memoir “On the movement of rotation of solid
bodies around a variable axis” [E292, §XXVIII]. Having just discovered the
equations for the motion of a rigid body in the form

d(ω cosα) +
c2 − b2

a2
ω2dt cosβ cos γ =

2gP dt
Ma2

,

d(ω cosβ) +
a2 − c2

b2
ω2dt cosα cos γ =

2gQdt
Mb2

,

d(ω cos γ) +
b2 − a2

c2
ω2dt cosα cosβ =

2gR dt
Mc2

,

where the coordinate axes are laid along the principal axes of inertia relative
to the centre of mass, ω is the angular velocity, P , Q, R are the moments
of the applied forces about the coordinate axes, cosα, cosβ, cos γ are the
direction cosines of the instantaneous axis of rotation, Ma2, Mb2, Mc2 are
the principal moments of inertia and g is a constant, he simplified them
(“pour abréger nos formules”) by placing

ω cosα = x, ω cosβ = y, ω cos γ = z.

The three quantities x, y, z are clearly the projections of a directed seg-
ment on the coordinates axes. Astonishingly, Euler seems not to recognize
the geometrical meaning of this passage, thus missing the discovery of the
angular velocity vector. 4

Among the formulae used by Euler are the expressions for the velocity
of a point of the body in terms of its coordinates and the angular velocity,

u dt= ω dt(z cosβ − y cos γ),

v dt= ω dt(x cos γ − z cosα),

w dt= ω dt(y cosα− x cosβ),

ou plus petite qu’une autre, & la direction nous donne à connoitre en quel sens chaque

force agit sur les corps pour en troubler l’état.”
3 In passing, let us note that up to about 1840 forces were graphically represented by
line segments. The representation by means of arrows appears, perhaps for the first time,
in the works of Matthew O’Brien [O’Brien 1851a,O’Brien 1851b].
4 Euler repeated this derivation in his treatise on the motion of rigid bodies, the Theoria
motus corporum solidorum . . . [E289, cap. XV, §808].
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where u, v, w are the components of the velocity (§XII). Had Euler pursued
the question further, he might have discovered the geometrical relations
that are now expressed by the vectorial formula v = ω× r. (As a matter of
fact, this step was taken in [Cauchy 1844].) Thus we see that at this time
Euler was not aware of the geometrical meaning of the formulae equivalent
to vector products.

The gap that separated the eighteenth century from the general concept
of vector can also be seen in the work of Lagrange. Two instances stand
out in this regard.

The first instance occurs in his famous paper on the analytic theory of the
triangular pyramid [Lagrange 1775b]. Here Lagrange gave the geometrical
meaning of the expressions for the scalar and the mixed product (§11;
§15), 5 but missed seeing that an ordered triple of the form (yw− zv, zu−
xw, xv− zu) represents a vector. It is difficult to understand how he could
interpret the very complicated formulae that appear at the beginning of
his work without some knowledge of the external product (§1-3). 6

The second example is taken from the Méchanique analitique. In the
first edition Lagrange considered the kinematics of a rigid body with a fixed
point [Lagrange 1788, p. I, sect. IV, art. 9]. In so doing, he resolved a general
infinitesimal rotation into three rotations about the axes of a rectangular
system of coordinates, thus demonstrating their law of composition. 7 From
his formulae it is easy for us to see the vectorial character of infinitesimal
rotations, yet he failed to do so. However, in 1811, after a lapse of more
than twenty years, Lagrange returned to the subject in the second edition
of his treatise, now entitled Mécanique analytique. This time he added to
his preceding analysis a comment in which the possibility of representing
infinitely small rotations by means of a directed segment is emphasized:

“It is clear from this development that the composition and resolution
of rotational motions are entirely analogous to rectilinear motions.

“Indeed, if on the three axes of the rotations dψ, dω, dφ, one takes
from their point of intersection lines proportional respectively to dψ, dω,
dφ, and if one draws on these lines a rectangular parallelepiped, it is easy
to see that the diagonal of this parallepiped will be the axis of composed
rotation dθ and will be at the same time proportional to this rotation
dθ. From this result, and because the rotations about the same axis can
be added or subtracted depending on whether they are in the same or

5 See also [Lagrange 1775a, n. 5]
6 A geometrical interpretation of these formulae were given much later in [Binet 1813].
7 It is possible that this result was taken over by Lagrange from the work of
Paolo Frisi, who discovered it as early as 1759. This is a matter of debate, for La-
grange did not cite Frisi in this context. Frisi gave several accounts of his theorem
[Frisi 1759,Frisi 1767,Frisi 1768,Frisi 1783a,Frisi 1783b].
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opposite directions, in general one must conclude that the composition
and resolution of rotational motions is done in the same manner and by
the same laws that the composition or resolution of rectilinear motions,
by substituting for rotational motions rectilinear motions along the di-
rection of the axes of rotation.” [Lagrange 1811-15, part I, sect. III, §III,
art. 15; Oeuvres, t. XI, p. 61; translation by A. Boissonnade and V. N.
Vagliente, 1997].

It is likely that this new interpretation of the old formulae had been
prompted by the appearance of Poinsot’s Statique in 1803. 8

Lest the foregoing criticism seem too harsh, we must remember that
before the nineteenth century even the simplest forms of vector calculus
were completely unknown. More importantly, to be accepted as a vector a
geometric entity had to obey to the parallelogram law, and thus it was not
sufficient that it had three “components”.

Our account of vectors in the eighteenth century should make it clear
how far removed mathematics was at that time from a real comprehension
of the subject. All this began to change by the end of the century. As far
as I know, the first recognition of the geometrical meaning of the vector
product occurs in Euler’s paper “An easy method for investigating every
property of curved lines not lying in a plane” [E602]. Here Euler explicitly
stated that the three expressions

dz d2y − dy d2z

ds3
,
dx d2z − dz d2x

ds3
,
dy d2x− dx d2y

ds3
,

which, from a modern point of view, are the components of the binormal
vector with respect to three orthogonal axes, define a unit segment perpen-
dicular to the osculating plane of a skew curve (§27). 9 However, the same
paper contains analytical expressions roughly equivalent to the formulae
b = t×n, n = b× t, t = n×b, where t, n, b are respectively the tangent
vector, the principal normal and the binormal (§26), but Euler does not
mention this interpretation. Thus there are reasons to believe that he did
not fully understand the matter. Euler could scarcely have failed to notice
that the three expressions reported above are similar in form to the projec-
tions on the coordinate planes of the areas described by the radius vector
in the “law of areas” (that is, the conservation of moment of momentum for
an isolated system), but surprisingly he did not call attention to this fact.
In passing, we note the general formulation of the theory of skew curves by

8 We know from [Bertrand 1872] that Lagrange had discussed with Poinsot the new
developments in vector mechanics around 1806.
9 These expression can also be found in §19 of Euler’s memoir referred to by Truesdell
in the first citation [E608].
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means of directed segments occurs much later, in [Saint-Venant 1845] and
[Chelini 1845]. 10

In order to understand the development of vector calculus it is neces-
sary to take these results into account, for some of the discoveries of the
period 1760-1820 led directly to the development of the earliest theories
of vectors. 11 The starting point of this new stream of thought can be
found in two papers by Euler on the theory of moments. They were pre-
sented to the Academy of Science of St. Petersburg in 1780, and appeared
consecutively in the 1789 volume of the Nova acta academiae scientiarum
imperialis Petropolitanae, which was published only in 1793, ten years af-
ter Euler’s death [E658,E659]. This delay in publication turned out to have
some consequences for the subsequent development of the theory.

3. Euler’s first memoir: the solution by pure geometry

The purpose of Euler’s “On finding the moments of forces about any
axis; where several important properties of couples of straight lines, not
lying in the same plane, are explained” [E658] is clearly set forth in the
title. The paper opens with a purely geometrical definition of the moment
of a force V about an axis az: Take any point P on the line of action of the
force, and multiply the component of V perpendicular to the plane aPz
by the distance of P to az. Euler remarks that it appears very difficult
to give a general analytical expression for this definition. However, taking
into account the arbitrariness of the choice of the point P , it is possible
to make the segment from P to az equal to the common perpendicular
of the two assigned lines. Thus we reach the main problem: To find the
distance between two assigned straight lines in space, supposing that one
of them passes through the origin. From this point onwards, much of this
work, more than half of the whole, concerns geometrical questions, and
Euler carefully separates the basic geometrical results from their applica-
tions to mechanics. It must be noted, though, that even these geometrical
parts remain algebraically oriented, for Euler describes the positions of the
points and the straight lines by means of a rectangular Cartesian system
of coordinates.

Mention must be made of the fact that in this paper a straight line in
three dimensions is assigned by means of one of its points and its directon

10Saint-Venant coined the term “binormal” in [Saint-Venant 1845, p. 17].
11The origin of vector calculus in geometry and mechanics is usually not recognized in
the standard histories of mathematics. Some idea of the question can be gained from
[Caparrini 2003,Caparrini 2004]. Hactenus hec. Cetera in tempus aliud reservo.

LOL-Ch23-P6 of 20



Euler’s Influence on the Birth of Vector Mechanics 465

cosines (§8). This is virtually the modern form of expression, completely
symmetrical in all the variables and ready to be translated into the language
of vectors. We must recall that twenty years later, in the second edition of
his Feuilles d’analyse [Monge 1801], Monge still described a straight line
by its projections on two coordinate planes.

Before turning to the distance problem, Euler finds an expression for the
angle ω between two straight lines in the form

cosω = fF + gG+ hH,

where f , g, h and F , G, H are the cosines of the angles formed by the
two lines with the coordinate axes (§13), which is clearly equivalent to
the modern scalar product. However, this result was not new, for it can
be found in Lagrange’s famous paper on the analytic study of tetrahedra
[Lagrange 1775b, n. 11], where it is also interpreted geometrically. Let us
note that in his proof – not much different from Lagrange’s – Euler starts
from the formula

cosω =
AZ2 +Az2 − Zz2

2AZ ·Az
where AZ and Az are two straight lines passing through the same point A,
which is the analytical expression for the so-called “Carnot theorem”.

The difference between the mastery of analytic geometry in 1780 and
today (or 1820, let’s say) is clearly seen by looking at Euler’s treatment of
the distance problem, for his calculations are somewhat prolix by modern
standards. In essence, Euler determines the positions of the end points of
the segment of minimal distance between the two straight lines (§15-18),
then calculates the length m of the segment (§19-23). 12 Euler’s final result,
in his own notation, is

m sinω = (Gh−Hg)a+ (Hf − Fh)b+ (Fg −Gf)c,

where a, b, c are the coordinates of a point on the axis of the moment.
The formula for the distance between two straight lines is a major result
in analytic geometry, but is not cited in the histories of the subject. 13

With this main geometrical theorem stated, in the last part of the paper
Euler returns to the problem of finding an analytical expression for the
moment of a force. Multiplication of both sides by the intensity V of the
force leads immediately to the desired result,

(moment of V about az) = V (Gh−Hg)a+V (Hf −Fh)b+V (Fg−Gf)c.

12The formula for the distance of two points in three dimensions makes an early ap-
pearance here; see [Boyer 1956, p. 169].
13Euler’s distance formula is clearly a mixed product of vectors, or a third order deter-
minant. As we have seen, the geometrical interpretation of expressions of this kind had
been given by Lagrange a few years before. See also [E268, p. 3]
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Considering now the special case in which the axis az is successively
parallel to each of the coordinate axes, the above formula gives

V f(bH − cG), V g(cF − aH), V h(aG− bF ),

and hence the general formula becomes

fP + gQ+ hR,

where P , Q, R are respectively the moments about the axes Ox, Oy, Oz.
This expression indicates that moments of forces can be resolved into com-
ponents along three orthogonal axes by the parallelogram law. In fact, it
is equivalent to a scalar product which expresses the projection of a vector
along a given straight line by means of components of the vector on three
orthogonal axes and the direction cosines of the line.

Euler saw its meaning, for the paper ends with these words:
“Therefore the moments about three orthogonal axes can be composed
exactly as the simple forces. For if three forces P ,Q,R were applied to the
point a, acting along the directions af , ag, ah, they would form a force
equal to fP + gQ + hR acting along the direction az. This marvellous
harmony deserves to be considered with the greatest attention, for in
general mechanics it can deliver no small development.” 14 [E658, §35
(author’s translation)]
This passage makes it plain that Euler now visualizes the moment of a

force about an axis as a vector lying along the axis. The last remark, of
course, is prophetic.

The discovery of the vectorial properties of moments is a result as fine
and important as any Euler ever achieved. The final expression can justly
be called Euler’s formula for moments.

Having followed Euler’s derivations of the formula of moments, the reader
will be no doubt surprised to learn that Euler had already obtained this
result almost twenty years before, as the solution of Problem 2 of his paper
“On the equilibrium and motion of bodies connected by flexible joints,”
[E374] written in 1763 but published in 1769. While the result was the same,
the proof was more primitive, and Euler failed to grasp its significance. 15

14“Momenta igitur virium pro ternis axibus inter se normalibus eodem prorsus modo

componi possunt, quo vires simplices componi solent. Si enim puncto a applicatae fuerint
vires P , Q, R, secundum directiones af , ag, ah, ex iis componitur vis secundum direc-
tionem az = fP+gQ+hR, quae egregia harmonia maxima attentione digna est censenda,
atque in universam Mechanicam hinc non contemnenda incrementa redundare possunt.”
15The proof is based on the consideration of an ad hoc system of forces, which is supposed
to be equivalent to the assigned forces. Truesdell, who first noticed this formula, remarked
that “the solution of Problem 2 is a proof of the vectorial character of moments, in three
dimensions” [Truesdell 1960, p. 342]. This is true, but Euler was not conscious of the
fact.
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It is curious that Euler returned to the same problem without citing his
previous derivation, yet this case is by no means unique. 16 Evidently, by
1780 he had forgotten what he himself had achieved in 1763.

4. Euler’s second memoir: the solution by the first principles of
statics

Euler considered his result so important that he derived it anew in a
second memoir. Shortly after completing the first paper, he wrote “An
easy method for determining the moments of every force about any axis”
[E659], in which he presents a new approach to the same problem. “While
this important result [i.e., Euler’s formula fP + gQ+hR] has been derived
by means of geometrical considerations and with quite long calculations,
there is no doubt that it can also be deduced directly from the principles of
statics. Having thus diligently considered the question, I happened to find
quite an easy way, which led me to this result.” 17 His new proof, essentially,
rests upon the resolution of a force by means of the parallelogram law and
the possibility of translating a force along its line of action without affecting
its moment. Thus his methods here bear a strong resemblance to the purely
geometrical formulation of Poinsot.

Supposing that the new axis I passes through the origin of the coordi-
nates, Euler begins by replacing the given force with an equivalent system
formed by three other forces, each lying in one of the coordinate planes and
parallel to one of the coordinate axes. Hence, each of them has a non-zero
moment only about one of the axes. The new forces are then resolved into
two components, parallel and perpendicular to I, and the moments about
I of the perpendicular components are easily found. Expressing these three
moments by means of the original components, Euler obtains fP , gQ, hR,
and their sum yields the formula of moments.

In the remainder of the paper Euler derives afresh the expression for the
distance of two straight lines, starting from the formula of moments. Thus
the second memoir exhibits the same results of the first one, but in the
reverse order.

16 [Truesdell 1960] gives several examples of similar episodes.
17“Quae egregia veritas cum ex consideratione geometrica per calculos satis prolixos
derivata sit, nullum est dubium, quin etiam via directa ex principiis staticis deduci
queat. Postquam igitur hoc argumentum sollecite essem perscutatum, incidi in viam
satis planam, quae me ad hanc veritatem perduxit.” (Author’s translation.)
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We pause for a moment to note that when Euler gave these complicated
geometrical proofs, somewhat difficult to follow even for the experienced
reader, he had been blind for about twenty years.

Euler never developed further his discovery of the vectorial representation
of moments, nor put it to any use. This idea was to mature many years
later.

5. Impact and influence of the work

It is instructive to follow the history of Euler’s formula up until the be-
ginning of the nineteenth century, for it influenced in various ways several
important mathematicians. This was in fact the first step towards a formu-
lation of mechanics entirely based on the concept of vector. Euler’s formula
is like an Ariadnean thread through the early development of vector calcu-
lus.

According to [Poisson 1827, p. 357], by the time Euler’s two papers were
published, the situation caused by the revolution made it difficult for French
mathematicians to have access to them. Not knowing Euler’s work, in 1798
Laplace considered the problem of simplifying the equations of motion of
an isolated mechanical system by choosing coordinate axes which reduce
to zero some constants of motion [Laplace 1798]; thus he discovered the
invariable plane. 18 In modern terms, the invariable plane is simply a plane
orthogonal to the total moment of momentum vector. To obtain this re-
sult, Laplace had to calculate the formulae for the transformation of the
projections on the coordinate planes of the areas swept over by the radius
vector in the movement of the planets in passing from one coordinate sys-
tem to another, and thus nearly discovered the vectorial nature of moment
of momentum.

Shortly thereafter Laplace wrote a second paper on the same subject,
whose title was simply “Sur la Mécanique” [Laplace 1799a]. It is only two
pages long and there is not a single formula. Here Laplace remarks that
the invariable plane is orthogonal to the axis of moments, which he calls
axe du plus grand moment.

The connection between the formulations of Euler and Laplace, which
now seems obvious, was established by Prony with a few lines of simple
calculations in his Mécanique philosophique [de Prony 1800, p. 110]. There,
in a footnote, he gives the first explicit citation of Euler’s first paper. He

18This result was immediately included in the Traité de mécanique céleste
[Laplace 1799b, liv. I, ch. IV, n. 21]. See also the Exposition du système du monde
[Laplace 1835, VI:199].
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remarks that Euler’s formula “is of such simplicity and elegance that it can
be considered one of the most beautiful results in mechanics.” 19 While
Prony did not add anything new to the preceding works, he has the merit of
having clarified and made generally known the first results in the vectorial
theory of moments.

Poinsot, independently of Euler and Laplace, initiated a purely geomet-
ric approach to the vectorial theory of moments in his famous textbook
of statics Eléments de Statique, first published in 1803 but reprinted at
least twelve times before the end of the century [Poinsot 1803, n. 60-67].
To study the equilibrium of a rigid body with respect to rotations, Poinsot
introduced the couple of forces. A couple is a system of two equal, par-
allel and oppositely directed forces, whose magnitude is measured by the
product of the intensity of the forces by the distance between their lines
of action. Poinsot showed that if we represent a couple with a segment
perpendicular to its plane, we can compound two couples by means of the
parallelogram law.

In a successive work [Poinsot 1806], Poinsot demonstrated the existence
of the central axis and gave vectorial proofs of the conservation of mo-
mentum and of moment of momentum in an isolated system. While in the
first edition of this paper he did not say anything about the results ob-
tained by Euler, in the subsequent editions, published as an appendix to
the Eléments, Poinsot added an observation about the formula G cos θ =
L cosλ+M cosµ+N cos ν, which furnishes the value of the projection of
the couple G on the axis whose cosines are cosλ, cosµ, cos ν with respect
to the coordinate axes:

“[This is] a very simple formula, which Euler gave in vol. VII of the New
Proceedings of Petersburg, but to which he could arrive only by means
of lengthy analytical calculation.” 20 [Poinsot 1803, 1842 ed., p. 355]
A different geometric representation of moments was developed by Pois-

son a little later [Poisson 1808]. Poisson remarked that the moment of a
force about a point is numerically equal to the double of the area of a tri-
angle having the vertex in the point and the force itself as its basis, and
thus implicitly assumed that it can be represented geometrically by the
triangle. Poisson was clearly inspired by Laplace’s theory of the invariable
plane and by Poinsot’s couples. Euler’s formula is given in the form

D = A′ cos ε′ +A′′ cos ε′′ +A′′′ cos ε′′′,

19“[Cette formule est] d’une simplicité et d’une élégance telle qu’on peut la regarder
comme une des plus belles de la mécaniques.” (Author’s translation.)
20“[elle est une] formule très-simple qu’Euler a donné dans le tome VII des Nou-
veaux Actes de Petersbourg, mais à laquelle il n’était parvenu que par de longs circuits
d’analyse.” (Author’s translation.)
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where D is the plane area which represents the moment, A′, A′′, A′′′ are its
projections on the coordinate planes and ε′ , ε′′ , ε′′′ are the angles between
D and the coordinate planes.

Poisson included this theory in his Traité de Mécanique, one of the most
influential mathematical textbooks of all time [Poisson 1811, vol. I, liv. I,
ch. III], [Poisson 1833, vol. I, liv. III, ch. II]. Here, to distinguish between the
two sides of a surface, he considered the directed straight line perpendicular
to it; this is the first example of a surface oriented by means of a vector. 21 .

It should be noted that while in 1808 Poisson had given all the credit
for the discovery of the formula for moments to Laplace (“these theo-
rems on the invariable plane and on the composition of moments are
due to M. Laplace”), 22 in the second edition of the Traité de Mécanique
[Poisson 1833, p. 544] these developments in the theory of moments were at-
tributed to Euler alone (“these remarkable theorems are due to Euler”). 23

The new theory of moments was briefly taken up by Lagrange in the
second edition of the Mécanique analytique [Lagrange 1811-15, vol. I, partie
I, sect. III, §III, n. 16]. To demonstrate Euler’s formula, Lagrange used
the vectorial representation of infinitesimal rotations. He started from the
expression of the virtual work due to a small rotation of a rigid body,

Ldψ +M dω +N dφ,

where L, M , N are the moments of the force about the three axes of a
rectangular Cartesian system of coordinates and dψ, dω, Dφ are the in-
finitesimal rotations about the same axes. Lagrange substituted the given
rotations with their decomposition into three rotations about a second sys-
tem of orthogonal axes, thus obtaining the moments about the new axes
in the form

L cosλ′ +M cosµ′ +N cos ν′,

L cosλ′′ +M cosµ′′ +N cos ν′′,

L cosλ′′′ +M cosµ′′′ +N cos ν′′′,

where λ′, µ′, ν′, λ′′, µ′′, ν′′, λ′′′, µ′′′, ν′′′ are the angles formed by the
new axes with the original system. Lagrange remarked that this result had

21The earliest example of an oriented surface appeared just a few years before in L.
Carnot’s Géométrie de position, where the two sides of a surface are described as painted

in different colours [Carnot 1803, p. 94]
22“Ces théorêmes sur le plan invariable et sur la composition des momens sont dus à
M. Laplace.” (Author’s translation.)
23“Ces théorèmes remarquables sont dus à Euler.” (Author’s translation.)

LOL-Ch23-P12 of 20



Euler’s Influence on the Birth of Vector Mechanics 471

been obtained by geometrical methods in the Novi commentarii for 1789,
but Euler’s name was not mentioned. 24

Still another geometric representation of moments was proposed by Binet
in 1815 [Binet 1815]. While considering the motion of a rigid body with a
fixed point O, he substituted every applied force F with a force whose
line of action is situated at a unitary distance from O and whose moment
about O is the same as that of F, and said that this new force represents
the moment of F about O. Euler’s memoir is referred to in §III, which
contains an analytical rephrasing of some portions of Poinsot’s theory of
couples. Here Binet observes that the expression for the least total couple
could also be obtained by means of the formula for the distance between
two straight lines found by Euler.

In a second paper on the theory of moments, Binet introduced the vector
representation of the areal velocity, for which he openly acknowledged the
influence of Euler and Poinsot:

“The areal velocities can be composed following rules analogous to those
for the composition and resolution of linear motions. It is not necessary
for me to insist on this point, that the theorems of Euler and the research
on moments of M. Poinsot have established without doubt, for our areal
velocities are exactly the moments of ordinary velocities.” 25 [Binet 1823,
p. 164 (author’s translation)].
Some additional contributions to Euler’s formula were made by Antonio

Bordoni, who expressed the formula in various forms and used it to solve
several problems [Bordoni 1822]. The greatest part of his paper is dedicated
to the resolution of different forms of the following problem: Given four
concurrent straight lines in space and the moments of a system of forces
about three of them, to find the moment about the fourth line. Thus, in
effect, Bordoni was studying the generalization of Euler’s formula to non-
orthogonal Cartesian axes.

After 1820 the time was ripe for someone to organize all the different
views involved in the theory of moments into a unified formulation. It fell to

24“Experience with [Lagrange’s book] has led me to the following working hypothesis:
1.There was little new in the Méchanique Analitique; its content derives from earlier

papers of Lagrange himself or from works of Euler and other predecessors. 2. Gen-
eral principles or concepts of mechanics are misunderstood or neglected by Lagrange.
3. Lagrange’s histories usually give the right references but misrepresent or slight the
content.”[Truesdell 1964, 1968 reprint, p. 246]
25“Les vtesses aréolaires se combinent entre elles, d’après des règles analogues à celles
de la composition et de la décomposition des mouvemens linéaires: je n’ai pas d sister
sur cet objet, que les théorèmes d’Euler et les recherches de M. Poinsot sur les momens
ont mis hors de doute, puisque nos vtesses aréolaires sont précisément les momens des
vtesses ordinaires.”
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Cauchy to do this, as he had done with many other branches of mathemat-
ics. In 1826 he published in vol. I of his Exercices de Mathématiques five pa-
pers in which he brought the theory to its final formulation [Cauchy1826a-
1826f]. Except for the lack of a proper vectorial notation, his treatment is
essentially modern. Cauchy’s moments are vectors, like Poinsot’s couples
and Binet’s momens, that represent Poisson’s surfaces.

The almost simultaneous appearance of several different theories of mo-
ments obviously led to some controversies over priority, which allow us to
see how these mathematicians viewed their own work. The first contro-
versy arose in 1827 between Cauchy and Poinsot. After the publication of
Cauchy’s theory of moments, Poinsot accused Cauchy of having published
results which were merely repetitions of his theorems on couples disguised
under a different notation [Poinsot 1827a]. Cauchy replied that his theory
was more general, for it could be applied to every kind of physical en-
tity which can be represented by a directed line segment [Cauchy 1827].
A second controversy began when Poisson published a short account of
the recent history of the theory of moments, in which he asserted that
Euler was the discoverer the vectorial composition of moments and main-
tained that Poinsot’s work was entirely derived from that of his predecessors
[Poisson 1827]. Poinsot answered with a long and detailed article in which
he observed that his theory of couples had introduced a geometrical com-
position of moments, whereas up to then there had been only the algebraic
sum of certain expressions [Poinsot 1827b].

This was the end of the polemics. Euler’s papers were then cited in
Möbius’ Lehrbuch der Statik [Möbius 1837, §89-91], but not in the rele-
vant portion of Grassmann’s first Ausdehnugslehre [Grassman 1844, §59].
Thereafter, they disappeared from the literature on the vectorial theory of
moments.

As we have seen, Euler’s first memoir includes the formula for the dis-
tance between two straight lines. This result can also be found in Monge’s
Feuilles d’Analyse [Monge 1801, §12-13] and in Cauchy’s Leçons sur les Ap-
plications du Calcul infinitésimal a la Géométrie [Cauchy 1826f, Prélim.,
Prob. VII], but their proofs are completely different from Euler’s, thus
giving evidence that they had been found independently.
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Binet 1823. “Sur les principes généraux de Dynamique, et en particulier
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Cauchy 1826c. “Usage des moments linéaires dans la recherche des
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in Oeuvres Complètes, (2)6, pp. 196-201.
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333-337. Reprinted in Oeuvres Complètes, (2)15, pp. 138-140.
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pyramides triangulaires,”Nouveaux mém. Berlin, (1773), pp. 149-

LOL-Ch23-P17 of 20



476 Sandro Caparrini

176. Reprinted in Oeuvres de Lagrange, 3, pp. 661-692.
Lagrange 1788. Méchanique analitique, Paris: Desaint.
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projections,” Correspondance sur l’Ecole Polytechnique, 1, pp. 389-
394.
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1. Leonhard Euler’s various contributions to differential
geometry

There was almost no mathematical discipline in the eighteenth century
to which Euler did not contribute. Many of Euler’s contributions to special
fields were appreciated and respected. But the case of differential geome-
try is different. Though Euler wrote articles on curve and surface theory
throughout his life, there is almost no secondary literature concerning this
particular aspect of his work. Euler himself mentions only a few of his
own articles in differential geometry in any of his others. Only Dirk Struik
dedicated a chapter to Euler in his “Outline of a history of differential
geometry.”[Struik 1933]

The term “differential geometry” was first used by Luigi Bianchi (1856-
1928) in an Italian textbook Lezioni di geometria differenziale. (Pisa 1886)
In Euler’s time we take it to mean the theory of curves and surfaces. The
theory of curves began with the rise of calculus and important results came
quickly. Isaac Newton (1643-1727) determined an expression for the curva-
ture of plane curves by means of his kind of calculus [Stiegler 1968]. Also
Jakob Bernoulli (1654-1705) wrote papers about cycloids, catenary curves,
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helical curves, spirals, circle of curvature, caustics, the elastic curve and its
radius of curvature and the lemniscate [Weil 1999]. Curve theory quickly
became a particularly well developed field. At first Euler too was interested
in curve theory, but he soon achieved results in surface theory also. Euler
was the first mathematician who worked successfully on surface theory.

In the following, only Euler’s main results shall be discussed. It is not
possible to give a complete survey. The main contributions, however, will
be mentioned. The order will be chronological.

1.1. First example of a minimal surface: the catenoid, 1744

In 1741 Euler moved from St. Petersburg to Berlin. That same year he
became member of the Berlin academy, the Brandenburgische Sozietät der
Wissenschaften, founded in 1700. In 1742 Euler also became an honorary
member of the Academy of St. Petersburg. For the years 1744 to 1766
Euler was director of the mathematical class of the Academy in Berlin.
After the position had been vacant for five years Pierre-Louis Moreau de
Maupertuis (1698-1759) was appointed president of the academy in 1746.
When Maupertuis died, there was another interregnum from 1759 to 1764.
In 1764, however, Frederic II (1712-1786, reg. 1740-1786) named himself
head of the academy. After he was not appointed president of the academy,
in 1766 Euler left Berlin and returned to St. Petersburg.

In a letter to Maupertuis on March 14, 1746, Euler mentioned that he had
started his work 1 on Methodus inveniendi lineas curvas maximi minimive
proprietate gaudentes, “A method for finding curved lines enjoying the
properties of maximum or minimum, or solution of isoperimetric problems
in the broadest accepted sense” [E65] when he was still in St. Petersburg.
Once in Berlin, Euler gave his manuscript to his publisher Bousquet 2 and
it was published in September 1744 in Lausanne and Geneva. It contained
6 chapters [Fraser 2005]. With this work Euler founded a new discipline
within analysis, the calculus of variations. Before Euler there were sev-
eral individual problems, but after Euler there was a general calculus of
variations.

There are many connections between the calculus of variations and differ-
ential geometry, for example geodesic lines. These can be treated by means
of variations and they play an important role in differential geometry. In
Chap. IV, §11 for example Euler is concerned with the shortest lines on a
general curved surface.

1 He wrote, “Cela s’entend de mon ouvrage même, que j’avois déjà achevé à Peters-
bourg.” Opera omnia (4) 6, p.60.
2 Opera omnia (1) 24, p. XI.
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In the next chapter, however, Euler asked: “To find the curve among all
others of the same length which, if rotated around the axis AZ, delivers
a solid, the surface of which is either a maximum or a minimum.” 3 The
answer is the general equation of the catenaria, the chain line:

dx =
c dy√

(b + y)2 − cc
.

This most outstanding result shows that the catenoid is a minimal sur-
face. This was the first example of a minimal surface in history [E65,
Chap.V, §47; p. 186f].

1.2. Definition of the curvature of a surface, 1767

Four years later Euler published his very famous textbook Introductio in
analysin infinitorum, [E101-102], which soon became classic. The second
volume contains the theory of curves and in an appendix surface theory,
though it has only little on differential geometry, for example some remarks
on singular points and asymptotes of plane curves, some osculation prop-
erties, and notes on concavity and convexity in relation to the sign of the
radius of curvature [Struik 1933, p.102].

Indeed, Euler did not give a general theory of surfaces. He just treated
several topics on solid surfaces: the intersection of a surface with a plane,
especially sections of cylinders, cones and spheres, some second-order sur-
faces and the intersection of two surfaces. This last chapter included the
theory of space curves [Reich 2005b].

But fifteen years later Euler had achieved spectacular results on surface
theory. For the first time it was possible to give a definition of the curvature
of a surface. On September 8, 1763 Euler presented to the Berlin academy
his “Recherches sur la courbure des surfaces.” The paper was published in
1767 [E333].

In 1766 Euler left Berlin and returned to St. Petersburg to accept the in-
vitation of Catherine II, who truly appreciated him as a first class scientist,
a recognition which Frederic II in Berlin had never granted.

Euler began his “Recherches” by formulating the problem: “I will begin
by determining the radius of curvature for a section of an arbitrary plane
cutting the surface.” 4 He set out a three-step plan to achieve this goal:

3 Invenire curvam, quae inter omnes alias eiusdem longitudinis circa axem AZ rotata
producat solidum, cuius superficies sit vel maxima vel minima. [E65, Chap. V, §47]
4 “Je commencerai par déterminer le rayon osculateur pour une section quelconque
plane, dont on coupe la surface.”
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“(i) If a surface, the nature of which is known, is cut by an arbitrary plane,
to determine the curvature of this section.

(ii) If the plane of the section is perpendicular to the surface in the point
Z, to determine the radius of curvature of this section in the same point
Z.

(iii) An arbitrary surface being given, to find the osculating radius of a
section EPZ, which forms an angle ϕ with the principal section.”

The result was a very long expression, which was transformed into a much
easier one by means of :

f , the largest radius of curvature, which belonged to the section EF , and
g, the smallest radius of curvature, which belonged to the section normal

to the previous one. After a long calculation the result was:

r =
2fg

f + g − (f − g) cos 2ϕ

where f and g are the radii of curvature of the principal sections and ϕ is
the angle between an arbitrary normal section and the principal section.

This was an astonishing result indeed, which Euler expressed in his own
words: “And so the measurement of the curvature of surfaces, however
complicated, which appeared at the beginning, is reduced at each point to
the knowledge of two radii of curvature, one the largest and the other the
smallest, at that point; these two things entirely determine the nature of
the curvature and we can determine the curvatures of all possible sections
perpendicular at the given point.” 5

1.3. Developable surfaces and the so-called Gaussian variables, 1772

In March 1770 Euler presented to the academy in St. Petersburg his
paper “About solids, the surfaces of which can be developed on the plane”
(De solidis quorum superficiem in planum explicare licet, [E419]). In this
paper, Euler extended his study of surfaces to developable surfaces, a totally
new concept. For the first time he represented a point x, y, z on a surface
as a function of two variables t and u. These were later called Gaussian
variables.

5 “Ainsi le jugement sur la courbure des surfaces, quelque compliqué qu’il ait paru au

commencement, se réduit pour chaque élément à la conoissance de deux rayons oscu-
lateurs, dont l’un est le plus grand et l’autre le plus petit dans cet élément; ces deux
choses déterminent entierement la nature de la courbure en nous découvrant la courbure

de toutes les sections possibles, qui sont perpendiculaires sur l’élément proposé.” [E333,
p. 22]
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Euler began with the remark that in elementary geometry it is well known
that cylinders and cones have the property that they can be flattened out,
or “developed” into a plane, while, for example, the sphere does not have
this property. He asked which other kinds of surfaces have the property
that they are developable into a plane; this question is, according to Euler,
a most notable, characteristic one. 6

Euler investigated the conditions on x, y, and z, the coordinates of a
point, and the two variables t and u describing the surface, i.e.

dx2 + dy2 + dz2 = dt2 + du2.

The geometrical problem is therefore reduced to the solution of the fol-
lowing analytical problem: given the two variables t and u you have to find
the six equivalent functions l, m, n, λ, µ and ν, so that the formulas

ldt + λdu, mdt + µdu, and ndt + νdu

are integrable and further satisfy:

λλ + µµ + νν = 1, lλ + mµ + nν = 0

.
The exposition was threefold:
(i) a solution by means of analytical principles,
(ii) a solution by means of geometrical principles, and
(iii) the application of the second to the first solution.

As a result Euler was able to prove that the line element of the surface
has to be the same as the line element of the plane or, as he expressed it,
“All surfaces which can be developed on a plane by means of flexibility and
without stretching can be represented by the tangents of a spatial curve.”

According to Andreas Speiser, this paper of Euler has to be regarded as
one of his very best mathematical achievements. 7

Euler also mentioned his success in a letter to Lagrange dated January
16/27, 1770: 8

“I have found a complete solution to the following problem: It is a matter
of finding three functions, X, Y , Z of two variables t and u such that
setting dX = Pdt + pdu, dY = Qdt + qdu, dZ = Rdt + rdu, they will
satisfy the following conditions:

6 “Quaesitio igitur hinc nascitur maxime notatu digna, quo charactere ea solida in-
structa esse oportet, quorum superficiem in planum explicare licet.”
7 Opera omnia (1) 28, p. XXIV: “so werden wir diese Arbeit als eine mathematische

Höchstleistung bezeichnen dürfen.”
8 “...j’ai trouvé une solution complète du problème suivant: Il s’agit de trouver trois
fonctions X, Y , Z de deux variables t et u, telles que, posant dX = Pdt + pdu,
dY = Qdt + qdu, dZ = Rdt + rdu, on satisfasse aux conditions suivantes:
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I. P 2 + Q2 + R2 = 1,

II. p2 + q2 + r2 = 1,

III. Pp + Qq + Rr = 0.

Now, the nature of differentials requires the following additional condi-
tions:

I.
∂P

∂u
=

∂p

∂t

II.
∂Q

∂q
=

∂q

∂t

III.
∂R

∂u
=

∂r

∂t
.

As an altogether singular thought led me to the solution of this problem,
which I would have believed before would be impossible, I think that
this discovery could become very important in the new part of integral
calculus for which Geometry is indebted to you.”
Euler should agree with Lagrange’s assessment of the importance of this

result.

1.4. Orbiforms, 1781

Four years later, on May 12, 1774, Euler presented the Academy of St.
Petersburg with a paper on orbiforms, which was published in 1781 with the

I. P 2 + Q2 + R2 = 1,

II. p2 + q2 + r2 = 1,

III. Pp + Qq + Rr = 0.

Or la nature des différentielles demande encore les conditions suivantes:

I.
∂P

∂u
=

∂p

∂t

II.
∂Q

∂q
=

∂q

∂t

III.
∂R

∂u
=

∂r

∂t
.

Comme une considération tout à fait singulière m’a conduit à la solution de ce problème,
que j’aurais d’ailleurs jugé presque impossible, je crois que cette découverte pourra

devenir d’une grande importance dans la nouvelle partie du Calcul intégral dont la
Géométrie vous est redevable.” Oeuvres de Lagrange, vol.14, Paris 1902, p.217f.
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Fig. 1. Euler’s triangular curve

title “About triangular curves” (De curvis triangularibus, [E513]). 9 The
problem itself had its origins in optics. Orbiforms are curves of constant
breadth so named because the circle shares this property. Euler showed
that the circle is not the only shape with this property. At first Euler
investigated triangular curves, closed curves with three cusps that look like
astroids. (See Fig 1.) Euler showed that the evolvents of these curves are
curves of constant breadth.

Fig. 2. Some properties of the triangular curve

9 Homer White gives a further discussion of this article, E513, in “The Geometry of
Leonhard Euler” elsewhere in this volume.
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1.5. Moving trihedral, spherical image, first Frenet formula, 1786

For a long time, Euler was not interested in the theory of space curves.
But on May 28, 1775, he presented to the St. Petersburg Academy his paper
“Easy method to investigate all points of intersection of curves which do
not lie in the same plane” (Methodus facilis omnia symptomata linearum
curvarum non in eodem plano sitarum investigandi, [E602]).

Alexis Clairaut (1713-1765) had been the first to treat space curves
systematically. He published his results in Paris in 1731 under the title
Recherches sur les courbes à double courbure. To investigate space curves
analytically Clairaut used projections of space curves onto the planes of
the coordinates. Euler, however, chose the arc length s as the variable of
a space curve, which made the presentation much more elegant. In §5 he
introduced a unit sphere with its center at a point moving along the curve.
This is equivalent to the introduction of the spherical image, which was
later used by Gauß
indexGauss, Karl Friedrich and now known as the Gauss map. Euler then
defined the moving trihedral, i.e. the tangent, the normal and the second
normal (binormal) and calculated their cosines (§17 and 18) as well as the
radius of curvature (§10). In the second of the paper part he continued his
calculations. The main results were, written in modern terminology:

−→
t =

−→
h ×

−→
b ,
−→
h =

−→
b ×−→t , and R

d
−→
t

ds
=
−→
h .

This is the first of the three Frenet formulas.

1.6. Developable surfaces, rigidity of closed surfaces, 1862

This paper of Euler is a fragment, written by his students in a kind of
notebook, the Adversarii mathematici. Euler again treated the develop-
ment of surfaces. The problem is “To find two surfaces one of which may
be transformed into the other so that in both of them homologous [corre-
sponding] points keep the same distances from each other.” 10 Euler proves
that surfaces have this property if they have the same line elements.

The paper finishes with the following annotation:
“It is appropriate here to note one may not assume another surface other
than the given one. In any case it is not clear how the functions p, m,
and n have to be taken so that the surface has the given shape, for
example a sphere. In both formulas the, two variables r and s can be

10“Invenire duas superficies, quarum alteram in alteram transformare liceat, ita ut in
utraque singula puncta homologa easdem inter se teneant distantias.”
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augmented to infinity and that this extension cannot be removed by any
imaginary thing. Hence neither the sphere nor any other figure in a finite
space can be described by these formulas. But as to the terminated or
everywhere closed figures it looks as if they have to be judged in another
way, because as soon as a solid figure is everywhere completed, it does
not permit any further mutation. This can be understood by looking at
these known figures that usually are called regular. Thus insofar as the
spherical surface is complete, it dies not admit any mutation. Hence it
is clear that such figures can be mutated insofar as they are not integer
or everywhere closed. Yet, it is clear that the figure of the hemisphere is
certainly mutable. But which kinds of mutations are possible seems to
be a very difficult problem.” 11

2. Reception

The first reactions to Euler’s discoveries came from Italy. Lagrange and
Euler had corresponded since 1754. There still exist 36 letters exchanged
between the two through 1775, but Euler and Lagrange never met each
other.

2.1. Joseph Louis Lagrange (1736-1813)

Euler’s and Lagrange’s common interests included the calculus of varia-
tions. Lagrange was 29 years younger than Euler and 10 years older than
Monge. He was born in Turin and began his career at first in his home-town
where, in 1755, he became professor of mathematics at the Royal Artillery
School. In 1756 Lagrange became corresponding member at the academy
in Berlin and ten years later he succeeded Euler in Berlin as director of
the mathematical class of the Academy. In 1772 Lagrange was elected as-
socié étranger at the Académie des sciences in Paris. This was reconfirmed
when the Académie was reorganized in 1785. After Frederic II died, La-
grange left Berlin in 1787 and returned to Paris, where he immediately
became pensionnaire vétéran at the academy and professor at the École
Normale and at the École Polytechnique. One year later, in 1788, he was
promoted to directeur of the academy. In 1795 Lagrange became membre
résidant de la section mathématiques and was elected président du bureau
provisoire. When the Bureau des longitudes was founded in Paris in 1795,

11 [E819, p. 440]. The translation was made by Eberhard Knobloch whom I want to
thank very much.
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Lagrange was among the founding members. In 1801 also the Sozietät der
Wissenschaften in Göttingen chose Lagrange as a corresponding member.

At first it had been Euler’s “A method for finding curved lines enjoying
the properties of maximum or minimum” [E65] which fascinated Lagrange.
This led to a correspondence between Euler and Lagrange. In 1760/1 La-
grange published some of his own results of the discussion with Euler:
“Essai d’une nouvelle méthode pour déterminer les maxima et les minima
des formules intégrales indéfinies” [Lagrange 1760/1]. This work, like Eu-
ler’s book, is mainly devoted to the calculus of variations, but Langrange’s
work also included as “Appendix I” a chapter on minimal surfaces: “Par
la méthode qui vient d’être expliquée on peut aussi chercher les maxima
et les minima des surfaces courbes, d’une manière plus générale qu’on ne
l’a fait jusqu’ici.” 12 Lagrange derived the partial differential equation of
minimal surfaces:(

dP

dx

)
+

(
dQ

dy

)
= 0,

P =
p√

1 + p2 + q2
, Q =

q√
1 + p2 + q2

,

where x, y and z are rectangular coordinates.
Later these equations were transformed into the more modern form

[Reich 1973, p.313f]:

r
(
1− q2

)
− 2ps +

(
1 + p2

)
t = 0,

p =
∂z

∂x
, q =

∂z

∂y
,

r =
∂2z

∂x2
, s =

∂2z

∂x∂y
, t =

∂2z

∂y2
.

Lagrange, however, did not mention the catenoid, which, as we described
above, had been found by Euler.

Lagrange, though, did refer extensively to Euler’s theory of curved sur-
faces [E333]. Lagrange’s textbook Théorie des fonctions analytiques which
was first published in 1797 and had a second edition in 1813, included a
chapter devoted to “Des sphères osculatrices. Des lignes de plus grande et
de moindre courbure. Propriétés de ces lignes” [Lagrange 1813, Chapter
IX]. Lagrange emphasized that the results of Euler and Monge should be

12“By the method which comes to be explained, one can also find the maxima and

minima of curved surfaces, in a more general manner than has been used before,” Oeuvres
de Lagrange, vol.1, p.353-357.
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appreciated by all geometers: “These properties of surfaces are very curi-
ous and they merit the full attention of geometers; they will have especially
important applications for the arts,” 13 and quoted [E333], [Monge 1780]
and [Monge 1785].

2.2. Gaspard Monge (1746-1818)

Euler’s achievements in differential geometry were also influential among
Monge and his school of students from Mézière as well as students from
the École Polytechnique in Paris.

Gaspard Monge was 39 years younger than Euler. Born in Beaune, he
began his career as a student of the École Royale Du Génie de Mézières.
This school, founded in 1748, had as its aim the education of engineers. It
had its best time during the years 1765-1775. Taton called these years “la
grande periode” [Taton 1964, p.586-596]. In 1769 Monge became répétiteur
de mathématiques (tutor of mathematics), at the age of 24, and in 1770 he
became responsible for all mathematical and physical lectures at the École
in Mézières.

In 1772 Monge was elected to be a corresponding member of the Parisian
Academy, and in 1780 he became adjoint géomètre, replacing Vandermonde.
In 1785 Monge was promoted to associé of the physics class, and in 1795
he was nominated membre résidant. Also that year Monge started teaching
at the newly founded École polytechnique after the school in Mézières had
closed in 1794.

Monge’s main interest was geometry; descriptive geometry, design, an-
alytical geometry and so on. And of course, he always was keenly aware
of relationships of theory with practice and the applications of geometry
especially to technology.

In 1771 Monge presented the Parisian Academy with his first paper on
developable surfaces, “Mémoire sur les développées, les rayons de cour-
bure et les différens genres d’inflexions des courbes à double courbure.”
[Monge 1785] This paper had a new style, and Euler played no role in it.
Monge proved several interesting theorems about space curves.

When Monge read Euler’s paper “About solids, the surfaces of which
can be developed on the plane” [E419], Monge got even more interested in
developable surfaces. He wrote a second paper, which he presented to the
Academy in 1775 and published even earlier than the first one, “Mémoire
sur les propriétés de plusieurs genres de surfaces courbes, particulièrtement

13“Ces proprietés des surfaces sont très-curieuses et méritent toute l’attention des
géomètres; elles donnent lieu surtout à des applications importantes pour les arts” Oeu-
vres 9, p. 273.
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sur celles des surfaces développables, avec une application à la theorie des
ombres et des pénombres” [Monge 1780]. Monge mentioned Euler:

Having started this material, on the occasion of a memoir of Mr. Euler
in the 1771 volume 14 of the Academy of St. Petersburg on developable
surfaces and in which that illustrious Geometer gave the formulas for
recognizing whether or not a given curved surface has the property of
being able to be mapped to a plane, I arrived at some results which seem
much simpler to me an easier to use for the same purpose.” 15

Indeed, Monge gave the following definition: “A surface is developable
whenever, by supposing it to be flexible and inextensible, one may conceive
of mapping it onto a plane, like cones and cylinders can be, so that the
way in which it rests on the plane is without duplication or disruption of
continuity.” 16

It is remarkable that Monge also characterized the developable surfaces
with the terms “flexible et inextensible.” Monge managed to deduce the
general differential equation of developable surfaces [Monge 1780, p.398].
As Taton had pointed out, there was a gap between Euler and Monge as
far as styles were concerned: “Euler, of a profoundly analytic spirit, and
Monge, dominated constantly by a sharp sense of geometric reality.” 17

2.3. Monge’s school

2.3.1. Graduate students from the École Royale du Génie de Mézières
The École Royal du Génie de Mézières was supposed to educate practi-

tioners, so most of the students had no scientific ambitions. Nevertheless,
two of Monge’s pupils at Mézières should be mentioned.

Charles Tinseau (1749-1822)

Tinseau began his studies in 1769 and finished as a military engineer in
1771. In 1773 Tinseau became correspondant at the Académie des sciences,

14Here, Monge made an error. The correct date is 1772.
15“Ayant repris cette matière, à l’occasion d’un Mémoire que M. Euler a donné dans le
Volume de 1771, de l’Académie de Pétersbourg, sur les surfaces développables, et dans

lequel cet illustre Géomètre donne des formules pour reconnôıtre si une surfache courbe
proposée, jouit ou non de la propriété de pouvoir être appliquée sur un plan, je suis

parvenu à des résultats qui me semblent beaucoup plus simples, et d’un usage bien plus

facile pour le même objet.”
16“Une surface est développable, lorsqu’en la supposant flexible et inextensible, on peut
concevoir appliquée sur un plan, comme celles des cones et des cylindres, de maniere

qu’elle le touche sans duplicature ni solution de continuité...” [Monge 1780, p.383]
17“Euler, d’esprit profondément analytique, et Monge, dominé constamment par un sens
aigu de la réalité géométrique.” [Taton 1951, p.21]
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and in 1774 he presented his paper “Solution de quelques problèmes re-
latifs à la théorie des surfaces courbes et des courbes à double courbure”
[Tinseau 1780]. The paper shows that Tinseau was directly influenced by
Monge and that he did not quote Euler. Tinseau solved 17 problems, con-
cerning, among other things the equation of the osculating plane to a space
curve, the surface of the tangents to a curve and the theorem that the
orthogonal projection of a space curve onto a plane has a point of inflex-
ion, if its plane is perpendicular to the osculating plane [Struik 1933, p.
108]. In a second paper Tinseau treated several problems of ruled surfaces
[Taton 1951, p.233f]. Afterwards, Tinseau made a military career. He cam-
paigned against the French revolution and was later exiled.

Jean Baptiste Meusnier (1754-1793)

Monge’s second pupil at Mézières was of much greater importance and
was much more recognized. Jean Baptiste Meusnier studied at the École
du Génie from 1774 to 1775. On February 14 and 21, 1776, Meusnier pre-
sented his first and only paper, “Mémoire sur la courbure des surfaces” to
the Académie Royale des Sciences in Paris and in June 1776 he became
correspondant of the Academy. In 1784 he became adjoint géomètre and in
1785 associé de la classe de géométrie.

Monge made notes about the circumstances under which his young stu-
dent got involved in the curvature of surfaces. As soon as he had arrived
in Mézières, Meusnier visited Monge and asked him for a special project,
hoping to prove his skills to Monge. Monge further reported:

“To satisfy him, I talked to him about the theory of Euler on the radii of
maximum and minimum curvature of curved surfaces; I showed him the
principal result and proposed that he look for its proof. The next morning
in my office, he gave me a short paper, containing his proof; but what
was remarkable was that the reasoning it used was more direct, and the
path he followed was much shorter than Euler’s had been. The elegance
of this solution and the little time that it had cost to him gave me an
idea of his sagacity and all the work that he has undertaken since have
the same evidence of his exquisite sense of the nature of the things.” 18

18“Pour le satisfaire, je l’entretins de la théorie d’Euler sur les rayons de courbure
maxima et minima des surfaces courbes; je lui en exposai les principaux résultats et lui
proposai d’en chercher la démonstration. Le lendemain matin, dans les salles, il me remit

un petit papier, que contenait cette démonstration; mais ce qu’il y avait remarquable,
c’est que les considérations qu’il avait employées étaient plus directes, et la marche qu’il
avait suivie était beaucoup plus rapide que celles dont Euler avait fait usage. L’élégance
de cette solution et le peu de temps qu’elle lui avait coûté me donnèrent une idée de la
sagacité et de ce sentiment exquis de la nature des choses dont il a donné des preuves mul-
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Meusnier’s paper “Mémoire sur la courbure des surfaces,” presented in
1776, was his only mathematical paper and it was not published until nine
years later [Meusnier 1785]. As the title suggests, Meusnier’s work was
based in part on Euler’s paper of the same title. [E333] Meusnier wrote:

“Mr. Euler has treated the same material in a very beautiful Memoir pub-
lished in 1760 by the Academy in Berlin. This famous Geometer considers
the question in a way different from the one we have just described. He
makes the curvature of a surface element depend on the various sections
that one can make by cutting it with planes.” 19

Indeed, Meusnier used different methods than Euler and he managed to
add some new results. The theorem of Meusnier is still presented in some
modern textbooks and is mentioned in modern mathematical dictionaries:

The centre of curvature at a point P for a curve on a surface is the
projection upon its osculating plane of the centre of curvature of that
normal section of the surface which is tangent to the curve P .

In his paper Meusnier solved the following five problems:

“1. To determine the different positions that the tangent plane can have
in the understanding of a surface element.

2. To determine the radius of curvature of the section made on a surface
element by a plane in any given position.

3. To determine the kinds of surfaces for which the two radii of curvature
are always equal.

4. Among all surfaces which can be made to pass through a given perimeter
formed by a curve of double curvature, to find that for which the area is
the least.

5. To find the general equation for developable surfaces.” 20

tiples dans tous les travaux qu’il a entrepris depuis” [Taton 1951, p.234]; [Darboux 1902,

p.221].
19“M. Euler a traité la même matière dans un fort beau Mémoire, imprimé en 1760
parmi ceux de l’Académie de Berlin. Cet illustre Géomètre envisage la question d’une

manière différente de celle que nous venons d’exposer; il fait dépendre la Courbure d’un

élément de surface, de celle des différentes sections qu’on y peut faire en le coupant par
des plans” [Meusnier 1785, p.478f].
20“1. Déterminer les différentes positions que peut avoir le plan tangent dans l’étendue
d’un élément de surface?
2. Déterminer le rayon de Courbure de la section faite dans un élément de surface par
un plan quelconque donné de position.

3. Déterminer quelles sont les surfaces pour lesquelles les deux rayons de Courbure sont
toujours égaux.
4. Entre toutes les surfaces qu’on peut faire passer par un périmètre donné, formé par

une courbe à double Courbure, trouver celle dont l’aire est la moindre.
5. Trouver l’équation générale des surfaces développables.”
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His main idea is presented in his work on problem 2. Struik summarized
it with the following words:

Fig. 3. Meusnier’s figure 7, the right helicoid

“In one of the principal sections of the surface at a point he draws a circle,
tangent to the surface, with radius equal to the ‘rayon de courbure’ at
that point in that direction. This circle is rotated about an axis in its
plane parallel to the tangent plane and at a distance equal to the second
principal radius of curvature. In this way Meusnier gets a torus which has
the first and second derivatives in common with the surface at the point.
Then he takes this torus as representative of the surface and gets not
only Euler’s theorem, but also ‘Meusnier’s theorem’, which he interprets
with the aid of a sphere tangent to the surface and with radius equal to
the normal radius of curvature of the section in the arbitrary direction
on the surface” [Struik 1933, p.107].
In his problem 4, Meusnier investigated the conditions under which a

surface is a minimal surface. He found that the sum of the radii of principal
curvature is constant. Meusnier did not mention that Euler had found a first
example, the catenoid (see 1.1.), as early as 1744. It is almost certain that
Meusnier did not know Euler’s 1744 paper. But Meusnier himself found
two examples, the right helicoid (Fig. 3) and, again, the catenoid (Fig. 4).
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Fig. 4. Meusnier’s figure 8, the catenoid

Meusnier never came back to mathematics, but he contributed to var-
ious other fields. For example, he was an aeronautical theorist. After the
first flights of Montgolfier’s balloon he designed an elliptical shaped airship
instead of the spherical balloon, but his balloon was never built. Meusnier
also collaborated with Antoine de Lavoisier (1743-1794) to separate water
into its constituents.

Like Tinseau, Meusnier had an accomplished military career, but Meus-
nier supported the revolution. He became even a général de division. He
was severely wounded during a battle between the French and the Prussians
near Mainz. Goethe observed that battle and gave a detailed description
[Goethe 1793].

2.3.2. Graduate students from the École Polytechnique
In 1795, almost immediately after the foundation of the École Poly-

technique in Paris, Monge published his Feuilles d’Analyse appliquée à la
Géométrie à l’usage de l’École Polytechnique [Monge 1805-1850]. It reap-
peared in later editions, entitled Application de l’Analyse à la Géométrie
[Monge 1795-1807]. The last edition from 1850 was prepared by Joseph Li-
ouville (1809-1882), who remarkably also published Monge’s Application
and Gauß’ Disquisitiones generales circa superficiem curvas.

The lectures that Monge gave at the École polytechnique in Paris had
much greater influence than the lectures at Mézières. Taton mentioned the
following students of Monge:

Lacroix, 21 Hachette, Fourier, Lancret, Dupin, Livet, Brianchon, Ampère,
Malus, Binet, Gaultier, Sophie Germain, Gergonne, O. Rodrigues, Poncelet,
Berthot, Roche, Lamé, Fresnel, Chasles, Olivier, Valée, Coriolis, Bobillier,
Barré de Saint-Venant and many others [Taton 1951, p.235f]. Some of these
worked on differential geometry.

21Taton mentioned his name here, but Lacroix had not attended Monge’s courses at the
École Polytechnique.
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Michel-Ange Lancret (1774-1807)

Lancret began his studies in 1794. Before the official lectures at the
École Polythechnique began, Monge gave a special course to a small group
of excellent students, including Lancret. [Taton 1951, p.39] He was among
the first graduate students of Monge, who very highly respected Lancret.
Later Monge, Lancret and other scientists accompanied Napoleon on his
Egyptian expedition in 1799/1800. Lancret did not return to France until
in 1802 when he became the secretary of the commission concerning the
work of the Egyptian expedition.

In 1806 and in 1811 Lancret published two papers on curve theory. Euler
was only mentioned in an historical context [Lancret 1806, p.416]. Lancret
worked mostly on the basis of the Monge’s various contributions. According
to Struik, Lancret was the first to take up the systematic theory of space
curves after Euler, but it seems in an independent way. The line of progress
goes from Clairaut to Euler and then from Lancret to Cauchy and Frenet
[Struik 1933, p.116].

Charles Dupin (1784-1873)

Dupin’s name is still known in differential geometry. Under the guidance
of Gaspard Monge, Dupin made his first discovery in 1801, what is now
called the cyclid of Dupin. He graduated from the École Polytechnique in
1803 as a naval engineer. For several years he worked abroad and came back
to France only in 1813. In 1814 he became correspondent of the mechanical
section and in 1818 he was elected member of the Académie des Sciences.
When Monge died in 1818, Dupin wrote a detailed Éloge for his former
teacher. [Dupin 1819] Just a year later, in 1819, Dupin became professor
at the Conservatoire des Arts et Métiers in Paris, a position which he held
until 1854. In 1834 he became minister of marine affairs. During the years
1836-1844 he was Vice-President of the Académie des Sciences, and in 1838
he became peer and in 1852 he was appointed to the senate.

Dupin’s Développements de géometrie [Dupin 1813] were his main con-
tributions to differential geometry. Here one can find the introduction of
conjugate and asymptotic lines on a surface, the so-called “indicatrix,” and
Dupin’s theorem, which states that three families of orthogonal surfaces
intersect in lines of curvature. When Hachette wrote the “Avertissement
de l’Editeur,” he mentioned Euler, Biot, Monge and Clairaut. He made
special mention of Euler’s Introductio [E101-102] and his contribution to
surface curvature. [E333] Dupin and Hachette noted Euler’s Introductio
for the work on the general equation of the surfaces of the second order
and its classification of these kinds of surfaces into 5 different categories.
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They cited the second work because it gave the expression of the radius
of curvature of a normal section of a surface and showed that the planes
of sections of maximum and minimum radius were perpendicular on each
other. Indeed, the “Article V” of Dupin’s Développements was devoted to
the “Démonstration de plusieurs théorèmes d’Euler sur la courbure des
surfaces” [Dupin 1813, p.107-110]. Dupin, however, had achieved his own
results independently from Euler.

Augustin Louis Cauchy (1789-1857)

Cauchy began his studies in 1805 at the École Polytechnique and contin-
ued at the École des Ponts et des Chaussées. After several years working
as an engineer in Cherbourg, Cauchy returned to Paris in 1813, where he
became professor at the École Polytechnique. In 1816 Cauchy became a
member of the Académie des sciences. While he was professor at the École
Polytechnique he wrote many papers, including some on differential ge-
ometry and several textbooks, which became quite famous. Among these
were his Leçons sur les applications du calcul infinitésimal à la géometrie.
[Cauchy 1826-1828] He used almost the same title as Monge.

In his preface Cauchy emphasized the contributions of two physicists,
Gaspard Gustave de Coriolis (1792-1843) and André-Marie Ampère (1775-
1836). The former had given a definition of the general radius of curvature
of curves that was adopted by Cauchy in his 17th chapter. Both Ampère
and Coriolis had been pupils of Monge as well. In this 17th chapter, “Du
plan osculateur d’une courbe quelconque et de ses deux courbures. Rayon de
courbure, centre de courbure et cercle osculateur,” Cauchy derived the first
and the second of the Frenet formulas. Euler had only presented the first
one in [E602]. In his 19th chapter Cauchy treated surface theory, especially
the radius of curvature of principal sections and so on. Here Cauchy also
quoted Euler:

“We will not end this lesson without recalling that it was Euler who first
established the theory of curvature of surfaces and showed the relations
which exist between the radii of curvature of the different sections cut
from a surface by its perpendicular planes. The discoveries of that illus-
trious geometer on all these things have been published in the Mémoires
of the Berlin Academy (1760)” 22

22“Nous ne terminerons par cette Leçon sans rappeler que c’est Euler qui le premier a
établi la théorie de la courbure des surfaces, et montré les relations qui existent entre les
rayons de courbure des diverses sections faites dans une surface par des plans normaux.

Les recherches de cet illustre géomètre, sur l’objet dont il s’agit, ont été insérées dans
les Mémoires de l’Académie de Berlin (année 1760)” [Cauchy 1826-1828, p. 364].
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Olinde Rodrigues (1794-1851)

Rodrigues was of Jewish origin, so he was not allowed to study at the
École Polytechnique. Instead he entered the École normale where he was
awarded a doctorate in mathematics in 1816. As Taton remarked, though
Rodrigues was not a direct pupil of Monge, he should be counted among
Monge’s students [Taton 1951, p.366]. In 1815 and 1816 Rodrigues pub-
lished two papers on differential geometry in which he presented some work
on the lines of curvature and simplified some of Monge’s results. Rodrigues
he did not primarily take ideas from Euler; he mentioned mainly Monge
and Dupin[Grattan-Guiness 2005, p. 100]. Euler’s influence on Rodrigues
was perhaps more or less an indirect one. 23

Sylvestre François Lacroix (1765-1843)

Born in Paris in 1765, Lacroix also was a pupil of Gaspard Monge.
Lacroix came from a very poor family. He began private lectures with
Monge in 1780, and Monge continued to follow his education and his car-
rier. In 1789 Lacroix became correspondent of the Parisian Academy and in
1794 he joined the Commission de L’instruction publique. He later became
teacher at the École Polytechnique, at the École normale, at the École Cen-
trale des Quatre Nations, at the Faculté des Sciences de Paris and finally
at the Collège de France. As a consequence of his many teaching positions,
he became author of several textbooks, including his well-known Traité du
calcul différentiel et du calcul intégral (2 vol., Paris 1797 and 1798). There
was a second edition in three volumes (Paris 1810, 1814 and 1819) as well
as a translation into German due to J.P.Grüson (2 vol., Berlin 1799, 1800).

Lacroix devoted his chapter 5 to surfaces and curves of double curva-
ture. Here Lacroix mentioned in detail the contributions of Euler, Monge
and Meunsier. Euler had been the first to recognize the importance of
the principal curvatures and the analytical expression which allows a dis-
tinction between developable surfaces and surfaces which do not have this
property. Lacroix mentioned Monge for having introduced symmetry and
elegance. 24

23Teun Kotesier describes more on the influence of Euler on Olinde Rodrigues in his
article “Euler and Kinematics,” elsewhere in this volume.
24Traité, vol.1, Paris 1810 (2nd ed.), p. XXXXVI and 578-580.
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3. Final Remarks

Reactions to Euler’s contributions to differential geometry came mainly
from Italy and France. Monge and his school were of immense importance.
In England there was no tradition in differential geometry and in Germany
most of the mathematicians did not come as far in differential geome-
try. There were no German contributions that reached farther, but Euler’s
definition of the curvature of a surface [E333] was mentioned in German
dictionaries. Georg Simon Klügel, (1739-1812) for example, referred to Eu-
ler’s results in his Mathematical Dictionary [Klügel 1808] under the title
“circle of curvature.” He remarked that it was Euler who first presented
the “highly difficult investigation” of curved surfaces. Later on Klügel gave
a summary of Euler’s paper of 1767. Klügel also mentioned the names
Lagrange (1813) and Meusnier (1785) and gave a glimpse of their papers.

Some, but not all of Euler’s contributions on differential geometry were
recognized. Lagrange, of course, continued Euler’s research on the calculus
of variations, but Euler’s most successful and influential paper was his
“Recherches sur la courbure des surfaces.” [E333] Many ideas which Euler
had published first were taken up much later or were not taken up at all.
The Frenet formulas for example were a subject of investigation only in
1847 and 1852 [Reich 1973, p.277, 280-283], and only then were all three
formulas presented. The third example of a minimal surface, the so-called
Scherk minimal surface, was only found in 1832. [Reich 1973, p.315f]

Cauchy’s Leçons sur les applications du calcul infinitésimal à la géométrie
was the last major textbook before Gauß published his Disquisitiones gen-
erales circa superficies curvas (General Investigations of curved surfaces)
in 1828. Gauß did not quote anybody, and only at the end did he men-
tion Legendre’s theorem. However, Gauß introduced the spherical image,
the line element, the idea of developable surfaces, and surfaces which are
flexible without stretching.

What can be said about the relationship between Euler and Gauß? In
his Disquisitiones arithmeticae (Leipzig 1801) Gauß quoted 28 papers of
Euler and he spoke of summus Euler. He also possessed a picture of Euler
which he had drawn himself [Reich 2005a]. Why did Gauß not quote Euler’s
contributions in his Disquisitiones generales? [Gauß 1828] There are two
possibilities: either he did not know Euler’s papers or Euler’s papers were
not important for him.

Let us first look at the second option. Indeed, Gauß’s Disquisitiones gen-
erales were not a further development of Euler’s ideas. Gauß came up with
totally new ideas and goals. One main idea was that of “invariance;” Gauß’
newly defined measurement of curvature was invariant, his line element was
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invariant and also the geodesic lines had this property. Another main idea
was Gauß’ new interpretation of surfaces, which now became in some sense
two-dimensional manifolds. Euler instead spoke of “Solids the surfaces of
which can be developed on the plane” (De solidis quorum superficiem in
planum explicare licet.) Euler’s surfaces were still the boundaries of solids.
Gauß’ surfaces, on the other hand, stood alone, without solids and even
without the surrounding space. These ideas were totally new and Euler
was no predecessor. Thus, in differential geometry Euler was not impor-
tant for Gauß.

The first option can’t be answered. There is no proof that Gauß read
Euler’s papers on differential geometry nor is there any proof that did not
read them. We don’t know.

There is no doubt, however, a new epoch in differential geometry began
with Euler and another new epoch began with Gauß.
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Meusnier.” In Éloges académiques et discourse, Paris 1912, p.218-262.
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l’Académie Royale des Sciences, par divers Savans, et lus dans ses
Assemblées 10, 1785, p.511-550.

Monge 1795-1807. Monge, Gaspard, Feuilles d’analyse appliquée à la
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1. Introduction

Euler’s contributions to mechanics are rooted in his program published in
the Mechanica in 1736 [E15/16]. In this article it will be demonstrated that
the development of physics in 19th and 20th centuries can be considered
as a natural continuation and completion of the Eulerian program. The
importance of Euler’s theory results from the simultaneous development
and application of mathematical and physical methods. Euler continued a
practice which had been established by his predecessors Galileo, Descartes,
Newton and Leibniz.

All essential mathematical tools for modern 20th century physics had
been developed in 19th century. The mathematics of the general theory
of relativity was created by Bolyai, Gauß and Riemann several decades
before Einstein. The basic differential equation, later used for the quantum
mechanical harmonic oscillator, was introduced by Weber 1869 and treated
by Whittaker in 1903 [Whittaker].

In contrast to Einstein’s general theory of relativity, the development of
quantum mechanics (QM) was not guided directly by mathematics. How-
ever, Schrödinger recognized the geometrical representation of motion by
Hamilton and acknowledged the attempts of Felix Klein in 1891 to stimu-
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late the physics community to make use of Hamilton’s theory. The response
was disappointing [Schrödinger 1926b]. Some decades later, Schrödinger re-
discovered Hamilton’s theory as a link between mechanics and optics and,
not surprisingly, was successful in developing the basic equation of quantum
mechanics independently of Heisenberg. 1

Euler made immediate use of his mathematics for classical mechanics
(CM) and coordinated his progress in mathematics with his progress in
physics. Thus, we have a rare example of a simultaneous and harmonic
composition of results of different origin and nature which have been joined
into a unique marvellous result. The theory is not only a model for a consis-
tently formulated theory, but allows for generalizations of Euler’s principles.
It will be demonstrated that Euler’s treatment of CM is appropriate for an
understanding and a derivation of Schrödinger’s basic quantum mechanical
equation. The underlying assumptions made by Schrödinger for QM can
be directly related to the basic assumptions introduced by Euler for CM.

2. The contribution of Euler to mechanics

Euler was famous as the leading mathematician of the 18th century.
Though his pioneering work on mechanics had an essential influence in
18th century, its impact on the 19th century has been overlooked, obscured
by the overwhelming success of his mathematical writings. In contrast, the
influence of Leibniz’s mechanics on the 19th century has finally been ac-
knowledged, though with a certain delay, but an essential part of Euler’s
contributions has not yet been understood or described. Even though Euler
analyzed mechanics with principles which were developed later by Einstein,
neither Mach [Mach] nor Helmholtz nor Einstein refer explicitly to Euler.
Euler’s fundamental contribution was published in 1862 [E842]. At that
time, Helmholtz referred explicitly to Leibniz, and later, in 1920, Reichen-
bach acknowledged Leibniz’s theory, but neither credited Euler.

2.1. Euler’s program for mechanics

Very early on, Euler developed a comprehensive program for mechanics
[E15/16]. The basic distinction made by Euler is between
– (a) bodies of infinitesimal magnitude and

1 ”Eines genetischen Zusammenhangs mit Heisenberg bin ich mir durchaus nicht be-
wußt. Ich hatte von seiner Theorie natürlich Kenntnis, fühlte mich aber durch die mir
sehr schwierig scheinenden Methoden der transzendenten Algebra und durch den Mangel
an Anschaulichkeit abgeschreckt, um nicht zu sagen abgestoßen.” [Schrödinger 1926c]
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– (b) bodies of finite (non-zero) magnitude.
The bodies described in frame (a) are nowadays known as mass points.

Euler introduced a general law for mechanics [E177], [E289] which is based
on the assumption of translational motion of bodies of infinitesimal mag-
nitude. The set (b) comprises all non-infinitesimal bodies which cannot be
treated as mass point since their motion is a combination of translations
and rotations.

“Those laws of motion which a body observes when left to itself in con-
tinuing rest or motion pertain properly to infinitely small bodies, which
can be considered as points. ... The diversity of bodies therefore will
supply the primary division of our work. First indeed we shall consider
infinitely small bodies. ... Then we shall attack bodies of finite magni-
tude which are rigid. ... Third, we shall treat of flexible bodies. Fourth,
of those which admit extension and contraction. Fifth, we shall subject
to examination the motions of several separated bodies, some of which
hinder [each other] from executing their motions as they attempt them.
Sixth and last, the motion of fluids will have to be treated.” [E15/16,
vol. 1, §98] 2

Over the following decades, Euler almost completed this impressive pro-
gram.

The mechanical system is characterized by constitutive or material pa-
rameters which are always given in terms of finite numerical values. Space
and time are not considered as material parameters, therefore, they are
included in the theory as finite or infinitesimal quantities.

In mechanics, the fundamental constitutive parameter is the inert mass
m. The inert mass m of an infinitesimal body may be described by the same
quantity as the inert mass of an extended body, since both are mechanical
systems. The only difference is that total mass of the finite body is obtained
by the integral M =

∫
dm [E289].

Euler’s division of bodies into different types is based on a mathematical
distinction between infinitesimal and finite quantities. The assumed set of
mathematical quantities is not complete so far. It has to be supplemented
by infinite mathematical quantities, since only infinitesimal and infinite
quantities are complementing each other properly. 3 Following Euler, the

2 For “Euler’s life-long plan for mechanics” compare E. Sandifer, Euler Society Meeting
2003, http://people.wcsu.edu/sandifere/History/Preprints/Preprints.htm.
3 Euler stressed this relation between infinitesimal and infinite numbers in the Algebra
mentioning “the mistake of those who assert that an infinitely large number is not

susceptible to increase. This opinion is inconsistent with very principles we have laid
down; for 1

0
signifying a number infinitely great, then 2

0
being incontestably the double

of 1
0
, it is evident that a number, though infinitely great, may still become twice, thrice,

or any number of times greater.” [E387/388, vol. 1,§84] Obviously, in contemporary
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basic distinction is made
– first between infinitesimal and non-infinitesimal magnitudes, denoted as

sets (A) and (non-A), respectively, and,
– second between finite and infinite magnitudes, denoted as sets (B) and

(C), respectively.
Then, a significant question follows directly from Euler’s program: Is it

possible to assign a finite constitutive parameter to a system of infinite
extension?

2.2. Euler’s program for mechanics, reconsidered

The answer is “yes” if we start with a purely mathematical definition
of the density related to any of the constitutive parameters of the sys-
tem. The definition of the densities related to bodies in set (B) is valid
for different types of densities ρhom

b (x) and ρnon−hom
c (x), being either ho-

mogeneous or non-homogeneous, respectively. However, there is a striking
difference between these two basic types of densities as far as the extension
of the system is concerned. For a finite homogeneous density, the integral
M =

∫ +∞
−∞ dxρhom(x) is necessarily divergent. Therefore, we obtain an ex-

clusion principle by physical reasons which supplements the mathematical
criteria, since any quantity related to a finite mechanical system should be
necessarily of finite magnitude.

From these criteria it follows, that for a non-homogeneous density M =∫ +∞
−∞ dxρnon−hom

c (x) both the mathematical and physical criteria can be
only fulfilled for coordinate dependent functions which are quadraticly in-
tegrable, i. e.

∫ +∞
−∞ dx(f(x))2 < +∞.

These functions are candidates for describing systems of type (C) and
the theory is constructed by the same principles used by Euler for set (A).
First, a constitutive parameter of the system should be finite as for the
bodies of set (B). If only those physical parameters are considered which
are in all cases of finite magnitude, then the physical parts of the sets (A),
(B) and (C) should coincide. So, as long as only a finite force is exerted
upon a finite or an infinitesimal body and the pressure is not considered,
no difference between the effect of the force will appear if the masses are
the same. Therefore, the same physical quantity can be assigned to systems
of different type. It is expected that the energy conservation law holds not

notation we have to replace 0 with an infinitesimal number ε which is greater than
zero, but less any real number. Such numbers are considered in non-standard analysis
[Keisler].
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only for any of the considered systems of different type, but it is also valid
for the interaction of systems of different types. 4

In all three cases, it is necessary to introduce a purely coordinate depen-
dent function. 5 Furthermore, it will be demonstrated that Euler’s proce-
dure is also appropriate for the analysis of the relations between CM and
QM. In the second decade of 20th century, the development of QM began
with the rejection of basic concepts of CM. Heisenberg rejected the paths
[Heisenberg] and Schrödinger intended to replace point mechanics with an
“undulatory mechanics.” 6 [Schrödinger 1926b]

The procedure continues as follows. Euler’s method for the definition of
relations between (A) and (B) systems will be transferred to the analysis
of the relations between (B) and (C) systems.

3. From Euler’s mechanics to Schrödinger’s wave function

3.1. Euler’s general law of rest and motion

Euler introduced explicitly one Law for the change of the state, indepen-
dently of the type of state, being either the state of rest or the state of

4 An instructive example is the photoelectric effect, which has been explained by Ein-
stein as the interaction of point like light quanta and finite sized bodies [Einstein 1905].
5 A coordinate dependent function is only related to the extension of the system in space.
However, the extension has also to be expressed in terms of other physical quantities
related to the system. Following Helmholtz, the extension of the system is changed if the
energy increases or decreases [Helmholtz]. The total energy is related to a configuration
described by special value of coordinates, which are, e.g. for a linear harmonic oscillator,
given by xmax resulting in the energy E = V (xmax) = k

2
x2

max. Here, the index max
does not indicate an extreme value of the function V (x), since the only extreme value

for the potential energy is the minimum at x = 0.
6 However, Schrödinger was fully aware of the need to properly define the relation be-
tween these representations and advised caution. “Ich will damit noch kein zutreffendes

Bild des wirklichen Geschehens geben, ...” [Schrödinger 1926b, p. 507)]. “Die Stärke des
vorliegenden Versuches ... liegt in dem leitenden physikalischen Gesichtspunkt, welcher
die Brücke schlägt zwischen dem makroskopischen und dem mikroskopischen mecha-
nischen Geschehen, . . . ” (p. 514). However, the apparent incompatibility between the

physical model and the mathematical language becomes obvious: From the point of view
of physics, the system is defined as “microscopically” compared to a “macroscopic” or

“finite” system, whereas from the point of view of mathematics, this “microscopic” phys-
ical system is defined due to the properties of wave function which is extended in the
“whole configuration space”, being “infinite” in size. Therefore, following Euler, from the
point of view of mathematics, the comparison has to be established between a finitely
and an infinitely extended system.
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motion [E181,E289]. 7

The change of the state is expressed in terms of the internal material
parameters mass m and forces K which are also internal properties as far
as a system of bodies is concerned. Time is an external ordering parameter.
The state is described by the velocity v = const. Then, one quantity dvi

for each of the bodies i = 1, 2, the change in velocity, 8 is given in terms of
mi and Kij :

dv1 ∼
1
m1

, dv1 ∼ K12, dv2 ∼
1
m2

, dv2 ∼ K21. (1)

Here, Euler introduced the condition that the change in velocity ∆v ∼ 1
m

is always finite, if the mass of the body is finite and, additionally, differ-
ent from zero. However, replacing the previously finite quantity ∆v with
the infinitesimal quantity dv, the resulting Eq. 1 becomes incorrect and
incomplete, since an infinitesimal quantity is expressed in terms of a finite
quantity. The same problem occurs with respect to the forces in the case
K 6= 0.

Euler completed Eq. 1 by the introduction of an infinitesimal translation
ds and an impression of force during an infinitesimal time interval dt. He
assumed that all infinitesimal changes of position are translations. The
elementary translation ds can be replaced with the infinitesimal elementary
time element dt assuming ds ∼ dt and ds = vdt. Adding this dependence
on time elements to Eq. 1, both sides of the relation are given in terms of
infinitesimal quantities. However, different relations have to be considered:

dv >
K

m
dt, dv =

K

m
dt, dv <

K

m
dt. (2)

The decision in favor of one of the three relations can only be obtained
from another principle, the conservation of momentum, m1v1 + m2v2 =
const or the conservation of energy, E = m

2 v
2 + V (x) = const, where V (x)

is the potential energy function. The expressions 2 have to be completed
by the dependence of the change in motion on infinitesimal tanslation ds,
i.e. vdv = K

mds. The complete set of Newton-Euler equations of motion is
given by the two coupled equations where the forces are generated by the
interacting bodies, [E181]

7 “1. C’est une propriété générale de tous le corps, ..., que chaque corps considéré en
lui-même demeure constamment dans le même état, ou de repos ou de mouvement”
[E181, §1]
8 Newton included this quantity in the “change in motion” where motion is given by
the product of mass and velocity [Newton].

LOL Ch29-P6 of 24



Euler’s Mechanics as a Foundation of Quantum Mechanics 509

dv1 =
K12

m1
dt, dv2 =

K21

m2
dt. (3)

The coupling due to the forces K12 = −K21 is usually known as the
principle “action = reaction” of Newton’s 3rd Law. However, in Euler’s
mechanics, this law has lost the status of an axiom, but follows from the in-
teraction between bodies due to the impenetrability [E181], [E842], [E289].
Euler formulated the general law in terms of infinitesimal time elements
and obtained the equations of motion 9

dds =
K

m
dt2 or dv =

K

m
dt (4)

where the change in velocity dv depends on the magnitude and the direction
of the force K. The mass m and the time element dt are assumed to be
constant quantities [E177,E842,E289].

3.2. Schrödinger. The wave function

Following the general procedure introduced by Newton and Euler, we
reconsider Schrödinger’s approach which is essentially based on the intro-
duction of the wave function ψ(x). This function is related to the internal
energetic states of the system. 10 The system does not interact with the
environment and the internal energy is not changed. The system is not
translated in space and it does not rotate about an axis.

9 “Si corpusculum, cuius massa = m, sollicitetur a vi = K per motus resolutionem in
directione huius vis tempusculo dt conficiat spatiolum ds celeritate ds

dt
= v, erit (see

Eq. 4) ... . Vel augmentum celeritatis secundum directionem vis sollicitantis acceptum
est directe ut vis sollicitans ducta in tempusculum et reciproce ut massa corpusculi”
[E289, §177], with m > 0 and dt > 0. Here, Euler considered the space element ds
and the time element dt as different infinitesimal quantities, whose ratio defines a finite

quantity, the velocity v (see also [E289, §§42-46] and [E842, §24]). Both the quantities
are differentials of first degree. The quantity dds is introduced as a differential of second
degree [E289, §168]. The mathematical foundation of the procedure had been given by

Euler in the Institutiones calculi differentialis [E212, Ch. I-III]. Euler’s procedure is in
almost complete agreement with the principles later developed for non-standard analysis

by Robinson (for non-standard analysis compare [Keisler]). The reason is that the rules
related to the calculus of finite differences [E212, Ch. I] are transferred to the calculus of
infinitesimal differences [E212, Ch. III]. Here, Euler simultaneously introduced infinite
and infinitesimal quantities and implicitly used an early version of the transfer principle,

later founded on a rigorous treatment by Robinson (for the role of the transfer principle,
compare [Keisler, Epilogue]).
10Later, Dirac [Dirac] and Feynman [Feynman] assumed the wave function to be the
primary object. The Schrödinger equation is derived from the assumed properties of the
wave functions.
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Schrödinger considered solutions ψE(x) to the time-independent wave
equation. 11 [Schrödinger 1926b] The function ψ(x) has been assumed to
be defined and to exist for all configurations of the system. 12 Then, it is
expected that different states are described by different wave functions.

As in Eulerian mechanics, where the change in velocity dv has been
related to the mass m and the forces K (compare Section 3.1), here, the
total energy E and the coordinate dependent potential energy V (x) are
related to the function 13 ψE(x). If this function is related to the energy

1
E − V (x)

∼ ψE(x), (5)

Schrödinger’s criterion of finiteness is satisfied for large values of x. 14 Ob-
viously, the function ψ cannot be calculated using Eq. 5. This relation is as
incomplete as the relation dv ∼ K

m was (compare Section 3.1). Therefore,
we have to complete the description of the system adding kinetic energy
E = T (p) + V (x), 15 where T (p) is the kinetic energy as a function of
momentum. Therefore, assuming Schrödinger’s wave function as the basic
quantity, we have also to express the kinetic energy in terms of the function
ψ(x). This will done in Section 6.

3.3. Infinitesimal bodies, finite and infinite systems

Schrödinger’s approach completes and extends in a quite natural way
Euler’s program for mechanics. The systems are distinguished according to
their extension occupying regions of different magnitude in configuration
space. Then, the following types of extension can appear.

11This equation was later called “amplitude equation” to stress the contrast to the
solutions ψ(x, t) of the “true wave equation” (“eigentliche Wellengleichung”) where the
time dependence has been included. [Schrödinger 1926d]
12Schrödinger claimed that the function has been introduced without any additional
assumption except the finiteness in the whole configuration space. “ ... ohne irgendeine
weitere Zusatzannahme als die für eine physikalische Größe beinahe selbstverständliche

Anforderung an die Funktion ψ: dieselbe soll im ganzen Konfigurationenraum eindeutig
endlich und stetig sein” [Schrödinger 1926b].
13Both functions are required, since the total energy is independent of coordinates and

the potential energy is independent of total energy.
14Additionally, the symmetry of the function ψ(x) depends on the symmetry of the
function V (x), as discussed by Euler for the relations between dv and K (compare
Section 4). For V (x) = V (−x) it is expected, that the relation 5 has to be completed
by second or fourth order derivatives of ψ(x), if even and odd functions ψ(x) are taken
into account. The tentative order of the differential equation has been discussed by
Schrödinger [Schrödinger 1926b, p. 509].
15Then, Eq. 5 has to be completed by E − V (x) ∼ 1

m
.
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– (I) the theory of bodies of infinitesimal magnitude, Euler,
– (II) the theory of bodies of finite magnitude, Euler,
– (III) the theory of bodies or systems of bodies of infinite magnitude,

Schrödinger.
Item (III) should be related to Schrödinger’s assumption that the func-

tion ψ(x) is defined in the whole configuration space.
Obviously, the topics (I) to (III) comprise all possible cases of mathe-

matical quantities which Euler had defined within the mathematical frame
[E387/388], [E212]. Euler defined mathematical quantities as being suscep-
tible to diminishing and increase. This is also a necessary condition for
the definition of a physical quantity P which is based upon multiplying a
number R and a unit U , i.e. P = R · U .

Following Euler, the existence of such function is primarily a mathemat-
ical question. Euler’s procedure is to relate infinitesimal quantities to finite
quantities, i.e. numbers of different type to each other. Now, this procedure
is transferred to the problem to relate infinite quantities to finite quantities.

After solving the mathematical problem, the physical problem has to
be answered whether the numbers are related to objects by measurement.
Obviously, all physical systems are finite. Therefore, it is impossible to
confirm the theory by the measurement of all quantities, since infinitesimal
and infinite quantities cannot be measured. 16

4. Energy, paths and configurations

The following procedure results directly from Euler’s theory of a body
of infinitesimal magnitude. Euler introduced this type of bodies by the
modification of the geometric characteristics (extension, shape) preserving
the physical parameters, the mass and the path. The geometric connec-
tion between two given points is replaced with the mechanical connection
of two positions by the path of the body and vice versa. The significant
difference between a mechanical model and a purely geometrical model of
the body is due to inertia, time and forces. Any distance is subdivided by
a uniformly moving body into equal parts and, simultaneously, the time

16Usually, it is said that some of the relations are only approximately valid and the

neglecting of a small quantity in comparison to a large quantity is equivalent to the
relation between an infinitesimal and a finite physical quantity. However, this model
does not work as far as the relations between infinitesimal quantities are concerned
and the ratio of two infinitesimal quantities is finite. This ratio cannot be obtained
experimentally by measuring both the quantities separately.
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interval assigned to the whole path is also subdivided into equal parts. 17

The connection between two different places in space is given geometrically
by their distance. This distance can be determined experimentally without
the motion of a body whose path contains the two given points. Therefore,
the configurations are always defined prior to the path. A configuration
is defined for a system of resting bodies which do not change their posi-
tions. 18 The positions are given by a set of coordinates xi, i = 1, 2, ..., n,
the path is given by an ordered set x1, x2, ...., xn using an external order-
ing parameter t1 < t2 < .... < tn, called time. Then, the path can be
represented as a function x = x(t) which is parametrized by time. The
same parametrization is assumed for the momentum p(t). The exclusion
of all other configurations except those which are belonging to the path is
described by the delta functions

ρ(x) = δ(x− x(t)), σ(p) = δ(p− p(t)), (6)

17Euler claimed that an idea of simultaneity and succession is needed in advance as a
necessary condition, but stressed that the experimentally observed subdivision into equal

parts cannot be obtained without the assumption that a body is moving uniformly due
to its inertia. “Il ne s’agit pas ici de notre estime de l’égalité des tems, qui dépend sans
doute de l’état de notre âme; il s’agit de l’égalité des tems, pendant lesquels un corps

qui se meut d’un mouvement uniforme parcourt des espaces égaux” [E149, §21]. Here,

an essential extension of the calculus had been introduced by Euler in comparison to
Leibniz. In Leibniz’s mathematical interpretation, for a given relation, e.g. y = x2, the

subdivision into equal infinitesimal parts is indeterminate since either y or x can be

arbitrarily chosen as independent variable (compare the analysis in [Bos]). Bos argued
that “the aim of the Leibnizian calculus is to determine the behaviour of differentials
as related to the nature of the curve” [Bos, p. 99]. In Euler’s approach, mathematics
and mechanics are interrelated and the subdivision of a finite distance or finite time
interval into parts ∆x and ∆t or dx and dt, i.e. into equal finite or equal infinitesimal
parts, respectively, results from the conservation of the state of a uniformly moving body
described by v = const; [E149] and [E842, §§21-24]. The result is vfinite = ∆x

∆t
and vinf =

dx
dt

, where the differently defined velocities are equal in their finite numerical values, i.e.
vfinite = vinf = v = const. The invariance of velocity does not depend on the choice

of time interval, on the contrary, the invariance and equality of finite and infinitesimal
space and time intervals results from the invariance of velocity. The mathematical rules
for the division are given in the treatise [E212, ch. I-IV]. For further consideration, either
the path is considered as a function of time or the time is considered as a function of

spatial translation. Then, either the time interval is dt = const or the space interval is
dx = const [E289, §§42-45].
18Euler introduces rest and motion using the notion of place. “1. Quemadmodum Quies
est perpetua in eodem loco permanentia, ita Motus est continua loci mutatio” [E289,
§1]
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for the path, i.e. the trajectory in configuration space, and the trajectory
in momentum space, respectively, 19 which are only different from zero if
the arguments vanish, i.e. for x = x(t) and p = p(t). This procedure relates
the parameterization by time to a certain position, i.e. a configuration, the
body is occupying. The position is represented by a geometrical point which
is in agreement with Euler’s assumption on the theory of infinitely small
bodies (compare Section 2.1). Then, any body traveling along this path
must be considered to be infinitesimal if it touches only those configurations
(positions) which are defined by a geometric line. These relations will be
discussed more in detail for the commonly used model system, the linear
harmonic oscillator.

4.1. The harmonic oscillator as model system

The functions x(t) and p(t) are related to each other whose values form
an ordered Cartesian set if the total energy of the system is conserved. If
these functions are given, the total energy Econf is defined as the sum of T (p)
and V (x), the kinetic and potential energies, respectively. The index conf
denotes that the expression is defined for a certain subset of configurations
taken from the set of all possible configurations in configuration space and,
additionally, a certain set of configurations in the momentum space.

Econf = Tmomentspace(p) + Vconfspace(x) (7)

For the harmonic oscillator the terms are specified as

Econf = Tmomentspace(p) + Vconfspace(x) =
1

2m
p2 +

k

2
x2 (8)

where m and k are the mass and the force constant, respectively. For finite
values of total energy Econf < ∞ the motion is confined to a certain hy-
perplane of the phase space. Thus, in CM the total energy is not defined
for all configurations {x} and {p}, but only for two subsets taken from
configuration and momentum spaces.

The relation between the energy and the configuration space is the ba-
sic item in Schrödinger’s approach. 20 For the derivation of wave equation,

19The meaning of the function is that the system has to be in “any of its positions.”
This statement includes the special case where the system occupies all positions. The
latter assumption is in contradiction to time ordering. Therefore, the contradiction is

removed by eliminating time.
20Schrödinger introduced this assumption in the Second Announcement (compare
[Schrödinger 1926b] and Section 3.2) and stressed this point in the Third Announcement
in analyzing the relation of his theory to Heisenberg’s approach [Schrödinger 1926c].
“Diese Zuordnung [assignment] von Matrizen zu Funktionen ist allgemein, sie nimmt
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Schrödinger defined the wave function ψ(x) which is only coordinate depen-
dent, i.e. defined only in the configuration space [Schrödinger 1826b, 1926c].
Both the functions, V (x) and ψ(x), are defined in the same space. 21 Then,
Eq. 7 has to be modified. Preserving the general form that the total energy
is composed of different parts, we obtain

Econfig,whole ∼ T (p) + Vconfig,whole(x) (9)

where the index config,whole denotes that all quantities are only related to
the configuration space, but now, in contrast to CM to the whole configura-
tion space. The function V (x) has been already defined in CM for the whole
configuration space and, it is, therefore, appropriate to operate as a link
between CM and QM. The striking difference to CM concerns the kinetic
energy term T (p), for it has also to be defined in that space. However, the
relation of T (p) to configuration space is indeterminate until now whereas
the relation between E−V (x) and ψ(x) has been previously introduced by
Eq. 5 in accordance with Schrödinger’s assumption. Then, the conclusion
is that the introduction of a similar relation between E − T (p) and a cor-
responding function φ(p) does violate none of Schrödinger’s principle for
the introduction of the function ψ(x) except the exclusion of configuration
space and its replacement with momentum space. However, the other main
part of Schrödinger’s statement, the exclusion of phase space, is preserved
as well.

4.2. The generalization for conservative systems

The results of the previous Section remain to be valid if we introduce a
purely coordinate dependent function V (x) instead of the special expression
for the potential energy of the harmonic oscillator. The expression for the
kinetic energy T (p) remains to be the same as before since it is independent
of the special system. Using the functions given by Eq. 6 the energy is
related to the paths

Epath =

∫ +∞
−∞ dxδ(x− x(t))V (x)∫ +∞
−∞ dxδ(x− x(t))

+

∫ +∞
−∞ dpδ(p− p(t))T (p)∫ +∞
−∞ dpδ(p− p(t))

(10)

noch gar nicht bezug auf das spezielle mechanische System, das gerade vorliegt, sondern
ist für alle mechanischen Systeme die nämliche. ... Sie [the assignment] erfolgt nämlich

durch Vermittlung eines beliebigen vollständigen Funktionensystems mit dem Grundge-
biet: ganzer Konfigurationenraum.” and Schrödinger continued stressing the exclusion
of the phase space: “(NB. nicht ‘pq-Raum’, sondern ‘q-Raum’.)”.
21The only, but essential, difference is that ψE(x) is related to energy whereas V (x) is
independently of energy (see next Section).

LOL Ch29-P12 of 24



Euler’s Mechanics as a Foundation of Quantum Mechanics 515

and a general relation between paths and energy is obtained

Epath = T (p(t)) + V (x(t)) = const. (11)

which is valid for any given path, if the condition of E = const is fulfilled.
For finite energies, the length of the path should be also finite due to Eq. 10.

This constraint on the system, referred to total energy, is equivalent to
the limitation of extension of the system in space. Again, the extension of
the system can be changed by the change of energy [Helmholtz].

Eclass =

∫ +∞
−∞ dxΘ(xmax)δ(x− x(t))V (x)∫ +∞
−∞ dxΘ(xmax)δ(x− x(t))

(12)

+

∫ +∞
−∞ dpΘ(pmax)δ(p− p(t))T (p)∫ +∞
−∞ dpΘ(pmax)δ(p− p(t))

The energy dependence is included by the step functions which are lim-
iting the extension 22 of the system by the relations Θ(xmax) = Θ(x +
xmax)−Θ(x− xmax) and Θ(pmax) = Θ(p+ pmax)−Θ(p− pmax) since E =
T (pmax) = V (xmax). Replacing the constant Θ function with coordinate and
momentum dependent functions, F (x) and G(p), respectively, the physical
meaning of the relation 12 is not changed. 23

The functions can be considered as additional parameters which modify
the paths.

E =

∫ +∞
−∞ dxFE(x)δ(x− x(t))V (x)∫ +∞
−∞ dxFE(x)δ(x− x(t))

(13)

+

∫ +∞
−∞ dpGE(p)δ(p− p(t))T (p)∫ +∞
−∞ dpGE(p)δ(p− p(t))

In the next step, the time-dependence will be eliminated by the time
integration,

∫ +∞
−∞ dt

∫ +∞
−∞ dxFE(x)δ(x − x(t))V (x) =

∫ +∞
−∞ dxFE(x)V (x).

Paths can be eliminated, configurations cannot. The result is 24

22This limitation is also a selection of a certain subset of configurations taken from the
set of all configurations of the system.
23The description of a special system is only obtained, if these functions are specified.
This will be done in the next Section.
24This step corresponds to Heisenberg’s procedure to reject paths [Heisenberg]. Heisen-
berg claimed that also the positions are to be removed, e.g. “the position of the electron.”
However, the rejection of the paths is equivalent to the rejection of a certain set of po-
sitions, but it is not equivalent to the rejection of all position or configurations of the
system.
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E =

∫ +∞
−∞ dxFE(x)V (x)∫ +∞
−∞ dxFE(x)

+

∫ +∞
−∞ dpGE(p)T (p)∫ +∞
−∞ dpGE(p)

, (14)

where all possible configurations of the system are to be considered. Now,
the functions FE(x) and GE(p) play the role of additional parameters which
modify the contribution from different configurations to total energy.

It is possible to eliminate paths, but it is impossible to eliminate all con-
figurations. The elimination of all configurations results in a non-extended
system where the different constituents, if they exist, are not separated
spatially from each other. None of the constituents is occupying a place. 25

Therefore, any physical system is described by its configurations.
The derivatives of the functions FE(x) andGE(p) should exist, otherwise,

Euler’s method of maxima and minima cannot be applied.

5. Euler’s method of maxima and minima, generalized

It is taken for granted [Schrödinger 1926b] that a physical quantity should
be finite. This almost evident statement can be formulated using Euler’s
method. Generally, assuming a fixed range of its definition, any function is
limited by its extreme values. However, the definition of the extreme values
is purely mathematically. Therefore, the kind and the combination of the
minima and maxima might be also given in a general mathematical form.
However, physical quantities can be distinguished by the type of extreme
values. Space and time are not appropriate for such procedure, whereas
functions of coordinates and time are. Thus, it is necessary to define ap-
propriated quantities. Maupertuis introduced the principle of least action
defining action by mass, velocity and distance. Euler extended this princi-
ple to the forces and claimed, that the interaction of bodies depends on the
minimal forces which the bodies are creating to avoid penetration [E842,
§§35-39, 75] and [E289, §§131-135].

Using only extreme values for the classification, the following relations
between maxima and minima may be relevant for physics [E65].
– (a) either maxima or minima, 26

– (b) maxima and minima,
– (c) maxima or minima,

25A thing which is neither resting nor moving is not a body [E842].
26This relation is preferred in classical mechanics, e. g. Maupertuis’s principle of least
action.
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– (d) neither maxima nor minima. 27

Examining a simple mechanical model system, the linear harmonic os-
cillator, it is easily confirmed that the potential energy V (x) = k

2x
2 has

only a minimum and fulfils criterion (a). The kinetic energy T (p) = 1
2mp

2

is expressed in terms of the same type of function.

5.1. Planck’s introduction of action parameter

The relation between CM and QM was considered for the first time by
Planck in 1900 when introducing the quantum of action into the theory of
heat radiation [Planck]. In 1907 Einstein based the theory of specific heat on
Planck’s assumption [Einstein 1907] and in 1913 Bohr introduced Planck’s
parameter into the theory of atomic spectra [Bohr]. Furthermore, Einstein
introduced new objects into physics assuming the existence of spatially
strongly localized light quanta [Einstein 1905]. Obviously, this assumption
is in full logical opposition to the model of an extended wave which is
propagating in the whole space after the emission.

Planck introduced the action parameter assuming an absolute value for
the entropy of a system. Now, we have to seek a procedure to obtain a
parameter of such type from Schrödinger’s assumptions.

5.2. Schrödinger’s analysis

Euler’s method may be related to Schrödinger’s analysis of the rela-
tions between CM and QM and Bohr’s complementarity which have been
created in the same period, considering the logical structure of statements.
Bohr stressed the coexistence and indispensability of both theories, whereas
Schrödinger demonstrated the apparent incompatibility of both the theo-
ries.

In 1933, Schrödinger analyzed the paths for classical and quantum par-
ticles and formulated the result in terms of a logical statement “We are
faced here with the full force of the logical opposition between an ei-
ther/or (point mechanics) and a both/and (wave mechanics),” and con-
cluded: “This would not matter much, if the old system were to be dropped
entirely and to be replaced by the new. Unfortunately, this is not the
case.”[Schrödinger 1933]

27These properties exhibit those quantities which are called universal constants or uni-
versal parameters having an invariant numerical value, which is only obtained experi-
mentally.
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Obviously, Schrödinger intended to connect CM and QM using Mauper-
tuis’s principle of least action [Maupertuis]. Applied to CM, it allows to
chose one path and reject all the other paths. However, this principle does
not fit for a “both ... and” problem where all paths have to be considered.
Therefore, a selection cannot be defined with respect to paths, but it has
to be defined with respect to another property of the system which must
also be introduced. 28

However, the advent of such type of statements is earlier due to Einstein
who fathered the hypothesis of light quanta (compare Section 5.1), which is,
obviously, a candidate for demonstrating a full logical opposition between
strongly localized light quanta and unlimited propagating waves filling the
whole space.

6. Derivation of the Schrödinger equation

Examining the functions FE(x) ≥ 0 and GE(p) ≥ 0, and, additionally
the functions FE(x)V (x) ≥ 0 and GE(p)T (p) ≥ 0, it is justified to assume
because of V (x) ≥ 0 (valid for a large class of systems) and T (p) ≥ 0
(generally valid) that all minima of these functions are neither below the
minima nor above the minima of the functions V (x) and T (p), respectively.
The minima of V (x) and T (p) are not altered by the multiplication with the
functions FE(x) and GE(p), respectively. Therefore, any additional minima
are due to the zeros of the functions FE(x) and GE(p). If there are zeros,
the functions FE(x) = |fE(x)|2 and GE(p) = |gE(p)|2 are made up of
functions fE(x) and gE(p), respectively, which are either of even or odd
type. Then, the above listed case (b) has to be to considered, where the
maxima and the minima determine the properties of the coordinate and
momentum dependent functions.

6.1. The amplitude equation

From Section 4 we take the expression for the energy which is transformed
using Eq. 14 into a relation depending on the functions fE(x) and gE(p)
[Suisky].

E =

∫ +∞
−∞ dx|fE(x)|2V (x)∫ +∞
−∞ dx|fE(x)|2

+

∫ +∞
−∞ dp|gE(p)|2T (p)∫ +∞
−∞ dp|gE(p)|2

(15)

28Feynman introduced a weighting of the paths [Feynman].
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For the calculation of f(x) and g(p) using Eq. 15, one of the functions
must be replaced with the other. The substitution must be symmetric. This
is ensured by using a general integral transformation for which the inverse
exists. The transformation should also be independent of energy. To date,
no physical interpretation of that functions has been given. Therefore, the
definition can be given in accordance to mathematical rules only:

fE(x) =
1√
2πα

∫ +∞

−∞
dpe−i xp

α gE(p); (16)

gE(p) =
1√
2πα

∫ +∞

−∞
dxei xp

α fE(x)

The relation 16 is valid, if all configurations of the system are taken
into account and the energy conservation law is not violated. Additionally,
a new parameter, α, of the dimension of action had to be introduced for
dimensional reasons. 29 By definition, the parameter is independent of x
and p and it is assumed to be independent of energy. The argument of
the function e−i xp

α is a pure number. Using Eq. 16 we can eliminate either
gE(p) or fE(x) and obtain two equivalent equations being either purely
coordinate dependent or purely momentum dependent. The coordinate
dependent equation reads

∫ +∞

−∞
fE(x)

[
V (x)fE(x)− α2

2m
∂2

∂x2
fE(x)− EfE(x)

]
dx = 0. (17)

The expression in the brackets can be chosen differently, either being
different from zero or equal to zero. In the latter case, a relation between
the energy E and the function fE(x) is established which is valid for each
of the configurations of the system:

V (x)fE(x)− α2

2m
∂2

∂x2
fE(x)− EfE(x) = 0. (18)

This relation replaces the Newton-Euler equation of motion which is also
valid for each of the configurations of the system. However, the difference is
that the energy is now included as a indispensable parameter of the theory
independently of the considered configuration.

Identifying α with ~ and assuming the model of the harmonic oscillator

we obtain the the stationary Schrödinger equation, where ω =
√

k
m is

29This parameter plays the same role in Heisenberg’s time dependent approach. It can
be equate with Planck’s action parameter. In the present approach, however, this pa-
rameters has not been introduced in advance, but it follows now from the procedure.
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defined as in CM and identical with the frequency of Planck’s oscillator.
Schrödinger called this equation “oscillation (Schwingungs-) or amplitude
equation” to distinguish it from the time dependent or “real (eigentliche)
wave equation.” [Schrödinger 1926d]

The procedure is completed by eliminating the coordinate dependent
function in Eq. 15 instead of momentum dependent functions. Then, we ob-
tain a differential equation in momentum space for the same energies with-
out violating principles postulated by Schrödinger. The only modification
is that Schrödinger’s statement about exclusion of the phase space:“(NB.
nicht ‘pq-Raum’, sondern ‘q-Raum’)” [Schrödinger 1926c] has to be re-
placed with the statement “(NB. nicht ‘pq-Raum’, sondern ‘p-Raum’)”
which was already implicitly embodied in Schrödinger’s assumption. Then,
quantization can be defined as a selection problem [Suisky] (compare Sec-
tion 6.2). The difference between the representations does only emerge for
the time dependent wave equation (compare below Section 6.3) since the
configuration space function V (x) is replaced with the time dependent
function V (x, t) whereas T (p) is not altered by the introduction of time
dependence [Schrödinger 1926d].

6.2. Quantization as selection problem

The selection problem is properly defined by the operation to chose a
number or a set of numbers from the set of real numbers. 30 . However,
integers as mathematical numbers are only obtained after the introduction
of dimensionless quantities for all quantities appearing in Eq. 18.

Assuming a model system, the linear harmonic oscillator, the dimension-

less variables are obtained as ξ = 4

√
4km
~2 x and ν ≡ E

~ω −
1
2 and Eq. 18 reads

as follows
d2Dν(ξ)
dξ2

+
(
ν +

1
2
− 1

4
ξ2

)
Dν(ξ) = 0. (19)

It is known in the mathematical literature as Weber’s equation for the
parabolic cylinder. The solutions were studied by Whittaker [Whittaker]
in 1903. The variable ν is defined in the whole intervall −∞ < ν < +∞.
However, any selection of special parameter values can be performed only
by a procedure which introduces relations between different values of the

30 In terms of energy, this type of problems has been introduced by Einstein in 1907

who claimed, that the number of energetic states of a molecular body is less than the
number of states of bodies of our sensual experience [Einstein 1907] From Schrödinger’s
approach it follows, that the problem has to be formulated in terms of real numbers.
The integers should be obtained quite naturally as a special subset without imposing a
“condition for quantization in terms of integers” [Schrödinger 1926a].
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parameter. Applying Whittaker’s method, the general solution can be
represented as a coupled set of first order differential equations, usually
known as recurrence relations 31 [Whittaker]

dDν

dξ
+
ξ

2
Dν(ξ) + νDν−1(ξ) = 0 and (20)

dDν

dξ
− ξ

2
Dν(ξ) + (ν + 1)Dν+1(ξ) = 0,

which substitutes for Eq. 18. Using Eq. 20, the whole set of different param-
eter values can be obtained by the choice of any arbitrary parameter value
taken from the basic interval −1 ≤ ν ≤ 0. Then, three types of solutions
are obtained and the following problems are to be defined.
I The subdivision of the interval into −1 < ν < 0, ν = −1 and ν = 0

comprising all internal points and the two border points, respectively. 32

IIa For the border points ν = 0 and ν = −1, the two corresponding
functions are obtained from Eq. 20.

dD0(ξ)
dξ

+
ξ

2
D0(ξ) = 0 and

dD−1(ξ)
dξ

− ξ

2
D−1(ξ) = 0 (21)

IIb Consider the finite set of parameters values belonging to border points
ν = −1 and ν = 0 according to Eq. 20. The subsets can be properly
distinguished mathematically by the minima and maxima of the solutions
of equations (IIa). Then, a physical selection criterion is applied and the
divergent solution is excluded.

III Consider the whole infinite set of parameter values belonging to border
points ν = −1 and ν = 0 according to Eq. 20. In terms of energy, the first
set comprises only positive values E0 = 1

2αω, E1 = 3
2αω, · · · whereas

the second comprises only negative values, E−1 = − 1
2~ω, E−2 = − 3

2~ω,
· · · .

Selection criterion. Perpetuum mobile excluded – There are two
possible interactions of system and environment, firstly, an unlimited
supply of energy from the environment to the system and, secondly,
an unlimited supply of energy from the system to the environment. The
second case is has to be excluded by stating the impossibility of perpetual
motion. In the first case, the supply of energy from the system to the
environment is automatically limited due to the existence of the state E0

having the lowest energy.

31The states are represented by ν = const. The difference between two neighbored
states is given by the relation ∆ν = ±1. This approach corresponds to Heisenberg’s
consideration of the energy difference En − Em between states n and m.
32Using Eq. 20, an infinite countable set of functions is obtained for each value of ν
taken from the basic interval.

LOL Ch29-P19 of 24



522 Dieter Suisky

Confirmation by Euler’s method of maxima and minima - Euler’s
method allows for the distinction between the solutions D0 = exp(− ξ2

4 )
and D−1 = exp(+ ξ2

4 ) only by their extreme values. Obviously, D0 has
only one maximum and D−1 has only one minimum. Therefore, only the
function D0, belonging to the so called ground state, fulfils Schrödinger’s
criterion for a properly defined coordinate dependent function . The so-
lution D−1 has to be discarded.
Now, the whole procedure is finished. A countable infinite set of states,

represented by the set of integers, have been defined for the system and
chosen from the set of real numbers. This set cannot be subdivided by
physical or mathematical reasons into subsets. Therefore, neither additional
mathematical nor additional physical problems are to be solved. Knowing
the wave function D0 and the energy E0 of the ground state, the wave
functions and the corresponding energies of all other states are obtained
from Eq. 20. The whole procedure is necessary and sufficient for selecting
the only countably infinite set of energy values having a smallest element
simultaneously with the set of corresponding wave functions.

6.3. The time-dependent Schrödinger equation

The time-dependent Schrödinger equation is obtained by introducing a
time-dependent function V (x, t) in place of V (x) in Eq. 15, as well as
corresponding time-dependent wave functions f(x, t), g(p, t) and their time
derivatives ∂f(x,t)

∂t and ∂g(p,t)
∂t [Schrödinger 1926d].

In the first place, we have to remove the energy parameter from Eq. 15
and secondly, we have to ensure that the stationary case is obtained from
the relation for the non-stationary case. Both conditions can be satisfied if
we rewrite Eq. 15 by replacing the quantities in question by those suitable
for the non-stationary time-dependence by introducing of V (x, t) and the
time dependent wave function f(x, t). The latter does not depend on the en-
ergy parameter. Therefore, replacing f(x) with f(x, t) we have to consider
additionally the first order time derivative ∂f(x,t)

∂t and, if it is necessary,
∂2f(x,t)

∂t2 and higher order derivatives. [Schrödinger 1926d] Additionally,
gE(p) is replaced with g(p, t) and ∂g(p,t)

∂t . Furthermore, the energy parame-
ter E has to be replaced with a real valued parameter β which is not related
to the energy of the system. However, the structure of the equation should
be preserved, since we have to make sure that the stationary case can be
recovered.
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β =

∫ +∞
−∞ dxf(x, t)f∗(x, t)V (x, t)∫ +∞

−∞ dxf(x, t)∂f∗(x,t)
∂t

+

∫ +∞
−∞ dpg(p, t)g∗(p, t)T (p)∫ +∞
−∞ dpg(p, t)∂g∗(x,t)

∂t

(22)

Then, we have to introduce complex valued functions of time to ensure
that the denominator is always different from zero and, additionally, all
the integrals remain to be real-valued expressions. In the denominator, we
introduced symmetrized expressions being either the imaginary or the real
part of a combination of the wave function and their time-derivatives.

∫ +∞
−∞ dxf(x, t)f∗(x, t)V (x, t) +

∫ +∞
−∞ dxf∗(x, t)f(x, t)V (x, t)

i
(∫ +∞
−∞ dxf(x, t)∂f∗(x,t)

∂t −
∫ +∞
−∞ dxf∗(x, t)∂f(x,t)

∂t

) (23)

From Eqs. 22 and 23 the non-stationary Schrödinger equations for the
functions f(x, t) and f∗(x, t) are obtained. It is readily confirmed, that the
stationary functions are given as h(t) = exp(−iE

β t) and h∗(t) = exp(iE
β t),

then, Eq. 15 is recovered. The parameter β is real valued and independent of
the system and of the special time-dependence included in V (x, t). Neither
V (x, t) nor the time derivative ∂f(x,t)

∂t is related to any special property of
the underlying system. These properties are only essential in the stationary
case, where the relations given above are valid. Therefore, Eq. 22 describes
the general relation between spatial and temporal changes of the system
provided that β is an universal system independent parameter.

7. Summary

It has been demonstrated that the derivation of the basic quantum me-
chanical equation is obtained using Euler’s consistently formulated me-
chanics together with perfectly adapted mathematical methods. Euler sub-
divided mechanics into a theory of bodies of infinitesimal magnitude and a
theory of bodies of finite magnitude.

Euler’s procedure is found to be revived and generalized in Schrödinger’s
wave mechanics. By introducing the wave function, which is related to
systems extended in the whole configuration space, Schrödinger made a
pioneering step as important as Euler did 200 years ago, who assumed
mechanical quantities to be related to bodies of infinitesimal magnitude.

Schrödinger’s theory has been reconsidered and reconstructed in terms
of Euler’s methodology which is distinguished by a joint application of
mathematical and physical principles. The physical part has to be always
in agreement with experimental data, whereas the mathematical part may
temporarily be in contradiction to experiment, since the existence of math-
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ematical objects depends on further conditions than just fulfilling physical
criteria. However, the common criteria of order and completeness should
be satisfied for both parts of the theory.
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